Sharedwww / nsf / references_cited.texOpen in CoCalc
Author: William A. Stein
1
\documentclass[11pt]{article}
2
\newcommand{\thisdocument}{References Cited}
3
\include{macros}
4
\begin{document}
5
6
\newcommand{\etalchar}[1]{$^{#1}$}
7
\providecommand{\bysame}{\leavevmode\hbox
8
to3em{\hrulefill}\thinspace}
9
\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
10
% \MRhref is called by the amsart/book/proc definition of \MR.
11
\providecommand{\MRhref}[2]{%
12
\href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
13
} \providecommand{\href}[2]{#2}
14
\begin{thebibliography}{BCDT01}
15
16
\bibitem[AS]{agashe-stein:bsd}
17
A.~Agashe and W.\thinspace{}A. Stein, \emph{Visible {E}vidence for
18
the {B}irch
19
and {S}winnerton-{D}yer {C}onjecture for {M}odular {A}belian {V}arieties of
20
{A}nalytic {R}ank~$0$}, To appear in Math. of Computation.
21
22
\bibitem[AS02]{agashe-stein:visibility}
23
\bysame, \emph{Visibility of {S}hafarevich-{T}ate groups of
24
abelian varieties},
25
J. Number Theory \textbf{97} (2002), no.~1, 171--185. \MR{2003h:11070}
26
27
\bibitem[BCDT01]{breuil-conrad-diamond-taylor}
28
C.~Breuil, B.~Conrad, F.~Diamond, and R.~Taylor, \emph{On the
29
modularity of
30
elliptic curves over {$\bold Q$}: wild 3-adic exercises}, J. Amer. Math. Soc.
31
\textbf{14} (2001), no.~4, 843--939 (electronic). \MR{2002d:11058}
32
33
\bibitem[BCP97]{magma}
34
W.~Bosma, J.~Cannon, and C.~Playoust, \emph{The {M}agma algebra
35
system. {I}.
36
{T}he user language}, J. Symbolic Comput. \textbf{24} (1997), no.~3-4,
37
235--265, Computational algebra and number theory (London, 1993). \MR{1 484
38
478}
39
40
\bibitem[Bir71]{birch:bsd}
41
B.\thinspace{}J. Birch, \emph{Elliptic curves over
42
\protect{${\mathbf{Q}}$:
43
{A}} progress report}, 1969 Number Theory Institute (Proc. Sympos. Pure
44
Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math.
45
Soc., Providence, R.I., 1971, pp.~396--400.
46
47
\bibitem[CES03]{conrad-edixhoven-stein:j1p}
48
B.~Conrad, S.~Edixhoven, and W.\thinspace{}A. Stein,
49
\emph{${J}_1(p)$ {H}as
50
{C}onnected {F}ibers}, To appear in Documenta Mathematica (2003).
51
52
\bibitem[Cre]{cremona:onlinetables}
53
J.\thinspace{}E. Cremona, \emph{Elliptic curves of conductor
54
\protect{$\leq
55
17000$},\hfill\\ {\tt http://www.maths.nott.ac.uk/personal/jec/ftp/data/}}.
56
57
\bibitem[CS02]{stein:compgroup}
58
B.~Conrad and W.\thinspace{}A. Stein, \emph{Component {G}roups of
59
{P}urely
60
{T}oric {Q}uotients}, To appear in Math Research Letters (2002).
61
62
\bibitem[DWS]{dummigan-stein-watkins:motives}
63
N.~Dummigan, M.~Watkins, and W.\thinspace{}A. Stein,
64
\emph{{Constructing
65
Elements in Shafarevich-Tate Groups of Modular Motives}}, To appear in
66
``Number theory and algebraic geometry --- to Peter Swinnerton-Dyer on his
67
75th birthday'', ed. by Miles Reid and Alexei Skorobogatov.
68
69
\bibitem[Eme01]{emerton:optimal}
70
M.~Emerton, \emph{Optimal {Q}uotients of {M}odular {J}acobians},
71
preprint
72
(2001).
73
74
\bibitem[FpS{\etalchar{+}}01]{empirical}
75
E.\thinspace{}V. Flynn, F.~\protect{Lepr\'{e}vost},
76
E.\thinspace{}F. Schaefer,
77
W.\thinspace{}A. Stein, M.~Stoll, and J.\thinspace{}L. Wetherell,
78
\emph{Empirical evidence for the {B}irch and {S}winnerton-{D}yer conjectures
79
for modular {J}acobians of genus 2 curves}, Math. Comp. \textbf{70} (2001),
80
no.~236, 1675--1697 (electronic). \MR{1 836 926}
81
82
\bibitem[Kat]{kato:secret}
83
K.~Kato, \emph{$p$-adic {H}odge theory and values of zeta
84
functions of modular
85
forms}, Preprint, 244 pages.
86
87
\bibitem[KL81]{kubert-lang}
88
D.\thinspace{}S. Kubert and S.~Lang, \emph{Modular units},
89
Grundlehren der
90
Mathematischen Wissenschaften [Fundamental Principles of Mathematical
91
Science], vol. 244, Springer-Verlag, New York, 1981. \MR{84h:12009}
92
93
\bibitem[Lan91]{lang:nt3}
94
S.~Lang, \emph{Number theory. {I}{I}{I}}, Springer-Verlag, Berlin,
95
1991,
96
Diophantine geometry. \MR{93a:11048}
97
98
\bibitem[Maz77]{mazur:eisenstein}
99
B.~Mazur, \emph{Modular curves and the \protect{Eisenstein}
100
ideal}, Inst.
101
Hautes \'Etudes Sci. Publ. Math. (1977), no.~47, 33--186 (1978).
102
103
\bibitem[Mer94]{merel:1585}
104
L.~Merel, \emph{Universal \protect{F}ourier expansions of modular
105
forms}, On
106
{A}rtin's conjecture for odd 2-dimensional representations, Springer, 1994,
107
pp.~59--94.
108
109
\bibitem[Rib80]{ribet:twistsendoalg}
110
K.\thinspace{}A. Ribet, \emph{Twists of modular forms and
111
endomorphisms of
112
abelian varieties}, Math. Ann. \textbf{253} (1980), no.~1, 43--62.
113
\MR{82e:10043}
114
115
\bibitem[Rib90]{ribet:raising}
116
\bysame, \emph{Raising the levels of modular representations},
117
S\'eminaire de
118
Th\'eorie des Nombres, Paris 1987--88, Birkh\"auser Boston, Boston, MA, 1990,
119
pp.~259--271.
120
121
\bibitem[Roh84]{rohrlich:cyclo}
122
D.\thinspace{}E. Rohrlich, \emph{On {$L$}-functions of elliptic
123
curves and
124
cyclotomic towers}, Invent. Math. \textbf{75} (1984), no.~3, 409--423.
125
\MR{86g:11038b}
126
127
\bibitem[Rub98]{rubin:kato}
128
K.~Rubin, \emph{Euler systems and modular elliptic curves}, Galois
129
representations in arithmetic algebraic geometry (Durham, 1996), Cambridge
130
Univ. Press, Cambridge, 1998, pp.~351--367. \MR{2001a:11106}
131
132
\bibitem[Shi73]{shimura:factors}
133
G.~Shimura, \emph{On the factors of the jacobian variety of a
134
modular function
135
field}, J. Math. Soc. Japan \textbf{25} (1973), no.~3, 523--544.
136
137
\bibitem[Ste]{stein:nonsquaresha}
138
W.\thinspace{}A. Stein, \emph{Shafarevich-tate groups of nonsquare
139
order},
140
Proceedings of MCAV 2002, Progress of Mathematics (to appear).
141
142
\bibitem[Ste03a]{mfd}
143
\bysame, \emph{The {M}odular {F}orms {D}atabase}, \newline{\tt
144
http://modular.fas.harvard.edu/Tables} (2003).
145
146
\bibitem[Ste03b]{stein:bsdmagma}
147
\bysame, \emph{Studying the {B}irch and {S}winnerton-{D}yer
148
{C}onjecture for
149
{M}odular {A}belian {V}arieties {U}sing {MAGMA}}, To appear in J.~Cannon,
150
ed., {\em Computational Experiments in Algebra and Geometry}, Springer-Verlag
151
(2003).
152
153
\bibitem[Tat66]{tate:bsd}
154
J.~Tate, \emph{On the conjectures of {B}irch and
155
{S}winnerton-{D}yer and a
156
geometric analog}, S\'eminaire Bourbaki, Vol.\ 9, Soc. Math. France, Paris,
157
1965/66, pp.~Exp.\ No.\ 306, 415--440.
158
159
\end{thebibliography}
160
161
162
\end{document}
163