Sharedwww / ono / apmod_run10.gpOpen in CoCalc
Author: William A. Stein
1
\\apmod_run10.gp
2
\\Compute Hecke eigenvalues for a basis of newforms of
3
\\S_k(Gamma_0(N); Fp). This is really computed using modular symbols
4
\\so in some special cases the computation may fail, e.g., maybe, if p divides
5
\\the discriminant of the Hecke algebra.
6
\\It is also possible, but very unlikely if p>3, that the dimension
7
\\of the modp reduction will go up because of "spurious torsion."
8
9
\\ Notation: This table is destined to be input into PARI.
10
\\ Unfortunately, PARI doesn't support n-dimensional arrays.
11
\\ Thus for now the output format is
12
\\ apmod_k7p13[N,i] = [g(x), [a2(x), a3(x), a5(x), ...]].
13
\\ where k=7,p=13 are examples,
14
\\ i is the conjugacy class (in no particular order),
15
\\ g(x) is an irreducible poly over Fp, and the Hecke eigenvalues a2, a3, ...
16
\\ are expressed as polynomials in a fixed root of g(x).
17
18
\\ William Stein ([email protected])
19
\\ Fri May 21 23:22:21 1999
20
21
22
apmod_k10p7[288,1] = [x^2+6*x+3, [0,0,5*x+6,0,x,4*x,6*x+2,x,3*x+1,x,2*x+1,4,4*x+2,2*x+2,4*x+3,6*x+1,x+2,2*x,2*x+6,5*x+6,x+2,2*x+3,x+4,4*x+3,2*x]];
23
apmod_k10p7[288,2] = [x^2+x+3, [0,0,2*x+6,0,x,3*x,x+2,x,3*x+6,6*x,2*x+6,4,3*x+2,2*x+5,4*x+4,x+1,x+5,5*x,2*x+1,5*x+1,6*x+2,2*x+4,x+3,3*x+3,5*x]];
24
apmod_k10p7[288,3] = [x^2+2, [0,0,x,5*x,3,0,x,4*x,4,0,0,0,x,0,0,0,0,0,0,3,0,0,0,6*x,0]];
25
apmod_k10p7[288,4] = [x^2+2, [0,0,x,2*x,4,0,x,3*x,3,0,0,0,x,0,0,0,0,0,0,4,0,0,0,6*x,0]];
26
apmod_k10p7[288,5] = [x^2+2, [0,0,4*x,0,6,3,x,6*x,3,6*x,5*x,1,2*x,2*x,2,x,5,5,5*x,5,5,4*x,3,3*x,3]];
27
apmod_k10p7[288,6] = [x^2+2, [0,0,4*x,0,1,3,x,x,4,6*x,2*x,1,2*x,5*x,5,x,2,5,2*x,2,5,3*x,4,3*x,3]];
28
apmod_k10p7[288,7] = [x, [0,0,5,5,3,0,4,6,6,5,0,2,3,3,2,4,6,3,1,1,1,3,3,5,6]];
29
apmod_k10p7[288,8] = [x, [0,0,5,2,4,0,4,1,1,5,0,2,3,4,5,4,1,3,6,6,1,4,4,5,6]];
30
apmod_k10p7[288,9] = [x^2+2, [0,0,5,0,x,0,1,x,x,6,4*x,4,3,2*x,2*x,4,5*x,1,0,4*x,4,6*x,5*x,0,5]];
31
apmod_k10p7[288,10] = [x, [0,0,3,2,5,6,2,5,1,6,5,2,3,5,3,4,4,2,6,6,0,0,1,4,2]];
32
apmod_k10p7[288,11] = [x, [0,0,3,5,2,6,2,2,6,6,2,2,3,2,4,4,3,2,1,1,0,0,6,4,2]];
33
apmod_k10p7[288,12] = [x, [0,0,3,0,0,1,1,0,0,3,0,3,3,0,0,0,0,6,0,0,3,0,0,6,3]];
34
apmod_k10p7[288,13] = [x, [0,0,3,0,0,4,1,0,0,3,0,4,4,0,0,2,0,4,0,0,1,0,0,1,1]];
35
apmod_k10p7[288,14] = [x, [0,0,6,0,1,2,1,2,3,1,3,6,4,4,2,6,4,5,0,5,4,1,0,2,5]];
36
apmod_k10p7[288,15] = [x, [0,0,6,0,6,2,1,5,4,1,4,6,4,3,5,6,3,5,0,2,4,6,0,2,5]];
37
apmod_k10p7[288,16] = [x, [0,0,6,0,0,6,3,0,0,3,0,3,1,0,0,5,0,6,0,0,4,0,0,3,4]];
38
apmod_k10p7[288,17] = [x, [0,0,6,0,0,3,3,0,0,4,0,4,6,0,0,0,0,4,0,0,6,0,0,4,6]];
39
apmod_k10p7[288,18] = [x, [0,0,0,1,6,5,1,6,3,6,3,4,5,0,2,1,2,3,5,2,2,6,2,4,0]];
40
apmod_k10p7[288,19] = [x, [0,0,0,6,1,5,1,1,4,6,4,4,5,0,5,1,5,3,2,5,2,1,5,4,0]];
41
apmod_k10p7[288,20] = [x, [0,0,0,0,1,1,1,3,2,1,2,3,5,1,5,4,4,3,1,3,5,4,0,4,4]];
42
apmod_k10p7[288,21] = [x, [0,0,0,0,6,1,1,4,5,1,5,3,5,6,2,4,3,3,6,4,5,3,0,4,4]];
43
apmod_k10p7[288,22] = [x, [0,0,4,4,6,0,1,0,4,1,5,5,5,0,0,3,1,4,6,4,1,4,2,0,5]];
44
apmod_k10p7[288,23] = [x, [0,0,4,3,1,0,1,0,3,1,2,5,5,0,0,3,6,4,1,3,1,3,5,0,5]];
45
apmod_k10p7[288,24] = [x, [0,0,4,0,2,2,4,6,0,5,2,3,2,3,5,2,2,2,5,5,3,6,2,6,0]];
46
apmod_k10p7[288,25] = [x, [0,0,4,0,0,4,6,0,0,4,0,4,3,0,0,5,0,4,0,0,1,0,0,6,1]];
47
apmod_k10p7[288,26] = [x, [0,0,4,0,5,2,4,1,0,5,5,3,2,4,2,2,5,2,2,2,3,1,5,6,0]];
48
apmod_k10p7[288,27] = [x, [0,0,1,0,1,2,6,5,3,6,4,6,3,3,2,1,4,5,0,5,4,6,0,5,5]];
49
apmod_k10p7[288,28] = [x, [0,0,1,0,6,2,6,2,4,6,3,6,3,4,5,1,3,5,0,2,4,1,0,5,5]];
50
apmod_k10p7[288,29] = [x, [0,0,1,0,0,6,4,0,0,4,0,3,6,0,0,2,0,6,0,0,4,0,0,4,4]];
51
apmod_k10p7[288,30] = [x, [0,0,1,0,4,3,5,0,5,0,2,1,4,5,4,2,0,6,5,1,4,1,3,2,0]];
52
apmod_k10p7[288,31] = [x, [0,0,1,0,4,5,6,2,5,0,2,6,6,5,1,3,3,3,0,5,2,1,2,6,1]];
53
apmod_k10p7[288,32] = [x, [0,0,1,0,3,3,5,0,2,0,5,1,4,2,3,2,0,6,2,6,4,6,4,2,0]];
54
apmod_k10p7[288,33] = [x, [0,0,1,0,3,5,6,5,2,0,5,6,6,2,6,3,4,3,0,2,2,6,5,6,1]];
55
56
apmod_k10p11[288,1] = [x, [0,0,5,0,0,10,9,0,0,4,0,1,6,0,0,0,0,9,0,0,7,0,0,0,0]];
57
apmod_k10p11[288,2] = [x, [0,0,0,0,0,1,2,0,0,4,0,1,6,0,0,8,0,9,0,0,4,0,0,9,0]];
58
apmod_k10p11[288,3] = [x, [0,0,6,0,0,10,2,0,0,7,0,1,5,0,0,0,0,9,0,0,7,0,0,0,0]];
59
apmod_k10p11[288,4] = [x, [0,0,9,8,5,0,3,4,0,1,3,2,7,2,8,1,0,6,5,4,7,6,9,3,1]];
60
apmod_k10p11[288,5] = [x, [0,0,9,3,6,0,3,7,0,1,8,2,7,9,3,1,0,6,6,7,7,5,2,3,1]];
61
apmod_k10p11[288,6] = [x, [0,0,2,8,6,0,8,4,0,10,3,2,4,2,3,10,0,6,5,7,7,6,2,8,1]];
62
apmod_k10p11[288,7] = [x, [0,0,2,3,5,0,8,7,0,10,8,2,4,9,8,10,0,6,6,4,7,5,9,8,1]];
63
apmod_k10p11[288,8] = [x, [0,0,3,4,10,2,10,3,1,0,6,2,2,8,2,0,10,8,8,9,2,10,4,2,7]];
64
apmod_k10p11[288,9] = [x, [0,0,3,7,1,2,10,8,10,0,5,2,2,3,9,0,1,8,3,2,2,1,7,2,7]];
65
apmod_k10p11[288,10] = [x^2+10*x+4, [0,0,7*x+6,9*x+1,x,9*x,9*x+1,2*x+6,9*x+9,3*x+2,x+2,4*x+9,10*x+10,3*x+10,3*x+2,9*x+7,4*x+4,9*x+1,3*x,3*x+2,5*x,3*x+9,10*x+5,7*x+1,9*x]];
66
apmod_k10p11[288,11] = [x^2+x+4, [0,0,4*x+6,9*x+10,x,2*x,2*x+1,2*x+5,9*x+2,8*x+2,x+9,7*x+9,x+10,3*x+1,3*x+9,2*x+7,4*x+7,2*x+1,3*x,3*x+9,6*x,3*x+2,10*x+6,4*x+1,2*x]];
67
apmod_k10p11[288,12] = [x^2+10*x+4, [0,0,8*x+9,x,5*x+8,4*x+1,10*x+7,5*x+3,3*x+5,x+9,9*x+7,8*x+10,2*x+5,8,5*x+7,2*x+6,4*x+3,10*x+10,8*x+5,8*x,8,2*x+3,8*x+4,5*x+6,7*x+10]];
68
apmod_k10p11[288,13] = [x^2+x+4, [0,0,3*x+9,x,5*x+3,7*x+1,x+7,5*x+8,3*x+6,10*x+9,9*x+4,3*x+10,9*x+5,3,5*x+4,9*x+6,4*x+8,x+10,8*x+6,8*x,8,2*x+8,8*x+7,6*x+6,4*x+10]];
69
apmod_k10p11[288,14] = [x^2+10*x+1, [0,0,x+4,x,7*x+3,9*x+2,6*x+6,6*x+6,10*x+9,10*x+9,6*x+8,9*x+6,4*x+3,6*x+3,6*x+6,10*x+2,3*x+7,x+10,8*x,x+5,6,6*x+2,4*x+5,10*x+9,8*x+8]];
70
apmod_k10p11[288,15] = [x^2+x+1, [0,0,10*x+4,x,7*x+8,2*x+2,5*x+6,6*x+5,10*x+2,x+9,6*x+3,2*x+6,7*x+3,6*x+8,6*x+5,x+2,3*x+4,10*x+10,8*x,x+6,6,6*x+9,4*x+6,x+9,3*x+8]];
71
apmod_k10p11[288,16] = [x^2+8*x+8, [0,0,8*x+8,x,5*x+9,6,9*x+1,4*x+10,x+1,2*x+10,2,6*x+6,5*x+3,8*x+4,9*x+7,5,2,3*x+1,4*x+4,x+6,5*x+9,6*x+4,8*x+2,9*x+3,9*x+1]];
72
apmod_k10p11[288,17] = [x^2+3*x+8, [0,0,3*x+8,x,5*x+2,6,2*x+1,4*x+1,x+10,9*x+10,9,5*x+6,6*x+3,8*x+7,9*x+4,5,9,8*x+1,4*x+7,x+5,6*x+9,6*x+7,8*x+9,2*x+3,2*x+1]];
73
apmod_k10p11[288,18] = [x^2+2*x+4, [0,0,9*x+8,x,2*x+2,2*x+4,10*x,6*x+6,9*x+6,x+10,5,9*x,7*x+4,x+6,4*x+5,x+3,6*x+3,4*x+9,7*x,9*x+3,9*x+4,6*x+2,10*x+8,9,8*x+10]];
74
apmod_k10p11[288,19] = [x^2+9*x+4, [0,0,2*x+8,x,2*x+9,9*x+4,x,6*x+5,9*x+5,10*x+10,6,2*x,4*x+4,x+5,4*x+6,10*x+3,6*x+8,7*x+9,7*x,9*x+8,2*x+4,6*x+9,10*x+3,9,3*x+10]];
75
apmod_k10p11[288,20] = [x^2+6*x+7, [0,0,8*x+4,x,7*x+4,3*x+2,4*x+8,7*x+6,10*x+3,5*x+10,x+4,3,2*x+3,5*x+4,4*x+3,5*x+10,8*x+9,10*x+2,2*x+5,2,x+4,10*x+2,x+1,x+9,8*x+3]];
76
apmod_k10p11[288,21] = [x^2+5*x+7, [0,0,3*x+4,x,7*x+7,8*x+2,7*x+8,7*x+5,10*x+8,6*x+10,x+7,3,9*x+3,5*x+7,4*x+8,6*x+10,8*x+2,x+2,2*x+6,9,10*x+4,10*x+9,x+10,10*x+9,3*x+3]];
77
apmod_k10p11[288,22] = [x^2+5*x+7, [0,0,8*x+7,x,4*x+4,8*x+2,4*x+3,7*x+5,x+3,5*x+1,x+7,3,2*x+8,5*x+7,7*x+3,5*x+1,3*x+9,x+2,2*x+6,2,10*x+4,10*x+9,10*x+1,x+2,3*x+3]];
78
apmod_k10p11[288,23] = [x^2+6*x+7, [0,0,3*x+7,x,4*x+7,3*x+2,7*x+3,7*x+6,x+8,6*x+1,x+4,3,9*x+8,5*x+4,7*x+8,6*x+1,3*x+2,10*x+2,2*x+5,9,x+4,10*x+2,10*x+10,10*x+2,8*x+3]];
79
apmod_k10p11[288,24] = [x^2+3, [0,0,1,x,8*x,7,4,7*x,2*x,9,10*x,8,5,10*x,4*x,0,x,8,6*x,7*x,10,0,7*x,5,3]];
80
apmod_k10p11[288,25] = [x^2+5, [0,0,1,x,5*x,2,9,10*x,x,10,2*x,9,2,4*x,9*x,7,8*x,4,2*x,4*x,10,3*x,8*x,10,4]];
81
apmod_k10p11[288,26] = [x, [0,0,10,2,9,4,9,4,4,3,9,0,10,3,4,5,2,10,5,7,2,3,8,0,5]];
82
apmod_k10p11[288,27] = [x, [0,0,10,9,2,4,9,7,7,3,2,0,10,8,7,5,9,10,6,4,2,8,3,0,5]];
83
apmod_k10p11[288,28] = [x^2+5, [0,0,10,x,6*x,2,2,10*x,10*x,1,2*x,9,9,4*x,2*x,4,3*x,4,2*x,7*x,10,3*x,3*x,1,4]];
84
85
apmod_k10p13[288,1] = [x, [0,0,7,0,0,8,0,0,0,11,0,9,7,0,0,0,0,11,0,0,4,0,0,9,7]];
86
apmod_k10p13[288,2] = [x, [0,0,7,0,0,5,10,0,0,0,0,9,6,0,0,2,0,11,0,0,9,0,0,9,6]];
87
apmod_k10p13[288,3] = [x, [0,0,11,12,1,5,2,3,7,6,8,6,0,9,0,4,2,4,5,2,2,2,2,6,0]];
88
apmod_k10p13[288,4] = [x, [0,0,11,1,12,5,2,10,6,6,5,6,0,4,0,4,11,4,8,11,2,11,11,6,0]];
89
apmod_k10p13[288,5] = [x, [0,0,9,1,7,5,11,3,11,12,1,6,3,11,6,9,0,4,0,4,1,7,12,4,5]];
90
apmod_k10p13[288,6] = [x, [0,0,9,12,6,5,11,10,2,12,12,6,3,2,7,9,0,4,0,9,1,6,1,4,5]];
91
apmod_k10p13[288,7] = [x^2+8, [0,0,8,x,12*x,4,3,0,2*x,2,11*x,0,6,5*x,5*x,8,2*x,2,3*x,0,12,3*x,7*x,10,5]];
92
apmod_k10p13[288,8] = [x, [0,0,10,8,7,6,1,11,8,2,0,3,11,2,7,10,9,2,4,12,11,8,1,9,1]];
93
apmod_k10p13[288,9] = [x, [0,0,10,5,6,6,1,2,5,2,0,3,11,11,6,10,4,2,9,1,11,5,12,9,1]];
94
apmod_k10p13[288,10] = [x, [0,0,2,12,12,5,11,3,6,7,8,6,0,9,0,9,11,4,5,11,2,2,11,7,0]];
95
apmod_k10p13[288,11] = [x, [0,0,2,1,1,5,11,10,7,7,5,6,0,4,0,9,2,4,8,2,2,11,2,7,0]];
96
apmod_k10p13[288,12] = [x^2+8*x+8, [0,0,11*x+5,x,11*x+12,7*x+2,6*x+11,4*x+12,10*x+4,7*x+12,7*x+3,x+8,11*x+8,x+7,3*x+11,6*x+3,5*x+10,4*x+10,12*x+4,7*x+6,9*x+2,6*x+6,4*x+5,5,2*x+10]];
97
apmod_k10p13[288,13] = [x^2+5*x+8, [0,0,2*x+5,x,11*x+1,6*x+2,7*x+11,4*x+1,10*x+9,6*x+12,7*x+10,12*x+8,2*x+8,x+6,3*x+2,7*x+3,5*x+3,9*x+10,12*x+9,7*x+7,4*x+2,6*x+7,4*x+8,5,11*x+10]];
98
apmod_k10p13[288,14] = [x^2+5*x+10, [0,0,x+2,3,x,11*x,x+1,3*x,8*x+1,8*x,7*x+5,10*x+7,8*x+2,8*x,7*x+1,4*x+11,7,10*x+3,7*x,5*x+3,10*x+7,11*x+8,9*x+8,4*x+12,x+12]];
99
apmod_k10p13[288,15] = [x^2+8*x+10, [0,0,12*x+2,10,x,2*x,12*x+1,3*x,8*x+12,5*x,7*x+8,3*x+7,5*x+2,8*x,7*x+12,9*x+11,6,3*x+3,7*x,5*x+10,3*x+7,11*x+5,9*x+5,9*x+12,12*x+12]];
100
apmod_k10p13[288,16] = [x^2+5*x+10, [0,0,12*x+11,10,x,11*x,12*x+12,10*x,8*x+1,5*x,6*x+8,10*x+7,5*x+11,5*x,7*x+1,9*x+2,7,10*x+3,6*x,5*x+3,10*x+7,2*x+5,9*x+8,9*x+1,x+12]];
101
apmod_k10p13[288,17] = [x^2+8*x+10, [0,0,x+11,3,x,2*x,x+12,10*x,8*x+12,8*x,6*x+5,3*x+7,8*x+11,5*x,7*x+12,4*x+2,6,3*x+3,6*x,5*x+10,3*x+7,2*x+8,9*x+5,4*x+1,12*x+12]];
102
apmod_k10p13[288,18] = [x^2+7*x+11, [0,0,10*x+10,12*x+3,4*x+1,7,x+9,x,9*x,4*x+4,6*x+4,8*x+11,9*x+2,x+3,3*x+8,3*x+5,2*x+1,11*x+10,12*x+2,10*x+6,7*x+8,x+10,10*x+9,5,9*x+10]];
103
apmod_k10p13[288,19] = [x^2+6*x+11, [0,0,3*x+10,12*x+10,4*x+12,7,12*x+9,x,9*x,9*x+4,6*x+9,5*x+11,4*x+2,x+10,3*x+5,10*x+5,2*x+12,2*x+10,12*x+11,10*x+7,6*x+8,x+3,10*x+4,5,4*x+10]];
104
apmod_k10p13[288,20] = [x^2+11*x+8, [0,0,7*x+6,x,12*x+4,11,2*x+12,10*x+4,12*x+10,3*x+1,12*x+1,11*x+5,5*x+4,5*x+7,7,6*x+7,3*x+9,11,x,3*x+11,5*x+12,7,9,3*x+11,10]];
105
apmod_k10p13[288,21] = [x^2+2*x+8, [0,0,6*x+6,x,12*x+9,11,11*x+12,10*x+9,12*x+3,10*x+1,12*x+12,2*x+5,8*x+4,5*x+6,6,7*x+7,3*x+4,11,x,3*x+2,8*x+12,6,4,10*x+11,10]];
106
apmod_k10p13[288,22] = [x, [0,0,6,0,0,8,0,0,0,2,0,9,6,0,0,0,0,11,0,0,4,0,0,4,7]];
107
apmod_k10p13[288,23] = [x, [0,0,6,12,7,1,10,6,10,7,6,2,8,5,0,6,8,4,5,6,0,3,4,10,11]];
108
apmod_k10p13[288,24] = [x, [0,0,6,1,6,1,10,7,3,7,7,2,8,8,0,6,5,4,8,7,0,10,9,10,11]];
109
apmod_k10p13[288,25] = [x^2+x+4, [0,0,1,x,9*x,12*x+4,12*x+9,9*x+7,5*x+2,6*x+5,6*x,3*x+7,5*x+5,9*x+4,5*x+9,10*x+9,11*x+10,3*x+1,5*x+3,9*x+4,2*x+8,8,4*x,9,7*x+11]];
110
apmod_k10p13[288,26] = [x^2+12*x+4, [0,0,1,x,9*x,x+4,x+9,9*x+6,5*x+11,7*x+5,6*x,10*x+7,8*x+5,9*x+9,5*x+4,3*x+9,11*x+3,10*x+1,5*x+10,9*x+9,11*x+8,5,4*x,9,6*x+11]];
111
apmod_k10p13[288,27] = [x^2+6, [0,0,0,x,4*x,11,1,x,9*x,2,0,1,9,3*x,6*x,8,12*x,10,x,10*x,9,6*x,12*x,3,11]];
112
apmod_k10p13[288,28] = [x, [0,0,0,0,4,12,0,0,10,0,0,4,0,0,4,0,4,0,0,7,9,0,6,0,6]];
113
apmod_k10p13[288,29] = [x, [0,0,0,0,9,12,0,0,3,0,0,4,0,0,9,0,9,0,0,6,9,0,7,0,6]];
114
115
apmod_k10p17[288,1] = [x, [0,0,8,0,0,6,9,0,0,11,0,3,11,0,0,4,0,14,0,0,13,0,0,16,2]];
116
apmod_k10p17[288,2] = [x, [0,0,2,1,12,16,13,8,11,13,8,13,11,9,0,4,2,0,0,2,0,1,0,5,13]];
117
apmod_k10p17[288,3] = [x, [0,0,2,16,5,16,13,9,6,13,9,13,11,8,0,4,15,0,0,15,0,16,0,5,13]];
118
apmod_k10p17[288,4] = [x, [0,0,13,1,12,7,5,7,16,16,10,13,5,3,3,2,11,0,1,12,3,14,11,13,2]];
119
apmod_k10p17[288,5] = [x, [0,0,13,16,5,7,5,10,1,16,7,13,5,14,14,2,6,0,16,5,3,3,6,13,2]];
120
apmod_k10p17[288,6] = [x^2+8*x+5, [0,0,14*x+10,x,2*x+7,4*x+8,9*x+3,13*x+5,11*x+4,16*x,7*x+14,9*x+14,4*x+7,13*x+15,8*x+16,7,8*x+14,13*x+11,9*x+3,9*x+14,13*x+3,4*x+8,x,10,12*x+9]];
121
apmod_k10p17[288,7] = [x^2+9*x+5, [0,0,3*x+10,x,2*x+10,13*x+8,8*x+3,13*x+12,11*x+13,x,7*x+3,8*x+14,13*x+7,13*x+2,8*x+1,7,8*x+3,4*x+11,9*x+14,9*x+3,4*x+3,4*x+9,x,10,5*x+9]];
122
apmod_k10p17[288,8] = [x^2+3*x+4, [0,0,4*x+14,0,x,4*x+15,9*x+6,2*x+13,x+16,13*x+13,15*x+2,13*x+13,16*x+12,15*x+4,13*x+3,9*x+10,13*x+3,5*x+2,0,15,16*x+5,13*x+2,4*x+14,9*x+2,8*x+11]];
123
apmod_k10p17[288,9] = [x^2+14*x+4, [0,0,13*x+14,0,x,13*x+15,8*x+6,2*x+4,x+1,4*x+13,15*x+15,4*x+13,x+12,15*x+13,13*x+14,8*x+10,13*x+14,12*x+2,0,2,x+5,13*x+15,4*x+3,8*x+2,9*x+11]];
124
apmod_k10p17[288,10] = [x^2+8*x+5, [0,0,3*x+7,x,15*x+10,4*x+8,8*x+14,13*x+5,6*x+13,x,7*x+14,9*x+14,13*x+10,13*x+15,9*x+1,10,9*x+3,13*x+11,9*x+3,8*x+3,13*x+3,4*x+8,16*x,7,12*x+9]];
125
apmod_k10p17[288,11] = [x^2+9*x+5, [0,0,14*x+7,x,15*x+7,13*x+8,9*x+14,13*x+12,6*x+4,16*x,7*x+3,8*x+14,4*x+10,13*x+2,9*x+16,10,9*x+14,4*x+11,9*x+14,8*x+14,4*x+3,4*x+9,16*x,7,5*x+9]];
126
apmod_k10p17[288,12] = [x^3+16*x^2+13*x+12, [0,0,2*x^2+7*x+9,x,14*x^2+11*x+12,6*x^2+5*x+8,9*x^2+3*x+1,9*x^2+10*x+15,12*x^2+10*x+6,2*x^2+13*x+13,4*x^2+13*x+1,15*x^2+6*x+5,12*x^2+15*x+4,7*x^2+7*x+11,6*x^2+11*x+10,15*x^2+14*x+11,x^2+12,12*x^2+10*x,15*x^2+11*x+7,6*x^2+8*x+14,7*x^2+6*x+6,7*x^2+9*x+6,9*x^2+x+14,13*x^2+7*x+6,3*x^2+13*x+3]];
127
apmod_k10p17[288,13] = [x^3+x^2+13*x+5, [0,0,2*x^2+10*x+9,x,3*x^2+11*x+5,6*x^2+12*x+8,9*x^2+14*x+1,8*x^2+10*x+2,5*x^2+10*x+11,2*x^2+4*x+13,13*x^2+13*x+16,15*x^2+11*x+5,12*x^2+2*x+4,10*x^2+7*x+6,11*x^2+11*x+7,15*x^2+3*x+11,16*x^2+5,12*x^2+7*x,2*x^2+11*x+10,11*x^2+8*x+3,7*x^2+11*x+6,10*x^2+9*x+11,8*x^2+x+3,13*x^2+10*x+6,3*x^2+4*x+3]];
128
apmod_k10p17[288,14] = [x, [0,0,9,0,0,6,8,0,0,6,0,3,6,0,0,13,0,14,0,0,13,0,0,1,2]];
129
apmod_k10p17[288,15] = [x, [0,0,9,8,0,2,2,13,9,9,8,9,0,9,0,15,4,10,5,9,0,11,12,6,16]];
130
apmod_k10p17[288,16] = [x, [0,0,9,9,0,2,2,4,8,9,9,9,0,8,0,15,13,10,12,8,0,6,5,6,16]];
131
apmod_k10p17[288,17] = [x^2+11, [0,0,1,x,13*x,7,14,12*x,5*x,11,8*x,9,9,11*x,10*x,0,6*x,12,11*x,6*x,7,9*x,16*x,10,8]];
132
apmod_k10p17[288,18] = [x^2+5, [0,0,0,x,15*x,14,0,0,6*x,0,4*x,0,0,0,0,0,0,0,0,10*x,0,7*x,0,12,0]];
133
apmod_k10p17[288,19] = [x^2+6, [0,0,0,x,15*x,3,0,0,12*x,0,8*x,0,0,0,0,0,0,0,0,10*x,0,14*x,0,5,0]];
134
apmod_k10p17[288,20] = [x, [0,0,11,5,1,14,8,7,12,15,0,11,8,11,11,2,3,9,2,10,4,2,3,0,4]];
135
apmod_k10p17[288,21] = [x, [0,0,11,12,16,14,8,10,5,15,0,11,8,6,6,2,14,9,15,7,4,15,14,0,4]];
136
apmod_k10p17[288,22] = [x, [0,0,16,4,10,1,13,14,7,11,11,13,6,13,1,14,11,15,1,1,14,9,13,0,0]];
137
apmod_k10p17[288,23] = [x, [0,0,16,0,0,11,15,0,0,16,0,3,2,0,0,3,0,14,0,0,4,0,0,10,15]];
138
apmod_k10p17[288,24] = [x, [0,0,16,13,7,1,13,3,10,11,6,13,6,4,16,14,6,15,16,16,14,8,4,0,0]];
139
apmod_k10p17[288,25] = [x^2+11, [0,0,16,x,4*x,7,3,12*x,12*x,6,8*x,9,8,11*x,7*x,0,11*x,12,11*x,11*x,7,9*x,x,7,8]];
140
141
apmod_k10p19[288,1] = [x, [0,0,8,0,0,16,14,0,0,16,0,7,7,0,0,12,0,5,0,0,8,0,0,17,14]];
142
apmod_k10p19[288,2] = [x, [0,0,11,0,0,16,5,0,0,3,0,7,12,0,0,7,0,5,0,0,8,0,0,2,14]];
143
apmod_k10p19[288,3] = [x^2+16, [0,0,16,x,11*x,12,5,17*x,x,12,10*x,0,2,3*x,x,15,10*x,7,17*x,6*x,7,8*x,5*x,3,9]];
144
apmod_k10p19[288,4] = [x, [0,0,13,13,15,15,9,4,18,6,0,0,0,18,4,1,1,16,7,1,7,13,0,3,9]];
145
apmod_k10p19[288,5] = [x, [0,0,13,6,4,15,9,15,1,6,0,0,0,1,15,1,18,16,12,18,7,6,0,3,9]];
146
apmod_k10p19[288,6] = [x, [0,0,17,4,10,0,10,3,0,15,5,12,16,7,17,6,7,6,3,5,8,13,16,10,4]];
147
apmod_k10p19[288,7] = [x, [0,0,17,15,9,0,10,16,0,15,14,12,16,12,2,6,12,6,16,14,8,6,3,10,4]];
148
apmod_k10p19[288,8] = [x, [0,0,6,17,8,0,10,12,15,16,15,6,10,1,11,14,2,8,17,14,4,12,9,11,2]];
149
apmod_k10p19[288,9] = [x, [0,0,6,2,11,0,10,7,4,16,4,6,10,18,8,14,17,8,2,5,4,7,10,11,2]];
150
apmod_k10p19[288,10] = [x^2+16*x+18, [0,0,9*x+2,x,12*x+16,11,4*x+9,13*x+18,2,12,6*x,10*x,12*x,16*x+11,6*x+12,14*x+2,10*x+12,15*x+11,18*x+5,13*x+11,9*x+14,11*x,6*x,2*x+6,9*x+6]];
151
apmod_k10p19[288,11] = [x^2+3*x+18, [0,0,10*x+2,x,12*x+3,11,15*x+9,13*x+1,17,12,6*x,9*x,7*x,16*x+8,6*x+7,5*x+2,10*x+7,4*x+11,18*x+14,13*x+8,10*x+14,11*x,6*x,17*x+6,10*x+6]];
152
apmod_k10p19[288,12] = [x^2+6*x+13, [0,0,18*x+8,x,11*x+17,3*x+9,11*x+16,11*x+17,2*x+6,6,12*x+16,17*x+17,4*x+5,3*x+15,18*x+4,11*x+9,14*x+7,17*x+18,6*x+9,3*x+3,x+10,4,15*x+16,7*x+12,11*x+7]];
153
apmod_k10p19[288,13] = [x^2+13*x+13, [0,0,x+8,x,11*x+2,16*x+9,8*x+16,11*x+2,2*x+13,6,12*x+3,2*x+17,15*x+5,3*x+4,18*x+15,8*x+9,14*x+12,2*x+18,6*x+10,3*x+16,18*x+10,15,15*x+3,12*x+12,8*x+7]];
154
apmod_k10p19[288,14] = [x^2+6*x+13, [0,0,x+11,x,8*x+2,3*x+9,8*x+3,11*x+17,17*x+13,13,12*x+16,17*x+17,15*x+14,3*x+15,x+15,8*x+10,5*x+12,17*x+18,6*x+9,16*x+16,x+10,4,4*x+3,12*x+7,11*x+7]];
155
apmod_k10p19[288,15] = [x^2+13*x+13, [0,0,18*x+11,x,8*x+17,16*x+9,11*x+3,11*x+2,17*x+6,13,12*x+3,2*x+17,4*x+14,3*x+4,x+4,11*x+10,5*x+7,2*x+18,6*x+10,16*x+3,18*x+10,15,4*x+16,7*x+7,8*x+7]];
156
apmod_k10p19[288,16] = [x^3+2*x^2+17*x+13, [0,0,16*x^2+17*x+1,x,11*x^2+16*x+1,5*x^2+17*x+9,8*x^2+13*x+14,8*x^2+7*x+3,13*x^2+9*x+7,x^2+7*x+7,5*x^2+17*x+14,8*x^2+5*x+2,17*x^2+3*x+16,9*x^2+12*x+18,x^2+6*x+8,17*x^2+2*x+8,10*x^2+13*x+3,5*x^2+x+2,x^2+7*x+11,6*x^2+4*x+6,11*x^2+18*x+3,5*x^2+14*x+5,12*x^2+11*x+8,12*x^2+x+8,4*x^2+4*x+8]];
157
apmod_k10p19[288,17] = [x^3+17*x^2+17*x+6, [0,0,16*x^2+2*x+1,x,8*x^2+16*x+18,5*x^2+2*x+9,8*x^2+6*x+14,11*x^2+7*x+16,6*x^2+9*x+12,x^2+12*x+7,14*x^2+17*x+5,8*x^2+14*x+2,17*x^2+16*x+16,10*x^2+12*x+1,18*x^2+6*x+11,17*x^2+17*x+8,9*x^2+13*x+16,5*x^2+18*x+2,18*x^2+7*x+8,13*x^2+4*x+13,11*x^2+x+3,14*x^2+14*x+14,7*x^2+11*x+11,12*x^2+18*x+8,4*x^2+15*x+8]];
158
apmod_k10p19[288,18] = [x, [0,0,15,2,9,18,2,16,11,11,15,13,2,7,0,7,9,15,3,14,4,0,4,8,14]];
159
apmod_k10p19[288,19] = [x, [0,0,15,17,10,18,2,3,8,11,4,13,2,12,0,7,10,15,16,5,4,0,15,8,14]];
160
apmod_k10p19[288,20] = [x, [0,0,15,0,0,3,13,0,0,5,0,7,17,0,0,17,0,5,0,0,11,0,0,7,5]];
161
apmod_k10p19[288,21] = [x, [0,0,3,3,1,8,1,1,17,7,7,1,5,18,9,7,1,11,8,10,0,12,12,17,13]];
162
apmod_k10p19[288,22] = [x, [0,0,3,16,18,8,1,18,2,7,12,1,5,1,10,7,18,11,11,9,0,7,7,17,13]];
163
apmod_k10p19[288,23] = [x^2+16, [0,0,3,x,8*x,12,14,17*x,18*x,7,10*x,0,17,3*x,18*x,4,9*x,7,17*x,13*x,7,8*x,14*x,16,9]];
164
apmod_k10p19[288,24] = [x, [0,0,4,6,8,6,9,9,15,3,13,18,9,17,7,13,14,4,4,0,2,18,7,15,6]];
165
apmod_k10p19[288,25] = [x, [0,0,4,13,11,6,9,10,4,3,6,18,9,2,12,13,5,4,15,0,2,1,12,15,6]];
166
apmod_k10p19[288,26] = [x, [0,0,4,0,11,0,13,2,10,6,0,2,14,15,13,9,7,18,9,0,8,18,2,15,6]];
167
apmod_k10p19[288,27] = [x, [0,0,4,0,8,0,13,17,9,6,0,2,14,4,6,9,12,18,10,0,8,1,17,15,6]];
168
apmod_k10p19[288,28] = [x, [0,0,0,0,16,14,1,10,17,7,15,6,9,5,9,18,17,16,15,14,11,12,3,17,0]];
169
apmod_k10p19[288,29] = [x, [0,0,0,0,3,14,1,9,2,7,4,6,9,14,10,18,2,16,4,5,11,7,16,17,0]];
170
apmod_k10p19[288,30] = [x^2+4, [0,0,0,0,16*x,0,0,9*x,16*x,6,x,0,13,0,16*x,13,0,0,18*x,0,0,0,16*x,6,0]];
171
apmod_k10p19[288,31] = [x^2+4, [0,0,0,0,3*x,0,0,9*x,3*x,13,x,0,6,0,3*x,6,0,0,18*x,0,0,0,3*x,13,0]];
172
173