Sharedwww / misc / 20130513.htmlOpen in CoCalc
Author: William A. Stein
Some math: x3x^3


Some displayed math: 18((i+1)2erf((12i+12)2x)+(i1)2erf((12i12)2x))π \frac{1}{8} \, {\left(\left(i + 1\right) \, \sqrt{2} \text{erf}\left(\left(\frac{1}{2} i + \frac{1}{2}\right) \, \sqrt{2} x\right) + \left(i - 1\right) \, \sqrt{2} \text{erf}\left(\left(\frac{1}{2} i - \frac{1}{2}\right) \, \sqrt{2} x\right)\right)} \sqrt{\pi}


A big matrix: (1112121012122120112010102010102212212121010212000221220011012100122101212110200200212111212111200012110122012) \left(\begin{array}{rrrrrrrrrr} 1 & -1 & -\frac{1}{2} & \frac{1}{2} & 1 & 0 & 1 & -2 & \frac{1}{2} & 2 \\ 1 & -2 & 0 & 1 & -\frac{1}{2} & 0 & 1 & 0 & -1 & 0 \\ 2 & 0 & 1 & 0 & 1 & 0 & 2 & 2 & \frac{1}{2} & -2 \\ -1 & 2 & 1 & -2 & 1 & 0 & -1 & 0 & 2 & \frac{1}{2} \\ 0 & 0 & 0 & -2 & -2 & -1 & 2 & 2 & 0 & 0 \\ -1 & -1 & 0 & -1 & -2 & 1 & 0 & 0 & \frac{1}{2} & 2 \\ 1 & 0 & -1 & 2 & 1 & 2 & -1 & -1 & 0 & -2 \\ 0 & 0 & -2 & 0 & 0 & -2 & -1 & -2 & 1 & 1 \\ 1 & -2 & 1 & 2 & 1 & 1 & \frac{1}{2} & 0 & 0 & 0 \\ -1 & -2 & -1 & 1 & 0 & 1 & -2 & -2 & 0 & -\frac{1}{2} \end{array}\right)