Sharedwww / merel-stein_v6.texOpen in CoCalc
Author: William A. Stein
1
% merel-stein_v6.tex
2
% 12 February 2001
3
4
\magnification=1200
5
\pretolerance=200
6
\tolerance=400
7
\brokenpenalty=200
8
9
\catcode`\@=11
10
11
12
\def\#1{\if#1i{\accent"7F\i}\else{\accent"7F #1}\fi} % trema
13
\def\B#1{{\bf #1}} % bold
14
\def\lc{{\it loc.\thinspace{}cit.}} % loc. cit.
15
\def\mod#1{\ \hbox{{\rm mod}$#1$}} % modulo
16
\def\eps{\varepsilon}
17
18
\font\titchap=cmr17 at 20pt % for the titles of chapters.
19
\font\pc=cmcsc10 % for the titles of sections, props, etc.
20
21
\def\th#1{\noindent{\pc Theorem}\ #1. --- \ignorespaces} %Theorem 1.
22
\def\prop#1{\noindent{\pc Proposition}\ #1. --- \ignorespaces}%Proposition 1.
23
\def\Def#1{\noindent{\pc Definition}\ #1. --- \ignorespaces} %Definition 1.
24
\def\cor#1{\noindent{\pc Corollary}\ #1. --- \ignorespaces} %Corollary 1.
25
\def\conj#1{\noindent{\pc Conjecture}\ #1. --- \ignorespaces} %Conjecture 1.
26
\def\lem#1{\noindent{\it Lemma}\ #1. --- \ignorespaces} %Lemma 1.
27
\def\rem#1{\noindent{\it Remark}\ #1: \ignorespaces} %Remark 1.
28
\def\exe#1{\noindent{\it Example}\ #1: \ignorespaces} %Example 1.
29
\def\exr#1{\noindent{\it Exercise}\ #1: \ignorespaces} %Exercise 1.
30
\def\rems{\noindent{\it Remarks}: \ignorespaces} %Remarks 1.
31
\def\exes{\noindent{\it Examples}: \ignorespaces} %Examples 1.
32
\def\exrs{\noindent{\it Exercises}: \ignorespaces} %Exercises 1.
33
\def\thp{\noindent{\pc Theorem}. --- \ignorespaces} %Theorem 1.
34
\def\propp{\noindent{\pc Proposition}. --- \ignorespaces} %Proposition 1.
35
\def\Defp{\noindent{\pc Definition}. --- \ignorespaces} %Definition 1.
36
\def\corp{\noindent{\pc Corollary}. --- \ignorespaces} %Corollairy 1.
37
\def\conjp{\noindent{\pc Conjecture}. --- \ignorespaces} %Conjecture 1.
38
\def\lemp{\noindent{\it Lemma}. --- \ignorespaces} %Lemma 1.
39
\def\remp{\noindent{\it Remark}: \ignorespaces} %Remark 1.
40
\def\exep{\noindent{\it Example}: \ignorespaces} %Example 1.
41
\def\dm{\noindent{\it Proof}. --- \ignorespaces}
42
\def\raw{\longrightarrow}
43
\def\Hom{{\rm Hom}}
44
\def\Gal{{\rm Gal}}
45
\def\cP{{\cal P}}
46
\def\cO{{\cal O}}
47
\def\cI{{\cal I}}
48
\def\rp{{\rm Re}}
49
\def\ip{{\rm Im}}
50
\def\End{{\rm End}}
51
52
\def\Agashe{{$[1]$}}
53
\def\Cremona{{$[2]$}}
54
\def\Merel{{$[3]$}}
55
\def\Mes{{$[4]$}}
56
57
\def\change#1{[[{\bf Change:} #1]]}
58
59
\centerline
60
{\titchap The field generated by the points of small}
61
\centerline
62
{\titchap prime order on an elliptic curve}
63
\medskip
64
65
\bigskip\bigskip\bigskip
66
\centerline{\pc Lo\"\i c Merel {\rm and} William A.~Stein}
67
\bigskip\bigskip\bigskip
68
69
70
\bigskip\bigskip\noindent
71
{\bf Introduction}
72
\bigskip
73
74
Let~$p$ be a prime number.
75
Let $\bar\B Q$ be an algebraic closure of $\B Q$, and
76
denote by $\B Q(\mu_p)$ the cyclotomic subfield of $\bar\B Q$
77
generated by the $p$th roots of unity.
78
Let~$E$ be an elliptic curve over $\B Q(\mu_p)$, such that the
79
points of order~$p$ of
80
$E(\bar\B Q)$ are all $\B Q(\mu_p)$-rational.
81
\bigskip
82
\th{}{\it One has $p=2,3,5,13$ or $p>1000$.}
83
\bigskip
84
85
The case $p=7$ was treated by Emmanuel Halberstadt. The
86
part of the theorem that concerns the case $p\equiv 3\!\!\pmod{4}$ is
87
given in~\Merel. In this paper, we give the details that permit our
88
treating the more difficult case in which $p\equiv 1 \!\!\pmod{4}$.
89
We treat this last case with the aid of Proposition~2 below, which is
90
not present in \lc.
91
The case $p=13$ is currently under investigation by Marusia Rebolledo,
92
as part of her Ph.D.{} thesis.
93
94
\bigskip\noindent
95
{\bf 1. We recall the results of \Merel}
96
\bigskip
97
\change{Change the title to something like
98
``Counterexamples define points on $X_0(p)(\B Q(\sqrt{p}))$''.}
99
100
Let $S_2(\Gamma_0(p))$ denote the space of cusp forms of weight~$2$ for
101
the congruence subgroup $\Gamma_0(p)$. Denote by $\B T$ the
102
subring of ${\rm End}\,S_2(\Gamma_0(p))$ generated by the
103
Hecke operators $T_n$ for all integers~$n$.
104
Let $f\in S_2(\Gamma_0(p))$ have $q$-expansion
105
$\sum_{n=1}^\infty a_nq^n$. When $\chi$ is a Dirichlet character,
106
denote by $L(f,\chi,s)$ the entire function which extends the
107
Dirichlet series $\sum_{n=1}^\infty a_n\chi(n)/n^s$.
108
109
Let $S$ be the set of isomorphism classes of supersingular elliptic
110
curves in characteristic~$p$. Denote by $\Delta_S$ the group formed
111
by the divisors of degree~$0$ with support on~$S$. It is equipped with
112
a structure of $\B T$-module (induced, for example, from the action
113
of the Hecke correspondences on the fiber at~$p$ of the regular minimal
114
model of $X_0(p)$ over $\B Z$).
115
116
Let $j\in\bar\B F_p-J_S$, where $J_S$ denotes the set of supersingular modular
117
invariants. We denote by $\iota_j$ the homomorphism of
118
groups $\Delta_S\raw \bar\B F_p$ that associates to $\sum_E n_E[E]$
119
the quantity
120
$\sum_E n_E/(j-j(E))$, where $j(E)$ denotes the modular invariant of~$E$.
121
122
123
One says that an element $j\in\B F_p$ is {\it anomalous}
124
if there exists an elliptic curve over $\B F_p$ with modular invariant~$j$
125
that possesses an $\B F_p$-rational point of order~$p$
126
(then necessarily $j\notin{}J_S$).
127
128
\change{
129
Let~$p$ be a prime that is congruent to~$1$ modulo~$4$.
130
In the following proposition we prove, under a hypothesis on~$p$, that
131
if~$E$ is an elliptic curve over $\B Q(\mu_p)$ all of whose torsion is
132
$\B Q(\mu_p)$-rational, then for each subgroup $C\subset{}E(\B Q)$
133
of order~$p$,
134
the point $(E,C)$ on $X_0(p)$ is defined over $\B Q(\sqrt{p})$. As we
135
will see in Proposition~2, this $\B Q(\sqrt{p})$-rationality
136
conclusion is contrary to fact, from which we conclude that such
137
elliptic curves~$E$ do not exist when the hypothesis on~$p$
138
is satisfied. In Section~3 we verify this hypothesis
139
for $p=11$ and $13 < p < 1000$.
140
}
141
142
\bigskip
143
\prop{1}{\it Suppose that~$p$ is congruent to~$1$ modulo~$4$.
144
Suppose that for all anomalous
145
$j\in\B F_p$ and all
146
non-quadratic Dirichlet characters $\chi \colon \B Z/p\B Z\raw \B C$,
147
there exists $t_\chi\in \B T$ and
148
$\delta\in\Delta_S$ such that $L(f,\chi,1)\ne0$ for every newform
149
$f\in t_\chi S_2(\Gamma_0(p))$ and
150
$\iota_j(t_\chi\delta)\ne0$.
151
152
Let~$E$ be an elliptic curve over $\B Q(\mu_p)$, such that the
153
points of order~$p$ of
154
$E(\bar\B Q)$ are all $\B Q(\mu_p)$-rational.
155
Then for all subgroups~$C$ of order~$p$ of $E(\bar \B Q)$, there exists an
156
elliptic curve $E_C$ over $\B Q(\sqrt p)$ equipped with a
157
$\B Q(\sqrt p)$-rational subgroup $D_C$ of order~$p$, and
158
the pairs $(E,C)$ and $(E_C,D_C)$ are $\bar \B Q$-isomorphic.}
159
160
\dm We prove the proposition using the results of~\Merel.
161
The hypothesis
162
$\iota_j(t_\chi\delta)\ne0$ forces $t_\chi\notin p\B T$
163
and, {\it a fortiori}, $t_\chi\ne0$; in addition,
164
the non-vanishing hypothesis on the $L$-series
165
forces the hypothesis $H_p(\chi)$ of \lc, introduction.
166
167
\change{
168
{\bf (the following paragraph)}
169
By assumption, hypothesis $H_p(\chi)$ is satisfied for all
170
non-quadratic Dirichlet characters~$\chi$ of conductor~$p$.
171
Thus Corollary~3 of Proposition~6 of \lc{} implies that~$E$ has
172
potentially good reduction at the prime ideal
173
$\cP$ of $\B Z[\mu_p]$ that lies above~$p$.}
174
175
According to Corollary~3 of Proposition~6 of \lc,~$E$ has
176
potentially good reduction at the prime ideal
177
$\cP$ of $\B Z[\mu_p]$ that lies above~$p$
178
once we know that
179
hypothesis $H_p(\chi)$ is satisfied for all
180
non-quadratic Dirichlet characters~$\chi$ of conductor~$p$
181
(this is the case by hypothesis).
182
183
Denote by~$j$ the modular invariant of the fiber at~$\cP$ of the
184
N\'eron model of~$E$.
185
According to the corollary of Proposition~15 of \lc,
186
$j$ is anomalous.
187
188
Let~$C$ be a subgroup of $E(\bar\B Q)$ of order~$p$.
189
By assumption~$E$ is an elliptic curve over~$\B Q(\mu_p)$ whose points
190
of order~$p$ are all $\B Q(\mu_p)$-rational, so
191
the pair $(E,C)$ defines a $\B Q(\mu_p)$-rational point~$P$
192
of the modular curve $X_0(p)$.
193
194
Consider the morphism $\phi_{\chi}=\phi_{t_\chi}:X_0(p)\rightarrow J_0(p)$
195
obtained by composing the standard embedding of $X_0(p)$ into $J_0(p)$
196
with $t_{\chi}$. As in section 1.3 of \lc, $\phi_{\chi}$
197
extends to a map from the minimal regular model of $X_0(p)$ to the
198
N\'eron model of $J_0(p)$.
199
When $\iota_j(t_\chi\delta)\ne0$, this map is a formal
200
immersion at the point $P_{/\B F_p}$, according to \lc,
201
Proposition~4. The hypothesis that $L(f,\chi,1)\ne0$ for
202
every newform
203
$f\in t_\chi S_2(\Gamma_0(p))$, translates into $L(t_\chi J_0(p),
204
\chi,1)\ne0$, which in turn implies that the $\chi$-isotypical
205
component of
206
$t_\chi J_0(p)(\B Q(\mu_p))$ is finite (this is Kato's theorem, see the
207
discussion in section 1.5 of \lc).
208
\change{Mazur asked us to verify that section 1.5 of Merel's other
209
paper properly refers to Scholl's paper.}
210
We can then apply Corollary~1 of Proposition~6 of \lc. This proves
211
that~$P$ is
212
$\B Q(\sqrt p)$-rational, which translates into the conclusion of
213
Proposition~1.
214
215
\bigskip
216
217
\change{Delete this remark.}
218
\rem{1} In this proposition we content ourself with a stronger hypothesis
219
than the one generally used in \lc: the Hecke operator
220
$t_\chi$ is required to belong to $\B T$ and not to $\B T\otimes\B
221
Z[\chi]$.
222
223
\bigskip\bigskip\noindent
224
{\bf 2. Elliptic curves and quadratic fields}
225
226
\bigskip
227
\prop{2}{\it Let~$p$ be a prime number that is congruent to~$1$
228
modulo~$4$. Let~$E$ be an elliptic curve over $\bar\B Q$.
229
\change{There exists a subgroup~$C\subset{}E(\B Q)$ of order~$p$
230
such that $(E,C)$ can not be defined over $\B Q(\sqrt{p})$.}
231
There exists a cyclic subgroup~$C$ of order~$p$ of
232
$E(\bar\B Q)[p]$, such that for all elliptic curves~$E'$ over
233
${\B Q(\sqrt{p})}$
234
equipped with a ${\B Q(\sqrt p)}$-rational subgroup~$C'$, the
235
pairs $(E,C)$ and $(E', C')$ are not $\bar\B Q$-isomorphic.
236
}
237
238
\dm
239
We procede by contradiction, i.e., we assume that for
240
all cyclic subgroups~$C$ of order~$p$ of $E(\bar\B Q)$,
241
the pair $(E,C)$ can be defined over ${\B Q(\sqrt{p})}$.
242
We choose such a pair $(E_0,C_0)$ over ${\B Q(\sqrt{p})}$.
243
244
Assume first that all twists of $E$ are quadratic, i.e.,
245
that $j(E)$ is neither~$0$ nor $1728$.
246
We show that the group
247
$\Gal(\bar\B Q/{\B Q(\sqrt p)})$ acts by scalars
248
on the $\B F_p$-vector space $E_0(\bar\B Q)[p]$. For this it
249
suffices to show that all subgroups of order~$p$ of
250
$E_0(\bar\B Q)[p]$ are stable by $\Gal(\bar\B Q/{\B Q(\sqrt p)})$.
251
252
\change{I reworded the following paragraph.}
253
Suppose $C_1$ is a cyclic subgroup of order~$p$ of $E_0(\bar\B Q)[p]$.
254
By assumption, there exists a quadratic twist $E_1$ of $E_0$ and
255
a cyclic subgroup $C_1'$ of $E_1(\bar\B Q)[p]$
256
that is defined over $\B Q(\sqrt{p})$, such that
257
the image of $C_1$ by the isomorphism $E_0\simeq E_1$ is $C'_1$.
258
Since $\Gal(\bar\B Q/{\B Q(\sqrt p)})$ leaves $C_1'$ stable and
259
the action of $\Gal(\bar\B Q/\B Q(\sqrt p))$
260
on $E_0(\bar\B Q)[p]$ is
261
a quadratic twist of the action on $E_1(\bar\B Q)[p]$,
262
we see that $\Gal(\bar\B Q/\B Q(\sqrt p))$ leaves $C_1$ stable.
263
Thus $\Gal(\bar\B Q/\B Q(\sqrt p))$ fixes all lines in
264
$E_0(\bar\B Q)[p]$, and hence
265
acts by scalars. Denote by~$\alpha$ the corresponding character
266
of $\Gal(\bar\B Q/\B Q(\sqrt p))$.
267
268
Because of the Weil pairing, $\alpha^2$ coincides
269
with the cyclotomic character modulo~$p$, and it factors through
270
$\Gal(\B Q(\mu_p)/\B Q(\sqrt p))$. But, when
271
$p\equiv 1\!\!\pmod 4$, the group $\Gal(\B Q(\mu_p)/{\B Q(\sqrt p)})$ is of
272
even order, and the characters modulo~$p$ form a group generated by the
273
reduction modulo~$p$ of the cyclotomic character, which, therefore,
274
can not be a square.
275
276
\change{I don't understand this argument.}
277
Next suppose that $j(E)=0$ or $j(E)=1728$. Indeed, in these
278
two cases~$E$ has
279
complex multiplication by an order $R_K$ of $K=\B Q[\sqrt{-1}]$ or
280
$\B Q[\sqrt{-3}]$.
281
Consider the map
282
$\rho : \Gal(\bar \B Q/\B Q(\sqrt p))\longrightarrow{\rm Aut}\,E_0(\bar\B Q)[p]$.
283
%Suppose $\rho(\Gal(\bar \B Q/K(\sqrt p)))$ contains an element of order~$p$.
284
Let $L_p$ be the ray class field of conductor~$p$ of~$K$.
285
It contains $\B Q(\sqrt p)$ since $p\equiv 1\!\!\!\pmod 4$.
286
By the theory
287
of complex multiplication,
288
$\rho(\Gal(\bar \B Q/L_p))$ is trivial. By class field theory, $\Gal(L_p/K)$
289
has no element of order~$p$, since~$K$ has class number~$1$. Therefore
290
$\rho(\Gal(\bar \B Q/\B Q(\sqrt p)))$ has no elements of order~$p$.
291
Since it is contained in the Borel subgroup of ${\rm Aut}\,E_0(\bar\B Q)[p]$
292
which stabilizes $C_0$, it is an abelian group. By the theory of complex
293
multiplication, it is the semi-direct product of $\Gal(L_p/K(\sqrt p))$ and
294
$\Gal(K(\sqrt p)/\B Q(\sqrt p))\simeq\Gal(\B C/\B R)$. Such a group
295
is not abelian since
296
$\Gal(L_p/K(\sqrt p))$ is not a $2$-group, hence the contradiction.
297
298
299
\bigskip\bigskip\noindent
300
{\bf 3. Verification of the hypothesis of Proposition~1}
301
\bigskip
302
Let $p$ be a prime number. In this section we explain how we used
303
a computer to verify that the hypothesis of Proposition~1 are satisfied
304
for $p=11$ and $13 < p < 1000$.
305
306
We first list the anomalous $j$-invariants $j\in\B F_p$. Since~$p$ is
307
fairly small in the range of our computations, we created this list by
308
simply enumerating all of the elliptic curves over $\B F_p$ and
309
counting the number of points on each curve. For example, when $p=31$
310
the anomalous $j$-invariants are $j=10,14$.
311
312
Let~$\chi: \B Z/p\B Z\raw \B C$ be a non-quadratic
313
Dirichlet character, and denote by $\B Z[\chi]$ the
314
subring of $\B Q(\zeta_{p-1})$ generated by the image of~$\chi$.
315
Denote by $S_2(\Gamma_0(p);\B Z)$ be the set of modular forms
316
$f\in S_2(\Gamma_0(p))$ whose Fourier expansion at the cusp~$\infty$
317
lies in $\B Z[[q]]$.
318
319
We study the $\B T$-modules $\B T$, $\Delta_S$, and $S_2(\Gamma_0(p);\B Z)$.
320
After extension of scalars to~$\B Q$, these
321
are $\B T\otimes\B Q$-modules that are free of rank~$1$, of which the
322
irreducible sub-$\B T\otimes\B Q$ modules are the annihilators of the
323
minimal prime ideals of $\B T$. We compute a list of the minimal
324
prime ideals of $\B T$ by computing appropriate kernels and
325
characteristic polynomials of Hecke operators of small index on
326
$\Delta_S$, which we find using the graph method of Mestre and
327
Oesterl\'e \Mes{}.
328
329
Having computed the minimal prime ideals of $\B T$, we verify that
330
some nontrivial ideal $\cI$ of $\B T$ (always a minimal prime
331
ideal in the range of our computations) simultaneously satisfies
332
the following three conditions:
333
\vskip 2ex
334
335
1)
336
For each anomalous $j$-invariant, there exists $x\in\Delta_S$ such that
337
$\cI x=0$ and $\iota_j(x)\ne 0$.\vskip 1ex
338
339
2) Each of the newforms~$f\in S_2(\Gamma_0(p))$ with
340
$\cI f=0$ satisfies $L(f,\chi,1)\ne 0$.
341
\vskip 1ex
342
343
3) The image of~$\cI$ in the $\B T$-module $\B T/p\B T$
344
is a direct factor.\vskip 2ex
345
346
Let $\cI$ be an ideal of $\B T$. Here is how we verify these conditions
347
for $\cI$.
348
349
\bigskip
350
{\it \noindent Verification of condition 1.}
351
352
We verified that $\cI$ satisfies the first condition by
353
finding a $\B T$-eigenvector~$v$ of $\Delta_S\otimes \bar\B Z$ that is
354
annihilated by $\cI$ and satisfies $\iota_j(v)\neq 0$ for all anomalous $j$-invariants. Because $\iota_j$
355
is a homomorphism, this implies the existence of~$x$ as in condition 1.
356
357
\bigskip
358
{\it \noindent Verification of condition 2.}
359
360
We verified the second condition using modular symbols.
361
Our method is purely algebraic, so we do not perform
362
any approximate computation of integrals.
363
Using the algorithm described in \Cremona, we compute the action of
364
the Hecke algebra $\B T$ on the space
365
$\Hom(H_1(X_0(p);\B Q[\chi]),\B Q[\chi])$. By intersecting the kernels
366
of appropriate elements of $\B T$, we find a basis
367
$\varphi_1,\ldots,\varphi_n$ for the subspace of
368
$\Hom(H_1(X_0(p);\B Q[\chi]),\B Q[\chi])$ that is annihilated by~$\cI$.
369
Let~$\Phi_{\cI}=\varphi_1\times \cdots \times \varphi_n$ denote the linear map
370
$H_1(X_0(p);\B Q[\chi])\raw \B Q[\chi]^n$
371
defined by the $\varphi_i$.
372
373
Let $\B T_{\B Q[\chi]} = \B T \otimes \B Q[\chi]$, where $\B Q[\chi]$
374
is the number field generated the image of~$\chi$.
375
The {\it $\chi$-twisted winding element} (denoted $\theta_\chi$ in
376
\Merel)
377
$$\B e_\chi = \sum_{a\in (\B Z/p\B Z)^*} \bar\chi(a)
378
\Big\{\infty,{a \over p}\Big\}$$
379
generates the {\it $\chi$-twisted winding submodule}
380
$\B T_{\B Q[\chi]}\cdot \B e_\chi$. To compute this submodule,
381
we use that $\B T$ is generated, even as a $\B Z$-module,
382
by $T_1,T_2,\ldots, T_b$, for any $b\geq (p+1)/6$
383
(see \Agashe).
384
385
\bigskip
386
\lem 3
387
{\it Let $\cI$ be a minimal prime ideal of~$\B T$, and
388
let $\chi:(\B Z/N\B Z)^*\raw \B C^*$
389
be a nontrivial Dirichlet character.
390
Then the dimension of $\Phi_{\cI}(\B T_{\B Q[\chi]} \cdot \B e_\chi)$ is
391
equal to the cardinality of the set of newforms~$f$ such that
392
$\cI f=0$ and $L(f,\chi,1) \neq 0$.
393
}
394
395
\dm
396
We have
397
$$\dim_{\B Q[\chi]} \Phi_{\cI}(\B T_{\B Q[\chi]}\cdot \B e_\chi)
398
= \dim_{\B C} \Phi_{\cI}(\B T_{\B C} \cdot \B e_\chi).$$
399
This dimension is invariant upon changing the basis
400
$\varphi_1,\ldots, \varphi_n$ used to define $\Phi_{\cI}$.
401
In particular, over $\B C$ there is a basis
402
$\varphi_1',\ldots, \varphi_n'$ so that the resulting
403
map $\Phi_{\cI}'$ satisfies
404
$$\Phi_{\cI}'(x) =
405
\Bigl(\rp(\int_x f^{(1)}), \ip(\int_x f^{(1)}),
406
\ldots,
407
\rp(\int_x f^{(d)}),\ip(\int_x f^{(d)})\Bigr),$$
408
where $f^{(1)}, \ldots, f^{(d)}$ are the Galois conjugates
409
of a newform~$f^{(1)}=\sum a_n^{(1)} q^n$ such that $\cI f^{(1)}=0$.
410
Furthermore, $\Phi_{\cI}'$ is a $\B T_{\B C}$-module homomorphism
411
if we declare that $\B T_{\B C}$ as acts on $\B R^{2d} = \B C^d$ via
412
$$T_n(x_1,y_1, \ldots, x_d, y_d) =
413
T_n(z_1,\ldots,z_d) = (a_n^{(1)} z_1,\ldots, a_n^{(d)}z_d),$$
414
where $z_j = x_j + i y_j$ and
415
the $a_n^{(j)}$ are Fourier coefficients of the $f^{(j)}$.
416
417
As explained in Section 2.2 of~\Merel,
418
$\int_{\B e_\chi} f = *\cdot L(f,\chi,1)$, where~$*$
419
is some nonzero real or pure-imaginary complex number,
420
according to whether $\chi(-1)$ equals~$1$ or~$-1$,
421
respectively.
422
Combining this observation with the equality
423
$$\dim_{\B C} \Phi_{\cI}(\B T_{\B C} \cdot \B e_\chi)
424
= \dim_{\B C} (\B T_{\B C}\cdot \Phi_{\cI}(\B e_\chi)),$$
425
and that the image of $\B T_{\B C}$ in $\End(\B C^d)$ is
426
equal to the diagonal matrices, proves the asserted equality.
427
428
\bigskip
429
\rem{2} The dimension of $\Phi_{\cI}(\B T_{\B Q[\chi]}\cdot \B e_{\chi})$
430
is unchanged if~$\chi$ is
431
replaced by a Galois-conjugate character.
432
433
\bigskip
434
435
In practice, computations over the cyclotomic field $\B Q[\chi]$ are
436
extremely expensive. Fortunately, for our application it suffices to
437
give a lower bound on the dimension appearing in the lemma. Such a
438
bound can be efficiently obtained by instead computing the reductions
439
of~$\Phi$,~$\chi$, and the $\chi$-twisted winding submodule modulo a
440
suitable maximal ideal of the ring of integers of $\B Q[\chi]$ that
441
splits completely; this amounts to performing the above linear algebra
442
over a relatively small prime finite field $\B F_\ell$ such
443
that~$\ell$ is congruent to~$1$ modulo $p-1$.
444
445
\bigskip
446
447
\rem{3} For every newform~$f$ in $S_2(\Gamma_0(p))$, with $p\leq 1000$,
448
and every mod~$p$ Dirichlet character~$\chi$, we found that
449
$L(f,\chi,1)\neq 0$ if and only if
450
$L(f^{\sigma},\chi,1)\neq 0$ for all conjugates $f^{\sigma}$
451
of~$f$.
452
More generally, for any~$f$ and~$\chi$, this equivalence holds if
453
$\B Q[\chi]$ is linearly disjoint from the
454
field $K_f=(\B T/\cI)\otimes\B Q$.
455
The first few primes
456
for which there is a form~$f$ and a mod~$p$ character~$\chi$
457
such that the linear disjointness hypothesis fails are
458
$p=31, 113, 127$, and $191$.
459
The analogue of this nonvanishing observation is false if we instead consider
460
newforms on $\Gamma_1(p)$ and allow~$\chi$ to be arbitrary.
461
For example, let~$f$
462
be one of the two Galois-conjugate newforms in $S_2(\Gamma_1(13))$.
463
Then there is a character $\chi:(\B Z/7\B Z)^*\raw \B C^*$ of
464
order~$3$ such that $L(f,\chi,1) = 0$ and $L(f^{\sigma},\chi,1)\neq 0$.
465
466
\bigskip
467
468
{\it \noindent Verification of condition 3.}
469
470
The third condition is satisfied for all $p<10000$, except possibly
471
$p = 389$,
472
because we have verified that the discriminant of $\B T$ is
473
prime to~$p$ for all such $p\neq 389$,
474
so the ring $\B T/p\B T$ is semisimple.
475
The discriminant computation was carried out by the second author
476
as follows.
477
Using the method of \Mes{}, we computed discrimininants of characteristic
478
polynomials mod~$p$ of the Hecke operators $T_2$, $T_3$, $T_5$, and $T_7$.
479
In the few cases when all four of these characteristic polynomials had
480
discriminant equal to~$0$ mod~$p$, we resorted to modular symbols to
481
compute several more characteristic polynomials until we found one
482
having nonzero discriminant modulo~$p$.
483
484
We consider the remaining case $p=389$ in detail. There are exactly
485
five minimal prime ideals of $\B T$, which we denote $\cP_1$, $\cP_2$,
486
$\cP_3$, $\cP_6$, and $\cP_{20}$, where the quotient field of $\B
487
T/\cP_i$ has dimension~$i$. The discriminant of the characteristic
488
polynomial of $T_2$ is exactly divisible by $389$. Since the field of
489
fractions of $\B T/\cP_{20}$ has discriminant divisible by $389$, we
490
see that $389$ is not the residue characteristic of any congruence
491
prime. Let $\cO_i = \B T/\cP_{i}$. The natural map $\B T \rightarrow
492
\prod \cO_i$ has finite kernel and cokernel each of order coprime to
493
$389$, so $\B T / 389 \B T \cong \prod \cO_i/389 \cO_i$. The
494
nonquadratic characters $\chi:(\B Z/p\B Z)^*\rightarrow \B C^*$ have
495
orders $1, 4, 97, 193, 388$. We must verify that for each of these
496
degrees, one of the ideals $\cP_i$ satisfies conditions 1--3. We
497
check as above that conditions 1--3 for~$\chi$ of order~$4$ are
498
satisfied by $\cP_2$ and conditions 1--3 for~$\chi$ of order greater
499
than~$4$ are satisfied by $\cP_1$. When~$\chi$ is the trivial
500
character, conditions~1--3 are satisfied only by $\cP_{20}$.
501
502
\bigskip
503
{\it \noindent Summary.}
504
505
For each prime $p<1000$ different than $2,3,5,7, 13$, we
506
verified the existence of an ideal that satisfies the three conditions
507
given above, as follows. For each~$p$, we consider each Galois conjugacy class of
508
non-quadratic characters~$\chi$. We find a single newform~$f$ such
509
that $L(f,\chi,1)\ne 0$ for all conjugates of~$f$ and of~$\chi$. Then
510
we let $\cI$ be the annihilator of~$f$, and try to verify condition~1
511
for {\it all} of the anamolous $j$-invariants in $\B F_p$.
512
When the three conditions are satisfied for an ideal~$\cI$ of~$\B T$,
513
there exists $t_\chi\in\B T$ that is annihilated by $\cI$ and is the
514
inverse image of a projector of $\B T/p\B T$ on the complement of
515
$\cI+p\B T$. Putting $\delta=x$, one has
516
$\iota_j(t_\chi \delta)=\iota_j(\delta)\ne0$
517
(because $\iota_j$ takes its values in
518
characteristic~$p$, it follows that $\delta$ is annihilated by~$\cI$ and
519
$t_\chi\in 1+p\B T+\cP$).
520
Every newform $f\in t_\chi S_2(\Gamma_0(p))$ satisfies
521
$\cI f=0$, and therefore, by our second condition, $L(f,\chi,1)\ne0$.
522
The pair $(t_\chi,\delta)$ then satisfies the conditions required by
523
Proposition~1.
524
525
526
527
\bigskip\bigskip
528
529
\vskip .5in
530
531
\centerline{\pc Bibliography}
532
\bigskip
533
534
\item{\Agashe}{\pc A. Agashe},
535
{\it On invisible elements of the Tate-Shafarevich group},
536
C. R. Acad. Sci. Paris Ser. I Math. 328 (1999), no. 5, 369--374.
537
\vskip 1ex
538
539
\item{\Cremona}{\pc J. Cremona},
540
{\it Algorithms for modular elliptic curves},
541
second ed., Cambridge University Press, Cambridge,
542
{\oldstyle 1997}.
543
\vskip 1ex
544
545
\item{\Merel}{\pc L. Merel},
546
{\it Sur la nature non cyclotomique des points d'ordre fini des courbes
547
elliptiques},
548
To appear in Duke Math. Journal.
549
\vskip 1ex
550
551
\item{\Mes}{\pc J.-F. Mestre}, {\it La m\'ethode des graphes.
552
Exemples et applications}, Proceedings of the international
553
conference on class numbers and fundamental units of algebraic number
554
fields (Katata), 217--242, {\oldstyle 1986}.
555
\end
556
557