CoCalc Public Fileswww / papers / 389 / 389.bblOpen with one click!
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\begin{thebibliography}{10}
3
4
\bibitem{agashe-stein:schoof-appendix}
5
A.~Agashe and W.\thinspace{}A. Stein, \emph{{\em Appendix to {J}oan-{C}.
6
{L}ario and {R}en\'e {S}choof:} {S}ome computations with {H}ecke rings and
7
deformation rings}, submitted.
8
9
\bibitem{agashe-stein:bsd}
10
\bysame, \emph{Visible evidence for the birch and swinnerton-dyer conjecture
11
for modular abelian varieties of analytic rank~$0$}, In Preparation.
12
13
\bibitem{agashe-stein:visibility}
14
\bysame, \emph{Visibility of {S}hafarevich-{T}ate {G}roups of {A}belian
15
{V}arieties}, to appear in J. of Number Theory (2002).
16
17
\bibitem{cremona:algs}
18
J.\thinspace{}E. Cremona, \emph{Algorithms for modular elliptic curves}, second
19
ed., Cambridge University Press, Cambridge, 1997.
20
21
\bibitem{elkies:ffield}
22
N.\thinspace{}D. Elkies, \emph{Elliptic and modular curves over finite fields
23
and related computational issues}, Computational perspectives on number
24
theory (Chicago, IL, 1995), Amer. Math. Soc., Providence, RI, 1998,
25
pp.~21--76.
26
27
\bibitem{empirical}
28
E.\thinspace{}V. Flynn, F.~\protect{Lepr\'{e}vost}, E.\thinspace{}F. Schaefer,
29
W.\thinspace{}A. Stein, M.~Stoll, and J.\thinspace{}L. Wetherell,
30
\emph{Empirical evidence for the {B}irch and {S}winnerton-{D}yer conjectures
31
for modular {J}acobians of genus 2 curves}, Math. Comp. \textbf{70} (2001),
32
no.~236, 1675--1697 (electronic).
33
34
\bibitem{gross-zagier}
35
B.~Gross and D.~Zagier, \emph{Heegner points and derivatives of
36
\protect{${L}$}-series}, Invent. Math. \textbf{84} (1986), no.~2, 225--320.
37
38
\bibitem{kolyvagin:subclass}
39
V.~A. Kolyvagin, \emph{Finiteness of ${E}({\bf {q}})$ and {S}{H}$({E},{\bf
40
{q}})$ for a subclass of {W}eil curves}, Izv. Akad. Nauk SSSR Ser. Mat.
41
\textbf{52} (1988), no.~3, 522--540, 670--671.
42
43
\bibitem{kolyvagin:weil}
44
\bysame, \emph{The {M}ordell-{W}eil and {S}hafarevich-{T}ate groups for {W}eil
45
elliptic curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{52} (1988), no.~6,
46
1154--1180, 1327.
47
48
\bibitem{gordon-ono:vis}
49
W.\thinspace{}J. McGraw and K.~Ono, \emph{Modular form {C}ongruences and
50
{S}elmer groups}, preprint (2002).
51
52
\bibitem{merel-stein}
53
L.~Merel and W.\thinspace{}A. Stein, \emph{The field generated by the points of
54
small prime order on an elliptic curve}, Internat. Math. Res. Notices (2001),
55
no.~20, 1075--1082.
56
57
\bibitem{mestre:graphs}
58
J.-F. Mestre, \emph{La m\'ethode des graphes. \protect{Exemples} et
59
applications}, Proceedings of the international conference on class numbers
60
and fundamental units of algebraic number fields (Katata) (1986), 217--242.
61
62
\bibitem{ribet:endo}
63
K.\thinspace{}A. Ribet, \emph{Endomorphisms of semi-stable abelian varieties
64
over number fields}, Ann. Math. (2) \textbf{101} (1975), 555--562.
65
66
\bibitem{ribet:torsion}
67
\bysame, \emph{Torsion points on ${J}\sb 0({N})$ and {G}alois representations},
68
Arithmetic theory of elliptic curves (Cetraro, 1997), Springer, Berlin, 1999,
69
pp.~145--166.
70
71
\bibitem{serre:arithmetic}
72
J-P. Serre, \emph{A \protect{C}ourse in \protect{A}rithmetic}, Springer-Verlag,
73
New York, 1973, Translated from the French, Graduate Texts in Mathematics,
74
No. 7.
75
76
\bibitem{shimura:factors}
77
G.~Shimura, \emph{On the factors of the jacobian variety of a modular function
78
field}, J. Math. Soc. Japan \textbf{25} (1973), no.~3, 523--544.
79
80
\bibitem{tate:bsd}
81
J.~Tate, \emph{On the conjectures of {B}irch and {S}winnerton-{D}yer and a
82
geometric analog}, S\'eminaire Bourbaki, Vol.\ 9, Soc. Math. France, Paris,
83
1995, pp.~Exp.\ No.\ 306, 415--440.
84
85
\bibitem{zagier:modular}
86
D.~Zagier, \emph{Modular points, modular curves, modular surfaces and modular
87
forms}, Workshop Bonn 1984 (Bonn, 1984), Springer, Berlin, 1985,
88
pp.~225--248.
89
90
\end{thebibliography}
91