Sharedwww / nsf / biographical_sketch.dviOpen in CoCalc
����;� TeX output 2004.03.31:1814��������������������vI�����5��#�K�'F
C�G�
cmbxti10�Wil��liam�)ZA.�Stein�IiBBio���gr�aphic�al�)ZSketch��vˎ�����'�8�*m#�R

cmss10�(617)�UU308-0144�'OE�+m#�R
�3
cmss10�w��[email protected]�rva�rd.edu�http://mo�M�dula�r.fas.ha�rva�rd.edu�����'�8��ff��������V��������'�8���N�cmbx12�Professional��Preparation��#x������aꍍ�CA�K�`y
�3
cmr10�Northern��fArizona�Univ��!ersit�y���"�Mathematics,��fB.S.�1994���
�����CAUniv��!ersit�y��fof�California�at��"�"V
�3
cmbx10�Berk��teley���"��Mathematics,��fPh.D.�2000������CA�Harv��L�ard�2�Univ��tersit�y���"��NSF��fp�M�ostdo�c,�2000{04������-lɍ�'�8�App�`oin��tmen�ts���������8�!",�
�3
cmsy10�����B�<�Benjamin��P��!eirce�Assistan�t�Professor�of�Mathematics,�C0Harv��dDard�Univ�ersit�y��e,��
����B�<July��f2001{Ma��!y�2005�������8�����B�<�NSF���P��!ostdo�M�ctoral���Researc�h�F��eello�wship�under�Barry�Mazur�at�Harv��dDard�Uni-����B�<v��!ersit�y��e,��fAugust�2000{Ma��!y�2004.�������8�����B�<�Cla��!y��fMathematics�Institute�Lifto�F��eello�w,�Summer�2000.�� v��'�8�Most��Relev��@an��t�Publications�������8�����B�<�#p�0J
�3
cmsl10�Visible��tEvidence�for�the�Birc��!h�and�Swinnerton-Dy�er�Conjecture�for�Rank�0����B�<Mo�M�dular��&Ab�elian�V��earieties��(31�pages),��with�A.�Agashe,�to�app�M�ear�in�Math-����B�<ematics��fof�Computation.�������8�����B�<�Visibilit��!y���of�Shafarevic�h-T��eate�Groups�of�Ab�M�elian�V�arieties�,���(19�pages),�with����B�<A.��fAgashe,�J.�Num��!b�M�er�Theory��e,��97��(2002),�no.���1,�171{185.�������8�����B�<�Studying���the�Birc��!h�and�Swinnerton-Dy�er�Conjecture�for�Mo�M�dular�Ab�elian����B�<V��earieties�'	Using�MA��!GMA�&�(22�pages),�@�to�app�M�ear�as�a�c�hapter�in�the�Springer-����B�<V��eerlag��fb�M�o�ok�\Computational�Exp�erimen��!ts�in�Algebra�and�Geometry".�������8�����B�<�Constructing�;�Elemen��!ts�in�Shafarevic�h-T��eate�Groups�of�Mo�M�dular�Motiv�es�,�P�(19����B�<pages)�1(with�N.�Dummigan�and�M.�W��eatkins,�S�to�app�M�ear�in�\Num��!b�er�theory����B�<and�P8algebraic�geometry|to�P��!eter�Swinnerton-Dy�er�on�his�75th�birthda�y",����B�<Ed.���b��!y��fM.�Reid�and�A.�Sk�orob�M�ogato�v.�������8�����B�<��b>
�3
cmmi10�J���z�|{Ycmr8�1����(�p�)�ѳ�Has�Connected�Fib�M�ers��(77�pages),�܆with�B.�Conrad�and�S.�Edixho��!v�en,����B�<to��fapp�M�ear�in�Do�cumen��!ta�Mathematica.�� v��'�8�Other��Publications�������8�����B�<�Shafarevic��!h-T��eate�S�Groups�of�Nonsquare�Order��(13�pages),�~�to�app�M�ear�in�the����B�<Barcelona��fMCA��ȈV�pro�M�ceedings,�Ed.���b��!y�Jordi�Quer.�������8�����B�<�Mo�M�d�{��5��Approac��!hes�to�Mo�dularit��!y�of�Icosahedral�Galois�Represen�tations��(18����B�<pages),��fwith�K.�Buzzard,�P��!acic�J.�Math,��203��(2002),�no.���2,�265{282.�����������C�1���������*���������������fb�����5��#�K�Wil��liam�)ZA.�Stein�IiBBio���gr�aphic�al�)ZSketch��vˎ�����'�8�(617)�UU308-0144�'OE�w��[email protected]�rva�rd.edu�http://mo�M�dula�r.fas.ha�rva�rd.edu�����'�8��ff��������V�����������8�����B�<�There�+�are�Gen��!us�One�Curv�es�o�v�er��Q��of�Ev�ery�Odd�Index��(9�pages),�DoJ.�Reine��
����B�<Angew.���Math.�(Crelle's��fJournal),��547��(2002),�139{147.���&�����8�����B�<�Comp�M�onen��!t��vGroups�of�Purely�T��eoric�Quotien�ts�of�Semistable�Jacobians�,���(20����B�<pages),��fwith�B.�Conrad,�Math.���Res.�Lett.,��f�8��(2001),�no.���5-6,�745{766.�������8�����B�<�The�'�Field�Generated�b��!y�the�P�oin�ts�of�Small�Prime�Order�on�an�Elliptic����B�<Curv��!e�O��(7�pages),�aCwith�L.�Merel,�In��!ternat.�Math.�Res.�Notices�(2001),�no.�20,����B�<1075{1082.���ҍ�'�8�Synergistic��Activities��D������8�����B�<�Databases:�,��Created�M�and�main��!tain�the�Mo�M�dular�F��eorms�Database.���This�is����B�<o��!v�er��`40GB�of�con��!tin�ually��`expanding�data�ab�M�out�mo�dular�forms�and�ab�elian����B�<v��dDarieties,��fwhic��!h�is�freely�a�v��dDailable�online:���<�����http://mo�M�dula��!r.fas.ha�rva�rd.edu/T��eables/�.�������8�����B�<�Researc��th��rT���\o�Y�ols:���Author�>�of�the�mo�M�dular�forms�and�mo�dular�sym��!b�ols�parts��
����B�<of���the��,�-�
�3
cmcsc10�Ma���gma��computer�algebra�system�(425�pages�(26000�lines)�of�co�M�de����B�<plus�+�do�M�cumen��!tation).�m�This�is�a�to�ol�used�b��!y�mathematicians�who�do�com-����B�<putations��fwith�mo�M�dular�forms.�������8�����B�<�Outside�/<Service:�m�Defense���Science�Study�Group�mem��!b�M�er�2002{2003:�DSSG����B�<is��da�D��!ARP��eA��.funded�program�administered�b�y�the�Institute�for�Defense�Anal-����B�<ysis;��fwrote�classied�pap�M�er�on�GPS�vulnerabilities.�������8�����B�<�Outreac��th:�W��Canada/USA��@MathCamp��Pmen��!tor�(2002);��Sev�eral�Math�Circles����B�<talks��fin�Boston;�Guest�sp�M�eak��!er�at�Harv��dDard/MIT�math�comp�etition�(2001).���ҍ�'�8�Collab�`orators��and�Other�Aliations��D������8�����B�<�Coauthors:��i�A.�y,Agashe�(Univ.�of�Missouri),���K.�Buzzard�(Imp�M�erial�Col-����B�<lege,�M�London),�R.��Coleman�(UC�ŁBerk��!eley),�M�B.�Conrad�(Univ.�of�Mic�hi-����B�<gan),��N.��YDummigan�(Sheeld,�UK),�S.�Edixho��!v�en��Y(Leiden,�Netherlands),����B�<F.�H?Lepr��"���Dev��!ost�(Univ.�Joseph�F��eourier,�p�T�ec�hnisc�he�H?Univ.�Berlin),�p�E.��MV.�Flynn����B�<(Liv��!erp�M�o�ol,��UK),��MD.�Kohel�(Univ.�of�Sydney),�L.�Merel�(P��!aris�6),�K.�Rib�M�et����B�<(UC�wBerk��!eley),���E.��MF.�waSc�haefer�(San�ta�Clara�Univ.),���M.�Stoll�(In�ter.�Univ.�Bre-����B�<men,�w�German��!y),�H.��MA.�N	V��eerrill�(Louisiana�State),�w�M.�W�atkins�(P��!enn.���State����B�<Univ.),��fJ.��ML.�W��eetherell�(CCR,�San�Diego)�������8�����B�<�Graduate�2�and�P��tostdo�Y�ctoral�Advisors:�������OK�{����[HPh.D.�2�adviser:��ݹHendrik��fLenstra,�Univ��!ersit�y��fof�Leiden,�Netherlands.���&�����OK��{����[HNSF�2�P��tostdo�Y�ctoral�adviser:��ݹBarry��fMazur,�Harv��dDard�Univ��!ersit�y��e.�������8�����B�<�Thesis:��ݹAdvised��fthree�undergraduate�thesis�at�Harv��dDard.�����������C�2�������������;���%�g0	�,�-�
�3
cmcsc10�+m#�R
�3
cmss10�*m#�R

cmss10�'F
C�G�
cmbxti10�#p�0J
�3
cmsl10�"�"V
�3
cmbx10�!",�
�3
cmsy10��b>
�3
cmmi10�|{Ycmr8���N�cmbx12�K�`y
�3
cmr10�0�������