Sharedwww / ono / apmod_run26.gpOpen in CoCalc
Author: William A. Stein
1
\\apmod_run26.gp
2
\\Compute Hecke eigenvalues for a basis of newforms of
3
\\S_k(Gamma_0(N); Fp). This is really computed using modular symbols
4
\\so in some special cases the computation may fail, e.g., maybe, if p divides
5
\\the discriminant of the Hecke algebra.
6
\\It is also possible, but very unlikely if p>3, that the dimension
7
\\of the modp reduction will go up because of "spurious torsion."
8
9
\\ Notation: This table is destined to be input into PARI.
10
\\ Unfortunately, PARI doesn't support n-dimensional arrays.
11
\\ Thus for now the output format is
12
\\ apmod_k7p13[N,i] = [g(x), [a2(x), a3(x), a5(x), ...]].
13
\\ where k=7,p=13 are examples,
14
\\ i is the conjugacy class (in no particular order),
15
\\ g(x) is an irreducible poly over Fp, and the Hecke eigenvalues a2, a3, ...
16
\\ are expressed as polynomials in a fixed root of g(x).
17
18
\\ William Stein ([email protected])
19
\\ Fri May 21 23:22:36 1999
20
21
22
apmod_k26p7[288,1] = [x^2+2*x+5, [0,0,2*x+5,0,3*x,6*x,4*x+2,x,4*x+2,2*x,x+6,6,6*x+1,3*x+1,4*x+1,3*x+6,4*x+5,5*x,6*x+6,4*x+3,3*x+2,5*x+6,2*x+5,3*x+6,3*x]];
23
apmod_k26p7[288,2] = [x^2+5*x+5, [0,0,6*x+4,0,x+1,5*x+5,6*x+1,5*x+5,x+6,4*x+4,4*x+5,x,4*x+5,2*x+1,6,6,4*x+6,3*x+3,x+2,2*x+6,4*x+6,3*x+4,x+3,6,6*x+6]];
24
apmod_k26p7[288,3] = [x^2+3*x+6, [0,0,5*x+1,5*x+2,x+5,3*x+4,3*x+5,3*x+2,x+5,x+1,3*x+6,4*x+3,6,5*x+2,3*x+6,3*x+4,6*x+3,5,5*x+4,4*x+4,6*x+3,3*x+6,x+6,5*x+1,5]];
25
apmod_k26p7[288,4] = [x^2+4*x+6, [0,0,2*x,2*x+6,2*x+5,3*x+2,6*x+3,3*x,2*x+5,5,5*x+3,4*x+5,4*x+6,2*x+6,5*x+3,3*x+2,2*x+1,x+5,3*x+4,1,5*x+6,5*x+3,6*x+4,2*x,x+5]];
26
apmod_k26p7[288,5] = [x^2+5*x+5, [0,0,6*x+2,0,3*x+5,6*x+3,1,6*x+3,1,5*x+6,4*x+6,5*x+3,4*x+6,x+1,5*x+2,2*x+5,6*x+4,5*x+6,x,5*x+4,6*x+4,3,x+5,5*x+2,3*x+5]];
27
apmod_k26p7[288,6] = [x^2+2*x+5, [0,0,3,0,x+2,5*x+3,5*x,2*x+4,2*x,3*x+6,5,2*x+6,2,6*x+3,3*x+1,3*x+1,4*x+4,3*x+6,4*x+3,1,3*x+3,6*x,3,4*x+6,6*x+5]];
28
apmod_k26p7[288,7] = [x^2+2*x+3, [0,0,x+5,3*x,6*x+2,x+3,x+2,4,x+1,2*x+4,3,6*x+4,3*x+5,4*x+6,2*x+4,4*x,5*x+4,6*x+4,4*x,3*x+5,2*x+1,3*x+1,4*x+6,3*x+6,6*x+1]];
29
apmod_k26p7[288,8] = [x^2+5*x+3, [0,0,x+6,5*x+5,x+6,6*x+2,5*x,3*x+6,3*x+2,3*x,4*x+1,x+5,5,3*x+4,4*x,5*x+5,2*x+5,x+5,2*x+2,2,1,4*x+3,3*x+4,x,5*x+6]];
30
apmod_k26p7[288,9] = [x, [0,0,3,0,3,0,4,5,5,6,0,4,5,5,4,4,6,6,1,4,1,6,5,3,3]];
31
apmod_k26p7[288,10] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
32
apmod_k26p7[288,11] = [x^2+1, [0,0,4*x+5,0,2*x+4,0,6*x+4,4*x+1,4*x+1,4*x+5,x+2,6*x+4,2*x+6,2*x+4,x+2,3*x+2,3*x+6,5*x+1,0,4*x+1,3*x+2,3*x+6,5*x+3,0,x+3]];
33
apmod_k26p7[288,12] = [x, [0,0,5,0,5,0,2,1,6,4,0,5,6,6,5,5,4,3,4,2,4,3,1,5,5]];
34
apmod_k26p7[288,13] = [x, [0,0,1,0,6,0,6,4,3,5,0,1,4,3,6,1,2,2,2,1,5,5,4,1,1]];
35
apmod_k26p7[288,14] = [x^2+1, [0,0,5*x+5,0,5*x+2,0,4*x+4,4*x+3,3*x+4,2*x+2,x+6,3*x+3,6*x+6,5*x+2,x+6,5*x+5,3*x+4,x+1,0,3*x+4,2*x+2,4*x+3,5*x+2,0,3*x+3]];
36
apmod_k26p7[288,15] = [x^2+1, [0,0,x+6,0,2*x+2,3*x+3,x+6,2*x+5,2*x+2,3*x+4,2*x+5,4*x+4,x+6,6*x+1,6*x+6,x+6,4*x+4,6*x+6,2*x+5,2*x+2,3*x+3,6*x+1,4*x+4,6*x+1,3*x+3]];
37
apmod_k26p7[288,16] = [x^2+1, [0,0,3*x+5,0,4*x+6,x+5,3*x+5,6*x+3,4*x+6,5*x+6,6*x+3,x+5,3*x+5,3*x+5,2*x+3,4*x+2,6*x+2,2*x+3,x+4,4*x+6,x+5,3*x+5,6*x+2,4*x+2,x+5]];
38
apmod_k26p7[288,17] = [x^2+1, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
39
apmod_k26p7[288,18] = [x^2+1, [0,0,2*x+6,0,5*x+3,4*x+1,2*x+6,3*x+2,5*x+3,x+3,3*x+2,4*x+1,2*x+6,5*x+1,6*x+5,5*x+1,4*x+1,x+2,4*x+5,5*x+3,4*x+1,5*x+1,4*x+1,5*x+1,4*x+1]];
40
apmod_k26p7[288,19] = [x^2+1, [0,0,2*x+4,0,2*x+6,0,x+2,x+2,3*x+2,0,0,0,4*x+1,0,0,0,0,0,0,x+3,0,0,0,5*x+3,0]];
41
apmod_k26p7[288,20] = [x^2+1, [0,0,2*x,0,1,0,x,6*x,5,0,0,0,4*x,0,0,0,0,0,0,4,0,0,0,5*x,0]];
42
apmod_k26p7[288,21] = [x^2+3*x+5, [0,0,6*x+2,5*x+3,2*x+3,5*x,x+3,2*x+1,x+2,6*x+4,4*x+2,x+3,5*x+2,2*x+3,6*x+6,x+2,3*x+2,6*x+1,6*x+5,6*x+3,4*x+3,4*x+6,3*x+2,2*x+4,4*x]];
43
apmod_k26p7[288,22] = [x^2+2*x+3, [0,0,5,3*x+6,5,x+6,2*x+6,2*x+1,2*x+3,4*x+5,5*x+6,6*x+1,2*x+2,6,3*x+2,4*x+1,3,6*x+1,4*x+1,5*x+5,x+1,1,1,6*x+4,4*x]];
44
apmod_k26p7[288,23] = [x^2+4*x+5, [0,0,3,4*x+2,6,5*x+2,6*x+2,x+1,5*x+6,x+5,2*x+2,6*x+2,6*x+4,6,5*x,2*x+1,3*x+1,3*x+2,2*x+1,3*x+3,2*x+6,5,3*x+1,4*x+2,4*x+3]];
45
apmod_k26p7[288,24] = [x^2+5*x+3, [0,0,3*x,3,4*x,x+6,4*x+5,6*x+2,2*x+2,x+3,x+5,6*x+1,3*x+5,2*x,x+3,3,x,6*x+1,4,3*x+5,5*x+6,5*x,5*x,5*x+1,5*x+3]];
46
apmod_k26p7[288,25] = [x, [0,0,1,0,2,6,6,0,5,0,6,6,1,3,3,6,0,6,6,2,2,1,1,2,0]];
47
apmod_k26p7[288,26] = [x, [0,0,5,0,3,1,1,4,4,0,2,5,4,1,2,3,3,1,0,1,5,5,1,2,3]];
48
apmod_k26p7[288,27] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
49
apmod_k26p7[288,28] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
50
apmod_k26p7[288,29] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
51
apmod_k26p7[288,30] = [x, [0,0,2,0,1,6,6,4,6,3,3,2,5,2,4,1,4,4,0,6,3,2,0,3,1]];
52
apmod_k26p7[288,31] = [x, [0,0,4,0,6,3,3,0,1,0,4,3,4,2,2,3,0,3,4,6,1,3,3,1,0]];
53
apmod_k26p7[288,32] = [x, [0,0,4,0,6,5,5,1,1,0,4,4,6,2,4,1,6,5,0,2,4,3,2,3,1]];
54
apmod_k26p7[288,33] = [x, [0,0,2,0,0,2,4,0,0,5,0,6,4,0,0,0,0,6,0,0,1,0,0,6,4]];
55
apmod_k26p7[288,34] = [x, [0,0,5,0,0,4,3,0,0,2,0,6,4,0,0,2,0,2,0,0,3,0,0,6,5]];
56
apmod_k26p7[288,35] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
57
apmod_k26p7[288,36] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
58
apmod_k26p7[288,37] = [x, [0,0,6,2,2,6,3,2,0,6,5,6,6,5,4,2,5,3,5,6,4,5,6,2,0]];
59
apmod_k26p7[288,38] = [x, [0,0,6,5,5,6,3,5,0,6,2,6,6,2,3,2,2,3,2,1,4,2,1,2,0]];
60
apmod_k26p7[288,39] = [x, [0,0,4,2,0,3,4,6,0,5,0,2,2,5,2,5,4,1,3,5,5,5,4,0,5]];
61
apmod_k26p7[288,40] = [x, [0,0,2,0,2,0,2,0,5,6,3,1,5,0,0,1,2,2,2,3,2,5,2,0,5]];
62
apmod_k26p7[288,41] = [x, [0,0,1,0,6,0,1,0,1,3,2,4,6,0,0,4,6,1,6,2,1,1,6,0,6]];
63
apmod_k26p7[288,42] = [x, [0,0,5,0,3,5,6,3,0,5,4,5,5,4,6,4,4,6,4,2,1,4,2,4,0]];
64
apmod_k26p7[288,43] = [x, [0,0,2,0,4,1,3,1,3,1,4,6,4,2,2,6,6,6,2,1,0,0,6,5,5]];
65
apmod_k26p7[288,44] = [x, [0,0,3,0,1,5,1,2,6,5,1,2,6,4,4,2,5,2,4,2,0,0,5,4,4]];
66
apmod_k26p7[288,45] = [x, [0,0,6,0,2,6,3,2,0,6,5,6,6,5,4,2,5,3,5,6,4,5,6,2,0]];
67
apmod_k26p7[288,46] = [x, [0,0,4,0,0,5,3,0,0,1,0,4,1,0,0,0,0,1,0,0,2,0,0,1,1]];
68
apmod_k26p7[288,47] = [x, [0,0,3,0,0,1,4,0,0,6,0,4,1,0,0,1,0,4,0,0,4,0,0,1,2]];
69
apmod_k26p7[288,48] = [x, [0,0,5,0,0,3,2,0,0,4,0,2,4,0,0,3,0,5,0,0,5,0,0,4,6]];
70
apmod_k26p7[288,49] = [x, [0,0,5,4,1,1,0,5,3,2,3,2,5,3,2,5,3,3,2,0,4,2,6,2,1]];
71
apmod_k26p7[288,50] = [x, [0,0,4,1,2,5,0,3,6,3,6,3,4,6,4,4,6,1,4,0,6,4,5,3,5]];
72
apmod_k26p7[288,51] = [x, [0,0,5,0,4,2,2,0,3,0,2,5,5,6,1,5,0,2,5,4,3,2,5,3,0]];
73
apmod_k26p7[288,52] = [x, [0,0,2,0,3,6,6,3,4,0,5,5,3,1,5,3,4,6,0,1,2,5,6,5,4]];
74
apmod_k26p7[288,53] = [x, [0,0,1,0,2,6,6,0,5,0,1,1,1,3,4,1,0,6,6,2,2,1,6,2,0]];
75
apmod_k26p7[288,54] = [x, [0,0,4,0,1,5,5,1,6,0,4,3,6,5,4,6,6,5,0,5,4,4,2,3,1]];
76
apmod_k26p7[288,55] = [x, [0,0,6,0,4,4,4,5,3,5,2,1,1,1,5,4,5,5,0,3,2,1,0,2,3]];
77
apmod_k26p7[288,56] = [x, [0,0,6,0,4,3,4,5,3,2,2,1,1,6,2,3,2,2,0,3,5,6,0,2,4]];
78
apmod_k26p7[288,57] = [x, [0,0,4,0,2,2,5,6,5,6,1,3,3,3,1,2,1,6,0,5,1,3,0,6,5]];
79
apmod_k26p7[288,58] = [x, [0,0,4,0,2,5,5,6,5,1,1,3,3,4,6,5,6,1,0,5,6,4,0,6,2]];
80
apmod_k26p7[288,59] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
81
apmod_k26p7[288,60] = [x, [0,0,4,0,0,1,1,0,0,3,0,5,6,0,0,3,0,4,0,0,6,0,0,2,3]];
82
apmod_k26p7[288,61] = [x, [0,0,4,0,0,6,1,0,0,4,0,5,6,0,0,4,0,3,0,0,1,0,0,2,4]];
83
apmod_k26p7[288,62] = [x, [0,0,0,6,2,5,3,3,6,2,0,1,6,6,4,6,0,0,4,2,5,4,2,0,6]];
84
apmod_k26p7[288,63] = [x, [0,0,0,2,1,3,6,0,1,1,5,4,1,2,2,6,2,4,2,3,2,5,4,3,4]];
85
apmod_k26p7[288,64] = [x, [0,0,0,5,1,4,6,0,1,1,2,3,1,5,2,6,2,3,5,3,5,2,4,3,3]];
86
apmod_k26p7[288,65] = [x, [0,0,0,4,5,2,6,3,4,1,2,2,2,5,2,6,5,4,4,0,3,1,1,2,1]];
87
apmod_k26p7[288,66] = [x, [0,0,0,3,5,6,5,0,5,2,4,1,2,3,3,5,3,1,3,1,4,4,6,6,1]];
88
apmod_k26p7[288,67] = [x, [0,0,0,6,2,2,4,3,6,5,0,6,1,6,4,1,0,0,4,2,2,4,2,0,1]];
89
apmod_k26p7[288,68] = [x, [0,0,0,2,6,6,4,5,2,3,1,6,6,6,1,4,6,5,2,0,2,4,4,6,3]];
90
apmod_k26p7[288,69] = [x, [0,0,0,3,2,6,2,0,2,5,4,1,5,3,4,2,4,1,3,6,4,4,1,1,1]];
91
apmod_k26p7[288,70] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
92
apmod_k26p7[288,71] = [x, [0,0,0,0,4,2,4,3,2,2,1,3,3,2,5,2,2,3,4,6,6,4,0,4,1]];
93
apmod_k26p7[288,72] = [x, [0,0,0,0,1,6,1,2,1,3,4,1,6,0,3,1,5,6,2,6,2,2,6,1,0]];
94
apmod_k26p7[288,73] = [x, [0,0,0,0,2,6,5,2,1,1,3,5,2,1,1,1,6,2,2,3,4,2,0,5,3]];
95
apmod_k26p7[288,74] = [x, [0,0,0,0,1,1,6,2,1,4,4,6,1,0,3,6,5,1,2,6,5,2,6,6,0]];
96
apmod_k26p7[288,75] = [x, [0,0,0,0,3,2,4,4,5,2,6,3,3,5,2,2,5,3,3,1,6,3,0,4,1]];
97
apmod_k26p7[288,76] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
98
apmod_k26p7[288,77] = [x, [0,0,0,0,5,2,5,4,5,6,1,2,2,0,6,2,3,2,3,2,3,3,5,5,0]];
99
apmod_k26p7[288,78] = [x, [0,0,3,5,1,5,3,1,1,3,2,6,3,2,0,1,3,1,5,4,3,0,4,5,3]];
100
apmod_k26p7[288,79] = [x, [0,0,4,5,1,2,4,1,1,4,2,1,4,2,0,6,3,6,5,4,4,0,4,2,4]];
101
apmod_k26p7[288,80] = [x, [0,0,1,0,1,0,1,0,6,4,2,3,6,0,0,3,6,1,1,5,1,6,6,0,6]];
102
apmod_k26p7[288,81] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
103
apmod_k26p7[288,82] = [x, [0,0,5,0,3,6,4,1,4,1,4,6,3,5,2,6,6,1,5,6,0,0,6,2,2]];
104
apmod_k26p7[288,83] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
105
apmod_k26p7[288,84] = [x, [0,0,1,0,5,4,5,4,2,3,2,4,2,6,1,4,3,3,6,3,0,0,3,6,6]];
106
apmod_k26p7[288,85] = [x, [0,0,1,0,5,1,4,2,0,6,5,6,1,2,4,2,5,4,2,1,3,2,6,5,0]];
107
apmod_k26p7[288,86] = [x, [0,0,2,0,0,6,5,0,0,3,0,5,4,0,0,0,0,4,0,0,1,0,0,4,4]];
108
apmod_k26p7[288,87] = [x, [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]];
109
apmod_k26p7[288,88] = [x, [0,0,2,0,0,3,5,0,0,3,0,2,3,0,0,4,0,5,0,0,5,0,0,3,6]];
110
111
apmod_k26p11[288,1] = [x^2+3, [0,0,x,6*x,0,5,6*x,2*x,6,x,x,3,0,10*x,9,2*x,1,2,9*x,7,10,10*x,6,4*x,4]];
112
apmod_k26p11[288,2] = [x^2+3, [0,0,x,5*x,0,5,6*x,9*x,5,x,10*x,3,0,x,2,2*x,10,2,2*x,4,10,x,5,4*x,4]];
113
apmod_k26p11[288,3] = [x^2+7*x+5, [0,0,4*x+10,x,0,3*x+10,9*x,7*x+8,10*x+5,10*x+9,7,9*x,x+2,5*x+6,10*x+8,4*x+9,5*x+6,8*x+8,9*x,7*x+10,2*x+8,2*x+6,2*x+10,9,10*x+8]];
114
apmod_k26p11[288,4] = [x^2+4*x+5, [0,0,7*x+10,x,0,8*x+10,2*x,7*x+3,10*x+6,x+9,4,2*x,10*x+2,5*x+5,10*x+3,7*x+9,5*x+5,3*x+8,9*x,7*x+1,9*x+8,2*x+5,2*x+1,9,x+8]];
115
apmod_k26p11[288,5] = [x^2+8*x+8, [0,0,5*x+3,x,0,x+5,5*x+8,5*x+5,x+7,10*x+6,5*x+10,4,4*x+10,6*x+8,8,3*x+9,x+4,10*x+3,6*x+3,8*x,9*x+10,9*x,2*x+10,6*x+1,5*x+2]];
116
apmod_k26p11[288,6] = [x^2+3*x+8, [0,0,6*x+3,x,0,10*x+5,6*x+8,5*x+6,x+4,x+6,5*x+1,4,7*x+10,6*x+3,3,8*x+9,x+7,x+3,6*x+8,8*x,2*x+10,9*x,2*x+1,5*x+1,6*x+2]];
117
apmod_k26p11[288,7] = [x^2+2*x+5, [0,0,6*x+3,x,0,6*x+8,9*x+5,4*x+4,7*x+6,10*x+7,8*x+1,8*x+2,5*x+8,8,7*x+9,8*x+7,7*x+6,9*x+4,4*x+6,5*x,5,8*x+9,6*x+5,3*x+6,6*x+8]];
118
apmod_k26p11[288,8] = [x^2+9*x+5, [0,0,5*x+3,x,0,5*x+8,2*x+5,4*x+7,7*x+5,x+7,8*x+10,3*x+2,6*x+8,3,7*x+2,3*x+7,7*x+5,2*x+4,4*x+5,5*x,5,8*x+2,6*x+6,8*x+6,5*x+8]];
119
apmod_k26p11[288,9] = [x^2+6*x+2, [0,0,10*x+6,x,0,6*x+8,7*x+2,x+7,3*x+6,0,9*x+8,8*x+3,9*x+1,7*x+2,10*x+6,6,7*x+5,8*x+10,3*x+10,9*x+6,5*x+9,4*x+9,1,5*x+1,10*x+4]];
120
apmod_k26p11[288,10] = [x^2+5*x+2, [0,0,x+6,x,0,5*x+8,4*x+2,x+4,3*x+5,0,9*x+3,3*x+3,2*x+1,7*x+9,10*x+5,6,7*x+6,3*x+10,3*x+1,9*x+5,6*x+9,4*x+2,10,6*x+1,x+4]];
121
apmod_k26p11[288,11] = [x^2+4*x+5, [0,0,6*x+6,7*x+3,0,6*x+4,8*x+5,x,9*x+4,6*x+8,3*x+8,3*x+6,5*x+1,8*x+10,4*x+9,5*x+6,3*x+5,8*x+5,3*x+2,x+5,10*x+3,2*x,4*x+1,7*x+2,5*x+7]];
122
apmod_k26p11[288,12] = [x^2+7*x+5, [0,0,5*x+6,7*x+8,0,5*x+4,3*x+5,x,9*x+7,5*x+8,3*x+3,8*x+6,6*x+1,8*x+1,4*x+2,6*x+6,3*x+6,3*x+5,3*x+9,x+6,x+3,2*x,4*x+10,4*x+2,6*x+7]];
123
apmod_k26p11[288,13] = [x^2+2*x+4, [0,0,9*x+5,x,0,8*x+5,x+9,7*x+8,5*x+2,x+7,9*x+9,9*x+10,10*x+7,8*x+3,4*x+3,7*x+6,8*x+3,2*x+4,4*x,2*x+2,1,2*x+6,3*x+9,6*x+9,10*x+2]];
124
apmod_k26p11[288,14] = [x^2+9*x+4, [0,0,2*x+5,x,0,3*x+5,10*x+9,7*x+3,5*x+9,10*x+7,9*x+2,2*x+10,x+7,8*x+8,4*x+8,4*x+6,8*x+8,9*x+4,4*x,2*x+9,1,2*x+5,3*x+2,5*x+9,x+2]];
125
apmod_k26p11[288,15] = [x^2+10*x+6, [0,0,6*x+5,x,0,10*x+5,8*x+1,10*x+8,5*x+8,6*x+9,7*x+10,5,5*x+7,3*x+4,10*x+7,9*x+8,3*x+7,9*x+3,x+6,3,10*x+8,7*x+6,9*x+4,5*x+9,10*x+9]];
126
apmod_k26p11[288,16] = [x^2+x+6, [0,0,5*x+5,x,0,x+5,3*x+1,10*x+3,5*x+3,5*x+9,7*x+1,5,6*x+7,3*x+7,10*x+4,2*x+8,3*x+4,2*x+3,x+5,8,x+8,7*x+5,9*x+7,6*x+9,x+9]];
127
apmod_k26p11[288,17] = [x^2+6*x+10, [0,0,6*x+10,x,0,4,7*x+7,x+6,6*x+10,9*x+9,5,6*x+10,7*x+7,7*x+4,6*x+9,4,4,6*x+7,2*x+7,2*x+9,6*x+7,2*x+1,6*x+8,x+3,3*x+3]];
128
apmod_k26p11[288,18] = [x^2+5*x+10, [0,0,5*x+10,x,0,4,4*x+7,x+5,6*x+1,2*x+9,6,5*x+10,4*x+7,7*x+7,6*x+2,4,7,5*x+7,2*x+4,2*x+2,5*x+7,2*x+10,6*x+3,10*x+3,8*x+3]];
129
apmod_k26p11[288,19] = [x^2+7*x+5, [0,0,8*x+2,x,0,8*x+4,9*x+9,9*x,9*x,10,4,10*x+6,4*x+7,9*x+10,4*x+3,4*x+3,2*x+7,4,10*x+1,9,3*x+8,2*x+4,x+9,10*x+8,8*x+2]];
130
apmod_k26p11[288,20] = [x^2+4*x+5, [0,0,3*x+2,x,0,3*x+4,2*x+9,9*x,9*x,10,7,x+6,7*x+7,9*x+1,4*x+8,7*x+3,2*x+4,4,10*x+10,2,8*x+8,2*x+7,x+2,x+8,3*x+2]];
131
apmod_k26p11[288,21] = [x^2+10*x+6, [0,0,5*x+6,x,0,10*x+5,3*x+10,10*x+8,6*x+3,5*x+2,7*x+10,5,6*x+4,3*x+4,x+4,2*x+3,8*x+4,9*x+3,x+6,8,10*x+8,7*x+6,2*x+7,6*x+2,10*x+9]];
132
apmod_k26p11[288,22] = [x^2+x+6, [0,0,6*x+6,x,0,x+5,8*x+10,10*x+3,6*x+8,6*x+2,7*x+1,5,5*x+4,3*x+7,x+7,9*x+3,8*x+7,2*x+3,x+5,3,x+8,7*x+5,2*x+4,5*x+2,x+9]];
133
apmod_k26p11[288,23] = [x^4+6*x^2+10, [0,0,10*x^3+x,10*x^3+6*x,0,7*x^2+9,3*x^3+4*x,5*x^3+7*x,4*x^2+8,x,5*x^3,9*x^2+2,x^3+5*x,7*x^3+7*x,7*x^2+2,4*x^3,2*x^2+2,7*x^2+10,8*x^3+3*x,5*x^2+6,7*x^2+6,6*x^3,5*x^2+1,8*x^3+7*x,4]];
134
apmod_k26p11[288,24] = [x^4+6*x^2+10, [0,0,10*x^3+x,x^3+5*x,0,7*x^2+9,3*x^3+4*x,6*x^3+4*x,7*x^2+3,x,6*x^3,9*x^2+2,x^3+5*x,4*x^3+4*x,4*x^2+9,4*x^3,9*x^2+9,7*x^2+10,3*x^3+8*x,6*x^2+5,7*x^2+6,5*x^3,6*x^2+10,8*x^3+7*x,4]];
135
apmod_k26p11[288,25] = [x, [0,0,10,0,0,9,9,0,0,9,0,1,6,0,0,5,0,3,0,0,8,0,0,6,5]];
136
apmod_k26p11[288,26] = [x, [0,0,10,0,0,6,6,0,0,6,0,1,9,0,0,6,0,8,0,0,3,0,0,5,6]];
137
apmod_k26p11[288,27] = [x, [0,0,2,1,0,7,3,0,9,2,5,7,4,5,9,3,8,4,2,3,7,10,1,10,9]];
138
apmod_k26p11[288,28] = [x, [0,0,2,10,0,7,3,0,2,2,6,7,4,6,2,3,3,4,9,8,7,1,10,10,9]];
139
apmod_k26p11[288,29] = [x, [0,0,2,0,0,3,3,0,0,3,0,9,8,0,0,0,0,8,0,0,3,0,0,0,0]];
140
apmod_k26p11[288,30] = [x, [0,0,3,1,0,7,4,5,6,4,6,0,6,2,3,10,8,8,2,7,10,0,3,9,8]];
141
apmod_k26p11[288,31] = [x, [0,0,3,10,0,7,4,6,5,4,5,0,6,9,8,10,3,8,9,4,10,0,8,9,8]];
142
apmod_k26p11[288,32] = [x, [0,0,3,5,0,0,10,2,0,2,9,7,9,9,7,3,0,9,5,5,3,4,8,3,3]];
143
apmod_k26p11[288,33] = [x, [0,0,3,6,0,0,10,9,0,2,2,7,9,2,4,3,0,9,6,6,3,7,3,3,3]];
144
apmod_k26p11[288,34] = [x, [0,0,9,7,9,2,6,5,10,2,4,4,7,6,1,2,5,3,10,10,8,2,0,7,10]];
145
apmod_k26p11[288,35] = [x, [0,0,9,4,2,2,6,6,1,2,7,4,7,5,10,2,6,3,1,1,8,9,0,7,10]];
146
apmod_k26p11[288,36] = [x, [0,0,9,0,0,3,8,0,0,8,0,9,3,0,0,0,0,8,0,0,3,0,0,0,0]];
147
apmod_k26p11[288,37] = [x, [0,0,4,1,0,9,0,2,1,2,7,9,4,1,4,0,8,9,7,2,7,3,1,6,2]];
148
apmod_k26p11[288,38] = [x, [0,0,4,10,0,9,0,9,10,2,4,9,4,10,7,0,3,9,4,9,7,8,10,6,2]];
149
apmod_k26p11[288,39] = [x^2+1, [0,0,4,x,0,1,6,10*x,x,7,4*x,6,8,6*x,10*x,0,10*x,1,3*x,3*x,9,0,8*x,5,9]];
150
apmod_k26p11[288,40] = [x^2+9, [0,0,4,x,0,5,8,8*x,6*x,9,3*x,4,1,9*x,6*x,10,3*x,6,x,8*x,9,x,6*x,10,1]];
151
apmod_k26p11[288,41] = [x, [0,0,7,8,4,10,5,5,7,6,2,7,4,5,6,10,8,10,9,4,8,1,10,8,1]];
152
apmod_k26p11[288,42] = [x, [0,0,7,3,7,10,5,6,4,6,9,7,4,6,5,10,3,10,2,7,8,10,1,8,1]];
153
apmod_k26p11[288,43] = [x, [0,0,7,4,0,10,8,2,4,6,5,0,5,8,9,4,7,4,5,6,4,2,1,0,4]];
154
apmod_k26p11[288,44] = [x, [0,0,7,7,0,10,8,9,7,6,6,0,5,3,2,4,4,4,6,5,4,9,10,0,4]];
155
apmod_k26p11[288,45] = [x^2+9, [0,0,7,x,0,5,3,8*x,5*x,2,3*x,4,10,9*x,5*x,1,8*x,6,x,3*x,9,x,5*x,1,1]];
156
apmod_k26p11[288,46] = [x, [0,0,1,7,0,4,6,0,4,2,9,4,4,8,3,10,1,9,6,0,0,3,4,3,0]];
157
apmod_k26p11[288,47] = [x, [0,0,1,8,0,5,4,7,1,0,7,7,1,3,10,0,2,1,8,3,4,3,6,2,10]];
158
apmod_k26p11[288,48] = [x, [0,0,1,4,0,4,6,0,7,2,2,4,4,3,8,10,10,9,5,0,0,8,7,3,0]];
159
apmod_k26p11[288,49] = [x, [0,0,1,3,0,5,4,4,10,0,4,7,1,8,1,0,9,1,3,8,4,8,5,2,10]];
160
apmod_k26p11[288,50] = [x, [0,0,1,0,0,6,5,0,0,5,0,1,2,0,0,5,0,8,0,0,3,0,0,6,6]];
161
apmod_k26p11[288,51] = [x, [0,0,1,0,0,9,2,0,0,2,0,1,5,0,0,6,0,3,0,0,8,0,0,5,5]];
162
apmod_k26p11[288,52] = [x, [0,0,0,9,1,8,6,4,5,10,1,1,10,9,1,6,2,8,1,3,5,10,9,9,4]];
163
apmod_k26p11[288,53] = [x, [0,0,0,2,10,8,6,7,6,10,10,1,10,2,10,6,9,8,10,8,5,1,2,9,4]];
164
apmod_k26p11[288,54] = [x, [0,0,0,8,10,0,3,8,2,8,0,0,8,8,0,0,9,0,0,0,0,8,0,0,0]];
165
apmod_k26p11[288,55] = [x, [0,0,0,8,1,0,8,8,9,3,0,0,3,8,0,0,2,0,0,0,0,8,0,0,0]];
166
apmod_k26p11[288,56] = [x, [0,0,0,0,0,8,3,0,0,8,0,9,3,0,0,2,0,8,0,0,8,0,0,9,0]];
167
apmod_k26p11[288,57] = [x, [0,0,0,3,1,0,3,3,9,8,0,0,8,3,0,0,2,0,0,0,0,3,0,0,0]];
168
apmod_k26p11[288,58] = [x, [0,0,0,3,10,0,8,3,2,3,0,0,3,3,0,0,9,0,0,0,0,3,0,0,0]];
169
apmod_k26p11[288,59] = [x, [0,0,8,5,0,0,1,2,0,9,9,7,2,9,4,8,0,9,5,6,3,4,3,8,3]];
170
apmod_k26p11[288,60] = [x, [0,0,8,6,0,0,1,9,0,9,2,7,2,2,7,8,0,9,6,5,3,7,8,8,3]];
171
apmod_k26p11[288,61] = [x, [0,0,8,1,8,1,2,1,7,8,5,2,6,4,1,2,1,7,2,8,10,5,4,9,8]];
172
apmod_k26p11[288,62] = [x, [0,0,8,1,0,7,9,4,6,5,7,7,0,10,9,8,9,4,9,2,6,8,2,1,0]];
173
apmod_k26p11[288,63] = [x, [0,0,8,10,3,1,2,10,4,8,6,2,6,7,10,2,10,7,9,3,10,6,7,9,8]];
174
apmod_k26p11[288,64] = [x, [0,0,8,10,0,7,9,7,5,5,4,7,0,1,2,8,2,4,2,9,6,3,9,1,0]];
175
apmod_k26p11[288,65] = [x, [0,0,6,4,0,9,10,10,9,10,7,2,3,4,5,9,8,5,9,8,0,8,1,3,5]];
176
apmod_k26p11[288,66] = [x, [0,0,6,10,1,10,9,0,8,4,9,1,5,7,5,9,8,9,5,5,0,4,10,0,3]];
177
apmod_k26p11[288,67] = [x, [0,0,6,2,0,10,4,1,7,7,9,8,9,2,5,5,8,4,6,2,1,4,10,7,0]];
178
apmod_k26p11[288,68] = [x, [0,0,6,1,10,10,9,0,3,4,2,1,5,4,6,9,3,9,6,6,0,7,1,0,3]];
179
apmod_k26p11[288,69] = [x, [0,0,6,7,0,9,10,1,2,10,4,2,3,7,6,9,3,5,2,3,0,3,10,3,5]];
180
apmod_k26p11[288,70] = [x, [0,0,6,0,0,2,5,0,0,6,0,1,9,0,0,10,0,3,0,0,3,0,0,1,6]];
181
apmod_k26p11[288,71] = [x, [0,0,6,9,0,10,4,10,4,7,2,8,9,9,6,5,3,4,5,9,1,7,1,7,0]];
182
apmod_k26p11[288,72] = [x^2+5, [0,0,6,x,0,8,0,4*x,0,9,3*x,4,7,0,8*x,0,4*x,2,9*x,10*x,2,8*x,x,9,5]];
183
apmod_k26p11[288,73] = [x, [0,0,5,6,0,8,10,2,6,3,2,2,0,4,8,9,8,3,7,7,0,3,0,2,3]];
184
apmod_k26p11[288,74] = [x, [0,0,5,10,10,10,2,0,3,7,9,1,6,7,6,2,3,9,5,6,0,4,1,0,3]];
185
apmod_k26p11[288,75] = [x, [0,0,5,9,0,3,7,3,0,1,6,1,4,7,6,4,2,7,7,7,3,6,3,1,10]];
186
apmod_k26p11[288,76] = [x, [0,0,5,2,0,3,7,8,0,1,5,1,4,4,5,4,9,7,4,4,3,5,8,1,10]];
187
apmod_k26p11[288,77] = [x, [0,0,5,1,1,10,2,0,8,7,2,1,6,4,5,2,8,9,6,5,0,7,10,0,3]];
188
apmod_k26p11[288,78] = [x, [0,0,5,5,0,8,10,9,5,3,9,2,0,7,3,9,3,3,4,4,0,8,0,2,3]];
189
apmod_k26p11[288,79] = [x^2+5, [0,0,5,x,0,8,0,4*x,0,2,3*x,4,4,0,3*x,0,7*x,2,9*x,x,2,8*x,10*x,2,5]];
190
apmod_k26p11[288,80] = [x, [0,0,5,0,0,5,2,0,0,9,0,1,6,0,0,10,0,8,0,0,8,0,0,1,5]];
191
192
apmod_k26p13[288,1] = [x^2+8, [0,0,10,x,2*x,12,3,11*x,4*x,3,0,3,0,3*x,12*x,9,2*x,0,6*x,10*x,1,9*x,5*x,10,11]];
193
apmod_k26p13[288,2] = [x^2+5, [0,0,1,x,9*x,0,4,12*x,x,9,11*x,9,8,4*x,9*x,2,0,3,12*x,4*x,1,8*x,12*x,1,0]];
194
apmod_k26p13[288,3] = [x, [0,0,7,7,11,12,6,6,0,4,5,0,8,3,8,7,6,7,6,5,10,12,11,4,7]];
195
apmod_k26p13[288,4] = [x, [0,0,7,6,2,12,6,7,0,4,8,0,8,10,5,7,7,7,7,8,10,1,2,4,7]];
196
apmod_k26p13[288,5] = [x, [0,0,6,6,12,1,11,7,12,11,4,1,3,2,3,8,7,2,0,2,7,1,11,8,12]];
197
apmod_k26p13[288,6] = [x, [0,0,6,7,1,1,11,6,1,11,9,1,3,11,10,8,6,2,0,11,7,12,2,8,12]];
198
apmod_k26p13[288,7] = [x, [0,0,5,5,12,0,5,0,9,5,9,6,9,2,7,12,5,3,8,8,1,7,12,3,0]];
199
apmod_k26p13[288,8] = [x, [0,0,5,8,1,0,5,0,4,5,4,6,9,11,6,12,8,3,5,5,1,6,1,3,0]];
200
apmod_k26p13[288,9] = [x^2+6*x+7, [0,0,9*x+10,x,3*x+1,1,11,12*x,2*x,11,7*x+2,5*x+9,4*x+12,6*x+6,3*x+5,8*x,8*x+4,3*x+9,8*x+3,5*x+5,8*x+12,1,5*x+1,12*x+9,8*x+4]];
201
apmod_k26p13[288,10] = [x^2+7*x+7, [0,0,4*x+10,x,3*x+12,1,11,12*x,2*x,11,7*x+11,8*x+9,9*x+12,6*x+7,3*x+8,5*x,8*x+9,10*x+9,8*x+10,5*x+8,5*x+12,12,5*x+12,x+9,5*x+4]];
202
apmod_k26p13[288,11] = [x^2+x+5, [0,0,10*x+4,x,4*x+12,0,7*x,6,9*x,3*x+3,7*x+2,10*x+7,6*x+7,3*x+2,3*x,6*x+7,3*x+11,2*x+11,9*x+3,x+7,11*x+3,10*x+4,x+5,x+6,12*x+4]];
203
apmod_k26p13[288,12] = [x^2+12*x+5, [0,0,3*x+4,x,4*x+1,0,6*x,7,9*x,10*x+3,7*x+11,3*x+7,7*x+7,3*x+11,3*x,7*x+7,3*x+2,11*x+11,9*x+10,x+6,2*x+3,10*x+9,x+8,12*x+6,x+4]];
204
apmod_k26p13[288,13] = [x^4+10*x^2+5, [0,0,x^2+12,x,5*x^3+9*x,1,x^2+8,5*x^3+9*x,0,2,2*x^3+12*x,12*x^2+1,2*x^2,8*x^3+3*x,12*x,11*x^2+8,11*x^3+3*x,2*x^2,12*x^3+2*x,7*x^3+7*x,7,10*x^3+x,5*x^3+7*x,6,4*x^2+3]];
205
apmod_k26p13[288,14] = [x^2+3*x+6, [0,0,6*x+4,x,x,0,1,11*x+6,6*x+5,3*x+6,3*x+11,11*x+1,12*x+7,5*x+10,x+11,2*x+12,5*x+1,12*x+1,2,11*x+2,6*x+3,10*x+7,2*x+5,2*x+3,9*x+10]];
206
apmod_k26p13[288,15] = [x^2+10*x+6, [0,0,7*x+4,x,x,0,1,11*x+7,6*x+8,10*x+6,3*x+2,2*x+1,x+7,5*x+3,x+2,11*x+12,5*x+12,x+1,11,11*x+11,7*x+3,10*x+6,2*x+8,11*x+3,4*x+10]];
207
apmod_k26p13[288,16] = [x^2+12*x+4, [0,0,9*x+12,x,7*x+6,0,9*x+7,12*x+4,10*x+8,3*x+7,x+9,5*x+12,9*x+12,2*x+10,2*x+8,4*x+2,2*x+8,3*x+12,4*x+9,9*x+8,3*x+12,9*x+4,7*x+10,1,6*x+10]];
208
apmod_k26p13[288,17] = [x^2+x+4, [0,0,4*x+12,x,7*x+7,0,4*x+7,12*x+9,10*x+5,10*x+7,x+4,8*x+12,4*x+12,2*x+3,2*x+5,9*x+2,2*x+5,10*x+12,4*x+4,9*x+5,10*x+12,9*x+9,7*x+3,1,7*x+10]];
209
apmod_k26p13[288,18] = [x^2+7, [0,0,2*x,9*x,10,12,x,8*x,10,4*x,9*x,11,11*x,12*x,1,x,11,1,5*x,1,5,0,5,5*x,6]];
210
apmod_k26p13[288,19] = [x^2+7, [0,0,2*x,4*x,3,12,x,5*x,3,4*x,4*x,11,11*x,x,12,x,2,1,8*x,12,5,0,8,5*x,6]];
211
apmod_k26p13[288,20] = [x^3+8*x^2+12*x+12, [0,0,2*x^2+x+1,x,9*x^2+10*x+4,0,9*x^2+7*x+9,5*x^2+2*x+9,5*x^2+6*x+12,x^2+x+1,7*x+4,3*x^2+12*x+9,6*x^2+12*x+2,7*x^2+9*x+8,10*x^2+3*x+11,6*x^2+10*x+11,8*x^2+x+10,6*x^2+5*x+3,12*x^2+11*x+2,11*x^2+12*x+2,6*x^2+5*x+12,3*x^2+8*x+6,11*x^2+7,8*x^2+12*x+2,4*x^2+3*x+4]];
212
apmod_k26p13[288,21] = [x^3+5*x^2+12*x+1, [0,0,2*x^2+12*x+1,x,4*x^2+10*x+9,0,9*x^2+6*x+9,8*x^2+2*x+4,8*x^2+6*x+1,x^2+12*x+1,7*x+9,3*x^2+x+9,6*x^2+x+2,6*x^2+9*x+5,3*x^2+3*x+2,6*x^2+3*x+11,5*x^2+x+3,6*x^2+8*x+3,x^2+11*x+11,2*x^2+12*x+11,6*x^2+8*x+12,10*x^2+8*x+7,2*x^2+6,8*x^2+x+2,4*x^2+10*x+4]];
213
apmod_k26p13[288,22] = [x^3+5*x^2+6*x+3, [0,0,4*x+11,x,8*x^2+8*x+3,0,10*x^2+9*x,4*x^2+2*x+10,4*x^2+3*x+2,12*x^2+3,10*x^2+7*x+8,8*x^2+11*x+3,10*x^2+x+1,4*x^2+12,7*x^2+2*x,12*x^2+2*x+3,7*x^2+6*x+6,9*x^2+8*x+5,7*x^2+10*x+2,3*x^2+12*x+4,2*x^2+3*x+1,12*x^2+8*x+2,11*x^2+7*x+4,10*x+4,6*x^2+11*x+2]];
214
apmod_k26p13[288,23] = [x^3+8*x^2+6*x+10, [0,0,9*x+11,x,5*x^2+8*x+10,0,10*x^2+4*x,9*x^2+2*x+3,9*x^2+3*x+11,12*x^2+3,3*x^2+7*x+5,8*x^2+2*x+3,10*x^2+12*x+1,9*x^2+1,6*x^2+2*x,12*x^2+11*x+3,6*x^2+6*x+7,9*x^2+5*x+5,6*x^2+10*x+11,10*x^2+12*x+9,2*x^2+10*x+1,x^2+8*x+11,2*x^2+7*x+9,3*x+4,6*x^2+2*x+2]];
215
apmod_k26p13[288,24] = [x^3+8*x^2+6*x+10, [0,0,4*x+2,x,8*x^2+5*x+3,0,3*x^2+9*x,9*x^2+2*x+3,4*x^2+10*x+2,x^2+10,3*x^2+7*x+5,8*x^2+2*x+3,3*x^2+x+12,9*x^2+1,7*x^2+11*x,x^2+2*x+10,7*x^2+7*x+6,9*x^2+5*x+5,6*x^2+10*x+11,3*x^2+x+4,2*x^2+10*x+1,x^2+8*x+11,11*x^2+6*x+4,10*x+9,6*x^2+2*x+2]];
216
apmod_k26p13[288,25] = [x^3+5*x^2+6*x+3, [0,0,9*x+2,x,5*x^2+5*x+10,0,3*x^2+4*x,4*x^2+2*x+10,9*x^2+10*x+11,x^2+10,10*x^2+7*x+8,8*x^2+11*x+3,3*x^2+12*x+12,4*x^2+12,6*x^2+11*x,x^2+11*x+10,6*x^2+7*x+7,9*x^2+8*x+5,7*x^2+10*x+2,10*x^2+x+9,2*x^2+3*x+1,12*x^2+8*x+2,2*x^2+6*x+9,3*x+9,6*x^2+11*x+2]];
217
apmod_k26p13[288,26] = [x, [0,0,4,0,0,0,8,0,0,9,0,11,5,0,0,9,0,3,0,0,6,0,0,3,8]];
218
apmod_k26p13[288,27] = [x, [0,0,4,0,0,7,8,0,0,9,0,11,5,0,0,9,0,3,0,0,6,0,0,3,8]];
219
apmod_k26p13[288,28] = [x, [0,0,12,10,2,1,3,11,4,11,9,5,12,6,4,9,6,9,10,11,11,8,9,11,10]];
220
apmod_k26p13[288,29] = [x, [0,0,12,3,11,1,3,2,9,11,4,5,12,7,9,9,7,9,3,2,11,5,4,11,10]];
221
apmod_k26p13[288,30] = [x^2+5, [0,0,12,x,4*x,0,9,12*x,12*x,4,11*x,9,5,4*x,4*x,11,0,3,12*x,9*x,1,8*x,x,12,0]];
222
apmod_k26p13[288,31] = [x, [0,0,8,3,8,0,6,5,12,5,2,12,9,1,4,9,6,3,10,6,8,8,1,9,7]];
223
apmod_k26p13[288,32] = [x, [0,0,8,10,5,0,6,8,1,5,11,12,9,12,9,9,7,3,3,7,8,5,12,9,7]];
224
apmod_k26p13[288,33] = [x^2+11*x+7, [0,0,7*x+6,x,4*x+5,0,9*x+4,5*x+4,5*x+11,5*x+9,9*x+9,x+1,7*x,4,9*x+3,11*x,9*x+9,8*x+10,5*x+4,8*x+1,0,x+10,12*x+2,6*x+8,7*x+1]];
225
apmod_k26p13[288,34] = [x^2+2*x+7, [0,0,6*x+6,x,4*x+8,0,4*x+4,5*x+9,5*x+2,8*x+9,9*x+4,12*x+1,6*x,9,9*x+10,2*x,9*x+4,5*x+10,5*x+9,8*x+12,0,x+3,12*x+11,7*x+8,6*x+1]];
226
apmod_k26p13[288,35] = [x^2+7, [0,0,4*x,11*x,7,12,x,10*x,3,8*x,11*x,11,9*x,12*x,11,x,1,8,3*x,11,4,0,2,12*x,6]];
227
apmod_k26p13[288,36] = [x^2+7, [0,0,4*x,2*x,6,12,x,3*x,10,8*x,2*x,11,9*x,x,2,x,12,8,10*x,2,4,0,11,12*x,6]];
228
apmod_k26p13[288,37] = [x^2+11*x+9, [0,0,12*x,x,11,12,2*x+11,12*x+4,11*x,2*x+11,10*x+4,11*x+11,x,11*x+4,4*x+11,2*x+7,2*x+7,2*x+3,x+8,2*x+11,11*x+11,4*x+9,11*x+3,8*x+4,2*x+11]];
229
apmod_k26p13[288,38] = [x^2+2*x+9, [0,0,x,x,2,12,11*x+11,12*x+9,11*x,11*x+11,10*x+9,2*x+11,12*x,11*x+9,4*x+2,11*x+7,2*x+6,11*x+3,x+5,2*x+2,2*x+11,4*x+4,11*x+10,5*x+4,11*x+11]];
230
apmod_k26p13[288,39] = [x^4+6*x^2+2, [0,0,6*x^2+4,x,10*x^3+9*x,1,x^2+1,6*x^3+5*x,0,9,x,2*x^2+4,7*x^2+5,7*x^3+7*x,9*x^3+8*x,11*x^2+3,4*x^3+5*x,12*x^2+10,7*x^3+4*x,10*x^3+9*x,6,12*x^3+12*x,10*x^3,8*x^2+2,11*x^2+9]];
231
apmod_k26p13[288,40] = [x^2+6*x+4, [0,0,x+4,x,11*x+7,12,2*x+6,12*x+9,2*x+8,11*x+11,x+9,2*x+6,12*x+4,2*x+4,2*x+10,2*x+10,4*x+1,2*x+1,10*x+5,10,2*x+6,4*x+12,4*x+5,10*x,11*x+6]];
232
apmod_k26p13[288,41] = [x^2+7*x+4, [0,0,12*x+4,x,11*x+6,12,11*x+6,12*x+4,2*x+5,2*x+11,x+4,11*x+6,x+4,2*x+9,2*x+3,11*x+10,4*x+12,11*x+1,10*x+8,3,11*x+6,4*x+1,4*x+8,3*x,2*x+6]];
233
apmod_k26p13[288,42] = [x^4+6*x^2+2, [0,0,7*x^2+9,x,3*x^3+4*x,1,12*x^2+12,6*x^3+5*x,0,4,x,2*x^2+4,6*x^2+8,7*x^3+7*x,4*x^3+5*x,2*x^2+10,9*x^3+8*x,12*x^2+10,7*x^3+4*x,3*x^3+4*x,6,12*x^3+12*x,3*x^3,5*x^2+11,11*x^2+9]];
234
apmod_k26p13[288,43] = [x, [0,0,9,9,11,12,4,6,0,9,1,6,12,0,1,11,6,8,6,12,10,12,12,9,7]];
235
apmod_k26p13[288,44] = [x, [0,0,9,4,2,12,4,7,0,9,12,6,12,0,12,11,7,8,7,1,10,1,1,9,7]];
236
apmod_k26p13[288,45] = [x, [0,0,9,0,0,0,5,0,0,4,0,11,8,0,0,4,0,3,0,0,6,0,0,10,8]];
237
apmod_k26p13[288,46] = [x, [0,0,9,0,0,7,5,0,0,4,0,11,8,0,0,4,0,3,0,0,6,0,0,10,8]];
238
apmod_k26p13[288,47] = [x, [0,0,0,11,4,1,6,7,0,2,6,10,5,1,12,6,0,2,11,5,1,9,8,9,1]];
239
apmod_k26p13[288,48] = [x, [0,0,0,11,0,1,11,2,8,7,11,7,0,9,8,6,4,2,11,4,11,1,1,1,8]];
240
apmod_k26p13[288,49] = [x, [0,0,0,2,9,1,6,6,0,2,7,10,5,12,1,6,0,2,2,8,1,4,5,9,1]];
241
apmod_k26p13[288,50] = [x, [0,0,0,2,0,1,11,11,5,7,2,7,0,4,5,6,9,2,2,9,11,12,12,1,8]];
242
apmod_k26p13[288,51] = [x^2+6, [0,0,0,4*x,4*x,12,0,4*x,8*x,4,x,6,12,0,4*x,4,6*x,6,12*x,x,3,10*x,7*x,9,11]];
243
apmod_k26p13[288,52] = [x^2+6, [0,0,0,4*x,9*x,12,0,4*x,5*x,9,x,6,1,0,9*x,9,7*x,6,12*x,12*x,3,10*x,6*x,4,11]];
244
apmod_k26p13[288,53] = [x, [0,0,11,10,2,0,8,3,11,10,6,10,12,5,6,2,5,3,3,6,6,4,4,8,3]];
245
apmod_k26p13[288,54] = [x, [0,0,11,3,11,0,8,10,2,10,7,10,12,8,7,2,8,3,10,7,6,9,9,8,3]];
246
apmod_k26p13[288,55] = [x, [0,0,11,11,11,12,7,11,0,11,2,10,11,8,2,2,3,6,1,1,7,9,7,3,10]];
247
apmod_k26p13[288,56] = [x, [0,0,11,2,2,12,7,2,0,11,11,10,11,5,11,2,10,6,12,12,7,4,6,3,10]];
248
apmod_k26p13[288,57] = [x^2+2, [0,0,11,x,0,0,5,2*x,11*x,5,x,0,4,9*x,0,0,8*x,10,12*x,8*x,12,9*x,5*x,3,7]];
249
apmod_k26p13[288,58] = [x, [0,0,11,9,9,11,6,9,0,11,4,11,11,4,5,3,4,6,4,3,7,4,1,3,12]];
250
apmod_k26p13[288,59] = [x, [0,0,11,9,9,0,6,9,0,11,4,11,11,4,5,3,4,6,4,3,7,4,1,3,12]];
251
apmod_k26p13[288,60] = [x, [0,0,11,4,4,11,6,4,0,11,9,11,11,9,8,3,9,6,9,10,7,9,12,3,12]];
252
apmod_k26p13[288,61] = [x, [0,0,11,4,4,0,6,4,0,11,9,11,11,9,8,3,9,6,9,10,7,9,12,3,12]];
253
apmod_k26p13[288,62] = [x, [0,0,11,0,11,1,0,4,9,8,8,2,7,9,7,4,7,2,4,7,11,10,11,3,11]];
254
apmod_k26p13[288,63] = [x, [0,0,11,0,2,1,0,9,4,8,5,2,7,4,6,4,6,2,9,6,11,3,2,3,11]];
255
apmod_k26p13[288,64] = [x, [0,0,2,11,7,12,2,6,0,6,7,2,10,5,6,7,7,3,11,12,12,9,6,7,12]];
256
apmod_k26p13[288,65] = [x, [0,0,2,2,6,12,2,7,0,6,6,2,10,8,7,7,6,3,2,1,12,4,7,7,12]];
257
apmod_k26p13[288,66] = [x^2+2, [0,0,2,x,0,0,8,2*x,2*x,8,x,0,9,9*x,0,0,5*x,10,12*x,5*x,12,9*x,8*x,10,7]];
258
apmod_k26p13[288,67] = [x, [0,0,2,0,2,1,0,4,4,5,8,2,6,9,6,9,6,2,4,6,11,10,2,10,11]];
259
apmod_k26p13[288,68] = [x, [0,0,2,0,11,1,0,9,9,5,5,2,6,4,7,9,7,2,9,7,11,3,11,10,11]];
260
apmod_k26p13[288,69] = [x, [0,0,2,0,9,1,6,5,5,11,8,3,7,9,0,1,12,3,5,0,12,9,9,10,10]];
261
apmod_k26p13[288,70] = [x, [0,0,2,0,4,1,6,8,8,11,5,3,7,4,0,1,1,3,8,0,12,4,4,10,10]];
262
apmod_k26p13[288,71] = [x, [0,0,2,0,0,0,11,0,0,10,0,11,3,0,0,12,0,3,0,0,7,0,0,3,5]];
263
apmod_k26p13[288,72] = [x, [0,0,2,0,0,6,11,0,0,10,0,11,3,0,0,12,0,3,0,0,7,0,0,3,5]];
264
265