Sharedwww / nsf / references_cited.dviOpen in CoCalc
����;� TeX output 2004.03.31:1814��������������������vI�����5��#�K�(F
C�G�
cmbxti10�Wil��liam�)ZA.�Stein�a9>R���efer�enc�es�)ZCite�d��vˎ�����'�8�*m#�R

cmss10�(617)�UU308-0144�'OE�+m#�R
�3
cmss10�w��[email protected]�rva�rd.edu�http://mo�M�dula�r.fas.ha�rva�rd.edu�����'�8��ff��������V��������'�8���N�ffcmbx12�References��q�����'�8�K�`y
�3
cmr10�[AS]���^_A.�)Agashe�and�W.��MA.�Stein,�ۘ��':
�3
cmti10�Visible��Evidenc��p�e�for�the�Bir�ch�and��
����^_Swinnerton-Dyer�29Conje��p�ctur�e�for�Mo�dular�Ab�elian�V��)arieties�of�A��\nalytic����^_Rank���0,��fT��eo�app�M�ear�in�Math.�of�Computation.��������'�8[AS02]����^_�ff ٟ����K,���Visibility��Jof�Shafar��p�evich-Tate�gr�oups�of�ab�elian�varieties�,��J.����^_Num��!b�M�er��fTheory��T�#�"V
�3
cmbx10�97��(2002),�no.�1,�171{185.�MR�2003h:11070������'�8[BCDT01]���^_C.�ڮBreuil,���B.�Conrad,�F.�Diamond,�and�R.�T��ea��!ylor,��On�the�mo��p�dularity����^_of�}�el��Fliptic�curves�over��Q�:�/�wild�3-adic�exer��p�cises�,�n6J.�[email protected]�Math.�So�M�c.����^_�14��f�(2001),�no.�4,�843{939�(electronic).�MR�2002d:11058������'�8[BCP97]���^_W.��Bosma,��J.�Cannon,�and�C.�Pla��!y�oust,��The�:vMagma�algebr��p�a�system.�I.����^_The��2user�language�,���J.��[Sym��!b�M�olic�Comput.��24��(1997),�no.�3-4,�235{265,����^_Computational�halgebra�and�n��!um�b�M�er�htheory�(London,�t{1993).�MR�g�1�484����^_478������'�8[Bir71]���^_B.��MJ.���Birc��!h,��0�El��Fliptic���curves�over��Q�:���A���pr��p�o�gr�ess���r�ep�ort�,�1969���Num��!b�M�er����^_Theory��OInstitute�(Pro�M�c.�Symp�os.�Pure�Math.,�F�V��eol.�XX,�State�Univ.����^_New�fY��eork,��Ston��!y�Bro�M�ok,�N.Y.,�1969),�Amer.�Math.�So�M�c.,�Pro��!vidence,����^_R.I.,��f1971,�pp.�396{400.������'�8[CES03]���^_B.�v9Conrad,��S.�Edixho��!v�en,�and�v9W.��MA.�Stein,���b>
�3
cmmi10�J���z�|{Ycmr8�1����(�p�)���Has�Conne��p�cte�d��Fib�ers�,����^_T��eo��fapp�M�ear�in�Do�cumen��!ta�Mathematica�(2003).������'�8[Cre]���^_J.��ME.��fCremona,��El��Fliptic���curves�of�c��p�onductor��!",�
�3
cmsy10��
��17000�,����^_�&��<x
�3
cmtt10�http://www.maths.nott.ac.uk/personal/jec/ftp/data/�.������'�8[CS02]���^_B.��kConrad�and�W.��MA.�Stein,���Comp��p�onent��sGr�oups�of�Pur�ely�Toric�Quo-����^_tients�,��fT��eo�app�M�ear�in�Math�Researc��!h�Letters�(2002).������'�8[D��!WS]���^_N.��=Dummigan,��EM.�W��eatkins,�and�W.��MA.�Stein,��Constructing���Elements�in����^_Shafar��p�evich-T��)ate�[�Gr�oups�of�Mo�dular�Motives�,�?`T��eo� �app�M�ear�in�\Num��!b�er����^_theory��Yand�algebraic�geometry�|�to�P��!eter�Swinnerton-Dy�er�on�his�75th����^_birthda��!y",��fed.�b�y�Miles�Reid�and�Alexei�Sk�orob�M�ogato�v.������'�8[Eme01]���^_M.��GEmerton,���Optimal��>Quotients�of�Mo��p�dular�Jac�obians�,���preprin��!t��G(2001).������'�8[FpS�����+��x�01]���^_E.��MV.�YFFlynn,���F.�Lepr��"���Dev��!ost,�E.��MF.�Sc��!haefer,�W.��MA.�Stein,�M.�Stoll,�and����^_J.��ML.�$�W��eetherell,�>ܼEmpiric��p�al�s�evidenc�e�for�the�Bir�ch�and�Swinnerton-Dyer����^_c��p�onje�ctur�es��for�mo��p�dular�Jac�obians�of�genus�2�curves�,��&Math.�w�Comp.��70����^_�(2001),��fno.�236,�1675{1697�(electronic).�MR�1�836�926������'�8[Kat]���^_K.�ȔKato,�� �p�-adic�
\Ho��p�dge�the�ory�and�values�of�zeta�functions�of�mo�dular����^_forms�,��fPreprin��!t,�244�pages.�����������C�1���������*���������������fb�����5��#�K�Wil��liam�)ZA.�Stein�a9>R���efer�enc�es�)ZCite�d��vˎ�����'�8�(617)�UU308-0144�'OE�w��[email protected]�rva�rd.edu�http://mo�M�dula�r.fas.ha�rva�rd.edu�����'�8��ff��������V����������'�8�[KL81]���^_D.��MS.�<?Kub�M�ert�and�S.�Lang,����Mo��p�dular�`Kunits�,�Grundlehren�<?der�Mathe-��
����^_matisc��!hen�=�Wissensc�haften�[F��eundamen�tal�Principles�of�Mathematical����^_Science],��fv��!ol.�244,�Springer-V��eerlag,�New�Y�ork,�1981.�MR�84h:12009��������'�8[Lan91]���^_S.�(�Lang,�I>�Numb��p�er�b�the�ory.�III�,�(�Springer-V��eerlag,�I>Berlin,�1991,�Diophan-����^_tine��fgeometry��e.�MR�93a:11048������'�8[Maz77]���^_B.�sMazur,����Mo��p�dular��3curves�and�the�Eisenstein�ide�al�,���Inst.�sHautes��p+��;j��Etudes����^_Sci.��fPubl.�Math.�(1977),�no.�47,�33{186�(1978).������'�8[Mer94]���^_L.��AMerel,����Universal�(lFourier�exp��p�ansions�of�mo�dular�forms�,���On��AArtin's����^_conjecture�5ifor�o�M�dd�2-dimensional�represen��!tations,�(Springer,�1994,����^_pp.��f59{94.������'�8[Rib80]���^_K.��MA.�e�Rib�M�et,��ɼTwists��of�mo��p�dular�forms�and�endomorphisms�of�ab�elian����^_varieties�,��fMath.�Ann.��253��(1980),�no.�1,�43{62.�MR�82e:10043������'�8[Rib90]����^_�ff ٟ����K,�YǼR��p�aising�+Zthe�levels�of�mo�dular�r�epr�esentations�,�Y�S��"���Deminaire��de����^_Th��"���Deorie�*�des�Nom��!bres,�CPP�aris�*�1987{88,�Birkh���fauser�Boston,�Boston,�MA,����^_1990,��fpp.�259{271.������'�8[Roh84]���^_D.��ME.�p�Rohrlic��!h,����On���L�-functions�of�el��Fliptic�curves�and�cyclotomic�towers�,����^_In��!v�en�t.��fMath.��75��(1984),�no.�3,�409{423.�MR�86g:11038b������'�8[Rub98]���^_K.���Rubin,����Euler��systems�and�mo��p�dular�el��Fliptic�curves�,�Galois���represen-����^_tations�Tin�arithmetic�algebraic�geometry�(Durham,��1996),�Cam��!bridge����^_Univ.��fPress,�Cam��!bridge,�1998,�pp.�351{367.�MR�2001a:11106������'�8[Shi73]���^_G.���Shim��!ura,��ͼOn���the�factors�of�the�jac��p�obian�variety�of�a�mo�dular�func-����^_tion���eld�,��fJ.�Math.�So�M�c.�Japan��25��(1973),�no.�3,�523{544.������'�8[Ste]���^_W.��MA.�7�Stein,�[�Shafar��p�evich-tate�p�gr�oups�of�nonsquar�e�or�der�,�[�Pro�M�ceedings����^_of��fMCA��ȈV�2002,�Progress�of�Mathematics�(to�app�M�ear).������'�8[Ste03a]����^_�ff ٟ����K,��f�The���Mo��p�dular�Forms�Datab�ase�,����^_�http://modular.fas.harvard.edu/Tables��f�(2003).������'�8[Ste03b]����^_�ff ٟ����K,�J�Studying���the�Bir��p�ch�and�Swinnerton-Dyer�Conje�ctur�e�for�Mo�d-����^_ular�oAb��p�elian�V��)arieties�Using�MA��\GMA�,�6T��eo�app�M�ear�in�J.�Cannon,�Y�ed.,����^_�Computational�J/Exp��p�eriments�in�A��\lgebr�a�and�Ge�ometry�,��Springer-V��eerlag����^_(2003).������'�8[T��eat66]���^_J.��mT��eate,��n�On��the�c��p�onje�ctur�es��of�Bir��p�ch�and�Swinnerton-Dyer�and�a�ge�o-����^_metric�f�analo��p�g�,�N�S��"���Deminaire�-+Bourbaki,�V��eol.�9,�So�M�c.�Math.�F��erance,�P��!aris,����^_1965/66,��fpp.�Exp.�No.�306,�415{440.�����������C�2���������
����;���%�g0	�+m#�R
�3
cmss10�*m#�R

cmss10�(F
C�G�
cmbxti10�&��<x
�3
cmtt10�#�"V
�3
cmbx10�!",�
�3
cmsy10��b>
�3
cmmi10�|{Ycmr8��':
�3
cmti10���N�ffcmbx12�K�`y
�3
cmr10��������