CoCalc Shared Fileswww / papers / padic-bsd / shark.bblOpen in CoCalc with one click!
Author: William A. Stein
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
3
% \MRhref is called by the amsart/book/proc definition of \MR.
4
\providecommand{\MRhref}[2]{%
5
\href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
6
}
7
\providecommand{\href}[2]{#2}
8
\begin{thebibliography}{BSDGP96}
9
10
\bibitem[Ber81]{bernardi}
11
Dominique Bernardi, \emph{Hauteur {$p$}-adique sur les courbes elliptiques},
12
Seminar on Number Theory, Paris 1979--80, Progr. Math., vol.~12, Birkh\"auser
13
Boston, 1981, pp.~1--14.
14
15
\bibitem[Ber82]{bertrand}
16
Daniel Bertrand, \emph{Valuers de fonctions th{\^e}ta et hauteur
17
{$p$}-adiques}, Seminar on Number Theory, Paris 1980-81, Progr. Math.,
18
vol.~22, Birkh\"auser Boston, 1982, pp.~1--11.
19
20
\bibitem[BPR93]{prbe}
21
Dominique Bernardi and Bernadette Perrin-Riou, \emph{Variante {$p$}-adique de
22
la conjecture de {B}irch et {S}winnerton-{D}yer (le cas supersingulier)}, C.
23
R. Acad. Sci. Paris S\'er. I Math. \textbf{317} (1993), no.~3, 227--232.
24
25
\bibitem[BSDGP96]{steph}
26
Katia Barr{\'e}-Sirieix, Guy Diaz, Fran{\c{c}}ois Gramain, and Georges
27
Philibert, \emph{Une preuve de la conjecture de {M}ahler-{M}anin}, Invent.
28
Math. \textbf{124} (1996), no.~1-3, 1--9.
29
30
\bibitem[Cas65]{cassels}
31
J.~W.~S. Cassels, \emph{Arithmetic on curves of genus 1. {VIII}. {O}n
32
conjectures of {B}irch and {S}winnerton-{D}yer}, J. Reine Angew. Math.
33
\textbf{217} (1965), 180--199.
34
35
\bibitem[Col04a]{colmezlinvariant}
36
Pierre Colmez, \emph{Invariants $\mathscr{L}$ et d\'eriv\'ees de valeurs
37
propres de {Frobenius}}, preprint, 2004.
38
39
\bibitem[Col04b]{colmez}
40
\bysame, \emph{La conjecture de {B}irch et {S}winnerton-{D}yer {$p$}-adique},
41
Ast\'erisque (2004), no.~294, ix, 251--319.
42
43
\bibitem[Cre97]{cremona}
44
John~E. Cremona, \emph{Algorithms for modular elliptic curves}, second ed.,
45
Cambridge University Press, 1997.
46
47
\bibitem[CS00]{coatessujatha}
48
John Coates and Ramdorai Sujatha, \emph{Galois cohomology of elliptic curves},
49
Tata Institute of Fundamental Research Lectures on Mathematics, vol.~88,
50
Narosa Publishing House, 2000.
51
52
\bibitem[Del98]{delbourgo98}
53
Daniel Delbourgo, \emph{Iwasawa theory for elliptic curves at unstable primes},
54
Compositio Math. \textbf{113} (1998), no.~2, 123--153.
55
56
\bibitem[Del02]{delbourgo02}
57
\bysame, \emph{On the {$p$}-adic {B}irch, {S}winnerton-{D}yer conjecture for
58
non-semi\-stable reduction}, J. Number Theory \textbf{95} (2002), no.~1,
59
38--71.
60
61
\bibitem[Gri05]{grigorov}
62
Grigor~Tsankov Grigorov, \emph{Kato's {Euler} {System} and the {Main}
63
{Conjecture}}, Ph.D. thesis, Harvard University, 2005.
64
65
\bibitem[GS93]{grste}
66
Ralph Greenberg and Glenn Stevens, \emph{{$p$}-adic {$L$}-functions and
67
{$p$}-adic periods of modular forms}, Invent. Math. \textbf{111} (1993),
68
no.~2, 407--447.
69
70
\bibitem[GV00]{grvat}
71
Ralph Greenberg and Vinayak Vatsal, \emph{On the {I}wasawa invariants of
72
elliptic curves}, Invent. Math. \textbf{142} (2000), no.~1, 17--63.
73
74
\bibitem[Jon89]{jones89}
75
John~W. Jones, \emph{Iwasawa {$L$}-functions for multiplicative abelian
76
varieties}, Duke Math. J. \textbf{59} (1989), no.~2, 399--420.
77
78
\bibitem[Kat04]{kato}
79
Kazuya Kato, \emph{{$p$}-adic {Hodge} theory and values of zeta functions of
80
modular forms}, Cohomologies {$p$}-adiques et application arithm\'etiques.
81
{III}, Ast\'erisque, vol. 295, Soci\'et\'e Math\'ematique de France, Paris,
82
2004.
83
84
\bibitem[KKT96]{kkt}
85
Kazuya Kato, Masato Kurihara, and Takeshi Tsuji, \emph{Local {Iwasawa} theory
86
of {Perrin}-{Riou} and syntomic complexes}, preprint, 1996.
87
88
\bibitem[Kob03]{kobayashi}
89
Shin-ichi Kobayashi, \emph{Iwasawa theory for elliptic curves at supersingular
90
primes}, Invent. Math. \textbf{152} (2003), no.~1, 1--36.
91
92
\bibitem[Kob05]{koblp}
93
\bysame, \emph{An elementary proof of the {Mazur}-{Tate}-{Teitelbaum}
94
conjecture for elliptic curves}, preprint, 2005.
95
96
\bibitem[KP05]{kuriharapollack}
97
Masato Kurihara and Robert Pollack, \emph{Two $p$-aidc {$L$}-functions and
98
rational ponts on elliptic curves with supersingular reduction}, preprint,
99
2005.
100
101
\bibitem[Man72]{manin}
102
Ju.~I. Manin, \emph{Parabolic points and zeta functions of modular curves},
103
Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66.
104
105
\bibitem[MSD74]{mazurswd}
106
Barry Mazur and Peter Swinnerton-Dyer, \emph{Arithmetic of {W}eil curves},
107
Invent. Math. \textbf{25} (1974), 1--61.
108
109
\bibitem[MSJ05]{mst}
110
Barry Mazur, William Stein, and Tate John, \emph{Computation of $p$-adic
111
{Heights} and {Log} {Convergence}}, preprint, 2005.
112
113
\bibitem[MT91]{mt}
114
Barry Mazur and John Tate, \emph{The $p$-adic sigma function}, Duke Math. J.
115
\textbf{62} (1991), no.~3, 663--688.
116
117
\bibitem[MTT86]{mtt}
118
Barry Mazur, John Tate, and J.~Teitelbaum, \emph{On {$p$}-adic analogues of the
119
conjectures of {B}irch and {S}winnerton-{D}yer}, Invent. Math. \textbf{84}
120
(1986), no.~1, 1--48.
121
122
\bibitem[Pol03]{pollack}
123
Robert Pollack, \emph{On the {$p$}-adic {$L$}-function of a modular form at a
124
supersingular prime}, Duke Math. J. \textbf{118} (2003), no.~3, 523--558.
125
126
\bibitem[PR82]{pr82}
127
Bernadette Perrin-Riou, \emph{Descente infinie et hauteur {$p$}-adique sur les
128
courbes elliptiques \`a multiplication complexe}, Invent. Math. \textbf{70}
129
(1982), no.~3, 369--398.
130
131
\bibitem[PR87]{prheegner}
132
\bysame, \emph{Fonctions {$L$} {$p$}-adiques, th\'eorie d'{I}wasawa et points
133
de {H}eegner}, Bull. Soc. Math. France \textbf{115} (1987), no.~4, 399--456.
134
135
\bibitem[PR93]{prfourier93}
136
\bysame, \emph{Fonctions {$L$} {$p$}-adiques d'une courbe elliptique et points
137
rationnels}, Ann. Inst. Fourier (Grenoble) \textbf{43} (1993), no.~4,
138
945--995.
139
140
\bibitem[PR94]{prcol}
141
\bysame, \emph{Th\'eorie d'{I}wasawa des repr\'esentations {$p$}-adiques sur un
142
corps local}, Invent. Math. \textbf{115} (1994), no.~1, 81--161, With an
143
appendix by Jean-Marc Fontaine.
144
145
\bibitem[PR03]{pr00}
146
\bysame, \emph{Arithm\'etique des courbes elliptiques \`a r\'eduction
147
supersinguli\`ere en {$p$}}, Experiment. Math. \textbf{12} (2003), no.~2,
148
155--186.
149
150
\bibitem[Rub00]{eulersystems}
151
Karl Rubin, \emph{Euler systems}, Annals of Mathematics Studies, vol. 147,
152
Princeton University Press, Princeton, NJ, 2000, Hermann Weyl Lectures. The
153
Institute for Advanced Study.
154
155
\bibitem[Sch82]{schneider1}
156
Peter Schneider, \emph{{$p$}-adic height pairings. {I}}, Invent. Math.
157
\textbf{69} (1982), no.~3, 401--409.
158
159
\bibitem[Sch85]{schneider2}
160
\bysame, \emph{{$p$}-adic height pairings. {II}}, Invent. Math. \textbf{79}
161
(1985), no.~2, 329--374.
162
163
\bibitem[Ser72]{serregl2}
164
Jean-Pierre Serre, \emph{Propri\'et\'es galoisiennes des points d'ordre fini
165
des courbes elliptiques}, Invent. Math. \textbf{15} (1972), no.~4, 259--331.
166
167
\bibitem[Ser96]{serrewiles}
168
\bysame, \emph{Travaux de {W}iles (et {T}aylor, {$\ldots$}). {I}}, Ast\'erisque
169
(1996), no.~237, Exp.\ No.\ 803, 5, 319--332, S\'eminaire Bourbaki, Vol.\
170
1994/95.
171
172
\bibitem[Sil94]{sil2}
173
Joseph~H. Silverman, \emph{Advanced topics in the arithmetic of elliptic
174
curves}, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, New York,
175
1994.
176
177
\bibitem[SS04]{stoll}
178
Edward~F. Schaefer and Michael Stoll, \emph{How to do a {$p$}-descent on an
179
elliptic curve}, Trans. Amer. Math. Soc. \textbf{356} (2004), no.~3,
180
1209--1231.
181
182
\bibitem[Wer98]{werner}
183
Annette Werner, \emph{Local heights on abelian varieties and rigid analytic
184
uniformization}, Doc. Math. \textbf{3} (1998), 301--319.
185
186
\bibitem[Wut04]{wuth04}
187
Christian Wuthrich, \emph{On {$p$}-adic heights in families of elliptic
188
curves}, J. London Math. Soc. (2) \textbf{70} (2004), no.~1, 23--40.
189
190
\bibitem[Wut06]{wuthkato}
191
\bysame, \emph{Extending {Kato's} results to elliptic curves with
192
{$p$}-isogenies}, Math. Res. Lett. \textbf{13} (2006), no.~5, 713 -- 718.
193
194
\bibitem[Wut07]{wuthfine}
195
\bysame, \emph{Iwasawa theory of the fine {Selmer} group}, J. Algebraic Geom.
196
\textbf{16} (2007), 83--108.
197
198
\end{thebibliography}
199