Sharedwww / ono / apmod_run20.gpOpen in CoCalc
Author: William A. Stein
1
\\apmod_run20.gp
2
\\Compute Hecke eigenvalues for a basis of newforms of
3
\\S_k(Gamma_0(N); Fp). This is really computed using modular symbols
4
\\so in some special cases the computation may fail, e.g., maybe, if p divides
5
\\the discriminant of the Hecke algebra.
6
\\It is also possible, but very unlikely if p>3, that the dimension
7
\\of the modp reduction will go up because of "spurious torsion."
8
9
\\ Notation: This table is destined to be input into PARI.
10
\\ Unfortunately, PARI doesn't support n-dimensional arrays.
11
\\ Thus for now the output format is
12
\\ apmod_k7p13[N,i] = [g(x), [a2(x), a3(x), a5(x), ...]].
13
\\ where k=7,p=13 are examples,
14
\\ i is the conjugacy class (in no particular order),
15
\\ g(x) is an irreducible poly over Fp, and the Hecke eigenvalues a2, a3, ...
16
\\ are expressed as polynomials in a fixed root of g(x).
17
18
\\ William Stein ([email protected])
19
\\ Fri May 21 23:22:33 1999
20
21
22
apmod_k20p7[288,1] = [x, [0,0,6,0,1,0,1,4,4,5,0,1,3,4,6,1,2,5,5,6,2,2,4,6,6]];
23
apmod_k20p7[288,2] = [x, [0,0,6,0,6,0,1,3,3,5,0,1,3,3,1,1,5,5,2,1,2,5,3,6,6]];
24
apmod_k20p7[288,3] = [x^2+1, [0,0,x,0,2,4,x,2*x,2,4*x,2*x,4,x,x,1,6*x,3,1,5*x,2,4,x,3,6*x,4]];
25
apmod_k20p7[288,4] = [x^2+1, [0,0,x,0,5,4,x,5*x,5,4*x,5*x,4,x,6*x,6,6*x,4,1,2*x,5,4,6*x,4,6*x,4]];
26
apmod_k20p7[288,5] = [x^2+3*x+6, [0,0,x+5,1,x,2,6*x+5,2*x+3,x,5*x+2,5*x+1,5,x+4,1,5*x+1,2,5*x+3,2*x+1,5*x,6*x+1,5*x+3,5*x+1,3,x+5,2*x+1]];
27
apmod_k20p7[288,6] = [x^2+4*x+6, [0,0,6*x+5,6,x,2,x+5,2*x+4,x,2*x+2,5*x+6,5,6*x+4,6,5*x+6,2,5*x+4,5*x+1,5*x,6*x+6,2*x+3,5*x+6,4,6*x+5,5*x+1]];
28
apmod_k20p7[288,7] = [x^2+5*x+5, [0,0,4*x+4,0,x,5*x,x+3,5*x,6*x+4,4*x,5*x+5,2,5*x+5,x+2,6*x+2,6*x+2,6*x+3,3*x,2*x+5,6*x+6,6*x+3,4*x+5,3*x+3,6*x+2,6*x]];
29
apmod_k20p7[288,8] = [x^2+2*x+5, [0,0,3*x+4,0,x,2*x,6*x+3,5*x,6*x+3,3*x,5*x+2,2,2*x+5,x+5,6*x+5,x+2,6*x+4,4*x,2*x+2,6*x+1,x+3,4*x+2,3*x+4,x+2,x]];
30
apmod_k20p7[288,9] = [x^2+5*x+3, [0,0,x,1,x,2*x+5,6*x+4,2*x+3,4*x+4,5*x+1,5*x+4,5*x+2,x+4,3*x,2*x+6,1,2*x,5*x+2,6,6*x+3,3*x+5,4*x,3*x,4*x+5,3*x+6]];
31
apmod_k20p7[288,10] = [x^2+2*x+3, [0,0,6*x,6,x,5*x+5,x+4,2*x+4,4*x+3,2*x+1,5*x+3,2*x+2,6*x+4,3*x,2*x+1,1,2*x,2*x+2,1,6*x+4,4*x+5,4*x,3*x,3*x+5,4*x+6]];
32
apmod_k20p7[288,11] = [x, [0,0,1,0,6,0,6,4,3,5,0,1,4,3,6,1,2,2,2,1,5,5,4,1,1]];
33
apmod_k20p7[288,12] = [x, [0,0,1,0,1,0,6,3,4,5,0,1,4,4,1,1,5,2,5,6,5,2,3,1,1]];
34
apmod_k20p7[288,13] = [x^2+1, [0,0,1,0,x,0,5,5*x,2*x,6,3*x,2,4,x,3*x,1,2*x,3,0,2*x,6,5*x,x,0,2]];
35
apmod_k20p7[288,14] = [x^2+1, [0,0,2*x,0,1,0,x,6*x,5,0,0,0,4*x,0,0,0,0,0,0,4,0,0,0,5*x,0]];
36
apmod_k20p7[288,15] = [x^2+1, [0,0,2*x,0,6,0,x,x,2,0,0,0,4*x,0,0,0,0,0,0,3,0,0,0,5*x,0]];
37
apmod_k20p7[288,16] = [x^2+5*x+3, [0,0,6*x,6,x,2*x+5,x+3,5*x+4,4*x+4,2*x+6,2*x+3,5*x+2,6*x+3,4*x,2*x+6,6,2*x,5*x+2,1,6*x+3,3*x+5,3*x,3*x,3*x+2,3*x+6]];
38
apmod_k20p7[288,17] = [x^2+4*x+5, [0,0,4*x,6,x,4*x+4,x+2,3*x+5,4,6*x+5,6*x+3,x+2,6*x+2,x,6*x+4,3,4*x+1,3*x+1,3,2*x+1,2*x+3,2*x,4*x+1,6,6*x+6]];
39
apmod_k20p7[288,18] = [x^2+3*x+5, [0,0,3*x,1,x,3*x+4,6*x+2,3*x+2,3,x+5,6*x+4,6*x+2,x+2,x,6*x+3,3,4*x+6,4*x+1,4,2*x+6,5*x+3,2*x,4*x+6,6,x+6]];
40
apmod_k20p7[288,19] = [x^2+2*x+3, [0,0,x,1,x,5*x+5,6*x+3,5*x+3,4*x+3,5*x+6,2*x+4,2*x+2,x+3,4*x,2*x+1,6,2*x,2*x+2,6,6*x+4,4*x+5,3*x,3*x,4*x+2,4*x+6]];
41
apmod_k20p7[288,20] = [x, [0,0,4,6,5,5,0,4,1,3,1,3,4,1,3,4,1,1,3,0,6,3,2,3,5]];
42
apmod_k20p7[288,21] = [x, [0,0,4,1,2,5,0,3,6,3,6,3,4,6,4,4,6,1,4,0,6,4,5,3,5]];
43
apmod_k20p7[288,22] = [x, [0,0,4,0,2,5,5,6,5,1,1,3,3,4,6,5,6,1,0,5,6,4,0,6,2]];
44
apmod_k20p7[288,23] = [x, [0,0,4,0,5,5,5,1,2,1,6,3,3,3,1,5,1,1,0,2,6,3,0,6,2]];
45
apmod_k20p7[288,24] = [x, [0,0,4,0,0,1,1,0,0,3,0,5,6,0,0,3,0,4,0,0,6,0,0,2,3]];
46
apmod_k20p7[288,25] = [x, [0,0,4,0,0,4,1,0,0,4,0,2,1,0,0,0,0,5,0,0,2,0,0,5,1]];
47
apmod_k20p7[288,26] = [x, [0,0,3,0,5,5,2,6,2,6,1,3,4,4,1,2,1,1,0,2,6,4,0,1,2]];
48
apmod_k20p7[288,27] = [x, [0,0,3,0,2,5,2,1,5,6,6,3,4,3,6,2,6,1,0,5,6,3,0,1,2]];
49
apmod_k20p7[288,28] = [x, [0,0,3,0,6,4,4,0,1,0,4,4,3,2,2,4,0,4,4,6,6,3,3,6,0]];
50
apmod_k20p7[288,29] = [x, [0,0,3,0,6,2,2,1,1,0,4,3,1,2,4,6,6,2,0,2,3,3,2,4,6]];
51
apmod_k20p7[288,30] = [x, [0,0,3,0,1,4,4,0,6,0,3,4,3,5,5,4,0,4,3,1,6,4,4,6,0]];
52
apmod_k20p7[288,31] = [x, [0,0,3,0,1,2,2,6,6,0,3,3,1,5,3,6,1,2,0,5,3,4,5,4,6]];
53
apmod_k20p7[288,32] = [x, [0,0,3,0,0,3,6,0,0,4,0,2,6,0,0,0,0,2,0,0,5,0,0,2,6]];
54
apmod_k20p7[288,33] = [x, [0,0,3,0,0,1,6,0,0,4,0,5,1,0,0,4,0,4,0,0,6,0,0,5,3]];
55
apmod_k20p7[288,34] = [x, [0,0,2,1,3,1,2,3,3,2,6,4,2,6,0,3,2,3,1,5,2,0,5,1,2]];
56
apmod_k20p7[288,35] = [x, [0,0,2,6,4,1,2,4,4,2,1,4,2,1,0,3,5,3,6,2,2,0,2,1,2]];
57
apmod_k20p7[288,36] = [x, [0,0,2,0,2,0,2,0,5,1,4,6,5,0,0,6,5,2,2,3,2,5,5,0,5]];
58
apmod_k20p7[288,37] = [x, [0,0,2,0,4,1,3,6,3,6,3,1,4,2,5,1,1,6,2,1,0,0,1,5,5]];
59
apmod_k20p7[288,38] = [x, [0,0,2,0,3,1,3,1,4,6,4,1,4,5,2,1,6,6,5,6,0,0,6,5,5]];
60
apmod_k20p7[288,39] = [x, [0,0,2,0,5,0,2,0,2,1,3,6,5,0,0,6,2,2,5,4,2,2,2,0,5]];
61
apmod_k20p7[288,40] = [x, [0,0,2,0,0,4,5,0,0,4,0,2,3,0,0,3,0,2,0,0,2,0,0,3,1]];
62
apmod_k20p7[288,41] = [x, [0,0,2,0,0,6,5,0,0,3,0,5,4,0,0,0,0,4,0,0,1,0,0,4,4]];
63
apmod_k20p7[288,42] = [x, [0,0,2,0,0,3,5,0,0,3,0,2,3,0,0,4,0,5,0,0,5,0,0,3,6]];
64
apmod_k20p7[288,43] = [x, [0,0,5,1,0,2,5,3,0,1,0,6,6,6,1,1,2,3,5,6,1,6,2,0,1]];
65
apmod_k20p7[288,44] = [x, [0,0,5,3,3,5,6,3,0,5,4,5,5,4,6,4,4,6,4,2,1,4,2,4,0]];
66
apmod_k20p7[288,45] = [x, [0,0,5,4,4,5,6,4,0,5,3,5,5,3,1,4,3,6,3,5,1,3,5,4,0]];
67
apmod_k20p7[288,46] = [x, [0,0,5,6,0,2,5,4,0,1,0,6,6,1,6,1,5,3,2,1,1,1,5,0,1]];
68
apmod_k20p7[288,47] = [x, [0,0,5,0,2,0,5,0,5,1,3,6,2,0,0,6,2,5,2,3,5,5,2,0,2]];
69
apmod_k20p7[288,48] = [x, [0,0,5,0,5,0,5,0,2,1,4,6,2,0,0,6,5,5,5,4,5,2,5,0,2]];
70
apmod_k20p7[288,49] = [x, [0,0,5,0,3,5,6,3,0,5,4,5,5,4,6,4,4,6,4,2,1,4,2,4,0]];
71
apmod_k20p7[288,50] = [x, [0,0,5,0,3,6,4,6,4,6,3,1,3,5,5,1,1,1,5,6,0,0,1,2,2]];
72
apmod_k20p7[288,51] = [x, [0,0,5,0,4,6,4,1,3,6,4,1,3,2,2,1,6,1,2,1,0,0,6,2,2]];
73
apmod_k20p7[288,52] = [x, [0,0,5,0,4,5,6,4,0,5,3,5,5,3,1,4,3,6,3,5,1,3,5,4,0]];
74
apmod_k20p7[288,53] = [x, [0,0,5,0,0,4,2,0,0,3,0,2,4,0,0,4,0,2,0,0,2,0,0,4,1]];
75
apmod_k20p7[288,54] = [x, [0,0,5,0,0,3,2,0,0,4,0,2,4,0,0,3,0,5,0,0,5,0,0,4,6]];
76
apmod_k20p7[288,55] = [x, [0,0,0,1,4,2,4,0,4,3,6,5,3,1,1,4,1,5,1,5,6,6,2,2,5]];
77
apmod_k20p7[288,56] = [x, [0,0,0,1,5,5,3,4,1,2,0,1,6,1,3,6,0,0,3,5,5,3,5,0,6]];
78
apmod_k20p7[288,57] = [x, [0,0,0,1,3,2,3,0,3,4,6,5,4,1,6,3,6,5,1,2,6,6,5,5,5]];
79
apmod_k20p7[288,58] = [x, [0,0,0,1,3,3,2,6,1,5,4,3,3,3,4,2,3,6,1,0,1,2,2,3,5]];
80
apmod_k20p7[288,59] = [x, [0,0,0,6,2,5,3,3,6,2,0,1,6,6,4,6,0,0,4,2,5,4,2,0,6]];
81
apmod_k20p7[288,60] = [x, [0,0,0,6,3,2,4,0,3,3,1,5,3,6,6,4,6,5,6,2,6,1,5,2,5]];
82
apmod_k20p7[288,61] = [x, [0,0,0,6,4,3,2,1,6,5,3,3,3,4,3,2,4,6,6,0,1,5,5,3,5]];
83
apmod_k20p7[288,62] = [x, [0,0,0,6,4,2,3,0,4,4,1,5,4,6,1,3,1,5,6,5,6,1,2,5,5]];
84
apmod_k20p7[288,63] = [x, [0,0,0,0,5,5,2,3,5,6,6,2,5,0,1,2,4,5,3,2,4,3,2,2,0]];
85
apmod_k20p7[288,64] = [x, [0,0,0,0,5,6,5,5,6,1,4,5,2,6,6,1,1,2,5,4,4,5,0,5,3]];
86
apmod_k20p7[288,65] = [x, [0,0,0,0,5,2,5,4,5,6,1,2,2,0,6,2,3,2,3,2,3,3,5,5,0]];
87
apmod_k20p7[288,66] = [x, [0,0,0,0,2,2,5,3,2,6,6,2,2,0,1,2,4,2,4,5,3,4,2,5,0]];
88
apmod_k20p7[288,67] = [x, [0,0,0,0,2,5,2,4,2,6,1,2,5,0,6,2,3,5,4,5,4,4,5,2,0]];
89
apmod_k20p7[288,68] = [x, [0,0,0,0,2,6,5,2,1,1,3,5,2,1,1,1,6,2,2,3,4,2,0,5,3]];
90
91
apmod_k20p11[288,1] = [x, [0,0,8,0,0,9,4,0,0,3,0,5,7,0,0,2,0,9,0,0,7,0,0,5,2]];
92
apmod_k20p11[288,2] = [x, [0,0,0,0,0,1,2,0,0,4,0,1,6,0,0,8,0,9,0,0,4,0,0,9,0]];
93
apmod_k20p11[288,3] = [x, [0,0,5,0,0,10,9,0,0,4,0,1,6,0,0,0,0,9,0,0,7,0,0,0,0]];
94
apmod_k20p11[288,4] = [x^2+10*x+1, [0,0,x+4,x,7*x+3,9*x+2,6*x+6,6*x+6,10*x+9,10*x+9,6*x+8,9*x+6,4*x+3,6*x+3,6*x+6,10*x+2,3*x+7,x+10,8*x,x+5,6,6*x+2,4*x+5,10*x+9,8*x+8]];
95
apmod_k20p11[288,5] = [x^2+x+1, [0,0,10*x+4,x,7*x+8,2*x+2,5*x+6,6*x+5,10*x+2,x+9,6*x+3,2*x+6,7*x+3,6*x+8,6*x+5,x+2,3*x+4,10*x+10,8*x,x+6,6,6*x+9,4*x+6,x+9,3*x+8]];
96
apmod_k20p11[288,6] = [x^2+8*x+6, [0,0,6*x+7,x,0,4*x+1,9*x+5,4*x+8,6*x+5,0,6*x+1,8*x+4,8*x+2,8*x+2,4*x+1,2,4*x+8,4*x+3,6*x+1,10*x+4,6*x+10,x+3,3,x+1,8*x+5]];
97
apmod_k20p11[288,7] = [x^2+3*x+6, [0,0,5*x+7,x,0,7*x+1,2*x+5,4*x+3,6*x+6,0,6*x+10,3*x+4,3*x+2,8*x+9,4*x+10,2,4*x+3,7*x+3,6*x+10,10*x+7,5*x+10,x+8,8,10*x+1,3*x+5]];
98
apmod_k20p11[288,8] = [x^2+5*x+7, [0,0,8*x+7,x,4*x+4,8*x+2,4*x+3,7*x+5,x+3,5*x+1,x+7,3,2*x+8,5*x+7,7*x+3,5*x+1,3*x+9,x+2,2*x+6,2,10*x+4,10*x+9,10*x+1,x+2,3*x+3]];
99
apmod_k20p11[288,9] = [x^2+6*x+7, [0,0,3*x+7,x,4*x+7,3*x+2,7*x+3,7*x+6,x+8,6*x+1,x+4,3,9*x+8,5*x+4,7*x+8,6*x+1,3*x+2,10*x+2,2*x+5,9,x+4,10*x+2,10*x+10,10*x+2,8*x+3]];
100
apmod_k20p11[288,10] = [x^2+10*x+4, [0,0,7*x+6,9*x+1,x,9*x,9*x+1,2*x+6,9*x+9,3*x+2,x+2,4*x+9,10*x+10,3*x+10,3*x+2,9*x+7,4*x+4,9*x+1,3*x,3*x+2,5*x,3*x+9,10*x+5,7*x+1,9*x]];
101
apmod_k20p11[288,11] = [x^2+x+4, [0,0,4*x+6,9*x+10,x,2*x,2*x+1,2*x+5,9*x+2,8*x+2,x+9,7*x+9,x+10,3*x+1,3*x+9,2*x+7,4*x+7,2*x+1,3*x,3*x+9,6*x,3*x+2,10*x+6,4*x+1,2*x]];
102
apmod_k20p11[288,12] = [x^2+3*x+8, [0,0,3*x+8,x,5*x+2,6,2*x+1,4*x+1,x+10,9*x+10,9,5*x+6,6*x+3,8*x+7,9*x+4,5,9,8*x+1,4*x+7,x+5,6*x+9,6*x+7,8*x+9,2*x+3,2*x+1]];
103
apmod_k20p11[288,13] = [x^2+8*x+8, [0,0,8*x+8,x,5*x+9,6,9*x+1,4*x+10,x+1,2*x+10,2,6*x+6,5*x+3,8*x+4,9*x+7,5,2,3*x+1,4*x+4,x+6,5*x+9,6*x+4,8*x+2,9*x+3,9*x+1]];
104
apmod_k20p11[288,14] = [x^2+5*x+7, [0,0,3*x+4,x,7*x+7,8*x+2,7*x+8,7*x+5,10*x+8,6*x+10,x+7,3,9*x+3,5*x+7,4*x+8,6*x+10,8*x+2,x+2,2*x+6,9,10*x+4,10*x+9,x+10,10*x+9,3*x+3]];
105
apmod_k20p11[288,15] = [x^2+6*x+7, [0,0,8*x+4,x,7*x+4,3*x+2,4*x+8,7*x+6,10*x+3,5*x+10,x+4,3,2*x+3,5*x+4,4*x+3,5*x+10,8*x+9,10*x+2,2*x+5,2,x+4,10*x+2,x+1,x+9,8*x+3]];
106
apmod_k20p11[288,16] = [x^2+2*x+4, [0,0,7*x+6,x,0,9*x+6,10*x+6,3*x,7*x,5,6,10*x+8,6*x+3,4*x+10,6*x+6,x+1,9*x+9,10,9*x+10,6,8*x+4,6*x+5,5*x+5,2*x+8,2*x+8]];
107
apmod_k20p11[288,17] = [x^2+9*x+4, [0,0,4*x+6,x,0,2*x+6,x+6,3*x,7*x,5,5,x+8,5*x+3,4*x+1,6*x+5,10*x+1,9*x+2,10,9*x+1,5,3*x+4,6*x+6,5*x+6,9*x+8,9*x+8]];
108
apmod_k20p11[288,18] = [x^2+x+4, [0,0,3*x+9,x,5*x+3,7*x+1,x+7,5*x+8,3*x+6,10*x+9,9*x+4,3*x+10,9*x+5,3,5*x+4,9*x+6,4*x+8,x+10,8*x+6,8*x,8,2*x+8,8*x+7,6*x+6,4*x+10]];
109
apmod_k20p11[288,19] = [x^2+10*x+4, [0,0,8*x+9,x,5*x+8,4*x+1,10*x+7,5*x+3,3*x+5,x+9,9*x+7,8*x+10,2*x+5,8,5*x+7,2*x+6,4*x+3,10*x+10,8*x+5,8*x,8,2*x+3,8*x+4,5*x+6,7*x+10]];
110
apmod_k20p11[288,20] = [x^2+2*x+4, [0,0,9*x+8,x,2*x+2,2*x+4,10*x,6*x+6,9*x+6,x+10,5,9*x,7*x+4,x+6,4*x+5,x+3,6*x+3,4*x+9,7*x,9*x+3,9*x+4,6*x+2,10*x+8,9,8*x+10]];
111
apmod_k20p11[288,21] = [x^2+9*x+4, [0,0,2*x+8,x,2*x+9,9*x+4,x,6*x+5,9*x+5,10*x+10,6,2*x,4*x+4,x+5,4*x+6,10*x+3,6*x+8,7*x+9,7*x,9*x+8,2*x+4,6*x+9,10*x+3,9,3*x+10]];
112
apmod_k20p11[288,22] = [x^2+9, [0,0,6*x,5*x,0,2,8*x,3*x,5,x,3*x,4,0,9*x,7,5*x,6,5,4*x,1,5,3*x,7,8*x,5]];
113
apmod_k20p11[288,23] = [x^2+9, [0,0,6*x,6*x,0,2,8*x,8*x,6,x,8*x,4,0,2*x,4,5*x,5,5,7*x,10,5,8*x,4,8*x,5]];
114
apmod_k20p11[288,24] = [x^2+4*x+2, [0,0,8*x+9,x,0,3*x+2,3*x+9,9*x+10,2*x+7,10*x+3,7*x+7,9,5*x+9,10*x+3,6,2*x+3,10*x+9,6*x+2,x+3,4*x,9*x+5,5*x,10*x+3,x+1,7*x+8]];
115
apmod_k20p11[288,25] = [x^2+7*x+2, [0,0,3*x+9,x,0,8*x+2,8*x+9,9*x+1,2*x+4,x+3,7*x+4,9,6*x+9,10*x+8,5,9*x+3,10*x+2,5*x+2,x+8,4*x,2*x+5,5*x,10*x+8,10*x+1,4*x+8]];
116
apmod_k20p11[288,26] = [x^4+7*x^2+2, [0,0,9*x^3+6*x,7*x^3+6*x,0,9*x^2+8,5*x^3+9*x,3*x^3+6*x,5*x^2+8,x,6*x^3,4*x^2+10,5*x^3+9*x,10*x^3+8*x,10*x^2+7,7*x^3,7*x^2+10,4*x^2+3,9*x^3+6*x,5*x^2+7,3*x^2+3,6*x^3,6*x^2+8,9*x^3+3*x,5]];
117
apmod_k20p11[288,27] = [x^4+7*x^2+2, [0,0,9*x^3+6*x,4*x^3+5*x,0,9*x^2+8,5*x^3+9*x,8*x^3+5*x,6*x^2+3,x,5*x^3,4*x^2+10,5*x^3+9*x,x^3+3*x,x^2+4,7*x^3,4*x^2+1,4*x^2+3,2*x^3+5*x,6*x^2+4,3*x^2+3,5*x^3,5*x^2+3,9*x^3+3*x,5]];
118
apmod_k20p11[288,28] = [x, [0,0,10,9,2,4,9,7,7,3,2,0,10,8,7,5,9,10,6,4,2,8,3,0,5]];
119
apmod_k20p11[288,29] = [x, [0,0,10,2,9,4,9,4,4,3,9,0,10,3,4,5,2,10,5,7,2,3,8,0,5]];
120
apmod_k20p11[288,30] = [x^2+5, [0,0,10,x,6*x,2,2,10*x,10*x,1,2*x,9,9,4*x,2*x,4,3*x,4,2*x,7*x,10,3*x,3*x,1,4]];
121
apmod_k20p11[288,31] = [x, [0,0,2,8,6,0,8,4,0,10,3,2,4,2,3,10,0,6,5,7,7,6,2,8,1]];
122
apmod_k20p11[288,32] = [x, [0,0,2,5,0,5,6,3,5,8,5,2,0,10,7,10,10,10,2,5,3,10,6,1,0]];
123
apmod_k20p11[288,33] = [x, [0,0,2,3,5,0,8,7,0,10,8,2,4,9,8,10,0,6,6,4,7,5,9,8,1]];
124
apmod_k20p11[288,34] = [x, [0,0,2,6,0,5,6,8,6,8,6,2,0,1,4,10,1,10,9,6,3,1,5,1,0]];
125
apmod_k20p11[288,35] = [x, [0,0,6,6,0,5,2,0,9,1,9,2,8,6,4,1,7,10,2,9,9,4,8,10,3]];
126
apmod_k20p11[288,36] = [x, [0,0,6,5,0,5,2,0,2,1,2,2,8,5,7,1,4,10,9,2,9,7,3,10,3]];
127
apmod_k20p11[288,37] = [x, [0,0,6,0,0,10,2,0,0,7,0,1,5,0,0,0,0,9,0,0,7,0,0,0,0]];
128
apmod_k20p11[288,38] = [x, [0,0,9,3,6,0,3,7,0,1,8,2,7,9,3,1,0,6,6,7,7,5,2,3,1]];
129
apmod_k20p11[288,39] = [x, [0,0,9,8,5,0,3,4,0,1,3,2,7,2,8,1,0,6,5,4,7,6,9,3,1]];
130
apmod_k20p11[288,40] = [x, [0,0,9,6,0,5,10,10,6,2,2,0,1,9,5,7,7,9,2,10,5,0,2,9,10]];
131
apmod_k20p11[288,41] = [x, [0,0,9,5,0,5,10,1,5,2,9,0,1,2,6,7,4,9,9,1,5,0,9,9,10]];
132
apmod_k20p11[288,42] = [x, [0,0,4,3,0,1,3,4,6,7,8,10,0,7,6,3,7,2,7,10,0,10,0,2,1]];
133
apmod_k20p11[288,43] = [x, [0,0,4,0,0,2,5,0,0,10,0,5,1,0,0,7,0,9,0,0,4,0,0,1,9]];
134
apmod_k20p11[288,44] = [x, [0,0,4,8,0,1,3,7,5,7,3,10,0,4,5,3,4,2,4,1,0,1,0,2,1]];
135
apmod_k20p11[288,45] = [x^2+4, [0,0,4,x,0,1,0,5*x,0,1,2*x,9,8,0,10*x,0,4*x,5,7*x,6*x,1,2*x,6*x,2,9]];
136
apmod_k20p11[288,46] = [x, [0,0,3,7,1,2,10,8,10,0,5,2,2,3,9,0,1,8,3,2,2,1,7,2,7]];
137
apmod_k20p11[288,47] = [x, [0,0,3,2,0,6,4,0,7,1,8,9,8,8,6,7,6,6,5,0,0,1,1,3,0]];
138
apmod_k20p11[288,48] = [x, [0,0,3,4,10,2,10,3,1,0,6,2,2,8,2,0,10,8,8,9,2,10,4,2,7]];
139
apmod_k20p11[288,49] = [x, [0,0,3,9,0,6,4,0,4,1,3,9,8,3,5,7,5,6,6,0,0,10,10,3,0]];
140
apmod_k20p11[288,50] = [x, [0,0,3,0,0,9,7,0,0,8,0,5,4,0,0,9,0,9,0,0,7,0,0,6,2]];
141
apmod_k20p11[288,51] = [x, [0,0,7,9,0,8,3,2,2,5,5,10,6,4,10,3,4,7,2,9,0,10,3,3,9]];
142
apmod_k20p11[288,52] = [x, [0,0,7,1,0,4,10,2,7,9,3,7,7,9,1,9,7,10,6,6,6,6,3,7,0]];
143
apmod_k20p11[288,53] = [x, [0,0,7,2,0,8,3,9,9,5,6,10,6,7,1,3,7,7,9,2,0,1,8,3,9]];
144
apmod_k20p11[288,54] = [x, [0,0,7,10,0,4,10,9,4,9,8,7,7,2,10,9,4,10,5,5,6,5,8,7,0]];
145
apmod_k20p11[288,55] = [x^2+4, [0,0,7,x,0,1,0,5*x,0,10,2*x,9,3,0,x,0,7*x,5,7*x,5*x,1,2*x,5*x,9,9]];
146
apmod_k20p11[288,56] = [x, [0,0,1,6,0,8,0,4,1,1,6,1,8,10,3,0,7,6,7,6,9,10,8,6,8]];
147
apmod_k20p11[288,57] = [x, [0,0,1,5,0,8,0,7,10,1,5,1,8,1,8,0,4,6,4,5,9,1,3,6,8]];
148
apmod_k20p11[288,58] = [x^2+3, [0,0,1,x,8*x,7,4,7*x,2*x,9,10*x,8,5,10*x,4*x,0,x,8,6*x,7*x,10,0,7*x,5,3]];
149
apmod_k20p11[288,59] = [x^2+5, [0,0,1,x,5*x,2,9,10*x,x,10,2*x,9,2,4*x,9*x,7,8*x,4,2*x,4*x,10,3*x,8*x,10,4]];
150
151
apmod_k20p13[288,1] = [x, [0,0,6,0,0,7,2,0,0,3,0,8,12,0,0,12,0,3,0,0,11,0,0,2,1]];
152
apmod_k20p13[288,2] = [x, [0,0,7,0,0,0,2,0,0,3,0,5,1,0,0,12,0,3,0,0,2,0,0,11,12]];
153
apmod_k20p13[288,3] = [x^2+9*x+6, [0,0,6*x+2,12*x+2,x,6*x+4,9*x+8,6*x+4,9*x,5*x+8,11*x+6,6*x,7*x+4,2*x+12,2*x+5,4*x+11,2*x+9,6*x+1,5*x+8,2*x+10,9*x+3,8*x+4,4,6*x+4,12*x+3]];
154
apmod_k20p13[288,4] = [x^2+4*x+6, [0,0,7*x+2,12*x+11,x,7*x+4,4*x+8,6*x+9,9*x,8*x+8,11*x+7,7*x,6*x+4,2*x+1,2*x+8,9*x+11,2*x+4,7*x+1,5*x+5,2*x+3,4*x+3,8*x+9,9,7*x+4,x+3]];
155
apmod_k20p13[288,5] = [x^2+8*x+8, [0,0,10*x+2,x,2*x+3,0,4*x+7,3*x+7,2*x+9,10*x+10,11*x+4,2*x+3,8*x+2,10,4*x+7,12*x+1,8*x,6*x+6,2*x+10,4*x+7,5*x+9,8*x+1,10*x+12,9,8*x+10]];
156
apmod_k20p13[288,6] = [x^2+5*x+8, [0,0,3*x+2,x,2*x+10,0,9*x+7,3*x+6,2*x+4,3*x+10,11*x+9,11*x+3,5*x+2,3,4*x+6,x+1,8*x,7*x+6,2*x+3,4*x+6,8*x+9,8*x+12,10*x+1,9,5*x+10]];
157
apmod_k20p13[288,7] = [x^2+3*x+5, [0,0,9*x+1,x,11*x+1,0,12*x+5,6*x+4,2*x,x+5,6*x+2,10*x,4*x+5,4*x+3,8*x+10,11*x+11,6*x+12,2*x+5,11*x+6,6*x,6*x+10,9*x+4,3*x+3,11*x+5,5*x+1]];
158
apmod_k20p13[288,8] = [x^2+10*x+5, [0,0,4*x+1,x,11*x+12,0,x+5,6*x+9,2*x,12*x+5,6*x+11,3*x,9*x+5,4*x+10,8*x+3,2*x+11,6*x+1,11*x+5,11*x+7,6*x,7*x+10,9*x+9,3*x+10,2*x+5,8*x+1]];
159
apmod_k20p13[288,9] = [x^2+9*x+6, [0,0,7*x+11,12*x+2,x,0,9*x+8,6*x+4,4*x,5*x+8,11*x+6,7*x,6*x+9,11*x+1,2*x+5,4*x+11,2*x+9,6*x+1,5*x+8,2*x+10,4*x+10,5*x+9,4,7*x+9,x+10]];
160
apmod_k20p13[288,10] = [x^2+4*x+6, [0,0,6*x+11,12*x+11,x,0,4*x+8,6*x+9,4*x,8*x+8,11*x+7,6*x,7*x+9,11*x+12,2*x+8,9*x+11,2*x+4,7*x+1,5*x+5,2*x+3,9*x+10,5*x+4,9,6*x+9,12*x+10]];
161
apmod_k20p13[288,11] = [x^2+3*x+5, [0,0,4*x+12,x,11*x+1,5*x+11,12*x+5,6*x+4,11*x,x+5,6*x+2,3*x,9*x+8,9*x+10,8*x+10,11*x+11,6*x+12,2*x+5,11*x+6,6*x,7*x+3,4*x+9,3*x+3,2*x+8,8*x+12]];
162
apmod_k20p13[288,12] = [x^2+10*x+5, [0,0,9*x+12,x,11*x+12,8*x+11,x+5,6*x+9,11*x,12*x+5,6*x+11,10*x,4*x+8,9*x+3,8*x+3,2*x+11,6*x+1,11*x+5,11*x+7,6*x,6*x+3,4*x+4,3*x+10,11*x+8,5*x+12]];
163
apmod_k20p13[288,13] = [x, [0,0,2,5,7,0,5,4,6,4,0,2,5,10,9,2,3,1,7,3,9,6,2,4,0]];
164
apmod_k20p13[288,14] = [x, [0,0,2,7,5,0,11,6,2,9,3,3,6,10,11,10,9,11,1,0,9,7,2,1,10]];
165
apmod_k20p13[288,15] = [x, [0,0,2,6,8,0,11,7,11,9,10,3,6,3,2,10,4,11,12,0,9,6,11,1,10]];
166
apmod_k20p13[288,16] = [x, [0,0,2,8,6,0,5,9,7,4,0,2,5,3,4,2,10,1,6,10,9,7,11,4,0]];
167
apmod_k20p13[288,17] = [x, [0,0,11,6,8,8,11,7,2,9,10,10,7,10,2,10,4,11,12,0,4,7,11,12,3]];
168
apmod_k20p13[288,18] = [x, [0,0,11,7,5,8,11,6,11,9,3,10,7,3,11,10,9,11,1,0,4,6,2,12,3]];
169
apmod_k20p13[288,19] = [x, [0,0,11,5,7,9,5,4,7,4,0,11,8,3,9,2,3,1,7,3,4,7,2,9,0]];
170
apmod_k20p13[288,20] = [x, [0,0,11,8,6,9,5,9,6,4,0,11,8,10,4,2,10,1,6,10,4,6,11,9,0]];
171
apmod_k20p13[288,21] = [x, [0,0,9,6,12,0,10,11,7,6,12,5,12,8,2,2,10,8,2,5,9,0,1,5,6]];
172
apmod_k20p13[288,22] = [x, [0,0,9,7,1,0,10,2,6,6,1,5,12,5,11,2,3,8,11,8,9,0,12,5,6]];
173
apmod_k20p13[288,23] = [x, [0,0,9,2,11,0,11,11,7,5,7,10,1,0,5,3,6,7,4,5,8,8,2,10,9]];
174
apmod_k20p13[288,24] = [x, [0,0,9,11,2,0,11,2,6,5,6,10,1,0,8,3,7,7,9,8,8,5,11,10,9]];
175
apmod_k20p13[288,25] = [x, [0,0,8,1,9,0,11,12,12,10,4,2,11,9,2,6,6,1,1,8,10,3,0,0,9]];
176
apmod_k20p13[288,26] = [x, [0,0,8,12,4,0,11,1,1,10,9,2,11,4,11,6,7,1,12,5,10,10,0,0,9]];
177
apmod_k20p13[288,27] = [x^2+5, [0,0,8,x,0,4,10,11*x,3*x,0,9*x,2,1,2*x,3*x,6,7*x,0,4*x,3*x,4,9*x,6*x,5,8]];
178
apmod_k20p13[288,28] = [x, [0,0,8,0,7,0,3,3,2,8,10,1,11,4,4,0,8,6,8,9,4,8,6,5,3]];
179
apmod_k20p13[288,29] = [x, [0,0,8,0,6,0,3,10,11,8,3,1,11,9,9,0,5,6,5,4,4,5,7,5,3]];
180
apmod_k20p13[288,30] = [x, [0,0,4,7,12,0,3,2,7,7,1,5,1,5,2,11,10,8,11,5,9,0,1,8,6]];
181
apmod_k20p13[288,31] = [x, [0,0,4,2,11,3,11,11,6,5,7,3,12,0,5,3,6,7,4,5,5,5,2,3,4]];
182
apmod_k20p13[288,32] = [x, [0,0,4,3,7,0,0,8,4,5,4,7,3,5,3,6,2,1,4,8,9,7,3,1,8]];
183
apmod_k20p13[288,33] = [x, [0,0,4,10,6,0,0,5,9,5,9,7,3,8,10,6,11,1,9,5,9,6,10,1,8]];
184
apmod_k20p13[288,34] = [x, [0,0,4,11,2,3,11,2,7,5,6,3,12,0,8,3,7,7,9,8,5,8,11,3,4]];
185
apmod_k20p13[288,35] = [x, [0,0,4,6,1,0,3,11,6,7,12,5,1,8,11,11,3,8,2,8,9,0,12,8,6]];
186
apmod_k20p13[288,36] = [x^2+5, [0,0,12,x,3*x,0,9,10*x,4*x,5,5*x,12,12,11*x,9*x,0,11*x,0,10*x,12*x,12,3*x,12*x,1,3]];
187
apmod_k20p13[288,37] = [x, [0,0,12,10,3,2,4,4,3,9,4,11,1,10,11,5,11,6,10,2,4,6,10,1,0]];
188
apmod_k20p13[288,38] = [x, [0,0,12,10,10,0,9,4,3,4,4,2,1,3,2,8,2,6,10,11,9,7,3,1,0]];
189
apmod_k20p13[288,39] = [x, [0,0,12,3,3,0,9,9,10,4,9,2,1,10,11,8,11,6,3,2,9,6,10,1,0]];
190
apmod_k20p13[288,40] = [x, [0,0,12,3,10,2,4,9,10,9,9,11,1,3,2,5,2,6,3,11,4,7,3,1,0]];
191
apmod_k20p13[288,41] = [x, [0,0,5,2,2,0,2,10,9,6,9,8,11,2,8,8,3,12,1,3,12,5,6,11,0]];
192
apmod_k20p13[288,42] = [x, [0,0,5,1,9,4,11,12,1,10,4,11,2,4,2,6,6,1,1,8,3,10,0,0,4]];
193
apmod_k20p13[288,43] = [x, [0,0,5,11,11,0,2,3,4,6,4,8,11,11,5,8,10,12,12,10,12,8,7,11,0]];
194
apmod_k20p13[288,44] = [x, [0,0,5,12,4,4,11,1,12,10,9,11,2,9,11,6,7,1,12,5,3,3,0,0,4]];
195
apmod_k20p13[288,45] = [x^2+5, [0,0,5,x,0,0,10,11*x,10*x,0,9*x,11,12,11*x,3*x,6,7*x,0,4*x,3*x,9,4*x,6*x,8,5]];
196
apmod_k20p13[288,46] = [x^2+8, [0,0,10,x,4*x,0,0,x,3*x,10,12*x,2,10,12*x,4*x,10,9*x,6,8*x,9*x,0,0,9*x,10,9]];
197
apmod_k20p13[288,47] = [x^2+8, [0,0,10,x,9*x,11,0,x,3*x,3,12*x,11,10,x,9*x,3,4*x,6,8*x,4*x,0,0,4*x,10,4]];
198
apmod_k20p13[288,48] = [x, [0,0,10,0,0,6,5,0,0,4,0,8,11,0,0,9,0,3,0,0,2,0,0,11,12]];
199
apmod_k20p13[288,49] = [x, [0,0,10,0,0,0,8,0,0,9,0,5,11,0,0,4,0,3,0,0,11,0,0,11,1]];
200
apmod_k20p13[288,50] = [x^2+8, [0,0,3,x,4*x,11,0,x,10*x,10,12*x,11,3,x,4*x,10,9*x,6,8*x,9*x,0,0,9*x,3,4]];
201
apmod_k20p13[288,51] = [x^2+8, [0,0,3,x,9*x,0,0,x,10*x,3,12*x,2,3,12*x,9*x,3,4*x,6,8*x,4*x,0,0,4*x,3,9]];
202
apmod_k20p13[288,52] = [x, [0,0,3,0,0,6,8,0,0,9,0,8,2,0,0,4,0,3,0,0,2,0,0,2,12]];
203
apmod_k20p13[288,53] = [x, [0,0,3,0,0,0,5,0,0,4,0,5,2,0,0,9,0,3,0,0,11,0,0,2,1]];
204
apmod_k20p13[288,54] = [x, [0,0,1,1,3,0,7,8,3,0,5,11,12,0,12,8,4,8,6,8,6,0,7,6,6]];
205
apmod_k20p13[288,55] = [x, [0,0,1,12,10,0,7,5,10,0,8,11,12,0,1,8,9,8,7,5,6,0,6,6,6]];
206
apmod_k20p13[288,56] = [x^2+5, [0,0,1,x,10*x,0,4,10*x,9*x,8,5*x,12,1,11*x,4*x,0,2*x,0,10*x,x,12,3*x,x,12,3]];
207
apmod_k20p13[288,57] = [x, [0,0,1,10,3,0,4,4,10,9,4,2,12,3,11,5,11,6,10,2,9,7,10,12,0]];
208
apmod_k20p13[288,58] = [x, [0,0,1,10,10,2,9,4,10,4,4,11,12,10,2,8,2,6,10,11,4,6,3,12,0]];
209
apmod_k20p13[288,59] = [x, [0,0,1,3,10,0,4,9,3,9,9,2,12,10,2,5,2,6,3,11,9,6,3,12,0]];
210
apmod_k20p13[288,60] = [x, [0,0,1,3,3,2,9,9,3,4,9,11,12,3,11,8,11,6,3,2,4,7,10,12,0]];
211
apmod_k20p13[288,61] = [x, [0,0,0,5,9,0,2,7,9,0,12,4,5,6,10,1,7,11,0,1,8,3,4,9,11]];
212
apmod_k20p13[288,62] = [x, [0,0,0,5,11,0,9,1,0,5,9,0,0,0,6,0,8,7,10,1,0,0,9,0,0]];
213
apmod_k20p13[288,63] = [x, [0,0,0,5,2,0,4,1,0,8,9,0,0,0,7,0,5,7,10,12,0,0,4,0,0]];
214
apmod_k20p13[288,64] = [x, [0,0,0,5,2,0,0,12,0,0,4,0,0,0,7,2,8,6,10,1,0,0,9,0,0]];
215
apmod_k20p13[288,65] = [x, [0,0,0,8,2,0,9,12,0,5,4,0,0,0,7,0,5,7,3,12,0,0,4,0,0]];
216
apmod_k20p13[288,66] = [x, [0,0,0,8,4,0,2,6,4,0,1,4,5,7,3,1,6,11,0,12,8,10,9,9,11]];
217
apmod_k20p13[288,67] = [x, [0,0,0,8,11,0,4,12,0,8,4,0,0,0,6,0,8,7,3,1,0,0,9,0,0]];
218
apmod_k20p13[288,68] = [x, [0,0,0,8,11,0,0,1,0,0,9,0,0,0,6,2,5,6,3,12,0,0,4,0,0]];
219
220
apmod_k20p17[288,1] = [x, [0,0,13,0,0,1,15,0,0,5,0,10,4,0,0,6,0,14,0,0,7,0,0,6,1]];
221
apmod_k20p17[288,2] = [x, [0,0,12,0,0,16,9,0,0,11,0,10,9,0,0,9,0,14,0,0,10,0,0,4,16]];
222
apmod_k20p17[288,3] = [x, [0,0,4,0,0,1,2,0,0,12,0,10,13,0,0,11,0,14,0,0,7,0,0,11,1]];
223
apmod_k20p17[288,4] = [x, [0,0,16,15,8,12,0,10,7,1,0,7,6,0,12,10,14,5,4,12,3,7,15,9,14]];
224
apmod_k20p17[288,5] = [x, [0,0,16,2,9,12,0,7,10,1,0,7,6,0,5,10,3,5,13,5,3,10,2,9,14]];
225
apmod_k20p17[288,6] = [x, [0,0,11,8,5,5,0,4,13,8,12,2,5,10,3,6,12,13,2,4,10,14,12,12,0]];
226
apmod_k20p17[288,7] = [x, [0,0,11,9,12,5,0,13,4,8,5,2,5,7,14,6,5,13,15,13,10,3,5,12,0]];
227
apmod_k20p17[288,8] = [x, [0,0,8,10,3,11,0,10,7,1,10,12,10,3,10,5,9,0,9,3,6,13,16,8,5]];
228
apmod_k20p17[288,9] = [x, [0,0,8,7,14,11,0,7,10,1,7,12,10,14,7,5,8,0,8,14,6,4,1,8,5]];
229
apmod_k20p17[288,10] = [x, [0,0,3,0,0,7,0,0,0,3,0,11,12,0,0,9,0,2,0,0,13,0,0,13,5]];
230
apmod_k20p17[288,11] = [x, [0,0,1,15,11,7,0,8,4,5,10,1,5,12,11,8,12,9,5,4,10,10,15,10,15]];
231
apmod_k20p17[288,12] = [x, [0,0,1,2,6,7,0,9,13,5,7,1,5,5,6,8,5,9,12,13,10,7,2,10,15]];
232
apmod_k20p17[288,13] = [x, [0,0,2,4,15,3,5,9,5,14,6,6,10,5,6,4,6,15,7,1,1,6,8,6,1]];
233
apmod_k20p17[288,14] = [x, [0,0,2,13,2,3,5,8,12,14,11,6,10,12,11,4,11,15,10,16,1,11,9,6,1]];
234
apmod_k20p17[288,15] = [x, [0,0,6,9,5,5,0,13,13,9,5,2,12,7,3,11,12,13,15,4,10,3,12,5,0]];
235
apmod_k20p17[288,16] = [x, [0,0,6,8,12,5,0,4,4,9,12,2,12,10,14,11,5,13,2,13,10,14,5,5,0]];
236
apmod_k20p17[288,17] = [x^4+10*x^2+11, [0,0,12*x^2+1,x,6*x^3+10*x,14,0,8*x^3+4*x,9*x^3+15*x,11*x^2+2,8*x,2*x^2,6*x^2+2,15*x^3,8*x,3*x^2+4,11*x^3+x,13*x^2+16,6*x,x^3+16*x,6*x^2+9,5*x^3+11*x,14*x^3+6*x,16*x^2+8,15*x^2+12]];
237
apmod_k20p17[288,18] = [x^4+10*x^2+11, [0,0,5*x^2+16,x,11*x^3+7*x,14,0,8*x^3+4*x,8*x^3+2*x,6*x^2+15,8*x,2*x^2,11*x^2+15,15*x^3,9*x,14*x^2+13,6*x^3+16*x,13*x^2+16,6*x,16*x^3+x,6*x^2+9,5*x^3+11*x,3*x^3+11*x,x^2+9,15*x^2+12]];
238
apmod_k20p17[288,19] = [x^2+12*x+16, [0,0,12*x+1,x,15*x+14,13*x+15,0,4*x+4,11*x+13,12*x+14,5*x+12,10*x+7,9*x+1,8*x+11,16*x+16,11*x+13,6*x+1,8*x+13,3*x+6,13*x+2,x+6,5*x+5,14*x+9,7*x+13,15*x+6]];
239
apmod_k20p17[288,20] = [x^2+5*x+16, [0,0,5*x+1,x,15*x+3,4*x+15,0,4*x+13,11*x+4,5*x+14,5*x+5,7*x+7,8*x+1,8*x+6,16*x+1,6*x+13,6*x+16,9*x+13,3*x+11,13*x+15,16*x+6,5*x+12,14*x+8,10*x+13,2*x+6]];
240
apmod_k20p17[288,21] = [x^2+8*x+9, [0,0,5*x+11,x,10*x+8,5*x+13,0,9*x+8,2*x+6,12*x+16,x+3,6*x,15*x+10,12,7*x+4,x+12,3*x+10,8*x+5,7*x+4,10*x+3,12*x,2*x+2,15*x,10*x+11,5*x+4]];
241
apmod_k20p17[288,22] = [x^2+9*x+9, [0,0,12*x+11,x,10*x+9,12*x+13,0,9*x+9,2*x+11,5*x+16,x+14,11*x,2*x+10,5,7*x+13,16*x+12,3*x+7,9*x+5,7*x+13,10*x+14,5*x,2*x+15,15*x,7*x+11,12*x+4]];
242
apmod_k20p17[288,23] = [x^2+13*x+10, [0,0,12*x+14,x,5*x+13,6,0,11*x+6,x+12,14*x+16,14*x,7*x+4,12*x+11,x+2,8*x,7*x+2,11*x+8,9*x+7,12*x+15,13*x+8,11*x+10,4*x+8,12*x+15,16*x+16,15*x+8]];
243
apmod_k20p17[288,24] = [x^2+4*x+10, [0,0,5*x+14,x,5*x+4,6,0,11*x+11,x+5,3*x+16,14*x,10*x+4,5*x+11,x+15,8*x,10*x+2,11*x+9,8*x+7,12*x+2,13*x+9,6*x+10,4*x+9,12*x+2,x+16,2*x+8]];
244
apmod_k20p17[288,25] = [x^3+16*x^2+x+7, [0,0,x^2+3*x+2,x,10*x^2+3*x+16,15*x^2+12*x+6,0,5*x^2+14*x+6,4*x^2+2*x+7,5*x^2+15*x+4,9*x^2+7*x+8,8*x^2+3*x+1,16*x+4,12*x^2+11*x+10,3*x^2+2*x+11,14*x^2+12,10*x^2+12*x+7,x^2+16*x+1,x^2+10*x+2,2*x^2+2*x+15,12*x^2+15*x+4,x^2+13*x+14,3*x^2+15*x+9,13*x^2+13*x+14,9*x^2+10*x+1]];
245
apmod_k20p17[288,26] = [x^3+x^2+x+10, [0,0,x^2+14*x+2,x,7*x^2+3*x+1,15*x^2+5*x+6,0,12*x^2+14*x+11,13*x^2+2*x+10,5*x^2+2*x+4,8*x^2+7*x+9,8*x^2+14*x+1,x+4,5*x^2+11*x+7,14*x^2+2*x+6,14*x^2+12,7*x^2+12*x+10,x^2+x+1,16*x^2+10*x+15,15*x^2+2*x+2,12*x^2+2*x+4,16*x^2+13*x+3,14*x^2+15*x+8,13*x^2+4*x+14,9*x^2+7*x+1]];
246
apmod_k20p17[288,27] = [x^3+4*x^2+15, [0,0,x^2+15*x+7,x,6*x^2+6*x+4,7*x^2+4*x+12,0,8*x^2+16*x+16,14*x^2+2*x+12,6*x^2+5*x+4,6*x^2+3*x+8,11*x^2+15,3*x^2+7*x+12,8*x^2+11*x+15,2*x^2+1,3*x^2+2*x+12,9*x^2+12*x+7,12*x^2+14*x+16,8*x^2+10*x+5,9*x^2+14,4*x^2+4*x+16,15*x^2+7*x+4,14*x^2+12*x,15*x^2+15*x+4,10*x^2+x+4]];
247
apmod_k20p17[288,28] = [x^3+13*x^2+2, [0,0,x^2+2*x+7,x,11*x^2+6*x+13,7*x^2+13*x+12,0,9*x^2+16*x+1,3*x^2+2*x+5,6*x^2+12*x+4,11*x^2+3*x+9,11*x^2+15,3*x^2+10*x+12,9*x^2+11*x+2,15*x^2+16,3*x^2+15*x+12,8*x^2+12*x+10,12*x^2+3*x+16,9*x^2+10*x+12,8*x^2+3,4*x^2+13*x+16,2*x^2+7*x+13,3*x^2+12*x,15*x^2+2*x+4,10*x^2+16*x+4]];
248
apmod_k20p17[288,29] = [x^3+3*x^2+16*x+4, [0,0,x^2+8*x+1,x,3*x^2+16*x+16,9*x^2+10*x+6,0,6*x^2+5*x+12,12*x^2+5*x+1,15*x^2+3*x+15,10*x^2+6*x+10,7*x^2+10*x+14,14*x^2+x+14,9*x^2+4*x+16,15*x^2+12*x+11,11*x^2+11,x^2+16*x+14,6*x^2+x+4,10*x^2+15*x+10,5*x^2+4*x+6,10*x^2+14*x+5,16*x^2+16*x+16,7*x^2+10*x+7,9*x^2+12*x+9,9*x^2+3]];
249
apmod_k20p17[288,30] = [x^3+14*x^2+16*x+13, [0,0,x^2+9*x+1,x,14*x^2+16*x+1,9*x^2+7*x+6,0,11*x^2+5*x+5,5*x^2+5*x+16,15*x^2+14*x+15,7*x^2+6*x+7,7*x^2+7*x+14,14*x^2+16*x+14,8*x^2+4*x+1,2*x^2+12*x+6,11*x^2+11,16*x^2+16*x+3,6*x^2+16*x+4,7*x^2+15*x+7,12*x^2+4*x+11,10*x^2+3*x+5,x^2+16*x+1,10*x^2+10*x+10,9*x^2+5*x+9,9*x^2+3]];
250
apmod_k20p17[288,31] = [x^3+16*x^2+13*x+3, [0,0,16*x^2+11,x,10*x^2+12*x+16,11*x^2+3*x+8,0,11*x^2+16*x+16,12*x^2+15*x+3,5*x^2+12*x+16,11*x+15,4*x^2+4*x+8,10*x^2+x+2,5*x^2+6*x+12,3*x^2+3*x+16,2*x^2+9*x+6,5*x^2+13*x+13,7*x^2+6*x+3,12*x^2+4*x+9,9*x^2+10*x+2,15*x^2+4*x+13,7*x^2+3*x+7,15*x^2+5*x+1,12*x^2+13*x+5,13*x^2+3*x+10]];
251
apmod_k20p17[288,32] = [x^3+x^2+13*x+14, [0,0,16*x^2+11,x,7*x^2+12*x+1,11*x^2+14*x+8,0,6*x^2+16*x+1,5*x^2+15*x+14,5*x^2+5*x+16,11*x+2,4*x^2+13*x+8,10*x^2+16*x+2,12*x^2+6*x+5,14*x^2+3*x+1,2*x^2+8*x+6,12*x^2+13*x+4,7*x^2+11*x+3,5*x^2+4*x+8,8*x^2+10*x+15,15*x^2+13*x+13,10*x^2+3*x+10,2*x^2+5*x+16,12*x^2+4*x+5,13*x^2+14*x+10]];
252
apmod_k20p17[288,33] = [x^3+16*x^2+13*x+3, [0,0,x^2+6,x,7*x^2+5*x+1,11*x^2+3*x+8,0,11*x^2+16*x+16,5*x^2+2*x+14,12*x^2+5*x+1,11*x+15,4*x^2+4*x+8,7*x^2+16*x+15,5*x^2+6*x+12,14*x^2+14*x+1,15*x^2+8*x+11,12*x^2+4*x+4,7*x^2+6*x+3,12*x^2+4*x+9,8*x^2+7*x+15,15*x^2+4*x+13,7*x^2+3*x+7,2*x^2+12*x+16,5*x^2+4*x+12,13*x^2+3*x+10]];
253
apmod_k20p17[288,34] = [x^3+x^2+13*x+14, [0,0,x^2+6,x,10*x^2+5*x+16,11*x^2+14*x+8,0,6*x^2+16*x+1,12*x^2+2*x+3,12*x^2+12*x+1,11*x+2,4*x^2+13*x+8,7*x^2+x+15,12*x^2+6*x+5,3*x^2+14*x+16,15*x^2+9*x+11,5*x^2+4*x+13,7*x^2+11*x+3,5*x^2+4*x+8,9*x^2+7*x+2,15*x^2+13*x+13,10*x^2+3*x+10,15*x^2+12*x+1,5*x^2+13*x+12,13*x^2+14*x+10]];
254
apmod_k20p17[288,35] = [x^3+7*x^2+13*x+12, [0,0,15*x^2+8*x,x,14*x^2+10*x+13,15*x^2+7*x+10,0,9*x^2+x+10,7*x^2,7*x^2+6*x,12*x^2+x+16,12*x^2+16*x+12,12*x^2+7*x+10,3*x^2+2*x+3,4*x^2+8,5*x^2+9,13*x^2+3*x+4,11*x^2+10*x+9,x^2+5*x,11*x^2+x+10,10*x+8,4*x^2+15*x+3,10*x^2+11*x+5,4*x^2+10*x+15,10*x^2+16]];
255
apmod_k20p17[288,36] = [x^3+10*x^2+13*x+5, [0,0,15*x^2+9*x,x,3*x^2+10*x+4,15*x^2+10*x+10,0,8*x^2+x+7,10*x^2,7*x^2+11*x,5*x^2+x+1,12*x^2+x+12,12*x^2+10*x+10,14*x^2+2*x+14,13*x^2+9,5*x^2+9,4*x^2+3*x+13,11*x^2+7*x+9,16*x^2+5*x,6*x^2+x+7,7*x+8,13*x^2+15*x+14,7*x^2+11*x+12,4*x^2+7*x+15,10*x^2+16]];
256
apmod_k20p17[288,37] = [x, [0,0,14,2,15,3,5,15,9,1,6,10,4,3,4,5,13,10,10,15,14,3,13,11,5]];
257
apmod_k20p17[288,38] = [x, [0,0,14,15,2,3,5,2,8,1,11,10,4,14,13,5,4,10,7,2,14,14,4,11,5]];
258
apmod_k20p17[288,39] = [x, [0,0,14,0,0,7,0,0,0,14,0,11,5,0,0,8,0,2,0,0,13,0,0,4,5]];
259
apmod_k20p17[288,40] = [x, [0,0,9,7,3,11,0,7,7,16,7,12,7,14,10,12,9,0,8,3,6,4,16,9,5]];
260
apmod_k20p17[288,41] = [x, [0,0,9,10,14,11,0,10,10,16,10,12,7,3,7,12,8,0,9,14,6,13,1,9,5]];
261
apmod_k20p17[288,42] = [x, [0,0,9,3,9,5,0,3,8,10,1,14,6,0,8,8,7,3,15,15,9,5,0,3,4]];
262
apmod_k20p17[288,43] = [x, [0,0,9,14,8,5,0,14,9,10,16,14,6,0,9,8,10,3,2,2,9,12,0,3,4]];
263
apmod_k20p17[288,44] = [x, [0,0,10,16,6,1,13,6,3,0,14,4,15,16,8,2,13,13,11,8,16,2,9,3,9]];
264
apmod_k20p17[288,45] = [x, [0,0,10,1,11,1,13,11,14,0,3,4,15,1,9,2,4,13,6,9,16,15,8,3,9]];
265
apmod_k20p17[288,46] = [x, [0,0,10,0,0,10,0,0,0,1,0,11,15,0,0,6,0,2,0,0,4,0,0,11,12]];
266
apmod_k20p17[288,47] = [x, [0,0,7,6,7,8,0,9,0,10,5,11,3,2,15,14,15,9,13,14,4,10,7,11,2]];
267
apmod_k20p17[288,48] = [x, [0,0,7,11,10,8,0,8,0,10,12,11,3,15,2,14,2,9,4,3,4,7,10,11,2]];
268
apmod_k20p17[288,49] = [x, [0,0,7,4,3,2,12,13,12,15,2,0,8,12,12,5,14,15,14,5,7,11,2,1,5]];
269
apmod_k20p17[288,50] = [x, [0,0,7,13,14,2,12,4,5,15,15,0,8,5,5,5,3,15,3,12,7,6,15,1,5]];
270
apmod_k20p17[288,51] = [x, [0,0,15,12,8,9,7,13,14,12,3,12,9,10,0,11,11,10,0,15,7,0,14,14,16]];
271
apmod_k20p17[288,52] = [x, [0,0,15,5,9,9,7,4,3,12,14,12,9,7,0,11,6,10,0,2,7,0,3,14,16]];
272
apmod_k20p17[288,53] = [x, [0,0,15,4,6,2,0,11,2,12,4,8,3,8,13,2,6,1,7,13,7,9,6,11,15]];
273
apmod_k20p17[288,54] = [x, [0,0,15,4,2,3,12,9,12,3,6,6,7,5,11,13,11,15,7,16,1,6,9,11,1]];
274
apmod_k20p17[288,55] = [x, [0,0,15,13,11,2,0,6,15,12,13,8,3,9,4,2,11,1,10,4,7,8,11,11,15]];
275
apmod_k20p17[288,56] = [x, [0,0,15,13,15,3,12,8,5,3,11,6,7,12,6,13,6,15,10,1,1,11,8,11,1]];
276
277
apmod_k20p19[288,1] = [x, [0,0,15,0,0,13,11,0,0,4,0,17,8,0,0,4,0,9,0,0,6,0,0,3,1]];
278
apmod_k20p19[288,2] = [x, [0,0,4,0,0,13,8,0,0,15,0,17,11,0,0,15,0,9,0,0,6,0,0,16,1]];
279
apmod_k20p19[288,3] = [x, [0,0,18,4,1,11,16,18,1,8,15,17,12,6,17,15,0,13,18,0,10,16,10,10,0]];
280
apmod_k20p19[288,4] = [x, [0,0,18,15,18,11,16,1,18,8,4,17,12,13,2,15,0,13,1,0,10,3,9,10,0]];
281
apmod_k20p19[288,5] = [x, [0,0,11,0,18,9,1,18,5,13,4,13,17,17,16,5,8,18,9,10,14,13,9,13,11]];
282
apmod_k20p19[288,6] = [x, [0,0,11,0,1,9,1,1,14,13,15,13,17,2,3,5,11,18,10,9,14,6,10,13,11]];
283
apmod_k20p19[288,7] = [x, [0,0,10,0,18,8,3,1,15,13,14,12,17,17,6,3,9,1,8,11,16,3,10,13,13]];
284
apmod_k20p19[288,8] = [x, [0,0,10,0,1,8,3,18,4,13,5,12,17,2,13,3,10,1,11,8,16,16,9,13,13]];
285
apmod_k20p19[288,9] = [x, [0,0,9,0,18,8,16,18,15,6,5,12,2,2,6,16,9,1,11,11,16,16,10,6,13]];
286
apmod_k20p19[288,10] = [x, [0,0,9,0,1,8,16,1,4,6,14,12,2,17,13,16,10,1,8,8,16,3,9,6,13]];
287
apmod_k20p19[288,11] = [x, [0,0,6,10,5,3,7,1,6,3,14,13,5,16,6,2,1,5,7,10,5,2,13,9,3]];
288
apmod_k20p19[288,12] = [x, [0,0,6,9,14,3,7,18,13,3,5,13,5,3,13,2,18,5,12,9,5,17,6,9,3]];
289
apmod_k20p19[288,13] = [x, [0,0,7,3,14,13,10,1,9,1,18,16,15,1,17,0,0,18,4,3,11,10,6,4,16]];
290
apmod_k20p19[288,14] = [x, [0,0,7,16,5,13,10,18,10,1,1,16,15,18,2,0,0,18,15,16,11,9,13,4,16]];
291
apmod_k20p19[288,15] = [x^2+6*x+13, [0,0,11*x+17,x,11*x,10*x+7,9*x+10,18,12*x+15,9*x+12,2*x+14,2*x+16,3*x+3,8*x+14,9*x+10,12*x+3,16*x+15,8*x+7,16*x+2,2*x+11,10*x+4,17*x+10,18*x+4,14*x+15,16*x+2]];
292
apmod_k20p19[288,16] = [x^2+13*x+13, [0,0,8*x+17,x,11*x,9*x+7,10*x+10,1,12*x+4,10*x+12,2*x+5,17*x+16,16*x+3,8*x+5,9*x+9,7*x+3,16*x+4,11*x+7,16*x+17,2*x+8,9*x+4,17*x+9,18*x+15,5*x+15,3*x+2]];
293
apmod_k20p19[288,17] = [x^2+15*x+13, [0,0,13*x+1,x,18*x+15,5*x+18,18*x+17,1,7*x+1,2*x+2,14*x+18,9*x+7,12*x+15,11*x+17,4*x+12,2,2*x,8*x+4,12*x+17,17*x+11,x+14,16,15*x+15,9,8*x+15]];
294
apmod_k20p19[288,18] = [x^2+4*x+13, [0,0,6*x+1,x,18*x+4,14*x+18,x+17,18,7*x+18,17*x+2,14*x+1,10*x+7,7*x+15,11*x+2,4*x+7,2,2*x,11*x+4,12*x+2,17*x+8,18*x+14,3,15*x+4,9,11*x+15]];
295
apmod_k20p19[288,19] = [x^2+x+11, [0,0,18*x,x,18*x+15,15,18*x+2,1,17*x+17,17*x+2,6,15,2*x+17,x+15,3*x+2,10,2*x+4,18*x+6,17*x,2*x+11,x+6,2,0,15*x+13,2*x+14]];
296
apmod_k20p19[288,20] = [x^2+18*x+11, [0,0,x,x,18*x+4,15,x+2,18,17*x+2,2*x+2,13,15,17*x+17,x+4,3*x+17,10,2*x+15,x+6,17*x,2*x+8,18*x+6,17,0,4*x+13,17*x+14]];
297
apmod_k20p19[288,21] = [x^3+x^2+7*x+3, [0,0,10*x^2+9*x+13,x,18*x,10*x^2+10*x+17,18*x+17,1,11*x^2+9*x+7,2*x+17,11*x^2+7*x+3,10*x^2+10*x+17,x^2+18*x+9,18*x^2+12,11*x^2+10*x+7,17*x^2+2*x+14,2*x^2+3,18*x^2+2*x+14,x^2+18*x+15,17*x^2+16,2*x^2+18*x+1,10*x^2+6*x+11,0,4*x+2,x^2+14*x+5]];
298
apmod_k20p19[288,22] = [x^3+18*x^2+7*x+16, [0,0,10*x^2+10*x+13,x,18*x,10*x^2+9*x+17,x+17,18,8*x^2+9*x+12,17*x+17,8*x^2+7*x+16,10*x^2+9*x+17,x^2+x+9,x^2+7,8*x^2+10*x+12,17*x^2+17*x+14,17*x^2+16,18*x^2+17*x+14,18*x^2+18*x+4,2*x^2+3,2*x^2+x+1,9*x^2+6*x+8,0,15*x+2,x^2+5*x+5]];
299
apmod_k20p19[288,23] = [x^4+2*x^3+8*x^2+3*x+16, [0,0,9*x^2+9*x+2,x,9*x^2+9*x+4,9*x^3+14*x,10*x^3+10*x^2+15*x+15,18,x^2+18*x+13,10*x^3+5*x,10*x^3+x^2+4*x+13,10*x^3+x^2+4*x+15,9*x^3+x^2+13*x+7,18*x^3+8*x+15,10*x^3+10*x^2+15*x+17,9*x^3+16*x+15,x^3+8*x,x^3+x^2+12*x+17,x^2+x+11,2*x+4,18*x^2+4*x+10,10*x^3+17*x^2+3*x+18,8*x^3+17*x^2+4*x+8,9*x^3+16*x+11,x^2+x+13]];
300
apmod_k20p19[288,24] = [x^4+17*x^3+8*x^2+16*x+16, [0,0,9*x^2+10*x+2,x,10*x^2+9*x+15,10*x^3+5*x,9*x^3+10*x^2+4*x+15,1,18*x^2+18*x+6,9*x^3+14*x,10*x^3+18*x^2+4*x+6,9*x^3+x^2+15*x+15,10*x^3+x^2+6*x+7,18*x^3+8*x+4,10*x^3+9*x^2+15*x+2,10*x^3+3*x+15,x^3+8*x,18*x^3+x^2+7*x+17,18*x^2+x+8,2*x+15,18*x^2+15*x+10,10*x^3+2*x^2+3*x+1,8*x^3+2*x^2+4*x+11,10*x^3+3*x+11,x^2+18*x+13]];
301
apmod_k20p19[288,25] = [x^4+2*x^3+8*x^2+3*x+16, [0,0,10*x^2+10*x+17,x,10*x^2+10*x+15,9*x^3+14*x,9*x^3+9*x^2+4*x+4,18,18*x^2+x+6,9*x^3+14*x,10*x^3+x^2+4*x+13,10*x^3+x^2+4*x+15,10*x^3+18*x^2+6*x+12,18*x^3+8*x+15,9*x^3+9*x^2+4*x+2,10*x^3+3*x+4,18*x^3+11*x,x^3+x^2+12*x+17,x^2+x+11,17*x+15,18*x^2+4*x+10,10*x^3+17*x^2+3*x+18,11*x^3+2*x^2+15*x+11,10*x^3+3*x+8,x^2+x+13]];
302
apmod_k20p19[288,26] = [x^4+17*x^3+8*x^2+16*x+16, [0,0,10*x^2+9*x+17,x,9*x^2+10*x+4,10*x^3+5*x,10*x^3+9*x^2+15*x+4,1,x^2+x+13,10*x^3+5*x,10*x^3+18*x^2+4*x+6,9*x^3+x^2+15*x+15,9*x^3+18*x^2+13*x+12,18*x^3+8*x+4,9*x^3+10*x^2+4*x+17,9*x^3+16*x+4,18*x^3+11*x,18*x^3+x^2+7*x+17,18*x^2+x+8,17*x+4,18*x^2+15*x+10,10*x^3+2*x^2+3*x+1,11*x^3+17*x^2+15*x+8,9*x^3+16*x+8,x^2+18*x+13]];
303
apmod_k20p19[288,27] = [x, [0,0,0,18,17,18,16,18,16,16,8,9,12,8,8,9,5,10,7,10,1,5,13,4,13]];
304
apmod_k20p19[288,28] = [x, [0,0,0,1,2,18,16,1,3,16,11,9,12,11,11,9,14,10,12,9,1,14,6,4,13]];
305
apmod_k20p19[288,29] = [x, [0,0,0,0,0,0,2,1,13,9,10,8,13,15,6,6,7,9,8,11,17,6,7,6,17]];
306
apmod_k20p19[288,30] = [x, [0,0,0,0,0,0,2,18,6,9,9,8,13,4,13,6,12,9,11,8,17,13,12,6,17]];
307
apmod_k20p19[288,31] = [x, [0,0,13,3,15,7,13,18,14,12,13,15,2,11,14,9,10,18,9,17,13,18,18,3,10]];
308
apmod_k20p19[288,32] = [x, [0,0,13,3,8,7,17,1,3,2,11,9,15,14,16,13,13,10,10,8,6,10,4,2,9]];
309
apmod_k20p19[288,33] = [x, [0,0,13,16,4,7,13,1,5,12,6,15,2,8,5,9,9,18,10,2,13,1,1,3,10]];
310
apmod_k20p19[288,34] = [x, [0,0,13,16,11,7,17,18,16,2,8,9,15,5,3,13,6,10,9,11,6,9,15,2,9]];
311
apmod_k20p19[288,35] = [x, [0,0,16,5,14,15,3,18,0,0,9,8,0,5,5,6,9,14,10,10,8,10,0,10,7]];
312
apmod_k20p19[288,36] = [x, [0,0,16,14,5,15,3,1,0,0,10,8,0,14,14,6,10,14,9,9,8,9,0,10,7]];
313
apmod_k20p19[288,37] = [x, [0,0,16,3,16,0,18,1,0,8,17,15,12,18,10,13,6,18,9,10,8,6,0,6,11]];
314
apmod_k20p19[288,38] = [x, [0,0,16,16,3,0,18,18,0,8,2,15,12,1,9,13,13,18,10,9,8,13,0,6,11]];
315
apmod_k20p19[288,39] = [x, [0,0,14,12,14,3,5,1,7,4,5,8,4,17,13,9,14,16,17,0,14,14,6,10,13]];
316
apmod_k20p19[288,40] = [x, [0,0,14,12,7,12,1,1,0,12,10,3,3,13,16,7,18,1,0,3,11,10,14,17,15]];
317
apmod_k20p19[288,41] = [x, [0,0,14,7,5,3,5,18,12,4,14,8,4,2,6,9,5,16,2,0,14,5,13,10,13]];
318
apmod_k20p19[288,42] = [x, [0,0,14,7,12,12,1,18,0,12,9,3,3,6,3,7,1,1,0,16,11,9,5,17,15]];
319
apmod_k20p19[288,43] = [x^2+4*x+1, [0,0,18*x+17,2*x+5,x,17*x+17,18*x+17,1,2*x+4,17*x+9,17,15,15*x+11,2*x+18,x+11,2*x+4,15*x+13,15*x+12,17*x+4,17,4*x+9,2*x+12,17*x+15,2*x,2*x+17]];
320
apmod_k20p19[288,44] = [x^2+15*x+1, [0,0,18*x+2,17*x+5,x,2*x+17,18*x+2,1,2*x+15,17*x+10,17,15,15*x+8,17*x+18,x+8,2*x+15,15*x+6,4*x+12,2*x+4,2,15*x+9,17*x+12,17*x+4,2*x,17*x+17]];
321
apmod_k20p19[288,45] = [x^2+4*x+1, [0,0,x+2,17*x+14,x,17*x+17,x+2,18,2*x+4,2*x+10,2,15,4*x+8,17*x+1,x+11,17*x+15,15*x+13,15*x+12,2*x+15,17,4*x+9,17*x+7,17*x+15,17*x,2*x+17]];
322
apmod_k20p19[288,46] = [x^2+15*x+1, [0,0,x+17,2*x+14,x,2*x+17,x+17,18,2*x+15,2*x+9,2,15,4*x+11,2*x+1,x+8,17*x+4,15*x+6,4*x+12,17*x+15,2,15*x+9,2*x+7,17*x+4,17*x,17*x+17]];
323
apmod_k20p19[288,47] = [x, [0,0,2,0,0,6,17,0,0,10,0,17,9,0,0,5,0,9,0,0,13,0,0,9,18]];
324
apmod_k20p19[288,48] = [x, [0,0,2,15,15,2,17,18,4,6,0,2,6,7,4,17,12,9,15,0,10,11,12,14,10]];
325
apmod_k20p19[288,49] = [x, [0,0,2,15,6,15,0,1,4,13,9,11,6,15,8,9,0,9,8,8,9,17,6,6,13]];
326
apmod_k20p19[288,50] = [x, [0,0,2,4,4,2,17,1,15,6,0,2,6,12,15,17,7,9,4,0,10,8,7,14,10]];
327
apmod_k20p19[288,51] = [x, [0,0,2,4,13,15,0,18,15,13,10,11,6,4,11,9,0,9,11,11,9,2,13,6,13]];
328
apmod_k20p19[288,52] = [x, [0,0,8,13,11,10,11,18,5,4,7,1,4,3,0,16,12,3,14,17,8,12,15,3,11]];
329
apmod_k20p19[288,53] = [x, [0,0,8,13,6,5,7,18,0,5,16,10,10,7,9,12,8,7,17,4,10,16,10,17,3]];
330
apmod_k20p19[288,54] = [x, [0,0,8,0,1,9,18,18,14,6,4,13,2,17,3,14,11,18,9,9,14,13,10,6,11]];
331
apmod_k20p19[288,55] = [x, [0,0,8,0,18,9,18,1,5,6,15,13,2,2,16,14,8,18,10,10,14,6,9,6,11]];
332
apmod_k20p19[288,56] = [x, [0,0,8,6,13,5,7,1,0,5,3,10,10,12,10,12,11,7,2,15,10,3,9,17,3]];
333
apmod_k20p19[288,57] = [x, [0,0,8,6,8,10,11,1,14,4,12,1,4,16,0,16,7,3,5,2,8,7,4,3,11]];
334
apmod_k20p19[288,58] = [x, [0,0,17,4,4,17,6,4,0,17,15,17,17,15,8,9,15,6,15,3,13,15,12,9,5]];
335
apmod_k20p19[288,59] = [x, [0,0,17,4,6,15,0,18,4,6,10,11,13,4,8,10,0,9,11,8,9,2,6,13,13]];
336
apmod_k20p19[288,60] = [x, [0,0,17,4,6,17,13,1,13,15,0,13,7,0,2,7,8,2,4,12,9,3,13,4,14]];
337
apmod_k20p19[288,61] = [x, [0,0,17,15,15,17,6,15,0,17,4,17,17,4,11,9,4,6,4,16,13,4,7,9,5]];
338
apmod_k20p19[288,62] = [x, [0,0,17,15,13,17,13,18,6,15,0,13,7,0,17,7,11,2,15,7,9,16,6,4,14]];
339
apmod_k20p19[288,63] = [x, [0,0,17,15,13,15,0,1,15,6,9,11,13,15,11,10,0,9,8,11,9,17,13,13,13]];
340
apmod_k20p19[288,64] = [x, [0,0,1,1,14,4,3,18,0,4,2,4,4,5,12,2,9,15,14,2,16,14,0,9,4]];
341
apmod_k20p19[288,65] = [x, [0,0,1,1,3,15,3,18,11,0,17,11,0,8,12,17,6,18,10,2,5,2,0,13,7]];
342
apmod_k20p19[288,66] = [x, [0,0,1,1,3,0,7,18,8,0,2,4,4,1,16,13,13,14,2,17,8,10,16,14,11]];
343
apmod_k20p19[288,67] = [x, [0,0,1,18,5,4,3,1,0,4,17,4,4,14,7,2,10,15,5,17,16,5,0,9,4]];
344
apmod_k20p19[288,68] = [x, [0,0,1,18,16,15,3,1,8,0,2,11,0,11,7,17,13,18,9,17,5,17,0,13,7]];
345
apmod_k20p19[288,69] = [x, [0,0,1,18,16,0,7,1,11,0,17,4,4,18,3,13,6,14,17,2,8,9,3,14,11]];
346
347