CoCalc Shared Fileswww / papers / discheckediv / discheckediv.bblOpen in CoCalc with one click!
Author: William A. Stein
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
3
% \MRhref is called by the amsart/book/proc definition of \MR.
4
\providecommand{\MRhref}[2]{%
5
\href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
6
}
7
\providecommand{\href}[2]{#2}
8
\begin{thebibliography}{OW02}
9
10
\bibitem[Mat86]{matsumura}
11
H.~Matsumura, \emph{Commutative ring theory}, Cambridge University Press,
12
Cambridge, 1986, Translated from the Japanese by M. Reid. \MR{88h:13001}
13
14
\bibitem[MO02]{momose-ozawa}
15
Momose and Ozawa, \emph{Rational points of modular curves
16
\protect{$X_{\split}(p)$}}, Preprint (2002).
17
18
\bibitem[MS01]{merel-stein}
19
L.~Merel and W.\thinspace{}A. Stein, \emph{The field generated by the points of
20
small prime order on an elliptic curve}, Internat. Math. Res. Notices (2001),
21
no.~20, 1075--1082. \MR{1 857 596}
22
23
\bibitem[OW02]{ono-mcgraw}
24
K.~Ono and McGraw W., \emph{Modular form congruences and selmer groups},
25
Preprint (2002).
26
27
\bibitem[Rib99]{ribet:torsion}
28
K.\thinspace{}A. Ribet, \emph{Torsion points on ${J}\sb 0({N})$ and {G}alois
29
representations}, Arithmetic theory of elliptic curves (Cetraro, 1997),
30
Springer, Berlin, 1999, pp.~145--166. \MR{2001b:11054}
31
32
\bibitem[Ste00]{stein:phd}
33
W.\thinspace{}A. Stein, \emph{Explicit approaches to modular abelian
34
varieties}, Ph.D. thesis, University of California, Berkeley (2000).
35
36
\end{thebibliography}
37