Open in CoCalc
(File too big to render nicely. Download...)

/******************************************************************
 * ss_eigenvectors.m, MAGMA readable                              * 
 *                                                                *
 * August, 1999                                                   *
 * William A. Stein ([email protected])                       *
 *                                                                *
 * This file was computed using the C++ program HECKE, then made  *
 * MAGMA readable using PARI.                                     *
 ******************************************************************/

R<x> := PolynomialRing(Rationals());

SupersingularModule := recformat<
    MonodromyWeights,
    SupersingularBasis,
    Eigenvectors
>;

Eigen := recformat<
    DefiningPolynomial,
    Coordinates
> ;

MOG := [rec<SupersingularModule|> : i in [1..997]];

MOG[11] := 	// J_0(11)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 1]>,   // the two ss j-inv in char 11
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [-1, 1]>
       ]
>;

MOG[17] := 	// J_0(17)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 8]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [-1, 1]>
       ]
>;

MOG[19] := 	// J_0(19)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [7, 18]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [-1, 1]>
       ]
>;

MOG[23] := 	// J_0(23)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 3, 19]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [-x - 1, x + 2, -1]>
       ]
>;

MOG[29] := 	// J_0(29)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 2, 25]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 2*x - 1,
           Coordinates        := [-x - 1, x - 1, 2]>
       ]
>;

MOG[31] := 	// J_0(31)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 2],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [2, 4, 23]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [-x + 1, x, -1]>
       ]
>;

MOG[37] := 	// J_0(37)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [8, 14*x + 3, 23*x + 3]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [-2, 1, 1]>
       ]
>;

MOG[41] := 	// J_0(41)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 3, 28, 32]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 5*x - 1,
           Coordinates        := [-x^2 + 3, x^2 - 2*x - 1, 2, 2*x - 4]>
       ]
>;

MOG[43] := 	// J_0(43)
   rec<SupersingularModule | 
       MonodromyWeights   := [2, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [8, 41, x + 12, 42*x + 12]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 2,
           Coordinates        := [-x, x - 2, 1, 1]>
       ]
>;

MOG[47] := 	// J_0(47)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 2, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 9, 10, 36, 44]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^4 - x^3 - 5*x^2 + 5*x - 1,
           Coordinates        := [-x^3 + x^2 + 2*x - 1, x^3 + x^2 - 2*x, x^2 - x + 1, -3*x + 1, -3*x^2 + 4*x - 1]>
       ]
>;

MOG[53] := 	// J_0(53)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 46, 50, 48*x + 28, 5*x + 28]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 3*x - 1,
           Coordinates        := [-x^2 + 1, x^2 - 2*x - 1, 2, x - 1, x - 1]>
       ]
>;

MOG[59] := 	// J_0(59)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 2, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 15, 17, 28, 47, 48]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 - 9*x^3 + 2*x^2 + 16*x - 8,
           Coordinates        := [-x^4 + x^3 + 6*x^2 - 6*x, x^4 - 3*x^3 - 4*x^2 + 16*x - 8, 2*x - 4, x^3 - 3*x^2 + 4, x^3 - x^2 - 6*x + 4, 2*x^2 - 6*x + 4]>
       ]
>;

MOG[61] := 	// J_0(61)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [9, 41, 50, 17*x + 42, 44*x + 42]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - x^2 - 3*x + 1,
           Coordinates        := [-x^2 + 1, x^2 + x, x - 1, -x, -x]>
       ]
>;

MOG[67] := 	// J_0(67)
   rec<SupersingularModule | 
       MonodromyWeights   := [2, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [53, 66, 3*x + 45, 64*x + 45, 30*x + 63, 37*x + 63]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 2,
           Coordinates        := [-1, -1, 0, 0, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, -x - 2, x + 2, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [2*x, -4*x + 2, x - 2, x - 2, 1, 1]>
       ]
>;

MOG[71] := 	// J_0(71)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 2, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 17, 24, 40, 41, 48, 66]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 - 5*x + 3,
           Coordinates        := [-x^2 - x + 2, 2*x - 1, x^2 + x - 2, -x^2 - 3*x + 3, x^2 + 1, -x - 2, 2*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 4*x - 3,
           Coordinates        := [-x^2 + 3, x^2 - 6, -x^2 - x + 3, x^2 - x - 3, x, x, 3]>
       ]
>;

MOG[73] := 	// J_0(73)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [9, 56, 11*x + 39, 62*x + 39, 50*x + 8, 23*x + 8]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [-1, 1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, -x - 2, x + 2, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 3,
           Coordinates        := [-2*x + 4, -2, x - 2, x - 2, 1, 1]>
       ]
>;

MOG[79] := 	// J_0(79)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 2, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [15, 17, 21, 64, 69, 31*x + 72, 48*x + 72]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 - 6*x^3 + 8*x - 1,
           Coordinates        := [-x^4 + 3*x^2 - 2, x^4 - 4*x^2 + 3, -x - 1, -x^3 + 2*x^2 + 3*x - 4, -x^3 - x^2 + 2*x + 2, x^3 - 2*x + 1, x^3 - 2*x + 1]>
       ]
>;

MOG[83] := 	// J_0(83)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 2, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 17, 28, 50, 67, 68, 17*x + 38, 66*x + 38]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 - x^5 - 9*x^4 + 7*x^3 + 20*x^2 - 12*x - 8,
           Coordinates        := [-x^5 + x^4 + 7*x^3 - 5*x^2 - 10*x + 4, x^5 - x^4 - 9*x^3 + 9*x^2 + 16*x - 16, -2*x^3 - 2*x^2 + 6*x + 4, -2*x^4 + 2*x^3 + 10*x^2 - 8*x - 8, 2*x^3 - 10*x + 8, 2*x^2 + 2*x - 8, x^4 - 7*x^2 + 2*x + 8, x^4 - 7*x^2 + 2*x + 8]>
       ]
>;

MOG[89] := 	// J_0(89)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 6, 7, 13, 52, 66, 9*x + 76, 80*x + 76]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [-1, -1, 1, 1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 + x^4 - 10*x^3 - 10*x^2 + 21*x + 17,
           Coordinates        := [x^4 + x^3 - 7*x^2 - 7*x + 2, -2*x^4 - 2*x^3 + 12*x^2 + 16*x + 6, x^4 + 3*x^3 - 7*x^2 - 25*x - 12, -2*x^3 - 2*x^2 + 14*x + 20, -3*x^3 - x^2 + 17*x + 7, 3*x^3 + 3*x^2 - 19*x - 17, x^2 + 2*x - 3, x^2 + 2*x - 3]>
       ]
>;

MOG[97] := 	// J_0(97)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [1, 20, 31*x + 76, 66*x + 76, 34*x + 45, 63*x + 45, x + 81, 96*x + 81]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + 4*x^2 + 3*x - 1,
           Coordinates        := [0, 0, -x^2 - 3*x - 1, x^2 + 3*x + 1, -x - 2, x + 2, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^4 - 3*x^3 - x^2 + 6*x - 1,
           Coordinates        := [-x^3 + 4*x^2 - 3*x - 1, x^3 - 2*x^2 - x + 1, -x^2 + 3*x - 1, -x^2 + 3*x - 1, -x + 2, -x + 2, -1, -1]>
       ]
>;

MOG[101] := 	// J_0(101)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 3, 21, 57, 59, 64, 66, 91*x + 37, 10*x + 37]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 13*x^5 + 2*x^4 + 47*x^3 - 16*x^2 - 43*x + 14,
           Coordinates        := [-x^6 + 10*x^4 - 2*x^3 - 23*x^2 + 14*x - 2, x^6 - 8*x^4 + 4*x^3 + 15*x^2 - 16*x + 4, -6*x^3 - 2*x^2 + 22*x - 6, 2*x^4 - 6*x^3 - 10*x^2 + 26*x - 8, x^5 + 2*x^4 - 4*x^3 - 4*x^2 + 7*x - 2, 2*x^5 - 14*x^3 + 2*x^2 + 20*x - 6, -3*x^5 + 24*x^3 - 2*x^2 - 45*x + 14, -3*x^4 + 2*x^3 + 12*x^2 - 14*x + 3, -3*x^4 + 2*x^3 + 12*x^2 - 14*x + 3]>
       ]
>;

MOG[103] := 	// J_0(103)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 2, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [23, 24, 34, 69, 80, 67*x + 61, 36*x + 61, 9*x + 20, 94*x + 20]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, -x - 2, x + 2, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 - 4*x^5 - x^4 + 17*x^3 - 9*x^2 - 16*x + 11,
           Coordinates        := [-x^5 + 5*x^4 - 5*x^3 - 7*x^2 + 13*x - 5, x^5 - 3*x^4 - 2*x^3 + 8*x^2 - 3, -x^3 + 4*x^2 - 4*x + 1, -x^4 + 4*x^3 - 2*x^2 - 5*x + 4, -x^4 + 4*x^3 - x^2 - 8*x + 5, -x^2 + 3*x - 2, -x^2 + 3*x - 2, -x + 1, -x + 1]>
       ]
>;

MOG[107] := 	// J_0(107)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 16, 47, 72, 81, 94, 32*x + 66, 75*x + 66, 50*x + 74, 57*x + 74]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + x^6 - 10*x^5 - 7*x^4 + 29*x^3 + 12*x^2 - 20*x - 8,
           Coordinates        := [-x^6 - x^5 + 7*x^4 + 4*x^3 - 14*x^2 - 2*x + 8, x^6 + 2*x^5 - 6*x^4 - 9*x^3 + 12*x^2 + 8*x - 4, -3*x^4 - 3*x^3 + 13*x^2 + 4*x - 8, -3*x^5 - 3*x^4 + 15*x^3 + 10*x^2 - 12*x - 8, -3*x^4 + x^3 + 17*x^2 - 6*x - 16, 2*x^5 + 4*x^4 - 8*x^3 - 16*x^2 + 8*x + 12, 2*x^4 + x^3 - 8*x^2 - 2*x + 4, 2*x^4 + x^3 - 8*x^2 - 2*x + 4, -x^3 - 3*x^2 + 2*x + 4, -x^3 - 3*x^2 + 2*x + 4]>
       ]
>;

MOG[109] := 	// J_0(109)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [17, 41, 43, 13*x + 98, 96*x + 98, 99*x + 70, 10*x + 70, 50*x + 24, 59*x + 24]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [-1, -1, 0, 0, 0, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, -x^2 - 2*x, x^2 + 2*x, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + x^3 - 5*x^2 - 4*x + 3,
           Coordinates        := [-x^3 + 3*x - 1, x^3 - 3*x - 1, 2*x + 2, x^2 - 1, x^2 - 1, -1, -1, -x^2 - x + 2, -x^2 - x + 2]>
       ]
>;

MOG[113] := 	// J_0(113)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 54, 72, 99, 55*x + 97, 58*x + 97, 20*x + 104, 93*x + 104, 16*x + 52, 97*x + 52]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [-1, -1, -1, 1, 1, 1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 2*x - 2,
           Coordinates        := [-1, -x + 3, -x + 1, -1, 1, 1, x - 1, x - 1, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, -x^2 - 2*x, x^2 + 2*x, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - 5*x - 9,
           Coordinates        := [-2*x - 2, -2*x^2 + 8, 2*x^2 + 2*x - 6, -2*x^2 - 2*x, x^2 - 2*x - 6, x^2 - 2*x - 6, x + 1, x + 1, 2*x + 5, 2*x + 5]>
       ]
>;

MOG[127] := 	// J_0(127)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [73, 77, 95, 125, 126, 72*x + 83, 55*x + 83, 117*x + 16, 10*x + 16, 76*x + 55, 51*x + 55]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + 3*x^2 - 3,
           Coordinates        := [0, 0, 0, 0, 0, -x^2 - 3*x - 2, x^2 + 3*x + 2, -x - 2, x + 2, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 2*x^6 - 8*x^5 + 15*x^4 + 17*x^3 - 28*x^2 - 11*x + 15,
           Coordinates        := [-x^6 + 2*x^5 + 5*x^4 - 10*x^3 - 2*x^2 + 10*x - 5, x^6 - x^5 - 7*x^4 + 5*x^3 + 13*x^2 - 5*x - 7, 2*x^5 - 3*x^4 - 9*x^3 + 10*x^2 + 9*x - 8, 2*x^4 - 5*x^3 - 3*x^2 + 8*x + 1, -x^5 + 3*x^4 + 5*x^3 - 14*x^2 - 6*x + 13, -x^4 + 3*x^3 - x^2 - 4*x + 4, -x^4 + 3*x^3 - x^2 - 4*x + 4, -x^5 + x^4 + 5*x^3 - 2*x^2 - 5*x + 1, -x^5 + x^4 + 5*x^3 - 2*x^2 - 5*x + 1, -x^3 + x^2 + x - 2, -x^3 + x^2 + x - 2]>
       ]
>;

MOG[131] := 	// J_0(131)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 10, 25, 28, 31, 50, 62, 82, 94, 113, 40*x + 89, 91*x + 89]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - 18*x^8 + 2*x^7 + 111*x^6 - 18*x^5 - 270*x^4 + 28*x^3 + 232*x^2 + 16*x - 32,
           Coordinates        := [-x^9 + 15*x^7 - 72*x^5 - 4*x^4 + 120*x^3 + 24*x^2 - 56*x - 16, x^9 - 13*x^7 - 4*x^6 + 52*x^5 + 42*x^4 - 76*x^3 - 76*x^2 + 16*x + 16, -4*x^4 + 24*x^2 - 16, -3*x^8 + 2*x^7 + 39*x^6 - 22*x^5 - 150*x^4 + 52*x^3 + 176*x^2 - 32, x^7 + 2*x^6 - 7*x^5 - 16*x^4 - 2*x^3 + 24*x^2 + 32*x + 16, x^8 - 11*x^6 - 2*x^5 + 30*x^4 + 28*x^3 - 16*x^2 - 48*x - 32, x^7 - 15*x^5 + 2*x^4 + 62*x^3 + 4*x^2 - 80*x - 32, -4*x^5 + 4*x^4 + 24*x^3 - 24*x^2 - 16*x + 16, 2*x^8 - 3*x^7 - 24*x^6 + 31*x^5 + 82*x^4 - 66*x^3 - 100*x^2 + 24*x + 32, -3*x^7 + 2*x^6 + 35*x^5 - 18*x^4 - 118*x^3 + 28*x^2 + 112*x + 16, -2*x^6 + 2*x^5 + 16*x^4 - 12*x^3 - 32*x^2 + 8*x + 16, -2*x^6 + 2*x^5 + 16*x^4 - 12*x^3 - 32*x^2 + 8*x + 16]>
       ]
>;

MOG[137] := 	// J_0(137)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 22, 78, 136, 104*x + 73, 33*x + 73, 45*x + 49, 92*x + 49, 127*x + 19, 10*x + 19, x + 122, 136*x + 122]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^4 + 3*x^3 - 4*x - 1,
           Coordinates        := [0, 0, 0, 0, -x^3 - 3*x^2 - 2*x, x^3 + 3*x^2 + 2*x, -x^2 - 2*x, x^2 + 2*x, -x^2 - 2*x - 1, x^2 + 2*x + 1, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 10*x^5 + 28*x^3 + 3*x^2 - 19*x - 7,
           Coordinates        := [-x^6 + x^5 + 7*x^4 - 5*x^3 - 13*x^2 + 4*x + 5, x^6 - 3*x^5 - 5*x^4 + 15*x^3 + 7*x^2 - 14*x - 7, 2*x^3 - 4*x^2 - 2*x + 2, 4*x^2 - 6*x - 4, x^5 - 3*x^4 - 3*x^3 + 11*x^2 - 4, x^5 - 3*x^4 - 3*x^3 + 11*x^2 - 4, x^4 - 2*x^3 - 3*x^2 + 4*x + 2, x^4 - 2*x^3 - 3*x^2 + 4*x + 2, x^4 - 2*x^3 - 4*x^2 + 6*x + 5, x^4 - 2*x^3 - 4*x^2 + 6*x + 5, x^3 - x^2 - x - 1, x^3 - x^2 - x - 1]>
       ]
>;

MOG[139] := 	// J_0(139)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [8, 36, 44, 60, 65, 100, 39*x + 135, 100*x + 135, 36*x + 123, 103*x + 123, 43*x + 57, 96*x + 57]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [-1, -1, 0, 0, -1, 1, 0, 0, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^2 - 2*x, x^2 + 2*x, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - x^6 - 11*x^5 + 8*x^4 + 35*x^3 - 10*x^2 - 32*x - 8,
           Coordinates        := [-x^6 + x^5 + 9*x^4 - 8*x^3 - 17*x^2 + 8*x + 4, x^6 - x^5 - 9*x^4 + 6*x^3 + 21*x^2 - 6*x - 4, 2*x^4 - 2*x^3 - 10*x^2 + 6*x + 4, 2*x^3 - 10*x - 4, -2*x^2 + 4*x, -2*x, x^5 - x^4 - 7*x^3 + 3*x^2 + 12*x + 4, x^5 - x^4 - 7*x^3 + 3*x^2 + 12*x + 4, -x^3 + x^2 + 4*x, -x^3 + x^2 + 4*x, -x^5 + 9*x^3 - 16*x - 4, -x^5 + 9*x^3 - 16*x - 4]>
       ]
>;

MOG[149] := 	// J_0(149)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 12, 30, 62, 68, 74, 103, 135*x + 85, 14*x + 85, 31*x + 92, 118*x + 92, 94*x + 140, 55*x + 140]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^2 - x, x^2 + x, -x, x, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 + x^8 - 15*x^7 - 12*x^6 + 75*x^5 + 48*x^4 - 137*x^3 - 76*x^2 + 68*x + 39,
           Coordinates        := [-x^8 - x^7 + 12*x^6 + 11*x^5 - 43*x^4 - 39*x^3 + 38*x^2 + 45*x + 10, x^8 + x^7 - 12*x^6 - 15*x^5 + 43*x^4 + 67*x^3 - 36*x^2 - 81*x - 28, 2*x^5 + 4*x^4 - 12*x^3 - 26*x^2 + 14*x + 18, -3*x^7 - x^6 + 32*x^5 + 9*x^4 - 99*x^3 - 31*x^2 + 78*x + 39, 2*x^6 + 2*x^5 - 14*x^4 - 18*x^3 + 18*x^2 + 36*x + 14, x^7 + x^6 - 8*x^5 - 11*x^4 + 15*x^3 + 31*x^2 - 9, 2*x^5 - 2*x^4 - 20*x^3 + 8*x^2 + 46*x + 22, x^6 - 2*x^5 - 9*x^4 + 14*x^3 + 19*x^2 - 12*x - 11, x^6 - 2*x^5 - 9*x^4 + 14*x^3 + 19*x^2 - 12*x - 11, x^5 + x^4 - 4*x^3 - 2*x^2 - 9*x - 7, x^5 + x^4 - 4*x^3 - 2*x^2 - 9*x - 7, x^7 - 2*x^6 - 12*x^5 + 15*x^4 + 43*x^3 - 18*x^2 - 48*x - 15, x^7 - 2*x^6 - 12*x^5 + 15*x^4 + 43*x^3 - 18*x^2 - 48*x - 15]>
       ]
>;

MOG[151] := 	// J_0(151)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [29, 67, 101, 124, 143, 148, 150, 88*x + 133, 63*x + 133, 41*x + 149, 110*x + 149, 127*x + 41, 24*x + 41]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^2 - 2*x, x^2 + 2*x, 1, -1, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 5*x + 3,
           Coordinates        := [-1, 1, -x, -x + 1, x - 1, -x^2 - x + 2, x^2 - 2, x - 1, x - 1, 0, 0, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 - x^5 - 7*x^4 + 3*x^3 + 13*x^2 + 3*x - 1,
           Coordinates        := [1/3*x^5 - 4/3*x^4 - 1/3*x^3 + 3*x^2 + 8/3*x + 2/3, -1/3*x^5 + 2/3*x^3 + x^2 + 7/3*x + 1, -x^5 + 4/3*x^4 + 4*x^3 - 5/3*x^2 - 5*x - 5/3, x^5 - x^4 - 5*x^3 + 4/3*x^2 + 17/3*x + 2, -5/3*x^4 + 4/3*x^3 + 17/3*x^2 - 1/3*x - 4/3, 1/3*x^3 - 2/3*x^2 - x - 1/3, 1/3*x^3 - 2/3*x^2 - x - 1/3, x^4 - x^3 - 10/3*x^2 + 2/3, x^4 - x^3 - 10/3*x^2 + 2/3, 1/3*x^4 - x^3 + 7/3*x + 1, 1/3*x^4 - x^3 + 7/3*x + 1, 4/3*x^3 - 2/3*x^2 - 4*x - 5/3, 4/3*x^3 - 2/3*x^2 - 4*x - 5/3]>
       ]
>;

MOG[157] := 	// J_0(157)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [79, 134, 150, 36*x + 43, 121*x + 43, 67*x + 75, 90*x + 75, 15*x + 22, 142*x + 22, 32*x + 143, 125*x + 143, 123*x + 55, 34*x + 55]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 5*x^4 + 5*x^3 - 6*x^2 - 7*x + 1,
           Coordinates        := [0, 0, 0, -x^4 - 5*x^3 - 7*x^2 - x + 2, x^4 + 5*x^3 + 7*x^2 + x - 2, -x^3 - 4*x^2 - 4*x, x^3 + 4*x^2 + 4*x, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, -x^2 - 3*x - 2, x^2 + 3*x + 2, -x - 2, x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 5*x^6 + 2*x^5 + 21*x^4 - 22*x^3 - 21*x^2 + 27*x - 1,
           Coordinates        := [-x^6 + 4*x^5 - 13*x^3 + 7*x^2 + 8*x - 3, x^6 - 6*x^5 + 8*x^4 + 11*x^3 - 27*x^2 + 8*x + 5, 2*x - 4, x^2 - 3*x + 2, x^2 - 3*x + 2, x^3 - 3*x^2 - x + 5, x^3 - 3*x^2 - x + 5, x - 1, x - 1, x^4 - 4*x^3 + x^2 + 9*x - 7, x^4 - 4*x^3 + x^2 + 9*x - 7, x^5 - 5*x^4 + 4*x^3 + 11*x^2 - 15*x + 2, x^5 - 5*x^4 + 4*x^3 + 11*x^2 - 15*x + 2]>
       ]
>;

MOG[163] := 	// J_0(163)
   rec<SupersingularModule | 
       MonodromyWeights   := [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [98, 127, 74*x + 151, 89*x + 151, 122*x + 128, 41*x + 128, 134*x + 22, 29*x + 22, 107*x + 87, 56*x + 87, 127*x + 19, 36*x + 19, 45*x + 127, 118*x + 127]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 + 5*x^4 + 3*x^3 - 15*x^2 - 16*x + 3,
           Coordinates        := [0, 0, -x^3 - 5*x^2 - 7*x - 2, x^3 + 5*x^2 + 7*x + 2, -x^4 - 5*x^3 - 6*x^2 + 3*x + 6, x^4 + 5*x^3 + 6*x^2 - 3*x - 6, -x^2 - 5*x - 6, x^2 + 5*x + 6, -x^3 - 3*x^2 + 3, x^3 + 3*x^2 - 3, -x^3 - 4*x^2 - 3*x + 2, x^3 + 4*x^2 + 3*x - 2, -x^2 - 4*x - 4, x^2 + 4*x + 4]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 3*x^6 - 5*x^5 + 19*x^4 - 23*x^2 + 4*x + 6,
           Coordinates        := [-x^6 + 3*x^5 + 3*x^4 - 13*x^3 + 2*x^2 + 9*x - 2, x^6 - 5*x^5 + 3*x^4 + 15*x^3 - 16*x^2 - 7*x + 8, x^5 - 5*x^4 + 5*x^3 + 6*x^2 - 7*x - 1, x^5 - 5*x^4 + 5*x^3 + 6*x^2 - 7*x - 1, x^4 - 5*x^3 + 7*x^2 - 4, x^4 - 5*x^3 + 7*x^2 - 4, x^4 - 4*x^3 + 2*x^2 + 6*x - 4, x^4 - 4*x^3 + 2*x^2 + 6*x - 4, x^3 - 3*x^2 + x + 2, x^3 - 3*x^2 + x + 2, x^3 - 3*x^2 + 2*x - 1, x^3 - 3*x^2 + 2*x - 1, x^3 - 2*x^2 - 3*x + 5, x^3 - 2*x^2 - 3*x + 5]>
       ]
>;

MOG[167] := 	// J_0(167)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 15, 27, 30, 58, 59, 89, 112, 131, 132, 151, 22*x + 88, 145*x + 88, 27*x + 79, 140*x + 79]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^12 - 2*x^11 - 17*x^10 + 33*x^9 + 103*x^8 - 189*x^7 - 277*x^6 + 447*x^5 + 363*x^4 - 433*x^3 - 205*x^2 + 120*x + 9,
           Coordinates        := [-x^11 + 2*x^10 + 14*x^9 - 26*x^8 - 69*x^7 + 112*x^6 + 153*x^5 - 195*x^4 - 155*x^3 + 133*x^2 + 51*x - 30, x^11 - 2*x^10 - 14*x^9 + 25*x^8 + 71*x^7 - 102*x^6 - 175*x^5 + 174*x^4 + 204*x^3 - 115*x^2 - 83*x + 24, x^9 - x^8 - 10*x^7 + 8*x^6 + 27*x^5 - 5*x^4 - 35*x^3 - 10*x^2 + 17*x, x^10 - 2*x^9 - 12*x^8 + 21*x^7 + 49*x^6 - 56*x^5 - 111*x^4 + 40*x^3 + 132*x^2 + 13*x - 51, -3*x^8 + 4*x^7 + 31*x^6 - 35*x^5 - 92*x^4 + 70*x^3 + 101*x^2 - 31*x - 24, -3*x^10 + 7*x^9 + 34*x^8 - 77*x^7 - 124*x^6 + 252*x^5 + 208*x^4 - 300*x^3 - 154*x^2 + 90*x + 9, -3*x^9 + 7*x^8 + 27*x^7 - 66*x^6 - 57*x^5 + 162*x^4 + 31*x^3 - 132*x^2 + 7*x + 24, x^10 - 5*x^9 - 6*x^8 + 56*x^7 - 18*x^6 - 194*x^5 + 123*x^4 + 280*x^3 - 177*x^2 - 151*x + 66, -x^8 + 3*x^7 + 5*x^6 - 20*x^5 + 7*x^4 + 28*x^3 - 41*x^2 - 4*x + 39, x^9 - 3*x^8 - 12*x^7 + 32*x^6 + 46*x^5 - 102*x^4 - 81*x^3 + 118*x^2 + 59*x - 33, x^10 - x^9 - 14*x^8 + 10*x^7 + 71*x^6 - 23*x^5 - 171*x^4 - 2*x^3 + 167*x^2 + 42*x - 24, x^9 - 2*x^8 - 11*x^7 + 23*x^6 + 32*x^5 - 67*x^4 - 36*x^3 + 64*x^2 + 16*x - 12, x^9 - 2*x^8 - 11*x^7 + 23*x^6 + 32*x^5 - 67*x^4 - 36*x^3 + 64*x^2 + 16*x - 12, 2*x^8 - x^7 - 22*x^6 + 9*x^5 + 68*x^4 - 4*x^3 - 75*x^2 - 21*x + 12, 2*x^8 - x^7 - 22*x^6 + 9*x^5 + 68*x^4 - 4*x^3 - 75*x^2 - 21*x + 12]>
       ]
>;

MOG[173] := 	// J_0(173)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 17, 24, 42, 85, 102, 159, 129*x + 97, 44*x + 97, 9*x + 31, 164*x + 31, 10*x + 119, 163*x + 119, 21*x + 114, 152*x + 114]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^4 + x^3 - 3*x^2 - x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^3 - x^2 + x, x^3 + x^2 - x, -x^2, x^2, -x^2 - x + 1, x^2 + x - 1, -x, x]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - x^9 - 16*x^8 + 16*x^7 + 85*x^6 - 80*x^5 - 175*x^4 + 136*x^3 + 138*x^2 - 71*x - 25,
           Coordinates        := [-x^9 + x^8 + 13*x^7 - 13*x^6 - 52*x^5 + 47*x^4 + 73*x^3 - 53*x^2 - 29*x + 18, x^9 - x^8 - 13*x^7 + 15*x^6 + 54*x^5 - 63*x^4 - 95*x^3 + 107*x^2 + 61*x - 62, -3*x^8 + 3*x^7 + 33*x^6 - 33*x^5 - 102*x^4 + 83*x^3 + 109*x^2 - 53*x - 25, 2*x^6 - 20*x^4 + 4*x^3 + 38*x^2 - 16, x^8 + x^7 - 11*x^6 - 7*x^5 + 40*x^4 + 17*x^3 - 61*x^2 - 15*x + 31, -4*x^6 + 4*x^5 + 30*x^4 - 30*x^3 - 40*x^2 + 30*x + 6, 2*x^7 - 2*x^6 - 24*x^5 + 28*x^4 + 70*x^3 - 76*x^2 - 56*x + 54, x^7 - x^6 - 10*x^5 + 12*x^4 + 17*x^3 - 19*x^2 - 8*x + 8, x^7 - x^6 - 10*x^5 + 12*x^4 + 17*x^3 - 19*x^2 - 8*x + 8, -2*x^6 + 17*x^4 - 38*x^2 - 4*x + 19, -2*x^6 + 17*x^4 - 38*x^2 - 4*x + 19, x^8 - x^7 - 10*x^6 + 12*x^5 + 20*x^4 - 23*x^3 - 8*x^2 + 12*x - 3, x^8 - x^7 - 10*x^6 + 12*x^5 + 20*x^4 - 23*x^3 - 8*x^2 + 12*x - 3, -3*x^7 + 3*x^6 + 27*x^5 - 29*x^4 - 55*x^3 + 53*x^2 + 31*x - 27, -3*x^7 + 3*x^6 + 27*x^5 - 29*x^4 - 55*x^3 + 53*x^2 + 31*x - 27]>
       ]
>;

MOG[179] := 	// J_0(179)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 22, 35, 61, 112, 117, 120, 121, 140, 171, 80*x + 107, 99*x + 107, 174*x + 109, 5*x + 109, 115*x + 5, 64*x + 5]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 2,
           Coordinates        := [0, -1, -1, 1, -1, -1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^2 - x, x^2 + x, -x, x, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^11 + 3*x^10 - 14*x^9 - 45*x^8 + 59*x^7 + 225*x^6 - 58*x^5 - 427*x^4 - 76*x^3 + 240*x^2 + 56*x - 16,
           Coordinates        := [2*x^7 + 6*x^6 - 10*x^5 - 34*x^4 + 8*x^3 + 42*x^2 - 8, -x^10 - 3*x^9 + 10*x^8 + 31*x^7 - 31*x^6 - 99*x^5 + 38*x^4 + 115*x^3 - 20*x^2 - 40*x, x^10 + 3*x^9 - 9*x^8 - 30*x^7 + 20*x^6 + 89*x^5 - 2*x^4 - 76*x^3 - 6*x^2 + 8*x, 2*x^6 + 8*x^5 - 28*x^3 - 24*x^2 + 12*x + 16, 2*x^9 + 6*x^8 - 16*x^7 - 54*x^6 + 30*x^5 + 144*x^4 + 4*x^3 - 110*x^2 - 12*x + 8, -x^9 - 4*x^8 + 6*x^7 + 37*x^6 + 6*x^5 - 93*x^4 - 55*x^3 + 60*x^2 + 40*x, x^9 + 3*x^8 - 7*x^7 - 28*x^6 - 4*x^5 + 63*x^4 + 62*x^3 - 12*x^2 - 32*x, 2*x^8 + 6*x^7 - 10*x^6 - 34*x^5 + 8*x^4 + 42*x^3 - 8*x, x^8 + x^7 - 11*x^6 - 10*x^5 + 30*x^4 + 27*x^3 - 4*x^2 - 8, x^8 + x^7 - 13*x^6 - 16*x^5 + 34*x^4 + 37*x^3 - 22*x^2 - 8*x + 8, -x^9 - 3*x^8 + 8*x^7 + 26*x^6 - 16*x^5 - 63*x^4 + 7*x^3 + 40*x^2 - 12*x - 8, -x^9 - 3*x^8 + 8*x^7 + 26*x^6 - 16*x^5 - 63*x^4 + 7*x^3 + 40*x^2 - 12*x - 8, -x^8 - 3*x^7 + 6*x^6 + 19*x^5 - 13*x^4 - 42*x^3 + 2*x^2 + 20*x, -x^8 - 3*x^7 + 6*x^6 + 19*x^5 - 13*x^4 - 42*x^3 + 2*x^2 + 20*x, -x^8 - 2*x^7 + 9*x^6 + 17*x^5 - 18*x^4 - 33*x^3 + 6*x^2 + 12*x, -x^8 - 2*x^7 + 9*x^6 + 17*x^5 - 18*x^4 - 33*x^3 + 6*x^2 + 12*x]>
       ]
>;

MOG[181] := 	// J_0(181)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [36, 64, 146, 173, 175, 126*x + 3, 55*x + 3, 140*x + 107, 41*x + 107, 101*x + 36, 80*x + 36, 161*x + 16, 20*x + 16, 130*x + 54, 51*x + 54]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 3*x^4 - x^3 - 7*x^2 - 2*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, -x^4 - 3*x^3 - x^2 + 2*x, x^4 + 3*x^3 + x^2 - 2*x, -x^3 - 3*x^2 - 2*x, x^3 + 3*x^2 + 2*x, -x^3 - 2*x^2 + 1, x^3 + 2*x^2 - 1, -x^2 - 2*x, x^2 + 2*x, -x^2 - x + 1, x^2 + x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 - 3*x^8 - 9*x^7 + 29*x^6 + 23*x^5 - 84*x^4 - 23*x^3 + 89*x^2 + 8*x - 27,
           Coordinates        := [-x^8 + 2*x^7 + 9*x^6 - 16*x^5 - 25*x^4 + 35*x^3 + 30*x^2 - 23*x - 15, x^8 - x^7 - 10*x^6 + 8*x^5 + 31*x^4 - 16*x^3 - 36*x^2 + 9*x + 12, x^7 - x^6 - 8*x^5 + 6*x^4 + 19*x^3 - 8*x^2 - 14*x + 3, -2*x^5 + 6*x^4 + 4*x^3 - 18*x^2 - 2*x + 12, -4*x^4 + 6*x^3 + 10*x^2 - 10*x - 6, -x^7 + 2*x^6 + 7*x^5 - 12*x^4 - 14*x^3 + 18*x^2 + 8*x - 6, -x^7 + 2*x^6 + 7*x^5 - 12*x^4 - 14*x^3 + 18*x^2 + 8*x - 6, -x^6 + 3*x^5 + 4*x^4 - 12*x^3 - 6*x^2 + 11*x + 3, -x^6 + 3*x^5 + 4*x^4 - 12*x^3 - 6*x^2 + 11*x + 3, -x^6 + x^5 + 7*x^4 - 5*x^3 - 16*x^2 + 6*x + 12, -x^6 + x^5 + 7*x^4 - 5*x^3 - 16*x^2 + 6*x + 12, x^6 - x^5 - 6*x^4 + 4*x^3 + 11*x^2 - 3*x - 6, x^6 - x^5 - 6*x^4 + 4*x^3 + 11*x^2 - 3*x - 6, -x^5 + 3*x^3 + 4*x^2 - 2*x - 6, -x^5 + 3*x^3 + 4*x^2 - 2*x - 6]>
       ]
>;

MOG[191] := 	// J_0(191)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 9, 16, 41, 46, 55, 66, 106, 107, 138, 150, 169, 176, 120*x + 126, 71*x + 126, 87*x + 23, 104*x + 23]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^14 - 23*x^12 + x^11 + 205*x^10 - 13*x^9 - 895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 - 2135*x^4 - 465*x^3 + 853*x^2 + 374*x + 41,
           Coordinates        := [-x^13 + 20*x^11 + x^10 - 149*x^9 - 18*x^8 + 513*x^7 + 123*x^6 - 813*x^5 - 347*x^4 + 467*x^3 + 322*x^2 + 39*x - 2, x^13 + x^12 - 20*x^11 - 20*x^10 + 149*x^9 + 151*x^8 - 505*x^7 - 539*x^6 + 731*x^5 + 911*x^4 - 225*x^3 - 575*x^2 - 220*x - 25, 4*x^10 - 2*x^9 - 55*x^8 + 22*x^7 + 252*x^6 - 58*x^5 - 452*x^4 - 18*x^3 + 275*x^2 + 94*x + 8, 2*x^12 - x^11 - 36*x^10 + 15*x^9 + 239*x^8 - 69*x^7 - 723*x^6 + 77*x^5 + 999*x^4 + 115*x^3 - 498*x^2 - 179*x - 16, -3*x^10 + 2*x^9 + 44*x^8 - 23*x^7 - 226*x^6 + 70*x^5 + 492*x^4 - 19*x^3 - 378*x^2 - 128*x - 11, x^9 - 6*x^7 - 8*x^6 - 14*x^5 + 60*x^4 + 85*x^3 - 64*x^2 - 96*x - 18, -3*x^9 + 2*x^8 + 36*x^7 - 29*x^6 - 128*x^5 + 107*x^4 + 128*x^3 - 62*x^2 - 37*x - 4, -3*x^10 + 2*x^9 + 48*x^8 - 25*x^7 - 260*x^6 + 73*x^5 + 552*x^4 + 66*x^3 - 411*x^2 - 222*x - 30, -3*x^11 + 2*x^10 + 50*x^9 - 27*x^8 - 290*x^7 + 110*x^6 + 694*x^5 - 101*x^4 - 624*x^3 - 96*x^2 + 103*x + 22, -3*x^12 + 2*x^11 + 56*x^10 - 31*x^9 - 382*x^8 + 158*x^7 + 1180*x^6 - 244*x^5 - 1668*x^4 - 143*x^3 + 892*x^2 + 372*x + 41, 2*x^11 - x^10 - 28*x^9 + 11*x^8 + 129*x^7 - 25*x^6 - 219*x^5 - 39*x^4 + 95*x^3 + 79*x^2 + 52*x + 9, x^8 - 5*x^7 - 6*x^6 + 45*x^5 - 15*x^4 - 112*x^3 + 40*x^2 + 110*x + 22, -6*x^8 + 5*x^7 + 59*x^6 - 46*x^5 - 157*x^4 + 67*x^3 + 134*x^2 + 8*x - 4, -3*x^9 + 2*x^8 + 32*x^7 - 20*x^6 - 101*x^5 + 41*x^4 + 123*x^3 - 16*x^2 - 57*x - 11, -3*x^9 + 2*x^8 + 32*x^7 - 20*x^6 - 101*x^5 + 41*x^4 + 123*x^3 - 16*x^2 - 57*x - 11, -6*x^8 - 2*x^7 + 66*x^6 + 17*x^5 - 212*x^4 - 64*x^3 + 187*x^2 + 109*x + 15, -6*x^8 - 2*x^7 + 66*x^6 + 17*x^5 - 212*x^4 - 64*x^3 + 187*x^2 + 109*x + 15]>
       ]
>;

MOG[193] := 	// J_0(193)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [42, 169, 104*x + 80, 89*x + 80, 16*x + 119, 177*x + 119, 60*x + 137, 133*x + 137, 22*x + 114, 171*x + 114, 66*x + 118, 127*x + 118, 137*x + 17, 56*x + 17, 138*x + 148, 55*x + 148]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, -x - 1, x + 1, x, -x, x + 1, -x - 1, 0, 0, 1, -1, -x - 1, x + 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 + 2*x^4 - 5*x^3 - 7*x^2 + 7*x + 1,
           Coordinates        := [0, 0, -x^4 - 3*x^3 + x^2 + 6*x, x^4 + 3*x^3 - x^2 - 6*x, -x^3 - x^2 + 3*x, x^3 + x^2 - 3*x, -x^4 - 3*x^3 + 4*x + 1, x^4 + 3*x^3 - 4*x - 1, x^2 + 3*x + 1, -x^2 - 3*x - 1, -x^3 - 2*x^2 + x, x^3 + 2*x^2 - x, -x^3 - 2*x^2 + x + 1, x^3 + 2*x^2 - x - 1, x^2 + 2*x, -x^2 - 2*x]>,
         rec<Eigen |
           DefiningPolynomial := x^8 - 2*x^7 - 9*x^6 + 18*x^5 + 21*x^4 - 44*x^3 - 11*x^2 + 27*x + 1,
           Coordinates        := [-x^7 + 3*x^6 + 4*x^5 - 16*x^4 - x^3 + 23*x^2 - 8*x - 3, x^7 - 3*x^6 - 4*x^5 + 16*x^4 + x^3 - 23*x^2 + 4*x + 9, -x^6 + 3*x^5 + 2*x^4 - 11*x^3 + 2*x^2 + 10*x - 4, -x^6 + 3*x^5 + 2*x^4 - 11*x^3 + 2*x^2 + 10*x - 4, -x^5 + x^4 + 4*x^3 - 3*x^2 - 4*x + 2, -x^5 + x^4 + 4*x^3 - 3*x^2 - 4*x + 2, -x^5 + 4*x^4 - x^3 - 10*x^2 + 8*x + 1, -x^5 + 4*x^4 - x^3 - 10*x^2 + 8*x + 1, x^6 - 3*x^5 - 2*x^4 + 11*x^3 - 4*x^2 - 5*x + 1, x^6 - 3*x^5 - 2*x^4 + 11*x^3 - 4*x^2 - 5*x + 1, x^5 - 3*x^4 - x^3 + 9*x^2 - 5*x - 2, x^5 - 3*x^4 - x^3 + 9*x^2 - 5*x - 2, 2*x^3 - 3*x^2 - 4*x + 6, 2*x^3 - 3*x^2 - 4*x + 6, x^5 - 2*x^4 - 4*x^3 + 9*x^2 + 2*x - 7, x^5 - 2*x^4 - 4*x^3 + 9*x^2 + 2*x - 7]>
       ]
>;

MOG[197] := 	// J_0(197)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 22, 72, 120, 131, 191*x + 42, 6*x + 42, 25*x + 24, 172*x + 24, 125*x + 188, 72*x + 188, 82*x + 59, 115*x + 59, 163*x + 113, 34*x + 113, 122*x + 61, 75*x + 61]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 - 5*x^3 + x^2 + 3*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, -x^4 + 3*x^2 - 1, x^4 - 3*x^2 + 1, -x^3 + x^2 + x - 1, x^3 - x^2 - x + 1, -x^3 + x, x^3 - x, -x^2, x^2, -x^2 + x, x^2 - x, -x^2 - x + 1, x^2 + x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - 15*x^8 + x^7 + 78*x^6 - 7*x^5 - 165*x^4 + 15*x^3 + 123*x^2 - 9*x - 26,
           Coordinates        := [-x^9 + x^8 + 12*x^7 - 11*x^6 - 47*x^5 + 36*x^4 + 67*x^3 - 36*x^2 - 25*x + 8, x^9 - 3*x^8 - 10*x^7 + 31*x^6 + 29*x^5 - 98*x^4 - 21*x^3 + 98*x^2 - x - 26, 4*x^5 - 10*x^4 - 14*x^3 + 40*x^2 - 2*x - 14, 2*x^5 - 2*x^4 - 12*x^3 + 10*x^2 + 14*x - 8, 2*x^6 - 6*x^5 - 6*x^4 + 26*x^3 - 6*x^2 - 16*x + 10, x^6 - 2*x^5 - 5*x^4 + 11*x^3 + 2*x^2 - 11*x + 4, x^6 - 2*x^5 - 5*x^4 + 11*x^3 + 2*x^2 - 11*x + 4, x^6 - x^5 - 8*x^4 + 5*x^3 + 20*x^2 - 6*x - 11, x^6 - x^5 - 8*x^4 + 5*x^3 + 20*x^2 - 6*x - 11, x^7 - 3*x^6 - 6*x^5 + 21*x^4 + 9*x^3 - 41*x^2 - 4*x + 19, x^7 - 3*x^6 - 6*x^5 + 21*x^4 + 9*x^3 - 41*x^2 - 4*x + 19, x^7 - 3*x^6 - 5*x^5 + 18*x^4 + 4*x^3 - 28*x^2 + 6*x + 7, x^7 - 3*x^6 - 5*x^5 + 18*x^4 + 4*x^3 - 28*x^2 + 6*x + 7, x^6 - 2*x^5 - 4*x^4 + 7*x^3 + 2*x^2 + x - 5, x^6 - 2*x^5 - 4*x^4 + 7*x^3 + 2*x^2 + x - 5, x^8 - 3*x^7 - 8*x^6 + 25*x^5 + 18*x^4 - 59*x^3 - 8*x^2 + 29*x + 1, x^8 - 3*x^7 - 8*x^6 + 25*x^5 + 18*x^4 - 59*x^3 - 8*x^2 + 29*x + 1]>
       ]
>;

MOG[199] := 	// J_0(199)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [8, 40, 61, 64, 90, 98, 136, 140, 147, 5*x + 177, 194*x + 177, 106*x + 50, 93*x + 50, 127*x + 191, 72*x + 191, 53*x + 189, 146*x + 189]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, x + 1, -x - 1, -x, -x, 0, 1, x - 1, -x, 0, 0, x, x, 1, 1, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + 3*x^3 - 4*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, -x^3 - 2*x^2 + x + 1, x^3 + 2*x^2 - x - 1, -x^2 - 2*x, x^2 + 2*x, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - 5*x^9 - 4*x^8 + 51*x^7 - 32*x^6 - 154*x^5 + 151*x^4 + 168*x^3 - 168*x^2 - 54*x + 27,
           Coordinates        := [-2*x^9 + 6*x^8 + 20*x^7 - 65*x^6 - 55*x^5 + 208*x^4 + 50*x^3 - 221*x^2 - 18*x + 36, x^9 - 4*x^8 - 7*x^7 + 37*x^6 + 11*x^5 - 102*x^4 - 16*x^3 + 103*x^2 + 27*x - 18, x^9 - 5*x^8 - 2*x^7 + 38*x^6 - 20*x^5 - 91*x^4 + 54*x^3 + 82*x^2 - 27*x - 18, x^8 - 4*x^7 - 5*x^6 + 31*x^5 - x^4 - 64*x^3 + 4*x^2 + 45*x + 9, x^8 - 5*x^7 + 28*x^5 - 12*x^4 - 63*x^3 + 16*x^2 + 54*x + 9, -3*x^7 + 11*x^6 + 10*x^5 - 64*x^4 + 15*x^3 + 88*x^2 - 36*x - 18, x^7 - 4*x^6 - 3*x^5 + 22*x^4 + x^3 - 37*x^2 + 18, x^8 - 5*x^7 + x^6 + 25*x^5 - 21*x^4 - 38*x^3 + 37*x^2 + 18*x - 18, x^7 - 5*x^6 + 5*x^5 + 9*x^4 - 19*x^3 + 10*x^2 + 9*x - 18, 2*x^6 - 8*x^5 + x^4 + 24*x^3 - 14*x^2 - 18*x + 9, 2*x^6 - 8*x^5 + x^4 + 24*x^3 - 14*x^2 - 18*x + 9, x^7 - 5*x^6 + 4*x^5 + 14*x^4 - 19*x^3 - 14*x^2 + 18*x + 9, x^7 - 5*x^6 + 4*x^5 + 14*x^4 - 19*x^3 - 14*x^2 + 18*x + 9, 2*x^6 - 6*x^5 - 8*x^4 + 25*x^3 + 16*x^2 - 27*x - 18, 2*x^6 - 6*x^5 - 8*x^4 + 25*x^3 + 16*x^2 - 27*x - 18, x^7 - 3*x^6 - 6*x^5 + 19*x^4 + 10*x^3 - 29*x^2 - 9*x + 9, x^7 - 3*x^6 - 6*x^5 + 19*x^4 + 10*x^3 - 29*x^2 - 9*x + 9]>
       ]
>;

MOG[211] := 	// J_0(211)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [28, 40, 82, 114, 148, 198, 45*x + 130, 166*x + 130, 22*x + 119, 189*x + 119, 49*x + 45, 162*x + 45, 47*x + 118, 164*x + 118, 100*x + 183, 111*x + 183, 3*x + 135, 208*x + 135]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [-2*x + 2, -2*x + 4, -2*x + 2, 4*x - 6, -2*x + 2, 4*x - 6, x - 2, x - 2, -3*x + 5, -3*x + 5, x - 2, x - 2, 1, 1, x - 2, x - 2, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 4*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -1, 1, -x, x, -1, 1, -x^2 + 2, x^2 - 2, -1, 1, -x + 1, x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, x^2 + 2*x - 1, -x^2 - 2*x + 1, 1, -1, -x^2 - x + 1, x^2 + x - 1, 0, 0, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 + x^8 - 14*x^7 - 11*x^6 + 66*x^5 + 36*x^4 - 123*x^3 - 38*x^2 + 72*x + 8,
           Coordinates        := [-x^8 + 12*x^6 - x^5 - 45*x^4 + 11*x^3 + 54*x^2 - 24*x, 2*x^5 + 2*x^4 - 12*x^3 - 8*x^2 + 18*x + 4, x^8 - 12*x^6 + x^5 + 47*x^4 - 9*x^3 - 62*x^2 + 18*x + 8, 2*x^6 - 14*x^4 + 4*x^3 + 26*x^2 - 14*x - 4, -x^7 + 10*x^5 - x^4 - 29*x^3 + 5*x^2 + 22*x - 4, -x^7 + 10*x^5 + x^4 - 31*x^3 - 5*x^2 + 32*x + 4, x^7 - 9*x^5 + 25*x^3 + x^2 - 20*x - 4, x^7 - 9*x^5 + 25*x^3 + x^2 - 20*x - 4, x^6 - x^5 - 8*x^4 + 6*x^3 + 16*x^2 - 8*x - 4, x^6 - x^5 - 8*x^4 + 6*x^3 + 16*x^2 - 8*x - 4, -x^4 - x^3 + 2*x^2 + 2*x + 4, -x^4 - x^3 + 2*x^2 + 2*x + 4, -x^6 + x^5 + 7*x^4 - 8*x^3 - 11*x^2 + 14*x, -x^6 + x^5 + 7*x^4 - 8*x^3 - 11*x^2 + 14*x, -x^6 + 8*x^4 - 3*x^3 - 16*x^2 + 10*x, -x^6 + 8*x^4 - 3*x^3 - 16*x^2 + 10*x, -2*x^5 - x^4 + 14*x^3 + 3*x^2 - 24*x, -2*x^5 - x^4 + 14*x^3 + 3*x^2 - 24*x]>
       ]
>;

MOG[223] := 	// J_0(223)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [49, 128, 167, 193, 195, 210, 221, 67*x + 68, 156*x + 68, 45*x + 124, 178*x + 124, 132*x + 43, 91*x + 43, 151*x + 13, 72*x + 13, 178*x + 217, 45*x + 217, 114*x + 136, 109*x + 136]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x - 1, x + 1, 0, 0, x - 1, -x + 1, x + 1, -x - 1, -x - 1, x + 1, 2, -2]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + 4*x^3 + 2*x^2 - 5*x - 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^2 - 3*x - 2, x^2 + 3*x + 2, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, -x - 1, x + 1, -x^2 - 2*x, x^2 + 2*x, 1, -1, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^12 - 7*x^11 + 6*x^10 + 57*x^9 - 122*x^8 - 105*x^7 + 430*x^6 - 73*x^5 - 499*x^4 + 242*x^3 + 143*x^2 - 52*x - 19,
           Coordinates        := [-x^11 + 8*x^10 - 17*x^9 - 19*x^8 + 107*x^7 - 64*x^6 - 163*x^5 + 197*x^4 + 37*x^3 - 111*x^2 + 11*x + 15, x^11 - 8*x^10 + 16*x^9 + 24*x^8 - 105*x^7 + 24*x^6 + 192*x^5 - 108*x^4 - 126*x^3 + 65*x^2 + 24*x - 3, -x^10 + 7*x^9 - 10*x^8 - 29*x^7 + 78*x^6 + 14*x^5 - 149*x^4 + 48*x^3 + 85*x^2 - 26*x - 15, -x^9 + 6*x^8 - 7*x^7 - 20*x^6 + 47*x^5 - 2*x^4 - 60*x^3 + 41*x^2 + x - 7, -x^9 + 7*x^8 - 13*x^7 - 12*x^6 + 60*x^5 - 34*x^4 - 58*x^3 + 61*x^2 + 2*x - 8, -x^10 + 8*x^9 - 19*x^8 - 6*x^7 + 87*x^6 - 96*x^5 - 56*x^4 + 161*x^3 - 81*x^2 - 9*x + 14, -x^8 + 7*x^7 - 15*x^6 + 2*x^5 + 32*x^4 - 42*x^3 + 22*x^2 - x - 6, x^10 - 8*x^9 + 18*x^8 + 11*x^7 - 87*x^6 + 64*x^5 + 88*x^4 - 107*x^3 - 4*x^2 + 19*x + 2, x^10 - 8*x^9 + 18*x^8 + 11*x^7 - 87*x^6 + 64*x^5 + 88*x^4 - 107*x^3 - 4*x^2 + 19*x + 2, x^9 - 7*x^8 + 12*x^7 + 17*x^6 - 63*x^5 + 19*x^4 + 70*x^3 - 43*x^2 - 12*x + 4, x^9 - 7*x^8 + 12*x^7 + 17*x^6 - 63*x^5 + 19*x^4 + 70*x^3 - 43*x^2 - 12*x + 4, x^9 - 6*x^8 + 6*x^7 + 23*x^6 - 41*x^5 - 18*x^4 + 52*x^3 - 3*x^2 - 10*x - 1, x^9 - 6*x^8 + 6*x^7 + 23*x^6 - 41*x^5 - 18*x^4 + 52*x^3 - 3*x^2 - 10*x - 1, x^8 - 6*x^7 + 7*x^6 + 18*x^5 - 37*x^4 - 6*x^3 + 35*x^2 - 3*x - 6, x^8 - 6*x^7 + 7*x^6 + 18*x^5 - 37*x^4 - 6*x^3 + 35*x^2 - 3*x - 6, -x^7 + 7*x^6 - 14*x^5 - 4*x^4 + 40*x^3 - 31*x^2 - 4*x + 4, -x^7 + 7*x^6 - 14*x^5 - 4*x^4 + 40*x^3 - 31*x^2 - 4*x + 4, x^7 - 6*x^6 + 8*x^5 + 12*x^4 - 29*x^3 + 5*x^2 + 9*x + 2, x^7 - 6*x^6 + 8*x^5 + 12*x^4 - 29*x^3 + 5*x^2 + 9*x + 2]>
       ]
>;

MOG[227] := 	// J_0(227)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 30, 110, 114, 132, 139, 147, 160, 191, 201, 149*x + 2, 78*x + 2, 209*x + 176, 18*x + 176, 96*x + 77, 131*x + 77, 78*x + 73, 149*x + 73, 102*x + 143, 125*x + 143]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 1, x + 1, -x - 2, x + 2, -x - 1, x + 1, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 5,
           Coordinates        := [-2, -x - 3, -2, 0, -2, 0, x - 1, -x + 1, x - 1, -2*x, 0, 0, 2, 2, x + 1, x + 1, 2, 2, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 7,
           Coordinates        := [-1, x + 1, 3, 0, -1, -2, -x - 3, -x - 1, -x + 1, -1, 2, 2, -1, -1, x, x, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^2 + 2*x - 1, -x^2 - 2*x + 1, 1, -1, -x^2 - x + 1, x^2 + x - 1, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - 17*x^8 - 3*x^7 + 98*x^6 + 40*x^5 - 218*x^4 - 148*x^3 + 136*x^2 + 144*x + 32,
           Coordinates        := [-1/3*x^9 + 17/3*x^7 + x^6 - 32*x^5 - 34/3*x^4 + 190/3*x^3 + 104/3*x^2 - 80/3*x - 16, 2/3*x^4 + 10/3*x^3 - 4/3*x^2 - 32/3*x - 16/3, -4/3*x^7 + 14*x^5 + 10/3*x^4 - 42*x^3 - 20*x^2 + 104/3*x + 64/3, -2/3*x^9 + 26/3*x^7 + 2/3*x^6 - 36*x^5 - 8*x^4 + 58*x^3 + 68/3*x^2 - 88/3*x - 16, x^9 - 15*x^7 - x^6 + 218/3*x^5 + 16*x^4 - 388/3*x^3 - 52*x^2 + 56*x + 80/3, -2/3*x^8 - 2/3*x^7 + 8*x^6 + 26/3*x^5 - 82/3*x^4 - 106/3*x^3 + 68/3*x^2 + 136/3*x + 16, -4/3*x^6 + 12*x^4 + 6*x^3 - 24*x^2 - 24*x - 16/3, 2/3*x^5 + 2*x^4 - 8*x^3 - 8*x^2 + 16*x + 32/3, 2*x^6 + 2*x^5 - 62/3*x^4 - 52/3*x^3 + 124/3*x^2 + 136/3*x + 32/3, 2/3*x^6 + 2*x^5 - 28/3*x^4 - 44/3*x^3 + 56/3*x^2 + 32*x + 32/3, -2/3*x^8 + 20/3*x^6 + 2/3*x^5 - 49/3*x^4 - 8/3*x^3 + 8*x^2 - 16/3*x - 16/3, -2/3*x^8 + 20/3*x^6 + 2/3*x^5 - 49/3*x^4 - 8/3*x^3 + 8*x^2 - 16/3*x - 16/3, -2/3*x^7 + 17/3*x^5 + 2*x^4 - 8*x^3 - 8*x^2 - 32/3*x - 16/3, -2/3*x^7 + 17/3*x^5 + 2*x^4 - 8*x^3 - 8*x^2 - 32/3*x - 16/3, 1/3*x^6 + 4/3*x^5 - 11/3*x^4 - 34/3*x^3 + 16/3*x^2 + 24*x + 32/3, 1/3*x^6 + 4/3*x^5 - 11/3*x^4 - 34/3*x^3 + 16/3*x^2 + 24*x + 32/3, x^7 + x^6 - 32/3*x^5 - 29/3*x^4 + 74/3*x^3 + 80/3*x^2 - 8/3*x - 16/3, x^7 + x^6 - 32/3*x^5 - 29/3*x^4 + 74/3*x^3 + 80/3*x^2 - 8/3*x - 16/3, x^8 + x^7 - 13*x^6 - 13*x^5 + 49*x^4 + 166/3*x^3 - 148/3*x^2 - 224/3*x - 64/3, x^8 + x^7 - 13*x^6 - 13*x^5 + 49*x^4 + 166/3*x^3 - 148/3*x^2 - 224/3*x - 64/3]>
       ]
>;

MOG[229] := 	// J_0(229)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [27, 60, 93, 172, 214, 19*x + 222, 210*x + 222, 32*x + 89, 197*x + 89, 55*x + 148, 174*x + 148, 199*x + 83, 30*x + 83, 217*x + 213, 12*x + 213, 215*x + 87, 14*x + 87, 167*x + 219, 62*x + 219]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, -1, 1, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^6 + 4*x^5 - 12*x^3 - 3*x^2 + 9*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, -x^5 - 4*x^4 - 2*x^3 + 6*x^2 + 4*x - 1, x^5 + 4*x^4 + 2*x^3 - 6*x^2 - 4*x + 1, -x^4 - 3*x^3 + x^2 + 5*x - 1, x^4 + 3*x^3 - x^2 - 5*x + 1, -x^4 - 3*x^3 + 3*x, x^4 + 3*x^3 - 3*x, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, -x^2 - 2*x, x^2 + 2*x, 1, -1, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^11 - 5*x^10 - 4*x^9 + 50*x^8 - 26*x^7 - 165*x^6 + 152*x^5 + 193*x^4 - 207*x^3 - 50*x^2 + 52*x + 1,
           Coordinates        := [-x^10 + 5*x^9 + x^8 - 37*x^7 + 33*x^6 + 76*x^5 - 95*x^4 - 35*x^3 + 48*x^2 + 7*x - 2, x^10 - 3*x^9 - 9*x^8 + 29*x^7 + 25*x^6 - 92*x^5 - 19*x^4 + 103*x^3 - 29*x - 2, -x^9 + 5*x^8 - x^7 - 29*x^6 + 37*x^5 + 32*x^4 - 71*x^3 + 17*x^2 + 12*x - 1, x^9 - 3*x^8 - 7*x^7 + 23*x^6 + 13*x^5 - 52*x^4 + x^3 + 21*x^2 + 4*x + 3, -2*x^6 + 8*x^5 + 2*x^4 - 34*x^3 + 20*x^2 + 14*x, -x^7 + 5*x^6 - 3*x^5 - 18*x^4 + 27*x^3 - 3*x^2 - 7*x, -x^7 + 5*x^6 - 3*x^5 - 18*x^4 + 27*x^3 - 3*x^2 - 7*x, -x^8 + 4*x^7 + 2*x^6 - 22*x^5 + 12*x^4 + 26*x^3 - 18*x^2 - 4*x + 1, -x^8 + 4*x^7 + 2*x^6 - 22*x^5 + 12*x^4 + 26*x^3 - 18*x^2 - 4*x + 1, x^7 - 3*x^6 - 4*x^5 + 13*x^4 + 5*x^3 - 9*x^2 - 10*x - 1, x^7 - 3*x^6 - 4*x^5 + 13*x^4 + 5*x^3 - 9*x^2 - 10*x - 1, x^8 - 3*x^7 - 6*x^6 + 20*x^5 + 10*x^4 - 41*x^3 + 2*x^2 + 16*x + 1, x^8 - 3*x^7 - 6*x^6 + 20*x^5 + 10*x^4 - 41*x^3 + 2*x^2 + 16*x + 1, x^5 - 2*x^4 - 4*x^3 + 4*x^2 + 7*x - 2, x^5 - 2*x^4 - 4*x^3 + 4*x^2 + 7*x - 2, -x^9 + 4*x^8 + 4*x^7 - 30*x^6 + 10*x^5 + 63*x^4 - 44*x^3 - 30*x^2 + 19*x + 1, -x^9 + 4*x^8 + 4*x^7 - 30*x^6 + 10*x^5 + 63*x^4 - 44*x^3 - 30*x^2 + 19*x + 1, -x^8 + 3*x^7 + 7*x^6 - 23*x^5 - 12*x^4 + 49*x^3 + x^2 - 25*x + 1, -x^8 + 3*x^7 + 7*x^6 - 23*x^5 - 12*x^4 + 49*x^3 + x^2 - 25*x + 1]>
       ]
>;

MOG[233] := 	// J_0(233)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 11, 85, 177, 183, 187, 114*x + 43, 119*x + 43, 94*x + 152, 139*x + 152, 149*x + 201, 84*x + 201, 208*x + 104, 25*x + 104, 222*x + 76, 11*x + 76, 156*x + 32, 77*x + 32, 193*x + 89, 40*x + 89]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [-1, -1, 1, -1, -3, 3, 1, 1, -1, -1, 3, 3, -1, -1, -1, -1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + 2*x^6 - 6*x^5 - 10*x^4 + 10*x^3 + 8*x^2 - 7*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^6 - 2*x^5 + 4*x^4 + 7*x^3 - 4*x^2 - 4*x + 1, x^6 + 2*x^5 - 4*x^4 - 7*x^3 + 4*x^2 + 4*x - 1, -x^5 - 2*x^4 + 2*x^3 + 3*x^2 - 2*x, x^5 + 2*x^4 - 2*x^3 - 3*x^2 + 2*x, -x^5 - x^4 + 4*x^3 + x^2 - 4*x + 1, x^5 + x^4 - 4*x^3 - x^2 + 4*x - 1, -x^4 - x^3 + 2*x^2, x^4 + x^3 - 2*x^2, -x^4 - 3*x^3 + 4*x - 1, x^4 + 3*x^3 - 4*x + 1, -x^4 - 2*x^3 + x^2 + x, x^4 + 2*x^3 - x^2 - x, -x^3 - x^2 + 2*x, x^3 + x^2 - 2*x]>,
         rec<Eigen |
           DefiningPolynomial := x^11 + 2*x^10 - 16*x^9 - 30*x^8 + 91*x^7 + 158*x^6 - 213*x^5 - 349*x^4 + 152*x^3 + 290*x^2 + 41*x - 19,
           Coordinates        := [x^10 + 2*x^9 - 13*x^8 - 24*x^7 + 58*x^6 + 100*x^5 - 95*x^4 - 171*x^3 + 19*x^2 + 99*x + 34, -2*x^10 - 4*x^9 + 26*x^8 + 50*x^7 - 114*x^6 - 216*x^5 + 184*x^4 + 378*x^3 - 60*x^2 - 228*x - 58, x^10 + 2*x^9 - 13*x^8 - 28*x^7 + 46*x^6 + 120*x^5 - 15*x^4 - 159*x^3 - 91*x^2 + 7*x + 12, 3*x^9 + 6*x^8 - 33*x^7 - 58*x^6 + 118*x^5 + 178*x^4 - 133*x^3 - 191*x^2 - 7*x + 19, -2*x^9 - 4*x^8 + 24*x^7 + 46*x^6 - 88*x^5 - 164*x^4 + 90*x^3 + 188*x^2 + 20*x - 26, x^9 - 2*x^8 - 19*x^7 + 16*x^6 + 100*x^5 - 34*x^4 - 171*x^3 - 5*x^2 + 73*x + 11, 3*x^8 + 7*x^7 - 28*x^6 - 61*x^5 + 76*x^4 + 161*x^3 - 32*x^2 - 139*x - 51, 3*x^8 + 7*x^7 - 28*x^6 - 61*x^5 + 76*x^4 + 161*x^3 - 32*x^2 - 139*x - 51, x^8 + 3*x^7 - 10*x^6 - 34*x^5 + 26*x^4 + 115*x^3 - 104*x - 41, x^8 + 3*x^7 - 10*x^6 - 34*x^5 + 26*x^4 + 115*x^3 - 104*x - 41, 2*x^7 + 7*x^6 - 8*x^5 - 43*x^4 - 14*x^3 + 52*x^2 + 60*x + 22, 2*x^7 + 7*x^6 - 8*x^5 - 43*x^4 - 14*x^3 + 52*x^2 + 60*x + 22, -2*x^8 - 4*x^7 + 21*x^6 + 38*x^5 - 73*x^4 - 125*x^3 + 67*x^2 + 149*x + 47, -2*x^8 - 4*x^7 + 21*x^6 + 38*x^5 - 73*x^4 - 125*x^3 + 67*x^2 + 149*x + 47, x^9 + 2*x^8 - 13*x^7 - 27*x^6 + 49*x^5 + 112*x^4 - 36*x^3 - 139*x^2 - 51*x + 4, x^9 + 2*x^8 - 13*x^7 - 27*x^6 + 49*x^5 + 112*x^4 - 36*x^3 - 139*x^2 - 51*x + 4, -x^8 - 2*x^7 + 13*x^6 + 26*x^5 - 47*x^4 - 95*x^3 + 40*x^2 + 101*x + 29, -x^8 - 2*x^7 + 13*x^6 + 26*x^5 - 47*x^4 - 95*x^3 + 40*x^2 + 101*x + 29, -2*x^9 - 3*x^8 + 22*x^7 + 27*x^6 - 77*x^5 - 78*x^4 + 77*x^3 + 82*x^2 + 2*x - 6, -2*x^9 - 3*x^8 + 22*x^7 + 27*x^6 - 77*x^5 - 78*x^4 + 77*x^3 + 82*x^2 + 2*x - 6]>
       ]
>;

MOG[239] := 	// J_0(239)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 55, 68, 105, 107, 113, 185, 192, 193, 214, 215, 217, 218, 225, 235, 103*x + 94, 136*x + 94, 179*x + 141, 60*x + 141, 79*x + 191, 160*x + 191]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^2 - x + 1, x^2 + x - 1, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^17 - 28*x^15 + x^14 + 319*x^13 - 17*x^12 - 1903*x^11 + 91*x^10 + 6377*x^9 - 125*x^8 - 11967*x^7 - 233*x^6 + 11733*x^5 + 503*x^4 - 5015*x^3 - 94*x^2 + 609*x + 49,
           Coordinates        := [-x^16 + 25*x^14 - x^13 - 248*x^12 + 16*x^11 + 1245*x^10 - 79*x^9 - 3341*x^8 + 106*x^7 + 4644*x^6 + 101*x^5 - 2910*x^4 - 219*x^3 + 541*x^2 + 87*x + 14, x^16 + x^15 - 25*x^14 - 22*x^13 + 248*x^12 + 191*x^11 - 1236*x^10 - 840*x^9 + 3222*x^8 + 1972*x^7 - 4144*x^6 - 2266*x^5 + 2228*x^4 + 901*x^3 - 479*x^2 - 122*x + 35, 2*x^14 + 2*x^13 - 41*x^12 - 38*x^11 + 320*x^10 + 279*x^9 - 1177*x^8 - 997*x^7 + 2029*x^6 + 1751*x^5 - 1415*x^4 - 1258*x^3 + 297*x^2 + 297*x + 14, -3*x^12 + 4*x^11 + 55*x^10 - 68*x^9 - 366*x^8 + 379*x^7 + 1093*x^6 - 781*x^5 - 1509*x^4 + 565*x^3 + 734*x^2 - 186*x - 84, 4*x^13 + x^12 - 78*x^11 - 13*x^10 + 569*x^9 + 64*x^8 - 1911*x^7 - 180*x^6 + 2912*x^5 + 286*x^4 - 1669*x^3 - 77*x^2 + 233*x + 42, -3*x^11 + x^10 + 47*x^9 - 28*x^8 - 263*x^7 + 178*x^6 + 624*x^5 - 317*x^4 - 650*x^3 + 98*x^2 + 198*x + 42, -5*x^11 + 2*x^10 + 81*x^9 - 36*x^8 - 458*x^7 + 187*x^6 + 1083*x^5 - 279*x^4 - 1055*x^3 + 77*x^2 + 270*x - 14, -x^13 + 2*x^12 + 19*x^11 - 41*x^10 - 137*x^9 + 308*x^8 + 492*x^7 - 1028*x^6 - 990*x^5 + 1453*x^4 + 1048*x^3 - 581*x^2 - 255*x + 35, -9*x^10 - 7*x^9 + 131*x^8 + 62*x^7 - 647*x^6 - 160*x^5 + 1176*x^4 + 183*x^3 - 634*x^2 + 30*x + 42, -3*x^13 + 59*x^11 + x^10 - 426*x^9 - 38*x^8 + 1380*x^7 + 308*x^6 - 1945*x^5 - 702*x^4 + 826*x^3 + 293*x^2 - 29*x - 21, -x^14 + 2*x^13 + 21*x^12 - 39*x^11 - 163*x^10 + 276*x^9 + 584*x^8 - 836*x^7 - 980*x^6 + 951*x^5 + 594*x^4 - 93*x^3 + 209*x^2 - 137*x - 84, -3*x^14 + 65*x^12 + 3*x^11 - 536*x^10 - 58*x^9 + 2116*x^8 + 386*x^7 - 4129*x^6 - 970*x^5 + 3662*x^4 + 743*x^3 - 1209*x^2 - 75*x + 42, 2*x^15 + 2*x^14 - 49*x^13 - 40*x^12 + 476*x^11 + 305*x^10 - 2315*x^9 - 1125*x^8 + 5851*x^7 + 2111*x^6 - 7239*x^5 - 1830*x^4 + 3635*x^3 + 451*x^2 - 452*x - 84, -3*x^15 + 71*x^13 - x^12 - 658*x^11 + 12*x^10 + 3036*x^9 - 19*x^8 - 7323*x^7 - 132*x^6 + 8823*x^5 + 284*x^4 - 4474*x^3 - 7*x^2 + 623*x + 49, -3*x^13 + 4*x^12 + 63*x^11 - 71*x^10 - 494*x^9 + 443*x^8 + 1814*x^7 - 1146*x^6 - 3216*x^5 + 1161*x^4 + 2439*x^3 - 361*x^2 - 552*x - 28, -x^12 - x^11 + 13*x^10 + 16*x^9 - 46*x^8 - 96*x^7 - 5*x^6 + 251*x^5 + 227*x^4 - 244*x^3 - 232*x^2 + 86*x + 42, -x^12 - x^11 + 13*x^10 + 16*x^9 - 46*x^8 - 96*x^7 - 5*x^6 + 251*x^5 + 227*x^4 - 244*x^3 - 232*x^2 + 86*x + 42, -3*x^12 - x^11 + 55*x^10 + 10*x^9 - 368*x^8 - 39*x^7 + 1092*x^6 + 134*x^5 - 1418*x^4 - 225*x^3 + 590*x^2 + 27*x - 21, -3*x^12 - x^11 + 55*x^10 + 10*x^9 - 368*x^8 - 39*x^7 + 1092*x^6 + 134*x^5 - 1418*x^4 - 225*x^3 + 590*x^2 + 27*x - 21, -3*x^11 - 4*x^10 + 42*x^9 + 45*x^8 - 192*x^7 - 169*x^6 + 276*x^5 + 250*x^4 + 8*x^3 - 34*x^2 - 78*x - 21, -3*x^11 - 4*x^10 + 42*x^9 + 45*x^8 - 192*x^7 - 169*x^6 + 276*x^5 + 250*x^4 + 8*x^3 - 34*x^2 - 78*x - 21]>
       ]
>;

MOG[241] := 	// J_0(241)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 7,
           Coordinates        := [8, 28, 64, 93, 216, 240, 11*x + 227, 230*x + 227, 194*x + 158, 47*x + 158, 153*x + 161, 88*x + 161, 213*x + 115, 28*x + 115, 142*x + 107, 99*x + 107, 85*x + 138, 156*x + 138, 72*x + 65, 169*x + 65]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^7 + 4*x^6 - 14*x^4 - 10*x^3 + 6*x^2 + 3*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^6 - 4*x^5 - x^4 + 10*x^3 + 7*x^2 - 3*x - 1, x^6 + 4*x^5 + x^4 - 10*x^3 - 7*x^2 + 3*x + 1, -x^5 - 4*x^4 - 3*x^3 + 3*x^2 + 2*x - 1, x^5 + 4*x^4 + 3*x^3 - 3*x^2 - 2*x + 1, -x^4 - 3*x^3 - x^2 + 2*x, x^4 + 3*x^3 + x^2 - 2*x, -x^4 - 4*x^3 - 4*x^2 + 1, x^4 + 4*x^3 + 4*x^2 - 1, -x^3 - 2*x^2 + 1, x^3 + 2*x^2 - 1, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, -x^2 - x + 1, x^2 + x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^12 - 3*x^11 - 14*x^10 + 44*x^9 + 65*x^8 - 219*x^7 - 123*x^6 + 444*x^5 + 105*x^4 - 328*x^3 - 45*x^2 + 18*x - 1,
           Coordinates        := [-x^11 + 4*x^10 + 8*x^9 - 44*x^8 - 7*x^7 + 146*x^6 - 25*x^5 - 193*x^4 + 22*x^3 + 90*x^2 + 15*x - 3, x^11 - 4*x^10 - 8*x^9 + 46*x^8 + x^7 - 158*x^6 + 69*x^5 + 197*x^4 - 88*x^3 - 74*x^2 - 3*x + 1, -2*x^8 + 6*x^7 + 10*x^6 - 34*x^5 - 10*x^4 + 44*x^3 + 2*x^2 - 4*x, -2*x^7 + 8*x^6 - 4*x^5 - 14*x^4 + 10*x^3 + 2*x^2 + 4*x, -4*x^7 + 14*x^6 + 8*x^5 - 52*x^4 - 4*x^3 + 52*x^2 + 8*x - 2, -2*x^6 + 4*x^5 + 4*x^4 - 6*x^3 - 2*x^2 - 2*x, -x^8 + 4*x^7 - x^6 - 9*x^5 + 3*x^4 + 4*x^3 + 3*x^2 + x, -x^8 + 4*x^7 - x^6 - 9*x^5 + 3*x^4 + 4*x^3 + 3*x^2 + x, -x^9 + 4*x^8 + 5*x^7 - 31*x^6 - x^5 + 70*x^4 - 3*x^3 - 53*x^2 - 12*x + 2, -x^9 + 4*x^8 + 5*x^7 - 31*x^6 - x^5 + 70*x^4 - 3*x^3 - 53*x^2 - 12*x + 2, 2*x^7 - 5*x^6 - 12*x^5 + 29*x^4 + 18*x^3 - 37*x^2 - 8*x + 1, 2*x^7 - 5*x^6 - 12*x^5 + 29*x^4 + 18*x^3 - 37*x^2 - 8*x + 1, -x^10 + 4*x^9 + 6*x^8 - 37*x^7 + 5*x^6 + 91*x^5 - 35*x^4 - 75*x^3 + 22*x^2 + 9*x - 1, -x^10 + 4*x^9 + 6*x^8 - 37*x^7 + 5*x^6 + 91*x^5 - 35*x^4 - 75*x^3 + 22*x^2 + 9*x - 1, x^9 - 2*x^8 - 12*x^7 + 24*x^6 + 42*x^5 - 81*x^4 - 52*x^3 + 82*x^2 + 21*x - 3, x^9 - 2*x^8 - 12*x^7 + 24*x^6 + 42*x^5 - 81*x^4 - 52*x^3 + 82*x^2 + 21*x - 3, -x^9 + 3*x^8 + 7*x^7 - 24*x^6 - 9*x^5 + 48*x^4 + 3*x^3 - 28*x^2 - 4*x + 1, -x^9 + 3*x^8 + 7*x^7 - 24*x^6 - 9*x^5 + 48*x^4 + 3*x^3 - 28*x^2 - 4*x + 1, x^10 - 3*x^9 - 10*x^8 + 34*x^7 + 23*x^6 - 111*x^5 + 116*x^3 - 24*x^2 - 16*x + 2, x^10 - 3*x^9 - 10*x^8 + 34*x^7 + 23*x^6 - 111*x^5 + 116*x^3 - 24*x^2 - 16*x + 2]>
       ]
>;

MOG[251] := 	// J_0(251)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 4, 24, 30, 35, 64, 101, 139, 185, 199, 207, 213, 222, 232, 178*x + 178, 73*x + 178, 57*x + 166, 194*x + 166, 147*x + 30, 104*x + 30, 171*x + 79, 80*x + 79]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^4 + 2*x^3 - 2*x^2 - 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^3 - 2*x^2 + x + 2, x^3 + 2*x^2 - x - 2, x + 1, -x - 1, -1, 1, x^2 + x - 1, -x^2 - x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^17 - 2*x^16 - 28*x^15 + 54*x^14 + 317*x^13 - 582*x^12 - 1867*x^11 + 3178*x^10 + 6186*x^9 - 9216*x^8 - 11921*x^7 + 13680*x^6 + 13752*x^5 - 9400*x^4 - 8800*x^3 + 1920*x^2 + 2240*x + 256,
           Coordinates        := [-x^16 + 2*x^15 + 26*x^14 - 50*x^13 - 269*x^12 + 492*x^11 + 1413*x^10 - 2406*x^9 - 4010*x^8 + 6074*x^7 + 6173*x^6 - 7520*x^5 - 5124*x^4 + 4136*x^3 + 2016*x^2 - 768*x - 256, x^16 - 2*x^15 - 28*x^14 + 56*x^13 + 309*x^12 - 618*x^11 - 1697*x^10 + 3384*x^9 + 4842*x^8 - 9500*x^7 - 7063*x^6 + 12936*x^5 + 5620*x^4 - 8088*x^3 - 2416*x^2 + 1856*x + 448, 2*x^11 + 2*x^10 - 42*x^9 - 28*x^8 + 310*x^7 + 142*x^6 - 974*x^5 - 340*x^4 + 1240*x^3 + 432*x^2 - 512*x - 192, -2*x^11 + 2*x^10 + 30*x^9 - 20*x^8 - 158*x^7 + 14*x^6 + 394*x^5 + 292*x^4 - 608*x^3 - 576*x^2 + 352*x + 320, -2*x^15 + 4*x^14 + 48*x^13 - 90*x^12 - 454*x^11 + 772*x^10 + 2176*x^9 - 3142*x^8 - 5748*x^7 + 6160*x^6 + 8628*x^5 - 5264*x^4 - 6784*x^3 + 1152*x^2 + 1984*x + 256, 2*x^12 - 2*x^11 - 42*x^10 + 48*x^9 + 322*x^8 - 406*x^7 - 1082*x^6 + 1424*x^5 + 1560*x^4 - 1872*x^3 - 1120*x^2 + 832*x + 384, -4*x^11 + 4*x^10 + 68*x^9 - 68*x^8 - 404*x^7 + 404*x^6 + 988*x^5 - 964*x^4 - 920*x^3 + 800*x^2 + 288*x - 192, 2*x^11 + 2*x^10 - 38*x^9 - 28*x^8 + 266*x^7 + 126*x^6 - 830*x^5 - 236*x^4 + 1088*x^3 + 304*x^2 - 512*x - 192, 2*x^12 - 2*x^11 - 46*x^10 + 48*x^9 + 382*x^8 - 390*x^7 - 1402*x^6 + 1256*x^5 + 2288*x^4 - 1328*x^3 - 1728*x^2 + 320*x + 384, -2*x^14 + 4*x^13 + 44*x^12 - 86*x^11 - 366*x^10 + 692*x^9 + 1440*x^8 - 2562*x^7 - 2828*x^6 + 4360*x^5 + 2968*x^4 - 3168*x^3 - 1648*x^2 + 704*x + 320, 2*x^13 - 2*x^12 - 46*x^11 + 44*x^10 + 394*x^9 - 342*x^8 - 1554*x^7 + 1100*x^6 + 2868*x^5 - 1280*x^4 - 2360*x^3 + 464*x^2 + 544*x - 128, 2*x^11 + 2*x^10 - 38*x^9 - 36*x^8 + 266*x^7 + 214*x^6 - 798*x^5 - 524*x^4 + 880*x^3 + 608*x^2 - 256*x - 192, -4*x^10 + 68*x^8 - 404*x^6 + 988*x^4 + 24*x^3 - 896*x^2 - 96*x + 192, 2*x^13 - 2*x^12 - 46*x^11 + 44*x^10 + 398*x^9 - 342*x^8 - 1614*x^7 + 1084*x^6 + 3188*x^5 - 1112*x^4 - 3088*x^3 - 80*x^2 + 1152*x + 384, -2*x^12 + 2*x^11 + 38*x^10 - 34*x^9 - 270*x^8 + 202*x^7 + 898*x^6 - 482*x^5 - 1448*x^4 + 376*x^3 + 1040*x^2 - 192, -2*x^12 + 2*x^11 + 38*x^10 - 34*x^9 - 270*x^8 + 202*x^7 + 898*x^6 - 482*x^5 - 1448*x^4 + 376*x^3 + 1040*x^2 - 192, -2*x^13 + 2*x^12 + 44*x^11 - 40*x^10 - 368*x^9 + 290*x^8 + 1460*x^7 - 900*x^6 - 2830*x^5 + 1048*x^4 + 2568*x^3 - 224*x^2 - 832*x - 128, -2*x^13 + 2*x^12 + 44*x^11 - 40*x^10 - 368*x^9 + 290*x^8 + 1460*x^7 - 900*x^6 - 2830*x^5 + 1048*x^4 + 2568*x^3 - 224*x^2 - 832*x - 128, x^14 - x^13 - 24*x^12 + 23*x^11 + 220*x^10 - 195*x^9 - 968*x^8 + 745*x^7 + 2135*x^6 - 1268*x^5 - 2324*x^4 + 896*x^3 + 1136*x^2 - 224*x - 192, x^14 - x^13 - 24*x^12 + 23*x^11 + 220*x^10 - 195*x^9 - 968*x^8 + 745*x^7 + 2135*x^6 - 1268*x^5 - 2324*x^4 + 896*x^3 + 1136*x^2 - 224*x - 192, x^15 - x^14 - 28*x^13 + 27*x^12 + 312*x^11 - 283*x^10 - 1760*x^9 + 1429*x^8 + 5303*x^7 - 3452*x^6 - 8380*x^5 + 3288*x^4 + 6584*x^3 - 608*x^2 - 1888*x - 256, x^15 - x^14 - 28*x^13 + 27*x^12 + 312*x^11 - 283*x^10 - 1760*x^9 + 1429*x^8 + 5303*x^7 - 3452*x^6 - 8380*x^5 + 3288*x^4 + 6584*x^3 - 608*x^2 - 1888*x - 256]>
       ]
>;

MOG[257] := 	// J_0(257)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 30, 115, 121, 139, 198, 223, 249, 18*x + 20, 239*x + 20, 102*x + 26, 155*x + 26, 48*x + 28, 209*x + 28, 170*x + 52, 87*x + 52, 254*x + 34, 3*x + 34, 249*x + 135, 8*x + 135, 235*x + 37, 22*x + 37]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^7 + 3*x^6 - 3*x^5 - 11*x^4 + 3*x^3 + 10*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, -x^6 - 3*x^5 + x^4 + 6*x^3 - x, x^6 + 3*x^5 - x^4 - 6*x^3 + x, -x^5 - 3*x^4 + x^3 + 6*x^2 - 1, x^5 + 3*x^4 - x^3 - 6*x^2 + 1, -x^5 - 2*x^4 + 2*x^3 + 3*x^2 - x, x^5 + 2*x^4 - 2*x^3 - 3*x^2 + x, -x^4 - x^3 + 2*x^2, x^4 + x^3 - 2*x^2, -x^3 - x^2 + x, x^3 + x^2 - x, -x, x, -x^2, x^2]>,
         rec<Eigen |
           DefiningPolynomial := x^14 - 2*x^13 - 21*x^12 + 42*x^11 + 163*x^10 - 327*x^9 - 568*x^8 + 1153*x^7 + 830*x^6 - 1755*x^5 - 318*x^4 + 825*x^3 + 10*x^2 - 96*x - 1,
           Coordinates        := [-x^13 + 3*x^12 + 16*x^11 - 52*x^10 - 83*x^9 + 318*x^8 + 134*x^7 - 815*x^6 + 73*x^5 + 784*x^4 - 218*x^3 - 193*x^2 + 63*x + 3, x^13 - 5*x^12 - 10*x^11 + 80*x^10 - 9*x^9 - 434*x^8 + 338*x^7 + 903*x^6 - 971*x^5 - 536*x^4 + 632*x^3 + 73*x^2 - 93*x - 1, 2*x^10 - 10*x^9 - 6*x^8 + 92*x^7 - 74*x^6 - 206*x^5 + 270*x^4 - 12*x^3 - 12*x^2 - 8*x - 4, 2*x^10 - 10*x^9 - 6*x^8 + 94*x^7 - 80*x^6 - 226*x^5 + 330*x^4 + 50*x^3 - 222*x^2 + 60*x + 8, 2*x^9 - 8*x^8 - 8*x^7 + 54*x^6 - 6*x^5 - 86*x^4 - 20*x^3 + 82*x^2 - 10, 2*x^9 - 10*x^8 - 2*x^7 + 74*x^6 - 66*x^5 - 148*x^4 + 190*x^3 + 14*x^2 - 12*x - 10, 4*x^6 - 10*x^5 - 8*x^4 + 32*x^3 - 24*x^2 + 10*x - 4, 4*x^7 - 18*x^6 + 12*x^5 + 48*x^4 - 88*x^3 + 58*x^2 - 24*x + 8, x^12 - 5*x^11 - 8*x^10 + 71*x^9 - 24*x^8 - 326*x^7 + 322*x^6 + 500*x^5 - 701*x^4 - 49*x^3 + 238*x^2 - 47*x - 4, x^12 - 5*x^11 - 8*x^10 + 71*x^9 - 24*x^8 - 326*x^7 + 322*x^6 + 500*x^5 - 701*x^4 - 49*x^3 + 238*x^2 - 47*x - 4, x^11 - 5*x^10 - 4*x^9 + 51*x^8 - 36*x^7 - 140*x^6 + 168*x^5 + 68*x^4 - 101*x^3 - 11*x^2 + 4*x + 5, x^11 - 5*x^10 - 4*x^9 + 51*x^8 - 36*x^7 - 140*x^6 + 168*x^5 + 68*x^4 - 101*x^3 - 11*x^2 + 4*x + 5, x^11 - 4*x^10 - 11*x^9 + 57*x^8 + 20*x^7 - 263*x^6 + 102*x^5 + 419*x^4 - 293*x^3 - 109*x^2 + 85*x - 4, x^11 - 4*x^10 - 11*x^9 + 57*x^8 + 20*x^7 - 263*x^6 + 102*x^5 + 419*x^4 - 293*x^3 - 109*x^2 + 85*x - 4, x^10 - 3*x^9 - 13*x^8 + 43*x^7 + 43*x^6 - 183*x^5 - 11*x^4 + 233*x^3 - 44*x^2 - 42*x + 8, x^10 - 3*x^9 - 13*x^8 + 43*x^7 + 43*x^6 - 183*x^5 - 11*x^4 + 233*x^3 - 44*x^2 - 42*x + 8, x^9 - x^8 - 20*x^7 + 37*x^6 + 70*x^5 - 175*x^4 + 16*x^3 + 111*x^2 - 35*x - 4, x^9 - x^8 - 20*x^7 + 37*x^6 + 70*x^5 - 175*x^4 + 16*x^3 + 111*x^2 - 35*x - 4, 2*x^8 - 9*x^7 + 4*x^6 + 29*x^5 - 40*x^4 + 13*x^3 - x + 2, 2*x^8 - 9*x^7 + 4*x^6 + 29*x^5 - 40*x^4 + 13*x^3 - x + 2, x^8 + 2*x^7 - 27*x^6 + 14*x^5 + 113*x^4 - 102*x^3 - 73*x^2 + 38*x + 2, x^8 + 2*x^7 - 27*x^6 + 14*x^5 + 113*x^4 - 102*x^3 - 73*x^2 + 38*x + 2]>
       ]
>;

MOG[263] := 	// J_0(263)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 31, 37, 55, 85, 107, 108, 110, 141, 149, 150, 184, 208, 165*x + 162, 98*x + 162, 193*x + 84, 70*x + 84, 126*x + 55, 137*x + 55, 59*x + 23, 204*x + 23, 22*x + 53, 241*x + 53]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 2*x^4 - 3*x^3 - 6*x^2 + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^4 - 2*x^3 + 2*x^2 + 4*x, x^4 + 2*x^3 - 2*x^2 - 4*x, -x^3 - 2*x^2 + 1, x^3 + 2*x^2 - 1, -x^2 - 2*x - 1, x^2 + 2*x + 1, -x^2 - x + 1, x^2 + x - 1, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^17 - x^16 - 26*x^15 + 24*x^14 + 274*x^13 - 225*x^12 - 1505*x^11 + 1041*x^10 + 4613*x^9 - 2467*x^8 - 7815*x^7 + 2761*x^6 + 6709*x^5 - 974*x^4 - 2284*x^3 - 239*x^2 + 135*x + 19,
           Coordinates        := [-x^16 + x^15 + 24*x^14 - 22*x^13 - 230*x^12 + 185*x^11 + 1125*x^10 - 743*x^9 - 2976*x^8 + 1452*x^7 + 4131*x^6 - 1233*x^5 - 2641*x^4 + 304*x^3 + 548*x^2 - 10*x - 28, x^16 - x^15 - 26*x^14 + 24*x^13 + 270*x^12 - 219*x^11 - 1434*x^10 + 948*x^9 + 4143*x^8 - 1981*x^7 - 6353*x^6 + 1798*x^5 + 4508*x^4 - 480*x^3 - 944*x^2 + 20*x + 48, x^14 - x^13 - 21*x^12 + 21*x^11 + 168*x^10 - 159*x^9 - 647*x^8 + 534*x^7 + 1264*x^6 - 804*x^5 - 1188*x^4 + 460*x^3 + 420*x^2 - 22*x - 26, x^15 - x^14 - 24*x^13 + 24*x^12 + 224*x^11 - 215*x^10 - 1024*x^9 + 884*x^8 + 2377*x^7 - 1629*x^6 - 2627*x^5 + 1028*x^4 + 1084*x^3 + 112*x^2 - 48*x - 16, -2*x^15 + 2*x^14 + 44*x^13 - 40*x^12 - 380*x^11 + 298*x^10 + 1637*x^9 - 1015*x^8 - 3684*x^7 + 1528*x^6 + 4068*x^5 - 670*x^4 - 1736*x^3 - 249*x^2 + 107*x + 19, x^14 - x^13 - 22*x^12 + 22*x^11 + 183*x^10 - 172*x^9 - 727*x^8 + 585*x^7 + 1447*x^6 - 858*x^5 - 1328*x^4 + 416*x^3 + 378*x^2 - 20*x - 22, -2*x^14 + 2*x^13 + 40*x^12 - 38*x^11 - 304*x^10 + 266*x^9 + 1101*x^8 - 847*x^7 - 1972*x^6 + 1231*x^5 + 1679*x^4 - 681*x^3 - 593*x^2 + 29*x + 36, -2*x^13 + 38*x^11 + 4*x^10 - 266*x^9 - 64*x^8 + 829*x^7 + 336*x^6 - 1075*x^5 - 638*x^4 + 382*x^3 + 343*x^2 - 2*x - 26, -2*x^13 + 2*x^12 + 38*x^11 - 36*x^10 - 270*x^9 + 232*x^8 + 883*x^7 - 633*x^6 - 1314*x^5 + 627*x^4 + 761*x^3 - 65*x^2 - 69*x + 7, x^13 - x^12 - 17*x^11 + 17*x^10 + 100*x^9 - 101*x^8 - 229*x^7 + 266*x^6 + 134*x^5 - 388*x^4 + 92*x^3 + 326*x^2 + 24*x - 30, x^13 - 21*x^11 + 168*x^9 + 9*x^8 - 638*x^7 - 104*x^6 + 1160*x^5 + 356*x^4 - 832*x^3 - 372*x^2 + 48*x + 26, x^15 - x^14 - 24*x^13 + 22*x^12 + 227*x^11 - 176*x^10 - 1083*x^9 + 617*x^8 + 2769*x^7 - 862*x^6 - 3642*x^5 + 136*x^4 + 1992*x^3 + 396*x^2 - 146*x - 22, -2*x^12 + 4*x^11 + 34*x^10 - 64*x^9 - 208*x^8 + 354*x^7 + 561*x^6 - 794*x^5 - 659*x^4 + 642*x^3 + 248*x^2 - 53*x - 10, 2*x^12 - 2*x^11 - 34*x^10 + 29*x^9 + 209*x^8 - 134*x^7 - 565*x^6 + 208*x^5 + 640*x^4 - 67*x^3 - 198*x^2 - 4*x + 13, 2*x^12 - 2*x^11 - 34*x^10 + 29*x^9 + 209*x^8 - 134*x^7 - 565*x^6 + 208*x^5 + 640*x^4 - 67*x^3 - 198*x^2 - 4*x + 13, x^13 + x^12 - 21*x^11 - 22*x^10 + 173*x^9 + 175*x^8 - 690*x^7 - 619*x^6 + 1300*x^5 + 980*x^4 - 932*x^3 - 578*x^2 + 42*x + 40, x^13 + x^12 - 21*x^11 - 22*x^10 + 173*x^9 + 175*x^8 - 690*x^7 - 619*x^6 + 1300*x^5 + 980*x^4 - 932*x^3 - 578*x^2 + 42*x + 40, x^13 - 22*x^11 + 2*x^10 + 178*x^9 - 16*x^8 - 661*x^7 + 2*x^6 + 1157*x^5 + 140*x^4 - 807*x^3 - 208*x^2 + 62*x + 11, x^13 - 22*x^11 + 2*x^10 + 178*x^9 - 16*x^8 - 661*x^7 + 2*x^6 + 1157*x^5 + 140*x^4 - 807*x^3 - 208*x^2 + 62*x + 11, x^14 - 23*x^12 + 2*x^11 + 205*x^10 - 32*x^9 - 883*x^8 + 176*x^7 + 1863*x^6 - 385*x^5 - 1712*x^4 + 296*x^3 + 448*x^2 - 18*x - 24, x^14 - 23*x^12 + 2*x^11 + 205*x^10 - 32*x^9 - 883*x^8 + 176*x^7 + 1863*x^6 - 385*x^5 - 1712*x^4 + 296*x^3 + 448*x^2 - 18*x - 24, -x^12 + x^11 + 17*x^10 - 17*x^9 - 109*x^8 + 107*x^7 + 329*x^6 - 302*x^5 - 459*x^4 + 308*x^3 + 262*x^2 - 11*x - 18, -x^12 + x^11 + 17*x^10 - 17*x^9 - 109*x^8 + 107*x^7 + 329*x^6 - 302*x^5 - 459*x^4 + 308*x^3 + 262*x^2 - 11*x - 18]>
       ]
>;

MOG[269] := 	// J_0(269)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 5, 92, 111, 122, 142, 189, 197, 199, 200, 215, 75*x + 258, 194*x + 258, 186*x + 178, 83*x + 178, 82*x + 82, 187*x + 82, 33*x + 253, 236*x + 253, 74*x + 193, 195*x + 193, 256*x + 153, 13*x + 153]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^5 + x^4 - 5*x^3 - 4*x^2 + 5*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^4 - x^3 + 3*x^2 + 2*x, x^4 + x^3 - 3*x^2 - 2*x, -x^3 - x^2 + 3*x + 2, x^3 + x^2 - 3*x - 2, -x^3 - x^2 + 2*x + 1, x^3 + x^2 - 2*x - 1, -x^2 - x, x^2 + x, -x, x, -x - 1, x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - x^15 - 28*x^14 + 27*x^13 + 314*x^12 - 283*x^11 - 1803*x^10 + 1435*x^9 + 5637*x^8 - 3547*x^7 - 9470*x^6 + 3701*x^5 + 7860*x^4 - 1001*x^3 - 2363*x^2 - 43*x + 172,
           Coordinates        := [-x^15 + x^14 + 25*x^13 - 24*x^12 - 245*x^11 + 219*x^10 + 1192*x^9 - 932*x^8 - 3015*x^7 + 1801*x^6 + 3813*x^5 - 1230*x^4 - 2067*x^3 + 35*x^2 + 202*x - 14, x^15 - x^14 - 25*x^13 + 24*x^12 + 249*x^11 - 227*x^10 - 1254*x^9 + 1060*x^8 + 3329*x^7 - 2471*x^6 - 4407*x^5 + 2532*x^4 + 2549*x^3 - 973*x^2 - 394*x + 120, 2*x^13 - 2*x^12 - 40*x^11 + 40*x^10 + 296*x^9 - 290*x^8 - 990*x^7 + 906*x^6 + 1468*x^5 - 1120*x^4 - 898*x^3 + 510*x^2 + 162*x - 60, 2*x^12 - 2*x^11 - 44*x^10 + 38*x^9 + 354*x^8 - 252*x^7 - 1264*x^6 + 636*x^5 + 1934*x^4 - 370*x^3 - 1068*x^2 - 66*x + 102, -2*x^9 + 16*x^7 - 30*x^6 - 16*x^5 + 230*x^4 - 72*x^3 - 410*x^2 - 54*x + 50, x^14 - x^13 - 21*x^12 + 20*x^11 + 169*x^10 - 147*x^9 - 662*x^8 + 480*x^7 + 1349*x^6 - 659*x^5 - 1471*x^4 + 292*x^3 + 753*x^2 + 47*x - 70, 2*x^13 - 2*x^12 - 42*x^11 + 34*x^10 + 336*x^9 - 190*x^8 - 1292*x^7 + 344*x^6 + 2450*x^5 + 126*x^4 - 1906*x^3 - 634*x^2 + 148*x + 50, 2*x^12 - 42*x^10 + 4*x^9 + 334*x^8 - 54*x^7 - 1230*x^6 + 198*x^5 + 2044*x^4 - 74*x^3 - 1344*x^2 - 154*x + 140, -6*x^11 + 2*x^10 + 112*x^9 - 34*x^8 - 746*x^7 + 174*x^6 + 2098*x^5 - 194*x^4 - 2160*x^3 - 320*x^2 + 238*x + 4, -3*x^14 + 3*x^13 + 69*x^12 - 64*x^11 - 611*x^10 + 503*x^9 + 2622*x^8 - 1746*x^7 - 5657*x^6 + 2471*x^5 + 5793*x^4 - 966*x^3 - 2161*x^2 - 57*x + 172, -2*x^10 + 4*x^9 + 16*x^8 - 62*x^7 + 44*x^6 + 262*x^5 - 532*x^4 - 266*x^3 + 766*x^2 + 158*x - 100, -3*x^12 + 4*x^11 + 55*x^10 - 73*x^9 - 356*x^8 + 460*x^7 + 962*x^6 - 1146*x^5 - 983*x^4 + 920*x^3 + 279*x^2 - 117*x - 2, -3*x^12 + 4*x^11 + 55*x^10 - 73*x^9 - 356*x^8 + 460*x^7 + 962*x^6 - 1146*x^5 - 983*x^4 + 920*x^3 + 279*x^2 - 117*x - 2, -x^11 + 2*x^10 + 9*x^9 - 31*x^8 + 14*x^7 + 146*x^6 - 258*x^5 - 248*x^4 + 419*x^3 + 284*x^2 - 23*x - 25, -x^11 + 2*x^10 + 9*x^9 - 31*x^8 + 14*x^7 + 146*x^6 - 258*x^5 - 248*x^4 + 419*x^3 + 284*x^2 - 23*x - 25, -3*x^13 + 4*x^12 + 62*x^11 - 77*x^10 - 477*x^9 + 525*x^8 + 1694*x^7 - 1466*x^6 - 2823*x^5 + 1362*x^4 + 2020*x^3 - 81*x^2 - 217*x + 21, -3*x^13 + 4*x^12 + 62*x^11 - 77*x^10 - 477*x^9 + 525*x^8 + 1694*x^7 - 1466*x^6 - 2823*x^5 + 1362*x^4 + 2020*x^3 - 81*x^2 - 217*x + 21, x^13 - 4*x^12 - 17*x^11 + 79*x^10 + 95*x^9 - 572*x^8 - 180*x^7 + 1872*x^6 + 37*x^5 - 2790*x^4 - 35*x^3 + 1665*x^2 + 195*x - 170, x^13 - 4*x^12 - 17*x^11 + 79*x^10 + 95*x^9 - 572*x^8 - 180*x^7 + 1872*x^6 + 37*x^5 - 2790*x^4 - 35*x^3 + 1665*x^2 + 195*x - 170, x^12 - x^11 - 18*x^10 + 19*x^9 + 118*x^8 - 120*x^7 - 354*x^6 + 288*x^5 + 523*x^4 - 223*x^3 - 332*x^2 - 11*x + 30, x^12 - x^11 - 18*x^10 + 19*x^9 + 118*x^8 - 120*x^7 - 354*x^6 + 288*x^5 + 523*x^4 - 223*x^3 - 332*x^2 - 11*x + 30, x^14 - x^13 - 22*x^12 + 18*x^11 + 190*x^10 - 114*x^9 - 823*x^8 + 298*x^7 + 1857*x^6 - 255*x^5 - 1920*x^4 - 132*x^3 + 608*x^2 + 58*x - 51, x^14 - x^13 - 22*x^12 + 18*x^11 + 190*x^10 - 114*x^9 - 823*x^8 + 298*x^7 + 1857*x^6 - 255*x^5 - 1920*x^4 - 132*x^3 + 608*x^2 + 58*x - 51]>
       ]
>;

MOG[271] := 	// J_0(271)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [23, 47, 69, 98, 102, 125, 141, 148, 202, 236, 240, 163*x + 35, 108*x + 35, 68*x + 183, 203*x + 183, 192*x + 162, 79*x + 162, 126*x + 231, 145*x + 231, 195*x + 238, 76*x + 238, 49*x + 57, 222*x + 57]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^6 + 4*x^5 + x^4 - 9*x^3 - 4*x^2 + 5*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^5 - 3*x^4 + x^3 + 5*x^2 - x - 1, x^5 + 3*x^4 - x^3 - 5*x^2 + x + 1, 1, -1, -x^4 - 3*x^3 + 3*x, x^4 + 3*x^3 - 3*x, x, -x, -x^3 - 2*x^2 + x + 1, x^3 + 2*x^2 - x - 1, x^2 + x - 1, -x^2 - x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - 5*x^15 - 12*x^14 + 91*x^13 + 11*x^12 - 620*x^11 + 381*x^10 + 1953*x^9 - 1863*x^8 - 2853*x^7 + 3137*x^6 + 1830*x^5 - 1758*x^4 - 831*x^3 + 308*x^2 + 204*x + 27,
           Coordinates        := [-x^15 + 5*x^14 + 9*x^13 - 75*x^12 + 6*x^11 + 409*x^10 - 249*x^9 - 1030*x^8 + 766*x^7 + 1277*x^6 - 784*x^5 - 808*x^4 + 197*x^3 + 238*x^2 + 38*x - 1, x^15 - 5*x^14 - 9*x^13 + 76*x^12 - 9*x^11 - 425*x^10 + 306*x^9 + 1087*x^8 - 1080*x^7 - 1240*x^6 + 1376*x^5 + 526*x^4 - 510*x^3 - 150*x^2 + 48*x + 14, -x^14 + 6*x^13 + 3*x^12 - 77*x^11 + 80*x^10 + 317*x^9 - 527*x^8 - 458*x^7 + 1053*x^6 + 164*x^5 - 631*x^4 - 169*x^3 + 144*x^2 + 79*x + 11, -2*x^12 + 8*x^11 + 17*x^10 - 96*x^9 - 8*x^8 + 357*x^7 - 157*x^6 - 494*x^5 + 261*x^4 + 249*x^3 - 63*x^2 - 64*x - 10, -x^10 + 3*x^9 + 9*x^8 - 34*x^7 - 5*x^6 + 91*x^5 - 44*x^4 - 61*x^3 + 18*x^2 + 22*x + 4, 2*x^13 - 10*x^12 - 11*x^11 + 120*x^10 - 69*x^9 - 459*x^8 + 539*x^7 + 597*x^6 - 1014*x^5 - 107*x^4 + 516*x^3 + 25*x^2 - 105*x - 22, x^14 - 5*x^13 - 8*x^12 + 71*x^11 - 15*x^10 - 360*x^9 + 263*x^8 + 823*x^7 - 715*x^6 - 902*x^5 + 638*x^4 + 533*x^3 - 146*x^2 - 152*x - 25, -x^12 + 4*x^11 + 11*x^10 - 55*x^9 - 28*x^8 + 253*x^7 - 30*x^6 - 458*x^5 + 139*x^4 + 279*x^3 - 28*x^2 - 69*x - 13, x^12 - 4*x^11 - 9*x^10 + 47*x^9 + 19*x^8 - 193*x^7 + 32*x^6 + 295*x^5 - 94*x^4 - 123*x^3 + 9*x^2 + 16*x + 2, -x^11 + 4*x^10 + 6*x^9 - 43*x^8 + 29*x^7 + 96*x^6 - 135*x^5 - 17*x^4 + 79*x^3 + 4*x^2 - 18*x - 4, -x^13 + 6*x^12 + 3*x^11 - 77*x^10 + 82*x^9 + 309*x^8 - 536*x^7 - 398*x^6 + 1055*x^5 + x^4 - 586*x^3 - 13*x^2 + 125*x + 26, -x^13 + 4*x^12 + 9*x^11 - 50*x^10 - 7*x^9 + 200*x^8 - 93*x^7 - 295*x^6 + 198*x^5 + 133*x^4 - 71*x^3 - 34*x^2 + 4*x + 2, -x^13 + 4*x^12 + 9*x^11 - 50*x^10 - 7*x^9 + 200*x^8 - 93*x^7 - 295*x^6 + 198*x^5 + 133*x^4 - 71*x^3 - 34*x^2 + 4*x + 2, x^14 - 5*x^13 - 6*x^12 + 62*x^11 - 30*x^10 - 253*x^9 + 260*x^8 + 395*x^7 - 523*x^6 - 201*x^5 + 305*x^4 + 74*x^3 - 57*x^2 - 19*x - 1, x^14 - 5*x^13 - 6*x^12 + 62*x^11 - 30*x^10 - 253*x^9 + 260*x^8 + 395*x^7 - 523*x^6 - 201*x^5 + 305*x^4 + 74*x^3 - 57*x^2 - 19*x - 1, -x^14 + 5*x^13 + 7*x^12 - 67*x^11 + 26*x^10 + 303*x^9 - 285*x^8 - 559*x^7 + 650*x^6 + 429*x^5 - 465*x^4 - 212*x^3 + 101*x^2 + 62*x + 8, -x^14 + 5*x^13 + 7*x^12 - 67*x^11 + 26*x^10 + 303*x^9 - 285*x^8 - 559*x^7 + 650*x^6 + 429*x^5 - 465*x^4 - 212*x^3 + 101*x^2 + 62*x + 8, x^13 - 4*x^12 - 10*x^11 + 52*x^10 + 23*x^9 - 233*x^8 + 18*x^7 + 442*x^6 - 57*x^5 - 345*x^4 - 63*x^3 + 106*x^2 + 56*x + 8, x^13 - 4*x^12 - 10*x^11 + 52*x^10 + 23*x^9 - 233*x^8 + 18*x^7 + 442*x^6 - 57*x^5 - 345*x^4 - 63*x^3 + 106*x^2 + 56*x + 8, -x^13 + 4*x^12 + 11*x^11 - 56*x^10 - 29*x^9 + 271*x^8 - 23*x^7 - 553*x^6 + 121*x^5 + 463*x^4 - 25*x^3 - 142*x^2 - 34*x - 1, -x^13 + 4*x^12 + 11*x^11 - 56*x^10 - 29*x^9 + 271*x^8 - 23*x^7 - 553*x^6 + 121*x^5 + 463*x^4 - 25*x^3 - 142*x^2 - 34*x - 1, x^10 - 3*x^9 - 9*x^8 + 29*x^7 + 24*x^6 - 87*x^5 - 23*x^4 + 95*x^3 + 7*x^2 - 29*x - 7, x^10 - 3*x^9 - 9*x^8 + 29*x^7 + 24*x^6 - 87*x^5 - 23*x^4 + 95*x^3 + 7*x^2 - 29*x - 7]>
       ]
>;

MOG[277] := 	// J_0(277)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [61, 195, 244, 44*x + 22, 233*x + 22, 229*x + 41, 48*x + 41, 222*x + 110, 55*x + 110, 132*x + 93, 145*x + 93, x + 169, 276*x + 169, 252*x + 2, 25*x + 2, 194*x + 191, 83*x + 191, 56*x + 53, 221*x + 53, 31*x + 261, 246*x + 261, 36*x + 163, 241*x + 163]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 3*x - 1,
           Coordinates        := [-x - 1, -x^2 - x, -x^2 - 2*x + 1, -1, -1, x^2 + x - 1, x^2 + x - 1, 0, 0, x + 1, x + 1, x + 1, x + 1, 1, 1, 0, 0, -x, -x, 0, 0, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 + 6*x^8 + 4*x^7 - 37*x^6 - 69*x^5 + 24*x^4 + 119*x^3 + 34*x^2 - 52*x - 25,
           Coordinates        := [0, 0, 0, x^8 + 5*x^7 - 33*x^5 - 40*x^4 + 30*x^3 + 54*x^2 - 3*x - 13, -x^8 - 5*x^7 + 33*x^5 + 40*x^4 - 30*x^3 - 54*x^2 + 3*x + 13, -x^8 - 5*x^7 - x^6 + 28*x^5 + 36*x^4 - 18*x^3 - 38*x^2 + x + 9, x^8 + 5*x^7 + x^6 - 28*x^5 - 36*x^4 + 18*x^3 + 38*x^2 - x - 9, x^7 + 5*x^6 + x^5 - 30*x^4 - 47*x^3 + x^2 + 38*x + 16, -x^7 - 5*x^6 - x^5 + 30*x^4 + 47*x^3 - x^2 - 38*x - 16, -x^7 - 4*x^6 + 2*x^5 + 22*x^4 + 15*x^3 - 14*x^2 - 7*x + 2, x^7 + 4*x^6 - 2*x^5 - 22*x^4 - 15*x^3 + 14*x^2 + 7*x - 2, -x^7 - 5*x^6 - 2*x^5 + 24*x^4 + 36*x^3 - 5*x^2 - 33*x - 14, x^7 + 5*x^6 + 2*x^5 - 24*x^4 - 36*x^3 + 5*x^2 + 33*x + 14, -2*x^4 - 9*x^3 - 9*x^2 + 4*x + 5, 2*x^4 + 9*x^3 + 9*x^2 - 4*x - 5, x^6 + 3*x^5 - 5*x^4 - 20*x^3 - 7*x^2 + 15*x + 8, -x^6 - 3*x^5 + 5*x^4 + 20*x^3 + 7*x^2 - 15*x - 8, -x^6 - 4*x^5 + x^4 + 19*x^3 + 17*x^2 - 6*x - 7, x^6 + 4*x^5 - x^4 - 19*x^3 - 17*x^2 + 6*x + 7, -x^6 - 4*x^5 + 2*x^4 + 22*x^3 + 14*x^2 - 19*x - 14, x^6 + 4*x^5 - 2*x^4 - 22*x^3 - 14*x^2 + 19*x + 14, -x^5 - 3*x^4 + 2*x^3 + 8*x^2 - 2, x^5 + 3*x^4 - 2*x^3 - 8*x^2 + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^9 - 4*x^8 - 6*x^7 + 37*x^6 - 3*x^5 - 100*x^4 + 49*x^3 + 64*x^2 - 20*x - 1,
           Coordinates        := [2*x^8 - 4*x^7 - 22*x^6 + 52*x^5 + 38*x^4 - 140*x^3 + 70*x^2 - 14*x + 6, 4*x^8 - 14*x^7 - 20*x^6 + 100*x^5 + 4*x^4 - 200*x^3 + 50*x^2 + 96*x - 6, -2*x^8 + 34*x^6 - 24*x^5 - 136*x^4 + 116*x^3 + 126*x^2 - 78*x - 8, -3*x^8 + 11*x^7 + 8*x^6 - 59*x^5 + 26*x^4 + 54*x^3 - 38*x^2 + 15*x + 3, -3*x^8 + 11*x^7 + 8*x^6 - 59*x^5 + 26*x^4 + 54*x^3 - 38*x^2 + 15*x + 3, x^8 - 7*x^7 + 7*x^6 + 38*x^5 - 66*x^4 - 42*x^3 + 88*x^2 + 9*x - 7, x^8 - 7*x^7 + 7*x^6 + 38*x^5 - 66*x^4 - 42*x^3 + 88*x^2 + 9*x - 7, -3*x^7 + 11*x^6 + 3*x^5 - 44*x^4 + 35*x^3 - 7*x^2 + 12*x + 12, -3*x^7 + 11*x^6 + 3*x^5 - 44*x^4 + 35*x^3 - 7*x^2 + 12*x + 12, x^7 - 2*x^6 - 8*x^5 + 12*x^4 + 27*x^3 - 18*x^2 - 45*x + 8, x^7 - 2*x^6 - 8*x^5 + 12*x^4 + 27*x^3 - 18*x^2 - 45*x + 8, x^7 - 5*x^6 + 4*x^5 + 20*x^4 - 42*x^3 + x^2 + 43*x - 10, x^7 - 5*x^6 + 4*x^5 + 20*x^4 - 42*x^3 + x^2 + 43*x - 10, -2*x^6 + 10*x^5 - 4*x^4 - 43*x^3 + 51*x^2 + 6*x + 3, -2*x^6 + 10*x^5 - 4*x^4 - 43*x^3 + 51*x^2 + 6*x + 3, -3*x^6 + 5*x^5 + 13*x^4 - 18*x^3 - x^2 - 9*x - 6, -3*x^6 + 5*x^5 + 13*x^4 - 18*x^3 - x^2 - 9*x - 6, 4*x^7 - 13*x^6 - 18*x^5 + 81*x^4 - 3*x^3 - 115*x^2 + 44*x - 1, 4*x^7 - 13*x^6 - 18*x^5 + 81*x^4 - 3*x^3 - 115*x^2 + 44*x - 1, 2*x^7 - x^6 - 28*x^5 + 28*x^4 + 86*x^3 - 96*x^2 - 25*x + 4, 2*x^7 - x^6 - 28*x^5 + 28*x^4 + 86*x^3 - 96*x^2 - 25*x + 4, 4*x^6 - 11*x^5 - 19*x^4 + 58*x^3 + 12*x^2 - 52*x - 2, 4*x^6 - 11*x^5 - 19*x^4 + 58*x^3 + 12*x^2 - 52*x - 2]>
       ]
>;

MOG[281] := 	// J_0(281)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 5, 48, 84, 90, 109, 130, 133, 249, 252, 278*x + 75, 3*x + 75, 257*x + 132, 24*x + 132, 104*x + 180, 177*x + 180, 131*x + 181, 150*x + 181, 149*x + 122, 132*x + 122, 43*x + 19, 238*x + 19, 182*x + 116, 99*x + 116]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^7 + 2*x^6 - 5*x^5 - 9*x^4 + 7*x^3 + 10*x^2 - 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^6 - 2*x^5 + 3*x^4 + 6*x^3 - 2*x^2 - 4*x, x^6 + 2*x^5 - 3*x^4 - 6*x^3 + 2*x^2 + 4*x, -x^5 - x^4 + 3*x^3 + 2*x^2 - 2*x - 1, x^5 + x^4 - 3*x^3 - 2*x^2 + 2*x + 1, -x^5 - 2*x^4 + 2*x^3 + 4*x^2, x^5 + 2*x^4 - 2*x^3 - 4*x^2, -x^4 - x^3 + 2*x^2 + x - 1, x^4 + x^3 - 2*x^2 - x + 1, -x^4 - 2*x^3 + 2*x^2 + 4*x, x^4 + 2*x^3 - 2*x^2 - 4*x, -x^3 - x^2 + x + 1, x^3 + x^2 - x - 1, -x^2 + 1, x^2 - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 + x^15 - 27*x^14 - 24*x^13 + 294*x^12 + 229*x^11 - 1650*x^10 - 1115*x^9 + 5054*x^8 + 2991*x^7 - 8223*x^6 - 4526*x^5 + 6338*x^4 + 3707*x^3 - 1604*x^2 - 1215*x - 167,
           Coordinates        := [-x^15 - x^14 + 24*x^13 + 21*x^12 - 228*x^11 - 172*x^10 + 1086*x^9 + 701*x^8 - 2710*x^7 - 1524*x^6 + 3393*x^5 + 1774*x^4 - 1909*x^3 - 943*x^2 + 345*x + 144, x^15 + x^14 - 24*x^13 - 19*x^12 + 232*x^11 + 138*x^10 - 1142*x^9 - 487*x^8 + 2972*x^7 + 918*x^6 - 3863*x^5 - 1030*x^4 + 2219*x^3 + 583*x^2 - 387*x - 80, -3*x^14 - 3*x^13 + 66*x^12 + 57*x^11 - 564*x^10 - 414*x^9 + 2344*x^8 + 1467*x^7 - 4830*x^6 - 2752*x^5 + 4429*x^4 + 2764*x^3 - 1259*x^2 - 1071*x - 167, x^14 + x^13 - 20*x^12 - 15*x^11 + 156*x^10 + 70*x^9 - 598*x^8 - 63*x^7 + 1172*x^6 - 262*x^5 - 1143*x^4 + 414*x^3 + 559*x^2 - 105*x - 71, -4*x^10 + 48*x^8 - 6*x^7 - 170*x^6 + 42*x^5 + 150*x^4 - 38*x^3 + 34*x^2 + 2*x - 58, 2*x^12 + 4*x^11 - 34*x^10 - 72*x^9 + 210*x^8 + 470*x^7 - 576*x^6 - 1332*x^5 + 660*x^4 + 1530*x^3 - 66*x^2 - 584*x - 148, 2*x^11 - 2*x^10 - 32*x^9 + 22*x^8 + 170*x^7 - 66*x^6 - 332*x^5 + 32*x^4 + 176*x^3 + 80*x + 78, 2*x^12 - 4*x^11 - 40*x^10 + 72*x^9 + 296*x^8 - 464*x^7 - 984*x^6 + 1246*x^5 + 1456*x^4 - 1172*x^3 - 960*x^2 + 250*x + 142, 2*x^11 - 2*x^10 - 46*x^9 + 34*x^8 + 366*x^7 - 202*x^6 - 1214*x^5 + 446*x^4 + 1564*x^3 - 144*x^2 - 720*x - 148, 2*x^13 + 2*x^12 - 38*x^11 - 34*x^10 + 272*x^9 + 212*x^8 - 900*x^7 - 590*x^6 + 1360*x^5 + 722*x^4 - 830*x^3 - 344*x^2 + 158*x + 40, -3*x^13 - 3*x^12 + 60*x^11 + 51*x^10 - 457*x^9 - 318*x^8 + 1650*x^7 + 910*x^6 - 2875*x^5 - 1279*x^4 + 2234*x^3 + 879*x^2 - 601*x - 216, -3*x^13 - 3*x^12 + 60*x^11 + 51*x^10 - 457*x^9 - 318*x^8 + 1650*x^7 + 910*x^6 - 2875*x^5 - 1279*x^4 + 2234*x^3 + 879*x^2 - 601*x - 216, -3*x^12 - 5*x^11 + 54*x^10 + 84*x^9 - 356*x^8 - 515*x^7 + 1037*x^6 + 1425*x^5 - 1248*x^4 - 1820*x^3 + 361*x^2 + 863*x + 187, -3*x^12 - 5*x^11 + 54*x^10 + 84*x^9 - 356*x^8 - 515*x^7 + 1037*x^6 + 1425*x^5 - 1248*x^4 - 1820*x^3 + 361*x^2 + 863*x + 187, -3*x^12 - x^11 + 53*x^10 + 12*x^9 - 338*x^8 - 42*x^7 + 918*x^6 + 48*x^5 - 947*x^4 - 65*x^3 + 297*x^2 - 8*x - 20, -3*x^12 - x^11 + 53*x^10 + 12*x^9 - 338*x^8 - 42*x^7 + 918*x^6 + 48*x^5 - 947*x^4 - 65*x^3 + 297*x^2 - 8*x - 20, x^12 - x^11 - 21*x^10 + 17*x^9 + 159*x^8 - 98*x^7 - 522*x^6 + 202*x^5 + 707*x^4 - 53*x^3 - 377*x^2 - 75*x + 29, x^12 - x^11 - 21*x^10 + 17*x^9 + 159*x^8 - 98*x^7 - 522*x^6 + 202*x^5 + 707*x^4 - 53*x^3 - 377*x^2 - 75*x + 29, -3*x^11 + x^10 + 47*x^9 - 20*x^8 - 268*x^7 + 122*x^6 + 682*x^5 - 242*x^4 - 765*x^3 + 73*x^2 + 331*x + 74, -3*x^11 + x^10 + 47*x^9 - 20*x^8 - 268*x^7 + 122*x^6 + 682*x^5 - 242*x^4 - 765*x^3 + 73*x^2 + 331*x + 74, x^13 + 2*x^12 - 18*x^11 - 35*x^10 + 121*x^9 + 224*x^8 - 373*x^7 - 633*x^6 + 496*x^5 + 749*x^4 - 121*x^3 - 292*x^2 - 114*x - 39, x^13 + 2*x^12 - 18*x^11 - 35*x^10 + 121*x^9 + 224*x^8 - 373*x^7 - 633*x^6 + 496*x^5 + 749*x^4 - 121*x^3 - 292*x^2 - 114*x - 39, x^14 + 2*x^13 - 21*x^12 - 38*x^11 + 176*x^10 + 279*x^9 - 742*x^8 - 1005*x^7 + 1594*x^6 + 1879*x^5 - 1488*x^4 - 1769*x^3 + 329*x^2 + 620*x + 119, x^14 + 2*x^13 - 21*x^12 - 38*x^11 + 176*x^10 + 279*x^9 - 742*x^8 - 1005*x^7 + 1594*x^6 + 1879*x^5 - 1488*x^4 - 1769*x^3 + 329*x^2 + 620*x + 119]>
       ]
>;

MOG[283] := 	// J_0(283)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [21, 30, 60, 78, 122, 251, 246*x + 29, 37*x + 29, 175*x + 255, 108*x + 255, 97*x + 86, 186*x + 86, 173*x + 196, 110*x + 196, 212*x + 119, 71*x + 119, 115*x + 208, 168*x + 208, 208*x + 183, 75*x + 183, 106*x, 177*x, 188*x + 177, 95*x + 177]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^9 + 6*x^8 + 5*x^7 - 29*x^6 - 50*x^5 + 27*x^4 + 83*x^3 + 19*x^2 - 13*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^8 - 6*x^7 - 7*x^6 + 18*x^5 + 38*x^4 - 3*x^3 - 37*x^2 - 11*x + 4, x^8 + 6*x^7 + 7*x^6 - 18*x^5 - 38*x^4 + 3*x^3 + 37*x^2 + 11*x - 4, -x^7 - 6*x^6 - 9*x^5 + 8*x^4 + 29*x^3 + 19*x^2 + x - 1, x^7 + 6*x^6 + 9*x^5 - 8*x^4 - 29*x^3 - 19*x^2 - x + 1, -x^7 - 5*x^6 - 3*x^5 + 16*x^4 + 17*x^3 - 11*x^2 - 10*x + 2, x^7 + 5*x^6 + 3*x^5 - 16*x^4 - 17*x^3 + 11*x^2 + 10*x - 2, -x^6 - 5*x^5 - 4*x^4 + 12*x^3 + 17*x^2 + 2*x - 1, x^6 + 5*x^5 + 4*x^4 - 12*x^3 - 17*x^2 - 2*x + 1, -x^6 - 5*x^5 - 5*x^4 + 10*x^3 + 21*x^2 + 8*x - 3, x^6 + 5*x^5 + 5*x^4 - 10*x^3 - 21*x^2 - 8*x + 3, -x^6 - 5*x^5 - 5*x^4 + 9*x^3 + 16*x^2 + 3*x - 2, x^6 + 5*x^5 + 5*x^4 - 9*x^3 - 16*x^2 - 3*x + 2, -x^5 - 3*x^4 + 2*x^3 + 10*x^2 + 4*x - 2, x^5 + 3*x^4 - 2*x^3 - 10*x^2 - 4*x + 2, -x^5 - 3*x^4 + x^3 + 7*x^2 + 2*x - 1, x^5 + 3*x^4 - x^3 - 7*x^2 - 2*x + 1, -x^5 - 4*x^4 - 2*x^3 + 7*x^2 + 6*x - 1, x^5 + 4*x^4 + 2*x^3 - 7*x^2 - 6*x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^14 - 6*x^13 - 4*x^12 + 83*x^11 - 77*x^10 - 394*x^9 + 617*x^8 + 724*x^7 - 1566*x^6 - 370*x^5 + 1489*x^4 - 153*x^3 - 410*x^2 + 120*x - 8,
           Coordinates        := [-x^13 + 4*x^12 + 11*x^11 - 57*x^10 - 28*x^9 + 289*x^8 - 53*x^7 - 621*x^6 + 259*x^5 + 531*x^4 - 234*x^3 - 130*x^2 + 70*x - 4, x^13 - 5*x^12 - 7*x^11 + 66*x^10 - 21*x^9 - 303*x^8 + 260*x^7 + 564*x^6 - 614*x^5 - 376*x^4 + 457*x^3 + 40*x^2 - 88*x + 12, -x^11 + 4*x^10 + 7*x^9 - 41*x^8 + 129*x^6 - 71*x^5 - 115*x^4 + 111*x^3 - 31*x^2 - 20*x + 4, -x^11 + 4*x^10 + 7*x^9 - 39*x^8 - 12*x^7 + 135*x^6 + 5*x^5 - 231*x^4 + 43*x^3 + 137*x^2 - 50*x, -x^12 + 4*x^11 + 9*x^10 - 49*x^9 - 14*x^8 + 209*x^7 - 65*x^6 - 357*x^5 + 193*x^4 + 185*x^3 - 80*x^2 - 24*x, 2*x^12 - 10*x^11 - 10*x^10 + 112*x^9 - 54*x^8 - 420*x^7 + 388*x^6 + 608*x^5 - 656*x^4 - 264*x^3 + 282*x^2 - 20*x - 4, 2*x^11 - 10*x^10 - 6*x^9 + 93*x^8 - 66*x^7 - 260*x^6 + 286*x^5 + 244*x^4 - 316*x^3 - 50*x^2 + 86*x - 12, 2*x^11 - 10*x^10 - 6*x^9 + 93*x^8 - 66*x^7 - 260*x^6 + 286*x^5 + 244*x^4 - 316*x^3 - 50*x^2 + 86*x - 12, 2*x^10 - 11*x^9 + x^8 + 84*x^7 - 107*x^6 - 143*x^5 + 282*x^4 - 4*x^3 - 140*x^2 + 38*x, 2*x^10 - 11*x^9 + x^8 + 84*x^7 - 107*x^6 - 143*x^5 + 282*x^4 - 4*x^3 - 140*x^2 + 38*x, 2*x^10 - 8*x^9 - 13*x^8 + 76*x^7 + 5*x^6 - 221*x^5 + 58*x^4 + 218*x^3 - 56*x^2 - 30*x + 4, 2*x^10 - 8*x^9 - 13*x^8 + 76*x^7 + 5*x^6 - 221*x^5 + 58*x^4 + 218*x^3 - 56*x^2 - 30*x + 4, -x^10 + 5*x^9 + x^8 - 37*x^7 + 35*x^6 + 63*x^5 - 75*x^4 - 24*x^3 + 15*x^2 + 12*x, -x^10 + 5*x^9 + x^8 - 37*x^7 + 35*x^6 + 63*x^5 - 75*x^4 - 24*x^3 + 15*x^2 + 12*x, 2*x^9 - 10*x^8 - 4*x^7 + 82*x^6 - 67*x^5 - 173*x^4 + 200*x^3 + 73*x^2 - 98*x + 12, 2*x^9 - 10*x^8 - 4*x^7 + 82*x^6 - 67*x^5 - 173*x^4 + 200*x^3 + 73*x^2 - 98*x + 12, x^9 - 4*x^8 - 5*x^7 + 34*x^6 - 7*x^5 - 84*x^4 + 42*x^3 + 76*x^2 - 52*x + 8, x^9 - 4*x^8 - 5*x^7 + 34*x^6 - 7*x^5 - 84*x^4 + 42*x^3 + 76*x^2 - 52*x + 8, -x^9 + 5*x^8 + 2*x^7 - 42*x^6 + 37*x^5 + 91*x^4 - 123*x^3 - 31*x^2 + 72*x - 12, -x^9 + 5*x^8 + 2*x^7 - 42*x^6 + 37*x^5 + 91*x^4 - 123*x^3 - 31*x^2 + 72*x - 12, x^8 - 2*x^7 - 9*x^6 + 16*x^5 + 25*x^4 - 34*x^3 - 26*x^2 + 24*x - 4, x^8 - 2*x^7 - 9*x^6 + 16*x^5 + 25*x^4 - 34*x^3 - 26*x^2 + 24*x - 4, -x^10 + 4*x^9 + 7*x^8 - 40*x^7 - 3*x^6 + 121*x^5 - 41*x^4 - 108*x^3 + 30*x^2 + 14*x, -x^10 + 4*x^9 + 7*x^8 - 40*x^7 - 3*x^6 + 121*x^5 - 41*x^4 - 108*x^3 + 30*x^2 + 14*x]>
       ]
>;

MOG[293] := 	// J_0(293)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 48, 88, 89, 124, 127, 141, 212, 243, 42*x + 241, 251*x + 241, 253*x + 229, 40*x + 229, 273*x + 25, 20*x + 25, 138*x + 292, 155*x + 292, 4*x + 233, 289*x + 233, 244*x + 62, 49*x + 62, 38*x + 266, 255*x + 266, 187*x + 137, 106*x + 137]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^8 + 3*x^7 - 4*x^6 - 15*x^5 + 4*x^4 + 21*x^3 - 2*x^2 - 8*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, -x^7 - 3*x^6 + 2*x^5 + 9*x^4 - 2*x^3 - 7*x^2 + 2*x, x^7 + 3*x^6 - 2*x^5 - 9*x^4 + 2*x^3 + 7*x^2 - 2*x, -x^6 - 3*x^5 + x^4 + 7*x^3 - 4*x, x^6 + 3*x^5 - x^4 - 7*x^3 + 4*x, -x^6 - 3*x^5 + x^4 + 7*x^3 - 4*x + 1, x^6 + 3*x^5 - x^4 - 7*x^3 + 4*x - 1, -x^5 - 2*x^4 + 2*x^3 + 3*x^2 - 2*x, x^5 + 2*x^4 - 2*x^3 - 3*x^2 + 2*x, -x^5 - 2*x^4 + 2*x^3 + 3*x^2 - x, x^5 + 2*x^4 - 2*x^3 - 3*x^2 + x, -x^4 - 2*x^3 + x^2 + 2*x, x^4 + 2*x^3 - x^2 - 2*x, -x^4 - 2*x^3 + 2*x^2 + 3*x - 1, x^4 + 2*x^3 - 2*x^2 - 3*x + 1, -x^3 - x^2 + 2*x, x^3 + x^2 - 2*x]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - 3*x^15 - 22*x^14 + 69*x^13 + 184*x^12 - 621*x^11 - 716*x^10 + 2758*x^9 + 1234*x^8 - 6287*x^7 - 554*x^6 + 7023*x^5 - 572*x^4 - 3385*x^3 + 508*x^2 + 526*x - 111,
           Coordinates        := [-x^15 + 3*x^14 + 19*x^13 - 60*x^12 - 133*x^11 + 461*x^10 + 403*x^9 - 1705*x^8 - 393*x^7 + 3106*x^6 - 399*x^5 - 2515*x^4 + 835*x^3 + 654*x^2 - 283*x + 16, x^15 - 3*x^14 - 19*x^13 + 60*x^12 + 133*x^11 - 463*x^10 - 397*x^9 + 1721*x^8 + 329*x^7 - 3108*x^6 + 589*x^5 + 2347*x^4 - 975*x^3 - 402*x^2 + 259*x - 40, -3*x^14 + 9*x^13 + 51*x^12 - 160*x^11 - 313*x^10 + 1053*x^9 + 841*x^8 - 3181*x^7 - 953*x^6 + 4508*x^5 + 263*x^4 - 2731*x^3 + 225*x^2 + 542*x - 111, 2*x^12 - 4*x^11 - 32*x^10 + 60*x^9 + 184*x^8 - 314*x^7 - 456*x^6 + 672*x^5 + 440*x^4 - 490*x^3 - 80*x^2 + 4*x + 14, 2*x^12 - 6*x^11 - 32*x^10 + 102*x^9 + 172*x^8 - 620*x^7 - 328*x^6 + 1612*x^5 + 42*x^4 - 1694*x^3 + 336*x^2 + 518*x - 128, x^14 - 3*x^13 - 17*x^12 + 54*x^11 + 105*x^10 - 369*x^9 - 285*x^8 + 1221*x^7 + 299*x^6 - 2100*x^5 + 105*x^4 + 1789*x^3 - 445*x^2 - 496*x + 157, 2*x^10 - 24*x^8 + 2*x^7 + 90*x^6 - 20*x^5 - 114*x^4 + 54*x^3 + 32*x^2 - 12*x - 18, 2*x^11 - 4*x^10 - 24*x^9 + 50*x^8 + 86*x^7 - 200*x^6 - 74*x^5 + 282*x^4 - 76*x^3 - 76*x^2 + 6*x + 36, -4*x^11 + 8*x^10 + 60*x^9 - 120*x^8 - 298*x^7 + 604*x^6 + 526*x^5 - 1136*x^4 - 194*x^3 + 612*x^2 - 26*x - 40, x^13 - 3*x^12 - 14*x^11 + 46*x^10 + 62*x^9 - 249*x^8 - 71*x^7 + 564*x^6 - 116*x^5 - 465*x^4 + 205*x^3 + 42*x^2 + 5*x - 7, x^13 - 3*x^12 - 14*x^11 + 46*x^10 + 62*x^9 - 249*x^8 - 71*x^7 + 564*x^6 - 116*x^5 - 465*x^4 + 205*x^3 + 42*x^2 + 5*x - 7, x^14 - 3*x^13 - 17*x^12 + 52*x^11 + 107*x^10 - 334*x^9 - 310*x^8 + 979*x^7 + 422*x^6 - 1288*x^5 - 254*x^4 + 597*x^3 + 98*x^2 - 35*x - 23, x^14 - 3*x^13 - 17*x^12 + 52*x^11 + 107*x^10 - 334*x^9 - 310*x^8 + 979*x^7 + 422*x^6 - 1288*x^5 - 254*x^4 + 597*x^3 + 98*x^2 - 35*x - 23, x^12 - 2*x^11 - 13*x^10 + 25*x^9 + 55*x^8 - 101*x^7 - 82*x^6 + 151*x^5 + 19*x^4 - 65*x^3 - 13*x^2 + 24*x + 9, x^12 - 2*x^11 - 13*x^10 + 25*x^9 + 55*x^8 - 101*x^7 - 82*x^6 + 151*x^5 + 19*x^4 - 65*x^3 - 13*x^2 + 24*x + 9, x^13 - 5*x^12 - 12*x^11 + 83*x^10 + 25*x^9 - 493*x^8 + 164*x^7 + 1256*x^6 - 727*x^5 - 1285*x^4 + 868*x^3 + 325*x^2 - 287*x + 47, x^13 - 5*x^12 - 12*x^11 + 83*x^10 + 25*x^9 - 493*x^8 + 164*x^7 + 1256*x^6 - 727*x^5 - 1285*x^4 + 868*x^3 + 325*x^2 - 287*x + 47, x^12 - x^11 - 17*x^10 + 17*x^9 + 98*x^8 - 97*x^7 - 213*x^6 + 209*x^5 + 118*x^4 - 142*x^3 + 58*x^2 - 2*x - 29, x^12 - x^11 - 17*x^10 + 17*x^9 + 98*x^8 - 97*x^7 - 213*x^6 + 209*x^5 + 118*x^4 - 142*x^3 + 58*x^2 - 2*x - 29, -3*x^13 + 10*x^12 + 43*x^11 - 165*x^10 - 184*x^9 + 967*x^8 + 113*x^7 - 2405*x^6 + 730*x^5 + 2407*x^4 - 1140*x^3 - 710*x^2 + 369*x - 24, -3*x^13 + 10*x^12 + 43*x^11 - 165*x^10 - 184*x^9 + 967*x^8 + 113*x^7 - 2405*x^6 + 730*x^5 + 2407*x^4 - 1140*x^3 - 710*x^2 + 369*x - 24, x^13 - 3*x^12 - 14*x^11 + 47*x^10 + 56*x^9 - 250*x^8 - 15*x^7 + 504*x^6 - 242*x^5 - 279*x^4 + 265*x^3 - 47*x^2 - 51*x + 20, x^13 - 3*x^12 - 14*x^11 + 47*x^10 + 56*x^9 - 250*x^8 - 15*x^7 + 504*x^6 - 242*x^5 - 279*x^4 + 265*x^3 - 47*x^2 - 51*x + 20, -3*x^12 + 7*x^11 + 46*x^10 - 111*x^9 - 235*x^8 + 612*x^7 + 427*x^6 - 1374*x^5 - 118*x^4 + 1153*x^3 - 181*x^2 - 279*x + 64, -3*x^12 + 7*x^11 + 46*x^10 - 111*x^9 - 235*x^8 + 612*x^7 + 427*x^6 - 1374*x^5 - 118*x^4 + 1153*x^3 - 181*x^2 - 279*x + 64]>
       ]
>;

MOG[307] := 	// J_0(307)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [2, 38, 81, 144, 193, 305, 245*x + 253, 62*x + 253, 302*x + 154, 5*x + 154, 103*x + 131, 204*x + 131, 124*x + 33, 183*x + 33, 64*x + 256, 243*x + 256, 202*x + 177, 105*x + 177, 125*x + 230, 182*x + 230, 202*x + 132, 105*x + 132, 242*x + 118, 65*x + 118, 194*x + 225, 113*x + 225]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 1, -1, 1, -1, 0, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [1, -1, -1, 0, 0, -1, 0, 0, 1, 1, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x - 2,
           Coordinates        := [1, -1, 0, 1, 1, 0, 0, 0, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x + 3,
           Coordinates        := [-1, 0, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 3,
           Coordinates        := [-2*x - 4, 2*x + 8, 2, 2, 2*x + 4, 2*x + 2, -x - 4, -x - 4, -x - 1, -x - 1, -2*x - 4, -2*x - 4, 2*x + 2, 2*x + 2, x + 2, x + 2, -x - 1, -x - 1, 2*x + 5, 2*x + 5, -3*x - 7, -3*x - 7, x + 2, x + 2, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 - 3*x^8 - 11*x^7 + 30*x^6 + 46*x^5 - 87*x^4 - 91*x^3 + 50*x^2 + 62*x + 13,
           Coordinates        := [-9/14*x^8 + 37/7*x^7 - 3/14*x^6 - 649/14*x^5 + 177/14*x^4 + 881/7*x^3 + 211/14*x^2 - 1051/14*x - 403/14, -5/2*x^8 + 85/7*x^7 + 93/14*x^6 - 1209/14*x^5 + 309/14*x^4 + 1163/7*x^3 - 83/14*x^2 - 1059/14*x - 221/14, -11/14*x^8 + 7*x^7 - 151/14*x^6 - 507/14*x^5 + 1037/14*x^4 + 402/7*x^3 - 1121/14*x^2 - 997/14*x - 221/14, 31/7*x^8 - 158/7*x^7 - 38/7*x^6 + 1037/7*x^5 - 451/7*x^4 - 1856/7*x^3 + 92/7*x^2 + 1129/7*x + 52, -15/7*x^8 + 61/7*x^7 + 68/7*x^6 - 60*x^5 - 73/7*x^4 + 781/7*x^3 + 290/7*x^2 - 368/7*x - 169/7, 65/14*x^8 - 125/7*x^7 - 373/14*x^6 + 1889/14*x^5 + 625/14*x^4 - 2066/7*x^3 - 1023/14*x^2 + 2257/14*x + 923/14, -5/2*x^8 + 181/14*x^7 - 29/14*x^6 - 1037/14*x^5 + 141/2*x^4 + 193/2*x^3 - 143/2*x^2 - 411/7*x - 65/14, -5/2*x^8 + 181/14*x^7 - 29/14*x^6 - 1037/14*x^5 + 141/2*x^4 + 193/2*x^3 - 143/2*x^2 - 411/7*x - 65/14, x^8 - 9/2*x^7 - 57/14*x^6 + 63/2*x^5 + 9/2*x^4 - 60*x^3 - 331/14*x^2 + 225/14*x + 117/14, x^8 - 9/2*x^7 - 57/14*x^6 + 63/2*x^5 + 9/2*x^4 - 60*x^3 - 331/14*x^2 + 225/14*x + 117/14, -5/2*x^7 + 73/7*x^6 + 41/7*x^5 - 855/14*x^4 + 183/7*x^3 + 1075/14*x^2 - 27*x - 195/7, -5/2*x^7 + 73/7*x^6 + 41/7*x^5 - 855/14*x^4 + 183/7*x^3 + 1075/14*x^2 - 27*x - 195/7, -3/2*x^7 + 107/14*x^6 + 15/14*x^5 - 48*x^4 + 216/7*x^3 + 857/14*x^2 - 11*x - 117/7, -3/2*x^7 + 107/14*x^6 + 15/14*x^5 - 48*x^4 + 216/7*x^3 + 857/14*x^2 - 11*x - 117/7, -5/2*x^6 + 50/7*x^5 + 117/7*x^4 - 321/7*x^3 - 226/7*x^2 + 405/7*x + 65/2, -5/2*x^6 + 50/7*x^5 + 117/7*x^4 - 321/7*x^3 - 226/7*x^2 + 405/7*x + 65/2, -3/2*x^6 + 48/7*x^5 + 30/7*x^4 - 629/14*x^3 + 130/7*x^2 + 300/7*x + 52/7, -3/2*x^6 + 48/7*x^5 + 30/7*x^4 - 629/14*x^3 + 130/7*x^2 + 300/7*x + 52/7, -11/14*x^6 + 26/7*x^5 - 3/2*x^4 - 88/7*x^3 + 187/14*x^2 + 23/14*x - 65/14, -11/14*x^6 + 26/7*x^5 - 3/2*x^4 - 88/7*x^3 + 187/14*x^2 + 23/14*x - 65/14, -11/14*x^6 + 33/7*x^5 - 11/14*x^4 - 170/7*x^3 + 18/7*x^2 + 292/7*x + 143/7, -11/14*x^6 + 33/7*x^5 - 11/14*x^4 - 170/7*x^3 + 18/7*x^2 + 292/7*x + 143/7, -3/2*x^5 + 27/7*x^4 + 12*x^3 - 293/14*x^2 - 163/7*x - 26/7, -3/2*x^5 + 27/7*x^4 + 12*x^3 - 293/14*x^2 - 163/7*x - 26/7, -11/14*x^7 + 7*x^6 - 173/14*x^5 - 389/14*x^4 + 1005/14*x^3 + 144/7*x^2 - 449/7*x - 195/7, -11/14*x^7 + 7*x^6 - 173/14*x^5 - 389/14*x^4 + 1005/14*x^3 + 144/7*x^2 - 449/7*x - 195/7]>,
         rec<Eigen |
           DefiningPolynomial := x^10 + 7*x^9 + 10*x^8 - 28*x^7 - 73*x^6 + 16*x^5 + 128*x^4 + 26*x^3 - 69*x^2 - 18*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^9 - 7*x^8 - 12*x^7 + 16*x^6 + 59*x^5 + 19*x^4 - 56*x^3 - 32*x^2 + 8*x + 1, x^9 + 7*x^8 + 12*x^7 - 16*x^6 - 59*x^5 - 19*x^4 + 56*x^3 + 32*x^2 - 8*x - 1, -x^8 - 6*x^7 - 7*x^6 + 17*x^5 + 34*x^4 - 4*x^3 - 28*x^2 - 7*x, x^8 + 6*x^7 + 7*x^6 - 17*x^5 - 34*x^4 + 4*x^3 + 28*x^2 + 7*x, -x^8 - 6*x^7 - 7*x^6 + 18*x^5 + 38*x^4 - 2*x^3 - 33*x^2 - 10*x - 1, x^8 + 6*x^7 + 7*x^6 - 18*x^5 - 38*x^4 + 2*x^3 + 33*x^2 + 10*x + 1, -x^7 - 6*x^6 - 8*x^5 + 11*x^4 + 24*x^3 - 3*x^2 - 15*x - 1, x^7 + 6*x^6 + 8*x^5 - 11*x^4 - 24*x^3 + 3*x^2 + 15*x + 1, -x^7 - 5*x^6 - 3*x^5 + 17*x^4 + 21*x^3 - 11*x^2 - 19*x - 2, x^7 + 5*x^6 + 3*x^5 - 17*x^4 - 21*x^3 + 11*x^2 + 19*x + 2, -x^6 - 6*x^5 - 10*x^4 + x^3 + 13*x^2 + 6*x, x^6 + 6*x^5 + 10*x^4 - x^3 - 13*x^2 - 6*x, -x^6 - 4*x^5 + 12*x^3 + 3*x^2 - 11*x - 1, x^6 + 4*x^5 - 12*x^3 - 3*x^2 + 11*x + 1, -x^5 - 6*x^4 - 9*x^3 + 4*x^2 + 12*x + 1, x^5 + 6*x^4 + 9*x^3 - 4*x^2 - 12*x - 1, -x^5 - 4*x^4 - 2*x^3 + 5*x^2 + 3*x, x^5 + 4*x^4 + 2*x^3 - 5*x^2 - 3*x, -x^5 - 5*x^4 - 6*x^3 + 3*x^2 + 7*x + 1, x^5 + 5*x^4 + 6*x^3 - 3*x^2 - 7*x - 1]>
       ]
>;

MOG[311] := 	// J_0(311)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 19, 32, 46, 77, 99, 102, 131, 132, 150, 168, 173, 197, 225, 232, 247, 252, 299, 304, 285*x + 237, 26*x + 237, 57*x + 300, 254*x + 300, 183*x + 212, 128*x + 212, 160*x + 232, 151*x + 232]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^4 + x^3 - 3*x^2 - x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^3 - x^2 + x, x^3 + x^2 - x, -x^2, x^2, -x^2 - x + 1, x^2 + x - 1, -x, x]>,
         rec<Eigen |
           DefiningPolynomial := x^22 - 2*x^21 - 35*x^20 + 70*x^19 + 517*x^18 - 1033*x^17 - 4195*x^16 + 8357*x^15 + 20417*x^14 - 40403*x^13 - 61287*x^12 + 119701*x^11 + 113017*x^10 - 215615*x^9 - 124399*x^8 + 228609*x^7 + 76453*x^6 - 133295*x^5 - 23503*x^4 + 36742*x^3 + 3587*x^2 - 3200*x - 473,
           Coordinates        := [-x^21 + 2*x^20 + 32*x^19 - 64*x^18 - 427*x^17 + 854*x^16 + 3082*x^15 - 6166*x^14 - 13071*x^13 + 26192*x^12 + 33205*x^11 - 66900*x^10 - 49536*x^9 + 101478*x^8 + 40784*x^7 - 87824*x^6 - 15805*x^5 + 39921*x^4 + 1546*x^3 - 8054*x^2 + 237*x + 490, x^21 - 2*x^20 - 32*x^19 + 64*x^18 + 428*x^17 - 856*x^16 - 3108*x^15 + 6222*x^14 + 13328*x^13 - 26804*x^12 - 34379*x^11 + 70184*x^10 + 51855*x^9 - 110546*x^8 - 41718*x^7 + 100657*x^6 + 13400*x^5 - 48927*x^4 + 1134*x^3 + 10772*x^2 - 985*x - 684, 2*x^17 - 5*x^16 - 47*x^15 + 126*x^14 + 431*x^13 - 1270*x^12 - 1954*x^11 + 6589*x^10 + 4582*x^9 - 18942*x^8 - 5141*x^7 + 30181*x^6 + 1242*x^5 - 24370*x^4 + 2119*x^3 + 8117*x^2 - 1096*x - 600, -3*x^18 + x^17 + 84*x^16 - 32*x^15 - 959*x^14 + 395*x^13 + 5741*x^12 - 2427*x^11 - 19353*x^10 + 7949*x^9 + 36952*x^8 - 13939*x^7 - 38740*x^6 + 12891*x^5 + 20725*x^4 - 5567*x^3 - 4832*x^2 + 724*x + 393, x^20 - 2*x^19 - 30*x^18 + 60*x^17 + 368*x^16 - 732*x^15 - 2380*x^14 + 4672*x^13 + 8758*x^12 - 16796*x^11 - 18543*x^10 + 34510*x^9 + 21569*x^8 - 40126*x^7 - 10924*x^6 + 25359*x^5 - 860*x^4 - 7491*x^3 + 2320*x^2 + 488*x - 259, -3*x^19 + 7*x^18 + 82*x^17 - 200*x^16 - 895*x^15 + 2313*x^14 + 4951*x^13 - 13909*x^12 - 14499*x^11 + 46655*x^10 + 21054*x^9 - 87843*x^8 - 10862*x^7 + 90371*x^6 - 5057*x^5 - 47017*x^4 + 6302*x^3 + 10388*x^2 - 1055*x - 786, -3*x^18 + 6*x^17 + 82*x^16 - 170*x^15 - 889*x^14 + 1921*x^13 + 4837*x^12 - 11035*x^11 - 13743*x^10 + 34097*x^9 + 19120*x^8 - 55672*x^7 - 10085*x^6 + 44887*x^5 - 1414*x^4 - 15002*x^3 + 1977*x^2 + 1246*x - 124, -x^18 + 2*x^17 + 26*x^16 - 47*x^15 - 277*x^14 + 424*x^13 + 1610*x^12 - 1858*x^11 - 5799*x^10 + 4234*x^9 + 13653*x^8 - 5386*x^7 - 20048*x^6 + 4429*x^5 + 16255*x^4 - 2622*x^3 - 5930*x^2 + 780*x + 597, x^20 - 2*x^19 - 29*x^18 + 60*x^17 + 341*x^16 - 736*x^15 - 2081*x^14 + 4764*x^13 + 6977*x^12 - 17550*x^11 - 12286*x^10 + 37052*x^9 + 8695*x^8 - 42768*x^7 + 2345*x^6 + 23929*x^5 - 5215*x^4 - 4778*x^3 + 1023*x^2 + 250*x + 8, x^20 - 2*x^19 - 30*x^18 + 57*x^17 + 378*x^16 - 667*x^15 - 2628*x^14 + 4163*x^13 + 11173*x^12 - 15171*x^11 - 30333*x^10 + 33507*x^9 + 52417*x^8 - 45058*x^7 - 54474*x^6 + 35080*x^5 + 30712*x^4 - 13701*x^3 - 7915*x^2 + 1778*x + 724, x^19 - 2*x^18 - 28*x^17 + 55*x^16 + 326*x^15 - 623*x^14 - 2062*x^13 + 3791*x^12 + 7765*x^11 - 13603*x^10 - 17783*x^9 + 29687*x^8 + 23719*x^7 - 38612*x^6 - 16154*x^5 + 27692*x^4 + 3684*x^3 - 8947*x^2 + 509*x + 604, x^19 - x^18 - 30*x^17 + 30*x^16 + 371*x^15 - 365*x^14 - 2446*x^13 + 2318*x^12 + 9295*x^11 - 8255*x^10 - 20541*x^9 + 16511*x^8 + 25206*x^7 - 17562*x^6 - 15217*x^5 + 8712*x^4 + 3497*x^3 - 1281*x^2 - 258*x - 8, -3*x^20 + 6*x^19 + 90*x^18 - 179*x^17 - 1113*x^16 + 2191*x^15 + 7346*x^14 - 14211*x^13 - 28082*x^12 + 52801*x^11 + 63481*x^10 - 114137*x^9 - 83615*x^8 + 140785*x^7 + 60648*x^6 - 93374*x^5 - 21957*x^4 + 28688*x^3 + 3824*x^2 - 2710*x - 473, -3*x^17 + 5*x^16 + 82*x^15 - 135*x^14 - 898*x^13 + 1454*x^12 + 5021*x^11 - 7968*x^10 - 15122*x^9 + 23557*x^8 + 23735*x^7 - 37078*x^6 - 16982*x^5 + 29147*x^4 + 3363*x^3 - 9520*x^2 + 574*x + 724, x^19 - 2*x^18 - 27*x^17 + 60*x^16 + 285*x^15 - 728*x^14 - 1459*x^13 + 4618*x^12 + 3503*x^11 - 16622*x^10 - 2078*x^9 + 34756*x^8 - 6349*x^7 - 41604*x^6 + 11819*x^5 + 26725*x^4 - 7105*x^3 - 7960*x^2 + 1509*x + 700, -x^17 - 4*x^16 + 34*x^15 + 82*x^14 - 445*x^13 - 623*x^12 + 2871*x^11 + 2157*x^10 - 9697*x^9 - 3423*x^8 + 17022*x^7 + 2238*x^6 - 14947*x^5 - 91*x^4 + 5730*x^3 - 298*x^2 - 569*x - 40, -3*x^19 + 6*x^18 + 86*x^17 - 171*x^16 - 1005*x^15 + 1974*x^14 + 6180*x^13 - 11866*x^12 - 21635*x^11 + 39908*x^10 + 43939*x^9 - 75806*x^8 - 50842*x^7 + 79727*x^6 + 30515*x^5 - 44058*x^4 - 7116*x^3 + 11064*x^2 - 129*x - 684, x^19 - 5*x^18 - 22*x^17 + 134*x^16 + 154*x^15 - 1436*x^14 - 93*x^13 + 7842*x^12 - 3719*x^11 - 23074*x^10 + 18345*x^9 + 35801*x^8 - 36475*x^7 - 26965*x^6 + 33466*x^5 + 7534*x^4 - 12733*x^3 - 47*x^2 + 1200*x + 80, x^18 - 5*x^17 - 24*x^16 + 126*x^15 + 222*x^14 - 1272*x^13 - 983*x^12 + 6596*x^11 + 2023*x^10 - 18760*x^9 - 1049*x^8 + 28955*x^7 - 2431*x^6 - 22489*x^5 + 3572*x^4 + 7352*x^3 - 1273*x^2 - 643*x + 62, x^18 - 28*x^16 + 4*x^15 + 311*x^14 - 73*x^13 - 1737*x^12 + 464*x^11 + 5104*x^10 - 1148*x^9 - 7522*x^8 + 582*x^7 + 4737*x^6 + 1398*x^5 - 945*x^4 - 1591*x^3 + 243*x^2 + 225*x - 4, x^18 - 28*x^16 + 4*x^15 + 311*x^14 - 73*x^13 - 1737*x^12 + 464*x^11 + 5104*x^10 - 1148*x^9 - 7522*x^8 + 582*x^7 + 4737*x^6 + 1398*x^5 - 945*x^4 - 1591*x^3 + 243*x^2 + 225*x - 4, x^18 - 30*x^16 + 4*x^15 + 372*x^14 - 92*x^13 - 2450*x^12 + 817*x^11 + 9199*x^10 - 3534*x^9 - 19825*x^8 + 7863*x^7 + 23842*x^6 - 9070*x^5 - 14802*x^4 + 4971*x^3 + 3973*x^2 - 926*x - 338, x^18 - 30*x^16 + 4*x^15 + 372*x^14 - 92*x^13 - 2450*x^12 + 817*x^11 + 9199*x^10 - 3534*x^9 - 19825*x^8 + 7863*x^7 + 23842*x^6 - 9070*x^5 - 14802*x^4 + 4971*x^3 + 3973*x^2 - 926*x - 338, x^18 - x^17 - 26*x^16 + 22*x^15 + 283*x^14 - 186*x^13 - 1704*x^12 + 784*x^11 + 6275*x^10 - 1910*x^9 - 14349*x^8 + 3223*x^7 + 19160*x^6 - 3694*x^5 - 13514*x^4 + 2377*x^3 + 4212*x^2 - 587*x - 362, x^18 - x^17 - 26*x^16 + 22*x^15 + 283*x^14 - 186*x^13 - 1704*x^12 + 784*x^11 + 6275*x^10 - 1910*x^9 - 14349*x^8 + 3223*x^7 + 19160*x^6 - 3694*x^5 - 13514*x^4 + 2377*x^3 + 4212*x^2 - 587*x - 362, x^19 - 2*x^18 - 30*x^17 + 62*x^16 + 364*x^15 - 775*x^14 - 2285*x^13 + 5004*x^12 + 7918*x^11 - 17837*x^10 - 15143*x^9 + 35210*x^8 + 15397*x^7 - 37649*x^6 - 7130*x^5 + 20718*x^4 + 593*x^3 - 5142*x^2 + 363*x + 342, x^19 - 2*x^18 - 30*x^17 + 62*x^16 + 364*x^15 - 775*x^14 - 2285*x^13 + 5004*x^12 + 7918*x^11 - 17837*x^10 - 15143*x^9 + 35210*x^8 + 15397*x^7 - 37649*x^6 - 7130*x^5 + 20718*x^4 + 593*x^3 - 5142*x^2 + 363*x + 342]>
       ]
>;

MOG[313] := 	// J_0(313)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [61, 68, 129, 200, 22*x + 55, 291*x + 55, 123*x + 71, 190*x + 71, 235*x + 53, 78*x + 53, 120*x + 20, 193*x + 20, 24*x + 16, 289*x + 16, 265*x + 140, 48*x + 140, 279*x + 200, 34*x + 200, 224*x + 99, 89*x + 99, 276*x + 65, 37*x + 65, 61*x + 109, 252*x + 109, 194*x + 165, 119*x + 165]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [0, 0, 2, 0, 0, 0, x, x, -x, -x, 1, 1, -1, -1, -1, -1, x, x, -x, -x, -x + 1, -x + 1, x, x, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^11 + 8*x^10 + 16*x^9 - 26*x^8 - 121*x^7 - 62*x^6 + 190*x^5 + 196*x^4 - 76*x^3 - 122*x^2 + 2*x + 17,
           Coordinates        := [0, 0, 0, 0, -x^10 - 8*x^9 - 18*x^8 + 12*x^7 + 97*x^6 + 97*x^5 - 52*x^4 - 118*x^3 - 25*x^2 + 25*x + 7, x^10 + 8*x^9 + 18*x^8 - 12*x^7 - 97*x^6 - 97*x^5 + 52*x^4 + 118*x^3 + 25*x^2 - 25*x - 7, -x^9 - 7*x^8 - 12*x^7 + 18*x^6 + 72*x^5 + 44*x^4 - 52*x^3 - 59*x^2 - 2*x + 9, x^9 + 7*x^8 + 12*x^7 - 18*x^6 - 72*x^5 - 44*x^4 + 52*x^3 + 59*x^2 + 2*x - 9, -x^9 - 7*x^8 - 12*x^7 + 17*x^6 + 66*x^5 + 34*x^4 - 49*x^3 - 38*x^2 + 11*x + 8, x^9 + 7*x^8 + 12*x^7 - 17*x^6 - 66*x^5 - 34*x^4 + 49*x^3 + 38*x^2 - 11*x - 8, -x^8 - 6*x^7 - 7*x^6 + 19*x^5 + 44*x^4 + 7*x^3 - 36*x^2 - 18*x + 2, x^8 + 6*x^7 + 7*x^6 - 19*x^5 - 44*x^4 - 7*x^3 + 36*x^2 + 18*x - 2, -x^8 - 7*x^7 - 14*x^6 + 3*x^5 + 37*x^4 + 31*x^3 - 2*x^2 - 6*x + 1, x^8 + 7*x^7 + 14*x^6 - 3*x^5 - 37*x^4 - 31*x^3 + 2*x^2 + 6*x - 1, -x^7 - 6*x^6 - 9*x^5 + 7*x^4 + 23*x^3 + 5*x^2 - 14*x - 7, x^7 + 6*x^6 + 9*x^5 - 7*x^4 - 23*x^3 - 5*x^2 + 14*x + 7, -x^7 - 6*x^6 - 8*x^5 + 11*x^4 + 26*x^3 + 5*x^2 - 7*x + 1, x^7 + 6*x^6 + 8*x^5 - 11*x^4 - 26*x^3 - 5*x^2 + 7*x - 1, -x^7 - 8*x^6 - 21*x^5 - 14*x^4 + 21*x^3 + 27*x^2 - 3*x - 9, x^7 + 8*x^6 + 21*x^5 + 14*x^4 - 21*x^3 - 27*x^2 + 3*x + 9, -x^6 - 8*x^5 - 23*x^4 - 27*x^3 - 6*x^2 + 11*x + 6, x^6 + 8*x^5 + 23*x^4 + 27*x^3 + 6*x^2 - 11*x - 6, -x^5 - 6*x^4 - 11*x^3 - 5*x^2 + 4*x + 3, x^5 + 6*x^4 + 11*x^3 + 5*x^2 - 4*x - 3, -x^5 - 7*x^4 - 16*x^3 - 11*x^2 + 5*x + 6, x^5 + 7*x^4 + 16*x^3 + 11*x^2 - 5*x - 6]>,
         rec<Eigen |
           DefiningPolynomial := x^12 - 6*x^11 - 2*x^10 + 69*x^9 - 68*x^8 - 268*x^7 + 399*x^6 + 368*x^5 - 701*x^4 - 57*x^3 + 262*x^2 - 22*x - 19,
           Coordinates        := [-x^11 + 6*x^10 - x^9 - 53*x^8 + 71*x^7 + 135*x^6 - 272*x^5 - 59*x^4 + 285*x^3 - 80*x^2 - 33*x + 10, x^11 - 4*x^10 - 9*x^9 + 47*x^8 + 19*x^7 - 191*x^6 + 26*x^5 + 293*x^4 - 93*x^3 - 102*x^2 + 19*x + 12, -x^10 + 6*x^9 - 3*x^8 - 43*x^7 + 73*x^6 + 61*x^5 - 198*x^4 + 65*x^3 + 79*x^2 - 32*x - 3, x^10 - 4*x^9 - 7*x^8 + 39*x^7 + 9*x^6 - 127*x^5 + 22*x^4 + 141*x^3 - 39*x^2 - 4*x - 5, x^9 - 4*x^8 - 5*x^7 + 32*x^6 - 2*x^5 - 76*x^4 + 27*x^3 + 49*x^2 - 12*x - 6, x^9 - 4*x^8 - 5*x^7 + 32*x^6 - 2*x^5 - 76*x^4 + 27*x^3 + 49*x^2 - 12*x - 6, x^8 - 3*x^7 - 7*x^6 + 22*x^5 + 14*x^4 - 40*x^3 - 10*x^2 + 7, x^8 - 3*x^7 - 7*x^6 + 22*x^5 + 14*x^4 - 40*x^3 - 10*x^2 + 7, x^8 - 4*x^7 - 4*x^6 + 29*x^5 - 9*x^4 - 52*x^3 + 37*x^2 - 2*x - 2, x^8 - 4*x^7 - 4*x^6 + 29*x^5 - 9*x^4 - 52*x^3 + 37*x^2 - 2*x - 2, x^7 - 3*x^6 - 6*x^5 + 22*x^4 + 3*x^3 - 39*x^2 + 19*x - 1, x^7 - 3*x^6 - 6*x^5 + 22*x^4 + 3*x^3 - 39*x^2 + 19*x - 1, -x^8 + 5*x^7 + x^6 - 36*x^5 + 33*x^4 + 62*x^3 - 88*x^2 + 12*x + 8, -x^8 + 5*x^7 + x^6 - 36*x^5 + 33*x^4 + 62*x^3 - 88*x^2 + 12*x + 8, -x^7 + 4*x^6 + 6*x^5 - 33*x^4 - 2*x^3 + 68*x^2 - 20*x - 6, -x^7 + 4*x^6 + 6*x^5 - 33*x^4 - 2*x^3 + 68*x^2 - 20*x - 6, -x^9 + 5*x^8 + x^7 - 37*x^6 + 37*x^5 + 62*x^4 - 103*x^3 + 24*x^2 + 15*x - 5, -x^9 + 5*x^8 + x^7 - 37*x^6 + 37*x^5 + 62*x^4 - 103*x^3 + 24*x^2 + 15*x - 5, -x^8 + 4*x^7 + 5*x^6 - 33*x^5 + 9*x^4 + 67*x^3 - 49*x^2 - 5*x + 7, -x^8 + 4*x^7 + 5*x^6 - 33*x^5 + 9*x^4 + 67*x^3 - 49*x^2 - 5*x + 7, -x^9 + 5*x^8 + x^7 - 38*x^6 + 39*x^5 + 67*x^4 - 109*x^3 + 15*x^2 + 15*x - 2, -x^9 + 5*x^8 + x^7 - 38*x^6 + 39*x^5 + 67*x^4 - 109*x^3 + 15*x^2 + 15*x - 2, -x^8 + 3*x^7 + 7*x^6 - 24*x^5 - 9*x^4 + 49*x^3 - 11*x^2 - 7*x + 1, -x^8 + 3*x^7 + 7*x^6 - 24*x^5 - 9*x^4 + 49*x^3 - 11*x^2 - 7*x + 1, -x^10 + 5*x^9 + 3*x^8 - 45*x^7 + 27*x^6 + 124*x^5 - 109*x^4 - 101*x^3 + 75*x^2 + 10*x - 8, -x^10 + 5*x^9 + 3*x^8 - 45*x^7 + 27*x^6 + 124*x^5 - 109*x^4 - 101*x^3 + 75*x^2 + 10*x - 8]>
       ]
>;

MOG[317] := 	// J_0(317)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 11, 75, 110, 188, 21*x + 79, 296*x + 79, 212*x + 205, 105*x + 205, 71*x + 75, 246*x + 75, 140*x + 31, 177*x + 31, 177*x + 138, 140*x + 138, 175*x + 69, 142*x + 69, 223*x + 147, 94*x + 147, 190*x + 219, 127*x + 219, 21*x + 197, 296*x + 197, 74*x + 163, 243*x + 163, 13*x + 40, 304*x + 40]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^11 + 3*x^10 - 10*x^9 - 32*x^8 + 31*x^7 + 109*x^6 - 42*x^5 - 147*x^4 + 35*x^3 + 68*x^2 - 19*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, -x^10 - 3*x^9 + 8*x^8 + 26*x^7 - 19*x^6 - 71*x^5 + 14*x^4 + 70*x^3 - 18*x, x^10 + 3*x^9 - 8*x^8 - 26*x^7 + 19*x^6 + 71*x^5 - 14*x^4 - 70*x^3 + 18*x, -x^9 - 3*x^8 + 6*x^7 + 19*x^6 - 13*x^5 - 36*x^4 + 17*x^3 + 21*x^2 - 11*x - 1, x^9 + 3*x^8 - 6*x^7 - 19*x^6 + 13*x^5 + 36*x^4 - 17*x^3 - 21*x^2 + 11*x + 1, -x^9 - 3*x^8 + 6*x^7 + 19*x^6 - 15*x^5 - 41*x^4 + 18*x^3 + 29*x^2 - 8*x, x^9 + 3*x^8 - 6*x^7 - 19*x^6 + 15*x^5 + 41*x^4 - 18*x^3 - 29*x^2 + 8*x, -x^8 - 4*x^7 + 2*x^6 + 20*x^5 + 5*x^4 - 29*x^3 - 7*x^2 + 12*x - 2, x^8 + 4*x^7 - 2*x^6 - 20*x^5 - 5*x^4 + 29*x^3 + 7*x^2 - 12*x + 2, -x^8 - 3*x^7 + 4*x^6 + 15*x^5 - 2*x^4 - 20*x^3 - 4*x^2 + 5*x + 2, x^8 + 3*x^7 - 4*x^6 - 15*x^5 + 2*x^4 + 20*x^3 + 4*x^2 - 5*x - 2, -x^8 - 4*x^7 + x^6 + 18*x^5 + 7*x^4 - 24*x^3 - 9*x^2 + 9*x + 1, x^8 + 4*x^7 - x^6 - 18*x^5 - 7*x^4 + 24*x^3 + 9*x^2 - 9*x - 1, -x^8 - 3*x^7 + 3*x^6 + 12*x^5 - 3*x^4 - 17*x^3 + x^2 + 9*x - 1, x^8 + 3*x^7 - 3*x^6 - 12*x^5 + 3*x^4 + 17*x^3 - x^2 - 9*x + 1, -2*x^7 - 4*x^6 + 11*x^5 + 16*x^4 - 21*x^3 - 16*x^2 + 13*x + 1, 2*x^7 + 4*x^6 - 11*x^5 - 16*x^4 + 21*x^3 + 16*x^2 - 13*x - 1, -x^7 - 3*x^6 + 2*x^5 + 12*x^4 + 2*x^3 - 13*x^2 - 3*x + 2, x^7 + 3*x^6 - 2*x^5 - 12*x^4 - 2*x^3 + 13*x^2 + 3*x - 2, -x^7 - 3*x^6 + x^5 + 8*x^4 + 4*x^3 - 4*x^2 - 6*x - 1, x^7 + 3*x^6 - x^5 - 8*x^4 - 4*x^3 + 4*x^2 + 6*x + 1, -2*x^6 - 4*x^5 + 7*x^4 + 13*x^3 - 7*x^2 - 10*x + 1, 2*x^6 + 4*x^5 - 7*x^4 - 13*x^3 + 7*x^2 + 10*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^15 - x^14 - 22*x^13 + 22*x^12 + 188*x^11 - 184*x^10 - 786*x^9 + 723*x^8 + 1666*x^7 - 1315*x^6 - 1715*x^5 + 910*x^4 + 829*x^3 - 168*x^2 - 129*x + 1,
           Coordinates        := [-x^14 + x^13 + 19*x^12 - 19*x^11 - 137*x^10 + 135*x^9 + 463*x^8 - 436*x^7 - 727*x^6 + 609*x^5 + 454*x^4 - 277*x^3 - 93*x^2 + 41*x + 4, x^14 - x^13 - 19*x^12 + 19*x^11 + 137*x^10 - 139*x^9 - 459*x^8 + 478*x^7 + 689*x^6 - 739*x^5 - 354*x^4 + 383*x^3 + 49*x^2 - 55*x + 6, 2*x^10 - 4*x^9 - 22*x^8 + 38*x^7 + 68*x^6 - 96*x^5 - 48*x^4 + 18*x^3 + 18*x^2 + 12*x + 2, -3*x^13 + 3*x^12 + 51*x^11 - 49*x^10 - 323*x^9 + 287*x^8 + 939*x^7 - 706*x^6 - 1261*x^5 + 633*x^4 + 736*x^3 - 127*x^2 - 125*x + 1, x^13 - x^12 - 17*x^11 + 17*x^10 + 107*x^9 - 109*x^8 - 295*x^7 + 312*x^6 + 319*x^5 - 361*x^4 - 94*x^3 + 139*x^2 + 9*x - 15, x^11 - 3*x^10 - 9*x^9 + 30*x^8 + 15*x^7 - 82*x^6 + 24*x^5 + 33*x^4 - 3*x^2 - 5*x - 1, x^11 - 3*x^10 - 9*x^9 + 30*x^8 + 15*x^7 - 82*x^6 + 24*x^5 + 33*x^4 - 3*x^2 - 5*x - 1, x^12 - 4*x^11 - 12*x^10 + 55*x^9 + 42*x^8 - 263*x^7 - 25*x^6 + 510*x^5 - 52*x^4 - 363*x^3 + 9*x^2 + 61*x - 3, x^12 - 4*x^11 - 12*x^10 + 55*x^9 + 42*x^8 - 263*x^7 - 25*x^6 + 510*x^5 - 52*x^4 - 363*x^3 + 9*x^2 + 61*x - 3, x^11 + x^10 - 21*x^9 - 5*x^8 + 143*x^7 - 19*x^6 - 381*x^5 + 100*x^4 + 342*x^3 - 32*x^2 - 74*x + 1, x^11 + x^10 - 21*x^9 - 5*x^8 + 143*x^7 - 19*x^6 - 381*x^5 + 100*x^4 + 342*x^3 - 32*x^2 - 74*x + 1, x^13 - x^12 - 17*x^11 + 14*x^10 + 110*x^9 - 68*x^8 - 341*x^7 + 132*x^6 + 521*x^5 - 83*x^4 - 343*x^3 - 13*x^2 + 63*x + 7, x^13 - x^12 - 17*x^11 + 14*x^10 + 110*x^9 - 68*x^8 - 341*x^7 + 132*x^6 + 521*x^5 - 83*x^4 - 343*x^3 - 13*x^2 + 63*x + 7, -3*x^12 + 4*x^11 + 44*x^10 - 59*x^9 - 225*x^8 + 301*x^7 + 460*x^6 - 597*x^5 - 313*x^4 + 352*x^3 + 77*x^2 - 61*x - 6, -3*x^12 + 4*x^11 + 44*x^10 - 59*x^9 - 225*x^8 + 301*x^7 + 460*x^6 - 597*x^5 - 313*x^4 + 352*x^3 + 77*x^2 - 61*x - 6, x^12 - x^11 - 15*x^10 + 16*x^9 + 76*x^8 - 83*x^7 - 143*x^6 + 146*x^5 + 63*x^4 - 33*x^3 + 5*x^2 + x - 3, x^12 - x^11 - 15*x^10 + 16*x^9 + 76*x^8 - 83*x^7 - 143*x^6 + 146*x^5 + 63*x^4 - 33*x^3 + 5*x^2 + x - 3, x^11 - 3*x^10 - 12*x^9 + 37*x^8 + 49*x^7 - 156*x^6 - 70*x^5 + 246*x^4 + x^3 - 76*x^2 + 5*x + 4, x^11 - 3*x^10 - 12*x^9 + 37*x^8 + 49*x^7 - 156*x^6 - 70*x^5 + 246*x^4 + x^3 - 76*x^2 + 5*x + 4, -3*x^11 + 2*x^10 + 43*x^9 - 28*x^8 - 216*x^7 + 134*x^6 + 438*x^5 - 229*x^4 - 296*x^3 + 57*x^2 + 58*x + 2, -3*x^11 + 2*x^10 + 43*x^9 - 28*x^8 - 216*x^7 + 134*x^6 + 438*x^5 - 229*x^4 - 296*x^3 + 57*x^2 + 58*x + 2, x^11 + x^10 - 13*x^9 - 10*x^8 + 55*x^7 + 33*x^6 - 77*x^5 - 50*x^4 + 6*x^3 + 46*x^2 + 8*x - 8, x^11 + x^10 - 13*x^9 - 10*x^8 + 55*x^7 + 33*x^6 - 77*x^5 - 50*x^4 + 6*x^3 + 46*x^2 + 8*x - 8, x^12 - x^11 - 15*x^10 + 15*x^9 + 82*x^8 - 83*x^7 - 185*x^6 + 189*x^5 + 130*x^4 - 122*x^3 - 20*x^2 + 20*x - 3, x^12 - x^11 - 15*x^10 + 15*x^9 + 82*x^8 - 83*x^7 - 185*x^6 + 189*x^5 + 130*x^4 - 122*x^3 - 20*x^2 + 20*x - 3, x^11 + x^10 - 13*x^9 - 11*x^8 + 61*x^7 + 33*x^6 - 119*x^5 - 7*x^4 + 73*x^3 - 43*x^2 - 17*x + 11, x^11 + x^10 - 13*x^9 - 11*x^8 + 61*x^7 + 33*x^6 - 119*x^5 - 7*x^4 + 73*x^3 - 43*x^2 - 17*x + 11]>
       ]
>;

MOG[331] := 	// J_0(331)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [27, 73, 118, 124, 188, 189, 73*x + 304, 258*x + 304, 34*x + 266, 297*x + 266, 271*x + 177, 60*x + 177, 226*x + 60, 105*x + 60, 14*x + 14, 317*x + 14, 98*x + 179, 233*x + 179, 178*x + 93, 153*x + 93, 142*x + 192, 189*x + 192, 303*x + 148, 28*x + 148, 77*x + 42, 254*x + 42, 93*x + 57, 238*x + 57]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - 4*x - 7,
           Coordinates        := [0, 0, 0, 0, 0, 0, x^2 - 2, -x^2 + 2, -x^2 + x + 3, x^2 - x - 3, -x^2 + x + 4, x^2 - x - 4, x^2 - 2, -x^2 + 2, x^2 - 3, -x^2 + 3, x^2 - 2, -x^2 + 2, x + 2, -x - 2, -x^2 + 3, x^2 - 3, x + 1, -x - 1, x + 1, -x - 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + 2*x^6 - 6*x^5 - 8*x^4 + 11*x^3 + 3*x^2 - 5*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, x^6 + 2*x^5 - 6*x^4 - 9*x^3 + 7*x^2 + 2*x - 1, -x^6 - 2*x^5 + 6*x^4 + 9*x^3 - 7*x^2 - 2*x + 1, x^6 + 2*x^5 - 5*x^4 - 8*x^3 + 5*x^2 + 3*x - 1, -x^6 - 2*x^5 + 5*x^4 + 8*x^3 - 5*x^2 - 3*x + 1, -x^6 - 2*x^5 + 4*x^4 + 4*x^3 - 6*x^2 + x, x^6 + 2*x^5 - 4*x^4 - 4*x^3 + 6*x^2 - x, x^5 + x^4 - 5*x^3 - 2*x^2 + 5*x - 1, -x^5 - x^4 + 5*x^3 + 2*x^2 - 5*x + 1, -x^6 - 3*x^5 + 3*x^4 + 10*x^3 - 3*x^2 - 6*x + 2, x^6 + 3*x^5 - 3*x^4 - 10*x^3 + 3*x^2 + 6*x - 2, -x^5 - x^4 + 4*x^3 - x, x^5 + x^4 - 4*x^3 + x, x^4 + x^3 - 2*x^2 + x, -x^4 - x^3 + 2*x^2 - x, -x^5 - 2*x^4 + 4*x^3 + 3*x^2 - 4*x + 1, x^5 + 2*x^4 - 4*x^3 - 3*x^2 + 4*x - 1, -x^4 + 5*x^2 - 2*x, x^4 - 5*x^2 + 2*x, x^4 + 3*x^3 - 2*x^2 - 3*x + 1, -x^4 - 3*x^3 + 2*x^2 + 3*x - 1, x^3 + 2*x^2 - 4*x + 1, -x^3 - 2*x^2 + 4*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - 3*x^15 - 19*x^14 + 60*x^13 + 136*x^12 - 465*x^11 - 448*x^10 + 1747*x^9 + 657*x^8 - 3241*x^7 - 375*x^6 + 2695*x^5 + 230*x^4 - 855*x^3 - 110*x^2 + 56*x + 8,
           Coordinates        := [-x^15 + 3*x^14 + 16*x^13 - 51*x^12 - 94*x^11 + 328*x^10 + 248*x^9 - 987*x^8 - 305*x^7 + 1380*x^6 + 248*x^5 - 753*x^4 - 210*x^3 + 66*x^2 + 10*x, x^15 - 2*x^14 - 19*x^13 + 37*x^12 + 139*x^11 - 260*x^10 - 492*x^9 + 855*x^8 + 880*x^7 - 1295*x^6 - 798*x^5 + 735*x^4 + 389*x^3 - 78*x^2 - 50*x - 4, -x^14 + 3*x^13 + 14*x^12 - 45*x^11 - 70*x^10 + 248*x^9 + 152*x^8 - 611*x^7 - 155*x^6 + 650*x^5 + 126*x^4 - 263*x^3 - 52*x^2 + 16*x, -x^13 + 3*x^12 + 12*x^11 - 37*x^10 - 56*x^9 + 162*x^8 + 154*x^7 - 319*x^6 - 275*x^5 + 290*x^4 + 178*x^3 - 39*x^2 + 4*x + 4, 2*x^14 - 4*x^13 - 34*x^12 + 66*x^11 + 216*x^10 - 400*x^9 - 632*x^8 + 1066*x^7 + 872*x^6 - 1162*x^5 - 576*x^4 + 388*x^3 + 138*x^2 - 10*x - 4, -x^13 + 3*x^12 + 12*x^11 - 43*x^10 - 40*x^9 + 214*x^8 - 4*x^7 - 411*x^6 + 153*x^5 + 200*x^4 - 20*x^3 - 11*x^2 - 14*x - 4, 2*x^13 - 4*x^12 - 31*x^11 + 60*x^10 + 176*x^9 - 322*x^8 - 444*x^7 + 714*x^6 + 510*x^5 - 541*x^4 - 320*x^3 + 73*x^2 + 48*x + 4, 2*x^13 - 4*x^12 - 31*x^11 + 60*x^10 + 176*x^9 - 322*x^8 - 444*x^7 + 714*x^6 + 510*x^5 - 541*x^4 - 320*x^3 + 73*x^2 + 48*x + 4, 2*x^12 - 3*x^11 - 30*x^10 + 43*x^9 + 162*x^8 - 215*x^7 - 374*x^6 + 419*x^5 + 352*x^4 - 222*x^3 - 155*x^2 - 4*x + 4, 2*x^12 - 3*x^11 - 30*x^10 + 43*x^9 + 162*x^8 - 215*x^7 - 374*x^6 + 419*x^5 + 352*x^4 - 222*x^3 - 155*x^2 - 4*x + 4, x^12 - 3*x^11 - 10*x^10 + 35*x^9 + 26*x^8 - 137*x^7 + 12*x^6 + 202*x^5 - 96*x^4 - 93*x^3 + 65*x^2 + 18*x, x^12 - 3*x^11 - 10*x^10 + 35*x^9 + 26*x^8 - 137*x^7 + 12*x^6 + 202*x^5 - 96*x^4 - 93*x^3 + 65*x^2 + 18*x, -x^12 + 4*x^11 + 13*x^10 - 57*x^9 - 55*x^8 + 285*x^7 + 79*x^6 - 577*x^5 - 33*x^4 + 387*x^3 + 78*x^2 - 40*x - 8, -x^12 + 4*x^11 + 13*x^10 - 57*x^9 - 55*x^8 + 285*x^7 + 79*x^6 - 577*x^5 - 33*x^4 + 387*x^3 + 78*x^2 - 40*x - 8, -x^12 + 4*x^11 + 7*x^10 - 43*x^9 + x^8 + 146*x^7 - 60*x^6 - 180*x^5 + 26*x^4 + 112*x^3 + 28*x^2 - 6*x, -x^12 + 4*x^11 + 7*x^10 - 43*x^9 + x^8 + 146*x^7 - 60*x^6 - 180*x^5 + 26*x^4 + 112*x^3 + 28*x^2 - 6*x, -x^13 + 2*x^12 + 17*x^11 - 32*x^10 - 107*x^9 + 184*x^8 + 310*x^7 - 452*x^6 - 426*x^5 + 422*x^4 + 273*x^3 - 83*x^2 - 42*x - 4, -x^13 + 2*x^12 + 17*x^11 - 32*x^10 - 107*x^9 + 184*x^8 + 310*x^7 - 452*x^6 - 426*x^5 + 422*x^4 + 273*x^3 - 83*x^2 - 42*x - 4, -x^13 + 3*x^12 + 12*x^11 - 40*x^10 - 41*x^9 + 178*x^8 + 9*x^7 - 282*x^6 + 125*x^5 + 68*x^4 - 87*x^3 + 37*x^2 + 36*x + 4, -x^13 + 3*x^12 + 12*x^11 - 40*x^10 - 41*x^9 + 178*x^8 + 9*x^7 - 282*x^6 + 125*x^5 + 68*x^4 - 87*x^3 + 37*x^2 + 36*x + 4, -2*x^11 + 4*x^10 + 22*x^9 - 42*x^8 - 77*x^7 + 127*x^6 + 99*x^5 - 82*x^4 - 57*x^3 - 32*x^2 - 22*x - 4, -2*x^11 + 4*x^10 + 22*x^9 - 42*x^8 - 77*x^7 + 127*x^6 + 99*x^5 - 82*x^4 - 57*x^3 - 32*x^2 - 22*x - 4, -x^14 + 3*x^13 + 14*x^12 - 46*x^11 - 65*x^10 + 256*x^9 + 100*x^8 - 625*x^7 + 14*x^6 + 646*x^5 - 53*x^4 - 263*x^3 - 24*x^2 + 20*x + 4, -x^14 + 3*x^13 + 14*x^12 - 46*x^11 - 65*x^10 + 256*x^9 + 100*x^8 - 625*x^7 + 14*x^6 + 646*x^5 - 53*x^4 - 263*x^3 - 24*x^2 + 20*x + 4, -x^12 + 2*x^11 + 11*x^10 - 21*x^9 - 36*x^8 + 58*x^7 + 32*x^6 - x^5 - x^4 - 87*x^3 - 18*x^2 + 24*x + 4, -x^12 + 2*x^11 + 11*x^10 - 21*x^9 - 36*x^8 + 58*x^7 + 32*x^6 - x^5 - x^4 - 87*x^3 - 18*x^2 + 24*x + 4, -x^12 + x^11 + 15*x^10 - 17*x^9 - 78*x^8 + 100*x^7 + 154*x^6 - 225*x^5 - 73*x^4 + 126*x^3 + 19*x^2 - 10*x, -x^12 + x^11 + 15*x^10 - 17*x^9 - 78*x^8 + 100*x^7 + 154*x^6 - 225*x^5 - 73*x^4 + 126*x^3 + 19*x^2 - 10*x]>
       ]
>;

MOG[337] := 	// J_0(337)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [88, 226, 258, 312, 31*x + 21, 306*x + 21, 190*x + 200, 147*x + 200, 319*x + 78, 18*x + 78, 13*x + 14, 324*x + 14, 51*x + 65, 286*x + 65, 99*x + 19, 238*x + 19, 99*x + 287, 238*x + 287, 56*x + 125, 281*x + 125, 255*x + 233, 82*x + 233, 280*x + 21, 57*x + 21, 95*x + 123, 242*x + 123, 59*x + 27, 278*x + 27]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^12 + 6*x^11 + x^10 - 54*x^9 - 76*x^8 + 135*x^7 + 289*x^6 - 97*x^5 - 392*x^4 - 28*x^3 + 201*x^2 + 36*x - 27,
           Coordinates        := [0, 0, 0, 0, -x^11 - 6*x^10 - 3*x^9 + 43*x^8 + 73*x^7 - 63*x^6 - 198*x^5 - 22*x^4 + 178*x^3 + 76*x^2 - 48*x - 27, x^11 + 6*x^10 + 3*x^9 - 43*x^8 - 73*x^7 + 63*x^6 + 198*x^5 + 22*x^4 - 178*x^3 - 76*x^2 + 48*x + 27, -x^6 - 5*x^5 - 6*x^4 + 3*x^3 + 8*x^2 + 3*x, x^6 + 5*x^5 + 6*x^4 - 3*x^3 - 8*x^2 - 3*x, -x^10 - 5*x^9 + 2*x^8 + 41*x^7 + 32*x^6 - 95*x^5 - 103*x^4 + 81*x^3 + 97*x^2 - 21*x - 27, x^10 + 5*x^9 - 2*x^8 - 41*x^7 - 32*x^6 + 95*x^5 + 103*x^4 - 81*x^3 - 97*x^2 + 21*x + 27, -x^10 - 6*x^9 - 5*x^8 + 31*x^7 + 59*x^6 - 24*x^5 - 111*x^4 - 33*x^3 + 56*x^2 + 30*x, x^10 + 6*x^9 + 5*x^8 - 31*x^7 - 59*x^6 + 24*x^5 + 111*x^4 + 33*x^3 - 56*x^2 - 30*x, -x^7 - 6*x^6 - 11*x^5 - 3*x^4 + 11*x^3 + 11*x^2 + 3*x, x^7 + 6*x^6 + 11*x^5 + 3*x^4 - 11*x^3 - 11*x^2 - 3*x, -x^9 - 6*x^8 - 7*x^7 + 19*x^6 + 42*x^5 - 4*x^4 - 55*x^3 - 24*x^2 + 15*x + 9, x^9 + 6*x^8 + 7*x^7 - 19*x^6 - 42*x^5 + 4*x^4 + 55*x^3 + 24*x^2 - 15*x - 9, -x^9 - 6*x^8 - 7*x^7 + 20*x^6 + 45*x^5 - 7*x^4 - 67*x^3 - 22*x^2 + 33*x + 18, x^9 + 6*x^8 + 7*x^7 - 20*x^6 - 45*x^5 + 7*x^4 + 67*x^3 + 22*x^2 - 33*x - 18, -x^8 - 5*x^7 - 3*x^6 + 16*x^5 + 15*x^4 - 22*x^3 - 22*x^2 + 9*x + 9, x^8 + 5*x^7 + 3*x^6 - 16*x^5 - 15*x^4 + 22*x^3 + 22*x^2 - 9*x - 9, -x^7 - 7*x^6 - 14*x^5 + 2*x^4 + 30*x^3 + 17*x^2 - 12*x - 9, x^7 + 7*x^6 + 14*x^5 - 2*x^4 - 30*x^3 - 17*x^2 + 12*x + 9, -x^8 - 7*x^7 - 14*x^6 + 4*x^5 + 41*x^4 + 31*x^3 - 19*x^2 - 30*x - 9, x^8 + 7*x^7 + 14*x^6 - 4*x^5 - 41*x^4 - 31*x^3 + 19*x^2 + 30*x + 9, -x^8 - 7*x^7 - 15*x^6 - x^5 + 35*x^4 + 36*x^3 - 6*x^2 - 24*x - 9, x^8 + 7*x^7 + 15*x^6 + x^5 - 35*x^4 - 36*x^3 + 6*x^2 + 24*x + 9, -x^8 - 4*x^7 + x^6 + 18*x^5 + 9*x^4 - 25*x^3 - 17*x^2 + 12*x + 9, x^8 + 4*x^7 - x^6 - 18*x^5 - 9*x^4 + 25*x^3 + 17*x^2 - 12*x - 9]>,
         rec<Eigen |
           DefiningPolynomial := x^15 - 3*x^14 - 18*x^13 + 56*x^12 + 123*x^11 - 402*x^10 - 400*x^9 + 1395*x^8 + 643*x^7 - 2406*x^6 - 496*x^5 + 1843*x^4 + 200*x^3 - 388*x^2 - 69*x + 1,
           Coordinates        := [-x^14 + 4*x^13 + 12*x^12 - 62*x^11 - 35*x^10 + 353*x^9 - 69*x^8 - 902*x^7 + 465*x^6 + 1001*x^5 - 617*x^4 - 376*x^3 + 176*x^2 + 32*x - 1, x^14 - 4*x^13 - 12*x^12 + 60*x^11 + 41*x^10 - 333*x^9 + x^8 + 848*x^7 - 215*x^6 - 985*x^5 + 271*x^4 + 442*x^3 - 28*x^2 - 62*x - 5, -2*x^11 + 6*x^10 + 22*x^9 - 72*x^8 - 72*x^7 + 282*x^6 + 66*x^5 - 408*x^4 - 8*x^3 + 168*x^2 + 36*x + 2, -2*x^10 + 6*x^9 + 22*x^8 - 72*x^7 - 66*x^6 + 270*x^5 + 20*x^4 - 322*x^3 + 68*x^2 + 52*x + 4, -x^12 + 3*x^11 + 12*x^10 - 39*x^9 - 47*x^8 + 177*x^7 + 66*x^6 - 339*x^5 - 14*x^4 + 245*x^3 - 16*x^2 - 25*x - 2, -x^12 + 3*x^11 + 12*x^10 - 39*x^9 - 47*x^8 + 177*x^7 + 66*x^6 - 339*x^5 - 14*x^4 + 245*x^3 - 16*x^2 - 25*x - 2, 3*x^7 - 6*x^6 - 23*x^5 + 43*x^4 + 38*x^3 - 58*x^2 - 16*x - 1, 3*x^7 - 6*x^6 - 23*x^5 + 43*x^4 + 38*x^3 - 58*x^2 - 16*x - 1, -x^13 + 3*x^12 + 14*x^11 - 45*x^10 - 68*x^9 + 246*x^8 + 130*x^7 - 595*x^6 - 64*x^5 + 598*x^4 - 33*x^3 - 164*x^2 - 4*x + 3, -x^13 + 3*x^12 + 14*x^11 - 45*x^10 - 68*x^9 + 246*x^8 + 130*x^7 - 595*x^6 - 64*x^5 + 598*x^4 - 33*x^3 - 164*x^2 - 4*x + 3, -x^9 + 3*x^8 + 8*x^7 - 26*x^6 - 16*x^5 + 55*x^4 + 25*x^3 - 29*x^2 - 34*x - 5, -x^9 + 3*x^8 + 8*x^7 - 26*x^6 - 16*x^5 + 55*x^4 + 25*x^3 - 29*x^2 - 34*x - 5, 2*x^10 - 6*x^9 - 19*x^8 + 63*x^7 + 49*x^6 - 204*x^5 - 25*x^4 + 226*x^3 - 26*x^2 - 37*x - 3, 2*x^10 - 6*x^9 - 19*x^8 + 63*x^7 + 49*x^6 - 204*x^5 - 25*x^4 + 226*x^3 - 26*x^2 - 37*x - 3, x^12 - 4*x^11 - 9*x^10 + 49*x^9 + 13*x^8 - 203*x^7 + 57*x^6 + 339*x^5 - 140*x^4 - 209*x^3 + 62*x^2 + 26*x - 2, x^12 - 4*x^11 - 9*x^10 + 49*x^9 + 13*x^8 - 203*x^7 + 57*x^6 + 339*x^5 - 140*x^4 - 209*x^3 + 62*x^2 + 26*x - 2, x^11 - 4*x^10 - 7*x^9 + 42*x^8 - 139*x^6 + 55*x^5 + 179*x^4 - 65*x^3 - 80*x^2 - 6*x + 4, x^11 - 4*x^10 - 7*x^9 + 42*x^8 - 139*x^6 + 55*x^5 + 179*x^4 - 65*x^3 - 80*x^2 - 6*x + 4, x^11 - 3*x^10 - 10*x^9 + 33*x^8 + 27*x^7 - 113*x^6 - 7*x^5 + 128*x^4 - 37*x^3 - 20*x^2 + 16*x + 5, x^11 - 3*x^10 - 10*x^9 + 33*x^8 + 27*x^7 - 113*x^6 - 7*x^5 + 128*x^4 - 37*x^3 - 20*x^2 + 16*x + 5, x^11 - 3*x^10 - 9*x^9 + 30*x^8 + 19*x^7 - 85*x^6 + 5*x^5 + 55*x^4 - 27*x^3 + 41*x^2 - 3*x - 4, x^11 - 3*x^10 - 9*x^9 + 30*x^8 + 19*x^7 - 85*x^6 + 5*x^5 + 55*x^4 - 27*x^3 + 41*x^2 - 3*x - 4, x^13 - 4*x^12 - 10*x^11 + 52*x^10 + 24*x^9 - 239*x^8 + 22*x^7 + 478*x^6 - 117*x^5 - 392*x^4 + 74*x^3 + 75*x^2 + 16*x, x^13 - 4*x^12 - 10*x^11 + 52*x^10 + 24*x^9 - 239*x^8 + 22*x^7 + 478*x^6 - 117*x^5 - 392*x^4 + 74*x^3 + 75*x^2 + 16*x, x^12 - 4*x^11 - 8*x^10 + 45*x^9 + 8*x^8 - 167*x^7 + 41*x^6 + 254*x^5 - 57*x^4 - 158*x^3 - 18*x^2 + 36*x + 7, x^12 - 4*x^11 - 8*x^10 + 45*x^9 + 8*x^8 - 167*x^7 + 41*x^6 + 254*x^5 - 57*x^4 - 158*x^3 - 18*x^2 + 36*x + 7, x^10 - 2*x^9 - 11*x^8 + 20*x^7 + 40*x^6 - 59*x^5 - 63*x^4 + 53*x^3 + 41*x^2 + 2*x - 2, x^10 - 2*x^9 - 11*x^8 + 20*x^7 + 40*x^6 - 59*x^5 - 63*x^4 + 53*x^3 + 41*x^2 + 2*x - 2]>
       ]
>;

MOG[347] := 	// J_0(347)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 77, 180, 184, 197, 202, 215, 311, 338, 340, 36*x + 239, 311*x + 239, 141*x + 346, 206*x + 346, 281*x + 120, 66*x + 120, 156*x + 94, 191*x + 94, 127*x + 313, 220*x + 313, 313*x + 219, 34*x + 219, 274*x + 70, 73*x + 70, 88*x + 309, 259*x + 309, 321*x + 339, 26*x + 339, 51*x + 107, 296*x + 107]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, -1, 1, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x + 1, -x - 1, x, -x, 1, -1, -1, 1, -x, x, 0, 0, -1, 1, -x, x, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + 2*x^6 - 7*x^5 - 15*x^4 + 6*x^3 + 22*x^2 + 9*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^5 - 3*x^4 + 6*x^2 + 5*x + 1, x^5 + 3*x^4 - 6*x^2 - 5*x - 1, -x^5 - 3*x^4 + 7*x^2 + 6*x + 1, x^5 + 3*x^4 - 7*x^2 - 6*x - 1, -x^6 - 2*x^5 + 3*x^4 + 6*x^3 - 2*x^2 - 5*x - 1, x^6 + 2*x^5 - 3*x^4 - 6*x^3 + 2*x^2 + 5*x + 1, -x^6 - 2*x^5 + 3*x^4 + 7*x^3 - 4*x - 1, x^6 + 2*x^5 - 3*x^4 - 7*x^3 + 4*x + 1, -2*x^5 - 4*x^4 + 4*x^3 + 9*x^2 + 2*x, 2*x^5 + 4*x^4 - 4*x^3 - 9*x^2 - 2*x, -x^5 - 2*x^4 + 2*x^2 + x, x^5 + 2*x^4 - 2*x^2 - x, -x^5 - x^4 + 2*x^3 + 2*x^2, x^5 + x^4 - 2*x^3 - 2*x^2, -2*x^4 - 4*x^3 + 4*x^2 + 9*x + 2, 2*x^4 + 4*x^3 - 4*x^2 - 9*x - 2, -2*x^4 - 3*x^3 + 2*x^2 + 4*x + 1, 2*x^4 + 3*x^3 - 2*x^2 - 4*x - 1, -x^4 - x^3 + x^2 + x, x^4 + x^3 - x^2 - x]>,
         rec<Eigen |
           DefiningPolynomial := x^19 - 30*x^17 + x^16 + 374*x^15 - 21*x^14 - 2509*x^13 + 166*x^12 + 9794*x^11 - 586*x^10 - 22435*x^9 + 749*x^8 + 28885*x^7 + 329*x^6 - 18752*x^5 - 878*x^4 + 4788*x^3 - 64*x^2 - 352*x + 32,
           Coordinates        := [-x^18 + 27*x^16 - x^15 - 297*x^14 + 18*x^13 + 1712*x^12 - 122*x^11 - 5532*x^10 + 384*x^9 + 9913*x^8 - 563*x^7 - 9072*x^6 + 402*x^5 + 3480*x^4 - 268*x^3 - 380*x^2 + 72*x, x^18 - 27*x^16 + x^15 + 295*x^14 - 18*x^13 - 1674*x^12 + 118*x^11 + 5258*x^10 - 338*x^9 - 8975*x^8 + 391*x^7 + 7502*x^6 - 142*x^5 - 2280*x^4 + 20*x^3 + 92*x^2 + 64*x, 4*x^13 + 2*x^12 - 72*x^11 - 20*x^10 + 488*x^9 + 48*x^8 - 1542*x^7 + 54*x^6 + 2230*x^5 - 252*x^4 - 1176*x^3 + 124*x^2 + 128*x - 16, -x^16 + 23*x^14 - x^13 - 211*x^12 + 10*x^11 + 986*x^10 - 10*x^9 - 2478*x^8 - 168*x^7 + 3215*x^6 + 565*x^5 - 1808*x^4 - 462*x^3 + 216*x^2 - 40*x, x^16 - 23*x^14 + x^13 + 205*x^12 - 12*x^11 - 890*x^10 + 34*x^9 + 1924*x^8 + 52*x^7 - 1835*x^6 - 253*x^5 + 470*x^4 + 62*x^3 + 76*x^2 + 16*x - 16, -3*x^16 + 71*x^14 - 9*x^13 - 663*x^12 + 154*x^11 + 3088*x^10 - 956*x^9 - 7448*x^8 + 2588*x^7 + 8729*x^6 - 2917*x^5 - 4224*x^4 + 1274*x^3 + 572*x^2 - 144*x, -3*x^17 + 77*x^15 - 3*x^14 - 797*x^13 + 44*x^12 + 4262*x^11 - 202*x^10 - 12522*x^9 + 186*x^8 + 19813*x^7 + 731*x^6 - 15272*x^5 - 1146*x^4 + 4408*x^3 + 8*x^2 - 352*x + 32, x^16 - 23*x^14 + 3*x^13 + 209*x^12 - 50*x^11 - 952*x^10 + 300*x^9 + 2266*x^8 - 748*x^7 - 2659*x^6 + 609*x^5 + 1306*x^4 + 94*x^3 - 168*x^2 - 80*x + 16, x^17 - 25*x^15 + x^14 + 249*x^13 - 14*x^12 - 1260*x^11 + 56*x^10 + 3416*x^9 - 4*x^8 - 4785*x^7 - 305*x^6 + 3008*x^5 + 214*x^4 - 504*x^3 + 176*x^2, 4*x^12 + 6*x^11 - 66*x^10 - 86*x^9 + 402*x^8 + 450*x^7 - 1092*x^6 - 1038*x^5 + 1192*x^4 + 940*x^3 - 236*x^2 - 112*x + 16, 2*x^14 + x^13 - 40*x^12 - 16*x^11 + 310*x^10 + 110*x^9 - 1173*x^8 - 423*x^7 + 2207*x^6 + 912*x^5 - 1780*x^4 - 878*x^3 + 300*x^2 + 104*x - 16, 2*x^14 + x^13 - 40*x^12 - 16*x^11 + 310*x^10 + 110*x^9 - 1173*x^8 - 423*x^7 + 2207*x^6 + 912*x^5 - 1780*x^4 - 878*x^3 + 300*x^2 + 104*x - 16, x^15 + x^14 - 20*x^13 - 18*x^12 + 154*x^11 + 122*x^10 - 575*x^9 - 372*x^8 + 1063*x^7 + 457*x^6 - 851*x^5 - 60*x^4 + 168*x^3 - 128*x^2 + 8*x, x^15 + x^14 - 20*x^13 - 18*x^12 + 154*x^11 + 122*x^10 - 575*x^9 - 372*x^8 + 1063*x^7 + 457*x^6 - 851*x^5 - 60*x^4 + 168*x^3 - 128*x^2 + 8*x, x^15 - 24*x^13 + 228*x^11 + 8*x^10 - 1086*x^9 - 99*x^8 + 2686*x^7 + 401*x^6 - 3159*x^5 - 566*x^4 + 1308*x^3 + 108*x^2 - 152*x + 16, x^15 - 24*x^13 + 228*x^11 + 8*x^10 - 1086*x^9 - 99*x^8 + 2686*x^7 + 401*x^6 - 3159*x^5 - 566*x^4 + 1308*x^3 + 108*x^2 - 152*x + 16, x^15 + x^14 - 22*x^13 - 15*x^12 + 188*x^11 + 67*x^10 - 782*x^9 - 30*x^8 + 1628*x^7 - 399*x^6 - 1581*x^5 + 642*x^4 + 656*x^3 - 124*x^2 - 24*x, x^15 + x^14 - 22*x^13 - 15*x^12 + 188*x^11 + 67*x^10 - 782*x^9 - 30*x^8 + 1628*x^7 - 399*x^6 - 1581*x^5 + 642*x^4 + 656*x^3 - 124*x^2 - 24*x, x^16 - 25*x^14 + 2*x^13 + 247*x^12 - 32*x^11 - 1222*x^10 + 171*x^9 + 3154*x^8 - 306*x^7 - 3985*x^6 - 81*x^5 + 1992*x^4 + 418*x^3 - 132*x^2 - 40*x, x^16 - 25*x^14 + 2*x^13 + 247*x^12 - 32*x^11 - 1222*x^10 + 171*x^9 + 3154*x^8 - 306*x^7 - 3985*x^6 - 81*x^5 + 1992*x^4 + 418*x^3 - 132*x^2 - 40*x, -x^14 - 3*x^13 + 21*x^12 + 56*x^11 - 174*x^10 - 380*x^9 + 705*x^8 + 1130*x^7 - 1381*x^6 - 1397*x^5 + 1096*x^4 + 568*x^3 - 320*x^2 - 48*x + 16, -x^14 - 3*x^13 + 21*x^12 + 56*x^11 - 174*x^10 - 380*x^9 + 705*x^8 + 1130*x^7 - 1381*x^6 - 1397*x^5 + 1096*x^4 + 568*x^3 - 320*x^2 - 48*x + 16, 2*x^14 + 3*x^13 - 41*x^12 - 55*x^11 + 318*x^10 + 374*x^9 - 1154*x^8 - 1156*x^7 + 1947*x^6 + 1574*x^5 - 1276*x^4 - 710*x^3 + 236*x^2 + 32*x, 2*x^14 + 3*x^13 - 41*x^12 - 55*x^11 + 318*x^10 + 374*x^9 - 1154*x^8 - 1156*x^7 + 1947*x^6 + 1574*x^5 - 1276*x^4 - 710*x^3 + 236*x^2 + 32*x, x^17 - 27*x^15 + x^14 + 293*x^13 - 17*x^12 - 1638*x^11 + 96*x^10 + 5022*x^9 - 177*x^8 - 8299*x^7 - 83*x^6 + 6732*x^5 + 342*x^4 - 2096*x^3 - 24*x^2 + 176*x - 16, x^17 - 27*x^15 + x^14 + 293*x^13 - 17*x^12 - 1638*x^11 + 96*x^10 + 5022*x^9 - 177*x^8 - 8299*x^7 - 83*x^6 + 6732*x^5 + 342*x^4 - 2096*x^3 - 24*x^2 + 176*x - 16, x^15 - 22*x^13 + x^12 + 185*x^11 - 11*x^10 - 746*x^9 + 28*x^8 + 1475*x^7 + 26*x^6 - 1269*x^5 - 76*x^4 + 290*x^3 - 80*x^2 - 8*x, x^15 - 22*x^13 + x^12 + 185*x^11 - 11*x^10 - 746*x^9 + 28*x^8 + 1475*x^7 + 26*x^6 - 1269*x^5 - 76*x^4 + 290*x^3 - 80*x^2 - 8*x, -3*x^15 - 3*x^14 + 67*x^13 + 55*x^12 - 587*x^11 - 377*x^10 + 2537*x^9 + 1201*x^8 - 5542*x^7 - 1824*x^6 + 5524*x^5 + 1210*x^4 - 1918*x^3 - 76*x^2 + 176*x - 16, -3*x^15 - 3*x^14 + 67*x^13 + 55*x^12 - 587*x^11 - 377*x^10 + 2537*x^9 + 1201*x^8 - 5542*x^7 - 1824*x^6 + 5524*x^5 + 1210*x^4 - 1918*x^3 - 76*x^2 + 176*x - 16]>
       ]
>;

MOG[349] := 	// J_0(349)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [36, 38, 110, 115, 231, 289, 322, 152*x + 256, 197*x + 256, 271*x + 292, 78*x + 292, 51*x + 112, 298*x + 112, 208*x + 5, 141*x + 5, 3*x + 316, 346*x + 316, 298*x + 298, 51*x + 298, 123*x + 298, 226*x + 298, 305*x + 73, 44*x + 73, 20*x, 329*x, 134*x + 179, 215*x + 179, 292*x + 188, 57*x + 188]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^11 + 5*x^10 - x^9 - 35*x^8 - 24*x^7 + 80*x^6 + 66*x^5 - 77*x^4 - 56*x^3 + 31*x^2 + 15*x - 4,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^10 - 5*x^9 - x^8 + 25*x^7 + 19*x^6 - 43*x^5 - 31*x^4 + 30*x^3 + 12*x^2 - 7*x, x^10 + 5*x^9 + x^8 - 25*x^7 - 19*x^6 + 43*x^5 + 31*x^4 - 30*x^3 - 12*x^2 + 7*x, -x^9 - 5*x^8 - 3*x^7 + 16*x^6 + 15*x^5 - 19*x^4 - 15*x^3 + 10*x^2 + 4*x - 2, x^9 + 5*x^8 + 3*x^7 - 16*x^6 - 15*x^5 + 19*x^4 + 15*x^3 - 10*x^2 - 4*x + 2, -x^9 - 5*x^8 - 2*x^7 + 21*x^6 + 20*x^5 - 28*x^4 - 29*x^3 + 14*x^2 + 11*x - 2, x^9 + 5*x^8 + 2*x^7 - 21*x^6 - 20*x^5 + 28*x^4 + 29*x^3 - 14*x^2 - 11*x + 2, -x^8 - 5*x^7 - 4*x^6 + 12*x^5 + 14*x^4 - 9*x^3 - 10*x^2 + 2*x + 2, x^8 + 5*x^7 + 4*x^6 - 12*x^5 - 14*x^4 + 9*x^3 + 10*x^2 - 2*x - 2, -x^8 - 4*x^7 + 12*x^5 + 2*x^4 - 11*x^3 + 2*x^2 + 3*x - 2, x^8 + 4*x^7 - 12*x^5 - 2*x^4 + 11*x^3 - 2*x^2 - 3*x + 2, -x^8 - 4*x^7 + x^6 + 15*x^5 + 2*x^4 - 16*x^3 - x^2 + 5*x, x^8 + 4*x^7 - x^6 - 15*x^5 - 2*x^4 + 16*x^3 + x^2 - 5*x, -x^7 - 4*x^6 - x^5 + 10*x^4 + 5*x^3 - 8*x^2 - 2*x + 2, x^7 + 4*x^6 + x^5 - 10*x^4 - 5*x^3 + 8*x^2 + 2*x - 2, -x^7 - 4*x^6 - x^5 + 10*x^4 + 6*x^3 - 5*x^2 - 3*x, x^7 + 4*x^6 + x^5 - 10*x^4 - 6*x^3 + 5*x^2 + 3*x, -x^7 - 5*x^6 - 3*x^5 + 14*x^4 + 12*x^3 - 10*x^2 - 6*x + 2, x^7 + 5*x^6 + 3*x^5 - 14*x^4 - 12*x^3 + 10*x^2 + 6*x - 2, -x^6 - 3*x^5 + x^4 + 6*x^3 - 2*x, x^6 + 3*x^5 - x^4 - 6*x^3 + 2*x, x^5 + 3*x^4 - x^3 - 6*x^2 + 2, -x^5 - 3*x^4 + x^3 + 6*x^2 - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^17 - 5*x^16 - 14*x^15 + 102*x^14 + 26*x^13 - 792*x^12 + 474*x^11 + 2887*x^10 - 3021*x^9 - 4835*x^8 + 6673*x^7 + 2880*x^6 - 5373*x^5 - 164*x^4 + 1075*x^3 + 75*x^2 - 41*x - 4,
           Coordinates        := [-x^16 + 5*x^15 + 11*x^14 - 87*x^13 - 3*x^12 + 577*x^11 - 393*x^10 - 1820*x^9 + 1914*x^8 + 2707*x^7 - 3587*x^6 - 1459*x^5 + 2542*x^4 - 95*x^3 - 275*x^2 + 4, x^16 - 5*x^15 - 11*x^14 + 85*x^13 + 9*x^12 - 549*x^11 + 303*x^10 + 1676*x^9 - 1388*x^8 - 2429*x^7 + 2155*x^6 + 1529*x^5 - 954*x^4 - 533*x^3 + 43*x^2 + 30*x + 2, 2*x^11 - 10*x^10 + 68*x^8 - 80*x^7 - 100*x^6 + 202*x^5 - 52*x^4 - 30*x^3 - 4*x^2 - 2*x + 2, -x^15 + 3*x^14 + 17*x^13 - 53*x^12 - 109*x^11 + 359*x^10 + 325*x^9 - 1170*x^8 - 426*x^7 + 1855*x^6 + 123*x^5 - 1213*x^4 + 116*x^3 + 137*x^2 - x - 2, x^15 - 7*x^14 + x^13 + 91*x^12 - 153*x^11 - 359*x^10 + 1011*x^9 + 244*x^8 - 2346*x^7 + 1083*x^6 + 1721*x^5 - 1425*x^4 + 151*x^2 - 19*x - 6, 2*x^12 - 8*x^11 - 16*x^10 + 90*x^9 + 24*x^8 - 368*x^7 + 92*x^6 + 628*x^5 - 256*x^4 - 362*x^3 + 92*x^2 + 44*x + 2, 2*x^13 - 8*x^12 - 20*x^11 + 106*x^10 + 38*x^9 - 484*x^8 + 142*x^7 + 862*x^6 - 454*x^5 - 454*x^4 + 184*x^3 + 70*x^2 - 28*x - 4, x^14 - 5*x^13 - 6*x^12 + 63*x^11 - 34*x^10 - 261*x^9 + 313*x^8 + 360*x^7 - 658*x^6 + 319*x^4 - 57*x^3 - 49*x^2 + 12*x + 2, x^14 - 5*x^13 - 6*x^12 + 63*x^11 - 34*x^10 - 261*x^9 + 313*x^8 + 360*x^7 - 658*x^6 + 319*x^4 - 57*x^3 - 49*x^2 + 12*x + 2, x^13 - 5*x^12 - 5*x^11 + 59*x^10 - 36*x^9 - 237*x^8 + 286*x^7 + 355*x^6 - 576*x^5 - 131*x^4 + 283*x^3 + 40*x^2 - x - 1, x^13 - 5*x^12 - 5*x^11 + 59*x^10 - 36*x^9 - 237*x^8 + 286*x^7 + 355*x^6 - 576*x^5 - 131*x^4 + 283*x^3 + 40*x^2 - x - 1, x^15 - 5*x^14 - 9*x^13 + 76*x^12 - 9*x^11 - 426*x^10 + 311*x^9 + 1081*x^8 - 1086*x^7 - 1217*x^6 + 1349*x^5 + 528*x^4 - 516*x^3 - 98*x^2 + 31*x + 5, x^15 - 5*x^14 - 9*x^13 + 76*x^12 - 9*x^11 - 426*x^10 + 311*x^9 + 1081*x^8 - 1086*x^7 - 1217*x^6 + 1349*x^5 + 528*x^4 - 516*x^3 - 98*x^2 + 31*x + 5, -x^11 + 8*x^10 - 11*x^9 - 52*x^8 + 134*x^7 + 55*x^6 - 340*x^5 + 113*x^4 + 179*x^3 - 47*x^2 - 21*x - 1, -x^11 + 8*x^10 - 11*x^9 - 52*x^8 + 134*x^7 + 55*x^6 - 340*x^5 + 113*x^4 + 179*x^3 - 47*x^2 - 21*x - 1, x^12 - 3*x^11 - 10*x^10 + 35*x^9 + 25*x^8 - 139*x^7 + 27*x^6 + 209*x^5 - 149*x^4 - 82*x^3 + 95*x^2 + 8*x - 1, x^12 - 3*x^11 - 10*x^10 + 35*x^9 + 25*x^8 - 139*x^7 + 27*x^6 + 209*x^5 - 149*x^4 - 82*x^3 + 95*x^2 + 8*x - 1, x^14 - 4*x^13 - 12*x^12 + 60*x^11 + 42*x^10 - 334*x^9 - 11*x^8 + 852*x^7 - 148*x^6 - 1001*x^5 + 119*x^4 + 492*x^3 + 37*x^2 - 37*x - 4, x^14 - 4*x^13 - 12*x^12 + 60*x^11 + 42*x^10 - 334*x^9 - 11*x^8 + 852*x^7 - 148*x^6 - 1001*x^5 + 119*x^4 + 492*x^3 + 37*x^2 - 37*x - 4, -x^13 + 4*x^12 + 11*x^11 - 60*x^10 - 16*x^9 + 303*x^8 - 151*x^7 - 595*x^6 + 487*x^5 + 362*x^4 - 300*x^3 - 57*x^2 + 2*x - 1, -x^13 + 4*x^12 + 11*x^11 - 60*x^10 - 16*x^9 + 303*x^8 - 151*x^7 - 595*x^6 + 487*x^5 + 362*x^4 - 300*x^3 - 57*x^2 + 2*x - 1, x^12 - 2*x^11 - 14*x^10 + 26*x^9 + 73*x^8 - 120*x^7 - 173*x^6 + 218*x^5 + 198*x^4 - 106*x^3 - 127*x^2 - 8*x + 2, x^12 - 2*x^11 - 14*x^10 + 26*x^9 + 73*x^8 - 120*x^7 - 173*x^6 + 218*x^5 + 198*x^4 - 106*x^3 - 127*x^2 - 8*x + 2, x^13 - 4*x^12 - 9*x^11 + 50*x^10 + 12*x^9 - 218*x^8 + 86*x^7 + 364*x^6 - 229*x^5 - 155*x^4 + 61*x^3 + 24*x^2 + 2*x - 1, x^13 - 4*x^12 - 9*x^11 + 50*x^10 + 12*x^9 - 218*x^8 + 86*x^7 + 364*x^6 - 229*x^5 - 155*x^4 + 61*x^3 + 24*x^2 + 2*x - 1, -x^14 + 5*x^13 + 7*x^12 - 70*x^11 + 36*x^10 + 330*x^9 - 402*x^8 - 578*x^7 + 1027*x^6 + 215*x^5 - 775*x^4 + 64*x^3 + 106*x^2 + 18*x + 2, -x^14 + 5*x^13 + 7*x^12 - 70*x^11 + 36*x^10 + 330*x^9 - 402*x^8 - 578*x^7 + 1027*x^6 + 215*x^5 - 775*x^4 + 64*x^3 + 106*x^2 + 18*x + 2, -x^15 + 6*x^14 + 3*x^13 - 81*x^12 + 95*x^11 + 354*x^10 - 716*x^9 - 479*x^8 + 1756*x^7 - 217*x^6 - 1477*x^5 + 477*x^4 + 342*x^3 - 31*x^2 - 18*x - 1, -x^15 + 6*x^14 + 3*x^13 - 81*x^12 + 95*x^11 + 354*x^10 - 716*x^9 - 479*x^8 + 1756*x^7 - 217*x^6 - 1477*x^5 + 477*x^4 + 342*x^3 - 31*x^2 - 18*x - 1]>
       ]
>;

MOG[353] := 	// J_0(353)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 58, 155, 198, 242, 259, 283, 344, 40*x + 16, 313*x + 16, 236*x + 297, 117*x + 297, 122*x + 279, 231*x + 279, 306*x + 226, 47*x + 226, 158*x + 163, 195*x + 163, 8*x + 130, 345*x + 130, 48*x + 248, 305*x + 248, 299*x + 38, 54*x + 38, 86*x + 133, 267*x + 133, 78*x + 108, 275*x + 108, 244*x + 210, 109*x + 210]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [1, -1, 1, -1, -3, -3, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - x^2 - 6*x + 4,
           Coordinates        := [-4, 4, 2*x^2 + 2*x - 4, 4, -4, 4*x, 2*x^2 - 2*x - 8, -4*x, -2*x^2 + 6, -2*x^2 + 6, -x^2 - x + 4, -x^2 - x + 4, -x^2 - x + 4, -x^2 - x + 4, x^2 - x - 6, x^2 - x - 6, -x^2 - x + 4, -x^2 - x + 4, x^2 - x - 6, x^2 - x - 6, 2*x - 2, 2*x - 2, 2*x - 2, 2*x - 2, x^2 - x + 2, x^2 - x + 2, 4, 4, 2*x - 2, 2*x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^11 + 5*x^10 - x^9 - 36*x^8 - 28*x^7 + 82*x^6 + 87*x^5 - 65*x^4 - 71*x^3 + 21*x^2 + 14*x - 4,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, -x^10 - 5*x^9 - x^8 + 27*x^7 + 27*x^6 - 41*x^5 - 50*x^4 + 22*x^3 + 26*x^2 - 4*x - 2, x^10 + 5*x^9 + x^8 - 27*x^7 - 27*x^6 + 41*x^5 + 50*x^4 - 22*x^3 - 26*x^2 + 4*x + 2, -x^9 - 4*x^8 + 2*x^7 + 22*x^6 + 9*x^5 - 35*x^4 - 17*x^3 + 22*x^2 + 7*x - 4, x^9 + 4*x^8 - 2*x^7 - 22*x^6 - 9*x^5 + 35*x^4 + 17*x^3 - 22*x^2 - 7*x + 4, -x^9 - 5*x^8 - 3*x^7 + 19*x^6 + 28*x^5 - 8*x^4 - 28*x^3 - 5*x^2 + 5*x, x^9 + 5*x^8 + 3*x^7 - 19*x^6 - 28*x^5 + 8*x^4 + 28*x^3 + 5*x^2 - 5*x, -x^8 - 3*x^7 + 4*x^6 + 15*x^5 - 2*x^4 - 17*x^3 + 3*x^2 + 7*x - 2, x^8 + 3*x^7 - 4*x^6 - 15*x^5 + 2*x^4 + 17*x^3 - 3*x^2 - 7*x + 2, -x^8 - 4*x^7 + x^6 + 18*x^5 + 10*x^4 - 18*x^3 - 10*x^2 + 5*x, x^8 + 4*x^7 - x^6 - 18*x^5 - 10*x^4 + 18*x^3 + 10*x^2 - 5*x, -x^8 - 4*x^7 + 15*x^5 + 12*x^4 - 9*x^3 - 11*x^2 - x + 2, x^8 + 4*x^7 - 15*x^5 - 12*x^4 + 9*x^3 + 11*x^2 + x - 2, -x^7 - 3*x^6 + 4*x^5 + 16*x^4 + 3*x^3 - 12*x^2 - 2*x + 2, x^7 + 3*x^6 - 4*x^5 - 16*x^4 - 3*x^3 + 12*x^2 + 2*x - 2, -x^7 - 4*x^6 - x^5 + 11*x^4 + 8*x^3 - 7*x^2 - 4*x + 2, x^7 + 4*x^6 + x^5 - 11*x^4 - 8*x^3 + 7*x^2 + 4*x - 2, x^5 + 5*x^4 + 5*x^3 - 5*x^2 - 5*x + 2, -x^5 - 5*x^4 - 5*x^3 + 5*x^2 + 5*x - 2, -x^6 - 3*x^5 + x^4 + 7*x^3 + 2*x^2 - 2*x, x^6 + 3*x^5 - x^4 - 7*x^3 - 2*x^2 + 2*x, x^5 + 3*x^4 - x^3 - 7*x^2 - 2*x + 2, -x^5 - 3*x^4 + x^3 + 7*x^2 + 2*x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^14 - 4*x^13 - 14*x^12 + 71*x^11 + 47*x^10 - 452*x^9 + 101*x^8 + 1251*x^7 - 740*x^6 - 1488*x^5 + 1096*x^4 + 600*x^3 - 410*x^2 - 42*x - 1,
           Coordinates        := [-2*x^7 + 6*x^6 + 12*x^5 - 48*x^4 + 10*x^3 + 64*x^2 - 40*x - 2, -x^13 + 5*x^12 + 7*x^11 - 68*x^10 + 31*x^9 + 305*x^8 - 330*x^7 - 513*x^6 + 755*x^5 + 265*x^4 - 553*x^3 - 11*x^2 + 95*x + 5, -2*x^9 + 6*x^8 + 16*x^7 - 58*x^6 - 18*x^5 + 144*x^4 - 30*x^3 - 102*x^2 + 34*x + 2, x^13 - 5*x^12 - 7*x^11 + 68*x^10 - 29*x^9 - 313*x^8 + 320*x^7 + 585*x^6 - 791*x^5 - 409*x^4 + 689*x^3 + 53*x^2 - 147*x - 7, 2*x^10 - 10*x^9 - 2*x^8 + 82*x^7 - 106*x^6 - 116*x^5 + 276*x^4 - 46*x^3 - 150*x^2 + 66*x + 4, -2*x^10 + 10*x^9 + 4*x^8 - 90*x^7 + 98*x^6 + 180*x^5 - 318*x^4 - 42*x^3 + 238*x^2 - 66*x - 4, 2*x^11 - 10*x^10 - 6*x^9 + 98*x^8 - 88*x^7 - 254*x^6 + 356*x^5 + 208*x^4 - 396*x^3 - 40*x^2 + 124*x + 6, -2*x^8 + 6*x^7 + 12*x^6 - 48*x^5 + 10*x^4 + 64*x^3 - 40*x^2 - 2*x, -x^9 + 3*x^8 + 9*x^7 - 33*x^6 - 13*x^5 + 104*x^4 - 35*x^3 - 97*x^2 + 60*x + 3, -x^9 + 3*x^8 + 9*x^7 - 33*x^6 - 13*x^5 + 104*x^4 - 35*x^3 - 97*x^2 + 60*x + 3, -x^10 + 3*x^9 + 10*x^8 - 35*x^7 - 22*x^6 + 123*x^5 - 19*x^4 - 137*x^3 + 63*x^2 + 14*x + 1, -x^10 + 3*x^9 + 10*x^8 - 35*x^7 - 22*x^6 + 123*x^5 - 19*x^4 - 137*x^3 + 63*x^2 + 14*x + 1, x^8 - 4*x^7 - 3*x^6 + 29*x^5 - 26*x^4 - 24*x^3 + 37*x^2 - 9*x - 1, x^8 - 4*x^7 - 3*x^6 + 29*x^5 - 26*x^4 - 24*x^3 + 37*x^2 - 9*x - 1, -x^11 + 4*x^10 + 8*x^9 - 48*x^8 + 4*x^7 + 178*x^6 - 129*x^5 - 222*x^4 + 235*x^3 + 48*x^2 - 73*x - 4, -x^11 + 4*x^10 + 8*x^9 - 48*x^8 + 4*x^7 + 178*x^6 - 129*x^5 - 222*x^4 + 235*x^3 + 48*x^2 - 73*x - 4, 2*x^9 - 8*x^8 - 9*x^7 + 69*x^6 - 40*x^5 - 127*x^4 + 123*x^3 + 53*x^2 - 60*x - 3, 2*x^9 - 8*x^8 - 9*x^7 + 69*x^6 - 40*x^5 - 127*x^4 + 123*x^3 + 53*x^2 - 60*x - 3, x^8 - 3*x^7 - 7*x^6 + 27*x^5 - x^4 - 51*x^3 + 35*x^2 - x, x^8 - 3*x^7 - 7*x^6 + 27*x^5 - x^4 - 51*x^3 + 35*x^2 - x, -x^12 + 5*x^11 + 5*x^10 - 59*x^9 + 42*x^8 + 209*x^7 - 285*x^6 - 216*x^5 + 476*x^4 - 50*x^3 - 184*x^2 + 55*x + 3, -x^12 + 5*x^11 + 5*x^10 - 59*x^9 + 42*x^8 + 209*x^7 - 285*x^6 - 216*x^5 + 476*x^4 - 50*x^3 - 184*x^2 + 55*x + 3, x^9 - 5*x^8 + 37*x^6 - 57*x^5 - 24*x^4 + 110*x^3 - 73*x^2 + 10*x + 1, x^9 - 5*x^8 + 37*x^6 - 57*x^5 - 24*x^4 + 110*x^3 - 73*x^2 + 10*x + 1, -x^11 + 5*x^10 + 3*x^9 - 48*x^8 + 41*x^7 + 119*x^6 - 150*x^5 - 93*x^4 + 134*x^3 + 18*x^2 - 19*x - 1, -x^11 + 5*x^10 + 3*x^9 - 48*x^8 + 41*x^7 + 119*x^6 - 150*x^5 - 93*x^4 + 134*x^3 + 18*x^2 - 19*x - 1, x^11 - 4*x^10 - 8*x^9 + 47*x^8 - x^7 - 169*x^6 + 99*x^5 + 204*x^4 - 156*x^3 - 43*x^2 + 21*x + 1, x^11 - 4*x^10 - 8*x^9 + 47*x^8 - x^7 - 169*x^6 + 99*x^5 + 204*x^4 - 156*x^3 - 43*x^2 + 21*x + 1, x^12 - 5*x^11 - 4*x^10 + 54*x^9 - 43*x^8 - 168*x^7 + 231*x^6 + 162*x^5 - 336*x^4 + 3*x^3 + 137*x^2 - 30*x - 2, x^12 - 5*x^11 - 4*x^10 + 54*x^9 - 43*x^8 - 168*x^7 + 231*x^6 + 162*x^5 - 336*x^4 + 3*x^3 + 137*x^2 - 30*x - 2]>
       ]
>;

MOG[359] := 	// J_0(359)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 45, 91, 102, 113, 141, 150, 157, 165, 178, 179, 211, 260, 276, 292, 296, 312, 331, 340, 77*x + 99, 282*x + 99, 340*x + 217, 19*x + 217, 190*x + 107, 169*x + 107, 281*x + 170, 78*x + 170, 188*x + 16, 171*x + 16, 172*x + 307, 187*x + 307]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, -2, 2, -1, 1, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, -1, 1, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + 2*x^3 - 3*x^2 - 5*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^3 + x^2 - 3*x - 1, -x^3 - x^2 + 3*x + 1, -x^3 - 2*x^2 + 2*x + 3, x^3 + 2*x^2 - 2*x - 3, x^2 + x - 2, -x^2 - x + 2, -x^2 - 2*x + 1, x^2 + 2*x - 1, x + 1, -x - 1, -x - 3, x + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^24 - x^23 - 39*x^22 + 38*x^21 + 658*x^20 - 619*x^19 - 6300*x^18 + 5654*x^17 + 37740*x^16 - 31780*x^15 - 147096*x^14 + 113400*x^13 + 376092*x^12 - 255412*x^11 - 621508*x^10 + 349080*x^9 + 638532*x^8 - 266744*x^7 - 378124*x^6 + 98609*x^5 + 110695*x^4 - 14509*x^3 - 11972*x^2 + 780*x + 381,
           Coordinates        := [-x^23 + x^22 + 36*x^21 - 35*x^20 - 556*x^19 + 520*x^18 + 4824*x^17 - 4281*x^16 - 25860*x^15 + 21369*x^14 + 88744*x^13 - 66406*x^12 - 195424*x^11 + 126668*x^10 + 269523*x^9 - 140091*x^8 - 220571*x^7 + 79101*x^6 + 97193*x^5 - 16674*x^4 - 19113*x^3 - 344*x^2 + 1151*x + 138, x^23 - x^22 - 36*x^21 + 37*x^20 + 555*x^19 - 579*x^18 - 4792*x^17 + 5007*x^16 + 25441*x^15 - 26201*x^14 - 85847*x^13 + 85248*x^12 + 184116*x^11 - 170246*x^10 - 245031*x^9 + 198093*x^8 + 194080*x^7 - 121160*x^6 - 86471*x^5 + 32822*x^4 + 18276*x^3 - 2318*x^2 - 1020*x - 48, -3*x^21 + 3*x^20 + 96*x^19 - 96*x^18 - 1297*x^17 + 1286*x^16 + 9632*x^15 - 9361*x^14 - 42885*x^13 + 40133*x^12 + 117219*x^11 - 102504*x^10 - 193984*x^9 + 150088*x^8 + 185468*x^7 - 114159*x^6 - 93414*x^5 + 36548*x^4 + 20047*x^3 - 2894*x^2 - 1061*x - 12, -3*x^20 + 93*x^18 - x^17 - 1219*x^16 + 22*x^15 + 8795*x^14 - 196*x^13 - 38044*x^12 + 857*x^11 + 100558*x^10 - 1691*x^9 - 158059*x^8 + 466*x^7 + 136001*x^6 + 2696*x^5 - 53129*x^4 - 2423*x^3 + 5995*x^2 + 128*x - 150, x^20 - x^19 - 38*x^18 + 43*x^17 + 578*x^16 - 708*x^15 - 4604*x^14 + 5955*x^13 + 20922*x^12 - 28119*x^11 - 55111*x^10 + 75885*x^9 + 81892*x^8 - 112998*x^7 - 65528*x^6 + 85083*x^5 + 28671*x^4 - 27846*x^3 - 7115*x^2 + 2122*x + 462, 3*x^16 - 5*x^15 - 62*x^14 + 104*x^13 + 495*x^12 - 804*x^11 - 1938*x^10 + 2843*x^9 + 3872*x^8 - 4406*x^7 - 3567*x^6 + 1900*x^5 + 449*x^4 + 916*x^3 + 1316*x^2 - 210*x - 84, -3*x^22 + 3*x^21 + 102*x^20 - 99*x^19 - 1476*x^18 + 1373*x^17 + 11880*x^16 - 10411*x^15 - 58352*x^14 + 46994*x^13 + 180668*x^12 - 128744*x^11 - 351985*x^10 + 208989*x^9 + 417961*x^8 - 187643*x^7 - 280931*x^6 + 81935*x^5 + 91582*x^4 - 14853*x^3 - 10821*x^2 + 918*x + 381, -3*x^20 + 3*x^19 + 86*x^18 - 86*x^17 - 1029*x^16 + 1028*x^15 + 6672*x^14 - 6665*x^13 - 25405*x^12 + 25383*x^11 + 57443*x^10 - 57210*x^9 - 74434*x^8 + 73018*x^7 + 51516*x^6 - 48083*x^5 - 18406*x^4 + 14382*x^3 + 3765*x^2 - 1058*x - 231, -5*x^19 + 5*x^18 + 134*x^17 - 129*x^16 - 1480*x^15 + 1348*x^14 + 8740*x^13 - 7375*x^12 - 29888*x^11 + 22647*x^10 + 59775*x^9 - 38535*x^8 - 66976*x^7 + 33038*x^6 + 37504*x^5 - 11083*x^4 - 8141*x^3 + 918*x^2 + 415*x + 6, x^21 - x^20 - 31*x^19 + 34*x^18 + 391*x^17 - 476*x^16 - 2554*x^15 + 3551*x^14 + 8963*x^13 - 15266*x^12 - 14853*x^11 + 38277*x^10 + 2447*x^9 - 54727*x^8 + 23931*x^7 + 43921*x^6 - 24116*x^5 - 20525*x^4 + 5738*x^3 + 3500*x^2 - 397*x - 150, -2*x^19 + 4*x^18 + 53*x^17 - 103*x^16 - 570*x^15 + 1056*x^14 + 3219*x^13 - 5478*x^12 - 10370*x^11 + 14961*x^10 + 19670*x^9 - 19736*x^8 - 22483*x^7 + 8124*x^6 + 15283*x^5 + 3762*x^4 - 4712*x^3 - 2296*x^2 + 444*x + 144, x^20 - x^19 - 29*x^18 + 20*x^17 + 347*x^16 - 116*x^15 - 2206*x^14 - 207*x^13 + 7927*x^12 + 5260*x^11 - 15455*x^10 - 24665*x^9 + 12575*x^8 + 53399*x^7 + 4319*x^6 - 54491*x^5 - 12654*x^4 + 20975*x^3 + 5188*x^2 - 1712*x - 363, -3*x^20 + 3*x^19 + 90*x^18 - 81*x^17 - 1133*x^16 + 890*x^15 + 7788*x^14 - 5116*x^13 - 31813*x^12 + 16349*x^11 + 78642*x^10 - 27983*x^9 - 114400*x^8 + 20906*x^7 + 89970*x^6 - 93*x^5 - 31279*x^4 - 4937*x^3 + 2567*x^2 + 448*x - 3, 2*x^20 - 3*x^19 - 59*x^18 + 91*x^17 + 726*x^16 - 1141*x^15 - 4841*x^14 + 7673*x^13 + 19021*x^12 - 29979*x^11 - 44914*x^10 + 68707*x^9 + 62722*x^8 - 88453*x^7 - 50136*x^6 + 57468*x^5 + 22251*x^4 - 15516*x^3 - 4316*x^2 + 1189*x + 258, x^21 - 33*x^19 + 3*x^18 + 461*x^17 - 78*x^16 - 3557*x^15 + 818*x^14 + 16591*x^13 - 4423*x^12 - 48125*x^11 + 13011*x^10 + 86024*x^9 - 19923*x^8 - 90459*x^7 + 13061*x^6 + 50154*x^5 - 963*x^4 - 11242*x^3 - 871*x^2 + 659*x + 99, x^22 - x^21 - 33*x^20 + 36*x^19 + 458*x^18 - 539*x^17 - 3479*x^16 + 4375*x^15 + 15773*x^14 - 21014*x^13 - 43702*x^12 + 61136*x^11 + 73013*x^10 - 105947*x^9 - 70536*x^8 + 103520*x^7 + 37093*x^6 - 51117*x^5 - 10279*x^4 + 10371*x^3 + 1530*x^2 - 560*x - 99, -3*x^20 + 5*x^19 + 91*x^18 - 146*x^17 - 1151*x^16 + 1769*x^15 + 7885*x^14 - 11537*x^13 - 31787*x^12 + 43884*x^11 + 76719*x^10 - 98464*x^9 - 108247*x^8 + 125528*x^7 + 84378*x^6 - 83221*x^5 - 33832*x^4 + 24634*x^3 + 6243*x^2 - 1768*x - 378, -3*x^19 + 2*x^18 + 79*x^17 - 45*x^16 - 859*x^15 + 370*x^14 + 5037*x^13 - 1232*x^12 - 17518*x^11 + 255*x^10 + 37616*x^9 + 8437*x^8 - 49933*x^7 - 19146*x^6 + 37589*x^5 + 14158*x^4 - 11629*x^3 - 2973*x^2 + 783*x + 162, -3*x^21 + 3*x^20 + 96*x^19 - 91*x^18 - 1295*x^17 + 1146*x^16 + 9596*x^15 - 7752*x^14 - 42679*x^13 + 30341*x^12 + 117068*x^11 - 68511*x^10 - 196624*x^9 + 82542*x^8 + 195314*x^7 - 41209*x^6 - 106583*x^5 - 1379*x^4 + 26471*x^3 + 4844*x^2 - 2011*x - 402, x^22 - 35*x^20 + 2*x^19 + 525*x^18 - 54*x^17 - 4410*x^16 + 602*x^15 + 22738*x^14 - 3569*x^13 - 74137*x^12 + 12015*x^11 + 151732*x^10 - 22520*x^9 - 186958*x^8 + 21032*x^7 + 127280*x^6 - 7335*x^5 - 41070*x^4 + 910*x^3 + 4711*x^2 - 134*x - 141, x^22 - 35*x^20 + 2*x^19 + 525*x^18 - 54*x^17 - 4410*x^16 + 602*x^15 + 22738*x^14 - 3569*x^13 - 74137*x^12 + 12015*x^11 + 151732*x^10 - 22520*x^9 - 186958*x^8 + 21032*x^7 + 127280*x^6 - 7335*x^5 - 41070*x^4 + 910*x^3 + 4711*x^2 - 134*x - 141, x^19 - 7*x^18 - 22*x^17 + 180*x^16 + 174*x^15 - 1879*x^14 - 518*x^13 + 10263*x^12 - 301*x^11 - 31471*x^10 + 5064*x^9 + 54063*x^8 - 9806*x^7 - 49206*x^6 + 5731*x^5 + 20750*x^4 - 275*x^3 - 2606*x^2 + 17*x + 75, x^19 - 7*x^18 - 22*x^17 + 180*x^16 + 174*x^15 - 1879*x^14 - 518*x^13 + 10263*x^12 - 301*x^11 - 31471*x^10 + 5064*x^9 + 54063*x^8 - 9806*x^7 - 49206*x^6 + 5731*x^5 + 20750*x^4 - 275*x^3 - 2606*x^2 + 17*x + 75, x^21 - 32*x^19 + 436*x^17 + 5*x^16 - 3305*x^15 - 106*x^14 + 15279*x^13 + 904*x^12 - 44399*x^11 - 4006*x^10 + 80593*x^9 + 9897*x^8 - 87832*x^7 - 13455*x^6 + 52736*x^5 + 9158*x^4 - 14475*x^3 - 2527*x^2 + 1013*x + 189, x^21 - 32*x^19 + 436*x^17 + 5*x^16 - 3305*x^15 - 106*x^14 + 15279*x^13 + 904*x^12 - 44399*x^11 - 4006*x^10 + 80593*x^9 + 9897*x^8 - 87832*x^7 - 13455*x^6 + 52736*x^5 + 9158*x^4 - 14475*x^3 - 2527*x^2 + 1013*x + 189, -3*x^19 + 5*x^18 + 81*x^17 - 128*x^16 - 904*x^15 + 1318*x^14 + 5433*x^13 - 6996*x^12 - 19213*x^11 + 20264*x^10 + 41112*x^9 - 30818*x^8 - 52672*x^7 + 20558*x^6 + 37652*x^5 - 1779*x^4 - 11952*x^3 - 2198*x^2 + 1004*x + 201, -3*x^19 + 5*x^18 + 81*x^17 - 128*x^16 - 904*x^15 + 1318*x^14 + 5433*x^13 - 6996*x^12 - 19213*x^11 + 20264*x^10 + 41112*x^9 - 30818*x^8 - 52672*x^7 + 20558*x^6 + 37652*x^5 - 1779*x^4 - 11952*x^3 - 2198*x^2 + 1004*x + 201, x^20 + x^19 - 30*x^18 - 32*x^17 + 379*x^16 + 433*x^15 - 2618*x^14 - 3200*x^13 + 10717*x^12 + 13958*x^11 - 26225*x^10 - 36290*x^9 + 36404*x^8 + 53966*x^7 - 24408*x^6 - 40975*x^5 + 4344*x^4 + 12079*x^3 + 618*x^2 - 866*x - 117, x^20 + x^19 - 30*x^18 - 32*x^17 + 379*x^16 + 433*x^15 - 2618*x^14 - 3200*x^13 + 10717*x^12 + 13958*x^11 - 26225*x^10 - 36290*x^9 + 36404*x^8 + 53966*x^7 - 24408*x^6 - 40975*x^5 + 4344*x^4 + 12079*x^3 + 618*x^2 - 866*x - 117, x^19 - 2*x^18 - 25*x^17 + 49*x^16 + 254*x^15 - 476*x^14 - 1362*x^13 + 2337*x^12 + 4216*x^11 - 6059*x^10 - 7899*x^9 + 7665*x^8 + 9458*x^7 - 3112*x^6 - 7417*x^5 - 1423*x^4 + 3014*x^3 + 1043*x^2 - 264*x - 72, x^19 - 2*x^18 - 25*x^17 + 49*x^16 + 254*x^15 - 476*x^14 - 1362*x^13 + 2337*x^12 + 4216*x^11 - 6059*x^10 - 7899*x^9 + 7665*x^8 + 9458*x^7 - 3112*x^6 - 7417*x^5 - 1423*x^4 + 3014*x^3 + 1043*x^2 - 264*x - 72]>
       ]
>;

MOG[367] := 	// J_0(367)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [40, 46, 56, 135, 164, 260, 293, 295, 315, 137*x + 283, 230*x + 283, 71*x + 57, 296*x + 57, 39*x + 211, 328*x + 211, 164*x + 113, 203*x + 113, 134*x + 128, 233*x + 128, 28*x + 161, 339*x + 161, 303*x + 147, 64*x + 147, 113*x + 111, 254*x + 111, 125*x + 240, 242*x + 240, 128*x + 260, 239*x + 260, 295*x + 91, 72*x + 91]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^11 + 8*x^10 + 16*x^9 - 26*x^8 - 121*x^7 - 61*x^6 + 197*x^5 + 212*x^4 - 66*x^3 - 132*x^2 - 12*x + 13,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, -x^10 - 7*x^9 - 10*x^8 + 29*x^7 + 80*x^6 - 2*x^5 - 129*x^4 - 48*x^3 + 68*x^2 + 25*x - 10, x^10 + 7*x^9 + 10*x^8 - 29*x^7 - 80*x^6 + 2*x^5 + 129*x^4 + 48*x^3 - 68*x^2 - 25*x + 10, -x^9 - 7*x^8 - 12*x^7 + 17*x^6 + 66*x^5 + 35*x^4 - 46*x^3 - 39*x^2 + 3*x + 3, x^9 + 7*x^8 + 12*x^7 - 17*x^6 - 66*x^5 - 35*x^4 + 46*x^3 + 39*x^2 - 3*x - 3, -x^5 - 5*x^4 - 6*x^3 + 2*x^2 + 3*x - 2, x^5 + 5*x^4 + 6*x^3 - 2*x^2 - 3*x + 2, -x^8 - 6*x^7 - 7*x^6 + 18*x^5 + 39*x^4 + x^3 - 33*x^2 - 9*x + 6, x^8 + 6*x^7 + 7*x^6 - 18*x^5 - 39*x^4 - x^3 + 33*x^2 + 9*x - 6, -x^8 - 6*x^7 - 7*x^6 + 19*x^5 + 44*x^4 + 8*x^3 - 32*x^2 - 13*x + 4, x^8 + 6*x^7 + 7*x^6 - 19*x^5 - 44*x^4 - 8*x^3 + 32*x^2 + 13*x - 4, x^6 + 7*x^5 + 14*x^4 - 22*x^2 - 11*x + 4, -x^6 - 7*x^5 - 14*x^4 + 22*x^2 + 11*x - 4, -x^6 - 6*x^5 - 11*x^4 - 4*x^3 + 5*x^2 + x - 2, x^6 + 6*x^5 + 11*x^4 + 4*x^3 - 5*x^2 - x + 2, -x^7 - 6*x^6 - 9*x^5 + 5*x^4 + 14*x^3 - 3*x^2 - 6*x + 3, x^7 + 6*x^6 + 9*x^5 - 5*x^4 - 14*x^3 + 3*x^2 + 6*x - 3, -x^7 - 5*x^6 - 3*x^5 + 17*x^4 + 22*x^3 - 6*x^2 - 12*x + 1, x^7 + 5*x^6 + 3*x^5 - 17*x^4 - 22*x^3 + 6*x^2 + 12*x - 1, x^6 + 5*x^5 + 5*x^4 - 8*x^3 - 14*x^2 - 2*x + 3, -x^6 - 5*x^5 - 5*x^4 + 8*x^3 + 14*x^2 + 2*x - 3, -x^5 - 4*x^4 - 3*x^3 + 2*x^2 + x - 1, x^5 + 4*x^4 + 3*x^3 - 2*x^2 - x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^19 - 9*x^18 + 11*x^17 + 123*x^16 - 372*x^15 - 469*x^14 + 2884*x^13 - 550*x^12 - 10042*x^11 + 8029*x^10 + 17059*x^9 - 20350*x^8 - 12836*x^7 + 20779*x^6 + 2682*x^5 - 7739*x^4 + 63*x^3 + 899*x^2 - 27*x - 29,
           Coordinates        := [-x^18 + 9*x^17 - 14*x^16 - 97*x^15 + 334*x^14 + 207*x^13 - 2047*x^12 + 1125*x^11 + 5384*x^10 - 6117*x^9 - 6015*x^8 + 10566*x^7 + 1481*x^6 - 7117*x^5 + 1301*x^4 + 1335*x^3 - 345*x^2 - 37*x + 9, x^18 - 9*x^17 + 14*x^16 + 96*x^15 - 325*x^14 - 226*x^13 + 1994*x^12 - 881*x^11 - 5440*x^10 + 5270*x^9 + 6776*x^8 - 9319*x^7 - 2987*x^6 + 6272*x^5 - 226*x^4 - 1110*x^3 + 168*x^2 + 62*x - 14, -x^14 + 10*x^13 - 29*x^12 - 22*x^11 + 259*x^10 - 337*x^9 - 430*x^8 + 1325*x^7 - 573*x^6 - 1102*x^5 + 1346*x^4 - 387*x^3 - 124*x^2 + 53*x - 2, -x^15 + 10*x^14 - 29*x^13 - 26*x^12 + 287*x^11 - 371*x^10 - 596*x^9 + 1755*x^8 - 467*x^7 - 2206*x^6 + 1934*x^5 + 403*x^4 - 886*x^3 + 153*x^2 + 52*x - 12, -x^17 + 10*x^16 - 24*x^15 - 72*x^14 + 395*x^13 - 157*x^12 - 1832*x^11 + 2564*x^10 + 3030*x^9 - 7658*x^8 - 193*x^7 + 8502*x^6 - 3123*x^5 - 2796*x^4 + 1166*x^3 + 144*x^2 - 72*x + 1, -x^14 + 9*x^13 - 20*x^12 - 46*x^11 + 241*x^10 - 130*x^9 - 726*x^8 + 1029*x^7 + 562*x^6 - 1644*x^5 + 290*x^4 + 693*x^3 - 193*x^2 - 40*x + 12, x^17 - 9*x^16 + 15*x^15 + 87*x^14 - 310*x^13 - 141*x^12 + 1696*x^11 - 1017*x^10 - 3893*x^9 + 4407*x^8 + 3525*x^7 - 5987*x^6 - 472*x^5 + 2677*x^4 - 345*x^3 - 289*x^2 + 23*x + 13, -x^15 + 8*x^14 - 10*x^13 - 74*x^12 + 208*x^11 + 159*x^10 - 1019*x^9 + 314*x^8 + 2043*x^7 - 1503*x^6 - 1623*x^5 + 1547*x^4 + 282*x^3 - 282*x^2 - 2*x + 11, -x^16 + 10*x^15 - 26*x^14 - 54*x^13 + 356*x^12 - 257*x^11 - 1337*x^10 + 2352*x^9 + 1415*x^8 - 5589*x^7 + 1383*x^6 + 4793*x^5 - 2812*x^4 - 846*x^3 + 562*x^2 + 15*x - 22, 2*x^12 - 14*x^11 + 17*x^10 + 83*x^9 - 215*x^8 - 53*x^7 + 552*x^6 - 294*x^5 - 395*x^4 + 381*x^3 - 50*x^2 - 27*x + 6, 2*x^12 - 14*x^11 + 17*x^10 + 83*x^9 - 215*x^8 - 53*x^7 + 552*x^6 - 294*x^5 - 395*x^4 + 381*x^3 - 50*x^2 - 27*x + 6, x^14 - 8*x^13 + 13*x^12 + 53*x^11 - 193*x^10 + 39*x^9 + 592*x^8 - 720*x^7 - 273*x^6 + 1001*x^5 - 570*x^4 - 44*x^3 + 147*x^2 - 20*x - 4, x^14 - 8*x^13 + 13*x^12 + 53*x^11 - 193*x^10 + 39*x^9 + 592*x^8 - 720*x^7 - 273*x^6 + 1001*x^5 - 570*x^4 - 44*x^3 + 147*x^2 - 20*x - 4, -x^17 + 8*x^16 - 7*x^15 - 95*x^14 + 221*x^13 + 366*x^12 - 1413*x^11 - 326*x^10 + 4007*x^9 - 1063*x^8 - 5581*x^7 + 2580*x^6 + 3553*x^5 - 1804*x^4 - 724*x^3 + 359*x^2 + 27*x - 15, -x^17 + 8*x^16 - 7*x^15 - 95*x^14 + 221*x^13 + 366*x^12 - 1413*x^11 - 326*x^10 + 4007*x^9 - 1063*x^8 - 5581*x^7 + 2580*x^6 + 3553*x^5 - 1804*x^4 - 724*x^3 + 359*x^2 + 27*x - 15, x^15 - 9*x^14 + 18*x^13 + 61*x^12 - 260*x^11 + 27*x^10 + 989*x^9 - 867*x^8 - 1434*x^7 + 1788*x^6 + 838*x^5 - 1141*x^4 - 331*x^3 + 239*x^2 + 28*x - 14, x^15 - 9*x^14 + 18*x^13 + 61*x^12 - 260*x^11 + 27*x^10 + 989*x^9 - 867*x^8 - 1434*x^7 + 1788*x^6 + 838*x^5 - 1141*x^4 - 331*x^3 + 239*x^2 + 28*x - 14, x^14 - 5*x^13 - 10*x^12 + 81*x^11 - 5*x^10 - 480*x^9 + 362*x^8 + 1214*x^7 - 1339*x^6 - 1114*x^5 + 1492*x^4 + 97*x^3 - 209*x^2 - 5*x + 8, x^14 - 5*x^13 - 10*x^12 + 81*x^11 - 5*x^10 - 480*x^9 + 362*x^8 + 1214*x^7 - 1339*x^6 - 1114*x^5 + 1492*x^4 + 97*x^3 - 209*x^2 - 5*x + 8, x^17 - 9*x^16 + 16*x^15 + 78*x^14 - 290*x^13 - 95*x^12 + 1453*x^11 - 871*x^10 - 3195*x^9 + 3312*x^8 + 3162*x^7 - 4260*x^6 - 1218*x^5 + 1976*x^4 + 225*x^3 - 274*x^2 - 5*x + 8, x^17 - 9*x^16 + 16*x^15 + 78*x^14 - 290*x^13 - 95*x^12 + 1453*x^11 - 871*x^10 - 3195*x^9 + 3312*x^8 + 3162*x^7 - 4260*x^6 - 1218*x^5 + 1976*x^4 + 225*x^3 - 274*x^2 - 5*x + 8, -x^16 + 9*x^15 - 18*x^14 - 62*x^13 + 268*x^12 - 38*x^11 - 1051*x^10 + 1047*x^9 + 1497*x^8 - 2405*x^7 - 508*x^6 + 1760*x^5 - 221*x^4 - 252*x^3 + 13*x^2 - 5*x + 6, -x^16 + 9*x^15 - 18*x^14 - 62*x^13 + 268*x^12 - 38*x^11 - 1051*x^10 + 1047*x^9 + 1497*x^8 - 2405*x^7 - 508*x^6 + 1760*x^5 - 221*x^4 - 252*x^3 + 13*x^2 - 5*x + 6, x^16 - 10*x^15 + 26*x^14 + 51*x^13 - 334*x^12 + 234*x^11 + 1155*x^10 - 1895*x^9 - 1159*x^8 + 3942*x^7 - 677*x^6 - 2980*x^5 + 1380*x^4 + 614*x^3 - 358*x^2 - 22*x + 18, x^16 - 10*x^15 + 26*x^14 + 51*x^13 - 334*x^12 + 234*x^11 + 1155*x^10 - 1895*x^9 - 1159*x^8 + 3942*x^7 - 677*x^6 - 2980*x^5 + 1380*x^4 + 614*x^3 - 358*x^2 - 22*x + 18, x^15 - 7*x^14 + 3*x^13 + 78*x^12 - 139*x^11 - 282*x^10 + 803*x^9 + 260*x^8 - 1833*x^7 + 498*x^6 + 1605*x^5 - 825*x^4 - 262*x^3 + 57*x^2 + 33*x - 4, x^15 - 7*x^14 + 3*x^13 + 78*x^12 - 139*x^11 - 282*x^10 + 803*x^9 + 260*x^8 - 1833*x^7 + 498*x^6 + 1605*x^5 - 825*x^4 - 262*x^3 + 57*x^2 + 33*x - 4, x^16 - 8*x^15 + 9*x^14 + 80*x^13 - 207*x^12 - 224*x^11 + 1090*x^10 - 63*x^9 - 2455*x^8 + 1117*x^7 + 2446*x^6 - 1316*x^5 - 929*x^4 + 222*x^3 + 185*x^2 - 32*x - 4, x^16 - 8*x^15 + 9*x^14 + 80*x^13 - 207*x^12 - 224*x^11 + 1090*x^10 - 63*x^9 - 2455*x^8 + 1117*x^7 + 2446*x^6 - 1316*x^5 - 929*x^4 + 222*x^3 + 185*x^2 - 32*x - 4, -x^15 + 7*x^14 - 4*x^13 - 70*x^12 + 128*x^11 + 218*x^10 - 615*x^9 - 183*x^8 + 1131*x^7 - 143*x^6 - 794*x^5 + 172*x^4 + 123*x^3 - 6*x^2 + x - 3, -x^15 + 7*x^14 - 4*x^13 - 70*x^12 + 128*x^11 + 218*x^10 - 615*x^9 - 183*x^8 + 1131*x^7 - 143*x^6 - 794*x^5 + 172*x^4 + 123*x^3 - 6*x^2 + x - 3]>
       ]
>;

MOG[373] := 	// J_0(373)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [20, 56, 167, 231, 340, 77*x + 80, 296*x + 80, 365*x + 318, 8*x + 318, 327*x + 90, 46*x + 90, 25*x + 48, 348*x + 48, 165*x + 129, 208*x + 129, 246*x + 34, 127*x + 34, 366*x + 138, 7*x + 138, 277*x + 162, 96*x + 162, 8*x + 15, 365*x + 15, 234*x + 256, 139*x + 256, 115*x + 131, 258*x + 131, 15*x + 341, 358*x + 341, 4*x + 59, 369*x + 59]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 1, -1, -1, 1, -2, 2, 1, -1, 1, -1, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^12 + 4*x^11 - 8*x^10 - 43*x^9 + 14*x^8 + 161*x^7 + 17*x^6 - 260*x^5 - 53*x^4 + 177*x^3 + 18*x^2 - 42*x + 7,
           Coordinates        := [0, 0, 0, 0, 0, -x^11 - 4*x^10 + 6*x^9 + 35*x^8 - 5*x^7 - 103*x^6 - 21*x^5 + 118*x^4 + 34*x^3 - 43*x^2 - 7*x + 4, x^11 + 4*x^10 - 6*x^9 - 35*x^8 + 5*x^7 + 103*x^6 + 21*x^5 - 118*x^4 - 34*x^3 + 43*x^2 + 7*x - 4, -x^10 - 4*x^9 + 5*x^8 + 31*x^7 - 3*x^6 - 80*x^5 - 9*x^4 + 80*x^3 + 3*x^2 - 26*x + 5, x^10 + 4*x^9 - 5*x^8 - 31*x^7 + 3*x^6 + 80*x^5 + 9*x^4 - 80*x^3 - 3*x^2 + 26*x - 5, -x^10 - 4*x^9 + 4*x^8 + 27*x^7 - x^6 - 62*x^5 - 10*x^4 + 54*x^3 + 8*x^2 - 12*x + 2, x^10 + 4*x^9 - 4*x^8 - 27*x^7 + x^6 + 62*x^5 + 10*x^4 - 54*x^3 - 8*x^2 + 12*x - 2, -x^9 - 4*x^8 + 2*x^7 + 23*x^6 + 12*x^5 - 38*x^4 - 31*x^3 + 17*x^2 + 12*x - 4, x^9 + 4*x^8 - 2*x^7 - 23*x^6 - 12*x^5 + 38*x^4 + 31*x^3 - 17*x^2 - 12*x + 4, -x^9 - 4*x^8 + 3*x^7 + 24*x^6 + 4*x^5 - 45*x^4 - 16*x^3 + 29*x^2 + 9*x - 5, x^9 + 4*x^8 - 3*x^7 - 24*x^6 - 4*x^5 + 45*x^4 + 16*x^3 - 29*x^2 - 9*x + 5, -x^9 - 4*x^8 + x^7 + 17*x^6 + 7*x^5 - 19*x^4 - 10*x^3 + 2*x^2 + 1, x^9 + 4*x^8 - x^7 - 17*x^6 - 7*x^5 + 19*x^4 + 10*x^3 - 2*x^2 - 1, -2*x^8 - 6*x^7 + 9*x^6 + 31*x^5 - 12*x^4 - 45*x^3 + 4*x^2 + 15*x - 3, 2*x^8 + 6*x^7 - 9*x^6 - 31*x^5 + 12*x^4 + 45*x^3 - 4*x^2 - 15*x + 3, -x^8 - 2*x^7 + 6*x^6 + 11*x^5 - 10*x^4 - 18*x^3 + 5*x^2 + 7*x - 2, x^8 + 2*x^7 - 6*x^6 - 11*x^5 + 10*x^4 + 18*x^3 - 5*x^2 - 7*x + 2, -x^8 - 3*x^7 + 5*x^6 + 17*x^5 - 6*x^4 - 25*x^3 + x^2 + 7*x - 2, x^8 + 3*x^7 - 5*x^6 - 17*x^5 + 6*x^4 + 25*x^3 - x^2 - 7*x + 2, -x^8 - 4*x^7 - x^6 + 12*x^5 + 12*x^4 - 7*x^3 - 12*x^2 - 2*x + 1, x^8 + 4*x^7 + x^6 - 12*x^5 - 12*x^4 + 7*x^3 + 12*x^2 + 2*x - 1, -x^7 - 2*x^6 + 7*x^5 + 14*x^4 - 8*x^3 - 21*x^2 - 4*x + 3, x^7 + 2*x^6 - 7*x^5 - 14*x^4 + 8*x^3 + 21*x^2 + 4*x - 3, -x^7 - 3*x^6 + 2*x^5 + 10*x^4 + 2*x^3 - 9*x^2 - 3*x + 1, x^7 + 3*x^6 - 2*x^5 - 10*x^4 - 2*x^3 + 9*x^2 + 3*x - 1, -x^7 - 2*x^6 + 3*x^5 + 2*x^4 - 4*x^3 + 5*x^2 + 4*x - 2, x^7 + 2*x^6 - 3*x^5 - 2*x^4 + 4*x^3 - 5*x^2 - 4*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^17 - 4*x^16 - 18*x^15 + 85*x^14 + 111*x^13 - 713*x^12 - 211*x^11 + 3017*x^10 - 469*x^9 - 6832*x^8 + 2513*x^7 + 8146*x^6 - 3634*x^5 - 4743*x^4 + 2092*x^3 + 1142*x^2 - 417*x - 62,
           Coordinates        := [-x^16 + 4*x^15 + 15*x^14 - 73*x^13 - 72*x^12 + 518*x^11 + 63*x^10 - 1811*x^9 + 452*x^8 + 3259*x^7 - 1283*x^6 - 2875*x^5 + 1073*x^4 + 1084*x^3 - 201*x^2 - 126*x - 28, x^16 - 4*x^15 - 15*x^14 + 73*x^13 + 72*x^12 - 522*x^11 - 45*x^10 + 1833*x^9 - 632*x^8 - 3229*x^7 + 1897*x^6 + 2577*x^5 - 1929*x^4 - 680*x^3 + 645*x^2 - 40, 2*x^13 - 8*x^12 - 20*x^11 + 106*x^10 + 46*x^9 - 512*x^8 + 96*x^7 + 1090*x^6 - 448*x^5 - 998*x^4 + 412*x^3 + 382*x^2 - 104*x - 48, x^15 - 4*x^14 - 13*x^13 + 63*x^12 + 56*x^11 - 382*x^10 - 73*x^9 + 1133*x^8 - 90*x^7 - 1725*x^6 + 327*x^5 + 1249*x^4 - 289*x^3 - 340*x^2 + 75*x + 10, -x^15 + 4*x^14 + 13*x^13 - 67*x^12 - 42*x^11 + 420*x^10 - 89*x^9 - 1229*x^8 + 734*x^7 + 1715*x^6 - 1351*x^5 - 1065*x^4 + 903*x^3 + 264*x^2 - 201*x - 10, x^14 - 5*x^13 - 6*x^12 + 63*x^11 - 30*x^10 - 279*x^9 + 304*x^8 + 497*x^7 - 769*x^6 - 275*x^5 + 705*x^4 - 15*x^3 - 243*x^2 + 28*x + 24, x^14 - 5*x^13 - 6*x^12 + 63*x^11 - 30*x^10 - 279*x^9 + 304*x^8 + 497*x^7 - 769*x^6 - 275*x^5 + 705*x^4 - 15*x^3 - 243*x^2 + 28*x + 24, x^15 - 4*x^14 - 13*x^13 + 64*x^12 + 55*x^11 - 401*x^10 - 45*x^9 + 1235*x^8 - 263*x^7 - 1922*x^6 + 689*x^5 + 1407*x^4 - 579*x^3 - 401*x^2 + 151*x + 26, x^15 - 4*x^14 - 13*x^13 + 64*x^12 + 55*x^11 - 401*x^10 - 45*x^9 + 1235*x^8 - 263*x^7 - 1922*x^6 + 689*x^5 + 1407*x^4 - 579*x^3 - 401*x^2 + 151*x + 26, -x^14 + 5*x^13 + 7*x^12 - 65*x^11 + 16*x^10 + 303*x^9 - 226*x^8 - 602*x^7 + 557*x^6 + 464*x^5 - 424*x^4 - 76*x^3 + 47*x^2 - 23*x + 22, -x^14 + 5*x^13 + 7*x^12 - 65*x^11 + 16*x^10 + 303*x^9 - 226*x^8 - 602*x^7 + 557*x^6 + 464*x^5 - 424*x^4 - 76*x^3 + 47*x^2 - 23*x + 22, x^14 - 4*x^13 - 11*x^12 + 58*x^11 + 30*x^10 - 319*x^9 + 65*x^8 + 810*x^7 - 439*x^6 - 895*x^5 + 645*x^4 + 294*x^3 - 251*x^2 - 2*x + 16, x^14 - 4*x^13 - 11*x^12 + 58*x^11 + 30*x^10 - 319*x^9 + 65*x^8 + 810*x^7 - 439*x^6 - 895*x^5 + 645*x^4 + 294*x^3 - 251*x^2 - 2*x + 16, -x^15 + 4*x^14 + 13*x^13 - 64*x^12 - 53*x^11 + 393*x^10 + 36*x^9 - 1172*x^8 + 248*x^7 + 1778*x^6 - 605*x^5 - 1297*x^4 + 494*x^3 + 376*x^2 - 122*x - 26, -x^15 + 4*x^14 + 13*x^13 - 64*x^12 - 53*x^11 + 393*x^10 + 36*x^9 - 1172*x^8 + 248*x^7 + 1778*x^6 - 605*x^5 - 1297*x^4 + 494*x^3 + 376*x^2 - 122*x - 26, -x^13 + 5*x^12 + 6*x^11 - 60*x^10 + 17*x^9 + 266*x^8 - 188*x^7 - 545*x^6 + 456*x^5 + 516*x^4 - 432*x^3 - 156*x^2 + 116*x + 2, -x^13 + 5*x^12 + 6*x^11 - 60*x^10 + 17*x^9 + 266*x^8 - 188*x^7 - 545*x^6 + 456*x^5 + 516*x^4 - 432*x^3 - 156*x^2 + 116*x + 2, x^13 - 4*x^12 - 10*x^11 + 54*x^10 + 24*x^9 - 278*x^8 + 53*x^7 + 675*x^6 - 309*x^5 - 748*x^4 + 413*x^3 + 275*x^2 - 132*x - 18, x^13 - 4*x^12 - 10*x^11 + 54*x^10 + 24*x^9 - 278*x^8 + 53*x^7 + 675*x^6 - 309*x^5 - 748*x^4 + 413*x^3 + 275*x^2 - 132*x - 18, x^13 - 2*x^12 - 15*x^11 + 28*x^10 + 86*x^9 - 147*x^8 - 229*x^7 + 352*x^6 + 265*x^5 - 365*x^4 - 85*x^3 + 124*x^2 - 3*x - 8, x^13 - 2*x^12 - 15*x^11 + 28*x^10 + 86*x^9 - 147*x^8 - 229*x^7 + 352*x^6 + 265*x^5 - 365*x^4 - 85*x^3 + 124*x^2 - 3*x - 8, -x^14 + 4*x^13 + 12*x^12 - 60*x^11 - 43*x^10 + 336*x^9 + 22*x^8 - 879*x^7 + 121*x^6 + 1114*x^5 - 155*x^4 - 632*x^3 + 32*x^2 + 123*x + 6, -x^14 + 4*x^13 + 12*x^12 - 60*x^11 - 43*x^10 + 336*x^9 + 22*x^8 - 879*x^7 + 121*x^6 + 1114*x^5 - 155*x^4 - 632*x^3 + 32*x^2 + 123*x + 6, -x^13 + 3*x^12 + 15*x^11 - 53*x^10 - 61*x^9 + 316*x^8 + 4*x^7 - 776*x^6 + 361*x^5 + 740*x^4 - 493*x^3 - 206*x^2 + 157*x - 4, -x^13 + 3*x^12 + 15*x^11 - 53*x^10 - 61*x^9 + 316*x^8 + 4*x^7 - 776*x^6 + 361*x^5 + 740*x^4 - 493*x^3 - 206*x^2 + 157*x - 4, x^14 - 5*x^13 - 8*x^12 + 70*x^11 - 14*x^10 - 350*x^9 + 271*x^8 + 752*x^7 - 785*x^6 - 664*x^5 + 820*x^4 + 170*x^3 - 285*x^2 + 5*x + 20, x^14 - 5*x^13 - 8*x^12 + 70*x^11 - 14*x^10 - 350*x^9 + 271*x^8 + 752*x^7 - 785*x^6 - 664*x^5 + 820*x^4 + 170*x^3 - 285*x^2 + 5*x + 20, -x^14 + 3*x^13 + 15*x^12 - 49*x^11 - 76*x^10 + 291*x^9 + 141*x^8 - 772*x^7 - 34*x^6 + 905*x^5 - 85*x^4 - 410*x^3 + 58*x + 14, -x^14 + 3*x^13 + 15*x^12 - 49*x^11 - 76*x^10 + 291*x^9 + 141*x^8 - 772*x^7 - 34*x^6 + 905*x^5 - 85*x^4 - 410*x^3 + 58*x + 14, x^13 - 5*x^12 - 10*x^11 + 75*x^10 + 8*x^9 - 403*x^8 + 184*x^7 + 940*x^6 - 621*x^5 - 924*x^4 + 636*x^3 + 313*x^2 - 178*x - 16, x^13 - 5*x^12 - 10*x^11 + 75*x^10 + 8*x^9 - 403*x^8 + 184*x^7 + 940*x^6 - 621*x^5 - 924*x^4 + 636*x^3 + 313*x^2 - 178*x - 16]>
       ]
>;

MOG[379] := 	// J_0(379)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [142, 198, 212, 214, 216, 229, 200*x + 289, 179*x + 289, 339*x + 166, 40*x + 166, 339*x + 235, 40*x + 235, 69*x + 322, 310*x + 322, 112*x + 219, 267*x + 219, 368*x + 94, 11*x + 94, 357*x + 107, 22*x + 107, 181*x + 210, 198*x + 210, 309*x + 10, 70*x + 10, 248*x + 345, 131*x + 345, 94*x + 178, 285*x + 178, 15*x + 161, 364*x + 161, 289*x + 303, 90*x + 303]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^13 + 5*x^12 - 5*x^11 - 56*x^10 - 27*x^9 + 210*x^8 + 184*x^7 - 347*x^6 - 346*x^5 + 252*x^4 + 246*x^3 - 60*x^2 - 48*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^12 - 5*x^11 + 3*x^10 + 46*x^9 + 29*x^8 - 139*x^7 - 133*x^6 + 177*x^5 + 182*x^4 - 95*x^3 - 87*x^2 + 19*x + 11, x^12 + 5*x^11 - 3*x^10 - 46*x^9 - 29*x^8 + 139*x^7 + 133*x^6 - 177*x^5 - 182*x^4 + 95*x^3 + 87*x^2 - 19*x - 11, -x^11 - 5*x^10 + x^9 + 35*x^8 + 23*x^7 - 85*x^6 - 68*x^5 + 88*x^4 + 57*x^3 - 35*x^2 - 8*x + 3, x^11 + 5*x^10 - x^9 - 35*x^8 - 23*x^7 + 85*x^6 + 68*x^5 - 88*x^4 - 57*x^3 + 35*x^2 + 8*x - 3, -x^11 - 5*x^10 + x^9 + 36*x^8 + 28*x^7 - 85*x^6 - 96*x^5 + 69*x^4 + 102*x^3 - 6*x^2 - 29*x - 4, x^11 + 5*x^10 - x^9 - 36*x^8 - 28*x^7 + 85*x^6 + 96*x^5 - 69*x^4 - 102*x^3 + 6*x^2 + 29*x + 4, -x^10 - 6*x^9 - 6*x^8 + 24*x^7 + 44*x^6 - 24*x^5 - 73*x^4 - x^3 + 37*x^2 + 5*x - 2, x^10 + 6*x^9 + 6*x^8 - 24*x^7 - 44*x^6 + 24*x^5 + 73*x^4 + x^3 - 37*x^2 - 5*x + 2, -x^10 - 5*x^9 + 30*x^7 + 21*x^6 - 65*x^5 - 52*x^4 + 61*x^3 + 42*x^2 - 21*x - 9, x^10 + 5*x^9 - 30*x^7 - 21*x^6 + 65*x^5 + 52*x^4 - 61*x^3 - 42*x^2 + 21*x + 9, -x^10 - 6*x^9 - 6*x^8 + 23*x^7 + 40*x^6 - 26*x^5 - 66*x^4 + 6*x^3 + 39*x^2 + 2*x - 7, x^10 + 6*x^9 + 6*x^8 - 23*x^7 - 40*x^6 + 26*x^5 + 66*x^4 - 6*x^3 - 39*x^2 - 2*x + 7, -x^10 - 4*x^9 + 5*x^8 + 31*x^7 - 3*x^6 - 82*x^5 - 14*x^4 + 83*x^3 + 19*x^2 - 25*x - 4, x^10 + 4*x^9 - 5*x^8 - 31*x^7 + 3*x^6 + 82*x^5 + 14*x^4 - 83*x^3 - 19*x^2 + 25*x + 4, -x^9 - 5*x^8 - 2*x^7 + 21*x^6 + 21*x^5 - 23*x^4 - 26*x^3 + x^2 + 4*x + 4, x^9 + 5*x^8 + 2*x^7 - 21*x^6 - 21*x^5 + 23*x^4 + 26*x^3 - x^2 - 4*x - 4, -x^9 - 5*x^8 - 2*x^7 + 20*x^6 + 16*x^5 - 27*x^4 - 15*x^3 + 14*x^2 - x - 3, x^9 + 5*x^8 + 2*x^7 - 20*x^6 - 16*x^5 + 27*x^4 + 15*x^3 - 14*x^2 + x + 3, -x^9 - 7*x^8 - 12*x^7 + 15*x^6 + 54*x^5 + 10*x^4 - 62*x^3 - 29*x^2 + 17*x + 6, x^9 + 7*x^8 + 12*x^7 - 15*x^6 - 54*x^5 - 10*x^4 + 62*x^3 + 29*x^2 - 17*x - 6, -x^8 - 5*x^7 - 2*x^6 + 22*x^5 + 24*x^4 - 24*x^3 - 32*x^2 + 3*x + 6, x^8 + 5*x^7 + 2*x^6 - 22*x^5 - 24*x^4 + 24*x^3 + 32*x^2 - 3*x - 6, -x^8 - 6*x^7 - 6*x^6 + 20*x^5 + 31*x^4 - 20*x^3 - 36*x^2 + 5*x + 10, x^8 + 6*x^7 + 6*x^6 - 20*x^5 - 31*x^4 + 20*x^3 + 36*x^2 - 5*x - 10, x^6 + 3*x^5 - x^4 - 6*x^3 + 2*x^2 + 2*x - 4, -x^6 - 3*x^5 + x^4 + 6*x^3 - 2*x^2 - 2*x + 4]>,
         rec<Eigen |
           DefiningPolynomial := x^18 - 3*x^17 - 22*x^16 + 69*x^15 + 190*x^14 - 638*x^13 - 807*x^12 + 3041*x^11 + 1680*x^10 - 7967*x^9 - 1220*x^8 + 11334*x^7 - 1006*x^6 - 8079*x^5 + 1938*x^4 + 2287*x^3 - 752*x^2 - 68*x + 24,
           Coordinates        := [-x^17 + 3*x^16 + 20*x^15 - 65*x^14 - 148*x^13 + 552*x^12 + 471*x^11 - 2325*x^10 - 418*x^9 + 5063*x^8 - 932*x^7 - 5416*x^6 + 2104*x^5 + 2435*x^4 - 1266*x^3 - 261*x^2 + 202*x - 24, x^17 - 3*x^16 - 20*x^15 + 63*x^14 + 154*x^13 - 522*x^12 - 569*x^11 + 2177*x^10 + 994*x^9 - 4833*x^8 - 534*x^7 + 5556*x^6 - 576*x^5 - 2927*x^4 + 770*x^3 + 487*x^2 - 228*x + 24, -2*x^12 + 2*x^11 + 32*x^10 - 32*x^9 - 182*x^8 + 174*x^7 + 448*x^6 - 394*x^5 - 456*x^4 + 374*x^3 + 116*x^2 - 96*x + 12, -2*x^13 + 4*x^12 + 30*x^11 - 64*x^10 - 150*x^9 + 356*x^8 + 274*x^7 - 842*x^6 - 62*x^5 + 830*x^4 - 258*x^3 - 212*x^2 + 108*x - 12, -2*x^13 + 6*x^12 + 28*x^11 - 92*x^10 - 126*x^9 + 502*x^8 + 168*x^7 - 1182*x^6 + 134*x^5 + 1182*x^4 - 396*x^3 - 398*x^2 + 208*x - 24, -2*x^12 + 6*x^11 + 22*x^10 - 74*x^9 - 62*x^8 + 284*x^7 - 6*x^6 - 346*x^5 + 96*x^4 + 98*x^3 - 18*x^2 + 2*x, -x^14 + 2*x^13 + 17*x^12 - 34*x^11 - 107*x^10 + 210*x^9 + 319*x^8 - 595*x^7 - 479*x^6 + 809*x^5 + 327*x^4 - 480*x^3 - 62*x^2 + 90*x - 12, -x^14 + 2*x^13 + 17*x^12 - 34*x^11 - 107*x^10 + 210*x^9 + 319*x^8 - 595*x^7 - 479*x^6 + 809*x^5 + 327*x^4 - 480*x^3 - 62*x^2 + 90*x - 12, -x^12 + x^11 + 15*x^10 - 11*x^9 - 90*x^8 + 50*x^7 + 264*x^6 - 141*x^5 - 341*x^4 + 217*x^3 + 115*x^2 - 92*x + 12, -x^12 + x^11 + 15*x^10 - 11*x^9 - 90*x^8 + 50*x^7 + 264*x^6 - 141*x^5 - 341*x^4 + 217*x^3 + 115*x^2 - 92*x + 12, -x^15 + 2*x^14 + 19*x^13 - 37*x^12 - 138*x^11 + 259*x^10 + 480*x^9 - 861*x^8 - 803*x^7 + 1387*x^6 + 530*x^5 - 969*x^4 - 21*x^3 + 187*x^2 - 28*x, -x^15 + 2*x^14 + 19*x^13 - 37*x^12 - 138*x^11 + 259*x^10 + 480*x^9 - 861*x^8 - 803*x^7 + 1387*x^6 + 530*x^5 - 969*x^4 - 21*x^3 + 187*x^2 - 28*x, x^14 - 3*x^13 - 16*x^12 + 52*x^11 + 87*x^10 - 332*x^9 - 160*x^8 + 946*x^7 - 80*x^6 - 1131*x^5 + 432*x^4 + 406*x^3 - 230*x^2 + 26*x, x^14 - 3*x^13 - 16*x^12 + 52*x^11 + 87*x^10 - 332*x^9 - 160*x^8 + 946*x^7 - 80*x^6 - 1131*x^5 + 432*x^4 + 406*x^3 - 230*x^2 + 26*x, -3*x^11 + 9*x^10 + 32*x^9 - 109*x^8 - 87*x^7 + 418*x^6 - 19*x^5 - 542*x^4 + 189*x^3 + 200*x^2 - 104*x + 12, -3*x^11 + 9*x^10 + 32*x^9 - 109*x^8 - 87*x^7 + 418*x^6 - 19*x^5 - 542*x^4 + 189*x^3 + 200*x^2 - 104*x + 12, -x^14 + 3*x^13 + 16*x^12 - 51*x^11 - 90*x^10 + 318*x^9 + 205*x^8 - 893*x^7 - 131*x^6 + 1111*x^5 - 93*x^4 - 544*x^3 + 110*x^2 + 60*x - 12, -x^14 + 3*x^13 + 16*x^12 - 51*x^11 - 90*x^10 + 318*x^9 + 205*x^8 - 893*x^7 - 131*x^6 + 1111*x^5 - 93*x^4 - 544*x^3 + 110*x^2 + 60*x - 12, -x^16 + 2*x^15 + 21*x^14 - 42*x^13 - 171*x^12 + 344*x^11 + 677*x^10 - 1389*x^9 - 1327*x^8 + 2875*x^7 + 1140*x^6 - 2889*x^5 - 255*x^4 + 1211*x^3 - 76*x^2 - 150*x + 24, -x^16 + 2*x^15 + 21*x^14 - 42*x^13 - 171*x^12 + 344*x^11 + 677*x^10 - 1389*x^9 - 1327*x^8 + 2875*x^7 + 1140*x^6 - 2889*x^5 - 255*x^4 + 1211*x^3 - 76*x^2 - 150*x + 24, x^15 - 2*x^14 - 19*x^13 + 37*x^12 + 137*x^11 - 257*x^10 - 467*x^9 + 831*x^8 + 763*x^7 - 1264*x^6 - 538*x^5 + 840*x^4 + 97*x^3 - 199*x^2 + 32*x, x^15 - 2*x^14 - 19*x^13 + 37*x^12 + 137*x^11 - 257*x^10 - 467*x^9 + 831*x^8 + 763*x^7 - 1264*x^6 - 538*x^5 + 840*x^4 + 97*x^3 - 199*x^2 + 32*x, 2*x^11 - 5*x^10 - 24*x^9 + 65*x^8 + 84*x^7 - 277*x^6 - 55*x^5 + 434*x^4 - 115*x^3 - 201*x^2 + 102*x - 12, 2*x^11 - 5*x^10 - 24*x^9 + 65*x^8 + 84*x^7 - 277*x^6 - 55*x^5 + 434*x^4 - 115*x^3 - 201*x^2 + 102*x - 12, 2*x^12 - 4*x^11 - 28*x^10 + 57*x^9 + 128*x^8 - 274*x^7 - 196*x^6 + 508*x^5 - 7*x^4 - 275*x^3 + 103*x^2 - 10*x, 2*x^12 - 4*x^11 - 28*x^10 + 57*x^9 + 128*x^8 - 274*x^7 - 196*x^6 + 508*x^5 - 7*x^4 - 275*x^3 + 103*x^2 - 10*x, x^16 - 3*x^15 - 18*x^14 + 59*x^13 + 116*x^12 - 446*x^11 - 297*x^10 + 1630*x^9 + 92*x^8 - 2973*x^7 + 806*x^6 + 2509*x^5 - 1175*x^4 - 702*x^3 + 461*x^2 - 58*x, x^16 - 3*x^15 - 18*x^14 + 59*x^13 + 116*x^12 - 446*x^11 - 297*x^10 + 1630*x^9 + 92*x^8 - 2973*x^7 + 806*x^6 + 2509*x^5 - 1175*x^4 - 702*x^3 + 461*x^2 - 58*x, x^14 - x^13 - 20*x^12 + 21*x^11 + 152*x^10 - 166*x^9 - 544*x^8 + 613*x^7 + 916*x^6 - 1063*x^5 - 616*x^4 + 762*x^3 + 81*x^2 - 162*x + 24, x^14 - x^13 - 20*x^12 + 21*x^11 + 152*x^10 - 166*x^9 - 544*x^8 + 613*x^7 + 916*x^6 - 1063*x^5 - 616*x^4 + 762*x^3 + 81*x^2 - 162*x + 24, x^15 - 2*x^14 - 19*x^13 + 39*x^12 + 135*x^11 - 290*x^10 - 435*x^9 + 1029*x^8 + 577*x^7 - 1783*x^6 - 61*x^5 + 1385*x^4 - 406*x^3 - 346*x^2 + 196*x - 24, x^15 - 2*x^14 - 19*x^13 + 39*x^12 + 135*x^11 - 290*x^10 - 435*x^9 + 1029*x^8 + 577*x^7 - 1783*x^6 - 61*x^5 + 1385*x^4 - 406*x^3 - 346*x^2 + 196*x - 24]>
       ]
>;

MOG[383] := 	// J_0(383)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 72, 108, 128, 156, 172, 196, 227, 231, 246, 252, 340, 347, 375, 377, 380, 382, 356*x + 256, 27*x + 256, 308*x + 64, 75*x + 64, 12*x + 298, 371*x + 298, 74*x + 192, 309*x + 192, 32*x + 122, 351*x + 122, 148*x + 121, 235*x + 121, 321*x + 345, 62*x + 345, 346*x + 265, 37*x + 265]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x + 1, -x - 1, 1, -1, -x, x, 0, 0, -1, 1, -x, x, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 + 3*x^5 - 3*x^4 - 12*x^3 - x^2 + 8*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^5 - 2*x^4 + 4*x^3 + 7*x^2 - 3*x - 3, x^5 + 2*x^4 - 4*x^3 - 7*x^2 + 3*x + 3, x^5 + x^4 - 5*x^3 - 4*x^2 + 5*x + 3, -x^5 - x^4 + 5*x^3 + 4*x^2 - 5*x - 3, -x^5 - 2*x^4 + 4*x^3 + 7*x^2 - 4*x - 3, x^5 + 2*x^4 - 4*x^3 - 7*x^2 + 4*x + 3, x^4 - x^3 - 5*x^2 + 3*x + 3, -x^4 + x^3 + 5*x^2 - 3*x - 3, -x^4 - x^3 + 2*x^2 + x, x^4 + x^3 - 2*x^2 - x, x, -x, -x^3 - x^2 + x, x^3 + x^2 - x, x^2 + x, -x^2 - x]>,
         rec<Eigen |
           DefiningPolynomial := x^24 - 5*x^23 - 26*x^22 + 160*x^21 + 244*x^20 - 2173*x^19 - 711*x^18 + 16368*x^17 - 4007*x^16 - 75111*x^15 + 42025*x^14 + 217575*x^13 - 160547*x^12 - 399209*x^11 + 331301*x^10 + 452295*x^9 - 388291*x^8 - 296126*x^7 + 247918*x^6 + 96139*x^5 - 75925*x^4 - 9553*x^3 + 8302*x^2 - 342*x - 49,
           Coordinates        := [-x^23 + 5*x^22 + 23*x^21 - 145*x^20 - 180*x^19 + 1765*x^18 + 259*x^17 - 11746*x^16 + 4427*x^15 + 46729*x^14 - 31164*x^13 - 114422*x^12 + 95494*x^11 + 171520*x^10 - 158864*x^9 - 151289*x^8 + 145581*x^7 + 71450*x^6 - 67880*x^5 - 14429*x^4 + 12872*x^3 + 622*x^2 - 588*x - 28, x^23 - 3*x^22 - 31*x^21 + 95*x^20 + 402*x^19 - 1265*x^18 - 2839*x^17 + 9231*x^16 + 11938*x^15 - 40394*x^14 - 30784*x^13 + 109241*x^12 + 48292*x^11 - 181774*x^10 - 43205*x^9 + 179138*x^8 + 16799*x^7 - 95655*x^6 + 2894*x^5 + 22730*x^4 - 3870*x^3 - 1452*x^2 + 354*x + 14, x^20 - 3*x^19 - 28*x^18 + 92*x^17 + 295*x^16 - 1116*x^15 - 1417*x^14 + 6937*x^13 + 2564*x^12 - 23928*x^11 + 2892*x^10 + 46476*x^9 - 19264*x^8 - 48809*x^7 + 29188*x^6 + 24327*x^5 - 16960*x^4 - 3874*x^3 + 2541*x^2 - 74*x + 28, -2*x^20 + 12*x^19 + 26*x^18 - 274*x^17 + 52*x^16 + 2473*x^15 - 2545*x^14 - 11176*x^13 + 17283*x^12 + 26233*x^11 - 54395*x^10 - 28677*x^9 + 89428*x^8 + 5198*x^7 - 74976*x^6 + 14369*x^5 + 27332*x^4 - 8932*x^3 - 2230*x^2 + 806*x + 28, x^22 - 3*x^21 - 32*x^20 + 104*x^19 + 402*x^18 - 1459*x^17 - 2517*x^16 + 10841*x^15 + 7979*x^14 - 46766*x^13 - 9643*x^12 + 120851*x^11 - 10958*x^10 - 186747*x^9 + 46814*x^8 + 166873*x^7 - 53714*x^6 - 79197*x^5 + 26595*x^4 + 15841*x^3 - 5044*x^2 - 352*x + 21, x^18 - 9*x^17 + x^16 + 177*x^15 - 292*x^14 - 1309*x^13 + 3141*x^12 + 4486*x^11 - 14581*x^10 - 6658*x^9 + 34973*x^8 + 650*x^7 - 43851*x^6 + 8787*x^5 + 25995*x^4 - 7770*x^3 - 5355*x^2 + 1574*x + 84, x^18 - 2*x^17 - 27*x^16 + 52*x^15 + 294*x^14 - 541*x^13 - 1662*x^12 + 2884*x^11 + 5265*x^10 - 8409*x^9 - 9568*x^8 + 13432*x^7 + 10005*x^6 - 11290*x^5 - 5943*x^4 + 4591*x^3 + 1740*x^2 - 722*x - 56, x^21 - 3*x^20 - 30*x^19 + 98*x^18 + 346*x^17 - 1279*x^16 - 1914*x^15 + 8696*x^14 + 4846*x^13 - 33601*x^12 - 1837*x^11 + 75632*x^10 - 17065*x^9 - 97847*x^8 + 35955*x^7 + 69063*x^6 - 27647*x^5 - 23771*x^4 + 7952*x^3 + 3122*x^2 - 773*x - 98, x^19 - 3*x^18 - 26*x^17 + 84*x^16 + 255*x^15 - 924*x^14 - 1161*x^13 + 5127*x^12 + 2348*x^11 - 15482*x^10 - 1040*x^9 + 26038*x^8 - 3340*x^7 - 23441*x^6 + 5340*x^5 + 9363*x^4 - 2560*x^3 - 734*x^2 + 135*x + 42, x^19 - 3*x^18 - 25*x^17 + 79*x^16 + 242*x^15 - 835*x^14 - 1121*x^13 + 4546*x^12 + 2381*x^11 - 13674*x^10 - 1159*x^9 + 23000*x^8 - 3427*x^7 - 21295*x^6 + 5347*x^5 + 10534*x^4 - 2851*x^3 - 2462*x^2 + 666*x + 56, -2*x^21 + 12*x^20 + 30*x^19 - 292*x^18 - 24*x^17 + 2889*x^16 - 2045*x^15 - 15068*x^14 + 16295*x^13 + 45211*x^12 - 57413*x^11 - 80605*x^10 + 107084*x^9 + 85582*x^8 - 106468*x^7 - 52605*x^6 + 51348*x^5 + 16882*x^4 - 9126*x^3 - 2022*x^2 + 440*x + 84, -3*x^20 + 12*x^19 + 67*x^18 - 302*x^17 - 574*x^16 + 3117*x^15 + 2266*x^14 - 17117*x^13 - 3181*x^12 + 54330*x^11 - 5543*x^10 - 101124*x^9 + 27147*x^8 + 105764*x^7 - 39676*x^6 - 54371*x^5 + 25274*x^4 + 9025*x^3 - 5781*x^2 + 526*x + 56, x^20 - 3*x^19 - 28*x^18 + 88*x^17 + 308*x^16 - 1029*x^15 - 1716*x^14 + 6228*x^13 + 5242*x^12 - 21291*x^11 - 8999*x^10 + 42424*x^9 + 8405*x^8 - 49001*x^7 - 3121*x^6 + 31099*x^5 - 1683*x^4 - 8845*x^3 + 1730*x^2 + 328*x - 49, -3*x^19 + 12*x^18 + 61*x^17 - 276*x^16 - 476*x^15 + 2583*x^14 + 1792*x^13 - 12855*x^12 - 3241*x^11 + 37368*x^10 + 1473*x^9 - 64992*x^8 + 4797*x^7 + 65340*x^6 - 9594*x^5 - 33723*x^4 + 6970*x^3 + 6521*x^2 - 1745*x - 56, -3*x^20 + 15*x^19 + 52*x^18 - 353*x^17 - 221*x^16 + 3299*x^15 - 983*x^14 - 15670*x^13 + 11602*x^12 + 40410*x^11 - 40096*x^10 - 56273*x^9 + 65326*x^8 + 38877*x^7 - 51123*x^6 - 9865*x^5 + 16003*x^4 - 308*x^3 - 658*x^2 - 156*x - 7, -3*x^22 + 15*x^21 + 64*x^20 - 408*x^19 - 452*x^18 + 4622*x^17 + 420*x^16 - 28382*x^15 + 10861*x^14 + 103153*x^13 - 65053*x^12 - 227689*x^11 + 172437*x^10 + 301006*x^9 - 242710*x^8 - 224676*x^7 + 180038*x^6 + 81710*x^5 - 63053*x^4 - 8931*x^3 + 7714*x^2 - 370*x - 49, -3*x^21 + 15*x^20 + 58*x^19 - 381*x^18 - 333*x^17 + 3967*x^16 - 375*x^15 - 21966*x^14 + 12144*x^13 + 70366*x^12 - 56632*x^11 - 132949*x^10 + 126798*x^9 + 143609*x^8 - 150237*x^7 - 80035*x^6 + 89239*x^5 + 17474*x^4 - 21776*x^3 - 214*x^2 + 1275*x, -3*x^18 + 13*x^17 + 49*x^16 - 267*x^15 - 237*x^14 + 2131*x^13 - 30*x^12 - 8481*x^11 + 3508*x^10 + 18066*x^9 - 11175*x^8 - 20212*x^7 + 15041*x^6 + 10324*x^5 - 9152*x^4 - 1252*x^3 + 2018*x^2 - 291*x - 28, -3*x^18 + 13*x^17 + 49*x^16 - 267*x^15 - 237*x^14 + 2131*x^13 - 30*x^12 - 8481*x^11 + 3508*x^10 + 18066*x^9 - 11175*x^8 - 20212*x^7 + 15041*x^6 + 10324*x^5 - 9152*x^4 - 1252*x^3 + 2018*x^2 - 291*x - 28, -3*x^17 + 8*x^16 + 62*x^15 - 160*x^14 - 513*x^13 + 1233*x^12 + 2263*x^11 - 4721*x^10 - 5990*x^9 + 9807*x^8 + 9594*x^7 - 11165*x^6 - 8345*x^5 + 6476*x^4 + 2818*x^3 - 1457*x^2 + 143*x - 28, -3*x^17 + 8*x^16 + 62*x^15 - 160*x^14 - 513*x^13 + 1233*x^12 + 2263*x^11 - 4721*x^10 - 5990*x^9 + 9807*x^8 + 9594*x^7 - 11165*x^6 - 8345*x^5 + 6476*x^4 + 2818*x^3 - 1457*x^2 + 143*x - 28, x^18 - 4*x^17 - 20*x^16 + 96*x^15 + 128*x^14 - 905*x^13 - 108*x^12 + 4223*x^11 - 1966*x^10 - 10219*x^9 + 7962*x^8 + 12684*x^7 - 11924*x^6 - 7482*x^5 + 7200*x^4 + 1570*x^3 - 1203*x^2 + 58*x - 14, x^18 - 4*x^17 - 20*x^16 + 96*x^15 + 128*x^14 - 905*x^13 - 108*x^12 + 4223*x^11 - 1966*x^10 - 10219*x^9 + 7962*x^8 + 12684*x^7 - 11924*x^6 - 7482*x^5 + 7200*x^4 + 1570*x^3 - 1203*x^2 + 58*x - 14, -2*x^17 + 5*x^16 + 45*x^15 - 116*x^14 - 385*x^13 + 1060*x^12 + 1497*x^11 - 4777*x^10 - 2269*x^9 + 10962*x^8 - 547*x^7 - 12221*x^6 + 4497*x^5 + 5494*x^4 - 3023*x^3 - 418*x^2 + 120*x + 56, -2*x^17 + 5*x^16 + 45*x^15 - 116*x^14 - 385*x^13 + 1060*x^12 + 1497*x^11 - 4777*x^10 - 2269*x^9 + 10962*x^8 - 547*x^7 - 12221*x^6 + 4497*x^5 + 5494*x^4 - 3023*x^3 - 418*x^2 + 120*x + 56, -2*x^18 + 10*x^17 + 32*x^16 - 223*x^15 - 109*x^14 + 1958*x^13 - 796*x^12 - 8537*x^11 + 7229*x^10 + 19221*x^9 - 21316*x^8 - 21268*x^7 + 27883*x^6 + 9342*x^5 - 14993*x^4 - 213*x^3 + 1995*x^2 - 207*x - 28, -2*x^18 + 10*x^17 + 32*x^16 - 223*x^15 - 109*x^14 + 1958*x^13 - 796*x^12 - 8537*x^11 + 7229*x^10 + 19221*x^9 - 21316*x^8 - 21268*x^7 + 27883*x^6 + 9342*x^5 - 14993*x^4 - 213*x^3 + 1995*x^2 - 207*x - 28, x^19 - 5*x^18 - 19*x^17 + 125*x^16 + 99*x^15 - 1234*x^14 + 198*x^13 + 6155*x^12 - 3581*x^11 - 16604*x^10 + 12735*x^9 + 24423*x^8 - 19538*x^7 - 18982*x^6 + 12982*x^5 + 7463*x^4 - 3111*x^3 - 1397*x^2 + 362*x + 49, x^19 - 5*x^18 - 19*x^17 + 125*x^16 + 99*x^15 - 1234*x^14 + 198*x^13 + 6155*x^12 - 3581*x^11 - 16604*x^10 + 12735*x^9 + 24423*x^8 - 19538*x^7 - 18982*x^6 + 12982*x^5 + 7463*x^4 - 3111*x^3 - 1397*x^2 + 362*x + 49, -2*x^19 + 9*x^18 + 38*x^17 - 208*x^16 - 250*x^15 + 1946*x^14 + 494*x^13 - 9489*x^12 + 1509*x^11 + 25964*x^10 - 8828*x^9 - 40192*x^8 + 15746*x^7 + 33487*x^6 - 12008*x^5 - 12907*x^4 + 3448*x^3 + 1414*x^2 - 206*x - 42, -2*x^19 + 9*x^18 + 38*x^17 - 208*x^16 - 250*x^15 + 1946*x^14 + 494*x^13 - 9489*x^12 + 1509*x^11 + 25964*x^10 - 8828*x^9 - 40192*x^8 + 15746*x^7 + 33487*x^6 - 12008*x^5 - 12907*x^4 + 3448*x^3 + 1414*x^2 - 206*x - 42, -3*x^19 + 14*x^18 + 56*x^17 - 334*x^16 - 304*x^15 + 3148*x^14 - 271*x^13 - 14978*x^12 + 8268*x^11 + 38338*x^10 - 30736*x^9 - 52366*x^8 + 49557*x^7 + 35085*x^6 - 36618*x^5 - 8891*x^4 + 10559*x^3 + 29*x^2 - 641*x, -3*x^19 + 14*x^18 + 56*x^17 - 334*x^16 - 304*x^15 + 3148*x^14 - 271*x^13 - 14978*x^12 + 8268*x^11 + 38338*x^10 - 30736*x^9 - 52366*x^8 + 49557*x^7 + 35085*x^6 - 36618*x^5 - 8891*x^4 + 10559*x^3 + 29*x^2 - 641*x]>
       ]
>;



MOG[389] := 	// J_0(389)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 7, 16, 17, 36, 121, 154, 220, 318, 327, 358, 259*x + 149, 130*x + 149, 355*x + 48, 34*x + 48, 301*x + 386, 88*x + 386, 40*x + 181, 349*x + 181, 80*x + 112, 309*x + 112, 129*x + 347, 260*x + 347, 43*x + 78, 346*x + 78, 241*x, 148*x, 256*x + 148, 133*x + 148, 359*x + 284, 30*x + 284, 256*x + 173, 133*x + 173]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, 2, -2, -2, -2, 0, 0, 0, 0, 2, 2, 0, 0, 1, 1, -1, -1, 1, 1, 1, 1, 0, 0, -1, -1, 0, 0, -1, -1, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, -x, 1, -1, 1, -1, x + 1, -x - 1, -x - 1, x + 1, 0, 0, x + 1, -x - 1, -x - 2, x + 2, -1, 1, -x - 1, x + 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 4*x - 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 2, x + 2, -x^2 + 3, x^2 - 3, -2*x - 3, 2*x + 3, -x^2 - x + 1, x^2 + x - 1, -x^2 - x + 1, x^2 + x - 1, -x^2 + 2, x^2 - 2, -x - 1, x + 1, -x - 2, x + 2, -x^2 + 3, x^2 - 3, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 + 3*x^5 - 2*x^4 - 8*x^3 + 2*x^2 + 4*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^5 + 4*x^4 + 2*x^3 - 5*x^2 - 2*x + 1, -x^5 - 4*x^4 - 2*x^3 + 5*x^2 + 2*x - 1, x^5 + 4*x^4 + 2*x^3 - 6*x^2 - 3*x + 2, -x^5 - 4*x^4 - 2*x^3 + 6*x^2 + 3*x - 2, x^3 + 2*x^2 - 1, -x^3 - 2*x^2 + 1, -x^5 - 3*x^4 + 4*x^2 - 1, x^5 + 3*x^4 - 4*x^2 + 1, x^2 + x, -x^2 - x, -x^4 - 2*x^3 + x^2 + x - 1, x^4 + 2*x^3 - x^2 - x + 1, -x^4 - 3*x^3 - x^2 + 2*x + 1, x^4 + 3*x^3 + x^2 - 2*x - 1, -x^2 - x + 1, x^2 + x - 1, x, -x, -x^3 - 2*x^2, x^3 + 2*x^2, -x^3 - 2*x^2 + x + 1, x^3 + 2*x^2 - x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^20 - 3*x^19 - 29*x^18 + 91*x^17 + 338*x^16 - 1130*x^15 - 2023*x^14 + 7432*x^13 + 6558*x^12 - 28021*x^11 - 10909*x^10 + 61267*x^9 + 6954*x^8 - 74752*x^7 + 1407*x^6 + 46330*x^5 - 1087*x^4 - 12558*x^3 - 942*x^2 + 960*x + 148,
           Coordinates        := [-2*x^19 + 6*x^18 + 52*x^17 - 164*x^16 - 532*x^15 + 1806*x^14 + 2712*x^13 - 10334*x^12 - 7122*x^11 + 33122*x^10 + 8506*x^9 - 59758*x^8 - 1502*x^7 + 57716*x^6 - 4218*x^5 - 26424*x^4 + 1550*x^3 + 4382*x^2 + 236*x - 96, x^19 - 2*x^18 - 29*x^17 + 60*x^16 + 340*x^15 - 742*x^14 - 2043*x^13 + 4879*x^12 + 6475*x^11 - 18344*x^10 - 9269*x^9 + 39478*x^8 - 30*x^7 - 45986*x^6 + 13719*x^5 + 25563*x^4 - 10138*x^3 - 5958*x^2 + 1454*x + 476, x^19 - 2*x^18 - 29*x^17 + 60*x^16 + 340*x^15 - 730*x^14 - 2077*x^13 + 4673*x^12 + 7081*x^11 - 17096*x^10 - 13145*x^9 + 36166*x^8 + 11042*x^7 - 42114*x^6 - 279*x^5 + 23585*x^4 - 3848*x^3 - 4882*x^2 + 946*x + 372, -12*x^14 + 40*x^13 + 180*x^12 - 662*x^11 - 912*x^10 + 3988*x^9 + 1810*x^8 - 11122*x^7 - 738*x^6 + 14650*x^5 - 1446*x^4 - 8056*x^3 + 782*x^2 + 1274*x + 160, 4*x^14 - 4*x^13 - 78*x^12 + 52*x^11 + 636*x^10 - 292*x^9 - 2606*x^8 + 782*x^7 + 5590*x^6 - 1002*x^5 - 5876*x^4 + 566*x^3 + 2322*x^2 + 58*x - 88, 2*x^16 - 2*x^15 - 50*x^14 + 54*x^13 + 472*x^12 - 494*x^11 - 2188*x^10 + 1862*x^9 + 5816*x^8 - 2996*x^7 - 9848*x^6 + 2032*x^5 + 10030*x^4 - 1004*x^3 - 3994*x^2 + 4*x + 176, 6*x^13 - 40*x^12 + 4*x^11 + 488*x^10 - 774*x^9 - 1774*x^8 + 4382*x^7 + 1862*x^6 - 8540*x^5 + 510*x^4 + 5766*x^3 - 198*x^2 - 1388*x - 240, 2*x^14 - 10*x^13 - 20*x^12 + 136*x^11 + 42*x^10 - 592*x^9 - 32*x^8 + 976*x^7 + 326*x^6 - 410*x^5 - 988*x^4 + 120*x^3 + 990*x^2 - 476*x - 160, -6*x^18 + 18*x^17 + 144*x^16 - 454*x^15 - 1334*x^14 + 4530*x^13 + 5994*x^12 - 22920*x^11 - 13312*x^10 + 62776*x^9 + 12406*x^8 - 91788*x^7 - 1404*x^6 + 66236*x^5 - 624*x^4 - 20734*x^3 - 1648*x^2 + 1824*x + 296, 2*x^15 - 2*x^14 - 42*x^13 + 46*x^12 + 316*x^11 - 390*x^10 - 916*x^9 + 1278*x^8 + 604*x^7 - 1432*x^6 + 1332*x^5 + 28*x^4 - 1722*x^3 + 128*x^2 + 650*x + 120, -12*x^15 + 38*x^14 + 216*x^13 - 744*x^12 - 1348*x^11 + 5398*x^10 + 3292*x^9 - 18110*x^8 - 1818*x^7 + 28780*x^6 - 2958*x^5 - 19698*x^4 + 1546*x^3 + 4984*x^2 + 458*x - 88, x^15 - 6*x^14 - 5*x^13 + 78*x^12 - 47*x^11 - 317*x^10 + 280*x^9 + 504*x^8 - 325*x^7 - 368*x^6 - 289*x^5 + 554*x^4 + 435*x^3 - 733*x^2 + 158*x + 80, x^15 - 6*x^14 - 5*x^13 + 78*x^12 - 47*x^11 - 317*x^10 + 280*x^9 + 504*x^8 - 325*x^7 - 368*x^6 - 289*x^5 + 554*x^4 + 435*x^3 - 733*x^2 + 158*x + 80, x^14 - 18*x^13 + 41*x^12 + 218*x^11 - 705*x^10 - 741*x^9 + 3494*x^8 + 540*x^7 - 7065*x^6 + 756*x^5 + 5821*x^4 - 382*x^3 - 1855*x^2 - 149*x + 44, x^14 - 18*x^13 + 41*x^12 + 218*x^11 - 705*x^10 - 741*x^9 + 3494*x^8 + 540*x^7 - 7065*x^6 + 756*x^5 + 5821*x^4 - 382*x^3 - 1855*x^2 - 149*x + 44, x^16 - 6*x^15 - 8*x^14 + 106*x^13 - 68*x^12 - 671*x^11 + 943*x^10 + 1837*x^9 - 3787*x^8 - 1884*x^7 + 6450*x^6 + 208*x^5 - 4398*x^4 - 471*x^3 + 1023*x^2 + 705*x + 116, x^16 - 6*x^15 - 8*x^14 + 106*x^13 - 68*x^12 - 671*x^11 + 943*x^10 + 1837*x^9 - 3787*x^8 - 1884*x^7 + 6450*x^6 + 208*x^5 - 4398*x^4 - 471*x^3 + 1023*x^2 + 705*x + 116, x^16 - 37*x^14 + 34*x^13 + 454*x^12 - 605*x^11 - 2500*x^10 + 3917*x^9 + 6653*x^8 - 11606*x^7 - 7953*x^6 + 15684*x^5 + 2996*x^4 - 7965*x^3 - 166*x^2 + 957*x + 136, x^16 - 37*x^14 + 34*x^13 + 454*x^12 - 605*x^11 - 2500*x^10 + 3917*x^9 + 6653*x^8 - 11606*x^7 - 7953*x^6 + 15684*x^5 + 2996*x^4 - 7965*x^3 - 166*x^2 + 957*x + 136, x^17 - 7*x^16 - 9*x^15 + 149*x^14 - 97*x^13 - 1203*x^12 + 1595*x^11 + 4654*x^10 - 7984*x^9 - 9041*x^8 + 18381*x^7 + 8529*x^6 - 19793*x^5 - 4021*x^4 + 8553*x^3 + 1604*x^2 - 999*x - 216, x^17 - 7*x^16 - 9*x^15 + 149*x^14 - 97*x^13 - 1203*x^12 + 1595*x^11 + 4654*x^10 - 7984*x^9 - 9041*x^8 + 18381*x^7 + 8529*x^6 - 19793*x^5 - 4021*x^4 + 8553*x^3 + 1604*x^2 - 999*x - 216, -5*x^15 + 14*x^14 + 91*x^13 - 267*x^12 - 577*x^11 + 1848*x^10 + 1450*x^9 - 5682*x^8 - 843*x^7 + 7502*x^6 - 1561*x^5 - 3051*x^4 + 1441*x^3 - 4*x^2 - 332*x - 56, -5*x^15 + 14*x^14 + 91*x^13 - 267*x^12 - 577*x^11 + 1848*x^10 + 1450*x^9 - 5682*x^8 - 843*x^7 + 7502*x^6 - 1561*x^5 - 3051*x^4 + 1441*x^3 - 4*x^2 - 332*x - 56, x^17 - x^16 - 26*x^15 + 28*x^14 + 257*x^13 - 270*x^12 - 1252*x^11 + 1126*x^10 + 3366*x^9 - 2137*x^8 - 5226*x^7 + 1732*x^6 + 4349*x^5 - 516*x^4 - 1136*x^3 - 62*x^2 - 237*x - 60, x^17 - x^16 - 26*x^15 + 28*x^14 + 257*x^13 - 270*x^12 - 1252*x^11 + 1126*x^10 + 3366*x^9 - 2137*x^8 - 5226*x^7 + 1732*x^6 + 4349*x^5 - 516*x^4 - 1136*x^3 - 62*x^2 - 237*x - 60, -6*x^17 + 19*x^16 + 131*x^15 - 444*x^14 - 1071*x^13 + 4041*x^12 + 4027*x^11 - 18295*x^10 - 6556*x^9 + 43743*x^8 + 1551*x^7 - 53456*x^6 + 6015*x^5 + 29269*x^4 - 3149*x^3 - 5661*x^2 - 206*x + 144, -6*x^17 + 19*x^16 + 131*x^15 - 444*x^14 - 1071*x^13 + 4041*x^12 + 4027*x^11 - 18295*x^10 - 6556*x^9 + 43743*x^8 + 1551*x^7 - 53456*x^6 + 6015*x^5 + 29269*x^4 - 3149*x^3 - 5661*x^2 - 206*x + 144, x^18 - x^17 - 29*x^16 + 24*x^15 + 355*x^14 - 238*x^13 - 2378*x^12 + 1298*x^11 + 9368*x^10 - 4322*x^9 - 21575*x^8 + 8862*x^7 + 27213*x^6 - 10244*x^5 - 16318*x^4 + 5224*x^3 + 3639*x^2 - 715*x - 260, x^18 - x^17 - 29*x^16 + 24*x^15 + 355*x^14 - 238*x^13 - 2378*x^12 + 1298*x^11 + 9368*x^10 - 4322*x^9 - 21575*x^8 + 8862*x^7 + 27213*x^6 - 10244*x^5 - 16318*x^4 + 5224*x^3 + 3639*x^2 - 715*x - 260, -6*x^16 + 19*x^15 + 114*x^14 - 392*x^13 - 764*x^12 + 3030*x^11 + 2102*x^10 - 11049*x^9 - 1814*x^8 + 19951*x^7 - 1110*x^6 - 17174*x^5 + 1496*x^4 + 6520*x^3 - 162*x^2 - 681*x - 80, -6*x^16 + 19*x^15 + 114*x^14 - 392*x^13 - 764*x^12 + 3030*x^11 + 2102*x^10 - 11049*x^9 - 1814*x^8 + 19951*x^7 - 1110*x^6 - 17174*x^5 + 1496*x^4 + 6520*x^3 - 162*x^2 - 681*x - 80, x^18 - x^17 - 29*x^16 + 30*x^15 + 344*x^14 - 358*x^13 - 2178*x^12 + 2225*x^11 + 8054*x^10 - 7916*x^9 - 17695*x^8 + 16334*x^7 + 22150*x^6 - 18232*x^5 - 14162*x^4 + 8907*x^3 + 3923*x^2 - 1021*x - 312, x^18 - x^17 - 29*x^16 + 30*x^15 + 344*x^14 - 358*x^13 - 2178*x^12 + 2225*x^11 + 8054*x^10 - 7916*x^9 - 17695*x^8 + 16334*x^7 + 22150*x^6 - 18232*x^5 - 14162*x^4 + 8907*x^3 + 3923*x^2 - 1021*x - 312]>
       ]
>;



MOG[397] := 	// J_0(397)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [60, 198, 273, 148*x + 18, 249*x + 18, 9*x + 262, 388*x + 262, 269*x + 100, 128*x + 100, 192*x + 2, 205*x + 2, 115*x + 200, 282*x + 200, 245*x + 373, 152*x + 373, 113*x + 363, 284*x + 363, 387*x + 139, 10*x + 139, 119*x + 338, 278*x + 338, 41*x + 161, 356*x + 161, 12*x + 350, 385*x + 350, 167*x + 306, 230*x + 306, 157*x + 210, 240*x + 210, 214*x + 306, 183*x + 306, 249*x + 348, 148*x + 348]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, x + 1, -x - 1, -x - 1, x + 1, -x - 1, x + 1, 2, -2, 0, 0, x - 1, -x + 1, -2, 2, 0, 0, x + 1, -x - 1, x + 1, -x - 1, x + 1, -x - 1, 0, 0, -x - 1, x + 1, 2, -2]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 2*x - 1,
           Coordinates        := [-2*x + 2, 2*x, 2, -2, -2, -x - 1, -x - 1, x - 1, x - 1, -x + 1, -x + 1, -2*x, -2*x, 2, 2, x + 1, x + 1, 0, 0, 0, 0, -x - 1, -x - 1, x - 1, x - 1, x - 1, x - 1, 0, 0, x - 1, x - 1, 2, 2]>,
         rec<Eigen |
           DefiningPolynomial := x^5 - 6*x^3 + x^2 + 7*x - 1,
           Coordinates        := [2/5*x^4 + 2/5*x^3 - 2*x^2 + 8/5*x + 4, x^4 + 1/5*x^3 - 23/5*x^2 - 8/5*x + 13/5, -9/5*x^4 + x^3 + 33/5*x^2 - 6/5*x - 21/5, 8/5*x^2 - 1/5*x - 9/5, 8/5*x^2 - 1/5*x - 9/5, -2/5*x^4 + 3/5*x^3 + x^2 - 7/5*x - 4/5, -2/5*x^4 + 3/5*x^3 + x^2 - 7/5*x - 4/5, 3/5*x^3 + 4/5*x^2 - 2*x - 16/5, 3/5*x^3 + 4/5*x^2 - 2*x - 16/5, -2/5*x^4 - 8/5*x^3 + 2*x^2 + 19/5*x - 6/5, -2/5*x^4 - 8/5*x^3 + 2*x^2 + 19/5*x - 6/5, x^4 + 1/5*x^3 - 23/5*x^2 - 8/5*x + 13/5, x^4 + 1/5*x^3 - 23/5*x^2 - 8/5*x + 13/5, 7/5*x^4 + 12/5*x^3 - 29/5*x^2 - 37/5*x + 3/5, 7/5*x^4 + 12/5*x^3 - 29/5*x^2 - 37/5*x + 3/5, -4/5*x^4 - 8/5*x^3 + 11/5*x^2 + 22/5*x + 6/5, -4/5*x^4 - 8/5*x^3 + 11/5*x^2 + 22/5*x + 6/5, -9/5*x^4 - 6/5*x^3 + 38/5*x^2 + 4*x - 23/5, -9/5*x^4 - 6/5*x^3 + 38/5*x^2 + 4*x - 23/5, 3/5*x^4 + 1/5*x^3 - 22/5*x^2 - x + 5, 3/5*x^4 + 1/5*x^3 - 22/5*x^2 - x + 5, -2/5*x^4 + 3/5*x^3 + x^2 - 7/5*x - 4/5, -2/5*x^4 + 3/5*x^3 + x^2 - 7/5*x - 4/5, x^4 - 2/5*x^3 - 19/5*x^2 + 1/5*x + 4, x^4 - 2/5*x^3 - 19/5*x^2 + 1/5*x + 4, 3/5*x^3 + 4/5*x^2 - 2*x - 16/5, 3/5*x^3 + 4/5*x^2 - 2*x - 16/5, -11/5*x^3 + 13/5*x^2 + 5*x - 11/5, -11/5*x^3 + 13/5*x^2 + 5*x - 11/5, x^3 - 13/5*x^2 + 2/5*x + 5, x^3 - 13/5*x^2 + 2/5*x + 5, 8/5*x^2 - 1/5*x - 9/5, 8/5*x^2 - 1/5*x - 9/5]>,
         rec<Eigen |
           DefiningPolynomial := x^10 - 7*x^9 + 8*x^8 + 43*x^7 - 105*x^6 - 26*x^5 + 234*x^4 - 119*x^3 - 82*x^2 + 47*x + 3,
           Coordinates        := [2*x^7 - 12*x^6 + 14*x^5 + 32*x^4 - 54*x^3 - 34*x^2 + 62*x - 6, -2*x^8 + 10*x^7 - 2*x^6 - 56*x^5 + 70*x^4 + 50*x^3 - 106*x^2 + 18*x + 18, -2*x^9 + 14*x^8 - 22*x^7 - 52*x^6 + 182*x^5 - 90*x^4 - 206*x^3 + 230*x^2 - 18*x - 36, x^8 - 7*x^7 + 13*x^6 + 9*x^5 - 43*x^4 + 10*x^3 + 48*x^2 - 34*x + 3, x^8 - 7*x^7 + 13*x^6 + 9*x^5 - 43*x^4 + 10*x^3 + 48*x^2 - 34*x + 3, 2*x^9 - 15*x^8 + 26*x^7 + 55*x^6 - 204*x^5 + 84*x^4 + 268*x^3 - 275*x^2 + 54*x, 2*x^9 - 15*x^8 + 26*x^7 + 55*x^6 - 204*x^5 + 84*x^4 + 268*x^3 - 275*x^2 + 54*x, -x^9 + 8*x^8 - 15*x^7 - 34*x^6 + 147*x^5 - 106*x^4 - 166*x^3 + 275*x^2 - 113*x + 6, -x^9 + 8*x^8 - 15*x^7 - 34*x^6 + 147*x^5 - 106*x^4 - 166*x^3 + 275*x^2 - 113*x + 6, x^9 - 5*x^8 - 5*x^7 + 62*x^6 - 72*x^5 - 125*x^4 + 292*x^3 - 138*x^2 - 30*x + 18, x^9 - 5*x^8 - 5*x^7 + 62*x^6 - 72*x^5 - 125*x^4 + 292*x^3 - 138*x^2 - 30*x + 18, -2*x^9 + 14*x^8 - 19*x^7 - 69*x^6 + 199*x^5 - 32*x^4 - 339*x^3 + 308*x^2 - 30*x - 27, -2*x^9 + 14*x^8 - 19*x^7 - 69*x^6 + 199*x^5 - 32*x^4 - 339*x^3 + 308*x^2 - 30*x - 27, x^9 - 7*x^8 + 10*x^7 + 32*x^6 - 101*x^5 + 44*x^4 + 118*x^3 - 133*x^2 + 32*x + 3, x^9 - 7*x^8 + 10*x^7 + 32*x^6 - 101*x^5 + 44*x^4 + 118*x^3 - 133*x^2 + 32*x + 3, -x^8 + 6*x^7 - 3*x^6 - 40*x^5 + 67*x^4 + 28*x^3 - 110*x^2 + 55*x - 3, -x^8 + 6*x^7 - 3*x^6 - 40*x^5 + 67*x^4 + 28*x^3 - 110*x^2 + 55*x - 3, x^8 - 3*x^7 - 14*x^6 + 54*x^5 + 6*x^4 - 173*x^3 + 153*x^2 - 13*x - 6, x^8 - 3*x^7 - 14*x^6 + 54*x^5 + 6*x^4 - 173*x^3 + 153*x^2 - 13*x - 6, x^8 - 4*x^7 - 8*x^6 + 51*x^5 - 32*x^4 - 114*x^3 + 174*x^2 - 70*x + 3, x^8 - 4*x^7 - 8*x^6 + 51*x^5 - 32*x^4 - 114*x^3 + 174*x^2 - 70*x + 3, -2*x^8 + 10*x^7 + 3*x^6 - 79*x^5 + 77*x^4 + 141*x^3 - 227*x^2 + 43*x + 33, -2*x^8 + 10*x^7 + 3*x^6 - 79*x^5 + 77*x^4 + 141*x^3 - 227*x^2 + 43*x + 33, x^8 - 6*x^7 + 6*x^6 + 24*x^5 - 54*x^4 + 34*x^3 - 28*x^2 + 37*x - 12, x^8 - 6*x^7 + 6*x^6 + 24*x^5 - 54*x^4 + 34*x^3 - 28*x^2 + 37*x - 12, x^7 - 3*x^6 - 11*x^5 + 43*x^4 - 4*x^3 - 106*x^2 + 103*x - 21, x^7 - 3*x^6 - 11*x^5 + 43*x^4 - 4*x^3 - 106*x^2 + 103*x - 21, -2*x^8 + 12*x^7 - 13*x^6 - 43*x^5 + 96*x^4 - 29*x^3 - 38*x^2 + 20*x - 6, -2*x^8 + 12*x^7 - 13*x^6 - 43*x^5 + 96*x^4 - 29*x^3 - 38*x^2 + 20*x - 6, -x^7 + 6*x^6 - 7*x^5 - 16*x^4 + 27*x^3 + 17*x^2 - 31*x + 3, -x^7 + 6*x^6 - 7*x^5 - 16*x^4 + 27*x^3 + 17*x^2 - 31*x + 3, 3*x^5 - 15*x^4 + 12*x^3 + 35*x^2 - 54*x + 18, 3*x^5 - 15*x^4 + 12*x^3 + 35*x^2 - 54*x + 18]>,
         rec<Eigen |
           DefiningPolynomial := x^13 + 7*x^12 + 5*x^11 - 63*x^10 - 124*x^9 + 157*x^8 + 526*x^7 + 2*x^6 - 794*x^5 - 328*x^4 + 408*x^3 + 203*x^2 - 66*x - 23,
           Coordinates        := [0, 0, 0, -x^12 - 7*x^11 - 7*x^10 + 49*x^9 + 106*x^8 - 83*x^7 - 332*x^6 - 35*x^5 + 367*x^4 + 121*x^3 - 152*x^2 - 39*x + 25, x^12 + 7*x^11 + 7*x^10 - 49*x^9 - 106*x^8 + 83*x^7 + 332*x^6 + 35*x^5 - 367*x^4 - 121*x^3 + 152*x^2 + 39*x - 25, -x^11 - 7*x^10 - 9*x^9 + 36*x^8 + 91*x^7 - 23*x^6 - 192*x^5 - 56*x^4 + 137*x^3 + 51*x^2 - 31*x - 7, x^11 + 7*x^10 + 9*x^9 - 36*x^8 - 91*x^7 + 23*x^6 + 192*x^5 + 56*x^4 - 137*x^3 - 51*x^2 + 31*x + 7, -x^11 - 7*x^10 - 9*x^9 + 38*x^8 + 103*x^7 - 10*x^6 - 235*x^5 - 151*x^4 + 119*x^3 + 113*x^2 - 10*x - 16, x^11 + 7*x^10 + 9*x^9 - 38*x^8 - 103*x^7 + 10*x^6 + 235*x^5 + 151*x^4 - 119*x^3 - 113*x^2 + 10*x + 16, -x^10 - 7*x^9 - 11*x^8 + 25*x^7 + 84*x^6 + 29*x^5 - 109*x^4 - 87*x^3 + 28*x^2 + 25*x - 6, x^10 + 7*x^9 + 11*x^8 - 25*x^7 - 84*x^6 - 29*x^5 + 109*x^4 + 87*x^3 - 28*x^2 - 25*x + 6, -x^10 - 6*x^9 - 4*x^8 + 35*x^7 + 56*x^6 - 50*x^5 - 121*x^4 + 17*x^3 + 93*x^2 + 7*x - 19, x^10 + 6*x^9 + 4*x^8 - 35*x^7 - 56*x^6 + 50*x^5 + 121*x^4 - 17*x^3 - 93*x^2 - 7*x + 19, -x^10 - 6*x^9 - 4*x^8 + 37*x^7 + 66*x^6 - 44*x^5 - 157*x^4 - 39*x^3 + 85*x^2 + 24*x - 17, x^10 + 6*x^9 + 4*x^8 - 37*x^7 - 66*x^6 + 44*x^5 + 157*x^4 + 39*x^3 - 85*x^2 - 24*x + 17, -x^10 - 5*x^9 + x^8 + 36*x^7 + 31*x^6 - 72*x^5 - 91*x^4 + 31*x^3 + 57*x^2 - x - 8, x^10 + 5*x^9 - x^8 - 36*x^7 - 31*x^6 + 72*x^5 + 91*x^4 - 31*x^3 - 57*x^2 + x + 8, -x^9 - 5*x^8 - x^7 + 26*x^6 + 26*x^5 - 31*x^4 - 33*x^3 + 19*x^2 + 13*x - 5, x^9 + 5*x^8 + x^7 - 26*x^6 - 26*x^5 + 31*x^4 + 33*x^3 - 19*x^2 - 13*x + 5, -x^9 - 6*x^8 - 6*x^7 + 26*x^6 + 57*x^5 - 76*x^3 - 45*x^2 + 12*x + 12, x^9 + 6*x^8 + 6*x^7 - 26*x^6 - 57*x^5 + 76*x^3 + 45*x^2 - 12*x - 12, -x^9 - 5*x^8 + 29*x^6 + 21*x^5 - 48*x^4 - 27*x^3 + 49*x^2 + 19*x - 12, x^9 + 5*x^8 - 29*x^6 - 21*x^5 + 48*x^4 + 27*x^3 - 49*x^2 - 19*x + 12, -x^9 - 5*x^8 + 32*x^6 + 34*x^5 - 45*x^4 - 73*x^3 - 4*x^2 + 17*x - 1, x^9 + 5*x^8 - 32*x^6 - 34*x^5 + 45*x^4 + 73*x^3 + 4*x^2 - 17*x + 1, -x^8 - 5*x^7 - x^6 + 28*x^5 + 33*x^4 - 34*x^3 - 61*x^2 - x + 18, x^8 + 5*x^7 + x^6 - 28*x^5 - 33*x^4 + 34*x^3 + 61*x^2 + x - 18, -x^8 - 6*x^7 - 6*x^6 + 23*x^5 + 46*x^4 + 5*x^3 - 25*x^2 + 7, x^8 + 6*x^7 + 6*x^6 - 23*x^5 - 46*x^4 - 5*x^3 + 25*x^2 - 7, -x^8 - 6*x^7 - 6*x^6 + 25*x^5 + 53*x^4 + 2*x^3 - 49*x^2 - 12*x + 12, x^8 + 6*x^7 + 6*x^6 - 25*x^5 - 53*x^4 - 2*x^3 + 49*x^2 + 12*x - 12, x^6 + 4*x^5 - x^4 - 19*x^3 - 17*x^2 + 5*x + 6, -x^6 - 4*x^5 + x^4 + 19*x^3 + 17*x^2 - 5*x - 6]>
       ]
>;

MOG[401] := 	// J_0(401)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 57, 100, 195, 244, 266, 271, 291, 377, 388, 52*x + 278, 349*x + 278, 159*x + 161, 242*x + 161, 299*x + 338, 102*x + 338, 217*x + 281, 184*x + 281, 201*x + 213, 200*x + 213, 366*x + 242, 35*x + 242, 156*x + 381, 245*x + 381, 27*x + 280, 374*x + 280, 328*x + 134, 73*x + 134, 26*x + 400, 375*x + 400, 216*x + 178, 185*x + 178, 71*x + 200, 330*x + 200]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^12 + 3*x^11 - 10*x^10 - 34*x^9 + 29*x^8 + 129*x^7 - 24*x^6 - 203*x^5 + x^4 + 130*x^3 - 5*x^2 - 22*x + 4,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^11 - 3*x^10 + 8*x^9 + 28*x^8 - 16*x^7 - 84*x^6 + 96*x^4 + 15*x^3 - 40*x^2 - 7*x + 4, x^11 + 3*x^10 - 8*x^9 - 28*x^8 + 16*x^7 + 84*x^6 - 96*x^4 - 15*x^3 + 40*x^2 + 7*x - 4, -x^10 - 3*x^9 + 7*x^8 + 24*x^7 - 13*x^6 - 59*x^5 + 7*x^4 + 50*x^3 - 4*x^2 - 9*x + 2, x^10 + 3*x^9 - 7*x^8 - 24*x^7 + 13*x^6 + 59*x^5 - 7*x^4 - 50*x^3 + 4*x^2 + 9*x - 2, -x^10 - 3*x^9 + 6*x^8 + 21*x^7 - 11*x^6 - 48*x^5 + 9*x^4 + 40*x^3 - 8*x^2 - 9*x + 2, x^10 + 3*x^9 - 6*x^8 - 21*x^7 + 11*x^6 + 48*x^5 - 9*x^4 - 40*x^3 + 8*x^2 + 9*x - 2, -x^9 - 4*x^8 + 3*x^7 + 25*x^6 + 7*x^5 - 46*x^4 - 19*x^3 + 31*x^2 + 9*x - 4, x^9 + 4*x^8 - 3*x^7 - 25*x^6 - 7*x^5 + 46*x^4 + 19*x^3 - 31*x^2 - 9*x + 4, -x^9 - 4*x^8 + x^7 + 20*x^6 + 13*x^5 - 26*x^4 - 19*x^3 + 13*x^2 + 5*x - 2, x^9 + 4*x^8 - x^7 - 20*x^6 - 13*x^5 + 26*x^4 + 19*x^3 - 13*x^2 - 5*x + 2, -x^9 - 3*x^8 + 4*x^7 + 16*x^6 - 4*x^5 - 30*x^4 - 4*x^3 + 18*x^2 + 4*x - 2, x^9 + 3*x^8 - 4*x^7 - 16*x^6 + 4*x^5 + 30*x^4 + 4*x^3 - 18*x^2 - 4*x + 2, -x^8 - 4*x^7 - x^6 + 15*x^5 + 18*x^4 - 8*x^3 - 18*x^2 - 2*x + 2, x^8 + 4*x^7 + x^6 - 15*x^5 - 18*x^4 + 8*x^3 + 18*x^2 + 2*x - 2, -x^8 - 3*x^7 + x^6 + 8*x^5 + x^4 - 6*x^3 + x, x^8 + 3*x^7 - x^6 - 8*x^5 - x^4 + 6*x^3 - x, -x^8 - 2*x^7 + 6*x^6 + 10*x^5 - 14*x^4 - 16*x^3 + 12*x^2 + 6*x - 2, x^8 + 2*x^7 - 6*x^6 - 10*x^5 + 14*x^4 + 16*x^3 - 12*x^2 - 6*x + 2, -2*x^7 - 5*x^6 + 5*x^5 + 18*x^4 + x^3 - 15*x^2 - 3*x + 2, 2*x^7 + 5*x^6 - 5*x^5 - 18*x^4 - x^3 + 15*x^2 + 3*x - 2, -x^7 - 3*x^6 + 6*x^4 + 3*x^3 - 2*x^2 - x, x^7 + 3*x^6 - 6*x^4 - 3*x^3 + 2*x^2 + x, -x^6 - 2*x^5 + 2*x^4 + 4*x^3 - x^2 - x, x^6 + 2*x^5 - 2*x^4 - 4*x^3 + x^2 + x]>,
         rec<Eigen |
           DefiningPolynomial := x^21 - 35*x^19 + 521*x^17 + 2*x^16 - 4305*x^15 - 51*x^14 + 21617*x^13 + 519*x^12 - 67876*x^11 - 2749*x^10 + 132085*x^9 + 8292*x^8 - 152221*x^7 - 14353*x^6 + 93934*x^5 + 12831*x^4 - 24699*x^3 - 4111*x^2 + 1058*x - 44,
           Coordinates        := [-x^20 + 32*x^18 - 431*x^16 - 2*x^15 + 3180*x^14 + 47*x^13 - 14019*x^12 - 438*x^11 + 37809*x^10 + 2085*x^9 - 61388*x^8 - 5409*x^7 + 56715*x^6 + 7362*x^5 - 26493*x^4 - 4471*x^3 + 4776*x^2 + 850*x - 92, x^20 - 30*x^18 + 377*x^16 + 2*x^15 - 2580*x^14 - 37*x^13 + 10465*x^12 + 268*x^11 - 25643*x^10 - 979*x^9 + 36976*x^8 + 1851*x^7 - 28877*x^6 - 1422*x^5 + 9949*x^4 - 193*x^3 - 694*x^2 + 366*x - 24, 4*x^15 + 2*x^14 - 94*x^13 - 28*x^12 + 884*x^11 + 114*x^10 - 4232*x^9 - 24*x^8 + 10848*x^7 - 676*x^6 - 14256*x^5 + 988*x^4 + 8188*x^3 - 164*x^2 - 1254*x + 68, 2*x^19 - 58*x^17 + 700*x^15 + 8*x^14 - 4560*x^13 - 152*x^12 + 17392*x^11 + 1130*x^10 - 39384*x^9 - 4202*x^8 + 51154*x^7 + 8112*x^6 - 34476*x^5 - 7282*x^4 + 9312*x^3 + 2054*x^2 - 362*x - 12, x^19 - 28*x^17 + 325*x^15 - 2*x^14 - 2032*x^13 + 53*x^12 + 7449*x^11 - 490*x^10 - 16341*x^9 + 1963*x^8 + 21036*x^7 - 3293*x^6 - 15033*x^5 + 1540*x^4 + 5381*x^3 + 369*x^2 - 358*x + 68, -3*x^19 + 90*x^17 - 1125*x^15 - 4*x^14 + 7598*x^13 + 81*x^12 - 30067*x^11 - 664*x^10 + 70697*x^9 + 2883*x^8 - 95506*x^7 - 6991*x^6 + 67441*x^5 + 8360*x^4 - 19923*x^3 - 3261*x^2 + 966*x - 44, -6*x^16 + 146*x^14 - 10*x^13 - 1428*x^12 + 172*x^11 + 7208*x^10 - 1106*x^9 - 20082*x^8 + 3236*x^7 + 30546*x^6 - 3886*x^5 - 23216*x^4 + 772*x^3 + 6944*x^2 + 638*x - 104, -6*x^15 - 6*x^14 + 132*x^13 + 114*x^12 - 1140*x^11 - 828*x^10 + 4884*x^9 + 2848*x^8 - 10790*x^7 - 4606*x^6 + 11440*x^5 + 2990*x^4 - 4420*x^3 - 460*x^2 + 228*x - 44, 2*x^18 - 54*x^16 + 4*x^15 + 600*x^14 - 78*x^13 - 3538*x^12 + 594*x^11 + 11902*x^10 - 2244*x^9 - 22798*x^8 + 4410*x^7 + 23278*x^6 - 4438*x^5 - 10586*x^4 + 2440*x^3 + 1026*x^2 - 744*x + 48, -4*x^15 - 2*x^14 + 92*x^13 + 44*x^12 - 814*x^11 - 388*x^10 + 3462*x^9 + 1740*x^8 - 7182*x^7 - 4140*x^6 + 6280*x^5 + 5024*x^4 - 772*x^3 - 2410*x^2 - 1022*x + 108, -3*x^18 + 84*x^16 + x^15 - 971*x^14 - 30*x^13 + 5995*x^12 + 325*x^11 - 21365*x^10 - 1686*x^9 + 44329*x^8 + 4618*x^7 - 51352*x^6 - 6863*x^5 + 29778*x^4 + 5076*x^3 - 6681*x^2 - 1297*x + 138, -3*x^18 + 84*x^16 + x^15 - 971*x^14 - 30*x^13 + 5995*x^12 + 325*x^11 - 21365*x^10 - 1686*x^9 + 44329*x^8 + 4618*x^7 - 51352*x^6 - 6863*x^5 + 29778*x^4 + 5076*x^3 - 6681*x^2 - 1297*x + 138, -3*x^17 + 76*x^15 - 2*x^14 - 780*x^13 + 29*x^12 + 4174*x^11 - 139*x^10 - 12483*x^9 + 194*x^8 + 20668*x^7 + 360*x^6 - 17328*x^5 - 1109*x^4 + 5682*x^3 + 549*x^2 - 166*x + 22, -3*x^17 + 76*x^15 - 2*x^14 - 780*x^13 + 29*x^12 + 4174*x^11 - 139*x^10 - 12483*x^9 + 194*x^8 + 20668*x^7 + 360*x^6 - 17328*x^5 - 1109*x^4 + 5682*x^3 + 549*x^2 - 166*x + 22, -3*x^17 + x^16 + 78*x^15 - 24*x^14 - 823*x^13 + 215*x^12 + 4528*x^11 - 883*x^10 - 13885*x^9 + 1541*x^8 + 23486*x^7 - 232*x^6 - 20335*x^5 - 2175*x^4 + 7560*x^3 + 1415*x^2 - 662*x + 22, -3*x^17 + x^16 + 78*x^15 - 24*x^14 - 823*x^13 + 215*x^12 + 4528*x^11 - 883*x^10 - 13885*x^9 + 1541*x^8 + 23486*x^7 - 232*x^6 - 20335*x^5 - 2175*x^4 + 7560*x^3 + 1415*x^2 - 662*x + 22, -2*x^16 - 3*x^15 + 45*x^14 + 69*x^13 - 393*x^12 - 636*x^11 + 1674*x^10 + 2986*x^9 - 3579*x^8 - 7494*x^7 + 3478*x^6 + 9640*x^5 - 880*x^4 - 5299*x^3 - 429*x^2 + 681*x - 34, -2*x^16 - 3*x^15 + 45*x^14 + 69*x^13 - 393*x^12 - 636*x^11 + 1674*x^10 + 2986*x^9 - 3579*x^8 - 7494*x^7 + 3478*x^6 + 9640*x^5 - 880*x^4 - 5299*x^3 - 429*x^2 + 681*x - 34, x^17 - 3*x^16 - 27*x^15 + 73*x^14 + 295*x^13 - 709*x^12 - 1686*x^11 + 3513*x^10 + 5442*x^9 - 9428*x^8 - 10008*x^7 + 13420*x^6 + 10168*x^5 - 9214*x^4 - 5339*x^3 + 2542*x^2 + 1154*x - 130, x^17 - 3*x^16 - 27*x^15 + 73*x^14 + 295*x^13 - 709*x^12 - 1686*x^11 + 3513*x^10 + 5442*x^9 - 9428*x^8 - 10008*x^7 + 13420*x^6 + 10168*x^5 - 9214*x^4 - 5339*x^3 + 2542*x^2 + 1154*x - 130, -3*x^16 + 2*x^15 + 75*x^14 - 50*x^13 - 758*x^12 + 478*x^11 + 3967*x^10 - 2215*x^9 - 11415*x^8 + 5158*x^7 + 17597*x^6 - 5480*x^5 - 13004*x^4 + 1678*x^3 + 3477*x^2 + 165*x - 8, -3*x^16 + 2*x^15 + 75*x^14 - 50*x^13 - 758*x^12 + 478*x^11 + 3967*x^10 - 2215*x^9 - 11415*x^8 + 5158*x^7 + 17597*x^6 - 5480*x^5 - 13004*x^4 + 1678*x^3 + 3477*x^2 + 165*x - 8, x^18 - 26*x^16 - 2*x^15 + 274*x^14 + 45*x^13 - 1508*x^12 - 379*x^11 + 4651*x^10 + 1471*x^9 - 7970*x^8 - 2572*x^7 + 6922*x^6 + 1481*x^5 - 2284*x^4 + 281*x^3 + 168*x^2 - 149*x + 12, x^18 - 26*x^16 - 2*x^15 + 274*x^14 + 45*x^13 - 1508*x^12 - 379*x^11 + 4651*x^10 + 1471*x^9 - 7970*x^8 - 2572*x^7 + 6922*x^6 + 1481*x^5 - 2284*x^4 + 281*x^3 + 168*x^2 - 149*x + 12, x^16 - 19*x^14 + 3*x^13 + 119*x^12 - 61*x^11 - 170*x^10 + 493*x^9 - 1029*x^8 - 1968*x^7 + 4305*x^6 + 3893*x^5 - 5545*x^4 - 3467*x^3 + 2108*x^2 + 995*x - 74, x^16 - 19*x^14 + 3*x^13 + 119*x^12 - 61*x^11 - 170*x^10 + 493*x^9 - 1029*x^8 - 1968*x^7 + 4305*x^6 + 3893*x^5 - 5545*x^4 - 3467*x^3 + 2108*x^2 + 995*x - 74, -3*x^15 - 7*x^14 + 62*x^13 + 144*x^12 - 500*x^11 - 1162*x^10 + 1977*x^9 + 4646*x^8 - 3921*x^7 - 9553*x^6 + 3438*x^5 + 9398*x^4 - 616*x^3 - 3358*x^2 - 341*x + 52, -3*x^15 - 7*x^14 + 62*x^13 + 144*x^12 - 500*x^11 - 1162*x^10 + 1977*x^9 + 4646*x^8 - 3921*x^7 - 9553*x^6 + 3438*x^5 + 9398*x^4 - 616*x^3 - 3358*x^2 - 341*x + 52, x^17 + x^16 - 24*x^15 - 26*x^14 + 229*x^13 + 277*x^12 - 1112*x^11 - 1552*x^10 + 2929*x^9 + 4893*x^8 - 4106*x^7 - 8646*x^6 + 2581*x^5 + 7955*x^4 + 126*x^3 - 3060*x^2 - 784*x + 62, x^17 + x^16 - 24*x^15 - 26*x^14 + 229*x^13 + 277*x^12 - 1112*x^11 - 1552*x^10 + 2929*x^9 + 4893*x^8 - 4106*x^7 - 8646*x^6 + 2581*x^5 + 7955*x^4 + 126*x^3 - 3060*x^2 - 784*x + 62, 2*x^16 + 3*x^15 - 46*x^14 - 60*x^13 + 420*x^12 + 464*x^11 - 1922*x^10 - 1743*x^9 + 4554*x^8 + 3253*x^7 - 5058*x^6 - 2646*x^5 + 1582*x^4 + 304*x^3 + 578*x^2 + 545*x - 54, 2*x^16 + 3*x^15 - 46*x^14 - 60*x^13 + 420*x^12 + 464*x^11 - 1922*x^10 - 1743*x^9 + 4554*x^8 + 3253*x^7 - 5058*x^6 - 2646*x^5 + 1582*x^4 + 304*x^3 + 578*x^2 + 545*x - 54, 2*x^17 + 2*x^16 - 50*x^15 - 43*x^14 + 511*x^13 + 373*x^12 - 2745*x^11 - 1687*x^10 + 8293*x^9 + 4306*x^8 - 13938*x^7 - 6275*x^6 + 11945*x^5 + 4861*x^4 - 4143*x^3 - 1399*x^2 + 205*x + 6, 2*x^17 + 2*x^16 - 50*x^15 - 43*x^14 + 511*x^13 + 373*x^12 - 2745*x^11 - 1687*x^10 + 8293*x^9 + 4306*x^8 - 13938*x^7 - 6275*x^6 + 11945*x^5 + 4861*x^4 - 4143*x^3 - 1399*x^2 + 205*x + 6]>
       ]
>;

MOG[409] := 	// J_0(409)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 7,
           Coordinates        := [106, 121, 247, 306, 340, 346, 361, 369, 25*x + 239, 384*x + 239, 13*x + 201, 396*x + 201, 95*x + 321, 314*x + 321, 348*x + 380, 61*x + 380, 233*x + 80, 176*x + 80, 273*x + 142, 136*x + 142, 223*x + 263, 186*x + 263, 49*x + 216, 360*x + 216, 74*x + 284, 335*x + 284, 335*x, 74*x, 167*x + 161, 242*x + 161, 116*x + 59, 293*x + 59, 371*x + 207, 38*x + 207]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^13 + 6*x^12 + 2*x^11 - 47*x^10 - 64*x^9 + 117*x^8 + 226*x^7 - 94*x^6 - 278*x^5 + 9*x^4 + 134*x^3 + 15*x^2 - 22*x - 4,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, -x^12 - 6*x^11 - 4*x^10 + 36*x^9 + 58*x^8 - 61*x^7 - 150*x^6 + 18*x^5 + 134*x^4 + 19*x^3 - 39*x^2 - 8*x + 2, x^12 + 6*x^11 + 4*x^10 - 36*x^9 - 58*x^8 + 61*x^7 + 150*x^6 - 18*x^5 - 134*x^4 - 19*x^3 + 39*x^2 + 8*x - 2, -x^11 - 6*x^10 - 6*x^9 + 25*x^8 + 50*x^7 - 15*x^6 - 79*x^5 - 16*x^4 + 46*x^3 + 17*x^2 - 9*x - 4, x^11 + 6*x^10 + 6*x^9 - 25*x^8 - 50*x^7 + 15*x^6 + 79*x^5 + 16*x^4 - 46*x^3 - 17*x^2 + 9*x + 4, -x^11 - 5*x^10 + 31*x^8 + 26*x^7 - 61*x^6 - 65*x^5 + 44*x^4 + 49*x^3 - 10*x^2 - 11*x, x^11 + 5*x^10 - 31*x^8 - 26*x^7 + 61*x^6 + 65*x^5 - 44*x^4 - 49*x^3 + 10*x^2 + 11*x, -x^10 - 6*x^9 - 7*x^8 + 20*x^7 + 47*x^6 + 5*x^5 - 48*x^4 - 26*x^3 + 8*x^2 + 9*x + 2, x^10 + 6*x^9 + 7*x^8 - 20*x^7 - 47*x^6 - 5*x^5 + 48*x^4 + 26*x^3 - 8*x^2 - 9*x - 2, -x^10 - 5*x^9 - x^8 + 26*x^7 + 24*x^6 - 39*x^5 - 40*x^4 + 24*x^3 + 22*x^2 - 5*x - 4, x^10 + 5*x^9 + x^8 - 26*x^7 - 24*x^6 + 39*x^5 + 40*x^4 - 24*x^3 - 22*x^2 + 5*x + 4, -x^10 - 5*x^9 - x^8 + 26*x^7 + 24*x^6 - 39*x^5 - 41*x^4 + 20*x^3 + 18*x^2 - 3*x - 2, x^10 + 5*x^9 + x^8 - 26*x^7 - 24*x^6 + 39*x^5 + 41*x^4 - 20*x^3 - 18*x^2 + 3*x + 2, -x^9 - 5*x^8 - 3*x^7 + 20*x^6 + 31*x^5 - 10*x^4 - 38*x^3 - 8*x^2 + 11*x + 4, x^9 + 5*x^8 + 3*x^7 - 20*x^6 - 31*x^5 + 10*x^4 + 38*x^3 + 8*x^2 - 11*x - 4, -x^9 - 5*x^8 - 2*x^7 + 22*x^6 + 24*x^5 - 24*x^4 - 31*x^3 + 7*x^2 + 9*x, x^9 + 5*x^8 + 2*x^7 - 22*x^6 - 24*x^5 + 24*x^4 + 31*x^3 - 7*x^2 - 9*x, -x^8 - 3*x^7 + 4*x^6 + 16*x^5 - 20*x^3 - 5*x^2 + 6*x + 2, x^8 + 3*x^7 - 4*x^6 - 16*x^5 + 20*x^3 + 5*x^2 - 6*x - 2, -x^8 - 4*x^7 + 15*x^5 + 10*x^4 - 13*x^3 - 9*x^2 + 3*x + 2, x^8 + 4*x^7 - 15*x^5 - 10*x^4 + 13*x^3 + 9*x^2 - 3*x - 2, -x^5 - 2*x^4 + 3*x^3 + 6*x^2 - x - 2, x^5 + 2*x^4 - 3*x^3 - 6*x^2 + x + 2, -x^7 - 3*x^6 + 2*x^5 + 11*x^4 + 2*x^3 - 9*x^2 - x + 2, x^7 + 3*x^6 - 2*x^5 - 11*x^4 - 2*x^3 + 9*x^2 + x - 2, -x^6 - 2*x^5 + 3*x^4 + 6*x^3 - x^2 - 2*x, x^6 + 2*x^5 - 3*x^4 - 6*x^3 + x^2 + 2*x]>,
         rec<Eigen |
           DefiningPolynomial := x^20 - 5*x^19 - 19*x^18 + 126*x^17 + 100*x^16 - 1283*x^15 + 247*x^14 + 6767*x^13 - 4554*x^12 - 19689*x^11 + 18771*x^10 + 31011*x^9 - 35515*x^8 - 23548*x^7 + 31466*x^6 + 5354*x^5 - 10552*x^4 + 1129*x^3 + 523*x^2 - 54*x - 4,
           Coordinates        := [-x^19 + 5*x^18 + 16*x^17 - 113*x^16 - 50*x^15 + 1006*x^14 - 475*x^13 - 4485*x^12 + 4175*x^11 + 10560*x^10 - 12842*x^9 - 12823*x^8 + 18325*x^7 + 7303*x^6 - 11731*x^5 - 1543*x^4 + 2639*x^3 - 2*x^2 - 108*x - 8, x^19 - 5*x^18 - 16*x^17 + 111*x^16 + 60*x^15 - 988*x^14 + 321*x^13 + 4517*x^12 - 3331*x^11 - 11314*x^10 + 10898*x^9 + 15389*x^8 - 16733*x^7 - 10595*x^6 + 12105*x^5 + 2957*x^4 - 3479*x^3 + 8*x^2 + 162*x + 4, 2*x^17 - 10*x^16 - 24*x^15 + 182*x^14 + 28*x^13 - 1260*x^12 + 682*x^11 + 4220*x^10 - 3460*x^9 - 7342*x^8 + 6556*x^7 + 6662*x^6 - 5410*x^5 - 2774*x^4 + 1732*x^3 + 186*x^2 - 102*x - 4, -x^18 + 3*x^17 + 22*x^16 - 69*x^15 - 188*x^14 + 630*x^13 + 785*x^12 - 2915*x^11 - 1655*x^10 + 7250*x^9 + 1658*x^8 - 9507*x^7 - 689*x^6 + 5925*x^5 + 119*x^4 - 1305*x^3 + 29*x^2 + 56*x + 4, -2*x^15 + 10*x^14 + 14*x^13 - 136*x^12 + 62*x^11 + 614*x^10 - 686*x^9 - 996*x^8 + 1622*x^7 + 302*x^6 - 1268*x^5 + 512*x^4 + 142*x^3 - 306*x^2 + 64*x + 4, 2*x^16 - 12*x^15 - 12*x^14 + 194*x^13 - 170*x^12 - 1080*x^11 + 1820*x^10 + 2252*x^9 - 6000*x^8 - 574*x^7 + 7694*x^6 - 2688*x^5 - 3098*x^4 + 1716*x^3 - 12*x^2 - 52*x - 4, x^18 - 5*x^17 - 14*x^16 + 101*x^15 + 34*x^14 - 796*x^13 + 371*x^12 + 3075*x^11 - 2593*x^10 - 6028*x^9 + 6226*x^8 + 5717*x^7 - 6257*x^6 - 2311*x^5 + 2243*x^4 + 409*x^3 - 271*x^2 + 10*x, -4*x^14 + 20*x^13 + 24*x^12 - 250*x^11 + 126*x^10 + 1032*x^9 - 1118*x^8 - 1572*x^7 + 2252*x^6 + 748*x^5 - 1474*x^4 + 22*x^3 + 202*x^2 - 20*x - 4, -x^18 + 5*x^17 + 14*x^16 - 104*x^15 - 20*x^14 + 826*x^13 - 582*x^12 - 3107*x^11 + 3792*x^10 + 5469*x^9 - 9424*x^8 - 3369*x^7 + 10212*x^6 - 1057*x^5 - 4016*x^4 + 1216*x^3 + 193*x^2 - 59*x - 4, -x^18 + 5*x^17 + 14*x^16 - 104*x^15 - 20*x^14 + 826*x^13 - 582*x^12 - 3107*x^11 + 3792*x^10 + 5469*x^9 - 9424*x^8 - 3369*x^7 + 10212*x^6 - 1057*x^5 - 4016*x^4 + 1216*x^3 + 193*x^2 - 59*x - 4, -x^17 + 5*x^16 + 12*x^15 - 93*x^14 - 5*x^13 + 649*x^12 - 473*x^11 - 2106*x^10 + 2402*x^9 + 3185*x^8 - 4670*x^7 - 1863*x^6 + 3777*x^5 - 19*x^4 - 963*x^3 + 180*x^2 + 5*x + 2, -x^17 + 5*x^16 + 12*x^15 - 93*x^14 - 5*x^13 + 649*x^12 - 473*x^11 - 2106*x^10 + 2402*x^9 + 3185*x^8 - 4670*x^7 - 1863*x^6 + 3777*x^5 - 19*x^4 - 963*x^3 + 180*x^2 + 5*x + 2, -x^17 + 4*x^16 + 18*x^15 - 87*x^14 - 102*x^13 + 729*x^12 + 90*x^11 - 2985*x^10 + 1016*x^9 + 6269*x^8 - 3443*x^7 - 6497*x^6 + 3938*x^5 + 2778*x^4 - 1483*x^3 - 237*x^2 + 99*x + 6, -x^17 + 4*x^16 + 18*x^15 - 87*x^14 - 102*x^13 + 729*x^12 + 90*x^11 - 2985*x^10 + 1016*x^9 + 6269*x^8 - 3443*x^7 - 6497*x^6 + 3938*x^5 + 2778*x^4 - 1483*x^3 - 237*x^2 + 99*x + 6, -x^16 + 5*x^15 + 9*x^14 - 78*x^13 + 19*x^12 + 432*x^11 - 406*x^10 - 1014*x^9 + 1370*x^8 + 937*x^7 - 1760*x^6 - 118*x^5 + 808*x^4 - 164*x^3 - 69*x^2 + 12*x + 2, -x^16 + 5*x^15 + 9*x^14 - 78*x^13 + 19*x^12 + 432*x^11 - 406*x^10 - 1014*x^9 + 1370*x^8 + 937*x^7 - 1760*x^6 - 118*x^5 + 808*x^4 - 164*x^3 - 69*x^2 + 12*x + 2, -x^16 + 6*x^15 + 6*x^14 - 99*x^13 + 90*x^12 + 569*x^11 - 984*x^10 - 1270*x^9 + 3384*x^8 + 569*x^7 - 4675*x^6 + 1156*x^5 + 2245*x^4 - 872*x^3 - 119*x^2 + 49*x + 2, -x^16 + 6*x^15 + 6*x^14 - 99*x^13 + 90*x^12 + 569*x^11 - 984*x^10 - 1270*x^9 + 3384*x^8 + 569*x^7 - 4675*x^6 + 1156*x^5 + 2245*x^4 - 872*x^3 - 119*x^2 + 49*x + 2, -x^15 + 5*x^14 + 5*x^13 - 57*x^12 + 32*x^11 + 209*x^10 - 216*x^9 - 288*x^8 + 315*x^7 + 223*x^6 - 103*x^5 - 245*x^4 + 30*x^3 + 143*x^2 - 34*x - 2, -x^15 + 5*x^14 + 5*x^13 - 57*x^12 + 32*x^11 + 209*x^10 - 216*x^9 - 288*x^8 + 315*x^7 + 223*x^6 - 103*x^5 - 245*x^4 + 30*x^3 + 143*x^2 - 34*x - 2, -x^15 + 5*x^14 + 10*x^13 - 81*x^12 + 5*x^11 + 478*x^10 - 346*x^9 - 1252*x^8 + 1288*x^7 + 1443*x^6 - 1701*x^5 - 657*x^4 + 752*x^3 + 138*x^2 - 67*x - 6, -x^15 + 5*x^14 + 10*x^13 - 81*x^12 + 5*x^11 + 478*x^10 - 346*x^9 - 1252*x^8 + 1288*x^7 + 1443*x^6 - 1701*x^5 - 657*x^4 + 752*x^3 + 138*x^2 - 67*x - 6, x^17 - 5*x^16 - 13*x^15 + 96*x^14 + 25*x^13 - 721*x^12 + 369*x^11 + 2643*x^10 - 2336*x^9 - 4836*x^8 + 5238*x^7 + 4142*x^6 - 4931*x^5 - 1274*x^4 + 1604*x^3 + x^2 - 81*x - 2, x^17 - 5*x^16 - 13*x^15 + 96*x^14 + 25*x^13 - 721*x^12 + 369*x^11 + 2643*x^10 - 2336*x^9 - 4836*x^8 + 5238*x^7 + 4142*x^6 - 4931*x^5 - 1274*x^4 + 1604*x^3 + x^2 - 81*x - 2, x^15 - 4*x^14 - 13*x^13 + 67*x^12 + 41*x^11 - 418*x^10 + 108*x^9 + 1170*x^8 - 782*x^7 - 1384*x^6 + 1162*x^5 + 601*x^4 - 450*x^3 - 136*x^2 + 49*x + 4, x^15 - 4*x^14 - 13*x^13 + 67*x^12 + 41*x^11 - 418*x^10 + 108*x^9 + 1170*x^8 - 782*x^7 - 1384*x^6 + 1162*x^5 + 601*x^4 - 450*x^3 - 136*x^2 + 49*x + 4, x^16 - 4*x^15 - 14*x^14 + 70*x^13 + 55*x^12 - 464*x^11 + 48*x^10 + 1408*x^9 - 700*x^8 - 1890*x^7 + 1103*x^6 + 1140*x^5 - 394*x^4 - 438*x^3 + 47*x^2 + 22*x + 2, x^16 - 4*x^15 - 14*x^14 + 70*x^13 + 55*x^12 - 464*x^11 + 48*x^10 + 1408*x^9 - 700*x^8 - 1890*x^7 + 1103*x^6 + 1140*x^5 - 394*x^4 - 438*x^3 + 47*x^2 + 22*x + 2, x^18 - 5*x^17 - 13*x^16 + 97*x^15 + 20*x^14 - 727*x^13 + 426*x^12 + 2650*x^11 - 2640*x^10 - 4797*x^9 + 6278*x^8 + 3618*x^7 - 6552*x^6 - 43*x^5 + 2415*x^4 - 765*x^3 - 45*x^2 + 24*x + 2, x^18 - 5*x^17 - 13*x^16 + 97*x^15 + 20*x^14 - 727*x^13 + 426*x^12 + 2650*x^11 - 2640*x^10 - 4797*x^9 + 6278*x^8 + 3618*x^7 - 6552*x^6 - 43*x^5 + 2415*x^4 - 765*x^3 - 45*x^2 + 24*x + 2, x^16 - 2*x^15 - 22*x^14 + 43*x^13 + 190*x^12 - 362*x^11 - 817*x^10 + 1528*x^9 + 1776*x^8 - 3353*x^7 - 1618*x^6 + 3375*x^5 + 235*x^4 - 1107*x^3 + 157*x^2 + 34*x - 2, x^16 - 2*x^15 - 22*x^14 + 43*x^13 + 190*x^12 - 362*x^11 - 817*x^10 + 1528*x^9 + 1776*x^8 - 3353*x^7 - 1618*x^6 + 3375*x^5 + 235*x^4 - 1107*x^3 + 157*x^2 + 34*x - 2, x^17 - 4*x^16 - 16*x^15 + 79*x^14 + 77*x^13 - 607*x^12 + 9*x^11 + 2297*x^10 - 1160*x^9 - 4429*x^8 + 3625*x^7 + 3890*x^6 - 4280*x^5 - 948*x^4 + 1702*x^3 - 170*x^2 - 58*x, x^17 - 4*x^16 - 16*x^15 + 79*x^14 + 77*x^13 - 607*x^12 + 9*x^11 + 2297*x^10 - 1160*x^9 - 4429*x^8 + 3625*x^7 + 3890*x^6 - 4280*x^5 - 948*x^4 + 1702*x^3 - 170*x^2 - 58*x]>
       ]
>;

MOG[419] := 	// J_0(419)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 13, 48, 52, 62, 98, 106, 180, 184, 274, 288, 308, 354, 356, 367, 368, 396, 407, 257*x + 315, 162*x + 315, 138*x + 240, 281*x + 240, 169*x + 180, 250*x + 180, 57*x + 238, 362*x + 238, 109*x + 8, 310*x + 8, 175*x + 351, 244*x + 351, 132*x + 333, 287*x + 333, 393*x + 202, 26*x + 202, 398*x + 166, 21*x + 166]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^9 + 2*x^8 - 7*x^7 - 13*x^6 + 15*x^5 + 25*x^4 - 9*x^3 - 15*x^2 - x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^8 - 2*x^7 + 5*x^6 + 9*x^5 - 8*x^4 - 12*x^3 + 3*x^2 + 5*x + 1, x^8 + 2*x^7 - 5*x^6 - 9*x^5 + 8*x^4 + 12*x^3 - 3*x^2 - 5*x - 1, -x^7 - 2*x^6 + 3*x^5 + 6*x^4 - x^3 - 4*x^2 - x, x^7 + 2*x^6 - 3*x^5 - 6*x^4 + x^3 + 4*x^2 + x, -x^7 - 2*x^6 + 4*x^5 + 7*x^4 - 5*x^3 - 6*x^2 + x + 1, x^7 + 2*x^6 - 4*x^5 - 7*x^4 + 5*x^3 + 6*x^2 - x - 1, -x^6 - 2*x^5 + 3*x^4 + 6*x^3 - x^2 - 4*x - 1, x^6 + 2*x^5 - 3*x^4 - 6*x^3 + x^2 + 4*x + 1, -x^6 - x^5 + 4*x^4 + 2*x^3 - 3*x^2 - x, x^6 + x^5 - 4*x^4 - 2*x^3 + 3*x^2 + x, -x^6 - 2*x^5 + 3*x^4 + 6*x^3 - 2*x^2 - 4*x - 1, x^6 + 2*x^5 - 3*x^4 - 6*x^3 + 2*x^2 + 4*x + 1, -x^5 - x^4 + 3*x^3 + 2*x^2 - 2*x - 1, x^5 + x^4 - 3*x^3 - 2*x^2 + 2*x + 1, -x^4 - x^3 + 2*x^2 + x, x^4 + x^3 - 2*x^2 - x, -x^3 - x^2 + 2*x + 1, x^3 + x^2 - 2*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - 2*x^25 - 43*x^24 + 85*x^23 + 807*x^22 - 1571*x^21 - 8689*x^20 + 16575*x^19 + 59362*x^18 - 110217*x^17 - 268789*x^16 + 481513*x^15 + 817911*x^14 - 1398615*x^13 - 1658267*x^12 + 2674771*x^11 + 2166607*x^10 - 3262315*x^9 - 1701132*x^8 + 2384864*x^7 + 697992*x^6 - 932912*x^5 - 104448*x^4 + 158080*x^3 - 4736*x^2 - 6656*x + 512,
           Coordinates        := [-x^25 + 2*x^24 + 40*x^23 - 79*x^22 - 693*x^21 + 1346*x^20 + 6828*x^19 - 12965*x^18 - 42266*x^17 + 77802*x^16 + 171499*x^15 - 302507*x^14 - 462052*x^13 + 768968*x^12 + 818677*x^11 - 1260905*x^10 - 921272*x^9 + 1285966*x^8 + 611328*x^7 - 762524*x^6 - 204080*x^5 + 232640*x^4 + 20672*x^3 - 28032*x^2 + 1536*x + 256, x^25 - 2*x^24 - 40*x^23 + 79*x^22 + 695*x^21 - 1350*x^20 - 6896*x^19 + 13101*x^18 + 43230*x^17 - 79728*x^16 - 178931*x^15 + 317311*x^14 + 496204*x^13 - 836590*x^12 - 915239*x^11 + 1450097*x^10 + 1088430*x^9 - 1607218*x^8 - 781286*x^7 + 1076188*x^6 + 295080*x^5 - 386576*x^4 - 37184*x^3 + 55232*x^2 - 4224*x - 256, -3*x^23 + 6*x^22 + 110*x^21 - 217*x^20 - 1729*x^19 + 3348*x^18 + 15256*x^17 - 28817*x^16 - 83124*x^15 + 152028*x^14 + 289615*x^13 - 508965*x^12 - 644338*x^11 + 1082818*x^10 + 881119*x^9 - 1424493*x^8 - 671666*x^7 + 1086564*x^6 + 220528*x^5 - 421104*x^4 + 224*x^3 + 61696*x^2 - 8832*x - 256, 2*x^20 - 70*x^18 + 8*x^17 + 1024*x^16 - 216*x^15 - 8114*x^14 + 2320*x^13 + 37768*x^12 - 12764*x^11 - 104928*x^10 + 38920*x^9 + 169262*x^8 - 67204*x^7 - 146376*x^6 + 63616*x^5 + 57088*x^4 - 28480*x^3 - 5440*x^2 + 4992*x - 768, 2*x^21 - 2*x^20 - 70*x^19 + 78*x^18 + 1016*x^17 - 1240*x^16 - 7898*x^15 + 10434*x^14 + 35448*x^13 - 50532*x^12 - 92164*x^11 + 143848*x^10 + 130342*x^9 - 236466*x^8 - 79172*x^7 + 209992*x^6 - 6528*x^5 - 85568*x^4 + 23040*x^3 + 10432*x^2 - 5760*x + 768, x^23 - 2*x^22 - 42*x^21 + 83*x^20 + 749*x^19 - 1462*x^18 - 7430*x^17 + 14299*x^16 + 45090*x^15 - 85270*x^14 - 173337*x^13 + 320535*x^12 + 422228*x^11 - 758858*x^10 - 631631*x^9 + 1097307*x^8 + 537772*x^7 - 904056*x^6 - 220616*x^5 + 369984*x^4 + 26592*x^3 - 56512*x^2 + 3328*x + 768, 2*x^23 - 4*x^22 - 72*x^21 + 142*x^20 + 1108*x^19 - 2144*x^18 - 9556*x^17 + 18012*x^16 + 50940*x^15 - 92604*x^14 - 174684*x^13 + 302248*x^12 + 388606*x^11 - 629148*x^10 - 551044*x^9 + 816678*x^8 + 474644*x^7 - 624356*x^6 - 224896*x^5 + 248448*x^4 + 45472*x^3 - 38080*x^2 - 384*x + 768, 2*x^21 - 2*x^20 - 66*x^19 + 72*x^18 + 902*x^17 - 1050*x^16 - 6610*x^15 + 8056*x^14 + 28160*x^13 - 35368*x^12 - 70868*x^11 + 90796*x^10 + 102152*x^9 - 133960*x^8 - 75848*x^7 + 106616*x^6 + 19144*x^5 - 39120*x^4 + 5888*x^3 + 3712*x^2 - 2560*x + 768, 4*x^20 - 6*x^19 - 118*x^18 + 166*x^17 + 1460*x^16 - 1878*x^15 - 9894*x^14 + 11310*x^13 + 40096*x^12 - 39628*x^11 - 98948*x^10 + 83068*x^9 + 144340*x^8 - 104600*x^7 - 115012*x^6 + 79064*x^5 + 43552*x^4 - 33440*x^3 - 5248*x^2 + 5376*x - 512, 2*x^21 - 4*x^20 - 60*x^19 + 118*x^18 + 750*x^17 - 1444*x^16 - 5074*x^15 + 9550*x^14 + 20142*x^13 - 37304*x^12 - 47254*x^11 + 88460*x^10 + 61822*x^9 - 126832*x^8 - 36888*x^7 + 106840*x^6 + 760*x^5 - 48944*x^4 + 7904*x^3 + 9728*x^2 - 2432*x - 256, 2*x^20 + 2*x^19 - 70*x^18 - 40*x^17 + 1010*x^16 + 254*x^15 - 7790*x^14 - 188*x^13 + 34980*x^12 - 4440*x^11 - 93852*x^10 + 20696*x^9 + 149064*x^8 - 41236*x^7 - 134616*x^6 + 42032*x^5 + 64448*x^4 - 21056*x^3 - 14080*x^2 + 4352*x + 512, x^24 - 2*x^23 - 38*x^22 + 75*x^21 + 617*x^20 - 1200*x^19 - 5590*x^18 + 10701*x^17 + 30924*x^16 - 58292*x^15 - 107093*x^14 + 199853*x^13 + 226976*x^12 - 427810*x^11 - 267415*x^10 + 545451*x^9 + 119634*x^8 - 368280*x^7 + 52768*x^6 + 90816*x^5 - 57408*x^4 + 11840*x^3 + 8960*x^2 - 5376*x + 512, -3*x^23 + 6*x^22 + 108*x^21 - 211*x^20 - 1659*x^19 + 3132*x^18 + 14252*x^17 - 25583*x^16 - 75514*x^15 + 125846*x^14 + 256951*x^13 - 384073*x^12 - 566358*x^11 + 723548*x^10 + 792893*x^9 - 811065*x^8 - 668406*x^7 + 500736*x^6 + 307936*x^5 - 146768*x^4 - 65440*x^3 + 16000*x^2 + 4736*x - 512, 2*x^21 - 8*x^20 - 62*x^19 + 250*x^18 + 812*x^17 - 3262*x^16 - 5936*x^15 + 23130*x^14 + 27096*x^13 - 97228*x^12 - 81634*x^11 + 247720*x^10 + 163654*x^9 - 373806*x^8 - 206972*x^7 + 310444*x^6 + 144936*x^5 - 122896*x^4 - 45312*x^3 + 17344*x^2 + 3840*x - 512, 2*x^22 - 4*x^21 - 68*x^20 + 130*x^19 + 986*x^18 - 1776*x^17 - 7994*x^16 + 13306*x^15 + 39930*x^14 - 59924*x^13 - 127446*x^12 + 167716*x^11 + 259718*x^10 - 292968*x^9 - 325568*x^8 + 316040*x^7 + 230784*x^6 - 207072*x^5 - 79200*x^4 + 76608*x^3 + 8064*x^2 - 11008*x + 1024, -3*x^24 + 6*x^23 + 114*x^22 - 225*x^21 - 1861*x^20 + 3610*x^19 + 17096*x^18 - 32415*x^17 - 97290*x^16 + 179006*x^15 + 355859*x^14 - 629647*x^13 - 839590*x^12 + 1413866*x^11 + 1245335*x^10 - 1976349*x^9 - 1089804*x^8 + 1622340*x^7 + 493912*x^6 - 700272*x^5 - 83776*x^4 + 130048*x^3 - 3200*x^2 - 6400*x + 512, 2*x^19 + 6*x^18 - 58*x^17 - 156*x^16 + 698*x^15 + 1650*x^14 - 4490*x^13 - 9168*x^12 + 16644*x^11 + 28848*x^10 - 36156*x^9 - 51616*x^8 + 45832*x^7 + 50428*x^6 - 33760*x^5 - 25488*x^4 + 13472*x^3 + 5888*x^2 - 2304*x - 256, x^23 - 2*x^22 - 36*x^21 + 67*x^20 + 557*x^19 - 938*x^18 - 4876*x^17 + 7137*x^16 + 26748*x^15 - 32188*x^14 - 95891*x^13 + 88245*x^12 + 225596*x^11 - 145788*x^10 - 337165*x^9 + 141631*x^8 + 296282*x^7 - 81316*x^6 - 131872*x^5 + 28432*x^4 + 19552*x^3 - 4096*x^2 + 1408*x - 512, x^22 - x^21 - 37*x^20 + 39*x^19 + 578*x^18 - 628*x^17 - 4973*x^16 + 5433*x^15 + 25838*x^14 - 27586*x^13 - 83850*x^12 + 84688*x^11 + 170099*x^10 - 157153*x^9 - 208848*x^8 + 172200*x^7 + 143112*x^6 - 106400*x^5 - 45568*x^4 + 33696*x^3 + 2560*x^2 - 4608*x + 768, x^22 - x^21 - 37*x^20 + 39*x^19 + 578*x^18 - 628*x^17 - 4973*x^16 + 5433*x^15 + 25838*x^14 - 27586*x^13 - 83850*x^12 + 84688*x^11 + 170099*x^10 - 157153*x^9 - 208848*x^8 + 172200*x^7 + 143112*x^6 - 106400*x^5 - 45568*x^4 + 33696*x^3 + 2560*x^2 - 4608*x + 768, x^23 - 2*x^22 - 35*x^21 + 71*x^20 + 517*x^19 - 1063*x^18 - 4207*x^17 + 8761*x^16 + 20684*x^15 - 43621*x^14 - 63494*x^13 + 135910*x^12 + 121252*x^11 - 266126*x^10 - 137280*x^9 + 320342*x^8 + 78802*x^7 - 224072*x^6 - 7848*x^5 + 80784*x^4 - 12512*x^3 - 11264*x^2 + 4096*x - 512, x^23 - 2*x^22 - 35*x^21 + 71*x^20 + 517*x^19 - 1063*x^18 - 4207*x^17 + 8761*x^16 + 20684*x^15 - 43621*x^14 - 63494*x^13 + 135910*x^12 + 121252*x^11 - 266126*x^10 - 137280*x^9 + 320342*x^8 + 78802*x^7 - 224072*x^6 - 7848*x^5 + 80784*x^4 - 12512*x^3 - 11264*x^2 + 4096*x - 512, x^22 - 4*x^21 - 30*x^20 + 131*x^19 + 357*x^18 - 1782*x^17 - 2088*x^16 + 13052*x^15 + 5601*x^14 - 55804*x^13 - 690*x^12 + 141011*x^11 - 34875*x^10 - 201910*x^9 + 88324*x^8 + 143482*x^7 - 92320*x^6 - 31192*x^5 + 38480*x^4 - 7968*x^3 - 3776*x^2 + 2432*x - 256, x^22 - 4*x^21 - 30*x^20 + 131*x^19 + 357*x^18 - 1782*x^17 - 2088*x^16 + 13052*x^15 + 5601*x^14 - 55804*x^13 - 690*x^12 + 141011*x^11 - 34875*x^10 - 201910*x^9 + 88324*x^8 + 143482*x^7 - 92320*x^6 - 31192*x^5 + 38480*x^4 - 7968*x^3 - 3776*x^2 + 2432*x - 256, x^24 - 2*x^23 - 37*x^22 + 73*x^21 + 588*x^20 - 1137*x^19 - 5271*x^18 + 9894*x^17 + 29467*x^16 - 52955*x^15 - 107307*x^14 + 181086*x^13 + 258026*x^12 - 398432*x^11 - 405381*x^10 + 554823*x^9 + 400106*x^8 - 470198*x^7 - 227840*x^6 + 227760*x^5 + 62336*x^4 - 57344*x^3 - 4224*x^2 + 5888*x - 512, x^24 - 2*x^23 - 37*x^22 + 73*x^21 + 588*x^20 - 1137*x^19 - 5271*x^18 + 9894*x^17 + 29467*x^16 - 52955*x^15 - 107307*x^14 + 181086*x^13 + 258026*x^12 - 398432*x^11 - 405381*x^10 + 554823*x^9 + 400106*x^8 - 470198*x^7 - 227840*x^6 + 227760*x^5 + 62336*x^4 - 57344*x^3 - 4224*x^2 + 5888*x - 512, x^22 - x^21 - 34*x^20 + 35*x^19 + 486*x^18 - 505*x^17 - 3810*x^16 + 3901*x^15 + 17975*x^14 - 17590*x^13 - 52924*x^12 + 47618*x^11 + 98002*x^10 - 77328*x^9 - 112456*x^8 + 73926*x^7 + 76880*x^6 - 40576*x^5 - 29280*x^4 + 12384*x^3 + 5760*x^2 - 1792*x - 256, x^22 - x^21 - 34*x^20 + 35*x^19 + 486*x^18 - 505*x^17 - 3810*x^16 + 3901*x^15 + 17975*x^14 - 17590*x^13 - 52924*x^12 + 47618*x^11 + 98002*x^10 - 77328*x^9 - 112456*x^8 + 73926*x^7 + 76880*x^6 - 40576*x^5 - 29280*x^4 + 12384*x^3 + 5760*x^2 - 1792*x - 256, -3*x^22 + 7*x^21 + 101*x^20 - 239*x^19 - 1422*x^18 + 3416*x^17 + 10888*x^16 - 26580*x^15 - 49454*x^14 + 122787*x^13 + 136616*x^12 - 345159*x^11 - 226221*x^10 + 582642*x^9 + 210699*x^8 - 560802*x^7 - 92988*x^6 + 276752*x^5 + 9168*x^4 - 57024*x^3 + 3968*x^2 + 2944*x - 256, -3*x^22 + 7*x^21 + 101*x^20 - 239*x^19 - 1422*x^18 + 3416*x^17 + 10888*x^16 - 26580*x^15 - 49454*x^14 + 122787*x^13 + 136616*x^12 - 345159*x^11 - 226221*x^10 + 582642*x^9 + 210699*x^8 - 560802*x^7 - 92988*x^6 + 276752*x^5 + 9168*x^4 - 57024*x^3 + 3968*x^2 + 2944*x - 256, -3*x^21 + 2*x^20 + 106*x^19 - 73*x^18 - 1582*x^17 + 1091*x^16 + 13008*x^15 - 8660*x^14 - 64531*x^13 + 39604*x^12 + 199126*x^11 - 106031*x^10 - 380284*x^9 + 161939*x^8 + 431936*x^7 - 131664*x^6 - 267576*x^5 + 51264*x^4 + 77376*x^3 - 9280*x^2 - 7424*x + 768, -3*x^21 + 2*x^20 + 106*x^19 - 73*x^18 - 1582*x^17 + 1091*x^16 + 13008*x^15 - 8660*x^14 - 64531*x^13 + 39604*x^12 + 199126*x^11 - 106031*x^10 - 380284*x^9 + 161939*x^8 + 431936*x^7 - 131664*x^6 - 267576*x^5 + 51264*x^4 + 77376*x^3 - 9280*x^2 - 7424*x + 768, -2*x^21 + 3*x^20 + 60*x^19 - 87*x^18 - 743*x^17 + 1029*x^16 + 4912*x^15 - 6417*x^14 - 18652*x^13 + 22906*x^12 + 40002*x^11 - 48032*x^10 - 40419*x^9 + 59298*x^8 - 2798*x^7 - 42924*x^6 + 42088*x^5 + 16944*x^4 - 29632*x^3 - 2112*x^2 + 5248*x - 512, -2*x^21 + 3*x^20 + 60*x^19 - 87*x^18 - 743*x^17 + 1029*x^16 + 4912*x^15 - 6417*x^14 - 18652*x^13 + 22906*x^12 + 40002*x^11 - 48032*x^10 - 40419*x^9 + 59298*x^8 - 2798*x^7 - 42924*x^6 + 42088*x^5 + 16944*x^4 - 29632*x^3 - 2112*x^2 + 5248*x - 512, -2*x^22 + 4*x^21 + 66*x^20 - 131*x^19 - 920*x^18 + 1799*x^17 + 7083*x^16 - 13489*x^15 - 33122*x^14 + 60341*x^13 + 97626*x^12 - 165524*x^11 - 182108*x^10 + 275928*x^9 + 209069*x^8 - 267888*x^7 - 136692*x^6 + 139584*x^5 + 42000*x^4 - 34176*x^3 - 2816*x^2 + 3072*x - 256, -2*x^22 + 4*x^21 + 66*x^20 - 131*x^19 - 920*x^18 + 1799*x^17 + 7083*x^16 - 13489*x^15 - 33122*x^14 + 60341*x^13 + 97626*x^12 - 165524*x^11 - 182108*x^10 + 275928*x^9 + 209069*x^8 - 267888*x^7 - 136692*x^6 + 139584*x^5 + 42000*x^4 - 34176*x^3 - 2816*x^2 + 3072*x - 256]>
       ]
>;

MOG[421] := 	// J_0(421)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [1, 131, 203, 205, 206, 27*x + 266, 394*x + 266, 252*x + 215, 169*x + 215, 38*x + 306, 383*x + 306, 221*x + 372, 200*x + 372, 50*x + 208, 371*x + 208, 310*x + 377, 111*x + 377, 55*x + 120, 366*x + 120, 156*x + 114, 265*x + 114, 86*x + 218, 335*x + 218, 207*x + 90, 214*x + 90, 397*x + 185, 24*x + 185, 33*x + 14, 388*x + 14, 79*x + 11, 342*x + 11, 420*x + 45, x + 45, 263*x + 3, 158*x + 3]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^15 + 6*x^14 - 2*x^13 - 71*x^12 - 74*x^11 + 296*x^10 + 488*x^9 - 494*x^8 - 1157*x^7 + 205*x^6 + 1137*x^5 + 203*x^4 - 374*x^3 - 127*x^2 + 3*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, -x^14 - 6*x^13 + 59*x^11 + 70*x^10 - 199*x^9 - 345*x^8 + 265*x^7 + 631*x^6 - 100*x^5 - 473*x^4 - 34*x^3 + 122*x^2 + 18*x - 3, x^14 + 6*x^13 - 59*x^11 - 70*x^10 + 199*x^9 + 345*x^8 - 265*x^7 - 631*x^6 + 100*x^5 + 473*x^4 + 34*x^3 - 122*x^2 - 18*x + 3, -x^13 - 6*x^12 - 2*x^11 + 49*x^10 + 74*x^9 - 113*x^8 - 273*x^7 + 34*x^6 + 326*x^5 + 101*x^4 - 98*x^3 - 42*x^2 - 4*x, x^13 + 6*x^12 + 2*x^11 - 49*x^10 - 74*x^9 + 113*x^8 + 273*x^7 - 34*x^6 - 326*x^5 - 101*x^4 + 98*x^3 + 42*x^2 + 4*x, -x^13 - 6*x^12 - 2*x^11 + 48*x^10 + 69*x^9 - 116*x^8 - 253*x^7 + 71*x^6 + 338*x^5 + 68*x^4 - 154*x^3 - 67*x^2 + 4*x + 3, x^13 + 6*x^12 + 2*x^11 - 48*x^10 - 69*x^9 + 116*x^8 + 253*x^7 - 71*x^6 - 338*x^5 - 68*x^4 + 154*x^3 + 67*x^2 - 4*x - 3, -x^12 - 5*x^11 + 2*x^10 + 43*x^9 + 36*x^8 - 115*x^7 - 151*x^6 + 99*x^5 + 182*x^4 - 3*x^3 - 61*x^2 - 14*x, x^12 + 5*x^11 - 2*x^10 - 43*x^9 - 36*x^8 + 115*x^7 + 151*x^6 - 99*x^5 - 182*x^4 + 3*x^3 + 61*x^2 + 14*x, -x^12 - 5*x^11 + 2*x^10 + 43*x^9 + 36*x^8 - 116*x^7 - 154*x^6 + 102*x^5 + 193*x^4 - 5*x^3 - 65*x^2 - 4*x + 3, x^12 + 5*x^11 - 2*x^10 - 43*x^9 - 36*x^8 + 116*x^7 + 154*x^6 - 102*x^5 - 193*x^4 + 5*x^3 + 65*x^2 + 4*x - 3, -x^12 - 6*x^11 - 4*x^10 + 38*x^9 + 68*x^8 - 54*x^7 - 180*x^6 - 16*x^5 + 165*x^4 + 53*x^3 - 50*x^2 - 16*x, x^12 + 6*x^11 + 4*x^10 - 38*x^9 - 68*x^8 + 54*x^7 + 180*x^6 + 16*x^5 - 165*x^4 - 53*x^3 + 50*x^2 + 16*x, -x^12 - 5*x^11 + 3*x^10 + 45*x^9 + 24*x^8 - 140*x^7 - 113*x^6 + 184*x^5 + 154*x^4 - 86*x^3 - 68*x^2 + x + 3, x^12 + 5*x^11 - 3*x^10 - 45*x^9 - 24*x^8 + 140*x^7 + 113*x^6 - 184*x^5 - 154*x^4 + 86*x^3 + 68*x^2 - x - 3, -x^11 - 4*x^10 + 5*x^9 + 34*x^8 + 7*x^7 - 86*x^6 - 45*x^5 + 78*x^4 + 34*x^3 - 33*x^2 - 10*x, x^11 + 4*x^10 - 5*x^9 - 34*x^8 - 7*x^7 + 86*x^6 + 45*x^5 - 78*x^4 - 34*x^3 + 33*x^2 + 10*x, -x^11 - 4*x^10 + 5*x^9 + 33*x^8 + 3*x^7 - 86*x^6 - 31*x^5 + 87*x^4 + 28*x^3 - 27*x^2 + 3*x + 3, x^11 + 4*x^10 - 5*x^9 - 33*x^8 - 3*x^7 + 86*x^6 + 31*x^5 - 87*x^4 - 28*x^3 + 27*x^2 - 3*x - 3, -x^11 - 4*x^10 + 4*x^9 + 29*x^8 + 5*x^7 - 66*x^6 - 28*x^5 + 57*x^4 + 30*x^3 - 11*x^2 - 6*x, x^11 + 4*x^10 - 4*x^9 - 29*x^8 - 5*x^7 + 66*x^6 + 28*x^5 - 57*x^4 - 30*x^3 + 11*x^2 + 6*x, -x^11 - 6*x^10 - 5*x^9 + 33*x^8 + 68*x^7 - 21*x^6 - 145*x^5 - 72*x^4 + 74*x^3 + 62*x^2 + 2*x - 3, x^11 + 6*x^10 + 5*x^9 - 33*x^8 - 68*x^7 + 21*x^6 + 145*x^5 + 72*x^4 - 74*x^3 - 62*x^2 - 2*x + 3, -x^10 - 5*x^9 + 34*x^7 + 40*x^6 - 49*x^5 - 91*x^4 + 40*x^2 + 8*x, x^10 + 5*x^9 - 34*x^7 - 40*x^6 + 49*x^5 + 91*x^4 - 40*x^2 - 8*x, -x^10 - 5*x^9 + 33*x^7 + 37*x^6 - 46*x^5 - 78*x^4 + 6*x^3 + 41*x^2 + 10*x, x^10 + 5*x^9 - 33*x^7 - 37*x^6 + 46*x^5 + 78*x^4 - 6*x^3 - 41*x^2 - 10*x, -x^10 - 5*x^9 + 33*x^7 + 35*x^6 - 56*x^5 - 91*x^4 + 9*x^3 + 52*x^2 + 13*x, x^10 + 5*x^9 - 33*x^7 - 35*x^6 + 56*x^5 + 91*x^4 - 9*x^3 - 52*x^2 - 13*x, 2*x^5 + 10*x^4 + 13*x^3 - 3*x^2 - 11*x - 3, -2*x^5 - 10*x^4 - 13*x^3 + 3*x^2 + 11*x + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^19 - 4*x^18 - 20*x^17 + 93*x^16 + 145*x^15 - 874*x^14 - 402*x^13 + 4263*x^12 - 159*x^11 - 11551*x^10 + 3133*x^9 + 17375*x^8 - 5935*x^7 - 14018*x^6 + 4016*x^5 + 5896*x^4 - 1088*x^3 - 1185*x^2 + 101*x + 89,
           Coordinates        := [-x^18 + 3*x^17 + 21*x^16 - 66*x^15 - 173*x^14 + 581*x^13 + 709*x^12 - 2624*x^11 - 1517*x^10 + 6488*x^9 + 1653*x^8 - 8678*x^7 - 977*x^6 + 5869*x^5 + 583*x^4 - 1831*x^3 - 261*x^2 + 196*x + 37, x^18 - 4*x^17 - 17*x^16 + 81*x^15 + 100*x^14 - 655*x^13 - 184*x^12 + 2710*x^11 - 393*x^10 - 6107*x^9 + 2106*x^8 + 7378*x^7 - 3027*x^6 - 4440*x^5 + 1635*x^4 + 1236*x^3 - 329*x^2 - 121*x + 18, x^17 - 4*x^16 - 15*x^15 + 73*x^14 + 72*x^13 - 513*x^12 - 76*x^11 + 1754*x^10 - 303*x^9 - 3047*x^8 + 736*x^7 + 2568*x^6 - 371*x^5 - 892*x^4 + 3*x^3 + 66*x^2 + 15*x + 9, -2*x^14 + 6*x^13 + 28*x^12 - 88*x^11 - 142*x^10 + 472*x^9 + 334*x^8 - 1148*x^7 - 422*x^6 + 1268*x^5 + 348*x^4 - 550*x^3 - 148*x^2 + 70*x + 20, 2*x^14 - 8*x^13 - 20*x^12 + 106*x^11 + 42*x^10 - 490*x^9 + 86*x^8 + 966*x^7 - 288*x^6 - 810*x^5 + 126*x^4 + 268*x^3 + 6*x^2 - 24*x - 4, -x^17 + 3*x^16 + 19*x^15 - 60*x^14 - 137*x^13 + 465*x^12 + 474*x^11 - 1773*x^10 - 851*x^9 + 3522*x^8 + 883*x^7 - 3586*x^6 - 635*x^5 + 1741*x^4 + 241*x^3 - 364*x^2 - 29*x + 26, -x^17 + 3*x^16 + 19*x^15 - 60*x^14 - 137*x^13 + 465*x^12 + 474*x^11 - 1773*x^10 - 851*x^9 + 3522*x^8 + 883*x^7 - 3586*x^6 - 635*x^5 + 1741*x^4 + 241*x^3 - 364*x^2 - 29*x + 26, -x^16 + 3*x^15 + 18*x^14 - 58*x^13 - 117*x^12 + 424*x^11 + 327*x^10 - 1465*x^9 - 359*x^8 + 2472*x^7 + 119*x^6 - 1943*x^5 - 124*x^4 + 677*x^3 + 94*x^2 - 80*x - 15, -x^16 + 3*x^15 + 18*x^14 - 58*x^13 - 117*x^12 + 424*x^11 + 327*x^10 - 1465*x^9 - 359*x^8 + 2472*x^7 + 119*x^6 - 1943*x^5 - 124*x^4 + 677*x^3 + 94*x^2 - 80*x - 15, -x^16 + 3*x^15 + 18*x^14 - 58*x^13 - 118*x^12 + 427*x^11 + 339*x^10 - 1501*x^9 - 411*x^8 + 2620*x^7 + 223*x^6 - 2185*x^5 - 218*x^4 + 790*x^3 + 138*x^2 - 90*x - 22, -x^16 + 3*x^15 + 18*x^14 - 58*x^13 - 118*x^12 + 427*x^11 + 339*x^10 - 1501*x^9 - 411*x^8 + 2620*x^7 + 223*x^6 - 2185*x^5 - 218*x^4 + 790*x^3 + 138*x^2 - 90*x - 22, -x^14 + 3*x^13 + 14*x^12 - 44*x^11 - 73*x^10 + 239*x^9 + 190*x^8 - 606*x^7 - 289*x^6 + 718*x^5 + 278*x^4 - 335*x^3 - 125*x^2 + 49*x + 18, -x^14 + 3*x^13 + 14*x^12 - 44*x^11 - 73*x^10 + 239*x^9 + 190*x^8 - 606*x^7 - 289*x^6 + 718*x^5 + 278*x^4 - 335*x^3 - 125*x^2 + 49*x + 18, -x^15 + 3*x^14 + 17*x^13 - 55*x^12 - 103*x^11 + 381*x^10 + 253*x^9 - 1240*x^8 - 158*x^7 + 1932*x^6 - 207*x^5 - 1342*x^4 + 188*x^3 + 409*x^2 - 35*x - 44, -x^15 + 3*x^14 + 17*x^13 - 55*x^12 - 103*x^11 + 381*x^10 + 253*x^9 - 1240*x^8 - 158*x^7 + 1932*x^6 - 207*x^5 - 1342*x^4 + 188*x^3 + 409*x^2 - 35*x - 44, x^13 - 4*x^12 - 11*x^11 + 57*x^10 + 28*x^9 - 285*x^8 + 34*x^7 + 623*x^6 - 162*x^5 - 613*x^4 + 105*x^3 + 242*x^2 - 15*x - 28, x^13 - 4*x^12 - 11*x^11 + 57*x^10 + 28*x^9 - 285*x^8 + 34*x^7 + 623*x^6 - 162*x^5 - 613*x^4 + 105*x^3 + 242*x^2 - 15*x - 28, -x^15 + 2*x^14 + 18*x^13 - 34*x^12 - 124*x^11 + 215*x^10 + 412*x^9 - 617*x^8 - 694*x^7 + 778*x^6 + 579*x^5 - 338*x^4 - 208*x^3 + 32*x^2 + 22*x + 2, -x^15 + 2*x^14 + 18*x^13 - 34*x^12 - 124*x^11 + 215*x^10 + 412*x^9 - 617*x^8 - 694*x^7 + 778*x^6 + 579*x^5 - 338*x^4 - 208*x^3 + 32*x^2 + 22*x + 2, x^16 - 4*x^15 - 14*x^14 + 69*x^13 + 59*x^12 - 453*x^11 - 15*x^10 + 1416*x^9 - 437*x^8 - 2155*x^7 + 888*x^6 + 1503*x^5 - 489*x^4 - 467*x^3 + 80*x^2 + 49*x - 3, x^16 - 4*x^15 - 14*x^14 + 69*x^13 + 59*x^12 - 453*x^11 - 15*x^10 + 1416*x^9 - 437*x^8 - 2155*x^7 + 888*x^6 + 1503*x^5 - 489*x^4 - 467*x^3 + 80*x^2 + 49*x - 3, x^15 - 4*x^14 - 14*x^13 + 69*x^12 + 60*x^11 - 455*x^10 - 28*x^9 + 1441*x^8 - 382*x^7 - 2258*x^6 + 808*x^5 + 1654*x^4 - 456*x^3 - 538*x^2 + 71*x + 59, x^15 - 4*x^14 - 14*x^13 + 69*x^12 + 60*x^11 - 455*x^10 - 28*x^9 + 1441*x^8 - 382*x^7 - 2258*x^6 + 808*x^5 + 1654*x^4 - 456*x^3 - 538*x^2 + 71*x + 59, x^15 - 3*x^14 - 17*x^13 + 53*x^12 + 108*x^11 - 356*x^10 - 314*x^9 + 1130*x^8 + 408*x^7 - 1713*x^6 - 202*x^5 + 1139*x^4 + 37*x^3 - 325*x^2 - 3*x + 31, x^15 - 3*x^14 - 17*x^13 + 53*x^12 + 108*x^11 - 356*x^10 - 314*x^9 + 1130*x^8 + 408*x^7 - 1713*x^6 - 202*x^5 + 1139*x^4 + 37*x^3 - 325*x^2 - 3*x + 31, x^16 - 4*x^15 - 14*x^14 + 71*x^13 + 54*x^12 - 478*x^11 + 45*x^10 + 1530*x^9 - 685*x^8 - 2405*x^7 + 1328*x^6 + 1774*x^5 - 816*x^4 - 585*x^3 + 172*x^2 + 65*x - 9, x^16 - 4*x^15 - 14*x^14 + 71*x^13 + 54*x^12 - 478*x^11 + 45*x^10 + 1530*x^9 - 685*x^8 - 2405*x^7 + 1328*x^6 + 1774*x^5 - 816*x^4 - 585*x^3 + 172*x^2 + 65*x - 9, x^17 - 4*x^16 - 15*x^15 + 73*x^14 + 73*x^13 - 520*x^12 - 79*x^11 + 1845*x^10 - 362*x^9 - 3475*x^8 + 1086*x^7 + 3505*x^6 - 1005*x^5 - 1884*x^4 + 378*x^3 + 499*x^2 - 49*x - 49, x^17 - 4*x^16 - 15*x^15 + 73*x^14 + 73*x^13 - 520*x^12 - 79*x^11 + 1845*x^10 - 362*x^9 - 3475*x^8 + 1086*x^7 + 3505*x^6 - 1005*x^5 - 1884*x^4 + 378*x^3 + 499*x^2 - 49*x - 49, x^16 - 4*x^15 - 13*x^14 + 66*x^13 + 46*x^12 - 412*x^11 + 46*x^10 + 1216*x^9 - 583*x^8 - 1718*x^7 + 1134*x^6 + 1053*x^5 - 768*x^4 - 270*x^3 + 200*x^2 + 23*x - 15, x^16 - 4*x^15 - 13*x^14 + 66*x^13 + 46*x^12 - 412*x^11 + 46*x^10 + 1216*x^9 - 583*x^8 - 1718*x^7 + 1134*x^6 + 1053*x^5 - 768*x^4 - 270*x^3 + 200*x^2 + 23*x - 15, x^15 - 2*x^14 - 19*x^13 + 39*x^12 + 132*x^11 - 281*x^10 - 410*x^9 + 927*x^8 + 558*x^7 - 1417*x^6 - 283*x^5 + 920*x^4 + 64*x^3 - 243*x^2 - 9*x + 19, x^15 - 2*x^14 - 19*x^13 + 39*x^12 + 132*x^11 - 281*x^10 - 410*x^9 + 927*x^8 + 558*x^7 - 1417*x^6 - 283*x^5 + 920*x^4 + 64*x^3 - 243*x^2 - 9*x + 19, x^15 - 3*x^14 - 13*x^13 + 39*x^12 + 65*x^11 - 174*x^10 - 193*x^9 + 316*x^8 + 430*x^7 - 194*x^6 - 571*x^5 - 40*x^4 + 278*x^3 + 62*x^2 - 37*x - 10, x^15 - 3*x^14 - 13*x^13 + 39*x^12 + 65*x^11 - 174*x^10 - 193*x^9 + 316*x^8 + 430*x^7 - 194*x^6 - 571*x^5 - 40*x^4 + 278*x^3 + 62*x^2 - 37*x - 10]>
       ]
>;

MOG[431] := 	// J_0(431)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 4, 19, 61, 67, 102, 107, 125, 143, 150, 189, 234, 241, 242, 316, 319, 356, 358, 381, 419, 422, 222*x + 118, 209*x + 118, 132*x + 315, 299*x + 315, 350*x + 65, 81*x + 65, 364*x + 304, 67*x + 304, 306*x + 426, 125*x + 426, 389*x + 141, 42*x + 141, 344*x + 190, 87*x + 190, 106*x + 379, 325*x + 379]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x - 3,
           Coordinates        := [1, 0, 0, -1, -2, -1, -1, -1, -1, 1, 0, -2, 2, 2, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - x^2 - 4*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^2 - x + 4, x^2 + x - 4, -x^2 + 2, x^2 - 2, -x^2 + 1, x^2 - 1, -1, 1, -x - 1, x + 1, -x - 1, x + 1, -x, x, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 5*x + 1,
           Coordinates        := [-x + 1, -x - 1, -x^2 + 1, x^2 - x - 4, x^2 - 5, -2*x + 1, x - 1, -x^2 + x, x^2 - 3, x^2 + x - 3, x + 1, -x^2 - x + 6, x^2 - x - 3, -1, -x^2 - x + 3, -x^2 + 3, -x^2 + 3, -3, -x^2 + 3, 2*x, 2, x - 1, x - 1, -x + 2, -x + 2, x + 1, x + 1, 0, 0, x - 2, x - 2, x^2 - 1, x^2 - 1, 2, 2, -x - 1, -x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + x^3 - 3*x^2 - x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^3 - x^2 + 2*x + 1, x^3 + x^2 - 2*x - 1, x^3 + x^2 - 2*x - 1, -x^3 - x^2 + 2*x + 1, -x^3 - x^2 + 3*x + 1, x^3 + x^2 - 3*x - 1, -x^2 + 1, x^2 - 1, x^2 - 2, -x^2 + 2, 1, -1, -x + 1, x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^24 - x^23 - 40*x^22 + 40*x^21 + 692*x^20 - 687*x^19 - 6790*x^18 + 6631*x^17 + 41657*x^16 - 39533*x^15 - 166175*x^14 + 150668*x^13 + 434546*x^12 - 367120*x^11 - 733353*x^10 + 555013*x^9 + 766426*x^8 - 486022*x^7 - 458392*x^6 + 216189*x^5 + 133642*x^4 - 39443*x^3 - 11021*x^2 + 2767*x + 13,
           Coordinates        := [1/4*x^23 - 1/4*x^22 - 37/4*x^21 + 37/4*x^20 + 291/2*x^19 - 287/2*x^18 - 5087/4*x^17 + 4861/4*x^16 + 13575/2*x^15 - 24513/4*x^14 - 22959*x^13 + 75347/4*x^12 + 99447/2*x^11 - 34731*x^10 - 274651/4*x^9 + 36498*x^8 + 59548*x^7 - 81251/4*x^6 - 122755/4*x^5 + 6183*x^4 + 30033/4*x^3 - 5319/4*x^2 - 2257/4*x + 187/2, 1/4*x^23 - 1/4*x^22 - 19/2*x^21 + 19/2*x^20 + 156*x^19 - 611/4*x^18 - 5807/4*x^17 + 5427/4*x^16 + 8442*x^15 - 29145/4*x^14 - 127643/4*x^13 + 97273/4*x^12 + 316251/4*x^11 - 99685/2*x^10 - 504821/4*x^9 + 118893/2*x^8 + 123409*x^7 - 145125/4*x^6 - 263857/4*x^5 + 15903/2*x^4 + 58291/4*x^3 + 431/4*x^2 - 2041/4*x - 497/4, -1/4*x^23 + 3/4*x^22 + 9*x^21 - 53/2*x^20 - 137*x^19 + 797/2*x^18 + 4603/4*x^17 - 3329*x^16 - 5845*x^15 + 67677/4*x^14 + 18562*x^13 - 53892*x^12 - 148501/4*x^11 + 213951/2*x^10 + 93797/2*x^9 - 127644*x^8 - 152739/4*x^7 + 84915*x^6 + 39737/2*x^5 - 107157/4*x^4 - 18417/4*x^3 + 8549/4*x^2 - 1223/4*x + 121, -5/4*x^23 + 5/4*x^22 + 185/4*x^21 - 185/4*x^20 - 731*x^19 + 1455/2*x^18 + 25809/4*x^17 - 25419/4*x^16 - 69827/2*x^15 + 135155/4*x^14 + 119720*x^13 - 451031/4*x^12 - 259912*x^11 + 234876*x^10 + 1385657/4*x^9 - 587139/2*x^8 - 528623/2*x^7 + 806583/4*x^6 + 401645/4*x^5 - 127181/2*x^4 - 56731/4*x^3 + 26355/4*x^2 + 1047/4*x - 273/2, x^23 - x^22 - 37*x^21 + 151/4*x^20 + 586*x^19 - 2421/4*x^18 - 10395/2*x^17 + 5387*x^16 + 113469/4*x^15 - 116761/4*x^14 - 197219/2*x^13 + 99295*x^12 + 874105/4*x^11 - 421371/2*x^10 - 1201807/4*x^9 + 1069283/4*x^8 + 964663/4*x^7 - 737787/4*x^6 - 202139/2*x^5 + 56637*x^4 + 18295*x^3 - 20819/4*x^2 - 1036*x + 154, -1/2*x^21 + 5/2*x^20 + 29/2*x^19 - 329/4*x^18 - 655/4*x^17 + 1138*x^16 + 1711/2*x^15 - 17243/2*x^14 - 5657/4*x^13 + 77977/2*x^12 - 12073/2*x^11 - 107389*x^10 + 141795/4*x^9 + 701705/4*x^8 - 72111*x^7 - 624083/4*x^6 + 64706*x^5 + 245461/4*x^4 - 84901/4*x^3 - 21663/4*x^2 + 9525/4*x - 331/2, -5/4*x^22 + 5/4*x^21 + 183/4*x^20 - 183/4*x^19 - 711*x^18 + 709*x^17 + 24463/4*x^16 - 24227/4*x^15 - 63653/2*x^14 + 124411/4*x^13 + 102978*x^12 - 393003/4*x^11 - 205450*x^10 + 375825/2*x^9 + 973667/4*x^8 - 413467/2*x^7 - 320633/2*x^6 + 478725/4*x^5 + 214213/4*x^4 - 32552*x^3 - 29139/4*x^2 + 11793/4*x + 127/4, 3/4*x^22 - 3/4*x^21 - 55/2*x^20 + 113/4*x^19 + 1703/4*x^18 - 885/2*x^17 - 14507/4*x^16 + 3755*x^15 + 74339/4*x^14 - 75321/4*x^13 - 58913*x^12 + 57049*x^11 + 229351/2*x^10 - 409021/4*x^9 - 264117/2*x^8 + 404771/4*x^7 + 335637/4*x^6 - 191457/4*x^5 - 103609/4*x^4 + 8531*x^3 + 2191*x^2 - 2393/4*x - 13/4, 3/4*x^21 - 2*x^20 - 101/4*x^19 + 281/4*x^18 + 1409/4*x^17 - 4115/4*x^16 - 10533/4*x^15 + 8176*x^14 + 45513/4*x^13 - 153799/4*x^12 - 56917/2*x^11 + 437307/4*x^10 + 38481*x^9 - 367455/2*x^8 - 90495/4*x^7 + 676379/4*x^6 + 1458*x^5 - 285533/4*x^4 + 1783/2*x^3 + 35227/4*x^2 - 2767/4*x - 115, 1/4*x^20 + 3/2*x^19 - 29/4*x^18 - 177/4*x^17 + 355/4*x^16 + 2199/4*x^15 - 2449/4*x^14 - 3716*x^13 + 10755/4*x^12 + 58819/4*x^11 - 7818*x^10 - 136933/4*x^9 + 14325*x^8 + 45130*x^7 - 58153/4*x^6 - 123137/4*x^5 + 12959/2*x^4 + 35287/4*x^3 - 760*x^2 - 1619/4*x - 49/4, -1/4*x^21 + 7/4*x^20 + 9*x^19 - 229/4*x^18 - 527/4*x^17 + 3157/4*x^16 + 2021/2*x^15 - 5946*x^14 - 17379/4*x^13 + 106309/4*x^12 + 41281/4*x^11 - 71780*x^10 - 12078*x^9 + 457715/4*x^8 + 16171/4*x^7 - 199879/2*x^6 + 10043/4*x^5 + 80205/2*x^4 - 3303/4*x^3 - 18423/4*x^2 + 1359/4*x + 115/2, -1/4*x^22 + 7/4*x^21 + 17/2*x^20 - 241/4*x^19 - 469/4*x^18 + 3511/4*x^17 + 833*x^16 - 14091/2*x^15 - 12481/4*x^14 + 136037/4*x^13 + 19771/4*x^12 - 202379/2*x^11 + 3558*x^10 + 731581/4*x^9 - 98429/4*x^8 - 380399/2*x^7 + 126349/4*x^6 + 101671*x^5 - 55139/4*x^4 - 88997/4*x^3 + 7439/4*x^2 + 867*x + 49/2, -1/4*x^22 + 3/4*x^21 + 17/2*x^20 - 25*x^19 - 124*x^18 + 709/2*x^17 + 4091/4*x^16 - 5605/2*x^15 - 5289*x^14 + 54349/4*x^13 + 17932*x^12 - 83481/2*x^11 - 161251/4*x^10 + 161249/2*x^9 + 59136*x^8 - 93209*x^7 - 215017/4*x^6 + 115031/2*x^5 + 26688*x^4 - 58479/4*x^3 - 20545/4*x^2 + 3865/4*x + 909/4, x^22 - 1/4*x^21 - 71/2*x^20 + 43/4*x^19 + 1073/2*x^18 - 186*x^17 - 18023/4*x^16 + 6857/4*x^15 + 23036*x^14 - 18549/2*x^13 - 295499/4*x^12 + 30363*x^11 + 590799/4*x^10 - 237711/4*x^9 - 707937/4*x^8 + 262917/4*x^7 + 233391/2*x^6 - 36164*x^5 - 71125/2*x^4 + 29159/4*x^3 + 6671/2*x^2 - 19/2*x - 357/2, -5/4*x^21 + 5/4*x^20 + 165/4*x^19 - 43*x^18 - 2289/4*x^17 + 2439/4*x^16 + 4353*x^15 - 18523/4*x^14 - 79653/4*x^13 + 82001/4*x^12 + 227095/4*x^11 - 216337/4*x^10 - 406537/4*x^9 + 334701/4*x^8 + 224431/2*x^7 - 142783/2*x^6 - 71719*x^5 + 114563/4*x^4 + 22032*x^3 - 3291*x^2 - 5563/4*x + 121, 2*x^21 - 5/2*x^20 - 68*x^19 + 171/2*x^18 + 3895/4*x^17 - 4887/4*x^16 - 7646*x^15 + 9484*x^14 + 35908*x^13 - 174051/4*x^12 - 206313/2*x^11 + 120035*x^10 + 355625/2*x^9 - 771263/4*x^8 - 691399/4*x^7 + 163735*x^6 + 338425/4*x^5 - 58682*x^4 - 73677/4*x^3 + 22893/4*x^2 + 4935/4*x - 889/4, -5/4*x^22 + 5/4*x^21 + 175/4*x^20 - 43*x^19 - 2597/4*x^18 + 2473/4*x^17 + 5338*x^16 - 19361/4*x^15 - 106757/4*x^14 + 90255/4*x^13 + 335613/4*x^12 - 257967/4*x^11 - 662261/4*x^10 + 449661/4*x^9 + 197541*x^8 - 229569/2*x^7 - 129324*x^6 + 249365/4*x^5 + 71915/2*x^4 - 29271/2*x^3 - 2787/4*x^2 + 1175*x - 241, -5/4*x^22 + 5/4*x^21 + 89/2*x^20 - 85/2*x^19 - 675*x^18 + 2427/4*x^17 + 5704*x^16 - 9461/2*x^15 - 29483*x^14 + 87643/4*x^13 + 385557/4*x^12 - 122563/2*x^11 - 797047/4*x^10 + 99869*x^9 + 1011053/4*x^8 - 337455/4*x^7 - 731753/4*x^6 + 98493/4*x^5 + 63359*x^4 + 8945/2*x^3 - 5533*x^2 - 801*x + 451/2, -5/4*x^21 + 5/4*x^20 + 83/2*x^19 - 77/2*x^18 - 1169/2*x^17 + 1945/4*x^16 + 4575*x^15 - 6513/2*x^14 - 43833/2*x^13 + 49951/4*x^12 + 266747/4*x^11 - 27618*x^10 - 516399/4*x^9 + 67559/2*x^8 + 613937/4*x^7 - 84007/4*x^6 - 407033/4*x^5 + 26791/4*x^4 + 29875*x^3 - 1974*x^2 - 4835/2*x + 302, -5/4*x^20 + 2*x^19 + 37*x^18 - 263/4*x^17 - 438*x^16 + 3517/4*x^15 + 10439/4*x^14 - 24705/4*x^13 - 15761/2*x^12 + 98295/4*x^11 + 17999/2*x^10 - 111573/2*x^9 + 17917/2*x^8 + 277981/4*x^7 - 65011/2*x^6 - 43485*x^5 + 107519/4*x^4 + 46485/4*x^3 - 7222*x^2 - 1871/4*x + 356, -5/4*x^21 + 2*x^20 + 81/2*x^19 - 265/4*x^18 - 542*x^17 + 3619/4*x^16 + 15485/4*x^15 - 26377/4*x^14 - 31807/2*x^13 + 111063/4*x^12 + 37573*x^11 - 136753/2*x^10 - 47239*x^9 + 380439/4*x^8 + 22772*x^7 - 67913*x^6 + 29061/4*x^5 + 81257/4*x^4 - 8546*x^3 - 8491/4*x^2 + 888*x + 31/2, -1/4*x^21 + 3/4*x^20 + 13/2*x^19 - 22*x^18 - 64*x^17 + 1053/4*x^16 + 278*x^15 - 1666*x^14 - 315*x^13 + 24303/4*x^12 - 6375/4*x^11 - 26351/2*x^10 + 24475/4*x^9 + 34435/2*x^8 - 31139/4*x^7 - 54799/4*x^6 + 13639/4*x^5 + 24339/4*x^4 - 266*x^3 - 1171/2*x^2 + 533/2*x - 121/2, -1/4*x^21 + 3/4*x^20 + 13/2*x^19 - 22*x^18 - 64*x^17 + 1053/4*x^16 + 278*x^15 - 1666*x^14 - 315*x^13 + 24303/4*x^12 - 6375/4*x^11 - 26351/2*x^10 + 24475/4*x^9 + 34435/2*x^8 - 31139/4*x^7 - 54799/4*x^6 + 13639/4*x^5 + 24339/4*x^4 - 266*x^3 - 1171/2*x^2 + 533/2*x - 121/2, -3/2*x^20 + 2*x^19 + 181/4*x^18 - 241/4*x^17 - 1129/2*x^16 + 737*x^15 + 15133/4*x^14 - 9423/2*x^13 - 59405/4*x^12 + 67327/4*x^11 + 35081*x^10 - 132179/4*x^9 - 99279/2*x^8 + 31681*x^7 + 40590*x^6 - 35851/4*x^5 - 16742*x^4 - 12893/4*x^3 + 6231/4*x^2 + 1103/2*x - 451/4, -3/2*x^20 + 2*x^19 + 181/4*x^18 - 241/4*x^17 - 1129/2*x^16 + 737*x^15 + 15133/4*x^14 - 9423/2*x^13 - 59405/4*x^12 + 67327/4*x^11 + 35081*x^10 - 132179/4*x^9 - 99279/2*x^8 + 31681*x^7 + 40590*x^6 - 35851/4*x^5 - 16742*x^4 - 12893/4*x^3 + 6231/4*x^2 + 1103/2*x - 451/4, -1/2*x^20 + x^19 + 59/4*x^18 - 31*x^17 - 721/4*x^16 + 799/2*x^15 + 4763/4*x^14 - 2800*x^13 - 9349/2*x^12 + 46933/4*x^11 + 22701/2*x^10 - 121449/4*x^9 - 69125/4*x^8 + 191313/4*x^7 + 16574*x^6 - 42468*x^5 - 10212*x^4 + 34515/2*x^3 + 3845*x^2 - 6313/4*x - 229/2, -1/2*x^20 + x^19 + 59/4*x^18 - 31*x^17 - 721/4*x^16 + 799/2*x^15 + 4763/4*x^14 - 2800*x^13 - 9349/2*x^12 + 46933/4*x^11 + 22701/2*x^10 - 121449/4*x^9 - 69125/4*x^8 + 191313/4*x^7 + 16574*x^6 - 42468*x^5 - 10212*x^4 + 34515/2*x^3 + 3845*x^2 - 6313/4*x - 229/2, x^22 - x^21 - 141/4*x^20 + 71/2*x^19 + 528*x^18 - 529*x^17 - 4392*x^16 + 17257/4*x^15 + 89059/4*x^14 - 84197/4*x^13 - 142145/2*x^12 + 252143/4*x^11 + 570403/4*x^10 - 456529/4*x^9 - 174138*x^8 + 117923*x^7 + 240627/2*x^6 - 61694*x^5 - 159569/4*x^4 + 53897/4*x^3 + 13299/4*x^2 - 5207/4*x + 331/4, x^22 - x^21 - 141/4*x^20 + 71/2*x^19 + 528*x^18 - 529*x^17 - 4392*x^16 + 17257/4*x^15 + 89059/4*x^14 - 84197/4*x^13 - 142145/2*x^12 + 252143/4*x^11 + 570403/4*x^10 - 456529/4*x^9 - 174138*x^8 + 117923*x^7 + 240627/2*x^6 - 61694*x^5 - 159569/4*x^4 + 53897/4*x^3 + 13299/4*x^2 - 5207/4*x + 331/4, -11/4*x^19 + 1/4*x^18 + 84*x^17 - 25/2*x^16 - 4279/4*x^15 + 211*x^14 + 29521/4*x^13 - 6927/4*x^12 - 30012*x^11 + 30995/4*x^10 + 146683/2*x^9 - 19316*x^8 - 210219/2*x^7 + 102955/4*x^6 + 163213/2*x^5 - 64023/4*x^4 - 112205/4*x^3 + 3111*x^2 + 8153/4*x - 483/2, -11/4*x^19 + 1/4*x^18 + 84*x^17 - 25/2*x^16 - 4279/4*x^15 + 211*x^14 + 29521/4*x^13 - 6927/4*x^12 - 30012*x^11 + 30995/4*x^10 + 146683/2*x^9 - 19316*x^8 - 210219/2*x^7 + 102955/4*x^6 + 163213/2*x^5 - 64023/4*x^4 - 112205/4*x^3 + 3111*x^2 + 8153/4*x - 483/2, -7/4*x^19 + 1/4*x^18 + 52*x^17 - 51/4*x^16 - 2523/4*x^15 + 209*x^14 + 8023/2*x^13 - 1596*x^12 - 57147/4*x^11 + 6295*x^10 + 112395/4*x^9 - 51229/4*x^8 - 110555/4*x^7 + 12214*x^6 + 39229/4*x^5 - 8693/2*x^4 + 662*x^3 + 1655/2*x^2 - 266*x - 31/4, -7/4*x^19 + 1/4*x^18 + 52*x^17 - 51/4*x^16 - 2523/4*x^15 + 209*x^14 + 8023/2*x^13 - 1596*x^12 - 57147/4*x^11 + 6295*x^10 + 112395/4*x^9 - 51229/4*x^8 - 110555/4*x^7 + 12214*x^6 + 39229/4*x^5 - 8693/2*x^4 + 662*x^3 + 1655/2*x^2 - 266*x - 31/4, -1/4*x^21 + 1/4*x^20 + 10*x^19 - 37/4*x^18 - 673/4*x^17 + 149*x^16 + 3087/2*x^15 - 1343*x^14 - 8371*x^13 + 14507/2*x^12 + 27231*x^11 - 93927/4*x^10 - 205995/4*x^9 + 43418*x^8 + 103995/2*x^7 - 163929/4*x^6 - 23429*x^5 + 62077/4*x^4 + 3449*x^3 - 7281/4*x^2 - 115*x + 273/4, -1/4*x^21 + 1/4*x^20 + 10*x^19 - 37/4*x^18 - 673/4*x^17 + 149*x^16 + 3087/2*x^15 - 1343*x^14 - 8371*x^13 + 14507/2*x^12 + 27231*x^11 - 93927/4*x^10 - 205995/4*x^9 + 43418*x^8 + 103995/2*x^7 - 163929/4*x^6 - 23429*x^5 + 62077/4*x^4 + 3449*x^3 - 7281/4*x^2 - 115*x + 273/4, -5/4*x^20 + 77/2*x^18 - 17/4*x^17 - 985/2*x^16 + 419/4*x^15 + 3388*x^14 - 4127/4*x^13 - 54259/4*x^12 + 20815/4*x^11 + 63931/2*x^10 - 14370*x^9 - 170651/4*x^8 + 43393/2*x^7 + 57605/2*x^6 - 67401/4*x^5 - 27851/4*x^4 + 22689/4*x^3 - 347*x^2 - 527*x + 241/2, -5/4*x^20 + 77/2*x^18 - 17/4*x^17 - 985/2*x^16 + 419/4*x^15 + 3388*x^14 - 4127/4*x^13 - 54259/4*x^12 + 20815/4*x^11 + 63931/2*x^10 - 14370*x^9 - 170651/4*x^8 + 43393/2*x^7 + 57605/2*x^6 - 67401/4*x^5 - 27851/4*x^4 + 22689/4*x^3 - 347*x^2 - 527*x + 241/2]>
       ]
>;

MOG[433] := 	// J_0(433)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [73, 89, 235, 254, 316, 343, 123*x + 297, 310*x + 297, 143*x + 102, 290*x + 102, 310*x + 47, 123*x + 47, 366*x + 253, 67*x + 253, 371*x + 325, 62*x + 325, 34*x, 399*x, 57*x + 418, 376*x + 418, 418*x + 333, 15*x + 333, 209*x + 33, 224*x + 33, 360*x + 54, 73*x + 54, 193*x + 419, 240*x + 419, 415*x + 178, 18*x + 178, 177*x + 276, 256*x + 276, 279*x + 80, 154*x + 80, 194*x + 397, 239*x + 397]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, -2, 2, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 0, 0, -1, -1, 0, 0, 1, 1, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 8*x + 4,
           Coordinates        := [x^2, -x^2, 0, -x^2, 2*x, -x^2 + 2*x, x^2, x^2, -x, -x, x, x, -x^2 - 2*x + 2, -x^2 - 2*x + 2, 3*x - 2, 3*x - 2, -x, -x, -x, -x, x, x, x^2 - x, x^2 - x, 2*x - 2, 2*x - 2, -3*x + 2, -3*x + 2, 0, 0, x, x, -x, -x, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^15 + 10*x^14 + 29*x^13 - 22*x^12 - 251*x^11 - 272*x^10 + 583*x^9 + 1252*x^8 - 186*x^7 - 1821*x^6 - 675*x^5 + 899*x^4 + 482*x^3 - 93*x^2 - 27*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^14 - 10*x^13 - 31*x^12 + 3*x^11 + 196*x^10 + 282*x^9 - 266*x^8 - 856*x^7 - 213*x^6 + 810*x^5 + 541*x^4 - 175*x^3 - 182*x^2 - 10*x, x^14 + 10*x^13 + 31*x^12 - 3*x^11 - 196*x^10 - 282*x^9 + 266*x^8 + 856*x^7 + 213*x^6 - 810*x^5 - 541*x^4 + 175*x^3 + 182*x^2 + 10*x, -x^13 - 9*x^12 - 22*x^11 + 25*x^10 + 171*x^9 + 111*x^8 - 377*x^7 - 479*x^6 + 266*x^5 + 544*x^4 - 3*x^3 - 172*x^2 - 10*x, x^13 + 9*x^12 + 22*x^11 - 25*x^10 - 171*x^9 - 111*x^8 + 377*x^7 + 479*x^6 - 266*x^5 - 544*x^4 + 3*x^3 + 172*x^2 + 10*x, -x^13 - 10*x^12 - 33*x^11 - 15*x^10 + 146*x^9 + 285*x^8 - 22*x^7 - 532*x^6 - 400*x^5 + 180*x^4 + 303*x^3 + 69*x^2 - 17*x - 1, x^13 + 10*x^12 + 33*x^11 + 15*x^10 - 146*x^9 - 285*x^8 + 22*x^7 + 532*x^6 + 400*x^5 - 180*x^4 - 303*x^3 - 69*x^2 + 17*x + 1, -x^12 - 9*x^11 - 25*x^10 + x^9 + 118*x^8 + 152*x^7 - 95*x^6 - 285*x^5 - 81*x^4 + 118*x^3 + 51*x^2 - 11*x - 1, x^12 + 9*x^11 + 25*x^10 - x^9 - 118*x^8 - 152*x^7 + 95*x^6 + 285*x^5 + 81*x^4 - 118*x^3 - 51*x^2 + 11*x + 1, -x^12 - 9*x^11 - 25*x^10 + 2*x^9 + 126*x^8 + 172*x^7 - 92*x^6 - 345*x^5 - 157*x^4 + 126*x^3 + 114*x^2 + 20*x + 1, x^12 + 9*x^11 + 25*x^10 - 2*x^9 - 126*x^8 - 172*x^7 + 92*x^6 + 345*x^5 + 157*x^4 - 126*x^3 - 114*x^2 - 20*x - 1, -x^11 - 9*x^10 - 27*x^9 - 15*x^8 + 79*x^7 + 152*x^6 + 34*x^5 - 143*x^4 - 134*x^3 - 29*x^2 + 5*x, x^11 + 9*x^10 + 27*x^9 + 15*x^8 - 79*x^7 - 152*x^6 - 34*x^5 + 143*x^4 + 134*x^3 + 29*x^2 - 5*x, -x^11 - 8*x^10 - 18*x^9 + 13*x^8 + 102*x^7 + 95*x^6 - 102*x^5 - 211*x^4 - 63*x^3 + 65*x^2 + 38*x + 2, x^11 + 8*x^10 + 18*x^9 - 13*x^8 - 102*x^7 - 95*x^6 + 102*x^5 + 211*x^4 + 63*x^3 - 65*x^2 - 38*x - 2, x^9 + 8*x^8 + 21*x^7 + 11*x^6 - 38*x^5 - 56*x^4 - 3*x^3 + 33*x^2 + 15*x, -x^9 - 8*x^8 - 21*x^7 - 11*x^6 + 38*x^5 + 56*x^4 + 3*x^3 - 33*x^2 - 15*x, -x^10 - 8*x^9 - 20*x^8 - 3*x^7 + 61*x^6 + 80*x^5 - 8*x^4 - 79*x^3 - 52*x^2 - 10*x, x^10 + 8*x^9 + 20*x^8 + 3*x^7 - 61*x^6 - 80*x^5 + 8*x^4 + 79*x^3 + 52*x^2 + 10*x, -x^10 - 8*x^9 - 19*x^8 + 3*x^7 + 68*x^6 + 62*x^5 - 45*x^4 - 68*x^3 + 6*x^2 + 21*x + 1, x^10 + 8*x^9 + 19*x^8 - 3*x^7 - 68*x^6 - 62*x^5 + 45*x^4 + 68*x^3 - 6*x^2 - 21*x - 1, -x^10 - 7*x^9 - 11*x^8 + 25*x^7 + 85*x^6 + 32*x^5 - 117*x^4 - 124*x^3 - 11*x^2 + 20*x + 1, x^10 + 7*x^9 + 11*x^8 - 25*x^7 - 85*x^6 - 32*x^5 + 117*x^4 + 124*x^3 + 11*x^2 - 20*x - 1, x^8 + 8*x^7 + 23*x^6 + 24*x^5 - 11*x^4 - 46*x^3 - 37*x^2 - 10*x, -x^8 - 8*x^7 - 23*x^6 - 24*x^5 + 11*x^4 + 46*x^3 + 37*x^2 + 10*x, -x^8 - 8*x^7 - 22*x^6 - 17*x^5 + 30*x^4 + 72*x^3 + 56*x^2 + 17*x + 1, x^8 + 8*x^7 + 22*x^6 + 17*x^5 - 30*x^4 - 72*x^3 - 56*x^2 - 17*x - 1, x^7 + 7*x^6 + 16*x^5 + 8*x^4 - 19*x^3 - 27*x^2 - 10*x, -x^7 - 7*x^6 - 16*x^5 - 8*x^4 + 19*x^3 + 27*x^2 + 10*x, x^7 + 6*x^6 + 11*x^5 + 2*x^4 - 15*x^3 - 16*x^2 - 5*x, -x^7 - 6*x^6 - 11*x^5 - 2*x^4 + 15*x^3 + 16*x^2 + 5*x]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - 7*x^15 - 5*x^14 + 129*x^13 - 125*x^12 - 929*x^11 + 1471*x^10 + 3333*x^9 - 6394*x^8 - 6443*x^7 + 13118*x^6 + 7162*x^5 - 12217*x^4 - 4691*x^3 + 3598*x^2 + 1114*x - 3,
           Coordinates        := [-1/2*x^15 + 2*x^14 + 17/2*x^13 - 35*x^12 - 145/2*x^11 + 266*x^10 + 809/2*x^9 - 1129*x^8 - 1407*x^7 + 5307/2*x^6 + 5515/2*x^5 - 5619/2*x^4 - 2799*x^3 + 1351/2*x^2 + 1873/2*x + 325/2, -3/2*x^15 + 7*x^14 + 47/2*x^13 - 138*x^12 - 247/2*x^11 + 1074*x^10 + 415/2*x^9 - 4180*x^8 + 102*x^7 + 16923/2*x^6 - 201/2*x^5 - 16373/2*x^4 - 857*x^3 + 5047/2*x^2 + 651/2*x - 167/2, x^15 - 7*x^14 - 2*x^13 + 110*x^12 - 139*x^11 - 637*x^10 + 1230*x^9 + 1666*x^8 - 4166*x^7 - 2011*x^6 + 6379*x^5 + 1325*x^4 - 4221*x^3 - 761*x^2 + 868*x + 143, x^15 - 7*x^14 - 2*x^13 + 109*x^12 - 136*x^11 - 622*x^10 + 1190*x^9 + 1556*x^8 - 3930*x^7 - 1582*x^6 + 5666*x^5 + 539*x^4 - 3327*x^3 - 147*x^2 + 602*x + 32, x^14 - 7*x^13 + 96*x^11 - 135*x^10 - 469*x^9 + 948*x^8 + 1029*x^7 - 2550*x^6 - 1221*x^5 + 3054*x^4 + 1035*x^3 - 1411*x^2 - 493*x + 77, x^14 - 7*x^13 + 97*x^11 - 144*x^10 - 462*x^9 + 1069*x^8 + 778*x^7 - 3005*x^6 + 133*x^5 + 3442*x^4 - 1261*x^3 - 1334*x^2 + 662*x + 149, -1/2*x^14 + 3*x^13 + 3/2*x^12 - 75/2*x^11 + 33*x^10 + 165*x^9 - 212*x^8 - 335*x^7 + 855/2*x^6 + 436*x^5 - 721/2*x^4 - 813/2*x^3 + 106*x^2 + 197*x + 41, -1/2*x^14 + 3*x^13 + 3/2*x^12 - 75/2*x^11 + 33*x^10 + 165*x^9 - 212*x^8 - 335*x^7 + 855/2*x^6 + 436*x^5 - 721/2*x^4 - 813/2*x^3 + 106*x^2 + 197*x + 41, x^14 - 13/2*x^13 - 11/2*x^12 + 105*x^11 - 137/2*x^10 - 1315/2*x^9 + 1395/2*x^8 + 4083/2*x^7 - 4447/2*x^6 - 3378*x^5 + 2724*x^4 + 5805/2*x^3 - 831*x^2 - 872*x - 73, x^14 - 13/2*x^13 - 11/2*x^12 + 105*x^11 - 137/2*x^10 - 1315/2*x^9 + 1395/2*x^8 + 4083/2*x^7 - 4447/2*x^6 - 3378*x^5 + 2724*x^4 + 5805/2*x^3 - 831*x^2 - 872*x - 73, -1/2*x^13 + 3*x^12 + 1/2*x^11 - 65/2*x^10 + 41*x^9 + 193/2*x^8 - 207*x^7 + 6*x^6 + 260*x^5 - 321*x^4 + 5/2*x^3 + 705/2*x^2 - 47/2*x - 179/2, -1/2*x^13 + 3*x^12 + 1/2*x^11 - 65/2*x^10 + 41*x^9 + 193/2*x^8 - 207*x^7 + 6*x^6 + 260*x^5 - 321*x^4 + 5/2*x^3 + 705/2*x^2 - 47/2*x - 179/2, -1/2*x^12 + 5/2*x^11 + 9/2*x^10 - 73/2*x^9 - x^8 + 196*x^7 - 175/2*x^6 - 935/2*x^5 + 481/2*x^4 + 468*x^3 - 303/2*x^2 - 283/2*x + 61/2, -1/2*x^12 + 5/2*x^11 + 9/2*x^10 - 73/2*x^9 - x^8 + 196*x^7 - 175/2*x^6 - 935/2*x^5 + 481/2*x^4 + 468*x^3 - 303/2*x^2 - 283/2*x + 61/2, -1/2*x^12 + 5/2*x^11 + 7/2*x^10 - 32*x^9 + 6*x^8 + 145*x^7 - 80*x^6 - 579/2*x^5 + 245/2*x^4 + 291*x^3 + 22*x^2 - 145*x - 143/2, -1/2*x^12 + 5/2*x^11 + 7/2*x^10 - 32*x^9 + 6*x^8 + 145*x^7 - 80*x^6 - 579/2*x^5 + 245/2*x^4 + 291*x^3 + 22*x^2 - 145*x - 143/2, 3/2*x^11 - 17/2*x^10 - 11/2*x^9 + 201/2*x^8 - 153/2*x^7 - 386*x^6 + 448*x^5 + 1097/2*x^4 - 622*x^3 - 685/2*x^2 + 391/2*x + 59, 3/2*x^11 - 17/2*x^10 - 11/2*x^9 + 201/2*x^8 - 153/2*x^7 - 386*x^6 + 448*x^5 + 1097/2*x^4 - 622*x^3 - 685/2*x^2 + 391/2*x + 59, 1/2*x^11 - 3*x^10 - 3*x^9 + 85/2*x^8 - 18*x^7 - 431/2*x^6 + 152*x^5 + 979/2*x^4 - 543/2*x^3 - 1039/2*x^2 + 97*x + 161, 1/2*x^11 - 3*x^10 - 3*x^9 + 85/2*x^8 - 18*x^7 - 431/2*x^6 + 152*x^5 + 979/2*x^4 - 543/2*x^3 - 1039/2*x^2 + 97*x + 161, x^13 - 6*x^12 - 4*x^11 + 80*x^10 - 121/2*x^9 - 389*x^8 + 925/2*x^7 + 1715/2*x^6 - 1112*x^5 - 900*x^4 + 1993/2*x^3 + 809/2*x^2 - 453/2*x - 16, x^13 - 6*x^12 - 4*x^11 + 80*x^10 - 121/2*x^9 - 389*x^8 + 925/2*x^7 + 1715/2*x^6 - 1112*x^5 - 900*x^4 + 1993/2*x^3 + 809/2*x^2 - 453/2*x - 16, x^12 - 5*x^11 - 15/2*x^10 + 64*x^9 - 2*x^8 - 581/2*x^7 + 191/2*x^6 + 567*x^5 - 97*x^4 - 897/2*x^3 - 74*x^2 - 12*x - 43, x^12 - 5*x^11 - 15/2*x^10 + 64*x^9 - 2*x^8 - 581/2*x^7 + 191/2*x^6 + 567*x^5 - 97*x^4 - 897/2*x^3 - 74*x^2 - 12*x - 43, x^12 - 6*x^11 - 5/2*x^10 + 73*x^9 - 147/2*x^8 - 583/2*x^7 + 440*x^6 + 449*x^5 - 1531/2*x^4 - 362*x^3 + 421*x^2 + 425/2*x + 25/2, x^12 - 6*x^11 - 5/2*x^10 + 73*x^9 - 147/2*x^8 - 583/2*x^7 + 440*x^6 + 449*x^5 - 1531/2*x^4 - 362*x^3 + 421*x^2 + 425/2*x + 25/2, x^12 - 6*x^11 - 7/2*x^10 + 155/2*x^9 - 133/2*x^8 - 685/2*x^7 + 895/2*x^6 + 627*x^5 - 1767/2*x^4 - 539*x^3 + 1189/2*x^2 + 209*x - 179/2, x^12 - 6*x^11 - 7/2*x^10 + 155/2*x^9 - 133/2*x^8 - 685/2*x^7 + 895/2*x^6 + 627*x^5 - 1767/2*x^4 - 539*x^3 + 1189/2*x^2 + 209*x - 179/2, x^13 - 5*x^12 - 12*x^11 + 91*x^10 + 9*x^9 - 1209/2*x^8 + 370*x^7 + 3595/2*x^6 - 1600*x^5 - 4697/2*x^4 + 2114*x^3 + 2363/2*x^2 - 666*x - 106, x^13 - 5*x^12 - 12*x^11 + 91*x^10 + 9*x^9 - 1209/2*x^8 + 370*x^7 + 3595/2*x^6 - 1600*x^5 - 4697/2*x^4 + 2114*x^3 + 2363/2*x^2 - 666*x - 106, x^13 - 7*x^12 + 2*x^11 + 84*x^10 - 141*x^9 - 637/2*x^8 + 808*x^7 + 395*x^6 - 3325/2*x^5 - 145*x^4 + 1405*x^3 + 134*x^2 - 791/2*x - 143/2, x^13 - 7*x^12 + 2*x^11 + 84*x^10 - 141*x^9 - 637/2*x^8 + 808*x^7 + 395*x^6 - 3325/2*x^5 - 145*x^4 + 1405*x^3 + 134*x^2 - 791/2*x - 143/2, x^14 - 6*x^13 - 7*x^12 + 98*x^11 - 53*x^10 - 599*x^9 + 640*x^8 + 3403/2*x^7 - 4189/2*x^6 - 2308*x^5 + 2471*x^4 + 2895/2*x^3 - 1319/2*x^2 - 239*x - 37, x^14 - 6*x^13 - 7*x^12 + 98*x^11 - 53*x^10 - 599*x^9 + 640*x^8 + 3403/2*x^7 - 4189/2*x^6 - 2308*x^5 + 2471*x^4 + 2895/2*x^3 - 1319/2*x^2 - 239*x - 37, x^12 - 3*x^11 - 18*x^10 + 55*x^9 + 119*x^8 - 733/2*x^7 - 363*x^6 + 2143/2*x^5 + 543*x^4 - 2525/2*x^3 - 411*x^2 + 719/2*x + 53, x^12 - 3*x^11 - 18*x^10 + 55*x^9 + 119*x^8 - 733/2*x^7 - 363*x^6 + 2143/2*x^5 + 543*x^4 - 2525/2*x^3 - 411*x^2 + 719/2*x + 53]>
       ]
>;

MOG[439] := 	// J_0(439)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [81, 98, 126, 137, 157, 224, 247, 271, 288, 311, 345, 375, 390, 411, 435, 27*x + 86, 412*x + 86, 27*x + 379, 412*x + 379, 18*x + 166, 421*x + 166, 407*x + 140, 32*x + 140, 168*x + 393, 271*x + 393, 69*x + 278, 370*x + 278, 231*x + 85, 208*x + 85, 232*x + 395, 207*x + 395, 169*x + 344, 270*x + 344, 407*x + 134, 32*x + 134, 156*x + 5, 283*x + 5]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 1, -1, x - 1, -x + 1, -x, x, x - 1, -x + 1, -x, x, -x, x, 1, -1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^9 + x^8 - 12*x^7 - 6*x^6 + 49*x^5 - x^4 - 72*x^3 + 30*x^2 + 18*x - 9,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^8 - 2*x^7 + 10*x^6 + 15*x^5 - 35*x^4 - 26*x^3 + 48*x^2 - 9, x^8 + 2*x^7 - 10*x^6 - 15*x^5 + 35*x^4 + 26*x^3 - 48*x^2 + 9, -x^8 - 2*x^7 + 9*x^6 + 14*x^5 - 27*x^4 - 24*x^3 + 30*x^2 + 9*x - 9, x^8 + 2*x^7 - 9*x^6 - 14*x^5 + 27*x^4 + 24*x^3 - 30*x^2 - 9*x + 9, -x^7 - 2*x^6 + 7*x^5 + 10*x^4 - 16*x^3 - 9*x^2 + 9*x, x^7 + 2*x^6 - 7*x^5 - 10*x^4 + 16*x^3 + 9*x^2 - 9*x, x^4 + 3*x^3 - 2*x^2 - 6*x + 3, -x^4 - 3*x^3 + 2*x^2 + 6*x - 3, -x^6 - 2*x^5 + 5*x^4 + 7*x^3 - 8*x^2 - 3*x + 3, x^6 + 2*x^5 - 5*x^4 - 7*x^3 + 8*x^2 + 3*x - 3, -x^6 - 2*x^5 + 6*x^4 + 8*x^3 - 13*x^2 - 6*x + 6, x^6 + 2*x^5 - 6*x^4 - 8*x^3 + 13*x^2 + 6*x - 6, x^4 + x^3 - 3*x^2, -x^4 - x^3 + 3*x^2, x^5 + 2*x^4 - 3*x^3 - 3*x^2 + 3*x, -x^5 - 2*x^4 + 3*x^3 + 3*x^2 - 3*x, -x^5 - 2*x^4 + 3*x^3 + 5*x^2 - 3, x^5 + 2*x^4 - 3*x^3 - 5*x^2 + 3, -x^5 - x^4 + 5*x^3 + x^2 - 6*x + 3, x^5 + x^4 - 5*x^3 - x^2 + 6*x - 3, 2*x^4 + 2*x^3 - 8*x^2 + 3, -2*x^4 - 2*x^3 + 8*x^2 - 3]>,
         rec<Eigen |
           DefiningPolynomial := x^25 - 4*x^24 - 31*x^23 + 138*x^22 + 389*x^21 - 2034*x^20 - 2453*x^19 + 16766*x^18 + 7126*x^17 - 84887*x^16 + 1717*x^15 + 272618*x^14 - 79978*x^13 - 552928*x^12 + 255108*x^11 + 682589*x^10 - 376568*x^9 - 476301*x^8 + 270078*x^7 + 167567*x^6 - 81530*x^5 - 24739*x^4 + 6834*x^3 + 740*x^2 - 187*x + 5,
           Coordinates        := [-x^24 + 4*x^23 + 29*x^22 - 129*x^21 - 339*x^20 + 1767*x^19 + 1991*x^18 - 13453*x^17 - 5506*x^16 + 62486*x^15 + 572*x^14 - 182600*x^13 + 41510*x^12 + 333346*x^11 - 121243*x^10 - 364299*x^9 + 156031*x^8 + 218253*x^7 - 94078*x^6 - 61382*x^5 + 22575*x^4 + 5726*x^3 - 1077*x^2 - 43*x + 4, x^24 - 3*x^23 - 33*x^22 + 103*x^21 + 457*x^20 - 1505*x^19 - 3445*x^18 + 12239*x^17 + 15246*x^16 - 60725*x^15 - 39212*x^14 + 189151*x^13 + 51117*x^12 - 365647*x^11 - 10173*x^10 + 416169*x^9 - 51187*x^8 - 248963*x^7 + 49275*x^6 + 62443*x^5 - 12678*x^4 - 3641*x^3 + 824*x^2 - 43*x + 2, -x^23 + 4*x^22 + 27*x^21 - 121*x^20 - 287*x^19 + 1535*x^18 + 1459*x^17 - 10645*x^16 - 2899*x^15 + 44066*x^14 - 4562*x^13 - 111541*x^12 + 35790*x^11 + 170204*x^10 - 74297*x^9 - 149909*x^8 + 71022*x^7 + 71412*x^6 - 32121*x^5 - 15674*x^4 + 6015*x^3 + 727*x^2 - 210*x + 6, -x^20 + 2*x^19 + 29*x^18 - 55*x^17 - 350*x^16 + 627*x^15 + 2278*x^14 - 3832*x^13 - 8643*x^12 + 13561*x^11 + 19180*x^10 - 27935*x^9 - 23411*x^8 + 31781*x^7 + 13381*x^6 - 17460*x^5 - 2567*x^4 + 3415*x^3 + 146*x^2 - 100*x + 2, -x^22 + 4*x^21 + 27*x^20 - 119*x^19 - 293*x^18 + 1493*x^17 + 1579*x^16 - 10259*x^15 - 3861*x^14 + 41912*x^13 - 546*x^12 - 103195*x^11 + 26126*x^10 + 147684*x^9 - 59503*x^8 - 111561*x^7 + 54308*x^6 + 36500*x^5 - 18525*x^4 - 2970*x^3 + 1229*x^2 - 77*x, x^22 - 4*x^21 - 25*x^20 + 114*x^19 + 239*x^18 - 1352*x^17 - 1003*x^16 + 8668*x^15 + 752*x^14 - 32594*x^13 + 9453*x^12 + 72625*x^11 - 38552*x^10 - 91431*x^9 + 64180*x^8 + 56717*x^7 - 48490*x^6 - 11770*x^5 + 13401*x^4 - 99*x^3 - 886*x^2 + 82*x - 2, -x^22 + 4*x^21 + 25*x^20 - 113*x^19 - 239*x^18 + 1315*x^17 + 1028*x^16 - 8161*x^15 - 1273*x^14 + 29147*x^13 - 5174*x^12 - 59947*x^11 + 20820*x^10 + 66706*x^9 - 25506*x^8 - 35280*x^7 + 7649*x^6 + 9208*x^5 + 1965*x^4 - 2029*x^3 - 362*x^2 + 126*x - 4, -x^23 + 4*x^22 + 27*x^21 - 121*x^20 - 289*x^19 + 1539*x^18 + 1513*x^17 - 10753*x^16 - 3480*x^15 + 45200*x^14 - 1312*x^13 - 117494*x^12 + 25450*x^11 + 186638*x^10 - 54809*x^9 - 172319*x^8 + 48261*x^7 + 83263*x^6 - 15064*x^5 - 16740*x^4 - 159*x^3 + 856*x^2 - 55*x + 1, x^21 - 4*x^20 - 23*x^19 + 102*x^18 + 211*x^17 - 1072*x^16 - 1009*x^15 + 6046*x^14 + 2902*x^13 - 20002*x^12 - 6251*x^11 + 39985*x^10 + 12310*x^9 - 48127*x^8 - 17780*x^7 + 33033*x^6 + 12340*x^5 - 9996*x^4 - 2971*x^3 + 335*x^2 + 84*x - 6, -x^21 + 4*x^20 + 23*x^19 - 107*x^18 - 191*x^17 + 1157*x^16 + 602*x^15 - 6531*x^14 + 367*x^13 + 20747*x^12 - 7028*x^11 - 37203*x^10 + 16332*x^9 + 36026*x^8 - 13192*x^7 - 17982*x^6 + 1733*x^5 + 5096*x^4 + 307*x^3 - 209*x^2 + 4*x - 2, -x^21 + 4*x^20 + 25*x^19 - 113*x^18 - 240*x^17 + 1327*x^16 + 1024*x^15 - 8388*x^14 - 979*x^13 + 30847*x^12 - 7942*x^11 - 66295*x^10 + 32459*x^9 + 78603*x^8 - 50181*x^7 - 44222*x^6 + 32353*x^5 + 8549*x^4 - 6684*x^3 - 392*x^2 + 202*x - 4, 2*x^21 - 6*x^20 - 57*x^19 + 182*x^18 + 648*x^17 - 2253*x^16 - 3772*x^15 + 14864*x^14 + 11766*x^13 - 56908*x^12 - 17501*x^11 + 128043*x^10 + 3275*x^9 - 161992*x^8 + 21366*x^7 + 102331*x^6 - 19773*x^5 - 25267*x^4 + 4326*x^3 + 1142*x^2 - 256*x + 8, x^20 - 2*x^19 - 30*x^18 + 67*x^17 + 346*x^16 - 854*x^15 - 1984*x^14 + 5532*x^13 + 5875*x^12 - 19909*x^11 - 7541*x^10 + 39832*x^9 - 1264*x^8 - 40723*x^7 + 11323*x^6 + 16801*x^5 - 6082*x^4 - 1778*x^3 + 418*x^2 - 30*x + 2, x^19 - x^18 - 31*x^17 + 36*x^16 + 382*x^15 - 472*x^14 - 2456*x^13 + 3076*x^12 + 8951*x^11 - 10958*x^10 - 18499*x^9 + 21333*x^8 + 20069*x^7 - 20654*x^6 - 9331*x^5 + 7470*x^4 + 1388*x^3 - 390*x^2 + 28*x - 2, x^23 - 3*x^22 - 31*x^21 + 97*x^20 + 399*x^19 - 1321*x^18 - 2767*x^17 + 9919*x^16 + 11128*x^15 - 45007*x^14 - 25462*x^13 + 126711*x^12 + 27741*x^11 - 217695*x^10 + 643*x^9 + 214345*x^8 - 28557*x^7 - 105909*x^6 + 18179*x^5 + 20375*x^4 - 2270*x^3 - 721*x^2 + 150*x - 5, x^22 - 3*x^21 - 29*x^20 + 92*x^19 + 339*x^18 - 1160*x^17 - 2059*x^16 + 7859*x^15 + 6875*x^14 - 31220*x^13 - 11688*x^12 + 73976*x^11 + 5408*x^10 - 100912*x^9 + 11315*x^8 + 71527*x^7 - 15548*x^6 - 21034*x^5 + 5204*x^4 + 1460*x^3 - 337*x^2 + 19*x - 1, x^22 - 3*x^21 - 29*x^20 + 92*x^19 + 339*x^18 - 1160*x^17 - 2059*x^16 + 7859*x^15 + 6875*x^14 - 31220*x^13 - 11688*x^12 + 73976*x^11 + 5408*x^10 - 100912*x^9 + 11315*x^8 + 71527*x^7 - 15548*x^6 - 21034*x^5 + 5204*x^4 + 1460*x^3 - 337*x^2 + 19*x - 1, x^20 - 3*x^19 - 21*x^18 + 60*x^17 + 193*x^16 - 481*x^15 - 1077*x^14 + 2008*x^13 + 4173*x^12 - 4832*x^11 - 11260*x^10 + 7397*x^9 + 19174*x^8 - 8357*x^7 - 17456*x^6 + 6798*x^5 + 6352*x^4 - 2393*x^3 - 402*x^2 + 105*x - 3, x^20 - 3*x^19 - 21*x^18 + 60*x^17 + 193*x^16 - 481*x^15 - 1077*x^14 + 2008*x^13 + 4173*x^12 - 4832*x^11 - 11260*x^10 + 7397*x^9 + 19174*x^8 - 8357*x^7 - 17456*x^6 + 6798*x^5 + 6352*x^4 - 2393*x^3 - 402*x^2 + 105*x - 3, -x^20 + 6*x^19 + 14*x^18 - 140*x^17 - x^16 + 1323*x^15 - 1006*x^14 - 6519*x^13 + 7402*x^12 + 17959*x^11 - 24137*x^10 - 27598*x^9 + 39831*x^8 + 22578*x^7 - 31962*x^6 - 9114*x^5 + 10928*x^4 + 1108*x^3 - 787*x^2 + 55*x + 1, -x^20 + 6*x^19 + 14*x^18 - 140*x^17 - x^16 + 1323*x^15 - 1006*x^14 - 6519*x^13 + 7402*x^12 + 17959*x^11 - 24137*x^10 - 27598*x^9 + 39831*x^8 + 22578*x^7 - 31962*x^6 - 9114*x^5 + 10928*x^4 + 1108*x^3 - 787*x^2 + 55*x + 1, -x^20 + 3*x^19 + 24*x^18 - 79*x^17 - 213*x^16 + 815*x^15 + 820*x^14 - 4200*x^13 - 927*x^12 + 11372*x^11 - 2244*x^10 - 15340*x^9 + 6157*x^8 + 8649*x^7 - 2958*x^6 - 2056*x^5 - 829*x^4 + 910*x^3 + 183*x^2 - 64*x + 2, -x^20 + 3*x^19 + 24*x^18 - 79*x^17 - 213*x^16 + 815*x^15 + 820*x^14 - 4200*x^13 - 927*x^12 + 11372*x^11 - 2244*x^10 - 15340*x^9 + 6157*x^8 + 8649*x^7 - 2958*x^6 - 2056*x^5 - 829*x^4 + 910*x^3 + 183*x^2 - 64*x + 2, -x^21 + 4*x^20 + 23*x^19 - 105*x^18 - 201*x^17 + 1133*x^16 + 786*x^15 - 6517*x^14 - 902*x^13 + 21638*x^12 - 2985*x^11 - 41769*x^10 + 10782*x^9 + 44384*x^8 - 11763*x^7 - 22073*x^6 + 3243*x^5 + 2942*x^4 + 1389*x^3 - 28*x^2 - 60*x + 2, -x^21 + 4*x^20 + 23*x^19 - 105*x^18 - 201*x^17 + 1133*x^16 + 786*x^15 - 6517*x^14 - 902*x^13 + 21638*x^12 - 2985*x^11 - 41769*x^10 + 10782*x^9 + 44384*x^8 - 11763*x^7 - 22073*x^6 + 3243*x^5 + 2942*x^4 + 1389*x^3 - 28*x^2 - 60*x + 2, x^20 - 6*x^19 - 14*x^18 + 140*x^17 - 3*x^16 - 1311*x^15 + 1075*x^14 + 6296*x^13 - 7852*x^12 - 16320*x^11 + 25431*x^10 + 21652*x^9 - 40980*x^8 - 11842*x^7 + 30415*x^6 + 887*x^5 - 8186*x^4 + 217*x^3 + 485*x^2 - 44*x + 1, x^20 - 6*x^19 - 14*x^18 + 140*x^17 - 3*x^16 - 1311*x^15 + 1075*x^14 + 6296*x^13 - 7852*x^12 - 16320*x^11 + 25431*x^10 + 21652*x^9 - 40980*x^8 - 11842*x^7 + 30415*x^6 + 887*x^5 - 8186*x^4 + 217*x^3 + 485*x^2 - 44*x + 1, -2*x^19 + 4*x^18 + 52*x^17 - 104*x^16 - 543*x^15 + 1075*x^14 + 2941*x^13 - 5655*x^12 - 8939*x^11 + 16059*x^10 + 15517*x^9 - 23831*x^8 - 15383*x^7 + 16110*x^6 + 8850*x^5 - 3471*x^4 - 2472*x^3 - 263*x^2 + 136*x - 3, -2*x^19 + 4*x^18 + 52*x^17 - 104*x^16 - 543*x^15 + 1075*x^14 + 2941*x^13 - 5655*x^12 - 8939*x^11 + 16059*x^10 + 15517*x^9 - 23831*x^8 - 15383*x^7 + 16110*x^6 + 8850*x^5 - 3471*x^4 - 2472*x^3 - 263*x^2 + 136*x - 3, -x^20 + 3*x^19 + 24*x^18 - 74*x^17 - 238*x^16 + 761*x^15 + 1256*x^14 - 4235*x^13 - 3720*x^12 + 13723*x^11 + 5804*x^10 - 25692*x^9 - 3546*x^8 + 25617*x^7 - 184*x^6 - 11412*x^5 - 715*x^4 + 2348*x^3 + 408*x^2 - 138*x + 5, -x^20 + 3*x^19 + 24*x^18 - 74*x^17 - 238*x^16 + 761*x^15 + 1256*x^14 - 4235*x^13 - 3720*x^12 + 13723*x^11 + 5804*x^10 - 25692*x^9 - 3546*x^8 + 25617*x^7 - 184*x^6 - 11412*x^5 - 715*x^4 + 2348*x^3 + 408*x^2 - 138*x + 5, -x^22 + 4*x^21 + 25*x^20 - 114*x^19 - 239*x^18 + 1350*x^17 + 1013*x^16 - 8643*x^15 - 942*x^14 + 32553*x^13 - 8030*x^12 - 73354*x^11 + 33217*x^10 + 95990*x^9 - 53885*x^8 - 67495*x^7 + 39507*x^6 + 22321*x^5 - 11367*x^4 - 2435*x^3 + 511*x^2 + 22*x - 2, -x^22 + 4*x^21 + 25*x^20 - 114*x^19 - 239*x^18 + 1350*x^17 + 1013*x^16 - 8643*x^15 - 942*x^14 + 32553*x^13 - 8030*x^12 - 73354*x^11 + 33217*x^10 + 95990*x^9 - 53885*x^8 - 67495*x^7 + 39507*x^6 + 22321*x^5 - 11367*x^4 - 2435*x^3 + 511*x^2 + 22*x - 2, -x^20 + 3*x^19 + 24*x^18 - 77*x^17 - 226*x^16 + 803*x^15 + 1046*x^14 - 4396*x^13 - 2357*x^12 + 13626*x^11 + 1702*x^10 - 24008*x^9 + 2291*x^8 + 22844*x^7 - 4302*x^6 - 10265*x^5 + 1828*x^4 + 1299*x^3 + 216*x^2 - 75*x + 1, -x^20 + 3*x^19 + 24*x^18 - 77*x^17 - 226*x^16 + 803*x^15 + 1046*x^14 - 4396*x^13 - 2357*x^12 + 13626*x^11 + 1702*x^10 - 24008*x^9 + 2291*x^8 + 22844*x^7 - 4302*x^6 - 10265*x^5 + 1828*x^4 + 1299*x^3 + 216*x^2 - 75*x + 1, -x^21 + 3*x^20 + 27*x^19 - 84*x^18 - 299*x^17 + 977*x^16 + 1752*x^15 - 6130*x^14 - 5816*x^13 + 22502*x^12 + 10752*x^11 - 48879*x^10 - 9858*x^9 + 60440*x^8 + 3009*x^7 - 38869*x^6 + 454*x^5 + 11363*x^4 - 719*x^3 - 806*x^2 + 113*x - 3, -x^21 + 3*x^20 + 27*x^19 - 84*x^18 - 299*x^17 + 977*x^16 + 1752*x^15 - 6130*x^14 - 5816*x^13 + 22502*x^12 + 10752*x^11 - 48879*x^10 - 9858*x^9 + 60440*x^8 + 3009*x^7 - 38869*x^6 + 454*x^5 + 11363*x^4 - 719*x^3 - 806*x^2 + 113*x - 3]>
       ]
>;

MOG[443] := 	// J_0(443)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 132, 141, 174, 257, 291, 377, 397, 399, 432, 279*x + 2, 164*x + 2, 56*x + 180, 387*x + 180, 113*x + 392, 330*x + 392, 278*x + 143, 165*x + 143, 67*x + 361, 376*x + 361, 246*x + 14, 197*x + 14, 106*x + 2, 337*x + 2, 191*x + 405, 252*x + 405, 62*x + 331, 381*x + 331, 10*x + 402, 433*x + 402, 62*x + 324, 381*x + 324, 229*x, 214*x, 191*x + 111, 252*x + 111, 150*x + 422, 293*x + 422]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 1, -1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, -2, 2, 2, 2, 0, 0, -2, 0, 2, 2, 1, 1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, -2, -2, 1, 1, -2, -2, -1, -1, 0, 0, 1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^12 + 3*x^11 - 13*x^10 - 39*x^9 + 64*x^8 + 181*x^7 - 159*x^6 - 357*x^5 + 226*x^4 + 264*x^3 - 156*x^2 - 20*x + 6,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*x^10 - 6*x^9 + 18*x^8 + 54*x^7 - 61*x^6 - 156*x^5 + 110*x^4 + 148*x^3 - 101*x^2 - 8*x + 5, 2*x^10 + 6*x^9 - 18*x^8 - 54*x^7 + 61*x^6 + 156*x^5 - 110*x^4 - 148*x^3 + 101*x^2 + 8*x - 5, -x^11 - 3*x^10 + 9*x^9 + 27*x^8 - 31*x^7 - 79*x^6 + 57*x^5 + 75*x^4 - 56*x^3 - 2*x^2 + 4*x, x^11 + 3*x^10 - 9*x^9 - 27*x^8 + 31*x^7 + 79*x^6 - 57*x^5 - 75*x^4 + 56*x^3 + 2*x^2 - 4*x, -x^11 - 3*x^10 + 9*x^9 + 27*x^8 - 30*x^7 - 77*x^6 + 53*x^5 + 73*x^4 - 45*x^3 - 6*x^2 + x, x^11 + 3*x^10 - 9*x^9 - 27*x^8 + 30*x^7 + 77*x^6 - 53*x^5 - 73*x^4 + 45*x^3 + 6*x^2 - x, -x^10 - 3*x^9 + 7*x^8 + 23*x^7 - 18*x^6 - 59*x^5 + 27*x^4 + 55*x^3 - 26*x^2 - 5*x + 1, x^10 + 3*x^9 - 7*x^8 - 23*x^7 + 18*x^6 + 59*x^5 - 27*x^4 - 55*x^3 + 26*x^2 + 5*x - 1, -x^10 - 3*x^9 + 8*x^8 + 25*x^7 - 23*x^6 - 67*x^5 + 33*x^4 + 59*x^3 - 25*x^2 - 7*x, x^10 + 3*x^9 - 8*x^8 - 25*x^7 + 23*x^6 + 67*x^5 - 33*x^4 - 59*x^3 + 25*x^2 + 7*x, -x^10 - 3*x^9 + 9*x^8 + 27*x^7 - 30*x^6 - 77*x^5 + 53*x^4 + 73*x^3 - 45*x^2 - 6*x + 1, x^10 + 3*x^9 - 9*x^8 - 27*x^7 + 30*x^6 + 77*x^5 - 53*x^4 - 73*x^3 + 45*x^2 + 6*x - 1, -x^10 - 3*x^9 + 7*x^8 + 23*x^7 - 15*x^6 - 51*x^5 + 18*x^4 + 37*x^3 - 9*x^2 - 6*x, x^10 + 3*x^9 - 7*x^8 - 23*x^7 + 15*x^6 + 51*x^5 - 18*x^4 - 37*x^3 + 9*x^2 + 6*x, -x^9 - x^8 + 10*x^7 + 5*x^6 - 36*x^5 - 3*x^4 + 45*x^3 - 11*x^2 - 7*x, x^9 + x^8 - 10*x^7 - 5*x^6 + 36*x^5 + 3*x^4 - 45*x^3 + 11*x^2 + 7*x, -x^9 - 3*x^8 + 3*x^7 + 15*x^6 + 6*x^5 - 17*x^4 - 15*x^3 + 8*x^2 + 4*x, x^9 + 3*x^8 - 3*x^7 - 15*x^6 - 6*x^5 + 17*x^4 + 15*x^3 - 8*x^2 - 4*x, -x^9 - 2*x^8 + 8*x^7 + 12*x^6 - 24*x^5 - 16*x^4 + 31*x^3 - 5*x^2 - 4*x, x^9 + 2*x^8 - 8*x^7 - 12*x^6 + 24*x^5 + 16*x^4 - 31*x^3 + 5*x^2 + 4*x, -x^9 - 2*x^8 + 7*x^7 + 13*x^6 - 15*x^5 - 21*x^4 + 15*x^3 + 8*x^2 - 3*x - 1, x^9 + 2*x^8 - 7*x^7 - 13*x^6 + 15*x^5 + 21*x^4 - 15*x^3 - 8*x^2 + 3*x + 1, -x^9 - 2*x^8 + 8*x^7 + 13*x^6 - 20*x^5 - 15*x^4 + 21*x^3 - 8*x^2 + 2*x + 1, x^9 + 2*x^8 - 8*x^7 - 13*x^6 + 20*x^5 + 15*x^4 - 21*x^3 + 8*x^2 - 2*x - 1, -2*x^8 - 5*x^7 + 11*x^6 + 27*x^5 - 18*x^4 - 33*x^3 + 16*x^2 + 3*x, 2*x^8 + 5*x^7 - 11*x^6 - 27*x^5 + 18*x^4 + 33*x^3 - 16*x^2 - 3*x, -2*x^8 - 3*x^7 + 13*x^6 + 15*x^5 - 24*x^4 - 14*x^3 + 14*x^2 + 2*x - 1, 2*x^8 + 3*x^7 - 13*x^6 - 15*x^5 + 24*x^4 + 14*x^3 - 14*x^2 - 2*x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^22 - x^21 - 35*x^20 + 33*x^19 + 523*x^18 - 456*x^17 - 4360*x^16 + 3428*x^15 + 22226*x^14 - 15227*x^13 - 71363*x^12 + 40569*x^11 + 143034*x^10 - 62774*x^9 - 170342*x^8 + 51992*x^7 + 107186*x^6 - 20952*x^5 - 26926*x^4 + 5536*x^3 + 1736*x^2 - 512*x + 32,
           Coordinates        := [-x^21 + x^20 + 32*x^19 - 30*x^18 - 431*x^17 + 370*x^16 + 3181*x^15 - 2424*x^14 - 14025*x^13 + 9079*x^12 + 37748*x^11 - 19432*x^10 - 60742*x^9 + 22382*x^8 + 54632*x^7 - 12130*x^6 - 23940*x^5 + 2632*x^4 + 4224*x^3 - 344*x^2 - 256*x + 32, x^21 - x^20 - 32*x^19 + 30*x^18 + 429*x^17 - 368*x^16 - 3133*x^15 + 2384*x^14 + 13557*x^13 - 8781*x^12 - 35352*x^11 + 18438*x^10 + 53802*x^9 - 21110*x^8 - 43302*x^7 + 12430*x^6 + 14324*x^5 - 4132*x^4 - 784*x^3 + 636*x^2 - 168*x + 16, -x^19 + x^18 + 28*x^17 - 26*x^16 - 325*x^15 + 274*x^14 + 2029*x^13 - 1506*x^12 - 7391*x^11 + 4601*x^10 + 15936*x^9 - 7594*x^8 - 19716*x^7 + 5798*x^6 + 12940*x^5 - 1064*x^4 - 3958*x^3 - 104*x^2 + 432*x - 48, x^19 - x^18 - 28*x^17 + 28*x^16 + 319*x^15 - 314*x^14 - 1905*x^13 + 1812*x^12 + 6387*x^11 - 5717*x^10 - 11854*x^9 + 9528*x^8 + 10810*x^7 - 7050*x^6 - 2770*x^5 + 1168*x^4 - 1302*x^3 - 136*x^2 + 176*x - 16, x^20 - x^19 - 30*x^18 + 28*x^17 + 373*x^16 - 314*x^15 - 2497*x^14 + 1804*x^13 + 9787*x^12 - 5595*x^11 - 22876*x^10 + 8866*x^9 + 31046*x^8 - 5498*x^7 - 22556*x^6 - 436*x^5 + 7398*x^4 + 396*x^3 - 856*x^2 + 96*x, -3*x^19 + 3*x^18 + 86*x^17 - 80*x^16 - 1017*x^15 + 850*x^14 + 6431*x^13 - 4594*x^12 - 23561*x^11 + 13303*x^10 + 50580*x^9 - 19690*x^8 - 60934*x^7 + 12272*x^6 + 36178*x^5 - 1640*x^4 - 7234*x^3 + 656*x^2 + 368*x - 48, x^19 - x^18 - 28*x^17 + 26*x^16 + 317*x^15 - 266*x^14 - 1865*x^13 + 1374*x^12 + 6089*x^11 - 3855*x^10 - 10902*x^9 + 6084*x^8 + 9936*x^7 - 5816*x^6 - 4156*x^5 + 3360*x^4 + 1230*x^3 - 404*x^2 - 8*x, -3*x^20 + 3*x^19 + 92*x^18 - 86*x^17 - 1179*x^16 + 1004*x^15 + 8201*x^14 - 6148*x^13 - 33615*x^12 + 21137*x^11 + 82292*x^10 - 40392*x^9 - 115710*x^8 + 39862*x^7 + 83246*x^6 - 18320*x^5 - 22702*x^4 + 5192*x^3 + 1480*x^2 - 480*x + 32, 2*x^16 - 48*x^14 + 2*x^13 + 446*x^12 - 22*x^11 - 2020*x^10 + 44*x^9 + 4592*x^8 + 208*x^7 - 4810*x^6 - 734*x^5 + 1772*x^4 + 496*x^3 - 108*x^2 - 88*x + 16, 2*x^17 - 2*x^16 - 48*x^15 + 50*x^14 + 444*x^13 - 468*x^12 - 1998*x^11 + 2064*x^10 + 4548*x^9 - 4384*x^8 - 5018*x^7 + 4076*x^6 + 2506*x^5 - 1276*x^4 - 604*x^3 + 20*x^2 + 104*x - 16, x^18 - x^17 - 26*x^16 + 25*x^15 + 270*x^14 - 236*x^13 - 1445*x^12 + 1054*x^11 + 4294*x^10 - 2236*x^9 - 7101*x^8 + 1830*x^7 + 6063*x^6 + 96*x^5 - 2074*x^4 - 486*x^3 + 160*x^2 + 80*x - 16, x^18 - x^17 - 26*x^16 + 25*x^15 + 270*x^14 - 236*x^13 - 1445*x^12 + 1054*x^11 + 4294*x^10 - 2236*x^9 - 7101*x^8 + 1830*x^7 + 6063*x^6 + 96*x^5 - 2074*x^4 - 486*x^3 + 160*x^2 + 80*x - 16, 2*x^17 - 2*x^16 - 54*x^15 + 51*x^14 + 585*x^13 - 497*x^12 - 3273*x^11 + 2340*x^10 + 10092*x^9 - 5458*x^8 - 16784*x^7 + 5620*x^6 + 13312*x^5 - 1758*x^4 - 3454*x^3 + 376*x^2 + 160*x - 16, 2*x^17 - 2*x^16 - 54*x^15 + 51*x^14 + 585*x^13 - 497*x^12 - 3273*x^11 + 2340*x^10 + 10092*x^9 - 5458*x^8 - 16784*x^7 + 5620*x^6 + 13312*x^5 - 1758*x^4 - 3454*x^3 + 376*x^2 + 160*x - 16, x^19 - x^18 - 30*x^17 + 29*x^16 + 372*x^15 - 337*x^14 - 2474*x^13 + 2019*x^12 + 9565*x^11 - 6640*x^10 - 21741*x^9 + 11672*x^8 + 27865*x^7 - 9600*x^6 - 17892*x^5 + 2548*x^4 + 4218*x^3 - 316*x^2 - 280*x + 32, x^19 - x^18 - 30*x^17 + 29*x^16 + 372*x^15 - 337*x^14 - 2474*x^13 + 2019*x^12 + 9565*x^11 - 6640*x^10 - 21741*x^9 + 11672*x^8 + 27865*x^7 - 9600*x^6 - 17892*x^5 + 2548*x^4 + 4218*x^3 - 316*x^2 - 280*x + 32, 2*x^15 - x^14 - 46*x^13 + 21*x^12 + 416*x^11 - 189*x^10 - 1831*x^9 + 872*x^8 + 3949*x^7 - 1951*x^6 - 3752*x^5 + 1704*x^4 + 1262*x^3 - 424*x^2 - 48*x + 16, 2*x^15 - x^14 - 46*x^13 + 21*x^12 + 416*x^11 - 189*x^10 - 1831*x^9 + 872*x^8 + 3949*x^7 - 1951*x^6 - 3752*x^5 + 1704*x^4 + 1262*x^3 - 424*x^2 - 48*x + 16, x^18 - x^17 - 28*x^16 + 24*x^15 + 316*x^14 - 215*x^13 - 1849*x^12 + 870*x^11 + 5987*x^10 - 1391*x^9 - 10555*x^8 - 159*x^7 + 9200*x^6 + 1898*x^5 - 3084*x^4 - 400*x^3 + 424*x^2 - 48*x, x^18 - x^17 - 28*x^16 + 24*x^15 + 316*x^14 - 215*x^13 - 1849*x^12 + 870*x^11 + 5987*x^10 - 1391*x^9 - 10555*x^8 - 159*x^7 + 9200*x^6 + 1898*x^5 - 3084*x^4 - 400*x^3 + 424*x^2 - 48*x, x^20 - x^19 - 32*x^18 + 30*x^17 + 427*x^16 - 365*x^15 - 3086*x^14 + 2321*x^13 + 13112*x^12 - 8268*x^11 - 33178*x^10 + 16399*x^9 + 47997*x^8 - 17032*x^7 - 35153*x^6 + 8628*x^5 + 9372*x^4 - 2648*x^3 - 524*x^2 + 216*x - 16, x^20 - x^19 - 32*x^18 + 30*x^17 + 427*x^16 - 365*x^15 - 3086*x^14 + 2321*x^13 + 13112*x^12 - 8268*x^11 - 33178*x^10 + 16399*x^9 + 47997*x^8 - 17032*x^7 - 35153*x^6 + 8628*x^5 + 9372*x^4 - 2648*x^3 - 524*x^2 + 216*x - 16, x^18 - 29*x^16 + 3*x^15 + 342*x^14 - 66*x^13 - 2102*x^12 + 574*x^11 + 7143*x^10 - 2491*x^9 - 13031*x^8 + 5602*x^7 + 11198*x^6 - 6176*x^5 - 3080*x^4 + 2818*x^3 + 84*x^2 - 264*x + 32, x^18 - 29*x^16 + 3*x^15 + 342*x^14 - 66*x^13 - 2102*x^12 + 574*x^11 + 7143*x^10 - 2491*x^9 - 13031*x^8 + 5602*x^7 + 11198*x^6 - 6176*x^5 - 3080*x^4 + 2818*x^3 + 84*x^2 - 264*x + 32, x^17 + x^16 - 26*x^15 - 24*x^14 + 271*x^13 + 229*x^12 - 1450*x^11 - 1095*x^10 + 4227*x^9 + 2727*x^8 - 6519*x^7 - 3346*x^6 + 4596*x^5 + 1646*x^4 - 1000*x^3 - 4*x^2 + 88*x - 16, x^17 + x^16 - 26*x^15 - 24*x^14 + 271*x^13 + 229*x^12 - 1450*x^11 - 1095*x^10 + 4227*x^9 + 2727*x^8 - 6519*x^7 - 3346*x^6 + 4596*x^5 + 1646*x^4 - 1000*x^3 - 4*x^2 + 88*x - 16, -3*x^17 + 3*x^16 + 79*x^15 - 73*x^14 - 835*x^13 + 684*x^12 + 4534*x^11 - 3076*x^10 - 13447*x^9 + 6680*x^8 + 21352*x^7 - 6026*x^6 - 16204*x^5 + 1374*x^4 + 4030*x^3 - 420*x^2 - 232*x + 32, -3*x^17 + 3*x^16 + 79*x^15 - 73*x^14 - 835*x^13 + 684*x^12 + 4534*x^11 - 3076*x^10 - 13447*x^9 + 6680*x^8 + 21352*x^7 - 6026*x^6 - 16204*x^5 + 1374*x^4 + 4030*x^3 - 420*x^2 - 232*x + 32, -2*x^17 + 53*x^15 - 569*x^13 - 7*x^12 + 3171*x^11 + 124*x^10 - 9745*x^9 - 785*x^8 + 16048*x^7 + 2094*x^6 - 12240*x^5 - 2002*x^4 + 2648*x^3 - 20*x^2 - 152*x + 16, -2*x^17 + 53*x^15 - 569*x^13 - 7*x^12 + 3171*x^11 + 124*x^10 - 9745*x^9 - 785*x^8 + 16048*x^7 + 2094*x^6 - 12240*x^5 - 2002*x^4 + 2648*x^3 - 20*x^2 - 152*x + 16, x^17 + x^16 - 30*x^15 - 25*x^14 + 368*x^13 + 255*x^12 - 2361*x^11 - 1362*x^10 + 8379*x^9 + 4048*x^8 - 15891*x^7 - 6469*x^6 + 14010*x^5 + 4620*x^4 - 3868*x^3 - 464*x^2 + 368*x - 32, x^17 + x^16 - 30*x^15 - 25*x^14 + 368*x^13 + 255*x^12 - 2361*x^11 - 1362*x^10 + 8379*x^9 + 4048*x^8 - 15891*x^7 - 6469*x^6 + 14010*x^5 + 4620*x^4 - 3868*x^3 - 464*x^2 + 368*x - 32, x^18 - 27*x^16 + 296*x^14 + 4*x^13 - 1700*x^12 - 61*x^11 + 5511*x^10 + 331*x^9 - 10118*x^8 - 776*x^7 + 9893*x^6 + 802*x^5 - 4350*x^4 - 266*x^3 + 516*x^2 - 56*x, x^18 - 27*x^16 + 296*x^14 + 4*x^13 - 1700*x^12 - 61*x^11 + 5511*x^10 + 331*x^9 - 10118*x^8 - 776*x^7 + 9893*x^6 + 802*x^5 - 4350*x^4 - 266*x^3 + 516*x^2 - 56*x, -3*x^18 + 3*x^17 + 81*x^16 - 77*x^15 - 885*x^14 + 777*x^13 + 5027*x^12 - 3917*x^11 - 15856*x^10 + 10351*x^9 + 27388*x^8 - 13795*x^7 - 23534*x^6 + 8340*x^5 + 7734*x^4 - 2268*x^3 - 556*x^2 + 216*x - 16, -3*x^18 + 3*x^17 + 81*x^16 - 77*x^15 - 885*x^14 + 777*x^13 + 5027*x^12 - 3917*x^11 - 15856*x^10 + 10351*x^9 + 27388*x^8 - 13795*x^7 - 23534*x^6 + 8340*x^5 + 7734*x^4 - 2268*x^3 - 556*x^2 + 216*x - 16, -2*x^16 + 2*x^15 + 51*x^14 - 47*x^13 - 514*x^12 + 425*x^11 + 2598*x^10 - 1840*x^9 - 6908*x^8 + 3820*x^7 + 9281*x^6 - 3214*x^5 - 5408*x^4 + 586*x^3 + 748*x^2 - 136*x, -2*x^16 + 2*x^15 + 51*x^14 - 47*x^13 - 514*x^12 + 425*x^11 + 2598*x^10 - 1840*x^9 - 6908*x^8 + 3820*x^7 + 9281*x^6 - 3214*x^5 - 5408*x^4 + 586*x^3 + 748*x^2 - 136*x]>
       ]
>;

MOG[449] := 	// J_0(449)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 15, 91, 97, 120, 232, 243, 338, 344, 354, 197*x + 267, 252*x + 267, 102*x + 19, 347*x + 19, 91*x + 52, 358*x + 52, 422*x + 163, 27*x + 163, 100*x + 75, 349*x + 75, 315*x + 371, 134*x + 371, 162*x + 334, 287*x + 334, 129*x + 59, 320*x + 59, 95*x + 367, 354*x + 367, 100*x + 422, 349*x + 422, 203*x + 117, 246*x + 117, 141*x + 63, 308*x + 63, 390*x + 27, 59*x + 27, 35*x + 309, 414*x + 309]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^14 + 3*x^13 - 13*x^12 - 42*x^11 + 59*x^10 + 214*x^9 - 117*x^8 - 503*x^7 + 109*x^6 + 576*x^5 - 50*x^4 - 309*x^3 + 14*x^2 + 62*x - 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^13 - 3*x^12 + 11*x^11 + 36*x^10 - 41*x^9 - 155*x^8 + 62*x^7 + 299*x^6 - 38*x^5 - 268*x^4 + 10*x^3 + 104*x^2 - 2*x - 13, x^13 + 3*x^12 - 11*x^11 - 36*x^10 + 41*x^9 + 155*x^8 - 62*x^7 - 299*x^6 + 38*x^5 + 268*x^4 - 10*x^3 - 104*x^2 + 2*x + 13, -x^12 - 3*x^11 + 9*x^10 + 30*x^9 - 26*x^8 - 105*x^7 + 26*x^6 + 162*x^5 + 4*x^4 - 109*x^3 - 16*x^2 + 26*x + 5, x^12 + 3*x^11 - 9*x^10 - 30*x^9 + 26*x^8 + 105*x^7 - 26*x^6 - 162*x^5 - 4*x^4 + 109*x^3 + 16*x^2 - 26*x - 5, -x^12 - 3*x^11 + 9*x^10 + 29*x^9 - 29*x^8 - 99*x^7 + 45*x^6 + 146*x^5 - 44*x^4 - 96*x^3 + 28*x^2 + 23*x - 8, x^12 + 3*x^11 - 9*x^10 - 29*x^9 + 29*x^8 + 99*x^7 - 45*x^6 - 146*x^5 + 44*x^4 + 96*x^3 - 28*x^2 - 23*x + 8, -x^11 - 4*x^10 + 4*x^9 + 31*x^8 + 9*x^7 - 77*x^6 - 44*x^5 + 83*x^4 + 46*x^3 - 41*x^2 - 14*x + 8, x^11 + 4*x^10 - 4*x^9 - 31*x^8 - 9*x^7 + 77*x^6 + 44*x^5 - 83*x^4 - 46*x^3 + 41*x^2 + 14*x - 8, -x^11 - 2*x^10 + 11*x^9 + 19*x^8 - 45*x^7 - 60*x^6 + 86*x^5 + 76*x^4 - 72*x^3 - 37*x^2 + 21*x + 5, x^11 + 2*x^10 - 11*x^9 - 19*x^8 + 45*x^7 + 60*x^6 - 86*x^5 - 76*x^4 + 72*x^3 + 37*x^2 - 21*x - 5, -x^11 - 3*x^10 + 7*x^9 + 23*x^8 - 19*x^7 - 63*x^6 + 26*x^5 + 70*x^4 - 21*x^3 - 31*x^2 + 7*x + 4, x^11 + 3*x^10 - 7*x^9 - 23*x^8 + 19*x^7 + 63*x^6 - 26*x^5 - 70*x^4 + 21*x^3 + 31*x^2 - 7*x - 4, -x^11 - 4*x^10 + 5*x^9 + 33*x^8 + 2*x^7 - 90*x^6 - 32*x^5 + 102*x^4 + 39*x^3 - 50*x^2 - 13*x + 9, x^11 + 4*x^10 - 5*x^9 - 33*x^8 - 2*x^7 + 90*x^6 + 32*x^5 - 102*x^4 - 39*x^3 + 50*x^2 + 13*x - 9, -x^10 - 4*x^9 + 2*x^8 + 26*x^7 + 20*x^6 - 47*x^5 - 60*x^4 + 29*x^3 + 52*x^2 - 5*x - 14, x^10 + 4*x^9 - 2*x^8 - 26*x^7 - 20*x^6 + 47*x^5 + 60*x^4 - 29*x^3 - 52*x^2 + 5*x + 14, -x^10 - 3*x^9 + 4*x^8 + 15*x^7 - 6*x^6 - 23*x^5 + 12*x^4 + 13*x^3 - 16*x^2 - 3*x + 6, x^10 + 3*x^9 - 4*x^8 - 15*x^7 + 6*x^6 + 23*x^5 - 12*x^4 - 13*x^3 + 16*x^2 + 3*x - 6, -x^10 - 3*x^9 + 6*x^8 + 21*x^7 - 13*x^6 - 53*x^5 + 11*x^4 + 52*x^3 - 5*x^2 - 16*x + 2, x^10 + 3*x^9 - 6*x^8 - 21*x^7 + 13*x^6 + 53*x^5 - 11*x^4 - 52*x^3 + 5*x^2 + 16*x - 2, -2*x^9 - 5*x^8 + 11*x^7 + 30*x^6 - 16*x^5 - 54*x^4 + 6*x^3 + 36*x^2 - 8, 2*x^9 + 5*x^8 - 11*x^7 - 30*x^6 + 16*x^5 + 54*x^4 - 6*x^3 - 36*x^2 + 8, -x^9 - 3*x^8 + 2*x^7 + 10*x^6 + 2*x^5 - 3*x^4 - x^3 - 8*x^2 - x + 4, x^9 + 3*x^8 - 2*x^7 - 10*x^6 - 2*x^5 + 3*x^4 + x^3 + 8*x^2 + x - 4, -x^9 - 2*x^8 + 6*x^7 + 10*x^6 - 15*x^5 - 18*x^4 + 16*x^3 + 15*x^2 - 5*x - 4, x^9 + 2*x^8 - 6*x^7 - 10*x^6 + 15*x^5 + 18*x^4 - 16*x^3 - 15*x^2 + 5*x + 4, -2*x^8 - 5*x^7 + 8*x^6 + 20*x^5 - 13*x^4 - 21*x^3 + 15*x^2 + 7*x - 6, 2*x^8 + 5*x^7 - 8*x^6 - 20*x^5 + 13*x^4 + 21*x^3 - 15*x^2 - 7*x + 6]>,
         rec<Eigen |
           DefiningPolynomial := x^23 - 38*x^21 + x^20 + 623*x^19 - 31*x^18 - 5771*x^17 + 398*x^16 + 33229*x^15 - 2753*x^14 - 123306*x^13 + 11230*x^12 + 296022*x^11 - 28009*x^10 - 450008*x^9 + 43215*x^8 + 412760*x^7 - 40559*x^6 - 210040*x^5 + 21311*x^4 + 50781*x^3 - 5664*x^2 - 3789*x + 621,
           Coordinates        := [-x^22 + 35*x^20 - x^19 - 524*x^18 + 28*x^17 + 4385*x^16 - 318*x^15 - 22492*x^14 + 1885*x^13 + 72968*x^12 - 6267*x^11 - 149228*x^10 + 11762*x^9 + 186260*x^8 - 12109*x^7 - 132904*x^6 + 6338*x^5 + 48586*x^4 - 1037*x^3 - 7431*x^2 - 129*x + 306, x^22 - 35*x^20 + x^19 + 524*x^18 - 26*x^17 - 4383*x^16 + 270*x^15 + 22446*x^14 - 1421*x^13 - 72550*x^12 + 3969*x^11 + 147336*x^10 - 5698*x^9 - 181880*x^8 + 4277*x^7 + 128234*x^6 - 2774*x^5 - 47072*x^4 + 1231*x^3 + 7383*x^2 - 141*x - 252, 2*x^18 + 2*x^17 - 58*x^16 - 46*x^15 + 694*x^14 + 426*x^13 - 4434*x^12 - 2094*x^11 + 16334*x^10 + 6148*x^9 - 34986*x^8 - 11458*x^7 + 41914*x^6 + 13038*x^5 - 25618*x^4 - 7450*x^3 + 7032*x^2 + 1578*x - 576, x^21 - 33*x^19 + x^18 + 462*x^17 - 26*x^16 - 3579*x^15 + 276*x^14 + 16772*x^13 - 1551*x^12 - 48784*x^11 + 5025*x^10 + 86844*x^9 - 9624*x^8 - 89778*x^7 + 10821*x^6 + 48646*x^5 - 6814*x^4 - 11494*x^3 + 2001*x^2 + 615*x - 117, -3*x^21 + 99*x^19 - 3*x^18 - 1386*x^17 + 80*x^16 + 10737*x^15 - 868*x^14 - 50338*x^13 + 4963*x^12 + 146794*x^11 - 16247*x^10 - 263748*x^9 + 31106*x^8 + 279856*x^7 - 34221*x^6 - 161454*x^5 + 20274*x^4 + 43350*x^3 - 5793*x^2 - 3483*x + 621, 2*x^19 - 58*x^17 + 2*x^16 + 692*x^15 - 34*x^14 - 4378*x^13 + 170*x^12 + 15780*x^11 + 44*x^10 - 32390*x^9 - 2674*x^8 + 35798*x^7 + 7338*x^6 - 18820*x^5 - 6918*x^4 + 3896*x^3 + 2196*x^2 - 90*x - 108, 2*x^18 - 4*x^17 - 60*x^16 + 110*x^15 + 742*x^14 - 1222*x^13 - 4886*x^12 + 7026*x^11 + 18494*x^10 - 22220*x^9 - 40554*x^8 + 37912*x^7 + 49286*x^6 - 32020*x^5 - 29586*x^4 + 11384*x^3 + 7044*x^2 - 1062*x - 162, -6*x^17 - 4*x^16 + 156*x^15 + 78*x^14 - 1666*x^13 - 552*x^12 + 9388*x^11 + 1590*x^10 - 29760*x^9 - 688*x^8 + 52226*x^7 - 5186*x^6 - 46400*x^5 + 8920*x^4 + 16726*x^3 - 4002*x^2 - 1368*x + 324, -2*x^16 + 32*x^14 - 14*x^13 - 150*x^12 + 244*x^11 - 80*x^10 - 1622*x^9 + 2588*x^8 + 5120*x^7 - 7394*x^6 - 7622*x^5 + 7852*x^4 + 4508*x^3 - 3102*x^2 - 870*x + 288, 2*x^17 + 2*x^16 - 62*x^15 - 46*x^14 + 758*x^13 + 398*x^12 - 4734*x^11 - 1606*x^10 + 16174*x^9 + 2904*x^8 - 29810*x^7 - 1218*x^6 + 27126*x^5 - 2206*x^4 - 9914*x^3 + 1566*x^2 + 828*x - 162, -3*x^20 + 93*x^18 - 2*x^17 - 1209*x^16 + 43*x^15 + 8569*x^14 - 346*x^13 - 36055*x^12 + 1277*x^11 + 91968*x^10 - 2090*x^9 - 139462*x^8 + 1053*x^7 + 118629*x^6 + 630*x^5 - 51204*x^4 - 1341*x^3 + 9405*x^2 + 504*x - 459, -3*x^20 + 93*x^18 - 2*x^17 - 1209*x^16 + 43*x^15 + 8569*x^14 - 346*x^13 - 36055*x^12 + 1277*x^11 + 91968*x^10 - 2090*x^9 - 139462*x^8 + 1053*x^7 + 118629*x^6 + 630*x^5 - 51204*x^4 - 1341*x^3 + 9405*x^2 + 504*x - 459, -3*x^19 + x^18 + 87*x^17 - 36*x^16 - 1044*x^15 + 502*x^14 + 6704*x^13 - 3544*x^12 - 24901*x^11 + 13717*x^10 + 54112*x^9 - 29284*x^8 - 66576*x^7 + 32960*x^6 + 42566*x^5 - 17612*x^4 - 11604*x^3 + 3732*x^2 + 627*x - 180, -3*x^19 + x^18 + 87*x^17 - 36*x^16 - 1044*x^15 + 502*x^14 + 6704*x^13 - 3544*x^12 - 24901*x^11 + 13717*x^10 + 54112*x^9 - 29284*x^8 - 66576*x^7 + 32960*x^6 + 42566*x^5 - 17612*x^4 - 11604*x^3 + 3732*x^2 + 627*x - 180, -3*x^19 + 90*x^17 - x^16 - 1124*x^15 + 20*x^14 + 7579*x^13 - 142*x^12 - 29925*x^11 + 440*x^10 + 70174*x^9 - 769*x^8 - 94651*x^7 + 1891*x^6 + 67684*x^5 - 4003*x^4 - 22341*x^3 + 2565*x^2 + 2397*x - 441, -3*x^19 + 90*x^17 - x^16 - 1124*x^15 + 20*x^14 + 7579*x^13 - 142*x^12 - 29925*x^11 + 440*x^10 + 70174*x^9 - 769*x^8 - 94651*x^7 + 1891*x^6 + 67684*x^5 - 4003*x^4 - 22341*x^3 + 2565*x^2 + 2397*x - 441, x^19 - 3*x^18 - 32*x^17 + 86*x^16 + 420*x^15 - 1016*x^14 - 2929*x^13 + 6385*x^12 + 11767*x^11 - 23016*x^10 - 27661*x^9 + 48067*x^8 + 37060*x^7 - 56560*x^6 - 26513*x^5 + 35163*x^4 + 9328*x^3 - 9645*x^2 - 1281*x + 603, x^19 - 3*x^18 - 32*x^17 + 86*x^16 + 420*x^15 - 1016*x^14 - 2929*x^13 + 6385*x^12 + 11767*x^11 - 23016*x^10 - 27661*x^9 + 48067*x^8 + 37060*x^7 - 56560*x^6 - 26513*x^5 + 35163*x^4 + 9328*x^3 - 9645*x^2 - 1281*x + 603, -3*x^18 - 2*x^17 + 79*x^16 + 39*x^15 - 849*x^14 - 269*x^13 + 4769*x^12 + 673*x^11 - 14840*x^10 + 467*x^9 + 24819*x^8 - 5153*x^7 - 19503*x^6 + 8271*x^5 + 4437*x^4 - 4255*x^3 + 867*x^2 + 597*x - 144, -3*x^18 - 2*x^17 + 79*x^16 + 39*x^15 - 849*x^14 - 269*x^13 + 4769*x^12 + 673*x^11 - 14840*x^10 + 467*x^9 + 24819*x^8 - 5153*x^7 - 19503*x^6 + 8271*x^5 + 4437*x^4 - 4255*x^3 + 867*x^2 + 597*x - 144, -x^18 + 2*x^17 + 31*x^16 - 48*x^15 - 396*x^14 + 458*x^13 + 2702*x^12 - 2194*x^11 - 10662*x^10 + 5403*x^9 + 24518*x^8 - 5906*x^7 - 31266*x^6 + 750*x^5 + 19712*x^4 + 2332*x^3 - 5379*x^2 - 909*x + 405, -x^18 + 2*x^17 + 31*x^16 - 48*x^15 - 396*x^14 + 458*x^13 + 2702*x^12 - 2194*x^11 - 10662*x^10 + 5403*x^9 + 24518*x^8 - 5906*x^7 - 31266*x^6 + 750*x^5 + 19712*x^4 + 2332*x^3 - 5379*x^2 - 909*x + 405, -2*x^18 - x^17 + 54*x^16 + 25*x^15 - 594*x^14 - 254*x^13 + 3428*x^12 + 1357*x^11 - 11132*x^10 - 4082*x^9 + 20293*x^8 + 6744*x^7 - 19679*x^6 - 5383*x^5 + 9151*x^4 + 1574*x^3 - 1629*x^2 - 36*x + 54, -2*x^18 - x^17 + 54*x^16 + 25*x^15 - 594*x^14 - 254*x^13 + 3428*x^12 + 1357*x^11 - 11132*x^10 - 4082*x^9 + 20293*x^8 + 6744*x^7 - 19679*x^6 - 5383*x^5 + 9151*x^4 + 1574*x^3 - 1629*x^2 - 36*x + 54, x^20 - 31*x^18 + 402*x^16 + 3*x^15 - 2837*x^14 - 65*x^13 + 11883*x^12 + 528*x^11 - 30246*x^10 - 1963*x^9 + 46051*x^8 + 3272*x^7 - 39794*x^6 - 2020*x^5 + 17789*x^4 + 385*x^3 - 3384*x^2 + 12*x + 126, x^20 - 31*x^18 + 402*x^16 + 3*x^15 - 2837*x^14 - 65*x^13 + 11883*x^12 + 528*x^11 - 30246*x^10 - 1963*x^9 + 46051*x^8 + 3272*x^7 - 39794*x^6 - 2020*x^5 + 17789*x^4 + 385*x^3 - 3384*x^2 + 12*x + 126, x^19 + x^18 - 29*x^17 - 23*x^16 + 350*x^15 + 202*x^14 - 2281*x^13 - 806*x^12 + 8729*x^11 + 1086*x^10 - 20076*x^9 + 2044*x^8 + 27523*x^7 - 8269*x^6 - 21600*x^5 + 8957*x^4 + 8489*x^3 - 3480*x^2 - 1290*x + 360, x^19 + x^18 - 29*x^17 - 23*x^16 + 350*x^15 + 202*x^14 - 2281*x^13 - 806*x^12 + 8729*x^11 + 1086*x^10 - 20076*x^9 + 2044*x^8 + 27523*x^7 - 8269*x^6 - 21600*x^5 + 8957*x^4 + 8489*x^3 - 3480*x^2 - 1290*x + 360, x^19 + x^18 - 30*x^17 - 24*x^16 + 378*x^15 + 236*x^14 - 2596*x^13 - 1246*x^12 + 10534*x^11 + 3877*x^10 - 25580*x^9 - 7181*x^8 + 35862*x^7 + 7128*x^6 - 26372*x^5 - 2622*x^4 + 8473*x^3 + 6*x^2 - 702*x + 81, x^19 + x^18 - 30*x^17 - 24*x^16 + 378*x^15 + 236*x^14 - 2596*x^13 - 1246*x^12 + 10534*x^11 + 3877*x^10 - 25580*x^9 - 7181*x^8 + 35862*x^7 + 7128*x^6 - 26372*x^5 - 2622*x^4 + 8473*x^3 + 6*x^2 - 702*x + 81, x^19 + 2*x^18 - 28*x^17 - 57*x^16 + 322*x^15 + 675*x^14 - 1960*x^13 - 4306*x^12 + 6771*x^11 + 16028*x^10 - 13132*x^9 - 35171*x^8 + 12924*x^7 + 43719*x^6 - 4344*x^5 - 27964*x^4 - 1218*x^3 + 7656*x^2 + 792*x - 486, x^19 + 2*x^18 - 28*x^17 - 57*x^16 + 322*x^15 + 675*x^14 - 1960*x^13 - 4306*x^12 + 6771*x^11 + 16028*x^10 - 13132*x^9 - 35171*x^8 + 12924*x^7 + 43719*x^6 - 4344*x^5 - 27964*x^4 - 1218*x^3 + 7656*x^2 + 792*x - 486, x^20 - 30*x^18 + 3*x^17 + 376*x^16 - 72*x^15 - 2560*x^14 + 696*x^13 + 10333*x^12 - 3491*x^11 - 25442*x^10 + 9773*x^9 + 38176*x^8 - 15287*x^7 - 34053*x^6 + 12551*x^5 + 16741*x^4 - 4594*x^3 - 3567*x^2 + 477*x + 81, x^20 - 30*x^18 + 3*x^17 + 376*x^16 - 72*x^15 - 2560*x^14 + 696*x^13 + 10333*x^12 - 3491*x^11 - 25442*x^10 + 9773*x^9 + 38176*x^8 - 15287*x^7 - 34053*x^6 + 12551*x^5 + 16741*x^4 - 4594*x^3 - 3567*x^2 + 477*x + 81, x^20 + x^19 - 31*x^18 - 28*x^17 + 405*x^16 + 330*x^15 - 2894*x^14 - 2130*x^13 + 12266*x^12 + 8165*x^11 - 31252*x^10 - 18732*x^9 + 46330*x^8 + 24492*x^7 - 37020*x^6 - 16410*x^5 + 14379*x^4 + 5124*x^3 - 2355*x^2 - 588*x + 171, x^20 + x^19 - 31*x^18 - 28*x^17 + 405*x^16 + 330*x^15 - 2894*x^14 - 2130*x^13 + 12266*x^12 + 8165*x^11 - 31252*x^10 - 18732*x^9 + 46330*x^8 + 24492*x^7 - 37020*x^6 - 16410*x^5 + 14379*x^4 + 5124*x^3 - 2355*x^2 - 588*x + 171, x^21 - 33*x^19 + 2*x^18 + 463*x^17 - 51*x^16 - 3602*x^15 + 528*x^14 + 16992*x^13 - 2855*x^12 - 49951*x^11 + 8643*x^10 + 90642*x^9 - 14657*x^8 - 97374*x^7 + 13482*x^6 + 57161*x^5 - 6633*x^4 - 15952*x^3 + 1761*x^2 + 1461*x - 252, x^21 - 33*x^19 + 2*x^18 + 463*x^17 - 51*x^16 - 3602*x^15 + 528*x^14 + 16992*x^13 - 2855*x^12 - 49951*x^11 + 8643*x^10 + 90642*x^9 - 14657*x^8 - 97374*x^7 + 13482*x^6 + 57161*x^5 - 6633*x^4 - 15952*x^3 + 1761*x^2 + 1461*x - 252]>
       ]
>;

MOG[457] := 	// J_0(457)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [5, 113, 136, 449, 122*x + 258, 335*x + 258, 100*x + 127, 357*x + 127, 136*x + 305, 321*x + 305, 342*x + 220, 115*x + 220, 415*x + 362, 42*x + 362, 367*x + 228, 90*x + 228, 448*x + 195, 9*x + 195, 213*x + 275, 244*x + 275, 248*x + 411, 209*x + 411, 81*x + 213, 376*x + 213, 130*x + 426, 327*x + 426, 325*x + 21, 132*x + 21, 185*x + 326, 272*x + 326, 421*x + 229, 36*x + 229, 368*x + 215, 89*x + 215, 54*x + 260, 403*x + 260, 318*x + 346, 139*x + 346]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, -x, x, -x - 1, x + 1, 0, 0, -1, 1, -x, x, -1, 1, 0, 0, x, -x, -x, x, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x + 1, -x - 1, -x, x, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^15 + 10*x^14 + 27*x^13 - 43*x^12 - 324*x^11 - 310*x^10 + 917*x^9 + 1910*x^8 - 330*x^7 - 3170*x^6 - 1281*x^5 + 1917*x^4 + 1110*x^3 - 506*x^2 - 232*x + 79,
           Coordinates        := [0, 0, 0, 0, -x^13 - 10*x^12 - 31*x^11 + 3*x^10 + 195*x^9 + 278*x^8 - 254*x^7 - 775*x^6 - 111*x^5 + 720*x^4 + 274*x^3 - 285*x^2 - 90*x + 51, x^13 + 10*x^12 + 31*x^11 - 3*x^10 - 195*x^9 - 278*x^8 + 254*x^7 + 775*x^6 + 111*x^5 - 720*x^4 - 274*x^3 + 285*x^2 + 90*x - 51, -x^12 - 10*x^11 - 34*x^10 - 25*x^9 + 108*x^8 + 228*x^7 + 4*x^6 - 328*x^5 - 177*x^4 + 154*x^3 + 114*x^2 - 18*x - 12, x^12 + 10*x^11 + 34*x^10 + 25*x^9 - 108*x^8 - 228*x^7 - 4*x^6 + 328*x^5 + 177*x^4 - 154*x^3 - 114*x^2 + 18*x + 12, -x^14 - 10*x^13 - 30*x^12 + 13*x^11 + 229*x^10 + 303*x^9 - 362*x^8 - 1003*x^7 - 115*x^6 + 1048*x^5 + 451*x^4 - 439*x^3 - 204*x^2 + 69*x + 12, x^14 + 10*x^13 + 30*x^12 - 13*x^11 - 229*x^10 - 303*x^9 + 362*x^8 + 1003*x^7 + 115*x^6 - 1048*x^5 - 451*x^4 + 439*x^3 + 204*x^2 - 69*x - 12, 2*x^9 + 19*x^8 + 66*x^7 + 88*x^6 - 16*x^5 - 139*x^4 - 65*x^3 + 60*x^2 + 30*x - 12, -2*x^9 - 19*x^8 - 66*x^7 - 88*x^6 + 16*x^5 + 139*x^4 + 65*x^3 - 60*x^2 - 30*x + 12, -2*x^11 - 19*x^10 - 61*x^9 - 43*x^8 + 163*x^7 + 320*x^6 + 22*x^5 - 330*x^4 - 143*x^3 + 117*x^2 + 45*x - 21, 2*x^11 + 19*x^10 + 61*x^9 + 43*x^8 - 163*x^7 - 320*x^6 - 22*x^5 + 330*x^4 + 143*x^3 - 117*x^2 - 45*x + 21, -x^11 - 9*x^10 - 26*x^9 - 7*x^8 + 95*x^7 + 127*x^6 - 88*x^5 - 236*x^4 - 17*x^3 + 150*x^2 + 33*x - 30, x^11 + 9*x^10 + 26*x^9 + 7*x^8 - 95*x^7 - 127*x^6 + 88*x^5 + 236*x^4 + 17*x^3 - 150*x^2 - 33*x + 30, -x^13 - 10*x^12 - 32*x^11 - 4*x^10 + 190*x^9 + 350*x^8 - 57*x^7 - 742*x^6 - 572*x^5 + 242*x^4 + 413*x^3 + 55*x^2 - 58*x - 8, x^13 + 10*x^12 + 32*x^11 + 4*x^10 - 190*x^9 - 350*x^8 + 57*x^7 + 742*x^6 + 572*x^5 - 242*x^4 - 413*x^3 - 55*x^2 + 58*x + 8, -x^13 - 10*x^12 - 32*x^11 - 6*x^10 + 170*x^9 + 279*x^8 - 134*x^7 - 605*x^6 - 147*x^5 + 516*x^4 + 219*x^3 - 207*x^2 - 72*x + 36, x^13 + 10*x^12 + 32*x^11 + 6*x^10 - 170*x^9 - 279*x^8 + 134*x^7 + 605*x^6 + 147*x^5 - 516*x^4 - 219*x^3 + 207*x^2 + 72*x - 36, x^10 + 11*x^9 + 46*x^8 + 82*x^7 + 19*x^6 - 135*x^5 - 141*x^4 + 39*x^3 + 99*x^2 + 9*x - 18, -x^10 - 11*x^9 - 46*x^8 - 82*x^7 - 19*x^6 + 135*x^5 + 141*x^4 - 39*x^3 - 99*x^2 - 9*x + 18, x^10 + 8*x^9 + 20*x^8 + 6*x^7 - 35*x^6 - 4*x^5 + 76*x^4 + 21*x^3 - 69*x^2 - 21*x + 18, -x^10 - 8*x^9 - 20*x^8 - 6*x^7 + 35*x^6 + 4*x^5 - 76*x^4 - 21*x^3 + 69*x^2 + 21*x - 18, -2*x^10 - 18*x^9 - 54*x^8 - 35*x^7 + 116*x^6 + 185*x^5 - 28*x^4 - 161*x^3 - 21*x^2 + 39*x - 3, 2*x^10 + 18*x^9 + 54*x^8 + 35*x^7 - 116*x^6 - 185*x^5 + 28*x^4 + 161*x^3 + 21*x^2 - 39*x + 3, -x^12 - 9*x^11 - 25*x^10 + 109*x^8 + 127*x^7 - 98*x^6 - 187*x^5 + 62*x^4 + 124*x^3 - 48*x^2 - 42*x + 15, x^12 + 9*x^11 + 25*x^10 - 109*x^8 - 127*x^7 + 98*x^6 + 187*x^5 - 62*x^4 - 124*x^3 + 48*x^2 + 42*x - 15, -x^12 - 9*x^11 - 23*x^10 + 19*x^9 + 171*x^8 + 179*x^7 - 236*x^6 - 506*x^5 - 66*x^4 + 308*x^3 + 105*x^2 - 50*x - 8, x^12 + 9*x^11 + 23*x^10 - 19*x^9 - 171*x^8 - 179*x^7 + 236*x^6 + 506*x^5 + 66*x^4 - 308*x^3 - 105*x^2 + 50*x + 8, -x^12 - 8*x^11 - 16*x^10 + 28*x^9 + 134*x^8 + 82*x^7 - 221*x^6 - 300*x^5 + 28*x^4 + 186*x^3 + 41*x^2 - 27*x - 4, x^12 + 8*x^11 + 16*x^10 - 28*x^9 - 134*x^8 - 82*x^7 + 221*x^6 + 300*x^5 - 28*x^4 - 186*x^3 - 41*x^2 + 27*x + 4, -x^12 - 10*x^11 - 34*x^10 - 24*x^9 + 119*x^8 + 271*x^7 + 66*x^6 - 345*x^5 - 294*x^4 + 108*x^3 + 180*x^2 + 9*x - 27, x^12 + 10*x^11 + 34*x^10 + 24*x^9 - 119*x^8 - 271*x^7 - 66*x^6 + 345*x^5 + 294*x^4 - 108*x^3 - 180*x^2 - 9*x + 27, x^11 + 9*x^10 + 26*x^9 + 9*x^8 - 82*x^7 - 107*x^6 + 60*x^5 + 150*x^4 + 3*x^3 - 72*x^2 - 9*x + 9, -x^11 - 9*x^10 - 26*x^9 - 9*x^8 + 82*x^7 + 107*x^6 - 60*x^5 - 150*x^4 - 3*x^3 + 72*x^2 + 9*x - 9, -x^11 - 9*x^10 - 25*x^9 + x^8 + 118*x^7 + 153*x^6 - 87*x^5 - 258*x^4 - 36*x^3 + 144*x^2 + 36*x - 27, x^11 + 9*x^10 + 25*x^9 - x^8 - 118*x^7 - 153*x^6 + 87*x^5 + 258*x^4 + 36*x^3 - 144*x^2 - 36*x + 27]>,
         rec<Eigen |
           DefiningPolynomial := x^20 - 6*x^19 - 12*x^18 + 130*x^17 - 25*x^16 - 1135*x^15 + 1068*x^14 + 5145*x^13 - 6910*x^12 - 12965*x^11 + 21043*x^10 + 17930*x^9 - 33307*x^8 - 12486*x^7 + 25549*x^6 + 3888*x^5 - 7077*x^4 - 927*x^3 + 255*x^2 + 6*x - 1,
           Coordinates        := [-x^19 + 6*x^18 + 9*x^17 - 112*x^16 + 46*x^15 + 833*x^14 - 886*x^13 - 3184*x^12 + 4486*x^11 + 6735*x^10 - 10943*x^9 - 7951*x^8 + 13688*x^7 + 5227*x^6 - 8051*x^5 - 2085*x^4 + 1652*x^3 + 468*x^2 + x - 2, x^19 - 6*x^18 - 9*x^17 + 114*x^16 - 58*x^15 - 839*x^14 + 1040*x^13 + 3036*x^12 - 5188*x^11 - 5661*x^10 + 12331*x^9 + 5213*x^8 - 14802*x^7 - 2401*x^6 + 8389*x^5 + 1219*x^4 - 1918*x^3 - 432*x^2 + 15*x + 2, -x^18 + 6*x^17 + 7*x^16 - 100*x^15 + 56*x^14 + 659*x^13 - 776*x^12 - 2164*x^11 + 3352*x^10 + 3597*x^9 - 6771*x^8 - 2613*x^7 + 6192*x^6 + 481*x^5 - 1799*x^4 - 141*x^3 + 20*x^2 - 12*x - 1, x^18 - 6*x^17 - 7*x^16 + 104*x^15 - 80*x^14 - 665*x^13 + 1050*x^12 + 1868*x^11 - 4450*x^10 - 1827*x^9 + 8713*x^8 - 1299*x^7 - 7786*x^6 + 3191*x^5 + 2577*x^4 - 1069*x^3 - 356*x^2 + 6*x + 1, -x^17 + 6*x^16 + 5*x^15 - 87*x^14 + 55*x^13 + 510*x^12 - 567*x^11 - 1569*x^10 + 2086*x^9 + 2669*x^8 - 3748*x^7 - 2373*x^6 + 3126*x^5 + 972*x^4 - 816*x^3 - 240*x^2 - x + 1, -x^17 + 6*x^16 + 5*x^15 - 87*x^14 + 55*x^13 + 510*x^12 - 567*x^11 - 1569*x^10 + 2086*x^9 + 2669*x^8 - 3748*x^7 - 2373*x^6 + 3126*x^5 + 972*x^4 - 816*x^3 - 240*x^2 - x + 1, -x^16 + 5*x^15 + 6*x^14 - 57*x^13 + x^12 + 255*x^11 - 19*x^10 - 644*x^9 - 152*x^8 + 1051*x^7 + 520*x^6 - 957*x^5 - 485*x^4 + 266*x^3 + 133*x^2 + 6*x, -x^16 + 5*x^15 + 6*x^14 - 57*x^13 + x^12 + 255*x^11 - 19*x^10 - 644*x^9 - 152*x^8 + 1051*x^7 + 520*x^6 - 957*x^5 - 485*x^4 + 266*x^3 + 133*x^2 + 6*x, -x^16 + 8*x^15 - 7*x^14 - 92*x^13 + 208*x^12 + 340*x^11 - 1247*x^10 - 284*x^9 + 3175*x^8 - 811*x^7 - 3586*x^6 + 1448*x^5 + 1468*x^4 - 365*x^3 - 154*x^2 + 7*x + 1, -x^16 + 8*x^15 - 7*x^14 - 92*x^13 + 208*x^12 + 340*x^11 - 1247*x^10 - 284*x^9 + 3175*x^8 - 811*x^7 - 3586*x^6 + 1448*x^5 + 1468*x^4 - 365*x^3 - 154*x^2 + 7*x + 1, -x^18 + 6*x^17 + 7*x^16 - 101*x^15 + 63*x^14 + 651*x^13 - 824*x^12 - 2033*x^11 + 3374*x^10 + 3191*x^9 - 6424*x^8 - 2323*x^7 + 5653*x^6 + 661*x^5 - 1813*x^4 - 159*x^3 + 118*x^2 + 8*x, -x^18 + 6*x^17 + 7*x^16 - 101*x^15 + 63*x^14 + 651*x^13 - 824*x^12 - 2033*x^11 + 3374*x^10 + 3191*x^9 - 6424*x^8 - 2323*x^7 + 5653*x^6 + 661*x^5 - 1813*x^4 - 159*x^3 + 118*x^2 + 8*x, -2*x^15 + 11*x^14 + 8*x^13 - 131*x^12 + 87*x^11 + 573*x^10 - 635*x^9 - 1161*x^8 + 1499*x^7 + 1099*x^6 - 1391*x^5 - 442*x^4 + 344*x^3 + 98*x^2 - 3*x, -2*x^15 + 11*x^14 + 8*x^13 - 131*x^12 + 87*x^11 + 573*x^10 - 635*x^9 - 1161*x^8 + 1499*x^7 + 1099*x^6 - 1391*x^5 - 442*x^4 + 344*x^3 + 98*x^2 - 3*x, -x^16 + 3*x^15 + 19*x^14 - 62*x^13 - 124*x^12 + 461*x^11 + 352*x^10 - 1603*x^9 - 457*x^8 + 2769*x^7 + 317*x^6 - 2220*x^5 - 264*x^4 + 605*x^3 + 148*x^2 + 4*x - 1, -x^16 + 3*x^15 + 19*x^14 - 62*x^13 - 124*x^12 + 461*x^11 + 352*x^10 - 1603*x^9 - 457*x^8 + 2769*x^7 + 317*x^6 - 2220*x^5 - 264*x^4 + 605*x^3 + 148*x^2 + 4*x - 1, x^16 - 6*x^15 - 2*x^14 + 76*x^13 - 97*x^12 - 320*x^11 + 724*x^10 + 380*x^9 - 1949*x^8 + 587*x^7 + 2084*x^6 - 1429*x^5 - 652*x^4 + 507*x^3 + 130*x^2, x^16 - 6*x^15 - 2*x^14 + 76*x^13 - 97*x^12 - 320*x^11 + 724*x^10 + 380*x^9 - 1949*x^8 + 587*x^7 + 2084*x^6 - 1429*x^5 - 652*x^4 + 507*x^3 + 130*x^2, x^16 - 6*x^15 - 3*x^14 + 77*x^13 - 73*x^12 - 360*x^11 + 561*x^10 + 709*x^9 - 1531*x^8 - 425*x^7 + 1737*x^6 - 229*x^5 - 685*x^4 + 155*x^3 + 117*x^2 + 2*x - 1, x^16 - 6*x^15 - 3*x^14 + 77*x^13 - 73*x^12 - 360*x^11 + 561*x^10 + 709*x^9 - 1531*x^8 - 425*x^7 + 1737*x^6 - 229*x^5 - 685*x^4 + 155*x^3 + 117*x^2 + 2*x - 1, -x^17 + 6*x^16 + 6*x^15 - 95*x^14 + 67*x^13 + 567*x^12 - 748*x^11 - 1608*x^10 + 2729*x^9 + 2250*x^8 - 4532*x^7 - 1509*x^6 + 3325*x^5 + 572*x^4 - 811*x^3 - 183*x^2 + 10*x + 1, -x^17 + 6*x^16 + 6*x^15 - 95*x^14 + 67*x^13 + 567*x^12 - 748*x^11 - 1608*x^10 + 2729*x^9 + 2250*x^8 - 4532*x^7 - 1509*x^6 + 3325*x^5 + 572*x^4 - 811*x^3 - 183*x^2 + 10*x + 1, -x^17 + 5*x^16 + 11*x^15 - 87*x^14 - 5*x^13 + 584*x^12 - 364*x^11 - 1936*x^10 + 1790*x^9 + 3378*x^8 - 3503*x^7 - 3057*x^6 + 2913*x^5 + 1354*x^4 - 723*x^3 - 277*x^2 - 11*x + 1, -x^17 + 5*x^16 + 11*x^15 - 87*x^14 - 5*x^13 + 584*x^12 - 364*x^11 - 1936*x^10 + 1790*x^9 + 3378*x^8 - 3503*x^7 - 3057*x^6 + 2913*x^5 + 1354*x^4 - 723*x^3 - 277*x^2 - 11*x + 1, -x^16 + 5*x^15 + 9*x^14 - 75*x^13 + 436*x^11 - 225*x^10 - 1260*x^9 + 834*x^8 + 1923*x^7 - 1110*x^6 - 1520*x^5 + 414*x^4 + 544*x^3 + 77*x^2 - 8*x - 1, -x^16 + 5*x^15 + 9*x^14 - 75*x^13 + 436*x^11 - 225*x^10 - 1260*x^9 + 834*x^8 + 1923*x^7 - 1110*x^6 - 1520*x^5 + 414*x^4 + 544*x^3 + 77*x^2 - 8*x - 1, x^15 - 7*x^14 + x^13 + 86*x^12 - 118*x^11 - 391*x^10 + 743*x^9 + 817*x^8 - 1875*x^7 - 801*x^6 + 2035*x^5 + 415*x^4 - 712*x^3 - 213*x^2 + 2*x + 1, x^15 - 7*x^14 + x^13 + 86*x^12 - 118*x^11 - 391*x^10 + 743*x^9 + 817*x^8 - 1875*x^7 - 801*x^6 + 2035*x^5 + 415*x^4 - 712*x^3 - 213*x^2 + 2*x + 1, x^17 - 5*x^16 - 11*x^15 + 87*x^14 + 5*x^13 - 584*x^12 + 369*x^11 + 1917*x^10 - 1809*x^9 - 3256*x^8 + 3508*x^7 + 2796*x^6 - 2906*x^5 - 1144*x^4 + 781*x^3 + 219*x^2 - 7*x - 1, x^17 - 5*x^16 - 11*x^15 + 87*x^14 + 5*x^13 - 584*x^12 + 369*x^11 + 1917*x^10 - 1809*x^9 - 3256*x^8 + 3508*x^7 + 2796*x^6 - 2906*x^5 - 1144*x^4 + 781*x^3 + 219*x^2 - 7*x - 1, x^15 - 4*x^14 - 10*x^13 + 56*x^12 + 15*x^11 - 290*x^10 + 144*x^9 + 668*x^8 - 613*x^7 - 639*x^6 + 806*x^5 + 183*x^4 - 286*x^3 - 65*x^2, x^15 - 4*x^14 - 10*x^13 + 56*x^12 + 15*x^11 - 290*x^10 + 144*x^9 + 668*x^8 - 613*x^7 - 639*x^6 + 806*x^5 + 183*x^4 - 286*x^3 - 65*x^2, x^17 - 5*x^16 - 12*x^15 + 91*x^14 + 18*x^13 - 654*x^12 + 339*x^11 + 2347*x^10 - 1990*x^9 - 4417*x^8 + 4423*x^7 + 4158*x^6 - 4168*x^5 - 1728*x^4 + 1194*x^3 + 369*x^2 - 10*x - 2, x^17 - 5*x^16 - 12*x^15 + 91*x^14 + 18*x^13 - 654*x^12 + 339*x^11 + 2347*x^10 - 1990*x^9 - 4417*x^8 + 4423*x^7 + 4158*x^6 - 4168*x^5 - 1728*x^4 + 1194*x^3 + 369*x^2 - 10*x - 2, x^15 - 5*x^14 - 9*x^13 + 76*x^12 - 11*x^11 - 420*x^10 + 319*x^9 + 1058*x^8 - 1109*x^7 - 1218*x^6 + 1431*x^5 + 588*x^4 - 568*x^3 - 185*x^2 + x + 1, x^15 - 5*x^14 - 9*x^13 + 76*x^12 - 11*x^11 - 420*x^10 + 319*x^9 + 1058*x^8 - 1109*x^7 - 1218*x^6 + 1431*x^5 + 588*x^4 - 568*x^3 - 185*x^2 + x + 1, x^18 - 5*x^17 - 13*x^16 + 96*x^15 + 26*x^14 - 722*x^13 + 336*x^12 + 2718*x^11 - 2131*x^10 - 5445*x^9 + 4896*x^8 + 5692*x^7 - 4687*x^6 - 2930*x^5 + 1291*x^4 + 782*x^3 + 58*x^2 - 5*x, x^18 - 5*x^17 - 13*x^16 + 96*x^15 + 26*x^14 - 722*x^13 + 336*x^12 + 2718*x^11 - 2131*x^10 - 5445*x^9 + 4896*x^8 + 5692*x^7 - 4687*x^6 - 2930*x^5 + 1291*x^4 + 782*x^3 + 58*x^2 - 5*x]>
       ]
>;

MOG[461] := 	// J_0(461)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 31, 62, 63, 93, 127, 148, 163, 197, 298, 313, 342, 385, 416, 424, 4*x + 130, 457*x + 130, 30*x + 254, 431*x + 254, 129*x + 224, 332*x + 224, 100*x + 310, 361*x + 310, 448*x + 385, 13*x + 385, 399*x + 302, 62*x + 302, 446*x + 412, 15*x + 412, 130*x + 412, 331*x + 412, 310*x + 98, 151*x + 98, 179*x + 413, 282*x + 413, 113*x + 33, 348*x + 33, 455*x + 76, 6*x + 76]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x, -x, 1, -1, -x, x, 0, 0, -1, 1, -1, 1, 0, 0, -x - 1, x + 1, -x, x, 0, 0, 1, -1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^2 - 2*x + 1, x^2 + 2*x - 1, -1, 1, 0, 0, x^2 + x - 1, -x^2 - x + 1, x^2 + 2*x - 1, -x^2 - 2*x + 1, x + 1, -x - 1, 1, -1, -x^2 - 2*x, x^2 + 2*x, 1, -1, -x^2 - 2*x, x^2 + 2*x, x + 1, -x - 1, -x - 2, x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^7 - 8*x^5 + x^4 + 18*x^3 - 2*x^2 - 12*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^6 - 2*x^5 + 5*x^4 + 9*x^3 - 5*x^2 - 8*x + 1, x^6 + 2*x^5 - 5*x^4 - 9*x^3 + 5*x^2 + 8*x - 1, -x^6 - 2*x^5 + 5*x^4 + 10*x^3 - 5*x^2 - 10*x, x^6 + 2*x^5 - 5*x^4 - 10*x^3 + 5*x^2 + 10*x, -x^6 - x^5 + 5*x^4 + 3*x^3 - 5*x^2 - x + 1, x^6 + x^5 - 5*x^4 - 3*x^3 + 5*x^2 + x - 1, -x^6 - x^5 + 6*x^4 + 4*x^3 - 7*x^2 - 4*x, x^6 + x^5 - 6*x^4 - 4*x^3 + 7*x^2 + 4*x, -x^5 - x^4 + 4*x^3 + 2*x^2 - 3*x, x^5 + x^4 - 4*x^3 - 2*x^2 + 3*x, -x^6 - x^5 + 6*x^4 + 5*x^3 - 8*x^2 - 6*x + 1, x^6 + x^5 - 6*x^4 - 5*x^3 + 8*x^2 + 6*x - 1, -x^4 - x^3 + 2*x^2 + x - 1, x^4 + x^3 - 2*x^2 - x + 1, x^2 - 1, -x^2 + 1, -x^5 + 6*x^3 - x^2 - 7*x + 1, x^5 - 6*x^3 + x^2 + 7*x - 1, -x^3 - x^2 + x, x^3 + x^2 - x, -x^3 + x, x^3 - x, -x^2 - x + 1, x^2 + x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - 3*x^25 - 41*x^24 + 126*x^23 + 726*x^22 - 2303*x^21 - 7266*x^20 + 24054*x^19 + 45144*x^18 - 158550*x^17 - 179824*x^16 + 687620*x^15 + 456511*x^14 - 1985932*x^13 - 703693*x^12 + 3785104*x^11 + 571532*x^10 - 4624305*x^9 - 111938*x^8 + 3430214*x^7 - 156745*x^6 - 1399829*x^5 + 108715*x^4 + 249906*x^3 - 21297*x^2 - 6102*x + 223,
           Coordinates        := [-x^25 + 3*x^24 + 38*x^23 - 117*x^22 - 618*x^21 + 1970*x^20 + 5618*x^19 - 18776*x^18 - 31280*x^17 + 111678*x^16 + 109868*x^15 - 431376*x^14 - 241375*x^13 + 1092906*x^12 + 315980*x^11 - 1794976*x^10 - 218256*x^9 + 1848295*x^8 + 53982*x^7 - 1120455*x^6 + 6805*x^5 + 356080*x^4 - 750*x^3 - 45692*x^2 - 1291*x + 716, x^25 - 3*x^24 - 38*x^23 + 117*x^22 + 620*x^21 - 1974*x^20 - 5688*x^19 + 18916*x^18 + 32306*x^17 - 113732*x^16 - 118054*x^15 + 447820*x^14 + 280071*x^13 - 1171330*x^12 - 426446*x^11 + 2023582*x^10 + 403384*x^9 - 2250841*x^8 - 218532*x^7 + 1528247*x^6 + 45601*x^5 - 569160*x^4 + 15222*x^3 + 91782*x^2 - 7679*x - 2144, 4*x^20 - 10*x^19 - 110*x^18 + 288*x^17 + 1190*x^16 - 3356*x^15 - 6314*x^14 + 20344*x^13 + 16032*x^12 - 68794*x^11 - 10820*x^10 + 129602*x^9 - 32246*x^8 - 128896*x^7 + 71038*x^6 + 59652*x^5 - 51616*x^4 - 8096*x^3 + 12638*x^2 - 1246*x + 204, -3*x^24 + 9*x^23 + 108*x^22 - 333*x^21 - 1648*x^20 + 5278*x^19 + 13864*x^18 - 46872*x^17 - 69956*x^16 + 256244*x^15 + 215136*x^14 - 893026*x^13 - 387713*x^12 + 1990128*x^11 + 353276*x^10 - 2776010*x^9 - 57956*x^8 + 2309759*x^7 - 149940*x^6 - 1043749*x^5 + 107965*x^4 + 204214*x^3 - 22588*x^2 - 5386*x + 223, 4*x^21 - 12*x^20 - 116*x^19 + 366*x^18 + 1358*x^17 - 4612*x^16 - 8190*x^15 + 31172*x^14 + 26658*x^13 - 123044*x^12 - 42788*x^11 + 290394*x^10 + 15572*x^9 - 404702*x^8 + 45874*x^7 + 318232*x^6 - 63290*x^5 - 128988*x^4 + 30692*x^3 + 21852*x^2 - 5262*x - 658, -4*x^20 + 14*x^19 + 108*x^18 - 428*x^17 - 1098*x^16 + 5366*x^15 + 4722*x^14 - 35602*x^13 - 2222*x^12 + 134644*x^11 - 54726*x^10 - 291648*x^9 + 203906*x^8 + 346558*x^7 - 307546*x^6 - 206970*x^5 + 206242*x^4 + 53258*x^3 - 51646*x^2 - 3400*x + 984, 2*x^23 - 6*x^22 - 68*x^21 + 212*x^20 + 966*x^19 - 3182*x^18 - 7406*x^17 + 26488*x^16 + 32866*x^15 - 134038*x^14 - 82726*x^13 + 425682*x^12 + 98772*x^11 - 847940*x^10 + 7916*x^9 + 1032968*x^8 - 158912*x^7 - 730784*x^6 + 167734*x^5 + 272950*x^4 - 70334*x^3 - 43410*x^2 + 10422*x + 1316, 2*x^21 - 10*x^20 - 54*x^19 + 314*x^18 + 560*x^17 - 4118*x^16 - 2628*x^15 + 29392*x^14 + 3626*x^13 - 124936*x^12 + 15878*x^11 + 325986*x^10 - 76320*x^9 - 520198*x^8 + 130200*x^7 + 490692*x^6 - 101736*x^5 - 252370*x^4 + 35100*x^3 + 56464*x^2 - 4116*x - 1728, 2*x^22 - 6*x^21 - 60*x^20 + 188*x^19 + 734*x^18 - 2450*x^17 - 4690*x^16 + 17264*x^15 + 16486*x^14 - 71694*x^13 - 29410*x^12 + 179594*x^11 + 13196*x^10 - 267152*x^9 + 39060*x^8 + 223564*x^7 - 67164*x^6 - 94320*x^5 + 41154*x^4 + 14974*x^3 - 8950*x^2 + 294*x - 102, x^24 - 3*x^23 - 36*x^22 + 111*x^21 + 552*x^20 - 1768*x^19 - 4698*x^18 + 15880*x^17 + 24214*x^16 - 88498*x^15 - 77228*x^14 + 317226*x^13 + 149065*x^12 - 733988*x^11 - 162868*x^10 + 1073344*x^9 + 91378*x^8 - 947619*x^7 - 32552*x^6 + 463399*x^5 + 17995*x^4 - 99740*x^3 - 5754*x^2 + 2936*x - 325, -4*x^19 + 6*x^18 + 120*x^17 - 188*x^16 - 1474*x^15 + 2418*x^14 + 9558*x^13 - 16486*x^12 - 35194*x^11 + 64256*x^10 + 73786*x^9 - 144076*x^8 - 84246*x^7 + 178066*x^6 + 48586*x^5 - 109798*x^4 - 13354*x^3 + 26550*x^2 + 1454*x - 492, -2*x^19 - 2*x^18 + 74*x^17 + 46*x^16 - 1108*x^15 - 416*x^14 + 8784*x^13 + 1854*x^12 - 40240*x^11 - 3986*x^10 + 108288*x^9 + 2708*x^8 - 164764*x^7 + 1500*x^6 + 127432*x^5 + 1750*x^4 - 40478*x^3 - 3496*x^2 + 2526*x + 1066, -6*x^20 + 16*x^19 + 178*x^18 - 480*x^17 - 2174*x^16 + 5952*x^15 + 14146*x^14 - 39500*x^13 - 53166*x^12 + 151856*x^11 + 117978*x^10 - 342084*x^9 - 155554*x^8 + 435488*x^7 + 127054*x^6 - 285172*x^5 - 68044*x^4 + 75552*x^3 + 19108*x^2 - 2396*x - 1312, 2*x^20 - 4*x^19 - 66*x^18 + 128*x^17 + 922*x^16 - 1714*x^15 - 7100*x^14 + 12414*x^13 + 32972*x^12 - 52492*x^11 - 95412*x^10 + 130628*x^9 + 172708*x^8 - 183442*x^7 - 190716*x^6 + 129678*x^5 + 117346*x^4 - 33964*x^3 - 29330*x^2 - 208*x + 210, -6*x^21 + 20*x^20 + 176*x^19 - 620*x^18 - 2092*x^17 + 7982*x^16 + 12848*x^15 - 55384*x^14 - 42606*x^13 + 225068*x^12 + 69472*x^11 - 545784*x^10 - 27634*x^9 + 772960*x^8 - 57888*x^7 - 603320*x^6 + 59884*x^5 + 233376*x^4 - 11360*x^3 - 34252*x^2 - 2586*x + 210, x^22 - 6*x^21 - 22*x^20 + 184*x^19 + 123*x^18 - 2339*x^17 + 745*x^16 + 16010*x^15 - 12883*x^14 - 64281*x^13 + 70407*x^12 + 155054*x^11 - 201153*x^10 - 221939*x^9 + 325199*x^8 + 180246*x^7 - 296214*x^6 - 75317*x^5 + 143735*x^4 + 10682*x^3 - 30290*x^2 + 1194*x + 864, x^22 - 6*x^21 - 22*x^20 + 184*x^19 + 123*x^18 - 2339*x^17 + 745*x^16 + 16010*x^15 - 12883*x^14 - 64281*x^13 + 70407*x^12 + 155054*x^11 - 201153*x^10 - 221939*x^9 + 325199*x^8 + 180246*x^7 - 296214*x^6 - 75317*x^5 + 143735*x^4 + 10682*x^3 - 30290*x^2 + 1194*x + 864, x^23 - 3*x^22 - 34*x^21 + 103*x^20 + 495*x^19 - 1518*x^18 - 4046*x^17 + 12617*x^16 + 20413*x^15 - 65297*x^14 - 65503*x^13 + 218671*x^12 + 131789*x^11 - 475119*x^10 - 156003*x^9 + 651611*x^8 + 92990*x^7 - 532424*x^6 - 13803*x^5 + 234710*x^4 - 10488*x^3 - 44423*x^2 + 3677*x + 1072, x^23 - 3*x^22 - 34*x^21 + 103*x^20 + 495*x^19 - 1518*x^18 - 4046*x^17 + 12617*x^16 + 20413*x^15 - 65297*x^14 - 65503*x^13 + 218671*x^12 + 131789*x^11 - 475119*x^10 - 156003*x^9 + 651611*x^8 + 92990*x^7 - 532424*x^6 - 13803*x^5 + 234710*x^4 - 10488*x^3 - 44423*x^2 + 3677*x + 1072, -3*x^22 + 10*x^21 + 91*x^20 - 318*x^19 - 1135*x^18 + 4231*x^17 + 7511*x^16 - 30668*x^15 - 28376*x^14 + 132284*x^13 + 61319*x^12 - 348820*x^11 - 72806*x^10 + 557522*x^9 + 48833*x^8 - 519404*x^7 - 33585*x^6 + 259274*x^5 + 28342*x^4 - 54902*x^3 - 10847*x^2 + 1303*x + 656, -3*x^22 + 10*x^21 + 91*x^20 - 318*x^19 - 1135*x^18 + 4231*x^17 + 7511*x^16 - 30668*x^15 - 28376*x^14 + 132284*x^13 + 61319*x^12 - 348820*x^11 - 72806*x^10 + 557522*x^9 + 48833*x^8 - 519404*x^7 - 33585*x^6 + 259274*x^5 + 28342*x^4 - 54902*x^3 - 10847*x^2 + 1303*x + 656, x^22 - 2*x^21 - 35*x^20 + 66*x^19 + 529*x^18 - 924*x^17 - 4546*x^16 + 7191*x^15 + 24608*x^14 - 34274*x^13 - 87683*x^12 + 103815*x^11 + 208018*x^10 - 199794*x^9 - 323587*x^8 + 234949*x^7 + 314963*x^6 - 153372*x^5 - 172218*x^4 + 44635*x^3 + 39721*x^2 - 3058*x - 539, x^22 - 2*x^21 - 35*x^20 + 66*x^19 + 529*x^18 - 924*x^17 - 4546*x^16 + 7191*x^15 + 24608*x^14 - 34274*x^13 - 87683*x^12 + 103815*x^11 + 208018*x^10 - 199794*x^9 - 323587*x^8 + 234949*x^7 + 314963*x^6 - 153372*x^5 - 172218*x^4 + 44635*x^3 + 39721*x^2 - 3058*x - 539, -3*x^23 + 9*x^22 + 103*x^21 - 316*x^20 - 1495*x^19 + 4728*x^18 + 11942*x^17 - 39395*x^16 - 57234*x^15 + 200551*x^14 + 168206*x^13 - 644295*x^12 - 297332*x^11 + 1304459*x^10 + 298406*x^9 - 1617563*x^8 - 155943*x^7 + 1158808*x^6 + 43775*x^5 - 432013*x^4 - 10169*x^3 + 65845*x^2 + 2048*x - 1074, -3*x^23 + 9*x^22 + 103*x^21 - 316*x^20 - 1495*x^19 + 4728*x^18 + 11942*x^17 - 39395*x^16 - 57234*x^15 + 200551*x^14 + 168206*x^13 - 644295*x^12 - 297332*x^11 + 1304459*x^10 + 298406*x^9 - 1617563*x^8 - 155943*x^7 + 1158808*x^6 + 43775*x^5 - 432013*x^4 - 10169*x^3 + 65845*x^2 + 2048*x - 1074, x^21 - 2*x^20 - 32*x^19 + 65*x^18 + 424*x^17 - 880*x^16 - 2996*x^15 + 6415*x^14 + 12094*x^13 - 27173*x^12 - 27586*x^11 + 67307*x^10 + 32210*x^9 - 93075*x^8 - 12976*x^7 + 64089*x^6 - 5043*x^5 - 17857*x^4 + 5574*x^3 + 1644*x^2 - 1158*x - 533, x^21 - 2*x^20 - 32*x^19 + 65*x^18 + 424*x^17 - 880*x^16 - 2996*x^15 + 6415*x^14 + 12094*x^13 - 27173*x^12 - 27586*x^11 + 67307*x^10 + 32210*x^9 - 93075*x^8 - 12976*x^7 + 64089*x^6 - 5043*x^5 - 17857*x^4 + 5574*x^3 + 1644*x^2 - 1158*x - 533, -2*x^22 + 7*x^21 + 62*x^20 - 232*x^19 - 787*x^18 + 3246*x^17 + 5211*x^16 - 25025*x^15 - 18554*x^14 + 116447*x^13 + 29062*x^12 - 336849*x^11 + 17936*x^10 + 600925*x^9 - 146820*x^8 - 631547*x^7 + 227300*x^6 + 352462*x^5 - 146476*x^4 - 83467*x^3 + 35483*x^2 + 3009*x - 879, -2*x^22 + 7*x^21 + 62*x^20 - 232*x^19 - 787*x^18 + 3246*x^17 + 5211*x^16 - 25025*x^15 - 18554*x^14 + 116447*x^13 + 29062*x^12 - 336849*x^11 + 17936*x^10 + 600925*x^9 - 146820*x^8 - 631547*x^7 + 227300*x^6 + 352462*x^5 - 146476*x^4 - 83467*x^3 + 35483*x^2 + 3009*x - 879, x^24 - 3*x^23 - 35*x^22 + 109*x^21 + 513*x^20 - 1685*x^19 - 4070*x^18 + 14469*x^17 + 18778*x^16 - 75651*x^15 - 49606*x^14 + 248688*x^13 + 64091*x^12 - 513767*x^11 - 2640*x^10 + 650060*x^9 - 98986*x^8 - 477174*x^7 + 117449*x^6 + 183635*x^5 - 55744*x^4 - 29192*x^3 + 9686*x^2 + 511*x + 51, x^24 - 3*x^23 - 35*x^22 + 109*x^21 + 513*x^20 - 1685*x^19 - 4070*x^18 + 14469*x^17 + 18778*x^16 - 75651*x^15 - 49606*x^14 + 248688*x^13 + 64091*x^12 - 513767*x^11 - 2640*x^10 + 650060*x^9 - 98986*x^8 - 477174*x^7 + 117449*x^6 + 183635*x^5 - 55744*x^4 - 29192*x^3 + 9686*x^2 + 511*x + 51, x^20 + 3*x^19 - 39*x^18 - 84*x^17 + 628*x^16 + 938*x^15 - 5414*x^14 - 5313*x^13 + 27125*x^12 + 15984*x^11 - 80396*x^10 - 23909*x^9 + 137903*x^8 + 12582*x^7 - 129290*x^6 + 5837*x^5 + 60446*x^4 - 9027*x^3 - 11549*x^2 + 2733*x + 329, x^20 + 3*x^19 - 39*x^18 - 84*x^17 + 628*x^16 + 938*x^15 - 5414*x^14 - 5313*x^13 + 27125*x^12 + 15984*x^11 - 80396*x^10 - 23909*x^9 + 137903*x^8 + 12582*x^7 - 129290*x^6 + 5837*x^5 + 60446*x^4 - 9027*x^3 - 11549*x^2 + 2733*x + 329, -2*x^21 + 7*x^20 + 56*x^19 - 217*x^18 - 609*x^17 + 2777*x^16 + 3098*x^15 - 19010*x^14 - 5890*x^13 + 75565*x^12 - 9766*x^11 - 177952*x^10 + 65060*x^9 + 245317*x^8 - 111650*x^7 - 192518*x^6 + 78828*x^5 + 81528*x^4 - 19146*x^3 - 14975*x^2 - 235*x + 246, -2*x^21 + 7*x^20 + 56*x^19 - 217*x^18 - 609*x^17 + 2777*x^16 + 3098*x^15 - 19010*x^14 - 5890*x^13 + 75565*x^12 - 9766*x^11 - 177952*x^10 + 65060*x^9 + 245317*x^8 - 111650*x^7 - 192518*x^6 + 78828*x^5 + 81528*x^4 - 19146*x^3 - 14975*x^2 - 235*x + 246, x^23 - 2*x^22 - 39*x^21 + 77*x^20 + 652*x^19 - 1265*x^18 - 6122*x^17 + 11593*x^16 + 35582*x^15 - 65094*x^14 - 133254*x^13 + 231881*x^12 + 325034*x^11 - 525582*x^10 - 510286*x^9 + 740699*x^8 + 494893*x^7 - 613828*x^6 - 269079*x^5 + 267018*x^4 + 64798*x^3 - 47861*x^2 - 2692*x + 828, x^23 - 2*x^22 - 39*x^21 + 77*x^20 + 652*x^19 - 1265*x^18 - 6122*x^17 + 11593*x^16 + 35582*x^15 - 65094*x^14 - 133254*x^13 + 231881*x^12 + 325034*x^11 - 525582*x^10 - 510286*x^9 + 740699*x^8 + 494893*x^7 - 613828*x^6 - 269079*x^5 + 267018*x^4 + 64798*x^3 - 47861*x^2 - 2692*x + 828, -2*x^20 + x^19 + 70*x^18 - 41*x^17 - 1015*x^16 + 649*x^15 + 7942*x^14 - 5280*x^13 - 36606*x^12 + 24253*x^11 + 101850*x^10 - 63960*x^9 - 168736*x^8 + 92471*x^7 + 159074*x^6 - 63964*x^5 - 78912*x^4 + 15234*x^3 + 15928*x^2 + 637*x - 105, -2*x^20 + x^19 + 70*x^18 - 41*x^17 - 1015*x^16 + 649*x^15 + 7942*x^14 - 5280*x^13 - 36606*x^12 + 24253*x^11 + 101850*x^10 - 63960*x^9 - 168736*x^8 + 92471*x^7 + 159074*x^6 - 63964*x^5 - 78912*x^4 + 15234*x^3 + 15928*x^2 + 637*x - 105]>
       ]
>;

MOG[463] := 	// J_0(463)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [51, 129, 184, 209, 266, 339, 436, 345*x + 385, 118*x + 385, 65*x + 148, 398*x + 148, 393*x + 96, 70*x + 96, 32*x + 266, 431*x + 266, 24*x + 129, 439*x + 129, 88*x + 119, 375*x + 119, 2*x + 277, 461*x + 277, 47*x + 52, 416*x + 52, 411*x + 69, 52*x + 69, 316*x + 440, 147*x + 440, 86*x + 275, 377*x + 275, 258*x + 209, 205*x + 209, 367*x + 97, 96*x + 97, 295*x + 53, 168*x + 53, 245*x + 34, 218*x + 34, 97*x + 187, 366*x + 187]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^16 + 9*x^15 + 17*x^14 - 70*x^13 - 282*x^12 + 7*x^11 + 1223*x^10 + 1073*x^9 - 2045*x^8 - 2946*x^7 + 1137*x^6 + 2847*x^5 + 88*x^4 - 954*x^3 - 47*x^2 + 118*x - 9,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^15 - 9*x^14 - 19*x^13 + 53*x^12 + 249*x^11 + 85*x^10 - 841*x^9 - 996*x^8 + 902*x^7 + 1879*x^6 - 24*x^5 - 1224*x^4 - 304*x^3 + 238*x^2 + 54*x - 11, x^15 + 9*x^14 + 19*x^13 - 53*x^12 - 249*x^11 - 85*x^10 + 841*x^9 + 996*x^8 - 902*x^7 - 1879*x^6 + 24*x^5 + 1224*x^4 + 304*x^3 - 238*x^2 - 54*x + 11, -x^14 - 8*x^13 - 12*x^12 + 57*x^11 + 179*x^10 - 44*x^9 - 626*x^8 - 371*x^7 + 746*x^6 + 695*x^5 - 281*x^4 - 319*x^3 + 52*x^2 + 42*x - 5, x^14 + 8*x^13 + 12*x^12 - 57*x^11 - 179*x^10 + 44*x^9 + 626*x^8 + 371*x^7 - 746*x^6 - 695*x^5 + 281*x^4 + 319*x^3 - 52*x^2 - 42*x + 5, -x^14 - 9*x^13 - 21*x^12 + 35*x^11 + 203*x^10 + 121*x^9 - 517*x^8 - 696*x^7 + 367*x^6 + 928*x^5 + 65*x^4 - 397*x^3 - 45*x^2 + 65*x - 4, x^14 + 9*x^13 + 21*x^12 - 35*x^11 - 203*x^10 - 121*x^9 + 517*x^8 + 696*x^7 - 367*x^6 - 928*x^5 - 65*x^4 + 397*x^3 + 45*x^2 - 65*x + 4, x^12 + 8*x^11 + 15*x^10 - 33*x^9 - 129*x^8 - 19*x^7 + 300*x^6 + 201*x^5 - 252*x^4 - 216*x^3 + 68*x^2 + 49*x - 12, -x^12 - 8*x^11 - 15*x^10 + 33*x^9 + 129*x^8 + 19*x^7 - 300*x^6 - 201*x^5 + 252*x^4 + 216*x^3 - 68*x^2 - 49*x + 12, -x^13 - 8*x^12 - 13*x^11 + 50*x^10 + 171*x^9 - x^8 - 527*x^7 - 438*x^6 + 438*x^5 + 624*x^4 + 37*x^3 - 144*x^2 - 17*x + 6, x^13 + 8*x^12 + 13*x^11 - 50*x^10 - 171*x^9 + x^8 + 527*x^7 + 438*x^6 - 438*x^5 - 624*x^4 - 37*x^3 + 144*x^2 + 17*x - 6, -x^13 - 9*x^12 - 23*x^11 + 18*x^10 + 162*x^9 + 152*x^8 - 254*x^7 - 450*x^6 + 38*x^5 + 359*x^4 + 111*x^3 - 56*x^2 - 21*x - 1, x^13 + 9*x^12 + 23*x^11 - 18*x^10 - 162*x^9 - 152*x^8 + 254*x^7 + 450*x^6 - 38*x^5 - 359*x^4 - 111*x^3 + 56*x^2 + 21*x + 1, -x^13 - 9*x^12 - 23*x^11 + 18*x^10 + 162*x^9 + 148*x^8 - 281*x^7 - 501*x^6 + 51*x^5 + 468*x^4 + 148*x^3 - 117*x^2 - 37*x + 12, x^13 + 9*x^12 + 23*x^11 - 18*x^10 - 162*x^9 - 148*x^8 + 281*x^7 + 501*x^6 - 51*x^5 - 468*x^4 - 148*x^3 + 117*x^2 + 37*x - 12, -x^12 - 7*x^11 - 8*x^10 + 43*x^9 + 99*x^8 - 67*x^7 - 308*x^6 - 71*x^5 + 318*x^4 + 175*x^3 - 69*x^2 - 36*x + 5, x^12 + 7*x^11 + 8*x^10 - 43*x^9 - 99*x^8 + 67*x^7 + 308*x^6 + 71*x^5 - 318*x^4 - 175*x^3 + 69*x^2 + 36*x - 5, -x^12 - 9*x^11 - 25*x^10 + 2*x^9 + 126*x^8 + 177*x^7 - 56*x^6 - 259*x^5 - 103*x^4 + 51*x^3 + 3*x^2 - 10*x + 8, x^12 + 9*x^11 + 25*x^10 - 2*x^9 - 126*x^8 - 177*x^7 + 56*x^6 + 259*x^5 + 103*x^4 - 51*x^3 - 3*x^2 + 10*x - 8, -x^12 - 8*x^11 - 16*x^10 + 29*x^9 + 137*x^8 + 69*x^7 - 273*x^6 - 310*x^5 + 149*x^4 + 290*x^3 + 21*x^2 - 56*x - 4, x^12 + 8*x^11 + 16*x^10 - 29*x^9 - 137*x^8 - 69*x^7 + 273*x^6 + 310*x^5 - 149*x^4 - 290*x^3 - 21*x^2 + 56*x + 4, -x^12 - 9*x^11 - 26*x^10 - 6*x^9 + 107*x^8 + 176*x^7 - 16*x^6 - 259*x^5 - 169*x^4 + 64*x^3 + 76*x^2 - 4*x - 8, x^12 + 9*x^11 + 26*x^10 + 6*x^9 - 107*x^8 - 176*x^7 + 16*x^6 + 259*x^5 + 169*x^4 - 64*x^3 - 76*x^2 + 4*x + 8, -2*x^11 - 15*x^10 - 29*x^9 + 33*x^8 + 152*x^7 + 59*x^6 - 191*x^5 - 131*x^4 + 69*x^3 + 39*x^2 - 14*x - 1, 2*x^11 + 15*x^10 + 29*x^9 - 33*x^8 - 152*x^7 - 59*x^6 + 191*x^5 + 131*x^4 - 69*x^3 - 39*x^2 + 14*x + 1, -x^11 - 7*x^10 - 11*x^9 + 24*x^8 + 78*x^7 + 21*x^6 - 98*x^5 - 63*x^4 + 23*x^3 + 5*x^2 - 7*x + 4, x^11 + 7*x^10 + 11*x^9 - 24*x^8 - 78*x^7 - 21*x^6 + 98*x^5 + 63*x^4 - 23*x^3 - 5*x^2 + 7*x - 4, -x^11 - 9*x^10 - 25*x^9 + x^8 + 120*x^7 + 170*x^6 - 43*x^5 - 245*x^4 - 131*x^3 + 41*x^2 + 36*x - 3, x^11 + 9*x^10 + 25*x^9 - x^8 - 120*x^7 - 170*x^6 + 43*x^5 + 245*x^4 + 131*x^3 - 41*x^2 - 36*x + 3, -x^11 - 5*x^10 + 4*x^9 + 54*x^8 + 50*x^7 - 133*x^6 - 199*x^5 + 80*x^4 + 200*x^3 + 21*x^2 - 39*x - 3, x^11 + 5*x^10 - 4*x^9 - 54*x^8 - 50*x^7 + 133*x^6 + 199*x^5 - 80*x^4 - 200*x^3 - 21*x^2 + 39*x + 3, -x^11 - 9*x^10 - 26*x^9 - 5*x^8 + 113*x^7 + 183*x^6 - 29*x^5 - 273*x^4 - 141*x^3 + 74*x^2 + 43*x - 11, x^11 + 9*x^10 + 26*x^9 + 5*x^8 - 113*x^7 - 183*x^6 + 29*x^5 + 273*x^4 + 141*x^3 - 74*x^2 - 43*x + 11]>,
         rec<Eigen |
           DefiningPolynomial := x^22 - 8*x^21 - x^20 + 161*x^19 - 281*x^18 - 1216*x^17 + 3523*x^16 + 3859*x^15 - 19383*x^14 - 1030*x^13 + 56835*x^12 - 26406*x^11 - 90387*x^10 + 71356*x^9 + 71796*x^8 - 76057*x^7 - 22452*x^6 + 32959*x^5 + 1404*x^4 - 4772*x^3 - 174*x^2 + 237*x + 25,
           Coordinates        := [-x^21 + 8*x^20 - 2*x^19 - 136*x^18 + 261*x^17 + 860*x^16 - 2648*x^15 - 2214*x^14 + 12255*x^13 - 16*x^12 - 30718*x^11 + 12327*x^10 + 43027*x^9 - 26215*x^8 - 32732*x^7 + 22755*x^6 + 12481*x^5 - 8058*x^4 - 2162*x^3 + 769*x^2 + 180*x + 2, x^21 - 7*x^20 - 6*x^19 + 140*x^18 - 141*x^17 - 1113*x^16 + 2028*x^15 + 4364*x^14 - 11333*x^13 - 7933*x^12 + 33172*x^11 + 1605*x^10 - 52752*x^9 + 16594*x^8 + 42351*x^7 - 22975*x^6 - 13718*x^5 + 9887*x^4 + 878*x^3 - 1047*x^2 - 11*x + 24, x^20 - 8*x^19 + 4*x^18 + 120*x^17 - 251*x^16 - 636*x^15 + 2160*x^14 + 1142*x^13 - 8437*x^12 + 1552*x^11 + 17356*x^10 - 9285*x^9 - 19133*x^8 + 14087*x^7 + 10812*x^6 - 9309*x^5 - 2913*x^4 + 2626*x^3 + 370*x^2 - 211*x - 32, x^19 - 8*x^18 + 6*x^17 + 104*x^16 - 237*x^15 - 444*x^14 + 1706*x^13 + 400*x^12 - 5431*x^11 + 2038*x^10 + 8468*x^9 - 5861*x^8 - 6105*x^7 + 5689*x^6 + 1484*x^5 - 2141*x^4 + 113*x^3 + 262*x^2 - 28*x - 9, x^20 - 7*x^19 - 4*x^18 + 124*x^17 - 131*x^16 - 887*x^15 + 1526*x^14 + 3288*x^13 - 7293*x^12 - 6713*x^11 + 18674*x^10 + 7275*x^9 - 26906*x^8 - 3356*x^7 + 20897*x^6 - 45*x^5 - 7500*x^4 + 221*x^3 + 840*x^2 + 9*x - 17, -x^19 + 8*x^18 - 4*x^17 - 120*x^16 + 253*x^15 + 622*x^14 - 2156*x^13 - 966*x^12 + 8119*x^11 - 2266*x^10 - 15194*x^9 + 9957*x^8 + 13311*x^7 - 12123*x^6 - 4146*x^5 + 5175*x^4 + 55*x^3 - 566*x^2 + 8*x + 15, -x^20 + 9*x^19 - 12*x^18 - 116*x^17 + 373*x^16 + 369*x^15 - 2778*x^14 + 1190*x^13 + 9085*x^12 - 10385*x^11 - 12928*x^10 + 25151*x^9 + 3354*x^8 - 25434*x^7 + 7977*x^6 + 9321*x^5 - 5120*x^4 - 621*x^3 + 574*x^2 + 7*x - 15, -x^20 + 8*x^19 - 4*x^18 - 120*x^17 + 251*x^16 + 638*x^15 - 2175*x^14 - 1118*x^13 + 8516*x^12 - 1847*x^11 - 17216*x^10 + 9995*x^9 + 17855*x^8 - 13934*x^7 - 8974*x^6 + 7790*x^5 + 2181*x^4 - 1691*x^3 - 284*x^2 + 116*x + 20, -x^20 + 8*x^19 - 4*x^18 - 120*x^17 + 251*x^16 + 638*x^15 - 2175*x^14 - 1118*x^13 + 8516*x^12 - 1847*x^11 - 17216*x^10 + 9995*x^9 + 17855*x^8 - 13934*x^7 - 8974*x^6 + 7790*x^5 + 2181*x^4 - 1691*x^3 - 284*x^2 + 116*x + 20, -x^19 + 8*x^18 - 4*x^17 - 119*x^16 + 245*x^15 + 632*x^14 - 2081*x^13 - 1179*x^12 + 7947*x^11 - 1149*x^10 - 15530*x^9 + 7388*x^8 + 15268*x^7 - 9393*x^6 - 6902*x^5 + 3997*x^4 + 1345*x^3 - 365*x^2 - 121*x - 8, -x^19 + 8*x^18 - 4*x^17 - 119*x^16 + 245*x^15 + 632*x^14 - 2081*x^13 - 1179*x^12 + 7947*x^11 - 1149*x^10 - 15530*x^9 + 7388*x^8 + 15268*x^7 - 9393*x^6 - 6902*x^5 + 3997*x^4 + 1345*x^3 - 365*x^2 - 121*x - 8, -x^19 + 8*x^18 - 6*x^17 - 103*x^16 + 228*x^15 + 464*x^14 - 1658*x^13 - 652*x^12 + 5555*x^11 - 1183*x^10 - 9642*x^9 + 4893*x^8 + 8490*x^7 - 5572*x^6 - 3398*x^5 + 2370*x^4 + 533*x^3 - 288*x^2 - 39*x + 6, -x^19 + 8*x^18 - 6*x^17 - 103*x^16 + 228*x^15 + 464*x^14 - 1658*x^13 - 652*x^12 + 5555*x^11 - 1183*x^10 - 9642*x^9 + 4893*x^8 + 8490*x^7 - 5572*x^6 - 3398*x^5 + 2370*x^4 + 533*x^3 - 288*x^2 - 39*x + 6, x^18 - 8*x^17 + 7*x^16 + 96*x^15 - 227*x^14 - 371*x^13 + 1503*x^12 + 243*x^11 - 4444*x^10 + 1712*x^9 + 6514*x^8 - 4199*x^7 - 4664*x^6 + 3584*x^5 + 1513*x^4 - 1182*x^3 - 199*x^2 + 101*x + 16, x^18 - 8*x^17 + 7*x^16 + 96*x^15 - 227*x^14 - 371*x^13 + 1503*x^12 + 243*x^11 - 4444*x^10 + 1712*x^9 + 6514*x^8 - 4199*x^7 - 4664*x^6 + 3584*x^5 + 1513*x^4 - 1182*x^3 - 199*x^2 + 101*x + 16, x^19 - 8*x^18 + 5*x^17 + 113*x^16 - 251*x^15 - 538*x^14 + 2020*x^13 + 610*x^12 - 7249*x^11 + 2835*x^10 + 12923*x^9 - 9975*x^8 - 10727*x^7 + 11465*x^6 + 3109*x^5 - 4833*x^4 - 19*x^3 + 528*x^2 - 3*x - 12, x^19 - 8*x^18 + 5*x^17 + 113*x^16 - 251*x^15 - 538*x^14 + 2020*x^13 + 610*x^12 - 7249*x^11 + 2835*x^10 + 12923*x^9 - 9975*x^8 - 10727*x^7 + 11465*x^6 + 3109*x^5 - 4833*x^4 - 19*x^3 + 528*x^2 - 3*x - 12, -x^18 + 8*x^17 - 8*x^16 - 88*x^15 + 217*x^14 + 298*x^13 - 1301*x^12 - 80*x^11 + 3456*x^10 - 1436*x^9 - 4513*x^8 + 2722*x^7 + 3017*x^6 - 1865*x^5 - 1094*x^4 + 533*x^3 + 207*x^2 - 53*x - 13, -x^18 + 8*x^17 - 8*x^16 - 88*x^15 + 217*x^14 + 298*x^13 - 1301*x^12 - 80*x^11 + 3456*x^10 - 1436*x^9 - 4513*x^8 + 2722*x^7 + 3017*x^6 - 1865*x^5 - 1094*x^4 + 533*x^3 + 207*x^2 - 53*x - 13, -x^18 + 9*x^17 - 15*x^16 - 86*x^15 + 300*x^14 + 168*x^13 - 1660*x^12 + 744*x^11 + 4118*x^10 - 3666*x^9 - 4852*x^8 + 5640*x^7 + 2559*x^6 - 3555*x^5 - 554*x^4 + 870*x^3 + 38*x^2 - 57*x - 7, -x^18 + 9*x^17 - 15*x^16 - 86*x^15 + 300*x^14 + 168*x^13 - 1660*x^12 + 744*x^11 + 4118*x^10 - 3666*x^9 - 4852*x^8 + 5640*x^7 + 2559*x^6 - 3555*x^5 - 554*x^4 + 870*x^3 + 38*x^2 - 57*x - 7, x^18 - 7*x^17 - x^16 + 104*x^15 - 138*x^14 - 597*x^13 + 1223*x^12 + 1601*x^11 - 4602*x^10 - 1720*x^9 + 8791*x^8 - 447*x^7 - 8395*x^6 + 2114*x^5 + 3484*x^4 - 1038*x^3 - 478*x^2 + 100*x + 25, x^18 - 7*x^17 - x^16 + 104*x^15 - 138*x^14 - 597*x^13 + 1223*x^12 + 1601*x^11 - 4602*x^10 - 1720*x^9 + 8791*x^8 - 447*x^7 - 8395*x^6 + 2114*x^5 + 3484*x^4 - 1038*x^3 - 478*x^2 + 100*x + 25, -x^17 + 8*x^16 - 10*x^15 - 76*x^14 + 223*x^13 + 144*x^12 - 1156*x^11 + 644*x^10 + 2341*x^9 - 2902*x^8 - 1446*x^7 + 3789*x^6 - 606*x^5 - 1819*x^4 + 678*x^3 + 305*x^2 - 87*x - 22, -x^17 + 8*x^16 - 10*x^15 - 76*x^14 + 223*x^13 + 144*x^12 - 1156*x^11 + 644*x^10 + 2341*x^9 - 2902*x^8 - 1446*x^7 + 3789*x^6 - 606*x^5 - 1819*x^4 + 678*x^3 + 305*x^2 - 87*x - 22, -x^17 + 7*x^16 - x^15 - 90*x^14 + 134*x^13 + 428*x^12 - 943*x^11 - 897*x^10 + 2788*x^9 + 731*x^8 - 4027*x^7 - 82*x^6 + 2910*x^5 - 18*x^4 - 1004*x^3 - 70*x^2 + 113*x + 16, -x^17 + 7*x^16 - x^15 - 90*x^14 + 134*x^13 + 428*x^12 - 943*x^11 - 897*x^10 + 2788*x^9 + 731*x^8 - 4027*x^7 - 82*x^6 + 2910*x^5 - 18*x^4 - 1004*x^3 - 70*x^2 + 113*x + 16, -x^17 + 10*x^16 - 24*x^15 - 69*x^14 + 369*x^13 - 107*x^12 - 1680*x^11 + 1961*x^10 + 3078*x^9 - 5767*x^8 - 1732*x^7 + 6681*x^6 - 740*x^5 - 3013*x^4 + 687*x^3 + 430*x^2 - 69*x - 22, -x^17 + 10*x^16 - 24*x^15 - 69*x^14 + 369*x^13 - 107*x^12 - 1680*x^11 + 1961*x^10 + 3078*x^9 - 5767*x^8 - 1732*x^7 + 6681*x^6 - 740*x^5 - 3013*x^4 + 687*x^3 + 430*x^2 - 69*x - 22, x^17 - 8*x^16 + 9*x^15 + 79*x^14 - 200*x^13 - 232*x^12 + 1046*x^11 + 47*x^10 - 2412*x^9 + 737*x^8 + 2779*x^7 - 956*x^6 - 1739*x^5 + 311*x^4 + 579*x^3 + 50*x^2 - 72*x - 13, x^17 - 8*x^16 + 9*x^15 + 79*x^14 - 200*x^13 - 232*x^12 + 1046*x^11 + 47*x^10 - 2412*x^9 + 737*x^8 + 2779*x^7 - 956*x^6 - 1739*x^5 + 311*x^4 + 579*x^3 + 50*x^2 - 72*x - 13, -x^16 + 6*x^15 + 2*x^14 - 72*x^13 + 79*x^12 + 302*x^11 - 552*x^10 - 460*x^9 + 1421*x^8 - 60*x^7 - 1566*x^6 + 657*x^5 + 708*x^4 - 403*x^3 - 128*x^2 + 49*x + 11, -x^16 + 6*x^15 + 2*x^14 - 72*x^13 + 79*x^12 + 302*x^11 - 552*x^10 - 460*x^9 + 1421*x^8 - 60*x^7 - 1566*x^6 + 657*x^5 + 708*x^4 - 403*x^3 - 128*x^2 + 49*x + 11, -x^16 + 6*x^15 + 4*x^14 - 82*x^13 + 66*x^12 + 422*x^11 - 563*x^10 - 1006*x^9 + 1646*x^8 + 1127*x^7 - 2057*x^6 - 611*x^5 + 1064*x^4 + 175*x^3 - 166*x^2 - 18*x + 2, -x^16 + 6*x^15 + 4*x^14 - 82*x^13 + 66*x^12 + 422*x^11 - 563*x^10 - 1006*x^9 + 1646*x^8 + 1127*x^7 - 2057*x^6 - 611*x^5 + 1064*x^4 + 175*x^3 - 166*x^2 - 18*x + 2, -x^15 + 7*x^14 - 4*x^13 - 70*x^12 + 126*x^11 + 229*x^10 - 621*x^9 - 245*x^8 + 1223*x^7 - 25*x^6 - 1063*x^5 + 108*x^4 + 401*x^3 - 24*x^2 - 44*x - 3, -x^15 + 7*x^14 - 4*x^13 - 70*x^12 + 126*x^11 + 229*x^10 - 621*x^9 - 245*x^8 + 1223*x^7 - 25*x^6 - 1063*x^5 + 108*x^4 + 401*x^3 - 24*x^2 - 44*x - 3, -x^16 + 8*x^15 - 10*x^14 - 75*x^13 + 212*x^12 + 171*x^11 - 1087*x^10 + 311*x^9 + 2383*x^8 - 1738*x^7 - 2343*x^6 + 2281*x^5 + 930*x^4 - 1019*x^3 - 157*x^2 + 107*x + 20, -x^16 + 8*x^15 - 10*x^14 - 75*x^13 + 212*x^12 + 171*x^11 - 1087*x^10 + 311*x^9 + 2383*x^8 - 1738*x^7 - 2343*x^6 + 2281*x^5 + 930*x^4 - 1019*x^3 - 157*x^2 + 107*x + 20]>
       ]
>;

MOG[467] := 	// J_0(467)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 35, 73, 170, 171, 265, 272, 291, 295, 320, 327, 341, 361, 431, 43*x + 73, 424*x + 73, 401*x + 409, 66*x + 409, 268*x + 116, 199*x + 116, 213*x + 254, 254*x + 254, 56*x + 363, 411*x + 363, 237*x + 174, 230*x + 174, 305*x + 153, 162*x + 153, 336*x + 318, 131*x + 318, 155*x + 367, 312*x + 367, 176*x + 62, 291*x + 62, 92*x + 301, 375*x + 301, 279*x + 461, 188*x + 461, 342*x + 345, 125*x + 345]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 1, -1, 0, 0, 1, -1, 2, -2, -1, 1, 1, -1, -2, 2, 1, -1, -1, 1, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^12 + 5*x^11 - 3*x^10 - 46*x^9 - 28*x^8 + 144*x^7 + 140*x^6 - 182*x^5 - 197*x^4 + 102*x^3 + 104*x^2 - 22*x - 17,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^11 + 4*x^10 - 5*x^9 - 33*x^8 - 3*x^7 + 88*x^6 + 38*x^5 - 85*x^4 - 33*x^3 + 33*x^2 + 5*x - 3, -x^11 - 4*x^10 + 5*x^9 + 33*x^8 + 3*x^7 - 88*x^6 - 38*x^5 + 85*x^4 + 33*x^3 - 33*x^2 - 5*x + 3, -x^11 - 3*x^10 + 9*x^9 + 29*x^8 - 27*x^7 - 97*x^6 + 30*x^5 + 134*x^4 - 12*x^3 - 76*x^2 + 2*x + 14, x^11 + 3*x^10 - 9*x^9 - 29*x^8 + 27*x^7 + 97*x^6 - 30*x^5 - 134*x^4 + 12*x^3 + 76*x^2 - 2*x - 14, x^10 + 4*x^9 - 4*x^8 - 29*x^7 - 5*x^6 + 67*x^5 + 30*x^4 - 57*x^3 - 23*x^2 + 17*x + 3, -x^10 - 4*x^9 + 4*x^8 + 29*x^7 + 5*x^6 - 67*x^5 - 30*x^4 + 57*x^3 + 23*x^2 - 17*x - 3, -x^10 - 3*x^9 + 7*x^8 + 23*x^7 - 15*x^6 - 56*x^5 + 10*x^4 + 47*x^3 - 3*x^2 - 11*x, x^10 + 3*x^9 - 7*x^8 - 23*x^7 + 15*x^6 + 56*x^5 - 10*x^4 - 47*x^3 + 3*x^2 + 11*x, x^9 + 4*x^8 - 2*x^7 - 21*x^6 - 8*x^5 + 28*x^4 + 10*x^3 - 16*x^2 - 2*x + 3, -x^9 - 4*x^8 + 2*x^7 + 21*x^6 + 8*x^5 - 28*x^4 - 10*x^3 + 16*x^2 + 2*x - 3, -x^9 - 3*x^8 + 7*x^7 + 23*x^6 - 15*x^5 - 56*x^4 + 10*x^3 + 47*x^2 - 3*x - 11, x^9 + 3*x^8 - 7*x^7 - 23*x^6 + 15*x^5 + 56*x^4 - 10*x^3 - 47*x^2 + 3*x + 11, -x^9 - 3*x^8 + 5*x^7 + 18*x^6 - 5*x^5 - 31*x^4 - x^3 + 18*x^2 + x - 3, x^9 + 3*x^8 - 5*x^7 - 18*x^6 + 5*x^5 + 31*x^4 + x^3 - 18*x^2 - x + 3, x^8 + 3*x^7 - 4*x^6 - 15*x^5 + 2*x^4 + 18*x^3 - 3*x^2 - 8*x + 3, -x^8 - 3*x^7 + 4*x^6 + 15*x^5 - 2*x^4 - 18*x^3 + 3*x^2 + 8*x - 3, x^8 + 5*x^7 + x^6 - 24*x^5 - 22*x^4 + 23*x^3 + 24*x^2 - 6*x - 6, -x^8 - 5*x^7 - x^6 + 24*x^5 + 22*x^4 - 23*x^3 - 24*x^2 + 6*x + 6, -x^8 - 3*x^7 + 3*x^6 + 14*x^5 + 5*x^4 - 14*x^3 - 10*x^2 + 4*x + 3, x^8 + 3*x^7 - 3*x^6 - 14*x^5 - 5*x^4 + 14*x^3 + 10*x^2 - 4*x - 3, -x^8 - 2*x^7 + 7*x^6 + 11*x^5 - 16*x^4 - 15*x^3 + 14*x^2 + 4*x - 3, x^8 + 2*x^7 - 7*x^6 - 11*x^5 + 16*x^4 + 15*x^3 - 14*x^2 - 4*x + 3, x^7 + 2*x^6 - 5*x^5 - 8*x^4 + 5*x^3 + 5*x^2 - 3*x, -x^7 - 2*x^6 + 5*x^5 + 8*x^4 - 5*x^3 - 5*x^2 + 3*x, x^6 + 2*x^5 - 5*x^4 - 8*x^3 + 5*x^2 + 5*x - 3, -x^6 - 2*x^5 + 5*x^4 + 8*x^3 - 5*x^2 - 5*x + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - 5*x^25 - 30*x^24 + 181*x^23 + 338*x^22 - 2813*x^21 - 1420*x^20 + 24571*x^19 - 4052*x^18 - 132574*x^17 + 73889*x^16 + 457016*x^15 - 370842*x^14 - 1004824*x^13 + 992642*x^12 + 1361654*x^11 - 1526411*x^10 - 1049992*x^9 + 1309411*x^8 + 383566*x^7 - 569750*x^6 - 29300*x^5 + 105328*x^4 - 5888*x^3 - 6944*x^2 + 448*x + 128,
           Coordinates        := [-x^25 + 5*x^24 + 27*x^23 - 166*x^22 - 263*x^21 + 2347*x^20 + 759*x^19 - 18446*x^18 + 5533*x^17 + 88212*x^16 - 59166*x^15 - 263886*x^14 + 242886*x^13 + 488068*x^12 - 543100*x^11 - 528854*x^10 + 688137*x^9 + 294080*x^8 - 472410*x^7 - 52080*x^6 + 157742*x^5 - 13620*x^4 - 20672*x^3 + 4064*x^2 + 544*x - 128, x^25 - 5*x^24 - 27*x^23 + 166*x^22 + 263*x^21 - 2349*x^20 - 747*x^19 + 18478*x^18 - 5841*x^17 - 88220*x^16 + 62260*x^15 + 261188*x^14 - 258348*x^13 - 466968*x^12 + 583232*x^11 + 458356*x^10 - 738293*x^9 - 180218*x^8 + 493968*x^7 - 30508*x^6 - 154380*x^5 + 35832*x^4 + 17120*x^3 - 5888*x^2 - 128*x + 128, -6*x^20 + 32*x^19 + 94*x^18 - 738*x^17 - 252*x^16 + 6876*x^15 - 3656*x^14 - 33036*x^13 + 32514*x^12 + 86200*x^11 - 110792*x^10 - 116972*x^9 + 180788*x^8 + 71166*x^7 - 133346*x^6 - 15496*x^5 + 38320*x^4 + 720*x^3 - 4384*x^2 + 128*x + 128, -3*x^23 + 17*x^22 + 59*x^21 - 480*x^20 - 257*x^19 + 5639*x^18 - 2563*x^17 - 35760*x^16 + 34753*x^15 + 132572*x^14 - 175428*x^13 - 289112*x^12 + 473902*x^11 + 347894*x^10 - 719292*x^9 - 180560*x^8 + 587503*x^7 - 20878*x^6 - 226850*x^5 + 52056*x^4 + 29688*x^3 - 10400*x^2 - 320*x + 256, 2*x^20 - 16*x^19 - 2*x^18 + 314*x^17 - 532*x^16 - 2278*x^15 + 6396*x^14 + 6574*x^13 - 32848*x^12 + 1358*x^11 + 85164*x^10 - 51200*x^9 - 105856*x^8 + 107808*x^7 + 44780*x^6 - 76968*x^5 + 5120*x^4 + 15312*x^3 - 3088*x^2 - 608*x + 128, -6*x^21 + 30*x^20 + 116*x^19 - 756*x^18 - 700*x^17 + 7878*x^16 - 186*x^15 - 43924*x^14 + 20612*x^13 + 141428*x^12 - 99904*x^11 - 263844*x^10 + 219364*x^9 + 268746*x^8 - 238494*x^7 - 126122*x^6 + 116942*x^5 + 14404*x^4 - 20408*x^3 + 1072*x^2 + 832*x - 64, x^24 - 5*x^23 - 25*x^22 + 156*x^21 + 217*x^20 - 2053*x^19 - 411*x^18 + 14810*x^17 - 5717*x^16 - 63620*x^15 + 46530*x^14 + 165024*x^13 - 158444*x^12 - 248422*x^11 + 282292*x^10 + 191406*x^9 - 257063*x^8 - 46820*x^7 + 101488*x^6 - 14956*x^5 - 9404*x^4 + 3192*x^3 - 560*x^2 + 256*x - 64, 2*x^19 - 14*x^18 - 4*x^17 + 228*x^16 - 328*x^15 - 1296*x^14 + 3122*x^13 + 2646*x^12 - 11310*x^11 + 890*x^10 + 17432*x^9 - 7866*x^8 - 9160*x^7 + 2904*x^6 + 2302*x^5 + 2740*x^4 - 2256*x^3 - 448*x^2 + 480*x - 64, -3*x^24 + 15*x^23 + 75*x^22 - 466*x^21 - 661*x^20 + 6125*x^19 + 1481*x^18 - 44362*x^17 + 14723*x^16 + 193130*x^15 - 127956*x^14 - 516756*x^13 + 449542*x^12 + 832800*x^11 - 838274*x^10 - 755912*x^9 + 837001*x^8 + 331486*x^7 - 412008*x^6 - 42920*x^5 + 84656*x^4 - 1824*x^3 - 6400*x^2 + 320*x + 128, x^24 - 5*x^23 - 25*x^22 + 150*x^21 + 249*x^20 - 1945*x^19 - 1233*x^18 + 14434*x^17 + 2761*x^16 - 68190*x^15 + 1702*x^14 + 213716*x^13 - 30704*x^12 - 442608*x^11 + 98326*x^10 + 577338*x^9 - 162941*x^8 - 429716*x^7 + 141604*x^6 + 154650*x^5 - 59404*x^4 - 19136*x^3 + 8544*x^2 + 192*x - 192, 2*x^18 - 12*x^17 - 16*x^16 + 212*x^15 - 116*x^14 - 1412*x^13 + 1710*x^12 + 4356*x^11 - 6954*x^10 - 6064*x^9 + 11368*x^8 + 3502*x^7 - 5658*x^6 - 2754*x^5 - 452*x^4 + 2288*x^3 + 32*x^2 - 416*x + 64, x^24 - 5*x^23 - 25*x^22 + 158*x^21 + 207*x^20 - 2095*x^19 - 145*x^18 + 15110*x^17 - 8673*x^16 - 64018*x^15 + 64262*x^14 + 159116*x^13 - 220262*x^12 - 212268*x^11 + 407500*x^10 + 101030*x^9 - 395439*x^8 + 62462*x^7 + 172278*x^6 - 74562*x^5 - 19400*x^4 + 15944*x^3 - 1168*x^2 - 768*x + 128, -6*x^19 + 20*x^18 + 134*x^17 - 470*x^16 - 1192*x^15 + 4492*x^14 + 5328*x^13 - 22380*x^12 - 12246*x^11 + 61708*x^10 + 12624*x^9 - 91724*x^8 - 2660*x^7 + 65846*x^6 - 1654*x^5 - 18804*x^4 + 712*x^3 + 2144*x^2 - 96*x - 64, -3*x^23 + 15*x^22 + 69*x^21 - 436*x^20 - 539*x^19 + 5337*x^18 + 687*x^17 - 35746*x^16 + 14789*x^15 + 142330*x^14 - 103688*x^13 - 342292*x^12 + 317124*x^11 + 482756*x^10 - 508118*x^9 - 370194*x^8 + 417719*x^7 + 134198*x^6 - 161720*x^5 - 13020*x^4 + 25928*x^3 - 1472*x^2 - 1184*x + 128, x^20 - 7*x^19 - 4*x^18 + 126*x^17 - 148*x^16 - 860*x^15 + 1677*x^14 + 2735*x^13 - 7365*x^12 - 3911*x^11 + 15670*x^10 + 2131*x^9 - 15948*x^8 - 2050*x^7 + 6809*x^6 + 4124*x^5 - 676*x^4 - 2512*x^3 + 208*x^2 + 384*x - 64, x^20 - 7*x^19 - 4*x^18 + 126*x^17 - 148*x^16 - 860*x^15 + 1677*x^14 + 2735*x^13 - 7365*x^12 - 3911*x^11 + 15670*x^10 + 2131*x^9 - 15948*x^8 - 2050*x^7 + 6809*x^6 + 4124*x^5 - 676*x^4 - 2512*x^3 + 208*x^2 + 384*x - 64, -2*x^20 + 11*x^19 + 30*x^18 - 247*x^17 - 75*x^16 + 2245*x^15 - 1084*x^14 - 10581*x^13 + 9021*x^12 + 27498*x^11 - 28555*x^10 - 38938*x^9 + 42306*x^8 + 29162*x^7 - 26969*x^6 - 13286*x^5 + 6252*x^4 + 4368*x^3 - 1056*x^2 - 544*x + 128, -2*x^20 + 11*x^19 + 30*x^18 - 247*x^17 - 75*x^16 + 2245*x^15 - 1084*x^14 - 10581*x^13 + 9021*x^12 + 27498*x^11 - 28555*x^10 - 38938*x^9 + 42306*x^8 + 29162*x^7 - 26969*x^6 - 13286*x^5 + 6252*x^4 + 4368*x^3 - 1056*x^2 - 544*x + 128, x^21 - 5*x^20 - 17*x^19 + 110*x^18 + 103*x^17 - 1013*x^16 - 240*x^15 + 5115*x^14 + 94*x^13 - 15578*x^12 - 518*x^11 + 29796*x^10 + 5558*x^9 - 36490*x^8 - 13193*x^7 + 28189*x^6 + 10308*x^5 - 11504*x^4 - 1904*x^3 + 1888*x^2 - 64, x^21 - 5*x^20 - 17*x^19 + 110*x^18 + 103*x^17 - 1013*x^16 - 240*x^15 + 5115*x^14 + 94*x^13 - 15578*x^12 - 518*x^11 + 29796*x^10 + 5558*x^9 - 36490*x^8 - 13193*x^7 + 28189*x^6 + 10308*x^5 - 11504*x^4 - 1904*x^3 + 1888*x^2 - 64, -2*x^21 + 12*x^20 + 26*x^19 - 273*x^18 + 46*x^17 + 2468*x^16 - 2469*x^15 - 11174*x^14 + 16867*x^13 + 25842*x^12 - 52142*x^11 - 26053*x^10 + 79113*x^9 + 2804*x^8 - 54081*x^7 + 6874*x^6 + 15414*x^5 - 1208*x^4 - 2912*x^3 + 304*x^2 + 288*x - 64, -2*x^21 + 12*x^20 + 26*x^19 - 273*x^18 + 46*x^17 + 2468*x^16 - 2469*x^15 - 11174*x^14 + 16867*x^13 + 25842*x^12 - 52142*x^11 - 26053*x^10 + 79113*x^9 + 2804*x^8 - 54081*x^7 + 6874*x^6 + 15414*x^5 - 1208*x^4 - 2912*x^3 + 304*x^2 + 288*x - 64, x^22 - 5*x^21 - 20*x^20 + 133*x^19 + 109*x^18 - 1453*x^17 + 440*x^16 + 8253*x^15 - 7979*x^14 - 24887*x^13 + 39695*x^12 + 32349*x^11 - 95276*x^10 + 12579*x^9 + 108611*x^8 - 77569*x^7 - 41281*x^6 + 61340*x^5 - 6348*x^4 - 10912*x^3 + 2880*x^2 + 160*x - 64, x^22 - 5*x^21 - 20*x^20 + 133*x^19 + 109*x^18 - 1453*x^17 + 440*x^16 + 8253*x^15 - 7979*x^14 - 24887*x^13 + 39695*x^12 + 32349*x^11 - 95276*x^10 + 12579*x^9 + 108611*x^8 - 77569*x^7 - 41281*x^6 + 61340*x^5 - 6348*x^4 - 10912*x^3 + 2880*x^2 + 160*x - 64, -3*x^22 + 15*x^21 + 61*x^20 - 394*x^19 - 397*x^18 + 4308*x^17 + 33*x^16 - 25400*x^15 + 12134*x^14 + 87232*x^13 - 66209*x^12 - 175022*x^11 + 165078*x^10 + 192859*x^9 - 209641*x^8 - 98644*x^7 + 125144*x^6 + 14950*x^5 - 29364*x^4 + 176*x^3 + 2608*x^2 - 96*x - 64, -3*x^22 + 15*x^21 + 61*x^20 - 394*x^19 - 397*x^18 + 4308*x^17 + 33*x^16 - 25400*x^15 + 12134*x^14 + 87232*x^13 - 66209*x^12 - 175022*x^11 + 165078*x^10 + 192859*x^9 - 209641*x^8 - 98644*x^7 + 125144*x^6 + 14950*x^5 - 29364*x^4 + 176*x^3 + 2608*x^2 - 96*x - 64, x^22 - 3*x^21 - 33*x^20 + 110*x^19 + 413*x^18 - 1593*x^17 - 2427*x^16 + 11981*x^15 + 5817*x^14 - 50809*x^13 + 5046*x^12 + 121471*x^11 - 57410*x^10 - 151117*x^9 + 113254*x^8 + 76356*x^7 - 82761*x^6 - 2872*x^5 + 20200*x^4 - 4240*x^3 - 1264*x^2 + 576*x - 64, x^22 - 3*x^21 - 33*x^20 + 110*x^19 + 413*x^18 - 1593*x^17 - 2427*x^16 + 11981*x^15 + 5817*x^14 - 50809*x^13 + 5046*x^12 + 121471*x^11 - 57410*x^10 - 151117*x^9 + 113254*x^8 + 76356*x^7 - 82761*x^6 - 2872*x^5 + 20200*x^4 - 4240*x^3 - 1264*x^2 + 576*x - 64, 2*x^21 - 10*x^20 - 42*x^19 + 271*x^18 + 275*x^17 - 3034*x^16 + 126*x^15 + 18080*x^14 - 10351*x^13 - 61346*x^12 + 55712*x^11 + 116258*x^10 - 137562*x^9 - 107778*x^8 + 168152*x^7 + 25375*x^6 - 89144*x^5 + 16912*x^4 + 13624*x^3 - 4800*x^2 - 96*x + 128, 2*x^21 - 10*x^20 - 42*x^19 + 271*x^18 + 275*x^17 - 3034*x^16 + 126*x^15 + 18080*x^14 - 10351*x^13 - 61346*x^12 + 55712*x^11 + 116258*x^10 - 137562*x^9 - 107778*x^8 + 168152*x^7 + 25375*x^6 - 89144*x^5 + 16912*x^4 + 13624*x^3 - 4800*x^2 - 96*x + 128, x^23 - 5*x^22 - 23*x^21 + 148*x^20 + 168*x^19 - 1834*x^18 + 62*x^17 + 12300*x^16 - 7865*x^15 - 48082*x^14 + 49952*x^13 + 109273*x^12 - 150470*x^11 - 133475*x^10 + 240615*x^9 + 66699*x^8 - 196240*x^7 + 7776*x^6 + 72488*x^5 - 16320*x^4 - 8840*x^3 + 3072*x^2 + 32*x - 64, x^23 - 5*x^22 - 23*x^21 + 148*x^20 + 168*x^19 - 1834*x^18 + 62*x^17 + 12300*x^16 - 7865*x^15 - 48082*x^14 + 49952*x^13 + 109273*x^12 - 150470*x^11 - 133475*x^10 + 240615*x^9 + 66699*x^8 - 196240*x^7 + 7776*x^6 + 72488*x^5 - 16320*x^4 - 8840*x^3 + 3072*x^2 + 32*x - 64, x^22 - 3*x^21 - 29*x^20 + 86*x^19 + 364*x^18 - 1057*x^17 - 2588*x^16 + 7285*x^15 + 11401*x^14 - 30864*x^13 - 31721*x^12 + 82598*x^11 + 53599*x^10 - 137286*x^9 - 47788*x^8 + 132165*x^7 + 12281*x^6 - 62704*x^5 + 6912*x^4 + 10792*x^3 - 2288*x^2 - 480*x + 128, x^22 - 3*x^21 - 29*x^20 + 86*x^19 + 364*x^18 - 1057*x^17 - 2588*x^16 + 7285*x^15 + 11401*x^14 - 30864*x^13 - 31721*x^12 + 82598*x^11 + 53599*x^10 - 137286*x^9 - 47788*x^8 + 132165*x^7 + 12281*x^6 - 62704*x^5 + 6912*x^4 + 10792*x^3 - 2288*x^2 - 480*x + 128, x^23 - 4*x^22 - 28*x^21 + 127*x^20 + 301*x^19 - 1684*x^18 - 1416*x^17 + 12101*x^16 + 1001*x^15 - 51036*x^14 + 19043*x^13 + 127350*x^12 - 87866*x^11 - 178663*x^10 + 171427*x^9 + 121340*x^8 - 160845*x^7 - 22027*x^6 + 67490*x^5 - 9944*x^4 - 9144*x^3 + 2560*x^2 + 128*x - 64, x^23 - 4*x^22 - 28*x^21 + 127*x^20 + 301*x^19 - 1684*x^18 - 1416*x^17 + 12101*x^16 + 1001*x^15 - 51036*x^14 + 19043*x^13 + 127350*x^12 - 87866*x^11 - 178663*x^10 + 171427*x^9 + 121340*x^8 - 160845*x^7 - 22027*x^6 + 67490*x^5 - 9944*x^4 - 9144*x^3 + 2560*x^2 + 128*x - 64, x^22 - 7*x^21 - 12*x^20 + 180*x^19 - 105*x^18 - 1856*x^17 + 2720*x^16 + 9701*x^15 - 20452*x^14 - 26108*x^13 + 77363*x^12 + 28197*x^11 - 158544*x^10 + 17205*x^9 + 167319*x^8 - 65208*x^7 - 73238*x^6 + 44716*x^5 + 3060*x^4 - 7512*x^3 + 1824*x^2 + 64*x - 64, x^22 - 7*x^21 - 12*x^20 + 180*x^19 - 105*x^18 - 1856*x^17 + 2720*x^16 + 9701*x^15 - 20452*x^14 - 26108*x^13 + 77363*x^12 + 28197*x^11 - 158544*x^10 + 17205*x^9 + 167319*x^8 - 65208*x^7 - 73238*x^6 + 44716*x^5 + 3060*x^4 - 7512*x^3 + 1824*x^2 + 64*x - 64, x^23 - 8*x^22 - 7*x^21 + 202*x^20 - 243*x^19 - 2022*x^18 + 4301*x^17 + 10015*x^16 - 30279*x^15 - 23736*x^14 + 113822*x^13 + 12180*x^12 - 242453*x^11 + 59491*x^10 + 287676*x^9 - 124749*x^8 - 176182*x^7 + 92579*x^6 + 47488*x^5 - 27484*x^4 - 4288*x^3 + 3040*x^2 - 32*x - 64, x^23 - 8*x^22 - 7*x^21 + 202*x^20 - 243*x^19 - 2022*x^18 + 4301*x^17 + 10015*x^16 - 30279*x^15 - 23736*x^14 + 113822*x^13 + 12180*x^12 - 242453*x^11 + 59491*x^10 + 287676*x^9 - 124749*x^8 - 176182*x^7 + 92579*x^6 + 47488*x^5 - 27484*x^4 - 4288*x^3 + 3040*x^2 - 32*x - 64]>
       ]
>;

MOG[479] := 	// J_0(479)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 7, 24, 37, 70, 96, 98, 103, 117, 128, 266, 272, 283, 291, 311, 336, 352, 360, 365, 376, 391, 398, 438, 447, 457, 460*x + 268, 19*x + 268, 365*x + 418, 114*x + 418, 465*x + 106, 14*x + 106, 102*x + 365, 377*x + 365, 16*x + 55, 463*x + 55, 125*x + 125, 354*x + 125, 19*x + 57, 460*x + 57, 217*x + 68, 262*x + 68]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^8 + 2*x^7 - 6*x^6 - 11*x^5 + 10*x^4 + 17*x^3 - 4*x^2 - 7*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^7 - 2*x^6 + 5*x^5 + 9*x^4 - 6*x^3 - 9*x^2 + 2*x + 1, x^7 + 2*x^6 - 5*x^5 - 9*x^4 + 6*x^3 + 9*x^2 - 2*x - 1, -x^6 - 2*x^5 + 4*x^4 + 8*x^3 - 2*x^2 - 6*x - 1, x^6 + 2*x^5 - 4*x^4 - 8*x^3 + 2*x^2 + 6*x + 1, x^2 + x, -x^2 - x, -x^5 - x^4 + 4*x^3 + 3*x^2 - 3*x - 1, x^5 + x^4 - 4*x^3 - 3*x^2 + 3*x + 1, x + 1, -x - 1, x^3 + x^2 - x - 1, -x^3 - x^2 + x + 1, -x^4 - x^3 + 2*x^2 + 2*x, x^4 + x^3 - 2*x^2 - 2*x, x^3 - 2*x, -x^3 + 2*x]>,
         rec<Eigen |
           DefiningPolynomial := x^32 - 3*x^31 - 49*x^30 + 150*x^29 + 1068*x^28 - 3349*x^27 - 13663*x^26 + 44102*x^25 + 114017*x^24 - 381227*x^23 - 652363*x^22 + 2278423*x^21 + 2617329*x^20 - 9659993*x^19 - 7391907*x^18 + 29333039*x^17 + 14485613*x^16 - 63589225*x^15 - 18892591*x^14 + 96842403*x^13 + 14744217*x^12 - 100301909*x^11 - 4507611*x^10 + 66698107*x^9 - 2210691*x^8 - 25684834*x^7 + 2153748*x^6 + 4689118*x^5 - 470371*x^4 - 268239*x^3 + 38414*x^2 - 242*x - 7,
           Coordinates        := [-x^31 + 3*x^30 + 46*x^29 - 141*x^28 - 936*x^27 + 2944*x^26 + 11107*x^25 - 36041*x^24 - 85338*x^23 + 287642*x^22 + 445746*x^21 - 1574573*x^20 - 1616850*x^19 + 6057633*x^18 + 4083125*x^17 - 16506754*x^16 - 7063935*x^15 + 31681552*x^14 + 8002380*x^13 - 41992992*x^12 - 5274525*x^11 + 36987010*x^10 + 1191738*x^9 - 20204102*x^8 + 742012*x^7 + 6018158*x^6 - 496207*x^5 - 747304*x^4 + 62657*x^3 + 24594*x^2 - 1895*x - 20, x^31 - 3*x^30 - 46*x^29 + 141*x^28 + 936*x^27 - 2942*x^26 - 11109*x^25 + 35953*x^24 + 85439*x^23 - 286003*x^22 - 447794*x^21 + 1557573*x^20 + 1639219*x^19 - 5949017*x^18 - 4230155*x^17 + 16060572*x^16 + 7675093*x^15 - 30490404*x^14 - 9638694*x^13 + 39964843*x^12 + 8083020*x^11 - 34919280*x^10 - 4195220*x^9 + 19144050*x^8 + 1138575*x^7 - 5918758*x^6 - 103546*x^5 + 839862*x^4 - 2259*x^3 - 39756*x^2 + 3949*x, -3*x^28 + 9*x^27 + 122*x^26 - 376*x^25 - 2153*x^24 + 6862*x^23 + 21643*x^22 - 71963*x^21 - 136812*x^20 + 480211*x^19 + 566593*x^18 - 2134013*x^17 - 1552604*x^16 + 6425557*x^15 + 2769590*x^14 - 13077176*x^13 - 3047956*x^12 + 17602024*x^11 + 1785053*x^10 - 14943337*x^9 - 254029*x^8 + 7302233*x^7 - 215462*x^6 - 1705674*x^5 + 60372*x^4 + 123490*x^3 + 667*x^2 - 3102*x + 27, x^29 - 3*x^28 - 42*x^27 + 129*x^26 + 774*x^25 - 2447*x^24 - 8244*x^23 + 27017*x^22 + 56262*x^21 - 192957*x^20 - 257540*x^19 + 937120*x^18 + 802406*x^17 - 3165641*x^16 - 1679579*x^15 + 7470322*x^14 + 2229598*x^13 - 12164596*x^12 - 1539628*x^11 + 13234273*x^10 - 62468*x^9 - 9029583*x^8 + 954162*x^7 + 3415056*x^6 - 603884*x^5 - 544431*x^4 + 109629*x^3 + 18814*x^2 - 4939*x - 22, x^27 - 3*x^26 - 42*x^25 + 129*x^24 + 756*x^23 - 2378*x^22 - 7713*x^21 + 24806*x^20 + 49780*x^19 - 162745*x^18 - 215186*x^17 + 705854*x^16 + 643271*x^15 - 2068976*x^14 - 1345362*x^13 + 4108566*x^12 + 1936697*x^11 - 5439094*x^10 - 1795405*x^9 + 4619589*x^8 + 887394*x^7 - 2339929*x^6 - 79310*x^5 + 604521*x^4 - 79373*x^3 - 44684*x^2 + 7235*x - 2, -3*x^28 + 11*x^27 + 111*x^26 - 438*x^25 - 1734*x^24 + 7592*x^23 + 14722*x^22 - 75357*x^21 - 71569*x^20 + 474419*x^19 + 177342*x^18 - 1983748*x^17 - 9901*x^16 + 5609158*x^15 - 1379903*x^14 - 10703217*x^13 + 4542415*x^12 + 13479980*x^11 - 7487206*x^10 - 10659870*x^9 + 6969908*x^8 + 4798463*x^7 - 3490667*x^6 - 1006053*x^5 + 781374*x^4 + 61392*x^3 - 50777*x^2 + 3510*x + 46, 2*x^28 - 6*x^27 - 78*x^26 + 239*x^25 + 1326*x^24 - 4171*x^23 - 12931*x^22 + 42039*x^21 + 80123*x^20 - 271713*x^19 - 330018*x^18 + 1183101*x^17 + 916882*x^16 - 3549148*x^15 - 1696475*x^14 + 7370279*x^13 + 1969586*x^12 - 10474536*x^11 - 1145920*x^10 + 9860028*x^9 - 164626*x^8 - 5727083*x^7 + 701932*x^6 + 1746411*x^5 - 356509*x^4 - 170567*x^3 + 32656*x^2 - 942*x - 70, x^27 - x^26 - 48*x^25 + 62*x^24 + 959*x^23 - 1435*x^22 - 10563*x^21 + 17476*x^20 + 71106*x^19 - 127377*x^18 - 304757*x^17 + 588225*x^16 + 834364*x^15 - 1755960*x^14 - 1403797*x^13 + 3360362*x^12 + 1270058*x^11 - 3948690*x^10 - 285697*x^9 + 2547433*x^8 - 426344*x^7 - 621822*x^6 + 258925*x^5 - 86236*x^4 + 1997*x^3 + 24276*x^2 - 2352*x + 24, x^28 - 6*x^27 - 31*x^26 + 239*x^25 + 337*x^24 - 4134*x^23 - 709*x^22 + 40800*x^21 - 17811*x^20 - 253980*x^19 + 201142*x^18 + 1040819*x^17 - 1063198*x^16 - 2843189*x^15 + 3358699*x^14 + 5117032*x^13 - 6671807*x^12 - 5819839*x^11 + 8259500*x^10 + 3789026*x^9 - 6018637*x^8 - 1064477*x^7 + 2259315*x^6 - 37416*x^5 - 325563*x^4 + 30645*x^3 + 20473*x^2 - 1594*x - 56, -3*x^27 + 10*x^26 + 107*x^25 - 369*x^24 - 1639*x^23 + 5894*x^22 + 14144*x^21 - 53586*x^20 - 75798*x^19 + 306806*x^18 + 261661*x^17 - 1155533*x^16 - 579938*x^15 + 2899856*x^14 + 777855*x^13 - 4790519*x^12 - 493029*x^11 + 4990534*x^10 - 119987*x^9 - 2966199*x^8 + 398890*x^7 + 764947*x^6 - 195191*x^5 + 10840*x^4 + 8495*x^3 - 12999*x^2 + 1181*x - 12, x^28 - 3*x^27 - 38*x^26 + 113*x^25 + 630*x^24 - 1827*x^23 - 6040*x^22 + 16551*x^21 + 37632*x^20 - 91687*x^19 - 163580*x^18 + 315030*x^17 + 523512*x^16 - 627251*x^15 - 1279523*x^14 + 481344*x^13 + 2398094*x^12 + 732890*x^11 - 3316150*x^10 - 2231343*x^9 + 3140070*x^8 + 2239985*x^7 - 1823944*x^6 - 936526*x^5 + 526380*x^4 + 104093*x^3 - 29589*x^2 - 578*x - 11, -3*x^29 + 9*x^28 + 126*x^27 - 386*x^26 - 2317*x^25 + 7278*x^24 + 24555*x^23 - 79477*x^22 - 166192*x^21 + 557595*x^20 + 752419*x^19 - 2635951*x^18 - 2319548*x^17 + 8564269*x^16 + 4852006*x^15 - 19136578*x^14 - 6691742*x^13 + 28894212*x^12 + 5624881*x^11 - 28280989*x^10 - 2218807*x^9 + 16519713*x^8 - 272476*x^7 - 4829566*x^6 + 504016*x^5 + 430836*x^4 - 75933*x^3 - 4042*x^2 + 393*x + 68, -3*x^28 + 9*x^27 + 120*x^26 - 363*x^25 - 2103*x^24 + 6394*x^23 + 21328*x^22 - 64729*x^21 - 139561*x^20 + 417278*x^19 + 623291*x^18 - 1794217*x^17 - 1962189*x^16 + 5239848*x^15 + 4424408*x^14 - 10376329*x^13 - 7129286*x^12 + 13648883*x^11 + 7977993*x^10 - 11408218*x^9 - 5797248*x^8 + 5585119*x^7 + 2410017*x^6 - 1368330*x^5 - 449179*x^4 + 112251*x^3 + 19543*x^2 - 3256*x - 39, -3*x^27 + 8*x^26 + 119*x^25 - 319*x^24 - 2053*x^23 + 5539*x^22 + 20261*x^21 - 55096*x^20 - 126665*x^19 + 347754*x^18 + 525096*x^17 - 1458652*x^16 - 1468553*x^15 + 4140605*x^14 + 2760702*x^13 - 7942515*x^12 - 3400100*x^11 + 10079880*x^10 + 2592674*x^9 - 8067196*x^8 - 1097288*x^7 + 3701175*x^6 + 210508*x^5 - 795545*x^4 - 14171*x^3 + 47221*x^2 - 3556*x - 46, x^29 - 3*x^28 - 42*x^27 + 128*x^26 + 777*x^25 - 2406*x^24 - 8364*x^23 + 26274*x^22 + 58374*x^21 - 185134*x^20 - 279039*x^19 + 884228*x^18 + 942195*x^17 - 2925796*x^16 - 2284449*x^15 + 6728756*x^14 + 3990935*x^13 - 10603196*x^12 - 4956837*x^11 + 11040278*x^10 + 4215350*x^9 - 7076835*x^8 - 2287889*x^7 + 2442492*x^6 + 714948*x^5 - 354564*x^4 - 114973*x^3 + 23092*x^2 + 1057*x + 22, 2*x^27 - 3*x^26 - 82*x^25 + 109*x^24 + 1497*x^23 - 1715*x^22 - 16081*x^21 + 15395*x^20 + 112994*x^19 - 87613*x^18 - 545008*x^17 + 333336*x^16 + 1838443*x^15 - 876341*x^14 - 4328776*x^13 + 1637706*x^12 + 6967654*x^11 - 2236824*x^10 - 7331434*x^9 + 2242897*x^8 + 4625704*x^7 - 1527723*x^6 - 1447613*x^5 + 557723*x^4 + 114978*x^3 - 53592*x^2 + 3340*x + 46, -3*x^30 + 9*x^29 + 132*x^28 - 405*x^27 - 2556*x^26 + 8061*x^25 + 28679*x^24 - 93585*x^23 - 206617*x^22 + 703850*x^21 + 1000479*x^20 - 3602360*x^19 - 3308782*x^18 + 12826285*x^17 + 7421678*x^16 - 31907673*x^15 - 10890211*x^14 + 54849411*x^13 + 9469692*x^12 - 63314899*x^11 - 3315873*x^10 + 46494005*x^9 - 1468679*x^8 - 19666676*x^7 + 1657541*x^6 + 3941814*x^5 - 407714*x^4 - 243645*x^3 + 36519*x^2 - 262*x - 7, x^28 - 3*x^27 - 40*x^26 + 125*x^25 + 684*x^24 - 2256*x^23 - 6529*x^22 + 23204*x^21 + 37986*x^20 - 150675*x^19 - 136654*x^18 + 646998*x^17 + 282463*x^16 - 1871562*x^15 - 201944*x^14 + 3645386*x^13 - 519561*x^12 - 4695668*x^11 + 1667127*x^10 + 3846489*x^9 - 2143570*x^8 - 1862561*x^7 + 1415212*x^6 + 453305*x^5 - 424269*x^4 - 26146*x^3 + 32253*x^2 - 1594*x - 56, x^27 - 6*x^26 - 33*x^25 + 243*x^24 + 409*x^23 - 4256*x^22 - 1893*x^21 + 42402*x^20 - 6017*x^19 - 266050*x^18 + 122610*x^17 + 1099675*x^16 - 702390*x^15 - 3040603*x^14 + 2215281*x^13 + 5580212*x^12 - 4215549*x^11 - 6563265*x^10 + 4796968*x^9 + 4562126*x^8 - 2987673*x^7 - 1541845*x^6 + 764793*x^5 + 113800*x^4 + 19333*x^3 + 12107*x^2 - 4545*x - 2, 2*x^28 - 9*x^27 - 69*x^26 + 353*x^25 + 970*x^24 - 6014*x^23 - 6836*x^22 + 58476*x^21 + 20847*x^20 - 358677*x^19 + 31407*x^18 + 1448056*x^17 - 521858*x^16 - 3892385*x^15 + 2074240*x^14 + 6866717*x^13 - 4404855*x^12 - 7569827*x^11 + 5366406*x^10 + 4609646*x^9 - 3493062*x^8 - 1000072*x^7 + 874691*x^6 - 216533*x^5 + 85051*x^4 + 53084*x^3 - 20930*x^2 + 1873*x + 100, x^30 - 3*x^29 - 44*x^28 + 135*x^27 + 852*x^26 - 2685*x^25 - 9558*x^24 + 31100*x^23 + 68831*x^22 - 232712*x^21 - 333158*x^20 + 1179482*x^19 + 1102640*x^18 - 4127669*x^17 - 2485554*x^16 + 9969135*x^15 + 3711065*x^14 - 16291326*x^13 - 3418161*x^12 + 17197051*x^11 + 1586555*x^10 - 10644729*x^9 - 42338*x^8 + 3037632*x^7 - 195152*x^6 - 61210*x^5 + 7518*x^4 - 59133*x^3 - 7603*x^2 + 2150*x + 67, -3*x^29 + 9*x^28 + 126*x^27 - 385*x^26 - 2325*x^25 + 7260*x^24 + 24842*x^23 - 79599*x^22 - 170567*x^21 + 563764*x^20 + 789349*x^19 - 2710663*x^18 - 2508149*x^17 + 9048320*x^16 + 5449588*x^15 - 21058667*x^14 - 7845706*x^13 + 33769865*x^12 + 6882821*x^11 - 36186036*x^10 - 2825086*x^9 + 24425917*x^8 - 296019*x^7 - 9283094*x^6 + 576891*x^5 + 1567431*x^4 - 75519*x^3 - 70002*x^2 + 5285*x - 8, -3*x^28 + 10*x^27 + 117*x^26 - 407*x^25 - 1971*x^24 + 7246*x^23 + 18782*x^22 - 74292*x^21 - 111248*x^20 + 486198*x^19 + 422641*x^18 - 2128003*x^17 - 1017068*x^16 + 6345538*x^15 + 1428879*x^14 - 12878023*x^13 - 796855*x^12 + 17431886*x^11 - 687987*x^10 - 15030955*x^9 + 1450232*x^8 + 7534877*x^7 - 938063*x^6 - 1805304*x^5 + 271409*x^4 + 116113*x^3 - 36793*x^2 + 3432*x - 20, -5*x^26 + 19*x^25 + 166*x^24 - 676*x^23 - 2319*x^22 + 10353*x^21 + 17725*x^20 - 89696*x^19 - 80490*x^18 + 486235*x^17 + 218565*x^16 - 1722841*x^15 - 325512*x^14 + 4043752*x^13 + 151913*x^12 - 6220676*x^11 + 284000*x^10 + 6032378*x^9 - 525671*x^8 - 3384965*x^7 + 371436*x^6 + 908072*x^5 - 131457*x^4 - 64556*x^3 + 18987*x^2 - 1722*x + 10, x^28 - x^27 - 44*x^26 + 40*x^25 + 857*x^24 - 692*x^23 - 9748*x^22 + 6778*x^21 + 71930*x^20 - 41274*x^19 - 361587*x^18 + 161054*x^17 + 1264303*x^16 - 397190*x^15 - 3078829*x^14 + 571098*x^13 + 5133131*x^12 - 336934*x^11 - 5630705*x^10 - 221132*x^9 + 3773086*x^8 + 469337*x^7 - 1349215*x^6 - 255938*x^5 + 203072*x^4 + 51580*x^3 - 11813*x^2 - 534*x - 11, x^29 - 3*x^28 - 40*x^27 + 121*x^26 + 704*x^25 - 2140*x^24 - 7214*x^23 + 21877*x^22 + 48102*x^21 - 143554*x^20 - 221506*x^19 + 635357*x^18 + 730945*x^17 - 1941242*x^16 - 1767459*x^15 + 4123310*x^14 + 3149181*x^13 - 6056121*x^12 - 4056787*x^11 + 6048426*x^10 + 3583404*x^9 - 3984990*x^8 - 1961886*x^7 + 1637067*x^6 + 545552*x^5 - 364145*x^4 - 41161*x^3 + 26325*x^2 - 1705*x - 23, x^29 - 3*x^28 - 40*x^27 + 121*x^26 + 704*x^25 - 2140*x^24 - 7214*x^23 + 21877*x^22 + 48102*x^21 - 143554*x^20 - 221506*x^19 + 635357*x^18 + 730945*x^17 - 1941242*x^16 - 1767459*x^15 + 4123310*x^14 + 3149181*x^13 - 6056121*x^12 - 4056787*x^11 + 6048426*x^10 + 3583404*x^9 - 3984990*x^8 - 1961886*x^7 + 1637067*x^6 + 545552*x^5 - 364145*x^4 - 41161*x^3 + 26325*x^2 - 1705*x - 23, x^30 - 3*x^29 - 44*x^28 + 136*x^27 + 851*x^26 - 2732*x^25 - 9510*x^24 + 32062*x^23 + 67869*x^22 - 244069*x^21 - 322476*x^20 + 1265747*x^19 + 1029556*x^18 - 4572399*x^17 - 2162483*x^16 + 11564843*x^15 + 2771416*x^14 - 20293117*x^13 - 1621518*x^12 + 24092789*x^11 - 637082*x^10 - 18454664*x^9 + 1695802*x^8 + 8364222*x^7 - 1031071*x^6 - 1894023*x^5 + 230297*x^4 + 143808*x^3 - 13431*x^2 - 954*x - 30, x^30 - 3*x^29 - 44*x^28 + 136*x^27 + 851*x^26 - 2732*x^25 - 9510*x^24 + 32062*x^23 + 67869*x^22 - 244069*x^21 - 322476*x^20 + 1265747*x^19 + 1029556*x^18 - 4572399*x^17 - 2162483*x^16 + 11564843*x^15 + 2771416*x^14 - 20293117*x^13 - 1621518*x^12 + 24092789*x^11 - 637082*x^10 - 18454664*x^9 + 1695802*x^8 + 8364222*x^7 - 1031071*x^6 - 1894023*x^5 + 230297*x^4 + 143808*x^3 - 13431*x^2 - 954*x - 30, -3*x^27 + 11*x^26 + 111*x^25 - 433*x^24 - 1757*x^23 + 7435*x^22 + 15503*x^21 - 73243*x^20 - 83029*x^19 + 458223*x^18 + 272980*x^17 - 1904236*x^16 - 512590*x^15 + 5341169*x^14 + 358210*x^13 - 10060491*x^12 + 547586*x^11 + 12388909*x^10 - 1486081*x^9 - 9420399*x^8 + 1353018*x^7 + 3957382*x^6 - 513035*x^5 - 727590*x^4 + 47531*x^3 + 33373*x^2 - 2662*x + 4, -3*x^27 + 11*x^26 + 111*x^25 - 433*x^24 - 1757*x^23 + 7435*x^22 + 15503*x^21 - 73243*x^20 - 83029*x^19 + 458223*x^18 + 272980*x^17 - 1904236*x^16 - 512590*x^15 + 5341169*x^14 + 358210*x^13 - 10060491*x^12 + 547586*x^11 + 12388909*x^10 - 1486081*x^9 - 9420399*x^8 + 1353018*x^7 + 3957382*x^6 - 513035*x^5 - 727590*x^4 + 47531*x^3 + 33373*x^2 - 2662*x + 4, x^29 - 2*x^28 - 45*x^27 + 89*x^26 + 895*x^25 - 1751*x^24 - 10356*x^23 + 20057*x^22 + 77216*x^21 - 148272*x^20 - 388157*x^19 + 741261*x^18 + 1336727*x^17 - 2554487*x^16 - 3136218*x^15 + 6073977*x^14 + 4867995*x^13 - 9815933*x^12 - 4663315*x^11 + 10416190*x^10 + 2307618*x^9 - 6794838*x^8 - 207760*x^7 + 2387668*x^6 - 211709*x^5 - 331909*x^4 + 29989*x^3 + 12477*x^2 - 2274*x + 23, x^29 - 2*x^28 - 45*x^27 + 89*x^26 + 895*x^25 - 1751*x^24 - 10356*x^23 + 20057*x^22 + 77216*x^21 - 148272*x^20 - 388157*x^19 + 741261*x^18 + 1336727*x^17 - 2554487*x^16 - 3136218*x^15 + 6073977*x^14 + 4867995*x^13 - 9815933*x^12 - 4663315*x^11 + 10416190*x^10 + 2307618*x^9 - 6794838*x^8 - 207760*x^7 + 2387668*x^6 - 211709*x^5 - 331909*x^4 + 29989*x^3 + 12477*x^2 - 2274*x + 23, -x^26 + 2*x^25 + 36*x^24 - 61*x^23 - 592*x^22 + 801*x^21 + 5897*x^20 - 6035*x^19 - 39266*x^18 + 29428*x^17 + 180404*x^16 - 98707*x^15 - 571709*x^14 + 231590*x^13 + 1228129*x^12 - 371713*x^11 - 1731266*x^10 + 386550*x^9 + 1515482*x^8 - 238684*x^7 - 747261*x^6 + 75608*x^5 + 172448*x^4 - 9269*x^3 - 12509*x^2 + 796*x + 28, -x^26 + 2*x^25 + 36*x^24 - 61*x^23 - 592*x^22 + 801*x^21 + 5897*x^20 - 6035*x^19 - 39266*x^18 + 29428*x^17 + 180404*x^16 - 98707*x^15 - 571709*x^14 + 231590*x^13 + 1228129*x^12 - 371713*x^11 - 1731266*x^10 + 386550*x^9 + 1515482*x^8 - 238684*x^7 - 747261*x^6 + 75608*x^5 + 172448*x^4 - 9269*x^3 - 12509*x^2 + 796*x + 28, 2*x^27 - 8*x^26 - 72*x^25 + 310*x^24 + 1102*x^23 - 5233*x^22 - 9315*x^21 + 50635*x^20 + 46980*x^19 - 311045*x^18 - 139447*x^17 + 1269195*x^16 + 200028*x^15 - 3494489*x^14 + 84248*x^13 + 6448743*x^12 - 888261*x^11 - 7732808*x^10 + 1601269*x^9 + 5634784*x^8 - 1389053*x^7 - 2175791*x^6 + 565132*x^5 + 324262*x^4 - 69609*x^3 - 9696*x^2 + 2464*x + 11, 2*x^27 - 8*x^26 - 72*x^25 + 310*x^24 + 1102*x^23 - 5233*x^22 - 9315*x^21 + 50635*x^20 + 46980*x^19 - 311045*x^18 - 139447*x^17 + 1269195*x^16 + 200028*x^15 - 3494489*x^14 + 84248*x^13 + 6448743*x^12 - 888261*x^11 - 7732808*x^10 + 1601269*x^9 + 5634784*x^8 - 1389053*x^7 - 2175791*x^6 + 565132*x^5 + 324262*x^4 - 69609*x^3 - 9696*x^2 + 2464*x + 11, x^28 - 2*x^27 - 45*x^26 + 86*x^25 + 905*x^24 - 1649*x^23 - 10710*x^22 + 18581*x^21 + 82591*x^20 - 136329*x^19 - 434090*x^18 + 681185*x^17 + 1580752*x^16 - 2354648*x^15 - 3977398*x^14 + 5609189*x^13 + 6774136*x^12 - 9013284*x^11 - 7471490*x^10 + 9352208*x^9 + 4891276*x^8 - 5768794*x^7 - 1568306*x^6 + 1773823*x^5 + 131601*x^4 - 161320*x^3 - 1320*x^2 + 3251*x + 7, x^28 - 2*x^27 - 45*x^26 + 86*x^25 + 905*x^24 - 1649*x^23 - 10710*x^22 + 18581*x^21 + 82591*x^20 - 136329*x^19 - 434090*x^18 + 681185*x^17 + 1580752*x^16 - 2354648*x^15 - 3977398*x^14 + 5609189*x^13 + 6774136*x^12 - 9013284*x^11 - 7471490*x^10 + 9352208*x^9 + 4891276*x^8 - 5768794*x^7 - 1568306*x^6 + 1773823*x^5 + 131601*x^4 - 161320*x^3 - 1320*x^2 + 3251*x + 7, -2*x^27 + 5*x^26 + 82*x^25 - 208*x^24 - 1456*x^23 + 3757*x^22 + 14690*x^21 - 38692*x^20 - 92913*x^19 + 250969*x^18 + 383472*x^17 - 1069356*x^16 - 1041208*x^15 + 3029701*x^14 + 1821893*x^13 - 5646094*x^12 - 1919914*x^11 + 6668826*x^10 + 982389*x^9 - 4608740*x^8 + 28507*x^7 + 1561946*x^6 - 221822*x^5 - 153673*x^4 + 38300*x^3 + 470*x^2 - 183*x - 34, -2*x^27 + 5*x^26 + 82*x^25 - 208*x^24 - 1456*x^23 + 3757*x^22 + 14690*x^21 - 38692*x^20 - 92913*x^19 + 250969*x^18 + 383472*x^17 - 1069356*x^16 - 1041208*x^15 + 3029701*x^14 + 1821893*x^13 - 5646094*x^12 - 1919914*x^11 + 6668826*x^10 + 982389*x^9 - 4608740*x^8 + 28507*x^7 + 1561946*x^6 - 221822*x^5 - 153673*x^4 + 38300*x^3 + 470*x^2 - 183*x - 34]>
       ]
>;

MOG[487] := 	// J_0(487)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [43, 143, 166, 191, 208, 214, 267, 18*x + 153, 469*x + 153, 309*x + 395, 178*x + 395, 170*x + 420, 317*x + 420, 294*x + 96, 193*x + 96, 172*x + 260, 315*x + 260, 374*x + 118, 113*x + 118, 79*x + 463, 408*x + 463, 292*x + 474, 195*x + 474, 158*x + 328, 329*x + 328, 139*x + 317, 348*x + 317, 285*x + 8, 202*x + 8, 140*x + 369, 347*x + 369, 385*x + 119, 102*x + 119, 428*x + 148, 59*x + 148, 95*x + 163, 392*x + 163, 2*x + 155, 485*x + 155, 463*x + 183, 24*x + 183]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 3,
           Coordinates        := [-2, 2, -2, -2, 0, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, x, x, -x - 2, -x - 2, -x - 1, -x - 1, x, x, x, x, -x - 2, -x - 2, x + 1, x + 1, -x - 2, -x - 2, -x, -x, x + 2, x + 2, 2, 2, 0, 0, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 3*x - 1,
           Coordinates        := [-1, -1, -1, -1, 2, -1, 1, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, -1, -1, -1/2*x + 1, -1/2*x + 1, 1/2*x, 1/2*x, 1/2*x - 3/2, 1/2*x - 3/2, -1/2*x + 1, -1/2*x + 1, 1/2*x, 1/2*x, -1/2*x + 1, -1/2*x + 1, 1/2*x - 3/2, 1/2*x - 3/2, -1/2*x + 1, -1/2*x + 1, -1/2*x + 1, -1/2*x + 1, -1/2*x + 1, -1/2*x + 1, -1, -1, x - 2, x - 2, 1/2, 1/2]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 5*x + 3,
           Coordinates        := [x^2 - 3*x + 2, -2*x^2 + 3*x + 1, -x^2 + 2*x - 1, x^2 - x - 1, 2*x - 3, x^2 - 2*x + 1, -x + 1, x - 1, x - 1, x^2 - 3*x + 2, x^2 - 3*x + 2, -x + 2, -x + 2, -x^2 + 2*x, -x^2 + 2*x, x - 2, x - 2, -x^2 + 3*x - 2, -x^2 + 3*x - 2, 0, 0, -x^2 + x + 1, -x^2 + x + 1, -x + 1, -x + 1, x^2 - 2*x + 1, x^2 - 2*x + 1, x^2 - 2*x, x^2 - 2*x, -x + 1, -x + 1, -1, -1, x - 1, x - 1, x - 2, x - 2, 0, 0, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 - 7*x^15 - 5*x^14 + 131*x^13 - 132*x^12 - 977*x^11 + 1666*x^10 + 3671*x^9 - 8191*x^8 - 7212*x^7 + 20571*x^6 + 6937*x^5 - 27100*x^4 - 2748*x^3 + 17207*x^2 + 360*x - 3825,
           Coordinates        := [-x^15 + 5*x^14 + 19*x^13 - 136*x^12 - 22*x^11 + 1218*x^10 - 1143*x^9 - 4682*x^8 + 7562*x^7 + 7170*x^6 - 18705*x^5 - 629*x^4 + 18928*x^3 - 6515*x^2 - 6571*x + 3480, 2*x^15 - 15*x^14 - x^13 + 251*x^12 - 394*x^11 - 1536*x^10 + 3810*x^9 + 3865*x^8 - 15142*x^7 - 1722*x^6 + 28626*x^5 - 8073*x^4 - 24013*x^3 + 11008*x^2 + 6461*x - 3405, -3*x^15 + 27*x^14 - 36*x^13 - 336*x^12 + 1029*x^11 + 1161*x^10 - 7244*x^9 + 1317*x^8 + 23010*x^7 - 16488*x^6 - 35519*x^5 + 35945*x^4 + 24551*x^3 - 29755*x^2 - 5311*x + 7305, 5*x^15 - 38*x^14 + 12*x^13 + 553*x^12 - 1028*x^11 - 2848*x^10 + 8435*x^9 + 5227*x^8 - 29830*x^7 + 3284*x^6 + 51555*x^5 - 22862*x^4 - 41359*x^3 + 24787*x^2 + 12014*x - 7995, -x^15 + 2*x^14 + 32*x^13 - 69*x^12 - 394*x^11 + 898*x^10 + 2423*x^9 - 5811*x^8 - 7910*x^7 + 20076*x^6 + 13201*x^5 - 36044*x^4 - 9801*x^3 + 29383*x^2 + 2690*x - 7725, -3*x^15 + 20*x^14 + 11*x^13 - 321*x^12 + 337*x^11 + 1973*x^10 - 3420*x^9 - 5608*x^8 + 13212*x^7 + 6526*x^6 - 23603*x^5 - 228*x^4 + 17508*x^3 - 2971*x^2 - 3484*x + 420, x^15 - 9*x^14 + 13*x^13 + 108*x^12 - 360*x^11 - 308*x^10 + 2519*x^9 - 1054*x^8 - 7928*x^7 + 7870*x^6 + 11953*x^5 - 16629*x^4 - 7784*x^3 + 14019*x^2 + 1471*x - 3480, 5*x^14 - 33*x^13 - 16*x^12 + 504*x^11 - 528*x^10 - 2942*x^9 + 4904*x^8 + 8167*x^7 - 17406*x^6 - 11014*x^5 + 29098*x^4 + 6988*x^3 - 22133*x^2 - 2242*x + 5910, 5*x^14 - 33*x^13 - 16*x^12 + 504*x^11 - 528*x^10 - 2942*x^9 + 4904*x^8 + 8167*x^7 - 17406*x^6 - 11014*x^5 + 29098*x^4 + 6988*x^3 - 22133*x^2 - 2242*x + 5910, 2*x^14 - 15*x^13 + 3*x^12 + 220*x^11 - 370*x^10 - 1167*x^9 + 2961*x^8 + 2570*x^7 - 9843*x^6 - 1621*x^5 + 15408*x^4 - 1212*x^3 - 10719*x^2 + 1223*x + 2085, 2*x^14 - 15*x^13 + 3*x^12 + 220*x^11 - 370*x^10 - 1167*x^9 + 2961*x^8 + 2570*x^7 - 9843*x^6 - 1621*x^5 + 15408*x^4 - 1212*x^3 - 10719*x^2 + 1223*x + 2085, 5*x^13 - 33*x^12 - 4*x^11 + 434*x^10 - 589*x^9 - 1964*x^8 + 4257*x^7 + 3108*x^6 - 11443*x^5 + 752*x^4 + 12238*x^3 - 4896*x^2 - 3862*x + 2085, 5*x^13 - 33*x^12 - 4*x^11 + 434*x^10 - 589*x^9 - 1964*x^8 + 4257*x^7 + 3108*x^6 - 11443*x^5 + 752*x^4 + 12238*x^3 - 4896*x^2 - 3862*x + 2085, -3*x^14 + 20*x^13 + 5*x^12 - 282*x^11 + 340*x^10 + 1491*x^9 - 2775*x^8 - 3600*x^7 + 9017*x^6 + 3691*x^5 - 13874*x^4 - 707*x^3 + 9377*x^2 - 595*x - 1875, -3*x^14 + 20*x^13 + 5*x^12 - 282*x^11 + 340*x^10 + 1491*x^9 - 2775*x^8 - 3600*x^7 + 9017*x^6 + 3691*x^5 - 13874*x^4 - 707*x^3 + 9377*x^2 - 595*x - 1875, 2*x^13 - 13*x^12 - 3*x^11 + 178*x^10 - 238*x^9 - 839*x^8 + 1861*x^7 + 1367*x^6 - 5422*x^5 + 486*x^4 + 6558*x^3 - 2752*x^2 - 2773*x + 1500, 2*x^13 - 13*x^12 - 3*x^11 + 178*x^10 - 238*x^9 - 839*x^8 + 1861*x^7 + 1367*x^6 - 5422*x^5 + 486*x^4 + 6558*x^3 - 2752*x^2 - 2773*x + 1500, 2*x^13 - 18*x^12 + 27*x^11 + 191*x^10 - 611*x^9 - 456*x^8 + 3438*x^7 - 1266*x^6 - 7796*x^5 + 6375*x^4 + 6736*x^3 - 7033*x^2 - 1603*x + 1905, 2*x^13 - 18*x^12 + 27*x^11 + 191*x^10 - 611*x^9 - 456*x^8 + 3438*x^7 - 1266*x^6 - 7796*x^5 + 6375*x^4 + 6736*x^3 - 7033*x^2 - 1603*x + 1905, 7*x^12 - 39*x^11 - 46*x^10 + 566*x^9 - 261*x^8 - 3064*x^7 + 3054*x^6 + 7529*x^5 - 9336*x^4 - 8098*x^3 + 10698*x^2 + 3050*x - 3585, 7*x^12 - 39*x^11 - 46*x^10 + 566*x^9 - 261*x^8 - 3064*x^7 + 3054*x^6 + 7529*x^5 - 9336*x^4 - 8098*x^3 + 10698*x^2 + 3050*x - 3585, 5*x^12 - 31*x^11 - 15*x^10 + 412*x^9 - 386*x^8 - 1995*x^7 + 2909*x^6 + 4237*x^5 - 7524*x^4 - 3786*x^3 + 7573*x^2 + 1277*x - 2325, 5*x^12 - 31*x^11 - 15*x^10 + 412*x^9 - 386*x^8 - 1995*x^7 + 2909*x^6 + 4237*x^5 - 7524*x^4 - 3786*x^3 + 7573*x^2 + 1277*x - 2325, -3*x^13 + 17*x^12 + 19*x^11 - 246*x^10 + 114*x^9 + 1346*x^8 - 1278*x^7 - 3455*x^6 + 3839*x^5 + 4240*x^4 - 4376*x^3 - 2345*x^2 + 1502*x + 375, -3*x^13 + 17*x^12 + 19*x^11 - 246*x^10 + 114*x^9 + 1346*x^8 - 1278*x^7 - 3455*x^6 + 3839*x^5 + 4240*x^4 - 4376*x^3 - 2345*x^2 + 1502*x + 375, -3*x^13 + 22*x^12 - 16*x^11 - 236*x^10 + 531*x^9 + 662*x^8 - 2917*x^7 + 620*x^6 + 5890*x^5 - 4719*x^4 - 3755*x^3 + 4721*x^2 + 107*x - 795, -3*x^13 + 22*x^12 - 16*x^11 - 236*x^10 + 531*x^9 + 662*x^8 - 2917*x^7 + 620*x^6 + 5890*x^5 - 4719*x^4 - 3755*x^3 + 4721*x^2 + 107*x - 795, 2*x^12 - 13*x^11 - 5*x^10 + 180*x^9 - 185*x^8 - 919*x^7 + 1427*x^6 + 2106*x^5 - 3953*x^4 - 2066*x^3 + 4395*x^2 + 575*x - 1290, 2*x^12 - 13*x^11 - 5*x^10 + 180*x^9 - 185*x^8 - 919*x^7 + 1427*x^6 + 2106*x^5 - 3953*x^4 - 2066*x^3 + 4395*x^2 + 575*x - 1290, 2*x^11 - 17*x^10 + 23*x^9 + 154*x^8 - 429*x^7 - 298*x^6 + 1813*x^5 - 585*x^4 - 2599*x^3 + 1778*x^2 + 962*x - 795, 2*x^11 - 17*x^10 + 23*x^9 + 154*x^8 - 429*x^7 - 298*x^6 + 1813*x^5 - 585*x^4 - 2599*x^3 + 1778*x^2 + 962*x - 795, -3*x^12 + 17*x^11 + 20*x^10 - 259*x^9 + 151*x^8 + 1423*x^7 - 1723*x^6 - 3290*x^5 + 5258*x^4 + 2738*x^3 - 5530*x^2 - 532*x + 1500, -3*x^12 + 17*x^11 + 20*x^10 - 259*x^9 + 151*x^8 + 1423*x^7 - 1723*x^6 - 3290*x^5 + 5258*x^4 + 2738*x^3 - 5530*x^2 - 532*x + 1500, -3*x^12 + 19*x^11 - 218*x^9 + 314*x^8 + 782*x^7 - 1861*x^6 - 614*x^5 + 3744*x^4 - 1308*x^3 - 2237*x^2 + 1403*x - 30, -3*x^12 + 19*x^11 - 218*x^9 + 314*x^8 + 782*x^7 - 1861*x^6 - 614*x^5 + 3744*x^4 - 1308*x^3 - 2237*x^2 + 1403*x - 30, -x^11 + 4*x^10 + 14*x^9 - 77*x^8 - 16*x^7 + 463*x^6 - 394*x^5 - 917*x^4 + 1445*x^3 + 35*x^2 - 964*x + 420, -x^11 + 4*x^10 + 14*x^9 - 77*x^8 - 16*x^7 + 463*x^6 - 394*x^5 - 917*x^4 + 1445*x^3 + 35*x^2 - 964*x + 420, -3*x^11 + 18*x^10 + x^9 - 194*x^8 + 274*x^7 + 627*x^6 - 1532*x^5 - 333*x^4 + 2826*x^3 - 1081*x^2 - 1540*x + 825, -3*x^11 + 18*x^10 + x^9 - 194*x^8 + 274*x^7 + 627*x^6 - 1532*x^5 - 333*x^4 + 2826*x^3 - 1081*x^2 - 1540*x + 825, -x^10 + 2*x^9 + 18*x^8 - 41*x^7 - 98*x^6 + 267*x^5 + 140*x^4 - 637*x^3 + 171*x^2 + 377*x - 210, -x^10 + 2*x^9 + 18*x^8 - 41*x^7 - 98*x^6 + 267*x^5 + 140*x^4 - 637*x^3 + 171*x^2 + 377*x - 210]>,
         rec<Eigen |
           DefiningPolynomial := x^17 + 8*x^16 + 7*x^15 - 97*x^14 - 239*x^13 + 327*x^12 + 1500*x^11 + 70*x^10 - 3964*x^9 - 2280*x^8 + 4849*x^7 + 4192*x^6 - 2492*x^5 - 2765*x^4 + 364*x^3 + 588*x^2 - 16,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, -x^16 - 7*x^15 - x^14 + 91*x^13 + 145*x^12 - 394*x^11 - 964*x^10 + 635*x^9 + 2570*x^8 - 89*x^7 - 3187*x^6 - 660*x^5 + 1739*x^4 + 463*x^3 - 322*x^2 - 52*x + 8, x^16 + 7*x^15 + x^14 - 91*x^13 - 145*x^12 + 394*x^11 + 964*x^10 - 635*x^9 - 2570*x^8 + 89*x^7 + 3187*x^6 + 660*x^5 - 1739*x^4 - 463*x^3 + 322*x^2 + 52*x - 8, x^12 + 4*x^11 - 12*x^10 - 65*x^9 + 3*x^8 + 269*x^7 + 138*x^6 - 436*x^5 - 298*x^4 + 251*x^3 + 178*x^2 - 20*x - 8, -x^12 - 4*x^11 + 12*x^10 + 65*x^9 - 3*x^8 - 269*x^7 - 138*x^6 + 436*x^5 + 298*x^4 - 251*x^3 - 178*x^2 + 20*x + 8, -x^15 - 7*x^14 - 3*x^13 + 78*x^12 + 142*x^11 - 259*x^10 - 759*x^9 + 201*x^8 + 1573*x^7 + 345*x^6 - 1413*x^5 - 563*x^4 + 505*x^3 + 214*x^2 - 44*x - 8, x^15 + 7*x^14 + 3*x^13 - 78*x^12 - 142*x^11 + 259*x^10 + 759*x^9 - 201*x^8 - 1573*x^7 - 345*x^6 + 1413*x^5 + 563*x^4 - 505*x^3 - 214*x^2 + 44*x + 8, -2*x^10 - 14*x^9 - 23*x^8 + 38*x^7 + 125*x^6 + 20*x^5 - 155*x^4 - 81*x^3 + 40*x^2 + 32*x + 8, 2*x^10 + 14*x^9 + 23*x^8 - 38*x^7 - 125*x^6 - 20*x^5 + 155*x^4 + 81*x^3 - 40*x^2 - 32*x - 8, x^13 + 5*x^12 - 6*x^11 - 61*x^10 - 28*x^9 + 238*x^8 + 221*x^7 - 371*x^6 - 424*x^5 + 205*x^4 + 269*x^3 - 22*x^2 - 32*x + 8, -x^13 - 5*x^12 + 6*x^11 + 61*x^10 + 28*x^9 - 238*x^8 - 221*x^7 + 371*x^6 + 424*x^5 - 205*x^4 - 269*x^3 + 22*x^2 + 32*x - 8, -x^12 - 6*x^11 - 4*x^10 + 31*x^9 + 31*x^8 - 83*x^7 - 65*x^6 + 126*x^5 + 46*x^4 - 91*x^3 + 2*x^2 + 24*x - 8, x^12 + 6*x^11 + 4*x^10 - 31*x^9 - 31*x^8 + 83*x^7 + 65*x^6 - 126*x^5 - 46*x^4 + 91*x^3 - 2*x^2 - 24*x + 8, -x^14 - 6*x^13 + 2*x^12 + 71*x^11 + 77*x^10 - 275*x^9 - 456*x^8 + 419*x^7 + 933*x^6 - 217*x^5 - 772*x^4 + 4*x^3 + 232*x^2 + 4*x - 16, x^14 + 6*x^13 - 2*x^12 - 71*x^11 - 77*x^10 + 275*x^9 + 456*x^8 - 419*x^7 - 933*x^6 + 217*x^5 + 772*x^4 - 4*x^3 - 232*x^2 - 4*x + 16, -x^14 - 7*x^13 - 5*x^12 + 64*x^11 + 128*x^10 - 159*x^9 - 541*x^8 + 15*x^7 + 841*x^6 + 314*x^5 - 462*x^4 - 253*x^3 + 46*x^2 + 40*x + 8, x^14 + 7*x^13 + 5*x^12 - 64*x^11 - 128*x^10 + 159*x^9 + 541*x^8 - 15*x^7 - 841*x^6 - 314*x^5 + 462*x^4 + 253*x^3 - 46*x^2 - 40*x - 8, -x^11 - 7*x^10 - 11*x^9 + 24*x^8 + 80*x^7 + 27*x^6 - 112*x^5 - 118*x^4 + 7*x^3 + 68*x^2 + 28*x, x^11 + 7*x^10 + 11*x^9 - 24*x^8 - 80*x^7 - 27*x^6 + 112*x^5 + 118*x^4 - 7*x^3 - 68*x^2 - 28*x, -x^11 - 7*x^10 - 12*x^9 + 14*x^8 + 45*x^7 - 7*x^6 - 43*x^5 + 37*x^4 + 33*x^3 - 36*x^2 - 20*x, x^11 + 7*x^10 + 12*x^9 - 14*x^8 - 45*x^7 + 7*x^6 + 43*x^5 - 37*x^4 - 33*x^3 + 36*x^2 + 20*x, -x^13 - 7*x^12 - 7*x^11 + 50*x^10 + 108*x^9 - 100*x^8 - 379*x^7 - 5*x^6 + 525*x^5 + 170*x^4 - 282*x^3 - 118*x^2 + 32*x + 8, x^13 + 7*x^12 + 7*x^11 - 50*x^10 - 108*x^9 + 100*x^8 + 379*x^7 + 5*x^6 - 525*x^5 - 170*x^4 + 282*x^3 + 118*x^2 - 32*x - 8, -x^13 - 7*x^12 - 7*x^11 + 50*x^10 + 110*x^9 - 86*x^8 - 353*x^7 - 26*x^6 + 426*x^5 + 140*x^4 - 177*x^3 - 56*x^2 + 20*x, x^13 + 7*x^12 + 7*x^11 - 50*x^10 - 110*x^9 + 86*x^8 + 353*x^7 + 26*x^6 - 426*x^5 - 140*x^4 + 177*x^3 + 56*x^2 - 20*x, -x^12 - 8*x^11 - 16*x^10 + 27*x^9 + 127*x^8 + 69*x^7 - 210*x^6 - 250*x^5 + 44*x^4 + 156*x^3 + 56*x^2 - 4*x - 8, x^12 + 8*x^11 + 16*x^10 - 27*x^9 - 127*x^8 - 69*x^7 + 210*x^6 + 250*x^5 - 44*x^4 - 156*x^3 - 56*x^2 + 4*x + 8, -x^11 - 6*x^10 - 3*x^9 + 37*x^8 + 38*x^7 - 103*x^6 - 109*x^5 + 142*x^4 + 136*x^3 - 62*x^2 - 56*x, x^11 + 6*x^10 + 3*x^9 - 37*x^8 - 38*x^7 + 103*x^6 + 109*x^5 - 142*x^4 - 136*x^3 + 62*x^2 + 56*x, -x^12 - 8*x^11 - 16*x^10 + 28*x^9 + 131*x^8 + 63*x^7 - 251*x^6 - 270*x^5 + 134*x^4 + 226*x^3 - 16*x^2 - 56*x, x^12 + 8*x^11 + 16*x^10 - 28*x^9 - 131*x^8 - 63*x^7 + 251*x^6 + 270*x^5 - 134*x^4 - 226*x^3 + 16*x^2 + 56*x, -x^12 - 6*x^11 - 2*x^10 + 46*x^9 + 61*x^8 - 110*x^7 - 205*x^6 + 76*x^5 + 241*x^4 + 41*x^3 - 82*x^2 - 36*x, x^12 + 6*x^11 + 2*x^10 - 46*x^9 - 61*x^8 + 110*x^7 + 205*x^6 - 76*x^5 - 241*x^4 - 41*x^3 + 82*x^2 + 36*x, -x^11 - 6*x^10 - 4*x^9 + 36*x^8 + 59*x^7 - 55*x^6 - 141*x^5 + 12*x^4 + 110*x^3 + 6*x^2 - 28*x, x^11 + 6*x^10 + 4*x^9 - 36*x^8 - 59*x^7 + 55*x^6 + 141*x^5 - 12*x^4 - 110*x^3 - 6*x^2 + 28*x]>
       ]
>;

MOG[491] := 	// J_0(491)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 4, 71, 129, 158, 162, 222, 243, 255, 257, 261, 266, 337, 374, 429, 444, 481, 489, 153*x + 291, 338*x + 291, 412*x + 147, 79*x + 147, 414*x + 4, 77*x + 4, 392*x + 310, 99*x + 310, 386*x + 451, 105*x + 451, 478*x + 147, 13*x + 147, 465*x + 123, 26*x + 123, 258*x + 347, 233*x + 347, 170*x + 237, 321*x + 237, 230*x, 261*x, 312*x + 106, 179*x + 106, 115*x + 367, 376*x + 367]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x + 1, x - 1, 0, 0, -1, 1, x - 1, -x + 1, -1, 1, x, -x, 0, 0, -x + 1, x - 1, 1, -1, 1, -1, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^10 + 3*x^9 - 7*x^8 - 25*x^7 + 10*x^6 + 60*x^5 + 3*x^4 - 45*x^3 - 2*x^2 + 7*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^8 - 3*x^7 + 4*x^6 + 17*x^5 + 3*x^4 - 17*x^3 - 5*x^2 + 2*x, x^8 + 3*x^7 - 4*x^6 - 17*x^5 - 3*x^4 + 17*x^3 + 5*x^2 - 2*x, -x^9 - 3*x^8 + 5*x^7 + 20*x^6 - 31*x^4 - 8*x^3 + 13*x^2 + 2*x - 1, x^9 + 3*x^8 - 5*x^7 - 20*x^6 + 31*x^4 + 8*x^3 - 13*x^2 - 2*x + 1, -x^7 - 3*x^6 + 3*x^5 + 14*x^4 + 3*x^3 - 11*x^2 - 2*x + 1, x^7 + 3*x^6 - 3*x^5 - 14*x^4 - 3*x^3 + 11*x^2 + 2*x - 1, -x^8 - 2*x^7 + 6*x^6 + 12*x^5 - 8*x^4 - 15*x^3 + 5*x^2 + 4*x - 1, x^8 + 2*x^7 - 6*x^6 - 12*x^5 + 8*x^4 + 15*x^3 - 5*x^2 - 4*x + 1, -x^6 - 3*x^5 + 6*x^3 + 3*x^2 - x, x^6 + 3*x^5 - 6*x^3 - 3*x^2 + x, -x^7 - 2*x^6 + 4*x^5 + 8*x^4 - 2*x^3 - 4*x^2 + x, x^7 + 2*x^6 - 4*x^5 - 8*x^4 + 2*x^3 + 4*x^2 - x, -2*x^5 - 5*x^4 + 4*x^2 - x, 2*x^5 + 5*x^4 - 4*x^2 + x, -x^5 - 3*x^4 + 6*x^2 + 3*x - 1, x^5 + 3*x^4 - 6*x^2 - 3*x + 1, -x^6 - 2*x^5 + 2*x^4 + 3*x^3 - 2*x^2, x^6 + 2*x^5 - 2*x^4 - 3*x^3 + 2*x^2, -x^6 - 2*x^5 + 4*x^4 + 8*x^3 - 2*x^2 - 4*x + 1, x^6 + 2*x^5 - 4*x^4 - 8*x^3 + 2*x^2 + 4*x - 1, -2*x^4 - 5*x^3 - 2*x^2 + x, 2*x^4 + 5*x^3 + 2*x^2 - x, -2*x^3 - 3*x^2 + x, 2*x^3 + 3*x^2 - x]>,
         rec<Eigen |
           DefiningPolynomial := x^29 - 49*x^27 + x^26 + 1068*x^25 - 39*x^24 - 13655*x^23 + 658*x^22 + 113723*x^21 - 6306*x^20 - 647801*x^19 + 37953*x^18 + 2578721*x^17 - 150115*x^16 - 7201417*x^15 + 398246*x^14 + 13959112*x^13 - 711934*x^12 - 18310154*x^11 + 839798*x^10 + 15574775*x^9 - 585854*x^8 - 8065060*x^7 + 132680*x^6 + 2339280*x^5 + 83968*x^4 - 350400*x^3 - 36608*x^2 + 20992*x + 3584,
           Coordinates        := [-x^28 + 46*x^26 - x^25 - 936*x^24 + 36*x^23 + 11099*x^22 - 552*x^21 - 85060*x^20 + 4696*x^19 + 441683*x^18 - 24157*x^17 - 1584506*x^16 + 76448*x^15 + 3932057*x^14 - 142466*x^13 - 6655039*x^12 + 127800*x^11 + 7453035*x^10 + 19656*x^9 - 5252758*x^8 - 162076*x^7 + 2155972*x^6 + 153048*x^5 - 455968*x^4 - 60064*x^3 + 38400*x^2 + 7680*x, x^28 - 46*x^26 + x^25 + 936*x^24 - 36*x^23 - 11097*x^22 + 552*x^21 + 84990*x^20 - 4700*x^19 - 440629*x^18 + 24275*x^17 + 1575566*x^16 - 77846*x^15 - 3885163*x^14 + 150970*x^13 + 6498337*x^12 - 155870*x^11 - 7123045*x^10 + 28738*x^9 + 4836446*x^8 + 124860*x^7 - 1872456*x^6 - 143040*x^5 + 369216*x^4 + 52032*x^3 - 28032*x^2 - 5632*x, 2*x^24 + 2*x^23 - 82*x^22 - 74*x^21 + 1452*x^20 + 1158*x^19 - 14556*x^18 - 9984*x^17 + 90978*x^16 + 51624*x^15 - 367978*x^14 - 162202*x^13 + 967840*x^12 + 293844*x^11 - 1621052*x^10 - 250260*x^9 + 1645720*x^8 - 1028*x^7 - 924716*x^6 + 120416*x^5 + 244240*x^4 - 40960*x^3 - 31168*x^2 + 4096*x + 1792, 4*x^23 - 4*x^22 - 148*x^21 + 136*x^20 + 2354*x^19 - 1932*x^18 - 21070*x^17 + 14844*x^16 + 116686*x^15 - 66578*x^14 - 414074*x^13 + 174682*x^12 + 942970*x^11 - 250746*x^10 - 1342420*x^9 + 156686*x^8 + 1129242*x^7 + 7824*x^6 - 513152*x^5 - 49008*x^4 + 109216*x^3 + 17984*x^2 - 8320*x - 1792, -6*x^24 + 232*x^22 - 8*x^21 - 3878*x^20 + 248*x^19 + 36738*x^18 - 3242*x^17 - 217314*x^16 + 23334*x^15 + 833712*x^14 - 101398*x^13 - 2086846*x^12 + 274704*x^11 + 3342870*x^10 - 461288*x^9 - 3269540*x^8 + 454242*x^7 + 1793304*x^6 - 221064*x^5 - 480160*x^4 + 29088*x^3 + 55616*x^2 + 256*x - 1792, x^27 - 44*x^25 + x^24 + 852*x^23 - 38*x^22 - 9555*x^21 + 636*x^20 + 68716*x^19 - 6190*x^18 - 331355*x^17 + 38843*x^16 + 1087762*x^15 - 163786*x^14 - 2416863*x^13 + 465752*x^12 + 3541429*x^11 - 866374*x^10 - 3254131*x^9 + 980328*x^8 + 1722108*x^7 - 586132*x^6 - 461576*x^5 + 144144*x^4 + 64128*x^3 - 13184*x^2 - 4352*x, 2*x^21 + 2*x^20 - 84*x^19 - 60*x^18 + 1394*x^17 + 750*x^16 - 12076*x^15 - 5154*x^14 + 59806*x^13 + 21544*x^12 - 172402*x^11 - 56502*x^10 + 279046*x^9 + 90528*x^8 - 228326*x^7 - 81324*x^6 + 74696*x^5 + 36368*x^4 - 5280*x^3 - 5248*x^2 - 768*x, 2*x^23 - 74*x^21 - 2*x^20 + 1182*x^19 + 36*x^18 - 10686*x^17 - 122*x^16 + 60216*x^15 - 1538*x^14 - 219518*x^13 + 15696*x^12 + 520480*x^11 - 58550*x^10 - 787394*x^9 + 102088*x^8 + 725984*x^7 - 75096*x^6 - 375448*x^5 + 10336*x^4 + 97152*x^3 + 8192*x^2 - 9600*x - 1792, 2*x^23 + 2*x^22 - 72*x^21 - 66*x^20 + 1110*x^19 + 922*x^18 - 9574*x^17 - 7112*x^16 + 50664*x^15 + 33192*x^14 - 169770*x^13 - 96906*x^12 + 358986*x^11 + 178080*x^10 - 462348*x^9 - 204984*x^8 + 334194*x^7 + 145768*x^6 - 112616*x^5 - 57632*x^4 + 10624*x^3 + 8896*x^2 + 1152*x, x^27 - 44*x^25 + x^24 + 852*x^23 - 30*x^22 - 9555*x^21 + 342*x^20 + 68746*x^19 - 1570*x^18 - 332209*x^17 - 1651*x^16 + 1097754*x^15 + 52770*x^14 - 2478943*x^13 - 260450*x^12 + 3762575*x^11 + 644146*x^10 - 3710285*x^9 - 877138*x^8 + 2247004*x^7 + 638892*x^6 - 761848*x^5 - 229520*x^4 + 118912*x^3 + 37312*x^2 - 5632*x - 1792, 2*x^24 - 74*x^22 + 6*x^21 + 1176*x^20 - 188*x^19 - 10496*x^18 + 2462*x^17 + 57776*x^16 - 17472*x^15 - 202962*x^14 + 72864*x^13 + 455892*x^12 - 180906*x^11 - 640428*x^10 + 257364*x^9 + 539178*x^8 - 188426*x^7 - 258384*x^6 + 54984*x^5 + 68256*x^4 - 1728*x^3 - 7744*x^2 - 1152*x, -4*x^23 + 2*x^22 + 150*x^21 - 80*x^20 - 2424*x^19 + 1322*x^18 + 22122*x^17 - 11832*x^16 - 125586*x^15 + 62882*x^14 + 460580*x^13 - 203794*x^12 - 1097462*x^11 + 396146*x^10 + 1665316*x^9 - 432502*x^8 - 1533292*x^7 + 224888*x^6 + 787264*x^5 - 25952*x^4 - 199552*x^3 - 17152*x^2 + 19200*x + 3584, -3*x^26 + 126*x^24 + x^23 - 2314*x^22 - 50*x^21 + 24427*x^20 + 990*x^19 - 163878*x^18 - 10428*x^17 + 729379*x^16 + 64937*x^15 - 2182036*x^14 - 248236*x^13 + 4351351*x^12 + 581690*x^11 - 5620301*x^10 - 808918*x^9 + 4462025*x^8 + 633142*x^7 - 2002112*x^6 - 275016*x^5 + 440016*x^4 + 72320*x^3 - 37376*x^2 - 7936*x, -3*x^26 + 126*x^24 - 3*x^23 - 2320*x^22 + 96*x^21 + 24635*x^20 - 1282*x^19 - 166956*x^18 + 9232*x^17 + 754779*x^16 - 38501*x^15 - 2310062*x^14 + 91500*x^13 + 4756647*x^12 - 105636*x^11 - 6416787*x^10 + 2020*x^9 + 5387161*x^8 + 138814*x^7 - 2582492*x^6 - 160224*x^5 + 615888*x^4 + 78944*x^3 - 56832*x^2 - 11520*x, 2*x^24 - 74*x^22 - 6*x^21 + 1178*x^20 + 204*x^19 - 10566*x^18 - 2910*x^17 + 58716*x^16 + 22614*x^15 - 209210*x^14 - 103916*x^13 + 477392*x^12 + 286254*x^11 - 674390*x^10 - 456004*x^9 + 544928*x^8 + 381556*x^7 - 212800*x^6 - 139056*x^5 + 24416*x^4 + 18752*x^3 + 896*x^2 - 256*x, 2*x^25 - 80*x^23 - 2*x^22 + 1400*x^21 + 70*x^20 - 14102*x^19 - 1014*x^18 + 90472*x^17 + 7892*x^16 - 386112*x^15 - 35800*x^14 + 1110984*x^13 + 95876*x^12 - 2137840*x^11 - 146708*x^10 + 2674742*x^9 + 122782*x^8 - 2068026*x^7 - 71784*x^6 + 913016*x^5 + 57424*x^4 - 205472*x^3 - 26432*x^2 + 17920*x + 3584, -3*x^27 + 132*x^25 - 3*x^24 - 2556*x^23 + 106*x^22 + 28663*x^21 - 1610*x^20 - 206118*x^19 + 13796*x^18 + 994215*x^17 - 73667*x^16 - 3269360*x^15 + 255780*x^14 + 7304073*x^13 - 584134*x^12 - 10857119*x^11 + 859454*x^10 + 10322017*x^9 - 747930*x^8 - 5909088*x^7 + 285728*x^6 + 1883312*x^5 + 23904*x^4 - 312000*x^3 - 28928*x^2 + 20992*x + 3584, x^27 - 44*x^25 + x^24 + 854*x^23 - 38*x^22 - 9623*x^21 + 628*x^20 + 69710*x^19 - 5918*x^18 - 339591*x^17 + 35077*x^16 + 1130738*x^15 - 136260*x^14 - 2564969*x^13 + 350762*x^12 + 3883105*x^11 - 588832*x^10 - 3773913*x^9 + 607524*x^8 + 2223492*x^7 - 328480*x^6 - 746640*x^5 + 53440*x^4 + 139328*x^3 + 6848*x^2 - 11008*x - 1792, x^25 - 39*x^23 + x^22 + 660*x^21 - 28*x^20 - 6358*x^19 + 309*x^18 + 38462*x^17 - 1624*x^16 - 152145*x^15 + 3240*x^14 + 397716*x^13 + 6453*x^12 - 679200*x^11 - 49398*x^10 + 731937*x^9 + 110771*x^8 - 463386*x^7 - 118276*x^6 + 146744*x^5 + 56768*x^4 - 14496*x^3 - 9472*x^2 - 1152*x, x^25 - 39*x^23 + x^22 + 660*x^21 - 28*x^20 - 6358*x^19 + 309*x^18 + 38462*x^17 - 1624*x^16 - 152145*x^15 + 3240*x^14 + 397716*x^13 + 6453*x^12 - 679200*x^11 - 49398*x^10 + 731937*x^9 + 110771*x^8 - 463386*x^7 - 118276*x^6 + 146744*x^5 + 56768*x^4 - 14496*x^3 - 9472*x^2 - 1152*x, x^26 - 42*x^24 + 3*x^23 + 771*x^22 - 105*x^21 - 8122*x^20 + 1565*x^19 + 54210*x^18 - 12963*x^17 - 238906*x^16 + 65308*x^15 + 703110*x^14 - 205710*x^13 - 1367881*x^12 + 400008*x^11 + 1706380*x^10 - 452938*x^9 - 1294721*x^8 + 257016*x^7 + 555304*x^6 - 43240*x^5 - 125152*x^4 - 7360*x^3 + 11200*x^2 + 1920*x, x^26 - 42*x^24 + 3*x^23 + 771*x^22 - 105*x^21 - 8122*x^20 + 1565*x^19 + 54210*x^18 - 12963*x^17 - 238906*x^16 + 65308*x^15 + 703110*x^14 - 205710*x^13 - 1367881*x^12 + 400008*x^11 + 1706380*x^10 - 452938*x^9 - 1294721*x^8 + 257016*x^7 + 555304*x^6 - 43240*x^5 - 125152*x^4 - 7360*x^3 + 11200*x^2 + 1920*x, x^24 - 2*x^23 - 37*x^22 + 71*x^21 + 588*x^20 - 1068*x^19 - 5252*x^18 + 8877*x^17 + 28985*x^16 - 44596*x^15 - 102432*x^14 + 139299*x^13 + 232789*x^12 - 268500*x^11 - 334015*x^10 + 306345*x^9 + 292157*x^8 - 186866*x^7 - 150176*x^6 + 45024*x^5 + 42400*x^4 - 384*x^3 - 4608*x^2 - 768*x, x^24 - 2*x^23 - 37*x^22 + 71*x^21 + 588*x^20 - 1068*x^19 - 5252*x^18 + 8877*x^17 + 28985*x^16 - 44596*x^15 - 102432*x^14 + 139299*x^13 + 232789*x^12 - 268500*x^11 - 334015*x^10 + 306345*x^9 + 292157*x^8 - 186866*x^7 - 150176*x^6 + 45024*x^5 + 42400*x^4 - 384*x^3 - 4608*x^2 - 768*x, x^25 + 2*x^24 - 42*x^23 - 76*x^22 + 773*x^21 + 1251*x^20 - 8178*x^19 - 11702*x^18 + 54841*x^17 + 68583*x^16 - 242499*x^15 - 261720*x^14 + 713346*x^13 + 654005*x^12 - 1376995*x^11 - 1047686*x^10 + 1683627*x^9 + 1023383*x^8 - 1228314*x^7 - 563856*x^6 + 489952*x^5 + 165392*x^4 - 93216*x^3 - 25920*x^2 + 6784*x + 1792, x^25 + 2*x^24 - 42*x^23 - 76*x^22 + 773*x^21 + 1251*x^20 - 8178*x^19 - 11702*x^18 + 54841*x^17 + 68583*x^16 - 242499*x^15 - 261720*x^14 + 713346*x^13 + 654005*x^12 - 1376995*x^11 - 1047686*x^10 + 1683627*x^9 + 1023383*x^8 - 1228314*x^7 - 563856*x^6 + 489952*x^5 + 165392*x^4 - 93216*x^3 - 25920*x^2 + 6784*x + 1792, -2*x^24 - 2*x^23 + 74*x^22 + 76*x^21 - 1176*x^20 - 1248*x^19 + 10500*x^18 + 11593*x^17 - 57816*x^16 - 66973*x^15 + 202637*x^14 + 249147*x^13 - 449635*x^12 - 597785*x^11 + 606489*x^10 + 902640*x^9 - 454323*x^8 - 816032*x^7 + 155476*x^6 + 408808*x^5 - 8144*x^4 - 99328*x^3 - 9280*x^2 + 9472*x + 1792, -2*x^24 - 2*x^23 + 74*x^22 + 76*x^21 - 1176*x^20 - 1248*x^19 + 10500*x^18 + 11593*x^17 - 57816*x^16 - 66973*x^15 + 202637*x^14 + 249147*x^13 - 449635*x^12 - 597785*x^11 + 606489*x^10 + 902640*x^9 - 454323*x^8 - 816032*x^7 + 155476*x^6 + 408808*x^5 - 8144*x^4 - 99328*x^3 - 9280*x^2 + 9472*x + 1792, x^25 - 2*x^24 - 37*x^23 + 78*x^22 + 583*x^21 - 1307*x^20 - 5089*x^19 + 12333*x^18 + 26705*x^17 - 72176*x^16 - 84529*x^15 + 271956*x^14 + 146369*x^13 - 663119*x^12 - 70699*x^11 + 1024933*x^10 - 207306*x^9 - 956976*x^8 + 407442*x^7 + 498504*x^6 - 281320*x^5 - 133456*x^4 + 74656*x^3 + 21504*x^2 - 6912*x - 1792, x^25 - 2*x^24 - 37*x^23 + 78*x^22 + 583*x^21 - 1307*x^20 - 5089*x^19 + 12333*x^18 + 26705*x^17 - 72176*x^16 - 84529*x^15 + 271956*x^14 + 146369*x^13 - 663119*x^12 - 70699*x^11 + 1024933*x^10 - 207306*x^9 - 956976*x^8 + 407442*x^7 + 498504*x^6 - 281320*x^5 - 133456*x^4 + 74656*x^3 + 21504*x^2 - 6912*x - 1792, x^25 - 3*x^24 - 42*x^23 + 118*x^22 + 767*x^21 - 2000*x^20 - 8013*x^19 + 19127*x^18 + 53025*x^17 - 113541*x^16 - 232416*x^15 + 433719*x^14 + 684779*x^13 - 1069823*x^12 - 1345177*x^11 + 1665372*x^10 + 1706760*x^9 - 1551561*x^8 - 1320956*x^7 + 781960*x^6 + 580544*x^5 - 169248*x^4 - 136480*x^3 + 5376*x^2 + 13056*x + 1792, x^25 - 3*x^24 - 42*x^23 + 118*x^22 + 767*x^21 - 2000*x^20 - 8013*x^19 + 19127*x^18 + 53025*x^17 - 113541*x^16 - 232416*x^15 + 433719*x^14 + 684779*x^13 - 1069823*x^12 - 1345177*x^11 + 1665372*x^10 + 1706760*x^9 - 1551561*x^8 - 1320956*x^7 + 781960*x^6 + 580544*x^5 - 169248*x^4 - 136480*x^3 + 5376*x^2 + 13056*x + 1792, -3*x^25 + 118*x^23 - 5*x^22 - 2014*x^21 + 164*x^20 + 19581*x^19 - 2282*x^18 - 119718*x^17 + 17583*x^16 + 479649*x^15 - 82140*x^14 - 1273713*x^13 + 239249*x^12 + 2220166*x^11 - 428717*x^10 - 2467428*x^9 + 443372*x^8 + 1663298*x^7 - 222976*x^6 - 633712*x^5 + 27520*x^4 + 127584*x^3 + 8704*x^2 - 10496*x - 1792, -3*x^25 + 118*x^23 - 5*x^22 - 2014*x^21 + 164*x^20 + 19581*x^19 - 2282*x^18 - 119718*x^17 + 17583*x^16 + 479649*x^15 - 82140*x^14 - 1273713*x^13 + 239249*x^12 + 2220166*x^11 - 428717*x^10 - 2467428*x^9 + 443372*x^8 + 1663298*x^7 - 222976*x^6 - 633712*x^5 + 27520*x^4 + 127584*x^3 + 8704*x^2 - 10496*x - 1792, -3*x^25 + 2*x^24 + 121*x^23 - 78*x^22 - 2118*x^21 + 1300*x^20 + 21120*x^19 - 12112*x^18 - 132418*x^17 + 69302*x^16 + 543662*x^15 - 252008*x^14 - 1476361*x^13 + 582912*x^12 + 2618409*x^11 - 834186*x^10 - 2929996*x^9 + 690536*x^8 + 1953488*x^7 - 280372*x^6 - 721648*x^5 + 24208*x^4 + 137312*x^3 + 10496*x^2 - 10496*x - 1792, -3*x^25 + 2*x^24 + 121*x^23 - 78*x^22 - 2118*x^21 + 1300*x^20 + 21120*x^19 - 12112*x^18 - 132418*x^17 + 69302*x^16 + 543662*x^15 - 252008*x^14 - 1476361*x^13 + 582912*x^12 + 2618409*x^11 - 834186*x^10 - 2929996*x^9 + 690536*x^8 + 1953488*x^7 - 280372*x^6 - 721648*x^5 + 24208*x^4 + 137312*x^3 + 10496*x^2 - 10496*x - 1792, x^26 - 41*x^24 - x^23 + 737*x^22 + 38*x^21 - 7640*x^20 - 609*x^19 + 50519*x^18 + 5401*x^17 - 222414*x^16 - 29207*x^15 + 660097*x^14 + 99896*x^13 - 1307616*x^12 - 216481*x^11 + 1674566*x^10 + 289393*x^9 - 1306477*x^8 - 226670*x^7 + 562908*x^6 + 98240*x^5 - 114944*x^4 - 22592*x^3 + 8512*x^2 + 1920*x, x^26 - 41*x^24 - x^23 + 737*x^22 + 38*x^21 - 7640*x^20 - 609*x^19 + 50519*x^18 + 5401*x^17 - 222414*x^16 - 29207*x^15 + 660097*x^14 + 99896*x^13 - 1307616*x^12 - 216481*x^11 + 1674566*x^10 + 289393*x^9 - 1306477*x^8 - 226670*x^7 + 562908*x^6 + 98240*x^5 - 114944*x^4 - 22592*x^3 + 8512*x^2 + 1920*x, x^26 - 42*x^24 - x^23 + 771*x^22 + 42*x^21 - 8137*x^20 - 745*x^19 + 54637*x^18 + 7284*x^17 - 243902*x^16 - 42970*x^15 + 734150*x^14 + 157391*x^13 - 1478454*x^12 - 355252*x^11 + 1934457*x^10 + 475795*x^9 - 1557169*x^8 - 355496*x^7 + 705440*x^6 + 143592*x^5 - 152544*x^4 - 32608*x^3 + 11840*x^2 + 2816*x, x^26 - 42*x^24 - x^23 + 771*x^22 + 42*x^21 - 8137*x^20 - 745*x^19 + 54637*x^18 + 7284*x^17 - 243902*x^16 - 42970*x^15 + 734150*x^14 + 157391*x^13 - 1478454*x^12 - 355252*x^11 + 1934457*x^10 + 475795*x^9 - 1557169*x^8 - 355496*x^7 + 705440*x^6 + 143592*x^5 - 152544*x^4 - 32608*x^3 + 11840*x^2 + 2816*x, x^25 + x^24 - 39*x^23 - 38*x^22 + 651*x^21 + 619*x^20 - 6066*x^19 - 5653*x^18 + 34428*x^17 + 31728*x^16 - 121196*x^15 - 112542*x^14 + 253630*x^13 + 248819*x^12 - 261795*x^11 - 323203*x^10 - 9798*x^9 + 215737*x^8 + 304288*x^7 - 52236*x^6 - 271512*x^5 - 7504*x^4 + 84192*x^3 + 10624*x^2 - 8704*x - 1792, x^25 + x^24 - 39*x^23 - 38*x^22 + 651*x^21 + 619*x^20 - 6066*x^19 - 5653*x^18 + 34428*x^17 + 31728*x^16 - 121196*x^15 - 112542*x^14 + 253630*x^13 + 248819*x^12 - 261795*x^11 - 323203*x^10 - 9798*x^9 + 215737*x^8 + 304288*x^7 - 52236*x^6 - 271512*x^5 - 7504*x^4 + 84192*x^3 + 10624*x^2 - 8704*x - 1792]>
       ]
>;

MOG[499] := 	// J_0(499)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [72, 111, 124, 231, 421, 481, 373*x + 218, 126*x + 218, 402*x + 84, 97*x + 84, 414*x + 345, 85*x + 345, 325*x + 421, 174*x + 421, 364*x + 440, 135*x + 440, 227*x + 300, 272*x + 300, 52*x + 374, 447*x + 374, 484*x + 118, 15*x + 118, 344*x + 55, 155*x + 55, 7*x + 10, 492*x + 10, 98*x + 222, 401*x + 222, 117*x + 111, 382*x + 111, 372*x + 357, 127*x + 357, 80*x + 316, 419*x + 316, 497*x + 282, 2*x + 282, 477*x + 382, 22*x + 382, 372*x + 174, 127*x + 174, 493*x + 463, 6*x + 463]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 2*x + 3, -2*x - 3, x + 2, -x - 2, 0, 0, 0, 0, -x - 2, x + 2, -x - 1, x + 1, -x - 2, x + 2, 0, 0, -x - 1, x + 1, x + 1, -x - 1, -x - 2, x + 2, -x - 1, x + 1, 1, -1, x + 1, -x - 1, 0, 0, x + 2, -x - 2, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 + 5*x^15 - 11*x^14 - 85*x^13 + 9*x^12 + 548*x^11 + 293*x^10 - 1718*x^9 - 1408*x^8 + 2735*x^7 + 2662*x^6 - 2058*x^5 - 2241*x^4 + 585*x^3 + 738*x^2 - 54*x - 81,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^14 - 5*x^13 + 7*x^12 + 66*x^11 + 20*x^10 - 308*x^9 - 254*x^8 + 630*x^7 + 676*x^6 - 538*x^5 - 683*x^4 + 138*x^3 + 240*x^2 - 9*x - 27, x^14 + 5*x^13 - 7*x^12 - 66*x^11 - 20*x^10 + 308*x^9 + 254*x^8 - 630*x^7 - 676*x^6 + 538*x^5 + 683*x^4 - 138*x^3 - 240*x^2 + 9*x + 27, -x^13 - 4*x^12 + 10*x^11 + 53*x^10 - 20*x^9 - 245*x^8 - 58*x^7 + 487*x^6 + 238*x^5 - 386*x^4 - 231*x^3 + 72*x^2 + 45*x, x^13 + 4*x^12 - 10*x^11 - 53*x^10 + 20*x^9 + 245*x^8 + 58*x^7 - 487*x^6 - 238*x^5 + 386*x^4 + 231*x^3 - 72*x^2 - 45*x, -x^15 - 5*x^14 + 8*x^13 + 70*x^12 + 10*x^11 - 361*x^10 - 234*x^9 + 875*x^8 + 734*x^7 - 1025*x^6 - 921*x^5 + 524*x^4 + 471*x^3 - 81*x^2 - 72*x, x^15 + 5*x^14 - 8*x^13 - 70*x^12 - 10*x^11 + 361*x^10 + 234*x^9 - 875*x^8 - 734*x^7 + 1025*x^6 + 921*x^5 - 524*x^4 - 471*x^3 + 81*x^2 + 72*x, -x^12 - 3*x^11 + 13*x^10 + 43*x^9 - 49*x^8 - 201*x^7 + 49*x^6 + 390*x^5 + 66*x^4 - 297*x^3 - 123*x^2 + 54*x + 27, x^12 + 3*x^11 - 13*x^10 - 43*x^9 + 49*x^8 + 201*x^7 - 49*x^6 - 390*x^5 - 66*x^4 + 297*x^3 + 123*x^2 - 54*x - 27, -x^14 - 5*x^13 + 6*x^12 + 61*x^11 + 22*x^10 - 266*x^9 - 218*x^8 + 530*x^7 + 530*x^6 - 500*x^5 - 528*x^4 + 201*x^3 + 210*x^2 - 27*x - 27, x^14 + 5*x^13 - 6*x^12 - 61*x^11 - 22*x^10 + 266*x^9 + 218*x^8 - 530*x^7 - 530*x^6 + 500*x^5 + 528*x^4 - 201*x^3 - 210*x^2 + 27*x + 27, -x^14 - 5*x^13 + 6*x^12 + 60*x^11 + 17*x^10 - 269*x^9 - 202*x^8 + 550*x^7 + 535*x^6 - 496*x^5 - 559*x^4 + 165*x^3 + 216*x^2 - 18*x - 27, x^14 + 5*x^13 - 6*x^12 - 60*x^11 - 17*x^10 + 269*x^9 + 202*x^8 - 550*x^7 - 535*x^6 + 496*x^5 + 559*x^4 - 165*x^3 - 216*x^2 + 18*x + 27, 3*x^10 + 14*x^9 - 5*x^8 - 94*x^7 - 48*x^6 + 218*x^5 + 155*x^4 - 189*x^3 - 141*x^2 + 36*x + 27, -3*x^10 - 14*x^9 + 5*x^8 + 94*x^7 + 48*x^6 - 218*x^5 - 155*x^4 + 189*x^3 + 141*x^2 - 36*x - 27, -x^13 - 5*x^12 + 4*x^11 + 51*x^10 + 27*x^9 - 178*x^8 - 162*x^7 + 259*x^6 + 268*x^5 - 152*x^4 - 162*x^3 + 24*x^2 + 27*x, x^13 + 5*x^12 - 4*x^11 - 51*x^10 - 27*x^9 + 178*x^8 + 162*x^7 - 259*x^6 - 268*x^5 + 152*x^4 + 162*x^3 - 24*x^2 - 27*x, -x^13 - 4*x^12 + 8*x^11 + 44*x^10 - 11*x^9 - 167*x^8 - 42*x^7 + 266*x^6 + 125*x^5 - 171*x^4 - 99*x^3 + 30*x^2 + 18*x, x^13 + 4*x^12 - 8*x^11 - 44*x^10 + 11*x^9 + 167*x^8 + 42*x^7 - 266*x^6 - 125*x^5 + 171*x^4 + 99*x^3 - 30*x^2 - 18*x, -x^13 - 5*x^12 + 3*x^11 + 44*x^10 + 20*x^9 - 139*x^8 - 97*x^7 + 188*x^6 + 133*x^5 - 99*x^4 - 63*x^3 + 15*x^2 + 9*x, x^13 + 5*x^12 - 3*x^11 - 44*x^10 - 20*x^9 + 139*x^8 + 97*x^7 - 188*x^6 - 133*x^5 + 99*x^4 + 63*x^3 - 15*x^2 - 9*x, -x^13 - 5*x^12 + 4*x^11 + 48*x^10 + 12*x^9 - 186*x^8 - 102*x^7 + 341*x^6 + 229*x^5 - 260*x^4 - 192*x^3 + 48*x^2 + 36*x, x^13 + 5*x^12 - 4*x^11 - 48*x^10 - 12*x^9 + 186*x^8 + 102*x^7 - 341*x^6 - 229*x^5 + 260*x^4 + 192*x^3 - 48*x^2 - 36*x, x^12 + 6*x^11 + x^10 - 48*x^9 - 45*x^8 + 153*x^7 + 169*x^6 - 235*x^5 - 255*x^4 + 156*x^3 + 159*x^2 - 27*x - 27, -x^12 - 6*x^11 - x^10 + 48*x^9 + 45*x^8 - 153*x^7 - 169*x^6 + 235*x^5 + 255*x^4 - 156*x^3 - 159*x^2 + 27*x + 27, -x^12 - 5*x^11 + 3*x^10 + 47*x^9 + 28*x^8 - 161*x^7 - 154*x^6 + 244*x^5 + 259*x^4 - 156*x^3 - 162*x^2 + 27*x + 27, x^12 + 5*x^11 - 3*x^10 - 47*x^9 - 28*x^8 + 161*x^7 + 154*x^6 - 244*x^5 - 259*x^4 + 156*x^3 + 162*x^2 - 27*x - 27, -x^12 - 5*x^11 + 2*x^10 + 41*x^9 + 28*x^8 - 110*x^7 - 108*x^6 + 104*x^5 + 107*x^4 - 21*x^3 - 21*x^2, x^12 + 5*x^11 - 2*x^10 - 41*x^9 - 28*x^8 + 110*x^7 + 108*x^6 - 104*x^5 - 107*x^4 + 21*x^3 + 21*x^2, -2*x^12 - 9*x^11 + 11*x^10 + 88*x^9 + 9*x^8 - 306*x^7 - 139*x^6 + 454*x^5 + 258*x^4 - 270*x^3 - 162*x^2 + 45*x + 27, 2*x^12 + 9*x^11 - 11*x^10 - 88*x^9 - 9*x^8 + 306*x^7 + 139*x^6 - 454*x^5 - 258*x^4 + 270*x^3 + 162*x^2 - 45*x - 27, -x^12 - 7*x^11 - 8*x^10 + 42*x^9 + 96*x^8 - 56*x^7 - 263*x^6 - 57*x^5 + 238*x^4 + 120*x^3 - 45*x^2 - 27*x, x^12 + 7*x^11 + 8*x^10 - 42*x^9 - 96*x^8 + 56*x^7 + 263*x^6 + 57*x^5 - 238*x^4 - 120*x^3 + 45*x^2 + 27*x, -x^12 - 6*x^11 - 4*x^10 + 35*x^9 + 55*x^8 - 56*x^7 - 137*x^6 + x^5 + 112*x^4 + 39*x^3 - 21*x^2 - 9*x, x^12 + 6*x^11 + 4*x^10 - 35*x^9 - 55*x^8 + 56*x^7 + 137*x^6 - x^5 - 112*x^4 - 39*x^3 + 21*x^2 + 9*x, -x^11 - 5*x^10 + x^9 + 34*x^8 + 21*x^7 - 77*x^6 - 60*x^5 + 61*x^4 + 51*x^3 - 12*x^2 - 9*x, x^11 + 5*x^10 - x^9 - 34*x^8 - 21*x^7 + 77*x^6 + 60*x^5 - 61*x^4 - 51*x^3 + 12*x^2 + 9*x]>,
         rec<Eigen |
           DefiningPolynomial := x^23 - 4*x^22 - 26*x^21 + 117*x^20 + 268*x^19 - 1447*x^18 - 1325*x^17 + 9859*x^16 + 2497*x^15 - 40388*x^14 + 4836*x^13 + 101760*x^12 - 34790*x^11 - 154579*x^10 + 72287*x^9 + 132753*x^8 - 68227*x^7 - 57242*x^6 + 26996*x^5 + 11011*x^4 - 4109*x^3 - 660*x^2 + 172*x - 8,
           Coordinates        := [-x^22 + 4*x^21 + 22*x^20 - 103*x^19 - 178*x^18 + 1101*x^17 + 533*x^16 - 6331*x^15 + 827*x^14 + 21182*x^13 - 10568*x^12 - 41480*x^11 + 31304*x^10 + 44937*x^9 - 43699*x^8 - 22877*x^7 + 28855*x^6 + 3132*x^5 - 7582*x^4 + 343*x^3 + 631*x^2 - 52*x, x^22 - 4*x^21 - 23*x^20 + 105*x^19 + 205*x^18 - 1156*x^17 - 828*x^16 + 6941*x^15 + 861*x^14 - 24721*x^13 + 5109*x^12 + 53123*x^11 - 21365*x^10 - 66832*x^9 + 34416*x^8 + 45199*x^7 - 25693*x^6 - 13869*x^5 + 7911*x^4 + 1534*x^3 - 844*x^2 + 10*x + 4, x^20 - 4*x^19 - 19*x^18 + 91*x^17 + 127*x^16 - 850*x^15 - 252*x^14 + 4215*x^13 - 1033*x^12 - 11891*x^11 + 6799*x^10 + 18691*x^9 - 15051*x^8 - 14280*x^7 + 14654*x^6 + 3173*x^5 - 4927*x^4 + 173*x^3 + 511*x^2 - 88*x + 4, -x^21 + 3*x^20 + 25*x^19 - 78*x^18 - 256*x^17 + 845*x^16 + 1378*x^15 - 4953*x^14 - 4126*x^13 + 17056*x^12 + 6488*x^11 - 34992*x^10 - 3688*x^9 + 41249*x^8 - 2450*x^7 - 25327*x^6 + 3528*x^5 + 6660*x^4 - 922*x^3 - 579*x^2 + 52*x, x^21 - 4*x^20 - 21*x^19 + 97*x^18 + 167*x^17 - 976*x^16 - 572*x^15 + 5295*x^14 + 285*x^13 - 16823*x^12 + 3889*x^11 + 31743*x^10 - 12247*x^9 - 34290*x^8 + 15718*x^7 + 19243*x^6 - 9159*x^5 - 4707*x^4 + 2365*x^3 + 316*x^2 - 228*x + 16, x^20 - 4*x^19 - 19*x^18 + 89*x^17 + 129*x^16 - 796*x^15 - 324*x^14 + 3683*x^13 - 187*x^12 - 9489*x^11 + 2319*x^10 + 13851*x^9 - 3647*x^8 - 11676*x^7 + 1880*x^6 + 5989*x^5 - 619*x^4 - 1391*x^3 + 105*x^2 + 94*x - 8, -x^21 + 4*x^20 + 20*x^19 - 95*x^18 - 140*x^17 + 919*x^16 + 284*x^15 - 4650*x^14 + 1260*x^13 + 13084*x^12 - 8231*x^11 - 19829*x^10 + 17982*x^9 + 13689*x^8 - 17236*x^7 - 1728*x^6 + 6179*x^5 - 983*x^4 - 817*x^3 + 223*x^2 + 34*x - 4, -x^21 + 4*x^20 + 20*x^19 - 95*x^18 - 140*x^17 + 919*x^16 + 284*x^15 - 4650*x^14 + 1260*x^13 + 13084*x^12 - 8231*x^11 - 19829*x^10 + 17982*x^9 + 13689*x^8 - 17236*x^7 - 1728*x^6 + 6179*x^5 - 983*x^4 - 817*x^3 + 223*x^2 + 34*x - 4, -x^20 + 4*x^19 + 20*x^18 - 96*x^17 - 140*x^16 + 944*x^15 + 282*x^14 - 4902*x^13 + 1292*x^12 + 14402*x^11 - 8418*x^10 - 23666*x^9 + 18481*x^8 + 19857*x^7 - 17843*x^6 - 6770*x^5 + 6432*x^4 + 739*x^3 - 741*x^2 + 8*x + 4, -x^20 + 4*x^19 + 20*x^18 - 96*x^17 - 140*x^16 + 944*x^15 + 282*x^14 - 4902*x^13 + 1292*x^12 + 14402*x^11 - 8418*x^10 - 23666*x^9 + 18481*x^8 + 19857*x^7 - 17843*x^6 - 6770*x^5 + 6432*x^4 + 739*x^3 - 741*x^2 + 8*x + 4, -x^20 + 4*x^19 + 18*x^18 - 86*x^17 - 109*x^16 + 737*x^15 + 151*x^14 - 3196*x^13 + 1045*x^12 + 7249*x^11 - 4904*x^10 - 7582*x^9 + 7982*x^8 + 1292*x^7 - 4833*x^6 + 2655*x^5 + 333*x^4 - 859*x^3 + 144*x^2 + 40*x - 4, -x^20 + 4*x^19 + 18*x^18 - 86*x^17 - 109*x^16 + 737*x^15 + 151*x^14 - 3196*x^13 + 1045*x^12 + 7249*x^11 - 4904*x^10 - 7582*x^9 + 7982*x^8 + 1292*x^7 - 4833*x^6 + 2655*x^5 + 333*x^4 - 859*x^3 + 144*x^2 + 40*x - 4, x^20 - 4*x^19 - 21*x^18 + 96*x^17 + 165*x^16 - 946*x^15 - 534*x^14 + 4934*x^13 + 26*x^12 - 14589*x^11 + 4581*x^10 + 24165*x^9 - 12313*x^8 - 20464*x^7 + 12801*x^6 + 7023*x^5 - 4710*x^4 - 663*x^3 + 526*x^2 - 38*x, x^20 - 4*x^19 - 21*x^18 + 96*x^17 + 165*x^16 - 946*x^15 - 534*x^14 + 4934*x^13 + 26*x^12 - 14589*x^11 + 4581*x^10 + 24165*x^9 - 12313*x^8 - 20464*x^7 + 12801*x^6 + 7023*x^5 - 4710*x^4 - 663*x^3 + 526*x^2 - 38*x, -x^19 + 4*x^18 + 18*x^17 - 85*x^16 - 114*x^15 + 727*x^14 + 238*x^13 - 3215*x^12 + 480*x^11 + 7809*x^10 - 3218*x^9 - 10059*x^8 + 5753*x^7 + 5838*x^6 - 4049*x^5 - 849*x^4 + 867*x^3 - 34*x^2 - 50*x + 4, -x^19 + 4*x^18 + 18*x^17 - 85*x^16 - 114*x^15 + 727*x^14 + 238*x^13 - 3215*x^12 + 480*x^11 + 7809*x^10 - 3218*x^9 - 10059*x^8 + 5753*x^7 + 5838*x^6 - 4049*x^5 - 849*x^4 + 867*x^3 - 34*x^2 - 50*x + 4, -x^19 + 5*x^18 + 13*x^17 - 97*x^16 - 19*x^15 + 727*x^14 - 453*x^13 - 2620*x^12 + 2847*x^11 + 4438*x^10 - 6782*x^9 - 2338*x^8 + 6650*x^7 - 1455*x^6 - 1797*x^5 + 973*x^4 + 94*x^3 - 149*x^2 + 12*x, -x^19 + 5*x^18 + 13*x^17 - 97*x^16 - 19*x^15 + 727*x^14 - 453*x^13 - 2620*x^12 + 2847*x^11 + 4438*x^10 - 6782*x^9 - 2338*x^8 + 6650*x^7 - 1455*x^6 - 1797*x^5 + 973*x^4 + 94*x^3 - 149*x^2 + 12*x, x^21 - 4*x^20 - 21*x^19 + 97*x^18 + 165*x^17 - 971*x^16 - 532*x^15 + 5186*x^14 - 6*x^13 - 15907*x^12 + 4768*x^11 + 28002*x^10 - 12812*x^9 - 26632*x^8 + 13408*x^7 + 12065*x^6 - 4963*x^5 - 2385*x^4 + 450*x^3 + 177*x^2 + 30*x - 4, x^21 - 4*x^20 - 21*x^19 + 97*x^18 + 165*x^17 - 971*x^16 - 532*x^15 + 5186*x^14 - 6*x^13 - 15907*x^12 + 4768*x^11 + 28002*x^10 - 12812*x^9 - 26632*x^8 + 13408*x^7 + 12065*x^6 - 4963*x^5 - 2385*x^4 + 450*x^3 + 177*x^2 + 30*x - 4, x^17 - 4*x^16 - 14*x^15 + 73*x^14 + 46*x^13 - 502*x^12 + 171*x^11 + 1602*x^10 - 1424*x^9 - 2258*x^8 + 3269*x^7 + 673*x^6 - 2826*x^5 + 991*x^4 + 473*x^3 - 283*x^2 + 20*x, x^17 - 4*x^16 - 14*x^15 + 73*x^14 + 46*x^13 - 502*x^12 + 171*x^11 + 1602*x^10 - 1424*x^9 - 2258*x^8 + 3269*x^7 + 673*x^6 - 2826*x^5 + 991*x^4 + 473*x^3 - 283*x^2 + 20*x, -x^16 + 4*x^15 + 14*x^14 - 65*x^13 - 63*x^12 + 389*x^11 + 84*x^10 - 1053*x^9 + 29*x^8 + 1277*x^7 + 111*x^6 - 678*x^5 - 457*x^4 + 352*x^3 + 89*x^2 - 56*x + 4, -x^16 + 4*x^15 + 14*x^14 - 65*x^13 - 63*x^12 + 389*x^11 + 84*x^10 - 1053*x^9 + 29*x^8 + 1277*x^7 + 111*x^6 - 678*x^5 - 457*x^4 + 352*x^3 + 89*x^2 - 56*x + 4, x^17 - 4*x^16 - 14*x^15 + 74*x^14 + 49*x^13 - 535*x^12 + 154*x^11 + 1897*x^10 - 1491*x^9 - 3301*x^8 + 3772*x^7 + 2279*x^6 - 3653*x^5 - 54*x^4 + 928*x^3 - 84*x^2 - 46*x + 4, x^17 - 4*x^16 - 14*x^15 + 74*x^14 + 49*x^13 - 535*x^12 + 154*x^11 + 1897*x^10 - 1491*x^9 - 3301*x^8 + 3772*x^7 + 2279*x^6 - 3653*x^5 - 54*x^4 + 928*x^3 - 84*x^2 - 46*x + 4, x^19 - 5*x^18 - 12*x^17 + 94*x^16 + 4*x^15 - 678*x^14 + 527*x^13 + 2337*x^12 - 2965*x^11 - 3775*x^10 + 6735*x^9 + 1969*x^8 - 6519*x^7 + 757*x^6 + 1971*x^5 - 185*x^4 - 218*x^3 - 48*x^2 + 6*x, x^19 - 5*x^18 - 12*x^17 + 94*x^16 + 4*x^15 - 678*x^14 + 527*x^13 + 2337*x^12 - 2965*x^11 - 3775*x^10 + 6735*x^9 + 1969*x^8 - 6519*x^7 + 757*x^6 + 1971*x^5 - 185*x^4 - 218*x^3 - 48*x^2 + 6*x, x^20 - 4*x^19 - 19*x^18 + 89*x^17 + 131*x^16 - 809*x^15 - 333*x^14 + 3880*x^13 - 367*x^12 - 10532*x^11 + 3972*x^10 + 16035*x^9 - 8695*x^8 - 12670*x^7 + 7929*x^6 + 4461*x^5 - 2751*x^4 - 694*x^3 + 348*x^2 + 24*x - 4, x^20 - 4*x^19 - 19*x^18 + 89*x^17 + 131*x^16 - 809*x^15 - 333*x^14 + 3880*x^13 - 367*x^12 - 10532*x^11 + 3972*x^10 + 16035*x^9 - 8695*x^8 - 12670*x^7 + 7929*x^6 + 4461*x^5 - 2751*x^4 - 694*x^3 + 348*x^2 + 24*x - 4, x^19 - 3*x^18 - 22*x^17 + 68*x^16 + 195*x^15 - 628*x^14 - 888*x^13 + 3038*x^12 + 2169*x^11 - 8192*x^10 - 2618*x^9 + 11993*x^8 + 1040*x^7 - 8361*x^6 + 241*x^5 + 1876*x^4 + 116*x^3 - 105*x^2 - 40*x + 4, x^19 - 3*x^18 - 22*x^17 + 68*x^16 + 195*x^15 - 628*x^14 - 888*x^13 + 3038*x^12 + 2169*x^11 - 8192*x^10 - 2618*x^9 + 11993*x^8 + 1040*x^7 - 8361*x^6 + 241*x^5 + 1876*x^4 + 116*x^3 - 105*x^2 - 40*x + 4, 3*x^16 - 8*x^15 - 53*x^14 + 148*x^13 + 348*x^12 - 1047*x^11 - 1041*x^10 + 3578*x^9 + 1335*x^8 - 6120*x^7 - 303*x^6 + 4799*x^5 - 554*x^4 - 1266*x^3 + 159*x^2 + 90*x - 8, 3*x^16 - 8*x^15 - 53*x^14 + 148*x^13 + 348*x^12 - 1047*x^11 - 1041*x^10 + 3578*x^9 + 1335*x^8 - 6120*x^7 - 303*x^6 + 4799*x^5 - 554*x^4 - 1266*x^3 + 159*x^2 + 90*x - 8, x^19 - 4*x^18 - 19*x^17 + 90*x^16 + 124*x^15 - 806*x^14 - 236*x^13 + 3667*x^12 - 785*x^11 - 8946*x^10 + 4300*x^9 + 11307*x^8 - 6919*x^7 - 6627*x^6 + 4270*x^5 + 1658*x^4 - 1130*x^3 - 111*x^2 + 110*x - 8, x^19 - 4*x^18 - 19*x^17 + 90*x^16 + 124*x^15 - 806*x^14 - 236*x^13 + 3667*x^12 - 785*x^11 - 8946*x^10 + 4300*x^9 + 11307*x^8 - 6919*x^7 - 6627*x^6 + 4270*x^5 + 1658*x^4 - 1130*x^3 - 111*x^2 + 110*x - 8, 2*x^17 - 7*x^16 - 31*x^15 + 128*x^14 + 154*x^13 - 893*x^12 - 165*x^11 + 3017*x^10 - 819*x^9 - 5197*x^8 + 2548*x^7 + 4429*x^6 - 2527*x^5 - 1703*x^4 + 952*x^3 + 214*x^2 - 118*x + 8, 2*x^17 - 7*x^16 - 31*x^15 + 128*x^14 + 154*x^13 - 893*x^12 - 165*x^11 + 3017*x^10 - 819*x^9 - 5197*x^8 + 2548*x^7 + 4429*x^6 - 2527*x^5 - 1703*x^4 + 952*x^3 + 214*x^2 - 118*x + 8, 2*x^18 - 8*x^17 - 30*x^16 + 150*x^15 + 133*x^14 - 1090*x^13 + 22*x^12 + 3910*x^11 - 1675*x^10 - 7284*x^9 + 4514*x^8 + 6777*x^7 - 4503*x^6 - 2849*x^5 + 1560*x^4 + 552*x^3 - 193*x^2 - 36*x + 4, 2*x^18 - 8*x^17 - 30*x^16 + 150*x^15 + 133*x^14 - 1090*x^13 + 22*x^12 + 3910*x^11 - 1675*x^10 - 7284*x^9 + 4514*x^8 + 6777*x^7 - 4503*x^6 - 2849*x^5 + 1560*x^4 + 552*x^3 - 193*x^2 - 36*x + 4, x^19 - 3*x^18 - 20*x^17 + 63*x^16 + 160*x^15 - 540*x^14 - 659*x^13 + 2466*x^12 + 1455*x^11 - 6526*x^10 - 1402*x^9 + 10005*x^8 - 532*x^7 - 8035*x^6 + 2116*x^5 + 2440*x^4 - 927*x^3 - 202*x^2 + 116*x - 8, x^19 - 3*x^18 - 20*x^17 + 63*x^16 + 160*x^15 - 540*x^14 - 659*x^13 + 2466*x^12 + 1455*x^11 - 6526*x^10 - 1402*x^9 + 10005*x^8 - 532*x^7 - 8035*x^6 + 2116*x^5 + 2440*x^4 - 927*x^3 - 202*x^2 + 116*x - 8]>
       ]
>;

MOG[503] := 	// J_0(503)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 8, 19, 68, 113, 146, 179, 192, 219, 257, 258, 283, 290, 353, 408, 430, 432, 447, 455, 467, 483, 114*x + 393, 389*x + 393, 452*x + 401, 51*x + 401, 8*x + 141, 495*x + 141, 165*x + 15, 338*x + 15, 413*x + 311, 90*x + 311, 238*x + 292, 265*x + 292, 174*x + 98, 329*x + 98, 80*x + 95, 423*x + 95, 478*x + 466, 25*x + 466, 362*x + 149, 141*x + 149, 133*x + 66, 370*x + 66]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -2, 2, 0, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x - 3,
           Coordinates        := [1, -1, -1, -1, -1, 1, 1, 1, 0, 1, -1, 0, 2, -1, 0, -1, 0, 1, -2, 0, -1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [1, -1, -1, 3, -1, -1, -1, -3, 0, -3, -1, 0, 0, 1, 2, -1, -2, -3, -2, 2, 3, 1, 1, 2, 2, -1, -1, 0, 0, 0, 0, 0, 0, 1, 1, -2, -2, 1, 1, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - 5*x + 3,
           Coordinates        := [x - 1, x - 2, -1, -x + 1, -x^2 + x + 2, -1, x^2 - x, -x^2 + 2, -1, x^2 - 2, x - 1, -x + 1, 1, 0, x, -x + 1, -x^2 + 2, 0, x^2 + x - 2, x - 1, -x + 2, -x + 1, -x + 1, x - 1, x - 1, 0, 0, 1, 1, -x + 1, -x + 1, 0, 0, -1, -1, 0, 0, -1, -1, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x^10 + 4*x^9 - 4*x^8 - 31*x^7 - 13*x^6 + 66*x^5 + 56*x^4 - 37*x^3 - 46*x^2 - 8*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^9 + 3*x^8 - 7*x^7 - 25*x^6 + 9*x^5 + 61*x^4 + 12*x^3 - 45*x^2 - 19*x, -x^9 - 3*x^8 + 7*x^7 + 25*x^6 - 9*x^5 - 61*x^4 - 12*x^3 + 45*x^2 + 19*x, -x^9 - 3*x^8 + 6*x^7 + 22*x^6 - 5*x^5 - 44*x^4 - 8*x^3 + 27*x^2 + 8*x - 1, x^9 + 3*x^8 - 6*x^7 - 22*x^6 + 5*x^5 + 44*x^4 + 8*x^3 - 27*x^2 - 8*x + 1, 2*x^4 + 3*x^3 - 3*x^2 - 4*x, -2*x^4 - 3*x^3 + 3*x^2 + 4*x, -x^8 - 2*x^7 + 7*x^6 + 13*x^5 - 13*x^4 - 22*x^3 + 7*x^2 + 10*x + 1, x^8 + 2*x^7 - 7*x^6 - 13*x^5 + 13*x^4 + 22*x^3 - 7*x^2 - 10*x - 1, -x^5 - 2*x^4 + 3*x^3 + 5*x^2 - 3*x - 3, x^5 + 2*x^4 - 3*x^3 - 5*x^2 + 3*x + 3, x^5 + x^4 - 2*x^3 - 2*x^2 + 1, -x^5 - x^4 + 2*x^3 + 2*x^2 - 1, x^5 + 2*x^4 - x^3 - 2*x^2 - 1, -x^5 - 2*x^4 + x^3 + 2*x^2 + 1, -x^7 - 2*x^6 + 5*x^5 + 9*x^4 - 7*x^3 - 10*x^2 + 3*x + 2, x^7 + 2*x^6 - 5*x^5 - 9*x^4 + 7*x^3 + 10*x^2 - 3*x - 2, -x^6 - 2*x^5 + 3*x^4 + 5*x^3 - 3*x^2 - 3*x, x^6 + 2*x^5 - 3*x^4 - 5*x^3 + 3*x^2 + 3*x, x^6 + 2*x^5 - 3*x^4 - 7*x^3 + x^2 + 5*x + 1, -x^6 - 2*x^5 + 3*x^4 + 7*x^3 - x^2 - 5*x - 1, x^5 + x^4 - 4*x^3 - 3*x^2 + 4*x + 1, -x^5 - x^4 + 4*x^3 + 3*x^2 - 4*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - 4*x^25 - 36*x^24 + 154*x^23 + 554*x^22 - 2577*x^21 - 4772*x^20 + 24652*x^19 + 25321*x^18 - 149131*x^17 - 86017*x^16 + 595540*x^15 + 189834*x^14 - 1589003*x^13 - 278156*x^12 + 2799707*x^11 + 297701*x^10 - 3137915*x^9 - 283355*x^8 + 2081504*x^7 + 236065*x^6 - 725019*x^5 - 120174*x^4 + 115872*x^3 + 24760*x^2 - 6437*x - 1583,
           Coordinates        := [-1/2*x^25 + 2*x^24 + 37/2*x^23 - 163/2*x^22 - 555/2*x^21 + 1405*x^20 + 2154*x^19 - 13510*x^18 - 8821*x^17 + 160547/2*x^16 + 13770*x^15 - 615783/2*x^14 + 65241/2*x^13 + 771665*x^12 - 201368*x^11 - 2496569/2*x^10 + 830985/2*x^9 + 2507199/2*x^8 - 861039/2*x^7 - 726338*x^6 + 446055/2*x^5 + 218728*x^4 - 50722*x^3 - 33360*x^2 + 7421/2*x + 1928, 2*x^25 - 21/2*x^24 - 115/2*x^23 + 735/2*x^22 + 1271/2*x^21 - 11149/2*x^20 - 5849/2*x^19 + 96309/2*x^18 - 1695*x^17 - 523385/2*x^16 + 85614*x^15 + 932433*x^14 - 442508*x^13 - 2201122*x^12 + 1163417*x^11 + 3398082*x^10 - 3494199/2*x^9 - 6612285/2*x^8 + 1478054*x^7 + 1897865*x^6 - 649286*x^5 - 585314*x^4 + 127512*x^3 + 88823*x^2 - 16357/2*x - 4884, -3*x^25 + 14*x^24 + 183/2*x^23 - 983/2*x^22 - 2259/2*x^21 + 14935/2*x^20 + 13901/2*x^19 - 129025/2*x^18 - 37327/2*x^17 + 350114*x^16 - 37021/2*x^15 - 1244394*x^14 + 292975*x^13 + 2928649*x^12 - 924851*x^11 - 4507991*x^10 + 1445479*x^9 + 8742947/2*x^8 - 2313681/2*x^7 - 2481991*x^6 + 401994*x^5 + 723611*x^4 - 31801*x^3 - 88621*x^2 - 2495*x + 5835/2, 1/2*x^25 - 55/2*x^23 + 39/2*x^22 + 1185/2*x^21 - 616*x^20 - 6916*x^19 + 8336*x^18 + 49525*x^17 - 126455/2*x^16 - 230015*x^15 + 589361/2*x^14 + 1413491/2*x^13 - 868474*x^12 - 1428050*x^11 + 3202293/2*x^10 + 3679133/2*x^9 - 3509025/2*x^8 - 2845433/2*x^7 + 1019515*x^6 + 1213023/2*x^5 - 244942*x^4 - 135696*x^3 + 14832*x^2 + 23551/2*x + 1040, 3/2*x^23 - 13/2*x^22 - 35*x^21 + 351/2*x^20 + 302*x^19 - 3833/2*x^18 - 2161/2*x^17 + 21501/2*x^16 + 1227/2*x^15 - 31595*x^14 + 8401/2*x^13 + 37696*x^12 + 5030*x^11 + 62827/2*x^10 - 71575*x^9 - 140242*x^8 + 309129/2*x^7 + 274735/2*x^6 - 261211/2*x^5 - 46294*x^4 + 81489/2*x^3 + 19933/2*x^2 - 7489/2*x - 900, x^25 - 2*x^24 - 39*x^23 + 74*x^22 + 666*x^21 - 2359/2*x^20 - 6566*x^19 + 10625*x^18 + 41458*x^17 - 59606*x^16 - 351159/2*x^15 + 216070*x^14 + 1013691/2*x^13 - 1014107/2*x^12 - 1981799/2*x^11 + 1494169/2*x^10 + 1274088*x^9 - 1278445/2*x^8 - 2031949/2*x^7 + 526485/2*x^6 + 454598*x^5 - 22251*x^4 - 98353*x^3 - 20085/2*x^2 + 15103/2*x + 1457, 1/2*x^24 - 9/2*x^23 - 1/2*x^22 + 233/2*x^21 - 232*x^20 - 1184*x^19 + 7679/2*x^18 + 5708*x^17 - 58477/2*x^16 - 20243/2*x^15 + 255075/2*x^14 - 45673/2*x^13 - 340446*x^12 + 151569*x^11 + 564343*x^10 - 315358*x^9 - 572197*x^8 + 314414*x^7 + 341060*x^6 - 287563/2*x^5 - 110809*x^4 + 24576*x^3 + 32181/2*x^2 - 2581/2*x - 1583/2, 1/2*x^24 - 53/2*x^22 + 39/2*x^21 + 1085/2*x^20 - 577*x^19 - 5980*x^18 + 7299*x^17 + 40326*x^16 - 103443/2*x^15 - 176098*x^14 + 450607/2*x^13 + 1015621/2*x^12 - 621405*x^11 - 959551*x^10 + 2150007/2*x^9 + 2295257/2*x^8 - 2225055/2*x^7 - 1625459/2*x^6 + 621467*x^5 + 618997/2*x^4 - 152352*x^3 - 59678*x^2 + 13211*x + 9251/2, -6*x^21 + 22*x^20 + 163*x^19 - 635*x^18 - 1829*x^17 + 7681*x^16 + 11025*x^15 - 50749*x^14 - 38900*x^13 + 199646*x^12 + 82533*x^11 - 476813*x^10 - 106596*x^9 + 672893*x^8 + 89918*x^7 - 517346*x^6 - 60981*x^5 + 182808*x^4 + 32474*x^3 - 21775*x^2 - 4884*x + 135, -9/2*x^22 + 26*x^21 + 84*x^20 - 716*x^19 - 305*x^18 + 16403/2*x^17 - 4172*x^16 - 101847/2*x^15 + 99905/2*x^14 + 374087/2*x^13 - 475231/2*x^12 - 416439*x^11 + 1217819/2*x^10 + 1112189/2*x^9 - 1739685/2*x^8 - 433962*x^7 + 646939*x^6 + 200378*x^5 - 412089/2*x^4 - 119321/2*x^3 + 21735*x^2 + 7426*x + 281, 3/2*x^23 - 2*x^22 - 66*x^21 + 109*x^20 + 1151*x^19 - 4199/2*x^18 - 10728*x^17 + 41089/2*x^16 + 119675/2*x^15 - 232433/2*x^14 - 419365/2*x^13 + 398534*x^12 + 936175/2*x^11 - 1655963/2*x^10 - 1313375/2*x^9 + 993152*x^8 + 553458*x^7 - 607038*x^6 - 515339/2*x^5 + 278673/2*x^4 + 60485*x^3 - 7133*x^2 - 5138*x - 557, -6*x^22 + 28*x^21 + 141*x^20 - 798*x^19 - 1194*x^18 + 9510*x^17 + 3344*x^16 - 61774*x^15 + 11849*x^14 + 238546*x^13 - 117113*x^12 - 559346*x^11 + 370217*x^10 + 779489*x^9 - 582975*x^8 - 607264*x^7 + 456365*x^6 + 243789*x^5 - 150334*x^4 - 54249*x^3 + 16891*x^2 + 5019*x - 135, -6*x^20 + 33*x^19 + 106*x^18 - 832*x^17 - 433*x^16 + 8568*x^15 - 2710*x^14 - 47068*x^13 + 31312*x^12 + 150909*x^11 - 117694*x^10 - 290265*x^9 + 209499*x^8 + 330695*x^7 - 167268*x^6 - 208237*x^5 + 37933*x^4 + 59450*x^3 + 3192*x^2 - 5277*x - 905, 1/2*x^24 - 51/2*x^22 + 35/2*x^21 + 502*x^20 - 977/2*x^19 - 5310*x^18 + 5734*x^17 + 34360*x^16 - 36982*x^15 - 289013/2*x^14 + 143232*x^13 + 808679/2*x^12 - 340719*x^11 - 747815*x^10 + 486541*x^9 + 877475*x^8 - 773527/2*x^7 - 1193313/2*x^6 + 290773/2*x^5 + 400413/2*x^4 - 18264*x^3 - 59499/2*x^2 - 774*x + 1050, -6*x^21 + 29*x^20 + 130*x^19 - 790*x^18 - 949*x^17 + 8938*x^16 + 1324*x^15 - 54794*x^14 + 18794*x^13 + 198668*x^12 - 119539*x^11 - 435252*x^10 + 319500*x^9 + 562633*x^8 - 439733*x^7 - 398722*x^6 + 302939*x^5 + 138506*x^4 - 90714*x^3 - 28665*x^2 + 9780*x + 2926, 3/2*x^22 - 13/2*x^21 - 31*x^20 + 325/2*x^19 + 193*x^18 - 3133/2*x^17 + 405/2*x^16 + 13675/2*x^15 - 16417/2*x^14 - 7726*x^13 + 88225/2*x^12 - 49332*x^11 - 118136*x^10 + 449199/2*x^9 + 180936*x^8 - 390734*x^7 - 327427/2*x^6 + 607831/2*x^5 + 170461/2*x^4 - 85401*x^3 - 45423/2*x^2 + 15199/2*x + 4245/2, -6*x^23 + 28*x^22 + 159*x^21 - 871*x^20 - 1650*x^19 + 11570*x^18 + 7951*x^17 - 86074*x^16 - 11525*x^15 + 394838*x^14 - 58107*x^13 - 1157306*x^12 + 324690*x^11 + 2168367*x^10 - 689283*x^9 - 2515683*x^8 + 716262*x^7 + 1677203*x^6 - 331311*x^5 - 558371*x^4 + 42657*x^3 + 77234*x^2 - 147*x - 3196, 1/2*x^23 - 49/2*x^21 + 37/2*x^20 + 455*x^19 - 1005/2*x^18 - 4437*x^17 + 5701*x^16 + 25671*x^15 - 35232*x^14 - 185447/2*x^13 + 129221*x^12 + 424295/2*x^11 - 286624*x^10 - 305404*x^9 + 374597*x^8 + 272602*x^7 - 534181/2*x^6 - 297271/2*x^5 + 174683/2*x^4 + 90923/2*x^3 - 8473*x^2 - 11175/2*x - 483, x^21 - 5*x^20 - 25*x^19 + 139*x^18 + 260*x^17 - 1587*x^16 - 1588*x^15 + 9655*x^14 + 7190*x^13 - 33738*x^12 - 26815*x^11 + 66977*x^10 + 73409*x^9 - 66257*x^8 - 122153*x^7 + 13842*x^6 + 102954*x^5 + 21687*x^4 - 33866*x^3 - 10303*x^2 + 3184*x + 1040, x^22 - 49*x^20 + 34*x^19 + 911*x^18 - 898*x^17 - 8939*x^16 + 9919*x^15 + 52329*x^14 - 59722*x^13 - 191745*x^12 + 213331*x^11 + 441684*x^10 - 459166*x^9 - 618529*x^8 + 575728*x^7 + 487834*x^6 - 384206*x^5 - 194059*x^4 + 114277*x^3 + 42152*x^2 - 11924*x - 3966, x^24 - 2*x^23 - 36*x^22 + 131/2*x^21 + 565*x^20 - 895*x^19 - 5113*x^18 + 6609*x^17 + 59299/2*x^16 - 28311*x^15 - 230257/2*x^14 + 136517/2*x^13 + 602727/2*x^12 - 141647/2*x^11 - 517782*x^10 - 98967/2*x^9 + 1091651/2*x^8 + 427375/2*x^7 - 307952*x^6 - 206428*x^5 + 66323*x^4 + 141583/2*x^3 + 5753/2*x^2 - 7209*x - 1331, -3*x^24 + 14*x^23 + 165/2*x^22 - 899/2*x^21 - 1791/2*x^20 + 6184*x^19 + 9145/2*x^18 - 47792*x^17 - 14869/2*x^16 + 228306*x^15 - 34978*x^14 - 697926*x^13 + 441803/2*x^12 + 2727713/2*x^11 - 529750*x^10 - 1647586*x^9 + 1299237/2*x^8 + 2284467/2*x^7 - 393838*x^6 - 401080*x^5 + 192991/2*x^4 + 131483/2*x^3 - 8519*x^2 - 8215/2*x + 135/2, -3*x^24 + 14*x^23 + 165/2*x^22 - 899/2*x^21 - 1791/2*x^20 + 6184*x^19 + 9145/2*x^18 - 47792*x^17 - 14869/2*x^16 + 228306*x^15 - 34978*x^14 - 697926*x^13 + 441803/2*x^12 + 2727713/2*x^11 - 529750*x^10 - 1647586*x^9 + 1299237/2*x^8 + 2284467/2*x^7 - 393838*x^6 - 401080*x^5 + 192991/2*x^4 + 131483/2*x^3 - 8519*x^2 - 8215/2*x + 135/2, -3*x^23 + 14*x^22 + 75*x^21 - 825/2*x^20 - 728*x^19 + 10301/2*x^18 + 3278*x^17 - 35734*x^16 - 9885/2*x^15 + 151630*x^14 - 27933/2*x^13 - 814973/2*x^12 + 70411*x^11 + 692038*x^10 - 213155/2*x^9 - 713557*x^8 + 93481/2*x^7 + 403708*x^6 + 51625/2*x^5 - 198997/2*x^4 - 19375*x^3 + 14559/2*x^2 + 5419/2*x + 557/2, -3*x^23 + 14*x^22 + 75*x^21 - 825/2*x^20 - 728*x^19 + 10301/2*x^18 + 3278*x^17 - 35734*x^16 - 9885/2*x^15 + 151630*x^14 - 27933/2*x^13 - 814973/2*x^12 + 70411*x^11 + 692038*x^10 - 213155/2*x^9 - 713557*x^8 + 93481/2*x^7 + 403708*x^6 + 51625/2*x^5 - 198997/2*x^4 - 19375*x^3 + 14559/2*x^2 + 5419/2*x + 557/2, 2*x^20 - 12*x^19 - 21*x^18 + 258*x^17 - 185*x^16 - 2017*x^15 + 3863*x^14 + 6259*x^13 - 47759/2*x^12 + 1845/2*x^11 + 144987/2*x^10 - 110001/2*x^9 - 115969*x^8 + 272465/2*x^7 + 190485/2*x^6 - 132503*x^5 - 39528*x^4 + 46953*x^3 + 11694*x^2 - 10685/2*x - 1463, 2*x^20 - 12*x^19 - 21*x^18 + 258*x^17 - 185*x^16 - 2017*x^15 + 3863*x^14 + 6259*x^13 - 47759/2*x^12 + 1845/2*x^11 + 144987/2*x^10 - 110001/2*x^9 - 115969*x^8 + 272465/2*x^7 + 190485/2*x^6 - 132503*x^5 - 39528*x^4 + 46953*x^3 + 11694*x^2 - 10685/2*x - 1463, -3*x^22 + 11*x^21 + 167/2*x^20 - 635/2*x^19 - 1979/2*x^18 + 7713/2*x^17 + 6664*x^16 - 51505/2*x^15 - 28941*x^14 + 103396*x^13 + 87125*x^12 - 510759/2*x^11 - 185737*x^10 + 755869/2*x^9 + 533929/2*x^8 - 609127/2*x^7 - 454577/2*x^6 + 202407/2*x^5 + 90174*x^4 + 2397/2*x^3 - 21013/2*x^2 - 3040*x - 697/2, -3*x^22 + 11*x^21 + 167/2*x^20 - 635/2*x^19 - 1979/2*x^18 + 7713/2*x^17 + 6664*x^16 - 51505/2*x^15 - 28941*x^14 + 103396*x^13 + 87125*x^12 - 510759/2*x^11 - 185737*x^10 + 755869/2*x^9 + 533929/2*x^8 - 609127/2*x^7 - 454577/2*x^6 + 202407/2*x^5 + 90174*x^4 + 2397/2*x^3 - 21013/2*x^2 - 3040*x - 697/2, 1/2*x^23 - 25*x^21 + 39/2*x^20 + 468*x^19 - 1037/2*x^18 - 9199/2*x^17 + 5753*x^16 + 53917/2*x^15 - 69377/2*x^14 - 198935/2*x^13 + 247069/2*x^12 + 468499/2*x^11 - 526143/2*x^10 - 345969*x^9 + 641985/2*x^8 + 609987/2*x^7 - 199024*x^6 - 297013/2*x^5 + 46295*x^4 + 38009*x^3 - 1621/2*x^2 - 3575*x - 520, 1/2*x^23 - 25*x^21 + 39/2*x^20 + 468*x^19 - 1037/2*x^18 - 9199/2*x^17 + 5753*x^16 + 53917/2*x^15 - 69377/2*x^14 - 198935/2*x^13 + 247069/2*x^12 + 468499/2*x^11 - 526143/2*x^10 - 345969*x^9 + 641985/2*x^8 + 609987/2*x^7 - 199024*x^6 - 297013/2*x^5 + 46295*x^4 + 38009*x^3 - 1621/2*x^2 - 3575*x - 520, 1/2*x^20 + 1/2*x^19 - 23*x^18 + 11/2*x^17 + 745/2*x^16 - 294*x^15 - 5931/2*x^14 + 6465/2*x^13 + 26249/2*x^12 - 33665/2*x^11 - 67799/2*x^10 + 96081/2*x^9 + 103959/2*x^8 - 152627/2*x^7 - 48509*x^6 + 60791*x^5 + 57147/2*x^4 - 16028*x^3 - 7351*x^2 + 1761/2*x + 455, 1/2*x^20 + 1/2*x^19 - 23*x^18 + 11/2*x^17 + 745/2*x^16 - 294*x^15 - 5931/2*x^14 + 6465/2*x^13 + 26249/2*x^12 - 33665/2*x^11 - 67799/2*x^10 + 96081/2*x^9 + 103959/2*x^8 - 152627/2*x^7 - 48509*x^6 + 60791*x^5 + 57147/2*x^4 - 16028*x^3 - 7351*x^2 + 1761/2*x + 455, 2*x^21 - 13/2*x^20 - 109/2*x^19 + 175*x^18 + 1283/2*x^17 - 3913/2*x^16 - 4411*x^15 + 23869/2*x^14 + 19956*x^13 - 43514*x^12 - 61583*x^11 + 96593*x^10 + 252511/2*x^9 - 125246*x^8 - 159139*x^7 + 83274*x^6 + 107918*x^5 - 39107/2*x^4 - 31728*x^3 - 2367/2*x^2 + 5867/2*x + 450, 2*x^21 - 13/2*x^20 - 109/2*x^19 + 175*x^18 + 1283/2*x^17 - 3913/2*x^16 - 4411*x^15 + 23869/2*x^14 + 19956*x^13 - 43514*x^12 - 61583*x^11 + 96593*x^10 + 252511/2*x^9 - 125246*x^8 - 159139*x^7 + 83274*x^6 + 107918*x^5 - 39107/2*x^4 - 31728*x^3 - 2367/2*x^2 + 5867/2*x + 450, -5/2*x^21 + 23/2*x^20 + 56*x^19 - 609/2*x^18 - 941/2*x^17 + 6635/2*x^16 + 1754*x^15 - 19293*x^14 - 4609/2*x^13 + 64982*x^12 - 1537/2*x^11 - 256733/2*x^10 - 8785/2*x^9 + 142029*x^8 + 61069/2*x^7 - 75216*x^6 - 36842*x^5 + 10523*x^4 + 7670*x^3 + 187*x^2 - 18*x + 70, -5/2*x^21 + 23/2*x^20 + 56*x^19 - 609/2*x^18 - 941/2*x^17 + 6635/2*x^16 + 1754*x^15 - 19293*x^14 - 4609/2*x^13 + 64982*x^12 - 1537/2*x^11 - 256733/2*x^10 - 8785/2*x^9 + 142029*x^8 + 61069/2*x^7 - 75216*x^6 - 36842*x^5 + 10523*x^4 + 7670*x^3 + 187*x^2 - 18*x + 70, 1/2*x^22 - 51/2*x^20 + 49/2*x^19 + 939/2*x^18 - 648*x^17 - 8857/2*x^16 + 7114*x^15 + 48603/2*x^14 - 42047*x^13 - 81816*x^12 + 290005/2*x^11 + 171898*x^10 - 294845*x^9 - 224106*x^8 + 675551/2*x^7 + 176389*x^6 - 190966*x^5 - 154861/2*x^4 + 74529/2*x^3 + 13951*x^2 - 1807*x - 1319/2, 1/2*x^22 - 51/2*x^20 + 49/2*x^19 + 939/2*x^18 - 648*x^17 - 8857/2*x^16 + 7114*x^15 + 48603/2*x^14 - 42047*x^13 - 81816*x^12 + 290005/2*x^11 + 171898*x^10 - 294845*x^9 - 224106*x^8 + 675551/2*x^7 + 176389*x^6 - 190966*x^5 - 154861/2*x^4 + 74529/2*x^3 + 13951*x^2 - 1807*x - 1319/2, 1/2*x^21 - 2*x^20 - 23/2*x^19 + 99/2*x^18 + 109*x^17 - 963/2*x^16 - 1309/2*x^15 + 2335*x^14 + 3633*x^13 - 12155/2*x^12 - 35979/2*x^11 + 18893/2*x^10 + 117879/2*x^9 - 12324*x^8 - 108428*x^7 + 28115/2*x^6 + 200571/2*x^5 - 10147/2*x^4 - 38276*x^3 - 6925/2*x^2 + 4917*x + 1008, 1/2*x^21 - 2*x^20 - 23/2*x^19 + 99/2*x^18 + 109*x^17 - 963/2*x^16 - 1309/2*x^15 + 2335*x^14 + 3633*x^13 - 12155/2*x^12 - 35979/2*x^11 + 18893/2*x^10 + 117879/2*x^9 - 12324*x^8 - 108428*x^7 + 28115/2*x^6 + 200571/2*x^5 - 10147/2*x^4 - 38276*x^3 - 6925/2*x^2 + 4917*x + 1008, 1/2*x^22 + 1/2*x^21 - 47/2*x^20 - 7*x^19 + 873/2*x^18 - 33/2*x^17 - 8689/2*x^16 + 875*x^15 + 51783/2*x^14 - 14011/2*x^13 - 96096*x^12 + 54095/2*x^11 + 442411/2*x^10 - 55972*x^9 - 604873/2*x^8 + 119673/2*x^7 + 448021/2*x^6 - 58045/2*x^5 - 154745/2*x^4 + 9791/2*x^3 + 12081*x^2 + 291/2*x - 525, 1/2*x^22 + 1/2*x^21 - 47/2*x^20 - 7*x^19 + 873/2*x^18 - 33/2*x^17 - 8689/2*x^16 + 875*x^15 + 51783/2*x^14 - 14011/2*x^13 - 96096*x^12 + 54095/2*x^11 + 442411/2*x^10 - 55972*x^9 - 604873/2*x^8 + 119673/2*x^7 + 448021/2*x^6 - 58045/2*x^5 - 154745/2*x^4 + 9791/2*x^3 + 12081*x^2 + 291/2*x - 525]>
       ]
>;

MOG[509] := 	// J_0(509)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 8, 23, 30, 46, 138, 151, 183, 188, 191, 278, 329, 365, 415, 508, 8*x + 66, 501*x + 66, 21*x + 497, 488*x + 497, 329*x + 479, 180*x + 479, 307*x + 347, 202*x + 347, 369*x + 405, 140*x + 405, 349*x + 258, 160*x + 258, 32*x + 49, 477*x + 49, 426*x + 26, 83*x + 26, 455*x + 121, 54*x + 121, 37*x + 479, 472*x + 479, 331*x + 462, 178*x + 462, 400*x + 417, 109*x + 417, 202*x + 53, 307*x + 53, 209*x + 229, 300*x + 229]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^14 + 3*x^13 - 11*x^12 - 36*x^11 + 43*x^10 + 161*x^9 - 70*x^8 - 337*x^7 + 29*x^6 + 336*x^5 + 40*x^4 - 139*x^3 - 36*x^2 + 12*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^13 - 3*x^12 + 9*x^11 + 30*x^10 - 28*x^9 - 110*x^8 + 33*x^7 + 185*x^6 + 3*x^5 - 143*x^4 - 34*x^3 + 39*x^2 + 18*x + 2, x^13 + 3*x^12 - 9*x^11 - 30*x^10 + 28*x^9 + 110*x^8 - 33*x^7 - 185*x^6 - 3*x^5 + 143*x^4 + 34*x^3 - 39*x^2 - 18*x - 2, -x^12 - 3*x^11 + 8*x^10 + 27*x^9 - 21*x^8 - 85*x^7 + 20*x^6 + 115*x^5 + 2*x^4 - 64*x^3 - 11*x^2 + 10*x + 2, x^12 + 3*x^11 - 8*x^10 - 27*x^9 + 21*x^8 + 85*x^7 - 20*x^6 - 115*x^5 - 2*x^4 + 64*x^3 + 11*x^2 - 10*x - 2, -x^12 - 3*x^11 + 7*x^10 + 24*x^9 - 16*x^8 - 67*x^7 + 12*x^6 + 78*x^5 + 4*x^4 - 36*x^3 - 7*x^2 + 4*x + 1, x^12 + 3*x^11 - 7*x^10 - 24*x^9 + 16*x^8 + 67*x^7 - 12*x^6 - 78*x^5 - 4*x^4 + 36*x^3 + 7*x^2 - 4*x - 1, -x^11 - 3*x^10 + 7*x^9 + 25*x^8 - 13*x^7 - 70*x^6 - x^5 + 79*x^4 + 23*x^3 - 29*x^2 - 16*x - 2, x^11 + 3*x^10 - 7*x^9 - 25*x^8 + 13*x^7 + 70*x^6 + x^5 - 79*x^4 - 23*x^3 + 29*x^2 + 16*x + 2, -x^11 - 3*x^10 + 6*x^9 + 21*x^8 - 12*x^7 - 52*x^6 + 7*x^5 + 53*x^4 + 5*x^3 - 19*x^2 - 5*x, x^11 + 3*x^10 - 6*x^9 - 21*x^8 + 12*x^7 + 52*x^6 - 7*x^5 - 53*x^4 - 5*x^3 + 19*x^2 + 5*x, -x^11 - 3*x^10 + 6*x^9 + 22*x^8 - 9*x^7 - 55*x^6 - 6*x^5 + 54*x^4 + 22*x^3 - 16*x^2 - 12*x - 2, x^11 + 3*x^10 - 6*x^9 - 22*x^8 + 9*x^7 + 55*x^6 + 6*x^5 - 54*x^4 - 22*x^3 + 16*x^2 + 12*x + 2, -x^10 - 2*x^9 + 8*x^8 + 15*x^7 - 21*x^6 - 36*x^5 + 21*x^4 + 35*x^3 - 5*x^2 - 12*x - 2, x^10 + 2*x^9 - 8*x^8 - 15*x^7 + 21*x^6 + 36*x^5 - 21*x^4 - 35*x^3 + 5*x^2 + 12*x + 2, -x^10 - 3*x^9 + 4*x^8 + 15*x^7 - 5*x^6 - 25*x^5 + x^4 + 17*x^3 + 2*x^2 - 4*x - 1, x^10 + 3*x^9 - 4*x^8 - 15*x^7 + 5*x^6 + 25*x^5 - x^4 - 17*x^3 - 2*x^2 + 4*x + 1, -x^10 - 2*x^9 + 7*x^8 + 12*x^7 - 18*x^6 - 24*x^5 + 18*x^4 + 20*x^3 - 5*x^2 - 6*x - 1, x^10 + 2*x^9 - 7*x^8 - 12*x^7 + 18*x^6 + 24*x^5 - 18*x^4 - 20*x^3 + 5*x^2 + 6*x + 1, -x^9 - 2*x^8 + 7*x^7 + 13*x^6 - 14*x^5 - 23*x^4 + 7*x^3 + 12*x^2 + 2*x, x^9 + 2*x^8 - 7*x^7 - 13*x^6 + 14*x^5 + 23*x^4 - 7*x^3 - 12*x^2 - 2*x, -x^9 - 4*x^8 + x^7 + 18*x^6 + 8*x^5 - 25*x^4 - 15*x^3 + 10*x^2 + 7*x + 1, x^9 + 4*x^8 - x^7 - 18*x^6 - 8*x^5 + 25*x^4 + 15*x^3 - 10*x^2 - 7*x - 1, -x^9 - 2*x^8 + 6*x^7 + 9*x^6 - 14*x^5 - 11*x^4 + 12*x^3 + 5*x^2 - 3*x - 1, x^9 + 2*x^8 - 6*x^7 - 9*x^6 + 14*x^5 + 11*x^4 - 12*x^3 - 5*x^2 + 3*x + 1, -x^9 - 3*x^8 + 3*x^7 + 13*x^6 - 16*x^4 - 7*x^3 + 5*x^2 + 5*x + 1, x^9 + 3*x^8 - 3*x^7 - 13*x^6 + 16*x^4 + 7*x^3 - 5*x^2 - 5*x - 1, -x^8 - 2*x^7 + 7*x^6 + 13*x^5 - 14*x^4 - 23*x^3 + 7*x^2 + 12*x + 2, x^8 + 2*x^7 - 7*x^6 - 13*x^5 + 14*x^4 + 23*x^3 - 7*x^2 - 12*x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^28 - 3*x^27 - 44*x^26 + 135*x^25 + 847*x^24 - 2674*x^23 - 9369*x^22 + 30699*x^21 + 65714*x^20 - 226429*x^19 - 303558*x^18 + 1123948*x^17 + 922806*x^16 - 3822074*x^15 - 1752519*x^14 + 8879314*x^13 + 1675588*x^12 - 13751763*x^11 + 382971*x^10 + 13397267*x^9 - 2958134*x^8 - 7169500*x^7 + 3056380*x^6 + 1305763*x^5 - 1072947*x^4 + 245723*x^3 - 24485*x^2 + 1114*x - 19,
           Coordinates        := [-x^27 + 3*x^26 + 41*x^25 - 126*x^24 - 728*x^23 + 2308*x^22 + 7335*x^21 - 24235*x^20 - 46123*x^19 + 161334*x^18 + 187017*x^17 - 711224*x^16 - 483669*x^15 + 2105392*x^14 + 736152*x^13 - 4149190*x^12 - 446704*x^11 + 5260289*x^10 - 429755*x^9 - 3972936*x^8 + 963705*x^7 + 1493272*x^6 - 595951*x^5 - 141595*x^4 + 99216*x^3 - 16166*x^2 + 1017*x - 22, x^27 - 3*x^26 - 41*x^25 + 126*x^24 + 726*x^23 - 2300*x^22 - 7271*x^21 + 23953*x^20 + 45285*x^19 - 157098*x^18 - 181329*x^17 + 675772*x^16 + 463437*x^15 - 1923898*x^14 - 709586*x^13 + 3562096*x^12 + 506596*x^11 - 4066743*x^10 + 127805*x^9 + 2518354*x^8 - 447199*x^7 - 557022*x^6 + 168657*x^5 - 68509*x^4 + 45106*x^3 - 9320*x^2 + 677*x - 16, 2*x^24 - 6*x^23 - 68*x^22 + 206*x^21 + 980*x^20 - 2988*x^19 - 7866*x^18 + 23912*x^17 + 39056*x^16 - 115830*x^15 - 126798*x^14 + 350992*x^13 + 278300*x^12 - 664090*x^11 - 416568*x^10 + 758304*x^9 + 407964*x^8 - 487684*x^7 - 224906*x^6 + 164850*x^5 + 40564*x^4 - 33626*x^3 + 7406*x^2 - 568*x + 14, 2*x^25 - 6*x^24 - 72*x^23 + 222*x^22 + 1096*x^21 - 3506*x^20 - 9178*x^19 + 30894*x^18 + 45992*x^17 - 166708*x^16 - 139634*x^15 + 568882*x^14 + 241540*x^13 - 1221276*x^12 - 174712*x^11 + 1574998*x^10 - 102224*x^9 - 1075190*x^8 + 254678*x^7 + 248264*x^6 - 100592*x^5 + 43862*x^4 - 24490*x^3 + 4804*x^2 - 342*x + 8, -3*x^26 + 9*x^25 + 119*x^24 - 366*x^23 - 2034*x^22 + 6464*x^21 + 19591*x^20 - 65095*x^19 - 116541*x^18 + 412724*x^17 + 439137*x^16 - 1716682*x^15 - 1016367*x^14 + 4730124*x^13 + 1228884*x^12 - 8491474*x^11 - 46784*x^10 + 9424331*x^9 - 1994429*x^8 - 5676228*x^7 + 2460429*x^6 + 1164168*x^5 - 973731*x^4 + 229557*x^3 - 23468*x^2 + 1092*x - 19, 2*x^22 - 4*x^21 - 70*x^20 + 138*x^19 + 1032*x^18 - 1994*x^17 - 8350*x^16 + 15684*x^15 + 40508*x^14 - 73128*x^13 - 120830*x^12 + 206600*x^11 + 217466*x^10 - 347324*x^9 - 217188*x^8 + 325852*x^7 + 92054*x^6 - 146340*x^5 + 2800*x^4 + 19022*x^3 - 5110*x^2 + 406*x - 10, 2*x^21 - 4*x^20 - 70*x^19 + 150*x^18 + 1002*x^17 - 2316*x^16 - 7526*x^15 + 19114*x^14 + 31456*x^13 - 91654*x^12 - 69776*x^11 + 260414*x^10 + 58674*x^9 - 427818*x^8 + 56034*x^7 + 367550*x^6 - 148606*x^5 - 114150*x^4 + 83386*x^3 - 15996*x^2 + 1120*x - 26, 2*x^21 - 4*x^20 - 66*x^19 + 138*x^18 + 890*x^17 - 1968*x^16 - 6304*x^15 + 15138*x^14 + 24852*x^13 - 68854*x^12 - 50862*x^11 + 190638*x^10 + 29162*x^9 - 314654*x^8 + 79372*x^7 + 280374*x^6 - 151850*x^5 - 93022*x^4 + 76260*x^3 - 15376*x^2 + 1104*x - 26, 4*x^19 - 4*x^18 - 116*x^17 + 122*x^16 + 1352*x^15 - 1482*x^14 - 8104*x^13 + 9208*x^12 + 26536*x^11 - 31446*x^10 - 45996*x^9 + 59176*x^8 + 33960*x^7 - 55862*x^6 + 3840*x^5 + 17152*x^4 - 14236*x^3 + 3258*x^2 - 248*x + 6, 4*x^20 - 12*x^19 - 108*x^18 + 354*x^17 + 1108*x^16 - 4186*x^15 - 5140*x^14 + 25416*x^13 + 8120*x^12 - 84518*x^11 + 16896*x^10 + 151168*x^9 - 84392*x^8 - 123782*x^7 + 115564*x^6 + 9472*x^5 - 48540*x^4 + 31730*x^3 - 6764*x^2 + 502*x - 12, 2*x^22 - 8*x^21 - 58*x^20 + 248*x^19 + 700*x^18 - 3226*x^17 - 4654*x^16 + 23064*x^15 + 19202*x^14 - 99716*x^13 - 52368*x^12 + 268940*x^11 + 94200*x^10 - 445008*x^9 - 99798*x^8 + 420720*x^7 + 40464*x^6 - 192308*x^5 + 12310*x^4 + 26164*x^3 - 5384*x^2 + 362*x - 8, x^26 - 3*x^25 - 37*x^24 + 114*x^23 + 582*x^22 - 1856*x^21 - 5079*x^20 + 16941*x^19 + 26929*x^18 - 95310*x^17 - 89345*x^16 + 342356*x^15 + 184169*x^14 - 786134*x^13 - 226506*x^12 + 1119544*x^11 + 157172*x^10 - 916747*x^9 - 76643*x^8 + 367974*x^7 + 62157*x^6 - 60494*x^5 - 32527*x^4 + 19215*x^3 - 3874*x^2 + 288*x - 7, -4*x^23 + 8*x^22 + 146*x^21 - 282*x^20 - 2286*x^19 + 4236*x^18 + 20104*x^17 - 35488*x^16 - 109098*x^15 + 182394*x^14 + 376792*x^13 - 596276*x^12 - 818230*x^11 + 1242706*x^10 + 1043448*x^9 - 1600468*x^8 - 629874*x^7 + 1162430*x^6 + 5574*x^5 - 354642*x^4 + 121124*x^3 - 14142*x^2 + 688*x - 12, 2*x^23 - 4*x^22 - 78*x^21 + 150*x^20 + 1320*x^19 - 2436*x^18 - 12660*x^17 + 22378*x^16 + 75334*x^15 - 127242*x^14 - 286068*x^13 + 460298*x^12 + 686072*x^11 - 1049822*x^10 - 984186*x^9 + 1445242*x^8 + 722612*x^7 - 1083074*x^6 - 126426*x^5 + 330744*x^4 - 86748*x^3 + 8114*x^2 - 310*x + 4, 2*x^22 - 4*x^21 - 70*x^20 + 138*x^19 + 1028*x^18 - 1982*x^17 - 8238*x^16 + 15336*x^15 + 39286*x^14 - 69152*x^13 - 114226*x^12 + 183800*x^11 + 198552*x^10 - 277548*x^9 - 187676*x^8 + 212688*x^7 + 68716*x^6 - 59164*x^5 + 6044*x^4 - 2106*x^3 + 2016*x^2 - 214*x + 6, -2*x^24 + 6*x^23 + 69*x^22 - 214*x^21 - 1002*x^20 + 3261*x^19 + 7934*x^18 - 27796*x^17 - 36805*x^16 + 145746*x^15 + 97199*x^14 - 486534*x^13 - 110977*x^12 + 1030468*x^11 - 99629*x^10 - 1321958*x^9 + 485297*x^8 + 896152*x^7 - 578428*x^6 - 180108*x^5 + 237883*x^4 - 67633*x^3 + 7415*x^2 - 350*x + 6, -2*x^24 + 6*x^23 + 69*x^22 - 214*x^21 - 1002*x^20 + 3261*x^19 + 7934*x^18 - 27796*x^17 - 36805*x^16 + 145746*x^15 + 97199*x^14 - 486534*x^13 - 110977*x^12 + 1030468*x^11 - 99629*x^10 - 1321958*x^9 + 485297*x^8 + 896152*x^7 - 578428*x^6 - 180108*x^5 + 237883*x^4 - 67633*x^3 + 7415*x^2 - 350*x + 6, -2*x^25 + 6*x^24 + 75*x^23 - 230*x^22 - 1207*x^21 + 3805*x^20 + 10914*x^19 - 35639*x^18 - 60957*x^17 + 208495*x^16 + 217320*x^15 - 793026*x^14 - 489786*x^13 + 1978048*x^12 + 646664*x^11 - 3178268*x^10 - 352582*x^9 + 3121290*x^8 - 215343*x^7 - 1657824*x^6 + 407061*x^5 + 327171*x^4 - 160558*x^3 + 24795*x^2 - 1535*x + 33, -2*x^25 + 6*x^24 + 75*x^23 - 230*x^22 - 1207*x^21 + 3805*x^20 + 10914*x^19 - 35639*x^18 - 60957*x^17 + 208495*x^16 + 217320*x^15 - 793026*x^14 - 489786*x^13 + 1978048*x^12 + 646664*x^11 - 3178268*x^10 - 352582*x^9 + 3121290*x^8 - 215343*x^7 - 1657824*x^6 + 407061*x^5 + 327171*x^4 - 160558*x^3 + 24795*x^2 - 1535*x + 33, -2*x^23 + 8*x^22 + 59*x^21 - 262*x^20 - 694*x^19 + 3607*x^18 + 4048*x^17 - 27261*x^16 - 11023*x^15 + 124098*x^14 + 2017*x^13 - 351304*x^12 + 71937*x^11 + 613604*x^10 - 205569*x^9 - 624670*x^8 + 266789*x^7 + 315286*x^6 - 174752*x^5 - 40162*x^4 + 46849*x^3 - 11003*x^2 + 853*x - 21, -2*x^23 + 8*x^22 + 59*x^21 - 262*x^20 - 694*x^19 + 3607*x^18 + 4048*x^17 - 27261*x^16 - 11023*x^15 + 124098*x^14 + 2017*x^13 - 351304*x^12 + 71937*x^11 + 613604*x^10 - 205569*x^9 - 624670*x^8 + 266789*x^7 + 315286*x^6 - 174752*x^5 - 40162*x^4 + 46849*x^3 - 11003*x^2 + 853*x - 21, x^26 - 3*x^25 - 42*x^24 + 130*x^23 + 758*x^22 - 2445*x^21 - 7675*x^20 + 26195*x^19 + 47650*x^18 - 176433*x^17 - 185012*x^16 + 777910*x^15 + 429382*x^14 - 2265542*x^13 - 471243*x^12 + 4282738*x^11 - 206169*x^10 - 4981083*x^9 + 1293789*x^8 + 3122252*x^7 - 1474940*x^6 - 656889*x^5 + 575290*x^4 - 137129*x^3 + 14518*x^2 - 709*x + 13, x^26 - 3*x^25 - 42*x^24 + 130*x^23 + 758*x^22 - 2445*x^21 - 7675*x^20 + 26195*x^19 + 47650*x^18 - 176433*x^17 - 185012*x^16 + 777910*x^15 + 429382*x^14 - 2265542*x^13 - 471243*x^12 + 4282738*x^11 - 206169*x^10 - 4981083*x^9 + 1293789*x^8 + 3122252*x^7 - 1474940*x^6 - 656889*x^5 + 575290*x^4 - 137129*x^3 + 14518*x^2 - 709*x + 13, -2*x^22 + 10*x^21 + 49*x^20 - 310*x^19 - 395*x^18 + 4003*x^17 + 343*x^16 - 28066*x^15 + 13763*x^14 + 116850*x^13 - 95679*x^12 - 295936*x^11 + 302407*x^10 + 442194*x^9 - 512261*x^8 - 341074*x^7 + 445383*x^6 + 69368*x^5 - 152290*x^4 + 40682*x^3 - 3876*x^2 + 151*x - 2, -2*x^22 + 10*x^21 + 49*x^20 - 310*x^19 - 395*x^18 + 4003*x^17 + 343*x^16 - 28066*x^15 + 13763*x^14 + 116850*x^13 - 95679*x^12 - 295936*x^11 + 302407*x^10 + 442194*x^9 - 512261*x^8 - 341074*x^7 + 445383*x^6 + 69368*x^5 - 152290*x^4 + 40682*x^3 - 3876*x^2 + 151*x - 2, 2*x^23 - 8*x^22 - 58*x^21 + 259*x^20 + 656*x^19 - 3491*x^18 - 3468*x^17 + 25439*x^16 + 6418*x^15 - 108945*x^14 + 18380*x^13 + 278593*x^12 - 120928*x^11 - 408347*x^10 + 255094*x^9 + 293753*x^8 - 239792*x^7 - 41707*x^6 + 70578*x^5 - 38744*x^4 + 15948*x^3 - 2686*x^2 + 178*x - 4, 2*x^23 - 8*x^22 - 58*x^21 + 259*x^20 + 656*x^19 - 3491*x^18 - 3468*x^17 + 25439*x^16 + 6418*x^15 - 108945*x^14 + 18380*x^13 + 278593*x^12 - 120928*x^11 - 408347*x^10 + 255094*x^9 + 293753*x^8 - 239792*x^7 - 41707*x^6 + 70578*x^5 - 38744*x^4 + 15948*x^3 - 2686*x^2 + 178*x - 4, x^25 - 2*x^24 - 43*x^23 + 85*x^22 + 803*x^21 - 1563*x^20 - 8549*x^19 + 16304*x^18 + 57274*x^17 - 106357*x^16 - 251375*x^15 + 451382*x^14 + 728129*x^13 - 1257406*x^12 - 1359429*x^11 + 2263928*x^10 + 1518566*x^9 - 2517392*x^8 - 812398*x^7 + 1557957*x^6 - 428*x^5 - 395791*x^4 + 129970*x^3 - 16184*x^2 + 871*x - 17, x^25 - 2*x^24 - 43*x^23 + 85*x^22 + 803*x^21 - 1563*x^20 - 8549*x^19 + 16304*x^18 + 57274*x^17 - 106357*x^16 - 251375*x^15 + 451382*x^14 + 728129*x^13 - 1257406*x^12 - 1359429*x^11 + 2263928*x^10 + 1518566*x^9 - 2517392*x^8 - 812398*x^7 + 1557957*x^6 - 428*x^5 - 395791*x^4 + 129970*x^3 - 16184*x^2 + 871*x - 17, -2*x^21 + 10*x^20 + 51*x^19 - 304*x^18 - 479*x^17 + 3849*x^16 + 1722*x^15 - 26450*x^14 + 2020*x^13 + 107736*x^12 - 38470*x^11 - 265610*x^10 + 138316*x^9 + 383394*x^8 - 242126*x^7 - 286382*x^6 + 214770*x^5 + 68534*x^4 - 76889*x^3 + 16538*x^2 - 1217*x + 29, -2*x^21 + 10*x^20 + 51*x^19 - 304*x^18 - 479*x^17 + 3849*x^16 + 1722*x^15 - 26450*x^14 + 2020*x^13 + 107736*x^12 - 38470*x^11 - 265610*x^10 + 138316*x^9 + 383394*x^8 - 242126*x^7 - 286382*x^6 + 214770*x^5 + 68534*x^4 - 76889*x^3 + 16538*x^2 - 1217*x + 29, 2*x^22 - 6*x^21 - 62*x^20 + 191*x^19 + 791*x^18 - 2521*x^17 - 5377*x^16 + 17908*x^15 + 21080*x^14 - 74416*x^13 - 47924*x^12 + 183806*x^11 + 58058*x^10 - 258982*x^9 - 23086*x^8 + 179188*x^7 - 19802*x^6 - 28842*x^5 + 15546*x^4 - 15909*x^3 + 3775*x^2 - 289*x + 7, 2*x^22 - 6*x^21 - 62*x^20 + 191*x^19 + 791*x^18 - 2521*x^17 - 5377*x^16 + 17908*x^15 + 21080*x^14 - 74416*x^13 - 47924*x^12 + 183806*x^11 + 58058*x^10 - 258982*x^9 - 23086*x^8 + 179188*x^7 - 19802*x^6 - 28842*x^5 + 15546*x^4 - 15909*x^3 + 3775*x^2 - 289*x + 7, x^24 - 2*x^23 - 40*x^22 + 79*x^21 + 689*x^20 - 1342*x^19 - 6680*x^18 + 12802*x^17 + 39994*x^16 - 75153*x^15 - 152635*x^14 + 280007*x^13 + 369220*x^12 - 659381*x^11 - 539193*x^10 + 945125*x^9 + 411205*x^8 - 751897*x^7 - 83445*x^6 + 261526*x^5 - 49529*x^4 - 9025*x^3 + 2537*x^2 - 179*x + 4, x^24 - 2*x^23 - 40*x^22 + 79*x^21 + 689*x^20 - 1342*x^19 - 6680*x^18 + 12802*x^17 + 39994*x^16 - 75153*x^15 - 152635*x^14 + 280007*x^13 + 369220*x^12 - 659381*x^11 - 539193*x^10 + 945125*x^9 + 411205*x^8 - 751897*x^7 - 83445*x^6 + 261526*x^5 - 49529*x^4 - 9025*x^3 + 2537*x^2 - 179*x + 4, 2*x^20 - 71*x^18 + 13*x^17 + 1023*x^16 - 273*x^15 - 7828*x^14 + 2137*x^13 + 34984*x^12 - 7981*x^11 - 94152*x^10 + 16335*x^9 + 148280*x^8 - 22739*x^7 - 121952*x^6 + 26659*x^5 + 36730*x^4 - 17199*x^3 + 3107*x^2 - 216*x + 5, 2*x^20 - 71*x^18 + 13*x^17 + 1023*x^16 - 273*x^15 - 7828*x^14 + 2137*x^13 + 34984*x^12 - 7981*x^11 - 94152*x^10 + 16335*x^9 + 148280*x^8 - 22739*x^7 - 121952*x^6 + 26659*x^5 + 36730*x^4 - 17199*x^3 + 3107*x^2 - 216*x + 5, 6*x^19 - 13*x^18 - 167*x^17 + 356*x^16 + 1889*x^15 - 3915*x^14 - 11251*x^13 + 22225*x^12 + 38307*x^11 - 69939*x^10 - 75135*x^9 + 121855*x^8 + 77431*x^7 - 108661*x^6 - 27493*x^5 + 38671*x^4 - 6945*x^3 - 448*x^2 + 94*x - 3, 6*x^19 - 13*x^18 - 167*x^17 + 356*x^16 + 1889*x^15 - 3915*x^14 - 11251*x^13 + 22225*x^12 + 38307*x^11 - 69939*x^10 - 75135*x^9 + 121855*x^8 + 77431*x^7 - 108661*x^6 - 27493*x^5 + 38671*x^4 - 6945*x^3 - 448*x^2 + 94*x - 3, 2*x^21 - 6*x^20 - 56*x^19 + 179*x^18 + 612*x^17 - 2154*x^16 - 3246*x^15 + 13449*x^14 + 8112*x^13 - 46863*x^12 - 4820*x^11 + 91307*x^10 - 19198*x^9 - 91479*x^8 + 40802*x^7 + 32667*x^6 - 26190*x^5 + 7289*x^4 + 3736*x^3 - 1378*x^2 + 118*x - 3, 2*x^21 - 6*x^20 - 56*x^19 + 179*x^18 + 612*x^17 - 2154*x^16 - 3246*x^15 + 13449*x^14 + 8112*x^13 - 46863*x^12 - 4820*x^11 + 91307*x^10 - 19198*x^9 - 91479*x^8 + 40802*x^7 + 32667*x^6 - 26190*x^5 + 7289*x^4 + 3736*x^3 - 1378*x^2 + 118*x - 3, x^23 - 2*x^22 - 36*x^21 + 71*x^20 + 549*x^19 - 1066*x^18 - 4620*x^17 + 8826*x^16 + 23406*x^15 - 44133*x^14 - 72841*x^13 + 137727*x^12 + 134164*x^11 - 268981*x^10 - 123175*x^9 + 320253*x^8 + 6341*x^7 - 213357*x^6 + 77325*x^5 + 56022*x^4 - 40685*x^3 + 7891*x^2 - 557*x + 13, x^23 - 2*x^22 - 36*x^21 + 71*x^20 + 549*x^19 - 1066*x^18 - 4620*x^17 + 8826*x^16 + 23406*x^15 - 44133*x^14 - 72841*x^13 + 137727*x^12 + 134164*x^11 - 268981*x^10 - 123175*x^9 + 320253*x^8 + 6341*x^7 - 213357*x^6 + 77325*x^5 + 56022*x^4 - 40685*x^3 + 7891*x^2 - 557*x + 13]>
       ]
>;

MOG[521] := 	// J_0(521)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 29, 104, 148, 150, 204, 232, 272, 306, 337, 339, 381, 437, 443, 468, 471, 22*x + 374, 499*x + 374, 340*x + 310, 181*x + 310, 52*x + 118, 469*x + 118, 265*x + 421, 256*x + 421, 520*x + 507, x + 507, 185*x + 351, 336*x + 351, 215*x + 54, 306*x + 54, 422*x + 120, 99*x + 120, 406*x + 214, 115*x + 214, 421*x + 443, 100*x + 443, 305*x + 108, 216*x + 108, 5*x + 144, 516*x + 144, 14*x + 4, 507*x + 4, 498*x + 112, 23*x + 112]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^14 + 2*x^13 - 13*x^12 - 25*x^11 + 63*x^10 + 115*x^9 - 142*x^8 - 242*x^7 + 151*x^6 + 238*x^5 - 65*x^4 - 104*x^3 + 2*x^2 + 17*x + 3,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^13 - 2*x^12 + 11*x^11 + 21*x^10 - 43*x^9 - 77*x^8 + 73*x^7 + 121*x^6 - 52*x^5 - 82*x^4 + 11*x^3 + 21*x^2 + x - 1, x^13 + 2*x^12 - 11*x^11 - 21*x^10 + 43*x^9 + 77*x^8 - 73*x^7 - 121*x^6 + 52*x^5 + 82*x^4 - 11*x^3 - 21*x^2 - x + 1, -x^12 - 2*x^11 + 10*x^10 + 19*x^9 - 35*x^8 - 62*x^7 + 51*x^6 + 85*x^5 - 26*x^4 - 49*x^3 + 10*x + 2, x^12 + 2*x^11 - 10*x^10 - 19*x^9 + 35*x^8 + 62*x^7 - 51*x^6 - 85*x^5 + 26*x^4 + 49*x^3 - 10*x - 2, -x^12 - 2*x^11 + 10*x^10 + 19*x^9 - 34*x^8 - 59*x^7 + 48*x^6 + 71*x^5 - 28*x^4 - 34*x^3 + 3*x^2 + 6*x + 1, x^12 + 2*x^11 - 10*x^10 - 19*x^9 + 34*x^8 + 59*x^7 - 48*x^6 - 71*x^5 + 28*x^4 + 34*x^3 - 3*x^2 - 6*x - 1, -x^11 - 2*x^10 + 8*x^9 + 15*x^8 - 22*x^7 - 36*x^6 + 26*x^5 + 33*x^4 - 11*x^3 - 11*x^2 + x + 1, x^11 + 2*x^10 - 8*x^9 - 15*x^8 + 22*x^7 + 36*x^6 - 26*x^5 - 33*x^4 + 11*x^3 + 11*x^2 - x - 1, -x^11 - 2*x^10 + 9*x^9 + 18*x^8 - 25*x^7 - 50*x^6 + 24*x^5 + 48*x^4 - 8*x^3 - 15*x^2 + 1, x^11 + 2*x^10 - 9*x^9 - 18*x^8 + 25*x^7 + 50*x^6 - 24*x^5 - 48*x^4 + 8*x^3 + 15*x^2 - 1, -x^10 - 2*x^9 + 6*x^8 + 12*x^7 - 9*x^6 - 19*x^5 + 3*x^4 + 9*x^3 - x, x^10 + 2*x^9 - 6*x^8 - 12*x^7 + 9*x^6 + 19*x^5 - 3*x^4 - 9*x^3 + x, -x^10 - 2*x^9 + 7*x^8 + 14*x^7 - 16*x^6 - 33*x^5 + 12*x^4 + 29*x^3 + x^2 - 8*x - 2, x^10 + 2*x^9 - 7*x^8 - 14*x^7 + 16*x^6 + 33*x^5 - 12*x^4 - 29*x^3 - x^2 + 8*x + 2, -x^10 - x^9 + 9*x^8 + 9*x^7 - 24*x^6 - 23*x^5 + 20*x^4 + 19*x^3 - 3*x^2 - 5*x - 1, x^10 + x^9 - 9*x^8 - 9*x^7 + 24*x^6 + 23*x^5 - 20*x^4 - 19*x^3 + 3*x^2 + 5*x + 1, x^7 + x^6 - 5*x^5 - 2*x^4 + 9*x^3 + 2*x^2 - 3*x - 1, -x^7 - x^6 + 5*x^5 + 2*x^4 - 9*x^3 - 2*x^2 + 3*x + 1, -x^9 - x^8 + 7*x^7 + 5*x^6 - 14*x^5 - 5*x^4 + 8*x^3 + x^2 - x, x^9 + x^8 - 7*x^7 - 5*x^6 + 14*x^5 + 5*x^4 - 8*x^3 - x^2 + x, -x^9 - 2*x^8 + 6*x^7 + 12*x^6 - 9*x^5 - 19*x^4 + 3*x^3 + 9*x^2 - 1, x^9 + 2*x^8 - 6*x^7 - 12*x^6 + 9*x^5 + 19*x^4 - 3*x^3 - 9*x^2 + 1, -x^9 - x^8 + 6*x^7 + 3*x^6 - 14*x^5 - 4*x^4 + 12*x^3 + 3*x^2 - 3*x - 1, x^9 + x^8 - 6*x^7 - 3*x^6 + 14*x^5 + 4*x^4 - 12*x^3 - 3*x^2 + 3*x + 1, -x^8 - x^7 + 5*x^6 + 2*x^5 - 9*x^4 - 2*x^3 + 3*x^2 + x, x^8 + x^7 - 5*x^6 - 2*x^5 + 9*x^4 + 2*x^3 - 3*x^2 - x, -x^9 + 10*x^7 + 3*x^6 - 27*x^5 - 9*x^4 + 24*x^3 + 7*x^2 - 6*x - 2, x^9 - 10*x^7 - 3*x^6 + 27*x^5 + 9*x^4 - 24*x^3 - 7*x^2 + 6*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^29 - x^28 - 50*x^27 + 49*x^26 + 1112*x^25 - 1061*x^24 - 14511*x^23 + 13387*x^22 + 123412*x^21 - 109286*x^20 - 718385*x^19 + 606113*x^18 + 2924033*x^17 - 2333576*x^16 - 8348401*x^15 + 6263323*x^14 + 16508066*x^13 - 11605772*x^12 - 21923563*x^11 + 14498124*x^10 + 18478199*x^9 - 11710480*x^8 - 8913548*x^7 + 5683110*x^6 + 1973213*x^5 - 1428489*x^4 - 75206*x^3 + 126742*x^2 - 12580*x - 647,
           Coordinates        := [-x^28 + x^27 + 47*x^26 - 46*x^25 - 977*x^24 + 929*x^23 + 11840*x^22 - 10854*x^21 - 92832*x^20 + 81408*x^19 + 494025*x^18 - 411373*x^17 - 1820586*x^16 + 1430819*x^15 + 4652145*x^14 - 3440616*x^13 - 8115255*x^12 + 5667202*x^11 + 9322338*x^10 - 6241864*x^9 - 6584743*x^8 + 4384888*x^7 + 2485387*x^6 - 1781490*x^5 - 328392*x^4 + 326081*x^3 - 26326*x^2 - 6877*x + 514, x^28 - x^27 - 47*x^26 + 48*x^25 + 977*x^24 - 1011*x^23 - 11842*x^22 + 12322*x^21 + 92900*x^20 - 96496*x^19 - 494959*x^18 + 509835*x^17 + 1827110*x^16 - 1856809*x^15 - 4674899*x^14 + 4678908*x^13 + 8135467*x^12 - 8064720*x^11 - 9196752*x^10 + 9236526*x^9 + 6112103*x^8 - 6641832*x^7 - 1813983*x^6 + 2668802*x^5 - 79088*x^4 - 438811*x^3 + 108738*x^2 - 617*x - 1502, -2*x^23 + 2*x^22 + 78*x^21 - 76*x^20 - 1310*x^19 + 1234*x^18 + 12420*x^17 - 11206*x^16 - 73268*x^15 + 62700*x^14 + 279566*x^13 - 225044*x^12 - 694258*x^11 + 524130*x^10 + 1097796*x^9 - 784906*x^8 - 1041494*x^7 + 731934*x^6 + 515760*x^5 - 392180*x^4 - 81284*x^3 + 93600*x^2 - 15412*x + 324, 4*x^23 - 2*x^22 - 156*x^21 + 84*x^20 + 2614*x^19 - 1484*x^18 - 24626*x^17 + 14488*x^16 + 143296*x^15 - 86256*x^14 - 532318*x^13 + 325734*x^12 + 1257746*x^11 - 785358*x^10 - 1815840*x^9 + 1183328*x^8 + 1451632*x^7 - 1049690*x^6 - 496338*x^5 + 474506*x^4 + 356*x^3 - 70010*x^2 + 17598*x - 1372, 2*x^23 - 80*x^21 - 6*x^20 + 1396*x^19 + 192*x^18 - 13946*x^17 - 2496*x^16 + 87800*x^15 + 16984*x^14 - 360698*x^13 - 64398*x^12 + 967148*x^11 + 129312*x^10 - 1644738*x^9 - 93862*x^8 + 1665638*x^7 - 97336*x^6 - 890998*x^5 + 201316*x^4 + 188512*x^3 - 82720*x^2 + 7260*x + 310, -6*x^24 + 8*x^23 + 234*x^22 - 302*x^21 - 3944*x^20 + 4878*x^19 + 37706*x^18 - 44178*x^17 - 225588*x^16 + 247076*x^15 + 878608*x^14 - 886258*x^13 - 2243608*x^12 + 2052300*x^11 + 3682608*x^10 - 3016714*x^9 - 3681882*x^8 + 2701364*x^7 + 1997214*x^6 - 1361648*x^5 - 440544*x^4 + 321926*x^3 + 2542*x^2 - 16148*x + 1268, -6*x^22 + 12*x^21 + 190*x^20 - 388*x^19 - 2490*x^18 + 5242*x^17 + 17456*x^16 - 38644*x^15 - 70204*x^14 + 170436*x^13 + 157714*x^12 - 463512*x^11 - 157532*x^10 + 770620*x^9 - 56242*x^8 - 742668*x^7 + 282474*x^6 + 355600*x^5 - 231408*x^4 - 40612*x^3 + 60590*x^2 - 14550*x + 994, x^27 + x^26 - 45*x^25 - 42*x^24 + 893*x^23 + 775*x^22 - 10292*x^21 - 8262*x^20 + 76376*x^19 + 56256*x^18 - 382447*x^17 - 255059*x^16 + 1316992*x^15 + 777175*x^14 - 3120549*x^13 - 1562190*x^12 + 5011087*x^11 + 1957454*x^10 - 5281844*x^9 - 1327162*x^8 + 3457779*x^7 + 273726*x^6 - 1266531*x^5 + 135740*x^4 + 192392*x^3 - 54027*x^2 + 684*x + 751, 2*x^24 - 2*x^23 - 76*x^22 + 76*x^21 + 1230*x^20 - 1232*x^19 - 11050*x^18 + 11192*x^17 + 60082*x^16 - 63092*x^15 - 201102*x^14 + 231484*x^13 + 396152*x^12 - 564750*x^11 - 378460*x^10 + 915666*x^9 - 19060*x^8 - 948798*x^7 + 365798*x^6 + 552972*x^5 - 277210*x^4 - 128142*x^3 + 71770*x^2 + 1922*x - 2316, -3*x^27 + 3*x^26 + 135*x^25 - 132*x^24 - 2671*x^23 + 2533*x^22 + 30580*x^21 - 27878*x^20 - 224360*x^19 + 194740*x^18 + 1103447*x^17 - 902757*x^16 - 3696256*x^15 + 2822707*x^14 + 8392811*x^13 - 5938570*x^12 - 12601225*x^11 + 8256260*x^10 + 11893456*x^9 - 7325592*x^8 - 6428161*x^7 + 3901620*x^6 + 1644821*x^5 - 1102408*x^4 - 101532*x^3 + 119865*x^2 - 12066*x - 647, 2*x^23 - 2*x^22 - 78*x^21 + 74*x^20 + 1318*x^19 - 1186*x^18 - 12642*x^17 + 10814*x^16 + 75744*x^15 - 61932*x^14 - 293888*x^13 + 232058*x^12 + 740468*x^11 - 574668*x^10 - 1179712*x^9 + 926678*x^8 + 1109126*x^7 - 927346*x^6 - 514994*x^5 + 514156*x^4 + 42686*x^3 - 117682*x^2 + 29410*x - 1988, 2*x^24 - 8*x^23 - 72*x^22 + 304*x^21 + 1090*x^20 - 4954*x^19 - 8996*x^18 + 45350*x^17 + 43640*x^16 - 256606*x^15 - 122828*x^14 + 930202*x^13 + 169454*x^12 - 2164498*x^11 + 16788*x^10 + 3145706*x^9 - 428864*x^8 - 2675418*x^7 + 637980*x^6 + 1165454*x^5 - 408216*x^4 - 189332*x^3 + 95240*x^2 - 4136*x - 1618, -6*x^23 + 8*x^22 + 218*x^21 - 280*x^20 - 3398*x^19 + 4158*x^18 + 29788*x^17 - 34328*x^16 - 161656*x^15 + 173524*x^14 + 562394*x^13 - 557480*x^12 - 1252504*x^11 + 1143732*x^10 + 1723222*x^9 - 1465724*x^8 - 1345914*x^7 + 1108020*x^6 + 493388*x^5 - 433024*x^4 - 42090*x^3 + 62526*x^2 - 6002*x - 620, -4*x^24 + 4*x^23 + 158*x^22 - 150*x^21 - 2698*x^20 + 2408*x^19 + 26122*x^18 - 21702*x^17 - 158034*x^16 + 121122*x^15 + 620406*x^14 - 436006*x^13 - 1587706*x^12 + 1023904*x^11 + 2587528*x^10 - 1554888*x^9 - 2535460*x^8 + 1483006*x^7 + 1330856*x^6 - 829616*x^5 - 284240*x^4 + 224116*x^3 - 3182*x^2 - 14758*x + 1774, 2*x^23 - 80*x^21 + 8*x^20 + 1366*x^19 - 244*x^18 - 12992*x^17 + 3034*x^16 + 75406*x^15 - 19858*x^14 - 275360*x^13 + 73700*x^12 + 629086*x^11 - 155006*x^10 - 863844*x^9 + 171672*x^8 + 653736*x^7 - 75902*x^6 - 236120*x^5 - 14444*x^4 + 47796*x^3 + 19490*x^2 - 14772*x + 1774, 2*x^22 - 14*x^21 - 54*x^20 + 454*x^19 + 542*x^18 - 6166*x^17 - 2158*x^16 + 45726*x^15 - 1544*x^14 - 202340*x^13 + 46984*x^12 + 547486*x^11 - 186556*x^10 - 889732*x^9 + 361528*x^8 + 814194*x^7 - 376210*x^6 - 362398*x^5 + 196206*x^4 + 51340*x^3 - 38538*x^2 + 3498*x + 310, -3*x^26 + 3*x^25 + 130*x^24 - 127*x^23 - 2470*x^22 + 2342*x^21 + 27068*x^20 - 24742*x^19 - 189314*x^18 + 165681*x^17 + 882751*x^16 - 734875*x^15 - 2781812*x^14 + 2191639*x^13 + 5872270*x^12 - 4372673*x^11 - 8036779*x^10 + 5700000*x^9 + 6663034*x^8 - 4626522*x^7 - 2905670*x^6 + 2121031*x^5 + 441822*x^4 - 429189*x^3 + 33456*x^2 + 9992*x - 771, -3*x^26 + 3*x^25 + 130*x^24 - 127*x^23 - 2470*x^22 + 2342*x^21 + 27068*x^20 - 24742*x^19 - 189314*x^18 + 165681*x^17 + 882751*x^16 - 734875*x^15 - 2781812*x^14 + 2191639*x^13 + 5872270*x^12 - 4372673*x^11 - 8036779*x^10 + 5700000*x^9 + 6663034*x^8 - 4626522*x^7 - 2905670*x^6 + 2121031*x^5 + 441822*x^4 - 429189*x^3 + 33456*x^2 + 9992*x - 771, -2*x^25 + 2*x^24 + 80*x^23 - 76*x^22 - 1388*x^21 + 1242*x^20 + 13716*x^19 - 11468*x^18 - 85227*x^17 + 66164*x^16 + 346837*x^15 - 249353*x^14 - 933636*x^13 + 624474*x^12 + 1640893*x^11 - 1039509*x^10 - 1816628*x^9 + 1133956*x^8 + 1186175*x^7 - 780775*x^6 - 400000*x^5 + 308148*x^4 + 39051*x^3 - 54179*x^2 + 8593*x - 162, -2*x^25 + 2*x^24 + 80*x^23 - 76*x^22 - 1388*x^21 + 1242*x^20 + 13716*x^19 - 11468*x^18 - 85227*x^17 + 66164*x^16 + 346837*x^15 - 249353*x^14 - 933636*x^13 + 624474*x^12 + 1640893*x^11 - 1039509*x^10 - 1816628*x^9 + 1133956*x^8 + 1186175*x^7 - 780775*x^6 - 400000*x^5 + 308148*x^4 + 39051*x^3 - 54179*x^2 + 8593*x - 162, -3*x^25 + 3*x^24 + 121*x^23 - 115*x^22 - 2124*x^21 + 1894*x^20 + 21330*x^19 - 17591*x^18 - 135469*x^17 + 101718*x^16 + 567607*x^15 - 381715*x^14 - 1586905*x^13 + 941423*x^12 + 2923553*x^11 - 1516751*x^10 - 3413794*x^9 + 1565114*x^8 + 2336316*x^7 - 999814*x^6 - 802999*x^5 + 365071*x^4 + 95937*x^3 - 55694*x^2 + 2702*x + 809, -3*x^25 + 3*x^24 + 121*x^23 - 115*x^22 - 2124*x^21 + 1894*x^20 + 21330*x^19 - 17591*x^18 - 135469*x^17 + 101718*x^16 + 567607*x^15 - 381715*x^14 - 1586905*x^13 + 941423*x^12 + 2923553*x^11 - 1516751*x^10 - 3413794*x^9 + 1565114*x^8 + 2336316*x^7 - 999814*x^6 - 802999*x^5 + 365071*x^4 + 95937*x^3 - 55694*x^2 + 2702*x + 809, x^26 - x^25 - 46*x^24 + 47*x^23 + 924*x^22 - 950*x^21 - 10654*x^20 + 10866*x^19 + 77965*x^18 - 77815*x^17 - 377880*x^16 + 364400*x^15 + 1227770*x^14 - 1131159*x^13 - 2643671*x^12 + 2309260*x^11 + 3632623*x^10 - 3011156*x^9 - 2941399*x^8 + 2362741*x^7 + 1174814*x^6 - 983267*x^5 - 118531*x^4 + 150894*x^3 - 21681*x^2 + 4604*x - 1003, x^26 - x^25 - 46*x^24 + 47*x^23 + 924*x^22 - 950*x^21 - 10654*x^20 + 10866*x^19 + 77965*x^18 - 77815*x^17 - 377880*x^16 + 364400*x^15 + 1227770*x^14 - 1131159*x^13 - 2643671*x^12 + 2309260*x^11 + 3632623*x^10 - 3011156*x^9 - 2941399*x^8 + 2362741*x^7 + 1174814*x^6 - 983267*x^5 - 118531*x^4 + 150894*x^3 - 21681*x^2 + 4604*x - 1003, -3*x^24 + 4*x^23 + 112*x^22 - 146*x^21 - 1794*x^20 + 2273*x^19 + 16139*x^18 - 19785*x^17 - 89556*x^16 + 106084*x^15 + 316299*x^14 - 363958*x^13 - 705109*x^12 + 803622*x^11 + 940377*x^10 - 1118172*x^9 - 644836*x^8 + 925344*x^7 + 105457*x^6 - 394312*x^5 + 94659*x^4 + 51569*x^3 - 33296*x^2 + 6965*x - 497, -3*x^24 + 4*x^23 + 112*x^22 - 146*x^21 - 1794*x^20 + 2273*x^19 + 16139*x^18 - 19785*x^17 - 89556*x^16 + 106084*x^15 + 316299*x^14 - 363958*x^13 - 705109*x^12 + 803622*x^11 + 940377*x^10 - 1118172*x^9 - 644836*x^8 + 925344*x^7 + 105457*x^6 - 394312*x^5 + 94659*x^4 + 51569*x^3 - 33296*x^2 + 6965*x - 497, x^25 - x^24 - 44*x^23 + 46*x^22 + 844*x^21 - 902*x^20 - 9276*x^19 + 9920*x^18 + 64585*x^17 - 67677*x^16 - 297322*x^15 + 298989*x^14 + 915990*x^13 - 866835*x^12 - 1866132*x^11 + 1637879*x^10 + 2417355*x^9 - 1969120*x^8 - 1832254*x^7 + 1441525*x^6 + 674354*x^5 - 584223*x^4 - 56508*x^3 + 95449*x^2 - 14793*x + 214, x^25 - x^24 - 44*x^23 + 46*x^22 + 844*x^21 - 902*x^20 - 9276*x^19 + 9920*x^18 + 64585*x^17 - 67677*x^16 - 297322*x^15 + 298989*x^14 + 915990*x^13 - 866835*x^12 - 1866132*x^11 + 1637879*x^10 + 2417355*x^9 - 1969120*x^8 - 1832254*x^7 + 1441525*x^6 + 674354*x^5 - 584223*x^4 - 56508*x^3 + 95449*x^2 - 14793*x + 214, x^27 - x^26 - 45*x^25 + 46*x^24 + 888*x^23 - 920*x^22 - 10110*x^21 + 10526*x^20 + 73525*x^19 - 76267*x^18 - 357238*x^17 + 365913*x^16 + 1178255*x^15 - 1180795*x^14 - 2626025*x^13 + 2551621*x^12 + 3857862*x^11 - 3609526*x^10 - 3542126*x^9 + 3197905*x^8 + 1820893*x^7 - 1644017*x^6 - 392885*x^5 + 426969*x^4 - 4224*x^3 - 36666*x^2 + 5197*x - 52, x^27 - x^26 - 45*x^25 + 46*x^24 + 888*x^23 - 920*x^22 - 10110*x^21 + 10526*x^20 + 73525*x^19 - 76267*x^18 - 357238*x^17 + 365913*x^16 + 1178255*x^15 - 1180795*x^14 - 2626025*x^13 + 2551621*x^12 + 3857862*x^11 - 3609526*x^10 - 3542126*x^9 + 3197905*x^8 + 1820893*x^7 - 1644017*x^6 - 392885*x^5 + 426969*x^4 - 4224*x^3 - 36666*x^2 + 5197*x - 52, x^24 - 3*x^23 - 39*x^22 + 112*x^21 + 659*x^20 - 1793*x^19 - 6352*x^18 + 16125*x^17 + 38694*x^16 - 89652*x^15 - 155767*x^14 + 319402*x^13 + 419679*x^12 - 730672*x^11 - 745153*x^10 + 1045736*x^9 + 825954*x^8 - 884945*x^7 - 502518*x^6 + 404270*x^5 + 119522*x^4 - 87143*x^3 + 133*x^2 + 2803*x - 189, x^24 - 3*x^23 - 39*x^22 + 112*x^21 + 659*x^20 - 1793*x^19 - 6352*x^18 + 16125*x^17 + 38694*x^16 - 89652*x^15 - 155767*x^14 + 319402*x^13 + 419679*x^12 - 730672*x^11 - 745153*x^10 + 1045736*x^9 + 825954*x^8 - 884945*x^7 - 502518*x^6 + 404270*x^5 + 119522*x^4 - 87143*x^3 + 133*x^2 + 2803*x - 189, x^24 - x^23 - 40*x^22 + 37*x^21 + 694*x^20 - 587*x^19 - 6851*x^18 + 5248*x^17 + 42383*x^16 - 29211*x^15 - 170420*x^14 + 105481*x^13 + 446724*x^12 - 249887*x^11 - 744866*x^10 + 384991*x^9 + 746983*x^8 - 375536*x^7 - 407548*x^6 + 218718*x^5 + 101478*x^4 - 65258*x^3 - 6115*x^2 + 7541*x - 887, x^24 - x^23 - 40*x^22 + 37*x^21 + 694*x^20 - 587*x^19 - 6851*x^18 + 5248*x^17 + 42383*x^16 - 29211*x^15 - 170420*x^14 + 105481*x^13 + 446724*x^12 - 249887*x^11 - 744866*x^10 + 384991*x^9 + 746983*x^8 - 375536*x^7 - 407548*x^6 + 218718*x^5 + 101478*x^4 - 65258*x^3 - 6115*x^2 + 7541*x - 887, x^24 - 40*x^22 + 4*x^21 + 692*x^20 - 126*x^19 - 6788*x^18 + 1648*x^17 + 41607*x^16 - 11582*x^15 - 165608*x^14 + 47125*x^13 + 430797*x^12 - 110304*x^11 - 718690*x^10 + 133831*x^9 + 735346*x^8 - 50446*x^7 - 431068*x^6 - 39233*x^5 + 138783*x^4 + 29066*x^3 - 27086*x^2 - 1647*x + 1158, x^24 - 40*x^22 + 4*x^21 + 692*x^20 - 126*x^19 - 6788*x^18 + 1648*x^17 + 41607*x^16 - 11582*x^15 - 165608*x^14 + 47125*x^13 + 430797*x^12 - 110304*x^11 - 718690*x^10 + 133831*x^9 + 735346*x^8 - 50446*x^7 - 431068*x^6 - 39233*x^5 + 138783*x^4 + 29066*x^3 - 27086*x^2 - 1647*x + 1158, x^24 - x^23 - 40*x^22 + 44*x^21 + 686*x^20 - 820*x^19 - 6592*x^18 + 8490*x^17 + 38951*x^16 - 53829*x^15 - 146172*x^14 + 217199*x^13 + 346742*x^12 - 561077*x^11 - 496578*x^10 + 908205*x^9 + 373799*x^8 - 870770*x^7 - 69392*x^6 + 438277*x^5 - 76760*x^4 - 84511*x^3 + 33974*x^2 - 2743*x - 155, x^24 - x^23 - 40*x^22 + 44*x^21 + 686*x^20 - 820*x^19 - 6592*x^18 + 8490*x^17 + 38951*x^16 - 53829*x^15 - 146172*x^14 + 217199*x^13 + 346742*x^12 - 561077*x^11 - 496578*x^10 + 908205*x^9 + 373799*x^8 - 870770*x^7 - 69392*x^6 + 438277*x^5 - 76760*x^4 - 84511*x^3 + 33974*x^2 - 2743*x - 155, x^26 - x^25 - 43*x^24 + 44*x^23 + 808*x^22 - 846*x^21 - 8721*x^20 + 9363*x^19 + 59756*x^18 - 66107*x^17 - 270975*x^16 + 311614*x^15 + 821104*x^14 - 996128*x^13 - 1633934*x^12 + 2145934*x^11 + 2022003*x^10 - 3027465*x^9 - 1349811*x^8 + 2635074*x^7 + 246284*x^6 - 1258566*x^5 + 193395*x^4 + 251251*x^3 - 81860*x^2 - 4039*x + 2505, x^26 - x^25 - 43*x^24 + 44*x^23 + 808*x^22 - 846*x^21 - 8721*x^20 + 9363*x^19 + 59756*x^18 - 66107*x^17 - 270975*x^16 + 311614*x^15 + 821104*x^14 - 996128*x^13 - 1633934*x^12 + 2145934*x^11 + 2022003*x^10 - 3027465*x^9 - 1349811*x^8 + 2635074*x^7 + 246284*x^6 - 1258566*x^5 + 193395*x^4 + 251251*x^3 - 81860*x^2 - 4039*x + 2505, x^25 - x^24 - 40*x^23 + 35*x^22 + 696*x^21 - 505*x^20 - 6937*x^19 + 3822*x^18 + 43909*x^17 - 15509*x^16 - 184952*x^15 + 25797*x^14 + 527856*x^13 + 39555*x^12 - 1017756*x^11 - 268451*x^10 + 1293925*x^9 + 503232*x^8 - 1031692*x^7 - 415880*x^6 + 476716*x^5 + 125606*x^4 - 113343*x^3 - 3339*x^2 + 7265*x - 634, x^25 - x^24 - 40*x^23 + 35*x^22 + 696*x^21 - 505*x^20 - 6937*x^19 + 3822*x^18 + 43909*x^17 - 15509*x^16 - 184952*x^15 + 25797*x^14 + 527856*x^13 + 39555*x^12 - 1017756*x^11 - 268451*x^10 + 1293925*x^9 + 503232*x^8 - 1031692*x^7 - 415880*x^6 + 476716*x^5 + 125606*x^4 - 113343*x^3 - 3339*x^2 + 7265*x - 634, x^25 - x^24 - 40*x^23 + 39*x^22 + 693*x^21 - 658*x^20 - 6832*x^19 + 6338*x^18 + 42354*x^17 - 38790*x^16 - 172199*x^15 + 158870*x^14 + 464235*x^13 - 445242*x^12 - 818103*x^11 + 850512*x^10 + 898390*x^9 - 1066063*x^8 - 542917*x^7 + 801331*x^6 + 109564*x^5 - 301324*x^4 + 35707*x^3 + 35966*x^2 - 9957*x + 686, x^25 - x^24 - 40*x^23 + 39*x^22 + 693*x^21 - 658*x^20 - 6832*x^19 + 6338*x^18 + 42354*x^17 - 38790*x^16 - 172199*x^15 + 158870*x^14 + 464235*x^13 - 445242*x^12 - 818103*x^11 + 850512*x^10 + 898390*x^9 - 1066063*x^8 - 542917*x^7 + 801331*x^6 + 109564*x^5 - 301324*x^4 + 35707*x^3 + 35966*x^2 - 9957*x + 686]>
       ]
>;

MOG[523] := 	// J_0(523)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [88, 123, 159, 180, 181, 183, 286, 369, 462, 473, 512*x + 508, 11*x + 508, 289*x + 61, 234*x + 61, 196*x + 421, 327*x + 421, 94*x + 458, 429*x + 458, 8*x + 403, 515*x + 403, 371*x + 428, 152*x + 428, 113*x + 316, 410*x + 316, 8*x + 60, 515*x + 60, 7*x + 259, 516*x + 259, 123*x + 44, 400*x + 44, 231*x + 166, 292*x + 166, 31*x + 361, 492*x + 361, 168*x + 376, 355*x + 376, 400*x + 341, 123*x + 341, 335*x + 104, 188*x + 104, 419*x + 99, 104*x + 99, 321*x + 498, 202*x + 498]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 2, x + 2, x + 1, -x - 1, 0, 0, -x, x, 1, -1, x + 3, -x - 3, -1, 1, -1, 1, x + 2, -x - 2, 1, -1, -x - 1, x + 1, -x - 1, x + 1, -x - 2, x + 2, x + 2, -x - 2, x + 1, -x - 1, -x - 3, x + 3, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^15 + 6*x^14 - 2*x^13 - 71*x^12 - 72*x^11 + 308*x^10 + 492*x^9 - 587*x^8 - 1283*x^7 + 418*x^6 + 1526*x^5 + 33*x^4 - 774*x^3 - 85*x^2 + 141*x + 8,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^13 - 6*x^12 - 2*x^11 + 48*x^10 + 66*x^9 - 131*x^8 - 260*x^7 + 130*x^6 + 391*x^5 - 22*x^4 - 227*x^3 + 2*x^2 + 45*x - 8, x^13 + 6*x^12 + 2*x^11 - 48*x^10 - 66*x^9 + 131*x^8 + 260*x^7 - 130*x^6 - 391*x^5 + 22*x^4 + 227*x^3 - 2*x^2 - 45*x + 8, -x^12 - 6*x^11 - 4*x^10 + 38*x^9 + 65*x^8 - 70*x^7 - 200*x^6 + 8*x^5 + 228*x^4 + 71*x^3 - 82*x^2 - 30*x + 4, x^12 + 6*x^11 + 4*x^10 - 38*x^9 - 65*x^8 + 70*x^7 + 200*x^6 - 8*x^5 - 228*x^4 - 71*x^3 + 82*x^2 + 30*x - 4, -x^14 - 6*x^13 - x^12 + 54*x^11 + 70*x^10 - 169*x^9 - 325*x^8 + 200*x^7 + 591*x^6 - 30*x^5 - 455*x^4 - 69*x^3 + 127*x^2 + 22*x - 4, x^14 + 6*x^13 + x^12 - 54*x^11 - 70*x^10 + 169*x^9 + 325*x^8 - 200*x^7 - 591*x^6 + 30*x^5 + 455*x^4 + 69*x^3 - 127*x^2 - 22*x + 4, -x^11 - 4*x^10 + 4*x^9 + 30*x^8 + 5*x^7 - 80*x^6 - 40*x^5 + 88*x^4 + 52*x^3 - 33*x^2 - 16*x + 2, x^11 + 4*x^10 - 4*x^9 - 30*x^8 - 5*x^7 + 80*x^6 + 40*x^5 - 88*x^4 - 52*x^3 + 33*x^2 + 16*x - 2, -x^11 - 6*x^10 - 5*x^9 + 31*x^8 + 55*x^7 - 42*x^6 - 123*x^5 + 5*x^4 + 93*x^3 + x^2 - 25*x + 6, x^11 + 6*x^10 + 5*x^9 - 31*x^8 - 55*x^7 + 42*x^6 + 123*x^5 - 5*x^4 - 93*x^3 - x^2 + 25*x - 6, -x^13 - 5*x^12 + 3*x^11 + 47*x^10 + 29*x^9 - 162*x^8 - 171*x^7 + 245*x^6 + 332*x^5 - 145*x^4 - 261*x^3 + 12*x^2 + 67*x + 6, x^13 + 5*x^12 - 3*x^11 - 47*x^10 - 29*x^9 + 162*x^8 + 171*x^7 - 245*x^6 - 332*x^5 + 145*x^4 + 261*x^3 - 12*x^2 - 67*x - 6, -x^13 - 6*x^12 - 3*x^11 + 44*x^10 + 72*x^9 - 94*x^8 - 261*x^7 + 13*x^6 + 348*x^5 + 131*x^4 - 159*x^3 - 77*x^2 + 25*x + 10, x^13 + 6*x^12 + 3*x^11 - 44*x^10 - 72*x^9 + 94*x^8 + 261*x^7 - 13*x^6 - 348*x^5 - 131*x^4 + 159*x^3 + 77*x^2 - 25*x - 10, -x^10 - 7*x^9 - 10*x^8 + 28*x^7 + 77*x^6 - 3*x^5 - 135*x^4 - 70*x^3 + 57*x^2 + 36*x - 4, x^10 + 7*x^9 + 10*x^8 - 28*x^7 - 77*x^6 + 3*x^5 + 135*x^4 + 70*x^3 - 57*x^2 - 36*x + 4, -x^12 - 4*x^11 + 6*x^10 + 36*x^9 - 8*x^8 - 126*x^7 - 14*x^6 + 217*x^5 + 49*x^4 - 180*x^3 - 48*x^2 + 51*x + 10, x^12 + 4*x^11 - 6*x^10 - 36*x^9 + 8*x^8 + 126*x^7 + 14*x^6 - 217*x^5 - 49*x^4 + 180*x^3 + 48*x^2 - 51*x - 10, -x^12 - 5*x^11 + x^10 + 37*x^9 + 31*x^8 - 89*x^7 - 113*x^6 + 68*x^5 + 125*x^4 + 8*x^3 - 28*x^2 - 8*x - 4, x^12 + 5*x^11 - x^10 - 37*x^9 - 31*x^8 + 89*x^7 + 113*x^6 - 68*x^5 - 125*x^4 - 8*x^3 + 28*x^2 + 8*x + 4, -x^12 - 5*x^11 + x^10 + 38*x^9 + 33*x^8 - 98*x^7 - 130*x^6 + 93*x^5 + 171*x^4 - 16*x^3 - 74*x^2 - 4*x + 8, x^12 + 5*x^11 - x^10 - 38*x^9 - 33*x^8 + 98*x^7 + 130*x^6 - 93*x^5 - 171*x^4 + 16*x^3 + 74*x^2 + 4*x - 8, -x^10 - 5*x^9 - 3*x^8 + 22*x^7 + 39*x^6 - 12*x^5 - 75*x^4 - 36*x^3 + 35*x^2 + 21*x - 6, x^10 + 5*x^9 + 3*x^8 - 22*x^7 - 39*x^6 + 12*x^5 + 75*x^4 + 36*x^3 - 35*x^2 - 21*x + 6, -x^11 - 5*x^10 - x^9 + 28*x^8 + 31*x^7 - 42*x^6 - 66*x^5 + 14*x^4 + 33*x^3 - 9*x^2 - 6*x + 4, x^11 + 5*x^10 + x^9 - 28*x^8 - 31*x^7 + 42*x^6 + 66*x^5 - 14*x^4 - 33*x^3 + 9*x^2 + 6*x - 4, -x^11 - 6*x^10 - 4*x^9 + 36*x^8 + 59*x^7 - 58*x^6 - 155*x^5 + 2*x^4 + 139*x^3 + 41*x^2 - 37*x - 14, x^11 + 6*x^10 + 4*x^9 - 36*x^8 - 59*x^7 + 58*x^6 + 155*x^5 - 2*x^4 - 139*x^3 - 41*x^2 + 37*x + 14, -x^11 - 5*x^10 - x^9 + 29*x^8 + 33*x^7 - 50*x^6 - 84*x^5 + 24*x^4 + 69*x^3 - x^2 - 21*x - 2, x^11 + 5*x^10 + x^9 - 29*x^8 - 33*x^7 + 50*x^6 + 84*x^5 - 24*x^4 - 69*x^3 + x^2 + 21*x + 2, -x^10 - 4*x^9 + 3*x^8 + 25*x^7 + 6*x^6 - 48*x^5 - 18*x^4 + 32*x^3 + x^2 - 10*x + 4, x^10 + 4*x^9 - 3*x^8 - 25*x^7 - 6*x^6 + 48*x^5 + 18*x^4 - 32*x^3 - x^2 + 10*x - 4, -x^10 - 4*x^9 + 3*x^8 + 26*x^7 + 7*x^6 - 57*x^5 - 27*x^4 + 51*x^3 + 18*x^2 - 19*x - 2, x^10 + 4*x^9 - 3*x^8 - 26*x^7 - 7*x^6 + 57*x^5 + 27*x^4 - 51*x^3 - 18*x^2 + 19*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - 9*x^25 - x^24 + 231*x^23 - 464*x^22 - 2306*x^21 + 7763*x^20 + 10298*x^19 - 60057*x^18 - 8015*x^17 + 266789*x^16 - 125796*x^15 - 723565*x^14 + 622138*x^13 + 1202991*x^12 - 1407289*x^11 - 1178824*x^10 + 1766306*x^9 + 617378*x^8 - 1241966*x^7 - 135947*x^6 + 462396*x^5 + 400*x^4 - 78680*x^3 + 2576*x^2 + 4032*x - 384,
           Coordinates        := [-x^25 + 9*x^24 - 2*x^23 - 204*x^22 + 454*x^21 + 1730*x^20 - 6423*x^19 - 5796*x^18 + 42498*x^17 - 4747*x^16 - 158795*x^15 + 102211*x^14 + 351512*x^13 - 351699*x^12 - 455277*x^11 + 596136*x^10 + 322533*x^9 - 543248*x^8 - 107171*x^7 + 255824*x^6 + 11520*x^5 - 54702*x^4 - 248*x^3 + 4072*x^2 - 128*x - 64, x^25 - 9*x^24 + 2*x^23 + 206*x^22 - 472*x^21 - 1714*x^20 + 6727*x^19 + 4950*x^18 - 44106*x^17 + 13035*x^16 + 159313*x^15 - 139463*x^14 - 327076*x^13 + 440123*x^12 + 360933*x^11 - 710360*x^10 - 167873*x^9 + 626762*x^8 - 15387*x^7 - 300640*x^6 + 34702*x^5 + 76316*x^4 - 7176*x^3 - 9240*x^2 + 128*x + 320, -4*x^18 + 32*x^17 - 24*x^16 - 416*x^15 + 948*x^14 + 1760*x^13 - 6702*x^12 - 1758*x^11 + 20864*x^10 - 5930*x^9 - 32328*x^8 + 15368*x^7 + 25714*x^6 - 10828*x^5 - 11852*x^4 + 2532*x^3 + 2736*x^2 + 32*x - 128, x^23 - 9*x^22 + 6*x^21 + 170*x^20 - 442*x^19 - 1088*x^18 + 5017*x^17 + 1412*x^16 - 26406*x^15 + 15057*x^14 + 74113*x^13 - 81103*x^12 - 110300*x^11 + 176163*x^10 + 75657*x^9 - 190114*x^8 - 11267*x^7 + 100492*x^6 - 6039*x^5 - 24578*x^4 + 1100*x^3 + 2280*x^2 - 32*x - 64, -x^23 + 9*x^22 - 6*x^21 - 166*x^20 + 408*x^19 + 1116*x^18 - 4509*x^17 - 2734*x^16 + 24162*x^15 - 4111*x^14 - 74553*x^13 + 42219*x^12 + 138994*x^11 - 111599*x^10 - 154807*x^9 + 147604*x^8 + 97415*x^7 - 101222*x^6 - 32115*x^5 + 33458*x^4 + 4696*x^3 - 4256*x^2 - 128*x + 128, x^24 - 9*x^23 + 4*x^22 + 190*x^21 - 476*x^20 - 1374*x^19 + 6149*x^18 + 2216*x^17 - 36232*x^16 + 22377*x^15 + 112535*x^14 - 142773*x^13 - 177162*x^12 + 367849*x^11 + 91129*x^10 - 485356*x^9 + 96595*x^8 + 328914*x^7 - 145527*x^6 - 108980*x^5 + 65472*x^4 + 16376*x^3 - 11328*x^2 - 1088*x + 512, x^23 - 7*x^22 - 10*x^21 + 170*x^20 - 136*x^19 - 1646*x^18 + 2857*x^17 + 7930*x^16 - 20372*x^15 - 18367*x^14 + 75801*x^13 + 8829*x^12 - 159504*x^11 + 48841*x^10 + 188811*x^9 - 107734*x^8 - 118873*x^7 + 91168*x^6 + 36809*x^5 - 35362*x^4 - 5252*x^3 + 5872*x^2 + 416*x - 256, -4*x^19 + 36*x^18 - 56*x^17 - 392*x^16 + 1364*x^15 + 812*x^14 - 8462*x^13 + 4944*x^12 + 22622*x^11 - 26794*x^10 - 26398*x^9 + 47696*x^8 + 10346*x^7 - 36542*x^6 - 1024*x^5 + 14384*x^4 + 204*x^3 - 2704*x^2 - 160*x + 128, -x^24 + 9*x^23 - 4*x^22 - 186*x^21 + 442*x^20 + 1394*x^19 - 5571*x^18 - 3608*x^17 + 32978*x^16 - 8645*x^15 - 108675*x^14 + 81465*x^13 + 207108*x^12 - 223591*x^11 - 225371*x^10 + 304168*x^9 + 138303*x^8 - 215758*x^7 - 54517*x^6 + 78206*x^5 + 16680*x^4 - 12088*x^3 - 3184*x^2 + 320*x + 128, -x^23 + 9*x^22 - 6*x^21 - 170*x^20 + 444*x^19 + 1072*x^18 - 5011*x^17 - 1164*x^16 + 25958*x^15 - 16635*x^14 - 69851*x^13 + 85889*x^12 + 90912*x^11 - 180369*x^10 - 29423*x^9 + 179886*x^8 - 44761*x^7 - 76396*x^6 + 37275*x^5 + 9156*x^4 - 7632*x^3 + 504*x^2 + 384*x - 64, -2*x^20 + 18*x^19 - 24*x^18 - 228*x^17 + 706*x^16 + 822*x^15 - 5179*x^14 + 712*x^13 + 18013*x^12 - 11639*x^11 - 34063*x^10 + 29778*x^9 + 37501*x^8 - 33639*x^7 - 26226*x^6 + 18020*x^5 + 11954*x^4 - 3884*x^3 - 2816*x^2 + 32*x + 128, -2*x^20 + 18*x^19 - 24*x^18 - 228*x^17 + 706*x^16 + 822*x^15 - 5179*x^14 + 712*x^13 + 18013*x^12 - 11639*x^11 - 34063*x^10 + 29778*x^9 + 37501*x^8 - 33639*x^7 - 26226*x^6 + 18020*x^5 + 11954*x^4 - 3884*x^3 - 2816*x^2 + 32*x + 128, -x^21 + 10*x^20 - 20*x^19 - 113*x^18 + 503*x^17 + 88*x^16 - 3441*x^15 + 3699*x^14 + 9661*x^13 - 19654*x^12 - 7869*x^11 + 41053*x^10 - 13258*x^9 - 36405*x^8 + 27997*x^7 + 9104*x^6 - 16078*x^5 + 2644*x^4 + 3880*x^3 - 1488*x^2 - 448*x + 128, -x^21 + 10*x^20 - 20*x^19 - 113*x^18 + 503*x^17 + 88*x^16 - 3441*x^15 + 3699*x^14 + 9661*x^13 - 19654*x^12 - 7869*x^11 + 41053*x^10 - 13258*x^9 - 36405*x^8 + 27997*x^7 + 9104*x^6 - 16078*x^5 + 2644*x^4 + 3880*x^3 - 1488*x^2 - 448*x + 128, -x^21 + 8*x^20 - 151*x^18 + 259*x^17 + 1126*x^16 - 3102*x^15 - 3799*x^14 + 16814*x^13 + 3071*x^12 - 48816*x^11 + 15519*x^10 + 77157*x^9 - 44930*x^8 - 64569*x^7 + 45458*x^6 + 29056*x^5 - 20912*x^4 - 6900*x^3 + 4224*x^2 + 736*x - 256, -x^21 + 8*x^20 - 151*x^18 + 259*x^17 + 1126*x^16 - 3102*x^15 - 3799*x^14 + 16814*x^13 + 3071*x^12 - 48816*x^11 + 15519*x^10 + 77157*x^9 - 44930*x^8 - 64569*x^7 + 45458*x^6 + 29056*x^5 - 20912*x^4 - 6900*x^3 + 4224*x^2 + 736*x - 256, -x^20 + 8*x^19 - 4*x^18 - 121*x^17 + 261*x^16 + 610*x^15 - 2221*x^14 - 743*x^13 + 8175*x^12 - 3304*x^11 - 14477*x^10 + 12099*x^9 + 10940*x^8 - 14525*x^7 - 1053*x^6 + 6998*x^5 - 2082*x^4 - 1520*x^3 + 840*x^2 + 192*x - 64, -x^20 + 8*x^19 - 4*x^18 - 121*x^17 + 261*x^16 + 610*x^15 - 2221*x^14 - 743*x^13 + 8175*x^12 - 3304*x^11 - 14477*x^10 + 12099*x^9 + 10940*x^8 - 14525*x^7 - 1053*x^6 + 6998*x^5 - 2082*x^4 - 1520*x^3 + 840*x^2 + 192*x - 64, -x^22 + 10*x^21 - 17*x^20 - 139*x^19 + 531*x^18 + 437*x^17 - 4408*x^16 + 2267*x^15 + 17061*x^14 - 19623*x^13 - 34057*x^12 + 55996*x^11 + 35282*x^10 - 78282*x^9 - 20444*x^8 + 57268*x^7 + 11201*x^6 - 22374*x^5 - 5992*x^4 + 3916*x^3 + 1528*x^2 - 96*x - 64, -x^22 + 10*x^21 - 17*x^20 - 139*x^19 + 531*x^18 + 437*x^17 - 4408*x^16 + 2267*x^15 + 17061*x^14 - 19623*x^13 - 34057*x^12 + 55996*x^11 + 35282*x^10 - 78282*x^9 - 20444*x^8 + 57268*x^7 + 11201*x^6 - 22374*x^5 - 5992*x^4 + 3916*x^3 + 1528*x^2 - 96*x - 64, -x^18 + 8*x^17 - 8*x^16 - 82*x^15 + 173*x^14 + 335*x^13 - 852*x^12 - 1198*x^11 + 2582*x^10 + 3937*x^9 - 7133*x^8 - 6066*x^7 + 12353*x^6 + 2002*x^5 - 8396*x^4 + 564*x^3 + 1880*x^2 - 32*x - 64, -x^18 + 8*x^17 - 8*x^16 - 82*x^15 + 173*x^14 + 335*x^13 - 852*x^12 - 1198*x^11 + 2582*x^10 + 3937*x^9 - 7133*x^8 - 6066*x^7 + 12353*x^6 + 2002*x^5 - 8396*x^4 + 564*x^3 + 1880*x^2 - 32*x - 64, -x^22 + 8*x^21 + 2*x^20 - 169*x^19 + 284*x^18 + 1346*x^17 - 3800*x^16 - 4539*x^15 + 21820*x^14 + 2024*x^13 - 65977*x^12 + 28356*x^11 + 108638*x^10 - 78645*x^9 - 94937*x^8 + 85163*x^7 + 42929*x^6 - 40934*x^5 - 10458*x^4 + 7544*x^3 + 1672*x^2 - 256*x - 64, -x^22 + 8*x^21 + 2*x^20 - 169*x^19 + 284*x^18 + 1346*x^17 - 3800*x^16 - 4539*x^15 + 21820*x^14 + 2024*x^13 - 65977*x^12 + 28356*x^11 + 108638*x^10 - 78645*x^9 - 94937*x^8 + 85163*x^7 + 42929*x^6 - 40934*x^5 - 10458*x^4 + 7544*x^3 + 1672*x^2 - 256*x - 64, x^22 - 10*x^21 + 17*x^20 + 143*x^19 - 566*x^18 - 402*x^17 + 4913*x^16 - 3660*x^15 - 19211*x^14 + 30835*x^13 + 33431*x^12 - 95843*x^11 - 7736*x^10 + 147621*x^9 - 53931*x^8 - 114211*x^7 + 69744*x^6 + 42201*x^5 - 32186*x^4 - 7048*x^3 + 5648*x^2 + 512*x - 256, x^22 - 10*x^21 + 17*x^20 + 143*x^19 - 566*x^18 - 402*x^17 + 4913*x^16 - 3660*x^15 - 19211*x^14 + 30835*x^13 + 33431*x^12 - 95843*x^11 - 7736*x^10 + 147621*x^9 - 53931*x^8 - 114211*x^7 + 69744*x^6 + 42201*x^5 - 32186*x^4 - 7048*x^3 + 5648*x^2 + 512*x - 256, x^21 - 8*x^20 - x^19 + 160*x^18 - 275*x^17 - 1200*x^16 + 3357*x^15 + 3961*x^14 - 18001*x^13 - 3417*x^12 + 52596*x^11 - 14164*x^10 - 88227*x^9 + 45997*x^8 + 82988*x^7 - 55809*x^6 - 39454*x^5 + 29872*x^4 + 8216*x^3 - 6136*x^2 - 768*x + 320, x^21 - 8*x^20 - x^19 + 160*x^18 - 275*x^17 - 1200*x^16 + 3357*x^15 + 3961*x^14 - 18001*x^13 - 3417*x^12 + 52596*x^11 - 14164*x^10 - 88227*x^9 + 45997*x^8 + 82988*x^7 - 55809*x^6 - 39454*x^5 + 29872*x^4 + 8216*x^3 - 6136*x^2 - 768*x + 320, -x^23 + 8*x^22 + 4*x^21 - 183*x^20 + 268*x^19 + 1653*x^18 - 4057*x^17 - 7288*x^16 + 26420*x^15 + 14411*x^14 - 95458*x^13 + 1053*x^12 + 205379*x^11 - 60046*x^10 - 266868*x^9 + 113932*x^8 + 204947*x^7 - 95082*x^6 - 87108*x^5 + 36702*x^4 + 17980*x^3 - 5736*x^2 - 1248*x + 320, -x^23 + 8*x^22 + 4*x^21 - 183*x^20 + 268*x^19 + 1653*x^18 - 4057*x^17 - 7288*x^16 + 26420*x^15 + 14411*x^14 - 95458*x^13 + 1053*x^12 + 205379*x^11 - 60046*x^10 - 266868*x^9 + 113932*x^8 + 204947*x^7 - 95082*x^6 - 87108*x^5 + 36702*x^4 + 17980*x^3 - 5736*x^2 - 1248*x + 320, -x^21 + 6*x^20 + 16*x^19 - 156*x^18 - 2*x^17 + 1623*x^16 - 1498*x^15 - 8588*x^14 + 12667*x^13 + 24232*x^12 - 47925*x^11 - 34118*x^10 + 94774*x^9 + 16161*x^8 - 97449*x^7 + 8690*x^6 + 47594*x^5 - 8246*x^4 - 9408*x^3 + 1256*x^2 + 448*x - 64, -x^21 + 6*x^20 + 16*x^19 - 156*x^18 - 2*x^17 + 1623*x^16 - 1498*x^15 - 8588*x^14 + 12667*x^13 + 24232*x^12 - 47925*x^11 - 34118*x^10 + 94774*x^9 + 16161*x^8 - 97449*x^7 + 8690*x^6 + 47594*x^5 - 8246*x^4 - 9408*x^3 + 1256*x^2 + 448*x - 64, x^21 - 10*x^20 + 15*x^19 + 155*x^18 - 541*x^17 - 664*x^16 + 4928*x^15 - 1283*x^14 - 21059*x^13 + 19317*x^12 + 46568*x^11 - 63824*x^10 - 51306*x^9 + 96347*x^8 + 23743*x^7 - 69492*x^6 - 3773*x^5 + 23522*x^4 + 632*x^3 - 3296*x^2 - 128*x + 128, x^21 - 10*x^20 + 15*x^19 + 155*x^18 - 541*x^17 - 664*x^16 + 4928*x^15 - 1283*x^14 - 21059*x^13 + 19317*x^12 + 46568*x^11 - 63824*x^10 - 51306*x^9 + 96347*x^8 + 23743*x^7 - 69492*x^6 - 3773*x^5 + 23522*x^4 + 632*x^3 - 3296*x^2 - 128*x + 128, x^22 - 9*x^21 + 7*x^20 + 161*x^19 - 434*x^18 - 933*x^17 + 4565*x^16 + 686*x^15 - 22135*x^14 + 14249*x^13 + 56865*x^12 - 65562*x^11 - 76645*x^10 + 130287*x^9 + 44124*x^8 - 132731*x^7 + 4002*x^6 + 67324*x^5 - 13260*x^4 - 14916*x^3 + 3488*x^2 + 1120*x - 256, x^22 - 9*x^21 + 7*x^20 + 161*x^19 - 434*x^18 - 933*x^17 + 4565*x^16 + 686*x^15 - 22135*x^14 + 14249*x^13 + 56865*x^12 - 65562*x^11 - 76645*x^10 + 130287*x^9 + 44124*x^8 - 132731*x^7 + 4002*x^6 + 67324*x^5 - 13260*x^4 - 14916*x^3 + 3488*x^2 + 1120*x - 256, -x^24 + 9*x^23 - 3*x^22 - 195*x^21 + 449*x^20 + 1554*x^19 - 5994*x^18 - 4577*x^17 + 37508*x^16 - 7470*x^15 - 131689*x^14 + 94487*x^13 + 270303*x^12 - 293781*x^11 - 315460*x^10 + 459445*x^9 + 185952*x^8 - 385192*x^7 - 34955*x^6 + 164744*x^5 - 8264*x^4 - 31260*x^3 + 2816*x^2 + 1824*x - 256, -x^24 + 9*x^23 - 3*x^22 - 195*x^21 + 449*x^20 + 1554*x^19 - 5994*x^18 - 4577*x^17 + 37508*x^16 - 7470*x^15 - 131689*x^14 + 94487*x^13 + 270303*x^12 - 293781*x^11 - 315460*x^10 + 459445*x^9 + 185952*x^8 - 385192*x^7 - 34955*x^6 + 164744*x^5 - 8264*x^4 - 31260*x^3 + 2816*x^2 + 1824*x - 256, -x^21 + 8*x^20 - 3*x^19 - 130*x^18 + 279*x^17 + 679*x^16 - 2551*x^15 - 565*x^14 + 9541*x^13 - 6180*x^12 - 14549*x^11 + 20254*x^10 + 32*x^9 - 18673*x^8 + 20976*x^7 - 4025*x^6 - 14906*x^5 + 9296*x^4 + 3120*x^3 - 2480*x^2 - 256*x + 128, -x^21 + 8*x^20 - 3*x^19 - 130*x^18 + 279*x^17 + 679*x^16 - 2551*x^15 - 565*x^14 + 9541*x^13 - 6180*x^12 - 14549*x^11 + 20254*x^10 + 32*x^9 - 18673*x^8 + 20976*x^7 - 4025*x^6 - 14906*x^5 + 9296*x^4 + 3120*x^3 - 2480*x^2 - 256*x + 128, x^24 - 8*x^23 - 6*x^22 + 201*x^21 - 280*x^20 - 1987*x^19 + 4901*x^18 + 9417*x^17 - 35622*x^16 - 18022*x^15 + 141977*x^14 - 19621*x^13 - 332448*x^12 + 164540*x^11 + 459911*x^10 - 327094*x^9 - 364680*x^8 + 306206*x^7 + 158088*x^6 - 138550*x^5 - 36524*x^4 + 26532*x^3 + 4440*x^2 - 1312*x - 64, x^24 - 8*x^23 - 6*x^22 + 201*x^21 - 280*x^20 - 1987*x^19 + 4901*x^18 + 9417*x^17 - 35622*x^16 - 18022*x^15 + 141977*x^14 - 19621*x^13 - 332448*x^12 + 164540*x^11 + 459911*x^10 - 327094*x^9 - 364680*x^8 + 306206*x^7 + 158088*x^6 - 138550*x^5 - 36524*x^4 + 26532*x^3 + 4440*x^2 - 1312*x - 64, -x^22 + 8*x^21 + x^20 - 161*x^19 + 280*x^18 + 1222*x^17 - 3510*x^16 - 3995*x^15 + 19412*x^14 + 2212*x^13 - 58098*x^12 + 21611*x^11 + 97974*x^10 - 62141*x^9 - 91532*x^8 + 69681*x^7 + 45896*x^6 - 34525*x^5 - 12156*x^4 + 6296*x^3 + 1784*x^2 - 192*x - 64, -x^22 + 8*x^21 + x^20 - 161*x^19 + 280*x^18 + 1222*x^17 - 3510*x^16 - 3995*x^15 + 19412*x^14 + 2212*x^13 - 58098*x^12 + 21611*x^11 + 97974*x^10 - 62141*x^9 - 91532*x^8 + 69681*x^7 + 45896*x^6 - 34525*x^5 - 12156*x^4 + 6296*x^3 + 1784*x^2 - 192*x - 64]>
       ]
>;

MOG[541] := 	// J_0(541)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [149, 233, 309, 426, 540, 187*x + 110, 354*x + 110, 371*x + 85, 170*x + 85, 12*x + 22, 529*x + 22, 319*x + 486, 222*x + 486, 121*x + 38, 420*x + 38, 517*x + 114, 24*x + 114, 362*x + 478, 179*x + 478, 25*x + 480, 516*x + 480, 5*x + 39, 536*x + 39, 246*x + 457, 295*x + 457, 28*x + 254, 513*x + 254, 448*x + 464, 93*x + 464, 30*x + 369, 511*x + 369, 298*x + 76, 243*x + 76, 254*x + 435, 287*x + 435, 163*x + 505, 378*x + 505, 169*x + 284, 372*x + 284, 341*x + 313, 200*x + 313, 467*x + 329, 74*x + 329, 136*x + 25, 405*x + 25]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^20 + 5*x^19 - 15*x^18 - 105*x^17 + 53*x^16 + 888*x^15 + 248*x^14 - 3950*x^13 - 2525*x^12 + 10014*x^11 + 8292*x^10 - 14513*x^9 - 13426*x^8 + 11322*x^7 + 10779*x^6 - 4166*x^5 - 3649*x^4 + 669*x^3 + 389*x^2 - 45*x - 9,
           Coordinates        := [0, 0, 0, 0, 0, -x^19 - 5*x^18 + 13*x^17 + 95*x^16 - 31*x^15 - 718*x^14 - 274*x^13 + 2812*x^12 + 1964*x^11 - 6173*x^10 - 5270*x^9 + 7617*x^8 + 6984*x^7 - 5005*x^6 - 4518*x^5 + 1568*x^4 + 1227*x^3 - 199*x^2 - 93*x + 12, x^19 + 5*x^18 - 13*x^17 - 95*x^16 + 31*x^15 + 718*x^14 + 274*x^13 - 2812*x^12 - 1964*x^11 + 6173*x^10 + 5270*x^9 - 7617*x^8 - 6984*x^7 + 5005*x^6 + 4518*x^5 - 1568*x^4 - 1227*x^3 + 199*x^2 + 93*x - 12, -x^18 - 5*x^17 + 11*x^16 + 85*x^15 - 14*x^14 - 574*x^13 - 276*x^12 + 1973*x^11 + 1531*x^10 - 3656*x^9 - 3380*x^8 + 3542*x^7 + 3471*x^6 - 1632*x^5 - 1488*x^4 + 361*x^3 + 222*x^2 - 27*x - 9, x^18 + 5*x^17 - 11*x^16 - 85*x^15 + 14*x^14 + 574*x^13 + 276*x^12 - 1973*x^11 - 1531*x^10 + 3656*x^9 + 3380*x^8 - 3542*x^7 - 3471*x^6 + 1632*x^5 + 1488*x^4 - 361*x^3 - 222*x^2 + 27*x + 9, -x^18 - 5*x^17 + 11*x^16 + 85*x^15 - 12*x^14 - 564*x^13 - 285*x^12 + 1868*x^11 + 1491*x^10 - 3240*x^9 - 3062*x^8 + 2775*x^7 + 2790*x^6 - 966*x^5 - 934*x^4 + 109*x^3 + 74*x^2 - 6*x, x^18 + 5*x^17 - 11*x^16 - 85*x^15 + 12*x^14 + 564*x^13 + 285*x^12 - 1868*x^11 - 1491*x^10 + 3240*x^9 + 3062*x^8 - 2775*x^7 - 2790*x^6 + 966*x^5 + 934*x^4 - 109*x^3 - 74*x^2 + 6*x, -x^17 - 5*x^16 + 8*x^15 + 69*x^14 - 387*x^12 - 193*x^11 + 1124*x^10 + 822*x^9 - 1759*x^8 - 1546*x^7 + 1366*x^6 + 1392*x^5 - 400*x^4 - 483*x^3 + 42*x^2 + 40*x - 3, x^17 + 5*x^16 - 8*x^15 - 69*x^14 + 387*x^12 + 193*x^11 - 1124*x^10 - 822*x^9 + 1759*x^8 + 1546*x^7 - 1366*x^6 - 1392*x^5 + 400*x^4 + 483*x^3 - 42*x^2 - 40*x + 3, -x^17 - 5*x^16 + 9*x^15 + 75*x^14 - 2*x^13 - 452*x^12 - 240*x^11 + 1393*x^10 + 1068*x^9 - 2316*x^8 - 1967*x^7 + 2007*x^6 + 1638*x^5 - 807*x^4 - 522*x^3 + 130*x^2 + 44*x - 9, x^17 + 5*x^16 - 9*x^15 - 75*x^14 + 2*x^13 + 452*x^12 + 240*x^11 - 1393*x^10 - 1068*x^9 + 2316*x^8 + 1967*x^7 - 2007*x^6 - 1638*x^5 + 807*x^4 + 522*x^3 - 130*x^2 - 44*x + 9, -x^17 - 5*x^16 + 8*x^15 + 69*x^14 + x^13 - 380*x^12 - 188*x^11 + 1065*x^10 + 717*x^9 - 1602*x^8 - 1132*x^7 + 1264*x^6 + 794*x^5 - 493*x^4 - 219*x^3 + 84*x^2 + 19*x - 6, x^17 + 5*x^16 - 8*x^15 - 69*x^14 - x^13 + 380*x^12 + 188*x^11 - 1065*x^10 - 717*x^9 + 1602*x^8 + 1132*x^7 - 1264*x^6 - 794*x^5 + 493*x^4 + 219*x^3 - 84*x^2 - 19*x + 6, -x^17 - 5*x^16 + 11*x^15 + 85*x^14 - 12*x^13 - 564*x^12 - 285*x^11 + 1868*x^10 + 1491*x^9 - 3240*x^8 - 3062*x^7 + 2775*x^6 + 2790*x^5 - 966*x^4 - 934*x^3 + 109*x^2 + 74*x - 6, x^17 + 5*x^16 - 11*x^15 - 85*x^14 + 12*x^13 + 564*x^12 + 285*x^11 - 1868*x^10 - 1491*x^9 + 3240*x^8 + 3062*x^7 - 2775*x^6 - 2790*x^5 + 966*x^4 + 934*x^3 - 109*x^2 - 74*x + 6, -2*x^16 - 10*x^15 + 13*x^14 + 123*x^13 + 17*x^12 - 597*x^11 - 328*x^10 + 1452*x^9 + 992*x^8 - 1845*x^7 - 1269*x^6 + 1156*x^5 + 710*x^4 - 301*x^3 - 153*x^2 + 20*x + 9, 2*x^16 + 10*x^15 - 13*x^14 - 123*x^13 - 17*x^12 + 597*x^11 + 328*x^10 - 1452*x^9 - 992*x^8 + 1845*x^7 + 1269*x^6 - 1156*x^5 - 710*x^4 + 301*x^3 + 153*x^2 - 20*x - 9, -x^16 - 6*x^15 + x^14 + 64*x^13 + 66*x^12 - 252*x^11 - 381*x^10 + 445*x^9 + 842*x^8 - 331*x^7 - 810*x^6 + 76*x^5 + 295*x^4 - 18*x^3 - 29*x^2 + 4*x, x^16 + 6*x^15 - x^14 - 64*x^13 - 66*x^12 + 252*x^11 + 381*x^10 - 445*x^9 - 842*x^8 + 331*x^7 + 810*x^6 - 76*x^5 - 295*x^4 + 18*x^3 + 29*x^2 - 4*x, -x^16 - 5*x^15 + 6*x^14 + 62*x^13 + 22*x^12 - 298*x^11 - 276*x^10 + 684*x^9 + 892*x^8 - 735*x^7 - 1275*x^6 + 292*x^5 + 804*x^4 - 16*x^3 - 205*x^2 - 6*x + 15, x^16 + 5*x^15 - 6*x^14 - 62*x^13 - 22*x^12 + 298*x^11 + 276*x^10 - 684*x^9 - 892*x^8 + 735*x^7 + 1275*x^6 - 292*x^5 - 804*x^4 + 16*x^3 + 205*x^2 + 6*x - 15, -x^16 - 5*x^15 + 6*x^14 + 60*x^13 + 14*x^12 - 282*x^11 - 187*x^10 + 656*x^9 + 521*x^8 - 800*x^7 - 558*x^6 + 533*x^5 + 162*x^4 - 215*x^3 + 27*x^2 + 24*x - 6, x^16 + 5*x^15 - 6*x^14 - 60*x^13 - 14*x^12 + 282*x^11 + 187*x^10 - 656*x^9 - 521*x^8 + 800*x^7 + 558*x^6 - 533*x^5 - 162*x^4 + 215*x^3 - 27*x^2 - 24*x + 6, -x^16 - 6*x^15 + 61*x^13 + 80*x^12 - 206*x^11 - 446*x^10 + 186*x^9 + 938*x^8 + 334*x^7 - 727*x^6 - 683*x^5 + 5*x^4 + 276*x^3 + 98*x^2 - 20*x - 9, x^16 + 6*x^15 - 61*x^13 - 80*x^12 + 206*x^11 + 446*x^10 - 186*x^9 - 938*x^8 - 334*x^7 + 727*x^6 + 683*x^5 - 5*x^4 - 276*x^3 - 98*x^2 + 20*x + 9, -3*x^15 - 15*x^14 + 16*x^13 + 170*x^12 + 53*x^11 - 737*x^10 - 547*x^9 + 1516*x^8 + 1409*x^7 - 1474*x^6 - 1476*x^5 + 592*x^4 + 549*x^3 - 106*x^2 - 50*x + 9, 3*x^15 + 15*x^14 - 16*x^13 - 170*x^12 - 53*x^11 + 737*x^10 + 547*x^9 - 1516*x^8 - 1409*x^7 + 1474*x^6 + 1476*x^5 - 592*x^4 - 549*x^3 + 106*x^2 + 50*x - 9, -x^15 - 5*x^14 + 5*x^13 + 55*x^12 + 18*x^11 - 233*x^10 - 166*x^9 + 490*x^8 + 402*x^7 - 563*x^6 - 414*x^5 + 377*x^4 + 178*x^3 - 136*x^2 - 20*x + 12, x^15 + 5*x^14 - 5*x^13 - 55*x^12 - 18*x^11 + 233*x^10 + 166*x^9 - 490*x^8 - 402*x^7 + 563*x^6 + 414*x^5 - 377*x^4 - 178*x^3 + 136*x^2 + 20*x - 12, -x^15 - 4*x^14 + 9*x^13 + 46*x^12 - 30*x^11 - 211*x^10 + 48*x^9 + 487*x^8 - 44*x^7 - 578*x^6 + 31*x^5 + 317*x^4 - 18*x^3 - 61*x^2 + 3*x + 3, x^15 + 4*x^14 - 9*x^13 - 46*x^12 + 30*x^11 + 211*x^10 - 48*x^9 - 487*x^8 + 44*x^7 + 578*x^6 - 31*x^5 - 317*x^4 + 18*x^3 + 61*x^2 - 3*x - 3, -2*x^15 - 9*x^14 + 15*x^13 + 108*x^12 - 6*x^11 - 498*x^10 - 224*x^9 + 1094*x^8 + 736*x^7 - 1137*x^6 - 865*x^5 + 474*x^4 + 335*x^3 - 75*x^2 - 32*x + 6, 2*x^15 + 9*x^14 - 15*x^13 - 108*x^12 + 6*x^11 + 498*x^10 + 224*x^9 - 1094*x^8 - 736*x^7 + 1137*x^6 + 865*x^5 - 474*x^4 - 335*x^3 + 75*x^2 + 32*x - 6, -3*x^14 - 13*x^13 + 22*x^12 + 142*x^11 - 32*x^10 - 592*x^9 - 104*x^8 + 1171*x^7 + 351*x^6 - 1097*x^5 - 323*x^4 + 410*x^3 + 76*x^2 - 35*x - 3, 3*x^14 + 13*x^13 - 22*x^12 - 142*x^11 + 32*x^10 + 592*x^9 + 104*x^8 - 1171*x^7 - 351*x^6 + 1097*x^5 + 323*x^4 - 410*x^3 - 76*x^2 + 35*x + 3, -x^14 - 4*x^13 + 7*x^12 + 37*x^11 - 18*x^10 - 121*x^9 + 50*x^8 + 170*x^7 - 167*x^6 - 113*x^5 + 260*x^4 + 60*x^3 - 127*x^2 - 12*x + 12, x^14 + 4*x^13 - 7*x^12 - 37*x^11 + 18*x^10 + 121*x^9 - 50*x^8 - 170*x^7 + 167*x^6 + 113*x^5 - 260*x^4 - 60*x^3 + 127*x^2 + 12*x - 12, -x^14 - 7*x^13 - 6*x^12 + 57*x^11 + 113*x^10 - 149*x^9 - 449*x^8 + 113*x^7 + 728*x^6 + 56*x^5 - 505*x^4 - 63*x^3 + 147*x^2 + 12*x - 12, x^14 + 7*x^13 + 6*x^12 - 57*x^11 - 113*x^10 + 149*x^9 + 449*x^8 - 113*x^7 - 728*x^6 - 56*x^5 + 505*x^4 + 63*x^3 - 147*x^2 - 12*x + 12, 2*x^13 + 11*x^12 - x^11 - 94*x^10 - 95*x^9 + 270*x^8 + 399*x^7 - 283*x^6 - 561*x^5 + 57*x^4 + 245*x^3 + 3*x^2 - 20*x, -2*x^13 - 11*x^12 + x^11 + 94*x^10 + 95*x^9 - 270*x^8 - 399*x^7 + 283*x^6 + 561*x^5 - 57*x^4 - 245*x^3 - 3*x^2 + 20*x]>,
         rec<Eigen |
           DefiningPolynomial := x^24 - 3*x^23 - 31*x^22 + 97*x^21 + 402*x^20 - 1333*x^19 - 2825*x^18 + 10187*x^17 + 11576*x^16 - 47520*x^15 - 27272*x^14 + 139733*x^13 + 31933*x^12 - 258608*x^11 - 4817*x^10 + 293651*x^9 - 26127*x^8 - 196645*x^7 + 21140*x^6 + 74903*x^5 - 4562*x^4 - 14861*x^3 - 379*x^2 + 1179*x + 153,
           Coordinates        := [-x^23 + 3*x^22 + 28*x^21 - 88*x^20 - 322*x^19 + 1079*x^18 + 1963*x^17 - 7220*x^16 - 6771*x^15 + 28820*x^14 + 12789*x^13 - 70435*x^12 - 10698*x^11 + 104413*x^10 - 1065*x^9 - 90908*x^8 + 6468*x^7 + 44629*x^6 - 2222*x^5 - 11524*x^4 - 354*x^3 + 1227*x^2 + 167*x, x^23 - 3*x^22 - 28*x^21 + 88*x^20 + 322*x^19 - 1081*x^18 - 1957*x^17 + 7252*x^16 + 6675*x^15 - 29030*x^14 - 12173*x^13 + 71147*x^12 + 8676*x^11 - 105621*x^10 + 4625*x^9 + 91484*x^8 - 9640*x^7 - 43777*x^6 + 3434*x^5 + 10620*x^4 + 130*x^3 - 1011*x^2 - 139*x, -x^22 + 3*x^21 + 28*x^20 - 88*x^19 - 322*x^18 + 1079*x^17 + 1967*x^16 - 7236*x^15 - 6811*x^14 + 29034*x^13 + 12879*x^12 - 71487*x^11 - 10472*x^10 + 106701*x^9 - 2117*x^8 - 92968*x^7 + 7532*x^6 + 45131*x^5 - 2582*x^4 - 11270*x^3 - 292*x^2 + 1121*x + 153, 2*x^18 - 4*x^17 - 38*x^16 + 72*x^15 + 278*x^14 - 476*x^13 - 1004*x^12 + 1368*x^11 + 2012*x^10 - 1368*x^9 - 2796*x^8 - 522*x^7 + 3182*x^6 + 1034*x^5 - 1592*x^4 - 444*x^3 + 232*x^2 + 56*x, x^22 - 3*x^21 - 28*x^20 + 88*x^19 + 322*x^18 - 1081*x^17 - 1953*x^16 + 7236*x^15 + 6635*x^14 - 28816*x^13 - 12083*x^12 + 70095*x^11 + 8902*x^10 - 103333*x^9 + 3573*x^8 + 89424*x^7 - 8576*x^6 - 43275*x^5 + 3074*x^4 + 10874*x^3 + 192*x^2 - 1117*x - 153, x^19 - 3*x^18 - 17*x^17 + 55*x^16 + 103*x^15 - 377*x^14 - 264*x^13 + 1186*x^12 + 322*x^11 - 1690*x^10 - 714*x^9 + 1137*x^8 + 1852*x^7 - 1074*x^6 - 1313*x^5 + 574*x^4 + 338*x^3 - 88*x^2 - 28*x, x^19 - 3*x^18 - 17*x^17 + 55*x^16 + 103*x^15 - 377*x^14 - 264*x^13 + 1186*x^12 + 322*x^11 - 1690*x^10 - 714*x^9 + 1137*x^8 + 1852*x^7 - 1074*x^6 - 1313*x^5 + 574*x^4 + 338*x^3 - 88*x^2 - 28*x, x^20 - 3*x^19 - 21*x^18 + 65*x^17 + 175*x^16 - 556*x^15 - 763*x^14 + 2406*x^13 + 2009*x^12 - 5594*x^11 - 3770*x^10 + 6903*x^9 + 5572*x^8 - 4347*x^7 - 5359*x^6 + 1269*x^5 + 2391*x^4 + 13*x^3 - 353*x^2 - 52*x, x^20 - 3*x^19 - 21*x^18 + 65*x^17 + 175*x^16 - 556*x^15 - 763*x^14 + 2406*x^13 + 2009*x^12 - 5594*x^11 - 3770*x^10 + 6903*x^9 + 5572*x^8 - 4347*x^7 - 5359*x^6 + 1269*x^5 + 2391*x^4 + 13*x^3 - 353*x^2 - 52*x, 2*x^18 - 6*x^17 - 34*x^16 + 107*x^15 + 221*x^14 - 744*x^13 - 683*x^12 + 2536*x^11 + 1044*x^10 - 4398*x^9 - 924*x^8 + 3795*x^7 + 864*x^6 - 1729*x^5 - 461*x^4 + 343*x^3 + 93*x^2 - 4*x, 2*x^18 - 6*x^17 - 34*x^16 + 107*x^15 + 221*x^14 - 744*x^13 - 683*x^12 + 2536*x^11 + 1044*x^10 - 4398*x^9 - 924*x^8 + 3795*x^7 + 864*x^6 - 1729*x^5 - 461*x^4 + 343*x^3 + 93*x^2 - 4*x, 2*x^19 - 7*x^18 - 40*x^17 + 155*x^16 + 299*x^15 - 1367*x^14 - 991*x^13 + 6171*x^12 + 1043*x^11 - 15155*x^10 + 1749*x^9 + 19801*x^8 - 4614*x^7 - 12748*x^6 + 2362*x^5 + 4061*x^4 - 141*x^3 - 529*x^2 - 73*x, 2*x^19 - 7*x^18 - 40*x^17 + 155*x^16 + 299*x^15 - 1367*x^14 - 991*x^13 + 6171*x^12 + 1043*x^11 - 15155*x^10 + 1749*x^9 + 19801*x^8 - 4614*x^7 - 12748*x^6 + 2362*x^5 + 4061*x^4 - 141*x^3 - 529*x^2 - 73*x, x^21 - 3*x^20 - 24*x^19 + 75*x^18 + 232*x^17 - 766*x^16 - 1165*x^15 + 4150*x^14 + 3264*x^13 - 12951*x^12 - 5135*x^11 + 23748*x^10 + 4537*x^9 - 25285*x^8 - 2597*x^7 + 15091*x^6 + 1342*x^5 - 4622*x^4 - 550*x^3 + 565*x^2 + 101*x, x^21 - 3*x^20 - 24*x^19 + 75*x^18 + 232*x^17 - 766*x^16 - 1165*x^15 + 4150*x^14 + 3264*x^13 - 12951*x^12 - 5135*x^11 + 23748*x^10 + 4537*x^9 - 25285*x^8 - 2597*x^7 + 15091*x^6 + 1342*x^5 - 4622*x^4 - 550*x^3 + 565*x^2 + 101*x, x^19 - 3*x^18 - 19*x^17 + 60*x^16 + 138*x^15 - 474*x^14 - 464*x^13 + 1876*x^12 + 609*x^11 - 3852*x^10 + 316*x^9 + 3688*x^8 - 1520*x^7 - 906*x^6 + 1032*x^5 - 358*x^4 - 276*x^3 + 137*x^2 + 35*x, x^19 - 3*x^18 - 19*x^17 + 60*x^16 + 138*x^15 - 474*x^14 - 464*x^13 + 1876*x^12 + 609*x^11 - 3852*x^10 + 316*x^9 + 3688*x^8 - 1520*x^7 - 906*x^6 + 1032*x^5 - 358*x^4 - 276*x^3 + 137*x^2 + 35*x, 2*x^17 - 8*x^16 - 20*x^15 + 107*x^14 + 45*x^13 - 526*x^12 + 113*x^11 + 1144*x^10 - 526*x^9 - 1030*x^8 + 532*x^7 + 251*x^6 - 180*x^5 + 127*x^4 + 31*x^3 - 53*x^2 - 7*x, 2*x^17 - 8*x^16 - 20*x^15 + 107*x^14 + 45*x^13 - 526*x^12 + 113*x^11 + 1144*x^10 - 526*x^9 - 1030*x^8 + 532*x^7 + 251*x^6 - 180*x^5 + 127*x^4 + 31*x^3 - 53*x^2 - 7*x, x^20 - 3*x^19 - 22*x^18 + 69*x^17 + 192*x^16 - 644*x^15 - 841*x^14 + 3154*x^13 + 1867*x^12 - 8703*x^11 - 1619*x^10 + 13449*x^9 - 640*x^8 - 10988*x^7 + 1538*x^6 + 4528*x^5 - 573*x^4 - 807*x^3 + 27*x^2 + 23*x, x^20 - 3*x^19 - 22*x^18 + 69*x^17 + 192*x^16 - 644*x^15 - 841*x^14 + 3154*x^13 + 1867*x^12 - 8703*x^11 - 1619*x^10 + 13449*x^9 - 640*x^8 - 10988*x^7 + 1538*x^6 + 4528*x^5 - 573*x^4 - 807*x^3 + 27*x^2 + 23*x, -x^19 + 3*x^18 + 21*x^17 - 68*x^16 - 167*x^15 + 613*x^14 + 611*x^13 - 2833*x^12 - 858*x^11 + 7138*x^10 - 551*x^9 - 9546*x^8 + 2587*x^7 + 6183*x^6 - 1736*x^5 - 1959*x^4 + 265*x^3 + 253*x^2 + 29*x, -x^19 + 3*x^18 + 21*x^17 - 68*x^16 - 167*x^15 + 613*x^14 + 611*x^13 - 2833*x^12 - 858*x^11 + 7138*x^10 - 551*x^9 - 9546*x^8 + 2587*x^7 + 6183*x^6 - 1736*x^5 - 1959*x^4 + 265*x^3 + 253*x^2 + 29*x, x^20 - 4*x^19 - 20*x^18 + 96*x^17 + 134*x^16 - 921*x^15 - 205*x^14 + 4528*x^13 - 1557*x^12 - 12104*x^11 + 8037*x^10 + 17229*x^9 - 14626*x^8 - 12284*x^7 + 11266*x^6 + 4613*x^5 - 3750*x^4 - 936*x^3 + 430*x^2 + 83*x, x^20 - 4*x^19 - 20*x^18 + 96*x^17 + 134*x^16 - 921*x^15 - 205*x^14 + 4528*x^13 - 1557*x^12 - 12104*x^11 + 8037*x^10 + 17229*x^9 - 14626*x^8 - 12284*x^7 + 11266*x^6 + 4613*x^5 - 3750*x^4 - 936*x^3 + 430*x^2 + 83*x, x^22 - 3*x^21 - 26*x^20 + 82*x^19 + 273*x^18 - 927*x^17 - 1474*x^16 + 5627*x^15 + 4232*x^14 - 19885*x^13 - 5587*x^12 + 41446*x^11 + 270*x^10 - 49417*x^9 + 6457*x^8 + 31722*x^7 - 4565*x^6 - 10504*x^5 + 809*x^4 + 1488*x^3 + 24*x^2 - 31*x, x^22 - 3*x^21 - 26*x^20 + 82*x^19 + 273*x^18 - 927*x^17 - 1474*x^16 + 5627*x^15 + 4232*x^14 - 19885*x^13 - 5587*x^12 + 41446*x^11 + 270*x^10 - 49417*x^9 + 6457*x^8 + 31722*x^7 - 4565*x^6 - 10504*x^5 + 809*x^4 + 1488*x^3 + 24*x^2 - 31*x, x^18 - 3*x^17 - 20*x^16 + 63*x^15 + 156*x^14 - 534*x^13 - 575*x^12 + 2315*x^11 + 891*x^10 - 5363*x^9 + 44*x^8 + 6287*x^7 - 1370*x^6 - 3157*x^5 + 758*x^4 + 601*x^3 - 85*x^2 - 19*x, x^18 - 3*x^17 - 20*x^16 + 63*x^15 + 156*x^14 - 534*x^13 - 575*x^12 + 2315*x^11 + 891*x^10 - 5363*x^9 + 44*x^8 + 6287*x^7 - 1370*x^6 - 3157*x^5 + 758*x^4 + 601*x^3 - 85*x^2 - 19*x, x^21 - 3*x^20 - 25*x^19 + 79*x^18 + 251*x^17 - 859*x^16 - 1278*x^15 + 4995*x^14 + 3322*x^13 - 16750*x^12 - 3271*x^11 + 32456*x^10 - 2705*x^9 - 34477*x^8 + 7672*x^7 + 18182*x^6 - 3967*x^5 - 4510*x^4 + 444*x^3 + 415*x^2 + 38*x, x^21 - 3*x^20 - 25*x^19 + 79*x^18 + 251*x^17 - 859*x^16 - 1278*x^15 + 4995*x^14 + 3322*x^13 - 16750*x^12 - 3271*x^11 + 32456*x^10 - 2705*x^9 - 34477*x^8 + 7672*x^7 + 18182*x^6 - 3967*x^5 - 4510*x^4 + 444*x^3 + 415*x^2 + 38*x, -x^20 + x^19 + 27*x^18 - 25*x^17 - 302*x^16 + 251*x^15 + 1822*x^14 - 1308*x^13 - 6454*x^12 + 3780*x^11 + 13713*x^10 - 5932*x^9 - 17258*x^8 + 4510*x^7 + 12382*x^6 - 1164*x^5 - 4554*x^4 - 207*x^3 + 643*x^2 + 92*x, -x^20 + x^19 + 27*x^18 - 25*x^17 - 302*x^16 + 251*x^15 + 1822*x^14 - 1308*x^13 - 6454*x^12 + 3780*x^11 + 13713*x^10 - 5932*x^9 - 17258*x^8 + 4510*x^7 + 12382*x^6 - 1164*x^5 - 4554*x^4 - 207*x^3 + 643*x^2 + 92*x, -x^20 + 3*x^19 + 24*x^18 - 76*x^17 - 226*x^16 + 775*x^15 + 1051*x^14 - 4099*x^13 - 2425*x^12 + 12032*x^11 + 2130*x^10 - 19442*x^9 + 856*x^8 + 16300*x^7 - 2044*x^6 - 6554*x^5 + 768*x^4 + 1054*x^3 - 73*x^2 - 37*x, -x^20 + 3*x^19 + 24*x^18 - 76*x^17 - 226*x^16 + 775*x^15 + 1051*x^14 - 4099*x^13 - 2425*x^12 + 12032*x^11 + 2130*x^10 - 19442*x^9 + 856*x^8 + 16300*x^7 - 2044*x^6 - 6554*x^5 + 768*x^4 + 1054*x^3 - 73*x^2 - 37*x, x^19 - 3*x^18 - 22*x^17 + 71*x^16 + 185*x^15 - 673*x^14 - 722*x^13 + 3272*x^12 + 1140*x^11 - 8649*x^10 + 279*x^9 + 12145*x^8 - 2437*x^7 - 8434*x^6 + 1462*x^5 + 2918*x^4 - 74*x^3 - 409*x^2 - 64*x, x^19 - 3*x^18 - 22*x^17 + 71*x^16 + 185*x^15 - 673*x^14 - 722*x^13 + 3272*x^12 + 1140*x^11 - 8649*x^10 + 279*x^9 + 12145*x^8 - 2437*x^7 - 8434*x^6 + 1462*x^5 + 2918*x^4 - 74*x^3 - 409*x^2 - 64*x, -x^17 + 4*x^16 + 12*x^15 - 69*x^14 - 19*x^13 + 449*x^12 - 287*x^11 - 1356*x^10 + 1491*x^9 + 1855*x^8 - 2552*x^7 - 940*x^6 + 1466*x^5 + 208*x^4 - 266*x^3 - 13*x^2 + 8*x, -x^17 + 4*x^16 + 12*x^15 - 69*x^14 - 19*x^13 + 449*x^12 - 287*x^11 - 1356*x^10 + 1491*x^9 + 1855*x^8 - 2552*x^7 - 940*x^6 + 1466*x^5 + 208*x^4 - 266*x^3 - 13*x^2 + 8*x, -x^21 + 2*x^20 + 27*x^19 - 55*x^18 - 298*x^17 + 621*x^16 + 1738*x^15 - 3743*x^14 - 5757*x^13 + 13067*x^12 + 10791*x^11 - 26783*x^10 - 10775*x^9 + 31314*x^8 + 5285*x^7 - 19729*x^6 - 1654*x^5 + 6306*x^4 + 585*x^3 - 804*x^2 - 121*x, -x^21 + 2*x^20 + 27*x^19 - 55*x^18 - 298*x^17 + 621*x^16 + 1738*x^15 - 3743*x^14 - 5757*x^13 + 13067*x^12 + 10791*x^11 - 26783*x^10 - 10775*x^9 + 31314*x^8 + 5285*x^7 - 19729*x^6 - 1654*x^5 + 6306*x^4 + 585*x^3 - 804*x^2 - 121*x, -x^21 + 3*x^20 + 25*x^19 - 80*x^18 - 246*x^17 + 867*x^16 + 1197*x^15 - 4945*x^14 - 2854*x^13 + 16014*x^12 + 2202*x^11 - 29609*x^10 + 3069*x^9 + 30070*x^8 - 6060*x^7 - 15776*x^6 + 2709*x^5 + 4036*x^4 - 191*x^3 - 394*x^2 - 46*x, -x^21 + 3*x^20 + 25*x^19 - 80*x^18 - 246*x^17 + 867*x^16 + 1197*x^15 - 4945*x^14 - 2854*x^13 + 16014*x^12 + 2202*x^11 - 29609*x^10 + 3069*x^9 + 30070*x^8 - 6060*x^7 - 15776*x^6 + 2709*x^5 + 4036*x^4 - 191*x^3 - 394*x^2 - 46*x, -x^22 + 3*x^21 + 26*x^20 - 83*x^19 - 270*x^18 + 944*x^17 + 1419*x^16 - 5732*x^15 - 3836*x^14 + 20132*x^13 + 4178*x^12 - 41354*x^11 + 2295*x^10 + 48021*x^9 - 8771*x^8 - 29524*x^7 + 5693*x^6 + 9124*x^5 - 1167*x^4 - 1182*x^3 + 40*x^2 + 29*x, -x^22 + 3*x^21 + 26*x^20 - 83*x^19 - 270*x^18 + 944*x^17 + 1419*x^16 - 5732*x^15 - 3836*x^14 + 20132*x^13 + 4178*x^12 - 41354*x^11 + 2295*x^10 + 48021*x^9 - 8771*x^8 - 29524*x^7 + 5693*x^6 + 9124*x^5 - 1167*x^4 - 1182*x^3 + 40*x^2 + 29*x]>
       ]
>;

MOG[547] := 	// J_0(547)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [52, 87, 167, 248, 310, 321, 330*x + 318, 217*x + 318, 149*x + 327, 398*x + 327, 396*x + 387, 151*x + 387, 120*x + 462, 427*x + 462, 205*x + 63, 342*x + 63, 67*x + 453, 480*x + 453, 178*x + 438, 369*x + 438, 368*x + 476, 179*x + 476, 280*x + 384, 267*x + 384, 77*x + 28, 470*x + 28, 464*x + 31, 83*x + 31, 139*x + 279, 408*x + 279, 262*x + 495, 285*x + 495, 384*x + 105, 163*x + 105, 38*x + 215, 509*x + 215, 290*x + 478, 257*x + 478, 396*x + 160, 151*x + 160, 330*x + 477, 217*x + 477, 32*x + 38, 515*x + 38, 274*x + 486, 273*x + 486]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 2*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, x + 2, -x - 2, -x - 2, x + 2, 1, -1, 0, 0, -1, 1, -1, 1, -1, 1, x + 3, -x - 3, 1, -1, 1, -1, -x - 1, x + 1, 0, 0, -x - 1, x + 1, x + 1, -x - 1, x + 2, -x - 2, -1, 1, -1, 1, -x - 1, x + 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^18 + 4*x^17 - 18*x^16 - 84*x^15 + 116*x^14 + 708*x^13 - 282*x^12 - 3104*x^11 - 137*x^10 + 7703*x^9 + 2068*x^8 - 11068*x^7 - 4274*x^6 + 9021*x^5 + 4048*x^4 - 3834*x^3 - 1851*x^2 + 654*x + 328,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^17 - 4*x^16 + 16*x^15 + 76*x^14 - 87*x^13 - 568*x^12 + 143*x^11 + 2144*x^10 + 305*x^9 - 4383*x^8 - 1443*x^7 + 4853*x^6 + 1969*x^5 - 2744*x^4 - 1135*x^3 + 657*x^2 + 234*x - 30, x^17 + 4*x^16 - 16*x^15 - 76*x^14 + 87*x^13 + 568*x^12 - 143*x^11 - 2144*x^10 - 305*x^9 + 4383*x^8 + 1443*x^7 - 4853*x^6 - 1969*x^5 + 2744*x^4 + 1135*x^3 - 657*x^2 - 234*x + 30, -x^16 - 4*x^15 + 15*x^14 + 72*x^13 - 75*x^12 - 508*x^11 + 100*x^10 + 1804*x^9 + 325*x^8 - 3443*x^7 - 1263*x^6 + 3510*x^5 + 1606*x^4 - 1777*x^3 - 886*x^2 + 347*x + 178, x^16 + 4*x^15 - 15*x^14 - 72*x^13 + 75*x^12 + 508*x^11 - 100*x^10 - 1804*x^9 - 325*x^8 + 3443*x^7 + 1263*x^6 - 3510*x^5 - 1606*x^4 + 1777*x^3 + 886*x^2 - 347*x - 178, -x^16 - 4*x^15 + 14*x^14 + 68*x^13 - 64*x^12 - 452*x^11 + 68*x^10 + 1516*x^9 + 300*x^8 - 2772*x^7 - 1042*x^6 + 2767*x^5 + 1307*x^4 - 1400*x^3 - 731*x^2 + 277*x + 150, x^16 + 4*x^15 - 14*x^14 - 68*x^13 + 64*x^12 + 452*x^11 - 68*x^10 - 1516*x^9 - 300*x^8 + 2772*x^7 + 1042*x^6 - 2767*x^5 - 1307*x^4 + 1400*x^3 + 731*x^2 - 277*x - 150, -x^15 - 4*x^14 + 12*x^13 + 60*x^12 - 43*x^11 - 340*x^10 + 20*x^9 + 940*x^8 + 180*x^7 - 1343*x^6 - 363*x^5 + 967*x^4 + 249*x^3 - 310*x^2 - 56*x + 30, x^15 + 4*x^14 - 12*x^13 - 60*x^12 + 43*x^11 + 340*x^10 - 20*x^9 - 940*x^8 - 180*x^7 + 1343*x^6 + 363*x^5 - 967*x^4 - 249*x^3 + 310*x^2 + 56*x - 30, -x^15 - 4*x^14 + 11*x^13 + 56*x^12 - 33*x^11 - 289*x^10 - 6*x^9 + 705*x^8 + 157*x^7 - 878*x^6 - 226*x^5 + 560*x^4 + 120*x^3 - 171*x^2 - 21*x + 20, x^15 + 4*x^14 - 11*x^13 - 56*x^12 + 33*x^11 + 289*x^10 + 6*x^9 - 705*x^8 - 157*x^7 + 878*x^6 + 226*x^5 - 560*x^4 - 120*x^3 + 171*x^2 + 21*x - 20, -x^15 - 4*x^14 + 12*x^13 + 60*x^12 - 42*x^11 - 339*x^10 + x^9 + 906*x^8 + 244*x^7 - 1208*x^6 - 436*x^5 + 784*x^4 + 284*x^3 - 209*x^2 - 63*x + 10, x^15 + 4*x^14 - 12*x^13 - 60*x^12 + 42*x^11 + 339*x^10 - x^9 - 906*x^8 - 244*x^7 + 1208*x^6 + 436*x^5 - 784*x^4 - 284*x^3 + 209*x^2 + 63*x - 10, -2*x^14 - 8*x^13 + 21*x^12 + 110*x^11 - 52*x^10 - 555*x^9 - 91*x^8 + 1317*x^7 + 556*x^6 - 1555*x^5 - 822*x^4 + 874*x^3 + 494*x^2 - 183*x - 104, 2*x^14 + 8*x^13 - 21*x^12 - 110*x^11 + 52*x^10 + 555*x^9 + 91*x^8 - 1317*x^7 - 556*x^6 + 1555*x^5 + 822*x^4 - 874*x^3 - 494*x^2 + 183*x + 104, -x^14 - 4*x^13 + 11*x^12 + 58*x^11 - 28*x^10 - 309*x^9 - 54*x^8 + 783*x^7 + 344*x^6 - 988*x^5 - 535*x^4 + 593*x^3 + 336*x^2 - 134*x - 74, x^14 + 4*x^13 - 11*x^12 - 58*x^11 + 28*x^10 + 309*x^9 + 54*x^8 - 783*x^7 - 344*x^6 + 988*x^5 + 535*x^4 - 593*x^3 - 336*x^2 + 134*x + 74, -x^14 - 4*x^13 + 10*x^12 + 53*x^11 - 22*x^10 - 256*x^9 - 52*x^8 + 577*x^7 + 260*x^6 - 652*x^5 - 365*x^4 + 355*x^3 + 216*x^2 - 74*x - 46, x^14 + 4*x^13 - 10*x^12 - 53*x^11 + 22*x^10 + 256*x^9 + 52*x^8 - 577*x^7 - 260*x^6 + 652*x^5 + 365*x^4 - 355*x^3 - 216*x^2 + 74*x + 46, -x^14 - 4*x^13 + 12*x^12 + 60*x^11 - 41*x^10 - 338*x^9 - 13*x^8 + 891*x^7 + 300*x^6 - 1156*x^5 - 532*x^4 + 712*x^3 + 359*x^2 - 165*x - 84, x^14 + 4*x^13 - 12*x^12 - 60*x^11 + 41*x^10 + 338*x^9 + 13*x^8 - 891*x^7 - 300*x^6 + 1156*x^5 + 532*x^4 - 712*x^3 - 359*x^2 + 165*x + 84, -x^14 - 4*x^13 + 10*x^12 + 53*x^11 - 26*x^10 - 272*x^9 - 43*x^8 + 673*x^7 + 306*x^6 - 827*x^5 - 491*x^4 + 479*x^3 + 309*x^2 - 102*x - 66, x^14 + 4*x^13 - 10*x^12 - 53*x^11 + 26*x^10 + 272*x^9 + 43*x^8 - 673*x^7 - 306*x^6 + 827*x^5 + 491*x^4 - 479*x^3 - 309*x^2 + 102*x + 66, -2*x^13 - 6*x^12 + 24*x^11 + 74*x^10 - 105*x^9 - 328*x^8 + 219*x^7 + 666*x^6 - 233*x^5 - 653*x^4 + 125*x^3 + 298*x^2 - 27*x - 50, 2*x^13 + 6*x^12 - 24*x^11 - 74*x^10 + 105*x^9 + 328*x^8 - 219*x^7 - 666*x^6 + 233*x^5 + 653*x^4 - 125*x^3 - 298*x^2 + 27*x + 50, -x^13 - 2*x^12 + 16*x^11 + 32*x^10 - 88*x^9 - 172*x^8 + 220*x^7 + 407*x^6 - 268*x^5 - 446*x^4 + 162*x^3 + 220*x^2 - 39*x - 40, x^13 + 2*x^12 - 16*x^11 - 32*x^10 + 88*x^9 + 172*x^8 - 220*x^7 - 407*x^6 + 268*x^5 + 446*x^4 - 162*x^3 - 220*x^2 + 39*x + 40, -x^11 - x^10 + 14*x^9 + 15*x^8 - 56*x^7 - 52*x^6 + 96*x^5 + 72*x^4 - 75*x^3 - 44*x^2 + 21*x + 10, x^11 + x^10 - 14*x^9 - 15*x^8 + 56*x^7 + 52*x^6 - 96*x^5 - 72*x^4 + 75*x^3 + 44*x^2 - 21*x - 10, -x^13 - 3*x^12 + 11*x^11 + 33*x^10 - 46*x^9 - 128*x^8 + 103*x^7 + 226*x^6 - 139*x^5 - 205*x^4 + 96*x^3 + 97*x^2 - 25*x - 20, x^13 + 3*x^12 - 11*x^11 - 33*x^10 + 46*x^9 + 128*x^8 - 103*x^7 - 226*x^6 + 139*x^5 + 205*x^4 - 96*x^3 - 97*x^2 + 25*x + 20, -x^13 - 4*x^12 + 6*x^11 + 39*x^10 + 5*x^9 - 131*x^8 - 94*x^7 + 176*x^6 + 219*x^5 - 54*x^4 - 186*x^3 - 48*x^2 + 52*x + 24, x^13 + 4*x^12 - 6*x^11 - 39*x^10 - 5*x^9 + 131*x^8 + 94*x^7 - 176*x^6 - 219*x^5 + 54*x^4 + 186*x^3 + 48*x^2 - 52*x - 24, -x^13 - 3*x^12 + 10*x^11 + 28*x^10 - 49*x^9 - 102*x^8 + 156*x^7 + 205*x^6 - 274*x^5 - 251*x^4 + 211*x^3 + 155*x^2 - 55*x - 34, x^13 + 3*x^12 - 10*x^11 - 28*x^10 + 49*x^9 + 102*x^8 - 156*x^7 - 205*x^6 + 274*x^5 + 251*x^4 - 211*x^3 - 155*x^2 + 55*x + 34, -3*x^12 - 12*x^11 + 21*x^10 + 122*x^9 - 18*x^8 - 432*x^7 - 123*x^6 + 669*x^5 + 294*x^4 - 451*x^3 - 223*x^2 + 106*x + 54, 3*x^12 + 12*x^11 - 21*x^10 - 122*x^9 + 18*x^8 + 432*x^7 + 123*x^6 - 669*x^5 - 294*x^4 + 451*x^3 + 223*x^2 - 106*x - 54, -2*x^12 - 9*x^11 + 9*x^10 + 82*x^9 + 27*x^8 - 248*x^7 - 173*x^6 + 308*x^5 + 256*x^4 - 162*x^3 - 144*x^2 + 29*x + 26, 2*x^12 + 9*x^11 - 9*x^10 - 82*x^9 - 27*x^8 + 248*x^7 + 173*x^6 - 308*x^5 - 256*x^4 + 162*x^3 + 144*x^2 - 29*x - 26, -x^12 - 2*x^11 + 10*x^10 + 19*x^9 - 33*x^8 - 65*x^7 + 36*x^6 + 104*x^5 + 11*x^4 - 76*x^3 - 34*x^2 + 20*x + 12, x^12 + 2*x^11 - 10*x^10 - 19*x^9 + 33*x^8 + 65*x^7 - 36*x^6 - 104*x^5 - 11*x^4 + 76*x^3 + 34*x^2 - 20*x - 12]>,
         rec<Eigen |
           DefiningPolynomial := x^25 - 4*x^24 - 30*x^23 + 134*x^22 + 365*x^21 - 1926*x^20 - 2226*x^19 + 15560*x^18 + 6033*x^17 - 77601*x^16 + 4782*x^15 + 246402*x^14 - 87059*x^13 - 493902*x^12 + 275826*x^11 + 594258*x^10 - 427359*x^9 - 378617*x^8 + 334926*x^7 + 87006*x^6 - 111411*x^5 + 8810*x^4 + 6600*x^3 - 872*x^2 - 68*x + 8,
           Coordinates        := [-x^24 + 4*x^23 + 27*x^22 - 122*x^21 - 286*x^20 + 1572*x^19 + 1400*x^18 - 11144*x^17 - 1897*x^16 + 47287*x^15 - 12423*x^14 - 121845*x^13 + 68494*x^12 + 182807*x^11 - 147868*x^10 - 139111*x^9 + 153523*x^8 + 30840*x^7 - 66343*x^6 + 10524*x^5 + 5736*x^4 - 1282*x^3 - 18*x^2 + 20*x - 4, x^24 - 3*x^23 - 31*x^22 + 97*x^21 + 402*x^20 - 1334*x^19 - 2820*x^18 + 10208*x^17 + 11429*x^16 - 47612*x^15 - 25638*x^14 + 139014*x^13 + 22851*x^12 - 250183*x^11 + 22317*x^10 + 260991*x^9 - 68554*x^8 - 137387*x^7 + 51457*x^6 + 26259*x^5 - 11794*x^4 - 84*x^3 + 426*x^2 - 20*x - 4, -x^22 + 4*x^21 + 23*x^20 - 106*x^19 - 198*x^18 + 1166*x^17 + 676*x^16 - 6876*x^15 + 467*x^14 + 23337*x^13 - 11043*x^12 - 45109*x^11 + 35530*x^10 + 44919*x^9 - 51428*x^8 - 15921*x^7 + 34151*x^6 - 3418*x^5 - 8891*x^4 + 3002*x^3 - 74*x^2 - 76*x + 8, -x^23 + 4*x^22 + 25*x^21 - 114*x^20 - 240*x^19 + 1360*x^18 + 1004*x^17 - 8814*x^16 - 539*x^15 + 33579*x^14 - 11625*x^13 - 75549*x^12 + 47626*x^11 + 94213*x^10 - 82366*x^9 - 52913*x^8 + 64525*x^7 + 2556*x^6 - 16541*x^5 + 4744*x^4 - 1236*x^3 + 392*x^2 - 44*x, -x^22 + 4*x^21 + 23*x^20 - 106*x^19 - 198*x^18 + 1164*x^17 + 682*x^16 - 6832*x^15 + 331*x^14 + 22959*x^13 - 9825*x^12 - 43485*x^11 + 29972*x^10 + 41279*x^9 - 37570*x^8 - 12363*x^7 + 15651*x^6 - 2362*x^5 + 1919*x^4 - 1328*x^3 + 48*x^2 + 56*x - 4, 2*x^23 - 6*x^22 - 60*x^21 + 190*x^20 + 740*x^19 - 2532*x^18 - 4812*x^17 + 18560*x^16 + 17192*x^15 - 81750*x^14 - 29104*x^13 + 220868*x^12 - 3326*x^11 - 355584*x^10 + 97814*x^9 + 309784*x^8 - 146082*x^7 - 112204*x^6 + 73358*x^5 + 2900*x^4 - 6090*x^3 + 426*x^2 + 84*x - 4, x^22 - 2*x^21 - 32*x^20 + 68*x^19 + 414*x^18 - 928*x^17 - 2833*x^16 + 6737*x^15 + 11086*x^14 - 28580*x^13 - 24514*x^12 + 72391*x^11 + 26590*x^10 - 106099*x^9 - 4487*x^8 + 81285*x^7 - 14778*x^6 - 24809*x^5 + 8749*x^4 + 297*x^3 - 384*x^2 + 18*x + 4, x^22 - 2*x^21 - 32*x^20 + 68*x^19 + 414*x^18 - 928*x^17 - 2833*x^16 + 6737*x^15 + 11086*x^14 - 28580*x^13 - 24514*x^12 + 72391*x^11 + 26590*x^10 - 106099*x^9 - 4487*x^8 + 81285*x^7 - 14778*x^6 - 24809*x^5 + 8749*x^4 + 297*x^3 - 384*x^2 + 18*x + 4, -x^23 + 4*x^22 + 27*x^21 - 120*x^20 - 293*x^19 + 1528*x^18 + 1566*x^17 - 10750*x^16 - 3551*x^15 + 45489*x^14 - 3470*x^13 - 117773*x^12 + 40166*x^11 + 180467*x^10 - 95735*x^9 - 147432*x^8 + 102029*x^7 + 47487*x^6 - 44567*x^5 + 1392*x^4 + 3909*x^3 - 622*x^2 - 14*x + 4, -x^23 + 4*x^22 + 27*x^21 - 120*x^20 - 293*x^19 + 1528*x^18 + 1566*x^17 - 10750*x^16 - 3551*x^15 + 45489*x^14 - 3470*x^13 - 117773*x^12 + 40166*x^11 + 180467*x^10 - 95735*x^9 - 147432*x^8 + 102029*x^7 + 47487*x^6 - 44567*x^5 + 1392*x^4 + 3909*x^3 - 622*x^2 - 14*x + 4, x^21 - 2*x^20 - 33*x^19 + 76*x^18 + 413*x^17 - 1073*x^16 - 2555*x^15 + 7681*x^14 + 8060*x^13 - 30704*x^12 - 10250*x^11 + 69018*x^10 - 6566*x^9 - 81067*x^8 + 29275*x^7 + 39908*x^6 - 20042*x^5 - 3995*x^4 + 1797*x^3 + 214*x^2 - 66*x, x^21 - 2*x^20 - 33*x^19 + 76*x^18 + 413*x^17 - 1073*x^16 - 2555*x^15 + 7681*x^14 + 8060*x^13 - 30704*x^12 - 10250*x^11 + 69018*x^10 - 6566*x^9 - 81067*x^8 + 29275*x^7 + 39908*x^6 - 20042*x^5 - 3995*x^4 + 1797*x^3 + 214*x^2 - 66*x, -x^22 + 4*x^21 + 25*x^20 - 112*x^19 - 248*x^18 + 1322*x^17 + 1179*x^16 - 8535*x^15 - 2133*x^14 + 32652*x^13 - 3814*x^12 - 74731*x^11 + 25543*x^10 + 97778*x^9 - 47007*x^8 - 64638*x^7 + 36554*x^6 + 15677*x^5 - 10576*x^4 + 363*x^3 + 388*x^2 - 34*x, -x^22 + 4*x^21 + 25*x^20 - 112*x^19 - 248*x^18 + 1322*x^17 + 1179*x^16 - 8535*x^15 - 2133*x^14 + 32652*x^13 - 3814*x^12 - 74731*x^11 + 25543*x^10 + 97778*x^9 - 47007*x^8 - 64638*x^7 + 36554*x^6 + 15677*x^5 - 10576*x^4 + 363*x^3 + 388*x^2 - 34*x, -x^20 + 6*x^19 + 11*x^18 - 124*x^17 + 37*x^16 + 1018*x^15 - 1099*x^14 - 4144*x^13 + 6613*x^12 + 8273*x^11 - 18333*x^10 - 5750*x^9 + 24436*x^8 - 3488*x^7 - 13437*x^6 + 4773*x^5 + 2307*x^4 - 1096*x^3 - 4*x^2 + 44*x - 4, -x^20 + 6*x^19 + 11*x^18 - 124*x^17 + 37*x^16 + 1018*x^15 - 1099*x^14 - 4144*x^13 + 6613*x^12 + 8273*x^11 - 18333*x^10 - 5750*x^9 + 24436*x^8 - 3488*x^7 - 13437*x^6 + 4773*x^5 + 2307*x^4 - 1096*x^3 - 4*x^2 + 44*x - 4, 2*x^19 - 12*x^18 - 21*x^17 + 241*x^16 - 74*x^15 - 1927*x^14 + 2020*x^13 + 7651*x^12 - 11646*x^11 - 14823*x^10 + 30782*x^9 + 9326*x^8 - 37889*x^7 + 8173*x^6 + 16041*x^5 - 9259*x^4 + 1013*x^3 + 322*x^2 - 62*x, 2*x^19 - 12*x^18 - 21*x^17 + 241*x^16 - 74*x^15 - 1927*x^14 + 2020*x^13 + 7651*x^12 - 11646*x^11 - 14823*x^10 + 30782*x^9 + 9326*x^8 - 37889*x^7 + 8173*x^6 + 16041*x^5 - 9259*x^4 + 1013*x^3 + 322*x^2 - 62*x, -x^21 + 4*x^20 + 23*x^19 - 103*x^18 - 212*x^17 + 1122*x^16 + 953*x^15 - 6704*x^14 - 1738*x^13 + 23757*x^12 - 2035*x^11 - 50121*x^10 + 15533*x^9 + 59083*x^8 - 27525*x^7 - 32148*x^6 + 18524*x^5 + 3770*x^4 - 2382*x^3 + 64*x^2 + 36*x, -x^21 + 4*x^20 + 23*x^19 - 103*x^18 - 212*x^17 + 1122*x^16 + 953*x^15 - 6704*x^14 - 1738*x^13 + 23757*x^12 - 2035*x^11 - 50121*x^10 + 15533*x^9 + 59083*x^8 - 27525*x^7 - 32148*x^6 + 18524*x^5 + 3770*x^4 - 2382*x^3 + 64*x^2 + 36*x, -x^21 + 4*x^20 + 22*x^19 - 103*x^18 - 175*x^17 + 1093*x^16 + 465*x^15 - 6133*x^14 + 1394*x^13 + 19285*x^12 - 12588*x^11 - 32568*x^10 + 33195*x^9 + 23711*x^8 - 37950*x^7 + 338*x^6 + 15467*x^5 - 4799*x^4 - 1139*x^3 + 524*x^2 - 22*x - 4, -x^21 + 4*x^20 + 22*x^19 - 103*x^18 - 175*x^17 + 1093*x^16 + 465*x^15 - 6133*x^14 + 1394*x^13 + 19285*x^12 - 12588*x^11 - 32568*x^10 + 33195*x^9 + 23711*x^8 - 37950*x^7 + 338*x^6 + 15467*x^5 - 4799*x^4 - 1139*x^3 + 524*x^2 - 22*x - 4, -x^21 + 4*x^20 + 21*x^19 - 97*x^18 - 164*x^17 + 969*x^16 + 503*x^15 - 5121*x^14 + 291*x^13 + 15220*x^12 - 6048*x^11 - 24647*x^10 + 15469*x^9 + 18496*x^8 - 15187*x^7 - 2987*x^6 + 3825*x^5 - 871*x^4 + 581*x^3 - 234*x^2 + 26*x, -x^21 + 4*x^20 + 21*x^19 - 97*x^18 - 164*x^17 + 969*x^16 + 503*x^15 - 5121*x^14 + 291*x^13 + 15220*x^12 - 6048*x^11 - 24647*x^10 + 15469*x^9 + 18496*x^8 - 15187*x^7 - 2987*x^6 + 3825*x^5 - 871*x^4 + 581*x^3 - 234*x^2 + 26*x, -x^21 + 4*x^20 + 21*x^19 - 98*x^18 - 161*x^17 + 991*x^16 + 435*x^15 - 5310*x^14 + 900*x^13 + 16032*x^12 - 8827*x^11 - 26467*x^10 + 22398*x^9 + 20275*x^8 - 24437*x^7 - 2459*x^6 + 9230*x^5 - 3036*x^4 + 642*x^3 - 168*x^2 + 20*x, -x^21 + 4*x^20 + 21*x^19 - 98*x^18 - 161*x^17 + 991*x^16 + 435*x^15 - 5310*x^14 + 900*x^13 + 16032*x^12 - 8827*x^11 - 26467*x^10 + 22398*x^9 + 20275*x^8 - 24437*x^7 - 2459*x^6 + 9230*x^5 - 3036*x^4 + 642*x^3 - 168*x^2 + 20*x, x^18 - 11*x^17 + 8*x^16 + 193*x^15 - 351*x^14 - 1309*x^13 + 3026*x^12 + 4254*x^11 - 11769*x^10 - 6506*x^9 + 22903*x^8 + 3335*x^7 - 21408*x^6 + 1553*x^5 + 8044*x^4 - 2117*x^3 - 108*x^2 + 46*x, x^18 - 11*x^17 + 8*x^16 + 193*x^15 - 351*x^14 - 1309*x^13 + 3026*x^12 + 4254*x^11 - 11769*x^10 - 6506*x^9 + 22903*x^8 + 3335*x^7 - 21408*x^6 + 1553*x^5 + 8044*x^4 - 2117*x^3 - 108*x^2 + 46*x, -x^20 + 3*x^19 + 25*x^18 - 76*x^17 - 263*x^16 + 813*x^15 + 1494*x^14 - 4751*x^13 - 4834*x^12 + 16337*x^11 + 8323*x^10 - 32945*x^9 - 4954*x^8 + 35978*x^7 - 4593*x^6 - 16680*x^5 + 5887*x^4 + 797*x^3 - 348*x^2 - 10*x + 4, -x^20 + 3*x^19 + 25*x^18 - 76*x^17 - 263*x^16 + 813*x^15 + 1494*x^14 - 4751*x^13 - 4834*x^12 + 16337*x^11 + 8323*x^10 - 32945*x^9 - 4954*x^8 + 35978*x^7 - 4593*x^6 - 16680*x^5 + 5887*x^4 + 797*x^3 - 348*x^2 - 10*x + 4, -x^20 + 3*x^19 + 24*x^18 - 77*x^17 - 226*x^16 + 806*x^15 + 1031*x^14 - 4420*x^13 - 2121*x^12 + 13499*x^11 + 403*x^10 - 22281*x^9 + 5250*x^8 + 17183*x^7 - 6493*x^6 - 3761*x^5 + 1455*x^4 + 14*x^3 - 60*x^2 + 24*x - 4, -x^20 + 3*x^19 + 24*x^18 - 77*x^17 - 226*x^16 + 806*x^15 + 1031*x^14 - 4420*x^13 - 2121*x^12 + 13499*x^11 + 403*x^10 - 22281*x^9 + 5250*x^8 + 17183*x^7 - 6493*x^6 - 3761*x^5 + 1455*x^4 + 14*x^3 - 60*x^2 + 24*x - 4, -2*x^20 + 6*x^19 + 49*x^18 - 152*x^17 - 488*x^16 + 1596*x^15 + 2496*x^14 - 8947*x^13 - 6653*x^12 + 28664*x^11 + 7249*x^10 - 51786*x^9 + 3807*x^8 + 47793*x^7 - 14594*x^6 - 16715*x^5 + 7982*x^4 + 147*x^3 - 350*x^2 + 6*x + 4, -2*x^20 + 6*x^19 + 49*x^18 - 152*x^17 - 488*x^16 + 1596*x^15 + 2496*x^14 - 8947*x^13 - 6653*x^12 + 28664*x^11 + 7249*x^10 - 51786*x^9 + 3807*x^8 + 47793*x^7 - 14594*x^6 - 16715*x^5 + 7982*x^4 + 147*x^3 - 350*x^2 + 6*x + 4, -x^20 + 3*x^19 + 23*x^18 - 73*x^17 - 210*x^16 + 737*x^15 + 923*x^14 - 3973*x^13 - 1618*x^12 + 12189*x^11 - 1728*x^10 - 20673*x^9 + 11805*x^8 + 16422*x^7 - 16889*x^6 - 2226*x^5 + 7165*x^4 - 2140*x^3 + 104*x^2 + 32*x - 4, -x^20 + 3*x^19 + 23*x^18 - 73*x^17 - 210*x^16 + 737*x^15 + 923*x^14 - 3973*x^13 - 1618*x^12 + 12189*x^11 - 1728*x^10 - 20673*x^9 + 11805*x^8 + 16422*x^7 - 16889*x^6 - 2226*x^5 + 7165*x^4 - 2140*x^3 + 104*x^2 + 32*x - 4, -x^18 + 3*x^17 + 13*x^16 - 37*x^15 - 64*x^14 + 101*x^13 + 268*x^12 + 385*x^11 - 1567*x^10 - 2215*x^9 + 5787*x^8 + 2207*x^7 - 9014*x^6 + 2254*x^5 + 3784*x^4 - 2186*x^3 + 164*x^2 + 68*x - 8, -x^18 + 3*x^17 + 13*x^16 - 37*x^15 - 64*x^14 + 101*x^13 + 268*x^12 + 385*x^11 - 1567*x^10 - 2215*x^9 + 5787*x^8 + 2207*x^7 - 9014*x^6 + 2254*x^5 + 3784*x^4 - 2186*x^3 + 164*x^2 + 68*x - 8, -x^19 + 2*x^18 + 26*x^17 - 61*x^16 - 240*x^15 + 682*x^14 + 905*x^13 - 3665*x^12 - 508*x^11 + 9884*x^10 - 5664*x^9 - 11778*x^8 + 14274*x^7 + 2394*x^6 - 10251*x^5 + 3358*x^4 + 1065*x^3 - 440*x^2 - 6*x + 8, -x^19 + 2*x^18 + 26*x^17 - 61*x^16 - 240*x^15 + 682*x^14 + 905*x^13 - 3665*x^12 - 508*x^11 + 9884*x^10 - 5664*x^9 - 11778*x^8 + 14274*x^7 + 2394*x^6 - 10251*x^5 + 3358*x^4 + 1065*x^3 - 440*x^2 - 6*x + 8, -x^19 + 2*x^18 + 25*x^17 - 46*x^16 - 272*x^15 + 459*x^14 + 1655*x^13 - 2586*x^12 - 5979*x^11 + 8853*x^10 + 12458*x^9 - 18151*x^8 - 13046*x^7 + 20061*x^6 + 4043*x^5 - 8860*x^4 + 1237*x^3 + 274*x^2 - 22*x - 4, -x^19 + 2*x^18 + 25*x^17 - 46*x^16 - 272*x^15 + 459*x^14 + 1655*x^13 - 2586*x^12 - 5979*x^11 + 8853*x^10 + 12458*x^9 - 18151*x^8 - 13046*x^7 + 20061*x^6 + 4043*x^5 - 8860*x^4 + 1237*x^3 + 274*x^2 - 22*x - 4, -x^19 + x^18 + 27*x^17 - 22*x^16 - 317*x^15 + 225*x^14 + 2064*x^13 - 1413*x^12 - 7869*x^11 + 5702*x^10 + 17009*x^9 - 13879*x^8 - 18124*x^7 + 17650*x^6 + 5566*x^5 - 8434*x^4 + 1663*x^3 + 162*x^2 - 62*x + 4, -x^19 + x^18 + 27*x^17 - 22*x^16 - 317*x^15 + 225*x^14 + 2064*x^13 - 1413*x^12 - 7869*x^11 + 5702*x^10 + 17009*x^9 - 13879*x^8 - 18124*x^7 + 17650*x^6 + 5566*x^5 - 8434*x^4 + 1663*x^3 + 162*x^2 - 62*x + 4, -x^17 + x^16 + 15*x^15 - 7*x^14 - 78*x^13 - 55*x^12 + 158*x^11 + 701*x^10 - 165*x^9 - 2545*x^8 + 697*x^7 + 3601*x^6 - 1812*x^5 - 1370*x^4 + 1044*x^3 - 98*x^2 - 32*x + 4, -x^17 + x^16 + 15*x^15 - 7*x^14 - 78*x^13 - 55*x^12 + 158*x^11 + 701*x^10 - 165*x^9 - 2545*x^8 + 697*x^7 + 3601*x^6 - 1812*x^5 - 1370*x^4 + 1044*x^3 - 98*x^2 - 32*x + 4]>
       ]
>;

MOG[557] := 	// J_0(557)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 95, 110, 202, 204, 449, 511, 528, 534, 70*x + 29, 487*x + 29, 252*x + 454, 305*x + 454, 465*x + 61, 92*x + 61, 514*x + 1, 43*x + 1, 304*x + 543, 253*x + 543, 244*x + 85, 313*x + 85, 33*x + 540, 524*x + 540, 115*x + 230, 442*x + 230, 33*x + 171, 524*x + 171, 257*x + 371, 300*x + 371, 380*x + 156, 177*x + 156, 133*x + 393, 424*x + 393, 139*x + 442, 418*x + 442, 414*x + 537, 143*x + 537, 464*x + 527, 93*x + 527, 67*x + 220, 490*x + 220, 34*x + 120, 523*x + 120, 34*x + 362, 523*x + 362, 53*x + 374, 504*x + 374]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x - 2,
           Coordinates        := [-1/2, 1/2, 1/2, 1/2, 0, -1/2, -1/2, -1, -1/2, 1/4, 1/4, 0, 0, 0, 0, 0, 0, -1/4, -1/4, -1/4, -1/4, 0, 0, -1/4, -1/4, 1/4, 1/4, -3/4, -3/4, 1/4, 1/4, -1/4, -1/4, -3/4, -3/4, 3/4, 3/4, 1/2, 1/2, 3/4, 3/4, -1/4, -1/4, 1, 1, -1/4, -1/4]>,
         rec<Eigen |
           DefiningPolynomial := x^18 + 6*x^17 - 6*x^16 - 98*x^15 - 83*x^14 + 588*x^13 + 978*x^12 - 1507*x^11 - 3913*x^10 + 1062*x^9 + 7268*x^8 + 2007*x^7 - 6225*x^6 - 3695*x^5 + 2078*x^4 + 1980*x^3 - 23*x^2 - 339*x - 72,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, x^17 + 5*x^16 - 10*x^15 - 84*x^14 - 13*x^13 + 526*x^12 + 482*x^11 - 1513*x^10 - 2135*x^9 + 1925*x^8 + 3982*x^7 - 632*x^6 - 3385*x^5 - 518*x^4 + 1269*x^3 + 371*x^2 - 174*x - 63, -x^17 - 5*x^16 + 10*x^15 + 84*x^14 + 13*x^13 - 526*x^12 - 482*x^11 + 1513*x^10 + 2135*x^9 - 1925*x^8 - 3982*x^7 + 632*x^6 + 3385*x^5 + 518*x^4 - 1269*x^3 - 371*x^2 + 174*x + 63, -x^17 - 5*x^16 + 9*x^15 + 78*x^14 + 13*x^13 - 465*x^12 - 403*x^11 + 1308*x^10 + 1724*x^9 - 1671*x^8 - 3156*x^7 + 583*x^6 + 2603*x^5 + 417*x^4 - 879*x^3 - 278*x^2 + 93*x + 36, x^17 + 5*x^16 - 9*x^15 - 78*x^14 - 13*x^13 + 465*x^12 + 403*x^11 - 1308*x^10 - 1724*x^9 + 1671*x^8 + 3156*x^7 - 583*x^6 - 2603*x^5 - 417*x^4 + 879*x^3 + 278*x^2 - 93*x - 36, x^16 + 5*x^15 - 8*x^14 - 75*x^13 - 31*x^12 + 397*x^11 + 470*x^10 - 861*x^9 - 1615*x^8 + 517*x^7 + 2257*x^6 + 574*x^5 - 1226*x^4 - 730*x^3 + 127*x^2 + 183*x + 36, -x^16 - 5*x^15 + 8*x^14 + 75*x^13 + 31*x^12 - 397*x^11 - 470*x^10 + 861*x^9 + 1615*x^8 - 517*x^7 - 2257*x^6 - 574*x^5 + 1226*x^4 + 730*x^3 - 127*x^2 - 183*x - 36, -x^16 - 5*x^15 + 7*x^14 + 68*x^13 + 24*x^12 - 345*x^11 - 345*x^10 + 796*x^9 + 1193*x^8 - 711*x^7 - 1775*x^6 - 134*x^5 + 1050*x^4 + 430*x^3 - 156*x^2 - 120*x - 18, x^16 + 5*x^15 - 7*x^14 - 68*x^13 - 24*x^12 + 345*x^11 + 345*x^10 - 796*x^9 - 1193*x^8 + 711*x^7 + 1775*x^6 + 134*x^5 - 1050*x^4 - 430*x^3 + 156*x^2 + 120*x + 18, -x^16 - 5*x^15 + 7*x^14 + 68*x^13 + 25*x^12 - 336*x^11 - 331*x^10 + 730*x^9 + 994*x^8 - 681*x^7 - 1215*x^6 + 241*x^5 + 667*x^4 + 3*x^3 - 145*x^2 - 9*x + 9, x^16 + 5*x^15 - 7*x^14 - 68*x^13 - 25*x^12 + 336*x^11 + 331*x^10 - 730*x^9 - 994*x^8 + 681*x^7 + 1215*x^6 - 241*x^5 - 667*x^4 - 3*x^3 + 145*x^2 + 9*x - 9, x^15 + 4*x^14 - 11*x^13 - 59*x^12 + 23*x^11 + 315*x^10 + 115*x^9 - 753*x^8 - 554*x^7 + 810*x^6 + 815*x^5 - 341*x^4 - 507*x^3 - 10*x^2 + 111*x + 27, -x^15 - 4*x^14 + 11*x^13 + 59*x^12 - 23*x^11 - 315*x^10 - 115*x^9 + 753*x^8 + 554*x^7 - 810*x^6 - 815*x^5 + 341*x^4 + 507*x^3 + 10*x^2 - 111*x - 27, x^15 + 5*x^14 - 7*x^13 - 70*x^12 - 35*x^11 + 337*x^10 + 405*x^9 - 655*x^8 - 1171*x^7 + 396*x^6 + 1344*x^5 + 129*x^4 - 635*x^3 - 178*x^2 + 99*x + 36, -x^15 - 5*x^14 + 7*x^13 + 70*x^12 + 35*x^11 - 337*x^10 - 405*x^9 + 655*x^8 + 1171*x^7 - 396*x^6 - 1344*x^5 - 129*x^4 + 635*x^3 + 178*x^2 - 99*x - 36, -x^15 - 5*x^14 + 6*x^13 + 62*x^12 + 25*x^11 - 279*x^10 - 262*x^9 + 574*x^8 + 732*x^7 - 522*x^6 - 899*x^5 + 116*x^4 + 475*x^3 + 64*x^2 - 93*x - 27, x^15 + 5*x^14 - 6*x^13 - 62*x^12 - 25*x^11 + 279*x^10 + 262*x^9 - 574*x^8 - 732*x^7 + 522*x^6 + 899*x^5 - 116*x^4 - 475*x^3 - 64*x^2 + 93*x + 27, -x^15 - 5*x^14 + 5*x^13 + 58*x^12 + 33*x^11 - 233*x^10 - 269*x^9 + 386*x^8 + 649*x^7 - 195*x^6 - 654*x^5 - 103*x^4 + 248*x^3 + 94*x^2 - 18*x - 9, x^15 + 5*x^14 - 5*x^13 - 58*x^12 - 33*x^11 + 233*x^10 + 269*x^9 - 386*x^8 - 649*x^7 + 195*x^6 + 654*x^5 + 103*x^4 - 248*x^3 - 94*x^2 + 18*x + 9, -x^15 - 5*x^14 + 7*x^13 + 68*x^12 + 25*x^11 - 338*x^10 - 339*x^9 + 737*x^8 + 1053*x^7 - 658*x^6 - 1356*x^5 + 120*x^4 + 776*x^3 + 143*x^2 - 144*x - 45, x^15 + 5*x^14 - 7*x^13 - 68*x^12 - 25*x^11 + 338*x^10 + 339*x^9 - 737*x^8 - 1053*x^7 + 658*x^6 + 1356*x^5 - 120*x^4 - 776*x^3 - 143*x^2 + 144*x + 45, -x^15 - 5*x^14 + 5*x^13 + 61*x^12 + 47*x^11 - 240*x^10 - 391*x^9 + 253*x^8 + 888*x^7 + 316*x^6 - 580*x^5 - 534*x^4 - 42*x^3 + 126*x^2 + 60*x + 9, x^15 + 5*x^14 - 5*x^13 - 61*x^12 - 47*x^11 + 240*x^10 + 391*x^9 - 253*x^8 - 888*x^7 - 316*x^6 + 580*x^5 + 534*x^4 + 42*x^3 - 126*x^2 - 60*x - 9, x^14 + 5*x^13 - 5*x^12 - 59*x^11 - 40*x^10 + 223*x^9 + 308*x^8 - 261*x^7 - 632*x^6 - 100*x^5 + 378*x^4 + 213*x^3 - 26*x^2 - 45*x - 9, -x^14 - 5*x^13 + 5*x^12 + 59*x^11 + 40*x^10 - 223*x^9 - 308*x^8 + 261*x^7 + 632*x^6 + 100*x^5 - 378*x^4 - 213*x^3 + 26*x^2 + 45*x + 9, -2*x^11 - 8*x^10 + 7*x^9 + 59*x^8 + 23*x^7 - 141*x^6 - 121*x^5 + 109*x^4 + 140*x^3 + x^2 - 36*x - 9, 2*x^11 + 8*x^10 - 7*x^9 - 59*x^8 - 23*x^7 + 141*x^6 + 121*x^5 - 109*x^4 - 140*x^3 - x^2 + 36*x + 9, x^14 + 5*x^13 - 4*x^12 - 58*x^11 - 57*x^10 + 199*x^9 + 385*x^8 - 144*x^7 - 772*x^6 - 324*x^5 + 482*x^4 + 412*x^3 - 29*x^2 - 111*x - 27, -x^14 - 5*x^13 + 4*x^12 + 58*x^11 + 57*x^10 - 199*x^9 - 385*x^8 + 144*x^7 + 772*x^6 + 324*x^5 - 482*x^4 - 412*x^3 + 29*x^2 + 111*x + 27, -x^14 - 6*x^13 + x^12 + 66*x^11 + 83*x^10 - 222*x^9 - 461*x^8 + 189*x^7 + 876*x^6 + 250*x^5 - 575*x^4 - 366*x^3 + 63*x^2 + 93*x + 18, x^14 + 6*x^13 - x^12 - 66*x^11 - 83*x^10 + 222*x^9 + 461*x^8 - 189*x^7 - 876*x^6 - 250*x^5 + 575*x^4 + 366*x^3 - 63*x^2 - 93*x - 18, -x^14 - 4*x^13 + 9*x^12 + 49*x^11 - 16*x^10 - 217*x^9 - 52*x^8 + 438*x^7 + 211*x^6 - 406*x^5 - 248*x^4 + 145*x^3 + 103*x^2 - 9*x - 9, x^14 + 4*x^13 - 9*x^12 - 49*x^11 + 16*x^10 + 217*x^9 + 52*x^8 - 438*x^7 - 211*x^6 + 406*x^5 + 248*x^4 - 145*x^3 - 103*x^2 + 9*x + 9, -x^14 - 6*x^13 + 63*x^11 + 92*x^10 - 193*x^9 - 492*x^8 + 78*x^7 + 910*x^6 + 437*x^5 - 554*x^4 - 481*x^3 + 35*x^2 + 120*x + 27, x^14 + 6*x^13 - 63*x^11 - 92*x^10 + 193*x^9 + 492*x^8 - 78*x^7 - 910*x^6 - 437*x^5 + 554*x^4 + 481*x^3 - 35*x^2 - 120*x - 27, -x^14 - 3*x^13 + 13*x^12 + 44*x^11 - 55*x^10 - 242*x^9 + 50*x^8 + 588*x^7 + 156*x^6 - 612*x^5 - 292*x^4 + 240*x^3 + 130*x^2 - 33*x - 18, x^14 + 3*x^13 - 13*x^12 - 44*x^11 + 55*x^10 + 242*x^9 - 50*x^8 - 588*x^7 - 156*x^6 + 612*x^5 + 292*x^4 - 240*x^3 - 130*x^2 + 33*x + 18, -x^14 - 4*x^13 + 9*x^12 + 52*x^11 - 5*x^10 - 235*x^9 - 156*x^8 + 409*x^7 + 479*x^6 - 163*x^5 - 417*x^4 - 117*x^3 + 75*x^2 + 51*x + 9, x^14 + 4*x^13 - 9*x^12 - 52*x^11 + 5*x^10 + 235*x^9 + 156*x^8 - 409*x^7 - 479*x^6 + 163*x^5 + 417*x^4 + 117*x^3 - 75*x^2 - 51*x - 9]>,
         rec<Eigen |
           DefiningPolynomial := x^26 - x^25 - 40*x^24 + 36*x^23 + 701*x^22 - 557*x^21 - 7078*x^20 + 4855*x^19 + 45533*x^18 - 26248*x^17 - 194780*x^16 + 91281*x^15 + 561051*x^14 - 204613*x^13 - 1077249*x^12 + 286983*x^11 + 1332859*x^10 - 233167*x^9 - 994145*x^8 + 90493*x^7 + 396290*x^6 - 6446*x^5 - 68301*x^4 - 2616*x^3 + 3093*x^2 + 320*x + 1,
           Coordinates        := [-2*x^21 + 2*x^20 + 60*x^19 - 50*x^18 - 764*x^17 + 510*x^16 + 5374*x^15 - 2736*x^14 - 22758*x^13 + 8304*x^12 + 59284*x^11 - 14276*x^10 - 93068*x^9 + 13152*x^8 + 82426*x^7 - 5856*x^6 - 36020*x^5 + 1394*x^4 + 6224*x^3 - 322*x^2 - 252*x - 10, -x^25 + x^24 + 37*x^23 - 33*x^22 - 596*x^21 + 464*x^20 + 5490*x^19 - 3637*x^18 - 31937*x^17 + 17461*x^16 + 122281*x^15 - 53118*x^14 - 311596*x^13 + 102283*x^12 + 522649*x^11 - 120440*x^10 - 558152*x^9 + 79629*x^8 + 356387*x^7 - 24160*x^6 - 121437*x^5 + 1706*x^4 + 17352*x^3 + 80*x^2 - 501*x - 12, x^25 - x^24 - 37*x^23 + 35*x^22 + 594*x^21 - 526*x^20 - 5436*x^19 + 4455*x^18 + 31323*x^17 - 23439*x^16 - 118443*x^15 + 79528*x^14 + 297118*x^13 - 174619*x^12 - 488505*x^11 + 241690*x^10 + 507696*x^9 - 197621*x^8 - 311205*x^7 + 83438*x^6 + 99349*x^5 - 13258*x^4 - 12954*x^3 - 86*x^2 + 339*x + 20, -2*x^19 + 2*x^18 + 50*x^17 - 42*x^16 - 514*x^15 + 362*x^14 + 2794*x^13 - 1686*x^12 - 8636*x^11 + 4710*x^10 + 15318*x^9 - 8120*x^8 - 15140*x^7 + 8206*x^6 + 7872*x^5 - 4222*x^4 - 1960*x^3 + 1044*x^2 + 250*x + 2, -x^24 + x^23 + 35*x^22 - 31*x^21 - 528*x^20 + 404*x^19 + 4494*x^18 - 2875*x^17 - 23713*x^16 + 12115*x^15 + 80205*x^14 - 30440*x^13 - 173468*x^12 + 42495*x^11 + 231257*x^10 - 23806*x^9 - 173812*x^8 - 10395*x^7 + 59287*x^6 + 17102*x^5 - 3247*x^4 - 3808*x^3 - 946*x^2 - 106*x - 3, 2*x^19 - 6*x^18 - 48*x^17 + 152*x^16 + 464*x^15 - 1578*x^14 - 2308*x^13 + 8646*x^12 + 6218*x^11 - 26786*x^10 - 8526*x^9 + 46482*x^8 + 4242*x^7 - 41574*x^6 + 1196*x^5 + 15604*x^4 - 770*x^3 - 1808*x^2 - 86*x + 20, x^24 - x^23 - 35*x^22 + 33*x^21 + 528*x^20 - 464*x^19 - 4508*x^18 + 3645*x^17 + 24035*x^16 - 17581*x^15 - 83243*x^14 + 53674*x^13 + 188642*x^12 - 102511*x^11 - 274459*x^10 + 115338*x^9 + 244056*x^8 - 65283*x^7 - 120835*x^6 + 10210*x^5 + 28287*x^4 + 2436*x^3 - 2220*x^2 - 488*x - 25, -2*x^22 + 2*x^21 + 60*x^20 - 50*x^19 - 764*x^18 + 510*x^17 + 5374*x^16 - 2736*x^15 - 22758*x^14 + 8304*x^13 + 59284*x^12 - 14276*x^11 - 93068*x^10 + 13152*x^9 + 82426*x^8 - 5856*x^7 - 36020*x^6 + 1394*x^5 + 6224*x^4 - 322*x^3 - 252*x^2 - 10*x, 2*x^20 - 4*x^19 - 52*x^18 + 96*x^17 + 566*x^16 - 940*x^15 - 3346*x^14 + 4834*x^13 + 11632*x^12 - 14012*x^11 - 23952*x^10 + 22886*x^9 + 27736*x^8 - 20122*x^7 - 15724*x^6 + 9158*x^5 + 3218*x^4 - 2506*x^3 - 298*x^2 + 162*x + 26, -x^20 + 2*x^19 + 24*x^18 - 46*x^17 - 236*x^16 + 438*x^15 + 1216*x^14 - 2240*x^13 - 3475*x^12 + 6673*x^11 + 5304*x^10 - 11719*x^9 - 3510*x^8 + 11673*x^7 - 167*x^6 - 6047*x^5 + 1131*x^4 + 1502*x^3 - 397*x^2 - 124*x - 1, -x^20 + 2*x^19 + 24*x^18 - 46*x^17 - 236*x^16 + 438*x^15 + 1216*x^14 - 2240*x^13 - 3475*x^12 + 6673*x^11 + 5304*x^10 - 11719*x^9 - 3510*x^8 + 11673*x^7 - 167*x^6 - 6047*x^5 + 1131*x^4 + 1502*x^3 - 397*x^2 - 124*x - 1, x^21 - 35*x^19 + 5*x^18 + 500*x^17 - 101*x^16 - 3832*x^15 + 814*x^14 + 17270*x^13 - 3341*x^12 - 46926*x^11 + 7302*x^10 + 75441*x^9 - 7664*x^8 - 67010*x^7 + 1690*x^6 + 28331*x^5 + 2641*x^4 - 4317*x^3 - 1107*x^2 + 41*x + 17, x^21 - 35*x^19 + 5*x^18 + 500*x^17 - 101*x^16 - 3832*x^15 + 814*x^14 + 17270*x^13 - 3341*x^12 - 46926*x^11 + 7302*x^10 + 75441*x^9 - 7664*x^8 - 67010*x^7 + 1690*x^6 + 28331*x^5 + 2641*x^4 - 4317*x^3 - 1107*x^2 + 41*x + 17, -2*x^21 + 2*x^20 + 61*x^19 - 53*x^18 - 786*x^17 + 581*x^16 + 5562*x^15 - 3416*x^14 - 23539*x^13 + 11700*x^12 + 60866*x^11 - 23731*x^10 - 94269*x^9 + 27457*x^8 + 81983*x^7 - 15943*x^6 - 35072*x^5 + 3083*x^4 + 5880*x^3 - 61*x^2 - 292*x - 19, -2*x^21 + 2*x^20 + 61*x^19 - 53*x^18 - 786*x^17 + 581*x^16 + 5562*x^15 - 3416*x^14 - 23539*x^13 + 11700*x^12 + 60866*x^11 - 23731*x^10 - 94269*x^9 + 27457*x^8 + 81983*x^7 - 15943*x^6 - 35072*x^5 + 3083*x^4 + 5880*x^3 - 61*x^2 - 292*x - 19, x^21 - 2*x^20 - 27*x^19 + 46*x^18 + 313*x^17 - 421*x^16 - 2032*x^15 + 1912*x^14 + 8047*x^13 - 4178*x^12 - 19758*x^11 + 2158*x^10 + 29058*x^9 + 7898*x^8 - 23027*x^7 - 14621*x^6 + 7275*x^5 + 8165*x^4 + 164*x^3 - 1139*x^2 - 182*x - 2, x^21 - 2*x^20 - 27*x^19 + 46*x^18 + 313*x^17 - 421*x^16 - 2032*x^15 + 1912*x^14 + 8047*x^13 - 4178*x^12 - 19758*x^11 + 2158*x^10 + 29058*x^9 + 7898*x^8 - 23027*x^7 - 14621*x^6 + 7275*x^5 + 8165*x^4 + 164*x^3 - 1139*x^2 - 182*x - 2, x^22 - x^21 - 32*x^20 + 30*x^19 + 430*x^18 - 368*x^17 - 3175*x^16 + 2408*x^15 + 14142*x^14 - 9148*x^13 - 39273*x^12 + 20387*x^11 + 67979*x^10 - 25003*x^9 - 71398*x^8 + 13044*x^7 + 43119*x^6 + 1413*x^5 - 13613*x^4 - 2773*x^3 + 1577*x^2 + 323*x + 3, x^22 - x^21 - 32*x^20 + 30*x^19 + 430*x^18 - 368*x^17 - 3175*x^16 + 2408*x^15 + 14142*x^14 - 9148*x^13 - 39273*x^12 + 20387*x^11 + 67979*x^10 - 25003*x^9 - 71398*x^8 + 13044*x^7 + 43119*x^6 + 1413*x^5 - 13613*x^4 - 2773*x^3 + 1577*x^2 + 323*x + 3, -x^22 + 32*x^20 + 4*x^19 - 433*x^18 - 105*x^17 + 3221*x^16 + 1129*x^15 - 14347*x^14 - 6424*x^13 + 39101*x^12 + 20907*x^11 - 63923*x^10 - 39337*x^9 + 58564*x^8 + 41009*x^7 - 25558*x^6 - 20870*x^5 + 3153*x^4 + 3479*x^3 + 210*x^2 + 56*x + 13, -x^22 + 32*x^20 + 4*x^19 - 433*x^18 - 105*x^17 + 3221*x^16 + 1129*x^15 - 14347*x^14 - 6424*x^13 + 39101*x^12 + 20907*x^11 - 63923*x^10 - 39337*x^9 + 58564*x^8 + 41009*x^7 - 25558*x^6 - 20870*x^5 + 3153*x^4 + 3479*x^3 + 210*x^2 + 56*x + 13, -x^22 + 2*x^21 + 30*x^20 - 59*x^19 - 377*x^18 + 732*x^17 + 2577*x^16 - 4983*x^15 - 10408*x^14 + 20364*x^13 + 25240*x^12 - 51311*x^11 - 35650*x^10 + 78513*x^9 + 26929*x^8 - 68625*x^7 - 9347*x^6 + 30000*x^5 + 1596*x^4 - 5042*x^3 - 105*x^2 + 49*x - 12, -x^22 + 2*x^21 + 30*x^20 - 59*x^19 - 377*x^18 + 732*x^17 + 2577*x^16 - 4983*x^15 - 10408*x^14 + 20364*x^13 + 25240*x^12 - 51311*x^11 - 35650*x^10 + 78513*x^9 + 26929*x^8 - 68625*x^7 - 9347*x^6 + 30000*x^5 + 1596*x^4 - 5042*x^3 - 105*x^2 + 49*x - 12, -x^23 + x^22 + 33*x^21 - 28*x^20 - 472*x^19 + 330*x^18 + 3833*x^17 - 2133*x^16 - 19440*x^15 + 8256*x^14 + 63779*x^13 - 19594*x^12 - 135460*x^11 + 27990*x^10 + 180815*x^9 - 22656*x^8 - 141649*x^7 + 9481*x^6 + 57142*x^5 - 2252*x^4 - 9462*x^3 + 478*x^2 + 378*x + 15, -x^23 + x^22 + 33*x^21 - 28*x^20 - 472*x^19 + 330*x^18 + 3833*x^17 - 2133*x^16 - 19440*x^15 + 8256*x^14 + 63779*x^13 - 19594*x^12 - 135460*x^11 + 27990*x^10 + 180815*x^9 - 22656*x^8 - 141649*x^7 + 9481*x^6 + 57142*x^5 - 2252*x^4 - 9462*x^3 + 478*x^2 + 378*x + 15, x^23 - 36*x^21 + x^20 + 553*x^19 - 22*x^18 - 4754*x^17 + 202*x^16 + 25184*x^15 - 1023*x^14 - 85227*x^13 + 3177*x^12 + 184544*x^11 - 6234*x^10 - 248358*x^9 + 7293*x^8 + 194038*x^7 - 3896*x^6 - 77308*x^5 - 225*x^4 + 12640*x^3 + 447*x^2 - 421*x - 32, x^23 - 36*x^21 + x^20 + 553*x^19 - 22*x^18 - 4754*x^17 + 202*x^16 + 25184*x^15 - 1023*x^14 - 85227*x^13 + 3177*x^12 + 184544*x^11 - 6234*x^10 - 248358*x^9 + 7293*x^8 + 194038*x^7 - 3896*x^6 - 77308*x^5 - 225*x^4 + 12640*x^3 + 447*x^2 - 421*x - 32, x^23 - x^22 - 33*x^21 + 31*x^20 + 464*x^19 - 405*x^18 - 3644*x^17 + 2929*x^16 + 17600*x^15 - 12927*x^14 - 54238*x^13 + 36054*x^12 + 107023*x^11 - 63176*x^10 - 131820*x^9 + 66169*x^8 + 95185*x^7 - 36614*x^6 - 35531*x^5 + 7847*x^4 + 5367*x^3 - 201*x^2 - 182*x - 10, x^23 - x^22 - 33*x^21 + 31*x^20 + 464*x^19 - 405*x^18 - 3644*x^17 + 2929*x^16 + 17600*x^15 - 12927*x^14 - 54238*x^13 + 36054*x^12 + 107023*x^11 - 63176*x^10 - 131820*x^9 + 66169*x^8 + 95185*x^7 - 36614*x^6 - 35531*x^5 + 7847*x^4 + 5367*x^3 - 201*x^2 - 182*x - 10, -x^20 + x^19 + 32*x^18 - 31*x^17 - 420*x^16 + 374*x^15 + 2965*x^14 - 2305*x^13 - 12326*x^12 + 7882*x^11 + 30871*x^10 - 15019*x^9 - 45461*x^8 + 14944*x^7 + 36337*x^6 - 6413*x^5 - 13261*x^4 + 527*x^3 + 1631*x^2 + 144*x - 7, -x^20 + x^19 + 32*x^18 - 31*x^17 - 420*x^16 + 374*x^15 + 2965*x^14 - 2305*x^13 - 12326*x^12 + 7882*x^11 + 30871*x^10 - 15019*x^9 - 45461*x^8 + 14944*x^7 + 36337*x^6 - 6413*x^5 - 13261*x^4 + 527*x^3 + 1631*x^2 + 144*x - 7, -x^23 + x^22 + 34*x^21 - 30*x^20 - 498*x^19 + 381*x^18 + 4112*x^17 - 2673*x^16 - 21038*x^15 + 11339*x^14 + 69064*x^13 - 29894*x^12 - 145696*x^11 + 48317*x^10 + 192170*x^9 - 45012*x^8 - 148550*x^7 + 20631*x^6 + 59095*x^5 - 2757*x^4 - 9149*x^3 - 93*x^2 + 249*x + 6, -x^23 + x^22 + 34*x^21 - 30*x^20 - 498*x^19 + 381*x^18 + 4112*x^17 - 2673*x^16 - 21038*x^15 + 11339*x^14 + 69064*x^13 - 29894*x^12 - 145696*x^11 + 48317*x^10 + 192170*x^9 - 45012*x^8 - 148550*x^7 + 20631*x^6 + 59095*x^5 - 2757*x^4 - 9149*x^3 - 93*x^2 + 249*x + 6, x^22 - x^21 - 32*x^20 + 29*x^19 + 434*x^18 - 348*x^17 - 3260*x^16 + 2246*x^15 + 14863*x^14 - 8472*x^13 - 42346*x^12 + 18948*x^11 + 74660*x^10 - 24166*x^9 - 77473*x^8 + 15625*x^7 + 42185*x^6 - 3776*x^5 - 9307*x^4 + 136*x^3 + 461*x^2 + 155*x + 22, x^22 - x^21 - 32*x^20 + 29*x^19 + 434*x^18 - 348*x^17 - 3260*x^16 + 2246*x^15 + 14863*x^14 - 8472*x^13 - 42346*x^12 + 18948*x^11 + 74660*x^10 - 24166*x^9 - 77473*x^8 + 15625*x^7 + 42185*x^6 - 3776*x^5 - 9307*x^4 + 136*x^3 + 461*x^2 + 155*x + 22, -x^23 + x^22 + 33*x^21 - 29*x^20 - 467*x^19 + 351*x^18 + 3711*x^17 - 2304*x^16 - 18216*x^15 + 8917*x^14 + 57251*x^13 - 20665*x^12 - 115464*x^11 + 27584*x^10 + 145364*x^9 - 18609*x^8 - 106955*x^7 + 3758*x^6 + 40444*x^5 + 1182*x^4 - 6121*x^3 - 351*x^2 + 125*x - 3, -x^23 + x^22 + 33*x^21 - 29*x^20 - 467*x^19 + 351*x^18 + 3711*x^17 - 2304*x^16 - 18216*x^15 + 8917*x^14 + 57251*x^13 - 20665*x^12 - 115464*x^11 + 27584*x^10 + 145364*x^9 - 18609*x^8 - 106955*x^7 + 3758*x^6 + 40444*x^5 + 1182*x^4 - 6121*x^3 - 351*x^2 + 125*x - 3, -x^24 + x^23 + 35*x^22 - 31*x^21 - 530*x^20 + 407*x^19 + 4551*x^18 - 2956*x^17 - 24393*x^16 + 13024*x^15 + 84625*x^14 - 35945*x^13 - 190566*x^12 + 62024*x^11 + 271725*x^10 - 64866*x^9 - 231973*x^8 + 38364*x^7 + 107783*x^6 - 10921*x^5 - 23851*x^4 + 636*x^3 + 1769*x^2 + 207*x + 2, -x^24 + x^23 + 35*x^22 - 31*x^21 - 530*x^20 + 407*x^19 + 4551*x^18 - 2956*x^17 - 24393*x^16 + 13024*x^15 + 84625*x^14 - 35945*x^13 - 190566*x^12 + 62024*x^11 + 271725*x^10 - 64866*x^9 - 231973*x^8 + 38364*x^7 + 107783*x^6 - 10921*x^5 - 23851*x^4 + 636*x^3 + 1769*x^2 + 207*x + 2, x^24 - 36*x^22 - x^21 + 557*x^20 + 32*x^19 - 4851*x^18 - 418*x^17 + 26151*x^16 + 2914*x^15 - 90345*x^14 - 11840*x^13 + 200051*x^12 + 28609*x^11 - 275352*x^10 - 39896*x^9 + 219442*x^8 + 29114*x^7 - 88053*x^6 - 8511*x^5 + 13530*x^4 + 47*x^3 - 267*x^2 + 94*x + 12, x^24 - 36*x^22 - x^21 + 557*x^20 + 32*x^19 - 4851*x^18 - 418*x^17 + 26151*x^16 + 2914*x^15 - 90345*x^14 - 11840*x^13 + 200051*x^12 + 28609*x^11 - 275352*x^10 - 39896*x^9 + 219442*x^8 + 29114*x^7 - 88053*x^6 - 8511*x^5 + 13530*x^4 + 47*x^3 - 267*x^2 + 94*x + 12, x^21 - 2*x^20 - 27*x^19 + 51*x^18 + 307*x^17 - 546*x^16 - 1905*x^15 + 3206*x^14 + 6970*x^13 - 11329*x^12 - 15085*x^11 + 24836*x^10 + 18131*x^9 - 33302*x^8 - 9983*x^7 + 25366*x^6 + 1011*x^5 - 9055*x^4 + 236*x^3 + 985*x^2 + 56*x - 10, x^21 - 2*x^20 - 27*x^19 + 51*x^18 + 307*x^17 - 546*x^16 - 1905*x^15 + 3206*x^14 + 6970*x^13 - 11329*x^12 - 15085*x^11 + 24836*x^10 + 18131*x^9 - 33302*x^8 - 9983*x^7 + 25366*x^6 + 1011*x^5 - 9055*x^4 + 236*x^3 + 985*x^2 + 56*x - 10, -x^22 + 33*x^20 + 3*x^19 - 463*x^18 - 80*x^17 + 3600*x^16 + 876*x^15 - 16966*x^14 - 5084*x^13 + 49862*x^12 + 16871*x^11 - 90711*x^10 - 32256*x^9 + 98089*x^8 + 34019*x^7 - 57992*x^6 - 17897*x^5 + 16134*x^4 + 4055*x^3 - 1539*x^2 - 259*x + 10, -x^22 + 33*x^20 + 3*x^19 - 463*x^18 - 80*x^17 + 3600*x^16 + 876*x^15 - 16966*x^14 - 5084*x^13 + 49862*x^12 + 16871*x^11 - 90711*x^10 - 32256*x^9 + 98089*x^8 + 34019*x^7 - 57992*x^6 - 17897*x^5 + 16134*x^4 + 4055*x^3 - 1539*x^2 - 259*x + 10, -x^19 + 2*x^18 + 28*x^17 - 51*x^16 - 319*x^15 + 519*x^14 + 1906*x^13 - 2707*x^12 - 6387*x^11 + 7713*x^10 + 11798*x^9 - 11747*x^8 - 10726*x^7 + 8460*x^6 + 3223*x^5 - 1994*x^4 + 349*x^3 + 106*x^2 - 71*x - 13, -x^19 + 2*x^18 + 28*x^17 - 51*x^16 - 319*x^15 + 519*x^14 + 1906*x^13 - 2707*x^12 - 6387*x^11 + 7713*x^10 + 11798*x^9 - 11747*x^8 - 10726*x^7 + 8460*x^6 + 3223*x^5 - 1994*x^4 + 349*x^3 + 106*x^2 - 71*x - 13]>
       ]
>;

MOG[563] := 	// J_0(563)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 3, 18, 38, 39, 131, 233, 277, 298, 300, 366, 432, 449, 455, 462, 502, 515, 525, 387*x + 359, 176*x + 359, 515*x + 201, 48*x + 201, 448*x + 453, 115*x + 453, 508*x + 415, 55*x + 415, 344*x + 192, 219*x + 192, 328*x + 279, 235*x + 279, 206*x + 309, 357*x + 309, 75*x + 560, 488*x + 560, 289*x + 440, 274*x + 440, 416*x + 425, 147*x + 425, 368*x + 542, 195*x + 542, 452*x + 130, 111*x + 130, 336*x + 248, 227*x + 248, 33*x + 179, 530*x + 179, 431*x + 186, 132*x + 186]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 2, 0, 0, -2, 2, -2, 0, 0, 0, -2, 0, 2, 0, -2, 0, 2, 0, 0, -1, -1, 1, 1, 1, 1, -1, -1, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - x^2 - 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, -x + 2, x - 2, -1, 1, x - 1, -x + 1, -x^2 + 2*x - 1, x^2 - 2*x + 1, -x + 2, x - 2, -1, 1, x^2 - x - 2, -x^2 + x + 2, 1, -1, -x + 2, x - 2, -x^2 + 2*x - 1, x^2 - 2*x + 1, -1, 1, -x + 2, x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + x^2 - 5*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^2 + x + 4, x^2 - x - 4, x^2 - 2, -x^2 + 2, x^2 - x - 3, -x^2 + x + 3, 2*x - 1, -2*x + 1, -1, 1, -x^2 + x + 2, x^2 - x - 2, x^2 - x - 2, -x^2 + x + 2, -x^2 + 4, x^2 - 4, -1, 1, -x + 1, x - 1, x^2 - x - 3, -x^2 + x + 3, -x, x, -x^2 + 3, x^2 - 3, -1, 1, -x, x]>,
         rec<Eigen |
           DefiningPolynomial := x^9 + 2*x^8 - 8*x^7 - 15*x^6 + 18*x^5 + 31*x^4 - 15*x^3 - 22*x^2 + 4*x + 5,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^8 - 3*x^7 + 3*x^6 + 13*x^5 - 17*x^3 - 6*x^2 + 6*x + 3, x^8 + 3*x^7 - 3*x^6 - 13*x^5 + 17*x^3 + 6*x^2 - 6*x - 3, -x^7 - 3*x^6 + 2*x^5 + 9*x^4 - x^3 - 8*x^2 + 2, x^7 + 3*x^6 - 2*x^5 - 9*x^4 + x^3 + 8*x^2 - 2, -x^8 - 4*x^7 + x^6 + 16*x^5 + 5*x^4 - 20*x^3 - 8*x^2 + 7*x + 3, x^8 + 4*x^7 - x^6 - 16*x^5 - 5*x^4 + 20*x^3 + 8*x^2 - 7*x - 3, -x^6 - 4*x^5 - x^4 + 9*x^3 + 6*x^2 - 4*x - 3, x^6 + 4*x^5 + x^4 - 9*x^3 - 6*x^2 + 4*x + 3, -x^8 - 3*x^7 + 2*x^6 + 11*x^5 + 2*x^4 - 12*x^3 - 5*x^2 + 4*x + 2, x^8 + 3*x^7 - 2*x^6 - 11*x^5 - 2*x^4 + 12*x^3 + 5*x^2 - 4*x - 2, -x^7 - 4*x^6 - x^5 + 9*x^4 + 6*x^3 - 4*x^2 - 3*x, x^7 + 4*x^6 + x^5 - 9*x^4 - 6*x^3 + 4*x^2 + 3*x, -x^6 - 3*x^5 + 7*x^3 + 4*x^2 - 3*x - 2, x^6 + 3*x^5 - 7*x^3 - 4*x^2 + 3*x + 2, -x^7 - 3*x^6 + x^5 + 8*x^4 + 2*x^3 - 5*x^2 - x + 1, x^7 + 3*x^6 - x^5 - 8*x^4 - 2*x^3 + 5*x^2 + x - 1, -x^7 - 2*x^6 + 3*x^5 + 6*x^4 - 2*x^3 - 5*x^2 + 1, x^7 + 2*x^6 - 3*x^5 - 6*x^4 + 2*x^3 + 5*x^2 - 1, -x^6 - 4*x^5 - x^4 + 9*x^3 + 6*x^2 - 4*x - 3, x^6 + 4*x^5 + x^4 - 9*x^3 - 6*x^2 + 4*x + 3, -x^6 - 3*x^5 + 2*x^4 + 7*x^3 - x^2 - 3*x, x^6 + 3*x^5 - 2*x^4 - 7*x^3 + x^2 + 3*x, -x^6 - 2*x^5 + 2*x^4 + 5*x^3 - 3*x - 1, x^6 + 2*x^5 - 2*x^4 - 5*x^3 + 3*x + 1, -x^5 - x^4 + 2*x^3 + 2*x^2 - x - 1, x^5 + x^4 - 2*x^3 - 2*x^2 + x + 1, -x^3 - x^2 + x + 1, x^3 + x^2 - x - 1, -x^4 - x^3 + x^2 + x, x^4 + x^3 - x^2 - x]>,
         rec<Eigen |
           DefiningPolynomial := x^31 - 5*x^30 - 40*x^29 + 233*x^28 + 650*x^27 - 4804*x^26 - 5046*x^25 + 57710*x^24 + 10034*x^23 - 447489*x^22 + 163153*x^21 + 2342476*x^20 - 1745428*x^19 - 8396607*x^18 + 8854751*x^17 + 20387988*x^16 - 27682203*x^15 - 32062270*x^14 + 56150683*x^13 + 28712111*x^12 - 73374682*x^11 - 7360185*x^10 + 58781075*x^9 - 10788006*x^8 - 25769684*x^7 + 10398304*x^6 + 4640992*x^5 - 3106816*x^4 + 10432*x^3 + 288640*x^2 - 60160*x + 3584,
           Coordinates        := [-x^30 + 5*x^29 + 37*x^28 - 218*x^27 - 545*x^26 + 4180*x^25 + 3609*x^24 - 46356*x^23 - 1715*x^22 + 328791*x^21 - 155696*x^20 - 1555513*x^19 + 1305480*x^18 + 4956188*x^17 - 5678491*x^16 - 10432616*x^15 + 15282048*x^14 + 13608232*x^13 - 26240313*x^12 - 9014577*x^11 + 28116933*x^10 - 89324*x^9 - 17573226*x^8 + 4124752*x^7 + 5603672*x^6 - 2246600*x^5 - 700432*x^4 + 420128*x^3 + 2240*x^2 - 22528*x + 2304, x^30 - 3*x^29 - 45*x^28 + 140*x^27 + 887*x^26 - 2896*x^25 - 10033*x^24 + 35000*x^23 + 71481*x^22 - 274243*x^21 - 329204*x^20 + 1461545*x^19 + 948236*x^18 - 5405864*x^17 - 1420373*x^16 + 13901230*x^15 - 289982*x^14 - 24491866*x^13 + 5845061*x^12 + 28573483*x^11 - 11891399*x^10 - 20685968*x^9 + 11993138*x^8 + 8130450*x^7 - 6403192*x^6 - 1133168*x^5 + 1639792*x^4 - 155744*x^3 - 144512*x^2 + 40960*x - 3072, x^28 - 3*x^27 - 41*x^26 + 130*x^25 + 721*x^24 - 2472*x^23 - 7025*x^22 + 27062*x^21 + 40397*x^20 - 188075*x^19 - 128952*x^18 + 862819*x^17 + 127070*x^16 - 2631430*x^15 + 640889*x^14 + 5232378*x^13 - 2912206*x^12 - 6425146*x^11 + 5498849*x^10 + 4275435*x^9 - 5483439*x^8 - 917378*x^7 + 2804424*x^6 - 414984*x^5 - 626416*x^4 + 208352*x^3 + 40256*x^2 - 23424*x + 2048, -6*x^24 + 20*x^23 + 202*x^22 - 720*x^21 - 2818*x^20 + 11110*x^19 + 20614*x^18 - 95800*x^17 - 79550*x^16 + 504310*x^15 + 110966*x^14 - 1662516*x^13 + 305230*x^12 + 3385486*x^11 - 1609730*x^10 - 4026412*x^9 + 2895200*x^8 + 2433610*x^7 - 2462252*x^6 - 445312*x^5 + 911568*x^4 - 119552*x^3 - 104448*x^2 + 32768*x - 2304, -4*x^22 + 16*x^21 + 106*x^20 - 500*x^19 - 1024*x^18 + 6510*x^17 + 3374*x^16 - 45630*x^15 + 11892*x^14 + 185000*x^13 - 140630*x^12 - 429380*x^11 + 502708*x^10 + 509986*x^9 - 869538*x^8 - 178714*x^7 + 705852*x^6 - 140424*x^5 - 204976*x^4 + 80480*x^3 + 13824*x^2 - 10240*x + 1280, 2*x^25 - 12*x^24 - 44*x^23 + 384*x^22 + 210*x^21 - 5182*x^20 + 2682*x^19 + 38294*x^18 - 41400*x^17 - 168148*x^16 + 245656*x^15 + 445296*x^14 - 787866*x^13 - 696286*x^12 + 1420914*x^11 + 649546*x^10 - 1367250*x^9 - 514076*x^8 + 645704*x^7 + 518584*x^6 - 227712*x^5 - 312480*x^4 + 132544*x^3 + 41984*x^2 - 25088*x + 2560, -4*x^23 + 10*x^22 + 140*x^21 - 348*x^20 - 2122*x^19 + 5304*x^18 + 18030*x^17 - 46206*x^16 - 92308*x^15 + 250494*x^14 + 282760*x^13 - 862060*x^12 - 470570*x^11 + 1850168*x^10 + 263270*x^9 - 2348034*x^8 + 324660*x^7 + 1585680*x^6 - 522624*x^5 - 462880*x^4 + 213376*x^3 + 36608*x^2 - 26368*x + 2560, 2*x^24 - 4*x^23 - 78*x^22 + 164*x^21 + 1288*x^20 - 2888*x^19 - 11598*x^18 + 28308*x^17 + 61068*x^16 - 168516*x^15 - 184490*x^14 + 626288*x^13 + 266624*x^12 - 1438140*x^11 + 38014*x^10 + 1935336*x^9 - 685262*x^8 - 1340924*x^7 + 837840*x^6 + 335928*x^5 - 339680*x^4 + 5024*x^3 + 44160*x^2 - 7680*x - 256, 2*x^26 - 12*x^25 - 44*x^24 + 388*x^23 + 182*x^22 - 5242*x^21 + 3462*x^20 + 38142*x^19 - 50572*x^18 - 158944*x^17 + 305060*x^16 + 358432*x^15 - 1016902*x^14 - 274334*x^13 + 1937486*x^12 - 558858*x^11 - 1938854*x^10 + 1535244*x^9 + 644644*x^8 - 1384416*x^7 + 404016*x^6 + 463312*x^5 - 349680*x^4 + 4768*x^3 + 55424*x^2 - 14336*x + 768, -4*x^24 + 12*x^23 + 146*x^22 - 478*x^21 - 2138*x^20 + 7874*x^19 + 15966*x^18 - 70502*x^17 - 61042*x^16 + 377322*x^15 + 75562*x^14 - 1243042*x^13 + 287430*x^12 + 2480770*x^11 - 1357894*x^10 - 2784034*x^9 + 2316842*x^8 + 1409966*x^7 - 1790612*x^6 - 44624*x^5 + 526992*x^4 - 118208*x^3 - 43840*x^2 + 19200*x - 1792, -4*x^23 + 20*x^22 + 90*x^21 - 606*x^20 - 524*x^19 + 7534*x^18 - 3136*x^17 - 49004*x^16 + 57522*x^15 + 173108*x^14 - 325630*x^13 - 288750*x^12 + 932088*x^11 + 7278*x^10 - 1379524*x^9 + 690824*x^8 + 884566*x^7 - 846276*x^6 - 64552*x^5 + 285456*x^4 - 66656*x^3 - 24064*x^2 + 11520*x - 1280, x^28 - 3*x^27 - 41*x^26 + 122*x^25 + 759*x^24 - 2244*x^23 - 8327*x^22 + 24658*x^21 + 59381*x^20 - 179199*x^19 - 282680*x^18 + 897033*x^17 + 883064*x^16 - 3119432*x^15 - 1672797*x^14 + 7430738*x^13 + 1403462*x^12 - 11691322*x^11 + 976549*x^10 + 11342713*x^9 - 3404107*x^8 - 5938160*x^7 + 2863904*x^6 + 1219640*x^5 - 856832*x^4 - 11264*x^3 + 79424*x^2 - 14976*x + 1024, -6*x^23 + 16*x^22 + 208*x^21 - 592*x^20 - 2918*x^19 + 9014*x^18 + 21286*x^17 - 73826*x^16 - 85300*x^15 + 356284*x^14 + 174168*x^13 - 1042424*x^12 - 97178*x^11 + 1834986*x^10 - 256958*x^9 - 1885278*x^8 + 492994*x^7 + 1101788*x^6 - 353496*x^5 - 358512*x^4 + 151136*x^3 + 33920*x^2 - 22528*x + 2560, -3*x^28 + 15*x^27 + 99*x^26 - 594*x^25 - 1251*x^24 + 10220*x^23 + 6197*x^22 - 100254*x^21 + 15191*x^20 + 618097*x^19 - 385108*x^18 - 2485737*x^17 + 2408656*x^16 + 6527244*x^15 - 8337989*x^14 - 10777874*x^13 + 17728200*x^12 + 9938352*x^11 - 23271259*x^10 - 2882277*x^9 + 17972071*x^8 - 2836536*x^7 - 7294324*x^6 + 2559216*x^5 + 1222064*x^4 - 643488*x^3 - 33920*x^2 + 48896*x - 5120, x^29 - 3*x^28 - 43*x^27 + 134*x^26 + 805*x^25 - 2644*x^24 - 8553*x^23 + 30284*x^22 + 56129*x^21 - 222523*x^20 - 229426*x^19 + 1094271*x^18 + 536604*x^17 - 3646012*x^16 - 410239*x^15 + 8150368*x^14 - 1321890*x^13 - 11828750*x^12 + 4336317*x^11 + 10457015*x^10 - 5416001*x^9 - 5067820*x^8 + 3105592*x^7 + 1274912*x^6 - 734864*x^5 - 328512*x^4 + 156544*x^3 + 41344*x^2 - 24832*x + 2560, -3*x^28 + 15*x^27 + 99*x^26 - 592*x^25 - 1257*x^24 + 10150*x^23 + 6405*x^22 - 99156*x^21 + 11949*x^20 + 608023*x^19 - 355072*x^18 - 2427455*x^17 + 2226662*x^16 + 6316566*x^15 - 7597785*x^14 - 10349288*x^13 + 15734990*x^12 + 9655870*x^11 - 19871691*x^10 - 3513005*x^9 + 14581595*x^8 - 1386016*x^7 - 5576132*x^6 + 1493896*x^5 + 891904*x^4 - 350784*x^3 - 30656*x^2 + 22272*x - 1792, -3*x^29 + 15*x^28 + 105*x^27 - 624*x^26 - 1437*x^25 + 11354*x^24 + 8319*x^23 - 118698*x^22 + 7457*x^21 + 786963*x^20 - 439948*x^19 - 3440419*x^18 + 3176260*x^17 + 9955372*x^16 - 12400155*x^15 - 18454038*x^14 + 29910370*x^13 + 19697534*x^12 - 45257749*x^11 - 7449509*x^10 + 41207849*x^9 - 6663254*x^8 - 20166012*x^7 + 8151704*x^6 + 3940560*x^5 - 2686688*x^4 + 12672*x^3 + 266112*x^2 - 57856*x + 3584, 4*x^24 - 16*x^23 - 118*x^22 + 538*x^21 + 1358*x^20 - 7722*x^19 - 6794*x^18 + 61298*x^17 + 1638*x^16 - 290458*x^15 + 153474*x^14 + 821090*x^13 - 804002*x^12 - 1272366*x^11 + 1929498*x^10 + 734714*x^9 - 2315782*x^8 + 493034*x^7 + 1158884*x^6 - 731168*x^5 - 44768*x^4 + 155424*x^3 - 36672*x^2 - 2304*x + 1024, -2*x^24 + 10*x^23 + 49*x^22 - 319*x^21 - 368*x^20 + 4267*x^19 - 544*x^18 - 31012*x^17 + 25387*x^16 + 132184*x^15 - 174707*x^14 - 329375*x^13 + 606674*x^12 + 433019*x^11 - 1192470*x^10 - 164574*x^9 + 1311821*x^8 - 244424*x^7 - 738128*x^6 + 283152*x^5 + 171648*x^4 - 92512*x^3 - 8064*x^2 + 9600*x - 1280, -2*x^24 + 10*x^23 + 49*x^22 - 319*x^21 - 368*x^20 + 4267*x^19 - 544*x^18 - 31012*x^17 + 25387*x^16 + 132184*x^15 - 174707*x^14 - 329375*x^13 + 606674*x^12 + 433019*x^11 - 1192470*x^10 - 164574*x^9 + 1311821*x^8 - 244424*x^7 - 738128*x^6 + 283152*x^5 + 171648*x^4 - 92512*x^3 - 8064*x^2 + 9600*x - 1280, -3*x^24 + 10*x^23 + 99*x^22 - 366*x^21 - 1285*x^20 + 5568*x^19 + 7991*x^18 - 45928*x^17 - 19547*x^16 + 224296*x^15 - 38163*x^14 - 662592*x^13 + 382441*x^12 + 1152778*x^11 - 1053563*x^10 - 1074274*x^9 + 1420514*x^8 + 388564*x^7 - 969588*x^6 + 82056*x^5 + 307008*x^4 - 89728*x^3 - 29568*x^2 + 14464*x - 1280, -3*x^24 + 10*x^23 + 99*x^22 - 366*x^21 - 1285*x^20 + 5568*x^19 + 7991*x^18 - 45928*x^17 - 19547*x^16 + 224296*x^15 - 38163*x^14 - 662592*x^13 + 382441*x^12 + 1152778*x^11 - 1053563*x^10 - 1074274*x^9 + 1420514*x^8 + 388564*x^7 - 969588*x^6 + 82056*x^5 + 307008*x^4 - 89728*x^3 - 29568*x^2 + 14464*x - 1280, -2*x^25 + 13*x^24 + 43*x^23 - 438*x^22 - 92*x^21 + 6158*x^20 - 5588*x^19 - 46537*x^18 + 74451*x^17 + 200735*x^16 - 456525*x^15 - 464320*x^14 + 1594896*x^13 + 339328*x^12 - 3277336*x^11 + 881711*x^10 + 3765619*x^9 - 2355762*x^8 - 2011258*x^7 + 2099016*x^6 + 154144*x^5 - 684976*x^4 + 148320*x^3 + 63232*x^2 - 27264*x + 2560, -2*x^25 + 13*x^24 + 43*x^23 - 438*x^22 - 92*x^21 + 6158*x^20 - 5588*x^19 - 46537*x^18 + 74451*x^17 + 200735*x^16 - 456525*x^15 - 464320*x^14 + 1594896*x^13 + 339328*x^12 - 3277336*x^11 + 881711*x^10 + 3765619*x^9 - 2355762*x^8 - 2011258*x^7 + 2099016*x^6 + 154144*x^5 - 684976*x^4 + 148320*x^3 + 63232*x^2 - 27264*x + 2560, -3*x^25 + 12*x^24 + 95*x^23 - 431*x^22 - 1174*x^21 + 6528*x^20 + 6642*x^19 - 54398*x^18 - 9821*x^17 + 272735*x^16 - 85047*x^15 - 844169*x^14 + 537648*x^13 + 1588528*x^12 - 1389404*x^11 - 1716790*x^10 + 1842046*x^9 + 962021*x^8 - 1218158*x^7 - 281604*x^6 + 377352*x^5 + 97136*x^4 - 88192*x^3 - 11392*x^2 + 11648*x - 1280, -3*x^25 + 12*x^24 + 95*x^23 - 431*x^22 - 1174*x^21 + 6528*x^20 + 6642*x^19 - 54398*x^18 - 9821*x^17 + 272735*x^16 - 85047*x^15 - 844169*x^14 + 537648*x^13 + 1588528*x^12 - 1389404*x^11 - 1716790*x^10 + 1842046*x^9 + 962021*x^8 - 1218158*x^7 - 281604*x^6 + 377352*x^5 + 97136*x^4 - 88192*x^3 - 11392*x^2 + 11648*x - 1280, -3*x^26 + 15*x^25 + 88*x^24 - 545*x^23 - 911*x^22 + 8449*x^21 + 2164*x^20 - 72916*x^19 + 35084*x^18 + 382508*x^17 - 373115*x^16 - 1243375*x^15 + 1746655*x^14 + 2404121*x^13 - 4675680*x^12 - 2304398*x^11 + 7399867*x^10 - 24693*x^9 - 6580713*x^8 + 2120426*x^7 + 2797524*x^6 - 1597320*x^5 - 323168*x^4 + 338336*x^3 - 24768*x^2 - 15744*x + 2048, -3*x^26 + 15*x^25 + 88*x^24 - 545*x^23 - 911*x^22 + 8449*x^21 + 2164*x^20 - 72916*x^19 + 35084*x^18 + 382508*x^17 - 373115*x^16 - 1243375*x^15 + 1746655*x^14 + 2404121*x^13 - 4675680*x^12 - 2304398*x^11 + 7399867*x^10 - 24693*x^9 - 6580713*x^8 + 2120426*x^7 + 2797524*x^6 - 1597320*x^5 - 323168*x^4 + 338336*x^3 - 24768*x^2 - 15744*x + 2048, x^26 - 2*x^25 - 43*x^24 + 97*x^23 + 770*x^22 - 1972*x^21 - 7384*x^20 + 22112*x^19 + 39911*x^18 - 150761*x^17 - 108797*x^16 + 646871*x^15 + 22948*x^14 - 1735418*x^13 + 791670*x^12 + 2753090*x^11 - 2441778*x^10 - 2166495*x^9 + 3257634*x^8 + 223014*x^7 - 1905252*x^6 + 629192*x^5 + 299840*x^4 - 182592*x^3 + 5568*x^2 + 8704*x - 768, x^26 - 2*x^25 - 43*x^24 + 97*x^23 + 770*x^22 - 1972*x^21 - 7384*x^20 + 22112*x^19 + 39911*x^18 - 150761*x^17 - 108797*x^16 + 646871*x^15 + 22948*x^14 - 1735418*x^13 + 791670*x^12 + 2753090*x^11 - 2441778*x^10 - 2166495*x^9 + 3257634*x^8 + 223014*x^7 - 1905252*x^6 + 629192*x^5 + 299840*x^4 - 182592*x^3 + 5568*x^2 + 8704*x - 768, -3*x^26 + 12*x^25 + 102*x^24 - 453*x^23 - 1419*x^22 + 7372*x^21 + 10065*x^20 - 67840*x^19 - 33778*x^18 + 389165*x^17 - 4458*x^16 - 1445787*x^15 + 500249*x^14 + 3494162*x^13 - 2059275*x^12 - 5350338*x^11 + 4253503*x^10 + 4820329*x^9 - 4955514*x^8 - 2080134*x^7 + 3137552*x^6 + 59704*x^5 - 922192*x^4 + 196544*x^3 + 85056*x^2 - 34944*x + 3072, -3*x^26 + 12*x^25 + 102*x^24 - 453*x^23 - 1419*x^22 + 7372*x^21 + 10065*x^20 - 67840*x^19 - 33778*x^18 + 389165*x^17 - 4458*x^16 - 1445787*x^15 + 500249*x^14 + 3494162*x^13 - 2059275*x^12 - 5350338*x^11 + 4253503*x^10 + 4820329*x^9 - 4955514*x^8 - 2080134*x^7 + 3137552*x^6 + 59704*x^5 - 922192*x^4 + 196544*x^3 + 85056*x^2 - 34944*x + 3072, -3*x^27 + 15*x^26 + 93*x^25 - 567*x^24 - 1061*x^23 + 9222*x^22 + 3867*x^21 - 84433*x^20 + 27420*x^19 + 477341*x^18 - 383802*x^17 - 1714064*x^16 + 2031083*x^15 + 3838082*x^14 - 6091085*x^13 - 4879591*x^12 + 10993245*x^11 + 2283616*x^10 - 11617889*x^9 + 1913359*x^8 + 6435844*x^7 - 2796244*x^6 - 1359248*x^5 + 1021600*x^4 - 23296*x^3 - 108608*x^2 + 26368*x - 1792, -3*x^27 + 15*x^26 + 93*x^25 - 567*x^24 - 1061*x^23 + 9222*x^22 + 3867*x^21 - 84433*x^20 + 27420*x^19 + 477341*x^18 - 383802*x^17 - 1714064*x^16 + 2031083*x^15 + 3838082*x^14 - 6091085*x^13 - 4879591*x^12 + 10993245*x^11 + 2283616*x^10 - 11617889*x^9 + 1913359*x^8 + 6435844*x^7 - 2796244*x^6 - 1359248*x^5 + 1021600*x^4 - 23296*x^3 - 108608*x^2 + 26368*x - 1792, -3*x^25 + 9*x^24 + 107*x^23 - 335*x^22 - 1611*x^21 + 5359*x^20 + 13252*x^19 - 48296*x^18 - 63764*x^17 + 269954*x^16 + 172097*x^15 - 969641*x^14 - 179491*x^13 + 2235865*x^12 - 316042*x^11 - 3190020*x^10 + 1271557*x^9 + 2562829*x^8 - 1627062*x^7 - 900092*x^6 + 881936*x^5 + 1712*x^4 - 149792*x^3 + 29632*x^2 + 2944*x - 768, -3*x^25 + 9*x^24 + 107*x^23 - 335*x^22 - 1611*x^21 + 5359*x^20 + 13252*x^19 - 48296*x^18 - 63764*x^17 + 269954*x^16 + 172097*x^15 - 969641*x^14 - 179491*x^13 + 2235865*x^12 - 316042*x^11 - 3190020*x^10 + 1271557*x^9 + 2562829*x^8 - 1627062*x^7 - 900092*x^6 + 881936*x^5 + 1712*x^4 - 149792*x^3 + 29632*x^2 + 2944*x - 768, x^25 - 2*x^24 - 37*x^23 + 77*x^22 + 574*x^21 - 1270*x^20 - 4738*x^19 + 11502*x^18 + 21519*x^17 - 61155*x^16 - 46091*x^15 + 187897*x^14 - 8068*x^13 - 288040*x^12 + 254292*x^11 + 42584*x^10 - 474266*x^9 + 503555*x^8 + 256590*x^7 - 624876*x^6 + 91472*x^5 + 233952*x^4 - 84608*x^3 - 22144*x^2 + 13056*x - 1280, x^25 - 2*x^24 - 37*x^23 + 77*x^22 + 574*x^21 - 1270*x^20 - 4738*x^19 + 11502*x^18 + 21519*x^17 - 61155*x^16 - 46091*x^15 + 187897*x^14 - 8068*x^13 - 288040*x^12 + 254292*x^11 + 42584*x^10 - 474266*x^9 + 503555*x^8 + 256590*x^7 - 624876*x^6 + 91472*x^5 + 233952*x^4 - 84608*x^3 - 22144*x^2 + 13056*x - 1280, x^27 - 2*x^26 - 42*x^25 + 86*x^24 + 764*x^23 - 1611*x^22 - 7866*x^21 + 17224*x^20 + 50237*x^19 - 115726*x^18 - 204767*x^17 + 507291*x^16 + 525564*x^15 - 1458995*x^14 - 795158*x^13 + 2701802*x^12 + 581266*x^11 - 3090790*x^10 - 33719*x^9 + 2075221*x^8 - 150584*x^7 - 844948*x^6 + 54224*x^5 + 268432*x^4 - 58144*x^3 - 32384*x^2 + 13440*x - 1280, x^27 - 2*x^26 - 42*x^25 + 86*x^24 + 764*x^23 - 1611*x^22 - 7866*x^21 + 17224*x^20 + 50237*x^19 - 115726*x^18 - 204767*x^17 + 507291*x^16 + 525564*x^15 - 1458995*x^14 - 795158*x^13 + 2701802*x^12 + 581266*x^11 - 3090790*x^10 - 33719*x^9 + 2075221*x^8 - 150584*x^7 - 844948*x^6 + 54224*x^5 + 268432*x^4 - 58144*x^3 - 32384*x^2 + 13440*x - 1280, -3*x^25 + 10*x^24 + 103*x^23 - 365*x^22 - 1479*x^21 + 5729*x^20 + 11368*x^19 - 50552*x^18 - 48790*x^17 + 275258*x^16 + 101637*x^15 - 956505*x^14 + 11235*x^13 + 2123773*x^12 - 569580*x^11 - 2938290*x^10 + 1315965*x^9 + 2390822*x^8 - 1393456*x^7 - 1015496*x^6 + 717096*x^5 + 171664*x^4 - 158912*x^3 - 1920*x^2 + 12032*x - 1280, -3*x^25 + 10*x^24 + 103*x^23 - 365*x^22 - 1479*x^21 + 5729*x^20 + 11368*x^19 - 50552*x^18 - 48790*x^17 + 275258*x^16 + 101637*x^15 - 956505*x^14 + 11235*x^13 + 2123773*x^12 - 569580*x^11 - 2938290*x^10 + 1315965*x^9 + 2390822*x^8 - 1393456*x^7 - 1015496*x^6 + 717096*x^5 + 171664*x^4 - 158912*x^3 - 1920*x^2 + 12032*x - 1280, -3*x^26 + 13*x^25 + 100*x^24 - 492*x^23 - 1346*x^22 + 8060*x^21 + 8827*x^20 - 74914*x^19 - 21108*x^18 + 434822*x^17 - 88767*x^16 - 1632912*x^15 + 869910*x^14 + 3965780*x^13 - 3110675*x^12 - 6007734*x^11 + 6115715*x^10 + 5145677*x^9 - 6851485*x^8 - 1822044*x^7 + 4079440*x^6 - 264960*x^5 - 1072192*x^4 + 267424*x^3 + 86848*x^2 - 36992*x + 3072, -3*x^26 + 13*x^25 + 100*x^24 - 492*x^23 - 1346*x^22 + 8060*x^21 + 8827*x^20 - 74914*x^19 - 21108*x^18 + 434822*x^17 - 88767*x^16 - 1632912*x^15 + 869910*x^14 + 3965780*x^13 - 3110675*x^12 - 6007734*x^11 + 6115715*x^10 + 5145677*x^9 - 6851485*x^8 - 1822044*x^7 + 4079440*x^6 - 264960*x^5 - 1072192*x^4 + 267424*x^3 + 86848*x^2 - 36992*x + 3072, x^27 - 6*x^26 - 23*x^25 + 200*x^24 + 113*x^23 - 2813*x^22 + 1626*x^21 + 21662*x^20 - 26627*x^19 - 98619*x^18 + 173230*x^17 + 263290*x^16 - 631279*x^15 - 359815*x^14 + 1362676*x^13 + 68714*x^12 - 1679884*x^11 + 442849*x^10 + 1005947*x^9 - 435170*x^8 - 120844*x^7 - 27636*x^6 - 60984*x^5 + 158624*x^4 - 38560*x^3 - 28160*x^2 + 12928*x - 1280, x^27 - 6*x^26 - 23*x^25 + 200*x^24 + 113*x^23 - 2813*x^22 + 1626*x^21 + 21662*x^20 - 26627*x^19 - 98619*x^18 + 173230*x^17 + 263290*x^16 - 631279*x^15 - 359815*x^14 + 1362676*x^13 + 68714*x^12 - 1679884*x^11 + 442849*x^10 + 1005947*x^9 - 435170*x^8 - 120844*x^7 - 27636*x^6 - 60984*x^5 + 158624*x^4 - 38560*x^3 - 28160*x^2 + 12928*x - 1280, -3*x^27 + 16*x^26 + 90*x^25 - 602*x^24 - 957*x^23 + 9771*x^22 + 2246*x^21 - 89470*x^20 + 42438*x^19 + 506482*x^18 - 474799*x^17 - 1819403*x^16 + 2401185*x^15 + 4052375*x^14 - 7087690*x^13 - 5020832*x^12 + 12693029*x^11 + 1968252*x^10 - 13313127*x^9 + 2638619*x^8 + 7294940*x^7 - 3328904*x^6 - 1524328*x^5 + 1167952*x^4 - 21664*x^3 - 121920*x^2 + 28032*x - 1792, -3*x^27 + 16*x^26 + 90*x^25 - 602*x^24 - 957*x^23 + 9771*x^22 + 2246*x^21 - 89470*x^20 + 42438*x^19 + 506482*x^18 - 474799*x^17 - 1819403*x^16 + 2401185*x^15 + 4052375*x^14 - 7087690*x^13 - 5020832*x^12 + 12693029*x^11 + 1968252*x^10 - 13313127*x^9 + 2638619*x^8 + 7294940*x^7 - 3328904*x^6 - 1524328*x^5 + 1167952*x^4 - 21664*x^3 - 121920*x^2 + 28032*x - 1792]>
       ]
>;

MOG[569] := 	// J_0(569)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 2, 24, 59, 76, 123, 124, 212, 213, 234, 333, 395, 409, 443, 507, 514, 47*x + 244, 522*x + 244, 131*x + 152, 438*x + 152, 96*x + 249, 473*x + 249, 186*x + 304, 383*x + 304, 474*x + 424, 95*x + 424, 31*x + 425, 538*x + 425, 247*x + 528, 322*x + 528, 66*x + 385, 503*x + 385, 324*x + 88, 245*x + 88, 41*x + 69, 528*x + 69, 527*x + 65, 42*x + 65, 82*x + 366, 487*x + 366, 92*x + 486, 477*x + 486, 381*x + 459, 188*x + 459, 351*x + 120, 218*x + 120, 189*x + 31, 380*x + 31]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^16 + 3*x^15 - 13*x^14 - 43*x^13 + 60*x^12 + 236*x^11 - 110*x^10 - 630*x^9 + 22*x^8 + 846*x^7 + 159*x^6 - 522*x^5 - 144*x^4 + 113*x^3 + 23*x^2 - 7*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^15 - 3*x^14 + 11*x^13 + 37*x^12 - 41*x^11 - 170*x^10 + 54*x^9 + 366*x^8 + 13*x^7 - 372*x^6 - 74*x^5 + 152*x^4 + 34*x^3 - 16*x^2 - 3*x, x^15 + 3*x^14 - 11*x^13 - 37*x^12 + 41*x^11 + 170*x^10 - 54*x^9 - 366*x^8 - 13*x^7 + 372*x^6 + 74*x^5 - 152*x^4 - 34*x^3 + 16*x^2 + 3*x, -x^14 - 3*x^13 + 10*x^12 + 35*x^11 - 30*x^10 - 148*x^9 + 12*x^8 + 280*x^7 + 78*x^6 - 225*x^5 - 102*x^4 + 52*x^3 + 21*x^2 - 4*x - 1, x^14 + 3*x^13 - 10*x^12 - 35*x^11 + 30*x^10 + 148*x^9 - 12*x^8 - 280*x^7 - 78*x^6 + 225*x^5 + 102*x^4 - 52*x^3 - 21*x^2 + 4*x + 1, -x^14 - 3*x^13 + 9*x^12 + 31*x^11 - 26*x^10 - 116*x^9 + 23*x^8 + 194*x^7 + 7*x^6 - 145*x^5 - 8*x^4 + 45*x^3 - x^2 - 3*x, x^14 + 3*x^13 - 9*x^12 - 31*x^11 + 26*x^10 + 116*x^9 - 23*x^8 - 194*x^7 - 7*x^6 + 145*x^5 + 8*x^4 - 45*x^3 + x^2 + 3*x, -x^13 - 2*x^12 + 11*x^11 + 22*x^10 - 42*x^9 - 86*x^8 + 65*x^7 + 147*x^6 - 28*x^5 - 100*x^4 - 13*x^3 + 12*x^2 + 2*x, x^13 + 2*x^12 - 11*x^11 - 22*x^10 + 42*x^9 + 86*x^8 - 65*x^7 - 147*x^6 + 28*x^5 + 100*x^4 + 13*x^3 - 12*x^2 - 2*x, -x^13 - 3*x^12 + 7*x^11 + 26*x^10 - 12*x^9 - 80*x^8 - 12*x^7 + 103*x^6 + 44*x^5 - 49*x^4 - 25*x^3 + 7*x^2 + 3*x, x^13 + 3*x^12 - 7*x^11 - 26*x^10 + 12*x^9 + 80*x^8 + 12*x^7 - 103*x^6 - 44*x^5 + 49*x^4 + 25*x^3 - 7*x^2 - 3*x, -x^13 - 3*x^12 + 8*x^11 + 28*x^10 - 19*x^9 - 92*x^8 + 6*x^7 + 124*x^6 + 22*x^5 - 58*x^4 - 10*x^3 + 6*x^2, x^13 + 3*x^12 - 8*x^11 - 28*x^10 + 19*x^9 + 92*x^8 - 6*x^7 - 124*x^6 - 22*x^5 + 58*x^4 + 10*x^3 - 6*x^2, -x^12 - 2*x^11 + 10*x^10 + 20*x^9 - 33*x^8 - 68*x^7 + 41*x^6 + 97*x^5 - 11*x^4 - 53*x^3 - 7*x^2 + 6*x + 1, x^12 + 2*x^11 - 10*x^10 - 20*x^9 + 33*x^8 + 68*x^7 - 41*x^6 - 97*x^5 + 11*x^4 + 53*x^3 + 7*x^2 - 6*x - 1, -x^12 - 2*x^11 + 9*x^10 + 17*x^9 - 29*x^8 - 51*x^7 + 39*x^6 + 64*x^5 - 20*x^4 - 29*x^3 + 4*x^2 + 3*x, x^12 + 2*x^11 - 9*x^10 - 17*x^9 + 29*x^8 + 51*x^7 - 39*x^6 - 64*x^5 + 20*x^4 + 29*x^3 - 4*x^2 - 3*x, -x^12 - 3*x^11 + 5*x^10 + 19*x^9 - 6*x^8 - 40*x^7 - 2*x^6 + 32*x^5 + 3*x^4 - 9*x^3, x^12 + 3*x^11 - 5*x^10 - 19*x^9 + 6*x^8 + 40*x^7 + 2*x^6 - 32*x^5 - 3*x^4 + 9*x^3, -x^12 - 3*x^11 + 7*x^10 + 24*x^9 - 17*x^8 - 70*x^7 + 15*x^6 + 87*x^5 - 2*x^4 - 39*x^3 + x^2 + 3*x, x^12 + 3*x^11 - 7*x^10 - 24*x^9 + 17*x^8 + 70*x^7 - 15*x^6 - 87*x^5 + 2*x^4 + 39*x^3 - x^2 - 3*x, -x^11 - 4*x^10 + x^9 + 21*x^8 + 16*x^7 - 31*x^6 - 39*x^5 + 8*x^4 + 22*x^3 + 2*x^2 - 3*x, x^11 + 4*x^10 - x^9 - 21*x^8 - 16*x^7 + 31*x^6 + 39*x^5 - 8*x^4 - 22*x^3 - 2*x^2 + 3*x, -x^11 - 2*x^10 + 9*x^9 + 18*x^8 - 24*x^7 - 50*x^6 + 17*x^5 + 47*x^4 + 6*x^3 - 6*x^2 - x, x^11 + 2*x^10 - 9*x^9 - 18*x^8 + 24*x^7 + 50*x^6 - 17*x^5 - 47*x^4 - 6*x^3 + 6*x^2 + x, -x^11 - 3*x^10 + 5*x^9 + 19*x^8 - 6*x^7 - 40*x^6 - 2*x^5 + 32*x^4 + 3*x^3 - 9*x^2, x^11 + 3*x^10 - 5*x^9 - 19*x^8 + 6*x^7 + 40*x^6 + 2*x^5 - 32*x^4 - 3*x^3 + 9*x^2, -x^11 - 4*x^10 + 2*x^9 + 22*x^8 + 9*x^7 - 37*x^6 - 24*x^5 + 19*x^4 + 11*x^3 - 3*x^2, x^11 + 4*x^10 - 2*x^9 - 22*x^8 - 9*x^7 + 37*x^6 + 24*x^5 - 19*x^4 - 11*x^3 + 3*x^2, -x^10 - 2*x^9 + 9*x^8 + 18*x^7 - 24*x^6 - 50*x^5 + 17*x^4 + 47*x^3 + 6*x^2 - 6*x - 1, x^10 + 2*x^9 - 9*x^8 - 18*x^7 + 24*x^6 + 50*x^5 - 17*x^4 - 47*x^3 - 6*x^2 + 6*x + 1, -x^10 - 3*x^9 + 5*x^8 + 17*x^7 - 8*x^6 - 29*x^5 + 5*x^4 + 14*x^3 - 3*x^2, x^10 + 3*x^9 - 5*x^8 - 17*x^7 + 8*x^6 + 29*x^5 - 5*x^4 - 14*x^3 + 3*x^2]>,
         rec<Eigen |
           DefiningPolynomial := x^31 - 53*x^29 + 1260*x^27 + 4*x^26 - 17750*x^25 - 160*x^24 + 164884*x^23 + 2756*x^22 - 1063367*x^21 - 26739*x^20 + 4881497*x^19 + 160306*x^18 - 16085855*x^17 - 611602*x^16 + 37872670*x^15 + 1464757*x^14 - 62581486*x^13 - 2043005*x^12 + 70114271*x^11 + 1238201*x^10 - 50129555*x^9 + 450969*x^8 + 20481249*x^7 - 1061301*x^6 - 3789930*x^5 + 449436*x^4 + 156552*x^3 - 18419*x^2 - 1828*x + 173,
           Coordinates        := [-x^30 + 50*x^28 - 1116*x^26 - 4*x^25 + 14680*x^24 + 150*x^23 - 126548*x^22 - 2410*x^21 + 752045*x^20 + 21715*x^19 - 3155576*x^18 - 120631*x^17 + 9416299*x^16 + 427717*x^15 - 19861215*x^14 - 967772*x^13 + 29043267*x^12 + 1351151*x^11 - 28403366*x^10 - 1060774*x^9 + 17464509*x^8 + 337321*x^7 - 6039316*x^6 + 72758*x^5 + 926418*x^4 - 60742*x^3 - 29822*x^2 + 1201*x + 268, x^30 - 50*x^28 + 2*x^27 + 1116*x^26 - 82*x^25 - 14682*x^24 + 1470*x^23 + 126640*x^22 - 15170*x^21 - 753817*x^20 + 99869*x^19 + 3174436*x^18 - 439221*x^17 - 9539049*x^16 + 1313455*x^15 + 20370395*x^14 - 2666842*x^13 - 30401487*x^12 + 3615831*x^11 + 30693894*x^10 - 3190462*x^9 - 19792163*x^8 + 1806231*x^7 + 7324252*x^6 - 675684*x^5 - 1223754*x^4 + 154054*x^3 + 36754*x^2 - 3643*x - 246, -10*x^24 - 2*x^23 + 378*x^22 + 80*x^21 - 6150*x^20 - 1422*x^19 + 56444*x^18 + 14488*x^17 - 321752*x^16 - 91476*x^15 + 1181702*x^14 + 364830*x^13 - 2805684*x^12 - 906732*x^11 + 4202758*x^10 + 1343006*x^9 - 3747702*x^8 - 1078842*x^7 + 1769536*x^6 + 373978*x^5 - 343870*x^4 - 17622*x^3 + 18398*x^2 + 162*x - 272, -4*x^25 + 4*x^24 + 156*x^23 - 152*x^22 - 2638*x^21 + 2474*x^20 + 25436*x^19 - 22638*x^18 - 154742*x^17 + 128554*x^16 + 620678*x^15 - 471706*x^14 - 1665144*x^13 + 1127164*x^12 + 2965070*x^11 - 1719890*x^10 - 3395796*x^9 + 1591604*x^8 + 2335542*x^7 - 813806*x^6 - 833578*x^5 + 200274*x^4 + 104286*x^3 - 22080*x^2 - 1250*x + 262, x^29 - 48*x^27 + 4*x^26 + 1024*x^25 - 164*x^24 - 12802*x^23 + 2942*x^22 + 104128*x^21 - 30396*x^20 - 578347*x^19 + 200375*x^18 + 2239190*x^17 - 882201*x^16 - 6054843*x^15 + 2638479*x^14 + 11262773*x^13 - 5342652*x^12 - 13899985*x^11 + 7154925*x^10 + 10604552*x^9 - 6021366*x^8 - 4301135*x^7 + 2874743*x^6 + 558330*x^5 - 614416*x^4 + 78776*x^3 + 19796*x^2 - 3086*x - 133, 2*x^24 - 2*x^23 - 78*x^22 + 74*x^21 + 1300*x^20 - 1178*x^19 - 12138*x^18 + 10594*x^17 + 69940*x^16 - 59432*x^15 - 258362*x^14 + 216404*x^13 + 616250*x^12 - 513522*x^11 - 934180*x^10 + 769730*x^9 + 863210*x^8 - 671850*x^7 - 442692*x^6 + 287502*x^5 + 97206*x^4 - 39136*x^3 + 346*x^2 + 1520*x - 228, 2*x^25 - 2*x^24 - 76*x^23 + 80*x^22 + 1240*x^21 - 1380*x^20 - 11386*x^19 + 13476*x^18 + 64816*x^17 - 82124*x^16 - 237556*x^15 + 323970*x^14 + 563336*x^13 - 827648*x^12 - 842978*x^11 + 1324832*x^10 + 738240*x^9 - 1230572*x^8 - 298884*x^7 + 570466*x^6 - 7588*x^5 - 96976*x^4 + 32928*x^3 + 7112*x^2 - 1390*x - 146, 2*x^25 + 2*x^24 - 82*x^23 - 70*x^22 + 1460*x^21 + 1056*x^20 - 14834*x^19 - 9028*x^18 + 95082*x^17 + 48366*x^16 - 401446*x^15 - 169566*x^14 + 1132000*x^13 + 395310*x^12 - 2115290*x^11 - 613686*x^10 + 2538926*x^9 + 628116*x^8 - 1830792*x^7 - 404044*x^6 + 694108*x^5 + 135754*x^4 - 103348*x^3 - 9622*x^2 + 2614*x + 292, -6*x^26 + 258*x^24 - 4864*x^22 - 18*x^21 + 52884*x^20 + 546*x^19 - 366916*x^18 - 6828*x^17 + 1697220*x^16 + 45536*x^15 - 5308330*x^14 - 174592*x^13 + 11141808*x^12 + 384106*x^11 - 15238642*x^10 - 444954*x^9 + 12794468*x^8 + 185460*x^7 - 5879546*x^6 + 81038*x^5 + 1150584*x^4 - 75360*x^3 - 41888*x^2 + 1418*x + 474, 2*x^24 - 4*x^23 - 84*x^22 + 136*x^21 + 1508*x^20 - 1926*x^19 - 15172*x^18 + 14646*x^17 + 94144*x^16 - 63922*x^15 - 373094*x^14 + 155556*x^13 + 944258*x^12 - 169750*x^11 - 1481270*x^10 - 46704*x^9 + 1349452*x^8 + 290542*x^7 - 633262*x^6 - 226460*x^5 + 123410*x^4 + 44452*x^3 - 9118*x^2 - 726*x + 58, 2*x^24 + 2*x^23 - 74*x^22 - 62*x^21 + 1168*x^20 + 804*x^19 - 10334*x^18 - 5660*x^17 + 56742*x^16 + 23330*x^15 - 202570*x^14 - 55898*x^13 + 478984*x^12 + 70254*x^11 - 746542*x^10 - 29474*x^9 + 739102*x^8 - 15772*x^7 - 424268*x^6 + 6424*x^5 + 115944*x^4 + 5990*x^3 - 8148*x^2 + 254*x + 58, 4*x^23 + 4*x^22 - 146*x^21 - 126*x^20 + 2250*x^19 + 1684*x^18 - 19170*x^17 - 12518*x^16 + 99438*x^15 + 56834*x^14 - 326508*x^13 - 162528*x^12 + 684374*x^11 + 292106*x^10 - 899912*x^9 - 321944*x^8 + 703262*x^7 + 205234*x^6 - 289082*x^5 - 64882*x^4 + 47600*x^3 + 4938*x^2 - 1278*x - 146, 2*x^25 + 2*x^24 - 82*x^23 - 76*x^22 + 1450*x^21 + 1254*x^20 - 14494*x^19 - 11758*x^18 + 90244*x^17 + 68672*x^16 - 364044*x^15 - 256818*x^14 + 961476*x^13 + 606764*x^12 - 1650016*x^11 - 853690*x^10 + 1804198*x^9 + 610886*x^8 - 1220442*x^7 - 97730*x^6 + 485114*x^5 - 97130*x^4 - 95882*x^3 + 28840*x^2 + 1644*x - 688, 2*x^22 - 2*x^21 - 86*x^20 + 76*x^19 + 1498*x^18 - 1198*x^17 - 14046*x^16 + 10174*x^15 + 78632*x^14 - 50732*x^13 - 273594*x^12 + 151598*x^11 + 593172*x^10 - 262996*x^9 - 774942*x^8 + 236778*x^7 + 559454*x^6 - 77730*x^5 - 184288*x^4 - 7042*x^3 + 15018*x^2 - 654*x - 116, -2*x^25 + 4*x^24 + 76*x^23 - 152*x^22 - 1230*x^21 + 2490*x^20 + 11042*x^19 - 23098*x^18 - 59818*x^17 + 134090*x^16 + 197550*x^15 - 508036*x^14 - 370640*x^13 + 1268166*x^12 + 271068*x^11 - 2044754*x^10 + 291108*x^9 + 2006468*x^8 - 766630*x^7 - 1047664*x^6 + 575874*x^5 + 196292*x^4 - 150802*x^3 + 16408*x^2 + 2596*x - 406, -3*x^29 + 144*x^27 - 3070*x^25 - 10*x^24 + 38336*x^23 + 346*x^22 - 311322*x^21 - 5024*x^20 + 1725921*x^19 + 39675*x^18 - 6669556*x^17 - 183885*x^16 + 18011455*x^15 + 496985*x^14 - 33538219*x^13 - 691854*x^12 + 41710905*x^11 + 177427*x^10 - 32665046*x^9 + 788290*x^8 + 14441933*x^7 - 988543*x^6 - 2863512*x^5 + 388694*x^4 + 126730*x^3 - 17218*x^2 - 1560*x + 173, -3*x^28 + 139*x^26 + x^25 - 2852*x^24 - 52*x^23 + 34161*x^22 + 1103*x^21 - 265107*x^20 - 12735*x^19 + 1398586*x^18 + 89004*x^17 - 5118721*x^16 - 393083*x^15 + 13022713*x^14 + 1105731*x^13 - 22709448*x^12 - 1938013*x^11 + 26272526*x^10 + 1985306*x^9 - 18975797*x^8 - 1000253*x^7 + 7627218*x^6 + 85210*x^5 - 1326262*x^4 + 82504*x^3 + 43953*x^2 - 1715*x - 402, -3*x^28 + 139*x^26 + x^25 - 2852*x^24 - 52*x^23 + 34161*x^22 + 1103*x^21 - 265107*x^20 - 12735*x^19 + 1398586*x^18 + 89004*x^17 - 5118721*x^16 - 393083*x^15 + 13022713*x^14 + 1105731*x^13 - 22709448*x^12 - 1938013*x^11 + 26272526*x^10 + 1985306*x^9 - 18975797*x^8 - 1000253*x^7 + 7627218*x^6 + 85210*x^5 - 1326262*x^4 + 82504*x^3 + 43953*x^2 - 1715*x - 402, -3*x^27 + 130*x^25 - 2*x^24 - 2470*x^23 + 67*x^22 + 27057*x^21 - 972*x^20 - 188979*x^19 + 8135*x^18 + 878519*x^17 - 44277*x^16 - 2752940*x^15 + 166722*x^14 + 5756224*x^13 - 442030*x^12 - 7754855*x^11 + 799900*x^10 + 6251680*x^9 - 910504*x^8 - 2556458*x^7 + 564351*x^6 + 287355*x^5 - 135826*x^4 + 54457*x^3 - 7495*x^2 - 1061*x + 203, -3*x^27 + 130*x^25 - 2*x^24 - 2470*x^23 + 67*x^22 + 27057*x^21 - 972*x^20 - 188979*x^19 + 8135*x^18 + 878519*x^17 - 44277*x^16 - 2752940*x^15 + 166722*x^14 + 5756224*x^13 - 442030*x^12 - 7754855*x^11 + 799900*x^10 + 6251680*x^9 - 910504*x^8 - 2556458*x^7 + 564351*x^6 + 287355*x^5 - 135826*x^4 + 54457*x^3 - 7495*x^2 - 1061*x + 203, -2*x^27 + x^26 + 88*x^25 - 40*x^24 - 1705*x^23 + 690*x^22 + 19158*x^21 - 6739*x^20 - 138356*x^19 + 41194*x^18 + 672316*x^17 - 164921*x^16 - 2235802*x^15 + 442024*x^14 + 5072547*x^13 - 804129*x^12 - 7683524*x^11 + 1007979*x^10 + 7437569*x^9 - 878039*x^8 - 4258257*x^7 + 509402*x^6 + 1249895*x^5 - 170364*x^4 - 137234*x^3 + 22998*x^2 + 2219*x - 376, -2*x^27 + x^26 + 88*x^25 - 40*x^24 - 1705*x^23 + 690*x^22 + 19158*x^21 - 6739*x^20 - 138356*x^19 + 41194*x^18 + 672316*x^17 - 164921*x^16 - 2235802*x^15 + 442024*x^14 + 5072547*x^13 - 804129*x^12 - 7683524*x^11 + 1007979*x^10 + 7437569*x^9 - 878039*x^8 - 4258257*x^7 + 509402*x^6 + 1249895*x^5 - 170364*x^4 - 137234*x^3 + 22998*x^2 + 2219*x - 376, -3*x^26 - 3*x^25 + 124*x^24 + 119*x^23 - 2240*x^22 - 2057*x^21 + 23244*x^20 + 20324*x^19 - 153151*x^18 - 126453*x^17 + 668561*x^16 + 514269*x^15 - 1958159*x^14 - 1373169*x^13 + 3812785*x^12 + 2353807*x^11 - 4782204*x^10 - 2450856*x^9 + 3624871*x^8 + 1379144*x^7 - 1460317*x^6 - 302074*x^5 + 230135*x^4 - 14639*x^3 - 3126*x^2 + 500*x - 72, -3*x^26 - 3*x^25 + 124*x^24 + 119*x^23 - 2240*x^22 - 2057*x^21 + 23244*x^20 + 20324*x^19 - 153151*x^18 - 126453*x^17 + 668561*x^16 + 514269*x^15 - 1958159*x^14 - 1373169*x^13 + 3812785*x^12 + 2353807*x^11 - 4782204*x^10 - 2450856*x^9 + 3624871*x^8 + 1379144*x^7 - 1460317*x^6 - 302074*x^5 + 230135*x^4 - 14639*x^3 - 3126*x^2 + 500*x - 72, x^28 + x^27 - 49*x^26 - 43*x^25 + 1064*x^24 + 817*x^23 - 13495*x^22 - 9039*x^21 + 110958*x^20 + 64537*x^19 - 620677*x^18 - 310958*x^17 + 2411704*x^16 + 1025222*x^15 - 6526743*x^14 - 2291027*x^13 + 12140547*x^12 + 3352571*x^11 - 15035680*x^10 - 2987644*x^9 + 11675918*x^8 + 1377137*x^7 - 5075766*x^6 - 168722*x^5 + 964950*x^4 - 57277*x^3 - 31910*x^2 + 1289*x + 266, x^28 + x^27 - 49*x^26 - 43*x^25 + 1064*x^24 + 817*x^23 - 13495*x^22 - 9039*x^21 + 110958*x^20 + 64537*x^19 - 620677*x^18 - 310958*x^17 + 2411704*x^16 + 1025222*x^15 - 6526743*x^14 - 2291027*x^13 + 12140547*x^12 + 3352571*x^11 - 15035680*x^10 - 2987644*x^9 + 11675918*x^8 + 1377137*x^7 - 5075766*x^6 - 168722*x^5 + 964950*x^4 - 57277*x^3 - 31910*x^2 + 1289*x + 266, -2*x^26 + 2*x^25 + 83*x^24 - 75*x^23 - 1508*x^22 + 1197*x^21 + 15793*x^20 - 10608*x^19 - 105593*x^18 + 57033*x^17 + 471215*x^16 - 190115*x^15 - 1423423*x^14 + 381167*x^13 + 2885377*x^12 - 406579*x^11 - 3799277*x^10 + 124299*x^9 + 3041622*x^8 + 132518*x^7 - 1301557*x^6 - 86852*x^5 + 224078*x^4 - 2229*x^3 - 9824*x^2 + 50*x + 136, -2*x^26 + 2*x^25 + 83*x^24 - 75*x^23 - 1508*x^22 + 1197*x^21 + 15793*x^20 - 10608*x^19 - 105593*x^18 + 57033*x^17 + 471215*x^16 - 190115*x^15 - 1423423*x^14 + 381167*x^13 + 2885377*x^12 - 406579*x^11 - 3799277*x^10 + 124299*x^9 + 3041622*x^8 + 132518*x^7 - 1301557*x^6 - 86852*x^5 + 224078*x^4 - 2229*x^3 - 9824*x^2 + 50*x + 136, -3*x^25 - 3*x^24 + 111*x^23 + 116*x^22 - 1756*x^21 - 1948*x^20 + 15504*x^19 + 18563*x^18 - 83505*x^17 - 110015*x^16 + 280512*x^15 + 418268*x^14 - 570270*x^13 - 1016948*x^12 + 618844*x^11 + 1531448*x^10 - 175953*x^9 - 1335223*x^8 - 283003*x^7 + 593892*x^6 + 244854*x^5 - 108948*x^4 - 42944*x^3 + 11121*x^2 + 489*x - 131, -3*x^25 - 3*x^24 + 111*x^23 + 116*x^22 - 1756*x^21 - 1948*x^20 + 15504*x^19 + 18563*x^18 - 83505*x^17 - 110015*x^16 + 280512*x^15 + 418268*x^14 - 570270*x^13 - 1016948*x^12 + 618844*x^11 + 1531448*x^10 - 175953*x^9 - 1335223*x^8 - 283003*x^7 + 593892*x^6 + 244854*x^5 - 108948*x^4 - 42944*x^3 + 11121*x^2 + 489*x - 131, x^29 + x^28 - 48*x^27 - 45*x^26 + 1022*x^25 + 897*x^24 - 12721*x^23 - 10434*x^22 + 102711*x^21 + 78502*x^20 - 564357*x^19 - 399951*x^18 + 2153808*x^17 + 1403629*x^16 - 5723716*x^15 - 3385039*x^14 + 10458613*x^13 + 5500744*x^12 - 12760196*x^11 - 5791794*x^10 + 9866420*x^9 + 3688314*x^8 - 4427931*x^7 - 1244563*x^6 + 1003923*x^5 + 159517*x^4 - 99287*x^3 - 2510*x^2 + 2334*x - 20, x^29 + x^28 - 48*x^27 - 45*x^26 + 1022*x^25 + 897*x^24 - 12721*x^23 - 10434*x^22 + 102711*x^21 + 78502*x^20 - 564357*x^19 - 399951*x^18 + 2153808*x^17 + 1403629*x^16 - 5723716*x^15 - 3385039*x^14 + 10458613*x^13 + 5500744*x^12 - 12760196*x^11 - 5791794*x^10 + 9866420*x^9 + 3688314*x^8 - 4427931*x^7 - 1244563*x^6 + 1003923*x^5 + 159517*x^4 - 99287*x^3 - 2510*x^2 + 2334*x - 20, x^27 + x^26 - 46*x^25 - 40*x^24 + 931*x^23 + 705*x^22 - 10911*x^21 - 7226*x^20 + 82036*x^19 + 47799*x^18 - 414420*x^17 - 213486*x^16 + 1432775*x^15 + 651988*x^14 - 3390613*x^13 - 1344044*x^12 + 5408040*x^11 + 1796171*x^10 - 5628071*x^9 - 1433138*x^8 + 3610422*x^7 + 566439*x^6 - 1288868*x^5 - 46430*x^4 + 204611*x^3 - 19199*x^2 - 4287*x + 396, x^27 + x^26 - 46*x^25 - 40*x^24 + 931*x^23 + 705*x^22 - 10911*x^21 - 7226*x^20 + 82036*x^19 + 47799*x^18 - 414420*x^17 - 213486*x^16 + 1432775*x^15 + 651988*x^14 - 3390613*x^13 - 1344044*x^12 + 5408040*x^11 + 1796171*x^10 - 5628071*x^9 - 1433138*x^8 + 3610422*x^7 + 566439*x^6 - 1288868*x^5 - 46430*x^4 + 204611*x^3 - 19199*x^2 - 4287*x + 396, x^26 - x^25 - 39*x^24 + 41*x^23 + 659*x^22 - 727*x^21 - 6343*x^20 + 7327*x^19 + 38477*x^18 - 46359*x^17 - 153748*x^16 + 191701*x^15 + 410849*x^14 - 522026*x^13 - 729614*x^12 + 919177*x^11 + 836210*x^10 - 1000151*x^9 - 581047*x^8 + 621158*x^7 + 217552*x^6 - 192239*x^5 - 32139*x^4 + 23124*x^3 - 868*x^2 - 833*x + 114, x^26 - x^25 - 39*x^24 + 41*x^23 + 659*x^22 - 727*x^21 - 6343*x^20 + 7327*x^19 + 38477*x^18 - 46359*x^17 - 153748*x^16 + 191701*x^15 + 410849*x^14 - 522026*x^13 - 729614*x^12 + 919177*x^11 + 836210*x^10 - 1000151*x^9 - 581047*x^8 + 621158*x^7 + 217552*x^6 - 192239*x^5 - 32139*x^4 + 23124*x^3 - 868*x^2 - 833*x + 114, 2*x^26 + 2*x^25 - 91*x^24 - 76*x^23 + 1817*x^22 + 1254*x^21 - 20921*x^20 - 11822*x^19 + 153549*x^18 + 70459*x^17 - 749835*x^16 - 276786*x^15 + 2468845*x^14 + 721379*x^13 - 5435370*x^12 - 1214430*x^11 + 7764875*x^10 + 1225711*x^9 - 6780549*x^8 - 616562*x^7 + 3227710*x^6 + 57627*x^5 - 650693*x^4 + 45884*x^3 + 22242*x^2 - 912*x - 237, 2*x^26 + 2*x^25 - 91*x^24 - 76*x^23 + 1817*x^22 + 1254*x^21 - 20921*x^20 - 11822*x^19 + 153549*x^18 + 70459*x^17 - 749835*x^16 - 276786*x^15 + 2468845*x^14 + 721379*x^13 - 5435370*x^12 - 1214430*x^11 + 7764875*x^10 + 1225711*x^9 - 6780549*x^8 - 616562*x^7 + 3227710*x^6 + 57627*x^5 - 650693*x^4 + 45884*x^3 + 22242*x^2 - 912*x - 237, -3*x^24 - x^23 + 106*x^22 + 29*x^21 - 1590*x^20 - 339*x^19 + 13202*x^18 + 1950*x^17 - 66297*x^16 - 4525*x^15 + 206187*x^14 - 8609*x^13 - 388257*x^12 + 84373*x^11 + 403493*x^10 - 227373*x^9 - 160172*x^8 + 293590*x^7 - 64365*x^6 - 180852*x^5 + 70791*x^4 + 43382*x^3 - 14783*x^2 - 793*x + 344, -3*x^24 - x^23 + 106*x^22 + 29*x^21 - 1590*x^20 - 339*x^19 + 13202*x^18 + 1950*x^17 - 66297*x^16 - 4525*x^15 + 206187*x^14 - 8609*x^13 - 388257*x^12 + 84373*x^11 + 403493*x^10 - 227373*x^9 - 160172*x^8 + 293590*x^7 - 64365*x^6 - 180852*x^5 + 70791*x^4 + 43382*x^3 - 14783*x^2 - 793*x + 344, x^26 + x^25 - 42*x^24 - 36*x^23 + 767*x^22 + 559*x^21 - 8001*x^20 - 4916*x^19 + 52708*x^18 + 27013*x^17 - 229094*x^16 - 96448*x^15 + 667285*x^14 + 225604*x^13 - 1297137*x^12 - 341970*x^11 + 1642734*x^10 + 328795*x^9 - 1284947*x^8 - 194136*x^7 + 559188*x^6 + 64665*x^5 - 109646*x^4 - 7806*x^3 + 5381*x^2 + 19*x - 29, x^26 + x^25 - 42*x^24 - 36*x^23 + 767*x^22 + 559*x^21 - 8001*x^20 - 4916*x^19 + 52708*x^18 + 27013*x^17 - 229094*x^16 - 96448*x^15 + 667285*x^14 + 225604*x^13 - 1297137*x^12 - 341970*x^11 + 1642734*x^10 + 328795*x^9 - 1284947*x^8 - 194136*x^7 + 559188*x^6 + 64665*x^5 - 109646*x^4 - 7806*x^3 + 5381*x^2 + 19*x - 29, x^27 + x^26 - 43*x^25 - 40*x^24 + 810*x^23 + 701*x^22 - 8780*x^21 - 7086*x^20 + 60471*x^19 + 45758*x^18 - 275597*x^17 - 197390*x^16 + 838520*x^15 + 577427*x^14 - 1674117*x^13 - 1138552*x^12 + 2085767*x^11 + 1474294*x^10 - 1443586*x^9 - 1189892*x^8 + 383918*x^7 + 538852*x^6 + 62301*x^5 - 103978*x^4 - 31567*x^3 + 1879*x^2 + 1454*x + 10, x^27 + x^26 - 43*x^25 - 40*x^24 + 810*x^23 + 701*x^22 - 8780*x^21 - 7086*x^20 + 60471*x^19 + 45758*x^18 - 275597*x^17 - 197390*x^16 + 838520*x^15 + 577427*x^14 - 1674117*x^13 - 1138552*x^12 + 2085767*x^11 + 1474294*x^10 - 1443586*x^9 - 1189892*x^8 + 383918*x^7 + 538852*x^6 + 62301*x^5 - 103978*x^4 - 31567*x^3 + 1879*x^2 + 1454*x + 10, -x^23 - 3*x^22 + 30*x^21 + 101*x^20 - 376*x^19 - 1441*x^18 + 2562*x^17 + 11346*x^16 - 10403*x^15 - 53783*x^14 + 26457*x^13 + 157063*x^12 - 45601*x^11 - 277551*x^10 + 62485*x^9 + 279361*x^8 - 71904*x^7 - 141482*x^6 + 52397*x^5 + 28920*x^4 - 16291*x^3 - 2796*x^2 + 581*x + 73, -x^23 - 3*x^22 + 30*x^21 + 101*x^20 - 376*x^19 - 1441*x^18 + 2562*x^17 + 11346*x^16 - 10403*x^15 - 53783*x^14 + 26457*x^13 + 157063*x^12 - 45601*x^11 - 277551*x^10 + 62485*x^9 + 279361*x^8 - 71904*x^7 - 141482*x^6 + 52397*x^5 + 28920*x^4 - 16291*x^3 - 2796*x^2 + 581*x + 73, x^28 + x^27 - 46*x^26 - 41*x^25 + 940*x^24 + 736*x^23 - 11256*x^22 - 7613*x^21 + 87735*x^20 + 50253*x^19 - 467623*x^18 - 221490*x^17 + 1742103*x^16 + 662512*x^15 - 4553811*x^14 - 1337905*x^13 + 8250751*x^12 + 1769547*x^11 - 10044671*x^10 - 1415452*x^9 + 7745514*x^8 + 534256*x^7 - 3382961*x^6 + 30634*x^5 + 651265*x^4 - 67129*x^3 - 19920*x^2 + 1755*x + 123, x^28 + x^27 - 46*x^26 - 41*x^25 + 940*x^24 + 736*x^23 - 11256*x^22 - 7613*x^21 + 87735*x^20 + 50253*x^19 - 467623*x^18 - 221490*x^17 + 1742103*x^16 + 662512*x^15 - 4553811*x^14 - 1337905*x^13 + 8250751*x^12 + 1769547*x^11 - 10044671*x^10 - 1415452*x^9 + 7745514*x^8 + 534256*x^7 - 3382961*x^6 + 30634*x^5 + 651265*x^4 - 67129*x^3 - 19920*x^2 + 1755*x + 123]>
       ]
>;

MOG[571] := 	// J_0(571)
   rec<SupersingularModule | 
       MonodromyWeights   := [2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [15, 132, 283, 350, 404, 410, 417, 520, 521, 544, 310*x + 132, 261*x + 132, 66*x + 490, 505*x + 490, 209*x + 335, 362*x + 335, 468*x + 320, 103*x + 320, 525*x + 494, 46*x + 494, 538*x + 29, 33*x + 29, 61*x + 273, 510*x + 273, 297*x + 408, 274*x + 408, 189*x + 565, 382*x + 565, 315*x + 554, 256*x + 554, 350*x + 126, 221*x + 126, 380*x + 513, 191*x + 513, 382*x + 410, 189*x + 410, 19*x + 429, 552*x + 429, 329*x + 465, 242*x + 465, 341*x + 58, 230*x + 58, 314*x + 556, 257*x + 556, 321*x + 552, 250*x + 552, 364*x + 460, 207*x + 460]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x,
           Coordinates        := [0, -2, 0, 0, -2, -2, -2, 2, 4, -2, 0, 0, 0, 0, 0, 0, 3, 3, -3, -3, 2, 2, -2, -2, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -2, -2, -1, -1, 0, 0, 1, 1, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x + 2,
           Coordinates        := [0, -2, 0, 0, -2, 2, -2, 2, 0, 2, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, -1, -1, 0, 0, -1, -1, 0, 0, -1, -1, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 5,
           Coordinates        := [0, 1/2*x - 1/2, 0, -1/2*x + 5/2, -1/2*x - 1/2, 1/2*x - 1/2, -1/2*x - 1/2, -1/2*x + 1/2, 1/2*x - 3/2, -1/2*x - 1/2, 0, 0, 0, 0, 0, 0, 1/2*x - 1/2, 1/2*x - 1/2, -1/2*x + 1/2, -1/2*x + 1/2, -1/2*x + 1/2, -1/2*x + 1/2, 1/2*x - 1/2, 1/2*x - 1/2, -1/2*x + 3/2, -1/2*x + 3/2, 1, 1, -1, -1, 1/2*x - 3/2, 1/2*x - 3/2, -1, -1, -1/2*x + 3/2, -1/2*x + 3/2, 1/2*x - 1/2, 1/2*x - 1/2, 1, 1, 0, 0, -1/2*x + 3/2, -1/2*x + 3/2, x - 1, x - 1, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 2*x + 1,
           Coordinates        := [-2*x - 2, -x - 5, 0, -x - 1, -x - 2, x - 1, -x - 2, -x - 3, x + 4, -x, 2*x + 2, 2*x + 2, 2*x + 2, 2*x + 2, 0, 0, -x - 3, -x - 3, x + 3, x + 3, -x - 1, -x - 1, -x - 1, -x - 1, -x - 2, -x - 2, -2*x - 3, -2*x - 3, 1, 1, -x, -x, -1, -1, x + 2, x + 2, x + 1, x + 1, 1, 1, 2*x + 2, 2*x + 2, x + 2, x + 2, 2, 2, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 + 2*x^2 - 2*x - 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x, x, -x^2 - x, x^2 + x, x, -x, x^2 - 1, -x^2 + 1, -x - 1, x + 1, 0, 0, x^2 + x, -x^2 - x, 2*x + 1, -2*x - 1, -x^2 + 1, x^2 - 1, -1, 1, 1, -1, -x - 1, x + 1, x + 1, -x - 1, x^2 + x, -x^2 - x, -2*x - 1, 2*x + 1, -x^2 - x, x^2 + x, x + 1, -x - 1, -1, 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^4 - 2*x^3 - 4*x^2 + 6*x + 2,
           Coordinates        := [-2, 2*x - 2, -2*x + 2, 2, -2*x + 2, 0, 0, 2*x^2 - 2*x - 2, -2, -2, -x^2 + x + 2, -x^2 + x + 2, x - 2, x - 2, -x^3 + x^2 + 3*x, -x^3 + x^2 + 3*x, x^2 - 2*x - 1, x^2 - 2*x - 1, x^2 - x - 1, x^2 - x - 1, -x^3 + x^2 + 4*x - 2, -x^3 + x^2 + 4*x - 2, -x^2 + x + 2, -x^2 + x + 2, x^3 - 2*x^2 - 2*x + 3, x^3 - 2*x^2 - 2*x + 3, -1, -1, x^3 - x^2 - 2*x + 1, x^3 - x^2 - 2*x + 1, 1, 1, -x^2 + x + 1, -x^2 + x + 1, -x + 1, -x + 1, x^2 - x - 2, x^2 - x - 2, -1, -1, -x, -x, x - 1, x - 1, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^6 + x^5 - 10*x^4 - 11*x^3 + 22*x^2 + 25*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^5 - 4*x^4 - x^3 + 14*x^2 + 21*x + 10, x^5 + 4*x^4 + x^3 - 14*x^2 - 21*x - 10, -x^5 - 4*x^4 - x^3 + 10*x^2 + 9*x + 2, x^5 + 4*x^4 + x^3 - 10*x^2 - 9*x - 2, -2*x^5 - 7*x^4 + 4*x^3 + 33*x^2 + 26*x - 1, 2*x^5 + 7*x^4 - 4*x^3 - 33*x^2 - 26*x + 1, -x^5 - 4*x^4 - x^3 + 10*x^2 + 5*x - 6, x^5 + 4*x^4 + x^3 - 10*x^2 - 5*x + 6, -x^5 - 3*x^4 + x^3 + 7*x^2 + x - 3, x^5 + 3*x^4 - x^3 - 7*x^2 - x + 3, -2*x^5 - 6*x^4 + 6*x^3 + 28*x^2 + 12*x - 8, 2*x^5 + 6*x^4 - 6*x^3 - 28*x^2 - 12*x + 8, -2*x^5 - 6*x^4 + 6*x^3 + 28*x^2 + 16*x, 2*x^5 + 6*x^4 - 6*x^3 - 28*x^2 - 16*x, -2*x^4 - 8*x^3 - 4*x^2 + 14*x + 12, 2*x^4 + 8*x^3 + 4*x^2 - 14*x - 12, -2*x^5 - 5*x^4 + 8*x^3 + 21*x^2 - 4*x - 13, 2*x^5 + 5*x^4 - 8*x^3 - 21*x^2 + 4*x + 13, -x^4 - 2*x^3 + 3*x^2 + 4*x - 3, x^4 + 2*x^3 - 3*x^2 - 4*x + 3, -x^5 - 4*x^4 - x^3 + 10*x^2 + 9*x + 2, x^5 + 4*x^4 + x^3 - 10*x^2 - 9*x - 2, -x^5 - 3*x^4 + 3*x^3 + 13*x^2 + 7*x + 1, x^5 + 3*x^4 - 3*x^3 - 13*x^2 - 7*x - 1, -2*x^4 - 6*x^3 + 6*x^2 + 28*x + 16, 2*x^4 + 6*x^3 - 6*x^2 - 28*x - 16, -2*x^3 - 6*x^2 - 2*x + 4, 2*x^3 + 6*x^2 + 2*x - 4, -2*x^4 - 6*x^3 + 2*x^2 + 16*x + 8, 2*x^4 + 6*x^3 - 2*x^2 - 16*x - 8, -x^4 - 4*x^3 + x^2 + 14*x + 9, x^4 + 4*x^3 - x^2 - 14*x - 9, -4*x^2 - 12*x - 8, 4*x^2 + 12*x + 8, -2*x^3 - 6*x^2 - 2*x + 4, 2*x^3 + 6*x^2 + 2*x - 4, -4*x - 8, 4*x + 8]>,
         rec<Eigen |
           DefiningPolynomial := x^10 + x^9 - 10*x^8 - 7*x^7 + 34*x^6 + 16*x^5 - 47*x^4 - 13*x^3 + 24*x^2 + 2*x - 2,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^9 + 10*x^7 - 3*x^6 - 30*x^5 + 14*x^4 + 30*x^3 - 15*x^2 - 7*x + 2, x^9 - 10*x^7 + 3*x^6 + 30*x^5 - 14*x^4 - 30*x^3 + 15*x^2 + 7*x - 2, x^9 - 10*x^7 + 3*x^6 + 31*x^5 - 12*x^4 - 33*x^3 + 12*x^2 + 9*x - 2, -x^9 + 10*x^7 - 3*x^6 - 31*x^5 + 12*x^4 + 33*x^3 - 12*x^2 - 9*x + 2, x^6 - x^5 - 5*x^4 + 5*x^3 + 5*x^2 - 5*x, -x^6 + x^5 + 5*x^4 - 5*x^3 - 5*x^2 + 5*x, -x^7 - x^6 + 7*x^5 + 4*x^4 - 13*x^3 - 3*x^2 + 7*x - 1, x^7 + x^6 - 7*x^5 - 4*x^4 + 13*x^3 + 3*x^2 - 7*x + 1, x^7 + x^6 - 5*x^5 - 4*x^4 + 8*x^3 + 3*x^2 - 4*x + 1, -x^7 - x^6 + 5*x^5 + 4*x^4 - 8*x^3 - 3*x^2 + 4*x - 1, x^9 + x^8 - 8*x^7 - 5*x^6 + 21*x^5 + 6*x^4 - 22*x^3 + 8*x - 2, -x^9 - x^8 + 8*x^7 + 5*x^6 - 21*x^5 - 6*x^4 + 22*x^3 - 8*x + 2, -x^8 - x^7 + 7*x^6 + 4*x^5 - 15*x^4 - 3*x^3 + 10*x^2 - x, x^8 + x^7 - 7*x^6 - 4*x^5 + 15*x^4 + 3*x^3 - 10*x^2 + x, x^7 - 6*x^5 + x^4 + 10*x^3 - 2*x^2 - 5*x + 1, -x^7 + 6*x^5 - x^4 - 10*x^3 + 2*x^2 + 5*x - 1, -x^9 - x^8 + 8*x^7 + 4*x^6 - 21*x^5 - 2*x^4 + 20*x^3 - 3*x^2 - 5*x + 1, x^9 + x^8 - 8*x^7 - 4*x^6 + 21*x^5 + 2*x^4 - 20*x^3 + 3*x^2 + 5*x - 1, -x^9 + 10*x^7 - 2*x^6 - 31*x^5 + 10*x^4 + 33*x^3 - 12*x^2 - 9*x + 3, x^9 - 10*x^7 + 2*x^6 + 31*x^5 - 10*x^4 - 33*x^3 + 12*x^2 + 9*x - 3, x^8 + x^7 - 6*x^6 - 4*x^5 + 10*x^4 + 3*x^3 - 4*x^2 + x - 1, -x^8 - x^7 + 6*x^6 + 4*x^5 - 10*x^4 - 3*x^3 + 4*x^2 - x + 1, x^8 + x^7 - 8*x^6 - 5*x^5 + 20*x^4 + 5*x^3 - 17*x^2 + 3, -x^8 - x^7 + 8*x^6 + 5*x^5 - 20*x^4 - 5*x^3 + 17*x^2 - 3, -x^7 - x^6 + 7*x^5 + 4*x^4 - 15*x^3 - 3*x^2 + 10*x - 1, x^7 + x^6 - 7*x^5 - 4*x^4 + 15*x^3 + 3*x^2 - 10*x + 1, x^6 - 2*x^5 - 4*x^4 + 8*x^3 + 2*x^2 - 7*x + 2, -x^6 + 2*x^5 + 4*x^4 - 8*x^3 - 2*x^2 + 7*x - 2, -x^8 - x^7 + 7*x^6 + 3*x^5 - 16*x^4 + 12*x^2 - 3*x - 1, x^8 + x^7 - 7*x^6 - 3*x^5 + 16*x^4 - 12*x^2 + 3*x + 1, -x^5 - x^4 + 5*x^3 - 5*x + 2, x^5 + x^4 - 5*x^3 + 5*x - 2, -x^6 + 3*x^4 - 3*x^2 + 1, x^6 - 3*x^4 + 3*x^2 - 1, -x^7 - x^6 + 6*x^5 + 3*x^4 - 13*x^3 + 9*x - 3, x^7 + x^6 - 6*x^5 - 3*x^4 + 13*x^3 - 9*x + 3, -x^5 + x^4 + 2*x^3 - 2*x^2 - x + 1, x^5 - x^4 - 2*x^3 + 2*x^2 + x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^18 - 29*x^16 - 2*x^15 + 344*x^14 + 53*x^13 - 2152*x^12 - 547*x^11 + 7628*x^10 + 2794*x^9 - 15277*x^8 - 7417*x^7 + 16118*x^6 + 9851*x^5 - 7336*x^4 - 5644*x^3 + 544*x^2 + 848*x + 96,
           Coordinates        := [-4*x^16 - 4*x^15 + 96*x^14 + 96*x^13 - 904*x^12 - 912*x^11 + 4224*x^10 + 4368*x^9 - 10166*x^8 - 11114*x^7 + 11606*x^6 + 14378*x^5 - 4130*x^4 - 7714*x^3 - 1148*x^2 + 576*x + 96, 2*x^16 - 46*x^14 - 4*x^13 + 414*x^12 + 72*x^11 - 1812*x^10 - 514*x^9 + 3830*x^8 + 1726*x^7 - 3042*x^6 - 2354*x^5 - 570*x^4 + 468*x^3 + 1152*x^2 + 592*x + 64, -4*x^17 + 100*x^15 - 1000*x^13 - 8*x^12 + 5136*x^11 + 144*x^10 - 14534*x^9 - 948*x^8 + 22720*x^7 + 2772*x^6 - 18508*x^5 - 3584*x^4 + 6566*x^3 + 1724*x^2 - 480*x - 96, x^17 - 25*x^15 - 2*x^14 + 246*x^13 + 47*x^12 - 1182*x^11 - 431*x^10 + 2728*x^9 + 1826*x^8 - 2133*x^7 - 3319*x^6 - 1506*x^5 + 1791*x^4 + 2194*x^3 + 248*x^2 - 176*x, 4*x^17 - 106*x^15 - 8*x^14 + 1134*x^13 + 188*x^12 - 6272*x^11 - 1706*x^10 + 19030*x^9 + 7496*x^8 - 30770*x^7 - 16332*x^6 + 23036*x^5 + 16114*x^4 - 4520*x^3 - 5260*x^2 - 1120*x - 80, x^17 - 23*x^15 - 2*x^14 + 210*x^13 + 33*x^12 - 968*x^11 - 211*x^10 + 2396*x^9 + 678*x^8 - 3253*x^7 - 1285*x^6 + 2508*x^5 + 1767*x^4 - 680*x^3 - 1288*x^2 - 592*x - 80, -3*x^17 + 83*x^15 - 922*x^13 - 19*x^12 + 5284*x^11 + 343*x^10 - 16710*x^9 - 2270*x^8 + 28913*x^7 + 6749*x^6 - 25198*x^5 - 8949*x^4 + 8394*x^3 + 4140*x^2 + 136*x - 32, 2*x^15 - 42*x^13 - 8*x^12 + 338*x^11 + 128*x^10 - 1294*x^9 - 778*x^8 + 2344*x^7 + 2250*x^6 - 1572*x^5 - 3090*x^4 - 362*x^3 + 1632*x^2 + 832*x + 80, x^17 - 23*x^15 - 2*x^14 + 210*x^13 + 27*x^12 - 960*x^11 - 87*x^10 + 2260*x^9 - 258*x^8 - 2503*x^7 + 1957*x^6 + 1190*x^5 - 3505*x^4 - 1082*x^3 + 1904*x^2 + 1048*x + 112, 2*x^16 - 46*x^14 - 10*x^13 + 422*x^12 + 196*x^11 - 1948*x^10 - 1450*x^9 + 4580*x^8 + 4968*x^7 - 4360*x^6 - 7626*x^5 - 972*x^4 + 3660*x^3 + 2792*x^2 + 784*x + 64, -4*x^16 + 92*x^14 + 6*x^13 - 832*x^12 - 110*x^11 + 3765*x^10 + 746*x^9 - 9028*x^8 - 2334*x^7 + 11376*x^6 + 3532*x^5 - 7259*x^4 - 2712*x^3 + 1996*x^2 + 1072*x + 96, -4*x^16 + 92*x^14 + 6*x^13 - 832*x^12 - 110*x^11 + 3765*x^10 + 746*x^9 - 9028*x^8 - 2334*x^7 + 11376*x^6 + 3532*x^5 - 7259*x^4 - 2712*x^3 + 1996*x^2 + 1072*x + 96, -4*x^15 + 84*x^13 + 15*x^12 - 680*x^11 - 262*x^10 + 2659*x^9 + 1644*x^8 - 5087*x^7 - 4455*x^6 + 4011*x^5 + 4984*x^4 - 324*x^3 - 1876*x^2 - 640*x - 48, -4*x^15 + 84*x^13 + 15*x^12 - 680*x^11 - 262*x^10 + 2659*x^9 + 1644*x^8 - 5087*x^7 - 4455*x^6 + 4011*x^5 + 4984*x^4 - 324*x^3 - 1876*x^2 - 640*x - 48, -4*x^15 + 6*x^14 + 84*x^13 - 117*x^12 - 691*x^11 + 864*x^10 + 2847*x^9 - 3030*x^8 - 6257*x^7 + 5215*x^6 + 7238*x^5 - 4112*x^4 - 4246*x^3 + 1224*x^2 + 1216*x + 144, -4*x^15 + 6*x^14 + 84*x^13 - 117*x^12 - 691*x^11 + 864*x^10 + 2847*x^9 - 3030*x^8 - 6257*x^7 + 5215*x^6 + 7238*x^5 - 4112*x^4 - 4246*x^3 + 1224*x^2 + 1216*x + 144, -4*x^14 + 3*x^13 + 78*x^12 - 45*x^11 - 587*x^10 + 215*x^9 + 2158*x^8 - 250*x^7 - 4012*x^6 - 592*x^5 + 3367*x^4 + 1216*x^3 - 908*x^2 - 512*x - 48, -4*x^14 + 3*x^13 + 78*x^12 - 45*x^11 - 587*x^10 + 215*x^9 + 2158*x^8 - 250*x^7 - 4012*x^6 - 592*x^5 + 3367*x^4 + 1216*x^3 - 908*x^2 - 512*x - 48, -4*x^14 + 6*x^13 + 74*x^12 - 107*x^11 - 519*x^10 + 683*x^9 + 1783*x^8 - 1871*x^7 - 3353*x^6 + 2044*x^5 + 3568*x^4 - 380*x^3 - 1728*x^2 - 608*x - 48, -4*x^14 + 6*x^13 + 74*x^12 - 107*x^11 - 519*x^10 + 683*x^9 + 1783*x^8 - 1871*x^7 - 3353*x^6 + 2044*x^5 + 3568*x^4 - 380*x^3 - 1728*x^2 - 608*x - 48, 4*x^15 - 4*x^14 - 88*x^13 + 69*x^12 + 756*x^11 - 415*x^10 - 3217*x^9 + 988*x^8 + 7077*x^7 - 601*x^6 - 7559*x^5 - 669*x^4 + 3318*x^3 + 596*x^2 - 392*x - 64, 4*x^15 - 4*x^14 - 88*x^13 + 69*x^12 + 756*x^11 - 415*x^10 - 3217*x^9 + 988*x^8 + 7077*x^7 - 601*x^6 - 7559*x^5 - 669*x^4 + 3318*x^3 + 596*x^2 - 392*x - 64, 2*x^15 - 4*x^14 - 35*x^13 + 72*x^12 + 218*x^11 - 503*x^10 - 559*x^9 + 1783*x^8 + 472*x^7 - 3537*x^6 - 85*x^5 + 3682*x^4 + 618*x^3 - 1376*x^2 - 536*x - 32, 2*x^15 - 4*x^14 - 35*x^13 + 72*x^12 + 218*x^11 - 503*x^10 - 559*x^9 + 1783*x^8 + 472*x^7 - 3537*x^6 - 85*x^5 + 3682*x^4 + 618*x^3 - 1376*x^2 - 536*x - 32, -2*x^13 - 10*x^12 + 37*x^11 + 190*x^10 - 238*x^9 - 1299*x^8 + 558*x^7 + 3879*x^6 + 47*x^5 - 4885*x^4 - 1510*x^3 + 1980*x^2 + 1080*x + 112, -2*x^13 - 10*x^12 + 37*x^11 + 190*x^10 - 238*x^9 - 1299*x^8 + 558*x^7 + 3879*x^6 + 47*x^5 - 4885*x^4 - 1510*x^3 + 1980*x^2 + 1080*x + 112, 3*x^14 - 4*x^13 - 50*x^12 + 56*x^11 + 287*x^10 - 263*x^9 - 595*x^8 + 517*x^7 - 16*x^6 - 691*x^5 + 1117*x^4 + 926*x^3 - 616*x^2 - 488*x - 64, 3*x^14 - 4*x^13 - 50*x^12 + 56*x^11 + 287*x^10 - 263*x^9 - 595*x^8 + 517*x^7 - 16*x^6 - 691*x^5 + 1117*x^4 + 926*x^3 - 616*x^2 - 488*x - 64, 2*x^14 - 2*x^13 - 38*x^12 + 28*x^11 + 259*x^10 - 132*x^9 - 743*x^8 + 262*x^7 + 735*x^6 - 368*x^5 + 104*x^4 + 582*x^3 - 160*x^2 - 256*x - 32, 2*x^14 - 2*x^13 - 38*x^12 + 28*x^11 + 259*x^10 - 132*x^9 - 743*x^8 + 262*x^7 + 735*x^6 - 368*x^5 + 104*x^4 + 582*x^3 - 160*x^2 - 256*x - 32, 4*x^14 - 8*x^13 - 84*x^12 + 133*x^11 + 686*x^10 - 744*x^9 - 2772*x^8 + 1472*x^7 + 5764*x^6 - 75*x^5 - 5468*x^4 - 1986*x^3 + 1428*x^2 + 848*x + 80, 4*x^14 - 8*x^13 - 84*x^12 + 133*x^11 + 686*x^10 - 744*x^9 - 2772*x^8 + 1472*x^7 + 5764*x^6 - 75*x^5 - 5468*x^4 - 1986*x^3 + 1428*x^2 + 848*x + 80, 4*x^16 - 98*x^14 - 7*x^13 + 957*x^12 + 143*x^11 - 4767*x^10 - 1115*x^9 + 12879*x^8 + 4184*x^7 - 18538*x^6 - 7832*x^5 + 12898*x^4 + 6828*x^3 - 3044*x^2 - 2128*x - 224, 4*x^16 - 98*x^14 - 7*x^13 + 957*x^12 + 143*x^11 - 4767*x^10 - 1115*x^9 + 12879*x^8 + 4184*x^7 - 18538*x^6 - 7832*x^5 + 12898*x^4 + 6828*x^3 - 3044*x^2 - 2128*x - 224, 2*x^16 - 44*x^14 - 8*x^13 + 385*x^12 + 132*x^11 - 1710*x^10 - 801*x^9 + 4097*x^8 + 2203*x^7 - 5284*x^6 - 2865*x^5 + 3613*x^4 + 1944*x^3 - 1144*x^2 - 760*x - 80, 2*x^16 - 44*x^14 - 8*x^13 + 385*x^12 + 132*x^11 - 1710*x^10 - 801*x^9 + 4097*x^8 + 2203*x^7 - 5284*x^6 - 2865*x^5 + 3613*x^4 + 1944*x^3 - 1144*x^2 - 760*x - 80, -2*x^14 - 5*x^13 + 43*x^12 + 102*x^11 - 337*x^10 - 770*x^9 + 1172*x^8 + 2657*x^7 - 1705*x^6 - 4218*x^5 + 591*x^4 + 2750*x^3 + 560*x^2 - 224*x - 32, -2*x^14 - 5*x^13 + 43*x^12 + 102*x^11 - 337*x^10 - 770*x^9 + 1172*x^8 + 2657*x^7 - 1705*x^6 - 4218*x^5 + 591*x^4 + 2750*x^3 + 560*x^2 - 224*x - 32, x^15 + 4*x^14 - 18*x^13 - 94*x^12 + 114*x^11 + 827*x^10 - 251*x^9 - 3424*x^8 - 238*x^7 + 6858*x^6 + 1794*x^5 - 6123*x^4 - 2450*x^3 + 1796*x^2 + 984*x + 80, x^15 + 4*x^14 - 18*x^13 - 94*x^12 + 114*x^11 + 827*x^10 - 251*x^9 - 3424*x^8 - 238*x^7 + 6858*x^6 + 1794*x^5 - 6123*x^4 - 2450*x^3 + 1796*x^2 + 984*x + 80, 4*x^15 + 5*x^14 - 89*x^13 - 114*x^12 + 749*x^11 + 1006*x^10 - 2934*x^9 - 4300*x^8 + 5155*x^7 + 9101*x^6 - 2579*x^5 - 8617*x^4 - 1842*x^3 + 2536*x^2 + 1288*x + 144, 4*x^15 + 5*x^14 - 89*x^13 - 114*x^12 + 749*x^11 + 1006*x^10 - 2934*x^9 - 4300*x^8 + 5155*x^7 + 9101*x^6 - 2579*x^5 - 8617*x^4 - 1842*x^3 + 2536*x^2 + 1288*x + 144, -2*x^15 - 3*x^14 + 50*x^13 + 69*x^12 - 476*x^11 - 623*x^10 + 2180*x^9 + 2784*x^8 - 4920*x^7 - 6392*x^6 + 4762*x^5 + 7044*x^4 - 680*x^3 - 2764*x^2 - 888*x - 80, -2*x^15 - 3*x^14 + 50*x^13 + 69*x^12 - 476*x^11 - 623*x^10 + 2180*x^9 + 2784*x^8 - 4920*x^7 - 6392*x^6 + 4762*x^5 + 7044*x^4 - 680*x^3 - 2764*x^2 - 888*x - 80, x^16 - 26*x^14 - x^13 + 278*x^12 + 22*x^11 - 1544*x^10 - 227*x^9 + 4657*x^8 + 1186*x^7 - 7291*x^6 - 2853*x^5 + 5050*x^4 + 2712*x^3 - 936*x^2 - 720*x - 80, x^16 - 26*x^14 - x^13 + 278*x^12 + 22*x^11 - 1544*x^10 - 227*x^9 + 4657*x^8 + 1186*x^7 - 7291*x^6 - 2853*x^5 + 5050*x^4 + 2712*x^3 - 936*x^2 - 720*x - 80, -3*x^16 - 3*x^15 + 78*x^14 + 75*x^13 - 797*x^12 - 747*x^11 + 4061*x^10 + 3781*x^9 - 10749*x^8 - 10235*x^7 + 13758*x^6 + 14115*x^5 - 6321*x^4 - 8226*x^3 - 512*x^2 + 864*x + 112, -3*x^16 - 3*x^15 + 78*x^14 + 75*x^13 - 797*x^12 - 747*x^11 + 4061*x^10 + 3781*x^9 - 10749*x^8 - 10235*x^7 + 13758*x^6 + 14115*x^5 - 6321*x^4 - 8226*x^3 - 512*x^2 + 864*x + 112]>
   ]
>;

MOG[577] := 	// J_0(577)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [26, 87, 126, 431, 526*x + 55, 51*x + 55, 538*x + 332, 39*x + 332, 500*x + 482, 77*x + 482, 413*x + 439, 164*x + 439, 509*x + 50, 68*x + 50, 385*x + 189, 192*x + 189, 450*x + 392, 127*x + 392, 410*x + 289, 167*x + 289, 133*x + 535, 444*x + 535, 238*x + 77, 339*x + 77, 10*x + 554, 567*x + 554, 264*x + 558, 313*x + 558, 23*x + 287, 554*x + 287, 460*x + 332, 117*x + 332, 107*x + 545, 470*x + 545, 288*x + 90, 289*x + 90, 376*x + 281, 201*x + 281, 177*x + 328, 400*x + 328, 205*x + 83, 372*x + 83, 86*x + 564, 491*x + 564, 439*x + 185, 138*x + 185, 362*x + 489, 215*x + 489]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2,
           Coordinates        := [1, 1, -2, x + 1, -1/2, -1/2, 1, 1, 1, 1, -1/2, -1/2, -1/2, -1/2, -1/2*x - 2, -1/2*x - 2, 1/2*x + 1, 1/2*x + 1, -x - 2, -x - 2, -1/2*x - 1/2, -1/2*x - 1/2, 1/2*x + 1, 1/2*x + 1, -1/2*x - 1/2, -1/2*x - 1/2, 1/2*x + 1, 1/2*x + 1, -1/2*x - 1/2, -1/2*x - 1/2, 1/2*x + 1, 1/2*x + 1, 1, 1, 1, 1, -1/2, -1/2, -1/2*x - 1/2, -1/2*x - 1/2, x + 1, x + 1, 1/2*x - 1/2, 1/2*x - 1/2, -1/2, -1/2, -1/2*x - 1/2, -1/2*x - 1/2]>,
         rec<Eigen |
           DefiningPolynomial := x^2 - 3*x + 1,
           Coordinates        := [2*x - 4, 2, 2*x - 4, 0, x - 2, x - 2, -x + 3, -x + 3, 0, 0, 0, 0, -x + 2, -x + 2, 0, 0, x - 3, x - 3, -x + 1, -x + 1, x - 2, x - 2, -x + 2, -x + 2, -x + 2, -x + 2, -x, -x, -1, -1, 0, 0, x - 1, x - 1, -1, -1, -x + 2, -x + 2, x - 1, x - 1, 0, 0, 2, 2, -1, -1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^3 - x^2 - 4*x + 3,
           Coordinates        := [2*x - 2, 2*x^2 + 2*x - 2, 2*x - 2, 0, -2*x + 1, -2*x + 1, -x^2 - x + 1, -x^2 - x + 1, -x^2 + 1, -x^2 + 1, -x^2 + 1, -x^2 + 1, -x + 1, -x + 1, -x^2 - 3*x + 3, -x^2 - 3*x + 3, x^2 + x - 1, x^2 + x - 1, x - 1, x - 1, -x^2 + x, -x^2 + x, -2*x^2 - 2*x + 2, -2*x^2 - 2*x + 2, 2*x^2 + 2*x - 3, 2*x^2 + 2*x - 3, x^2 + x - 1, x^2 + x - 1, -x, -x, x^2 - 1, x^2 - 1, -x + 1, -x + 1, -x^2 - x + 1, -x^2 - x + 1, x^2 + 2*x - 2, x^2 + 2*x - 2, x^2 - x, x^2 - x, 0, 0, x - 1, x - 1, 1, 1, x, x]>,
         rec<Eigen |
           DefiningPolynomial := x^18 - 8*x^17 + 2*x^16 + 136*x^15 - 265*x^14 - 830*x^13 + 2626*x^12 + 1878*x^11 - 11525*x^10 + 1214*x^9 + 26264*x^8 - 13076*x^7 - 31167*x^6 + 21957*x^5 + 17488*x^4 - 13889*x^3 - 3523*x^2 + 2770*x - 117,
           Coordinates        := [x^17 - 8*x^16 + 5*x^15 + 110*x^14 - 230*x^13 - 546*x^12 + 1780*x^11 + 1016*x^10 - 6281*x^9 + 334*x^8 + 11519*x^7 - 3624*x^6 - 10918*x^5 + 4325*x^4 + 4716*x^3 - 1712*x^2 - 565*x + 174, -x^16 + 6*x^15 + 5*x^14 - 88*x^13 + 66*x^12 + 482*x^11 - 628*x^10 - 1248*x^9 + 1995*x^8 + 1648*x^7 - 2823*x^6 - 1244*x^5 + 1758*x^4 + 635*x^3 - 440*x^2 - 108*x + 57, -x^17 + 8*x^16 - 7*x^15 - 98*x^14 + 242*x^13 + 350*x^12 - 1592*x^11 + 8*x^10 + 4491*x^9 - 2342*x^8 - 6119*x^7 + 4402*x^6 + 4246*x^5 - 2881*x^4 - 1710*x^3 + 772*x^2 + 273*x - 114, x^16 - 10*x^15 + 21*x^14 + 92*x^13 - 392*x^12 - 120*x^11 + 2236*x^10 - 1336*x^9 - 5959*x^8 + 5960*x^7 + 7957*x^6 - 9632*x^5 - 5158*x^4 + 6369*x^3 + 1526*x^2 - 1388*x + 9, -2*x^16 + 16*x^15 - 14*x^14 - 196*x^13 + 484*x^12 + 702*x^11 - 3203*x^10 + 60*x^9 + 9075*x^8 - 5161*x^7 - 12049*x^6 + 10160*x^5 + 7010*x^4 - 6876*x^3 - 1405*x^2 + 1382*x - 87, -2*x^16 + 16*x^15 - 14*x^14 - 196*x^13 + 484*x^12 + 702*x^11 - 3203*x^10 + 60*x^9 + 9075*x^8 - 5161*x^7 - 12049*x^6 + 10160*x^5 + 7010*x^4 - 6876*x^3 - 1405*x^2 + 1382*x - 87, x^16 - 9*x^15 + 12*x^14 + 110*x^13 - 333*x^12 - 367*x^11 + 2244*x^10 - 370*x^9 - 6780*x^8 + 4485*x^7 + 10039*x^6 - 9069*x^5 - 6911*x^4 + 6845*x^3 + 1732*x^2 - 1518*x + 57, x^16 - 9*x^15 + 12*x^14 + 110*x^13 - 333*x^12 - 367*x^11 + 2244*x^10 - 370*x^9 - 6780*x^8 + 4485*x^7 + 10039*x^6 - 9069*x^5 - 6911*x^4 + 6845*x^3 + 1732*x^2 - 1518*x + 57, -x^17 + 7*x^16 + 2*x^15 - 110*x^14 + 132*x^13 + 685*x^12 - 1244*x^11 - 2192*x^10 + 4954*x^9 + 3961*x^8 - 10415*x^7 - 4281*x^6 + 11833*x^5 + 2916*x^4 - 6540*x^3 - 1122*x^2 + 1158*x + 57, -x^17 + 7*x^16 + 2*x^15 - 110*x^14 + 132*x^13 + 685*x^12 - 1244*x^11 - 2192*x^10 + 4954*x^9 + 3961*x^8 - 10415*x^7 - 4281*x^6 + 11833*x^5 + 2916*x^4 - 6540*x^3 - 1122*x^2 + 1158*x + 57, x^17 - 8*x^16 + 5*x^15 + 112*x^14 - 247*x^13 - 518*x^12 + 1909*x^11 + 589*x^10 - 6470*x^9 + 2190*x^8 + 10715*x^7 - 7059*x^6 - 8002*x^5 + 6746*x^4 + 1763*x^3 - 1845*x^2 + 193*x + 30, x^17 - 8*x^16 + 5*x^15 + 112*x^14 - 247*x^13 - 518*x^12 + 1909*x^11 + 589*x^10 - 6470*x^9 + 2190*x^8 + 10715*x^7 - 7059*x^6 - 8002*x^5 + 6746*x^4 + 1763*x^3 - 1845*x^2 + 193*x + 30, -x^16 + 8*x^15 - 9*x^14 - 81*x^13 + 213*x^12 + 228*x^11 - 1176*x^10 + 161*x^9 + 2813*x^8 - 1781*x^7 - 3004*x^6 + 2880*x^5 + 1022*x^4 - 1595*x^3 + 162*x^2 + 287*x - 87, -x^16 + 8*x^15 - 9*x^14 - 81*x^13 + 213*x^12 + 228*x^11 - 1176*x^10 + 161*x^9 + 2813*x^8 - 1781*x^7 - 3004*x^6 + 2880*x^5 + 1022*x^4 - 1595*x^3 + 162*x^2 + 287*x - 87, x^16 - 8*x^15 + 7*x^14 + 97*x^13 - 236*x^12 - 350*x^11 + 1538*x^10 + 38*x^9 - 4321*x^8 + 2284*x^7 + 5673*x^6 - 4702*x^5 - 3065*x^4 + 3347*x^3 + 324*x^2 - 787*x + 144, x^16 - 8*x^15 + 7*x^14 + 97*x^13 - 236*x^12 - 350*x^11 + 1538*x^10 + 38*x^9 - 4321*x^8 + 2284*x^7 + 5673*x^6 - 4702*x^5 - 3065*x^4 + 3347*x^3 + 324*x^2 - 787*x + 144, x^16 - 7*x^15 - x^14 + 105*x^13 - 148*x^12 - 572*x^11 + 1273*x^10 + 1308*x^9 - 4448*x^8 - 752*x^7 + 7453*x^6 - 1440*x^5 - 5749*x^4 + 1852*x^3 + 1660*x^2 - 435*x - 84, x^16 - 7*x^15 - x^14 + 105*x^13 - 148*x^12 - 572*x^11 + 1273*x^10 + 1308*x^9 - 4448*x^8 - 752*x^7 + 7453*x^6 - 1440*x^5 - 5749*x^4 + 1852*x^3 + 1660*x^2 - 435*x - 84, -x^15 + 8*x^14 - 11*x^13 - 65*x^12 + 188*x^11 + 117*x^10 - 805*x^9 + 217*x^8 + 1451*x^7 - 796*x^6 - 1179*x^5 + 647*x^4 + 333*x^3 - 117*x^2 + 143*x - 66, -x^15 + 8*x^14 - 11*x^13 - 65*x^12 + 188*x^11 + 117*x^10 - 805*x^9 + 217*x^8 + 1451*x^7 - 796*x^6 - 1179*x^5 + 647*x^4 + 333*x^3 - 117*x^2 + 143*x - 66, x^15 - 8*x^14 + 10*x^13 + 78*x^12 - 238*x^11 - 121*x^10 + 1230*x^9 - 869*x^8 - 2351*x^7 + 3417*x^6 + 1079*x^5 - 4024*x^4 + 1150*x^3 + 1278*x^2 - 670*x + 54, x^15 - 8*x^14 + 10*x^13 + 78*x^12 - 238*x^11 - 121*x^10 + 1230*x^9 - 869*x^8 - 2351*x^7 + 3417*x^6 + 1079*x^5 - 4024*x^4 + 1150*x^3 + 1278*x^2 - 670*x + 54, x^15 - 7*x^14 + x^13 + 90*x^12 - 133*x^11 - 430*x^10 + 919*x^9 + 963*x^8 - 2691*x^7 - 1060*x^6 + 3858*x^5 + 625*x^4 - 2589*x^3 - 220*x^2 + 621*x - 84, x^15 - 7*x^14 + x^13 + 90*x^12 - 133*x^11 - 430*x^10 + 919*x^9 + 963*x^8 - 2691*x^7 - 1060*x^6 + 3858*x^5 + 625*x^4 - 2589*x^3 - 220*x^2 + 621*x - 84, x^15 - 6*x^14 - 6*x^13 + 94*x^12 - 64*x^11 - 554*x^10 + 714*x^9 + 1506*x^8 - 2510*x^7 - 1834*x^6 + 3693*x^5 + 855*x^4 - 1955*x^3 - 250*x^2 + 158*x + 54, x^15 - 6*x^14 - 6*x^13 + 94*x^12 - 64*x^11 - 554*x^10 + 714*x^9 + 1506*x^8 - 2510*x^7 - 1834*x^6 + 3693*x^5 + 855*x^4 - 1955*x^3 - 250*x^2 + 158*x + 54, -x^14 + 6*x^13 + x^12 - 63*x^11 + 62*x^10 + 241*x^9 - 323*x^8 - 429*x^7 + 593*x^6 + 390*x^5 - 399*x^4 - 151*x^3 + 31*x^2 - 55*x + 33, -x^14 + 6*x^13 + x^12 - 63*x^11 + 62*x^10 + 241*x^9 - 323*x^8 - 429*x^7 + 593*x^6 + 390*x^5 - 399*x^4 - 151*x^3 + 31*x^2 - 55*x + 33, -x^14 + 10*x^13 - 26*x^12 - 48*x^11 + 309*x^10 - 185*x^9 - 1039*x^8 + 1414*x^7 + 1232*x^6 - 2623*x^5 - 290*x^4 + 1629*x^3 - 50*x^2 - 298*x + 54, -x^14 + 10*x^13 - 26*x^12 - 48*x^11 + 309*x^10 - 185*x^9 - 1039*x^8 + 1414*x^7 + 1232*x^6 - 2623*x^5 - 290*x^4 + 1629*x^3 - 50*x^2 - 298*x + 54, x^14 - 6*x^13 - x^12 + 67*x^11 - 89*x^10 - 215*x^9 + 499*x^8 + 62*x^7 - 861*x^6 + 630*x^5 + 311*x^4 - 774*x^3 + 229*x^2 + 255*x - 84, x^14 - 6*x^13 - x^12 + 67*x^11 - 89*x^10 - 215*x^9 + 499*x^8 + 62*x^7 - 861*x^6 + 630*x^5 + 311*x^4 - 774*x^3 + 229*x^2 + 255*x - 84, 2*x^14 - 13*x^13 - x^12 + 162*x^11 - 219*x^10 - 692*x^9 + 1471*x^8 + 1071*x^7 - 3733*x^6 + 48*x^5 + 3904*x^4 - 1295*x^3 - 1223*x^2 + 586*x - 60, 2*x^14 - 13*x^13 - x^12 + 162*x^11 - 219*x^10 - 692*x^9 + 1471*x^8 + 1071*x^7 - 3733*x^6 + 48*x^5 + 3904*x^4 - 1295*x^3 - 1223*x^2 + 586*x - 60, x^14 - 8*x^13 + 13*x^12 + 53*x^11 - 189*x^10 + 6*x^9 + 667*x^8 - 653*x^7 - 755*x^6 + 1469*x^5 - 149*x^4 - 978*x^3 + 517*x^2 + 82*x - 60, x^14 - 8*x^13 + 13*x^12 + 53*x^11 - 189*x^10 + 6*x^9 + 667*x^8 - 653*x^7 - 755*x^6 + 1469*x^5 - 149*x^4 - 978*x^3 + 517*x^2 + 82*x - 60, x^14 - 5*x^13 - 10*x^12 + 82*x^11 - 5*x^10 - 516*x^9 + 432*x^8 + 1428*x^7 - 1926*x^6 - 1398*x^5 + 2939*x^4 - 147*x^3 - 1252*x^2 + 331*x + 30, x^14 - 5*x^13 - 10*x^12 + 82*x^11 - 5*x^10 - 516*x^9 + 432*x^8 + 1428*x^7 - 1926*x^6 - 1398*x^5 + 2939*x^4 - 147*x^3 - 1252*x^2 + 331*x + 30, x^16 - 8*x^15 + 7*x^14 + 96*x^13 - 227*x^12 - 371*x^11 + 1504*x^10 + 228*x^9 - 4393*x^8 + 1746*x^7 + 6146*x^6 - 4000*x^5 - 3807*x^4 + 2904*x^3 + 716*x^2 - 604*x + 54, x^16 - 8*x^15 + 7*x^14 + 96*x^13 - 227*x^12 - 371*x^11 + 1504*x^10 + 228*x^9 - 4393*x^8 + 1746*x^7 + 6146*x^6 - 4000*x^5 - 3807*x^4 + 2904*x^3 + 716*x^2 - 604*x + 54, x^14 - 7*x^13 + 4*x^12 + 68*x^11 - 113*x^10 - 240*x^9 + 530*x^8 + 434*x^7 - 1072*x^6 - 580*x^5 + 1131*x^4 + 595*x^3 - 698*x^2 - 171*x + 126, x^14 - 7*x^13 + 4*x^12 + 68*x^11 - 113*x^10 - 240*x^9 + 530*x^8 + 434*x^7 - 1072*x^6 - 580*x^5 + 1131*x^4 + 595*x^3 - 698*x^2 - 171*x + 126, x^15 - 7*x^14 + 2*x^13 + 85*x^12 - 143*x^11 - 352*x^10 + 933*x^9 + 469*x^8 - 2453*x^7 + 364*x^6 + 2777*x^5 - 1175*x^4 - 1078*x^3 + 531*x^2 + 24*x + 6, x^15 - 7*x^14 + 2*x^13 + 85*x^12 - 143*x^11 - 352*x^10 + 933*x^9 + 469*x^8 - 2453*x^7 + 364*x^6 + 2777*x^5 - 1175*x^4 - 1078*x^3 + 531*x^2 + 24*x + 6, 2*x^13 - 11*x^12 - 8*x^11 + 127*x^10 - 67*x^9 - 577*x^8 + 522*x^7 + 1297*x^6 - 1384*x^5 - 1313*x^4 + 1477*x^3 + 352*x^2 - 383*x + 30, 2*x^13 - 11*x^12 - 8*x^11 + 127*x^10 - 67*x^9 - 577*x^8 + 522*x^7 + 1297*x^6 - 1384*x^5 - 1313*x^4 + 1477*x^3 + 352*x^2 - 383*x + 30, x^15 - 7*x^14 + x^13 + 90*x^12 - 133*x^11 - 436*x^10 + 955*x^9 + 943*x^8 - 2920*x^7 - 740*x^6 + 4334*x^5 - 246*x^4 - 2922*x^3 + 577*x^2 + 595*x - 180, x^15 - 7*x^14 + x^13 + 90*x^12 - 133*x^11 - 436*x^10 + 955*x^9 + 943*x^8 - 2920*x^7 - 740*x^6 + 4334*x^5 - 246*x^4 - 2922*x^3 + 577*x^2 + 595*x - 180]>,
         rec<Eigen |
           DefiningPolynomial := x^22 + 13*x^21 + 52*x^20 - 26*x^19 - 717*x^18 - 1318*x^17 + 2675*x^16 + 10732*x^15 + 933*x^14 - 35021*x^13 - 30176*x^12 + 54896*x^11 + 82861*x^10 - 34515*x^9 - 103516*x^8 - 9063*x^7 + 63170*x^6 + 22635*x^5 - 15588*x^4 - 9056*x^3 + 257*x^2 + 732*x + 80,
           Coordinates        := [0, 0, 0, 0, -x^21 - 13*x^20 - 54*x^19 + 2*x^18 + 631*x^17 + 1384*x^16 - 1568*x^15 - 9040*x^14 - 4782*x^13 + 22503*x^12 + 30512*x^11 - 20502*x^10 - 58445*x^9 - 7753*x^8 + 49313*x^7 + 26263*x^6 - 15166*x^5 - 14846*x^4 - 999*x^3 + 1981*x^2 + 565*x + 36, x^21 + 13*x^20 + 54*x^19 - 2*x^18 - 631*x^17 - 1384*x^16 + 1568*x^15 + 9040*x^14 + 4782*x^13 - 22503*x^12 - 30512*x^11 + 20502*x^10 + 58445*x^9 + 7753*x^8 - 49313*x^7 - 26263*x^6 + 15166*x^5 + 14846*x^4 + 999*x^3 - 1981*x^2 - 565*x - 36, -x^20 - 12*x^19 - 43*x^18 + 33*x^17 + 553*x^16 + 841*x^15 - 1938*x^14 - 6239*x^13 + 315*x^12 + 17303*x^11 + 11729*x^10 - 21875*x^9 - 26531*x^8 + 10192*x^7 + 24032*x^6 + 2403*x^5 - 8860*x^4 - 3020*x^3 + 751*x^2 + 396*x + 24, x^20 + 12*x^19 + 43*x^18 - 33*x^17 - 553*x^16 - 841*x^15 + 1938*x^14 + 6239*x^13 - 315*x^12 - 17303*x^11 - 11729*x^10 + 21875*x^9 + 26531*x^8 - 10192*x^7 - 24032*x^6 - 2403*x^5 + 8860*x^4 + 3020*x^3 - 751*x^2 - 396*x - 24, -x^20 - 12*x^19 - 43*x^18 + 33*x^17 + 554*x^16 + 851*x^15 - 1911*x^14 - 6279*x^13 + 21*x^12 + 17091*x^11 + 12687*x^10 - 20393*x^9 - 27672*x^8 + 7008*x^7 + 23972*x^6 + 5386*x^5 - 7727*x^4 - 4055*x^3 + 71*x^2 + 372*x + 56, x^20 + 12*x^19 + 43*x^18 - 33*x^17 - 554*x^16 - 851*x^15 + 1911*x^14 + 6279*x^13 - 21*x^12 - 17091*x^11 - 12687*x^10 + 20393*x^9 + 27672*x^8 - 7008*x^7 - 23972*x^6 - 5386*x^5 + 7727*x^4 + 4055*x^3 - 71*x^2 - 372*x - 56, -x^19 - 12*x^18 - 45*x^17 + 10*x^16 + 471*x^15 + 863*x^14 - 1142*x^13 - 4885*x^12 - 1480*x^11 + 10356*x^10 + 10039*x^9 - 8586*x^8 - 15089*x^7 + 172*x^6 + 8709*x^5 + 2966*x^4 - 1270*x^3 - 834*x^2 - 145*x - 12, x^19 + 12*x^18 + 45*x^17 - 10*x^16 - 471*x^15 - 863*x^14 + 1142*x^13 + 4885*x^12 + 1480*x^11 - 10356*x^10 - 10039*x^9 + 8586*x^8 + 15089*x^7 - 172*x^6 - 8709*x^5 - 2966*x^4 + 1270*x^3 + 834*x^2 + 145*x + 12, -x^19 - 12*x^18 - 44*x^17 + 21*x^16 + 508*x^15 + 850*x^14 - 1476*x^13 - 5391*x^12 - 734*x^11 + 12796*x^10 + 10380*x^9 - 12911*x^8 - 18333*x^7 + 3095*x^6 + 12825*x^5 + 3064*x^4 - 2985*x^3 - 1538*x^2 - 137*x + 20, x^19 + 12*x^18 + 44*x^17 - 21*x^16 - 508*x^15 - 850*x^14 + 1476*x^13 + 5391*x^12 + 734*x^11 - 12796*x^10 - 10380*x^9 + 12911*x^8 + 18333*x^7 - 3095*x^6 - 12825*x^5 - 3064*x^4 + 2985*x^3 + 1538*x^2 + 137*x - 20, -x^18 - 12*x^17 - 47*x^16 - 13*x^15 + 386*x^14 + 851*x^13 - 471*x^12 - 3561*x^11 - 2371*x^10 + 5240*x^9 + 7401*x^8 - 1663*x^7 - 7317*x^6 - 2301*x^5 + 2238*x^4 + 1446*x^3 + 153*x^2 - 2*x + 12, x^18 + 12*x^17 + 47*x^16 + 13*x^15 - 386*x^14 - 851*x^13 + 471*x^12 + 3561*x^11 + 2371*x^10 - 5240*x^9 - 7401*x^8 + 1663*x^7 + 7317*x^6 + 2301*x^5 - 2238*x^4 - 1446*x^3 - 153*x^2 + 2*x - 12, -x^18 - 11*x^17 - 35*x^16 + 35*x^15 + 410*x^14 + 503*x^13 - 1324*x^12 - 3386*x^11 + 681*x^10 + 8049*x^9 + 4041*x^8 - 8357*x^7 - 8006*x^6 + 2864*x^5 + 5352*x^4 + 740*x^3 - 1049*x^2 - 406*x - 36, x^18 + 11*x^17 + 35*x^16 - 35*x^15 - 410*x^14 - 503*x^13 + 1324*x^12 + 3386*x^11 - 681*x^10 - 8049*x^9 - 4041*x^8 + 8357*x^7 + 8006*x^6 - 2864*x^5 - 5352*x^4 - 740*x^3 + 1049*x^2 + 406*x + 36, -x^18 - 12*x^17 - 46*x^16 - x^15 + 435*x^14 + 888*x^13 - 755*x^12 - 4295*x^11 - 2307*x^10 + 7482*x^9 + 9339*x^8 - 3913*x^7 - 11147*x^6 - 2322*x^5 + 4742*x^4 + 2517*x^3 - 208*x^2 - 352*x - 56, x^18 + 12*x^17 + 46*x^16 + x^15 - 435*x^14 - 888*x^13 + 755*x^12 + 4295*x^11 + 2307*x^10 - 7482*x^9 - 9339*x^8 + 3913*x^7 + 11147*x^6 + 2322*x^5 - 4742*x^4 - 2517*x^3 + 208*x^2 + 352*x + 56, -x^17 - 12*x^16 - 49*x^15 - 36*x^14 + 299*x^13 + 817*x^12 + 123*x^11 - 2243*x^10 - 2697*x^9 + 1186*x^8 + 4232*x^7 + 1944*x^6 - 1540*x^5 - 1854*x^4 - 509*x^3 + 133*x^2 + 83*x + 8, x^17 + 12*x^16 + 49*x^15 + 36*x^14 - 299*x^13 - 817*x^12 - 123*x^11 + 2243*x^10 + 2697*x^9 - 1186*x^8 - 4232*x^7 - 1944*x^6 + 1540*x^5 + 1854*x^4 + 509*x^3 - 133*x^2 - 83*x - 8, -x^17 - 11*x^16 - 36*x^15 + 24*x^14 + 372*x^13 + 507*x^12 - 1014*x^11 - 2873*x^10 + 59*x^9 + 5737*x^8 + 3540*x^7 - 4417*x^6 - 4931*x^5 + 334*x^4 + 1932*x^3 + 699*x^2 + 74*x + 4, x^17 + 11*x^16 + 36*x^15 - 24*x^14 - 372*x^13 - 507*x^12 + 1014*x^11 + 2873*x^10 - 59*x^9 - 5737*x^8 - 3540*x^7 + 4417*x^6 + 4931*x^5 - 334*x^4 - 1932*x^3 - 699*x^2 - 74*x - 4, -x^17 - 10*x^16 - 26*x^15 + 50*x^14 + 321*x^13 + 175*x^12 - 1225*x^11 - 1626*x^10 + 2051*x^9 + 4270*x^8 - 1274*x^7 - 5314*x^6 - 493*x^5 + 3126*x^4 + 961*x^3 - 621*x^2 - 297*x - 24, x^17 + 10*x^16 + 26*x^15 - 50*x^14 - 321*x^13 - 175*x^12 + 1225*x^11 + 1626*x^10 - 2051*x^9 - 4270*x^8 + 1274*x^7 + 5314*x^6 + 493*x^5 - 3126*x^4 - 961*x^3 + 621*x^2 + 297*x + 24, -x^17 - 10*x^16 - 26*x^15 + 51*x^14 + 333*x^13 + 222*x^12 - 1199*x^11 - 1897*x^10 + 1487*x^9 + 4508*x^8 + 323*x^7 - 4559*x^6 - 2029*x^5 + 1736*x^4 + 1270*x^3 - 23*x^2 - 162*x - 28, x^17 + 10*x^16 + 26*x^15 - 51*x^14 - 333*x^13 - 222*x^12 + 1199*x^11 + 1897*x^10 - 1487*x^9 - 4508*x^8 - 323*x^7 + 4559*x^6 + 2029*x^5 - 1736*x^4 - 1270*x^3 + 23*x^2 + 162*x + 28, -x^17 - 12*x^16 - 47*x^15 - 13*x^14 + 388*x^13 + 874*x^12 - 374*x^11 - 3417*x^10 - 2528*x^9 + 4490*x^8 + 6863*x^7 - 858*x^6 - 6054*x^5 - 2283*x^4 + 1507*x^3 + 1209*x^2 + 243*x + 8, x^17 + 12*x^16 + 47*x^15 + 13*x^14 - 388*x^13 - 874*x^12 + 374*x^11 + 3417*x^10 + 2528*x^9 - 4490*x^8 - 6863*x^7 + 858*x^6 + 6054*x^5 + 2283*x^4 - 1507*x^3 - 1209*x^2 - 243*x - 8, -x^16 - 12*x^15 - 48*x^14 - 27*x^13 + 319*x^12 + 772*x^11 - 114*x^10 - 2385*x^9 - 2040*x^8 + 2181*x^7 + 3820*x^6 + 323*x^5 - 2094*x^4 - 1025*x^3 + 116*x^2 + 148*x + 20, x^16 + 12*x^15 + 48*x^14 + 27*x^13 - 319*x^12 - 772*x^11 + 114*x^10 + 2385*x^9 + 2040*x^8 - 2181*x^7 - 3820*x^6 - 323*x^5 + 2094*x^4 + 1025*x^3 - 116*x^2 - 148*x - 20, -x^16 - 11*x^15 - 39*x^14 - 7*x^13 + 275*x^12 + 546*x^11 - 212*x^10 - 1669*x^9 - 1129*x^8 + 1426*x^7 + 1957*x^6 + 124*x^5 - 653*x^4 - 288*x^3 - 186*x^2 - 138*x - 32, x^16 + 11*x^15 + 39*x^14 + 7*x^13 - 275*x^12 - 546*x^11 + 212*x^10 + 1669*x^9 + 1129*x^8 - 1426*x^7 - 1957*x^6 - 124*x^5 + 653*x^4 + 288*x^3 + 186*x^2 + 138*x + 32, x^15 + 10*x^14 + 28*x^13 - 36*x^12 - 326*x^11 - 443*x^10 + 556*x^9 + 1876*x^8 + 786*x^7 - 2031*x^6 - 2296*x^5 + 28*x^4 + 1185*x^3 + 620*x^2 + 80*x - 8, -x^15 - 10*x^14 - 28*x^13 + 36*x^12 + 326*x^11 + 443*x^10 - 556*x^9 - 1876*x^8 - 786*x^7 + 2031*x^6 + 2296*x^5 - 28*x^4 - 1185*x^3 - 620*x^2 - 80*x + 8, -x^16 - 11*x^15 - 39*x^14 - 7*x^13 + 274*x^12 + 535*x^11 - 256*x^10 - 1728*x^9 - 1045*x^8 + 1769*x^7 + 2199*x^6 - 231*x^5 - 1265*x^4 - 400*x^3 + 131*x^2 + 85*x + 12, x^16 + 11*x^15 + 39*x^14 + 7*x^13 - 274*x^12 - 535*x^11 + 256*x^10 + 1728*x^9 + 1045*x^8 - 1769*x^7 - 2199*x^6 + 231*x^5 + 1265*x^4 + 400*x^3 - 131*x^2 - 85*x - 12, -2*x^14 - 20*x^13 - 60*x^12 + 27*x^11 + 473*x^10 + 679*x^9 - 609*x^8 - 2138*x^7 - 809*x^6 + 1800*x^5 + 1601*x^4 - 134*x^3 - 524*x^2 - 155*x - 8, 2*x^14 + 20*x^13 + 60*x^12 - 27*x^11 - 473*x^10 - 679*x^9 + 609*x^8 + 2138*x^7 + 809*x^6 - 1800*x^5 - 1601*x^4 + 134*x^3 + 524*x^2 + 155*x + 8, -x^16 - 11*x^15 - 37*x^14 + 14*x^13 + 345*x^12 + 552*x^11 - 664*x^10 - 2436*x^9 - 600*x^8 + 3841*x^7 + 3062*x^6 - 2257*x^5 - 3207*x^4 - 123*x^3 + 1071*x^2 + 440*x + 48, x^16 + 11*x^15 + 37*x^14 - 14*x^13 - 345*x^12 - 552*x^11 + 664*x^10 + 2436*x^9 + 600*x^8 - 3841*x^7 - 3062*x^6 + 2257*x^5 + 3207*x^4 + 123*x^3 - 1071*x^2 - 440*x - 48, -x^15 - 10*x^14 - 31*x^13 + 4*x^12 + 211*x^11 + 362*x^10 - 101*x^9 - 889*x^8 - 849*x^7 + 137*x^6 + 1011*x^5 + 913*x^4 + 35*x^3 - 457*x^2 - 253*x - 40, x^15 + 10*x^14 + 31*x^13 - 4*x^12 - 211*x^11 - 362*x^10 + 101*x^9 + 889*x^8 + 849*x^7 - 137*x^6 - 1011*x^5 - 913*x^4 - 35*x^3 + 457*x^2 + 253*x + 40, -x^15 - 9*x^14 - 20*x^13 + 41*x^12 + 197*x^11 + 12*x^10 - 711*x^9 - 461*x^8 + 1292*x^7 + 1263*x^6 - 1095*x^5 - 1432*x^4 + 195*x^3 + 590*x^2 + 161*x + 4, x^15 + 9*x^14 + 20*x^13 - 41*x^12 - 197*x^11 - 12*x^10 + 711*x^9 + 461*x^8 - 1292*x^7 - 1263*x^6 + 1095*x^5 + 1432*x^4 - 195*x^3 - 590*x^2 - 161*x - 4, -x^15 - 10*x^14 - 29*x^13 + 23*x^12 + 262*x^11 + 317*x^10 - 508*x^9 - 1249*x^8 + 40*x^7 + 1663*x^6 + 590*x^5 - 1047*x^4 - 559*x^3 + 302*x^2 + 245*x + 40, x^15 + 10*x^14 + 29*x^13 - 23*x^12 - 262*x^11 - 317*x^10 + 508*x^9 + 1249*x^8 - 40*x^7 - 1663*x^6 - 590*x^5 + 1047*x^4 + 559*x^3 - 302*x^2 - 245*x - 40]>
       ]
>;

MOG[587] := 	// J_0(587)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 27, 38, 147, 198, 258, 373, 379, 386, 399, 453, 475, 554, 583, 381*x + 383, 206*x + 383, 450*x + 292, 137*x + 292, 358*x + 257, 229*x + 257, 291*x + 313, 296*x + 313, 493*x + 514, 94*x + 514, 17*x + 208, 570*x + 208, 175*x + 399, 412*x + 399, 215*x + 372, 372*x + 372, 316*x + 32, 271*x + 32, 509*x + 127, 78*x + 127, 17*x + 200, 570*x + 200, 202*x + 29, 385*x + 29, 331*x + 395, 256*x + 395, 70*x + 278, 517*x + 278, 270*x + 532, 317*x + 532, 399*x + 252, 188*x + 252, 514*x + 579, 73*x + 579, 335*x + 149, 252*x + 149]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 3*x^4 - 3*x^3 - 11*x^2 + 2*x + 9,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, x + 1, -x - 1, 0, 0, -x - 1, x + 1, x^3 + 3*x^2 - x - 5, -x^3 - 3*x^2 + x + 5, -x^3 - 2*x^2 + 2*x + 4, x^3 + 2*x^2 - 2*x - 4, 0, 0, 1, -1, -1, 1, -x^2 - x + 2, x^2 + x - 2, x^4 + 3*x^3 - x^2 - 6*x - 1, -x^4 - 3*x^3 + x^2 + 6*x + 1, -x^2 - x + 1, x^2 + x - 1, -x^4 - 2*x^3 + 3*x^2 + 4*x - 2, x^4 + 2*x^3 - 3*x^2 - 4*x + 2, x + 1, -x - 1, -x^3 - 2*x^2 + 2*x + 3, x^3 + 2*x^2 - 2*x - 3, x^3 + 2*x^2 - 2*x - 4, -x^3 - 2*x^2 + 2*x + 4, x^2 - 3, -x^2 + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^13 + 3*x^12 - 11*x^11 - 36*x^10 + 37*x^9 + 146*x^8 - 32*x^7 - 233*x^6 - 22*x^5 + 141*x^4 + 30*x^3 - 21*x^2 - 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^12 - 4*x^11 + 6*x^10 + 37*x^9 + x^8 - 111*x^7 - 52*x^6 + 121*x^5 + 78*x^4 - 38*x^3 - 27*x^2 + 2*x + 2, x^12 + 4*x^11 - 6*x^10 - 37*x^9 - x^8 + 111*x^7 + 52*x^6 - 121*x^5 - 78*x^4 + 38*x^3 + 27*x^2 - 2*x - 2, -x^12 - 4*x^11 + 5*x^10 + 34*x^9 + 6*x^8 - 90*x^7 - 48*x^6 + 89*x^5 + 57*x^4 - 27*x^3 - 16*x^2 + 2*x + 1, x^12 + 4*x^11 - 5*x^10 - 34*x^9 - 6*x^8 + 90*x^7 + 48*x^6 - 89*x^5 - 57*x^4 + 27*x^3 + 16*x^2 - 2*x - 1, -x^11 - 4*x^10 + 4*x^9 + 29*x^8 + 6*x^7 - 64*x^6 - 33*x^5 + 46*x^4 + 30*x^3 - 3*x^2 - 3*x, x^11 + 4*x^10 - 4*x^9 - 29*x^8 - 6*x^7 + 64*x^6 + 33*x^5 - 46*x^4 - 30*x^3 + 3*x^2 + 3*x, -x^11 - 4*x^10 + 3*x^9 + 27*x^8 + 14*x^7 - 43*x^6 - 32*x^5 + 18*x^4 + 12*x^3 - 2*x^2 - x, x^11 + 4*x^10 - 3*x^9 - 27*x^8 - 14*x^7 + 43*x^6 + 32*x^5 - 18*x^4 - 12*x^3 + 2*x^2 + x, -x^11 - 4*x^10 + 3*x^9 + 28*x^8 + 17*x^7 - 49*x^6 - 54*x^5 + 18*x^4 + 40*x^3 + 10*x^2 - 3*x - 1, x^11 + 4*x^10 - 3*x^9 - 28*x^8 - 17*x^7 + 49*x^6 + 54*x^5 - 18*x^4 - 40*x^3 - 10*x^2 + 3*x + 1, -x^10 - 4*x^9 + 3*x^8 + 25*x^7 + 8*x^6 - 43*x^5 - 22*x^4 + 23*x^3 + 11*x^2 - 2*x - 1, x^10 + 4*x^9 - 3*x^8 - 25*x^7 - 8*x^6 + 43*x^5 + 22*x^4 - 23*x^3 - 11*x^2 + 2*x + 1, -x^10 - 4*x^9 + 2*x^8 + 22*x^7 + 11*x^6 - 32*x^5 - 26*x^4 + 12*x^3 + 13*x^2 - 1, x^10 + 4*x^9 - 2*x^8 - 22*x^7 - 11*x^6 + 32*x^5 + 26*x^4 - 12*x^3 - 13*x^2 + 1, -x^10 - 4*x^9 + 3*x^8 + 27*x^7 + 14*x^6 - 43*x^5 - 32*x^4 + 18*x^3 + 12*x^2 - 2*x - 1, x^10 + 4*x^9 - 3*x^8 - 27*x^7 - 14*x^6 + 43*x^5 + 32*x^4 - 18*x^3 - 12*x^2 + 2*x + 1, -x^10 - 3*x^9 + 5*x^8 + 20*x^7 + 2*x^6 - 28*x^5 - 13*x^4 + 7*x^3 + 3*x^2, x^10 + 3*x^9 - 5*x^8 - 20*x^7 - 2*x^6 + 28*x^5 + 13*x^4 - 7*x^3 - 3*x^2, -x^10 - 3*x^9 + 6*x^8 + 22*x^7 - 5*x^6 - 44*x^5 - 10*x^4 + 28*x^3 + 12*x^2 - 2*x - 1, x^10 + 3*x^9 - 6*x^8 - 22*x^7 + 5*x^6 + 44*x^5 + 10*x^4 - 28*x^3 - 12*x^2 + 2*x + 1, -x^10 - 3*x^9 + 5*x^8 + 19*x^7 - x^6 - 27*x^5 - 7*x^4 + 9*x^3 + x^2 - x, x^10 + 3*x^9 - 5*x^8 - 19*x^7 + x^6 + 27*x^5 + 7*x^4 - 9*x^3 - x^2 + x, -x^9 - 4*x^8 + 2*x^7 + 21*x^6 + 11*x^5 - 23*x^4 - 19*x^3 + x^2 + 2*x, x^9 + 4*x^8 - 2*x^7 - 21*x^6 - 11*x^5 + 23*x^4 + 19*x^3 - x^2 - 2*x, -x^9 - 3*x^8 + 3*x^7 + 11*x^6 - 4*x^5 - 11*x^4 + 2*x^3 + 2*x^2, x^9 + 3*x^8 - 3*x^7 - 11*x^6 + 4*x^5 + 11*x^4 - 2*x^3 - 2*x^2, -x^9 - 4*x^8 + 2*x^7 + 21*x^6 + 11*x^5 - 23*x^4 - 19*x^3 + x^2 + 2*x, x^9 + 4*x^8 - 2*x^7 - 21*x^6 - 11*x^5 + 23*x^4 + 19*x^3 - x^2 - 2*x, -x^9 - 2*x^8 + 8*x^7 + 17*x^6 - 9*x^5 - 24*x^4 - 2*x^3 + 5*x^2 + x, x^9 + 2*x^8 - 8*x^7 - 17*x^6 + 9*x^5 + 24*x^4 + 2*x^3 - 5*x^2 - x, -x^9 - 4*x^8 + x^7 + 21*x^6 + 20*x^5 - 16*x^4 - 30*x^3 - 10*x^2 + 2*x + 1, x^9 + 4*x^8 - x^7 - 21*x^6 - 20*x^5 + 16*x^4 + 30*x^3 + 10*x^2 - 2*x - 1, -x^8 - 4*x^7 + 3*x^6 + 20*x^5 + 3*x^4 - 22*x^3 - 9*x^2 + 2*x + 1, x^8 + 4*x^7 - 3*x^6 - 20*x^5 - 3*x^4 + 22*x^3 + 9*x^2 - 2*x - 1, -x^8 - 3*x^7 + 2*x^6 + 12*x^5 + 4*x^4 - 12*x^3 - 8*x^2 + x + 1, x^8 + 3*x^7 - 2*x^6 - 12*x^5 - 4*x^4 + 12*x^3 + 8*x^2 - x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^31 - 6*x^30 - 32*x^29 + 251*x^28 + 351*x^27 - 4616*x^26 - 325*x^25 + 49109*x^24 - 30233*x^23 - 334486*x^22 + 353972*x^21 + 1522925*x^20 - 2131423*x^19 - 4689049*x^18 + 8056051*x^17 + 9613950*x^16 - 20122858*x^15 - 12435554*x^14 + 33409695*x^13 + 8703458*x^12 - 36081141*x^11 - 1266619*x^10 + 24223815*x^9 - 2264825*x^8 - 9506257*x^7 + 1294446*x^6 + 2092064*x^5 - 240856*x^4 - 233280*x^3 + 12384*x^2 + 9536*x + 256,
           Coordinates        := [-x^30 + 6*x^29 + 29*x^28 - 233*x^27 - 270*x^26 + 3953*x^25 - 333*x^24 - 38516*x^23 + 28144*x^22 + 238170*x^21 - 274902*x^20 - 973963*x^19 + 1451819*x^18 + 2656522*x^17 - 4835594*x^16 - 4734618*x^15 + 10583870*x^14 + 5166644*x^13 - 15238565*x^12 - 2846400*x^11 + 14076848*x^10 + 78831*x^9 - 7945885*x^8 + 654070*x^7 + 2559648*x^6 - 212082*x^5 - 439216*x^4 + 7528*x^3 + 31872*x^2 + 2528*x - 128, x^30 - 6*x^29 - 29*x^28 + 233*x^27 + 270*x^26 - 3951*x^25 + 319*x^24 + 38494*x^23 - 27788*x^22 - 238442*x^21 + 271290*x^20 + 980319*x^19 - 1433627*x^18 - 2705642*x^17 + 4793322*x^16 + 4935528*x^15 - 10584944*x^14 - 5642666*x^13 + 15489919*x^12 + 3498316*x^11 - 14703038*x^10 - 554477*x^9 + 8672871*x^8 - 515096*x^7 - 2997262*x^6 + 220870*x^5 + 571256*x^4 - 14584*x^3 - 49632*x^2 - 2592*x + 640, x^28 - 6*x^27 - 25*x^26 + 211*x^25 + 156*x^24 - 3147*x^23 + 1411*x^22 + 25926*x^21 - 28802*x^20 - 128286*x^19 + 208486*x^18 + 384283*x^17 - 846621*x^16 - 642062*x^15 + 2099136*x^14 + 364944*x^13 - 3188738*x^12 + 596916*x^11 + 2818051*x^10 - 1223536*x^9 - 1259584*x^8 + 797891*x^7 + 178941*x^6 - 173110*x^5 + 22004*x^4 - 424*x^3 - 7184*x^2 + 2720*x + 512, 2*x^25 - 8*x^24 - 58*x^23 + 262*x^22 + 670*x^21 - 3670*x^20 - 3690*x^19 + 28798*x^18 + 6688*x^17 - 138960*x^16 + 32852*x^15 + 424964*x^14 - 238802*x^13 - 815892*x^12 + 669996*x^11 + 934544*x^10 - 1002486*x^9 - 567376*x^8 + 804098*x^7 + 140258*x^6 - 317062*x^5 - 11536*x^4 + 59368*x^3 + 1376*x^2 - 4128*x - 256, -3*x^28 + 18*x^27 + 75*x^26 - 627*x^25 - 520*x^24 + 9403*x^23 - 2821*x^22 - 79626*x^21 + 70798*x^20 + 419508*x^19 - 536260*x^18 - 1427253*x^17 + 2272619*x^16 + 3145534*x^15 - 5995924*x^14 - 4367720*x^13 + 10070616*x^12 + 3563166*x^11 - 10585219*x^10 - 1486156*x^9 + 6627644*x^8 + 297959*x^7 - 2283849*x^6 - 138270*x^5 + 395972*x^4 + 64168*x^3 - 22800*x^2 - 8800*x - 1024, 2*x^27 - 12*x^26 - 46*x^25 + 396*x^24 + 252*x^23 - 5570*x^22 + 2554*x^21 + 43662*x^20 - 45824*x^19 - 208926*x^18 + 307508*x^17 + 626390*x^16 - 1171058*x^15 - 1152894*x^14 + 2751612*x^13 + 1189948*x^12 - 4039558*x^11 - 483088*x^10 + 3625794*x^9 - 171874*x^8 - 1908624*x^7 + 197776*x^6 + 564996*x^5 - 42408*x^4 - 84704*x^3 - 1120*x^2 + 4416*x + 512, 2*x^25 - 10*x^24 - 48*x^23 + 298*x^22 + 426*x^21 - 3814*x^20 - 1394*x^19 + 27792*x^18 - 3424*x^17 - 128170*x^16 + 49476*x^15 + 389642*x^14 - 211030*x^13 - 779504*x^12 + 497988*x^11 + 986140*x^10 - 684458*x^9 - 728688*x^8 + 506948*x^7 + 284554*x^6 - 165494*x^5 - 63416*x^4 + 18456*x^3 + 7744*x^2 + 224*x - 256, x^28 - 6*x^27 - 31*x^26 + 245*x^25 + 302*x^24 - 4259*x^23 + 325*x^22 + 41482*x^21 - 30818*x^20 - 250142*x^19 + 292534*x^18 + 971437*x^17 - 1457889*x^16 - 2439844*x^15 + 4443244*x^14 + 3847378*x^13 - 8572908*x^12 - 3499156*x^11 + 10365171*x^10 + 1422772*x^9 - 7534344*x^8 + 77709*x^7 + 3083305*x^6 - 180672*x^5 - 667596*x^4 + 28576*x^3 + 63664*x^2 + 128*x - 1152, 2*x^26 - 12*x^25 - 42*x^24 + 378*x^23 + 146*x^22 - 5010*x^21 + 3650*x^20 + 36178*x^19 - 50908*x^18 - 152336*x^17 + 310772*x^16 + 359260*x^15 - 1088730*x^14 - 338288*x^13 + 2301780*x^12 - 405448*x^11 - 2871574*x^10 + 1437596*x^9 + 1938850*x^8 - 1467938*x^7 - 597578*x^6 + 622588*x^5 + 82440*x^4 - 117360*x^3 - 6880*x^2 + 8000*x + 512, x^29 - 6*x^28 - 27*x^27 + 221*x^26 + 214*x^25 - 3495*x^24 + 777*x^23 + 31088*x^22 - 26052*x^21 - 171034*x^20 + 211670*x^19 + 601891*x^18 - 932607*x^17 - 1349922*x^16 + 2488812*x^15 + 1853622*x^14 - 4042564*x^13 - 1430344*x^12 + 3728273*x^11 + 596076*x^10 - 1519816*x^9 - 355241*x^8 - 121057*x^7 + 360504*x^6 + 264984*x^5 - 132912*x^4 - 74336*x^3 + 13568*x^2 + 6848*x + 256, 2*x^25 - 12*x^24 - 36*x^23 + 332*x^22 + 90*x^21 - 3804*x^20 + 2418*x^19 + 23722*x^18 - 26016*x^17 - 89222*x^16 + 124392*x^15 + 211898*x^14 - 347562*x^13 - 317222*x^12 + 615148*x^11 + 266314*x^10 - 690914*x^9 - 52200*x^8 + 443786*x^7 - 88774*x^6 - 123420*x^5 + 46856*x^4 + 12064*x^3 - 8544*x^2 + 64*x + 640, -3*x^28 + 18*x^27 + 77*x^26 - 639*x^25 - 570*x^24 + 9829*x^23 - 2541*x^22 - 85922*x^21 + 74304*x^20 + 469854*x^19 - 598740*x^18 - 1662981*x^17 + 2695175*x^16 + 3789410*x^15 - 7584556*x^14 - 5275154*x^13 + 13640786*x^12 + 3788246*x^11 - 15367395*x^10 - 361092*x^9 + 10263402*x^8 - 1177805*x^7 - 3742247*x^6 + 541188*x^5 + 720268*x^4 - 71840*x^3 - 63408*x^2 + 1472*x + 1408, 2*x^24 - 10*x^23 - 46*x^22 + 286*x^21 + 376*x^20 - 3428*x^19 - 1010*x^18 + 22712*x^17 - 3304*x^16 - 92526*x^15 + 31866*x^14 + 243764*x^13 - 103798*x^12 - 421020*x^11 + 194128*x^10 + 460442*x^9 - 230472*x^8 - 282672*x^7 + 161114*x^6 + 72340*x^5 - 51080*x^4 - 4224*x^3 + 7840*x^2 - 704*x - 640, -3*x^29 + 18*x^28 + 81*x^27 - 663*x^26 - 658*x^25 + 10593*x^24 - 2089*x^23 - 96316*x^22 + 79070*x^21 + 548962*x^20 - 679604*x^19 - 2032527*x^18 + 3220457*x^17 + 4879332*x^16 - 9538988*x^15 - 7268910*x^14 + 18171130*x^13 + 5857058*x^12 - 22004293*x^11 - 1187788*x^10 + 16277930*x^9 - 1610755*x^8 - 6946609*x^7 + 1082364*x^6 + 1652848*x^5 - 233328*x^4 - 201408*x^3 + 14912*x^2 + 9408*x + 256, x^26 - 6*x^25 - 20*x^24 + 176*x^23 + 91*x^22 - 2188*x^21 + 833*x^20 + 15289*x^19 - 11998*x^18 - 67323*x^17 + 65500*x^16 + 198475*x^15 - 205647*x^14 - 402375*x^13 + 411372*x^12 + 554177*x^11 - 539585*x^10 - 486542*x^9 + 452365*x^8 + 238285*x^7 - 222824*x^6 - 48912*x^5 + 57112*x^4 - 48*x^3 - 7808*x^2 + 1024*x + 640, x^26 - 6*x^25 - 20*x^24 + 176*x^23 + 91*x^22 - 2188*x^21 + 833*x^20 + 15289*x^19 - 11998*x^18 - 67323*x^17 + 65500*x^16 + 198475*x^15 - 205647*x^14 - 402375*x^13 + 411372*x^12 + 554177*x^11 - 539585*x^10 - 486542*x^9 + 452365*x^8 + 238285*x^7 - 222824*x^6 - 48912*x^5 + 57112*x^4 - 48*x^3 - 7808*x^2 + 1024*x + 640, -2*x^24 + 9*x^23 + 52*x^22 - 281*x^21 - 479*x^20 + 3615*x^19 + 1424*x^18 - 25122*x^17 + 5914*x^16 + 103283*x^15 - 61652*x^14 - 257391*x^13 + 212768*x^12 + 381940*x^11 - 373176*x^10 - 322754*x^9 + 338239*x^8 + 158505*x^7 - 146904*x^6 - 63796*x^5 + 32160*x^4 + 18768*x^3 - 2080*x^2 - 2624*x - 384, -2*x^24 + 9*x^23 + 52*x^22 - 281*x^21 - 479*x^20 + 3615*x^19 + 1424*x^18 - 25122*x^17 + 5914*x^16 + 103283*x^15 - 61652*x^14 - 257391*x^13 + 212768*x^12 + 381940*x^11 - 373176*x^10 - 322754*x^9 + 338239*x^8 + 158505*x^7 - 146904*x^6 - 63796*x^5 + 32160*x^4 + 18768*x^3 - 2080*x^2 - 2624*x - 384, x^27 - 6*x^26 - 22*x^25 + 190*x^24 + 118*x^23 - 2572*x^22 + 1024*x^21 + 19572*x^20 - 18031*x^19 - 92469*x^18 + 116638*x^17 + 281783*x^16 - 433322*x^15 - 552621*x^14 + 1016325*x^13 + 658631*x^12 - 1536673*x^11 - 379680*x^10 + 1466033*x^9 - 47754*x^8 - 825115*x^7 + 186766*x^6 + 244328*x^5 - 79064*x^4 - 38640*x^3 + 11648*x^2 + 3200*x - 256, x^27 - 6*x^26 - 22*x^25 + 190*x^24 + 118*x^23 - 2572*x^22 + 1024*x^21 + 19572*x^20 - 18031*x^19 - 92469*x^18 + 116638*x^17 + 281783*x^16 - 433322*x^15 - 552621*x^14 + 1016325*x^13 + 658631*x^12 - 1536673*x^11 - 379680*x^10 + 1466033*x^9 - 47754*x^8 - 825115*x^7 + 186766*x^6 + 244328*x^5 - 79064*x^4 - 38640*x^3 + 11648*x^2 + 3200*x - 256, -2*x^26 + 12*x^25 + 42*x^24 - 373*x^23 - 167*x^22 + 4886*x^21 - 3054*x^20 - 34939*x^19 + 43565*x^18 + 146583*x^17 - 260070*x^16 - 352688*x^15 + 876140*x^14 + 393370*x^13 - 1749429*x^12 + 124258*x^11 + 1994960*x^10 - 845205*x^9 - 1126877*x^8 + 829508*x^7 + 192652*x^6 - 279772*x^5 + 16328*x^4 + 36544*x^3 - 4256*x^2 - 1728*x - 256, -2*x^26 + 12*x^25 + 42*x^24 - 373*x^23 - 167*x^22 + 4886*x^21 - 3054*x^20 - 34939*x^19 + 43565*x^18 + 146583*x^17 - 260070*x^16 - 352688*x^15 + 876140*x^14 + 393370*x^13 - 1749429*x^12 + 124258*x^11 + 1994960*x^10 - 845205*x^9 - 1126877*x^8 + 829508*x^7 + 192652*x^6 - 279772*x^5 + 16328*x^4 + 36544*x^3 - 4256*x^2 - 1728*x - 256, x^26 - 8*x^25 - 13*x^24 + 249*x^23 - 205*x^22 - 3177*x^21 + 5836*x^20 + 21074*x^19 - 56689*x^18 - 73346*x^17 + 297853*x^16 + 92561*x^15 - 927884*x^14 + 221773*x^13 + 1719997*x^12 - 1051611*x^11 - 1778129*x^10 + 1669986*x^9 + 833017*x^8 - 1214697*x^7 - 33624*x^6 + 360844*x^5 - 54672*x^4 - 38576*x^3 + 9440*x^2 + 320*x - 384, x^26 - 8*x^25 - 13*x^24 + 249*x^23 - 205*x^22 - 3177*x^21 + 5836*x^20 + 21074*x^19 - 56689*x^18 - 73346*x^17 + 297853*x^16 + 92561*x^15 - 927884*x^14 + 221773*x^13 + 1719997*x^12 - 1051611*x^11 - 1778129*x^10 + 1669986*x^9 + 833017*x^8 - 1214697*x^7 - 33624*x^6 + 360844*x^5 - 54672*x^4 - 38576*x^3 + 9440*x^2 + 320*x - 384, x^28 - 6*x^27 - 24*x^26 + 204*x^25 + 147*x^24 - 2974*x^23 + 1204*x^22 + 24336*x^21 - 24737*x^20 - 122552*x^19 + 179208*x^18 + 389363*x^17 - 740915*x^16 - 756077*x^15 + 1920171*x^14 + 764118*x^13 - 3170669*x^12 - 38820*x^11 + 3248684*x^10 - 804735*x^9 - 1923737*x^8 + 832857*x^7 + 581287*x^6 - 332498*x^5 - 83572*x^4 + 58120*x^3 + 5648*x^2 - 3744*x - 256, x^28 - 6*x^27 - 24*x^26 + 204*x^25 + 147*x^24 - 2974*x^23 + 1204*x^22 + 24336*x^21 - 24737*x^20 - 122552*x^19 + 179208*x^18 + 389363*x^17 - 740915*x^16 - 756077*x^15 + 1920171*x^14 + 764118*x^13 - 3170669*x^12 - 38820*x^11 + 3248684*x^10 - 804735*x^9 - 1923737*x^8 + 832857*x^7 + 581287*x^6 - 332498*x^5 - 83572*x^4 + 58120*x^3 + 5648*x^2 - 3744*x - 256, x^26 - 8*x^25 - 9*x^24 + 226*x^23 - 271*x^22 - 2576*x^21 + 5873*x^20 + 14794*x^19 - 50572*x^18 - 40257*x^17 + 242093*x^16 + 4981*x^15 - 698199*x^14 + 296888*x^13 + 1222624*x^12 - 895037*x^11 - 1243066*x^10 + 1243523*x^9 + 646257*x^8 - 884376*x^7 - 114135*x^6 + 302346*x^5 - 12180*x^4 - 46424*x^3 + 5360*x^2 + 2464*x - 384, x^26 - 8*x^25 - 9*x^24 + 226*x^23 - 271*x^22 - 2576*x^21 + 5873*x^20 + 14794*x^19 - 50572*x^18 - 40257*x^17 + 242093*x^16 + 4981*x^15 - 698199*x^14 + 296888*x^13 + 1222624*x^12 - 895037*x^11 - 1243066*x^10 + 1243523*x^9 + 646257*x^8 - 884376*x^7 - 114135*x^6 + 302346*x^5 - 12180*x^4 - 46424*x^3 + 5360*x^2 + 2464*x - 384, -2*x^27 + 12*x^26 + 44*x^25 - 382*x^24 - 226*x^23 + 5197*x^22 - 2383*x^21 - 39554*x^20 + 40432*x^19 + 184773*x^18 - 262641*x^17 - 544961*x^16 + 977216*x^15 + 996878*x^14 - 2265172*x^13 - 1034406*x^12 + 3318449*x^11 + 413348*x^10 - 3007264*x^9 + 216475*x^8 + 1602181*x^7 - 270588*x^6 - 466290*x^5 + 80744*x^4 + 69000*x^3 - 6720*x^2 - 4000*x - 128, -2*x^27 + 12*x^26 + 44*x^25 - 382*x^24 - 226*x^23 + 5197*x^22 - 2383*x^21 - 39554*x^20 + 40432*x^19 + 184773*x^18 - 262641*x^17 - 544961*x^16 + 977216*x^15 + 996878*x^14 - 2265172*x^13 - 1034406*x^12 + 3318449*x^11 + 413348*x^10 - 3007264*x^9 + 216475*x^8 + 1602181*x^7 - 270588*x^6 - 466290*x^5 + 80744*x^4 + 69000*x^3 - 6720*x^2 - 4000*x - 128, -2*x^25 + 11*x^24 + 50*x^23 - 363*x^22 - 390*x^21 + 5094*x^20 - 482*x^19 - 39614*x^18 + 27693*x^17 + 186359*x^16 - 204359*x^15 - 541856*x^14 + 773134*x^13 + 945896*x^12 - 1705429*x^11 - 885377*x^10 + 2203141*x^9 + 274794*x^8 - 1568034*x^7 + 137720*x^6 + 546414*x^5 - 76360*x^4 - 92024*x^3 + 7072*x^2 + 6368*x + 512, -2*x^25 + 11*x^24 + 50*x^23 - 363*x^22 - 390*x^21 + 5094*x^20 - 482*x^19 - 39614*x^18 + 27693*x^17 + 186359*x^16 - 204359*x^15 - 541856*x^14 + 773134*x^13 + 945896*x^12 - 1705429*x^11 - 885377*x^10 + 2203141*x^9 + 274794*x^8 - 1568034*x^7 + 137720*x^6 + 546414*x^5 - 76360*x^4 - 92024*x^3 + 7072*x^2 + 6368*x + 512, x^27 - 5*x^26 - 29*x^25 + 174*x^24 + 317*x^23 - 2581*x^22 - 1375*x^21 + 21374*x^20 - 1592*x^19 - 108804*x^18 + 42993*x^17 + 353930*x^16 - 194838*x^15 - 744339*x^14 + 426913*x^13 + 1013630*x^12 - 455111*x^11 - 909806*x^10 + 130116*x^9 + 576566*x^8 + 149999*x^7 - 266807*x^6 - 121490*x^5 + 66244*x^4 + 33576*x^3 - 5424*x^2 - 3168*x - 128, x^27 - 5*x^26 - 29*x^25 + 174*x^24 + 317*x^23 - 2581*x^22 - 1375*x^21 + 21374*x^20 - 1592*x^19 - 108804*x^18 + 42993*x^17 + 353930*x^16 - 194838*x^15 - 744339*x^14 + 426913*x^13 + 1013630*x^12 - 455111*x^11 - 909806*x^10 + 130116*x^9 + 576566*x^8 + 149999*x^7 - 266807*x^6 - 121490*x^5 + 66244*x^4 + 33576*x^3 - 5424*x^2 - 3168*x - 128, -3*x^26 + 16*x^25 + 77*x^24 - 531*x^23 - 648*x^22 + 7492*x^21 + 179*x^20 - 58712*x^19 + 34034*x^18 + 279982*x^17 - 267283*x^16 - 836329*x^15 + 1027764*x^14 + 1550475*x^13 - 2278009*x^12 - 1704958*x^11 + 2952968*x^10 + 1025655*x^9 - 2129502*x^8 - 342128*x^7 + 774555*x^6 + 130614*x^5 - 136980*x^4 - 42904*x^3 + 7824*x^2 + 5408*x + 512, -3*x^26 + 16*x^25 + 77*x^24 - 531*x^23 - 648*x^22 + 7492*x^21 + 179*x^20 - 58712*x^19 + 34034*x^18 + 279982*x^17 - 267283*x^16 - 836329*x^15 + 1027764*x^14 + 1550475*x^13 - 2278009*x^12 - 1704958*x^11 + 2952968*x^10 + 1025655*x^9 - 2129502*x^8 - 342128*x^7 + 774555*x^6 + 130614*x^5 - 136980*x^4 - 42904*x^3 + 7824*x^2 + 5408*x + 512, x^29 - 6*x^28 - 27*x^27 + 222*x^26 + 215*x^25 - 3560*x^24 + 834*x^23 + 32478*x^22 - 28315*x^21 - 185786*x^20 + 243063*x^19 + 690758*x^18 - 1165061*x^17 - 1664250*x^16 + 3524551*x^15 + 2469633*x^14 - 6938606*x^13 - 1887399*x^12 + 8824915*x^11 + 58033*x^10 - 7015564*x^9 + 1052485*x^8 + 3315026*x^7 - 717040*x^6 - 892896*x^5 + 179592*x^4 + 128992*x^3 - 14272*x^2 - 7872*x - 256, x^29 - 6*x^28 - 27*x^27 + 222*x^26 + 215*x^25 - 3560*x^24 + 834*x^23 + 32478*x^22 - 28315*x^21 - 185786*x^20 + 243063*x^19 + 690758*x^18 - 1165061*x^17 - 1664250*x^16 + 3524551*x^15 + 2469633*x^14 - 6938606*x^13 - 1887399*x^12 + 8824915*x^11 + 58033*x^10 - 7015564*x^9 + 1052485*x^8 + 3315026*x^7 - 717040*x^6 - 892896*x^5 + 179592*x^4 + 128992*x^3 - 14272*x^2 - 7872*x - 256, x^26 - 3*x^25 - 41*x^24 + 138*x^23 + 663*x^22 - 2558*x^21 - 5473*x^20 + 25618*x^19 + 23905*x^18 - 154917*x^17 - 42998*x^16 + 593733*x^15 - 68394*x^14 - 1464000*x^13 + 529402*x^12 + 2300999*x^11 - 1183905*x^10 - 2234634*x^9 + 1330140*x^8 + 1277128*x^7 - 765276*x^6 - 412912*x^5 + 202328*x^4 + 77120*x^3 - 18944*x^2 - 6848*x - 256, x^26 - 3*x^25 - 41*x^24 + 138*x^23 + 663*x^22 - 2558*x^21 - 5473*x^20 + 25618*x^19 + 23905*x^18 - 154917*x^17 - 42998*x^16 + 593733*x^15 - 68394*x^14 - 1464000*x^13 + 529402*x^12 + 2300999*x^11 - 1183905*x^10 - 2234634*x^9 + 1330140*x^8 + 1277128*x^7 - 765276*x^6 - 412912*x^5 + 202328*x^4 + 77120*x^3 - 18944*x^2 - 6848*x - 256, -3*x^26 + 16*x^25 + 77*x^24 - 527*x^23 - 667*x^22 + 7407*x^21 + 695*x^20 - 58159*x^19 + 28307*x^18 + 280372*x^17 - 233804*x^16 - 858610*x^15 + 917903*x^14 + 1670299*x^13 - 2083070*x^12 - 2007392*x^11 + 2807108*x^10 + 1414858*x^9 - 2166762*x^8 - 566148*x^7 + 880856*x^6 + 156404*x^5 - 169688*x^4 - 33120*x^3 + 9760*x^2 + 3264*x + 512, -3*x^26 + 16*x^25 + 77*x^24 - 527*x^23 - 667*x^22 + 7407*x^21 + 695*x^20 - 58159*x^19 + 28307*x^18 + 280372*x^17 - 233804*x^16 - 858610*x^15 + 917903*x^14 + 1670299*x^13 - 2083070*x^12 - 2007392*x^11 + 2807108*x^10 + 1414858*x^9 - 2166762*x^8 - 566148*x^7 + 880856*x^6 + 156404*x^5 - 169688*x^4 - 33120*x^3 + 9760*x^2 + 3264*x + 512, x^25 - 3*x^24 - 40*x^23 + 140*x^22 + 598*x^21 - 2522*x^20 - 4193*x^19 + 23742*x^18 + 12083*x^17 - 130648*x^16 + 15191*x^15 + 438850*x^14 - 220608*x^13 - 901896*x^12 + 695794*x^11 + 1093558*x^10 - 1083142*x^9 - 715951*x^8 + 876246*x^7 + 216042*x^6 - 343002*x^5 - 31992*x^4 + 62552*x^3 + 3552*x^2 - 4128*x - 256, x^25 - 3*x^24 - 40*x^23 + 140*x^22 + 598*x^21 - 2522*x^20 - 4193*x^19 + 23742*x^18 + 12083*x^17 - 130648*x^16 + 15191*x^15 + 438850*x^14 - 220608*x^13 - 901896*x^12 + 695794*x^11 + 1093558*x^10 - 1083142*x^9 - 715951*x^8 + 876246*x^7 + 216042*x^6 - 343002*x^5 - 31992*x^4 + 62552*x^3 + 3552*x^2 - 4128*x - 256, -3*x^27 + 18*x^26 + 69*x^25 - 595*x^24 - 366*x^23 + 8345*x^22 - 4136*x^21 - 64727*x^20 + 71672*x^19 + 302637*x^18 - 473919*x^17 - 866899*x^16 + 1771532*x^15 + 1450595*x^14 - 4050257*x^13 - 1146946*x^12 + 5709537*x^11 - 149184*x^10 - 4825143*x^9 + 954357*x^8 + 2331380*x^7 - 610317*x^6 - 628438*x^5 + 148748*x^4 + 89304*x^3 - 11856*x^2 - 5216*x - 128, -3*x^27 + 18*x^26 + 69*x^25 - 595*x^24 - 366*x^23 + 8345*x^22 - 4136*x^21 - 64727*x^20 + 71672*x^19 + 302637*x^18 - 473919*x^17 - 866899*x^16 + 1771532*x^15 + 1450595*x^14 - 4050257*x^13 - 1146946*x^12 + 5709537*x^11 - 149184*x^10 - 4825143*x^9 + 954357*x^8 + 2331380*x^7 - 610317*x^6 - 628438*x^5 + 148748*x^4 + 89304*x^3 - 11856*x^2 - 5216*x - 128, x^28 - 5*x^27 - 31*x^26 + 187*x^25 + 368*x^24 - 3042*x^23 - 1731*x^22 + 28320*x^21 - 3490*x^20 - 167009*x^19 + 89358*x^18 + 652029*x^17 - 527856*x^16 - 1709818*x^15 + 1726167*x^14 + 2991149*x^13 - 3494335*x^12 - 3401463*x^11 + 4438790*x^10 + 2411697*x^9 - 3434108*x^8 - 1034801*x^7 + 1523079*x^6 + 291220*x^5 - 358692*x^4 - 57808*x^3 + 36112*x^2 + 6080*x - 384, x^28 - 5*x^27 - 31*x^26 + 187*x^25 + 368*x^24 - 3042*x^23 - 1731*x^22 + 28320*x^21 - 3490*x^20 - 167009*x^19 + 89358*x^18 + 652029*x^17 - 527856*x^16 - 1709818*x^15 + 1726167*x^14 + 2991149*x^13 - 3494335*x^12 - 3401463*x^11 + 4438790*x^10 + 2411697*x^9 - 3434108*x^8 - 1034801*x^7 + 1523079*x^6 + 291220*x^5 - 358692*x^4 - 57808*x^3 + 36112*x^2 + 6080*x - 384, x^27 - 4*x^26 - 34*x^25 + 150*x^24 + 477*x^23 - 2427*x^22 - 3495*x^21 + 22267*x^20 + 13304*x^19 - 128087*x^18 - 14824*x^17 + 482288*x^16 - 88566*x^15 - 1204651*x^14 + 453122*x^13 + 1980271*x^12 - 984662*x^11 - 2085126*x^10 + 1169759*x^9 + 1346822*x^8 - 757146*x^7 - 514819*x^6 + 242984*x^5 + 121292*x^4 - 35072*x^3 - 15760*x^2 + 1408*x + 640, x^27 - 4*x^26 - 34*x^25 + 150*x^24 + 477*x^23 - 2427*x^22 - 3495*x^21 + 22267*x^20 + 13304*x^19 - 128087*x^18 - 14824*x^17 + 482288*x^16 - 88566*x^15 - 1204651*x^14 + 453122*x^13 + 1980271*x^12 - 984662*x^11 - 2085126*x^10 + 1169759*x^9 + 1346822*x^8 - 757146*x^7 - 514819*x^6 + 242984*x^5 + 121292*x^4 - 35072*x^3 - 15760*x^2 + 1408*x + 640]>
       ]
>;

MOG[593] := 	// J_0(593)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 37, 51, 86, 146, 177, 183, 362, 431, 440, 446, 502, 307*x + 490, 286*x + 490, 435*x + 352, 158*x + 352, 161*x + 41, 432*x + 41, 221*x + 534, 372*x + 534, 291*x + 385, 302*x + 385, 155*x + 315, 438*x + 315, 439*x + 413, 154*x + 413, 47*x + 317, 546*x + 317, 183*x + 40, 410*x + 40, 274*x + 516, 319*x + 516, 266*x + 455, 327*x + 455, 58*x + 502, 535*x + 502, 298*x + 111, 295*x + 111, 259*x + 96, 334*x + 96, 458*x + 84, 135*x + 84, 445*x + 261, 148*x + 261, 6*x + 308, 587*x + 308, 2*x + 105, 591*x + 105, 49*x + 34, 544*x + 34]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 1, -1, 0, 0, 0, 0, 1, -1, 0, 0, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 0, 0]>,
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [1, -1, 1, 1, -3, 3, -1, -3, 1, -1, 1, 3, -1, -1, -1, -1, 3, 3, -1, -1, -3, -3, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 3,
           Coordinates        := [2*x - 4, -6*x + 6, -2*x + 4, 0, 4*x - 8, 2*x - 4, 0, 2*x - 4, 2*x - 4, -4*x + 2, -4*x + 2, 0, 3*x - 3, 3*x - 3, 0, 0, 3, 3, -3*x + 3, -3*x + 3, x + 1, x + 1, -x + 2, -x + 2, 4*x - 5, 4*x - 5, x - 2, x - 2, -x + 2, -x + 2, x - 2, x - 2, -x + 5, -x + 5, -5*x + 4, -5*x + 4, -3*x + 3, -3*x + 3, 3*x - 3, 3*x - 3, 2*x - 4, 2*x - 4, 2*x - 4, 2*x - 4, -2*x + 1, -2*x + 1, x + 1, x + 1, 3, 3]>,
         rec<Eigen |
           DefiningPolynomial := x^18 + 6*x^17 - 5*x^16 - 90*x^15 - 73*x^14 + 513*x^13 + 762*x^12 - 1357*x^11 - 2824*x^10 + 1537*x^9 + 5041*x^8 - 155*x^7 - 4451*x^6 - 1013*x^5 + 1717*x^4 + 621*x^3 - 169*x^2 - 67*x - 5,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^17 + 5*x^16 - 9*x^15 - 76*x^14 - 4*x^13 + 452*x^12 + 301*x^11 - 1322*x^10 - 1298*x^9 + 1950*x^8 + 2375*x^7 - 1290*x^6 - 2020*x^5 + 173*x^4 + 682*x^3 + 107*x^2 - 35*x - 6, -x^17 - 5*x^16 + 9*x^15 + 76*x^14 + 4*x^13 - 452*x^12 - 301*x^11 + 1322*x^10 + 1298*x^9 - 1950*x^8 - 2375*x^7 + 1290*x^6 + 2020*x^5 - 173*x^4 - 682*x^3 - 107*x^2 + 35*x + 6, -x^17 - 5*x^16 + 9*x^15 + 76*x^14 + 5*x^13 - 446*x^12 - 299*x^11 + 1273*x^10 + 1224*x^9 - 1835*x^8 - 2094*x^7 + 1254*x^6 + 1656*x^5 - 301*x^4 - 545*x^3 - 17*x^2 + 48*x + 6, x^17 + 5*x^16 - 9*x^15 - 76*x^14 - 5*x^13 + 446*x^12 + 299*x^11 - 1273*x^10 - 1224*x^9 + 1835*x^8 + 2094*x^7 - 1254*x^6 - 1656*x^5 + 301*x^4 + 545*x^3 + 17*x^2 - 48*x - 6, x^16 + 5*x^15 - 7*x^14 - 66*x^13 - 15*x^12 + 334*x^11 + 253*x^10 - 811*x^9 - 831*x^8 + 959*x^7 + 1177*x^6 - 470*x^5 - 734*x^4 + 31*x^3 + 151*x^2 + 13*x - 1, -x^16 - 5*x^15 + 7*x^14 + 66*x^13 + 15*x^12 - 334*x^11 - 253*x^10 + 811*x^9 + 831*x^8 - 959*x^7 - 1177*x^6 + 470*x^5 + 734*x^4 - 31*x^3 - 151*x^2 - 13*x + 1, -x^16 - 5*x^15 + 8*x^14 + 71*x^13 + 11*x^12 - 385*x^11 - 278*x^10 + 1000*x^9 + 997*x^8 - 1276*x^7 - 1505*x^6 + 706*x^5 + 999*x^4 - 78*x^3 - 228*x^2 - 26*x + 1, x^16 + 5*x^15 - 8*x^14 - 71*x^13 - 11*x^12 + 385*x^11 + 278*x^10 - 1000*x^9 - 997*x^8 + 1276*x^7 + 1505*x^6 - 706*x^5 - 999*x^4 + 78*x^3 + 228*x^2 + 26*x - 1, x^15 + 5*x^14 - 5*x^13 - 56*x^12 - 24*x^11 + 225*x^10 + 193*x^9 - 399*x^8 - 395*x^7 + 332*x^6 + 299*x^5 - 140*x^4 - 69*x^3 + 40*x^2 + 7*x, -x^15 - 5*x^14 + 5*x^13 + 56*x^12 + 24*x^11 - 225*x^10 - 193*x^9 + 399*x^8 + 395*x^7 - 332*x^6 - 299*x^5 + 140*x^4 + 69*x^3 - 40*x^2 - 7*x, x^15 + 5*x^14 - 6*x^13 - 62*x^12 - 24*x^11 + 286*x^10 + 274*x^9 - 592*x^8 - 803*x^7 + 488*x^6 + 987*x^5 - 2*x^4 - 462*x^3 - 134*x^2 + 27*x + 6, -x^15 - 5*x^14 + 6*x^13 + 62*x^12 + 24*x^11 - 286*x^10 - 274*x^9 + 592*x^8 + 803*x^7 - 488*x^6 - 987*x^5 + 2*x^4 + 462*x^3 + 134*x^2 - 27*x - 6, -x^15 - 5*x^14 + 6*x^13 + 61*x^12 + 21*x^11 - 273*x^10 - 227*x^9 + 559*x^8 + 589*x^7 - 548*x^6 - 657*x^5 + 223*x^4 + 317*x^3 - 9*x^2 - 47*x - 6, x^15 + 5*x^14 - 6*x^13 - 61*x^12 - 21*x^11 + 273*x^10 + 227*x^9 - 559*x^8 - 589*x^7 + 548*x^6 + 657*x^5 - 223*x^4 - 317*x^3 + 9*x^2 + 47*x + 6, x^14 + 5*x^13 - 4*x^12 - 53*x^11 - 36*x^10 + 187*x^9 + 243*x^8 - 228*x^7 - 483*x^6 - 2*x^5 + 366*x^4 + 149*x^3 - 75*x^2 - 53*x - 6, -x^14 - 5*x^13 + 4*x^12 + 53*x^11 + 36*x^10 - 187*x^9 - 243*x^8 + 228*x^7 + 483*x^6 + 2*x^5 - 366*x^4 - 149*x^3 + 75*x^2 + 53*x + 6, x^14 + 5*x^13 - 5*x^12 - 56*x^11 - 24*x^10 + 225*x^9 + 193*x^8 - 399*x^7 - 395*x^6 + 332*x^5 + 299*x^4 - 140*x^3 - 69*x^2 + 40*x + 7, -x^14 - 5*x^13 + 5*x^12 + 56*x^11 + 24*x^10 - 225*x^9 - 193*x^8 + 399*x^7 + 395*x^6 - 332*x^5 - 299*x^4 + 140*x^3 + 69*x^2 - 40*x - 7, x^14 + 4*x^13 - 9*x^12 - 48*x^11 + 21*x^10 + 219*x^9 + 28*x^8 - 471*x^7 - 190*x^6 + 468*x^5 + 272*x^4 - 165*x^3 - 124*x^2 - 7*x + 1, -x^14 - 4*x^13 + 9*x^12 + 48*x^11 - 21*x^10 - 219*x^9 - 28*x^8 + 471*x^7 + 190*x^6 - 468*x^5 - 272*x^4 + 165*x^3 + 124*x^2 + 7*x - 1, -x^14 - 4*x^13 + 9*x^12 + 47*x^11 - 23*x^10 - 204*x^9 + 6*x^8 + 412*x^7 + 31*x^6 - 418*x^5 - 27*x^4 + 212*x^3 + 13*x^2 - 46*x - 7, x^14 + 4*x^13 - 9*x^12 - 47*x^11 + 23*x^10 + 204*x^9 - 6*x^8 - 412*x^7 - 31*x^6 + 418*x^5 + 27*x^4 - 212*x^3 - 13*x^2 + 46*x + 7, -x^14 - 6*x^13 + x^12 + 65*x^11 + 74*x^10 - 237*x^9 - 414*x^8 + 316*x^7 + 817*x^6 - 65*x^5 - 655*x^4 - 143*x^3 + 168*x^2 + 66*x + 6, x^14 + 6*x^13 - x^12 - 65*x^11 - 74*x^10 + 237*x^9 + 414*x^8 - 316*x^7 - 817*x^6 + 65*x^5 + 655*x^4 + 143*x^3 - 168*x^2 - 66*x - 6, x^13 + 5*x^12 - 3*x^11 - 46*x^10 - 27*x^9 + 149*x^8 + 142*x^7 - 210*x^6 - 247*x^5 + 109*x^4 + 173*x^3 + 3*x^2 - 33*x - 5, -x^13 - 5*x^12 + 3*x^11 + 46*x^10 + 27*x^9 - 149*x^8 - 142*x^7 + 210*x^6 + 247*x^5 - 109*x^4 - 173*x^3 - 3*x^2 + 33*x + 5, -x^13 - 5*x^12 + 3*x^11 + 46*x^10 + 29*x^9 - 141*x^8 - 146*x^7 + 161*x^6 + 212*x^5 - 38*x^4 - 92*x^3 - 24*x^2 - 6*x - 1, x^13 + 5*x^12 - 3*x^11 - 46*x^10 - 29*x^9 + 141*x^8 + 146*x^7 - 161*x^6 - 212*x^5 + 38*x^4 + 92*x^3 + 24*x^2 + 6*x + 1, x^12 + 5*x^11 - 2*x^10 - 41*x^9 - 27*x^8 + 115*x^7 + 104*x^6 - 147*x^5 - 137*x^4 + 76*x^3 + 67*x^2 - 4*x - 2, -x^12 - 5*x^11 + 2*x^10 + 41*x^9 + 27*x^8 - 115*x^7 - 104*x^6 + 147*x^5 + 137*x^4 - 76*x^3 - 67*x^2 + 4*x + 2, -x^11 - 4*x^10 + 4*x^9 + 29*x^8 + 8*x^7 - 57*x^6 - 35*x^5 + 19*x^4 + 13*x^3 + 20*x^2 + 20*x + 3, x^11 + 4*x^10 - 4*x^9 - 29*x^8 - 8*x^7 + 57*x^6 + 35*x^5 - 19*x^4 - 13*x^3 - 20*x^2 - 20*x - 3, -x^12 - 4*x^11 + 6*x^10 + 36*x^9 - 3*x^8 - 109*x^7 - 29*x^6 + 133*x^5 + 44*x^4 - 63*x^3 - 16*x^2 + 12*x + 2, x^12 + 4*x^11 - 6*x^10 - 36*x^9 + 3*x^8 + 109*x^7 + 29*x^6 - 133*x^5 - 44*x^4 + 63*x^3 + 16*x^2 - 12*x - 2, x^11 + 5*x^10 - 34*x^8 - 38*x^7 + 63*x^6 + 110*x^5 - 33*x^4 - 106*x^3 - 7*x^2 + 31*x + 5, -x^11 - 5*x^10 + 34*x^8 + 38*x^7 - 63*x^6 - 110*x^5 + 33*x^4 + 106*x^3 + 7*x^2 - 31*x - 5, -2*x^10 - 7*x^9 + 11*x^8 + 52*x^7 - 6*x^6 - 114*x^5 - 31*x^4 + 83*x^3 + 36*x^2 - 9*x - 2, 2*x^10 + 7*x^9 - 11*x^8 - 52*x^7 + 6*x^6 + 114*x^5 + 31*x^4 - 83*x^3 - 36*x^2 + 9*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^27 - 6*x^26 - 27*x^25 + 223*x^24 + 202*x^23 - 3540*x^22 + 1168*x^21 + 31305*x^20 - 31392*x^19 - 168192*x^18 + 251531*x^17 + 557742*x^16 - 1110745*x^15 - 1082936*x^14 + 2980971*x^13 + 955846*x^12 - 4886233*x^11 + 371289*x^10 + 4628707*x^9 - 1560432*x^8 - 2181895*x^7 + 1126402*x^6 + 342467*x^5 - 211917*x^4 - 24514*x^3 + 13047*x^2 + 863*x - 191,
           Coordinates        := [2*x^26 - 12*x^25 - 48*x^24 + 410*x^23 + 272*x^22 - 5922*x^21 + 2868*x^20 + 47284*x^19 - 52822*x^18 - 228358*x^17 + 364970*x^16 + 679678*x^15 - 1437932*x^14 - 1179814*x^13 + 3513312*x^12 + 883016*x^11 - 5339522*x^10 + 554634*x^9 + 4758442*x^8 - 1625530*x^7 - 2111800*x^6 + 1051362*x^5 + 291412*x^4 - 150738*x^3 - 21414*x^2 + 5062*x + 292, 6*x^25 - 36*x^24 - 132*x^23 + 1158*x^22 + 532*x^21 - 15326*x^20 + 9962*x^19 + 108026*x^18 - 138092*x^17 - 435806*x^16 + 783558*x^15 + 986058*x^14 - 2448630*x^13 - 1028676*x^12 + 4432944*x^11 - 187944*x^10 - 4498972*x^9 + 1495334*x^8 + 2251990*x^7 - 1201442*x^6 - 393522*x^5 + 273096*x^4 + 27614*x^3 - 21032*x^2 - 1434*x + 382, 8*x^26 - 47*x^25 - 198*x^24 + 1618*x^23 + 1281*x^22 - 23576*x^21 + 8885*x^20 + 189820*x^19 - 191144*x^18 - 922734*x^17 + 1349428*x^16 + 2761583*x^15 - 5279660*x^14 - 4875390*x^13 + 12548892*x^12 + 4155859*x^11 - 18229400*x^10 + 423806*x^9 + 15412575*x^8 - 3805449*x^7 - 6685209*x^6 + 2518576*x^5 + 1130617*x^4 - 413271*x^3 - 97492*x^2 + 18053*x + 3721, -11*x^26 + 66*x^25 + 264*x^24 - 2255*x^23 - 1518*x^22 + 32707*x^21 - 15598*x^20 - 262638*x^19 + 292718*x^18 + 1272444*x^17 - 2038497*x^16 - 3765216*x^15 + 8028970*x^14 + 6354686*x^13 - 19375117*x^12 - 4211996*x^11 + 28630308*x^10 - 3988519*x^9 - 24373371*x^8 + 9295809*x^7 + 10121006*x^6 - 5660749*x^5 - 1228565*x^4 + 870312*x^3 + 62111*x^2 - 34523*x - 2060, x^26 + 2*x^25 - 72*x^24 + 29*x^23 + 1680*x^22 - 2235*x^21 - 19074*x^20 + 36622*x^19 + 119128*x^18 - 295776*x^17 - 411465*x^16 + 1368020*x^15 + 659946*x^14 - 3758392*x^13 + 156703*x^12 + 5964600*x^11 - 2288268*x^10 - 4818653*x^9 + 3132701*x^8 + 1105811*x^7 - 1211920*x^6 + 525445*x^5 - 279905*x^4 - 48826*x^3 + 67513*x^2 + 1225*x - 2408, -22*x^24 + 132*x^23 + 456*x^22 - 4074*x^21 - 1592*x^20 + 52166*x^19 - 35438*x^18 - 358176*x^17 + 463378*x^16 + 1414546*x^15 - 2560968*x^14 - 3136138*x^13 + 7855132*x^12 + 3155980*x^11 - 13947090*x^10 + 807020*x^9 + 13687192*x^8 - 4772966*x^7 - 6269660*x^6 + 3467076*x^5 + 726364*x^4 - 535106*x^3 - 27428*x^2 + 18356*x + 604, -10*x^21 + 42*x^20 + 226*x^19 - 1126*x^18 - 1892*x^17 + 12682*x^16 + 5780*x^15 - 77676*x^14 + 12006*x^13 + 278362*x^12 - 146004*x^11 - 580548*x^10 + 455522*x^9 + 651290*x^8 - 661474*x^7 - 308596*x^6 + 427446*x^5 + 7200*x^4 - 83160*x^3 + 4202*x^2 + 4664*x + 296, 6*x^21 - 306*x^19 + 470*x^18 + 4690*x^17 - 10364*x^16 - 32388*x^15 + 91510*x^14 + 108106*x^13 - 415946*x^12 - 138044*x^11 + 1040062*x^10 - 118586*x^9 - 1407626*x^8 + 512330*x^7 + 936914*x^6 - 452686*x^5 - 253610*x^4 + 104984*x^3 + 43524*x^2 - 9498*x - 2902, -11*x^25 + 66*x^24 + 242*x^23 - 2121*x^22 - 1062*x^21 + 28523*x^20 - 17106*x^19 - 208064*x^18 + 253932*x^17 + 888326*x^16 - 1526399*x^15 - 2201742*x^14 + 5114354*x^13 + 2768318*x^12 - 10100047*x^11 - 477130*x^10 + 11457902*x^9 - 2937381*x^8 - 6715815*x^7 + 3052861*x^6 + 1564846*x^5 - 921053*x^4 - 107403*x^3 + 84852*x^2 + 1527*x - 1951, -6*x^23 + 38*x^22 + 96*x^21 - 1028*x^20 + 50*x^19 + 11428*x^18 - 11034*x^17 - 67074*x^16 + 101858*x^15 + 219730*x^14 - 446078*x^13 - 378012*x^12 + 1071118*x^11 + 234230*x^10 - 1397312*x^9 + 158596*x^8 + 894364*x^7 - 209736*x^6 - 247362*x^5 + 4616*x^4 + 72712*x^3 - 5786*x^2 - 5302*x + 150, 16*x^22 - 78*x^21 - 372*x^20 + 2360*x^19 + 2392*x^18 - 28566*x^17 + 7200*x^16 + 177382*x^15 - 166524*x^14 - 595546*x^13 + 885642*x^12 + 1001366*x^11 - 2275108*x^10 - 466176*x^9 + 2965542*x^8 - 817802*x^7 - 1705202*x^6 + 991356*x^5 + 234464*x^4 - 212058*x^3 - 17398*x^2 + 14946*x + 2036, -10*x^22 + 62*x^21 + 142*x^20 - 1578*x^19 + 360*x^18 + 16466*x^17 - 19584*x^16 - 89236*x^15 + 167358*x^14 + 254350*x^13 - 702728*x^12 - 288540*x^11 + 1616618*x^10 - 259754*x^9 - 1964054*x^8 + 1014352*x^7 + 1044638*x^6 - 847692*x^5 - 97560*x^4 + 170522*x^3 - 3740*x^2 - 9032*x - 592, 6*x^24 - 36*x^23 - 142*x^22 + 1220*x^21 + 679*x^20 - 16913*x^19 + 10187*x^18 + 124634*x^17 - 155676*x^16 - 526488*x^15 + 932583*x^14 + 1255383*x^13 - 3053496*x^12 - 1418496*x^11 + 5759797*x^10 - 84284*x^9 - 6011668*x^8 + 1837574*x^7 + 2970939*x^6 - 1440495*x^5 - 423311*x^4 + 215591*x^3 + 31404*x^2 - 7402*x - 438, 6*x^24 - 36*x^23 - 142*x^22 + 1220*x^21 + 679*x^20 - 16913*x^19 + 10187*x^18 + 124634*x^17 - 155676*x^16 - 526488*x^15 + 932583*x^14 + 1255383*x^13 - 3053496*x^12 - 1418496*x^11 + 5759797*x^10 - 84284*x^9 - 6011668*x^8 + 1837574*x^7 + 2970939*x^6 - 1440495*x^5 - 423311*x^4 + 215591*x^3 + 31404*x^2 - 7402*x - 438, -5*x^23 + 31*x^22 + 76*x^21 - 810*x^20 + 67*x^19 + 8796*x^18 - 8846*x^17 - 50959*x^16 + 80789*x^15 + 166013*x^14 - 357367*x^13 - 283451*x^12 + 881311*x^11 + 160397*x^10 - 1209788*x^9 + 181531*x^8 + 853056*x^7 - 269548*x^6 - 262503*x^5 + 81661*x^4 + 39710*x^3 - 6617*x^2 - 2628*x - 148, -5*x^23 + 31*x^22 + 76*x^21 - 810*x^20 + 67*x^19 + 8796*x^18 - 8846*x^17 - 50959*x^16 + 80789*x^15 + 166013*x^14 - 357367*x^13 - 283451*x^12 + 881311*x^11 + 160397*x^10 - 1209788*x^9 + 181531*x^8 + 853056*x^7 - 269548*x^6 - 262503*x^5 + 81661*x^4 + 39710*x^3 - 6617*x^2 - 2628*x - 148, -5*x^23 + 31*x^22 + 71*x^21 - 777*x^20 + 158*x^19 + 7812*x^18 - 8738*x^17 - 39723*x^16 + 68236*x^15 + 103312*x^14 - 247499*x^13 - 106369*x^12 + 445542*x^11 - 56737*x^10 - 302908*x^9 + 160709*x^8 - 134107*x^7 + 30495*x^6 + 232714*x^5 - 139166*x^4 - 35920*x^3 + 20247*x^2 + 3624*x - 234, -5*x^23 + 31*x^22 + 71*x^21 - 777*x^20 + 158*x^19 + 7812*x^18 - 8738*x^17 - 39723*x^16 + 68236*x^15 + 103312*x^14 - 247499*x^13 - 106369*x^12 + 445542*x^11 - 56737*x^10 - 302908*x^9 + 160709*x^8 - 134107*x^7 + 30495*x^6 + 232714*x^5 - 139166*x^4 - 35920*x^3 + 20247*x^2 + 3624*x - 234, -11*x^24 + 67*x^23 + 228*x^22 - 2092*x^21 - 754*x^20 + 27287*x^19 - 19393*x^18 - 192059*x^17 + 256049*x^16 + 781737*x^15 - 1457308*x^14 - 1793184*x^13 + 4637535*x^12 + 1867433*x^11 - 8586203*x^10 + 525569*x^9 + 8828778*x^8 - 3121474*x^7 - 4278080*x^6 + 2369848*x^5 + 560581*x^4 - 392730*x^3 - 30292*x^2 + 16286*x + 1030, -11*x^24 + 67*x^23 + 228*x^22 - 2092*x^21 - 754*x^20 + 27287*x^19 - 19393*x^18 - 192059*x^17 + 256049*x^16 + 781737*x^15 - 1457308*x^14 - 1793184*x^13 + 4637535*x^12 + 1867433*x^11 - 8586203*x^10 + 525569*x^9 + 8828778*x^8 - 3121474*x^7 - 4278080*x^6 + 2369848*x^5 + 560581*x^4 - 392730*x^3 - 30292*x^2 + 16286*x + 1030, -11*x^24 + 67*x^23 + 218*x^22 - 2036*x^21 - 554*x^20 + 25670*x^19 - 20074*x^18 - 173458*x^17 + 243706*x^16 + 672736*x^15 - 1317397*x^14 - 1451552*x^13 + 4010881*x^12 + 1342411*x^11 - 7140966*x^10 + 715718*x^9 + 7104167*x^8 - 2684437*x^7 - 3364483*x^6 + 1923812*x^5 + 452131*x^4 - 323135*x^3 - 31730*x^2 + 16092*x + 1456, -11*x^24 + 67*x^23 + 218*x^22 - 2036*x^21 - 554*x^20 + 25670*x^19 - 20074*x^18 - 173458*x^17 + 243706*x^16 + 672736*x^15 - 1317397*x^14 - 1451552*x^13 + 4010881*x^12 + 1342411*x^11 - 7140966*x^10 + 715718*x^9 + 7104167*x^8 - 2684437*x^7 - 3364483*x^6 + 1923812*x^5 + 452131*x^4 - 323135*x^3 - 31730*x^2 + 16092*x + 1456, -5*x^22 + 39*x^21 + 33*x^20 - 945*x^19 + 1149*x^18 + 9101*x^17 - 19794*x^16 - 42936*x^15 + 137315*x^14 + 89800*x^13 - 511843*x^12 + 19348*x^11 + 1078261*x^10 - 470725*x^9 - 1226606*x^8 + 877358*x^7 + 626258*x^6 - 622483*x^5 - 64740*x^4 + 127791*x^3 + 3950*x^2 - 8924*x - 1018, -5*x^22 + 39*x^21 + 33*x^20 - 945*x^19 + 1149*x^18 + 9101*x^17 - 19794*x^16 - 42936*x^15 + 137315*x^14 + 89800*x^13 - 511843*x^12 + 19348*x^11 + 1078261*x^10 - 470725*x^9 - 1226606*x^8 + 877358*x^7 + 626258*x^6 - 622483*x^5 - 64740*x^4 + 127791*x^3 + 3950*x^2 - 8924*x - 1018, x^24 - 9*x^23 - 2*x^22 + 232*x^21 - 426*x^20 - 2354*x^19 + 7209*x^18 + 10963*x^17 - 55630*x^16 - 11698*x^15 + 242545*x^14 - 119452*x^13 - 617434*x^12 + 632533*x^11 + 842302*x^10 - 1419336*x^9 - 365624*x^8 + 1584679*x^7 - 413465*x^6 - 741762*x^5 + 446662*x^4 + 37401*x^3 - 61949*x^2 + 2131*x + 2099, x^24 - 9*x^23 - 2*x^22 + 232*x^21 - 426*x^20 - 2354*x^19 + 7209*x^18 + 10963*x^17 - 55630*x^16 - 11698*x^15 + 242545*x^14 - 119452*x^13 - 617434*x^12 + 632533*x^11 + 842302*x^10 - 1419336*x^9 - 365624*x^8 + 1584679*x^7 - 413465*x^6 - 741762*x^5 + 446662*x^4 + 37401*x^3 - 61949*x^2 + 2131*x + 2099, x^24 - 8*x^23 - 11*x^22 + 219*x^21 - 150*x^20 - 2488*x^19 + 3532*x^18 + 15238*x^17 - 28351*x^16 - 54220*x^15 + 123070*x^14 + 107775*x^13 - 318216*x^12 - 77404*x^11 + 486060*x^10 - 135177*x^9 - 379365*x^8 + 351636*x^7 + 54911*x^6 - 267446*x^5 + 85892*x^4 + 54260*x^3 - 16226*x^2 - 5121*x + 309, x^24 - 8*x^23 - 11*x^22 + 219*x^21 - 150*x^20 - 2488*x^19 + 3532*x^18 + 15238*x^17 - 28351*x^16 - 54220*x^15 + 123070*x^14 + 107775*x^13 - 318216*x^12 - 77404*x^11 + 486060*x^10 - 135177*x^9 - 379365*x^8 + 351636*x^7 + 54911*x^6 - 267446*x^5 + 85892*x^4 + 54260*x^3 - 16226*x^2 - 5121*x + 309, -11*x^25 + 66*x^24 + 231*x^23 - 2056*x^22 - 844*x^21 + 26597*x^20 - 17744*x^19 - 184802*x^18 + 237206*x^17 + 740810*x^16 - 1331413*x^15 - 1677934*x^14 + 4150605*x^13 + 1766996*x^12 - 7509104*x^11 + 286395*x^10 + 7542252*x^9 - 2465781*x^8 - 3582012*x^7 + 1838406*x^6 + 486863*x^5 - 269861*x^4 - 50070*x^3 + 12071*x^2 + 2953*x - 75, -11*x^25 + 66*x^24 + 231*x^23 - 2056*x^22 - 844*x^21 + 26597*x^20 - 17744*x^19 - 184802*x^18 + 237206*x^17 + 740810*x^16 - 1331413*x^15 - 1677934*x^14 + 4150605*x^13 + 1766996*x^12 - 7509104*x^11 + 286395*x^10 + 7542252*x^9 - 2465781*x^8 - 3582012*x^7 + 1838406*x^6 + 486863*x^5 - 269861*x^4 - 50070*x^3 + 12071*x^2 + 2953*x - 75, 8*x^22 - 44*x^21 - 168*x^20 + 1297*x^19 + 819*x^18 - 15746*x^17 + 7151*x^16 + 101467*x^15 - 105022*x^14 - 372450*x^13 + 541663*x^12 + 770763*x^11 - 1454050*x^10 - 805112*x^9 + 2124275*x^8 + 248035*x^7 - 1589892*x^6 + 155232*x^5 + 520567*x^4 - 65114*x^3 - 72695*x^2 + 4856*x + 3136, 8*x^22 - 44*x^21 - 168*x^20 + 1297*x^19 + 819*x^18 - 15746*x^17 + 7151*x^16 + 101467*x^15 - 105022*x^14 - 372450*x^13 + 541663*x^12 + 770763*x^11 - 1454050*x^10 - 805112*x^9 + 2124275*x^8 + 248035*x^7 - 1589892*x^6 + 155232*x^5 + 520567*x^4 - 65114*x^3 - 72695*x^2 + 4856*x + 3136, x^23 - 8*x^22 - x^21 + 184*x^20 - 428*x^19 - 1424*x^18 + 6560*x^17 + 1828*x^16 - 43746*x^15 + 35754*x^14 + 150189*x^13 - 234933*x^12 - 246184*x^11 + 647138*x^10 + 68713*x^9 - 870933*x^8 + 320297*x^7 + 494192*x^6 - 352712*x^5 - 39417*x^4 + 78132*x^3 - 10412*x^2 - 3525*x + 735, x^23 - 8*x^22 - x^21 + 184*x^20 - 428*x^19 - 1424*x^18 + 6560*x^17 + 1828*x^16 - 43746*x^15 + 35754*x^14 + 150189*x^13 - 234933*x^12 - 246184*x^11 + 647138*x^10 + 68713*x^9 - 870933*x^8 + 320297*x^7 + 494192*x^6 - 352712*x^5 - 39417*x^4 + 78132*x^3 - 10412*x^2 - 3525*x + 735, x^25 + 2*x^24 - 70*x^23 + 12*x^22 + 1667*x^21 - 1784*x^20 - 19650*x^19 + 31780*x^18 + 129869*x^17 - 269575*x^16 - 495446*x^15 + 1302102*x^14 + 1025561*x^13 - 3770069*x^12 - 778947*x^11 + 6519729*x^10 - 959906*x^9 - 6373166*x^8 + 2387712*x^7 + 3042126*x^6 - 1570474*x^5 - 483763*x^4 + 252649*x^3 + 42835*x^2 - 10662*x - 1765, x^25 + 2*x^24 - 70*x^23 + 12*x^22 + 1667*x^21 - 1784*x^20 - 19650*x^19 + 31780*x^18 + 129869*x^17 - 269575*x^16 - 495446*x^15 + 1302102*x^14 + 1025561*x^13 - 3770069*x^12 - 778947*x^11 + 6519729*x^10 - 959906*x^9 - 6373166*x^8 + 2387712*x^7 + 3042126*x^6 - 1570474*x^5 - 483763*x^4 + 252649*x^3 + 42835*x^2 - 10662*x - 1765, 8*x^23 - 47*x^22 - 163*x^21 + 1432*x^20 + 467*x^19 - 17714*x^18 + 13796*x^17 + 114110*x^16 - 163553*x^15 - 404743*x^14 + 824313*x^13 + 740943*x^12 - 2244161*x^11 - 429323*x^10 + 3400112*x^9 - 649634*x^8 - 2715285*x^7 + 1118866*x^6 + 987818*x^5 - 520941*x^4 - 135372*x^3 + 73601*x^2 + 7204*x - 2118, 8*x^23 - 47*x^22 - 163*x^21 + 1432*x^20 + 467*x^19 - 17714*x^18 + 13796*x^17 + 114110*x^16 - 163553*x^15 - 404743*x^14 + 824313*x^13 + 740943*x^12 - 2244161*x^11 - 429323*x^10 + 3400112*x^9 - 649634*x^8 - 2715285*x^7 + 1118866*x^6 + 987818*x^5 - 520941*x^4 - 135372*x^3 + 73601*x^2 + 7204*x - 2118, 9*x^22 - 47*x^21 - 186*x^20 + 1358*x^19 + 775*x^18 - 15695*x^17 + 10056*x^16 + 91198*x^15 - 128110*x^14 - 265670*x^13 + 606183*x^12 + 260789*x^11 - 1420727*x^10 + 479690*x^9 + 1556854*x^8 - 1410784*x^7 - 433439*x^6 + 1055057*x^5 - 329113*x^4 - 125945*x^3 + 68836*x^2 + 2129*x - 2834, 9*x^22 - 47*x^21 - 186*x^20 + 1358*x^19 + 775*x^18 - 15695*x^17 + 10056*x^16 + 91198*x^15 - 128110*x^14 - 265670*x^13 + 606183*x^12 + 260789*x^11 - 1420727*x^10 + 479690*x^9 + 1556854*x^8 - 1410784*x^7 - 433439*x^6 + 1055057*x^5 - 329113*x^4 - 125945*x^3 + 68836*x^2 + 2129*x - 2834, 8*x^24 - 47*x^23 - 180*x^22 + 1523*x^21 + 821*x^20 - 20369*x^19 + 12202*x^18 + 145551*x^17 - 180760*x^16 - 597408*x^15 + 1057445*x^14 + 1379063*x^13 - 3392007*x^12 - 1460875*x^11 + 6274889*x^10 - 324212*x^9 - 6396414*x^8 + 2281615*x^7 + 3011149*x^6 - 1731230*x^5 - 326826*x^4 + 264660*x^3 + 11063*x^2 - 9103*x - 302, 8*x^24 - 47*x^23 - 180*x^22 + 1523*x^21 + 821*x^20 - 20369*x^19 + 12202*x^18 + 145551*x^17 - 180760*x^16 - 597408*x^15 + 1057445*x^14 + 1379063*x^13 - 3392007*x^12 - 1460875*x^11 + 6274889*x^10 - 324212*x^9 - 6396414*x^8 + 2281615*x^7 + 3011149*x^6 - 1731230*x^5 - 326826*x^4 + 264660*x^3 + 11063*x^2 - 9103*x - 302, 8*x^23 - 39*x^22 - 189*x^21 + 1180*x^20 + 1349*x^19 - 14518*x^18 + 1255*x^17 + 93873*x^16 - 67068*x^15 - 343528*x^14 + 388768*x^13 + 708656*x^12 - 1068532*x^11 - 753119*x^10 + 1542064*x^9 + 294912*x^8 - 1108766*x^7 + 27221*x^6 + 343575*x^5 + 20776*x^4 - 61191*x^3 - 14289*x^2 + 5767*x + 1451, 8*x^23 - 39*x^22 - 189*x^21 + 1180*x^20 + 1349*x^19 - 14518*x^18 + 1255*x^17 + 93873*x^16 - 67068*x^15 - 343528*x^14 + 388768*x^13 + 708656*x^12 - 1068532*x^11 - 753119*x^10 + 1542064*x^9 + 294912*x^8 - 1108766*x^7 + 27221*x^6 + 343575*x^5 + 20776*x^4 - 61191*x^3 - 14289*x^2 + 5767*x + 1451, 8*x^22 - 22*x^21 - 258*x^20 + 736*x^19 + 3443*x^18 - 10300*x^17 - 24740*x^16 + 79189*x^15 + 103319*x^14 - 368319*x^13 - 245221*x^12 + 1069618*x^11 + 261875*x^10 - 1911971*x^9 + 109783*x^8 + 1961549*x^7 - 558001*x^6 - 964219*x^5 + 434413*x^4 + 126076*x^3 - 61060*x^2 - 6513*x + 1383, 8*x^22 - 22*x^21 - 258*x^20 + 736*x^19 + 3443*x^18 - 10300*x^17 - 24740*x^16 + 79189*x^15 + 103319*x^14 - 368319*x^13 - 245221*x^12 + 1069618*x^11 + 261875*x^10 - 1911971*x^9 + 109783*x^8 + 1961549*x^7 - 558001*x^6 - 964219*x^5 + 434413*x^4 + 126076*x^3 - 61060*x^2 - 6513*x + 1383, 8*x^25 - 47*x^24 - 182*x^23 + 1532*x^22 + 888*x^21 - 20773*x^20 + 11685*x^19 + 151837*x^18 - 183522*x^17 - 644444*x^16 + 1119140*x^15 + 1564076*x^14 - 3770242*x^13 - 1823806*x^12 + 7447932*x^11 - 129119*x^10 - 8399214*x^9 + 2772653*x^8 + 4832070*x^7 - 2640360*x^6 - 1067282*x^5 + 780985*x^4 + 73723*x^3 - 76918*x^2 - 2204*x + 1968, 8*x^25 - 47*x^24 - 182*x^23 + 1532*x^22 + 888*x^21 - 20773*x^20 + 11685*x^19 + 151837*x^18 - 183522*x^17 - 644444*x^16 + 1119140*x^15 + 1564076*x^14 - 3770242*x^13 - 1823806*x^12 + 7447932*x^11 - 129119*x^10 - 8399214*x^9 + 2772653*x^8 + 4832070*x^7 - 2640360*x^6 - 1067282*x^5 + 780985*x^4 + 73723*x^3 - 76918*x^2 - 2204*x + 1968, 8*x^24 - 39*x^23 - 213*x^22 + 1280*x^21 + 1979*x^20 - 17614*x^19 - 4580*x^18 + 132739*x^17 - 49528*x^16 - 600099*x^15 + 451973*x^14 + 1672521*x^13 - 1708953*x^12 - 2824103*x^11 + 3555297*x^10 + 2673059*x^9 - 4184091*x^8 - 1116526*x^7 + 2606778*x^6 - 6361*x^5 - 730068*x^4 + 71693*x^3 + 84225*x^2 - 6982*x - 3419, 8*x^24 - 39*x^23 - 213*x^22 + 1280*x^21 + 1979*x^20 - 17614*x^19 - 4580*x^18 + 132739*x^17 - 49528*x^16 - 600099*x^15 + 451973*x^14 + 1672521*x^13 - 1708953*x^12 - 2824103*x^11 + 3555297*x^10 + 2673059*x^9 - 4184091*x^8 - 1116526*x^7 + 2606778*x^6 - 6361*x^5 - 730068*x^4 + 71693*x^3 + 84225*x^2 - 6982*x - 3419]>
       ]
>;

MOG[599] := 	// J_0(599)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 10, 90, 110, 114, 133, 152, 157, 162, 179, 213, 232, 258, 263, 315, 331, 386, 394, 418, 485, 508, 522, 530, 575, 586, 239*x + 96, 360*x + 96, 538*x + 262, 61*x + 262, 462*x + 112, 137*x + 112, 116*x + 334, 483*x + 334, 580*x + 126, 19*x + 126, 272*x + 398, 327*x + 398, 448*x + 255, 151*x + 255, 147*x + 399, 452*x + 399, 260*x + 88, 339*x + 88, 345*x + 97, 254*x + 97, 468*x + 468, 131*x + 468, 421*x + 170, 178*x + 170, 269*x + 325, 330*x + 325]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x + 2, x - 2, x - 1, -x + 1, x - 1, -x + 1, 0, 0, 1, -1, x - 1, -x + 1, -x + 1, x - 1, -x + 1, x - 1, 1, -1, 1, -1, 0, 0, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^11 + 3*x^10 - 9*x^9 - 30*x^8 + 24*x^7 + 97*x^6 - 24*x^5 - 130*x^4 + 4*x^3 + 69*x^2 + 5*x - 9,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^9 + 2*x^8 - 9*x^7 - 17*x^6 + 24*x^5 + 40*x^4 - 25*x^3 - 33*x^2 + 8*x + 8, -x^9 - 2*x^8 + 9*x^7 + 17*x^6 - 24*x^5 - 40*x^4 + 25*x^3 + 33*x^2 - 8*x - 8, x^10 + 2*x^9 - 9*x^8 - 17*x^7 + 24*x^6 + 40*x^5 - 25*x^4 - 33*x^3 + 8*x^2 + 8*x, -x^10 - 2*x^9 + 9*x^8 + 17*x^7 - 24*x^6 - 40*x^5 + 25*x^4 + 33*x^3 - 8*x^2 - 8*x, -x^10 - x^9 + 11*x^8 + 9*x^7 - 40*x^6 - 25*x^5 + 57*x^4 + 29*x^3 - 28*x^2 - 13*x + 1, x^10 + x^9 - 11*x^8 - 9*x^7 + 40*x^6 + 25*x^5 - 57*x^4 - 29*x^3 + 28*x^2 + 13*x - 1, x^6 + x^5 - 4*x^4 - 3*x^3 + 2*x^2 + 3*x + 1, -x^6 - x^5 + 4*x^4 + 3*x^3 - 2*x^2 - 3*x - 1, -x^9 - x^8 + 10*x^7 + 8*x^6 - 32*x^5 - 19*x^4 + 38*x^3 + 20*x^2 - 15*x - 8, x^9 + x^8 - 10*x^7 - 8*x^6 + 32*x^5 + 19*x^4 - 38*x^3 - 20*x^2 + 15*x + 8, 2*x^5 + 2*x^4 - 8*x^3 - 4*x^2 + 6*x + 3, -2*x^5 - 2*x^4 + 8*x^3 + 4*x^2 - 6*x - 3, x^7 + x^6 - 6*x^5 - 5*x^4 + 10*x^3 + 7*x^2 - 5*x - 3, -x^7 - x^6 + 6*x^5 + 5*x^4 - 10*x^3 - 7*x^2 + 5*x + 3, -x^5 - x^4 + 3*x^3 + 2*x^2 - 2*x - 1, x^5 + x^4 - 3*x^3 - 2*x^2 + 2*x + 1, -x^8 - x^7 + 8*x^6 + 6*x^5 - 19*x^4 - 9*x^3 + 13*x^2 + 5*x - 1, x^8 + x^7 - 8*x^6 - 6*x^5 + 19*x^4 + 9*x^3 - 13*x^2 - 5*x + 1, x^6 + x^5 - 4*x^4 - x^3 + 4*x^2 - 1, -x^6 - x^5 + 4*x^4 + x^3 - 4*x^2 + 1, x^6 - 5*x^4 + x^3 + 6*x^2 - x - 2, -x^6 + 5*x^4 - x^3 - 6*x^2 + x + 2, x^7 + x^6 - 7*x^5 - 5*x^4 + 15*x^3 + 8*x^2 - 9*x - 5, -x^7 - x^6 + 7*x^5 + 5*x^4 - 15*x^3 - 8*x^2 + 9*x + 5, -x^5 - 2*x^4 + 3*x^3 + 4*x^2 - 2*x - 2, x^5 + 2*x^4 - 3*x^3 - 4*x^2 + 2*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^37 - x^36 - 60*x^35 + 60*x^34 + 1641*x^33 - 1636*x^32 - 27103*x^31 + 26856*x^30 + 301872*x^29 - 296435*x^28 - 2397835*x^27 + 2327508*x^26 + 14006000*x^25 - 13412885*x^24 - 61122433*x^23 + 57706157*x^22 + 200364245*x^21 - 186717791*x^20 - 491544743*x^19 + 454176025*x^18 + 890367021*x^17 - 823898463*x^16 - 1159540663*x^15 + 1095980601*x^14 + 1034139025*x^13 - 1037779758*x^12 - 572612624*x^11 + 663947955*x^10 + 148686207*x^9 - 259675446*x^8 + 11118861*x^7 + 48962840*x^6 - 12479539*x^5 - 1361501*x^4 + 713002*x^3 - 23486*x^2 - 10349*x + 751,
           Coordinates        := [-x^36 + x^35 + 57*x^34 - 57*x^33 - 1476*x^32 + 1471*x^31 + 22993*x^30 - 22761*x^29 - 240508*x^28 + 235737*x^27 + 1785325*x^26 - 1728028*x^25 - 9690264*x^24 + 9244886*x^23 + 39034876*x^22 - 36691300*x^21 - 117178244*x^20 + 108721038*x^19 + 260697313*x^18 - 240094876*x^17 - 423017767*x^16 + 391243948*x^15 + 485597980*x^14 - 461150925*x^13 - 373111502*x^12 + 379765799*x^11 + 171311824*x^10 - 205723658*x^9 - 33022819*x^8 + 65440641*x^7 - 4315161*x^6 - 9437473*x^5 + 2200453*x^4 + 189483*x^3 - 79997*x^2 + 1405*x + 384, x^36 - x^35 - 57*x^34 + 58*x^33 + 1475*x^32 - 1520*x^31 - 22944*x^30 + 23837*x^29 + 239436*x^28 - 249725*x^27 - 1771487*x^26 + 1847780*x^25 + 9572908*x^24 - 9954955*x^23 - 38345869*x^22 + 39673769*x^21 + 114303826*x^20 - 117621123*x^19 - 252093079*x^18 + 258643366*x^17 + 404604186*x^16 - 416933611*x^15 - 457953318*x^14 + 481736418*x^13 + 345268678*x^12 - 383940351*x^11 - 154474575*x^10 + 197615204*x^9 + 29127230*x^8 - 58129315*x^7 + 2730736*x^6 + 7523328*x^5 - 1231891*x^4 - 241244*x^3 + 46534*x^2 + 1566*x - 191, -3*x^35 + 3*x^34 + 165*x^33 - 165*x^32 - 4110*x^31 + 4095*x^30 + 61364*x^29 - 60698*x^28 - 612510*x^27 + 599480*x^26 + 4315736*x^25 - 4167999*x^24 - 22087557*x^23 + 21014857*x^22 + 83186001*x^21 - 77996753*x^20 - 230847430*x^19 + 214081149*x^18 + 467349254*x^17 - 432654515*x^16 - 673942683*x^15 + 634829676*x^14 + 661027523*x^13 - 658013959*x^12 - 401300800*x^11 + 458224297*x^10 + 115663388*x^9 - 194234805*x^8 + 6803700*x^7 + 39525367*x^6 - 10279086*x^5 - 1172018*x^4 + 633005*x^3 - 22081*x^2 - 9965*x + 751, -5*x^31 + 3*x^30 + 237*x^29 - 145*x^28 - 5026*x^27 + 3109*x^26 + 62997*x^25 - 39118*x^24 - 519254*x^23 + 321927*x^22 + 2961576*x^21 - 1827905*x^20 - 11968354*x^19 + 7357263*x^18 + 34473178*x^17 - 21214084*x^16 - 70108679*x^15 + 43688885*x^14 + 97991703*x^13 - 63127165*x^12 - 89233540*x^11 + 61553098*x^10 + 47566492*x^9 - 37520786*x^8 - 11218463*x^7 + 12199339*x^6 - 271977*x^5 - 1416061*x^4 + 261866*x^3 + 18782*x^2 - 6456*x + 190, 2*x^32 - 5*x^31 - 95*x^30 + 245*x^29 + 1994*x^28 - 5342*x^27 - 24319*x^26 + 68414*x^25 + 190373*x^24 - 572133*x^23 - 994091*x^22 + 3285594*x^21 + 3457989*x^20 - 13261800*x^19 - 7567521*x^18 + 37838229*x^17 + 8045354*x^16 - 75578726*x^15 + 5070629*x^14 + 102766513*x^13 - 30728572*x^12 - 89771717*x^11 + 45938845*x^10 + 44365219*x^9 - 33825387*x^8 - 8117232*x^7 + 11662522*x^6 - 1367370*x^5 - 1219609*x^4 + 364441*x^3 + 355*x^2 - 10278*x + 926, -3*x^33 + 3*x^32 + 147*x^31 - 147*x^30 - 3235*x^29 + 3212*x^28 + 42294*x^27 - 41382*x^26 - 366177*x^25 + 350348*x^24 + 2215247*x^23 - 2057029*x^22 - 9626449*x^21 + 8618967*x^20 + 30397422*x^19 - 26133416*x^18 - 69663098*x^17 + 57545901*x^16 + 114204630*x^15 - 91498131*x^14 - 129681909*x^13 + 103248567*x^12 + 95781481*x^11 - 79691381*x^10 - 40206031*x^9 + 38907728*x^8 + 6110198*x^7 - 10025287*x^6 + 974917*x^5 + 793077*x^4 - 165207*x^3 - 8533*x^2 + 3389*x - 95, x^32 - 54*x^30 + 7*x^29 + 1298*x^28 - 310*x^27 - 18363*x^26 + 6072*x^25 + 170319*x^24 - 69503*x^23 - 1091737*x^22 + 517657*x^21 + 4964896*x^20 - 2643692*x^19 - 16173869*x^18 + 9501763*x^17 + 37585860*x^16 - 24253907*x^15 - 61101051*x^14 + 43728684*x^13 + 66547257*x^12 - 54427847*x^11 - 44179841*x^10 + 44450705*x^9 + 13444657*x^8 - 21343198*x^7 + 1346995*x^6 + 4483122*x^5 - 1557082*x^4 + 53295*x^3 + 51440*x^2 - 8152*x + 334, 2*x^31 - 9*x^30 - 84*x^29 + 409*x^28 + 1517*x^27 - 8248*x^26 - 15250*x^25 + 97383*x^24 + 90872*x^23 - 747880*x^22 - 296841*x^21 + 3924295*x^20 + 200292*x^19 - 14374524*x^18 + 2686539*x^17 + 36857788*x^16 - 13277059*x^15 - 65202538*x^14 + 32391799*x^13 + 76700620*x^12 - 47644986*x^11 - 55511190*x^10 + 42783307*x^9 + 20337187*x^8 - 21777626*x^7 - 969115*x^6 + 4955343*x^5 - 1167044*x^4 - 103225*x^3 + 52880*x^2 - 3012*x + 26, -3*x^31 + 2*x^30 + 139*x^29 - 91*x^28 - 2860*x^27 + 1798*x^26 + 34465*x^25 - 20216*x^24 - 270148*x^23 + 142073*x^22 + 1446569*x^21 - 641928*x^20 - 5409074*x^19 + 1820557*x^18 + 14193722*x^17 - 2841521*x^16 - 25934926*x^15 + 792173*x^14 + 32451528*x^13 + 5591318*x^12 - 27389024*x^11 - 10583089*x^10 + 15858173*x^9 + 8182450*x^8 - 6752133*x^7 - 2620905*x^6 + 1952052*x^5 + 141091*x^4 - 204606*x^3 + 10652*x^2 + 6626*x - 656, -3*x^32 + 5*x^31 + 144*x^30 - 240*x^29 - 3099*x^28 + 5154*x^27 + 39527*x^26 - 65488*x^25 - 332680*x^24 + 548554*x^23 + 1945649*x^22 - 3193513*x^21 - 8101760*x^20 + 13266532*x^19 + 24168480*x^18 - 39716712*x^17 - 51111424*x^16 + 85419509*x^15 + 74187370*x^14 - 129868598*x^13 - 68570811*x^12 + 135097769*x^11 + 32532278*x^10 - 90599464*x^9 + 822995*x^8 + 34752374*x^7 - 8159829*x^6 - 5428285*x^5 + 2664152*x^4 - 214094*x^3 - 69827*x^2 + 13423*x - 668, x^35 - 56*x^33 + 2*x^32 + 1423*x^31 - 95*x^30 - 21718*x^29 + 2026*x^28 + 222084*x^27 - 25692*x^26 - 1607022*x^25 + 216338*x^24 + 8470830*x^23 - 1279554*x^22 - 32976819*x^21 + 5484000*x^20 + 95063758*x^19 - 17309399*x^18 - 201430263*x^17 + 40418058*x^16 + 307922195*x^15 - 69266911*x^14 - 328242581*x^13 + 84936603*x^12 + 229883197*x^11 - 70527423*x^10 - 94452575*x^9 + 35296053*x^8 + 17290881*x^7 - 7888490*x^6 - 209650*x^5 - 20379*x^4 + 137472*x^3 - 26*x^2 - 6050*x + 309, -3*x^32 + 5*x^31 + 145*x^30 - 244*x^29 - 3124*x^28 + 5307*x^27 + 39604*x^26 - 67963*x^25 - 328413*x^24 + 570455*x^23 + 1872522*x^22 - 3306663*x^21 - 7505464*x^20 + 13588619*x^19 + 21210983*x^18 - 40001238*x^17 - 41578630*x^16 + 84177911*x^15 + 53965181*x^14 - 124792184*x^13 - 40962479*x^12 + 126295437*x^11 + 9816265*x^10 - 82167349*x^9 + 10431466*x^8 + 30375184*x^7 - 9278172*x^6 - 4542275*x^5 + 2378499*x^4 - 147989*x^3 - 65036*x^2 + 8812*x - 216, -3*x^33 + 3*x^32 + 155*x^31 - 153*x^30 - 3602*x^29 + 3503*x^28 + 49766*x^27 - 47611*x^26 - 455170*x^25 + 428085*x^24 + 2903056*x^23 - 2686294*x^22 - 13241138*x^21 + 12095704*x^20 + 43538966*x^19 - 39561801*x^18 - 102538721*x^17 + 94031836*x^16 + 168980504*x^15 - 160599195*x^14 - 185339008*x^13 + 191939487*x^12 + 120916585*x^11 - 152332079*x^10 - 31800643*x^9 + 72034755*x^8 - 8699547*x^7 - 15296621*x^6 + 6037836*x^5 - 322*x^4 - 318593*x^3 + 24339*x^2 + 6021*x - 481, x^33 - 50*x^31 + 2*x^30 + 1117*x^29 - 84*x^28 - 14707*x^27 + 1547*x^26 + 126697*x^25 - 16441*x^24 - 748836*x^23 + 111489*x^22 + 3090265*x^21 - 501616*x^20 - 8845979*x^19 + 1492138*x^18 + 16884701*x^17 - 2724990*x^16 - 19004680*x^15 + 2005268*x^14 + 6186643*x^13 + 3456146*x^12 + 14129110*x^11 - 11823754*x^10 - 21040478*x^9 + 15197213*x^8 + 10944015*x^7 - 9733387*x^6 - 1134134*x^5 + 2554470*x^4 - 599906*x^3 - 25219*x^2 + 19950*x - 1284, -3*x^33 + 3*x^32 + 153*x^31 - 151*x^30 - 3508*x^29 + 3404*x^28 + 47806*x^27 - 45442*x^26 - 431292*x^25 + 400298*x^24 + 2714803*x^23 - 2454645*x^22 - 12237627*x^21 + 10772558*x^20 + 39881857*x^19 - 34254274*x^18 - 93610581*x^17 + 78974078*x^16 + 155478833*x^15 - 130654986*x^14 - 176180520*x^13 + 151432691*x^12 + 126977006*x^11 - 117523105*x^10 - 49791926*x^9 + 56018121*x^8 + 5591193*x^7 - 13583892*x^6 + 1793817*x^5 + 930529*x^4 - 224871*x^3 - 2195*x^2 + 3436*x - 270, -3*x^34 + 3*x^33 + 159*x^32 - 159*x^31 - 3802*x^30 + 3791*x^29 + 54254*x^28 - 53791*x^27 - 514938*x^26 + 506427*x^25 + 3429274*x^24 - 3339616*x^23 - 16469698*x^22 + 15873918*x^21 + 57707236*x^20 - 55128491*x^19 - 147426607*x^18 + 140265074*x^17 + 271199952*x^16 - 259648601*x^15 - 349483346*x^14 + 343575495*x^13 + 299507995*x^12 - 314641781*x^11 - 153407209*x^10 + 188369113*x^9 + 34070819*x^8 - 66181929*x^7 + 3695346*x^6 + 10644854*x^5 - 2447433*x^4 - 241811*x^3 + 89541*x^2 + 63*x - 508, 3*x^32 - 150*x^30 + 2*x^29 + 3373*x^28 - 92*x^27 - 45097*x^26 + 1907*x^25 + 399261*x^24 - 23579*x^23 - 2466602*x^22 + 193677*x^21 + 10913193*x^20 - 1112136*x^19 - 34913645*x^18 + 4568292*x^17 + 80509509*x^16 - 13485330*x^15 - 131689954*x^14 + 28284696*x^13 + 147903937*x^12 - 40925638*x^11 - 107410060*x^10 + 38613084*x^9 + 44631760*x^8 - 21340133*x^7 - 7429233*x^6 + 5405405*x^5 - 432566*x^4 - 182260*x^3 + 21068*x^2 + 2075*x - 216, -3*x^32 + 3*x^31 + 149*x^30 - 143*x^29 - 3324*x^28 + 3042*x^27 + 44042*x^26 - 38166*x^25 - 386058*x^24 + 314516*x^23 + 2359549*x^22 - 1794697*x^21 - 10319915*x^20 + 7285598*x^19 + 32605043*x^18 - 21289758*x^17 - 74142489*x^16 + 44815704*x^15 + 119337645*x^14 - 67350620*x^13 - 131568510*x^12 + 70823239*x^11 + 93799018*x^10 - 50183643*x^9 - 38911092*x^8 + 22222853*x^7 + 7376643*x^6 - 5172050*x^5 - 155937*x^4 + 387605*x^3 - 21069*x^2 - 9145*x + 724, x^34 - 54*x^32 + 2*x^31 + 1321*x^30 - 93*x^29 - 19378*x^28 + 1949*x^27 + 190157*x^26 - 24420*x^25 - 1318416*x^24 + 204571*x^23 + 6648604*x^22 - 1212950*x^21 - 24724068*x^20 + 5247966*x^19 + 67972215*x^18 - 16795045*x^17 - 137100049*x^16 + 39744505*x^15 + 198977648*x^14 - 68557234*x^13 - 200322084*x^12 + 83529731*x^11 + 130549423*x^10 - 67866576*x^9 - 47132402*x^8 + 32949944*x^7 + 4948104*x^6 - 7334057*x^5 + 1389742*x^4 + 103746*x^3 - 52558*x^2 + 4793*x - 118, x^31 + 2*x^30 - 56*x^29 - 81*x^28 + 1370*x^27 + 1416*x^26 - 19375*x^25 - 13944*x^24 + 176353*x^23 + 84241*x^22 - 1086945*x^21 - 314171*x^20 + 4640464*x^19 + 652362*x^18 - 13772019*x^17 - 314833*x^16 + 28012308*x^15 - 1965469*x^14 - 37631089*x^13 + 5243172*x^12 + 30924589*x^11 - 5278639*x^10 - 13081357*x^9 + 980375*x^8 + 1621443*x^7 + 2017170*x^6 - 150971*x^5 - 1085114*x^4 + 389480*x^3 - 1715*x^2 - 13160*x + 1094, -3*x^34 + 3*x^33 + 159*x^32 - 159*x^31 - 3813*x^30 + 3794*x^29 + 54760*x^28 - 53940*x^27 - 525301*x^26 + 509658*x^25 + 3553961*x^24 - 3380185*x^23 - 17448929*x^22 + 16203229*x^21 + 62980066*x^20 - 56953474*x^19 - 167316078*x^18 + 147365039*x^17 + 323910666*x^16 - 279253567*x^15 - 446283071*x^14 + 381863321*x^13 + 418525711*x^12 - 366431319*x^11 - 244864875*x^10 + 234567056*x^9 + 71801338*x^8 - 90614627*x^7 - 1028949*x^6 + 16495547*x^5 - 3520921*x^4 - 348719*x^3 + 140485*x^2 - 3527*x - 644, -6*x^32 + 6*x^31 + 289*x^30 - 291*x^29 - 6233*x^28 + 6279*x^27 + 79562*x^26 - 79655*x^25 - 669357*x^24 + 661578*x^23 + 3911240*x^22 - 3792131*x^21 - 16291322*x^20 + 15410029*x^19 + 48826490*x^18 - 44909569*x^17 - 104853018*x^16 + 93877718*x^15 + 158300581*x^14 - 139307377*x^13 - 161372115*x^12 + 143369969*x^11 + 102329422*x^10 - 97829664*x^9 - 32845570*x^8 + 40294670*x^7 + 1001933*x^6 - 7851235*x^5 + 1677857*x^4 + 170093*x^3 - 68548*x^2 + 1716*x + 322, -3*x^32 + 150*x^30 - 4*x^29 - 3373*x^28 + 173*x^27 + 45088*x^26 - 3352*x^25 - 398950*x^24 + 38516*x^23 + 2461897*x^22 - 292702*x^21 - 10872188*x^20 + 1552124*x^19 + 34686054*x^18 - 5896640*x^17 - 79672130*x^16 + 16182917*x^15 + 129637899*x^14 - 31830325*x^13 - 144650228*x^12 + 43683845*x^11 + 104338289*x^10 - 39627571*x^9 - 43283590*x^8 + 21428860*x^7 + 7486013*x^6 - 5518520*x^5 + 264728*x^4 + 294950*x^3 - 32363*x^2 - 5276*x + 656, -3*x^33 + 3*x^32 + 150*x^31 - 154*x^30 - 3369*x^29 + 3546*x^28 + 44915*x^27 - 48440*x^26 - 395598*x^25 + 437466*x^24 + 2423381*x^23 - 2754599*x^22 - 10579486*x^21 + 12424312*x^20 + 33133930*x^19 - 40582694*x^18 - 73775490*x^17 + 95855047*x^16 + 113454982*x^15 - 161468224*x^14 - 112819903*x^13 + 188334073*x^12 + 60654444*x^11 - 143965860*x^10 - 3656019*x^9 + 64712450*x^8 - 13942847*x^7 - 13004533*x^6 + 5783248*x^5 + 30222*x^4 - 327313*x^3 + 27087*x^2 + 5932*x - 656, x^33 - 52*x^31 + 1223*x^29 + 7*x^28 - 17220*x^27 - 275*x^26 + 161909*x^25 + 4674*x^24 - 1073390*x^23 - 44885*x^22 + 5162486*x^21 + 265582*x^20 - 18245564*x^19 - 977784*x^18 + 47445513*x^17 + 2051437*x^16 - 89939867*x^15 - 1295591*x^14 + 121733854*x^13 - 4863018*x^12 - 113462884*x^11 + 14484601*x^10 + 68360651*x^9 - 17543322*x^8 - 23286792*x^7 + 10287820*x^6 + 2733526*x^5 - 2430345*x^4 + 409876*x^3 + 30038*x^2 - 14018*x + 975, x^32 - 3*x^31 - 43*x^30 + 135*x^29 + 804*x^28 - 2694*x^27 - 8524*x^26 + 31459*x^25 + 55544*x^24 - 238866*x^23 - 219457*x^22 + 1238863*x^21 + 421110*x^20 - 4482725*x^19 + 432991*x^18 + 11332033*x^17 - 5217769*x^16 - 19633806*x^15 + 15799813*x^14 + 22124546*x^13 - 26618152*x^12 - 14061083*x^11 + 26683198*x^10 + 2239507*x^9 - 14980038*x^8 + 2891509*x^7 + 3788124*x^6 - 1559548*x^5 - 122158*x^4 + 128743*x^3 - 6832*x^2 - 3300*x + 328, x^32 - 3*x^31 - 43*x^30 + 135*x^29 + 804*x^28 - 2694*x^27 - 8524*x^26 + 31459*x^25 + 55544*x^24 - 238866*x^23 - 219457*x^22 + 1238863*x^21 + 421110*x^20 - 4482725*x^19 + 432991*x^18 + 11332033*x^17 - 5217769*x^16 - 19633806*x^15 + 15799813*x^14 + 22124546*x^13 - 26618152*x^12 - 14061083*x^11 + 26683198*x^10 + 2239507*x^9 - 14980038*x^8 + 2891509*x^7 + 3788124*x^6 - 1559548*x^5 - 122158*x^4 + 128743*x^3 - 6832*x^2 - 3300*x + 328, x^33 - 50*x^31 + 1128*x^29 - 4*x^28 - 15195*x^27 + 180*x^26 + 136282*x^25 - 3569*x^24 - 858883*x^23 + 41094*x^22 + 3911464*x^21 - 305260*x^20 - 13033833*x^19 + 1538077*x^18 + 31812404*x^17 - 5380170*x^16 - 56342637*x^15 + 13139714*x^14 + 70858647*x^13 - 22190892*x^12 - 60769585*x^11 + 25218419*x^10 + 32836119*x^9 - 18268673*x^8 - 9186624*x^7 + 7569396*x^6 + 350784*x^5 - 1368365*x^4 + 310487*x^3 + 13647*x^2 - 10083*x + 642, x^33 - 50*x^31 + 1128*x^29 - 4*x^28 - 15195*x^27 + 180*x^26 + 136282*x^25 - 3569*x^24 - 858883*x^23 + 41094*x^22 + 3911464*x^21 - 305260*x^20 - 13033833*x^19 + 1538077*x^18 + 31812404*x^17 - 5380170*x^16 - 56342637*x^15 + 13139714*x^14 + 70858647*x^13 - 22190892*x^12 - 60769585*x^11 + 25218419*x^10 + 32836119*x^9 - 18268673*x^8 - 9186624*x^7 + 7569396*x^6 + 350784*x^5 - 1368365*x^4 + 310487*x^3 + 13647*x^2 - 10083*x + 642, x^34 - 54*x^32 + 3*x^31 + 1321*x^30 - 141*x^29 - 19372*x^28 + 2966*x^27 + 189903*x^26 - 36935*x^25 - 1313688*x^24 + 303539*x^23 + 6597523*x^22 - 1737800*x^21 - 24368136*x^20 + 7132938*x^19 + 66293058*x^18 - 21280495*x^17 - 131634377*x^16 + 46258850*x^15 + 186748788*x^14 - 72600134*x^13 - 182055370*x^12 + 80205140*x^11 + 113562981*x^10 - 59121264*x^9 - 38838346*x^8 + 26018020*x^7 + 3991893*x^6 - 5214222*x^5 + 865211*x^4 + 67164*x^3 - 24319*x^2 + 1867*x - 112, x^34 - 54*x^32 + 3*x^31 + 1321*x^30 - 141*x^29 - 19372*x^28 + 2966*x^27 + 189903*x^26 - 36935*x^25 - 1313688*x^24 + 303539*x^23 + 6597523*x^22 - 1737800*x^21 - 24368136*x^20 + 7132938*x^19 + 66293058*x^18 - 21280495*x^17 - 131634377*x^16 + 46258850*x^15 + 186748788*x^14 - 72600134*x^13 - 182055370*x^12 + 80205140*x^11 + 113562981*x^10 - 59121264*x^9 - 38838346*x^8 + 26018020*x^7 + 3991893*x^6 - 5214222*x^5 + 865211*x^4 + 67164*x^3 - 24319*x^2 + 1867*x - 112, -2*x^32 + 3*x^31 + 100*x^30 - 144*x^29 - 2244*x^28 + 3090*x^27 + 29884*x^26 - 39171*x^25 - 263109*x^24 + 326661*x^23 + 1614280*x^22 - 1889107*x^21 - 7084135*x^20 + 7783345*x^19 + 22443943*x^18 - 23116619*x^17 - 51109724*x^16 + 49524703*x^15 + 82072169*x^14 - 75818004*x^13 - 89295705*x^12 + 81154851*x^11 + 60803283*x^10 - 58167179*x^9 - 21385183*x^8 + 25442654*x^7 + 1171245*x^6 - 5322588*x^5 + 1064420*x^4 + 133075*x^3 - 41760*x^2 - 272*x + 254, -2*x^32 + 3*x^31 + 100*x^30 - 144*x^29 - 2244*x^28 + 3090*x^27 + 29884*x^26 - 39171*x^25 - 263109*x^24 + 326661*x^23 + 1614280*x^22 - 1889107*x^21 - 7084135*x^20 + 7783345*x^19 + 22443943*x^18 - 23116619*x^17 - 51109724*x^16 + 49524703*x^15 + 82072169*x^14 - 75818004*x^13 - 89295705*x^12 + 81154851*x^11 + 60803283*x^10 - 58167179*x^9 - 21385183*x^8 + 25442654*x^7 + 1171245*x^6 - 5322588*x^5 + 1064420*x^4 + 133075*x^3 - 41760*x^2 - 272*x + 254, x^35 - x^34 - 55*x^33 + 57*x^32 + 1368*x^31 - 1462*x^30 - 20359*x^29 + 22342*x^28 + 202132*x^27 - 227018*x^26 - 1413035*x^25 + 1620796*x^24 + 7152867*x^23 - 8376417*x^22 - 26541800*x^21 + 31806334*x^20 + 72193953*x^19 - 89111630*x^18 - 142166286*x^17 + 183273397*x^16 + 196832575*x^15 - 272488636*x^14 - 180313883*x^13 + 284451402*x^12 + 94127426*x^11 - 197902664*x^10 - 12553201*x^9 + 83125039*x^8 - 12839503*x^7 - 16775511*x^6 + 5728649*x^5 + 570318*x^4 - 401970*x^3 + 12539*x^2 + 8104*x - 530, x^35 - x^34 - 55*x^33 + 57*x^32 + 1368*x^31 - 1462*x^30 - 20359*x^29 + 22342*x^28 + 202132*x^27 - 227018*x^26 - 1413035*x^25 + 1620796*x^24 + 7152867*x^23 - 8376417*x^22 - 26541800*x^21 + 31806334*x^20 + 72193953*x^19 - 89111630*x^18 - 142166286*x^17 + 183273397*x^16 + 196832575*x^15 - 272488636*x^14 - 180313883*x^13 + 284451402*x^12 + 94127426*x^11 - 197902664*x^10 - 12553201*x^9 + 83125039*x^8 - 12839503*x^7 - 16775511*x^6 + 5728649*x^5 + 570318*x^4 - 401970*x^3 + 12539*x^2 + 8104*x - 530, x^32 - x^31 - 49*x^30 + 50*x^29 + 1079*x^28 - 1112*x^27 - 14124*x^26 + 14547*x^25 + 122513*x^24 - 124728*x^23 - 743059*x^22 + 739266*x^21 + 3239252*x^20 - 3112875*x^19 - 10263351*x^18 + 9423241*x^17 + 23580091*x^16 - 20520048*x^15 - 38621897*x^14 + 31847108*x^13 + 43429600*x^12 - 34522565*x^11 - 31094386*x^10 + 25161627*x^9 + 11922805*x^8 - 11331062*x^7 - 1107289*x^6 + 2451856*x^5 - 489933*x^4 - 36854*x^3 + 19270*x^2 - 1909*x + 59, x^32 - x^31 - 49*x^30 + 50*x^29 + 1079*x^28 - 1112*x^27 - 14124*x^26 + 14547*x^25 + 122513*x^24 - 124728*x^23 - 743059*x^22 + 739266*x^21 + 3239252*x^20 - 3112875*x^19 - 10263351*x^18 + 9423241*x^17 + 23580091*x^16 - 20520048*x^15 - 38621897*x^14 + 31847108*x^13 + 43429600*x^12 - 34522565*x^11 - 31094386*x^10 + 25161627*x^9 + 11922805*x^8 - 11331062*x^7 - 1107289*x^6 + 2451856*x^5 - 489933*x^4 - 36854*x^3 + 19270*x^2 - 1909*x + 59, x^33 - x^32 - 54*x^31 + 58*x^30 + 1308*x^29 - 1492*x^28 - 18770*x^27 + 22564*x^26 + 177514*x^25 - 223937*x^24 - 1164048*x^23 + 1540246*x^22 + 5417737*x^21 - 7551611*x^20 - 17982148*x^19 + 26708533*x^18 + 42005756*x^17 - 68087224*x^16 - 66388287*x^15 + 123403088*x^14 + 64196195*x^13 - 154214236*x^12 - 25590737*x^11 + 125259286*x^10 - 14746167*x^9 - 58514906*x^8 + 21201854*x^7 + 11081322*x^6 - 7425272*x^5 + 623330*x^4 + 313687*x^3 - 43881*x^2 - 3858*x + 422, x^33 - x^32 - 54*x^31 + 58*x^30 + 1308*x^29 - 1492*x^28 - 18770*x^27 + 22564*x^26 + 177514*x^25 - 223937*x^24 - 1164048*x^23 + 1540246*x^22 + 5417737*x^21 - 7551611*x^20 - 17982148*x^19 + 26708533*x^18 + 42005756*x^17 - 68087224*x^16 - 66388287*x^15 + 123403088*x^14 + 64196195*x^13 - 154214236*x^12 - 25590737*x^11 + 125259286*x^10 - 14746167*x^9 - 58514906*x^8 + 21201854*x^7 + 11081322*x^6 - 7425272*x^5 + 623330*x^4 + 313687*x^3 - 43881*x^2 - 3858*x + 422, -2*x^31 + 4*x^30 + 92*x^29 - 181*x^28 - 1882*x^27 + 3638*x^26 + 22617*x^25 - 42891*x^24 - 177627*x^23 + 329974*x^22 + 958856*x^21 - 1743480*x^20 - 3638407*x^19 + 6482258*x^18 + 9734046*x^17 - 17079187*x^16 - 18070594*x^15 + 31652183*x^14 + 22306005*x^13 - 40304726*x^12 - 16588994*x^11 + 33669731*x^10 + 5440417*x^9 - 16897634*x^8 + 892725*x^7 + 4205921*x^6 - 974877*x^5 - 271462*x^4 + 101901*x^3 - 3475*x^2 - 1356*x + 135, -2*x^31 + 4*x^30 + 92*x^29 - 181*x^28 - 1882*x^27 + 3638*x^26 + 22617*x^25 - 42891*x^24 - 177627*x^23 + 329974*x^22 + 958856*x^21 - 1743480*x^20 - 3638407*x^19 + 6482258*x^18 + 9734046*x^17 - 17079187*x^16 - 18070594*x^15 + 31652183*x^14 + 22306005*x^13 - 40304726*x^12 - 16588994*x^11 + 33669731*x^10 + 5440417*x^9 - 16897634*x^8 + 892725*x^7 + 4205921*x^6 - 974877*x^5 - 271462*x^4 + 101901*x^3 - 3475*x^2 - 1356*x + 135, x^34 - x^33 - 53*x^32 + 55*x^31 + 1264*x^30 - 1354*x^29 - 17932*x^28 + 19741*x^27 + 168549*x^26 - 190049*x^25 - 1106353*x^24 + 1274999*x^23 + 5206546*x^22 - 6129635*x^21 - 17741737*x^20 + 21376555*x^19 + 43633735*x^18 - 54089474*x^17 - 76137234*x^16 + 98186125*x^15 + 90890647*x^14 - 124684882*x^13 - 69085882*x^12 + 105832547*x^11 + 28358393*x^10 - 55368901*x^9 - 3128387*x^8 + 15335784*x^7 - 993980*x^6 - 1738788*x^5 - 35290*x^4 + 186619*x^3 - 14111*x^2 - 3963*x + 303, x^34 - x^33 - 53*x^32 + 55*x^31 + 1264*x^30 - 1354*x^29 - 17932*x^28 + 19741*x^27 + 168549*x^26 - 190049*x^25 - 1106353*x^24 + 1274999*x^23 + 5206546*x^22 - 6129635*x^21 - 17741737*x^20 + 21376555*x^19 + 43633735*x^18 - 54089474*x^17 - 76137234*x^16 + 98186125*x^15 + 90890647*x^14 - 124684882*x^13 - 69085882*x^12 + 105832547*x^11 + 28358393*x^10 - 55368901*x^9 - 3128387*x^8 + 15335784*x^7 - 993980*x^6 - 1738788*x^5 - 35290*x^4 + 186619*x^3 - 14111*x^2 - 3963*x + 303, x^32 - 50*x^30 + 1125*x^28 + 6*x^27 - 15062*x^26 - 225*x^25 + 133707*x^24 + 3670*x^23 - 830129*x^22 - 34127*x^21 + 3705678*x^20 + 198868*x^19 - 12042918*x^18 - 748803*x^17 + 28538239*x^16 + 1793267*x^15 - 48929470*x^14 - 2486250*x^13 + 59636158*x^12 + 1213647*x^11 - 50126257*x^10 + 1729333*x^9 + 27597443*x^8 - 3263151*x^7 - 9007209*x^6 + 2099129*x^5 + 1329071*x^4 - 523681*x^3 + 9813*x^2 + 14349*x - 1229, x^32 - 50*x^30 + 1125*x^28 + 6*x^27 - 15062*x^26 - 225*x^25 + 133707*x^24 + 3670*x^23 - 830129*x^22 - 34127*x^21 + 3705678*x^20 + 198868*x^19 - 12042918*x^18 - 748803*x^17 + 28538239*x^16 + 1793267*x^15 - 48929470*x^14 - 2486250*x^13 + 59636158*x^12 + 1213647*x^11 - 50126257*x^10 + 1729333*x^9 + 27597443*x^8 - 3263151*x^7 - 9007209*x^6 + 2099129*x^5 + 1329071*x^4 - 523681*x^3 + 9813*x^2 + 14349*x - 1229, x^32 - 56*x^30 + 6*x^29 + 1406*x^28 - 267*x^27 - 20919*x^26 + 5283*x^25 + 205414*x^24 - 61414*x^23 - 1403089*x^22 + 467131*x^21 + 6843724*x^20 - 2451367*x^19 - 24071922*x^18 + 9118869*x^17 + 60858671*x^16 - 24307740*x^15 - 108766621*x^14 + 46288650*x^13 + 132790850*x^12 - 61728112*x^11 - 103907843*x^10 + 55021174*x^9 + 45715424*x^8 - 29697116*x^7 - 7602537*x^6 + 7684706*x^5 - 715443*x^4 - 363575*x^3 + 52013*x^2 + 4657*x - 557, x^32 - 56*x^30 + 6*x^29 + 1406*x^28 - 267*x^27 - 20919*x^26 + 5283*x^25 + 205414*x^24 - 61414*x^23 - 1403089*x^22 + 467131*x^21 + 6843724*x^20 - 2451367*x^19 - 24071922*x^18 + 9118869*x^17 + 60858671*x^16 - 24307740*x^15 - 108766621*x^14 + 46288650*x^13 + 132790850*x^12 - 61728112*x^11 - 103907843*x^10 + 55021174*x^9 + 45715424*x^8 - 29697116*x^7 - 7602537*x^6 + 7684706*x^5 - 715443*x^4 - 363575*x^3 + 52013*x^2 + 4657*x - 557, x^33 - x^32 - 50*x^31 + 50*x^30 + 1119*x^29 - 1109*x^28 - 14813*x^27 + 14405*x^26 + 129168*x^25 - 121860*x^24 - 782273*x^23 + 706536*x^22 + 3382326*x^21 - 2878168*x^20 - 10578070*x^19 + 8313623*x^18 + 24023296*x^17 - 17000048*x^16 - 39553641*x^15 + 24400666*x^14 + 47031806*x^13 - 24404619*x^12 - 40178296*x^11 + 17274477*x^10 + 24170981*x^9 - 9274349*x^8 - 9356331*x^7 + 3955401*x^6 + 1661333*x^5 - 1007029*x^4 + 74172*x^3 + 27379*x^2 - 3943*x + 108, x^33 - x^32 - 50*x^31 + 50*x^30 + 1119*x^29 - 1109*x^28 - 14813*x^27 + 14405*x^26 + 129168*x^25 - 121860*x^24 - 782273*x^23 + 706536*x^22 + 3382326*x^21 - 2878168*x^20 - 10578070*x^19 + 8313623*x^18 + 24023296*x^17 - 17000048*x^16 - 39553641*x^15 + 24400666*x^14 + 47031806*x^13 - 24404619*x^12 - 40178296*x^11 + 17274477*x^10 + 24170981*x^9 - 9274349*x^8 - 9356331*x^7 + 3955401*x^6 + 1661333*x^5 - 1007029*x^4 + 74172*x^3 + 27379*x^2 - 3943*x + 108, x^31 - x^30 - 44*x^29 + 36*x^28 + 863*x^27 - 506*x^26 - 10008*x^25 + 3017*x^24 + 76872*x^23 + 2396*x^22 - 415914*x^21 - 162216*x^20 + 1648027*x^19 + 1200925*x^18 - 4908298*x^17 - 4786776*x^16 + 11144219*x^15 + 11734981*x^14 - 19242756*x^13 - 17811334*x^12 + 24574604*x^11 + 15549242*x^10 - 21735165*x^9 - 5911607*x^8 + 11680184*x^7 - 748983*x^6 - 2784118*x^5 + 973281*x^4 - 27505*x^3 - 32300*x^2 + 4623*x - 167, x^31 - x^30 - 44*x^29 + 36*x^28 + 863*x^27 - 506*x^26 - 10008*x^25 + 3017*x^24 + 76872*x^23 + 2396*x^22 - 415914*x^21 - 162216*x^20 + 1648027*x^19 + 1200925*x^18 - 4908298*x^17 - 4786776*x^16 + 11144219*x^15 + 11734981*x^14 - 19242756*x^13 - 17811334*x^12 + 24574604*x^11 + 15549242*x^10 - 21735165*x^9 - 5911607*x^8 + 11680184*x^7 - 748983*x^6 - 2784118*x^5 + 973281*x^4 - 27505*x^3 - 32300*x^2 + 4623*x - 167]>
       ]
>;

MOG[601] := 	// J_0(601)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 7,
           Coordinates        := [215, 231, 287, 307, 332, 350, 386, 421, 431, 537, 33*x + 118, 568*x + 118, 47*x + 131, 554*x + 131, 106*x + 13, 495*x + 13, 289*x + 529, 312*x + 529, 353*x + 577, 248*x + 577, 206*x + 318, 395*x + 318, 448*x + 31, 153*x + 31, 41*x + 273, 560*x + 273, 49*x + 587, 552*x + 587, 448*x + 510, 153*x + 510, 350*x + 399, 251*x + 399, 125*x + 321, 476*x + 321, 469*x + 163, 132*x + 163, 307*x + 81, 294*x + 81, 180*x + 105, 421*x + 105, 497*x + 466, 104*x + 466, 258*x + 332, 343*x + 332, 24*x + 388, 577*x + 388, 355*x + 500, 246*x + 500, 294*x + 493, 307*x + 493]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^20 + 5*x^19 - 13*x^18 - 96*x^17 + 29*x^16 + 740*x^15 + 323*x^14 - 2975*x^13 - 2351*x^12 + 6757*x^11 + 6719*x^10 - 8773*x^9 - 9894*x^8 + 6329*x^7 + 7721*x^6 - 2423*x^5 - 3056*x^4 + 471*x^3 + 559*x^2 - 35*x - 37,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^19 - 5*x^18 + 11*x^17 + 86*x^16 - 11*x^15 - 588*x^14 - 318*x^13 + 2060*x^12 + 1784*x^11 - 3952*x^10 - 4218*x^9 + 4069*x^8 + 5041*x^7 - 1988*x^6 - 2986*x^5 + 284*x^4 + 770*x^3 + 50*x^2 - 66*x - 10, x^19 + 5*x^18 - 11*x^17 - 86*x^16 + 11*x^15 + 588*x^14 + 318*x^13 - 2060*x^12 - 1784*x^11 + 3952*x^10 + 4218*x^9 - 4069*x^8 - 5041*x^7 + 1988*x^6 + 2986*x^5 - 284*x^4 - 770*x^3 - 50*x^2 + 66*x + 10, -x^18 - 5*x^17 + 9*x^16 + 76*x^15 + 3*x^14 - 454*x^13 - 280*x^12 + 1378*x^11 + 1199*x^10 - 2301*x^9 - 2249*x^8 + 2157*x^7 + 2117*x^6 - 1124*x^5 - 996*x^4 + 295*x^3 + 210*x^2 - 27*x - 16, x^18 + 5*x^17 - 9*x^16 - 76*x^15 - 3*x^14 + 454*x^13 + 280*x^12 - 1378*x^11 - 1199*x^10 + 2301*x^9 + 2249*x^8 - 2157*x^7 - 2117*x^6 + 1124*x^5 + 996*x^4 - 295*x^3 - 210*x^2 + 27*x + 16, -x^18 - 5*x^17 + 9*x^16 + 76*x^15 + 2*x^14 - 461*x^13 - 287*x^12 + 1427*x^11 + 1302*x^10 - 2403*x^9 - 2604*x^8 + 2184*x^7 + 2618*x^6 - 1015*x^5 - 1290*x^4 + 226*x^3 + 283*x^2 - 18*x - 21, x^18 + 5*x^17 - 9*x^16 - 76*x^15 - 2*x^14 + 461*x^13 + 287*x^12 - 1427*x^11 - 1302*x^10 + 2403*x^9 + 2604*x^8 - 2184*x^7 - 2618*x^6 + 1015*x^5 + 1290*x^4 - 226*x^3 - 283*x^2 + 18*x + 21, -x^17 - 5*x^16 + 6*x^15 + 62*x^14 + 23*x^13 - 289*x^12 - 263*x^11 + 632*x^10 + 778*x^9 - 652*x^8 - 1021*x^7 + 267*x^6 + 618*x^5 - 14*x^4 - 168*x^3 - 16*x^2 + 16*x + 3, x^17 + 5*x^16 - 6*x^15 - 62*x^14 - 23*x^13 + 289*x^12 + 263*x^11 - 632*x^10 - 778*x^9 + 652*x^8 + 1021*x^7 - 267*x^6 - 618*x^5 + 14*x^4 + 168*x^3 + 16*x^2 - 16*x - 3, -x^17 - 5*x^16 + 8*x^15 + 72*x^14 + 15*x^13 - 393*x^12 - 322*x^11 + 1019*x^10 + 1191*x^9 - 1260*x^8 - 1903*x^7 + 597*x^6 + 1372*x^5 + 25*x^4 - 392*x^3 - 61*x^2 + 34*x + 7, x^17 + 5*x^16 - 8*x^15 - 72*x^14 - 15*x^13 + 393*x^12 + 322*x^11 - 1019*x^10 - 1191*x^9 + 1260*x^8 + 1903*x^7 - 597*x^6 - 1372*x^5 - 25*x^4 + 392*x^3 + 61*x^2 - 34*x - 7, -x^17 - 5*x^16 + 7*x^15 + 66*x^14 + 15*x^13 - 336*x^12 - 263*x^11 + 813*x^10 + 898*x^9 - 919*x^8 - 1335*x^7 + 352*x^6 + 902*x^5 + 88*x^4 - 251*x^3 - 72*x^2 + 23*x + 9, x^17 + 5*x^16 - 7*x^15 - 66*x^14 - 15*x^13 + 336*x^12 + 263*x^11 - 813*x^10 - 898*x^9 + 919*x^8 + 1335*x^7 - 352*x^6 - 902*x^5 - 88*x^4 + 251*x^3 + 72*x^2 - 23*x - 9, -x^17 - 5*x^16 + 6*x^15 + 61*x^14 + 16*x^13 - 297*x^12 - 219*x^11 + 736*x^10 + 716*x^9 - 966*x^8 - 1088*x^7 + 621*x^6 + 794*x^5 - 146*x^4 - 236*x^3 + 4*x^2 + 22*x + 1, x^17 + 5*x^16 - 6*x^15 - 61*x^14 - 16*x^13 + 297*x^12 + 219*x^11 - 736*x^10 - 716*x^9 + 966*x^8 + 1088*x^7 - 621*x^6 - 794*x^5 + 146*x^4 + 236*x^3 - 4*x^2 - 22*x - 1, -2*x^16 - 10*x^15 + 10*x^14 + 113*x^13 + 46*x^12 - 486*x^11 - 418*x^10 + 1014*x^9 + 1085*x^8 - 1095*x^7 - 1273*x^6 + 617*x^5 + 703*x^4 - 172*x^3 - 165*x^2 + 17*x + 13, 2*x^16 + 10*x^15 - 10*x^14 - 113*x^13 - 46*x^12 + 486*x^11 + 418*x^10 - 1014*x^9 - 1085*x^8 + 1095*x^7 + 1273*x^6 - 617*x^5 - 703*x^4 + 172*x^3 + 165*x^2 - 17*x - 13, -x^16 - 4*x^15 + 10*x^14 + 52*x^13 - 29*x^12 - 260*x^11 - 3*x^10 + 635*x^9 + 143*x^8 - 795*x^7 - 226*x^6 + 493*x^5 + 125*x^4 - 139*x^3 - 29*x^2 + 13*x + 3, x^16 + 4*x^15 - 10*x^14 - 52*x^13 + 29*x^12 + 260*x^11 + 3*x^10 - 635*x^9 - 143*x^8 + 795*x^7 + 226*x^6 - 493*x^5 - 125*x^4 + 139*x^3 + 29*x^2 - 13*x - 3, -x^16 - 4*x^15 + 12*x^14 + 61*x^13 - 42*x^12 - 359*x^11 - 8*x^10 + 1041*x^9 + 346*x^8 - 1560*x^7 - 745*x^6 + 1149*x^5 + 604*x^4 - 356*x^3 - 176*x^2 + 34*x + 16, x^16 + 4*x^15 - 12*x^14 - 61*x^13 + 42*x^12 + 359*x^11 + 8*x^10 - 1041*x^9 - 346*x^8 + 1560*x^7 + 745*x^6 - 1149*x^5 - 604*x^4 + 356*x^3 + 176*x^2 - 34*x - 16, -x^16 - 5*x^15 + 6*x^14 + 60*x^13 + 13*x^12 - 286*x^11 - 186*x^10 + 685*x^9 + 567*x^8 - 867*x^7 - 783*x^6 + 558*x^5 + 518*x^4 - 163*x^3 - 149*x^2 + 18*x + 14, x^16 + 5*x^15 - 6*x^14 - 60*x^13 - 13*x^12 + 286*x^11 + 186*x^10 - 685*x^9 - 567*x^8 + 867*x^7 + 783*x^6 - 558*x^5 - 518*x^4 + 163*x^3 + 149*x^2 - 18*x - 14, -x^16 - 5*x^15 + 7*x^14 + 65*x^13 + 11*x^12 - 328*x^11 - 218*x^10 + 799*x^9 + 702*x^8 - 965*x^7 - 933*x^6 + 545*x^5 + 521*x^4 - 135*x^3 - 111*x^2 + 9*x + 7, x^16 + 5*x^15 - 7*x^14 - 65*x^13 - 11*x^12 + 328*x^11 + 218*x^10 - 799*x^9 - 702*x^8 + 965*x^7 + 933*x^6 - 545*x^5 - 521*x^4 + 135*x^3 + 111*x^2 - 9*x - 7, -x^16 - 5*x^15 + 4*x^14 + 51*x^13 + 22*x^12 - 205*x^11 - 168*x^10 + 423*x^9 + 431*x^8 - 468*x^7 - 551*x^6 + 252*x^5 + 351*x^4 - 50*x^3 - 96*x^2 + 2*x + 8, x^16 + 5*x^15 - 4*x^14 - 51*x^13 - 22*x^12 + 205*x^11 + 168*x^10 - 423*x^9 - 431*x^8 + 468*x^7 + 551*x^6 - 252*x^5 - 351*x^4 + 50*x^3 + 96*x^2 - 2*x - 8, -2*x^15 - 10*x^14 + 7*x^13 + 100*x^12 + 64*x^11 - 354*x^10 - 409*x^9 + 523*x^8 + 836*x^7 - 271*x^6 - 709*x^5 - 12*x^4 + 239*x^3 + 29*x^2 - 25*x - 4, 2*x^15 + 10*x^14 - 7*x^13 - 100*x^12 - 64*x^11 + 354*x^10 + 409*x^9 - 523*x^8 - 836*x^7 + 271*x^6 + 709*x^5 + 12*x^4 - 239*x^3 - 29*x^2 + 25*x + 4, x^14 + 4*x^13 - 8*x^12 - 45*x^11 + 14*x^10 + 196*x^9 + 46*x^8 - 402*x^7 - 193*x^6 + 381*x^5 + 223*x^4 - 140*x^3 - 81*x^2 + 16*x + 9, -x^14 - 4*x^13 + 8*x^12 + 45*x^11 - 14*x^10 - 196*x^9 - 46*x^8 + 402*x^7 + 193*x^6 - 381*x^5 - 223*x^4 + 140*x^3 + 81*x^2 - 16*x - 9, -x^15 - 6*x^14 - 2*x^13 + 50*x^12 + 77*x^11 - 128*x^10 - 331*x^9 + 52*x^8 + 552*x^7 + 206*x^6 - 384*x^5 - 251*x^4 + 102*x^3 + 90*x^2 - 9*x - 9, x^15 + 6*x^14 + 2*x^13 - 50*x^12 - 77*x^11 + 128*x^10 + 331*x^9 - 52*x^8 - 552*x^7 - 206*x^6 + 384*x^5 + 251*x^4 - 102*x^3 - 90*x^2 + 9*x + 9, -x^15 - 5*x^14 + 3*x^13 + 46*x^12 + 25*x^11 - 159*x^10 - 143*x^9 + 264*x^8 + 288*x^7 - 204*x^6 - 263*x^5 + 48*x^4 + 88*x^3 - 2*x^2 - 8*x, x^15 + 5*x^14 - 3*x^13 - 46*x^12 - 25*x^11 + 159*x^10 + 143*x^9 - 264*x^8 - 288*x^7 + 204*x^6 + 263*x^5 - 48*x^4 - 88*x^3 + 2*x^2 + 8*x, -x^15 - 5*x^14 + 3*x^13 + 46*x^12 + 26*x^11 - 154*x^10 - 142*x^9 + 234*x^8 + 249*x^7 - 165*x^6 - 180*x^5 + 48*x^4 + 52*x^3 - 6*x - 1, x^15 + 5*x^14 - 3*x^13 - 46*x^12 - 26*x^11 + 154*x^10 + 142*x^9 - 234*x^8 - 249*x^7 + 165*x^6 + 180*x^5 - 48*x^4 - 52*x^3 + 6*x + 1, -3*x^14 - 13*x^13 + 18*x^12 + 132*x^11 + 9*x^10 - 491*x^9 - 249*x^8 + 824*x^7 + 564*x^6 - 629*x^5 - 464*x^4 + 201*x^3 + 140*x^2 - 21*x - 13, 3*x^14 + 13*x^13 - 18*x^12 - 132*x^11 - 9*x^10 + 491*x^9 + 249*x^8 - 824*x^7 - 564*x^6 + 629*x^5 + 464*x^4 - 201*x^3 - 140*x^2 + 21*x + 13, -x^14 - 5*x^13 + 3*x^12 + 46*x^11 + 25*x^10 - 159*x^9 - 143*x^8 + 264*x^7 + 288*x^6 - 204*x^5 - 263*x^4 + 48*x^3 + 88*x^2 - 2*x - 8, x^14 + 5*x^13 - 3*x^12 - 46*x^11 - 25*x^10 + 159*x^9 + 143*x^8 - 264*x^7 - 288*x^6 + 204*x^5 + 263*x^4 - 48*x^3 - 88*x^2 + 2*x + 8]>,
         rec<Eigen |
           DefiningPolynomial := x^29 - 4*x^28 - 38*x^27 + 165*x^26 + 615*x^25 - 2989*x^24 - 5473*x^23 + 31324*x^22 + 28379*x^21 - 210530*x^20 - 78230*x^19 + 950533*x^18 + 33512*x^17 - 2935046*x^16 + 540663*x^15 + 6190754*x^14 - 2013983*x^13 - 8764243*x^12 + 3559142*x^11 + 8044078*x^10 - 3474993*x^9 - 4530666*x^8 + 1808832*x^7 + 1438384*x^6 - 432489*x^5 - 218311*x^4 + 30672*x^3 + 10714*x^2 - 498*x - 147,
           Coordinates        := [-x^28 + 4*x^27 + 35*x^26 - 153*x^25 - 518*x^24 + 2562*x^23 + 4165*x^22 - 24724*x^21 - 19014*x^20 + 152286*x^19 + 42048*x^18 - 626191*x^17 + 20092*x^16 + 1746113*x^15 - 402993*x^14 - 3286233*x^13 + 1167172*x^12 + 4077942*x^11 - 1713718*x^10 - 3194510*x^9 + 1362939*x^8 + 1480536*x^7 - 534929*x^6 - 374840*x^5 + 78772*x^4 + 44961*x^3 - 564*x^2 - 889*x - 14, x^28 - 2*x^27 - 41*x^26 + 81*x^25 + 738*x^24 - 1436*x^23 - 7683*x^22 + 14676*x^21 + 51286*x^20 - 95818*x^19 - 229936*x^18 + 418345*x^17 + 704980*x^16 - 1242209*x^15 - 1476875*x^14 + 2500719*x^13 + 2079312*x^12 - 3339964*x^11 - 1905716*x^10 + 2832580*x^9 + 1083439*x^8 - 1412466*x^7 - 356487*x^6 + 360354*x^5 + 60334*x^4 - 34773*x^3 - 4290*x^2 + 697*x + 74, -2*x^25 + 8*x^24 + 58*x^23 - 256*x^22 - 694*x^21 + 3518*x^20 + 4370*x^19 - 27258*x^18 - 14812*x^17 + 131246*x^16 + 20426*x^15 - 407510*x^14 + 29794*x^13 + 818114*x^12 - 168928*x^11 - 1033470*x^10 + 282188*x^9 + 769598*x^8 - 216096*x^7 - 297162*x^6 + 64606*x^5 + 46998*x^4 - 3222*x^3 - 1800*x^2 - 80*x - 2, -x^27 + 4*x^26 + 33*x^25 - 145*x^24 - 454*x^23 + 2282*x^22 + 3313*x^21 - 20490*x^20 - 13006*x^19 + 116012*x^18 + 19130*x^17 - 432165*x^16 + 55620*x^15 + 1072901*x^14 - 341403*x^13 - 1760879*x^12 + 771046*x^11 + 1858878*x^10 - 935858*x^9 - 1200762*x^8 + 621711*x^7 + 437722*x^6 - 204461*x^5 - 80286*x^4 + 25016*x^3 + 7077*x^2 - 574*x - 149, -4*x^21 + 16*x^20 + 98*x^19 - 444*x^18 - 896*x^17 + 4984*x^16 + 3618*x^15 - 29588*x^14 - 4018*x^13 + 101350*x^12 - 16998*x^11 - 204590*x^10 + 64808*x^9 + 239084*x^8 - 86076*x^7 - 154524*x^6 + 48328*x^5 + 51702*x^4 - 9914*x^3 - 7302*x^2 + 78*x + 144, -2*x^25 + 8*x^24 + 56*x^23 - 250*x^22 - 634*x^21 + 3336*x^20 + 3606*x^19 - 24896*x^18 - 9486*x^17 + 114192*x^16 - 1362*x^15 - 332864*x^14 + 81162*x^13 + 615682*x^12 - 228998*x^11 - 699852*x^10 + 291474*x^9 + 454868*x^8 - 170514*x^7 - 144108*x^6 + 31810*x^5 + 11350*x^4 + 2844*x^3 + 2450*x^2 - 44*x - 68, x^27 - 2*x^26 - 39*x^25 + 77*x^24 + 662*x^23 - 1282*x^22 - 6445*x^21 + 12140*x^20 + 39930*x^19 - 72316*x^18 - 165222*x^17 + 282877*x^16 + 466880*x^15 - 736285*x^14 - 908143*x^13 + 1265655*x^12 + 1215070*x^11 - 1400066*x^10 - 1106728*x^9 + 951322*x^8 + 659613*x^7 - 365056*x^6 - 227885*x^5 + 62870*x^4 + 34584*x^3 - 1437*x^2 - 822*x - 1, -2*x^26 + 8*x^25 + 62*x^24 - 274*x^23 - 796*x^22 + 4062*x^21 + 5358*x^20 - 34236*x^19 - 18806*x^18 + 181072*x^17 + 19662*x^16 - 625522*x^15 + 102476*x^14 + 1424110*x^13 - 475614*x^12 - 2107308*x^11 + 905450*x^10 + 1957220*x^9 - 894008*x^8 - 1079770*x^7 + 436096*x^6 + 328660*x^5 - 84650*x^4 - 46066*x^3 + 1870*x^2 + 948*x - 18, -2*x^24 + 8*x^23 + 52*x^22 - 234*x^21 - 530*x^20 + 2874*x^19 + 2524*x^18 - 19278*x^17 - 3904*x^16 + 76698*x^15 - 14464*x^14 - 183142*x^13 + 79740*x^12 + 250726*x^11 - 148866*x^10 - 170344*x^9 + 115156*x^8 + 31602*x^7 - 16600*x^6 + 12054*x^5 - 14004*x^4 - 2508*x^3 + 2506*x^2 + 48*x - 64, -2*x^20 + 80*x^18 - 76*x^17 - 1090*x^16 + 1464*x^15 + 7240*x^14 - 11350*x^13 - 26114*x^12 + 45068*x^11 + 51684*x^10 - 96164*x^9 - 52668*x^8 + 104826*x^7 + 24388*x^6 - 49004*x^5 - 6352*x^4 + 6602*x^3 + 1232*x^2 - 54*x - 14, x^26 - 2*x^25 - 38*x^24 + 77*x^23 + 619*x^22 - 1268*x^21 - 5678*x^20 + 11751*x^19 + 32357*x^18 - 67734*x^17 - 119050*x^16 + 252962*x^15 + 284366*x^14 - 617532*x^13 - 432121*x^12 + 969949*x^11 + 399494*x^10 - 940629*x^9 - 211913*x^8 + 523705*x^7 + 64301*x^6 - 148742*x^5 - 12875*x^4 + 16668*x^3 + 1734*x^2 - 349*x - 37, x^26 - 2*x^25 - 38*x^24 + 77*x^23 + 619*x^22 - 1268*x^21 - 5678*x^20 + 11751*x^19 + 32357*x^18 - 67734*x^17 - 119050*x^16 + 252962*x^15 + 284366*x^14 - 617532*x^13 - 432121*x^12 + 969949*x^11 + 399494*x^10 - 940629*x^9 - 211913*x^8 + 523705*x^7 + 64301*x^6 - 148742*x^5 - 12875*x^4 + 16668*x^3 + 1734*x^2 - 349*x - 37, 2*x^24 - 6*x^23 - 61*x^22 + 185*x^21 + 800*x^20 - 2454*x^19 - 5910*x^18 + 18356*x^17 + 27019*x^16 - 85186*x^15 - 78930*x^14 + 254053*x^13 + 146520*x^12 - 487380*x^11 - 165621*x^10 + 584377*x^9 + 103115*x^8 - 409093*x^7 - 28180*x^6 + 145147*x^5 + 2459*x^4 - 18989*x^3 - 798*x^2 + 414*x + 17, 2*x^24 - 6*x^23 - 61*x^22 + 185*x^21 + 800*x^20 - 2454*x^19 - 5910*x^18 + 18356*x^17 + 27019*x^16 - 85186*x^15 - 78930*x^14 + 254053*x^13 + 146520*x^12 - 487380*x^11 - 165621*x^10 + 584377*x^9 + 103115*x^8 - 409093*x^7 - 28180*x^6 + 145147*x^5 + 2459*x^4 - 18989*x^3 - 798*x^2 + 414*x + 17, x^25 - 2*x^24 - 37*x^23 + 75*x^22 + 582*x^21 - 1189*x^20 - 5119*x^19 + 10492*x^18 + 27816*x^17 - 56934*x^16 - 97328*x^15 + 197683*x^14 + 221969*x^13 - 442226*x^12 - 328196*x^11 + 625058*x^10 + 310438*x^9 - 530732*x^8 - 186219*x^7 + 244494*x^6 + 69863*x^5 - 48661*x^4 - 13861*x^3 + 1886*x^2 + 371*x - 16, x^25 - 2*x^24 - 37*x^23 + 75*x^22 + 582*x^21 - 1189*x^20 - 5119*x^19 + 10492*x^18 + 27816*x^17 - 56934*x^16 - 97328*x^15 + 197683*x^14 + 221969*x^13 - 442226*x^12 - 328196*x^11 + 625058*x^10 + 310438*x^9 - 530732*x^8 - 186219*x^7 + 244494*x^6 + 69863*x^5 - 48661*x^4 - 13861*x^3 + 1886*x^2 + 371*x - 16, 2*x^23 - 8*x^22 - 49*x^21 + 220*x^20 + 476*x^19 - 2542*x^18 - 2260*x^17 + 16100*x^16 + 4714*x^15 - 61108*x^14 + 1375*x^13 + 142804*x^12 - 26038*x^11 - 204047*x^10 + 46870*x^9 + 173434*x^8 - 30478*x^7 - 84388*x^6 + 3924*x^5 + 20764*x^4 + 1476*x^3 - 1315*x^2 - 4*x + 30, 2*x^23 - 8*x^22 - 49*x^21 + 220*x^20 + 476*x^19 - 2542*x^18 - 2260*x^17 + 16100*x^16 + 4714*x^15 - 61108*x^14 + 1375*x^13 + 142804*x^12 - 26038*x^11 - 204047*x^10 + 46870*x^9 + 173434*x^8 - 30478*x^7 - 84388*x^6 + 3924*x^5 + 20764*x^4 + 1476*x^3 - 1315*x^2 - 4*x + 30, -x^26 + 4*x^25 + 32*x^24 - 140*x^23 - 426*x^22 + 2117*x^21 + 3004*x^20 - 18137*x^19 - 11459*x^18 + 97013*x^17 + 17764*x^16 - 336606*x^15 + 30795*x^14 + 762677*x^13 - 198063*x^12 - 1109532*x^11 + 388930*x^10 + 996874*x^9 - 370614*x^8 - 521407*x^7 + 165234*x^6 + 147277*x^5 - 26878*x^4 - 18942*x^3 - 5*x^2 + 370*x + 7, -x^26 + 4*x^25 + 32*x^24 - 140*x^23 - 426*x^22 + 2117*x^21 + 3004*x^20 - 18137*x^19 - 11459*x^18 + 97013*x^17 + 17764*x^16 - 336606*x^15 + 30795*x^14 + 762677*x^13 - 198063*x^12 - 1109532*x^11 + 388930*x^10 + 996874*x^9 - 370614*x^8 - 521407*x^7 + 165234*x^6 + 147277*x^5 - 26878*x^4 - 18942*x^3 - 5*x^2 + 370*x + 7, x^24 - 4*x^23 - 28*x^22 + 124*x^21 + 318*x^20 - 1633*x^19 - 1852*x^18 + 12001*x^17 + 5433*x^16 - 54198*x^15 - 3848*x^14 + 155713*x^13 - 24679*x^12 - 284325*x^11 + 83894*x^10 + 319989*x^9 - 115749*x^8 - 208480*x^7 + 75410*x^6 + 70719*x^5 - 20615*x^4 - 9728*x^3 + 1320*x^2 + 334*x - 5, x^24 - 4*x^23 - 28*x^22 + 124*x^21 + 318*x^20 - 1633*x^19 - 1852*x^18 + 12001*x^17 + 5433*x^16 - 54198*x^15 - 3848*x^14 + 155713*x^13 - 24679*x^12 - 284325*x^11 + 83894*x^10 + 319989*x^9 - 115749*x^8 - 208480*x^7 + 75410*x^6 + 70719*x^5 - 20615*x^4 - 9728*x^3 + 1320*x^2 + 334*x - 5, 2*x^23 - 9*x^22 - 45*x^21 + 241*x^20 + 374*x^19 - 2689*x^18 - 1201*x^17 + 16289*x^16 - 1081*x^15 - 58549*x^14 + 19593*x^13 + 128604*x^12 - 60566*x^11 - 172950*x^10 + 89908*x^9 + 141443*x^8 - 70731*x^7 - 69848*x^6 + 29362*x^5 + 19629*x^4 - 5054*x^3 - 2683*x^2 - x + 42, 2*x^23 - 9*x^22 - 45*x^21 + 241*x^20 + 374*x^19 - 2689*x^18 - 1201*x^17 + 16289*x^16 - 1081*x^15 - 58549*x^14 + 19593*x^13 + 128604*x^12 - 60566*x^11 - 172950*x^10 + 89908*x^9 + 141443*x^8 - 70731*x^7 - 69848*x^6 + 29362*x^5 + 19629*x^4 - 5054*x^3 - 2683*x^2 - x + 42, 4*x^22 - 17*x^21 - 93*x^20 + 453*x^19 + 841*x^18 - 5047*x^17 - 3558*x^16 + 30629*x^15 + 5444*x^14 - 110538*x^13 + 9920*x^12 + 243267*x^11 - 52263*x^10 - 322784*x^9 + 78040*x^8 + 247748*x^7 - 45977*x^6 - 101476*x^5 + 5946*x^4 + 17843*x^3 + 1995*x^2 - 374*x - 51, 4*x^22 - 17*x^21 - 93*x^20 + 453*x^19 + 841*x^18 - 5047*x^17 - 3558*x^16 + 30629*x^15 + 5444*x^14 - 110538*x^13 + 9920*x^12 + 243267*x^11 - 52263*x^10 - 322784*x^9 + 78040*x^8 + 247748*x^7 - 45977*x^6 - 101476*x^5 + 5946*x^4 + 17843*x^3 + 1995*x^2 - 374*x - 51, -2*x^23 + 8*x^22 + 52*x^21 - 231*x^20 - 541*x^19 + 2809*x^18 + 2791*x^17 - 18747*x^16 - 6551*x^15 + 74861*x^14 - 711*x^13 - 182478*x^12 + 40066*x^11 + 264754*x^10 - 88159*x^9 - 211633*x^8 + 76957*x^7 + 78081*x^6 - 22907*x^5 - 6929*x^4 - 169*x^3 - 1201*x^2 - 10*x + 34, -2*x^23 + 8*x^22 + 52*x^21 - 231*x^20 - 541*x^19 + 2809*x^18 + 2791*x^17 - 18747*x^16 - 6551*x^15 + 74861*x^14 - 711*x^13 - 182478*x^12 + 40066*x^11 + 264754*x^10 - 88159*x^9 - 211633*x^8 + 76957*x^7 + 78081*x^6 - 22907*x^5 - 6929*x^4 - 169*x^3 - 1201*x^2 - 10*x + 34, -x^25 + 3*x^24 + 34*x^23 - 104*x^22 - 494*x^21 + 1553*x^20 + 4001*x^19 - 13089*x^18 - 19722*x^17 + 68540*x^16 + 60361*x^15 - 231294*x^14 - 110713*x^13 + 504827*x^12 + 105264*x^11 - 696383*x^10 - 19133*x^9 + 576240*x^8 - 47384*x^7 - 262265*x^6 + 32436*x^5 + 58885*x^4 - 6032*x^3 - 5909*x^2 + 167*x + 132, -x^25 + 3*x^24 + 34*x^23 - 104*x^22 - 494*x^21 + 1553*x^20 + 4001*x^19 - 13089*x^18 - 19722*x^17 + 68540*x^16 + 60361*x^15 - 231294*x^14 - 110713*x^13 + 504827*x^12 + 105264*x^11 - 696383*x^10 - 19133*x^9 + 576240*x^8 - 47384*x^7 - 262265*x^6 + 32436*x^5 + 58885*x^4 - 6032*x^3 - 5909*x^2 + 167*x + 132, -2*x^24 + 9*x^23 + 51*x^22 - 272*x^21 - 494*x^20 + 3489*x^19 + 1997*x^18 - 24913*x^17 + 382*x^16 + 109006*x^15 - 36341*x^14 - 302998*x^13 + 153343*x^12 + 536919*x^11 - 311631*x^10 - 593811*x^9 + 338956*x^8 + 391304*x^7 - 185745*x^6 - 140831*x^5 + 40714*x^4 + 22133*x^3 - 975*x^2 - 475*x + 9, -2*x^24 + 9*x^23 + 51*x^22 - 272*x^21 - 494*x^20 + 3489*x^19 + 1997*x^18 - 24913*x^17 + 382*x^16 + 109006*x^15 - 36341*x^14 - 302998*x^13 + 153343*x^12 + 536919*x^11 - 311631*x^10 - 593811*x^9 + 338956*x^8 + 391304*x^7 - 185745*x^6 - 140831*x^5 + 40714*x^4 + 22133*x^3 - 975*x^2 - 475*x + 9, -2*x^22 + 8*x^21 + 50*x^20 - 222*x^19 - 488*x^18 + 2530*x^17 + 2354*x^16 - 15526*x^15 - 5629*x^14 + 56350*x^13 + 4558*x^12 - 124829*x^11 + 6562*x^10 + 167624*x^9 - 16704*x^8 - 129675*x^7 + 11970*x^6 + 50353*x^5 - 1781*x^4 - 6952*x^3 - 577*x^2 + 99*x + 7, -2*x^22 + 8*x^21 + 50*x^20 - 222*x^19 - 488*x^18 + 2530*x^17 + 2354*x^16 - 15526*x^15 - 5629*x^14 + 56350*x^13 + 4558*x^12 - 124829*x^11 + 6562*x^10 + 167624*x^9 - 16704*x^8 - 129675*x^7 + 11970*x^6 + 50353*x^5 - 1781*x^4 - 6952*x^3 - 577*x^2 + 99*x + 7, -x^25 + 4*x^24 + 28*x^23 - 124*x^22 - 324*x^21 + 1656*x^20 + 1977*x^19 - 12534*x^18 - 6480*x^17 + 59411*x^16 + 8150*x^15 - 183534*x^14 + 17173*x^13 + 371740*x^12 - 88021*x^11 - 482887*x^10 + 153789*x^9 + 381961*x^8 - 131377*x^7 - 169155*x^6 + 51242*x^5 + 37661*x^4 - 6665*x^3 - 3882*x^2 + 45*x + 67, -x^25 + 4*x^24 + 28*x^23 - 124*x^22 - 324*x^21 + 1656*x^20 + 1977*x^19 - 12534*x^18 - 6480*x^17 + 59411*x^16 + 8150*x^15 - 183534*x^14 + 17173*x^13 + 371740*x^12 - 88021*x^11 - 482887*x^10 + 153789*x^9 + 381961*x^8 - 131377*x^7 - 169155*x^6 + 51242*x^5 + 37661*x^4 - 6665*x^3 - 3882*x^2 + 45*x + 67, x^21 - 8*x^20 - 9*x^19 + 184*x^18 - 97*x^17 - 1760*x^16 + 1811*x^15 + 9119*x^14 - 11048*x^13 - 28141*x^12 + 34341*x^11 + 54213*x^10 - 58738*x^9 - 67129*x^8 + 55232*x^7 + 52760*x^6 - 27340*x^5 - 22550*x^4 + 5573*x^3 + 3624*x^2 - 46*x - 72, x^21 - 8*x^20 - 9*x^19 + 184*x^18 - 97*x^17 - 1760*x^16 + 1811*x^15 + 9119*x^14 - 11048*x^13 - 28141*x^12 + 34341*x^11 + 54213*x^10 - 58738*x^9 - 67129*x^8 + 55232*x^7 + 52760*x^6 - 27340*x^5 - 22550*x^4 + 5573*x^3 + 3624*x^2 - 46*x - 72, -x^24 + 2*x^23 + 36*x^22 - 70*x^21 - 556*x^20 + 1047*x^19 + 4826*x^18 - 8751*x^17 - 25943*x^16 + 44951*x^15 + 89786*x^14 - 147137*x^13 - 201500*x^12 + 307885*x^11 + 288320*x^10 - 401501*x^9 - 253010*x^8 + 306526*x^7 + 129467*x^6 - 120828*x^5 - 38039*x^4 + 19065*x^3 + 6081*x^2 - 405*x - 139, -x^24 + 2*x^23 + 36*x^22 - 70*x^21 - 556*x^20 + 1047*x^19 + 4826*x^18 - 8751*x^17 - 25943*x^16 + 44951*x^15 + 89786*x^14 - 147137*x^13 - 201500*x^12 + 307885*x^11 + 288320*x^10 - 401501*x^9 - 253010*x^8 + 306526*x^7 + 129467*x^6 - 120828*x^5 - 38039*x^4 + 19065*x^3 + 6081*x^2 - 405*x - 139, -3*x^23 + 12*x^22 + 76*x^21 - 347*x^20 - 740*x^19 + 4197*x^18 + 3193*x^17 - 27673*x^16 - 2569*x^15 + 108360*x^14 - 32164*x^13 - 256516*x^12 + 141622*x^11 + 355765*x^10 - 263221*x^9 - 262545*x^8 + 238831*x^7 + 80921*x^6 - 94611*x^5 - 4250*x^4 + 11975*x^3 + 5*x^2 - 245*x + 7, -3*x^23 + 12*x^22 + 76*x^21 - 347*x^20 - 740*x^19 + 4197*x^18 + 3193*x^17 - 27673*x^16 - 2569*x^15 + 108360*x^14 - 32164*x^13 - 256516*x^12 + 141622*x^11 + 355765*x^10 - 263221*x^9 - 262545*x^8 + 238831*x^7 + 80921*x^6 - 94611*x^5 - 4250*x^4 + 11975*x^3 + 5*x^2 - 245*x + 7, -x^26 + 4*x^25 + 29*x^24 - 129*x^23 - 343*x^22 + 1785*x^21 + 2068*x^20 - 13885*x^19 - 6005*x^18 + 66735*x^17 + 1271*x^16 - 204781*x^15 + 47813*x^14 + 399412*x^13 - 154369*x^12 - 475289*x^11 + 220170*x^10 + 312606*x^9 - 142835*x^8 - 87855*x^7 + 24205*x^6 - 352*x^5 + 8424*x^4 + 2479*x^3 - 1275*x^2 - 58*x + 32, -x^26 + 4*x^25 + 29*x^24 - 129*x^23 - 343*x^22 + 1785*x^21 + 2068*x^20 - 13885*x^19 - 6005*x^18 + 66735*x^17 + 1271*x^16 - 204781*x^15 + 47813*x^14 + 399412*x^13 - 154369*x^12 - 475289*x^11 + 220170*x^10 + 312606*x^9 - 142835*x^8 - 87855*x^7 + 24205*x^6 - 352*x^5 + 8424*x^4 + 2479*x^3 - 1275*x^2 - 58*x + 32, -x^24 + 3*x^23 + 28*x^22 - 84*x^21 - 332*x^20 + 977*x^19 + 2214*x^18 - 6123*x^17 - 9410*x^16 + 22328*x^15 + 27909*x^14 - 47265*x^13 - 62256*x^12 + 52968*x^11 + 106569*x^10 - 20553*x^9 - 129985*x^8 - 10569*x^7 + 96885*x^6 + 8651*x^5 - 34718*x^4 - 1307*x^3 + 4003*x^2 + 126*x - 74, -x^24 + 3*x^23 + 28*x^22 - 84*x^21 - 332*x^20 + 977*x^19 + 2214*x^18 - 6123*x^17 - 9410*x^16 + 22328*x^15 + 27909*x^14 - 47265*x^13 - 62256*x^12 + 52968*x^11 + 106569*x^10 - 20553*x^9 - 129985*x^8 - 10569*x^7 + 96885*x^6 + 8651*x^5 - 34718*x^4 - 1307*x^3 + 4003*x^2 + 126*x - 74, -3*x^22 + 9*x^21 + 86*x^20 - 269*x^19 - 1018*x^18 + 3363*x^17 + 6459*x^16 - 22974*x^15 - 23732*x^14 + 93747*x^13 + 50535*x^12 - 234122*x^11 - 58159*x^10 + 351819*x^9 + 29860*x^8 - 299814*x^7 - 5751*x^6 + 127930*x^5 + 5979*x^4 - 20821*x^3 - 3273*x^2 + 356*x + 65, -3*x^22 + 9*x^21 + 86*x^20 - 269*x^19 - 1018*x^18 + 3363*x^17 + 6459*x^16 - 22974*x^15 - 23732*x^14 + 93747*x^13 + 50535*x^12 - 234122*x^11 - 58159*x^10 + 351819*x^9 + 29860*x^8 - 299814*x^7 - 5751*x^6 + 127930*x^5 + 5979*x^4 - 20821*x^3 - 3273*x^2 + 356*x + 65, -x^27 + 4*x^26 + 32*x^25 - 141*x^24 - 427*x^23 + 2159*x^22 + 3026*x^21 - 18877*x^20 - 11588*x^19 + 104165*x^18 + 17237*x^17 - 378384*x^16 + 41025*x^15 + 915810*x^14 - 252704*x^13 - 1462711*x^12 + 537189*x^11 + 1495345*x^10 - 588098*x^9 - 924684*x^8 + 326096*x^7 + 312911*x^6 - 74628*x^5 - 46532*x^4 + 2546*x^3 + 1374*x^2 + 31*x + 1, -x^27 + 4*x^26 + 32*x^25 - 141*x^24 - 427*x^23 + 2159*x^22 + 3026*x^21 - 18877*x^20 - 11588*x^19 + 104165*x^18 + 17237*x^17 - 378384*x^16 + 41025*x^15 + 915810*x^14 - 252704*x^13 - 1462711*x^12 + 537189*x^11 + 1495345*x^10 - 588098*x^9 - 924684*x^8 + 326096*x^7 + 312911*x^6 - 74628*x^5 - 46532*x^4 + 2546*x^3 + 1374*x^2 + 31*x + 1]>
       ]
>;

MOG[607] := 	// J_0(607)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [10, 109, 267, 270, 319, 335, 384, 385, 492, 514, 543, 563, 574, 370*x + 592, 237*x + 592, 266*x + 574, 341*x + 574, 202*x + 66, 405*x + 66, 220*x + 348, 387*x + 348, 221*x + 483, 386*x + 483, 74*x + 116, 533*x + 116, 536*x + 561, 71*x + 561, 11*x + 90, 596*x + 90, 128*x + 117, 479*x + 117, 78*x + 247, 529*x + 247, 265*x + 324, 342*x + 324, 310*x + 108, 297*x + 108, 428*x + 472, 179*x + 472, 472*x + 208, 135*x + 208, 258*x + 435, 349*x + 435, 22*x + 544, 585*x + 544, 9*x + 431, 598*x + 431, 327*x + 422, 280*x + 422, 569*x + 76, 38*x + 76]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 3*x^4 - x^3 - 5*x^2 + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^3 + 2*x, x^3 - 2*x, 0, 0, x^3 - x + 1, -x^3 + x - 1, -x^4 - x^3 + 2*x^2 + x - 1, x^4 + x^3 - 2*x^2 - x + 1, -x^4 - 2*x^3 + 2*x^2 + 3*x - 1, x^4 + 2*x^3 - 2*x^2 - 3*x + 1, x^2 - 1, -x^2 + 1, -x^2 + 1, x^2 - 1, x^4 + x^3 - 2*x^2 - x + 1, -x^4 - x^3 + 2*x^2 + x - 1, x^4 + x^3 - 2*x^2 - 2*x + 1, -x^4 - x^3 + 2*x^2 + 2*x - 1, x^4 + x^3 - 2*x^2 - x, -x^4 - x^3 + 2*x^2 + x, -x^3 - x^2 + x + 1, x^3 + x^2 - x - 1, x^4 + 2*x^3 - x^2 - 2*x, -x^4 - 2*x^3 + x^2 + 2*x, 1, -1, -x^4 - x^3 + x^2 + x, x^4 + x^3 - x^2 - x, x^3 - x, -x^3 + x, x^3 - 2*x, -x^3 + 2*x, 2*x^3 + x^2 - 3*x, -2*x^3 - x^2 + 3*x, x^2 + x - 1, -x^2 - x + 1, x^2 - 1, -x^2 + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + x^6 - 10*x^5 - 9*x^4 + 28*x^3 + 26*x^2 - 19*x - 17,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2*x^5 - 4*x^4 + 11*x^3 + 21*x^2 - 10*x - 20, 2*x^5 + 4*x^4 - 11*x^3 - 21*x^2 + 10*x + 20, x^5 + 3*x^4 - 5*x^3 - 13*x^2 + x + 7, -x^5 - 3*x^4 + 5*x^3 + 13*x^2 - x - 7, -x^6 - 2*x^5 + 5*x^4 + 11*x^3 - 3*x^2 - 11*x - 2, x^6 + 2*x^5 - 5*x^4 - 11*x^3 + 3*x^2 + 11*x + 2, -x^6 - 2*x^5 + 6*x^4 + 10*x^3 - 7*x^2 - 9*x + 2, x^6 + 2*x^5 - 6*x^4 - 10*x^3 + 7*x^2 + 9*x - 2, -x^5 - x^4 + 5*x^3 + 4*x^2 - 3*x, x^5 + x^4 - 5*x^3 - 4*x^2 + 3*x, x^5 + x^4 - 4*x^3 - 6*x^2 + x + 4, -x^5 - x^4 + 4*x^3 + 6*x^2 - x - 4, x^6 + 2*x^5 - 6*x^4 - 9*x^3 + 7*x^2 + 6*x - 4, -x^6 - 2*x^5 + 6*x^4 + 9*x^3 - 7*x^2 - 6*x + 4, -x^5 + 5*x^3 + x^2 - 5*x - 1, x^5 - 5*x^3 - x^2 + 5*x + 1, -x^5 - 2*x^4 + 4*x^3 + 9*x^2 + x - 3, x^5 + 2*x^4 - 4*x^3 - 9*x^2 - x + 3, -x^6 - x^5 + 7*x^4 + 6*x^3 - 13*x^2 - 8*x + 6, x^6 + x^5 - 7*x^4 - 6*x^3 + 13*x^2 + 8*x - 6, -x^6 - x^5 + 6*x^4 + 5*x^3 - 8*x^2 - 4*x + 3, x^6 + x^5 - 6*x^4 - 5*x^3 + 8*x^2 + 4*x - 3, -x^4 - x^3 + 5*x^2 + 4*x - 3, x^4 + x^3 - 5*x^2 - 4*x + 3, x^5 + 2*x^4 - 5*x^3 - 10*x^2 + 3*x + 8, -x^5 - 2*x^4 + 5*x^3 + 10*x^2 - 3*x - 8, -x^4 - x^3 + 5*x^2 + 4*x - 3, x^4 + x^3 - 5*x^2 - 4*x + 3, -x^4 + 3*x^2 + 2*x + 1, x^4 - 3*x^2 - 2*x - 1, -2*x^5 - 2*x^4 + 11*x^3 + 12*x^2 - 12*x - 13, 2*x^5 + 2*x^4 - 11*x^3 - 12*x^2 + 12*x + 13, 0, 0, x^4 - x^3 - 4*x^2 + 2*x + 4, -x^4 + x^3 + 4*x^2 - 2*x - 4, -2*x^4 + x^3 + 9*x^2 - x - 9, 2*x^4 - x^3 - 9*x^2 + x + 9]>,
         rec<Eigen |
           DefiningPolynomial := x^7 + 4*x^6 - 3*x^5 - 23*x^4 - 3*x^3 + 33*x^2 + 3*x - 5,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^3 + x^2 - 5*x - 5, -x^3 - x^2 + 5*x + 5, 2*x^6 + 8*x^5 - 4*x^4 - 40*x^3 - 15*x^2 + 40*x + 14, -2*x^6 - 8*x^5 + 4*x^4 + 40*x^3 + 15*x^2 - 40*x - 14, x^6 + 3*x^5 - 4*x^4 - 16*x^3 - x^2 + 18*x + 9, -x^6 - 3*x^5 + 4*x^4 + 16*x^3 + x^2 - 18*x - 9, -x^6 - 3*x^5 + 5*x^4 + 17*x^3 - 4*x^2 - 23*x - 9, x^6 + 3*x^5 - 5*x^4 - 17*x^3 + 4*x^2 + 23*x + 9, x^6 + 4*x^5 - x^4 - 17*x^3 - 10*x^2 + 11*x + 8, -x^6 - 4*x^5 + x^4 + 17*x^3 + 10*x^2 - 11*x - 8, 2*x^5 + 5*x^4 - 11*x^3 - 23*x^2 + 15*x + 13, -2*x^5 - 5*x^4 + 11*x^3 + 23*x^2 - 15*x - 13, x^4 + 2*x^3 - 3*x^2 - 7*x - 3, -x^4 - 2*x^3 + 3*x^2 + 7*x + 3, -x^6 - x^5 + 8*x^4 + 3*x^3 - 19*x^2 + 4*x + 7, x^6 + x^5 - 8*x^4 - 3*x^3 + 19*x^2 - 4*x - 7, x^6 + 3*x^5 - 4*x^4 - 15*x^3 + 13*x + 4, -x^6 - 3*x^5 + 4*x^4 + 15*x^3 - 13*x - 4, -x^5 - 2*x^4 + 7*x^3 + 9*x^2 - 14*x - 4, x^5 + 2*x^4 - 7*x^3 - 9*x^2 + 14*x + 4, x^5 + 2*x^4 - 6*x^3 - 7*x^2 + 12*x + 1, -x^5 - 2*x^4 + 6*x^3 + 7*x^2 - 12*x - 1, x^5 + 4*x^4 - x^3 - 15*x^2 - 7*x + 4, -x^5 - 4*x^4 + x^3 + 15*x^2 + 7*x - 4, -x^6 - 4*x^5 + 2*x^4 + 21*x^3 + 7*x^2 - 25*x - 5, x^6 + 4*x^5 - 2*x^4 - 21*x^3 - 7*x^2 + 25*x + 5, x^5 + 2*x^4 - 6*x^3 - 11*x^2 + 8*x + 12, -x^5 - 2*x^4 + 6*x^3 + 11*x^2 - 8*x - 12, x^5 + x^4 - 8*x^3 - 5*x^2 + 16*x + 2, -x^5 - x^4 + 8*x^3 + 5*x^2 - 16*x - 2, -x^3 - x^2 + 5*x + 5, x^3 + x^2 - 5*x - 5, 2*x^3 + 3*x^2 - 7*x - 8, -2*x^3 - 3*x^2 + 7*x + 8, -x^5 - 3*x^4 + 2*x^3 + 11*x^2 + 5*x - 2, x^5 + 3*x^4 - 2*x^3 - 11*x^2 - 5*x + 2, -x^4 - 2*x^3 + 3*x^2 + 7*x + 3, x^4 + 2*x^3 - 3*x^2 - 7*x - 3]>,
         rec<Eigen |
           DefiningPolynomial := x^31 - 9*x^30 - 8*x^29 + 296*x^28 - 467*x^27 - 3999*x^26 + 11486*x^25 + 27342*x^24 - 123243*x^23 - 81401*x^22 + 774171*x^21 - 131830*x^20 - 3092092*x^19 + 2144835*x^18 + 8005757*x^17 - 8872276*x^16 - 13104011*x^15 + 20286599*x^14 + 12312325*x^13 - 28011039*x^12 - 4459837*x^11 + 23084202*x^10 - 2166278*x^9 - 10691106*x^8 + 2491665*x^7 + 2558001*x^6 - 807767*x^5 - 254593*x^4 + 101683*x^3 + 2648*x^2 - 3099*x + 179,
           Coordinates        := [-x^30 + 9*x^29 + 5*x^28 - 269*x^27 + 479*x^26 + 3222*x^25 - 10072*x^24 - 18380*x^23 + 95099*x^22 + 32057*x^21 - 519447*x^20 + 217185*x^19 + 1753780*x^18 - 1633754*x^17 - 3646985*x^16 + 5140383*x^15 + 4303638*x^14 - 9132050*x^13 - 1975366*x^12 + 9443418*x^11 - 1162076*x^10 - 5425584*x^9 + 1767218*x^8 + 1567329*x^7 - 734832*x^6 - 176291*x^5 + 116206*x^4 - 1280*x^3 - 4581*x^2 + 515*x - 28, x^30 - 8*x^29 - 14*x^28 + 266*x^27 - 228*x^26 - 3700*x^25 + 7290*x^24 + 27496*x^23 - 80788*x^22 - 112068*x^21 + 502398*x^20 + 191089*x^19 - 1955345*x^18 + 346441*x^17 + 4918967*x^16 - 2655922*x^15 - 7950814*x^14 + 6469777*x^13 + 7925216*x^12 - 8474794*x^11 - 4422316*x^10 + 6275036*x^9 + 1054014*x^8 - 2533124*x^7 + 62968*x^6 + 512946*x^5 - 72351*x^4 - 40489*x^3 + 9110*x^2 - 31*x - 42, x^26 - 7*x^25 - 13*x^24 + 191*x^23 - 105*x^22 - 2164*x^21 + 3262*x^20 + 13049*x^19 - 29258*x^18 - 43601*x^17 + 141215*x^16 + 68391*x^15 - 411026*x^14 + 23336*x^13 + 735991*x^12 - 294347*x^11 - 782858*x^10 + 511333*x^9 + 443784*x^8 - 398881*x^7 - 97541*x^6 + 137313*x^5 - 4608*x^4 - 16850*x^3 + 3152*x^2 + 31*x - 17, x^28 - 8*x^27 - 11*x^26 + 243*x^25 - 266*x^24 - 3008*x^23 + 6731*x^22 + 18835*x^21 - 64811*x^20 - 54703*x^19 + 345918*x^18 - 14222*x^17 - 1109702*x^16 + 643820*x^15 + 2128026*x^14 - 2155672*x^13 - 2215540*x^12 + 3454252*x^11 + 805321*x^10 - 2815228*x^9 + 438998*x^8 + 1022426*x^7 - 367639*x^6 - 132511*x^5 + 70860*x^4 + 101*x^3 - 2467*x^2 + 108*x + 8, x^29 - 8*x^28 - 14*x^27 + 268*x^26 - 248*x^25 - 3680*x^24 + 7718*x^23 + 26120*x^22 - 83694*x^21 - 93836*x^20 + 501546*x^19 + 75921*x^18 - 1838719*x^17 + 736751*x^16 + 4213893*x^15 - 3306098*x^14 - 5879486*x^13 + 6607605*x^12 + 4568968*x^11 - 7172144*x^10 - 1514798*x^9 + 4223042*x^8 - 102136*x^7 - 1297546*x^6 + 194746*x^5 + 185254*x^4 - 42959*x^3 - 8253*x^2 + 2718*x - 135, x^29 - 8*x^28 - 13*x^27 + 259*x^26 - 248*x^25 - 3456*x^24 + 7241*x^23 + 24001*x^22 - 76011*x^21 - 85643*x^20 + 444112*x^19 + 81030*x^18 - 1594512*x^17 + 560636*x^16 + 3595226*x^15 - 2559910*x^14 - 4977400*x^13 + 5003424*x^12 + 3943347*x^11 - 5214706*x^10 - 1539946*x^9 + 2880926*x^8 + 206563*x^7 - 810477*x^6 + 27724*x^5 + 101201*x^4 - 9125*x^3 - 3536*x^2 + 370*x - 2, -x^28 + 9*x^27 + 2*x^26 - 241*x^25 + 469*x^24 + 2561*x^23 - 8445*x^22 - 12622*x^21 + 70676*x^20 + 14816*x^19 - 344621*x^18 + 155678*x^17 + 1042795*x^16 - 932320*x^15 - 1961291*x^14 + 2509152*x^13 + 2169744*x^12 - 3830572*x^11 - 1172809*x^10 + 3379977*x^9 + 43944*x^8 - 1638766*x^7 + 229766*x^6 + 395784*x^5 - 88870*x^4 - 35267*x^3 + 10487*x^2 - 417*x - 6, -x^27 + 9*x^26 - x^25 - 216*x^24 + 480*x^23 + 1945*x^22 - 7437*x^21 - 6567*x^20 + 53661*x^19 - 13417*x^18 - 216466*x^17 + 197479*x^16 + 496705*x^15 - 745591*x^14 - 576820*x^13 + 1432399*x^12 + 136770*x^11 - 1482191*x^10 + 358499*x^9 + 796952*x^8 - 324639*x^7 - 229078*x^6 + 112711*x^5 + 33170*x^4 - 17853*x^3 - 1469*x^2 + 1028*x - 62, -x^26 + 9*x^25 - 3*x^24 - 198*x^23 + 466*x^22 + 1623*x^21 - 6573*x^20 - 4657*x^19 + 44409*x^18 - 15111*x^17 - 170070*x^16 + 167791*x^15 + 372123*x^14 - 597919*x^13 - 400500*x^12 + 1116057*x^11 + 25444*x^10 - 1124507*x^9 + 372937*x^8 + 557304*x^7 - 320161*x^6 - 107564*x^5 + 100645*x^4 - 2914*x^3 - 10465*x^2 + 2287*x - 118, -x^26 + 8*x^25 + 7*x^24 - 209*x^23 + 271*x^22 + 2216*x^21 - 5221*x^20 - 11788*x^19 + 41873*x^18 + 28456*x^17 - 188010*x^16 + 9469*x^15 + 506174*x^14 - 239417*x^13 - 816237*x^12 + 616162*x^11 + 752932*x^10 - 729259*x^9 - 370760*x^8 + 426192*x^7 + 101553*x^6 - 127525*x^5 - 14814*x^4 + 18356*x^3 + 503*x^2 - 966*x + 62, -x^27 + 9*x^26 - 2*x^25 - 205*x^24 + 461*x^23 + 1739*x^22 - 6587*x^21 - 5642*x^20 + 43964*x^19 - 7550*x^18 - 164813*x^17 + 119860*x^16 + 360233*x^15 - 405512*x^14 - 441171*x^13 + 670608*x^12 + 262372*x^11 - 556514*x^10 - 56719*x^9 + 188771*x^8 + 29692*x^7 - 3922*x^6 - 28910*x^5 - 8696*x^4 + 8638*x^3 + 747*x^2 - 667*x + 43, x^27 - 9*x^26 + x^25 + 217*x^24 - 487*x^23 - 1954*x^22 + 7590*x^21 + 6525*x^20 - 55356*x^19 + 14915*x^18 + 228417*x^17 - 214039*x^16 - 547808*x^15 + 845388*x^14 + 689319*x^13 - 1766329*x^12 - 194164*x^11 + 2077049*x^10 - 578882*x^9 - 1286449*x^8 + 700221*x^7 + 332395*x^6 - 279234*x^5 - 7634*x^4 + 36852*x^3 - 6273*x^2 - 79*x + 34, -x^29 + 9*x^28 + 4*x^27 - 259*x^26 + 472*x^25 + 2982*x^24 - 9386*x^23 - 16306*x^22 + 84700*x^21 + 27025*x^20 - 442246*x^19 + 176645*x^18 + 1424074*x^17 - 1249659*x^16 - 2818229*x^15 + 3660255*x^14 + 3187735*x^13 - 5933579*x^12 - 1571951*x^11 + 5418682*x^10 - 257836*x^9 - 2624489*x^8 + 524713*x^7 + 628784*x^6 - 172671*x^5 - 59741*x^4 + 19702*x^3 + 305*x^2 - 367*x + 19, -x^25 + 9*x^24 - 7*x^23 - 161*x^22 + 432*x^21 + 955*x^20 - 4626*x^19 - 847*x^18 + 23198*x^17 - 14844*x^16 - 62291*x^15 + 73836*x^14 + 88160*x^13 - 158171*x^12 - 55663*x^11 + 178842*x^10 + 7219*x^9 - 119824*x^8 + 2239*x^7 + 60757*x^6 - 6033*x^5 - 18042*x^4 + 3694*x^3 + 1878*x^2 - 573*x + 31, -x^25 + 9*x^24 - 7*x^23 - 161*x^22 + 432*x^21 + 955*x^20 - 4626*x^19 - 847*x^18 + 23198*x^17 - 14844*x^16 - 62291*x^15 + 73836*x^14 + 88160*x^13 - 158171*x^12 - 55663*x^11 + 178842*x^10 + 7219*x^9 - 119824*x^8 + 2239*x^7 + 60757*x^6 - 6033*x^5 - 18042*x^4 + 3694*x^3 + 1878*x^2 - 573*x + 31, -2*x^26 + 18*x^25 - 4*x^24 - 411*x^23 + 929*x^22 + 3490*x^21 - 13356*x^20 - 11183*x^19 + 89904*x^18 - 17909*x^17 - 341281*x^16 + 263404*x^15 + 760060*x^14 - 919272*x^13 - 953686*x^12 + 1637029*x^11 + 558045*x^10 - 1595603*x^9 - 7126*x^8 + 817422*x^7 - 129338*x^6 - 202240*x^5 + 48754*x^4 + 18007*x^3 - 5577*x^2 + 230*x + 3, -2*x^26 + 18*x^25 - 4*x^24 - 411*x^23 + 929*x^22 + 3490*x^21 - 13356*x^20 - 11183*x^19 + 89904*x^18 - 17909*x^17 - 341281*x^16 + 263404*x^15 + 760060*x^14 - 919272*x^13 - 953686*x^12 + 1637029*x^11 + 558045*x^10 - 1595603*x^9 - 7126*x^8 + 817422*x^7 - 129338*x^6 - 202240*x^5 + 48754*x^4 + 18007*x^3 - 5577*x^2 + 230*x + 3, x^25 - 11*x^24 + 20*x^23 + 193*x^22 - 805*x^21 - 832*x^20 + 8829*x^19 - 4998*x^18 - 46777*x^17 + 66522*x^16 + 128186*x^15 - 298314*x^14 - 145700*x^13 + 698659*x^12 - 94645*x^11 - 891481*x^10 + 445158*x^9 + 567931*x^8 - 446821*x^7 - 130323*x^6 + 169202*x^5 - 7144*x^4 - 21176*x^3 + 4282*x^2 - 82*x - 4, x^25 - 11*x^24 + 20*x^23 + 193*x^22 - 805*x^21 - 832*x^20 + 8829*x^19 - 4998*x^18 - 46777*x^17 + 66522*x^16 + 128186*x^15 - 298314*x^14 - 145700*x^13 + 698659*x^12 - 94645*x^11 - 891481*x^10 + 445158*x^9 + 567931*x^8 - 446821*x^7 - 130323*x^6 + 169202*x^5 - 7144*x^4 - 21176*x^3 + 4282*x^2 - 82*x - 4, -x^25 + 7*x^24 + 17*x^23 - 227*x^22 + 137*x^21 + 2779*x^20 - 5019*x^19 - 16213*x^18 + 47044*x^17 + 41257*x^16 - 222141*x^15 + 14351*x^14 + 585448*x^13 - 353822*x^12 - 842570*x^11 + 873256*x^10 + 559525*x^9 - 938629*x^8 - 49726*x^7 + 444451*x^6 - 79680*x^5 - 89807*x^4 + 25968*x^3 + 5610*x^2 - 2174*x + 122, -x^25 + 7*x^24 + 17*x^23 - 227*x^22 + 137*x^21 + 2779*x^20 - 5019*x^19 - 16213*x^18 + 47044*x^17 + 41257*x^16 - 222141*x^15 + 14351*x^14 + 585448*x^13 - 353822*x^12 - 842570*x^11 + 873256*x^10 + 559525*x^9 - 938629*x^8 - 49726*x^7 + 444451*x^6 - 79680*x^5 - 89807*x^4 + 25968*x^3 + 5610*x^2 - 2174*x + 122, -x^29 + 9*x^28 + 4*x^27 - 259*x^26 + 471*x^25 + 2990*x^24 - 9379*x^23 - 16519*x^22 + 85012*x^21 + 29165*x^20 - 448033*x^19 + 167218*x^18 + 1467349*x^17 - 1241117*x^16 - 2991072*x^15 + 3747147*x^14 + 3574612*x^13 - 6317021*x^12 - 2024981*x^11 + 6119968*x^10 - 70612*x^9 - 3249644*x^8 + 616060*x^7 + 876463*x^6 - 259445*x^5 - 98066*x^4 + 38700*x^3 + 1429*x^2 - 1380*x + 80, -x^29 + 9*x^28 + 4*x^27 - 259*x^26 + 471*x^25 + 2990*x^24 - 9379*x^23 - 16519*x^22 + 85012*x^21 + 29165*x^20 - 448033*x^19 + 167218*x^18 + 1467349*x^17 - 1241117*x^16 - 2991072*x^15 + 3747147*x^14 + 3574612*x^13 - 6317021*x^12 - 2024981*x^11 + 6119968*x^10 - 70612*x^9 - 3249644*x^8 + 616060*x^7 + 876463*x^6 - 259445*x^5 - 98066*x^4 + 38700*x^3 + 1429*x^2 - 1380*x + 80, -x^27 + 8*x^26 + 8*x^25 - 216*x^24 + 259*x^23 + 2397*x^22 - 5308*x^21 - 13826*x^20 + 44658*x^19 + 41092*x^18 - 213748*x^17 - 34175*x^16 + 632994*x^15 - 171750*x^14 - 1176380*x^13 + 650463*x^12 + 1325286*x^11 - 1012460*x^10 - 816710*x^9 + 789624*x^8 + 209415*x^7 - 281818*x^6 - 1658*x^5 + 38173*x^4 - 5275*x^3 - 677*x^2 + 143*x - 10, -x^27 + 8*x^26 + 8*x^25 - 216*x^24 + 259*x^23 + 2397*x^22 - 5308*x^21 - 13826*x^20 + 44658*x^19 + 41092*x^18 - 213748*x^17 - 34175*x^16 + 632994*x^15 - 171750*x^14 - 1176380*x^13 + 650463*x^12 + 1325286*x^11 - 1012460*x^10 - 816710*x^9 + 789624*x^8 + 209415*x^7 - 281818*x^6 - 1658*x^5 + 38173*x^4 - 5275*x^3 - 677*x^2 + 143*x - 10, x^26 - 10*x^25 + 10*x^24 + 209*x^23 - 646*x^22 - 1461*x^21 + 8285*x^20 + 1282*x^19 - 51451*x^18 + 37280*x^17 + 177719*x^16 - 233167*x^15 - 342010*x^14 + 663865*x^13 + 315958*x^12 - 1029613*x^11 - 26629*x^10 + 866303*x^9 - 160973*x^8 - 368445*x^7 + 83500*x^6 + 79322*x^5 - 11470*x^4 - 8940*x^3 + 160*x^2 + 527*x - 33, x^26 - 10*x^25 + 10*x^24 + 209*x^23 - 646*x^22 - 1461*x^21 + 8285*x^20 + 1282*x^19 - 51451*x^18 + 37280*x^17 + 177719*x^16 - 233167*x^15 - 342010*x^14 + 663865*x^13 + 315958*x^12 - 1029613*x^11 - 26629*x^10 + 866303*x^9 - 160973*x^8 - 368445*x^7 + 83500*x^6 + 79322*x^5 - 11470*x^4 - 8940*x^3 + 160*x^2 + 527*x - 33, x^24 - 9*x^23 + 2*x^22 + 197*x^21 - 411*x^20 - 1654*x^19 + 5521*x^18 + 6044*x^17 - 34689*x^16 - 2856*x^15 + 122474*x^14 - 53366*x^13 - 252432*x^12 + 193795*x^11 + 292945*x^10 - 305591*x^9 - 166024*x^8 + 235883*x^7 + 24945*x^6 - 80433*x^5 + 8336*x^4 + 9528*x^3 - 2120*x^2 + 42*x + 2, x^24 - 9*x^23 + 2*x^22 + 197*x^21 - 411*x^20 - 1654*x^19 + 5521*x^18 + 6044*x^17 - 34689*x^16 - 2856*x^15 + 122474*x^14 - 53366*x^13 - 252432*x^12 + 193795*x^11 + 292945*x^10 - 305591*x^9 - 166024*x^8 + 235883*x^7 + 24945*x^6 - 80433*x^5 + 8336*x^4 + 9528*x^3 - 2120*x^2 + 42*x + 2, x^24 - 9*x^23 + 6*x^22 + 168*x^21 - 426*x^20 - 1096*x^19 + 4770*x^18 + 1979*x^17 - 25270*x^16 + 10268*x^15 + 73991*x^14 - 64672*x^13 - 122814*x^12 + 152543*x^11 + 109477*x^10 - 184739*x^9 - 42557*x^8 + 116821*x^7 - 125*x^6 - 35339*x^5 + 3224*x^4 + 4453*x^3 - 455*x^2 - 183*x + 21, x^24 - 9*x^23 + 6*x^22 + 168*x^21 - 426*x^20 - 1096*x^19 + 4770*x^18 + 1979*x^17 - 25270*x^16 + 10268*x^15 + 73991*x^14 - 64672*x^13 - 122814*x^12 + 152543*x^11 + 109477*x^10 - 184739*x^9 - 42557*x^8 + 116821*x^7 - 125*x^6 - 35339*x^5 + 3224*x^4 + 4453*x^3 - 455*x^2 - 183*x + 21, -x^26 + 8*x^25 + 7*x^24 - 211*x^23 + 292*x^22 + 2179*x^21 - 5548*x^20 - 10491*x^19 + 43121*x^18 + 16080*x^17 - 182027*x^16 + 66374*x^15 + 437621*x^14 - 377310*x^13 - 561585*x^12 + 776376*x^11 + 271206*x^10 - 761109*x^9 + 112655*x^8 + 325391*x^7 - 140312*x^6 - 48435*x^5 + 40786*x^4 - 2537*x^3 - 3597*x^2 + 878*x - 52, -x^26 + 8*x^25 + 7*x^24 - 211*x^23 + 292*x^22 + 2179*x^21 - 5548*x^20 - 10491*x^19 + 43121*x^18 + 16080*x^17 - 182027*x^16 + 66374*x^15 + 437621*x^14 - 377310*x^13 - 561585*x^12 + 776376*x^11 + 271206*x^10 - 761109*x^9 + 112655*x^8 + 325391*x^7 - 140312*x^6 - 48435*x^5 + 40786*x^4 - 2537*x^3 - 3597*x^2 + 878*x - 52, -x^28 + 9*x^27 + 2*x^26 - 242*x^25 + 479*x^24 + 2549*x^23 - 8634*x^22 - 12008*x^21 + 71840*x^20 + 7617*x^19 - 344744*x^18 + 197482*x^17 + 1008450*x^16 - 1068148*x^15 - 1764690*x^14 + 2746115*x^13 + 1628509*x^12 - 3974775*x^11 - 362295*x^10 + 3201937*x^9 - 573083*x^8 - 1308655*x^7 + 409498*x^6 + 242071*x^5 - 92202*x^4 - 13409*x^3 + 6397*x^2 - 383*x + 7, -x^28 + 9*x^27 + 2*x^26 - 242*x^25 + 479*x^24 + 2549*x^23 - 8634*x^22 - 12008*x^21 + 71840*x^20 + 7617*x^19 - 344744*x^18 + 197482*x^17 + 1008450*x^16 - 1068148*x^15 - 1764690*x^14 + 2746115*x^13 + 1628509*x^12 - 3974775*x^11 - 362295*x^10 + 3201937*x^9 - 573083*x^8 - 1308655*x^7 + 409498*x^6 + 242071*x^5 - 92202*x^4 - 13409*x^3 + 6397*x^2 - 383*x + 7, x^27 - 10*x^26 + 10*x^25 + 214*x^24 - 688*x^23 - 1453*x^22 + 9116*x^21 - 426*x^20 - 57584*x^19 + 58313*x^18 + 195155*x^17 - 352537*x^16 - 325088*x^15 + 1035664*x^14 + 68914*x^13 - 1678124*x^12 + 651325*x^11 + 1453759*x^10 - 1025997*x^9 - 578075*x^8 + 617789*x^7 + 65889*x^6 - 163846*x^5 + 14696*x^4 + 16118*x^3 - 3196*x^2 - 52*x + 21, x^27 - 10*x^26 + 10*x^25 + 214*x^24 - 688*x^23 - 1453*x^22 + 9116*x^21 - 426*x^20 - 57584*x^19 + 58313*x^18 + 195155*x^17 - 352537*x^16 - 325088*x^15 + 1035664*x^14 + 68914*x^13 - 1678124*x^12 + 651325*x^11 + 1453759*x^10 - 1025997*x^9 - 578075*x^8 + 617789*x^7 + 65889*x^6 - 163846*x^5 + 14696*x^4 + 16118*x^3 - 3196*x^2 - 52*x + 21, x^27 - 8*x^26 - 9*x^25 + 224*x^24 - 255*x^23 - 2583*x^22 + 5600*x^21 + 15470*x^20 - 49097*x^19 - 47626*x^18 + 242405*x^17 + 41592*x^16 - 733600*x^15 + 202119*x^14 + 1380930*x^13 - 774586*x^12 - 1569013*x^11 + 1199739*x^10 + 989472*x^9 - 929250*x^8 - 287101*x^7 + 338983*x^6 + 21568*x^5 - 50550*x^4 + 3329*x^3 + 1822*x^2 - 181*x + 1, x^27 - 8*x^26 - 9*x^25 + 224*x^24 - 255*x^23 - 2583*x^22 + 5600*x^21 + 15470*x^20 - 49097*x^19 - 47626*x^18 + 242405*x^17 + 41592*x^16 - 733600*x^15 + 202119*x^14 + 1380930*x^13 - 774586*x^12 - 1569013*x^11 + 1199739*x^10 + 989472*x^9 - 929250*x^8 - 287101*x^7 + 338983*x^6 + 21568*x^5 - 50550*x^4 + 3329*x^3 + 1822*x^2 - 181*x + 1, x^25 - 8*x^24 - 5*x^23 + 194*x^22 - 285*x^21 - 1861*x^20 + 4800*x^19 + 8504*x^18 - 34710*x^17 - 13898*x^16 + 140110*x^15 - 36779*x^14 - 334923*x^13 + 227155*x^12 + 465082*x^11 - 472603*x^10 - 336947*x^9 + 485649*x^8 + 87483*x^7 - 243731*x^6 + 13381*x^5 + 57437*x^4 - 10409*x^3 - 4893*x^2 + 1424*x - 76, x^25 - 8*x^24 - 5*x^23 + 194*x^22 - 285*x^21 - 1861*x^20 + 4800*x^19 + 8504*x^18 - 34710*x^17 - 13898*x^16 + 140110*x^15 - 36779*x^14 - 334923*x^13 + 227155*x^12 + 465082*x^11 - 472603*x^10 - 336947*x^9 + 485649*x^8 + 87483*x^7 - 243731*x^6 + 13381*x^5 + 57437*x^4 - 10409*x^3 - 4893*x^2 + 1424*x - 76, x^25 - 8*x^24 - 6*x^23 + 201*x^22 - 278*x^21 - 2014*x^20 + 4989*x^19 + 9688*x^18 - 37604*x^17 - 17091*x^16 + 156022*x^15 - 42244*x^14 - 373339*x^13 + 279210*x^12 + 486965*x^11 - 585392*x^10 - 265135*x^9 + 569801*x^8 - 37882*x^7 - 236059*x^6 + 69523*x^5 + 36823*x^4 - 16014*x^3 - 900*x^2 + 771*x - 46, x^25 - 8*x^24 - 6*x^23 + 201*x^22 - 278*x^21 - 2014*x^20 + 4989*x^19 + 9688*x^18 - 37604*x^17 - 17091*x^16 + 156022*x^15 - 42244*x^14 - 373339*x^13 + 279210*x^12 + 486965*x^11 - 585392*x^10 - 265135*x^9 + 569801*x^8 - 37882*x^7 - 236059*x^6 + 69523*x^5 + 36823*x^4 - 16014*x^3 - 900*x^2 + 771*x - 46, -x^27 + 9*x^26 - 225*x^24 + 486*x^23 + 2114*x^22 - 7864*x^21 - 7722*x^20 + 58631*x^19 - 10828*x^18 - 245151*x^17 + 207144*x^16 + 593388*x^15 - 829282*x^14 - 769723*x^13 + 1691783*x^12 + 337400*x^11 - 1905571*x^10 + 314239*x^9 + 1151365*x^8 - 415977*x^7 - 352574*x^6 + 168901*x^5 + 46484*x^4 - 27028*x^3 - 1135*x^2 + 1244*x - 70, -x^27 + 9*x^26 - 225*x^24 + 486*x^23 + 2114*x^22 - 7864*x^21 - 7722*x^20 + 58631*x^19 - 10828*x^18 - 245151*x^17 + 207144*x^16 + 593388*x^15 - 829282*x^14 - 769723*x^13 + 1691783*x^12 + 337400*x^11 - 1905571*x^10 + 314239*x^9 + 1151365*x^8 - 415977*x^7 - 352574*x^6 + 168901*x^5 + 46484*x^4 - 27028*x^3 - 1135*x^2 + 1244*x - 70, x^26 - 9*x^25 + 2*x^24 + 208*x^23 - 485*x^22 - 1744*x^21 + 7087*x^20 + 4800*x^19 - 47984*x^18 + 18833*x^17 + 179278*x^16 - 187157*x^15 - 372135*x^14 + 626750*x^13 + 360741*x^12 - 1090228*x^11 + 26179*x^10 + 1007335*x^9 - 355609*x^8 - 448035*x^7 + 257237*x^6 + 79395*x^5 - 71070*x^4 + 1063*x^3 + 6772*x^2 - 1317*x + 55, x^26 - 9*x^25 + 2*x^24 + 208*x^23 - 485*x^22 - 1744*x^21 + 7087*x^20 + 4800*x^19 - 47984*x^18 + 18833*x^17 + 179278*x^16 - 187157*x^15 - 372135*x^14 + 626750*x^13 + 360741*x^12 - 1090228*x^11 + 26179*x^10 + 1007335*x^9 - 355609*x^8 - 448035*x^7 + 257237*x^6 + 79395*x^5 - 71070*x^4 + 1063*x^3 + 6772*x^2 - 1317*x + 55, x^26 - 9*x^25 + x^24 + 216*x^23 - 485*x^22 - 1904*x^21 + 7429*x^20 + 5795*x^19 - 52062*x^18 + 18534*x^17 + 198383*x^16 - 208534*x^15 - 405086*x^14 + 717221*x^13 + 330569*x^12 - 1224900*x^11 + 210780*x^10 + 1019675*x^9 - 565126*x^8 - 314998*x^7 + 305707*x^6 + 2639*x^5 - 56061*x^4 + 10661*x^3 + 2126*x^2 - 634*x + 25, x^26 - 9*x^25 + x^24 + 216*x^23 - 485*x^22 - 1904*x^21 + 7429*x^20 + 5795*x^19 - 52062*x^18 + 18534*x^17 + 198383*x^16 - 208534*x^15 - 405086*x^14 + 717221*x^13 + 330569*x^12 - 1224900*x^11 + 210780*x^10 + 1019675*x^9 - 565126*x^8 - 314998*x^7 + 305707*x^6 + 2639*x^5 - 56061*x^4 + 10661*x^3 + 2126*x^2 - 634*x + 25, -x^26 + 9*x^25 - 224*x^23 + 478*x^22 + 2107*x^21 - 7661*x^20 - 7954*x^19 + 56472*x^18 - 6418*x^17 - 233035*x^16 + 172492*x^15 + 557346*x^14 - 677022*x^13 - 729524*x^12 + 1292828*x^11 + 405328*x^10 - 1289463*x^9 + 44451*x^8 + 630690*x^7 - 100285*x^6 - 147152*x^5 + 24388*x^4 + 14811*x^3 - 1556*x^2 - 565*x + 45, -x^26 + 9*x^25 - 224*x^23 + 478*x^22 + 2107*x^21 - 7661*x^20 - 7954*x^19 + 56472*x^18 - 6418*x^17 - 233035*x^16 + 172492*x^15 + 557346*x^14 - 677022*x^13 - 729524*x^12 + 1292828*x^11 + 405328*x^10 - 1289463*x^9 + 44451*x^8 + 630690*x^7 - 100285*x^6 - 147152*x^5 + 24388*x^4 + 14811*x^3 - 1556*x^2 - 565*x + 45]>
       ]
>;

MOG[613] := 	// J_0(613)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [31, 111, 171, 334, 470, 7*x + 166, 606*x + 166, 127*x + 149, 486*x + 149, 363*x + 505, 250*x + 505, 207*x + 422, 406*x + 422, 67*x + 138, 546*x + 138, 61*x + 153, 552*x + 153, 510*x + 16, 103*x + 16, 464*x + 441, 149*x + 441, 347*x + 460, 266*x + 460, 135*x + 217, 478*x + 217, 492*x + 337, 121*x + 337, 154*x + 531, 459*x + 531, 360*x + 226, 253*x + 226, 369*x + 13, 244*x + 13, 162*x + 324, 451*x + 324, 396*x + 99, 217*x + 99, 506*x + 551, 107*x + 551, 265*x + 100, 348*x + 100, 387*x + 413, 226*x + 413, 498*x + 610, 115*x + 610, 306*x + 370, 307*x + 370, 599*x + 200, 14*x + 200, 591*x + 20, 22*x + 20]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^5 + 4*x^4 - x^3 - 18*x^2 - 16*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, x^4 + 5*x^3 + 7*x^2 + x - 2, -x^4 - 5*x^3 - 7*x^2 - x + 2, x^3 + 4*x^2 + 5*x + 2, -x^3 - 4*x^2 - 5*x - 2, x^4 + 7*x^3 + 15*x^2 + 9*x - 1, -x^4 - 7*x^3 - 15*x^2 - 9*x + 1, x^2 + 2*x + 1, -x^2 - 2*x - 1, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, x^4 + 5*x^3 + 8*x^2 + 5*x + 1, -x^4 - 5*x^3 - 8*x^2 - 5*x - 1, x^4 + 6*x^3 + 12*x^2 + 9*x + 2, -x^4 - 6*x^3 - 12*x^2 - 9*x - 2, -x^4 - 5*x^3 - 9*x^2 - 8*x - 3, x^4 + 5*x^3 + 9*x^2 + 8*x + 3, x^3 + 4*x^2 + 4*x + 1, -x^3 - 4*x^2 - 4*x - 1, x^3 + 4*x^2 + 4*x + 1, -x^3 - 4*x^2 - 4*x - 1, x^3 + 5*x^2 + 8*x + 4, -x^3 - 5*x^2 - 8*x - 4, x^4 + 5*x^3 + 7*x^2 + x - 2, -x^4 - 5*x^3 - 7*x^2 - x + 2, -2*x^3 - 9*x^2 - 12*x - 5, 2*x^3 + 9*x^2 + 12*x + 5, -x^4 - 7*x^3 - 14*x^2 - 6*x + 3, x^4 + 7*x^3 + 14*x^2 + 6*x - 3, -x^2 - 3*x - 2, x^2 + 3*x + 2, x^2 + 3*x + 2, -x^2 - 3*x - 2, -x^4 - 4*x^3 - 3*x^2 + 3*x + 3, x^4 + 4*x^3 + 3*x^2 - 3*x - 3, -x^4 - 5*x^3 - 8*x^2 - 4*x, x^4 + 5*x^3 + 8*x^2 + 4*x, -x^3 - 4*x^2 - 5*x - 2, x^3 + 4*x^2 + 5*x + 2, -x^3 - 3*x^2 - x + 1, x^3 + 3*x^2 + x - 1, -x^2 - 3*x - 2, x^2 + 3*x + 2, -x^3 - 3*x^2 + 3, x^3 + 3*x^2 - 3, -x^3 - 4*x^2 - 5*x - 2, x^3 + 4*x^2 + 5*x + 2]>,
         rec<Eigen |
           DefiningPolynomial := x^18 + 6*x^17 - 6*x^16 - 94*x^15 - 62*x^14 + 567*x^13 + 704*x^12 - 1719*x^11 - 2756*x^10 + 2786*x^9 + 5455*x^8 - 2273*x^7 - 5795*x^6 + 629*x^5 + 3147*x^4 + 213*x^3 - 714*x^2 - 115*x + 25,
           Coordinates        := [0, 0, 0, 0, 0, x^17 + 7*x^16 + 2*x^15 - 84*x^14 - 138*x^13 + 349*x^12 + 879*x^11 - 555*x^10 - 2401*x^9 - 14*x^8 + 3240*x^7 + 1000*x^6 - 2069*x^5 - 998*x^4 + 479*x^3 + 301*x^2 + 3*x - 10, -x^17 - 7*x^16 - 2*x^15 + 84*x^14 + 138*x^13 - 349*x^12 - 879*x^11 + 555*x^10 + 2401*x^9 + 14*x^8 - 3240*x^7 - 1000*x^6 + 2069*x^5 + 998*x^4 - 479*x^3 - 301*x^2 - 3*x + 10, x^17 + 8*x^16 + 9*x^15 - 83*x^14 - 226*x^13 + 220*x^12 + 1274*x^11 + 292*x^10 - 3175*x^9 - 2357*x^8 + 3778*x^7 + 4194*x^6 - 1837*x^5 - 3092*x^4 + 27*x^3 + 848*x^2 + 149*x - 30, -x^17 - 8*x^16 - 9*x^15 + 83*x^14 + 226*x^13 - 220*x^12 - 1274*x^11 - 292*x^10 + 3175*x^9 + 2357*x^8 - 3778*x^7 - 4194*x^6 + 1837*x^5 + 3092*x^4 - 27*x^3 - 848*x^2 - 149*x + 30, x^15 + 7*x^14 + 8*x^13 - 45*x^12 - 110*x^11 + 63*x^10 + 375*x^9 + 142*x^8 - 505*x^7 - 468*x^6 + 210*x^5 + 424*x^4 + 61*x^3 - 131*x^2 - 44*x + 5, -x^15 - 7*x^14 - 8*x^13 + 45*x^12 + 110*x^11 - 63*x^10 - 375*x^9 - 142*x^8 + 505*x^7 + 468*x^6 - 210*x^5 - 424*x^4 - 61*x^3 + 131*x^2 + 44*x - 5, x^16 + 6*x^15 - 3*x^14 - 77*x^13 - 72*x^12 + 364*x^11 + 546*x^10 - 800*x^9 - 1575*x^8 + 793*x^7 + 2192*x^6 - 190*x^5 - 1457*x^4 - 178*x^3 + 383*x^2 + 82*x - 15, -x^16 - 6*x^15 + 3*x^14 + 77*x^13 + 72*x^12 - 364*x^11 - 546*x^10 + 800*x^9 + 1575*x^8 - 793*x^7 - 2192*x^6 + 190*x^5 + 1457*x^4 + 178*x^3 - 383*x^2 - 82*x + 15, x^17 + 7*x^16 + 3*x^15 - 77*x^14 - 132*x^13 + 293*x^12 + 768*x^11 - 410*x^10 - 1942*x^9 - 88*x^8 + 2434*x^7 + 766*x^6 - 1462*x^5 - 665*x^4 + 334*x^3 + 179*x^2, -x^17 - 7*x^16 - 3*x^15 + 77*x^14 + 132*x^13 - 293*x^12 - 768*x^11 + 410*x^10 + 1942*x^9 + 88*x^8 - 2434*x^7 - 766*x^6 + 1462*x^5 + 665*x^4 - 334*x^3 - 179*x^2, -x^17 - 6*x^16 + 5*x^15 + 91*x^14 + 87*x^13 - 463*x^12 - 780*x^11 + 989*x^10 + 2485*x^9 - 652*x^8 - 3730*x^7 - 652*x^6 + 2608*x^5 + 1069*x^4 - 672*x^3 - 387*x^2 - 3*x + 10, x^17 + 6*x^16 - 5*x^15 - 91*x^14 - 87*x^13 + 463*x^12 + 780*x^11 - 989*x^10 - 2485*x^9 + 652*x^8 + 3730*x^7 + 652*x^6 - 2608*x^5 - 1069*x^4 + 672*x^3 + 387*x^2 + 3*x - 10, x^14 + 6*x^13 + 4*x^12 - 36*x^11 - 59*x^10 + 58*x^9 + 161*x^8 + 22*x^7 - 138*x^6 - 115*x^5 - 10*x^4 + 62*x^3 + 42*x^2 + 5*x, -x^14 - 6*x^13 - 4*x^12 + 36*x^11 + 59*x^10 - 58*x^9 - 161*x^8 - 22*x^7 + 138*x^6 + 115*x^5 + 10*x^4 - 62*x^3 - 42*x^2 - 5*x, x^16 + 7*x^15 + 5*x^14 - 63*x^13 - 119*x^12 + 186*x^11 + 545*x^10 - 158*x^9 - 1062*x^8 - 156*x^7 + 965*x^6 + 296*x^5 - 405*x^4 - 124*x^3 + 78*x^2 + 14*x - 5, -x^16 - 7*x^15 - 5*x^14 + 63*x^13 + 119*x^12 - 186*x^11 - 545*x^10 + 158*x^9 + 1062*x^8 + 156*x^7 - 965*x^6 - 296*x^5 + 405*x^4 + 124*x^3 - 78*x^2 - 14*x + 5, x^15 + 8*x^14 + 15*x^13 - 37*x^12 - 151*x^11 - 23*x^10 + 459*x^9 + 398*x^8 - 583*x^7 - 826*x^6 + 247*x^5 + 684*x^4 + 63*x^3 - 212*x^2 - 48*x + 10, -x^15 - 8*x^14 - 15*x^13 + 37*x^12 + 151*x^11 + 23*x^10 - 459*x^9 - 398*x^8 + 583*x^7 + 826*x^6 - 247*x^5 - 684*x^4 - 63*x^3 + 212*x^2 + 48*x - 10, -x^16 - 5*x^15 + 10*x^14 + 81*x^13 + 6*x^12 - 469*x^11 - 311*x^10 + 1300*x^9 + 1185*x^8 - 1837*x^7 - 1893*x^6 + 1241*x^5 + 1367*x^4 - 298*x^3 - 374*x^2 - 13*x + 10, x^16 + 5*x^15 - 10*x^14 - 81*x^13 - 6*x^12 + 469*x^11 + 311*x^10 - 1300*x^9 - 1185*x^8 + 1837*x^7 + 1893*x^6 - 1241*x^5 - 1367*x^4 + 298*x^3 + 374*x^2 + 13*x - 10, x^13 + 5*x^12 - 31*x^10 - 26*x^9 + 61*x^8 + 69*x^7 - 30*x^6 - 49*x^5 - 29*x^4 - 6*x^3 + 32*x^2 + 14*x - 5, -x^13 - 5*x^12 + 31*x^10 + 26*x^9 - 61*x^8 - 69*x^7 + 30*x^6 + 49*x^5 + 29*x^4 + 6*x^3 - 32*x^2 - 14*x + 5, -x^14 - 5*x^13 + 4*x^12 + 51*x^11 + 26*x^10 - 188*x^9 - 181*x^8 + 298*x^7 + 383*x^6 - 171*x^5 - 333*x^4 - 13*x^3 + 104*x^2 + 30*x, x^14 + 5*x^13 - 4*x^12 - 51*x^11 - 26*x^10 + 188*x^9 + 181*x^8 - 298*x^7 - 383*x^6 + 171*x^5 + 333*x^4 + 13*x^3 - 104*x^2 - 30*x, x^15 + 7*x^14 + 6*x^13 - 56*x^12 - 110*x^11 + 149*x^10 + 453*x^9 - 112*x^8 - 810*x^7 - 120*x^6 + 668*x^5 + 205*x^4 - 227*x^3 - 73*x^2 + 20*x, -x^15 - 7*x^14 - 6*x^13 + 56*x^12 + 110*x^11 - 149*x^10 - 453*x^9 + 112*x^8 + 810*x^7 + 120*x^6 - 668*x^5 - 205*x^4 + 227*x^3 + 73*x^2 - 20*x, x^15 + 7*x^14 + 7*x^13 - 51*x^12 - 113*x^11 + 103*x^10 + 427*x^9 + 44*x^8 - 659*x^7 - 350*x^6 + 389*x^5 + 336*x^4 - 29*x^3 - 92*x^2 - 25*x, -x^15 - 7*x^14 - 7*x^13 + 51*x^12 + 113*x^11 - 103*x^10 - 427*x^9 - 44*x^8 + 659*x^7 + 350*x^6 - 389*x^5 - 336*x^4 + 29*x^3 + 92*x^2 + 25*x, x^14 + 8*x^13 + 19*x^12 - 11*x^11 - 120*x^10 - 145*x^9 + 157*x^8 + 470*x^7 + 133*x^6 - 462*x^5 - 341*x^4 + 126*x^3 + 160*x^2 + 13*x - 10, -x^14 - 8*x^13 - 19*x^12 + 11*x^11 + 120*x^10 + 145*x^9 - 157*x^8 - 470*x^7 - 133*x^6 + 462*x^5 + 341*x^4 - 126*x^3 - 160*x^2 - 13*x + 10, x^12 + 5*x^11 + 2*x^10 - 23*x^9 - 31*x^8 + 17*x^7 + 59*x^6 + 37*x^5 - 25*x^4 - 36*x^3 + 4*x^2 + 4*x - 5, -x^12 - 5*x^11 - 2*x^10 + 23*x^9 + 31*x^8 - 17*x^7 - 59*x^6 - 37*x^5 + 25*x^4 + 36*x^3 - 4*x^2 - 4*x + 5, x^14 + 7*x^13 + 9*x^12 - 37*x^11 - 92*x^10 + 46*x^9 + 252*x^8 + 36*x^7 - 297*x^6 - 91*x^5 + 178*x^4 + 51*x^3 - 58*x^2 - 14*x + 5, -x^14 - 7*x^13 - 9*x^12 + 37*x^11 + 92*x^10 - 46*x^9 - 252*x^8 - 36*x^7 + 297*x^6 + 91*x^5 - 178*x^4 - 51*x^3 + 58*x^2 + 14*x - 5, x^14 + 7*x^13 + 10*x^12 - 32*x^11 - 92*x^10 + 14*x^9 + 222*x^8 + 104*x^7 - 193*x^6 - 131*x^5 + 43*x^4 + 19*x^3 + x^2 + 16*x + 5, -x^14 - 7*x^13 - 10*x^12 + 32*x^11 + 92*x^10 - 14*x^9 - 222*x^8 - 104*x^7 + 193*x^6 + 131*x^5 - 43*x^4 - 19*x^3 - x^2 - 16*x - 5, 2*x^13 + 13*x^12 + 16*x^11 - 59*x^10 - 153*x^9 + 22*x^8 + 357*x^7 + 217*x^6 - 277*x^5 - 316*x^4 + 18*x^3 + 127*x^2 + 34*x - 5, -2*x^13 - 13*x^12 - 16*x^11 + 59*x^10 + 153*x^9 - 22*x^8 - 357*x^7 - 217*x^6 + 277*x^5 + 316*x^4 - 18*x^3 - 127*x^2 - 34*x + 5, 2*x^13 + 13*x^12 + 15*x^11 - 63*x^10 - 149*x^9 + 50*x^8 + 359*x^7 + 147*x^6 - 311*x^5 - 242*x^4 + 79*x^3 + 98*x^2 + 4*x - 5, -2*x^13 - 13*x^12 - 15*x^11 + 63*x^10 + 149*x^9 - 50*x^8 - 359*x^7 - 147*x^6 + 311*x^5 + 242*x^4 - 79*x^3 - 98*x^2 - 4*x + 5, x^12 + 7*x^11 + 10*x^10 - 28*x^9 - 75*x^8 + 7*x^7 + 126*x^6 + 61*x^5 - 32*x^4 - 26*x^3 - 24*x^2 - 15*x, -x^12 - 7*x^11 - 10*x^10 + 28*x^9 + 75*x^8 - 7*x^7 - 126*x^6 - 61*x^5 + 32*x^4 + 26*x^3 + 24*x^2 + 15*x, x^13 + 6*x^12 + 3*x^11 - 40*x^10 - 52*x^9 + 98*x^8 + 154*x^7 - 118*x^6 - 179*x^5 + 88*x^4 + 90*x^3 - 39*x^2 - 19*x + 5, -x^13 - 6*x^12 - 3*x^11 + 40*x^10 + 52*x^9 - 98*x^8 - 154*x^7 + 118*x^6 + 179*x^5 - 88*x^4 - 90*x^3 + 39*x^2 + 19*x - 5, x^13 + 6*x^12 + 5*x^11 - 30*x^10 - 52*x^9 + 38*x^8 + 109*x^7 + 2*x^6 - 69*x^5 - x^4 + 12*x^3 - 19*x^2 - 4*x + 5, -x^13 - 6*x^12 - 5*x^11 + 30*x^10 + 52*x^9 - 38*x^8 - 109*x^7 - 2*x^6 + 69*x^5 + x^4 - 12*x^3 + 19*x^2 + 4*x - 5]>,
         rec<Eigen |
           DefiningPolynomial := x^27 - 8*x^26 - 9*x^25 + 224*x^24 - 253*x^23 - 2596*x^22 + 5569*x^21 + 15836*x^20 - 49248*x^19 - 51509*x^18 + 247914*x^17 + 61977*x^16 - 777485*x^15 + 147021*x^14 + 1555984*x^13 - 714158*x^12 - 1964875*x^11 + 1245137*x^10 + 1499850*x^9 - 1122577*x^8 - 633022*x^7 + 522333*x^6 + 119415*x^5 - 107309*x^4 - 3970*x^3 + 5608*x^2 + 161*x - 27,
           Coordinates        := [-x^26 + 7*x^25 + 14*x^24 - 196*x^23 + 81*x^22 + 2313*x^21 - 3052*x^20 - 14952*x^19 + 28674*x^18 + 57261*x^17 - 144299*x^16 - 128966*x^15 + 443347*x^14 + 147956*x^13 - 861904*x^12 - 11672*x^11 + 1054129*x^10 - 184284*x^9 - 779874*x^8 + 216165*x^7 + 320837*x^6 - 100604*x^5 - 60597*x^4 + 17034*x^3 + 2658*x^2 - 86*x + 3, x^26 - 8*x^25 - 6*x^24 + 202*x^23 - 281*x^22 - 2042*x^21 + 5050*x^20 + 10188*x^19 - 38574*x^18 - 22029*x^17 + 166654*x^16 - 16834*x^15 - 439843*x^14 + 215777*x^13 + 719819*x^12 - 541571*x^11 - 714030*x^10 + 684190*x^9 + 403252*x^8 - 469957*x^7 - 112322*x^6 + 167946*x^5 + 7959*x^4 - 26179*x^3 + 1755*x^2 + 907*x - 24, x^25 - 8*x^24 - 4*x^23 + 188*x^22 - 303*x^21 - 1688*x^20 + 4796*x^19 + 6578*x^18 - 32624*x^17 - 3219*x^16 + 121306*x^15 - 67550*x^14 - 257453*x^13 + 267231*x^12 + 294877*x^11 - 474883*x^10 - 136176*x^9 + 443536*x^8 - 36824*x^7 - 212023*x^6 + 57492*x^5 + 43060*x^4 - 15661*x^3 - 1221*x^2 + 579*x - 15, 2*x^22 - 14*x^21 - 14*x^20 + 298*x^19 - 302*x^18 - 2476*x^17 + 4724*x^16 + 9946*x^15 - 28050*x^14 - 17546*x^13 + 87610*x^12 - 2914*x^11 - 152134*x^10 + 62628*x^9 + 140520*x^8 - 97190*x^7 - 56914*x^6 + 60500*x^5 + 1816*x^4 - 13762*x^3 + 3058*x^2 + 242*x - 24, 2*x^21 - 14*x^20 - 12*x^19 + 280*x^18 - 284*x^17 - 2198*x^16 + 3944*x^15 + 8672*x^14 - 21350*x^13 - 17718*x^12 + 61706*x^11 + 15372*x^10 - 102020*x^9 + 4186*x^8 + 95868*x^7 - 18086*x^6 - 47786*x^5 + 12118*x^4 + 10478*x^3 - 2706*x^2 - 514*x + 66, -x^25 + 7*x^24 + 12*x^23 - 182*x^22 + 102*x^21 + 1968*x^20 - 2811*x^19 - 11461*x^18 + 23177*x^17 + 38655*x^16 - 102586*x^15 - 74185*x^14 + 273062*x^13 + 68037*x^12 - 449537*x^11 + 3362*x^10 + 452130*x^9 - 63269*x^8 - 264175*x^7 + 50446*x^6 + 79711*x^5 - 14839*x^4 - 9173*x^3 + 1432*x^2 + 125*x - 15, -x^25 + 7*x^24 + 12*x^23 - 182*x^22 + 102*x^21 + 1968*x^20 - 2811*x^19 - 11461*x^18 + 23177*x^17 + 38655*x^16 - 102586*x^15 - 74185*x^14 + 273062*x^13 + 68037*x^12 - 449537*x^11 + 3362*x^10 + 452130*x^9 - 63269*x^8 - 264175*x^7 + 50446*x^6 + 79711*x^5 - 14839*x^4 - 9173*x^3 + 1432*x^2 + 125*x - 15, -x^24 + 7*x^23 + 10*x^22 - 170*x^21 + 131*x^20 + 1676*x^19 - 2808*x^18 - 8525*x^17 + 20657*x^16 + 22869*x^15 - 81376*x^14 - 25355*x^13 + 188089*x^12 - 18085*x^11 - 258235*x^10 + 81007*x^9 + 204669*x^8 - 83508*x^7 - 87254*x^6 + 34535*x^5 + 16414*x^4 - 3998*x^3 - 442*x^2 - 305*x - 6, -x^24 + 7*x^23 + 10*x^22 - 170*x^21 + 131*x^20 + 1676*x^19 - 2808*x^18 - 8525*x^17 + 20657*x^16 + 22869*x^15 - 81376*x^14 - 25355*x^13 + 188089*x^12 - 18085*x^11 - 258235*x^10 + 81007*x^9 + 204669*x^8 - 83508*x^7 - 87254*x^6 + 34535*x^5 + 16414*x^4 - 3998*x^3 - 442*x^2 - 305*x - 6, -x^24 + 7*x^23 + 11*x^22 - 175*x^21 + 110*x^20 + 1815*x^19 - 2689*x^18 - 10081*x^17 + 21056*x^16 + 31912*x^15 - 88909*x^14 - 54564*x^13 + 224278*x^12 + 33119*x^11 - 343764*x^10 + 40008*x^9 + 311030*x^8 - 82211*x^7 - 153872*x^6 + 51230*x^5 + 35010*x^4 - 11604*x^3 - 2091*x^2 + 376*x + 3, -x^24 + 7*x^23 + 11*x^22 - 175*x^21 + 110*x^20 + 1815*x^19 - 2689*x^18 - 10081*x^17 + 21056*x^16 + 31912*x^15 - 88909*x^14 - 54564*x^13 + 224278*x^12 + 33119*x^11 - 343764*x^10 + 40008*x^9 + 311030*x^8 - 82211*x^7 - 153872*x^6 + 51230*x^5 + 35010*x^4 - 11604*x^3 - 2091*x^2 + 376*x + 3, -x^23 + 5*x^22 + 20*x^21 - 130*x^20 - 129*x^19 + 1418*x^18 + 28*x^17 - 8469*x^16 + 3719*x^15 + 30307*x^14 - 20762*x^13 - 66879*x^12 + 54331*x^11 + 90577*x^10 - 77081*x^9 - 73155*x^8 + 58359*x^7 + 33210*x^6 - 20834*x^5 - 7133*x^4 + 2148*x^3 + 298*x^2 + 154*x + 3, -x^23 + 5*x^22 + 20*x^21 - 130*x^20 - 129*x^19 + 1418*x^18 + 28*x^17 - 8469*x^16 + 3719*x^15 + 30307*x^14 - 20762*x^13 - 66879*x^12 + 54331*x^11 + 90577*x^10 - 77081*x^9 - 73155*x^8 + 58359*x^7 + 33210*x^6 - 20834*x^5 - 7133*x^4 + 2148*x^3 + 298*x^2 + 154*x + 3, -x^23 + 7*x^22 + 9*x^21 - 162*x^20 + 132*x^19 + 1518*x^18 - 2548*x^17 - 7317*x^16 + 17491*x^15 + 18523*x^14 - 64211*x^13 - 19243*x^12 + 136971*x^11 - 12932*x^10 - 170380*x^9 + 52916*x^8 + 118562*x^7 - 49121*x^6 - 42463*x^5 + 17974*x^4 + 6583*x^3 - 2035*x^2 - 285*x + 12, -x^23 + 7*x^22 + 9*x^21 - 162*x^20 + 132*x^19 + 1518*x^18 - 2548*x^17 - 7317*x^16 + 17491*x^15 + 18523*x^14 - 64211*x^13 - 19243*x^12 + 136971*x^11 - 12932*x^10 - 170380*x^9 + 52916*x^8 + 118562*x^7 - 49121*x^6 - 42463*x^5 + 17974*x^4 + 6583*x^3 - 2035*x^2 - 285*x + 12, -x^21 + 10*x^20 - 16*x^19 - 148*x^18 + 545*x^17 + 535*x^16 - 4753*x^15 + 2082*x^14 + 19255*x^13 - 21416*x^12 - 39294*x^11 + 65629*x^10 + 36465*x^9 - 94531*x^8 - 7236*x^7 + 64673*x^6 - 6859*x^5 - 18771*x^4 + 2594*x^3 + 1348*x^2 - 106*x + 3, -x^21 + 10*x^20 - 16*x^19 - 148*x^18 + 545*x^17 + 535*x^16 - 4753*x^15 + 2082*x^14 + 19255*x^13 - 21416*x^12 - 39294*x^11 + 65629*x^10 + 36465*x^9 - 94531*x^8 - 7236*x^7 + 64673*x^6 - 6859*x^5 - 18771*x^4 + 2594*x^3 + 1348*x^2 - 106*x + 3, -x^23 + 7*x^22 + 9*x^21 - 163*x^20 + 138*x^19 + 1528*x^18 - 2666*x^17 - 7278*x^16 + 18430*x^15 + 17539*x^14 - 68039*x^13 - 13502*x^12 + 145067*x^11 - 28983*x^10 - 177565*x^9 + 75589*x^8 + 117539*x^7 - 63889*x^6 - 37842*x^5 + 22006*x^4 + 4488*x^3 - 2404*x^2 - 16*x + 12, -x^23 + 7*x^22 + 9*x^21 - 163*x^20 + 138*x^19 + 1528*x^18 - 2666*x^17 - 7278*x^16 + 18430*x^15 + 17539*x^14 - 68039*x^13 - 13502*x^12 + 145067*x^11 - 28983*x^10 - 177565*x^9 + 75589*x^8 + 117539*x^7 - 63889*x^6 - 37842*x^5 + 22006*x^4 + 4488*x^3 - 2404*x^2 - 16*x + 12, x^18 - 3*x^17 - 31*x^16 + 126*x^15 + 196*x^14 - 1309*x^13 - 17*x^12 + 5987*x^11 - 3447*x^10 - 13879*x^9 + 12121*x^8 + 16470*x^7 - 17315*x^6 - 9003*x^5 + 10775*x^4 + 1490*x^3 - 2416*x^2 + 229*x + 21, x^18 - 3*x^17 - 31*x^16 + 126*x^15 + 196*x^14 - 1309*x^13 - 17*x^12 + 5987*x^11 - 3447*x^10 - 13879*x^9 + 12121*x^8 + 16470*x^7 - 17315*x^6 - 9003*x^5 + 10775*x^4 + 1490*x^3 - 2416*x^2 + 229*x + 21, -x^22 + 8*x^21 + x^20 - 158*x^19 + 259*x^18 + 1211*x^17 - 3135*x^16 - 4472*x^15 + 16969*x^14 + 7421*x^13 - 51101*x^12 - 834*x^11 + 91302*x^10 - 14212*x^9 - 98228*x^8 + 17917*x^7 + 62106*x^6 - 7558*x^5 - 20606*x^4 + 473*x^3 + 2573*x^2 + 88*x - 15, -x^22 + 8*x^21 + x^20 - 158*x^19 + 259*x^18 + 1211*x^17 - 3135*x^16 - 4472*x^15 + 16969*x^14 + 7421*x^13 - 51101*x^12 - 834*x^11 + 91302*x^10 - 14212*x^9 - 98228*x^8 + 17917*x^7 + 62106*x^6 - 7558*x^5 - 20606*x^4 + 473*x^3 + 2573*x^2 + 88*x - 15, x^24 - 7*x^23 - 11*x^22 + 177*x^21 - 127*x^20 - 1805*x^19 + 2975*x^18 + 9405*x^17 - 22674*x^16 - 25358*x^15 + 91195*x^14 + 25727*x^13 - 212471*x^12 + 33344*x^11 + 288927*x^10 - 120327*x^9 - 220038*x^8 + 128967*x^7 + 84907*x^6 - 62443*x^5 - 11810*x^4 + 12479*x^3 - 588*x^2 - 461*x + 12, x^24 - 7*x^23 - 11*x^22 + 177*x^21 - 127*x^20 - 1805*x^19 + 2975*x^18 + 9405*x^17 - 22674*x^16 - 25358*x^15 + 91195*x^14 + 25727*x^13 - 212471*x^12 + 33344*x^11 + 288927*x^10 - 120327*x^9 - 220038*x^8 + 128967*x^7 + 84907*x^6 - 62443*x^5 - 11810*x^4 + 12479*x^3 - 588*x^2 - 461*x + 12, -x^22 + 6*x^21 + 14*x^20 - 144*x^19 + 14*x^18 + 1409*x^17 - 1367*x^16 - 7207*x^15 + 10904*x^14 + 20280*x^13 - 41668*x^12 - 28885*x^11 + 87847*x^10 + 10787*x^9 - 101951*x^8 + 20031*x^7 + 59686*x^6 - 22504*x^5 - 14397*x^4 + 6863*x^3 + 539*x^2 - 286*x + 30, -x^22 + 6*x^21 + 14*x^20 - 144*x^19 + 14*x^18 + 1409*x^17 - 1367*x^16 - 7207*x^15 + 10904*x^14 + 20280*x^13 - 41668*x^12 - 28885*x^11 + 87847*x^10 + 10787*x^9 - 101951*x^8 + 20031*x^7 + 59686*x^6 - 22504*x^5 - 14397*x^4 + 6863*x^3 + 539*x^2 - 286*x + 30, -x^22 + 6*x^21 + 14*x^20 - 143*x^19 + 9*x^18 + 1394*x^17 - 1259*x^16 - 7166*x^15 + 9966*x^14 + 20782*x^13 - 37543*x^12 - 33217*x^11 + 78352*x^10 + 24794*x^9 - 91540*x^8 - 1709*x^7 + 56344*x^6 - 6720*x^5 - 16125*x^4 + 2337*x^3 + 1536*x^2 - 78*x - 33, -x^22 + 6*x^21 + 14*x^20 - 143*x^19 + 9*x^18 + 1394*x^17 - 1259*x^16 - 7166*x^15 + 9966*x^14 + 20782*x^13 - 37543*x^12 - 33217*x^11 + 78352*x^10 + 24794*x^9 - 91540*x^8 - 1709*x^7 + 56344*x^6 - 6720*x^5 - 16125*x^4 + 2337*x^3 + 1536*x^2 - 78*x - 33, x^23 - 7*x^22 - 8*x^21 + 156*x^20 - 145*x^19 - 1378*x^18 + 2504*x^17 + 6072*x^16 - 15997*x^15 - 13109*x^14 + 54480*x^13 + 7402*x^12 - 106920*x^11 + 23628*x^10 + 121270*x^9 - 50688*x^8 - 76391*x^7 + 39293*x^6 + 24801*x^5 - 12940*x^4 - 3710*x^3 + 1474*x^2 + 245*x - 33, x^23 - 7*x^22 - 8*x^21 + 156*x^20 - 145*x^19 - 1378*x^18 + 2504*x^17 + 6072*x^16 - 15997*x^15 - 13109*x^14 + 54480*x^13 + 7402*x^12 - 106920*x^11 + 23628*x^10 + 121270*x^9 - 50688*x^8 - 76391*x^7 + 39293*x^6 + 24801*x^5 - 12940*x^4 - 3710*x^3 + 1474*x^2 + 245*x - 33, -x^21 + 6*x^20 + 14*x^19 - 143*x^18 + 13*x^17 + 1371*x^16 - 1298*x^15 - 6723*x^14 + 9714*x^13 + 17828*x^12 - 33498*x^11 - 24575*x^10 + 61231*x^9 + 14242*x^8 - 59486*x^7 + 825*x^6 + 28437*x^5 - 3544*x^4 - 5289*x^3 + 790*x^2 + 61*x + 21, -x^21 + 6*x^20 + 14*x^19 - 143*x^18 + 13*x^17 + 1371*x^16 - 1298*x^15 - 6723*x^14 + 9714*x^13 + 17828*x^12 - 33498*x^11 - 24575*x^10 + 61231*x^9 + 14242*x^8 - 59486*x^7 + 825*x^6 + 28437*x^5 - 3544*x^4 - 5289*x^3 + 790*x^2 + 61*x + 21, x^22 - 7*x^21 - 6*x^20 + 143*x^19 - 159*x^18 - 1132*x^17 + 2310*x^16 + 4231*x^15 - 13184*x^14 - 6145*x^13 + 39825*x^12 - 6375*x^11 - 66909*x^10 + 35687*x^9 + 59532*x^8 - 49220*x^7 - 23110*x^6 + 28716*x^5 + 1270*x^4 - 6604*x^3 + 775*x^2 + 376*x - 15, x^22 - 7*x^21 - 6*x^20 + 143*x^19 - 159*x^18 - 1132*x^17 + 2310*x^16 + 4231*x^15 - 13184*x^14 - 6145*x^13 + 39825*x^12 - 6375*x^11 - 66909*x^10 + 35687*x^9 + 59532*x^8 - 49220*x^7 - 23110*x^6 + 28716*x^5 + 1270*x^4 - 6604*x^3 + 775*x^2 + 376*x - 15, -x^21 + 5*x^20 + 20*x^19 - 133*x^18 - 110*x^17 + 1438*x^16 - 319*x^15 - 8163*x^14 + 6091*x^13 + 26285*x^12 - 28335*x^11 - 48077*x^10 + 64827*x^9 + 46393*x^8 - 77884*x^7 - 18301*x^6 + 45949*x^5 - 746*x^4 - 10812*x^3 + 1579*x^2 + 332*x - 42, -x^21 + 5*x^20 + 20*x^19 - 133*x^18 - 110*x^17 + 1438*x^16 - 319*x^15 - 8163*x^14 + 6091*x^13 + 26285*x^12 - 28335*x^11 - 48077*x^10 + 64827*x^9 + 46393*x^8 - 77884*x^7 - 18301*x^6 + 45949*x^5 - 746*x^4 - 10812*x^3 + 1579*x^2 + 332*x - 42, x^24 - 7*x^23 - 10*x^22 + 170*x^21 - 131*x^20 - 1676*x^19 + 2805*x^18 + 8551*x^17 - 20690*x^16 - 23181*x^15 + 82334*x^14 + 26257*x^13 - 194513*x^12 + 20555*x^11 + 276851*x^10 - 99437*x^9 - 229032*x^8 + 120013*x^7 + 99030*x^6 - 64437*x^5 - 16301*x^4 + 13746*x^3 - 397*x^2 - 504*x + 3, x^24 - 7*x^23 - 10*x^22 + 170*x^21 - 131*x^20 - 1676*x^19 + 2805*x^18 + 8551*x^17 - 20690*x^16 - 23181*x^15 + 82334*x^14 + 26257*x^13 - 194513*x^12 + 20555*x^11 + 276851*x^10 - 99437*x^9 - 229032*x^8 + 120013*x^7 + 99030*x^6 - 64437*x^5 - 16301*x^4 + 13746*x^3 - 397*x^2 - 504*x + 3, 3*x^18 - 20*x^17 - 8*x^16 + 317*x^15 - 448*x^14 - 1645*x^13 + 4062*x^12 + 2655*x^11 - 13674*x^10 + 3327*x^9 + 19933*x^8 - 13936*x^7 - 10592*x^6 + 12179*x^5 + 61*x^4 - 3037*x^3 + 941*x^2 - 130*x + 12, 3*x^18 - 20*x^17 - 8*x^16 + 317*x^15 - 448*x^14 - 1645*x^13 + 4062*x^12 + 2655*x^11 - 13674*x^10 + 3327*x^9 + 19933*x^8 - 13936*x^7 - 10592*x^6 + 12179*x^5 + 61*x^4 - 3037*x^3 + 941*x^2 - 130*x + 12, x^21 - 6*x^20 - 12*x^19 + 131*x^18 - 25*x^17 - 1177*x^16 + 1125*x^15 + 5673*x^14 - 7959*x^13 - 15749*x^12 + 28138*x^11 + 24418*x^10 - 56165*x^9 - 17151*x^8 + 62314*x^7 - 842*x^6 - 34544*x^5 + 6351*x^4 + 7682*x^3 - 1959*x^2 - 243*x + 3, x^21 - 6*x^20 - 12*x^19 + 131*x^18 - 25*x^17 - 1177*x^16 + 1125*x^15 + 5673*x^14 - 7959*x^13 - 15749*x^12 + 28138*x^11 + 24418*x^10 - 56165*x^9 - 17151*x^8 + 62314*x^7 - 842*x^6 - 34544*x^5 + 6351*x^4 + 7682*x^3 - 1959*x^2 - 243*x + 3, x^23 - 6*x^22 - 15*x^21 + 148*x^20 + 11*x^19 - 1522*x^18 + 1124*x^17 + 8543*x^16 - 9837*x^15 - 28787*x^14 + 40363*x^13 + 60475*x^12 - 94213*x^11 - 80033*x^10 + 129909*x^9 + 66159*x^8 - 103341*x^7 - 32548*x^6 + 43372*x^5 + 7651*x^4 - 7380*x^3 - 238*x^2 + 140*x + 12, x^23 - 6*x^22 - 15*x^21 + 148*x^20 + 11*x^19 - 1522*x^18 + 1124*x^17 + 8543*x^16 - 9837*x^15 - 28787*x^14 + 40363*x^13 + 60475*x^12 - 94213*x^11 - 80033*x^10 + 129909*x^9 + 66159*x^8 - 103341*x^7 - 32548*x^6 + 43372*x^5 + 7651*x^4 - 7380*x^3 - 238*x^2 + 140*x + 12, x^20 - 9*x^19 + 9*x^18 + 139*x^17 - 390*x^16 - 637*x^15 + 3350*x^14 - 86*x^13 - 12952*x^12 + 9143*x^11 + 25057*x^10 - 29221*x^9 - 22326*x^8 + 39552*x^7 + 4564*x^6 - 24191*x^5 + 4331*x^4 + 5528*x^3 - 1786*x^2 - 88*x + 12, x^20 - 9*x^19 + 9*x^18 + 139*x^17 - 390*x^16 - 637*x^15 + 3350*x^14 - 86*x^13 - 12952*x^12 + 9143*x^11 + 25057*x^10 - 29221*x^9 - 22326*x^8 + 39552*x^7 + 4564*x^6 - 24191*x^5 + 4331*x^4 + 5528*x^3 - 1786*x^2 - 88*x + 12, x^25 - 7*x^24 - 12*x^23 + 183*x^22 - 108*x^21 - 1980*x^20 + 2939*x^19 + 11451*x^18 - 24318*x^17 - 37796*x^16 + 108168*x^15 + 68153*x^14 - 289356*x^13 - 47322*x^12 + 477984*x^11 - 43032*x^10 - 480211*x^9 + 104542*x^8 + 278762*x^7 - 71182*x^6 - 84474*x^5 + 19035*x^4 + 10693*x^3 - 1740*x^2 - 382*x + 21, x^25 - 7*x^24 - 12*x^23 + 183*x^22 - 108*x^21 - 1980*x^20 + 2939*x^19 + 11451*x^18 - 24318*x^17 - 37796*x^16 + 108168*x^15 + 68153*x^14 - 289356*x^13 - 47322*x^12 + 477984*x^11 - 43032*x^10 - 480211*x^9 + 104542*x^8 + 278762*x^7 - 71182*x^6 - 84474*x^5 + 19035*x^4 + 10693*x^3 - 1740*x^2 - 382*x + 21, x^19 - 8*x^18 + 4*x^17 + 123*x^16 - 275*x^15 - 595*x^14 + 2307*x^13 + 576*x^12 - 8314*x^11 + 3484*x^10 + 14867*x^9 - 11027*x^8 - 13420*x^7 + 12196*x^6 + 6168*x^5 - 5844*x^4 - 1452*x^3 + 1039*x^2 + 194*x - 24, x^19 - 8*x^18 + 4*x^17 + 123*x^16 - 275*x^15 - 595*x^14 + 2307*x^13 + 576*x^12 - 8314*x^11 + 3484*x^10 + 14867*x^9 - 11027*x^8 - 13420*x^7 + 12196*x^6 + 6168*x^5 - 5844*x^4 - 1452*x^3 + 1039*x^2 + 194*x - 24]>
       ]
>;

MOG[617] := 	// J_0(617)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 62, 70, 172, 321, 518, 454*x + 129, 163*x + 129, 198*x + 573, 419*x + 573, 384*x + 489, 233*x + 489, 290*x + 332, 327*x + 332, 27*x + 275, 590*x + 275, 529*x + 321, 88*x + 321, 324*x + 407, 293*x + 407, 531*x + 18, 86*x + 18, 574*x + 9, 43*x + 9, 433*x + 267, 184*x + 267, 553*x + 279, 64*x + 279, 290*x + 593, 327*x + 593, 79*x + 351, 538*x + 351, 511*x + 224, 106*x + 224, 54*x + 502, 563*x + 502, 201*x + 527, 416*x + 527, 48*x + 430, 569*x + 430, 227*x + 192, 390*x + 192, 124*x + 356, 493*x + 356, 312*x + 603, 305*x + 603, 211*x + 469, 406*x + 469, 7*x + 266, 610*x + 266, 78*x + 116, 539*x + 116]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^23 + 6*x^22 - 14*x^21 - 143*x^20 - 8*x^19 + 1398*x^18 + 1232*x^17 - 7309*x^16 - 9862*x^15 + 22150*x^14 + 38297*x^13 - 38892*x^12 - 85061*x^11 + 35716*x^10 + 111174*x^9 - 9112*x^8 - 82484*x^7 - 10281*x^6 + 30927*x^5 + 7818*x^4 - 4189*x^3 - 1408*x^2 - 72*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^22 - 6*x^21 + 12*x^20 + 131*x^19 + 29*x^18 - 1153*x^17 - 1143*x^16 + 5324*x^15 + 7643*x^14 - 13925*x^13 - 25192*x^12 + 20476*x^11 + 46746*x^10 - 15022*x^9 - 49603*x^8 + 2468*x^7 + 28672*x^6 + 3023*x^5 - 7885*x^4 - 1470*x^3 + 689*x^2 + 127*x + 3, x^22 + 6*x^21 - 12*x^20 - 131*x^19 - 29*x^18 + 1153*x^17 + 1143*x^16 - 5324*x^15 - 7643*x^14 + 13925*x^13 + 25192*x^12 - 20476*x^11 - 46746*x^10 + 15022*x^9 + 49603*x^8 - 2468*x^7 - 28672*x^6 - 3023*x^5 + 7885*x^4 + 1470*x^3 - 689*x^2 - 127*x - 3, -x^21 - 6*x^20 + 10*x^19 + 119*x^18 + 45*x^17 - 939*x^16 - 1031*x^15 + 3815*x^14 + 5841*x^13 - 8540*x^12 - 16477*x^11 + 10233*x^10 + 25773*x^9 - 5307*x^8 - 22382*x^7 - 491*x^6 + 10008*x^5 + 1485*x^4 - 1829*x^3 - 392*x^2 + 20*x + 1, x^21 + 6*x^20 - 10*x^19 - 119*x^18 - 45*x^17 + 939*x^16 + 1031*x^15 - 3815*x^14 - 5841*x^13 + 8540*x^12 + 16477*x^11 - 10233*x^10 - 25773*x^9 + 5307*x^8 + 22382*x^7 + 491*x^6 - 10008*x^5 - 1485*x^4 + 1829*x^3 + 392*x^2 - 20*x - 1, -x^21 - 6*x^20 + 11*x^19 + 126*x^18 + 44*x^17 - 1046*x^16 - 1188*x^15 + 4410*x^14 + 7264*x^13 - 9876*x^12 - 21838*x^11 + 10461*x^10 + 35798*x^9 - 1337*x^8 - 31430*x^7 - 6767*x^6 + 13034*x^5 + 4863*x^4 - 1671*x^3 - 889*x^2 - 89*x - 2, x^21 + 6*x^20 - 11*x^19 - 126*x^18 - 44*x^17 + 1046*x^16 + 1188*x^15 - 4410*x^14 - 7264*x^13 + 9876*x^12 + 21838*x^11 - 10461*x^10 - 35798*x^9 + 1337*x^8 + 31430*x^7 + 6767*x^6 - 13034*x^5 - 4863*x^4 + 1671*x^3 + 889*x^2 + 89*x + 2, -x^20 - 6*x^19 + 8*x^18 + 107*x^17 + 56*x^16 - 754*x^15 - 897*x^14 + 2698*x^13 + 4320*x^12 - 5233*x^11 - 10391*x^10 + 5433*x^9 + 13684*x^8 - 2756*x^7 - 9935*x^6 + 490*x^5 + 3794*x^4 + 89*x^3 - 618*x^2 - 51*x - 1, x^20 + 6*x^19 - 8*x^18 - 107*x^17 - 56*x^16 + 754*x^15 + 897*x^14 - 2698*x^13 - 4320*x^12 + 5233*x^11 + 10391*x^10 - 5433*x^9 - 13684*x^8 + 2756*x^7 + 9935*x^6 - 490*x^5 - 3794*x^4 - 89*x^3 + 618*x^2 + 51*x + 1, -x^20 - 6*x^19 + 8*x^18 + 107*x^17 + 56*x^16 - 755*x^15 - 905*x^14 + 2687*x^13 + 4395*x^12 - 5010*x^11 - 10582*x^10 + 4282*x^9 + 13537*x^8 - 203*x^7 - 8729*x^6 - 2028*x^5 + 2262*x^4 + 989*x^3 - 51*x^2 - 75*x - 2, x^20 + 6*x^19 - 8*x^18 - 107*x^17 - 56*x^16 + 755*x^15 + 905*x^14 - 2687*x^13 - 4395*x^12 + 5010*x^11 + 10582*x^10 - 4282*x^9 - 13537*x^8 + 203*x^7 + 8729*x^6 + 2028*x^5 - 2262*x^4 - 989*x^3 + 51*x^2 + 75*x + 2, -x^20 - 5*x^19 + 15*x^18 + 107*x^17 - 45*x^16 - 914*x^15 - 379*x^14 + 4049*x^13 + 3354*x^12 - 10015*x^11 - 10948*x^10 + 13685*x^9 + 18173*x^8 - 9235*x^7 - 15638*x^6 + 1840*x^5 + 6214*x^4 + 581*x^3 - 778*x^2 - 129*x - 3, x^20 + 5*x^19 - 15*x^18 - 107*x^17 + 45*x^16 + 914*x^15 + 379*x^14 - 4049*x^13 - 3354*x^12 + 10015*x^11 + 10948*x^10 - 13685*x^9 - 18173*x^8 + 9235*x^7 + 15638*x^6 - 1840*x^5 - 6214*x^4 - 581*x^3 + 778*x^2 + 129*x + 3, -x^19 - 6*x^18 + 6*x^17 + 97*x^16 + 74*x^15 - 603*x^14 - 902*x^13 + 1769*x^12 + 3846*x^11 - 2202*x^10 - 8139*x^9 - 222*x^8 + 8853*x^7 + 3187*x^6 - 4483*x^5 - 2680*x^4 + 677*x^3 + 688*x^2 + 99*x + 2, x^19 + 6*x^18 - 6*x^17 - 97*x^16 - 74*x^15 + 603*x^14 + 902*x^13 - 1769*x^12 - 3846*x^11 + 2202*x^10 + 8139*x^9 + 222*x^8 - 8853*x^7 - 3187*x^6 + 4483*x^5 + 2680*x^4 - 677*x^3 - 688*x^2 - 99*x - 2, -x^19 - 6*x^18 + 5*x^17 + 88*x^16 + 60*x^15 - 514*x^14 - 619*x^13 + 1538*x^12 + 2240*x^11 - 2598*x^10 - 3950*x^9 + 2773*x^8 + 3594*x^7 - 2206*x^6 - 1731*x^5 + 1284*x^4 + 534*x^3 - 347*x^2 - 120*x - 3, x^19 + 6*x^18 - 5*x^17 - 88*x^16 - 60*x^15 + 514*x^14 + 619*x^13 - 1538*x^12 - 2240*x^11 + 2598*x^10 + 3950*x^9 - 2773*x^8 - 3594*x^7 + 2206*x^6 + 1731*x^5 - 1284*x^4 - 534*x^3 + 347*x^2 + 120*x + 3, -x^19 - 6*x^18 + 6*x^17 + 94*x^16 + 57*x^15 - 595*x^14 - 704*x^13 + 1942*x^12 + 2949*x^11 - 3463*x^10 - 6148*x^9 + 3335*x^8 + 6647*x^7 - 1754*x^6 - 3547*x^5 + 660*x^4 + 888*x^3 - 170*x^2 - 106*x - 3, x^19 + 6*x^18 - 6*x^17 - 94*x^16 - 57*x^15 + 595*x^14 + 704*x^13 - 1942*x^12 - 2949*x^11 + 3463*x^10 + 6148*x^9 - 3335*x^8 - 6647*x^7 + 1754*x^6 + 3547*x^5 - 660*x^4 - 888*x^3 + 170*x^2 + 106*x + 3, -x^19 - 6*x^18 + 5*x^17 + 90*x^16 + 69*x^15 - 533*x^14 - 742*x^13 + 1588*x^12 + 2946*x^11 - 2488*x^10 - 6088*x^9 + 1769*x^8 + 7006*x^7 + 217*x^6 - 4199*x^5 - 1156*x^4 + 890*x^3 + 487*x^2 + 84*x + 2, x^19 + 6*x^18 - 5*x^17 - 90*x^16 - 69*x^15 + 533*x^14 + 742*x^13 - 1588*x^12 - 2946*x^11 + 2488*x^10 + 6088*x^9 - 1769*x^8 - 7006*x^7 - 217*x^6 + 4199*x^5 + 1156*x^4 - 890*x^3 - 487*x^2 - 84*x - 2, -x^19 - 4*x^18 + 18*x^17 + 87*x^16 - 105*x^15 - 740*x^14 + 139*x^13 + 3215*x^12 + 875*x^11 - 7724*x^10 - 3940*x^9 + 10275*x^8 + 6557*x^7 - 7031*x^6 - 4980*x^5 + 1932*x^4 + 1474*x^3 - 18*x^2 - 43*x - 1, x^19 + 4*x^18 - 18*x^17 - 87*x^16 + 105*x^15 + 740*x^14 - 139*x^13 - 3215*x^12 - 875*x^11 + 7724*x^10 + 3940*x^9 - 10275*x^8 - 6557*x^7 + 7031*x^6 + 4980*x^5 - 1932*x^4 - 1474*x^3 + 18*x^2 + 43*x + 1, -x^18 - 5*x^17 + 11*x^16 + 86*x^15 - 12*x^14 - 591*x^13 - 311*x^12 + 2080*x^11 + 1766*x^10 - 3968*x^9 - 4171*x^8 + 3949*x^7 + 4904*x^6 - 1717*x^5 - 2766*x^4 + 86*x^3 + 591*x^2 + 97*x + 2, x^18 + 5*x^17 - 11*x^16 - 86*x^15 + 12*x^14 + 591*x^13 + 311*x^12 - 2080*x^11 - 1766*x^10 + 3968*x^9 + 4171*x^8 - 3949*x^7 - 4904*x^6 + 1717*x^5 + 2766*x^4 - 86*x^3 - 591*x^2 - 97*x - 2, -x^18 - 5*x^17 + 7*x^16 + 65*x^15 + 7*x^14 - 338*x^13 - 163*x^12 + 951*x^11 + 486*x^10 - 1687*x^9 - 660*x^8 + 1994*x^7 + 548*x^6 - 1453*x^5 - 351*x^4 + 513*x^3 + 126*x^2 - 44*x - 1, x^18 + 5*x^17 - 7*x^16 - 65*x^15 - 7*x^14 + 338*x^13 + 163*x^12 - 951*x^11 - 486*x^10 + 1687*x^9 + 660*x^8 - 1994*x^7 - 548*x^6 + 1453*x^5 + 351*x^4 - 513*x^3 - 126*x^2 + 44*x + 1, -x^18 - 6*x^17 + 2*x^16 + 70*x^15 + 63*x^14 - 320*x^13 - 419*x^12 + 753*x^11 + 1087*x^10 - 1059*x^9 - 1385*x^8 + 1066*x^7 + 983*x^6 - 797*x^5 - 480*x^4 + 310*x^3 + 134*x^2 - 30*x - 1, x^18 + 6*x^17 - 2*x^16 - 70*x^15 - 63*x^14 + 320*x^13 + 419*x^12 - 753*x^11 - 1087*x^10 + 1059*x^9 + 1385*x^8 - 1066*x^7 - 983*x^6 + 797*x^5 + 480*x^4 - 310*x^3 - 134*x^2 + 30*x + 1, -2*x^18 - 13*x^17 + 2*x^16 + 170*x^15 + 215*x^14 - 840*x^13 - 1661*x^12 + 1882*x^11 + 5354*x^10 - 1601*x^9 - 8705*x^8 - 516*x^7 + 7221*x^6 + 1591*x^5 - 2780*x^4 - 746*x^3 + 364*x^2 + 78*x + 2, 2*x^18 + 13*x^17 - 2*x^16 - 170*x^15 - 215*x^14 + 840*x^13 + 1661*x^12 - 1882*x^11 - 5354*x^10 + 1601*x^9 + 8705*x^8 + 516*x^7 - 7221*x^6 - 1591*x^5 + 2780*x^4 + 746*x^3 - 364*x^2 - 78*x - 2, -x^18 - 5*x^17 + 9*x^16 + 74*x^15 - 6*x^14 - 445*x^13 - 202*x^12 + 1379*x^11 + 949*x^10 - 2280*x^9 - 1832*x^8 + 1828*x^7 + 1602*x^6 - 462*x^5 - 500*x^4 - 99*x^3 + 7*x^2 + 34*x + 1, x^18 + 5*x^17 - 9*x^16 - 74*x^15 + 6*x^14 + 445*x^13 + 202*x^12 - 1379*x^11 - 949*x^10 + 2280*x^9 + 1832*x^8 - 1828*x^7 - 1602*x^6 + 462*x^5 + 500*x^4 + 99*x^3 - 7*x^2 - 34*x - 1, -x^18 - 8*x^17 - 8*x^16 + 86*x^15 + 207*x^14 - 300*x^13 - 1244*x^12 + 168*x^11 + 3485*x^10 + 1333*x^9 - 5058*x^8 - 3379*x^7 + 3580*x^6 + 3150*x^5 - 874*x^4 - 1060*x^3 - 62*x^2 + 38*x + 1, x^18 + 8*x^17 + 8*x^16 - 86*x^15 - 207*x^14 + 300*x^13 + 1244*x^12 - 168*x^11 - 3485*x^10 - 1333*x^9 + 5058*x^8 + 3379*x^7 - 3580*x^6 - 3150*x^5 + 874*x^4 + 1060*x^3 + 62*x^2 - 38*x - 1, -x^18 - 4*x^17 + 11*x^16 + 52*x^15 - 52*x^14 - 259*x^13 + 212*x^12 + 640*x^11 - 860*x^10 - 912*x^9 + 2174*x^8 + 936*x^7 - 2691*x^6 - 719*x^5 + 1408*x^4 + 244*x^3 - 229*x^2 - x, x^18 + 4*x^17 - 11*x^16 - 52*x^15 + 52*x^14 + 259*x^13 - 212*x^12 - 640*x^11 + 860*x^10 + 912*x^9 - 2174*x^8 - 936*x^7 + 2691*x^6 + 719*x^5 - 1408*x^4 - 244*x^3 + 229*x^2 + x, x^17 + 7*x^16 + 8*x^15 - 50*x^14 - 143*x^13 + 20*x^12 + 532*x^11 + 593*x^10 - 529*x^9 - 1632*x^8 - 606*x^7 + 1485*x^6 + 1334*x^5 - 285*x^4 - 580*x^3 - 106*x^2 + 22*x + 1, -x^17 - 7*x^16 - 8*x^15 + 50*x^14 + 143*x^13 - 20*x^12 - 532*x^11 - 593*x^10 + 529*x^9 + 1632*x^8 + 606*x^7 - 1485*x^6 - 1334*x^5 + 285*x^4 + 580*x^3 + 106*x^2 - 22*x - 1, -x^18 - 2*x^17 + 27*x^16 + 69*x^15 - 222*x^14 - 695*x^13 + 736*x^12 + 3166*x^11 - 716*x^10 - 7350*x^9 - 1341*x^8 + 8761*x^7 + 3627*x^6 - 4888*x^5 - 2808*x^4 + 875*x^3 + 717*x^2 + 85*x + 2, x^18 + 2*x^17 - 27*x^16 - 69*x^15 + 222*x^14 + 695*x^13 - 736*x^12 - 3166*x^11 + 716*x^10 + 7350*x^9 + 1341*x^8 - 8761*x^7 - 3627*x^6 + 4888*x^5 + 2808*x^4 - 875*x^3 - 717*x^2 - 85*x - 2, -x^17 - 5*x^16 + 2*x^15 + 43*x^14 + 44*x^13 - 82*x^12 - 194*x^11 - 201*x^10 + 129*x^9 + 875*x^8 + 456*x^7 - 1013*x^6 - 756*x^5 + 385*x^4 + 324*x^3 - 15*x^2 - 15*x, x^17 + 5*x^16 - 2*x^15 - 43*x^14 - 44*x^13 + 82*x^12 + 194*x^11 + 201*x^10 - 129*x^9 - 875*x^8 - 456*x^7 + 1013*x^6 + 756*x^5 - 385*x^4 - 324*x^3 + 15*x^2 + 15*x, -2*x^17 - 11*x^16 + 11*x^15 + 144*x^14 + 57*x^13 - 765*x^12 - 621*x^11 + 2132*x^10 + 2036*x^9 - 3339*x^8 - 3217*x^7 + 2894*x^6 + 2585*x^5 - 1259*x^4 - 980*x^3 + 211*x^2 + 141*x + 4, 2*x^17 + 11*x^16 - 11*x^15 - 144*x^14 - 57*x^13 + 765*x^12 + 621*x^11 - 2132*x^10 - 2036*x^9 + 3339*x^8 + 3217*x^7 - 2894*x^6 - 2585*x^5 + 1259*x^4 + 980*x^3 - 211*x^2 - 141*x - 4, -x^17 - 10*x^16 - 20*x^15 + 80*x^14 + 300*x^13 - 113*x^12 - 1346*x^11 - 558*x^10 + 2691*x^9 + 1991*x^8 - 2551*x^7 - 2317*x^6 + 1082*x^5 + 1060*x^4 - 204*x^3 - 156*x^2 + 29*x + 1, x^17 + 10*x^16 + 20*x^15 - 80*x^14 - 300*x^13 + 113*x^12 + 1346*x^11 + 558*x^10 - 2691*x^9 - 1991*x^8 + 2551*x^7 + 2317*x^6 - 1082*x^5 - 1060*x^4 + 204*x^3 + 156*x^2 - 29*x - 1]>,
         rec<Eigen |
           DefiningPolynomial := x^28 - 3*x^27 - 38*x^26 + 117*x^25 + 628*x^24 - 1999*x^23 - 5924*x^22 + 19702*x^21 + 35142*x^20 - 124104*x^19 - 135757*x^18 + 522790*x^17 + 339580*x^16 - 1496649*x^15 - 517913*x^14 + 2898195*x^13 + 380619*x^12 - 3703320*x^11 + 86506*x^10 + 2969259*x^9 - 402519*x^8 - 1363286*x^7 + 298018*x^6 + 300140*x^5 - 86850*x^4 - 19337*x^3 + 7006*x^2 - 285*x - 23,
           Coordinates        := [-x^27 + 3*x^26 + 35*x^25 - 108*x^24 - 529*x^23 + 1695*x^22 + 4517*x^21 - 15249*x^20 - 23873*x^19 + 86953*x^18 + 80004*x^17 - 327961*x^16 - 164718*x^15 + 828386*x^14 + 178601*x^13 - 1387261*x^12 - 17440*x^11 + 1490063*x^10 - 197376*x^9 - 961800*x^8 + 225003*x^7 + 330282*x^6 - 99421*x^5 - 47094*x^4 + 16401*x^3 + 1503*x^2 - 733*x + 50, x^27 - 3*x^26 - 35*x^25 + 108*x^24 + 529*x^23 - 1699*x^22 - 4505*x^21 + 15353*x^20 + 23543*x^19 - 88053*x^18 - 76220*x^17 + 334045*x^16 + 141040*x^15 - 846850*x^14 - 90081*x^13 + 1414737*x^12 - 185364*x^11 - 1494497*x^10 + 477278*x^9 + 916760*x^8 - 443407*x^7 - 270124*x^6 + 182983*x^5 + 18056*x^4 - 27185*x^3 + 3185*x^2 + 477*x - 60, x^26 - 3*x^25 - 33*x^24 + 96*x^23 + 485*x^22 - 1337*x^21 - 4219*x^20 + 10699*x^19 + 24233*x^18 - 54677*x^17 - 96332*x^16 + 187489*x^15 + 267786*x^14 - 440360*x^13 - 510797*x^12 + 707391*x^11 + 637048*x^10 - 756911*x^9 - 475350*x^8 + 507008*x^7 + 178289*x^6 - 188644*x^5 - 19235*x^4 + 30752*x^3 - 2693*x^2 - 825*x + 95, 2*x^23 - 6*x^22 - 54*x^21 + 172*x^20 + 588*x^19 - 2050*x^18 - 3256*x^17 + 13206*x^16 + 9062*x^15 - 49834*x^14 - 7218*x^13 + 110796*x^12 - 25980*x^11 - 135852*x^10 + 77594*x^9 + 71548*x^8 - 81524*x^7 + 7292*x^6 + 33930*x^5 - 17736*x^4 - 3374*x^3 + 3202*x^2 - 294*x - 2, -3*x^26 + 9*x^25 + 99*x^24 - 304*x^23 - 1407*x^22 + 4453*x^21 + 11269*x^20 - 37151*x^19 - 55753*x^18 + 194829*x^17 + 174862*x^16 - 668263*x^15 - 339312*x^14 + 1510934*x^13 + 363179*x^12 - 2213257*x^11 - 110870*x^10 + 2007459*x^9 - 177516*x^8 - 1033004*x^7 + 198597*x^6 + 253046*x^5 - 70449*x^4 - 17834*x^3 + 6273*x^2 - 235*x - 23, 2*x^22 - 6*x^21 - 52*x^20 + 172*x^19 + 530*x^18 - 2032*x^17 - 2598*x^16 + 12854*x^15 + 5338*x^14 - 47138*x^13 + 3504*x^12 + 100742*x^11 - 38100*x^10 - 118188*x^9 + 68456*x^8 + 63534*x^7 - 46738*x^6 - 6864*x^5 + 7798*x^4 - 2404*x^3 + 1908*x^2 - 650*x + 56, -3*x^25 + 10*x^24 + 90*x^23 - 316*x^22 - 1141*x^21 + 4298*x^20 + 7933*x^19 - 33015*x^18 - 32575*x^17 + 157810*x^16 + 77421*x^15 - 487112*x^14 - 86312*x^13 + 974263*x^12 - 29275*x^11 - 1231365*x^10 + 207306*x^9 + 926198*x^8 - 238206*x^7 - 368900*x^6 + 113907*x^5 + 61724*x^4 - 21465*x^3 - 2372*x^2 + 1088*x - 75, -3*x^25 + 10*x^24 + 90*x^23 - 316*x^22 - 1141*x^21 + 4298*x^20 + 7933*x^19 - 33015*x^18 - 32575*x^17 + 157810*x^16 + 77421*x^15 - 487112*x^14 - 86312*x^13 + 974263*x^12 - 29275*x^11 - 1231365*x^10 + 207306*x^9 + 926198*x^8 - 238206*x^7 - 368900*x^6 + 113907*x^5 + 61724*x^4 - 21465*x^3 - 2372*x^2 + 1088*x - 75, -3*x^24 + 10*x^23 + 85*x^22 - 298*x^21 - 1009*x^20 + 3791*x^19 + 6490*x^18 - 26963*x^17 - 24163*x^16 + 117778*x^15 + 49755*x^14 - 326313*x^13 - 38781*x^12 + 570686*x^11 - 50617*x^10 - 604947*x^9 + 144186*x^8 + 353256*x^7 - 125430*x^6 - 90213*x^5 + 42636*x^4 + 3216*x^3 - 3180*x^2 + 351*x - 7, -3*x^24 + 10*x^23 + 85*x^22 - 298*x^21 - 1009*x^20 + 3791*x^19 + 6490*x^18 - 26963*x^17 - 24163*x^16 + 117778*x^15 + 49755*x^14 - 326313*x^13 - 38781*x^12 + 570686*x^11 - 50617*x^10 - 604947*x^9 + 144186*x^8 + 353256*x^7 - 125430*x^6 - 90213*x^5 + 42636*x^4 + 3216*x^3 - 3180*x^2 + 351*x - 7, x^25 - 6*x^24 - 22*x^23 + 181*x^22 + 143*x^21 - 2327*x^20 + 345*x^19 + 16688*x^18 - 10056*x^17 - 73278*x^16 + 63373*x^15 + 203245*x^14 - 210358*x^13 - 353673*x^12 + 411206*x^11 + 368793*x^10 - 476314*x^9 - 204876*x^8 + 310848*x^7 + 40740*x^6 - 101109*x^5 + 6348*x^4 + 12246*x^3 - 2005*x^2 - 191*x + 30, x^25 - 6*x^24 - 22*x^23 + 181*x^22 + 143*x^21 - 2327*x^20 + 345*x^19 + 16688*x^18 - 10056*x^17 - 73278*x^16 + 63373*x^15 + 203245*x^14 - 210358*x^13 - 353673*x^12 + 411206*x^11 + 368793*x^10 - 476314*x^9 - 204876*x^8 + 310848*x^7 + 40740*x^6 - 101109*x^5 + 6348*x^4 + 12246*x^3 - 2005*x^2 - 191*x + 30, -2*x^23 + 7*x^22 + 53*x^21 - 196*x^20 - 585*x^19 + 2329*x^18 + 3476*x^17 - 15359*x^16 - 11887*x^15 + 61651*x^14 + 22561*x^13 - 155330*x^12 - 17872*x^11 + 244399*x^10 - 10814*x^9 - 231467*x^8 + 33825*x^7 + 121822*x^6 - 25952*x^5 - 29900*x^4 + 7815*x^3 + 1956*x^2 - 534*x + 32, -2*x^23 + 7*x^22 + 53*x^21 - 196*x^20 - 585*x^19 + 2329*x^18 + 3476*x^17 - 15359*x^16 - 11887*x^15 + 61651*x^14 + 22561*x^13 - 155330*x^12 - 17872*x^11 + 244399*x^10 - 10814*x^9 - 231467*x^8 + 33825*x^7 + 121822*x^6 - 25952*x^5 - 29900*x^4 + 7815*x^3 + 1956*x^2 - 534*x + 32, -3*x^23 + 11*x^22 + 79*x^21 - 311*x^20 - 858*x^19 + 3723*x^18 + 4936*x^17 - 24673*x^16 - 15779*x^15 + 99148*x^14 + 24970*x^13 - 248247*x^12 - 3470*x^11 + 382019*x^10 - 52306*x^9 - 341475*x^8 + 78951*x^7 + 156865*x^6 - 45319*x^5 - 28608*x^4 + 10470*x^3 + 767*x^2 - 561*x + 43, -3*x^23 + 11*x^22 + 79*x^21 - 311*x^20 - 858*x^19 + 3723*x^18 + 4936*x^17 - 24673*x^16 - 15779*x^15 + 99148*x^14 + 24970*x^13 - 248247*x^12 - 3470*x^11 + 382019*x^10 - 52306*x^9 - 341475*x^8 + 78951*x^7 + 156865*x^6 - 45319*x^5 - 28608*x^4 + 10470*x^3 + 767*x^2 - 561*x + 43, x^24 - 5*x^23 - 26*x^22 + 151*x^21 + 266*x^20 - 1944*x^19 - 1274*x^18 + 13974*x^17 + 1895*x^16 - 61665*x^15 + 8968*x^14 + 172999*x^13 - 52260*x^12 - 309323*x^11 + 118003*x^10 + 344729*x^9 - 140000*x^8 - 228062*x^7 + 89502*x^6 + 81085*x^5 - 30243*x^4 - 11292*x^3 + 4874*x^2 - 233*x - 20, x^24 - 5*x^23 - 26*x^22 + 151*x^21 + 266*x^20 - 1944*x^19 - 1274*x^18 + 13974*x^17 + 1895*x^16 - 61665*x^15 + 8968*x^14 + 172999*x^13 - 52260*x^12 - 309323*x^11 + 118003*x^10 + 344729*x^9 - 140000*x^8 - 228062*x^7 + 89502*x^6 + 81085*x^5 - 30243*x^4 - 11292*x^3 + 4874*x^2 - 233*x - 20, -x^22 + 5*x^21 + 23*x^20 - 134*x^19 - 210*x^18 + 1527*x^17 + 912*x^16 - 9644*x^15 - 1325*x^14 + 36750*x^13 - 4537*x^12 - 85850*x^11 + 24699*x^10 + 118750*x^9 - 47056*x^8 - 88005*x^7 + 40750*x^6 + 27596*x^5 - 12823*x^4 - 2163*x^3 + 193*x^2 + 476*x - 57, -x^22 + 5*x^21 + 23*x^20 - 134*x^19 - 210*x^18 + 1527*x^17 + 912*x^16 - 9644*x^15 - 1325*x^14 + 36750*x^13 - 4537*x^12 - 85850*x^11 + 24699*x^10 + 118750*x^9 - 47056*x^8 - 88005*x^7 + 40750*x^6 + 27596*x^5 - 12823*x^4 - 2163*x^3 + 193*x^2 + 476*x - 57, x^24 - 3*x^23 - 31*x^22 + 97*x^21 + 401*x^20 - 1328*x^19 - 2804*x^18 + 10077*x^17 + 11364*x^16 - 46483*x^15 - 25869*x^14 + 134233*x^13 + 25446*x^12 - 240437*x^11 + 15104*x^10 + 254730*x^9 - 63305*x^8 - 143429*x^7 + 58728*x^6 + 32717*x^5 - 21998*x^4 + 903*x^3 + 2453*x^2 - 795*x + 64, x^24 - 3*x^23 - 31*x^22 + 97*x^21 + 401*x^20 - 1328*x^19 - 2804*x^18 + 10077*x^17 + 11364*x^16 - 46483*x^15 - 25869*x^14 + 134233*x^13 + 25446*x^12 - 240437*x^11 + 15104*x^10 + 254730*x^9 - 63305*x^8 - 143429*x^7 + 58728*x^6 + 32717*x^5 - 21998*x^4 + 903*x^3 + 2453*x^2 - 795*x + 64, x^23 - 5*x^22 - 18*x^21 + 131*x^20 + 55*x^19 - 1408*x^18 + 1038*x^17 + 7952*x^16 - 11753*x^15 - 24595*x^14 + 55689*x^13 + 36202*x^12 - 143681*x^11 + 1018*x^10 + 206056*x^9 - 80615*x^8 - 149056*x^7 + 102005*x^6 + 37330*x^5 - 43985*x^4 + 4321*x^3 + 4402*x^2 - 1208*x + 80, x^23 - 5*x^22 - 18*x^21 + 131*x^20 + 55*x^19 - 1408*x^18 + 1038*x^17 + 7952*x^16 - 11753*x^15 - 24595*x^14 + 55689*x^13 + 36202*x^12 - 143681*x^11 + 1018*x^10 + 206056*x^9 - 80615*x^8 - 149056*x^7 + 102005*x^6 + 37330*x^5 - 43985*x^4 + 4321*x^3 + 4402*x^2 - 1208*x + 80, -x^22 + 5*x^21 + 20*x^20 - 123*x^19 - 146*x^18 + 1252*x^17 + 432*x^16 - 6877*x^15 - 190*x^14 + 22377*x^13 - 891*x^12 - 44986*x^11 - 2707*x^10 + 57416*x^9 + 15380*x^8 - 47335*x^7 - 21894*x^6 + 24275*x^5 + 11819*x^4 - 6770*x^3 - 1783*x^2 + 900*x - 73, -x^22 + 5*x^21 + 20*x^20 - 123*x^19 - 146*x^18 + 1252*x^17 + 432*x^16 - 6877*x^15 - 190*x^14 + 22377*x^13 - 891*x^12 - 44986*x^11 - 2707*x^10 + 57416*x^9 + 15380*x^8 - 47335*x^7 - 21894*x^6 + 24275*x^5 + 11819*x^4 - 6770*x^3 - 1783*x^2 + 900*x - 73, x^23 - 4*x^22 - 28*x^21 + 117*x^20 + 325*x^19 - 1440*x^18 - 2023*x^17 + 9718*x^16 + 7260*x^15 - 39214*x^14 - 14901*x^13 + 96610*x^12 + 16120*x^11 - 142067*x^10 - 8415*x^9 + 116814*x^8 + 6716*x^7 - 49157*x^6 - 10219*x^5 + 12603*x^4 + 3920*x^3 - 3102*x^2 + 404*x - 10, x^23 - 4*x^22 - 28*x^21 + 117*x^20 + 325*x^19 - 1440*x^18 - 2023*x^17 + 9718*x^16 + 7260*x^15 - 39214*x^14 - 14901*x^13 + 96610*x^12 + 16120*x^11 - 142067*x^10 - 8415*x^9 + 116814*x^8 + 6716*x^7 - 49157*x^6 - 10219*x^5 + 12603*x^4 + 3920*x^3 - 3102*x^2 + 404*x - 10, x^21 - 29*x^19 + 9*x^18 + 329*x^17 - 176*x^16 - 1862*x^15 + 1348*x^14 + 5361*x^13 - 5027*x^12 - 6060*x^11 + 8832*x^10 - 4569*x^9 - 4007*x^8 + 17393*x^7 - 7078*x^6 - 13066*x^5 + 7666*x^4 + 2641*x^3 - 1926*x^2 + 175*x + 1, x^21 - 29*x^19 + 9*x^18 + 329*x^17 - 176*x^16 - 1862*x^15 + 1348*x^14 + 5361*x^13 - 5027*x^12 - 6060*x^11 + 8832*x^10 - 4569*x^9 - 4007*x^8 + 17393*x^7 - 7078*x^6 - 13066*x^5 + 7666*x^4 + 2641*x^3 - 1926*x^2 + 175*x + 1, x^23 - 2*x^22 - 31*x^21 + 62*x^20 + 404*x^19 - 811*x^18 - 2893*x^17 + 5891*x^16 + 12424*x^15 - 26249*x^14 - 32459*x^13 + 74507*x^12 + 48631*x^11 - 134481*x^10 - 31673*x^9 + 147469*x^8 - 10468*x^7 - 87148*x^6 + 26195*x^5 + 20071*x^4 - 10263*x^3 + 446*x^2 + 302*x - 33, x^23 - 2*x^22 - 31*x^21 + 62*x^20 + 404*x^19 - 811*x^18 - 2893*x^17 + 5891*x^16 + 12424*x^15 - 26249*x^14 - 32459*x^13 + 74507*x^12 + 48631*x^11 - 134481*x^10 - 31673*x^9 + 147469*x^8 - 10468*x^7 - 87148*x^6 + 26195*x^5 + 20071*x^4 - 10263*x^3 + 446*x^2 + 302*x - 33, x^25 - 3*x^24 - 31*x^23 + 96*x^22 + 408*x^21 - 1320*x^20 - 2969*x^19 + 10237*x^18 + 12955*x^17 - 49338*x^16 - 33910*x^15 + 153328*x^14 + 47876*x^13 - 308349*x^12 - 16889*x^11 + 391982*x^10 - 50187*x^9 - 298196*x^8 + 78936*x^7 + 121527*x^6 - 47600*x^5 - 19439*x^4 + 11866*x^3 - 409*x^2 - 566*x + 54, x^25 - 3*x^24 - 31*x^23 + 96*x^22 + 408*x^21 - 1320*x^20 - 2969*x^19 + 10237*x^18 + 12955*x^17 - 49338*x^16 - 33910*x^15 + 153328*x^14 + 47876*x^13 - 308349*x^12 - 16889*x^11 + 391982*x^10 - 50187*x^9 - 298196*x^8 + 78936*x^7 + 121527*x^6 - 47600*x^5 - 19439*x^4 + 11866*x^3 - 409*x^2 - 566*x + 54, 2*x^23 - 6*x^22 - 60*x^21 + 188*x^20 + 750*x^19 - 2489*x^18 - 5067*x^17 + 18214*x^16 + 19928*x^15 - 80746*x^14 - 44991*x^13 + 223242*x^12 + 49865*x^11 - 381651*x^10 - 2304*x^9 + 386234*x^8 - 54033*x^7 - 210632*x^6 + 51554*x^5 + 50242*x^4 - 17228*x^3 - 2342*x^2 + 1164*x - 86, 2*x^23 - 6*x^22 - 60*x^21 + 188*x^20 + 750*x^19 - 2489*x^18 - 5067*x^17 + 18214*x^16 + 19928*x^15 - 80746*x^14 - 44991*x^13 + 223242*x^12 + 49865*x^11 - 381651*x^10 - 2304*x^9 + 386234*x^8 - 54033*x^7 - 210632*x^6 + 51554*x^5 + 50242*x^4 - 17228*x^3 - 2342*x^2 + 1164*x - 86, x^23 - x^22 - 34*x^21 + 37*x^20 + 488*x^19 - 568*x^18 - 3869*x^17 + 4788*x^16 + 18570*x^15 - 24527*x^14 - 55400*x^13 + 79256*x^12 + 100716*x^11 - 161262*x^10 - 102397*x^9 + 198527*x^8 + 42922*x^7 - 134255*x^6 + 8084*x^5 + 39978*x^4 - 9593*x^3 - 2469*x^2 + 832*x - 52, x^23 - x^22 - 34*x^21 + 37*x^20 + 488*x^19 - 568*x^18 - 3869*x^17 + 4788*x^16 + 18570*x^15 - 24527*x^14 - 55400*x^13 + 79256*x^12 + 100716*x^11 - 161262*x^10 - 102397*x^9 + 198527*x^8 + 42922*x^7 - 134255*x^6 + 8084*x^5 + 39978*x^4 - 9593*x^3 - 2469*x^2 + 832*x - 52, x^24 - 3*x^23 - 28*x^22 + 86*x^21 + 329*x^20 - 1038*x^19 - 2117*x^18 + 6885*x^17 + 8132*x^16 - 27386*x^15 - 18932*x^14 + 66632*x^13 + 25310*x^12 - 96228*x^11 - 14701*x^10 + 74088*x^9 - 6108*x^8 - 19868*x^7 + 14720*x^6 - 6750*x^5 - 7049*x^4 + 3525*x^3 + 494*x^2 - 191*x + 9, x^24 - 3*x^23 - 28*x^22 + 86*x^21 + 329*x^20 - 1038*x^19 - 2117*x^18 + 6885*x^17 + 8132*x^16 - 27386*x^15 - 18932*x^14 + 66632*x^13 + 25310*x^12 - 96228*x^11 - 14701*x^10 + 74088*x^9 - 6108*x^8 - 19868*x^7 + 14720*x^6 - 6750*x^5 - 7049*x^4 + 3525*x^3 + 494*x^2 - 191*x + 9, x^21 - 38*x^19 + 18*x^18 + 563*x^17 - 418*x^16 - 4339*x^15 + 3975*x^14 + 19130*x^13 - 19981*x^12 - 49102*x^11 + 57048*x^10 + 69990*x^9 - 92094*x^8 - 46812*x^7 + 78042*x^6 + 5584*x^5 - 28404*x^4 + 4975*x^3 + 2475*x^2 - 676*x + 43, x^21 - 38*x^19 + 18*x^18 + 563*x^17 - 418*x^16 - 4339*x^15 + 3975*x^14 + 19130*x^13 - 19981*x^12 - 49102*x^11 + 57048*x^10 + 69990*x^9 - 92094*x^8 - 46812*x^7 + 78042*x^6 + 5584*x^5 - 28404*x^4 + 4975*x^3 + 2475*x^2 - 676*x + 43, x^26 - 3*x^25 - 33*x^24 + 102*x^23 + 467*x^22 - 1506*x^21 - 3690*x^20 + 12676*x^19 + 17652*x^18 - 67034*x^17 - 51104*x^16 + 231155*x^15 + 80023*x^14 - 521549*x^13 - 27593*x^12 + 750716*x^11 - 123138*x^10 - 647794*x^9 + 217231*x^8 + 293077*x^7 - 146662*x^6 - 46720*x^5 + 39450*x^4 - 4115*x^3 - 1918*x^2 + 525*x - 36, x^26 - 3*x^25 - 33*x^24 + 102*x^23 + 467*x^22 - 1506*x^21 - 3690*x^20 + 12676*x^19 + 17652*x^18 - 67034*x^17 - 51104*x^16 + 231155*x^15 + 80023*x^14 - 521549*x^13 - 27593*x^12 + 750716*x^11 - 123138*x^10 - 647794*x^9 + 217231*x^8 + 293077*x^7 - 146662*x^6 - 46720*x^5 + 39450*x^4 - 4115*x^3 - 1918*x^2 + 525*x - 36, 2*x^22 - 6*x^21 - 58*x^20 + 179*x^19 + 691*x^18 - 2233*x^17 - 4353*x^16 + 15191*x^15 + 15345*x^14 - 61488*x^13 - 28230*x^12 + 151136*x^11 + 15649*x^10 - 219500*x^9 + 29902*x^8 + 172189*x^7 - 50564*x^6 - 58263*x^5 + 21560*x^4 + 4270*x^3 - 1368*x^2 - 181*x + 30, 2*x^22 - 6*x^21 - 58*x^20 + 179*x^19 + 691*x^18 - 2233*x^17 - 4353*x^16 + 15191*x^15 + 15345*x^14 - 61488*x^13 - 28230*x^12 + 151136*x^11 + 15649*x^10 - 219500*x^9 + 29902*x^8 + 172189*x^7 - 50564*x^6 - 58263*x^5 + 21560*x^4 + 4270*x^3 - 1368*x^2 - 181*x + 30, x^24 - 2*x^23 - 32*x^22 + 63*x^21 + 439*x^20 - 856*x^19 - 3374*x^18 + 6597*x^17 + 15865*x^16 - 31796*x^15 - 46479*x^14 + 99245*x^13 + 81398*x^12 - 199767*x^11 - 72021*x^10 + 248219*x^9 + 6686*x^8 - 171332*x^7 + 36009*x^6 + 50738*x^5 - 19000*x^4 - 1661*x^3 + 1477*x^2 - 328*x + 27, x^24 - 2*x^23 - 32*x^22 + 63*x^21 + 439*x^20 - 856*x^19 - 3374*x^18 + 6597*x^17 + 15865*x^16 - 31796*x^15 - 46479*x^14 + 99245*x^13 + 81398*x^12 - 199767*x^11 - 72021*x^10 + 248219*x^9 + 6686*x^8 - 171332*x^7 + 36009*x^6 + 50738*x^5 - 19000*x^4 - 1661*x^3 + 1477*x^2 - 328*x + 27, x^24 - 3*x^23 - 28*x^22 + 89*x^21 + 320*x^20 - 1111*x^19 - 1893*x^18 + 7619*x^17 + 5830*x^16 - 31344*x^15 - 6278*x^14 + 78967*x^13 - 14742*x^12 - 118297*x^11 + 57847*x^10 + 94868*x^9 - 74990*x^8 - 28121*x^7 + 40334*x^6 - 5436*x^5 - 5586*x^4 + 2803*x^3 - 1101*x^2 + 324*x - 28, x^24 - 3*x^23 - 28*x^22 + 89*x^21 + 320*x^20 - 1111*x^19 - 1893*x^18 + 7619*x^17 + 5830*x^16 - 31344*x^15 - 6278*x^14 + 78967*x^13 - 14742*x^12 - 118297*x^11 + 57847*x^10 + 94868*x^9 - 74990*x^8 - 28121*x^7 + 40334*x^6 - 5436*x^5 - 5586*x^4 + 2803*x^3 - 1101*x^2 + 324*x - 28, x^25 - 3*x^24 - 31*x^23 + 97*x^22 + 407*x^21 - 1357*x^20 - 2922*x^19 + 10782*x^18 + 12161*x^17 - 53552*x^16 - 27107*x^15 + 171973*x^14 + 14612*x^13 - 355672*x^12 + 79115*x^11 + 454721*x^10 - 209860*x^9 - 325487*x^8 + 217809*x^7 + 101877*x^6 - 95933*x^5 - 2732*x^4 + 13401*x^3 - 2251*x^2 + 53*x + 6, x^25 - 3*x^24 - 31*x^23 + 97*x^22 + 407*x^21 - 1357*x^20 - 2922*x^19 + 10782*x^18 + 12161*x^17 - 53552*x^16 - 27107*x^15 + 171973*x^14 + 14612*x^13 - 355672*x^12 + 79115*x^11 + 454721*x^10 - 209860*x^9 - 325487*x^8 + 217809*x^7 + 101877*x^6 - 95933*x^5 - 2732*x^4 + 13401*x^3 - 2251*x^2 + 53*x + 6]>
       ]
>;

MOG[619] := 	// J_0(619)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [29, 31, 47, 218, 222, 280, 339, 403, 459, 490, 222*x + 152, 397*x + 152, 429*x + 610, 190*x + 610, 417*x + 366, 202*x + 366, 559*x + 162, 60*x + 162, 599*x + 61, 20*x + 61, 236*x + 23, 383*x + 23, 23*x + 383, 596*x + 383, 190*x + 167, 429*x + 167, 96*x + 359, 523*x + 359, 88*x + 148, 531*x + 148, 252*x + 291, 367*x + 291, 482*x + 175, 137*x + 175, 603*x + 431, 16*x + 431, 396*x + 152, 223*x + 152, 186*x + 333, 433*x + 333, 588*x + 414, 31*x + 414, 95*x + 277, 524*x + 277, 19*x + 300, 600*x + 300, 44*x, 575*x, 488*x + 145, 131*x + 145, 14*x + 384, 605*x + 384]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^21 + 9*x^20 + 12*x^19 - 116*x^18 - 371*x^17 + 385*x^16 + 2789*x^15 + 957*x^14 - 9722*x^13 - 9809*x^12 + 16968*x^11 + 27508*x^10 - 12214*x^9 - 37037*x^8 - 2648*x^7 + 24373*x^6 + 8158*x^5 - 6740*x^4 - 3106*x^3 + 651*x^2 + 272*x - 43,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^20 - 9*x^19 - 14*x^18 + 98*x^17 + 340*x^16 - 215*x^15 - 2153*x^14 - 1173*x^13 + 6177*x^12 + 7183*x^11 - 8380*x^10 - 15410*x^9 + 3805*x^8 + 15832*x^7 + 2181*x^6 - 7711*x^5 - 2510*x^4 + 1512*x^3 + 623*x^2 - 58*x - 20, x^20 + 9*x^19 + 14*x^18 - 98*x^17 - 340*x^16 + 215*x^15 + 2153*x^14 + 1173*x^13 - 6177*x^12 - 7183*x^11 + 8380*x^10 + 15410*x^9 - 3805*x^8 - 15832*x^7 - 2181*x^6 + 7711*x^5 + 2510*x^4 - 1512*x^3 - 623*x^2 + 58*x + 20, -x^19 - 9*x^18 - 15*x^17 + 90*x^16 + 332*x^15 - 125*x^14 - 1921*x^13 - 1458*x^12 + 4733*x^11 + 6970*x^10 - 4443*x^9 - 12436*x^8 - 1085*x^7 + 9667*x^6 + 4060*x^5 - 2746*x^4 - 1656*x^3 + 210*x^2 + 137*x - 22, x^19 + 9*x^18 + 15*x^17 - 90*x^16 - 332*x^15 + 125*x^14 + 1921*x^13 + 1458*x^12 - 4733*x^11 - 6970*x^10 + 4443*x^9 + 12436*x^8 + 1085*x^7 - 9667*x^6 - 4060*x^5 + 2746*x^4 + 1656*x^3 - 210*x^2 - 137*x + 22, -x^19 - 9*x^18 - 16*x^17 + 80*x^16 + 304*x^15 - 91*x^14 - 1624*x^13 - 1168*x^12 + 3855*x^11 + 5128*x^10 - 3966*x^9 - 8769*x^8 + 618*x^7 + 6995*x^6 + 1588*x^5 - 2482*x^4 - 827*x^3 + 383*x^2 + 115*x - 21, x^19 + 9*x^18 + 16*x^17 - 80*x^16 - 304*x^15 + 91*x^14 + 1624*x^13 + 1168*x^12 - 3855*x^11 - 5128*x^10 + 3966*x^9 + 8769*x^8 - 618*x^7 - 6995*x^6 - 1588*x^5 + 2482*x^4 + 827*x^3 - 383*x^2 - 115*x + 21, -x^18 - 8*x^17 - 8*x^16 + 90*x^15 + 232*x^14 - 285*x^13 - 1444*x^12 - 213*x^11 + 3937*x^10 + 2974*x^9 - 4890*x^8 - 6165*x^7 + 1879*x^6 + 4965*x^5 + 854*x^4 - 1302*x^3 - 486*x^2 + 36*x + 20, x^18 + 8*x^17 + 8*x^16 - 90*x^15 - 232*x^14 + 285*x^13 + 1444*x^12 + 213*x^11 - 3937*x^10 - 2974*x^9 + 4890*x^8 + 6165*x^7 - 1879*x^6 - 4965*x^5 - 854*x^4 + 1302*x^3 + 486*x^2 - 36*x - 20, -x^18 - 9*x^17 - 18*x^16 + 61*x^15 + 256*x^14 - 14*x^13 - 1115*x^12 - 841*x^11 + 2210*x^10 + 2670*x^9 - 2074*x^8 - 3450*x^7 + 856*x^6 + 2086*x^5 - 176*x^4 - 588*x^3 + 61*x^2 + 72*x - 11, x^18 + 9*x^17 + 18*x^16 - 61*x^15 - 256*x^14 + 14*x^13 + 1115*x^12 + 841*x^11 - 2210*x^10 - 2670*x^9 + 2074*x^8 + 3450*x^7 - 856*x^6 - 2086*x^5 + 176*x^4 + 588*x^3 - 61*x^2 - 72*x + 11, -x^18 - 9*x^17 - 18*x^16 + 63*x^15 + 273*x^14 + 19*x^13 - 1207*x^12 - 1214*x^11 + 2204*x^10 + 3971*x^9 - 1113*x^8 - 5387*x^7 - 1449*x^6 + 3143*x^5 + 1859*x^4 - 541*x^3 - 569*x^2 - 35*x + 31, x^18 + 9*x^17 + 18*x^16 - 63*x^15 - 273*x^14 - 19*x^13 + 1207*x^12 + 1214*x^11 - 2204*x^10 - 3971*x^9 + 1113*x^8 + 5387*x^7 + 1449*x^6 - 3143*x^5 - 1859*x^4 + 541*x^3 + 569*x^2 + 35*x - 31, -x^17 - 8*x^16 - 10*x^15 + 72*x^14 + 192*x^13 - 199*x^12 - 1009*x^11 - 59*x^10 + 2527*x^9 + 1381*x^8 - 3201*x^7 - 2823*x^6 + 1759*x^5 + 2298*x^4 - 132*x^3 - 660*x^2 - 81*x + 42, x^17 + 8*x^16 + 10*x^15 - 72*x^14 - 192*x^13 + 199*x^12 + 1009*x^11 + 59*x^10 - 2527*x^9 - 1381*x^8 + 3201*x^7 + 2823*x^6 - 1759*x^5 - 2298*x^4 + 132*x^3 + 660*x^2 + 81*x - 42, -x^17 - 10*x^16 - 28*x^15 + 32*x^14 + 278*x^13 + 236*x^12 - 855*x^11 - 1469*x^10 + 934*x^9 + 3070*x^8 + 141*x^7 - 2943*x^6 - 908*x^5 + 1312*x^4 + 510*x^3 - 255*x^2 - 75*x + 22, x^17 + 10*x^16 + 28*x^15 - 32*x^14 - 278*x^13 - 236*x^12 + 855*x^11 + 1469*x^10 - 934*x^9 - 3070*x^8 - 141*x^7 + 2943*x^6 + 908*x^5 - 1312*x^4 - 510*x^3 + 255*x^2 + 75*x - 22, -x^17 - 9*x^16 - 20*x^15 + 45*x^14 + 231*x^13 + 91*x^12 - 790*x^11 - 989*x^10 + 958*x^9 + 2249*x^8 + 97*x^7 - 1966*x^6 - 856*x^5 + 582*x^4 + 378*x^3 - 56*x^2 - 51*x - 1, x^17 + 9*x^16 + 20*x^15 - 45*x^14 - 231*x^13 - 91*x^12 + 790*x^11 + 989*x^10 - 958*x^9 - 2249*x^8 - 97*x^7 + 1966*x^6 + 856*x^5 - 582*x^4 - 378*x^3 + 56*x^2 + 51*x + 1, -x^17 - 8*x^16 - 11*x^15 + 66*x^14 + 194*x^13 - 123*x^12 - 903*x^11 - 324*x^10 + 1866*x^9 + 1538*x^8 - 1788*x^7 - 2173*x^6 + 661*x^5 + 1331*x^4 + 11*x^3 - 342*x^2 - 39*x + 25, x^17 + 8*x^16 + 11*x^15 - 66*x^14 - 194*x^13 + 123*x^12 + 903*x^11 + 324*x^10 - 1866*x^9 - 1538*x^8 + 1788*x^7 + 2173*x^6 - 661*x^5 - 1331*x^4 - 11*x^3 + 342*x^2 + 39*x - 25, -x^17 - 9*x^16 - 20*x^15 + 44*x^14 + 223*x^13 + 77*x^12 - 748*x^11 - 833*x^10 + 987*x^9 + 1844*x^8 - 279*x^7 - 1679*x^6 - 390*x^5 + 610*x^4 + 247*x^3 - 76*x^2 - 45*x - 4, x^17 + 9*x^16 + 20*x^15 - 44*x^14 - 223*x^13 - 77*x^12 + 748*x^11 + 833*x^10 - 987*x^9 - 1844*x^8 + 279*x^7 + 1679*x^6 + 390*x^5 - 610*x^4 - 247*x^3 + 76*x^2 + 45*x + 4, -2*x^16 - 19*x^15 - 50*x^14 + 58*x^13 + 459*x^12 + 381*x^11 - 1217*x^10 - 2127*x^9 + 834*x^8 + 3708*x^7 + 1059*x^6 - 2533*x^5 - 1612*x^4 + 465*x^3 + 524*x^2 + 31*x - 31, 2*x^16 + 19*x^15 + 50*x^14 - 58*x^13 - 459*x^12 - 381*x^11 + 1217*x^10 + 2127*x^9 - 834*x^8 - 3708*x^7 - 1059*x^6 + 2533*x^5 + 1612*x^4 - 465*x^3 - 524*x^2 - 31*x + 31, -x^16 - 8*x^15 - 12*x^14 + 57*x^13 + 174*x^12 - 83*x^11 - 707*x^10 - 282*x^9 + 1240*x^8 + 1009*x^7 - 912*x^6 - 1054*x^5 + 198*x^4 + 384*x^3 - 6*x^2 - 50*x - 1, x^16 + 8*x^15 + 12*x^14 - 57*x^13 - 174*x^12 + 83*x^11 + 707*x^10 + 282*x^9 - 1240*x^8 - 1009*x^7 + 912*x^6 + 1054*x^5 - 198*x^4 - 384*x^3 + 6*x^2 + 50*x + 1, -x^16 - 8*x^15 - 13*x^14 + 48*x^13 + 151*x^12 - 65*x^11 - 545*x^10 - 139*x^9 + 931*x^8 + 475*x^7 - 800*x^6 - 450*x^5 + 356*x^4 + 148*x^3 - 106*x^2 - 23*x + 12, x^16 + 8*x^15 + 13*x^14 - 48*x^13 - 151*x^12 + 65*x^11 + 545*x^10 + 139*x^9 - 931*x^8 - 475*x^7 + 800*x^6 + 450*x^5 - 356*x^4 - 148*x^3 + 106*x^2 + 23*x - 12, -x^16 - 8*x^15 - 13*x^14 + 52*x^13 + 181*x^12 - 13*x^11 - 662*x^10 - 567*x^9 + 863*x^8 + 1426*x^7 - 63*x^6 - 1151*x^5 - 517*x^4 + 210*x^3 + 188*x^2 + 21*x - 6, x^16 + 8*x^15 + 13*x^14 - 52*x^13 - 181*x^12 + 13*x^11 + 662*x^10 + 567*x^9 - 863*x^8 - 1426*x^7 + 63*x^6 + 1151*x^5 + 517*x^4 - 210*x^3 - 188*x^2 - 21*x + 6, -x^14 - 11*x^13 - 39*x^12 - 16*x^11 + 204*x^10 + 383*x^9 - 147*x^8 - 956*x^7 - 527*x^6 + 686*x^5 + 765*x^4 + 12*x^3 - 216*x^2 - 53*x + 6, x^14 + 11*x^13 + 39*x^12 + 16*x^11 - 204*x^10 - 383*x^9 + 147*x^8 + 956*x^7 + 527*x^6 - 686*x^5 - 765*x^4 - 12*x^3 + 216*x^2 + 53*x - 6, -2*x^15 - 18*x^14 - 42*x^13 + 68*x^12 + 386*x^11 + 175*x^10 - 1087*x^9 - 1206*x^8 + 1197*x^7 + 2089*x^6 - 314*x^5 - 1457*x^4 - 233*x^3 + 362*x^2 + 89*x - 18, 2*x^15 + 18*x^14 + 42*x^13 - 68*x^12 - 386*x^11 - 175*x^10 + 1087*x^9 + 1206*x^8 - 1197*x^7 - 2089*x^6 + 314*x^5 + 1457*x^4 + 233*x^3 - 362*x^2 - 89*x + 18, -x^15 - 10*x^14 - 32*x^13 - 5*x^12 + 180*x^11 + 305*x^10 - 166*x^9 - 843*x^8 - 422*x^7 + 716*x^6 + 762*x^5 - 78*x^4 - 336*x^3 - 73*x^2 + 40*x + 13, x^15 + 10*x^14 + 32*x^13 + 5*x^12 - 180*x^11 - 305*x^10 + 166*x^9 + 843*x^8 + 422*x^7 - 716*x^6 - 762*x^5 + 78*x^4 + 336*x^3 + 73*x^2 - 40*x - 13, -x^15 - 7*x^14 - 6*x^13 + 58*x^12 + 123*x^11 - 136*x^10 - 526*x^9 - 41*x^8 + 904*x^7 + 522*x^6 - 585*x^5 - 566*x^4 + 49*x^3 + 161*x^2 + 27*x - 6, x^15 + 7*x^14 + 6*x^13 - 58*x^12 - 123*x^11 + 136*x^10 + 526*x^9 + 41*x^8 - 904*x^7 - 522*x^6 + 585*x^5 + 566*x^4 - 49*x^3 - 161*x^2 - 27*x + 6, -x^15 - 7*x^14 - 7*x^13 + 52*x^12 + 118*x^11 - 107*x^10 - 477*x^9 - 71*x^8 + 821*x^7 + 500*x^6 - 593*x^5 - 555*x^4 + 128*x^3 + 202*x^2 + 6*x - 19, x^15 + 7*x^14 + 7*x^13 - 52*x^12 - 118*x^11 + 107*x^10 + 477*x^9 + 71*x^8 - 821*x^7 - 500*x^6 + 593*x^5 + 555*x^4 - 128*x^3 - 202*x^2 - 6*x + 19, -x^14 - 7*x^13 - 11*x^12 + 24*x^11 + 78*x^10 + 19*x^9 - 113*x^8 - 105*x^7 - 30*x^6 + 3*x^5 + 90*x^4 + 120*x^3 + 20*x^2 - 34*x - 13, x^14 + 7*x^13 + 11*x^12 - 24*x^11 - 78*x^10 - 19*x^9 + 113*x^8 + 105*x^7 + 30*x^6 - 3*x^5 - 90*x^4 - 120*x^3 - 20*x^2 + 34*x + 13]>,
         rec<Eigen |
           DefiningPolynomial := x^30 - 9*x^29 - 6*x^28 + 276*x^27 - 458*x^26 - 3470*x^25 + 10075*x^24 + 22121*x^23 - 99369*x^22 - 63002*x^21 + 577753*x^20 - 67623*x^19 - 2150746*x^18 + 1230936*x^17 + 5258190*x^16 - 4733021*x^15 - 8365124*x^14 + 9918973*x^13 + 8247588*x^12 - 12486304*x^11 - 4412332*x^10 + 9301511*x^9 + 719882*x^8 - 3767751*x^7 + 316240*x^6 + 703223*x^5 - 115454*x^4 - 54364*x^3 + 11432*x^2 + 1200*x - 288,
           Coordinates        := [-x^29 + 9*x^28 + 3*x^27 - 251*x^26 + 479*x^25 + 2769*x^24 - 9074*x^23 - 14166*x^22 + 78887*x^21 + 17826*x^20 - 399228*x^19 + 182029*x^18 + 1260744*x^17 - 1151543*x^16 - 2505894*x^15 + 3303508*x^14 + 2988128*x^13 - 5509553*x^12 - 1765430*x^11 + 5503555*x^10 - 39076*x^9 - 3134056*x^8 + 658208*x^7 + 880175*x^6 - 307082*x^5 - 81282*x^4 + 42136*x^3 - 556*x^2 - 1448*x + 144, x^29 - 9*x^28 - 3*x^27 + 251*x^26 - 479*x^25 - 2771*x^24 + 9090*x^23 + 14166*x^22 - 79201*x^21 - 17210*x^20 + 401384*x^19 - 189393*x^18 - 1265508*x^17 + 1189811*x^16 + 2493374*x^15 - 3407558*x^14 - 2895956*x^13 + 5658067*x^12 + 1555140*x^11 - 5595279*x^10 + 276488*x^9 + 3123266*x^8 - 797890*x^7 - 835001*x^6 + 346996*x^5 + 57634*x^4 - 43518*x^3 + 3144*x^2 + 1088*x - 144, -x^27 + 9*x^26 - x^25 - 217*x^24 + 485*x^23 + 1967*x^22 - 7560*x^21 - 6882*x^20 + 55491*x^19 - 11112*x^18 - 233656*x^17 + 193997*x^16 + 589954*x^15 - 792265*x^14 - 854652*x^13 + 1713982*x^12 + 547350*x^11 - 2131487*x^10 + 176650*x^9 + 1455871*x^8 - 489628*x^7 - 453804*x^6 + 248322*x^5 + 28329*x^4 - 35522*x^3 + 3412*x^2 + 1200*x - 192, x^28 - 9*x^27 - x^26 + 233*x^25 - 477*x^24 - 2341*x^23 + 8148*x^22 + 10276*x^21 - 64789*x^20 - 2928*x^19 + 297544*x^18 - 179021*x^17 - 834802*x^16 + 890469*x^15 + 1409996*x^14 - 2172848*x^13 - 1278482*x^12 + 3025993*x^11 + 316788*x^10 - 2370745*x^9 + 396996*x^8 + 929348*x^7 - 295208*x^6 - 137537*x^5 + 47624*x^4 + 8752*x^3 - 2544*x^2 - 432*x + 96, -x^28 + 9*x^27 + x^26 - 235*x^25 + 493*x^24 + 2347*x^23 - 8506*x^22 - 9686*x^21 + 67847*x^20 - 5702*x^19 - 309182*x^18 + 234325*x^17 + 844722*x^16 - 1087953*x^15 - 1332032*x^14 + 2591106*x^13 + 961170*x^12 - 3549077*x^11 + 236078*x^10 + 2731307*x^9 - 907870*x^8 - 1037766*x^7 + 541548*x^6 + 134541*x^5 - 100872*x^4 - 2636*x^3 + 6376*x^2 - 256*x - 96, 2*x^24 - 16*x^23 - 4*x^22 + 344*x^21 - 608*x^20 - 2720*x^19 + 8268*x^18 + 8590*x^17 - 48708*x^16 + 2466*x^15 + 154058*x^14 - 94294*x^13 - 270082*x^12 + 274336*x^11 + 242664*x^10 - 359366*x^9 - 77166*x^8 + 221022*x^7 - 16282*x^6 - 53818*x^5 + 6310*x^4 + 6008*x^3 - 756*x^2 - 296*x + 48, -x^27 + 7*x^26 + 15*x^25 - 205*x^24 + 83*x^23 + 2513*x^22 - 3480*x^21 - 16646*x^20 + 34555*x^19 + 63408*x^18 - 182366*x^17 - 130407*x^16 + 583908*x^15 + 79863*x^14 - 1172306*x^13 + 246494*x^12 + 1454158*x^11 - 640761*x^10 - 1045444*x^9 + 640419*x^8 + 372968*x^7 - 291830*x^6 - 42112*x^5 + 50317*x^4 - 238*x^3 - 3112*x^2 + 152*x + 48, x^27 - 9*x^26 + x^25 + 215*x^24 - 471*x^23 - 1943*x^22 + 7192*x^21 + 7124*x^20 - 51595*x^19 + 4862*x^18 + 212430*x^17 - 143793*x^16 - 529456*x^15 + 579021*x^14 + 789450*x^13 - 1188180*x^12 - 642142*x^11 + 1381285*x^10 + 190224*x^9 - 881825*x^8 + 71498*x^7 + 265458*x^6 - 52246*x^5 - 21833*x^4 + 4700*x^3 - 44*x^2 + 224*x - 48, x^27 - 9*x^26 + x^25 + 215*x^24 - 471*x^23 - 1947*x^22 + 7220*x^21 + 7158*x^20 - 52245*x^19 + 5510*x^18 + 218276*x^17 - 155549*x^16 - 553922*x^15 + 655689*x^14 + 828024*x^13 - 1443894*x^12 - 596210*x^11 + 1843249*x^10 - 69716*x^9 - 1312093*x^8 + 431184*x^7 + 432006*x^6 - 247126*x^5 - 27049*x^4 + 36274*x^3 - 3532*x^2 - 1216*x + 192, 2*x^23 - 14*x^22 - 18*x^21 + 326*x^20 - 282*x^19 - 3002*x^18 + 5266*x^17 + 13856*x^16 - 34852*x^15 - 32386*x^14 + 121672*x^13 + 27378*x^12 - 242704*x^11 + 31632*x^10 + 274296*x^9 - 85070*x^8 - 162236*x^7 + 58786*x^6 + 42504*x^5 - 11314*x^4 - 5004*x^3 + 1004*x^2 + 248*x - 48, x^25 - 8*x^24 - 4*x^23 + 186*x^22 - 286*x^21 - 1686*x^20 + 4416*x^19 + 7297*x^18 - 29620*x^17 - 12623*x^16 + 111881*x^15 - 14761*x^14 - 256713*x^13 + 109790*x^12 + 364036*x^11 - 211315*x^10 - 312879*x^9 + 195581*x^8 + 154095*x^7 - 85695*x^6 - 39349*x^5 + 14318*x^4 + 4626*x^3 - 1152*x^2 - 224*x + 48, x^25 - 8*x^24 - 4*x^23 + 186*x^22 - 286*x^21 - 1686*x^20 + 4416*x^19 + 7297*x^18 - 29620*x^17 - 12623*x^16 + 111881*x^15 - 14761*x^14 - 256713*x^13 + 109790*x^12 + 364036*x^11 - 211315*x^10 - 312879*x^9 + 195581*x^8 + 154095*x^7 - 85695*x^6 - 39349*x^5 + 14318*x^4 + 4626*x^3 - 1152*x^2 - 224*x + 48, x^26 - 9*x^25 + 3*x^24 + 199*x^23 - 478*x^22 - 1576*x^21 + 6597*x^20 + 3895*x^19 - 42557*x^18 + 17614*x^17 + 152673*x^16 - 155724*x^15 - 310273*x^14 + 492334*x^13 + 318170*x^12 - 822354*x^11 - 63282*x^10 + 744460*x^9 - 162749*x^8 - 331945*x^7 + 121481*x^6 + 57852*x^5 - 21462*x^4 - 4398*x^3 + 1384*x^2 + 192*x - 48, x^26 - 9*x^25 + 3*x^24 + 199*x^23 - 478*x^22 - 1576*x^21 + 6597*x^20 + 3895*x^19 - 42557*x^18 + 17614*x^17 + 152673*x^16 - 155724*x^15 - 310273*x^14 + 492334*x^13 + 318170*x^12 - 822354*x^11 - 63282*x^10 + 744460*x^9 - 162749*x^8 - 331945*x^7 + 121481*x^6 + 57852*x^5 - 21462*x^4 - 4398*x^3 + 1384*x^2 + 192*x - 48, x^25 - 9*x^24 + 3*x^23 + 196*x^22 - 454*x^21 - 1573*x^20 + 6122*x^19 + 4669*x^18 - 38827*x^17 + 7916*x^16 + 138497*x^15 - 100498*x^14 - 288250*x^13 + 315948*x^12 + 336703*x^11 - 492261*x^10 - 189513*x^9 + 394010*x^8 + 25228*x^7 - 144548*x^6 + 10284*x^5 + 19778*x^4 - 2762*x^3 - 852*x^2 + 152*x, x^25 - 9*x^24 + 3*x^23 + 196*x^22 - 454*x^21 - 1573*x^20 + 6122*x^19 + 4669*x^18 - 38827*x^17 + 7916*x^16 + 138497*x^15 - 100498*x^14 - 288250*x^13 + 315948*x^12 + 336703*x^11 - 492261*x^10 - 189513*x^9 + 394010*x^8 + 25228*x^7 - 144548*x^6 + 10284*x^5 + 19778*x^4 - 2762*x^3 - 852*x^2 + 152*x, x^25 - 8*x^24 - 3*x^23 + 181*x^22 - 309*x^21 - 1543*x^20 + 4622*x^19 + 5455*x^18 - 30137*x^17 + 692*x^16 + 107302*x^15 - 71926*x^14 - 214567*x^13 + 256036*x^12 + 214824*x^11 - 425510*x^10 - 40094*x^9 + 354299*x^8 - 104112*x^7 - 121911*x^6 + 70133*x^5 + 3117*x^4 - 7942*x^3 + 1388*x^2 - 48*x, x^25 - 8*x^24 - 3*x^23 + 181*x^22 - 309*x^21 - 1543*x^20 + 4622*x^19 + 5455*x^18 - 30137*x^17 + 692*x^16 + 107302*x^15 - 71926*x^14 - 214567*x^13 + 256036*x^12 + 214824*x^11 - 425510*x^10 - 40094*x^9 + 354299*x^8 - 104112*x^7 - 121911*x^6 + 70133*x^5 + 3117*x^4 - 7942*x^3 + 1388*x^2 - 48*x, x^26 - 8*x^25 - 6*x^24 + 200*x^23 - 264*x^22 - 2049*x^21 + 4734*x^20 + 10919*x^19 - 36589*x^18 - 30042*x^17 + 163585*x^16 + 22476*x^15 - 458954*x^14 + 116008*x^13 + 821668*x^12 - 417254*x^11 - 913083*x^10 + 639997*x^9 + 574864*x^8 - 514662*x^7 - 155072*x^6 + 199925*x^5 - 5392*x^4 - 25426*x^3 + 3872*x^2 + 736*x - 144, x^26 - 8*x^25 - 6*x^24 + 200*x^23 - 264*x^22 - 2049*x^21 + 4734*x^20 + 10919*x^19 - 36589*x^18 - 30042*x^17 + 163585*x^16 + 22476*x^15 - 458954*x^14 + 116008*x^13 + 821668*x^12 - 417254*x^11 - 913083*x^10 + 639997*x^9 + 574864*x^8 - 514662*x^7 - 155072*x^6 + 199925*x^5 - 5392*x^4 - 25426*x^3 + 3872*x^2 + 736*x - 144, -2*x^25 + 17*x^24 - 376*x^22 + 762*x^21 + 3074*x^20 - 10666*x^19 - 9535*x^18 + 67578*x^17 - 12465*x^16 - 234855*x^15 + 185465*x^14 + 456653*x^13 - 594755*x^12 - 439043*x^11 + 934885*x^10 + 66892*x^9 - 745217*x^8 + 216019*x^7 + 251051*x^6 - 140798*x^5 - 11688*x^4 + 19948*x^3 - 2568*x^2 - 512*x + 96, -2*x^25 + 17*x^24 - 376*x^22 + 762*x^21 + 3074*x^20 - 10666*x^19 - 9535*x^18 + 67578*x^17 - 12465*x^16 - 234855*x^15 + 185465*x^14 + 456653*x^13 - 594755*x^12 - 439043*x^11 + 934885*x^10 + 66892*x^9 - 745217*x^8 + 216019*x^7 + 251051*x^6 - 140798*x^5 - 11688*x^4 + 19948*x^3 - 2568*x^2 - 512*x + 96, 2*x^24 - 15*x^23 - 12*x^22 + 342*x^21 - 432*x^20 - 3062*x^19 + 6965*x^18 + 13215*x^17 - 46063*x^16 - 23504*x^15 + 167632*x^14 - 21731*x^13 - 359382*x^12 + 182020*x^11 + 448698*x^10 - 350067*x^9 - 295662*x^8 + 314146*x^7 + 70563*x^6 - 124868*x^5 + 10403*x^4 + 13728*x^3 - 2820*x^2 - 144*x + 48, 2*x^24 - 15*x^23 - 12*x^22 + 342*x^21 - 432*x^20 - 3062*x^19 + 6965*x^18 + 13215*x^17 - 46063*x^16 - 23504*x^15 + 167632*x^14 - 21731*x^13 - 359382*x^12 + 182020*x^11 + 448698*x^10 - 350067*x^9 - 295662*x^8 + 314146*x^7 + 70563*x^6 - 124868*x^5 + 10403*x^4 + 13728*x^3 - 2820*x^2 - 144*x + 48, x^25 - 9*x^24 + 6*x^23 + 173*x^22 - 465*x^21 - 1087*x^20 + 5405*x^19 + 795*x^18 - 29141*x^17 + 21867*x^16 + 83834*x^15 - 117437*x^14 - 123084*x^13 + 285366*x^12 + 51854*x^11 - 373255*x^10 + 94499*x^9 + 255509*x^8 - 139471*x^7 - 73520*x^6 + 65138*x^5 + 208*x^4 - 8606*x^3 + 1288*x^2 + 240*x - 48, x^25 - 9*x^24 + 6*x^23 + 173*x^22 - 465*x^21 - 1087*x^20 + 5405*x^19 + 795*x^18 - 29141*x^17 + 21867*x^16 + 83834*x^15 - 117437*x^14 - 123084*x^13 + 285366*x^12 + 51854*x^11 - 373255*x^10 + 94499*x^9 + 255509*x^8 - 139471*x^7 - 73520*x^6 + 65138*x^5 + 208*x^4 - 8606*x^3 + 1288*x^2 + 240*x - 48, x^27 - 8*x^26 - 8*x^25 + 218*x^24 - 273*x^23 - 2418*x^22 + 5653*x^21 + 13579*x^20 - 48116*x^19 - 35506*x^18 + 231553*x^17 - 7307*x^16 - 681285*x^15 + 333943*x^14 + 1233002*x^13 - 1018568*x^12 - 1301640*x^11 + 1505513*x^10 + 669878*x^9 - 1164181*x^8 - 40829*x^7 + 417993*x^6 - 80814*x^5 - 45412*x^4 + 15240*x^3 + 300*x^2 - 536*x + 48, x^27 - 8*x^26 - 8*x^25 + 218*x^24 - 273*x^23 - 2418*x^22 + 5653*x^21 + 13579*x^20 - 48116*x^19 - 35506*x^18 + 231553*x^17 - 7307*x^16 - 681285*x^15 + 333943*x^14 + 1233002*x^13 - 1018568*x^12 - 1301640*x^11 + 1505513*x^10 + 669878*x^9 - 1164181*x^8 - 40829*x^7 + 417993*x^6 - 80814*x^5 - 45412*x^4 + 15240*x^3 + 300*x^2 - 536*x + 48, -x^26 + 7*x^25 + 13*x^24 - 189*x^23 + 93*x^22 + 2126*x^21 - 2915*x^20 - 12952*x^19 + 25146*x^18 + 46526*x^17 - 115387*x^16 - 100876*x^15 + 318461*x^14 + 132057*x^13 - 548081*x^12 - 110613*x^11 + 588867*x^10 + 82014*x^9 - 387112*x^8 - 66158*x^7 + 150363*x^6 + 31134*x^5 - 32505*x^4 - 2830*x^3 + 2928*x^2 - 88*x - 48, -x^26 + 7*x^25 + 13*x^24 - 189*x^23 + 93*x^22 + 2126*x^21 - 2915*x^20 - 12952*x^19 + 25146*x^18 + 46526*x^17 - 115387*x^16 - 100876*x^15 + 318461*x^14 + 132057*x^13 - 548081*x^12 - 110613*x^11 + 588867*x^10 + 82014*x^9 - 387112*x^8 - 66158*x^7 + 150363*x^6 + 31134*x^5 - 32505*x^4 - 2830*x^3 + 2928*x^2 - 88*x - 48, -x^26 + 9*x^25 - 4*x^24 - 190*x^23 + 473*x^22 + 1402*x^21 - 6178*x^20 - 2705*x^19 + 37763*x^18 - 20164*x^17 - 127384*x^16 + 147844*x^15 + 238690*x^14 - 438562*x^13 - 206910*x^12 + 708795*x^11 - 29714*x^10 - 637718*x^9 + 209121*x^8 + 291981*x^7 - 146613*x^6 - 53106*x^5 + 32675*x^4 + 3024*x^3 - 2588*x^2 + 32*x + 48, -x^26 + 9*x^25 - 4*x^24 - 190*x^23 + 473*x^22 + 1402*x^21 - 6178*x^20 - 2705*x^19 + 37763*x^18 - 20164*x^17 - 127384*x^16 + 147844*x^15 + 238690*x^14 - 438562*x^13 - 206910*x^12 + 708795*x^11 - 29714*x^10 - 637718*x^9 + 209121*x^8 + 291981*x^7 - 146613*x^6 - 53106*x^5 + 32675*x^4 + 3024*x^3 - 2588*x^2 + 32*x + 48, -x^25 + 10*x^24 - 12*x^23 - 189*x^22 + 620*x^21 + 1103*x^20 - 7062*x^19 + 483*x^18 + 38694*x^17 - 33688*x^16 - 116409*x^15 + 168238*x^14 + 191089*x^13 - 410432*x^12 - 138021*x^11 + 558884*x^10 - 34421*x^9 - 418673*x^8 + 126996*x^7 + 149647*x^6 - 74849*x^5 - 13617*x^4 + 12986*x^3 - 812*x^2 - 640*x + 96, -x^25 + 10*x^24 - 12*x^23 - 189*x^22 + 620*x^21 + 1103*x^20 - 7062*x^19 + 483*x^18 + 38694*x^17 - 33688*x^16 - 116409*x^15 + 168238*x^14 + 191089*x^13 - 410432*x^12 - 138021*x^11 + 558884*x^10 - 34421*x^9 - 418673*x^8 + 126996*x^7 + 149647*x^6 - 74849*x^5 - 13617*x^4 + 12986*x^3 - 812*x^2 - 640*x + 96, x^28 - 8*x^27 - 10*x^26 + 233*x^25 - 254*x^24 - 2807*x^23 + 6010*x^22 + 17758*x^21 - 55790*x^20 - 59421*x^19 + 293847*x^18 + 68948*x^17 - 965007*x^16 + 217497*x^15 + 2029586*x^14 - 1044029*x^13 - 2706983*x^12 + 1932516*x^11 + 2186016*x^10 - 1903750*x^9 - 957384*x^8 + 1001701*x^7 + 162982*x^6 - 254026*x^5 + 12156*x^4 + 24378*x^3 - 3900*x^2 - 456*x + 96, x^28 - 8*x^27 - 10*x^26 + 233*x^25 - 254*x^24 - 2807*x^23 + 6010*x^22 + 17758*x^21 - 55790*x^20 - 59421*x^19 + 293847*x^18 + 68948*x^17 - 965007*x^16 + 217497*x^15 + 2029586*x^14 - 1044029*x^13 - 2706983*x^12 + 1932516*x^11 + 2186016*x^10 - 1903750*x^9 - 957384*x^8 + 1001701*x^7 + 162982*x^6 - 254026*x^5 + 12156*x^4 + 24378*x^3 - 3900*x^2 - 456*x + 96, x^26 - 7*x^25 - 13*x^24 + 189*x^23 - 93*x^22 - 2130*x^21 + 2940*x^20 + 12996*x^19 - 25705*x^18 - 46213*x^17 + 120137*x^16 + 93970*x^15 - 337630*x^14 - 90547*x^13 + 583675*x^12 - 9749*x^11 - 603055*x^10 + 99572*x^9 + 341691*x^8 - 69046*x^7 - 88724*x^6 + 8689*x^5 + 8476*x^4 + 1348*x^3 - 508*x^2 - 232*x + 48, x^26 - 7*x^25 - 13*x^24 + 189*x^23 - 93*x^22 - 2130*x^21 + 2940*x^20 + 12996*x^19 - 25705*x^18 - 46213*x^17 + 120137*x^16 + 93970*x^15 - 337630*x^14 - 90547*x^13 + 583675*x^12 - 9749*x^11 - 603055*x^10 + 99572*x^9 + 341691*x^8 - 69046*x^7 - 88724*x^6 + 8689*x^5 + 8476*x^4 + 1348*x^3 - 508*x^2 - 232*x + 48, -x^27 + 8*x^26 + 8*x^25 - 219*x^24 + 282*x^23 + 2409*x^22 - 5803*x^21 - 13111*x^20 + 48764*x^19 + 30915*x^18 - 229491*x^17 + 26976*x^16 + 654192*x^15 - 371869*x^14 - 1136791*x^13 + 1032223*x^12 + 1138523*x^11 - 1441738*x^10 - 536018*x^9 + 1066171*x^8 + 502*x^7 - 370280*x^6 + 77159*x^5 + 41363*x^4 - 14190*x^3 - 448*x^2 + 552*x - 48, -x^27 + 8*x^26 + 8*x^25 - 219*x^24 + 282*x^23 + 2409*x^22 - 5803*x^21 - 13111*x^20 + 48764*x^19 + 30915*x^18 - 229491*x^17 + 26976*x^16 + 654192*x^15 - 371869*x^14 - 1136791*x^13 + 1032223*x^12 + 1138523*x^11 - 1441738*x^10 - 536018*x^9 + 1066171*x^8 + 502*x^7 - 370280*x^6 + 77159*x^5 + 41363*x^4 - 14190*x^3 - 448*x^2 + 552*x - 48, x^26 - 9*x^25 + 3*x^24 + 197*x^23 - 464*x^22 - 1559*x^21 + 6272*x^20 + 4219*x^19 - 39634*x^18 + 11736*x^17 + 140440*x^16 - 117390*x^15 - 290986*x^14 + 364477*x^13 + 341136*x^12 - 591372*x^11 - 193252*x^10 + 529326*x^9 + 17094*x^8 - 248671*x^7 + 24041*x^6 + 55244*x^5 - 5675*x^4 - 6142*x^3 + 664*x^2 + 312*x - 48, x^26 - 9*x^25 + 3*x^24 + 197*x^23 - 464*x^22 - 1559*x^21 + 6272*x^20 + 4219*x^19 - 39634*x^18 + 11736*x^17 + 140440*x^16 - 117390*x^15 - 290986*x^14 + 364477*x^13 + 341136*x^12 - 591372*x^11 - 193252*x^10 + 529326*x^9 + 17094*x^8 - 248671*x^7 + 24041*x^6 + 55244*x^5 - 5675*x^4 - 6142*x^3 + 664*x^2 + 312*x - 48, x^24 - 5*x^23 - 26*x^22 + 166*x^21 + 203*x^20 - 2217*x^19 + 136*x^18 + 15617*x^17 - 10892*x^16 - 63440*x^15 + 69836*x^14 + 151214*x^13 - 216477*x^12 - 201765*x^11 + 368548*x^10 + 124546*x^9 - 337634*x^8 - 2863*x^7 + 145284*x^6 - 25649*x^5 - 19897*x^4 + 4770*x^3 + 660*x^2 - 176*x, x^24 - 5*x^23 - 26*x^22 + 166*x^21 + 203*x^20 - 2217*x^19 + 136*x^18 + 15617*x^17 - 10892*x^16 - 63440*x^15 + 69836*x^14 + 151214*x^13 - 216477*x^12 - 201765*x^11 + 368548*x^10 + 124546*x^9 - 337634*x^8 - 2863*x^7 + 145284*x^6 - 25649*x^5 - 19897*x^4 + 4770*x^3 + 660*x^2 - 176*x, 2*x^25 - 16*x^24 - 9*x^23 + 381*x^22 - 583*x^21 - 3523*x^20 + 9415*x^19 + 14998*x^18 - 65203*x^17 - 18860*x^16 + 249685*x^15 - 86860*x^14 - 558780*x^13 + 425144*x^12 + 708334*x^11 - 802886*x^10 - 427759*x^9 + 753444*x^8 + 21151*x^7 - 320580*x^6 + 80601*x^5 + 38284*x^4 - 17096*x^3 - 24*x^2 + 816*x - 96, 2*x^25 - 16*x^24 - 9*x^23 + 381*x^22 - 583*x^21 - 3523*x^20 + 9415*x^19 + 14998*x^18 - 65203*x^17 - 18860*x^16 + 249685*x^15 - 86860*x^14 - 558780*x^13 + 425144*x^12 + 708334*x^11 - 802886*x^10 - 427759*x^9 + 753444*x^8 + 21151*x^7 - 320580*x^6 + 80601*x^5 + 38284*x^4 - 17096*x^3 - 24*x^2 + 816*x - 96, -x^28 + 8*x^27 + 10*x^26 - 233*x^25 + 254*x^24 + 2804*x^23 - 5988*x^22 - 17745*x^21 + 55339*x^20 + 60054*x^19 - 290410*x^18 - 77466*x^17 + 953787*x^16 - 170780*x^15 - 2022482*x^14 + 909157*x^13 + 2760494*x^12 - 1716836*x^11 - 2343743*x^10 + 1718074*x^9 + 1142980*x^8 - 924905*x^7 - 266195*x^6 + 243700*x^5 + 13777*x^4 - 26142*x^3 + 1804*x^2 + 800*x - 96, -x^28 + 8*x^27 + 10*x^26 - 233*x^25 + 254*x^24 + 2804*x^23 - 5988*x^22 - 17745*x^21 + 55339*x^20 + 60054*x^19 - 290410*x^18 - 77466*x^17 + 953787*x^16 - 170780*x^15 - 2022482*x^14 + 909157*x^13 + 2760494*x^12 - 1716836*x^11 - 2343743*x^10 + 1718074*x^9 + 1142980*x^8 - 924905*x^7 - 266195*x^6 + 243700*x^5 + 13777*x^4 - 26142*x^3 + 1804*x^2 + 800*x - 96, -x^26 + 7*x^25 + 15*x^24 - 206*x^23 + 92*x^22 + 2508*x^21 - 3660*x^20 - 16187*x^19 + 35773*x^18 + 57916*x^17 - 184208*x^16 - 100213*x^15 + 567230*x^14 - 8991*x^13 - 1073890*x^12 + 385711*x^11 + 1218858*x^10 - 733917*x^9 - 755366*x^8 + 620783*x^7 + 192991*x^6 - 233471*x^5 + 4538*x^4 + 28524*x^3 - 4180*x^2 - 760*x + 144, -x^26 + 7*x^25 + 15*x^24 - 206*x^23 + 92*x^22 + 2508*x^21 - 3660*x^20 - 16187*x^19 + 35773*x^18 + 57916*x^17 - 184208*x^16 - 100213*x^15 + 567230*x^14 - 8991*x^13 - 1073890*x^12 + 385711*x^11 + 1218858*x^10 - 733917*x^9 - 755366*x^8 + 620783*x^7 + 192991*x^6 - 233471*x^5 + 4538*x^4 + 28524*x^3 - 4180*x^2 - 760*x + 144, -2*x^24 + 16*x^23 + 7*x^22 - 365*x^21 + 584*x^20 + 3196*x^19 - 8772*x^18 - 12633*x^17 + 57019*x^16 + 13251*x^15 - 204352*x^14 + 71892*x^13 + 427378*x^12 - 305376*x^11 - 511037*x^10 + 514569*x^9 + 309978*x^8 - 428294*x^7 - 56182*x^6 + 160850*x^5 - 17377*x^4 - 18514*x^3 + 3868*x^2 + 352*x - 96, -2*x^24 + 16*x^23 + 7*x^22 - 365*x^21 + 584*x^20 + 3196*x^19 - 8772*x^18 - 12633*x^17 + 57019*x^16 + 13251*x^15 - 204352*x^14 + 71892*x^13 + 427378*x^12 - 305376*x^11 - 511037*x^10 + 514569*x^9 + 309978*x^8 - 428294*x^7 - 56182*x^6 + 160850*x^5 - 17377*x^4 - 18514*x^3 + 3868*x^2 + 352*x - 96]>
       ]
>;

MOG[631] := 	// J_0(631)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [140, 179, 187, 264, 322, 391, 428, 458, 460, 466, 489, 583, 598, 565*x + 33, 66*x + 33, 406*x + 601, 225*x + 601, 126*x + 111, 505*x + 111, 338*x + 33, 293*x + 33, 447*x + 582, 184*x + 582, 394*x + 193, 237*x + 193, 319*x + 74, 312*x + 74, 68*x + 388, 563*x + 388, 532*x + 223, 99*x + 223, 9*x + 415, 622*x + 415, 66*x + 202, 565*x + 202, 384*x + 393, 247*x + 393, 479*x + 531, 152*x + 531, 142*x + 569, 489*x + 569, 251*x + 139, 380*x + 139, 321*x + 484, 310*x + 484, 340*x + 159, 291*x + 159, 362*x + 262, 269*x + 262, 489*x + 473, 142*x + 473, 607*x + 573, 24*x + 573]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^20 + 8*x^19 + 5*x^18 - 114*x^17 - 258*x^16 + 535*x^15 + 2093*x^14 - 508*x^13 - 7578*x^12 - 3378*x^11 + 13922*x^10 + 11615*x^9 - 12747*x^8 - 14886*x^7 + 4828*x^6 + 8560*x^5 - 58*x^4 - 1958*x^3 - 224*x^2 + 104*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^19 - 8*x^18 - 7*x^17 + 99*x^16 + 248*x^15 - 358*x^14 - 1706*x^13 - 124*x^12 + 5119*x^11 + 3545*x^10 - 7336*x^9 - 8207*x^8 + 4563*x^7 + 7941*x^6 - 422*x^5 - 3364*x^4 - 585*x^3 + 489*x^2 + 135*x - 2, x^19 + 8*x^18 + 7*x^17 - 99*x^16 - 248*x^15 + 358*x^14 + 1706*x^13 + 124*x^12 - 5119*x^11 - 3545*x^10 + 7336*x^9 + 8207*x^8 - 4563*x^7 - 7941*x^6 + 422*x^5 + 3364*x^4 + 585*x^3 - 489*x^2 - 135*x + 2, x^14 + 7*x^13 + 4*x^12 - 70*x^11 - 133*x^10 + 194*x^9 + 616*x^8 - 44*x^7 - 1015*x^6 - 320*x^5 + 689*x^4 + 297*x^3 - 171*x^2 - 71*x + 6, -x^14 - 7*x^13 - 4*x^12 + 70*x^11 + 133*x^10 - 194*x^9 - 616*x^8 + 44*x^7 + 1015*x^6 + 320*x^5 - 689*x^4 - 297*x^3 + 171*x^2 + 71*x - 6, -x^18 - 7*x^17 - x^16 + 93*x^15 + 152*x^14 - 430*x^13 - 1127*x^12 + 712*x^11 + 3500*x^10 + 280*x^9 - 5325*x^8 - 2111*x^7 + 4026*x^6 + 2240*x^5 - 1392*x^4 - 908*x^3 + 163*x^2 + 123*x + 2, x^18 + 7*x^17 + x^16 - 93*x^15 - 152*x^14 + 430*x^13 + 1127*x^12 - 712*x^11 - 3500*x^10 - 280*x^9 + 5325*x^8 + 2111*x^7 - 4026*x^6 - 2240*x^5 + 1392*x^4 + 908*x^3 - 163*x^2 - 123*x - 2, -x^18 - 8*x^17 - 9*x^16 + 84*x^15 + 235*x^14 - 202*x^13 - 1332*x^12 - 545*x^11 + 3086*x^10 + 3128*x^9 - 2859*x^8 - 4834*x^7 + 380*x^6 + 2956*x^5 + 749*x^4 - 561*x^3 - 252*x^2 - 21*x - 1, x^18 + 8*x^17 + 9*x^16 - 84*x^15 - 235*x^14 + 202*x^13 + 1332*x^12 + 545*x^11 - 3086*x^10 - 3128*x^9 + 2859*x^8 + 4834*x^7 - 380*x^6 - 2956*x^5 - 749*x^4 + 561*x^3 + 252*x^2 + 21*x + 1, x^17 + 8*x^16 + 10*x^15 - 76*x^14 - 223*x^13 + 140*x^12 + 1122*x^11 + 568*x^10 - 2250*x^9 - 2382*x^8 + 1750*x^7 + 3003*x^6 - 183*x^5 - 1482*x^4 - 286*x^3 + 237*x^2 + 78*x + 4, -x^17 - 8*x^16 - 10*x^15 + 76*x^14 + 223*x^13 - 140*x^12 - 1122*x^11 - 568*x^10 + 2250*x^9 + 2382*x^8 - 1750*x^7 - 3003*x^6 + 183*x^5 + 1482*x^4 + 286*x^3 - 237*x^2 - 78*x - 4, x^15 + 8*x^14 + 11*x^13 - 66*x^12 - 203*x^11 + 61*x^10 + 810*x^9 + 572*x^8 - 1059*x^7 - 1335*x^6 + 369*x^5 + 986*x^4 + 126*x^3 - 242*x^2 - 65*x + 6, -x^15 - 8*x^14 - 11*x^13 + 66*x^12 + 203*x^11 - 61*x^10 - 810*x^9 - 572*x^8 + 1059*x^7 + 1335*x^6 - 369*x^5 - 986*x^4 - 126*x^3 + 242*x^2 + 65*x - 6, -x^17 - 7*x^16 - 3*x^15 + 80*x^14 + 149*x^13 - 291*x^12 - 907*x^11 + 235*x^10 + 2291*x^9 + 771*x^8 - 2648*x^7 - 1675*x^6 + 1270*x^5 + 1064*x^4 - 160*x^3 - 203*x^2 - 10*x + 4, x^17 + 7*x^16 + 3*x^15 - 80*x^14 - 149*x^13 + 291*x^12 + 907*x^11 - 235*x^10 - 2291*x^9 - 771*x^8 + 2648*x^7 + 1675*x^6 - 1270*x^5 - 1064*x^4 + 160*x^3 + 203*x^2 + 10*x - 4, -x^17 - 7*x^16 - 3*x^15 + 80*x^14 + 151*x^13 - 281*x^12 - 911*x^11 + 151*x^10 + 2227*x^9 + 991*x^8 - 2433*x^7 - 1982*x^6 + 988*x^5 + 1321*x^4 + 47*x^3 - 273*x^2 - 58*x + 6, x^17 + 7*x^16 + 3*x^15 - 80*x^14 - 151*x^13 + 281*x^12 + 911*x^11 - 151*x^10 - 2227*x^9 - 991*x^8 + 2433*x^7 + 1982*x^6 - 988*x^5 - 1321*x^4 - 47*x^3 + 273*x^2 + 58*x - 6, -x^16 - 7*x^15 - 4*x^14 + 72*x^13 + 140*x^12 - 215*x^11 - 708*x^10 + 90*x^9 + 1417*x^8 + 419*x^7 - 1374*x^6 - 647*x^5 + 619*x^4 + 335*x^3 - 79*x^2 - 31*x + 7, x^16 + 7*x^15 + 4*x^14 - 72*x^13 - 140*x^12 + 215*x^11 + 708*x^10 - 90*x^9 - 1417*x^8 - 419*x^7 + 1374*x^6 + 647*x^5 - 619*x^4 - 335*x^3 + 79*x^2 + 31*x - 7, x^16 + 8*x^15 + 12*x^14 - 62*x^13 - 210*x^12 + 23*x^11 + 836*x^10 + 746*x^9 - 1109*x^8 - 1831*x^7 + 197*x^6 + 1474*x^5 + 463*x^4 - 324*x^3 - 174*x^2 - 17*x - 1, -x^16 - 8*x^15 - 12*x^14 + 62*x^13 + 210*x^12 - 23*x^11 - 836*x^10 - 746*x^9 + 1109*x^8 + 1831*x^7 - 197*x^6 - 1474*x^5 - 463*x^4 + 324*x^3 + 174*x^2 + 17*x + 1, x^15 + 6*x^14 - x^13 - 67*x^12 - 84*x^11 + 235*x^10 + 468*x^9 - 258*x^8 - 872*x^7 + 10*x^6 + 659*x^5 + 56*x^4 - 204*x^3 + 27*x^2 + 46*x + 1, -x^15 - 6*x^14 + x^13 + 67*x^12 + 84*x^11 - 235*x^10 - 468*x^9 + 258*x^8 + 872*x^7 - 10*x^6 - 659*x^5 - 56*x^4 + 204*x^3 - 27*x^2 - 46*x - 1, -x^16 - 6*x^15 + 2*x^14 + 72*x^13 + 78*x^12 - 302*x^11 - 521*x^10 + 521*x^9 + 1302*x^8 - 273*x^7 - 1503*x^6 - 182*x^5 + 793*x^4 + 215*x^3 - 171*x^2 - 59*x + 3, x^16 + 6*x^15 - 2*x^14 - 72*x^13 - 78*x^12 + 302*x^11 + 521*x^10 - 521*x^9 - 1302*x^8 + 273*x^7 + 1503*x^6 + 182*x^5 - 793*x^4 - 215*x^3 + 171*x^2 + 59*x - 3, -x^16 - 7*x^15 - 5*x^14 + 67*x^13 + 142*x^12 - 175*x^11 - 688*x^10 - 30*x^9 + 1375*x^8 + 709*x^7 - 1253*x^6 - 994*x^5 + 439*x^4 + 490*x^3 - 2*x^2 - 60*x - 5, x^16 + 7*x^15 + 5*x^14 - 67*x^13 - 142*x^12 + 175*x^11 + 688*x^10 + 30*x^9 - 1375*x^8 - 709*x^7 + 1253*x^6 + 994*x^5 - 439*x^4 - 490*x^3 + 2*x^2 + 60*x + 5, x^14 + 6*x^13 + 2*x^12 - 51*x^11 - 86*x^10 + 101*x^9 + 323*x^8 + 65*x^7 - 356*x^6 - 252*x^5 + 65*x^4 + 115*x^3 + 37*x^2 + 3*x + 1, -x^14 - 6*x^13 - 2*x^12 + 51*x^11 + 86*x^10 - 101*x^9 - 323*x^8 - 65*x^7 + 356*x^6 + 252*x^5 - 65*x^4 - 115*x^3 - 37*x^2 - 3*x - 1, x^15 + 7*x^14 + 6*x^13 - 60*x^12 - 136*x^11 + 114*x^10 + 547*x^9 + 142*x^8 - 796*x^7 - 491*x^6 + 495*x^5 + 397*x^4 - 116*x^3 - 117*x^2 - 7*x + 3, -x^15 - 7*x^14 - 6*x^13 + 60*x^12 + 136*x^11 - 114*x^10 - 547*x^9 - 142*x^8 + 796*x^7 + 491*x^6 - 495*x^5 - 397*x^4 + 116*x^3 + 117*x^2 + 7*x - 3, x^15 + 7*x^14 + 7*x^13 - 57*x^12 - 150*x^11 + 64*x^10 + 594*x^9 + 409*x^8 - 757*x^7 - 1038*x^6 + 151*x^5 + 761*x^4 + 228*x^3 - 137*x^2 - 72*x - 7, -x^15 - 7*x^14 - 7*x^13 + 57*x^12 + 150*x^11 - 64*x^10 - 594*x^9 - 409*x^8 + 757*x^7 + 1038*x^6 - 151*x^5 - 761*x^4 - 228*x^3 + 137*x^2 + 72*x + 7, -x^15 - 7*x^14 - 8*x^13 + 49*x^12 + 137*x^11 - 15*x^10 - 424*x^9 - 388*x^8 + 291*x^7 + 608*x^6 + 187*x^5 - 180*x^4 - 152*x^3 - 40*x^2 - 4*x - 1, x^15 + 7*x^14 + 8*x^13 - 49*x^12 - 137*x^11 + 15*x^10 + 424*x^9 + 388*x^8 - 291*x^7 - 608*x^6 - 187*x^5 + 180*x^4 + 152*x^3 + 40*x^2 + 4*x + 1, -x^15 - 6*x^14 + x^13 + 67*x^12 + 82*x^11 - 250*x^10 - 492*x^9 + 326*x^8 + 1104*x^7 + 73*x^6 - 1018*x^5 - 394*x^4 + 310*x^3 + 183*x^2 + 9*x - 3, x^15 + 6*x^14 - x^13 - 67*x^12 - 82*x^11 + 250*x^10 + 492*x^9 - 326*x^8 - 1104*x^7 - 73*x^6 + 1018*x^5 + 394*x^4 - 310*x^3 - 183*x^2 - 9*x + 3, x^13 + 7*x^12 + 7*x^11 - 54*x^10 - 136*x^9 + 55*x^8 + 468*x^7 + 308*x^6 - 418*x^5 - 523*x^4 + 3*x^3 + 194*x^2 + 66*x + 2, -x^13 - 7*x^12 - 7*x^11 + 54*x^10 + 136*x^9 - 55*x^8 - 468*x^7 - 308*x^6 + 418*x^5 + 523*x^4 - 3*x^3 - 194*x^2 - 66*x - 2, 2*x^14 + 12*x^13 + 3*x^12 - 109*x^11 - 178*x^10 + 257*x^9 + 761*x^8 + 36*x^7 - 1084*x^6 - 562*x^5 + 526*x^4 + 415*x^3 - 35*x^2 - 62*x - 6, -2*x^14 - 12*x^13 - 3*x^12 + 109*x^11 + 178*x^10 - 257*x^9 - 761*x^8 - 36*x^7 + 1084*x^6 + 562*x^5 - 526*x^4 - 415*x^3 + 35*x^2 + 62*x + 6]>,
         rec<Eigen |
           DefiningPolynomial := x^32 - 7*x^31 - 24*x^30 + 266*x^29 + 82*x^28 - 4435*x^27 + 3546*x^26 + 42612*x^25 - 61244*x^24 - 260118*x^23 + 503728*x^22 + 1045259*x^21 - 2565508*x^20 - 2747671*x^19 + 8721575*x^18 + 4413408*x^17 - 20305272*x^16 - 3149984*x^15 + 32444843*x^14 - 2405404*x^13 - 35062007*x^12 + 7960643*x^11 + 24819099*x^10 - 8154383*x^9 - 10879976*x^8 + 4277929*x^7 + 2681047*x^6 - 1146869*x^5 - 315417*x^4 + 133917*x^3 + 15831*x^2 - 5013*x - 405,
           Coordinates        := [-x^31 + 7*x^30 + 22*x^29 - 252*x^28 - 42*x^27 + 3957*x^26 - 3540*x^25 - 35592*x^24 + 53813*x^23 + 202161*x^22 - 405006*x^21 - 751429*x^20 + 1895154*x^19 + 1818519*x^18 - 5907598*x^17 - 2692482*x^16 + 12563710*x^15 + 1861290*x^14 - 18259364*x^13 + 816563*x^12 + 17879165*x^11 - 2903007*x^10 - 11447565*x^9 + 2584319*x^8 + 4556317*x^7 - 1122301*x^6 - 1034807*x^5 + 237841*x^4 + 114930*x^3 - 20478*x^2 - 4626*x + 360, x^31 - 7*x^30 - 22*x^29 + 252*x^28 + 42*x^27 - 3959*x^26 + 3555*x^25 + 35609*x^24 - 54184*x^23 - 201818*x^22 + 408874*x^21 + 744524*x^20 - 1917054*x^19 - 1764258*x^18 + 5978842*x^17 + 2450290*x^16 - 12686054*x^15 - 1187753*x^14 + 18304384*x^13 - 2011394*x^12 - 17647561*x^11 + 4240591*x^10 + 10983573*x^9 - 3498581*x^8 - 4174699*x^7 + 1486009*x^6 + 886244*x^5 - 317580*x^4 - 89696*x^3 + 29280*x^2 + 3198*x - 774, -8*x^22 + 55*x^21 + 56*x^20 - 1109*x^19 + 892*x^18 + 9192*x^17 - 13809*x^16 - 40513*x^15 + 79772*x^14 + 102704*x^13 - 248746*x^12 - 151234*x^11 + 455933*x^10 + 122507*x^9 - 497704*x^8 - 42480*x^7 + 312196*x^6 - 4472*x^5 - 102478*x^4 + 6030*x^3 + 14670*x^2 - 873*x - 666, x^29 - 7*x^28 - 20*x^27 + 238*x^26 + 3*x^25 - 3492*x^24 + 3558*x^23 + 28862*x^22 - 47448*x^21 - 146729*x^20 + 320686*x^19 + 466979*x^18 - 1330986*x^17 - 885106*x^16 + 3589172*x^15 + 774445*x^14 - 6372620*x^13 + 368396*x^12 + 7373422*x^11 - 1667694*x^10 - 5395793*x^9 + 1746089*x^8 + 2367941*x^7 - 871339*x^6 - 569088*x^5 + 210006*x^4 + 63454*x^3 - 21156*x^2 - 2382*x + 576, x^28 - 7*x^27 - 15*x^26 + 203*x^25 - 68*x^24 - 2501*x^23 + 3134*x^22 + 17097*x^21 - 31392*x^20 - 71000*x^19 + 168556*x^18 + 183989*x^17 - 562892*x^16 - 292213*x^15 + 1236514*x^14 + 258466*x^13 - 1834690*x^12 - 71026*x^11 + 1857218*x^10 - 95440*x^9 - 1267459*x^8 + 122275*x^7 + 553166*x^6 - 63944*x^5 - 137418*x^4 + 15416*x^3 + 15672*x^2 - 1182*x - 612, x^29 - 7*x^28 - 17*x^27 + 219*x^26 - 56*x^25 - 2907*x^24 + 3714*x^23 + 21175*x^22 - 41884*x^21 - 90440*x^20 + 248626*x^19 + 215951*x^18 - 902338*x^17 - 188589*x^16 + 2086700*x^15 - 388722*x^14 - 3073372*x^13 + 1379288*x^12 + 2799810*x^11 - 1800052*x^10 - 1482807*x^9 + 1211605*x^8 + 406100*x^7 - 426816*x^6 - 43496*x^5 + 74274*x^4 - 386*x^3 - 5964*x^2 + 192*x + 198, -2*x^23 + 13*x^22 + 18*x^21 - 265*x^20 + 132*x^19 + 2244*x^18 - 2615*x^17 - 10223*x^16 + 15954*x^15 + 26768*x^14 - 51608*x^13 - 37910*x^12 + 97885*x^11 + 16459*x^10 - 109014*x^9 + 29372*x^8 + 66010*x^7 - 46050*x^6 - 16870*x^5 + 23696*x^4 + 34*x^3 - 4653*x^2 + 390*x + 252, x^30 - 7*x^29 - 20*x^28 + 238*x^27 + 4*x^26 - 3499*x^25 + 3543*x^24 + 29075*x^23 - 47586*x^22 - 149310*x^21 + 325382*x^20 + 482622*x^19 - 1376312*x^18 - 930300*x^17 + 3819256*x^16 + 787842*x^15 - 7059260*x^14 + 680651*x^13 + 8600040*x^12 - 2646052*x^11 - 6662609*x^10 + 3126779*x^9 + 3048417*x^8 - 1871113*x^7 - 706183*x^6 + 560743*x^5 + 55586*x^4 - 70414*x^3 - 522*x^2 + 2904*x + 90, x^30 - 7*x^29 - 20*x^28 + 238*x^27 + 5*x^26 - 3502*x^25 + 3502*x^24 + 29210*x^23 - 46912*x^22 - 151781*x^21 + 319542*x^20 + 507355*x^19 - 1347742*x^18 - 1081328*x^17 + 3745518*x^16 + 1376595*x^15 - 7010182*x^14 - 802030*x^13 + 8858392*x^12 - 263710*x^11 - 7474329*x^10 + 772845*x^9 + 4104973*x^8 - 540887*x^7 - 1400658*x^6 + 187854*x^5 + 273660*x^4 - 33300*x^3 - 26628*x^2 + 2160*x + 1008, x^28 - 6*x^27 - 23*x^26 + 196*x^25 + 140*x^24 - 2767*x^23 + 947*x^22 + 22122*x^21 - 19762*x^20 - 110202*x^19 + 138424*x^18 + 354375*x^17 - 547963*x^16 - 736552*x^15 + 1350148*x^14 + 961426*x^13 - 2111946*x^12 - 732658*x^11 + 2067152*x^10 + 267100*x^9 - 1215707*x^8 - 4102*x^7 + 401998*x^6 - 24818*x^5 - 68314*x^4 + 5960*x^3 + 5574*x^2 - 390*x - 198, -2*x^24 + 15*x^23 + 13*x^22 - 338*x^21 + 341*x^20 + 3221*x^19 - 5751*x^18 - 16800*x^17 + 39986*x^16 + 51327*x^15 - 158148*x^14 - 89006*x^13 + 384541*x^12 + 69808*x^11 - 581406*x^10 + 15879*x^9 + 534342*x^8 - 69580*x^7 - 283016*x^6 + 45038*x^5 + 78816*x^4 - 10717*x^3 - 9627*x^2 + 735*x + 414, 5*x^22 - 33*x^21 - 44*x^20 + 681*x^19 - 365*x^18 - 5909*x^17 + 7106*x^16 + 28104*x^15 - 44757*x^14 - 79240*x^13 + 151704*x^12 + 130999*x^11 - 301992*x^10 - 112822*x^9 + 349161*x^8 + 30894*x^7 - 220950*x^6 + 14994*x^5 + 69112*x^4 - 8738*x^3 - 9129*x^2 + 849*x + 441, -2*x^25 + 15*x^24 + 15*x^23 - 356*x^22 + 356*x^21 + 3530*x^20 - 6564*x^19 - 18679*x^18 + 48510*x^17 + 54444*x^16 - 202206*x^15 - 71017*x^14 + 515389*x^13 - 43986*x^12 - 810290*x^11 + 301412*x^10 + 756178*x^9 - 448113*x^8 - 379920*x^7 + 312038*x^6 + 80692*x^5 - 103525*x^4 - 923*x^3 + 14517*x^2 - 825*x - 693, x^27 - 8*x^26 - 6*x^25 + 203*x^24 - 290*x^23 - 2039*x^22 + 5246*x^21 + 9720*x^20 - 40035*x^19 - 15981*x^18 + 169723*x^17 - 51812*x^16 - 425093*x^15 + 323594*x^14 + 619341*x^13 - 725157*x^12 - 471296*x^11 + 852306*x^10 + 107674*x^9 - 544665*x^8 + 73533*x^7 + 181436*x^6 - 46961*x^5 - 29429*x^4 + 8029*x^3 + 2391*x^2 - 402*x - 99, x^27 - 8*x^26 - 6*x^25 + 203*x^24 - 290*x^23 - 2039*x^22 + 5246*x^21 + 9720*x^20 - 40035*x^19 - 15981*x^18 + 169723*x^17 - 51812*x^16 - 425093*x^15 + 323594*x^14 + 619341*x^13 - 725157*x^12 - 471296*x^11 + 852306*x^10 + 107674*x^9 - 544665*x^8 + 73533*x^7 + 181436*x^6 - 46961*x^5 - 29429*x^4 + 8029*x^3 + 2391*x^2 - 402*x - 99, -x^26 + 5*x^25 + 28*x^24 - 174*x^23 - 268*x^22 + 2526*x^21 + 572*x^20 - 20188*x^19 + 8378*x^18 + 98111*x^17 - 78173*x^16 - 301075*x^15 + 318781*x^14 + 585213*x^13 - 742485*x^12 - 701992*x^11 + 1039268*x^10 + 486622*x^9 - 868516*x^8 - 165226*x^7 + 415785*x^6 + 11076*x^5 - 105103*x^4 + 6072*x^3 + 12123*x^2 - 792*x - 504, -x^26 + 5*x^25 + 28*x^24 - 174*x^23 - 268*x^22 + 2526*x^21 + 572*x^20 - 20188*x^19 + 8378*x^18 + 98111*x^17 - 78173*x^16 - 301075*x^15 + 318781*x^14 + 585213*x^13 - 742485*x^12 - 701992*x^11 + 1039268*x^10 + 486622*x^9 - 868516*x^8 - 165226*x^7 + 415785*x^6 + 11076*x^5 - 105103*x^4 + 6072*x^3 + 12123*x^2 - 792*x - 504, x^26 - 8*x^25 - 7*x^24 + 210*x^23 - 275*x^22 - 2236*x^21 + 5287*x^20 + 12084*x^19 - 42463*x^18 - 31734*x^17 + 192976*x^16 + 11809*x^15 - 539331*x^14 + 163973*x^13 + 951211*x^12 - 479485*x^11 - 1058782*x^10 + 630537*x^9 + 731759*x^8 - 436162*x^7 - 305632*x^6 + 154901*x^5 + 74320*x^4 - 25350*x^3 - 9507*x^2 + 1557*x + 468, x^26 - 8*x^25 - 7*x^24 + 210*x^23 - 275*x^22 - 2236*x^21 + 5287*x^20 + 12084*x^19 - 42463*x^18 - 31734*x^17 + 192976*x^16 + 11809*x^15 - 539331*x^14 + 163973*x^13 + 951211*x^12 - 479485*x^11 - 1058782*x^10 + 630537*x^9 + 731759*x^8 - 436162*x^7 - 305632*x^6 + 154901*x^5 + 74320*x^4 - 25350*x^3 - 9507*x^2 + 1557*x + 468, -x^27 + 8*x^26 + 8*x^25 - 215*x^24 + 252*x^23 + 2387*x^22 - 5141*x^21 - 13930*x^20 + 42935*x^19 + 43630*x^18 - 204067*x^17 - 55177*x^16 + 603998*x^15 - 77842*x^14 - 1147596*x^13 + 412183*x^12 + 1402817*x^11 - 690762*x^10 - 1079762*x^9 + 609233*x^8 + 495323*x^7 - 294495*x^6 - 120386*x^5 + 71127*x^4 + 12325*x^3 - 6567*x^2 - 474*x + 144, -x^27 + 8*x^26 + 8*x^25 - 215*x^24 + 252*x^23 + 2387*x^22 - 5141*x^21 - 13930*x^20 + 42935*x^19 + 43630*x^18 - 204067*x^17 - 55177*x^16 + 603998*x^15 - 77842*x^14 - 1147596*x^13 + 412183*x^12 + 1402817*x^11 - 690762*x^10 - 1079762*x^9 + 609233*x^8 + 495323*x^7 - 294495*x^6 - 120386*x^5 + 71127*x^4 + 12325*x^3 - 6567*x^2 - 474*x + 144, x^29 - 7*x^28 - 19*x^27 + 230*x^26 - 6*x^25 - 3267*x^24 + 3299*x^23 + 26254*x^22 - 41746*x^21 - 130951*x^20 + 270371*x^19 + 416979*x^18 - 1079793*x^17 - 831224*x^16 + 2813397*x^15 + 934202*x^14 - 4852172*x^13 - 317329*x^12 + 5492476*x^11 - 556906*x^10 - 3967578*x^9 + 813734*x^8 + 1734258*x^7 - 462633*x^6 - 415329*x^5 + 123583*x^4 + 44587*x^3 - 13188*x^2 - 1554*x + 387, x^29 - 7*x^28 - 19*x^27 + 230*x^26 - 6*x^25 - 3267*x^24 + 3299*x^23 + 26254*x^22 - 41746*x^21 - 130951*x^20 + 270371*x^19 + 416979*x^18 - 1079793*x^17 - 831224*x^16 + 2813397*x^15 + 934202*x^14 - 4852172*x^13 - 317329*x^12 + 5492476*x^11 - 556906*x^10 - 3967578*x^9 + 813734*x^8 + 1734258*x^7 - 462633*x^6 - 415329*x^5 + 123583*x^4 + 44587*x^3 - 13188*x^2 - 1554*x + 387, -x^29 + 7*x^28 + 19*x^27 - 232*x^26 + 20*x^25 + 3290*x^24 - 3652*x^23 - 26068*x^22 + 45494*x^21 + 125969*x^20 - 292120*x^19 - 377246*x^18 + 1154702*x^17 + 662204*x^16 - 2969316*x^15 - 508013*x^14 + 5044922*x^13 - 327903*x^12 - 5632162*x^11 + 1115048*x^10 + 4040655*x^9 - 1042799*x^8 - 1786930*x^7 + 466630*x^6 + 452909*x^5 - 98831*x^4 - 57403*x^3 + 8241*x^2 + 2670*x - 72, -x^29 + 7*x^28 + 19*x^27 - 232*x^26 + 20*x^25 + 3290*x^24 - 3652*x^23 - 26068*x^22 + 45494*x^21 + 125969*x^20 - 292120*x^19 - 377246*x^18 + 1154702*x^17 + 662204*x^16 - 2969316*x^15 - 508013*x^14 + 5044922*x^13 - 327903*x^12 - 5632162*x^11 + 1115048*x^10 + 4040655*x^9 - 1042799*x^8 - 1786930*x^7 + 466630*x^6 + 452909*x^5 - 98831*x^4 - 57403*x^3 + 8241*x^2 + 2670*x - 72, -x^26 + 7*x^25 + 14*x^24 - 195*x^23 + 78*x^22 + 2277*x^21 - 2923*x^20 - 14512*x^19 + 26710*x^18 + 54987*x^17 - 129355*x^16 - 126047*x^15 + 379710*x^14 + 167897*x^13 - 705539*x^12 - 108001*x^11 + 837013*x^10 - 6452*x^9 - 623256*x^8 + 56997*x^7 + 279097*x^6 - 33620*x^5 - 70241*x^4 + 7814*x^3 + 8673*x^2 - 687*x - 369, -x^26 + 7*x^25 + 14*x^24 - 195*x^23 + 78*x^22 + 2277*x^21 - 2923*x^20 - 14512*x^19 + 26710*x^18 + 54987*x^17 - 129355*x^16 - 126047*x^15 + 379710*x^14 + 167897*x^13 - 705539*x^12 - 108001*x^11 + 837013*x^10 - 6452*x^9 - 623256*x^8 + 56997*x^7 + 279097*x^6 - 33620*x^5 - 70241*x^4 + 7814*x^3 + 8673*x^2 - 687*x - 369, -x^29 + 6*x^28 + 26*x^27 - 214*x^26 - 203*x^25 + 3316*x^24 - 622*x^23 - 29356*x^22 + 22570*x^21 + 164166*x^20 - 186706*x^19 - 605065*x^18 + 854893*x^17 + 1487034*x^16 - 2466146*x^15 - 2405392*x^14 + 4645014*x^13 + 2445303*x^12 - 5711942*x^11 - 1375162*x^10 + 4469137*x^9 + 226254*x^8 - 2102286*x^7 + 160811*x^6 + 533417*x^5 - 81829*x^4 - 59183*x^3 + 10323*x^2 + 2100*x - 288, -x^29 + 6*x^28 + 26*x^27 - 214*x^26 - 203*x^25 + 3316*x^24 - 622*x^23 - 29356*x^22 + 22570*x^21 + 164166*x^20 - 186706*x^19 - 605065*x^18 + 854893*x^17 + 1487034*x^16 - 2466146*x^15 - 2405392*x^14 + 4645014*x^13 + 2445303*x^12 - 5711942*x^11 - 1375162*x^10 + 4469137*x^9 + 226254*x^8 - 2102286*x^7 + 160811*x^6 + 533417*x^5 - 81829*x^4 - 59183*x^3 + 10323*x^2 + 2100*x - 288, -x^30 + 7*x^29 + 20*x^28 - 239*x^27 + 3*x^26 + 3511*x^25 - 3723*x^24 - 28986*x^23 + 49539*x^22 + 146737*x^21 - 336942*x^20 - 461294*x^19 + 1416328*x^18 + 836208*x^17 - 3898003*x^16 - 543244*x^15 + 7128248*x^14 - 1052115*x^13 - 8569428*x^12 + 2933963*x^11 + 6535061*x^10 - 3163121*x^9 - 2937773*x^8 + 1767774*x^7 + 667101*x^6 - 494860*x^5 - 48481*x^4 + 57181*x^3 - 1656*x^2 - 1914*x + 144, -x^30 + 7*x^29 + 20*x^28 - 239*x^27 + 3*x^26 + 3511*x^25 - 3723*x^24 - 28986*x^23 + 49539*x^22 + 146737*x^21 - 336942*x^20 - 461294*x^19 + 1416328*x^18 + 836208*x^17 - 3898003*x^16 - 543244*x^15 + 7128248*x^14 - 1052115*x^13 - 8569428*x^12 + 2933963*x^11 + 6535061*x^10 - 3163121*x^9 - 2937773*x^8 + 1767774*x^7 + 667101*x^6 - 494860*x^5 - 48481*x^4 + 57181*x^3 - 1656*x^2 - 1914*x + 144, x^28 - 7*x^27 - 18*x^26 + 224*x^25 - 29*x^24 - 3073*x^23 + 3453*x^22 + 23500*x^21 - 41081*x^20 - 108578*x^19 + 252889*x^18 + 303143*x^17 - 950682*x^16 - 457638*x^15 + 2284930*x^14 + 149616*x^13 - 3519747*x^12 + 686329*x^11 + 3385793*x^10 - 1233283*x^9 - 1923392*x^8 + 913157*x^7 + 585349*x^6 - 316774*x^5 - 82126*x^4 + 44901*x^3 + 5535*x^2 - 2043*x - 234, x^28 - 7*x^27 - 18*x^26 + 224*x^25 - 29*x^24 - 3073*x^23 + 3453*x^22 + 23500*x^21 - 41081*x^20 - 108578*x^19 + 252889*x^18 + 303143*x^17 - 950682*x^16 - 457638*x^15 + 2284930*x^14 + 149616*x^13 - 3519747*x^12 + 686329*x^11 + 3385793*x^10 - 1233283*x^9 - 1923392*x^8 + 913157*x^7 + 585349*x^6 - 316774*x^5 - 82126*x^4 + 44901*x^3 + 5535*x^2 - 2043*x - 234, -x^28 + 7*x^27 + 18*x^26 - 226*x^25 + 43*x^24 + 3092*x^23 - 3777*x^22 - 23294*x^21 + 44250*x^20 + 104236*x^19 - 270004*x^18 - 272115*x^17 + 1006860*x^16 + 336306*x^15 - 2402107*x^14 + 138999*x^13 + 3679751*x^12 - 1116923*x^11 - 3533674*x^10 + 1633700*x^9 + 2019359*x^8 - 1135918*x^7 - 629977*x^6 + 384953*x^5 + 96181*x^4 - 55012*x^3 - 7797*x^2 + 2634*x + 360, -x^28 + 7*x^27 + 18*x^26 - 226*x^25 + 43*x^24 + 3092*x^23 - 3777*x^22 - 23294*x^21 + 44250*x^20 + 104236*x^19 - 270004*x^18 - 272115*x^17 + 1006860*x^16 + 336306*x^15 - 2402107*x^14 + 138999*x^13 + 3679751*x^12 - 1116923*x^11 - 3533674*x^10 + 1633700*x^9 + 2019359*x^8 - 1135918*x^7 - 629977*x^6 + 384953*x^5 + 96181*x^4 - 55012*x^3 - 7797*x^2 + 2634*x + 360, -x^27 + 6*x^26 + 23*x^25 - 196*x^24 - 139*x^23 + 2758*x^22 - 941*x^21 - 21958*x^20 + 19369*x^19 + 109093*x^18 - 134201*x^17 - 351329*x^16 + 526176*x^15 + 736435*x^14 - 1285962*x^13 - 979066*x^12 + 1995146*x^11 + 770222*x^10 - 1926439*x^9 - 299191*x^8 + 1096912*x^7 + 17991*x^6 - 332889*x^5 + 18444*x^4 + 44384*x^3 - 2814*x^2 - 1938*x + 9, -x^27 + 6*x^26 + 23*x^25 - 196*x^24 - 139*x^23 + 2758*x^22 - 941*x^21 - 21958*x^20 + 19369*x^19 + 109093*x^18 - 134201*x^17 - 351329*x^16 + 526176*x^15 + 736435*x^14 - 1285962*x^13 - 979066*x^12 + 1995146*x^11 + 770222*x^10 - 1926439*x^9 - 299191*x^8 + 1096912*x^7 + 17991*x^6 - 332889*x^5 + 18444*x^4 + 44384*x^3 - 2814*x^2 - 1938*x + 9, -x^25 + 8*x^24 + 7*x^23 - 206*x^22 + 254*x^21 + 2159*x^20 - 4743*x^19 - 11643*x^18 + 36580*x^17 + 32306*x^16 - 158275*x^15 - 29207*x^14 + 416450*x^13 - 80146*x^12 - 678648*x^11 + 282108*x^10 + 672646*x^9 - 375571*x^8 - 381653*x^7 + 254021*x^6 + 107747*x^5 - 84950*x^4 - 10361*x^3 + 11634*x^2 + 12*x - 477, -x^25 + 8*x^24 + 7*x^23 - 206*x^22 + 254*x^21 + 2159*x^20 - 4743*x^19 - 11643*x^18 + 36580*x^17 + 32306*x^16 - 158275*x^15 - 29207*x^14 + 416450*x^13 - 80146*x^12 - 678648*x^11 + 282108*x^10 + 672646*x^9 - 375571*x^8 - 381653*x^7 + 254021*x^6 + 107747*x^5 - 84950*x^4 - 10361*x^3 + 11634*x^2 + 12*x - 477, x^24 - 5*x^23 - 23*x^22 + 147*x^21 + 170*x^20 - 1793*x^19 - 79*x^18 + 11953*x^17 - 5941*x^16 - 48042*x^15 + 39454*x^14 + 120355*x^13 - 126771*x^12 - 185900*x^11 + 234292*x^10 + 166641*x^9 - 251724*x^8 - 75685*x^7 + 149005*x^6 + 12037*x^5 - 43777*x^4 + 794*x^3 + 5238*x^2 - 147*x - 207, x^24 - 5*x^23 - 23*x^22 + 147*x^21 + 170*x^20 - 1793*x^19 - 79*x^18 + 11953*x^17 - 5941*x^16 - 48042*x^15 + 39454*x^14 + 120355*x^13 - 126771*x^12 - 185900*x^11 + 234292*x^10 + 166641*x^9 - 251724*x^8 - 75685*x^7 + 149005*x^6 + 12037*x^5 - 43777*x^4 + 794*x^3 + 5238*x^2 - 147*x - 207, -2*x^24 + 14*x^23 + 16*x^22 - 303*x^21 + 225*x^20 + 2747*x^19 - 3962*x^18 - 13641*x^17 + 25431*x^16 + 41033*x^15 - 89423*x^14 - 79209*x^13 + 190046*x^12 + 103342*x^11 - 251570*x^10 - 94857*x^9 + 206072*x^8 + 60041*x^7 - 99668*x^6 - 23839*x^5 + 25375*x^4 + 5222*x^3 - 2793*x^2 - 372*x + 63, -2*x^24 + 14*x^23 + 16*x^22 - 303*x^21 + 225*x^20 + 2747*x^19 - 3962*x^18 - 13641*x^17 + 25431*x^16 + 41033*x^15 - 89423*x^14 - 79209*x^13 + 190046*x^12 + 103342*x^11 - 251570*x^10 - 94857*x^9 + 206072*x^8 + 60041*x^7 - 99668*x^6 - 23839*x^5 + 25375*x^4 + 5222*x^3 - 2793*x^2 - 372*x + 63, x^27 - 6*x^26 - 23*x^25 + 196*x^24 + 140*x^23 - 2770*x^22 + 968*x^21 + 22148*x^20 - 20229*x^19 - 109874*x^18 + 142752*x^17 + 348155*x^16 - 569500*x^15 - 695163*x^14 + 1411634*x^13 + 813612*x^12 - 2210025*x^11 - 424807*x^10 + 2139043*x^9 - 106649*x^8 - 1208950*x^7 + 245527*x^6 + 357042*x^5 - 104057*x^4 - 44274*x^3 + 13938*x^2 + 1692*x - 450, x^27 - 6*x^26 - 23*x^25 + 196*x^24 + 140*x^23 - 2770*x^22 + 968*x^21 + 22148*x^20 - 20229*x^19 - 109874*x^18 + 142752*x^17 + 348155*x^16 - 569500*x^15 - 695163*x^14 + 1411634*x^13 + 813612*x^12 - 2210025*x^11 - 424807*x^10 + 2139043*x^9 - 106649*x^8 - 1208950*x^7 + 245527*x^6 + 357042*x^5 - 104057*x^4 - 44274*x^3 + 13938*x^2 + 1692*x - 450, x^25 - 6*x^24 - 18*x^23 + 165*x^22 + 56*x^21 - 1919*x^20 + 1033*x^19 + 12397*x^18 - 11985*x^17 - 49207*x^16 + 59392*x^15 + 125658*x^14 - 167886*x^13 - 210833*x^12 + 289193*x^11 + 234341*x^10 - 305543*x^9 - 173122*x^8 + 193796*x^7 + 83982*x^6 - 70808*x^5 - 24541*x^4 + 13182*x^3 + 3744*x^2 - 909*x - 234, x^25 - 6*x^24 - 18*x^23 + 165*x^22 + 56*x^21 - 1919*x^20 + 1033*x^19 + 12397*x^18 - 11985*x^17 - 49207*x^16 + 59392*x^15 + 125658*x^14 - 167886*x^13 - 210833*x^12 + 289193*x^11 + 234341*x^10 - 305543*x^9 - 173122*x^8 + 193796*x^7 + 83982*x^6 - 70808*x^5 - 24541*x^4 + 13182*x^3 + 3744*x^2 - 909*x - 234, -x^24 + 7*x^23 + 11*x^22 - 174*x^21 + 99*x^20 + 1836*x^19 - 2527*x^18 - 10696*x^17 + 20287*x^16 + 37448*x^15 - 88918*x^14 - 80157*x^13 + 237724*x^12 + 100916*x^11 - 398708*x^10 - 63576*x^9 + 414725*x^8 + 3228*x^7 - 255332*x^6 + 19478*x^5 + 84421*x^4 - 9362*x^3 - 12405*x^2 + 1119*x + 603, -x^24 + 7*x^23 + 11*x^22 - 174*x^21 + 99*x^20 + 1836*x^19 - 2527*x^18 - 10696*x^17 + 20287*x^16 + 37448*x^15 - 88918*x^14 - 80157*x^13 + 237724*x^12 + 100916*x^11 - 398708*x^10 - 63576*x^9 + 414725*x^8 + 3228*x^7 - 255332*x^6 + 19478*x^5 + 84421*x^4 - 9362*x^3 - 12405*x^2 + 1119*x + 603, -3*x^23 + 21*x^22 + 19*x^21 - 422*x^20 + 380*x^19 + 3474*x^18 - 5597*x^17 - 15145*x^16 + 31909*x^15 + 37968*x^14 - 98569*x^13 - 56662*x^12 + 179024*x^11 + 53024*x^10 - 194345*x^9 - 35926*x^8 + 123093*x^7 + 20789*x^6 - 42804*x^5 - 8833*x^4 + 7318*x^3 + 1890*x^2 - 528*x - 126, -3*x^23 + 21*x^22 + 19*x^21 - 422*x^20 + 380*x^19 + 3474*x^18 - 5597*x^17 - 15145*x^16 + 31909*x^15 + 37968*x^14 - 98569*x^13 - 56662*x^12 + 179024*x^11 + 53024*x^10 - 194345*x^9 - 35926*x^8 + 123093*x^7 + 20789*x^6 - 42804*x^5 - 8833*x^4 + 7318*x^3 + 1890*x^2 - 528*x - 126, x^26 - 5*x^25 - 27*x^24 + 163*x^23 + 285*x^22 - 2320*x^21 - 1296*x^20 + 18933*x^19 - 263*x^18 - 97740*x^17 + 33027*x^16 + 331975*x^15 - 178133*x^14 - 747638*x^13 + 496110*x^12 + 1098889*x^11 - 821943*x^10 - 1012409*x^9 + 821091*x^8 + 541320*x^7 - 473834*x^6 - 144325*x^5 + 141909*x^4 + 13311*x^3 - 17781*x^2 - 99*x + 684, x^26 - 5*x^25 - 27*x^24 + 163*x^23 + 285*x^22 - 2320*x^21 - 1296*x^20 + 18933*x^19 - 263*x^18 - 97740*x^17 + 33027*x^16 + 331975*x^15 - 178133*x^14 - 747638*x^13 + 496110*x^12 + 1098889*x^11 - 821943*x^10 - 1012409*x^9 + 821091*x^8 + 541320*x^7 - 473834*x^6 - 144325*x^5 + 141909*x^4 + 13311*x^3 - 17781*x^2 - 99*x + 684]>
       ]
>;

MOG[641] := 	// J_0(641)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 3,
           Coordinates        := [0, 23, 72, 139, 156, 163, 189, 231, 404, 485, 499, 562, 593, 611, 418*x + 180, 223*x + 180, 59*x + 444, 582*x + 444, 213*x + 482, 428*x + 482, 78*x + 626, 563*x + 626, 297*x + 104, 344*x + 104, 489*x + 314, 152*x + 314, 500*x + 207, 141*x + 207, 263*x + 264, 378*x + 264, 301*x + 125, 340*x + 125, 80*x + 256, 561*x + 256, 520*x + 270, 121*x + 270, 505*x + 212, 136*x + 212, 63*x + 252, 578*x + 252, 336*x + 463, 305*x + 463, 607*x + 167, 34*x + 167, 330*x + 298, 311*x + 298, 130*x + 419, 511*x + 419, 55*x + 517, 586*x + 517, 174*x + 435, 467*x + 435, 462*x + 525, 179*x + 525]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^20 + 3*x^19 - 20*x^18 - 64*x^17 + 157*x^16 + 553*x^15 - 616*x^14 - 2526*x^13 + 1228*x^12 + 6637*x^11 - 934*x^10 - 10175*x^9 - 633*x^8 + 8780*x^7 + 1555*x^6 - 3890*x^5 - 853*x^4 + 752*x^3 + 140*x^2 - 45*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^19 - 3*x^18 + 18*x^17 + 58*x^16 - 124*x^15 - 446*x^14 + 411*x^13 + 1770*x^12 - 648*x^11 - 3917*x^10 + 308*x^9 + 4853*x^8 + 329*x^7 - 3191*x^6 - 381*x^5 + 991*x^4 + 85*x^3 - 124*x^2 - x + 3, x^19 + 3*x^18 - 18*x^17 - 58*x^16 + 124*x^15 + 446*x^14 - 411*x^13 - 1770*x^12 + 648*x^11 + 3917*x^10 - 308*x^9 - 4853*x^8 - 329*x^7 + 3191*x^6 + 381*x^5 - 991*x^4 - 85*x^3 + 124*x^2 + x - 3, -x^18 - 3*x^17 + 17*x^16 + 55*x^15 - 109*x^14 - 399*x^13 + 322*x^12 + 1476*x^11 - 385*x^10 - 2981*x^9 - 84*x^8 + 3257*x^7 + 574*x^6 - 1791*x^5 - 391*x^4 + 433*x^3 + 70*x^2 - 35*x, x^18 + 3*x^17 - 17*x^16 - 55*x^15 + 109*x^14 + 399*x^13 - 322*x^12 - 1476*x^11 + 385*x^10 + 2981*x^9 + 84*x^8 - 3257*x^7 - 574*x^6 + 1791*x^5 + 391*x^4 - 433*x^3 - 70*x^2 + 35*x, -x^18 - 3*x^17 + 16*x^16 + 52*x^15 - 96*x^14 - 357*x^13 + 258*x^12 + 1244*x^11 - 241*x^10 - 2341*x^9 - 220*x^8 + 2332*x^7 + 600*x^6 - 1108*x^5 - 377*x^4 + 195*x^3 + 69*x^2 - 7*x - 1, x^18 + 3*x^17 - 16*x^16 - 52*x^15 + 96*x^14 + 357*x^13 - 258*x^12 - 1244*x^11 + 241*x^10 + 2341*x^9 + 220*x^8 - 2332*x^7 - 600*x^6 + 1108*x^5 + 377*x^4 - 195*x^3 - 69*x^2 + 7*x + 1, -x^17 - 3*x^16 + 15*x^15 + 47*x^14 - 89*x^13 - 294*x^12 + 263*x^11 + 936*x^10 - 392*x^9 - 1596*x^8 + 245*x^7 + 1400*x^6 - 10*x^5 - 558*x^4 - 15*x^3 + 89*x^2 + x - 3, x^17 + 3*x^16 - 15*x^15 - 47*x^14 + 89*x^13 + 294*x^12 - 263*x^11 - 936*x^10 + 392*x^9 + 1596*x^8 - 245*x^7 - 1400*x^6 + 10*x^5 + 558*x^4 + 15*x^3 - 89*x^2 - x + 3, -x^17 - 3*x^16 + 14*x^15 + 43*x^14 - 81*x^13 - 247*x^12 + 257*x^11 + 731*x^10 - 499*x^9 - 1198*x^8 + 602*x^7 + 1094*x^6 - 398*x^5 - 523*x^4 + 98*x^3 + 93*x^2 - 6*x - 2, x^17 + 3*x^16 - 14*x^15 - 43*x^14 + 81*x^13 + 247*x^12 - 257*x^11 - 731*x^10 + 499*x^9 + 1198*x^8 - 602*x^7 - 1094*x^6 + 398*x^5 + 523*x^4 - 98*x^3 - 93*x^2 + 6*x + 2, -x^17 - 3*x^16 + 14*x^15 + 46*x^14 - 72*x^13 - 279*x^12 + 150*x^11 + 845*x^10 - 29*x^9 - 1323*x^8 - 331*x^7 + 989*x^6 + 402*x^5 - 273*x^4 - 114*x^3 + 24*x^2 + 6*x - 1, x^17 + 3*x^16 - 14*x^15 - 46*x^14 + 72*x^13 + 279*x^12 - 150*x^11 - 845*x^10 + 29*x^9 + 1323*x^8 + 331*x^7 - 989*x^6 - 402*x^5 + 273*x^4 + 114*x^3 - 24*x^2 - 6*x + 1, -x^16 - 4*x^15 + 11*x^14 + 56*x^13 - 39*x^12 - 311*x^11 + 23*x^10 + 872*x^9 + 165*x^8 - 1288*x^7 - 395*x^6 + 936*x^5 + 313*x^4 - 273*x^3 - 62*x^2 + 27*x, x^16 + 4*x^15 - 11*x^14 - 56*x^13 + 39*x^12 + 311*x^11 - 23*x^10 - 872*x^9 - 165*x^8 + 1288*x^7 + 395*x^6 - 936*x^5 - 313*x^4 + 273*x^3 + 62*x^2 - 27*x, -x^16 - 4*x^15 + 9*x^14 + 49*x^13 - 20*x^12 - 229*x^11 - 30*x^10 + 513*x^9 + 164*x^8 - 569*x^7 - 189*x^6 + 297*x^5 + 63*x^4 - 71*x^3 - 7*x^2 + 5*x, x^16 + 4*x^15 - 9*x^14 - 49*x^13 + 20*x^12 + 229*x^11 + 30*x^10 - 513*x^9 - 164*x^8 + 569*x^7 + 189*x^6 - 297*x^5 - 63*x^4 + 71*x^3 + 7*x^2 - 5*x, -x^16 - 5*x^15 + 6*x^14 + 60*x^13 + 16*x^12 - 273*x^11 - 194*x^10 + 586*x^9 + 514*x^8 - 598*x^7 - 534*x^6 + 262*x^5 + 190*x^4 - 55*x^3 - 13*x^2 + 6*x - 2, x^16 + 5*x^15 - 6*x^14 - 60*x^13 - 16*x^12 + 273*x^11 + 194*x^10 - 586*x^9 - 514*x^8 + 598*x^7 + 534*x^6 - 262*x^5 - 190*x^4 + 55*x^3 + 13*x^2 - 6*x + 2, -x^16 - 4*x^15 + 9*x^14 + 50*x^13 - 17*x^12 - 240*x^11 - 64*x^10 + 557*x^9 + 308*x^8 - 640*x^7 - 464*x^6 + 323*x^5 + 285*x^4 - 47*x^3 - 62*x^2 - x + 3, x^16 + 4*x^15 - 9*x^14 - 50*x^13 + 17*x^12 + 240*x^11 + 64*x^10 - 557*x^9 - 308*x^8 + 640*x^7 + 464*x^6 - 323*x^5 - 285*x^4 + 47*x^3 + 62*x^2 + x - 3, -x^16 - 2*x^15 + 16*x^14 + 30*x^13 - 102*x^12 - 177*x^11 + 327*x^10 + 518*x^9 - 547*x^8 - 776*x^7 + 445*x^6 + 544*x^5 - 142*x^4 - 131*x^3 + 17*x^2 + 7*x - 1, x^16 + 2*x^15 - 16*x^14 - 30*x^13 + 102*x^12 + 177*x^11 - 327*x^10 - 518*x^9 + 547*x^8 + 776*x^7 - 445*x^6 - 544*x^5 + 142*x^4 + 131*x^3 - 17*x^2 - 7*x + 1, -x^16 - 4*x^15 + 8*x^14 + 48*x^13 - 6*x^12 - 222*x^11 - 115*x^10 + 500*x^9 + 436*x^8 - 567*x^7 - 643*x^6 + 291*x^5 + 405*x^4 - 40*x^3 - 80*x^2 - x + 2, x^16 + 4*x^15 - 8*x^14 - 48*x^13 + 6*x^12 + 222*x^11 + 115*x^10 - 500*x^9 - 436*x^8 + 567*x^7 + 643*x^6 - 291*x^5 - 405*x^4 + 40*x^3 + 80*x^2 + x - 2, -x^13 - 3*x^12 + 9*x^11 + 33*x^10 - 21*x^9 - 129*x^8 - 11*x^7 + 216*x^6 + 81*x^5 - 148*x^4 - 69*x^3 + 35*x^2 + 15*x - 2, x^13 + 3*x^12 - 9*x^11 - 33*x^10 + 21*x^9 + 129*x^8 + 11*x^7 - 216*x^6 - 81*x^5 + 148*x^4 + 69*x^3 - 35*x^2 - 15*x + 2, -x^15 - 4*x^14 + 9*x^13 + 49*x^12 - 20*x^11 - 229*x^10 - 30*x^9 + 513*x^8 + 164*x^7 - 569*x^6 - 189*x^5 + 297*x^4 + 63*x^3 - 71*x^2 - 7*x + 5, x^15 + 4*x^14 - 9*x^13 - 49*x^12 + 20*x^11 + 229*x^10 + 30*x^9 - 513*x^8 - 164*x^7 + 569*x^6 + 189*x^5 - 297*x^4 - 63*x^3 + 71*x^2 + 7*x - 5, -x^15 - 4*x^14 + 8*x^13 + 46*x^12 - 10*x^11 - 197*x^10 - 65*x^9 + 393*x^8 + 222*x^7 - 376*x^6 - 253*x^5 + 163*x^4 + 113*x^3 - 32*x^2 - 18*x + 2, x^15 + 4*x^14 - 8*x^13 - 46*x^12 + 10*x^11 + 197*x^10 + 65*x^9 - 393*x^8 - 222*x^7 + 376*x^6 + 253*x^5 - 163*x^4 - 113*x^3 + 32*x^2 + 18*x - 2, -x^15 - 4*x^14 + 6*x^13 + 41*x^12 + 8*x^11 - 151*x^10 - 121*x^9 + 242*x^8 + 286*x^7 - 164*x^6 - 259*x^5 + 43*x^4 + 89*x^3 - 12*x^2 - 10*x + 3, x^15 + 4*x^14 - 6*x^13 - 41*x^12 - 8*x^11 + 151*x^10 + 121*x^9 - 242*x^8 - 286*x^7 + 164*x^6 + 259*x^5 - 43*x^4 - 89*x^3 + 12*x^2 + 10*x - 3, x^13 + 2*x^12 - 10*x^11 - 20*x^10 + 35*x^9 + 75*x^8 - 48*x^7 - 130*x^6 + 12*x^5 + 103*x^4 + 20*x^3 - 29*x^2 - 5*x + 3, -x^13 - 2*x^12 + 10*x^11 + 20*x^10 - 35*x^9 - 75*x^8 + 48*x^7 + 130*x^6 - 12*x^5 - 103*x^4 - 20*x^3 + 29*x^2 + 5*x - 3, -x^14 - 4*x^13 + 7*x^12 + 43*x^11 - x^10 - 164*x^9 - 86*x^8 + 264*x^7 + 211*x^6 - 160*x^5 - 172*x^4 + 15*x^3 + 44*x^2 + 3*x - 3, x^14 + 4*x^13 - 7*x^12 - 43*x^11 + x^10 + 164*x^9 + 86*x^8 - 264*x^7 - 211*x^6 + 160*x^5 + 172*x^4 - 15*x^3 - 44*x^2 - 3*x + 3, -x^14 - 3*x^13 + 9*x^12 + 32*x^11 - 24*x^10 - 127*x^9 + 6*x^8 + 236*x^7 + 50*x^6 - 214*x^5 - 45*x^4 + 88*x^3 + x^2 - 13*x + 3, x^14 + 3*x^13 - 9*x^12 - 32*x^11 + 24*x^10 + 127*x^9 - 6*x^8 - 236*x^7 - 50*x^6 + 214*x^5 + 45*x^4 - 88*x^3 - x^2 + 13*x - 3, -x^14 - 4*x^13 + 5*x^12 + 39*x^11 + 18*x^10 - 131*x^9 - 156*x^8 + 167*x^7 + 334*x^6 - 34*x^5 - 271*x^4 - 60*x^3 + 69*x^2 + 17*x - 5, x^14 + 4*x^13 - 5*x^12 - 39*x^11 - 18*x^10 + 131*x^9 + 156*x^8 - 167*x^7 - 334*x^6 + 34*x^5 + 271*x^4 + 60*x^3 - 69*x^2 - 17*x + 5]>,
         rec<Eigen |
           DefiningPolynomial := x^33 - 55*x^31 + 1366*x^29 + 2*x^28 - 20264*x^27 - 78*x^26 + 200138*x^25 + 1299*x^24 - 1388719*x^23 - 11961*x^22 + 6962586*x^21 + 65178*x^20 - 25548448*x^19 - 200710*x^18 + 68731628*x^17 + 225847*x^16 - 134481879*x^15 + 666597*x^14 + 187878625*x^13 - 3207902*x^12 - 181594644*x^11 + 5909639*x^10 + 115486103*x^9 - 5715509*x^8 - 44637399*x^7 + 2828028*x^6 + 9245727*x^5 - 606346*x^4 - 847312*x^3 + 55461*x^2 + 21058*x - 1289,
           Coordinates        := [-x^32 + 52*x^30 - 1214*x^28 - 2*x^27 + 16816*x^26 + 72*x^25 - 153888*x^24 - 1087*x^23 + 980561*x^22 + 8790*x^21 - 4467563*x^20 - 39160*x^19 + 14714883*x^18 + 74740*x^17 - 35017079*x^16 + 126101*x^15 + 59543036*x^14 - 1118806*x^13 - 70726643*x^12 + 2953066*x^11 + 56516457*x^10 - 4118409*x^9 - 28604920*x^8 + 3147144*x^7 + 8305609*x^6 - 1206222*x^5 - 1160342*x^4 + 190386*x^3 + 57018*x^2 - 9157*x - 190, x^32 - 52*x^30 + 1210*x^28 + 2*x^27 - 16638*x^26 - 70*x^25 + 150390*x^24 + 1007*x^23 - 940549*x^22 - 7474*x^21 + 4171917*x^20 + 27666*x^19 - 13234117*x^18 - 18270*x^17 + 29884587*x^16 - 269383*x^15 - 47197842*x^14 + 1190080*x^13 + 50380721*x^12 - 2345248*x^11 - 34226839*x^10 + 2362609*x^9 + 13256002*x^8 - 1044070*x^7 - 2301379*x^6 + 44560*x^5 + 56350*x^4 + 56266*x^3 + 15688*x^2 - 6987*x + 454, 6*x^26 + 2*x^25 - 244*x^24 - 78*x^23 + 4322*x^22 + 1336*x^21 - 43814*x^20 - 13114*x^19 + 281002*x^18 + 80698*x^17 - 1190420*x^16 - 320370*x^15 + 3378098*x^14 + 815952*x^13 - 6380190*x^12 - 1287350*x^11 + 7813982*x^10 + 1169948*x^9 - 5895030*x^8 - 534288*x^7 + 2500264*x^6 + 102172*x^5 - 510788*x^4 - 19152*x^3 + 44166*x^2 + 2068*x - 1354, 4*x^27 - 172*x^25 + 3238*x^23 + 14*x^22 - 35114*x^21 - 408*x^20 + 242888*x^19 + 4922*x^18 - 1121156*x^17 - 32088*x^16 + 3510884*x^15 + 124664*x^14 - 7433606*x^13 - 304554*x^12 + 10414610*x^11 + 495192*x^10 - 9253832*x^9 - 579262*x^8 + 4874002*x^7 + 498042*x^6 - 1397196*x^5 - 259326*x^4 + 206758*x^3 + 46606*x^2 - 10220*x - 778, -3*x^31 + 152*x^29 - 3448*x^27 - 6*x^26 + 46250*x^25 + 212*x^24 - 408158*x^23 - 3171*x^22 + 2495023*x^21 + 26018*x^20 - 10833565*x^19 - 125970*x^18 + 33714549*x^17 + 351948*x^16 - 74938843*x^15 - 452209*x^14 + 117151982*x^13 - 254836*x^12 - 125078187*x^11 + 1791230*x^10 + 86881183*x^9 - 2568365*x^8 - 36331790*x^7 + 1621806*x^6 + 8085385*x^5 - 415960*x^4 - 790294*x^3 + 46304*x^2 + 20868*x - 1289, -2*x^26 - 2*x^25 + 82*x^24 + 82*x^23 - 1474*x^22 - 1484*x^21 + 15274*x^20 + 15576*x^19 - 100956*x^18 - 104734*x^17 + 445192*x^16 + 470294*x^15 - 1333410*x^14 - 1426628*x^13 + 2717608*x^12 + 2893614*x^11 - 3734918*x^10 - 3794458*x^9 + 3394816*x^8 + 2997988*x^7 - 1957716*x^6 - 1233460*x^5 + 633966*x^4 + 187534*x^3 - 75524*x^2 - 4226*x + 1766, 2*x^26 + 2*x^25 - 78*x^24 - 78*x^23 + 1320*x^22 + 1340*x^21 - 12746*x^20 - 13300*x^19 + 77786*x^18 + 83982*x^17 - 314492*x^16 - 350072*x^15 + 860004*x^14 + 968034*x^13 - 1595772*x^12 - 1738978*x^11 + 1978062*x^10 + 1925572*x^9 - 1560240*x^8 - 1181510*x^7 + 692524*x^6 + 319962*x^5 - 122630*x^4 - 18574*x^3 - 1266*x^2 - 3676*x + 1110, 2*x^27 - 84*x^25 - 2*x^24 + 1546*x^23 + 86*x^22 - 16430*x^21 - 1510*x^20 + 111886*x^19 + 14224*x^18 - 512326*x^17 - 78656*x^16 + 1610034*x^15 + 259306*x^14 - 3478304*x^13 - 479246*x^12 + 5084980*x^11 + 360598*x^10 - 4841046*x^9 + 247662*x^8 + 2772756*x^7 - 658968*x^6 - 793846*x^5 + 407368*x^4 + 55100*x^3 - 72126*x^2 + 3108*x + 1584, 2*x^28 - 94*x^26 - 2*x^25 + 1958*x^24 + 86*x^23 - 23818*x^22 - 1586*x^21 + 187686*x^20 + 16438*x^19 - 1004538*x^18 - 105302*x^17 + 3723800*x^16 + 431446*x^15 - 9571180*x^14 - 1129300*x^13 + 16804832*x^12 + 1826724*x^11 - 19503772*x^10 - 1691336*x^9 + 14116134*x^8 + 767300*x^7 - 5760522*x^6 - 136978*x^5 + 1116480*x^4 + 36598*x^3 - 89068*x^2 - 4520*x + 2708, 2*x^28 - 86*x^26 + 4*x^25 + 1614*x^24 - 150*x^23 - 17364*x^22 + 2442*x^21 + 118256*x^20 - 22602*x^19 - 531044*x^18 + 130550*x^17 + 1586358*x^16 - 484714*x^15 - 3095298*x^14 + 1142726*x^13 + 3733858*x^12 - 1604384*x^11 - 2434724*x^10 + 1098648*x^9 + 541006*x^8 - 24500*x^7 + 89174*x^6 - 346732*x^5 + 29028*x^4 + 100158*x^3 - 14594*x^2 - 6038*x + 1110, x^31 - 50*x^29 + 1114*x^27 + 4*x^26 - 14592*x^25 - 146*x^24 + 124864*x^23 + 2277*x^22 - 733611*x^21 - 19856*x^20 + 3027851*x^19 + 106542*x^18 - 8830931*x^17 - 365874*x^16 + 18060755*x^15 + 815899*x^14 - 25354092*x^13 - 1191446*x^12 + 23524045*x^11 + 1166038*x^10 - 13585483*x^9 - 794723*x^8 + 4470970*x^7 + 353654*x^6 - 753745*x^5 - 65648*x^4 + 58912*x^3 + 2018*x^2 - 2568*x + 61, 2*x^27 - 82*x^25 + 2*x^24 + 1470*x^23 - 70*x^22 - 15174*x^21 + 1086*x^20 + 100058*x^19 - 9790*x^18 - 442534*x^17 + 56094*x^16 + 1342960*x^15 - 209294*x^14 - 2814984*x^13 + 502604*x^12 + 4044452*x^11 - 747976*x^10 - 3875808*x^9 + 648560*x^8 + 2326074*x^7 - 301276*x^6 - 759994*x^5 + 67366*x^4 + 94904*x^3 - 1706*x^2 - 736*x - 384, 2*x^27 + 2*x^26 - 80*x^25 - 82*x^24 + 1382*x^23 + 1476*x^22 - 13466*x^21 - 15286*x^20 + 80886*x^19 + 100278*x^18 - 305352*x^17 - 432558*x^16 + 692178*x^15 + 1234540*x^14 - 750222*x^13 - 2292558*x^12 - 274922*x^11 + 2665900*x^10 + 1856586*x^9 - 1831408*x^8 - 2151884*x^7 + 704724*x^6 + 1009200*x^5 - 153884*x^4 - 145642*x^3 + 5480*x^2 + 118*x + 768, 2*x^27 + 2*x^26 - 90*x^25 - 84*x^24 + 1778*x^23 + 1540*x^22 - 20314*x^21 - 16180*x^20 + 148896*x^19 + 107532*x^18 - 734540*x^17 - 470856*x^16 + 2490126*x^15 + 1372502*x^14 - 5819100*x^13 - 2630384*x^12 + 9257234*x^11 + 3194552*x^10 - 9711988*x^9 - 2279660*x^8 + 6313008*x^7 + 804490*x^6 - 2257474*x^5 - 70304*x^4 + 351996*x^3 - 11178*x^2 - 16750*x + 1580, -2*x^30 + 97*x^28 - 2099*x^26 - 2*x^25 + 26753*x^24 + 45*x^23 - 223330*x^22 - 176*x^21 + 1284562*x^20 - 4245*x^19 - 5215050*x^18 + 63864*x^17 + 15056197*x^16 - 415256*x^15 - 30738563*x^14 + 1550791*x^13 + 43550871*x^12 - 3533984*x^11 - 41334094*x^10 + 4893431*x^9 + 24741485*x^8 - 3909813*x^7 - 8415721*x^6 + 1601353*x^5 + 1345366*x^4 - 262427*x^3 - 75093*x^2 + 13091*x + 285, -2*x^30 + 97*x^28 - 2099*x^26 - 2*x^25 + 26753*x^24 + 45*x^23 - 223330*x^22 - 176*x^21 + 1284562*x^20 - 4245*x^19 - 5215050*x^18 + 63864*x^17 + 15056197*x^16 - 415256*x^15 - 30738563*x^14 + 1550791*x^13 + 43550871*x^12 - 3533984*x^11 - 41334094*x^10 + 4893431*x^9 + 24741485*x^8 - 3909813*x^7 - 8415721*x^6 + 1601353*x^5 + 1345366*x^4 - 262427*x^3 - 75093*x^2 + 13091*x + 285, x^31 - 53*x^29 + 1256*x^27 + 2*x^26 - 17578*x^25 - 73*x^24 + 161653*x^23 + 1105*x^22 - 1028529*x^21 - 8828*x^20 + 4643240*x^19 + 37949*x^18 - 15008055*x^17 - 64678*x^16 + 34611641*x^15 - 146208*x^14 - 56071906*x^13 + 1027050*x^12 + 61921880*x^11 - 2356534*x^10 - 44322309*x^9 + 2733081*x^8 + 18932525*x^7 - 1568561*x^6 - 4217816*x^5 + 364130*x^4 + 402044*x^3 - 32233*x^2 - 9018*x + 614, x^31 - 53*x^29 + 1256*x^27 + 2*x^26 - 17578*x^25 - 73*x^24 + 161653*x^23 + 1105*x^22 - 1028529*x^21 - 8828*x^20 + 4643240*x^19 + 37949*x^18 - 15008055*x^17 - 64678*x^16 + 34611641*x^15 - 146208*x^14 - 56071906*x^13 + 1027050*x^12 + 61921880*x^11 - 2356534*x^10 - 44322309*x^9 + 2733081*x^8 + 18932525*x^7 - 1568561*x^6 - 4217816*x^5 + 364130*x^4 + 402044*x^3 - 32233*x^2 - 9018*x + 614, -2*x^29 + 93*x^27 + 2*x^26 - 1919*x^25 - 94*x^24 + 23175*x^23 + 1890*x^22 - 181932*x^21 - 21435*x^20 + 975275*x^19 + 151885*x^18 - 3650297*x^17 - 702526*x^16 + 9588639*x^15 + 2149208*x^14 - 17529205*x^13 - 4306198*x^12 + 21822213*x^11 + 5458735*x^10 - 17817389*x^9 - 4074529*x^8 + 8983544*x^7 + 1548108*x^6 - 2522203*x^5 - 210597*x^4 + 313157*x^3 - 980*x^2 - 11565*x + 675, -2*x^29 + 93*x^27 + 2*x^26 - 1919*x^25 - 94*x^24 + 23175*x^23 + 1890*x^22 - 181932*x^21 - 21435*x^20 + 975275*x^19 + 151885*x^18 - 3650297*x^17 - 702526*x^16 + 9588639*x^15 + 2149208*x^14 - 17529205*x^13 - 4306198*x^12 + 21822213*x^11 + 5458735*x^10 - 17817389*x^9 - 4074529*x^8 + 8983544*x^7 + 1548108*x^6 - 2522203*x^5 - 210597*x^4 + 313157*x^3 - 980*x^2 - 11565*x + 675, x^30 - 51*x^28 + 1159*x^26 - x^25 - 15490*x^24 + 53*x^23 + 135350*x^22 - 1178*x^21 - 813239*x^20 + 14528*x^19 + 3441112*x^18 - 110272*x^17 - 10329143*x^16 + 538431*x^15 + 21864499*x^14 - 1713821*x^13 - 32009712*x^12 + 3522698*x^11 + 31238624*x^10 - 4522959*x^9 - 19064962*x^8 + 3385322*x^7 + 6499284*x^6 - 1281783*x^5 - 999672*x^4 + 173928*x^3 + 50387*x^2 - 5490*x - 739, x^30 - 51*x^28 + 1159*x^26 - x^25 - 15490*x^24 + 53*x^23 + 135350*x^22 - 1178*x^21 - 813239*x^20 + 14528*x^19 + 3441112*x^18 - 110272*x^17 - 10329143*x^16 + 538431*x^15 + 21864499*x^14 - 1713821*x^13 - 32009712*x^12 + 3522698*x^11 + 31238624*x^10 - 4522959*x^9 - 19064962*x^8 + 3385322*x^7 + 6499284*x^6 - 1281783*x^5 - 999672*x^4 + 173928*x^3 + 50387*x^2 - 5490*x - 739, -2*x^28 + 2*x^27 + 90*x^26 - 91*x^25 - 1787*x^24 + 1813*x^23 + 20618*x^22 - 20827*x^21 - 153209*x^20 + 152913*x^19 + 767798*x^18 - 751833*x^17 - 2640023*x^16 + 2522555*x^15 + 6208029*x^14 - 5777262*x^13 - 9752975*x^12 + 8884762*x^11 + 9733880*x^10 - 8847840*x^9 - 5588939*x^8 + 5339522*x^7 + 1471107*x^6 - 1728609*x^5 - 55564*x^4 + 231745*x^3 - 17778*x^2 - 6594*x + 691, -2*x^28 + 2*x^27 + 90*x^26 - 91*x^25 - 1787*x^24 + 1813*x^23 + 20618*x^22 - 20827*x^21 - 153209*x^20 + 152913*x^19 + 767798*x^18 - 751833*x^17 - 2640023*x^16 + 2522555*x^15 + 6208029*x^14 - 5777262*x^13 - 9752975*x^12 + 8884762*x^11 + 9733880*x^10 - 8847840*x^9 - 5588939*x^8 + 5339522*x^7 + 1471107*x^6 - 1728609*x^5 - 55564*x^4 + 231745*x^3 - 17778*x^2 - 6594*x + 691, -2*x^28 + 90*x^26 - x^25 - 1791*x^24 + 32*x^23 + 20780*x^22 - 432*x^21 - 156078*x^20 + 3217*x^19 + 796955*x^18 - 14557*x^17 - 2827535*x^16 + 41909*x^15 + 7001329*x^14 - 79727*x^13 - 11975683*x^12 + 107957*x^11 + 13782825*x^10 - 120120*x^9 - 10169002*x^8 + 118399*x^7 + 4422411*x^6 - 83341*x^5 - 976645*x^4 + 29702*x^3 + 81306*x^2 - 5822*x - 976, -2*x^28 + 90*x^26 - x^25 - 1791*x^24 + 32*x^23 + 20780*x^22 - 432*x^21 - 156078*x^20 + 3217*x^19 + 796955*x^18 - 14557*x^17 - 2827535*x^16 + 41909*x^15 + 7001329*x^14 - 79727*x^13 - 11975683*x^12 + 107957*x^11 + 13782825*x^10 - 120120*x^9 - 10169002*x^8 + 118399*x^7 + 4422411*x^6 - 83341*x^5 - 976645*x^4 + 29702*x^3 + 81306*x^2 - 5822*x - 976, x^29 - 48*x^27 - x^26 + 1020*x^25 + 42*x^24 - 12644*x^23 - 758*x^22 + 101430*x^21 + 7676*x^20 - 552298*x^19 - 47756*x^18 + 2083167*x^17 + 187676*x^16 - 5457070*x^15 - 460003*x^14 + 9809908*x^13 + 662060*x^12 - 11774112*x^11 - 471680*x^10 + 8995971*x^9 + 59370*x^8 - 4043298*x^7 + 82149*x^6 + 938237*x^5 - 15384*x^4 - 91986*x^3 - 1407*x^2 + 1722*x + 192, x^29 - 48*x^27 - x^26 + 1020*x^25 + 42*x^24 - 12644*x^23 - 758*x^22 + 101430*x^21 + 7676*x^20 - 552298*x^19 - 47756*x^18 + 2083167*x^17 + 187676*x^16 - 5457070*x^15 - 460003*x^14 + 9809908*x^13 + 662060*x^12 - 11774112*x^11 - 471680*x^10 + 8995971*x^9 + 59370*x^8 - 4043298*x^7 + 82149*x^6 + 938237*x^5 - 15384*x^4 - 91986*x^3 - 1407*x^2 + 1722*x + 192, x^29 - 49*x^27 - 2*x^26 + 1068*x^25 + 84*x^24 - 13659*x^23 - 1525*x^22 + 113860*x^21 + 15680*x^20 - 649830*x^19 - 100465*x^18 + 2595745*x^17 + 415433*x^16 - 7290072*x^15 - 1107610*x^14 + 14252286*x^13 + 1833588*x^12 - 18909144*x^11 - 1694745*x^10 + 16261376*x^9 + 592871*x^8 - 8389943*x^7 + 204629*x^6 + 2279907*x^5 - 174818*x^4 - 259671*x^3 + 28150*x^2 + 6557*x - 806, x^29 - 49*x^27 - 2*x^26 + 1068*x^25 + 84*x^24 - 13659*x^23 - 1525*x^22 + 113860*x^21 + 15680*x^20 - 649830*x^19 - 100465*x^18 + 2595745*x^17 + 415433*x^16 - 7290072*x^15 - 1107610*x^14 + 14252286*x^13 + 1833588*x^12 - 18909144*x^11 - 1694745*x^10 + 16261376*x^9 + 592871*x^8 - 8389943*x^7 + 204629*x^6 + 2279907*x^5 - 174818*x^4 - 259671*x^3 + 28150*x^2 + 6557*x - 806, x^28 - 2*x^27 - 48*x^26 + 87*x^25 + 1019*x^24 - 1660*x^23 - 12615*x^22 + 18283*x^21 + 101093*x^20 - 128755*x^19 - 550311*x^18 + 607024*x^17 + 2076808*x^16 - 1950730*x^15 - 5443059*x^14 + 4271049*x^13 + 9760192*x^12 - 6267231*x^11 - 11567694*x^10 + 5954785*x^9 + 8508521*x^8 - 3441964*x^7 - 3476192*x^6 + 1063262*x^5 + 651136*x^4 - 119002*x^3 - 46017*x^2 + 2054*x + 1294, x^28 - 2*x^27 - 48*x^26 + 87*x^25 + 1019*x^24 - 1660*x^23 - 12615*x^22 + 18283*x^21 + 101093*x^20 - 128755*x^19 - 550311*x^18 + 607024*x^17 + 2076808*x^16 - 1950730*x^15 - 5443059*x^14 + 4271049*x^13 + 9760192*x^12 - 6267231*x^11 - 11567694*x^10 + 5954785*x^9 + 8508521*x^8 - 3441964*x^7 - 3476192*x^6 + 1063262*x^5 + 651136*x^4 - 119002*x^3 - 46017*x^2 + 2054*x + 1294, x^28 - x^27 - 45*x^26 + 45*x^25 + 888*x^24 - 897*x^23 - 10102*x^22 + 10440*x^21 + 73255*x^20 - 78722*x^19 - 353407*x^18 + 403250*x^17 + 1148273*x^16 - 1429880*x^15 - 2483411*x^14 + 3505181*x^13 + 3430768*x^12 - 5821102*x^11 - 2738881*x^10 + 6273665*x^9 + 905530*x^8 - 4070473*x^7 + 199475*x^6 + 1403377*x^5 - 208794*x^4 - 211933*x^3 + 40403*x^2 + 10202*x - 1969, x^28 - x^27 - 45*x^26 + 45*x^25 + 888*x^24 - 897*x^23 - 10102*x^22 + 10440*x^21 + 73255*x^20 - 78722*x^19 - 353407*x^18 + 403250*x^17 + 1148273*x^16 - 1429880*x^15 - 2483411*x^14 + 3505181*x^13 + 3430768*x^12 - 5821102*x^11 - 2738881*x^10 + 6273665*x^9 + 905530*x^8 - 4070473*x^7 + 199475*x^6 + 1403377*x^5 - 208794*x^4 - 211933*x^3 + 40403*x^2 + 10202*x - 1969, -2*x^27 - 2*x^26 + 86*x^25 + 83*x^24 - 1626*x^23 - 1512*x^22 + 17794*x^21 + 15878*x^20 - 124926*x^19 - 106133*x^18 + 589866*x^17 + 470575*x^16 - 1911768*x^15 - 1399565*x^14 + 4268354*x^13 + 2761999*x^12 - 6496076*x^11 - 3494505*x^10 + 6553402*x^9 + 2638824*x^8 - 4135362*x^7 - 1018975*x^6 + 1445720*x^5 + 128919*x^4 - 213760*x^3 + 3476*x^2 + 9258*x - 790, -2*x^27 - 2*x^26 + 86*x^25 + 83*x^24 - 1626*x^23 - 1512*x^22 + 17794*x^21 + 15878*x^20 - 124926*x^19 - 106133*x^18 + 589866*x^17 + 470575*x^16 - 1911768*x^15 - 1399565*x^14 + 4268354*x^13 + 2761999*x^12 - 6496076*x^11 - 3494505*x^10 + 6553402*x^9 + 2638824*x^8 - 4135362*x^7 - 1018975*x^6 + 1445720*x^5 + 128919*x^4 - 213760*x^3 + 3476*x^2 + 9258*x - 790, -x^27 - x^26 + 42*x^25 + 43*x^24 - 769*x^23 - 810*x^22 + 8060*x^21 + 8774*x^20 - 53394*x^19 - 60309*x^18 + 232896*x^17 + 273860*x^16 - 675542*x^15 - 829370*x^14 + 1285168*x^13 + 1652156*x^12 - 1543312*x^11 - 2084350*x^10 + 1094985*x^9 + 1554104*x^8 - 425771*x^7 - 612474*x^6 + 99838*x^5 + 111380*x^4 - 18091*x^3 - 8318*x^2 + 1331*x + 115, -x^27 - x^26 + 42*x^25 + 43*x^24 - 769*x^23 - 810*x^22 + 8060*x^21 + 8774*x^20 - 53394*x^19 - 60309*x^18 + 232896*x^17 + 273860*x^16 - 675542*x^15 - 829370*x^14 + 1285168*x^13 + 1652156*x^12 - 1543312*x^11 - 2084350*x^10 + 1094985*x^9 + 1554104*x^8 - 425771*x^7 - 612474*x^6 + 99838*x^5 + 111380*x^4 - 18091*x^3 - 8318*x^2 + 1331*x + 115, x^30 - 48*x^28 + x^27 + 1023*x^26 - 38*x^25 - 12763*x^24 + 635*x^23 + 103469*x^22 - 6191*x^21 - 572033*x^20 + 39438*x^19 + 2201593*x^18 - 173802*x^17 - 5911916*x^16 + 542641*x^15 + 10921875*x^14 - 1190763*x^13 - 13428338*x^12 + 1755643*x^11 + 10320678*x^10 - 1578666*x^9 - 4392516*x^8 + 698862*x^7 + 773817*x^6 - 55104*x^5 + 1281*x^4 - 27124*x^3 - 9128*x^2 + 3524*x - 227, x^30 - 48*x^28 + x^27 + 1023*x^26 - 38*x^25 - 12763*x^24 + 635*x^23 + 103469*x^22 - 6191*x^21 - 572033*x^20 + 39438*x^19 + 2201593*x^18 - 173802*x^17 - 5911916*x^16 + 542641*x^15 + 10921875*x^14 - 1190763*x^13 - 13428338*x^12 + 1755643*x^11 + 10320678*x^10 - 1578666*x^9 - 4392516*x^8 + 698862*x^7 + 773817*x^6 - 55104*x^5 + 1281*x^4 - 27124*x^3 - 9128*x^2 + 3524*x - 227, x^28 - 43*x^26 - 2*x^25 + 812*x^24 + 82*x^23 - 8875*x^22 - 1425*x^21 + 62316*x^20 + 13762*x^19 - 295056*x^18 - 81319*x^17 + 962263*x^16 + 304689*x^15 - 2169154*x^14 - 723640*x^13 + 3340376*x^12 + 1049788*x^11 - 3409554*x^10 - 838955*x^9 + 2166498*x^8 + 261271*x^7 - 743185*x^6 + 43703*x^5 + 88865*x^4 - 26776*x^3 + 2187*x^2 + 2630*x - 555, x^28 - 43*x^26 - 2*x^25 + 812*x^24 + 82*x^23 - 8875*x^22 - 1425*x^21 + 62316*x^20 + 13762*x^19 - 295056*x^18 - 81319*x^17 + 962263*x^16 + 304689*x^15 - 2169154*x^14 - 723640*x^13 + 3340376*x^12 + 1049788*x^11 - 3409554*x^10 - 838955*x^9 + 2166498*x^8 + 261271*x^7 - 743185*x^6 + 43703*x^5 + 88865*x^4 - 26776*x^3 + 2187*x^2 + 2630*x - 555, x^28 + x^27 - 44*x^26 - 41*x^25 + 848*x^24 + 729*x^23 - 9420*x^22 - 7348*x^21 + 66811*x^20 + 45978*x^19 - 316792*x^18 - 183061*x^17 + 1022467*x^16 + 451104*x^15 - 2242845*x^14 - 601878*x^13 + 3269813*x^12 + 150469*x^11 - 2988535*x^10 + 757399*x^9 + 1459096*x^8 - 1096749*x^7 - 149879*x^6 + 581578*x^5 - 140985*x^4 - 99356*x^3 + 29387*x^2 + 2903*x - 883, x^28 + x^27 - 44*x^26 - 41*x^25 + 848*x^24 + 729*x^23 - 9420*x^22 - 7348*x^21 + 66811*x^20 + 45978*x^19 - 316792*x^18 - 183061*x^17 + 1022467*x^16 + 451104*x^15 - 2242845*x^14 - 601878*x^13 + 3269813*x^12 + 150469*x^11 - 2988535*x^10 + 757399*x^9 + 1459096*x^8 - 1096749*x^7 - 149879*x^6 + 581578*x^5 - 140985*x^4 - 99356*x^3 + 29387*x^2 + 2903*x - 883, x^27 - 43*x^25 + 3*x^24 + 818*x^23 - 105*x^22 - 9077*x^21 + 1591*x^20 + 65229*x^19 - 13748*x^18 - 318607*x^17 + 75185*x^16 + 1079451*x^15 - 273102*x^14 - 2539166*x^13 + 672179*x^12 + 4074924*x^11 - 1120146*x^10 - 4280561*x^9 + 1234710*x^8 + 2711091*x^7 - 846381*x^6 - 868541*x^5 + 307418*x^4 + 80982*x^3 - 33958*x^2 + 3883*x - 318, x^27 - 43*x^25 + 3*x^24 + 818*x^23 - 105*x^22 - 9077*x^21 + 1591*x^20 + 65229*x^19 - 13748*x^18 - 318607*x^17 + 75185*x^16 + 1079451*x^15 - 273102*x^14 - 2539166*x^13 + 672179*x^12 + 4074924*x^11 - 1120146*x^10 - 4280561*x^9 + 1234710*x^8 + 2711091*x^7 - 846381*x^6 - 868541*x^5 + 307418*x^4 + 80982*x^3 - 33958*x^2 + 3883*x - 318, x^29 + x^28 - 46*x^27 - 44*x^26 + 936*x^25 + 856*x^24 - 11094*x^23 - 9682*x^22 + 84893*x^21 + 70391*x^20 - 439292*x^19 - 343158*x^18 + 1565258*x^17 + 1134828*x^16 - 3835789*x^15 - 2515693*x^14 + 6342022*x^13 + 3597004*x^12 - 6778700*x^11 - 3046432*x^10 + 4295548*x^9 + 1216204*x^8 - 1304739*x^7 + 13629*x^6 + 41914*x^5 - 141218*x^4 + 42636*x^3 + 27828*x^2 - 3324*x - 450, x^29 + x^28 - 46*x^27 - 44*x^26 + 936*x^25 + 856*x^24 - 11094*x^23 - 9682*x^22 + 84893*x^21 + 70391*x^20 - 439292*x^19 - 343158*x^18 + 1565258*x^17 + 1134828*x^16 - 3835789*x^15 - 2515693*x^14 + 6342022*x^13 + 3597004*x^12 - 6778700*x^11 - 3046432*x^10 + 4295548*x^9 + 1216204*x^8 - 1304739*x^7 + 13629*x^6 + 41914*x^5 - 141218*x^4 + 42636*x^3 + 27828*x^2 - 3324*x - 450, x^29 - 45*x^27 + 2*x^26 + 893*x^25 - 75*x^24 - 10301*x^23 + 1214*x^22 + 76685*x^21 - 11097*x^20 - 386966*x^19 + 62814*x^18 + 1353757*x^17 - 226313*x^16 - 3303091*x^15 + 509031*x^14 + 5583732*x^13 - 649915*x^12 - 6424667*x^11 + 301728*x^10 + 4897419*x^9 + 277381*x^8 - 2392414*x^7 - 422387*x^6 + 713112*x^5 + 179742*x^4 - 110676*x^3 - 26322*x^2 + 5665*x + 389, x^29 - 45*x^27 + 2*x^26 + 893*x^25 - 75*x^24 - 10301*x^23 + 1214*x^22 + 76685*x^21 - 11097*x^20 - 386966*x^19 + 62814*x^18 + 1353757*x^17 - 226313*x^16 - 3303091*x^15 + 509031*x^14 + 5583732*x^13 - 649915*x^12 - 6424667*x^11 + 301728*x^10 + 4897419*x^9 + 277381*x^8 - 2392414*x^7 - 422387*x^6 + 713112*x^5 + 179742*x^4 - 110676*x^3 - 26322*x^2 + 5665*x + 389, x^26 + 3*x^25 - 38*x^24 - 113*x^23 + 627*x^22 + 1842*x^21 - 5895*x^20 - 17050*x^19 + 34879*x^18 + 98917*x^17 - 135708*x^16 - 375015*x^15 + 354364*x^14 + 941266*x^13 - 629866*x^12 - 1553459*x^11 + 782487*x^10 + 1640403*x^9 - 714586*x^8 - 1040116*x^7 + 489465*x^6 + 335608*x^5 - 212971*x^4 - 28183*x^3 + 34225*x^2 - 999*x - 792, x^26 + 3*x^25 - 38*x^24 - 113*x^23 + 627*x^22 + 1842*x^21 - 5895*x^20 - 17050*x^19 + 34879*x^18 + 98917*x^17 - 135708*x^16 - 375015*x^15 + 354364*x^14 + 941266*x^13 - 629866*x^12 - 1553459*x^11 + 782487*x^10 + 1640403*x^9 - 714586*x^8 - 1040116*x^7 + 489465*x^6 + 335608*x^5 - 212971*x^4 - 28183*x^3 + 34225*x^2 - 999*x - 792, x^28 + x^27 - 43*x^26 - 42*x^25 + 813*x^24 + 777*x^23 - 8894*x^22 - 8311*x^21 + 62350*x^20 + 56696*x^19 - 293177*x^18 - 256628*x^17 + 941299*x^16 + 777455*x^15 - 2064160*x^14 - 1554255*x^13 + 3052634*x^12 + 1976625*x^11 - 2978698*x^10 - 1500678*x^9 + 1871573*x^8 + 619506*x^7 - 745532*x^6 - 128028*x^5 + 182573*x^4 + 12316*x^3 - 22024*x^2 - 650*x + 677, x^28 + x^27 - 43*x^26 - 42*x^25 + 813*x^24 + 777*x^23 - 8894*x^22 - 8311*x^21 + 62350*x^20 + 56696*x^19 - 293177*x^18 - 256628*x^17 + 941299*x^16 + 777455*x^15 - 2064160*x^14 - 1554255*x^13 + 3052634*x^12 + 1976625*x^11 - 2978698*x^10 - 1500678*x^9 + 1871573*x^8 + 619506*x^7 - 745532*x^6 - 128028*x^5 + 182573*x^4 + 12316*x^3 - 22024*x^2 - 650*x + 677]>
       ]
>;

MOG[643] := 	// J_0(643)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [75, 103, 334, 385, 442, 483, 98*x + 464, 545*x + 464, 632*x + 543, 11*x + 543, 429*x + 71, 214*x + 71, 203*x + 232, 440*x + 232, 263*x + 412, 380*x + 412, 190*x + 371, 453*x + 371, 335*x + 616, 308*x + 616, 277*x + 411, 366*x + 411, 194*x + 126, 449*x + 126, 461*x + 435, 182*x + 435, 457*x + 262, 186*x + 262, 13*x + 182, 630*x + 182, 564*x + 590, 79*x + 590, 380*x + 544, 263*x + 544, 119*x + 642, 524*x + 642, 46*x + 619, 597*x + 619, 149*x + 476, 494*x + 476, 541*x + 23, 102*x + 23, 389*x + 586, 254*x + 586, 453*x + 414, 190*x + 414, 494*x + 148, 149*x + 148, 569*x + 598, 74*x + 598, 597*x + 540, 46*x + 540, 96*x + 474, 547*x + 474]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 2, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, -1, -1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, -1, -1, 1, 1, 0, 0, 1, 1, -1, -1, -1, -1, 0, 0, 0, 0, -1, -1, 0, 0, 1, 1, 0, 0, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^24 + 13*x^23 + 49*x^22 - 67*x^21 - 902*x^20 - 1384*x^19 + 4701*x^18 + 16050*x^17 - 2633*x^16 - 67751*x^15 - 57177*x^14 + 129829*x^13 + 217647*x^12 - 78940*x^11 - 340527*x^10 - 88941*x^9 + 239995*x^8 + 147817*x^7 - 58397*x^6 - 60596*x^5 - 233*x^4 + 7055*x^3 + 357*x^2 - 209*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^23 - 13*x^22 - 51*x^21 + 41*x^20 + 796*x^19 + 1416*x^18 - 3305*x^17 - 13167*x^16 - 1647*x^15 + 46034*x^14 + 47573*x^13 - 68529*x^12 - 135785*x^11 + 17532*x^10 + 164378*x^9 + 59933*x^8 - 85168*x^7 - 57489*x^6 + 13193*x^5 + 16484*x^4 + 1382*x^3 - 1017*x^2 - 145*x + 3, x^23 + 13*x^22 + 51*x^21 - 41*x^20 - 796*x^19 - 1416*x^18 + 3305*x^17 + 13167*x^16 + 1647*x^15 - 46034*x^14 - 47573*x^13 + 68529*x^12 + 135785*x^11 - 17532*x^10 - 164378*x^9 - 59933*x^8 + 85168*x^7 + 57489*x^6 - 13193*x^5 - 16484*x^4 - 1382*x^3 + 1017*x^2 + 145*x - 3, -x^22 - 13*x^21 - 53*x^20 + 15*x^19 + 686*x^18 + 1396*x^17 - 2136*x^16 - 10411*x^15 - 3948*x^14 + 29673*x^13 + 36361*x^12 - 32547*x^11 - 79213*x^10 - 4772*x^9 + 71793*x^8 + 32706*x^7 - 24225*x^6 - 16711*x^5 + 2611*x^4 + 2526*x^3 - 96*x^2 - 88*x - 5, x^22 + 13*x^21 + 53*x^20 - 15*x^19 - 686*x^18 - 1396*x^17 + 2136*x^16 + 10411*x^15 + 3948*x^14 - 29673*x^13 - 36361*x^12 + 32547*x^11 + 79213*x^10 + 4772*x^9 - 71793*x^8 - 32706*x^7 + 24225*x^6 + 16711*x^5 - 2611*x^4 - 2526*x^3 + 96*x^2 + 88*x + 5, -x^22 - 13*x^21 - 53*x^20 + 17*x^19 + 710*x^18 + 1487*x^17 - 2144*x^16 - 11306*x^15 - 5656*x^14 + 31627*x^13 + 45501*x^12 - 28861*x^11 - 96936*x^10 - 24236*x^9 + 83034*x^8 + 57622*x^7 - 20979*x^6 - 27401*x^5 - 1462*x^4 + 3512*x^3 + 308*x^2 - 118*x + 4, x^22 + 13*x^21 + 53*x^20 - 17*x^19 - 710*x^18 - 1487*x^17 + 2144*x^16 + 11306*x^15 + 5656*x^14 - 31627*x^13 - 45501*x^12 + 28861*x^11 + 96936*x^10 + 24236*x^9 - 83034*x^8 - 57622*x^7 + 20979*x^6 + 27401*x^5 + 1462*x^4 - 3512*x^3 - 308*x^2 + 118*x - 4, -x^21 - 13*x^20 - 55*x^19 - 10*x^18 + 585*x^17 + 1385*x^16 - 1114*x^15 - 8112*x^14 - 5700*x^13 + 17382*x^12 + 27617*x^11 - 10183*x^10 - 43726*x^9 - 13195*x^8 + 27335*x^7 + 18448*x^6 - 3578*x^5 - 5270*x^4 - 900*x^3 + 37*x^2 + 13*x + 3, x^21 + 13*x^20 + 55*x^19 + 10*x^18 - 585*x^17 - 1385*x^16 + 1114*x^15 + 8112*x^14 + 5700*x^13 - 17382*x^12 - 27617*x^11 + 10183*x^10 + 43726*x^9 + 13195*x^8 - 27335*x^7 - 18448*x^6 + 3578*x^5 + 5270*x^4 + 900*x^3 - 37*x^2 - 13*x - 3, -x^21 - 13*x^20 - 55*x^19 - 10*x^18 + 584*x^17 + 1371*x^16 - 1187*x^15 - 8249*x^14 - 5512*x^13 + 18600*x^12 + 28955*x^11 - 12121*x^10 - 48859*x^9 - 14032*x^8 + 33608*x^7 + 22330*x^6 - 7004*x^5 - 8688*x^4 - 578*x^3 + 892*x^2 + 127*x - 6, x^21 + 13*x^20 + 55*x^19 + 10*x^18 - 584*x^17 - 1371*x^16 + 1187*x^15 + 8249*x^14 + 5512*x^13 - 18600*x^12 - 28955*x^11 + 12121*x^10 + 48859*x^9 + 14032*x^8 - 33608*x^7 - 22330*x^6 + 7004*x^5 + 8688*x^4 + 578*x^3 - 892*x^2 - 127*x + 6, -x^21 - 13*x^20 - 55*x^19 - 8*x^18 + 609*x^17 + 1478*x^16 - 1099*x^15 - 8921*x^14 - 7388*x^13 + 18673*x^12 + 35338*x^11 - 5885*x^10 - 56174*x^9 - 28415*x^8 + 33363*x^7 + 34118*x^6 - 1736*x^5 - 11409*x^4 - 2738*x^3 + 715*x^2 + 209*x - 5, x^21 + 13*x^20 + 55*x^19 + 8*x^18 - 609*x^17 - 1478*x^16 + 1099*x^15 + 8921*x^14 + 7388*x^13 - 18673*x^12 - 35338*x^11 + 5885*x^10 + 56174*x^9 + 28415*x^8 - 33363*x^7 - 34118*x^6 + 1736*x^5 + 11409*x^4 + 2738*x^3 - 715*x^2 - 209*x + 5, -x^21 - 11*x^20 - 31*x^19 + 79*x^18 + 552*x^17 + 383*x^16 - 2910*x^15 - 5486*x^14 + 5316*x^13 + 20995*x^12 + 3511*x^11 - 35883*x^10 - 25170*x^9 + 26104*x^8 + 30826*x^7 - 4030*x^6 - 12919*x^5 - 1563*x^4 + 1664*x^3 + 184*x^2 - 60*x + 2, x^21 + 11*x^20 + 31*x^19 - 79*x^18 - 552*x^17 - 383*x^16 + 2910*x^15 + 5486*x^14 - 5316*x^13 - 20995*x^12 - 3511*x^11 + 35883*x^10 + 25170*x^9 - 26104*x^8 - 30826*x^7 + 4030*x^6 + 12919*x^5 + 1563*x^4 - 1664*x^3 - 184*x^2 + 60*x - 2, -x^20 - 13*x^19 - 57*x^18 - 34*x^17 + 495*x^16 + 1408*x^15 - 133*x^14 - 6206*x^13 - 7756*x^12 + 6761*x^11 + 21429*x^10 + 8382*x^9 - 16900*x^8 - 17491*x^7 - 834*x^6 + 5395*x^5 + 2038*x^4 + 36*x^3 - 72*x^2 - 34*x - 5, x^20 + 13*x^19 + 57*x^18 + 34*x^17 - 495*x^16 - 1408*x^15 + 133*x^14 + 6206*x^13 + 7756*x^12 - 6761*x^11 - 21429*x^10 - 8382*x^9 + 16900*x^8 + 17491*x^7 + 834*x^6 - 5395*x^5 - 2038*x^4 - 36*x^3 + 72*x^2 + 34*x + 5, -x^20 - 12*x^19 - 44*x^18 + 23*x^17 + 527*x^16 + 891*x^15 - 1619*x^14 - 6085*x^13 - 988*x^12 + 15603*x^11 + 14058*x^10 - 16805*x^9 - 27558*x^8 + 3233*x^7 + 21481*x^6 + 6046*x^5 - 5549*x^4 - 2525*x^3 + 181*x^2 + 125*x + 10, x^20 + 12*x^19 + 44*x^18 - 23*x^17 - 527*x^16 - 891*x^15 + 1619*x^14 + 6085*x^13 + 988*x^12 - 15603*x^11 - 14058*x^10 + 16805*x^9 + 27558*x^8 - 3233*x^7 - 21481*x^6 - 6046*x^5 + 5549*x^4 + 2525*x^3 - 181*x^2 - 125*x - 10, -x^20 - 12*x^19 - 44*x^18 + 22*x^17 + 517*x^16 + 863*x^15 - 1589*x^14 - 5833*x^13 - 875*x^12 + 14550*x^11 + 12898*x^10 - 14276*x^9 - 22774*x^8 + 2235*x^7 + 14673*x^6 + 2512*x^5 - 3955*x^4 - 839*x^3 + 421*x^2 + 44*x - 5, x^20 + 12*x^19 + 44*x^18 - 22*x^17 - 517*x^16 - 863*x^15 + 1589*x^14 + 5833*x^13 + 875*x^12 - 14550*x^11 - 12898*x^10 + 14276*x^9 + 22774*x^8 - 2235*x^7 - 14673*x^6 - 2512*x^5 + 3955*x^4 + 839*x^3 - 421*x^2 - 44*x + 5, -x^20 - 13*x^19 - 58*x^18 - 47*x^17 + 432*x^16 + 1299*x^15 + 25*x^14 - 5240*x^13 - 6531*x^12 + 5876*x^11 + 17456*x^10 + 5016*x^9 - 15411*x^8 - 12611*x^7 + 2548*x^6 + 5511*x^5 + 766*x^4 - 795*x^3 - 198*x^2 + 38*x + 10, x^20 + 13*x^19 + 58*x^18 + 47*x^17 - 432*x^16 - 1299*x^15 - 25*x^14 + 5240*x^13 + 6531*x^12 - 5876*x^11 - 17456*x^10 - 5016*x^9 + 15411*x^8 + 12611*x^7 - 2548*x^6 - 5511*x^5 - 766*x^4 + 795*x^3 + 198*x^2 - 38*x - 10, -x^20 - 12*x^19 - 43*x^18 + 35*x^17 + 574*x^16 + 904*x^15 - 2003*x^14 - 6918*x^13 - 470*x^12 + 19143*x^11 + 16195*x^10 - 22080*x^9 - 34094*x^8 + 5679*x^7 + 27684*x^6 + 6434*x^5 - 8170*x^4 - 3239*x^3 + 501*x^2 + 214*x - 5, x^20 + 12*x^19 + 43*x^18 - 35*x^17 - 574*x^16 - 904*x^15 + 2003*x^14 + 6918*x^13 + 470*x^12 - 19143*x^11 - 16195*x^10 + 22080*x^9 + 34094*x^8 - 5679*x^7 - 27684*x^6 - 6434*x^5 + 8170*x^4 + 3239*x^3 - 501*x^2 - 214*x + 5, -x^20 - 13*x^19 - 58*x^18 - 44*x^17 + 471*x^16 + 1481*x^15 + 271*x^14 - 6036*x^13 - 9693*x^12 + 3833*x^11 + 24567*x^10 + 17901*x^9 - 15577*x^8 - 29183*x^7 - 8441*x^6 + 9558*x^5 + 6894*x^4 + 442*x^3 - 600*x^2 - 101*x + 1, x^20 + 13*x^19 + 58*x^18 + 44*x^17 - 471*x^16 - 1481*x^15 - 271*x^14 + 6036*x^13 + 9693*x^12 - 3833*x^11 - 24567*x^10 - 17901*x^9 + 15577*x^8 + 29183*x^7 + 8441*x^6 - 9558*x^5 - 6894*x^4 - 442*x^3 + 600*x^2 + 101*x - 1, -x^19 - 12*x^18 - 45*x^17 + 12*x^16 + 497*x^15 + 982*x^14 - 999*x^13 - 5472*x^12 - 3581*x^11 + 9197*x^10 + 14765*x^9 - 617*x^8 - 14948*x^7 - 8783*x^6 + 2180*x^5 + 3347*x^4 + 749*x^3 - 28*x^2 + 11*x + 2, x^19 + 12*x^18 + 45*x^17 - 12*x^16 - 497*x^15 - 982*x^14 + 999*x^13 + 5472*x^12 + 3581*x^11 - 9197*x^10 - 14765*x^9 + 617*x^8 + 14948*x^7 + 8783*x^6 - 2180*x^5 - 3347*x^4 - 749*x^3 + 28*x^2 - 11*x - 2, -x^19 - 12*x^18 - 45*x^17 + 11*x^16 + 484*x^15 + 924*x^14 - 1057*x^13 - 5149*x^12 - 2607*x^11 + 9368*x^10 + 12061*x^9 - 3679*x^8 - 13221*x^7 - 4270*x^6 + 3436*x^5 + 1959*x^4 + 79*x^3 - 43*x^2 - 29*x - 5, x^19 + 12*x^18 + 45*x^17 - 11*x^16 - 484*x^15 - 924*x^14 + 1057*x^13 + 5149*x^12 + 2607*x^11 - 9368*x^10 - 12061*x^9 + 3679*x^8 + 13221*x^7 + 4270*x^6 - 3436*x^5 - 1959*x^4 - 79*x^3 + 43*x^2 + 29*x + 5, -x^19 - 11*x^18 - 35*x^17 + 33*x^16 + 386*x^15 + 408*x^14 - 1373*x^13 - 2767*x^12 + 2044*x^11 + 7436*x^10 - 637*x^9 - 11130*x^8 - 2621*x^7 + 9079*x^6 + 4075*x^5 - 2804*x^4 - 1444*x^3 + 269*x^2 + 122*x + 7, x^19 + 11*x^18 + 35*x^17 - 33*x^16 - 386*x^15 - 408*x^14 + 1373*x^13 + 2767*x^12 - 2044*x^11 - 7436*x^10 + 637*x^9 + 11130*x^8 + 2621*x^7 - 9079*x^6 - 4075*x^5 + 2804*x^4 + 1444*x^3 - 269*x^2 - 122*x - 7, -x^19 - 12*x^18 - 45*x^17 + 9*x^16 + 461*x^15 + 827*x^14 - 1196*x^13 - 4925*x^12 - 1507*x^11 + 10743*x^10 + 11809*x^9 - 6507*x^8 - 16700*x^7 - 5145*x^6 + 5561*x^5 + 3894*x^4 + 160*x^3 - 427*x^2 - 88*x + 1, x^19 + 12*x^18 + 45*x^17 - 9*x^16 - 461*x^15 - 827*x^14 + 1196*x^13 + 4925*x^12 + 1507*x^11 - 10743*x^10 - 11809*x^9 + 6507*x^8 + 16700*x^7 + 5145*x^6 - 5561*x^5 - 3894*x^4 - 160*x^3 + 427*x^2 + 88*x - 1, -2*x^19 - 24*x^18 - 92*x^17 + x^16 + 902*x^15 + 1878*x^14 - 1582*x^13 - 9694*x^12 - 6530*x^11 + 16239*x^10 + 25784*x^9 - 2867*x^8 - 28121*x^7 - 13673*x^6 + 7780*x^5 + 7289*x^4 + 371*x^3 - 724*x^2 - 74*x + 11, 2*x^19 + 24*x^18 + 92*x^17 - x^16 - 902*x^15 - 1878*x^14 + 1582*x^13 + 9694*x^12 + 6530*x^11 - 16239*x^10 - 25784*x^9 + 2867*x^8 + 28121*x^7 + 13673*x^6 - 7780*x^5 - 7289*x^4 - 371*x^3 + 724*x^2 + 74*x - 11, -x^19 - 13*x^18 - 60*x^17 - 73*x^16 + 310*x^15 + 1131*x^14 + 563*x^13 - 3030*x^12 - 4969*x^11 + 898*x^10 + 7664*x^9 + 4288*x^8 - 2939*x^7 - 3146*x^6 - 10*x^5 + 604*x^4 + 9*x^3 - 130*x^2 - 43*x - 5, x^19 + 13*x^18 + 60*x^17 + 73*x^16 - 310*x^15 - 1131*x^14 - 563*x^13 + 3030*x^12 + 4969*x^11 - 898*x^10 - 7664*x^9 - 4288*x^8 + 2939*x^7 + 3146*x^6 + 10*x^5 - 604*x^4 - 9*x^3 + 130*x^2 + 43*x + 5, -x^19 - 12*x^18 - 46*x^17 + 2*x^16 + 468*x^15 + 1007*x^14 - 723*x^13 - 5146*x^12 - 4241*x^11 + 7547*x^10 + 14813*x^9 + 2099*x^8 - 13683*x^7 - 10887*x^6 + 850*x^5 + 4562*x^4 + 1767*x^3 - 92*x^2 - 134*x - 6, x^19 + 12*x^18 + 46*x^17 - 2*x^16 - 468*x^15 - 1007*x^14 + 723*x^13 + 5146*x^12 + 4241*x^11 - 7547*x^10 - 14813*x^9 - 2099*x^8 + 13683*x^7 + 10887*x^6 - 850*x^5 - 4562*x^4 - 1767*x^3 + 92*x^2 + 134*x + 6, x^17 + 14*x^16 + 71*x^15 + 116*x^14 - 265*x^13 - 1297*x^12 - 1145*x^11 + 2533*x^10 + 5766*x^9 + 1335*x^8 - 6240*x^7 - 5769*x^6 + 132*x^5 + 2058*x^4 + 685*x^3 + 55*x^2 + 47*x + 7, -x^17 - 14*x^16 - 71*x^15 - 116*x^14 + 265*x^13 + 1297*x^12 + 1145*x^11 - 2533*x^10 - 5766*x^9 - 1335*x^8 + 6240*x^7 + 5769*x^6 - 132*x^5 - 2058*x^4 - 685*x^3 - 55*x^2 - 47*x - 7, -2*x^18 - 25*x^17 - 108*x^16 - 97*x^15 + 654*x^14 + 1945*x^13 + 265*x^12 - 6123*x^11 - 7259*x^10 + 5038*x^9 + 13807*x^8 + 3225*x^7 - 8327*x^6 - 4775*x^5 + 1301*x^4 + 1350*x^3 + 210*x^2 + 4*x - 3, 2*x^18 + 25*x^17 + 108*x^16 + 97*x^15 - 654*x^14 - 1945*x^13 - 265*x^12 + 6123*x^11 + 7259*x^10 - 5038*x^9 - 13807*x^8 - 3225*x^7 + 8327*x^6 + 4775*x^5 - 1301*x^4 - 1350*x^3 - 210*x^2 - 4*x + 3, -x^18 - 13*x^17 - 57*x^16 - 42*x^15 + 406*x^14 + 1075*x^13 - 326*x^12 - 4334*x^11 - 3296*x^10 + 6780*x^9 + 10067*x^8 - 2767*x^7 - 10708*x^6 - 2764*x^5 + 3550*x^4 + 1645*x^3 - 135*x^2 - 82*x - 2, x^18 + 13*x^17 + 57*x^16 + 42*x^15 - 406*x^14 - 1075*x^13 + 326*x^12 + 4334*x^11 + 3296*x^10 - 6780*x^9 - 10067*x^8 + 2767*x^7 + 10708*x^6 + 2764*x^5 - 3550*x^4 - 1645*x^3 + 135*x^2 + 82*x + 2, x^16 + 6*x^15 - 13*x^14 - 167*x^13 - 306*x^12 + 527*x^11 + 2207*x^10 + 989*x^9 - 3993*x^8 - 4613*x^7 + 1596*x^6 + 4146*x^5 + 565*x^4 - 1233*x^3 - 374*x^2 + 39*x + 7, -x^16 - 6*x^15 + 13*x^14 + 167*x^13 + 306*x^12 - 527*x^11 - 2207*x^10 - 989*x^9 + 3993*x^8 + 4613*x^7 - 1596*x^6 - 4146*x^5 - 565*x^4 + 1233*x^3 + 374*x^2 - 39*x - 7]>,
         rec<Eigen |
           DefiningPolynomial := x^28 - 14*x^27 + 54*x^26 + 128*x^25 - 1427*x^24 + 1888*x^23 + 11531*x^22 - 36529*x^21 - 26391*x^20 + 244374*x^19 - 150608*x^18 - 815380*x^17 + 1218884*x^16 + 1264209*x^15 - 3671665*x^14 - 18014*x^13 + 5684790*x^12 - 2957594*x^11 - 4374316*x^10 + 4258247*x^9 + 1126989*x^8 - 2446324*x^7 + 352520*x^6 + 523154*x^5 - 184074*x^4 - 11953*x^3 + 6924*x^2 + 596*x + 8,
           Coordinates        := [-x^27 + 14*x^26 - 58*x^25 - 74*x^24 + 1217*x^23 - 2218*x^22 - 7147*x^21 + 29753*x^20 - 447*x^19 - 150888*x^18 + 176170*x^17 + 341400*x^16 - 817270*x^15 - 134379*x^14 + 1696045*x^13 - 929670*x^12 - 1646544*x^11 + 1896100*x^10 + 431236*x^9 - 1446891*x^8 + 366917*x^7 + 416982*x^6 - 228752*x^5 - 16760*x^4 + 27882*x^3 - 1861*x^2 - 720*x - 36, x^26 - 14*x^25 + 59*x^24 + 62*x^23 - 1184*x^22 + 2384*x^21 + 6017*x^20 - 28817*x^19 + 9080*x^18 + 127771*x^17 - 188928*x^16 - 214787*x^15 + 704596*x^14 - 127708*x^13 - 1143447*x^12 + 949362*x^11 + 720097*x^10 - 1216742*x^9 + 69483*x^8 + 595379*x^7 - 227826*x^6 - 88189*x^5 + 55618*x^4 - 225*x^3 - 1752*x^2 - 258*x - 20, x^27 - 14*x^26 + 57*x^25 + 88*x^24 - 1276*x^23 + 2166*x^22 + 8197*x^21 - 31559*x^20 - 5568*x^19 + 172427*x^18 - 168008*x^17 - 450947*x^16 + 882950*x^15 + 436116*x^14 - 2080509*x^13 + 503174*x^12 + 2588189*x^11 - 1764846*x^10 - 1606991*x^9 + 1864071*x^8 + 286920*x^7 - 889323*x^6 + 152228*x^5 + 159679*x^4 - 57974*x^3 - 604*x^2 + 1308*x + 56, x^26 - 14*x^25 + 59*x^24 + 62*x^23 - 1182*x^22 + 2356*x^21 + 6149*x^20 - 28885*x^19 + 7578*x^18 + 132351*x^17 - 187620*x^16 - 243587*x^15 + 743048*x^14 - 74244*x^13 - 1318925*x^12 + 1008670*x^11 + 989607*x^10 - 1527830*x^9 - 3353*x^8 + 909949*x^7 - 362732*x^6 - 166495*x^5 + 135836*x^4 - 17397*x^3 - 3832*x^2 + 386*x + 40, -x^26 + 13*x^25 - 45*x^24 - 119*x^23 + 1098*x^22 - 1120*x^21 - 8267*x^20 + 21486*x^19 + 21039*x^18 - 129849*x^17 + 46321*x^16 + 387721*x^15 - 429549*x^14 - 563928*x^13 + 1132117*x^12 + 202447*x^11 - 1444097*x^10 + 452003*x^9 + 883239*x^8 - 563652*x^7 - 196735*x^6 + 220247*x^5 - 8505*x^4 - 25265*x^3 + 2617*x^2 + 756*x + 36, x^26 - 12*x^25 + 33*x^24 + 154*x^23 - 968*x^22 + 230*x^21 + 8657*x^20 - 14245*x^19 - 34058*x^18 + 104311*x^17 + 40614*x^16 - 369719*x^15 + 143512*x^14 + 723140*x^13 - 634229*x^12 - 765284*x^11 + 1057621*x^10 + 350396*x^9 - 906199*x^8 + 51673*x^7 + 390266*x^6 - 108791*x^5 - 65354*x^4 + 28971*x^3 - 32*x^2 - 668*x - 28, -x^26 + 14*x^25 - 60*x^24 - 46*x^23 + 1094*x^22 - 2268*x^21 - 5152*x^20 + 25257*x^19 - 8258*x^18 - 107141*x^17 + 154486*x^16 + 177194*x^15 - 558261*x^14 + 90086*x^13 + 887006*x^12 - 733194*x^11 - 527443*x^10 + 953675*x^9 - 136286*x^8 - 451019*x^7 + 258619*x^6 + 32950*x^5 - 69591*x^4 + 18358*x^3 + 485*x^2 - 476*x - 32, -x^26 + 14*x^25 - 60*x^24 - 46*x^23 + 1094*x^22 - 2268*x^21 - 5152*x^20 + 25257*x^19 - 8258*x^18 - 107141*x^17 + 154486*x^16 + 177194*x^15 - 558261*x^14 + 90086*x^13 + 887006*x^12 - 733194*x^11 - 527443*x^10 + 953675*x^9 - 136286*x^8 - 451019*x^7 + 258619*x^6 + 32950*x^5 - 69591*x^4 + 18358*x^3 + 485*x^2 - 476*x - 32, -x^25 + 14*x^24 - 62*x^23 - 17*x^22 + 953*x^21 - 2198*x^20 - 3423*x^19 + 19967*x^18 - 10542*x^17 - 70270*x^16 + 109122*x^15 + 91695*x^14 - 313560*x^13 + 57479*x^12 + 407987*x^11 - 282566*x^10 - 224479*x^9 + 277273*x^8 + 22011*x^7 - 111147*x^6 + 20751*x^5 + 16837*x^4 - 6239*x^3 + 483*x^2 - 68*x + 4, -x^25 + 14*x^24 - 62*x^23 - 17*x^22 + 953*x^21 - 2198*x^20 - 3423*x^19 + 19967*x^18 - 10542*x^17 - 70270*x^16 + 109122*x^15 + 91695*x^14 - 313560*x^13 + 57479*x^12 + 407987*x^11 - 282566*x^10 - 224479*x^9 + 277273*x^8 + 22011*x^7 - 111147*x^6 + 20751*x^5 + 16837*x^4 - 6239*x^3 + 483*x^2 - 68*x + 4, -x^25 + 14*x^24 - 61*x^23 - 33*x^22 + 1042*x^21 - 2298*x^20 - 4388*x^19 + 23780*x^18 - 11142*x^17 - 93936*x^16 + 149887*x^15 + 132770*x^14 - 495479*x^13 + 138997*x^12 + 711114*x^11 - 659859*x^10 - 343043*x^9 + 718599*x^8 - 130309*x^7 - 272885*x^6 + 138410*x^5 + 18281*x^4 - 21158*x^3 + 902*x^2 + 756*x + 32, -x^25 + 14*x^24 - 61*x^23 - 33*x^22 + 1042*x^21 - 2298*x^20 - 4388*x^19 + 23780*x^18 - 11142*x^17 - 93936*x^16 + 149887*x^15 + 132770*x^14 - 495479*x^13 + 138997*x^12 + 711114*x^11 - 659859*x^10 - 343043*x^9 + 718599*x^8 - 130309*x^7 - 272885*x^6 + 138410*x^5 + 18281*x^4 - 21158*x^3 + 902*x^2 + 756*x + 32, -x^24 + 15*x^23 - 77*x^22 + 60*x^21 + 894*x^20 - 3102*x^19 - 299*x^18 + 20352*x^17 - 31266*x^16 - 39263*x^15 + 151037*x^14 - 59727*x^13 - 266057*x^12 + 333320*x^11 + 106358*x^10 - 435323*x^9 + 181473*x^8 + 182028*x^7 - 180143*x^6 + 14876*x^5 + 40053*x^4 - 16979*x^3 + 1611*x^2 + 178*x - 8, -x^24 + 15*x^23 - 77*x^22 + 60*x^21 + 894*x^20 - 3102*x^19 - 299*x^18 + 20352*x^17 - 31266*x^16 - 39263*x^15 + 151037*x^14 - 59727*x^13 - 266057*x^12 + 333320*x^11 + 106358*x^10 - 435323*x^9 + 181473*x^8 + 182028*x^7 - 180143*x^6 + 14876*x^5 + 40053*x^4 - 16979*x^3 + 1611*x^2 + 178*x - 8, -x^24 + 14*x^23 - 64*x^22 + 10*x^21 + 835*x^20 - 2188*x^19 - 1985*x^18 + 16519*x^17 - 14098*x^16 - 46236*x^15 + 93664*x^14 + 27120*x^13 - 212962*x^12 + 117308*x^11 + 196606*x^10 - 241079*x^9 - 23176*x^8 + 157844*x^7 - 57725*x^6 - 30989*x^5 + 23299*x^4 - 896*x^3 - 2164*x^2 + 302*x + 40, -x^24 + 14*x^23 - 64*x^22 + 10*x^21 + 835*x^20 - 2188*x^19 - 1985*x^18 + 16519*x^17 - 14098*x^16 - 46236*x^15 + 93664*x^14 + 27120*x^13 - 212962*x^12 + 117308*x^11 + 196606*x^10 - 241079*x^9 - 23176*x^8 + 157844*x^7 - 57725*x^6 - 30989*x^5 + 23299*x^4 - 896*x^3 - 2164*x^2 + 302*x + 40, x^23 - 15*x^22 + 77*x^21 - 64*x^20 - 835*x^19 + 2788*x^18 + 769*x^17 - 18329*x^16 + 22052*x^15 + 45847*x^14 - 117729*x^13 - 13693*x^12 + 258736*x^11 - 155912*x^10 - 255841*x^9 + 307490*x^8 + 62561*x^7 - 221046*x^6 + 56542*x^5 + 52445*x^4 - 27713*x^3 + 915*x^2 + 894*x + 48, x^23 - 15*x^22 + 77*x^21 - 64*x^20 - 835*x^19 + 2788*x^18 + 769*x^17 - 18329*x^16 + 22052*x^15 + 45847*x^14 - 117729*x^13 - 13693*x^12 + 258736*x^11 - 155912*x^10 - 255841*x^9 + 307490*x^8 + 62561*x^7 - 221046*x^6 + 56542*x^5 + 52445*x^4 - 27713*x^3 + 915*x^2 + 894*x + 48, -x^24 + 12*x^23 - 37*x^22 - 107*x^21 + 828*x^20 - 642*x^19 - 5672*x^18 + 12436*x^17 + 13730*x^16 - 66476*x^15 + 16935*x^14 + 166640*x^13 - 162199*x^12 - 185401*x^11 + 340312*x^10 + 20765*x^9 - 301513*x^8 + 115573*x^7 + 100837*x^6 - 71211*x^5 - 4012*x^4 + 10257*x^3 - 644*x^2 - 386*x - 16, -x^24 + 12*x^23 - 37*x^22 - 107*x^21 + 828*x^20 - 642*x^19 - 5672*x^18 + 12436*x^17 + 13730*x^16 - 66476*x^15 + 16935*x^14 + 166640*x^13 - 162199*x^12 - 185401*x^11 + 340312*x^10 + 20765*x^9 - 301513*x^8 + 115573*x^7 + 100837*x^6 - 71211*x^5 - 4012*x^4 + 10257*x^3 - 644*x^2 - 386*x - 16, x^24 - 14*x^23 + 63*x^22 + 5*x^21 - 913*x^20 + 2274*x^19 + 2654*x^18 - 18865*x^17 + 13989*x^16 + 58358*x^15 - 107076*x^14 - 53800*x^13 + 266886*x^12 - 90871*x^11 - 306296*x^10 + 248950*x^9 + 155588*x^8 - 223709*x^7 - 6878*x^6 + 86153*x^5 - 20227*x^4 - 9179*x^3 + 2703*x^2 + 220*x - 12, x^24 - 14*x^23 + 63*x^22 + 5*x^21 - 913*x^20 + 2274*x^19 + 2654*x^18 - 18865*x^17 + 13989*x^16 + 58358*x^15 - 107076*x^14 - 53800*x^13 + 266886*x^12 - 90871*x^11 - 306296*x^10 + 248950*x^9 + 155588*x^8 - 223709*x^7 - 6878*x^6 + 86153*x^5 - 20227*x^4 - 9179*x^3 + 2703*x^2 + 220*x - 12, -x^23 + 14*x^22 - 64*x^21 + 9*x^20 + 850*x^19 - 2269*x^18 - 1859*x^17 + 17018*x^16 - 16443*x^15 - 44346*x^14 + 101303*x^13 + 8955*x^12 - 210758*x^11 + 153539*x^10 + 157002*x^9 - 250833*x^8 + 21555*x^7 + 132901*x^6 - 66851*x^5 - 13589*x^4 + 17029*x^3 - 3008*x^2 - 160*x + 8, -x^23 + 14*x^22 - 64*x^21 + 9*x^20 + 850*x^19 - 2269*x^18 - 1859*x^17 + 17018*x^16 - 16443*x^15 - 44346*x^14 + 101303*x^13 + 8955*x^12 - 210758*x^11 + 153539*x^10 + 157002*x^9 - 250833*x^8 + 21555*x^7 + 132901*x^6 - 66851*x^5 - 13589*x^4 + 17029*x^3 - 3008*x^2 - 160*x + 8, -x^23 + 13*x^22 - 52*x^21 - 29*x^20 + 752*x^19 - 1442*x^18 - 2749*x^17 + 12207*x^16 - 3436*x^15 - 39021*x^14 + 46186*x^13 + 49509*x^12 - 117664*x^11 + 4111*x^10 + 129226*x^9 - 68238*x^8 - 57636*x^7 + 59962*x^6 - 206*x^5 - 16569*x^4 + 4392*x^3 + 1047*x^2 - 338*x - 36, -x^23 + 13*x^22 - 52*x^21 - 29*x^20 + 752*x^19 - 1442*x^18 - 2749*x^17 + 12207*x^16 - 3436*x^15 - 39021*x^14 + 46186*x^13 + 49509*x^12 - 117664*x^11 + 4111*x^10 + 129226*x^9 - 68238*x^8 - 57636*x^7 + 59962*x^6 - 206*x^5 - 16569*x^4 + 4392*x^3 + 1047*x^2 - 338*x - 36, -x^23 + 14*x^22 - 66*x^21 + 39*x^20 + 686*x^19 - 2006*x^18 - 807*x^17 + 11827*x^16 - 12022*x^15 - 25554*x^14 + 54412*x^13 + 10320*x^12 - 93717*x^11 + 37376*x^10 + 72077*x^9 - 51191*x^8 - 22100*x^7 + 20196*x^6 + 2754*x^5 - 1164*x^4 - 317*x^3 - 1228*x^2 + 446*x + 32, -x^23 + 14*x^22 - 66*x^21 + 39*x^20 + 686*x^19 - 2006*x^18 - 807*x^17 + 11827*x^16 - 12022*x^15 - 25554*x^14 + 54412*x^13 + 10320*x^12 - 93717*x^11 + 37376*x^10 + 72077*x^9 - 51191*x^8 - 22100*x^7 + 20196*x^6 + 2754*x^5 - 1164*x^4 - 317*x^3 - 1228*x^2 + 446*x + 32, x^25 - 13*x^24 + 46*x^23 + 109*x^22 - 1090*x^21 + 1371*x^20 + 7324*x^19 - 22328*x^18 - 10460*x^17 + 118080*x^16 - 89177*x^15 - 281912*x^14 + 468531*x^13 + 223094*x^12 - 934046*x^11 + 274052*x^10 + 838237*x^9 - 634346*x^8 - 257373*x^7 + 400567*x^6 - 48305*x^5 - 79952*x^4 + 28111*x^3 + 173*x^2 - 664*x - 28, x^25 - 13*x^24 + 46*x^23 + 109*x^22 - 1090*x^21 + 1371*x^20 + 7324*x^19 - 22328*x^18 - 10460*x^17 + 118080*x^16 - 89177*x^15 - 281912*x^14 + 468531*x^13 + 223094*x^12 - 934046*x^11 + 274052*x^10 + 838237*x^9 - 634346*x^8 - 257373*x^7 + 400567*x^6 - 48305*x^5 - 79952*x^4 + 28111*x^3 + 173*x^2 - 664*x - 28, x^22 - 16*x^21 + 92*x^20 - 148*x^19 - 683*x^18 + 3273*x^17 - 2092*x^16 - 14863*x^15 + 31413*x^14 + 13255*x^13 - 103355*x^12 + 67020*x^11 + 129966*x^10 - 187704*x^9 - 21692*x^8 + 166636*x^7 - 71140*x^6 - 37660*x^5 + 33958*x^4 - 6038*x^3 - 181*x^2 - 44*x - 4, x^22 - 16*x^21 + 92*x^20 - 148*x^19 - 683*x^18 + 3273*x^17 - 2092*x^16 - 14863*x^15 + 31413*x^14 + 13255*x^13 - 103355*x^12 + 67020*x^11 + 129966*x^10 - 187704*x^9 - 21692*x^8 + 166636*x^7 - 71140*x^6 - 37660*x^5 + 33958*x^4 - 6038*x^3 - 181*x^2 - 44*x - 4, x^23 - 13*x^22 + 51*x^21 + 43*x^20 - 817*x^19 + 1472*x^18 + 3443*x^17 - 14056*x^16 + 2138*x^15 + 50343*x^14 - 54179*x^13 - 77562*x^12 + 159675*x^11 + 24084*x^10 - 210908*x^9 + 71879*x^8 + 135920*x^7 - 95118*x^6 - 26907*x^5 + 39306*x^4 - 7389*x^3 - 1886*x^2 + 444*x + 36, x^23 - 13*x^22 + 51*x^21 + 43*x^20 - 817*x^19 + 1472*x^18 + 3443*x^17 - 14056*x^16 + 2138*x^15 + 50343*x^14 - 54179*x^13 - 77562*x^12 + 159675*x^11 + 24084*x^10 - 210908*x^9 + 71879*x^8 + 135920*x^7 - 95118*x^6 - 26907*x^5 + 39306*x^4 - 7389*x^3 - 1886*x^2 + 444*x + 36, x^25 - 13*x^24 + 47*x^23 + 95*x^22 - 1024*x^21 + 1337*x^20 + 6573*x^19 - 20038*x^18 - 9806*x^17 + 103680*x^16 - 69951*x^15 - 255180*x^14 + 380792*x^13 + 252748*x^12 - 799291*x^11 + 118508*x^10 + 801819*x^9 - 477061*x^8 - 324826*x^7 + 361414*x^6 - 8196*x^5 - 88538*x^4 + 27071*x^3 + 495*x^2 - 634*x - 28, x^25 - 13*x^24 + 47*x^23 + 95*x^22 - 1024*x^21 + 1337*x^20 + 6573*x^19 - 20038*x^18 - 9806*x^17 + 103680*x^16 - 69951*x^15 - 255180*x^14 + 380792*x^13 + 252748*x^12 - 799291*x^11 + 118508*x^10 + 801819*x^9 - 477061*x^8 - 324826*x^7 + 361414*x^6 - 8196*x^5 - 88538*x^4 + 27071*x^3 + 495*x^2 - 634*x - 28, -x^22 + 13*x^21 - 53*x^20 - 17*x^19 + 709*x^18 - 1475*x^17 - 2195*x^16 + 11360*x^15 - 5388*x^14 - 32621*x^13 + 46344*x^12 + 30977*x^11 - 102895*x^10 + 27488*x^9 + 90915*x^8 - 70682*x^7 - 19609*x^6 + 38386*x^5 - 9435*x^4 - 3058*x^3 + 1237*x^2 - 10*x, -x^22 + 13*x^21 - 53*x^20 - 17*x^19 + 709*x^18 - 1475*x^17 - 2195*x^16 + 11360*x^15 - 5388*x^14 - 32621*x^13 + 46344*x^12 + 30977*x^11 - 102895*x^10 + 27488*x^9 + 90915*x^8 - 70682*x^7 - 19609*x^6 + 38386*x^5 - 9435*x^4 - 3058*x^3 + 1237*x^2 - 10*x, -x^22 + 13*x^21 - 54*x^20 - 6*x^19 + 678*x^18 - 1563*x^17 - 1545*x^16 + 10651*x^15 - 8457*x^14 - 23797*x^13 + 45789*x^12 + 4467*x^11 - 71491*x^10 + 43615*x^9 + 33778*x^8 - 40246*x^7 - 2443*x^6 + 14626*x^5 - 2338*x^4 - 2449*x^3 + 779*x^2 - 4, -x^22 + 13*x^21 - 54*x^20 - 6*x^19 + 678*x^18 - 1563*x^17 - 1545*x^16 + 10651*x^15 - 8457*x^14 - 23797*x^13 + 45789*x^12 + 4467*x^11 - 71491*x^10 + 43615*x^9 + 33778*x^8 - 40246*x^7 - 2443*x^6 + 14626*x^5 - 2338*x^4 - 2449*x^3 + 779*x^2 - 4, -x^22 + 14*x^21 - 68*x^20 + 63*x^19 + 601*x^18 - 2088*x^17 + 378*x^16 + 10113*x^15 - 16772*x^14 - 10913*x^13 + 56754*x^12 - 36281*x^11 - 62978*x^10 + 104364*x^9 - 11263*x^8 - 84146*x^7 + 60390*x^6 + 9446*x^5 - 25460*x^4 + 7334*x^3 + 979*x^2 - 430*x - 28, -x^22 + 14*x^21 - 68*x^20 + 63*x^19 + 601*x^18 - 2088*x^17 + 378*x^16 + 10113*x^15 - 16772*x^14 - 10913*x^13 + 56754*x^12 - 36281*x^11 - 62978*x^10 + 104364*x^9 - 11263*x^8 - 84146*x^7 + 60390*x^6 + 9446*x^5 - 25460*x^4 + 7334*x^3 + 979*x^2 - 430*x - 28, -x^22 + 15*x^21 - 81*x^20 + 119*x^19 + 577*x^18 - 2604*x^17 + 1698*x^16 + 10569*x^15 - 22480*x^14 - 5887*x^13 + 62491*x^12 - 43651*x^11 - 61551*x^10 + 85524*x^9 + 12339*x^8 - 53502*x^7 + 89*x^6 + 20379*x^5 + 1844*x^4 - 7666*x^3 + 1631*x^2 + 160*x - 12, -x^22 + 15*x^21 - 81*x^20 + 119*x^19 + 577*x^18 - 2604*x^17 + 1698*x^16 + 10569*x^15 - 22480*x^14 - 5887*x^13 + 62491*x^12 - 43651*x^11 - 61551*x^10 + 85524*x^9 + 12339*x^8 - 53502*x^7 + 89*x^6 + 20379*x^5 + 1844*x^4 - 7666*x^3 + 1631*x^2 + 160*x - 12, x^21 - 16*x^20 + 89*x^19 - 116*x^18 - 773*x^17 + 3088*x^16 - 752*x^15 - 15820*x^14 + 25287*x^13 + 23959*x^12 - 92489*x^11 + 31186*x^10 + 129785*x^9 - 129591*x^8 - 49555*x^7 + 122996*x^6 - 32030*x^5 - 33023*x^4 + 20198*x^3 - 1938*x^2 - 468*x - 20, x^21 - 16*x^20 + 89*x^19 - 116*x^18 - 773*x^17 + 3088*x^16 - 752*x^15 - 15820*x^14 + 25287*x^13 + 23959*x^12 - 92489*x^11 + 31186*x^10 + 129785*x^9 - 129591*x^8 - 49555*x^7 + 122996*x^6 - 32030*x^5 - 33023*x^4 + 20198*x^3 - 1938*x^2 - 468*x - 20, x^22 - 13*x^21 + 53*x^20 + 15*x^19 - 683*x^18 + 1366*x^17 + 2205*x^16 - 10153*x^15 + 2554*x^14 + 30417*x^13 - 29649*x^12 - 44720*x^11 + 71304*x^10 + 33837*x^9 - 91547*x^8 - 7329*x^7 + 75089*x^6 - 19940*x^5 - 26468*x^4 + 14682*x^3 - 373*x^2 - 628*x - 24, x^22 - 13*x^21 + 53*x^20 + 15*x^19 - 683*x^18 + 1366*x^17 + 2205*x^16 - 10153*x^15 + 2554*x^14 + 30417*x^13 - 29649*x^12 - 44720*x^11 + 71304*x^10 + 33837*x^9 - 91547*x^8 - 7329*x^7 + 75089*x^6 - 19940*x^5 - 26468*x^4 + 14682*x^3 - 373*x^2 - 628*x - 24, -2*x^21 + 27*x^20 - 124*x^19 + 85*x^18 + 1139*x^17 - 3463*x^16 - 305*x^15 + 17113*x^14 - 22338*x^13 - 24322*x^12 + 76886*x^11 - 23156*x^10 - 93575*x^9 + 89236*x^8 + 29518*x^7 - 74906*x^6 + 19030*x^5 + 19966*x^4 - 12734*x^3 + 1761*x^2 + 170*x - 8, -2*x^21 + 27*x^20 - 124*x^19 + 85*x^18 + 1139*x^17 - 3463*x^16 - 305*x^15 + 17113*x^14 - 22338*x^13 - 24322*x^12 + 76886*x^11 - 23156*x^10 - 93575*x^9 + 89236*x^8 + 29518*x^7 - 74906*x^6 + 19030*x^5 + 19966*x^4 - 12734*x^3 + 1761*x^2 + 170*x - 8, -x^21 + 10*x^20 - 17*x^19 - 147*x^18 + 616*x^17 + 192*x^16 - 4816*x^15 + 5530*x^14 + 14186*x^13 - 31949*x^12 - 10482*x^11 + 70871*x^10 - 23776*x^9 - 73736*x^8 + 49278*x^7 + 38550*x^6 - 38799*x^5 - 5143*x^4 + 12485*x^3 - 2698*x^2 - 158*x + 12, -x^21 + 10*x^20 - 17*x^19 - 147*x^18 + 616*x^17 + 192*x^16 - 4816*x^15 + 5530*x^14 + 14186*x^13 - 31949*x^12 - 10482*x^11 + 70871*x^10 - 23776*x^9 - 73736*x^8 + 49278*x^7 + 38550*x^6 - 38799*x^5 - 5143*x^4 + 12485*x^3 - 2698*x^2 - 158*x + 12, -x^21 + 13*x^20 - 57*x^19 + 26*x^18 + 588*x^17 - 1748*x^16 - 205*x^15 + 9694*x^14 - 14583*x^13 - 13093*x^12 + 56655*x^11 - 31367*x^10 - 71672*x^9 + 101728*x^8 + 5915*x^7 - 83886*x^6 + 36667*x^5 + 19263*x^4 - 16098*x^3 + 1651*x^2 + 492*x + 24, -x^21 + 13*x^20 - 57*x^19 + 26*x^18 + 588*x^17 - 1748*x^16 - 205*x^15 + 9694*x^14 - 14583*x^13 - 13093*x^12 + 56655*x^11 - 31367*x^10 - 71672*x^9 + 101728*x^8 + 5915*x^7 - 83886*x^6 + 36667*x^5 + 19263*x^4 - 16098*x^3 + 1651*x^2 + 492*x + 24]>
       ]
>;

MOG[647] := 	// J_0(647)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 14, 19, 59, 147, 166, 210, 228, 236, 268, 269, 285, 295, 299, 304, 385, 426, 434, 442, 471, 507, 541, 639, 346*x + 115, 301*x + 115, 163*x + 434, 484*x + 434, 158*x + 237, 489*x + 237, 313*x + 349, 334*x + 349, 507*x + 384, 140*x + 384, 244*x + 570, 403*x + 570, 71*x + 251, 576*x + 251, 297*x + 334, 350*x + 334, 596*x + 199, 51*x + 199, 189*x + 467, 458*x + 467, 194*x + 427, 453*x + 427, 204*x + 330, 443*x + 330, 524*x + 40, 123*x + 40, 37*x + 2, 610*x + 2, 531*x + 290, 116*x + 290, 138*x + 415, 509*x + 415]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 + 3*x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x + 3, -x - 3, -1, 1, x + 2, -x - 2, -x - 2, x + 2, -x - 1, x + 1, -x - 1, x + 1, 0, 0, x + 2, -x - 2, x + 1, -x - 1, x + 3, -x - 3, -2, 2, x + 2, -x - 2, -x - 2, x + 2, 1, -1, -x - 1, x + 1, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^14 + 2*x^13 - 14*x^12 - 26*x^11 + 75*x^10 + 124*x^9 - 198*x^8 - 271*x^7 + 274*x^6 + 273*x^5 - 190*x^4 - 102*x^3 + 52*x^2 - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, x^13 + 3*x^12 - 11*x^11 - 35*x^10 + 45*x^9 + 152*x^8 - 88*x^7 - 305*x^6 + 92*x^5 + 283*x^4 - 55*x^3 - 99*x^2 + 15*x + 3, -x^13 - 3*x^12 + 11*x^11 + 35*x^10 - 45*x^9 - 152*x^8 + 88*x^7 + 305*x^6 - 92*x^5 - 283*x^4 + 55*x^3 + 99*x^2 - 15*x - 3, x^13 + 3*x^12 - 9*x^11 - 30*x^10 + 28*x^9 + 110*x^8 - 34*x^7 - 182*x^6 + 10*x^5 + 135*x^4 + 3*x^3 - 37*x^2 + 3*x + 1, -x^13 - 3*x^12 + 9*x^11 + 30*x^10 - 28*x^9 - 110*x^8 + 34*x^7 + 182*x^6 - 10*x^5 - 135*x^4 - 3*x^3 + 37*x^2 - 3*x - 1, -x^13 - 2*x^12 + 13*x^11 + 23*x^10 - 67*x^9 - 98*x^8 + 175*x^7 + 195*x^6 - 236*x^5 - 182*x^4 + 147*x^3 + 63*x^2 - 29*x + 1, x^13 + 2*x^12 - 13*x^11 - 23*x^10 + 67*x^9 + 98*x^8 - 175*x^7 - 195*x^6 + 236*x^5 + 182*x^4 - 147*x^3 - 63*x^2 + 29*x - 1, x^12 + 3*x^11 - 7*x^10 - 24*x^9 + 17*x^8 + 69*x^7 - 16*x^6 - 82*x^5 + 3*x^4 + 30*x^3 + 3*x^2 + 5*x - 1, -x^12 - 3*x^11 + 7*x^10 + 24*x^9 - 17*x^8 - 69*x^7 + 16*x^6 + 82*x^5 - 3*x^4 - 30*x^3 - 3*x^2 - 5*x + 1, x^12 + 4*x^11 - 5*x^10 - 35*x^9 - 5*x^8 + 108*x^7 + 57*x^6 - 148*x^5 - 93*x^4 + 90*x^3 + 47*x^2 - 19*x - 1, -x^12 - 4*x^11 + 5*x^10 + 35*x^9 + 5*x^8 - 108*x^7 - 57*x^6 + 148*x^5 + 93*x^4 - 90*x^3 - 47*x^2 + 19*x + 1, -x^12 - 3*x^11 + 8*x^10 + 26*x^9 - 23*x^8 - 76*x^7 + 38*x^6 + 91*x^5 - 43*x^4 - 39*x^3 + 23*x^2 + x - 1, x^12 + 3*x^11 - 8*x^10 - 26*x^9 + 23*x^8 + 76*x^7 - 38*x^6 - 91*x^5 + 43*x^4 + 39*x^3 - 23*x^2 - x + 1, x^11 + 3*x^10 - 6*x^9 - 22*x^8 + 11*x^7 + 58*x^6 - 5*x^5 - 64*x^4 + 2*x^3 + 25*x^2 - 5*x + 1, -x^11 - 3*x^10 + 6*x^9 + 22*x^8 - 11*x^7 - 58*x^6 + 5*x^5 + 64*x^4 - 2*x^3 - 25*x^2 + 5*x - 1, x^11 + 3*x^10 - 5*x^9 - 19*x^8 + 7*x^7 + 42*x^6 - 2*x^5 - 41*x^4 - 2*x^3 + 17*x^2 + x - 2, -x^11 - 3*x^10 + 5*x^9 + 19*x^8 - 7*x^7 - 42*x^6 + 2*x^5 + 41*x^4 + 2*x^3 - 17*x^2 - x + 2, x^11 + 3*x^10 - 7*x^9 - 25*x^8 + 15*x^7 + 72*x^6 - 12*x^5 - 88*x^4 + 5*x^3 + 41*x^2 - 3*x - 2, -x^11 - 3*x^10 + 7*x^9 + 25*x^8 - 15*x^7 - 72*x^6 + 12*x^5 + 88*x^4 - 5*x^3 - 41*x^2 + 3*x + 2, x^10 + 2*x^9 - 7*x^8 - 12*x^7 + 19*x^6 + 23*x^5 - 25*x^4 - 16*x^3 + 14*x^2 + 3*x - 2, -x^10 - 2*x^9 + 7*x^8 + 12*x^7 - 19*x^6 - 23*x^5 + 25*x^4 + 16*x^3 - 14*x^2 - 3*x + 2, -x^11 - 2*x^10 + 9*x^9 + 17*x^8 - 29*x^7 - 47*x^6 + 45*x^5 + 50*x^4 - 34*x^3 - 15*x^2 + 9*x - 2, x^11 + 2*x^10 - 9*x^9 - 17*x^8 + 29*x^7 + 47*x^6 - 45*x^5 - 50*x^4 + 34*x^3 + 15*x^2 - 9*x + 2, x^10 + 2*x^9 - 6*x^8 - 11*x^7 + 11*x^6 + 18*x^5 - x^4 - 5*x^3 - 8*x^2 - 4*x + 1, -x^10 - 2*x^9 + 6*x^8 + 11*x^7 - 11*x^6 - 18*x^5 + x^4 + 5*x^3 + 8*x^2 + 4*x - 1, x^10 + 3*x^9 - 3*x^8 - 15*x^7 - 5*x^6 + 18*x^5 + 20*x^4 + 3*x^3 - 16*x^2 - 10*x + 3, -x^10 - 3*x^9 + 3*x^8 + 15*x^7 + 5*x^6 - 18*x^5 - 20*x^4 - 3*x^3 + 16*x^2 + 10*x - 3, x^10 + 3*x^9 - 5*x^8 - 21*x^7 + 3*x^6 + 48*x^5 + 10*x^4 - 44*x^3 - 9*x^2 + 14*x - 1, -x^10 - 3*x^9 + 5*x^8 + 21*x^7 - 3*x^6 - 48*x^5 - 10*x^4 + 44*x^3 + 9*x^2 - 14*x + 1, -x^10 + 11*x^8 - 40*x^6 + 4*x^5 + 59*x^4 - 10*x^3 - 29*x^2 + 6*x - 1, x^10 - 11*x^8 + 40*x^6 - 4*x^5 - 59*x^4 + 10*x^3 + 29*x^2 - 6*x + 1, 2*x^9 + 4*x^8 - 12*x^7 - 24*x^6 + 22*x^5 + 44*x^4 - 14*x^3 - 27*x^2 + 2*x + 2, -2*x^9 - 4*x^8 + 12*x^7 + 24*x^6 - 22*x^5 - 44*x^4 + 14*x^3 + 27*x^2 - 2*x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^38 - 6*x^37 - 43*x^36 + 317*x^35 + 734*x^34 - 7563*x^33 - 5196*x^32 + 107777*x^31 - 15218*x^30 - 1022420*x^29 + 670981*x^28 + 6809534*x^27 - 6974304*x^26 - 32703124*x^25 + 43233931*x^24 + 114355024*x^23 - 182818211*x^22 - 289598457*x^21 + 551044145*x^20 + 518051925*x^19 - 1199765467*x^18 - 613590239*x^17 + 1879315061*x^16 + 391077694*x^15 - 2078914397*x^14 + 33007060*x^13 + 1568489682*x^12 - 292644423*x^11 - 763027960*x^10 + 245090697*x^9 + 219863956*x^8 - 96514017*x^7 - 33109265*x^6 + 19659318*x^5 + 1729091*x^4 - 1958805*x^3 + 96833*x^2 + 73104*x - 9271,
           Coordinates        := [-x^37 + 6*x^36 + 40*x^35 - 298*x^34 - 626*x^33 + 6668*x^32 + 3815*x^31 - 88905*x^30 + 17869*x^29 + 787164*x^28 - 532838*x^27 - 4881392*x^26 + 4934699*x^25 + 21779936*x^24 - 27738705*x^23 - 70648857*x^22 + 106474554*x^21 + 166027319*x^20 - 290249291*x^19 - 277193708*x^18 + 567968123*x^17 + 313823892*x^16 - 793121362*x^15 - 214306301*x^14 + 774859313*x^13 + 51661403*x^12 - 511750898*x^11 + 41050324*x^10 + 217204209*x^9 - 39681862*x^8 - 55459981*x^7 + 13851872*x^6 + 7881501*x^5 - 2317717*x^4 - 546082*x^3 + 178605*x^2 + 13189*x - 4768, x^37 - 6*x^36 - 40*x^35 + 296*x^34 + 638*x^33 - 6600*x^32 - 4339*x^31 + 88067*x^30 - 7712*x^29 - 784780*x^28 + 417553*x^27 + 4934465*x^26 - 4083963*x^25 - 22542242*x^24 + 23457411*x^23 + 75847792*x^22 - 91509225*x^21 - 188257969*x^20 + 254057996*x^19 + 341034355*x^18 - 509217958*x^17 - 438877010*x^16 + 734035319*x^15 + 379232562*x^14 - 746403813*x^13 - 192554779*x^12 + 515795645*x^11 + 31795159*x^10 - 227925512*x^9 + 18725891*x^8 + 59098429*x^7 - 10338036*x^6 - 8370696*x^5 + 1939443*x^4 + 590468*x^3 - 156633*x^2 - 17069*x + 4870, x^33 - 6*x^32 - 32*x^31 + 248*x^30 + 376*x^29 - 4569*x^28 - 1205*x^27 + 49669*x^26 - 16836*x^25 - 355854*x^24 + 238655*x^23 + 1780090*x^22 - 1518378*x^21 - 6435839*x^20 + 6015603*x^19 + 17188173*x^18 - 16177202*x^17 - 34294434*x^16 + 30714257*x^15 + 50971681*x^14 - 42275027*x^13 - 54999465*x^12 + 42928318*x^11 + 40514327*x^10 - 31719854*x^9 - 18055629*x^8 + 15672928*x^7 + 3770343*x^6 - 4374653*x^5 - 134516*x^4 + 598686*x^3 - 55208*x^2 - 30702*x + 5076, x^35 - 6*x^34 - 36*x^33 + 274*x^32 + 488*x^31 - 5612*x^30 - 2029*x^29 + 68073*x^28 - 24882*x^27 - 543501*x^26 + 448571*x^25 + 2999441*x^24 - 3496227*x^23 - 11672269*x^22 + 17047959*x^21 + 31979397*x^20 - 56597246*x^19 - 60066169*x^18 + 131180164*x^17 + 71640841*x^16 - 211954772*x^15 - 41116745*x^14 + 233715734*x^13 - 13842250*x^12 - 168523242*x^11 + 41689605*x^10 + 74036373*x^9 - 28900064*x^8 - 17901608*x^7 + 9029971*x^6 + 2199378*x^5 - 1366897*x^4 - 116055*x^3 + 94732*x^2 + 1178*x - 2204, -3*x^33 + 19*x^32 + 87*x^31 - 766*x^30 - 737*x^29 + 13577*x^28 - 3887*x^27 - 139061*x^26 + 134351*x^25 + 908288*x^24 - 1321071*x^23 - 3922809*x^22 + 7499210*x^21 + 11122468*x^20 - 27758598*x^19 - 19161999*x^18 + 69415630*x^17 + 13334990*x^16 - 117052726*x^15 + 19063236*x^14 + 128500147*x^13 - 58724709*x^12 - 83683699*x^11 + 65403514*x^10 + 23951658*x^9 - 36606854*x^8 + 3093710*x^7 + 9602761*x^6 - 3318723*x^5 - 938118*x^4 + 644047*x^3 - 20720*x^2 - 39015*x + 5856, -3*x^34 + 19*x^33 + 96*x^32 - 817*x^31 - 1028*x^30 + 15659*x^29 - 410*x^28 - 176618*x^27 + 122248*x^26 + 1303045*x^25 - 1462558*x^24 - 6606265*x^23 + 9589835*x^22 + 23493613*x^21 - 41121064*x^20 - 58546683*x^19 + 121809126*x^18 + 99525601*x^17 - 253408538*x^16 - 106470592*x^15 + 368446929*x^14 + 52510463*x^13 - 365738390*x^12 + 22428785*x^11 + 236718283*x^10 - 51351750*x^9 - 92182318*x^8 + 31523213*x^7 + 18754915*x^6 - 8678987*x^5 - 1503036*x^4 + 1068706*x^3 - 20734*x^2 - 46004*x + 5307, x^35 - 6*x^34 - 36*x^33 + 272*x^32 + 500*x^31 - 5546*x^30 - 2547*x^29 + 67345*x^28 - 15134*x^27 - 543312*x^26 + 343349*x^25 + 3073554*x^24 - 2775481*x^23 - 12525523*x^22 + 13779471*x^21 + 37122926*x^20 - 46693147*x^19 - 79587744*x^18 + 111574927*x^17 + 120718050*x^16 - 188574681*x^15 - 123509603*x^14 + 221550466*x^13 + 76949066*x^12 - 174205683*x^11 - 21444319*x^10 + 86071880*x^9 - 2762333*x^8 - 24493173*x^7 + 2953240*x^6 + 3806304*x^5 - 625345*x^4 - 313516*x^3 + 57527*x^2 + 12717*x - 2666, -3*x^34 + 19*x^33 + 93*x^32 - 806*x^31 - 887*x^30 + 15089*x^29 - 3169*x^28 - 163921*x^27 + 151349*x^26 + 1141372*x^25 - 1636129*x^24 - 5292211*x^23 + 10081482*x^22 + 16306474*x^21 - 40588574*x^20 - 31451079*x^19 + 111346974*x^18 + 28816654*x^17 - 209413468*x^16 + 19356352*x^15 + 264937485*x^14 - 93948389*x^13 - 214964331*x^12 + 123815242*x^11 + 101733116*x^10 - 82935322*x^9 - 22943226*x^8 + 29121733*x^7 + 1092513*x^6 - 5450600*x^5 + 449805*x^4 + 521560*x^3 - 78901*x^2 - 20260*x + 3964, 2*x^32 - 9*x^31 - 77*x^30 + 382*x^29 + 1280*x^28 - 7224*x^27 - 11924*x^26 + 80461*x^25 + 66568*x^24 - 587695*x^23 - 208064*x^22 + 2964259*x^21 + 158342*x^20 - 10577486*x^19 + 1610784*x^18 + 26862376*x^17 - 8157265*x^16 - 48073777*x^15 + 20418126*x^14 + 58980027*x^13 - 31304654*x^12 - 47112435*x^11 + 29768629*x^10 + 22438881*x^9 - 16491356*x^8 - 5601053*x^7 + 4726950*x^6 + 748148*x^5 - 676046*x^4 - 66284*x^3 + 48722*x^2 + 4206*x - 1870, -5*x^31 + 36*x^30 + 104*x^29 - 1305*x^28 + 144*x^27 + 20266*x^26 - 25283*x^25 - 175073*x^24 + 353400*x^23 + 905043*x^22 - 2577912*x^21 - 2706937*x^20 + 11697945*x^19 + 3304646*x^18 - 34795282*x^17 + 6621939*x^16 + 68250634*x^15 - 36122876*x^14 - 85546224*x^13 + 70490611*x^12 + 62439408*x^11 - 74225236*x^10 - 19526167*x^9 + 42386188*x^8 - 2770204*x^7 - 11679769*x^6 + 2890435*x^5 + 1330006*x^4 - 541828*x^3 - 22836*x^2 + 30460*x - 3206, x^33 - 12*x^32 + 6*x^31 + 420*x^30 - 1128*x^29 - 6090*x^28 + 25109*x^27 + 45098*x^26 - 285536*x^25 - 145284*x^24 + 2018705*x^23 - 308401*x^22 - 9552945*x^21 + 5350696*x^20 + 31201004*x^19 - 26381836*x^18 - 70715493*x^17 + 75972874*x^16 + 109240969*x^15 - 141605483*x^14 - 109146236*x^13 + 173181733*x^12 + 61492719*x^11 - 134977762*x^10 - 10103883*x^9 + 62416204*x^8 - 7385914*x^7 - 15063005*x^6 + 3723618*x^5 + 1614609*x^4 - 594965*x^3 - 37316*x^2 + 31596*x - 2872, x^36 - 9*x^35 - 20*x^34 + 395*x^33 - 275*x^32 - 7602*x^31 + 14210*x^30 + 83800*x^29 - 228842*x^28 - 575655*x^27 + 2133385*x^26 + 2457137*x^25 - 13154870*x^24 - 5524081*x^23 + 56567742*x^22 - 1956468*x^21 - 173452689*x^20 + 59865313*x^19 + 380954322*x^18 - 219069426*x^17 - 593276191*x^16 + 451937309*x^15 + 637930213*x^14 - 597168485*x^13 - 449808845*x^12 + 513392880*x^11 + 187607935*x^10 - 279836300*x^9 - 34738322*x^8 + 91873748*x^7 - 2196816*x^6 - 17081158*x^5 + 1960937*x^4 + 1618490*x^3 - 277545*x^2 - 59225*x + 12232, x^36 - 6*x^35 - 38*x^34 + 284*x^33 + 566*x^32 - 6054*x^31 - 3351*x^30 + 76909*x^29 - 12288*x^28 - 649362*x^27 + 377537*x^26 + 3847652*x^25 - 3292043*x^24 - 16469247*x^23 + 17185703*x^22 + 51650000*x^21 - 60681795*x^20 - 119155646*x^19 + 150767603*x^18 + 201380442*x^17 - 266462867*x^16 - 246518119*x^15 + 333505866*x^14 + 214606214*x^13 - 291137613*x^12 - 129447963*x^11 + 173066720*x^10 + 52040445*x^9 - 67817259*x^8 - 12936506*x^7 + 16703648*x^6 + 1645175*x^5 - 2365014*x^4 - 52799*x^3 + 160897*x^2 - 4374*x - 3174, -3*x^36 + 19*x^35 + 108*x^34 - 895*x^33 - 1381*x^32 + 18872*x^31 + 2651*x^30 - 235256*x^29 + 138143*x^28 + 1928142*x^27 - 2039605*x^26 - 10923188*x^25 + 15495226*x^24 + 43706167*x^23 - 76343657*x^22 - 123571138*x^21 + 260794854*x^20 + 240858217*x^19 - 631797344*x^18 - 299766347*x^17 + 1086193699*x^16 + 176771393*x^15 - 1304055084*x^14 + 84668463*x^13 + 1056738784*x^12 - 251594099*x^11 - 545823751*x^10 + 205408835*x^9 + 164403975*x^8 - 82662145*x^7 - 25227764*x^6 + 17341601*x^5 + 1183009*x^4 - 1780200*x^3 + 110022*x^2 + 68336*x - 9271, -3*x^35 + 19*x^34 + 102*x^33 - 857*x^32 - 1192*x^31 + 17249*x^30 + 736*x^29 - 204508*x^28 + 134564*x^27 + 1587603*x^26 - 1766008*x^25 - 8478771*x^24 + 12396539*x^23 + 31807691*x^22 - 56672340*x^21 - 83771051*x^20 + 179085216*x^19 + 150860455*x^18 - 398641244*x^17 - 171424092*x^16 + 623371693*x^15 + 89657153*x^14 - 670670670*x^13 + 43230537*x^12 + 476036063*x^11 - 105350072*x^10 - 207372352*x^9 + 71121763*x^8 + 49278431*x^7 - 22017199*x^6 - 5380336*x^5 + 3212014*x^4 + 129778*x^3 - 189934*x^2 + 10387*x + 2072, x^36 - 6*x^35 - 38*x^34 + 284*x^33 + 566*x^32 - 6054*x^31 - 3353*x^30 + 76931*x^29 - 12298*x^28 - 650052*x^27 + 379419*x^26 + 3856093*x^25 - 3329607*x^24 - 16513904*x^23 + 17555541*x^22 + 51646956*x^21 - 62851665*x^20 - 117727237*x^19 + 158825584*x^18 + 192402213*x^17 - 285540684*x^16 - 217264322*x^15 + 361074505*x^14 + 157000432*x^13 - 311747579*x^12 - 59505335*x^11 + 174427793*x^10 + 1431049*x^9 - 58209946*x^8 + 7238739*x^7 + 10231737*x^6 - 2283892*x^5 - 734546*x^4 + 236481*x^3 + 2746*x^2 - 4635*x + 213, 2*x^33 - 12*x^32 - 64*x^31 + 505*x^30 + 691*x^29 - 9366*x^28 - 106*x^27 + 100670*x^26 - 71904*x^25 - 692605*x^24 + 843990*x^23 + 3167963*x^22 - 5282986*x^21 - 9603797*x^20 + 21172704*x^19 + 18115530*x^18 - 57123244*x^17 - 15806404*x^16 + 104321663*x^15 - 12329213*x^14 - 125551612*x^13 + 53033443*x^12 + 92694572*x^11 - 65585039*x^10 - 34987957*x^9 + 39697443*x^8 + 2488800*x^7 - 11280473*x^6 + 1758282*x^5 + 1345832*x^4 - 404438*x^3 - 35090*x^2 + 23246*x - 2094, -3*x^33 + 16*x^32 + 109*x^31 - 697*x^30 - 1584*x^29 + 13505*x^28 + 10336*x^27 - 153585*x^26 - 2236*x^25 + 1139136*x^24 - 496993*x^23 - 5789204*x^22 + 4292278*x^21 + 20598752*x^20 - 19989822*x^19 - 51440901*x^18 + 59906073*x^17 + 88722727*x^16 - 120690741*x^15 - 101334389*x^14 + 163603096*x^13 + 69654707*x^12 - 145309624*x^11 - 21494382*x^10 + 80238734*x^9 - 2696588*x^8 - 25639814*x^7 + 3481919*x^6 + 4574432*x^5 - 876168*x^4 - 426363*x^3 + 95197*x^2 + 16296*x - 3964, x^32 - 4*x^31 - 46*x^30 + 207*x^29 + 862*x^28 - 4594*x^27 - 8285*x^26 + 58011*x^25 + 38342*x^24 - 464359*x^23 + 4360*x^22 + 2477069*x^21 - 1132031*x^20 - 8984434*x^19 + 7136062*x^18 + 22103603*x^17 - 24110108*x^16 - 35829760*x^15 + 50891114*x^14 + 35266931*x^13 - 68841224*x^12 - 15813508*x^11 + 58255291*x^10 - 3942280*x^9 - 28807140*x^8 + 7839203*x^7 + 7301671*x^6 - 3182476*x^5 - 736070*x^4 + 519444*x^3 - 9426*x^2 - 29322*x + 3964, x^32 - 4*x^31 - 40*x^30 + 168*x^29 + 714*x^28 - 3151*x^27 - 7573*x^26 + 34869*x^25 + 54114*x^24 - 253854*x^23 - 283871*x^22 + 1287672*x^21 + 1170998*x^20 - 4721647*x^19 - 3932625*x^18 + 12861795*x^17 + 10536896*x^16 - 26517840*x^15 - 21166595*x^14 + 41484151*x^13 + 29475071*x^12 - 48012183*x^11 - 25872940*x^10 + 38660481*x^9 + 12267432*x^8 - 19529371*x^7 - 2061730*x^6 + 5310651*x^5 - 213587*x^4 - 687848*x^3 + 91058*x^2 + 32190*x - 6036, x^34 - 4*x^33 - 44*x^32 + 186*x^31 + 860*x^30 - 3892*x^29 - 9813*x^28 + 48447*x^27 + 72012*x^26 - 399477*x^25 - 350383*x^24 + 2298675*x^23 + 1101123*x^22 - 9470023*x^21 - 1892087*x^20 + 28195223*x^19 - 206800*x^18 - 60479769*x^17 + 10220626*x^16 + 92082093*x^15 - 27790586*x^14 - 96697917*x^13 + 40319900*x^12 + 66797550*x^11 - 34928142*x^10 - 28166679*x^9 + 17703015*x^8 + 6505966*x^7 - 4889676*x^6 - 749381*x^5 + 700616*x^4 + 34335*x^3 - 47385*x^2 - 38*x + 1102, x^34 - 6*x^33 - 34*x^32 + 256*x^31 + 462*x^30 - 4944*x^29 - 2781*x^28 + 57414*x^27 - 978*x^26 - 448734*x^25 + 146199*x^24 + 2498303*x^23 - 1238867*x^22 - 10200580*x^21 + 5976636*x^20 + 30894254*x^19 - 19380639*x^18 - 69259832*x^17 + 44287469*x^16 + 113319281*x^15 - 71999546*x^14 - 131750547*x^13 + 82294471*x^12 + 104340018*x^11 - 64102205*x^10 - 52773830*x^9 + 32212636*x^8 + 15460511*x^7 - 9614594*x^6 - 2262691*x^5 + 1548343*x^4 + 113196*x^3 - 112334*x^2 + 2208*x + 2072, x^35 - 9*x^34 - 18*x^33 + 379*x^32 - 323*x^31 - 6918*x^30 + 14126*x^29 + 70982*x^28 - 212310*x^27 - 437723*x^26 + 1852281*x^25 + 1522935*x^24 - 10595836*x^23 - 1460603*x^22 + 41627674*x^21 - 12671572*x^20 - 113961891*x^19 + 71693563*x^18 + 215708114*x^17 - 195379380*x^16 - 272876499*x^15 + 327654037*x^14 + 211926505*x^13 - 350791125*x^12 - 76593611*x^11 + 234192292*x^10 - 12221645*x^9 - 91256118*x^8 + 21366900*x^7 + 18484642*x^6 - 7009968*x^5 - 1503962*x^4 + 912187*x^3 - 12614*x^2 - 39035*x + 4401, -3*x^32 + 20*x^31 + 75*x^30 - 756*x^29 - 359*x^28 + 12430*x^27 - 8499*x^26 - 116542*x^25 + 157529*x^24 + 684701*x^23 - 1291136*x^22 - 2592003*x^21 + 6414988*x^20 + 6144540*x^19 - 20965672*x^18 - 7740832*x^17 + 46180371*x^16 - 146558*x^15 - 68218669*x^14 + 17611840*x^13 + 65640316*x^12 - 29205864*x^11 - 38890729*x^10 + 23164234*x^9 + 13018468*x^8 - 9759486*x^7 - 2205618*x^6 + 2256241*x^5 + 97121*x^4 - 271140*x^3 + 19943*x^2 + 13058*x - 1982, -3*x^32 + 20*x^31 + 75*x^30 - 756*x^29 - 359*x^28 + 12430*x^27 - 8499*x^26 - 116542*x^25 + 157529*x^24 + 684701*x^23 - 1291136*x^22 - 2592003*x^21 + 6414988*x^20 + 6144540*x^19 - 20965672*x^18 - 7740832*x^17 + 46180371*x^16 - 146558*x^15 - 68218669*x^14 + 17611840*x^13 + 65640316*x^12 - 29205864*x^11 - 38890729*x^10 + 23164234*x^9 + 13018468*x^8 - 9759486*x^7 - 2205618*x^6 + 2256241*x^5 + 97121*x^4 - 271140*x^3 + 19943*x^2 + 13058*x - 1982, x^32 - 7*x^31 - 26*x^30 + 274*x^29 + 158*x^28 - 4756*x^27 + 2253*x^26 + 48461*x^25 - 48514*x^24 - 323465*x^23 + 425763*x^22 + 1493690*x^21 - 2270991*x^20 - 4905019*x^19 + 8116521*x^18 + 11560023*x^17 - 20103487*x^16 - 19416577*x^15 + 34671480*x^14 + 22686393*x^13 - 40971766*x^12 - 17646438*x^11 + 31985956*x^10 + 8592977*x^9 - 15538820*x^8 - 2529124*x^7 + 4333249*x^6 + 525409*x^5 - 663028*x^4 - 82276*x^3 + 56614*x^2 + 6573*x - 2650, x^32 - 7*x^31 - 26*x^30 + 274*x^29 + 158*x^28 - 4756*x^27 + 2253*x^26 + 48461*x^25 - 48514*x^24 - 323465*x^23 + 425763*x^22 + 1493690*x^21 - 2270991*x^20 - 4905019*x^19 + 8116521*x^18 + 11560023*x^17 - 20103487*x^16 - 19416577*x^15 + 34671480*x^14 + 22686393*x^13 - 40971766*x^12 - 17646438*x^11 + 31985956*x^10 + 8592977*x^9 - 15538820*x^8 - 2529124*x^7 + 4333249*x^6 + 525409*x^5 - 663028*x^4 - 82276*x^3 + 56614*x^2 + 6573*x - 2650, -3*x^33 + 20*x^32 + 82*x^31 - 795*x^30 - 573*x^29 + 13945*x^28 - 6158*x^27 - 142279*x^26 + 151725*x^25 + 936253*x^24 - 1403352*x^23 - 4157039*x^22 + 7775638*x^21 + 12612184*x^20 - 28638045*x^19 - 25667427*x^18 + 72616353*x^17 + 32476750*x^16 - 127462382*x^15 - 18573345*x^14 + 152466140*x^13 - 10400876*x^12 - 119658890*x^11 + 26999161*x^10 + 57595017*x^9 - 19799275*x^8 - 15261758*x^7 + 6669106*x^6 + 1938650*x^5 - 1071654*x^4 - 75256*x^3 + 71965*x^2 - 2540*x - 1036, -3*x^33 + 20*x^32 + 82*x^31 - 795*x^30 - 573*x^29 + 13945*x^28 - 6158*x^27 - 142279*x^26 + 151725*x^25 + 936253*x^24 - 1403352*x^23 - 4157039*x^22 + 7775638*x^21 + 12612184*x^20 - 28638045*x^19 - 25667427*x^18 + 72616353*x^17 + 32476750*x^16 - 127462382*x^15 - 18573345*x^14 + 152466140*x^13 - 10400876*x^12 - 119658890*x^11 + 26999161*x^10 + 57595017*x^9 - 19799275*x^8 - 15261758*x^7 + 6669106*x^6 + 1938650*x^5 - 1071654*x^4 - 75256*x^3 + 71965*x^2 - 2540*x - 1036, x^33 - 4*x^32 - 45*x^31 + 189*x^30 + 909*x^29 - 4051*x^28 - 10817*x^27 + 51983*x^26 + 83437*x^25 - 443735*x^24 - 430516*x^23 + 2648427*x^22 + 1461387*x^21 - 11315061*x^20 - 2923512*x^19 + 34866151*x^18 + 1524071*x^17 - 77127658*x^16 + 9173875*x^15 + 120471986*x^14 - 29776892*x^13 - 128794467*x^12 + 45611061*x^11 + 89396375*x^10 - 40379748*x^9 - 36793577*x^8 + 20460212*x^7 + 7552243*x^6 - 5440553*x^5 - 478754*x^4 + 685561*x^3 - 44059*x^2 - 30952*x + 4529, x^33 - 4*x^32 - 45*x^31 + 189*x^30 + 909*x^29 - 4051*x^28 - 10817*x^27 + 51983*x^26 + 83437*x^25 - 443735*x^24 - 430516*x^23 + 2648427*x^22 + 1461387*x^21 - 11315061*x^20 - 2923512*x^19 + 34866151*x^18 + 1524071*x^17 - 77127658*x^16 + 9173875*x^15 + 120471986*x^14 - 29776892*x^13 - 128794467*x^12 + 45611061*x^11 + 89396375*x^10 - 40379748*x^9 - 36793577*x^8 + 20460212*x^7 + 7552243*x^6 - 5440553*x^5 - 478754*x^4 + 685561*x^3 - 44059*x^2 - 30952*x + 4529, -x^31 + 10*x^30 + 5*x^29 - 346*x^28 + 640*x^27 + 4977*x^26 - 15409*x^25 - 37259*x^24 + 171578*x^23 + 136399*x^22 - 1140375*x^21 - 4946*x^20 + 4895493*x^19 - 2340456*x^18 - 13886726*x^17 + 11530710*x^16 + 25644163*x^15 - 29566924*x^14 - 28806714*x^13 + 45507713*x^12 + 15580759*x^11 - 41912669*x^10 + 1676694*x^9 + 21245985*x^8 - 6367477*x^7 - 4821216*x^6 + 2521284*x^5 + 299357*x^4 - 357807*x^3 + 30689*x^2 + 15244*x - 2547, -x^31 + 10*x^30 + 5*x^29 - 346*x^28 + 640*x^27 + 4977*x^26 - 15409*x^25 - 37259*x^24 + 171578*x^23 + 136399*x^22 - 1140375*x^21 - 4946*x^20 + 4895493*x^19 - 2340456*x^18 - 13886726*x^17 + 11530710*x^16 + 25644163*x^15 - 29566924*x^14 - 28806714*x^13 + 45507713*x^12 + 15580759*x^11 - 41912669*x^10 + 1676694*x^9 + 21245985*x^8 - 6367477*x^7 - 4821216*x^6 + 2521284*x^5 + 299357*x^4 - 357807*x^3 + 30689*x^2 + 15244*x - 2547, -2*x^32 + 16*x^31 + 35*x^30 - 586*x^29 + 342*x^28 + 9230*x^27 - 15621*x^26 - 81256*x^25 + 204490*x^24 + 430521*x^23 - 1505796*x^22 - 1328484*x^21 + 7132323*x^20 + 1678252*x^19 - 22810937*x^18 + 3666642*x^17 + 49973282*x^16 - 21343722*x^15 - 74375306*x^14 + 46234897*x^13 + 72897767*x^12 - 56922343*x^11 - 44145504*x^10 + 41656358*x^9 + 14504356*x^8 - 17468193*x^7 - 1753260*x^6 + 3883715*x^5 - 186829*x^4 - 401776*x^3 + 55510*x^2 + 13372*x - 2435, -2*x^32 + 16*x^31 + 35*x^30 - 586*x^29 + 342*x^28 + 9230*x^27 - 15621*x^26 - 81256*x^25 + 204490*x^24 + 430521*x^23 - 1505796*x^22 - 1328484*x^21 + 7132323*x^20 + 1678252*x^19 - 22810937*x^18 + 3666642*x^17 + 49973282*x^16 - 21343722*x^15 - 74375306*x^14 + 46234897*x^13 + 72897767*x^12 - 56922343*x^11 - 44145504*x^10 + 41656358*x^9 + 14504356*x^8 - 17468193*x^7 - 1753260*x^6 + 3883715*x^5 - 186829*x^4 - 401776*x^3 + 55510*x^2 + 13372*x - 2435, x^34 - 6*x^33 - 33*x^32 + 257*x^31 + 384*x^30 - 4874*x^29 - 693*x^28 + 53947*x^27 - 29990*x^26 - 386533*x^25 + 388711*x^24 + 1877829*x^23 - 2537461*x^22 - 6284028*x^21 + 10507181*x^20 + 14346508*x^19 - 29367014*x^18 - 21334390*x^17 + 56239464*x^16 + 17872282*x^15 - 72984869*x^14 - 2973292*x^13 + 61999613*x^12 - 9236302*x^11 - 32378293*x^10 + 8629281*x^9 + 9490078*x^8 - 2839710*x^7 - 1484334*x^6 + 298842*x^5 + 135804*x^4 + 15597*x^3 - 12738*x^2 - 3150*x + 935, x^34 - 6*x^33 - 33*x^32 + 257*x^31 + 384*x^30 - 4874*x^29 - 693*x^28 + 53947*x^27 - 29990*x^26 - 386533*x^25 + 388711*x^24 + 1877829*x^23 - 2537461*x^22 - 6284028*x^21 + 10507181*x^20 + 14346508*x^19 - 29367014*x^18 - 21334390*x^17 + 56239464*x^16 + 17872282*x^15 - 72984869*x^14 - 2973292*x^13 + 61999613*x^12 - 9236302*x^11 - 32378293*x^10 + 8629281*x^9 + 9490078*x^8 - 2839710*x^7 - 1484334*x^6 + 298842*x^5 + 135804*x^4 + 15597*x^3 - 12738*x^2 - 3150*x + 935, 2*x^33 - 13*x^32 - 61*x^31 + 551*x^30 + 549*x^29 - 10282*x^28 + 2792*x^27 + 111174*x^26 - 105663*x^25 - 770713*x^24 + 1094063*x^23 + 3573085*x^22 - 6524723*x^21 - 11159702*x^20 + 25424662*x^19 + 22774564*x^18 - 67353291*x^17 - 26962102*x^16 + 122016281*x^15 + 8536497*x^14 - 148507568*x^13 + 24583214*x^12 + 116279115*x^11 - 39987411*x^10 - 54015835*x^9 + 26508954*x^8 + 12921077*x^7 - 8289468*x^6 - 1303005*x^5 + 1212785*x^4 + 22620*x^3 - 74828*x^2 + 1106*x + 1715, 2*x^33 - 13*x^32 - 61*x^31 + 551*x^30 + 549*x^29 - 10282*x^28 + 2792*x^27 + 111174*x^26 - 105663*x^25 - 770713*x^24 + 1094063*x^23 + 3573085*x^22 - 6524723*x^21 - 11159702*x^20 + 25424662*x^19 + 22774564*x^18 - 67353291*x^17 - 26962102*x^16 + 122016281*x^15 + 8536497*x^14 - 148507568*x^13 + 24583214*x^12 + 116279115*x^11 - 39987411*x^10 - 54015835*x^9 + 26508954*x^8 + 12921077*x^7 - 8289468*x^6 - 1303005*x^5 + 1212785*x^4 + 22620*x^3 - 74828*x^2 + 1106*x + 1715, x^31 - 4*x^30 - 34*x^29 + 140*x^28 + 503*x^27 - 2041*x^26 - 4464*x^25 + 15602*x^24 + 29343*x^23 - 60342*x^22 - 170152*x^21 + 34161*x^20 + 886311*x^19 + 807690*x^18 - 3695955*x^17 - 4225632*x^16 + 11193375*x^15 + 10897112*x^14 - 23413577*x^13 - 16345242*x^12 + 32656112*x^11 + 13836242*x^10 - 29003350*x^9 - 5333013*x^8 + 15176101*x^7 - 58705*x^6 - 4109767*x^5 + 492050*x^4 + 514741*x^3 - 96880*x^2 - 22492*x + 5085, x^31 - 4*x^30 - 34*x^29 + 140*x^28 + 503*x^27 - 2041*x^26 - 4464*x^25 + 15602*x^24 + 29343*x^23 - 60342*x^22 - 170152*x^21 + 34161*x^20 + 886311*x^19 + 807690*x^18 - 3695955*x^17 - 4225632*x^16 + 11193375*x^15 + 10897112*x^14 - 23413577*x^13 - 16345242*x^12 + 32656112*x^11 + 13836242*x^10 - 29003350*x^9 - 5333013*x^8 + 15176101*x^7 - 58705*x^6 - 4109767*x^5 + 492050*x^4 + 514741*x^3 - 96880*x^2 - 22492*x + 5085, x^34 - 8*x^33 - 24*x^32 + 342*x^31 - 42*x^30 - 6409*x^29 + 8266*x^28 + 68966*x^27 - 140552*x^26 - 467101*x^25 + 1279517*x^24 + 2031739*x^23 - 7470034*x^22 - 5357552*x^21 + 29745399*x^20 + 5914125*x^19 - 82623104*x^18 + 11845023*x^17 + 160199846*x^16 - 62141636*x^15 - 213001854*x^14 + 123188680*x^13 + 186607617*x^12 - 139600294*x^11 - 99914790*x^10 + 94290091*x^9 + 28052611*x^8 - 36694553*x^7 - 2406576*x^6 + 7788598*x^5 - 524375*x^4 - 815552*x^3 + 119255*x^2 + 31813*x - 6116, x^34 - 8*x^33 - 24*x^32 + 342*x^31 - 42*x^30 - 6409*x^29 + 8266*x^28 + 68966*x^27 - 140552*x^26 - 467101*x^25 + 1279517*x^24 + 2031739*x^23 - 7470034*x^22 - 5357552*x^21 + 29745399*x^20 + 5914125*x^19 - 82623104*x^18 + 11845023*x^17 + 160199846*x^16 - 62141636*x^15 - 213001854*x^14 + 123188680*x^13 + 186607617*x^12 - 139600294*x^11 - 99914790*x^10 + 94290091*x^9 + 28052611*x^8 - 36694553*x^7 - 2406576*x^6 + 7788598*x^5 - 524375*x^4 - 815552*x^3 + 119255*x^2 + 31813*x - 6116, x^33 - 4*x^32 - 46*x^31 + 199*x^30 + 910*x^29 - 4369*x^28 - 10103*x^27 + 56046*x^26 + 68174*x^25 - 468473*x^24 - 274022*x^23 + 2692156*x^22 + 497060*x^21 - 10928986*x^20 + 931615*x^19 + 31674525*x^18 - 8756345*x^17 - 65351182*x^16 + 27442913*x^15 + 94375166*x^14 - 50761659*x^13 - 92029180*x^12 + 59932627*x^11 + 56569866*x^10 - 44767355*x^9 - 18914903*x^8 + 19875975*x^7 + 2035825*x^6 - 4646763*x^5 + 370521*x^4 + 488573*x^3 - 89282*x^2 - 15139*x + 3583, x^33 - 4*x^32 - 46*x^31 + 199*x^30 + 910*x^29 - 4369*x^28 - 10103*x^27 + 56046*x^26 + 68174*x^25 - 468473*x^24 - 274022*x^23 + 2692156*x^22 + 497060*x^21 - 10928986*x^20 + 931615*x^19 + 31674525*x^18 - 8756345*x^17 - 65351182*x^16 + 27442913*x^15 + 94375166*x^14 - 50761659*x^13 - 92029180*x^12 + 59932627*x^11 + 56569866*x^10 - 44767355*x^9 - 18914903*x^8 + 19875975*x^7 + 2035825*x^6 - 4646763*x^5 + 370521*x^4 + 488573*x^3 - 89282*x^2 - 15139*x + 3583, x^35 - 6*x^34 - 36*x^33 + 273*x^32 + 493*x^31 - 5568*x^30 - 2293*x^29 + 67364*x^28 - 19067*x^27 - 539186*x^26 + 377178*x^25 + 3014169*x^24 - 2950935*x^23 - 12100418*x^22 + 14328780*x^21 + 35265366*x^20 - 47616206*x^19 - 74316071*x^18 + 111838637*x^17 + 110806344*x^16 - 186480407*x^15 - 111116065*x^14 + 217328117*x^13 + 66524722*x^12 - 170683926*x^11 - 15182055*x^10 + 84857783*x^9 - 5743576*x^8 - 24433346*x^7 + 4027072*x^6 + 3818075*x^5 - 851481*x^4 - 293861*x^3 + 75999*x^2 + 8641*x - 2435, x^35 - 6*x^34 - 36*x^33 + 273*x^32 + 493*x^31 - 5568*x^30 - 2293*x^29 + 67364*x^28 - 19067*x^27 - 539186*x^26 + 377178*x^25 + 3014169*x^24 - 2950935*x^23 - 12100418*x^22 + 14328780*x^21 + 35265366*x^20 - 47616206*x^19 - 74316071*x^18 + 111838637*x^17 + 110806344*x^16 - 186480407*x^15 - 111116065*x^14 + 217328117*x^13 + 66524722*x^12 - 170683926*x^11 - 15182055*x^10 + 84857783*x^9 - 5743576*x^8 - 24433346*x^7 + 4027072*x^6 + 3818075*x^5 - 851481*x^4 - 293861*x^3 + 75999*x^2 + 8641*x - 2435, x^34 - 6*x^33 - 33*x^32 + 254*x^31 + 402*x^30 - 4782*x^29 - 1423*x^28 + 53025*x^27 - 17094*x^26 - 387049*x^25 + 258281*x^24 + 1971862*x^23 - 1703116*x^22 - 7263537*x^21 + 6994324*x^20 + 19783951*x^19 - 19596338*x^18 - 40331196*x^17 + 38944093*x^16 + 61504258*x^15 - 55977700*x^14 - 68828574*x^13 + 58465965*x^12 + 54001822*x^11 - 43497420*x^10 - 27401389*x^9 + 21662043*x^8 + 7944873*x^7 - 6448672*x^6 - 1135260*x^5 + 1025749*x^4 + 55163*x^3 - 74090*x^2 + 854*x + 1587, x^34 - 6*x^33 - 33*x^32 + 254*x^31 + 402*x^30 - 4782*x^29 - 1423*x^28 + 53025*x^27 - 17094*x^26 - 387049*x^25 + 258281*x^24 + 1971862*x^23 - 1703116*x^22 - 7263537*x^21 + 6994324*x^20 + 19783951*x^19 - 19596338*x^18 - 40331196*x^17 + 38944093*x^16 + 61504258*x^15 - 55977700*x^14 - 68828574*x^13 + 58465965*x^12 + 54001822*x^11 - 43497420*x^10 - 27401389*x^9 + 21662043*x^8 + 7944873*x^7 - 6448672*x^6 - 1135260*x^5 + 1025749*x^4 + 55163*x^3 - 74090*x^2 + 854*x + 1587, x^32 - 4*x^31 - 40*x^30 + 169*x^29 + 709*x^28 - 3184*x^27 - 7400*x^26 + 35475*x^25 + 51000*x^24 - 261263*x^23 - 246209*x^22 + 1344688*x^21 + 857096*x^20 - 4974114*x^19 - 2163189*x^18 + 13357049*x^17 + 3888297*x^16 - 25940426*x^15 - 4743765*x^14 + 35875049*x^13 + 3493641*x^12 - 34400629*x^11 - 926923*x^10 + 21993643*x^9 - 736871*x^8 - 8867329*x^7 + 770154*x^6 + 2080533*x^5 - 276666*x^4 - 253814*x^3 + 43699*x^2 + 12333*x - 2538, x^32 - 4*x^31 - 40*x^30 + 169*x^29 + 709*x^28 - 3184*x^27 - 7400*x^26 + 35475*x^25 + 51000*x^24 - 261263*x^23 - 246209*x^22 + 1344688*x^21 + 857096*x^20 - 4974114*x^19 - 2163189*x^18 + 13357049*x^17 + 3888297*x^16 - 25940426*x^15 - 4743765*x^14 + 35875049*x^13 + 3493641*x^12 - 34400629*x^11 - 926923*x^10 + 21993643*x^9 - 736871*x^8 - 8867329*x^7 + 770154*x^6 + 2080533*x^5 - 276666*x^4 - 253814*x^3 + 43699*x^2 + 12333*x - 2538, x^34 - 5*x^33 - 40*x^32 + 229*x^31 + 676*x^30 - 4693*x^29 - 6076*x^28 + 56919*x^27 + 27749*x^26 - 455391*x^25 - 10039*x^24 + 2535657*x^23 - 689300*x^22 - 10097562*x^21 + 4728278*x^20 + 29064658*x^19 - 17619933*x^18 - 60261479*x^17 + 42820813*x^16 + 88275975*x^15 - 70761519*x^14 - 87502418*x^13 + 79064040*x^12 + 53559582*x^11 - 57191717*x^10 - 15803906*x^9 + 24286522*x^8 - 371957*x^7 - 4929328*x^6 + 1133569*x^5 + 304881*x^4 - 176079*x^3 + 18633*x^2 + 5350*x - 1148, x^34 - 5*x^33 - 40*x^32 + 229*x^31 + 676*x^30 - 4693*x^29 - 6076*x^28 + 56919*x^27 + 27749*x^26 - 455391*x^25 - 10039*x^24 + 2535657*x^23 - 689300*x^22 - 10097562*x^21 + 4728278*x^20 + 29064658*x^19 - 17619933*x^18 - 60261479*x^17 + 42820813*x^16 + 88275975*x^15 - 70761519*x^14 - 87502418*x^13 + 79064040*x^12 + 53559582*x^11 - 57191717*x^10 - 15803906*x^9 + 24286522*x^8 - 371957*x^7 - 4929328*x^6 + 1133569*x^5 + 304881*x^4 - 176079*x^3 + 18633*x^2 + 5350*x - 1148, x^33 - 5*x^32 - 37*x^31 + 213*x^30 + 575*x^29 - 4038*x^28 - 4752*x^27 + 45089*x^26 + 20595*x^25 - 330979*x^24 - 21698*x^23 + 1688901*x^22 - 260424*x^21 - 6179273*x^20 + 1672147*x^19 + 16481984*x^18 - 5277543*x^17 - 32251690*x^16 + 10580700*x^15 + 46144532*x^14 - 14576933*x^13 - 47530458*x^12 + 14429148*x^11 + 34030341*x^10 - 10394002*x^9 - 15801748*x^8 + 5123424*x^7 + 4200968*x^6 - 1477550*x^5 - 532277*x^4 + 216806*x^3 + 18155*x^2 - 12236*x + 951, x^33 - 5*x^32 - 37*x^31 + 213*x^30 + 575*x^29 - 4038*x^28 - 4752*x^27 + 45089*x^26 + 20595*x^25 - 330979*x^24 - 21698*x^23 + 1688901*x^22 - 260424*x^21 - 6179273*x^20 + 1672147*x^19 + 16481984*x^18 - 5277543*x^17 - 32251690*x^16 + 10580700*x^15 + 46144532*x^14 - 14576933*x^13 - 47530458*x^12 + 14429148*x^11 + 34030341*x^10 - 10394002*x^9 - 15801748*x^8 + 5123424*x^7 + 4200968*x^6 - 1477550*x^5 - 532277*x^4 + 216806*x^3 + 18155*x^2 - 12236*x + 951]>
       ]
>;

MOG[653] := 	// J_0(653)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 41, 154, 164, 383, 454, 640, 375*x + 429, 278*x + 429, 448*x + 44, 205*x + 44, 341*x + 218, 312*x + 218, 154*x + 584, 499*x + 584, 457*x + 341, 196*x + 341, 172*x + 42, 481*x + 42, 524*x + 156, 129*x + 156, 266*x + 478, 387*x + 478, 287*x + 112, 366*x + 112, 63*x + 452, 590*x + 452, 92*x + 455, 561*x + 455, 309*x + 75, 344*x + 75, 125*x + 15, 528*x + 15, 254*x + 549, 399*x + 549, 164*x + 598, 489*x + 598, 54*x + 137, 599*x + 137, 46*x + 223, 607*x + 223, 579*x + 625, 74*x + 625, 279*x + 451, 374*x + 451, 266*x + 455, 387*x + 455, 122*x + 390, 531*x + 390, 543*x + 200, 110*x + 200, 163*x + 652, 490*x + 652, 317*x + 513, 336*x + 513]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^7 - 8*x^5 + 19*x^3 - 12*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, x^6 - x^5 - 6*x^4 + 5*x^3 + 9*x^2 - 6*x - 2, -x^6 + x^5 + 6*x^4 - 5*x^3 - 9*x^2 + 6*x + 2, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x, -x^5 + x^4 + 5*x^3 - 3*x^2 - 5*x, -x^6 + x^5 + 6*x^4 - 5*x^3 - 9*x^2 + 5*x + 1, x^6 - x^5 - 6*x^4 + 5*x^3 + 9*x^2 - 5*x - 1, -x^3 + 3*x, x^3 - 3*x, x^4 - x^3 - 4*x^2 + 3*x + 2, -x^4 + x^3 + 4*x^2 - 3*x - 2, -x^5 + x^4 + 5*x^3 - 4*x^2 - 5*x + 2, x^5 - x^4 - 5*x^3 + 4*x^2 + 5*x - 2, -1, 1, -x^2 + 3, x^2 - 3, -x^5 + 5*x^3 + x^2 - 5*x - 3, x^5 - 5*x^3 - x^2 + 5*x + 3, x^4 - 4*x^2 + 2, -x^4 + 4*x^2 - 2, -x^4 + x^3 + 4*x^2 - 3*x - 2, x^4 - x^3 - 4*x^2 + 3*x + 2, -x^4 + x^3 + 4*x^2 - 3*x - 1, x^4 - x^3 - 4*x^2 + 3*x + 1, 0, 0, x^6 - x^5 - 6*x^4 + 5*x^3 + 10*x^2 - 6*x - 4, -x^6 + x^5 + 6*x^4 - 5*x^3 - 10*x^2 + 6*x + 4, 1, -1, -x^6 + 6*x^4 + x^3 - 9*x^2 - 3*x + 2, x^6 - 6*x^4 - x^3 + 9*x^2 + 3*x - 2, x^3 - 3*x, -x^3 + 3*x, x^5 - x^4 - 4*x^3 + 4*x^2 + 2*x - 2, -x^5 + x^4 + 4*x^3 - 4*x^2 - 2*x + 2, 1, -1, 1, -1, -x^3 + x^2 + 4*x - 3, x^3 - x^2 - 4*x + 3, x^5 - x^4 - 5*x^3 + 4*x^2 + 5*x - 2, -x^5 + x^4 + 5*x^3 - 4*x^2 - 5*x + 2, x^2 - 3, -x^2 + 3, x^4 - x^3 - 4*x^2 + 4*x + 2, -x^4 + x^3 + 4*x^2 - 4*x - 2]>,
         rec<Eigen |
           DefiningPolynomial := x^17 + 4*x^16 - 17*x^15 - 80*x^14 + 95*x^13 + 609*x^12 - 155*x^11 - 2251*x^10 - 308*x^9 + 4268*x^8 + 1292*x^7 - 4077*x^6 - 1448*x^5 + 1873*x^4 + 652*x^3 - 351*x^2 - 103*x + 13,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, x^15 + 4*x^14 - 15*x^13 - 73*x^12 + 62*x^11 + 476*x^10 + x^9 - 1386*x^8 - 432*x^7 + 1869*x^6 + 698*x^5 - 1151*x^4 - 382*x^3 + 297*x^2 + 66*x - 24, -x^15 - 4*x^14 + 15*x^13 + 73*x^12 - 62*x^11 - 476*x^10 - x^9 + 1386*x^8 + 432*x^7 - 1869*x^6 - 698*x^5 + 1151*x^4 + 382*x^3 - 297*x^2 - 66*x + 24, x^16 + 4*x^15 - 15*x^14 - 73*x^13 + 63*x^12 + 481*x^11 - 2*x^10 - 1432*x^9 - 464*x^8 + 1985*x^7 + 795*x^6 - 1269*x^5 - 433*x^4 + 354*x^3 + 56*x^2 - 33*x + 8, -x^16 - 4*x^15 + 15*x^14 + 73*x^13 - 63*x^12 - 481*x^11 + 2*x^10 + 1432*x^9 + 464*x^8 - 1985*x^7 - 795*x^6 + 1269*x^5 + 433*x^4 - 354*x^3 - 56*x^2 + 33*x - 8, -x^12 - 5*x^11 + 3*x^10 + 46*x^9 + 32*x^8 - 116*x^7 - 97*x^6 + 118*x^5 + 51*x^4 - 57*x^3 + 10*x^2 + 9*x - 8, x^12 + 5*x^11 - 3*x^10 - 46*x^9 - 32*x^8 + 116*x^7 + 97*x^6 - 118*x^5 - 51*x^4 + 57*x^3 - 10*x^2 - 9*x + 8, -x^14 - 4*x^13 + 12*x^12 + 60*x^11 - 34*x^10 - 311*x^9 - 60*x^8 + 640*x^7 + 332*x^6 - 447*x^5 - 325*x^4 + 58*x^3 + 93*x^2 + 24*x - 1, x^14 + 4*x^13 - 12*x^12 - 60*x^11 + 34*x^10 + 311*x^9 + 60*x^8 - 640*x^7 - 332*x^6 + 447*x^5 + 325*x^4 - 58*x^3 - 93*x^2 - 24*x + 1, x^15 + 4*x^14 - 13*x^13 - 67*x^12 + 31*x^11 + 377*x^10 + 154*x^9 - 837*x^8 - 705*x^7 + 607*x^6 + 764*x^5 - 43*x^4 - 272*x^3 - 72*x^2 + 21*x + 12, -x^15 - 4*x^14 + 13*x^13 + 67*x^12 - 31*x^11 - 377*x^10 - 154*x^9 + 837*x^8 + 705*x^7 - 607*x^6 - 764*x^5 + 43*x^4 + 272*x^3 + 72*x^2 - 21*x - 12, x^16 + 4*x^15 - 15*x^14 - 73*x^13 + 64*x^12 + 483*x^11 - 17*x^10 - 1460*x^9 - 381*x^8 + 2147*x^7 + 666*x^6 - 1576*x^5 - 422*x^4 + 531*x^3 + 97*x^2 - 59*x - 2, -x^16 - 4*x^15 + 15*x^14 + 73*x^13 - 64*x^12 - 483*x^11 + 17*x^10 + 1460*x^9 + 381*x^8 - 2147*x^7 - 666*x^6 + 1576*x^5 + 422*x^4 - 531*x^3 - 97*x^2 + 59*x + 2, -x^16 - 5*x^15 + 11*x^14 + 87*x^13 + 4*x^12 - 542*x^11 - 413*x^10 + 1491*x^9 + 1651*x^8 - 1812*x^7 - 2417*x^6 + 929*x^5 + 1516*x^4 - 139*x^3 - 385*x^2 - 15*x + 26, x^16 + 5*x^15 - 11*x^14 - 87*x^13 - 4*x^12 + 542*x^11 + 413*x^10 - 1491*x^9 - 1651*x^8 + 1812*x^7 + 2417*x^6 - 929*x^5 - 1516*x^4 + 139*x^3 + 385*x^2 + 15*x - 26, -x^16 - 5*x^15 + 11*x^14 + 85*x^13 - 2*x^12 - 513*x^11 - 322*x^10 + 1356*x^9 + 1190*x^8 - 1584*x^7 - 1498*x^6 + 782*x^5 + 778*x^4 - 127*x^3 - 156*x^2 - 2*x + 7, x^16 + 5*x^15 - 11*x^14 - 85*x^13 + 2*x^12 + 513*x^11 + 322*x^10 - 1356*x^9 - 1190*x^8 + 1584*x^7 + 1498*x^6 - 782*x^5 - 778*x^4 + 127*x^3 + 156*x^2 + 2*x - 7, -x^12 - 2*x^11 + 13*x^10 + 16*x^9 - 86*x^8 - 69*x^7 + 256*x^6 + 162*x^5 - 287*x^4 - 134*x^3 + 124*x^2 + 34*x - 15, x^12 + 2*x^11 - 13*x^10 - 16*x^9 + 86*x^8 + 69*x^7 - 256*x^6 - 162*x^5 + 287*x^4 + 134*x^3 - 124*x^2 - 34*x + 15, x^14 + 2*x^13 - 20*x^12 - 40*x^11 + 138*x^10 + 266*x^9 - 416*x^8 - 735*x^7 + 552*x^6 + 814*x^5 - 327*x^4 - 366*x^3 + 91*x^2 + 57*x - 11, -x^14 - 2*x^13 + 20*x^12 + 40*x^11 - 138*x^10 - 266*x^9 + 416*x^8 + 735*x^7 - 552*x^6 - 814*x^5 + 327*x^4 + 366*x^3 - 91*x^2 - 57*x + 11, x^14 + 4*x^13 - 12*x^12 - 64*x^11 + 18*x^10 + 329*x^9 + 175*x^8 - 643*x^7 - 583*x^6 + 412*x^5 + 488*x^4 - 60*x^3 - 126*x^2 - 12*x + 3, -x^14 - 4*x^13 + 12*x^12 + 64*x^11 - 18*x^10 - 329*x^9 - 175*x^8 + 643*x^7 + 583*x^6 - 412*x^5 - 488*x^4 + 60*x^3 + 126*x^2 + 12*x - 3, x^15 + 4*x^14 - 14*x^13 - 71*x^12 + 43*x^11 + 439*x^10 + 130*x^9 - 1142*x^8 - 795*x^7 + 1218*x^6 + 1114*x^5 - 482*x^4 - 574*x^3 + 28*x^2 + 98*x + 12, -x^15 - 4*x^14 + 14*x^13 + 71*x^12 - 43*x^11 - 439*x^10 - 130*x^9 + 1142*x^8 + 795*x^7 - 1218*x^6 - 1114*x^5 + 482*x^4 + 574*x^3 - 28*x^2 - 98*x - 12, x^15 + 3*x^14 - 17*x^13 - 54*x^12 + 100*x^11 + 349*x^10 - 249*x^9 - 1011*x^8 + 285*x^7 + 1380*x^6 - 206*x^5 - 911*x^4 + 76*x^3 + 254*x^2 - 6*x - 17, -x^15 - 3*x^14 + 17*x^13 + 54*x^12 - 100*x^11 - 349*x^10 + 249*x^9 + 1011*x^8 - 285*x^7 - 1380*x^6 + 206*x^5 + 911*x^4 - 76*x^3 - 254*x^2 + 6*x + 17, -x^15 - 4*x^14 + 14*x^13 + 70*x^12 - 50*x^11 - 441*x^10 - 59*x^9 + 1234*x^8 + 575*x^7 - 1553*x^6 - 832*x^5 + 905*x^4 + 451*x^3 - 220*x^2 - 84*x + 14, x^15 + 4*x^14 - 14*x^13 - 70*x^12 + 50*x^11 + 441*x^10 + 59*x^9 - 1234*x^8 - 575*x^7 + 1553*x^6 + 832*x^5 - 905*x^4 - 451*x^3 + 220*x^2 + 84*x - 14, -x^15 - 5*x^14 + 10*x^13 + 80*x^12 + 5*x^11 - 448*x^10 - 298*x^9 + 1093*x^8 + 966*x^7 - 1210*x^6 - 1152*x^5 + 555*x^4 + 577*x^3 - 61*x^2 - 105*x - 12, x^15 + 5*x^14 - 10*x^13 - 80*x^12 - 5*x^11 + 448*x^10 + 298*x^9 - 1093*x^8 - 966*x^7 + 1210*x^6 + 1152*x^5 - 555*x^4 - 577*x^3 + 61*x^2 + 105*x + 12, -x^13 - 2*x^12 + 17*x^11 + 32*x^10 - 104*x^9 - 184*x^8 + 259*x^7 + 413*x^6 - 252*x^5 - 297*x^4 + 126*x^3 + 67*x^2 - 27*x - 2, x^13 + 2*x^12 - 17*x^11 - 32*x^10 + 104*x^9 + 184*x^8 - 259*x^7 - 413*x^6 + 252*x^5 + 297*x^4 - 126*x^3 - 67*x^2 + 27*x + 2, -x^14 - 4*x^13 + 11*x^12 + 56*x^11 - 24*x^10 - 254*x^9 - 56*x^8 + 423*x^7 + 175*x^6 - 235*x^5 - 163*x^4 - 7*x^3 + 48*x^2 + 23*x, x^14 + 4*x^13 - 11*x^12 - 56*x^11 + 24*x^10 + 254*x^9 + 56*x^8 - 423*x^7 - 175*x^6 + 235*x^5 + 163*x^4 + 7*x^3 - 48*x^2 - 23*x, -x^14 - 3*x^13 + 16*x^12 + 51*x^11 - 87*x^10 - 316*x^9 + 158*x^8 + 834*x^7 + 32*x^6 - 856*x^5 - 160*x^4 + 370*x^3 + 81*x^2 - 55*x - 12, x^14 + 3*x^13 - 16*x^12 - 51*x^11 + 87*x^10 + 316*x^9 - 158*x^8 - 834*x^7 - 32*x^6 + 856*x^5 + 160*x^4 - 370*x^3 - 81*x^2 + 55*x + 12, x^13 + 4*x^12 - 11*x^11 - 61*x^10 + 5*x^9 + 280*x^8 + 191*x^7 - 451*x^6 - 438*x^5 + 270*x^4 + 280*x^3 - 64*x^2 - 52*x + 3, -x^13 - 4*x^12 + 11*x^11 + 61*x^10 - 5*x^9 - 280*x^8 - 191*x^7 + 451*x^6 + 438*x^5 - 270*x^4 - 280*x^3 + 64*x^2 + 52*x - 3, x^14 + 3*x^13 - 17*x^12 - 53*x^11 + 99*x^10 + 327*x^9 - 246*x^8 - 880*x^7 + 277*x^6 + 1086*x^5 - 114*x^4 - 576*x^3 - 2*x^2 + 104*x + 9, -x^14 - 3*x^13 + 17*x^12 + 53*x^11 - 99*x^10 - 327*x^9 + 246*x^8 + 880*x^7 - 277*x^6 - 1086*x^5 + 114*x^4 + 576*x^3 + 2*x^2 - 104*x - 9, -x^13 - 4*x^12 + 9*x^11 + 48*x^10 - 9*x^9 - 168*x^8 - 49*x^7 + 171*x^6 + 8*x^5 - 38*x^4 + 73*x^3 + 3*x^2 - 33*x - 7, x^13 + 4*x^12 - 9*x^11 - 48*x^10 + 9*x^9 + 168*x^8 + 49*x^7 - 171*x^6 - 8*x^5 + 38*x^4 - 73*x^3 - 3*x^2 + 33*x + 7, x^14 + 2*x^13 - 18*x^12 - 34*x^11 + 117*x^10 + 200*x^9 - 345*x^8 - 482*x^7 + 508*x^6 + 459*x^5 - 413*x^4 - 201*x^3 + 151*x^2 + 36*x - 15, -x^14 - 2*x^13 + 18*x^12 + 34*x^11 - 117*x^10 - 200*x^9 + 345*x^8 + 482*x^7 - 508*x^6 - 459*x^5 + 413*x^4 + 201*x^3 - 151*x^2 - 36*x + 15, -x^13 - 4*x^12 + 11*x^11 + 56*x^10 - 24*x^9 - 254*x^8 - 56*x^7 + 423*x^6 + 175*x^5 - 235*x^4 - 163*x^3 - 7*x^2 + 48*x + 23, x^13 + 4*x^12 - 11*x^11 - 56*x^10 + 24*x^9 + 254*x^8 + 56*x^7 - 423*x^6 - 175*x^5 + 235*x^4 + 163*x^3 + 7*x^2 - 48*x - 23, x^12 + 3*x^11 - 13*x^10 - 49*x^9 + 16*x^8 + 192*x^7 + 145*x^6 - 142*x^5 - 208*x^4 - 4*x^3 + 74*x^2 + 15*x - 3, -x^12 - 3*x^11 + 13*x^10 + 49*x^9 - 16*x^8 - 192*x^7 - 145*x^6 + 142*x^5 + 208*x^4 + 4*x^3 - 74*x^2 - 15*x + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^30 - 2*x^29 - 44*x^28 + 88*x^27 + 856*x^26 - 1711*x^25 - 9706*x^24 + 19385*x^23 + 71180*x^22 - 142113*x^21 - 354106*x^20 + 707994*x^19 + 1218275*x^18 - 2449817*x^17 - 2896644*x^16 + 5913545*x^15 + 4661724*x^14 - 9858463*x^13 - 4827794*x^12 + 11069067*x^11 + 2858925*x^10 - 8007414*x^9 - 626843*x^8 + 3467935*x^7 - 194837*x^6 - 794145*x^5 + 111816*x^4 + 76610*x^3 - 11884*x^2 - 2167*x + 121,
           Coordinates        := [-x^29 + 2*x^28 + 41*x^27 - 82*x^26 - 739*x^25 + 1477*x^24 + 7713*x^23 - 15402*x^22 - 51673*x^21 + 103163*x^20 + 232709*x^19 - 465565*x^18 - 716568*x^17 + 1444480*x^16 + 1501946*x^15 - 3087239*x^14 - 2083754*x^13 + 4482418*x^12 + 1788790*x^11 - 4281945*x^10 - 796673*x^9 + 2540071*x^8 + 57804*x^7 - 845576*x^6 + 76943*x^5 + 132493*x^4 - 18019*x^3 - 8347*x^2 + 1117*x + 88, x^29 - 2*x^28 - 41*x^27 + 82*x^26 + 741*x^25 - 1481*x^24 - 7783*x^23 + 15544*x^22 + 52717*x^21 - 105307*x^20 - 241399*x^19 + 483609*x^18 + 760998*x^17 - 1537724*x^16 - 1646676*x^15 + 3394575*x^14 + 2385178*x^13 - 5132582*x^12 - 2180354*x^11 + 5148423*x^10 + 1094979*x^9 - 3235157*x^8 - 173736*x^7 + 1154052*x^6 - 62795*x^5 - 196705*x^4 + 19735*x^3 + 12003*x^2 - 965*x - 66, x^28 - 2*x^27 - 39*x^26 + 78*x^25 + 667*x^24 - 1331*x^23 - 6593*x^22 + 13096*x^21 + 41781*x^20 - 82411*x^19 - 177927*x^18 + 347657*x^17 + 518712*x^16 - 1001850*x^15 - 1034394*x^14 + 1972367*x^13 + 1385696*x^12 - 2611890*x^11 - 1200458*x^10 + 2254287*x^9 + 629373*x^8 - 1205419*x^7 - 178892*x^6 + 369592*x^5 + 23399*x^4 - 56681*x^3 - 1351*x^2 + 3163*x + 121, -2*x^22 - 2*x^21 + 72*x^20 + 44*x^19 - 1076*x^18 - 344*x^17 + 8698*x^16 + 922*x^15 - 41614*x^14 + 1970*x^13 + 121230*x^12 - 18686*x^11 - 212970*x^10 + 47300*x^9 + 215916*x^8 - 53868*x^7 - 117576*x^6 + 25920*x^5 + 33246*x^4 - 4182*x^3 - 5512*x^2 + 338*x + 352, 2*x^27 - 4*x^26 - 74*x^25 + 148*x^24 + 1186*x^23 - 2368*x^22 - 10822*x^21 + 21544*x^20 + 62146*x^19 - 123314*x^18 - 234230*x^17 + 464018*x^16 + 585434*x^15 - 1164602*x^14 - 954876*x^13 + 1935914*x^12 + 966794*x^11 - 2070704*x^10 - 541042*x^9 + 1343990*x^8 + 120218*x^7 - 474262*x^6 + 4074*x^5 + 73914*x^4 + 1430*x^3 - 4388*x^2 - 984*x + 198, -3*x^28 + 6*x^27 + 117*x^26 - 234*x^25 - 1993*x^24 + 3983*x^23 + 19507*x^22 - 38950*x^21 - 121397*x^20 + 242429*x^19 + 501707*x^18 - 1005337*x^17 - 1394698*x^16 + 2826306*x^15 + 2577970*x^14 - 5376045*x^13 - 3039004*x^12 + 6787122*x^11 + 2062252*x^10 - 5467343*x^9 - 569039*x^8 + 2622359*x^7 - 117894*x^6 - 661652*x^5 + 93797*x^4 + 68263*x^3 - 10767*x^2 - 2079*x + 121, 2*x^26 - 4*x^25 - 70*x^24 + 142*x^23 + 1048*x^22 - 2166*x^21 - 8780*x^20 + 18660*x^19 + 45120*x^18 - 100418*x^17 - 145822*x^16 + 352518*x^15 + 287276*x^14 - 817600*x^13 - 294950*x^12 + 1238050*x^11 + 22446*x^10 - 1173980*x^9 + 296484*x^8 + 634202*x^7 - 306860*x^6 - 153934*x^5 + 116910*x^4 + 3538*x^3 - 13254*x^2 + 1260*x + 242, -x^23 + 37*x^21 - 14*x^20 - 560*x^19 + 366*x^18 + 4521*x^17 - 3888*x^16 - 21268*x^15 + 21792*x^14 + 59630*x^13 - 69958*x^12 - 97142*x^11 + 130135*x^10 + 84308*x^9 - 134892*x^8 - 31854*x^7 + 71748*x^6 + 3663*x^5 - 18714*x^4 - 665*x^3 + 2925*x^2 + 7*x - 176, -x^23 + 37*x^21 - 14*x^20 - 560*x^19 + 366*x^18 + 4521*x^17 - 3888*x^16 - 21268*x^15 + 21792*x^14 + 59630*x^13 - 69958*x^12 - 97142*x^11 + 130135*x^10 + 84308*x^9 - 134892*x^8 - 31854*x^7 + 71748*x^6 + 3663*x^5 - 18714*x^4 - 665*x^3 + 2925*x^2 + 7*x - 176, 2*x^24 - 5*x^23 - 63*x^22 + 163*x^21 + 834*x^20 - 2261*x^19 - 6039*x^18 + 17489*x^17 + 26011*x^16 - 83034*x^15 - 67441*x^14 + 250899*x^13 + 99339*x^12 - 483868*x^11 - 63786*x^10 + 580813*x^9 - 19984*x^8 - 409147*x^7 + 55461*x^6 + 151505*x^5 - 29195*x^4 - 24485*x^3 + 4832*x^2 + 1387*x - 231, 2*x^24 - 5*x^23 - 63*x^22 + 163*x^21 + 834*x^20 - 2261*x^19 - 6039*x^18 + 17489*x^17 + 26011*x^16 - 83034*x^15 - 67441*x^14 + 250899*x^13 + 99339*x^12 - 483868*x^11 - 63786*x^10 + 580813*x^9 - 19984*x^8 - 409147*x^7 + 55461*x^6 + 151505*x^5 - 29195*x^4 - 24485*x^3 + 4832*x^2 + 1387*x - 231, -3*x^24 + 5*x^23 + 102*x^22 - 175*x^21 - 1466*x^20 + 2583*x^19 + 11636*x^18 - 21033*x^17 - 55977*x^16 + 103904*x^15 + 168685*x^14 - 322827*x^13 - 317711*x^12 + 632689*x^11 + 361064*x^10 - 763005*x^9 - 227786*x^8 + 534763*x^7 + 65778*x^6 - 196139*x^5 - 4716*x^4 + 31592*x^3 + 687*x^2 - 1901*x - 121, -3*x^24 + 5*x^23 + 102*x^22 - 175*x^21 - 1466*x^20 + 2583*x^19 + 11636*x^18 - 21033*x^17 - 55977*x^16 + 103904*x^15 + 168685*x^14 - 322827*x^13 - 317711*x^12 + 632689*x^11 + 361064*x^10 - 763005*x^9 - 227786*x^8 + 534763*x^7 + 65778*x^6 - 196139*x^5 - 4716*x^4 + 31592*x^3 + 687*x^2 - 1901*x - 121, x^25 - 4*x^24 - 28*x^23 + 132*x^22 + 299*x^21 - 1850*x^20 - 1335*x^19 + 14408*x^18 - 300*x^17 - 68491*x^16 + 30129*x^15 + 205353*x^14 - 142914*x^13 - 386727*x^12 + 333406*x^11 + 438834*x^10 - 434061*x^9 - 269941*x^8 + 311667*x^7 + 65767*x^6 - 112264*x^5 + 4213*x^4 + 15471*x^3 - 2186*x^2 - 491*x + 44, x^25 - 4*x^24 - 28*x^23 + 132*x^22 + 299*x^21 - 1850*x^20 - 1335*x^19 + 14408*x^18 - 300*x^17 - 68491*x^16 + 30129*x^15 + 205353*x^14 - 142914*x^13 - 386727*x^12 + 333406*x^11 + 438834*x^10 - 434061*x^9 - 269941*x^8 + 311667*x^7 + 65767*x^6 - 112264*x^5 + 4213*x^4 + 15471*x^3 - 2186*x^2 - 491*x + 44, x^25 - x^24 - 34*x^23 + 31*x^22 + 498*x^21 - 397*x^20 - 4144*x^19 + 2715*x^18 + 21790*x^17 - 10655*x^16 - 76302*x^15 + 23754*x^14 + 182623*x^13 - 27183*x^12 - 300050*x^11 + 11844*x^10 + 329769*x^9 - 4314*x^8 - 224352*x^7 + 13990*x^6 + 79406*x^5 - 9984*x^4 - 9974*x^3 + 648*x^2 + 253*x + 132, x^25 - x^24 - 34*x^23 + 31*x^22 + 498*x^21 - 397*x^20 - 4144*x^19 + 2715*x^18 + 21790*x^17 - 10655*x^16 - 76302*x^15 + 23754*x^14 + 182623*x^13 - 27183*x^12 - 300050*x^11 + 11844*x^10 + 329769*x^9 - 4314*x^8 - 224352*x^7 + 13990*x^6 + 79406*x^5 - 9984*x^4 - 9974*x^3 + 648*x^2 + 253*x + 132, -3*x^25 + 7*x^24 + 100*x^23 - 242*x^22 - 1403*x^21 + 3561*x^20 + 10761*x^19 - 29199*x^18 - 48855*x^17 + 146737*x^16 + 131117*x^15 - 468153*x^14 - 185575*x^13 + 948496*x^12 + 55418*x^11 - 1181551*x^10 + 215773*x^9 + 835926*x^8 - 303436*x^7 - 280936*x^6 + 143625*x^5 + 27442*x^4 - 19212*x^3 - 677*x^2 + 686*x + 33, -3*x^25 + 7*x^24 + 100*x^23 - 242*x^22 - 1403*x^21 + 3561*x^20 + 10761*x^19 - 29199*x^18 - 48855*x^17 + 146737*x^16 + 131117*x^15 - 468153*x^14 - 185575*x^13 + 948496*x^12 + 55418*x^11 - 1181551*x^10 + 215773*x^9 + 835926*x^8 - 303436*x^7 - 280936*x^6 + 143625*x^5 + 27442*x^4 - 19212*x^3 - 677*x^2 + 686*x + 33, -2*x^24 + 3*x^23 + 67*x^22 - 100*x^21 - 964*x^20 + 1435*x^19 + 7800*x^18 - 11643*x^17 - 38945*x^16 + 58836*x^15 + 123534*x^14 - 191766*x^13 - 245849*x^12 + 402788*x^11 + 288411*x^10 - 527867*x^9 - 166271*x^8 + 401068*x^7 + 13049*x^6 - 152004*x^5 + 22864*x^4 + 20564*x^3 - 4149*x^2 - 814*x + 143, -2*x^24 + 3*x^23 + 67*x^22 - 100*x^21 - 964*x^20 + 1435*x^19 + 7800*x^18 - 11643*x^17 - 38945*x^16 + 58836*x^15 + 123534*x^14 - 191766*x^13 - 245849*x^12 + 402788*x^11 + 288411*x^10 - 527867*x^9 - 166271*x^8 + 401068*x^7 + 13049*x^6 - 152004*x^5 + 22864*x^4 + 20564*x^3 - 4149*x^2 - 814*x + 143, -2*x^25 + 5*x^24 + 65*x^23 - 166*x^22 - 890*x^21 + 2340*x^20 + 6675*x^19 - 18314*x^18 - 29749*x^17 + 87345*x^16 + 79178*x^15 - 262111*x^14 - 115703*x^13 + 492829*x^12 + 58420*x^11 - 558752*x^10 + 65422*x^9 + 349832*x^8 - 102370*x^7 - 99425*x^6 + 39778*x^5 + 7979*x^4 - 680*x^3 - 1766*x^2 - 400*x + 264, -2*x^25 + 5*x^24 + 65*x^23 - 166*x^22 - 890*x^21 + 2340*x^20 + 6675*x^19 - 18314*x^18 - 29749*x^17 + 87345*x^16 + 79178*x^15 - 262111*x^14 - 115703*x^13 + 492829*x^12 + 58420*x^11 - 558752*x^10 + 65422*x^9 + 349832*x^8 - 102370*x^7 - 99425*x^6 + 39778*x^5 + 7979*x^4 - 680*x^3 - 1766*x^2 - 400*x + 264, x^26 - 2*x^25 - 35*x^24 + 72*x^23 + 528*x^22 - 1123*x^21 - 4509*x^20 + 9994*x^19 + 24053*x^18 - 56231*x^17 - 83227*x^16 + 209209*x^15 + 186638*x^14 - 521923*x^13 - 258762*x^12 + 864282*x^11 + 188477*x^10 - 916176*x^9 - 18181*x^8 + 577284*x^7 - 68300*x^6 - 187070*x^5 + 36687*x^4 + 22979*x^3 - 3557*x^2 - 943*x - 33, x^26 - 2*x^25 - 35*x^24 + 72*x^23 + 528*x^22 - 1123*x^21 - 4509*x^20 + 9994*x^19 + 24053*x^18 - 56231*x^17 - 83227*x^16 + 209209*x^15 + 186638*x^14 - 521923*x^13 - 258762*x^12 + 864282*x^11 + 188477*x^10 - 916176*x^9 - 18181*x^8 + 577284*x^7 - 68300*x^6 - 187070*x^5 + 36687*x^4 + 22979*x^3 - 3557*x^2 - 943*x - 33, x^26 - 2*x^25 - 37*x^24 + 75*x^23 + 592*x^22 - 1220*x^21 - 5374*x^20 + 11324*x^19 + 30492*x^18 - 66360*x^17 - 112076*x^16 + 256420*x^15 + 266236*x^14 - 661975*x^13 - 390052*x^12 + 1130589*x^11 + 301497*x^10 - 1233810*x^9 - 36724*x^8 + 800526*x^7 - 115448*x^6 - 267343*x^5 + 70467*x^4 + 33618*x^3 - 10242*x^2 - 1170*x + 308, x^26 - 2*x^25 - 37*x^24 + 75*x^23 + 592*x^22 - 1220*x^21 - 5374*x^20 + 11324*x^19 + 30492*x^18 - 66360*x^17 - 112076*x^16 + 256420*x^15 + 266236*x^14 - 661975*x^13 - 390052*x^12 + 1130589*x^11 + 301497*x^10 - 1233810*x^9 - 36724*x^8 + 800526*x^7 - 115448*x^6 - 267343*x^5 + 70467*x^4 + 33618*x^3 - 10242*x^2 - 1170*x + 308, x^25 + x^24 - 39*x^23 - 31*x^22 + 660*x^21 + 396*x^20 - 6348*x^19 - 2663*x^18 + 38216*x^17 + 9763*x^16 - 149632*x^15 - 16172*x^14 + 383893*x^13 - 9337*x^12 - 634877*x^11 + 92058*x^10 + 648683*x^9 - 167644*x^8 - 377389*x^7 + 139393*x^6 + 105854*x^5 - 51246*x^4 - 8485*x^3 + 5663*x^2 - 85*x - 77, x^25 + x^24 - 39*x^23 - 31*x^22 + 660*x^21 + 396*x^20 - 6348*x^19 - 2663*x^18 + 38216*x^17 + 9763*x^16 - 149632*x^15 - 16172*x^14 + 383893*x^13 - 9337*x^12 - 634877*x^11 + 92058*x^10 + 648683*x^9 - 167644*x^8 - 377389*x^7 + 139393*x^6 + 105854*x^5 - 51246*x^4 - 8485*x^3 + 5663*x^2 - 85*x - 77, -3*x^26 + 6*x^25 + 106*x^24 - 214*x^23 - 1607*x^22 + 3279*x^21 + 13698*x^20 - 28336*x^19 - 72247*x^18 + 152482*x^17 + 244150*x^16 - 532394*x^15 - 527251*x^14 + 1218470*x^13 + 695949*x^12 - 1802930*x^11 - 489939*x^10 + 1656656*x^9 + 89544*x^8 - 872661*x^7 + 88416*x^6 + 224797*x^5 - 44395*x^4 - 18981*x^3 + 3217*x^2 + 378*x + 66, -3*x^26 + 6*x^25 + 106*x^24 - 214*x^23 - 1607*x^22 + 3279*x^21 + 13698*x^20 - 28336*x^19 - 72247*x^18 + 152482*x^17 + 244150*x^16 - 532394*x^15 - 527251*x^14 + 1218470*x^13 + 695949*x^12 - 1802930*x^11 - 489939*x^10 + 1656656*x^9 + 89544*x^8 - 872661*x^7 + 88416*x^6 + 224797*x^5 - 44395*x^4 - 18981*x^3 + 3217*x^2 + 378*x + 66, x^25 - 3*x^24 - 33*x^23 + 102*x^22 + 457*x^21 - 1471*x^20 - 3446*x^19 + 11756*x^18 + 15288*x^17 - 57056*x^16 - 39663*x^15 + 172991*x^14 + 52853*x^13 - 322820*x^12 - 11310*x^11 + 344648*x^10 - 57725*x^9 - 165194*x^8 + 56962*x^7 - 10569*x^6 - 1216*x^5 + 29899*x^4 - 13288*x^3 - 3218*x^2 + 1556*x + 55, x^25 - 3*x^24 - 33*x^23 + 102*x^22 + 457*x^21 - 1471*x^20 - 3446*x^19 + 11756*x^18 + 15288*x^17 - 57056*x^16 - 39663*x^15 + 172991*x^14 + 52853*x^13 - 322820*x^12 - 11310*x^11 + 344648*x^10 - 57725*x^9 - 165194*x^8 + 56962*x^7 - 10569*x^6 - 1216*x^5 + 29899*x^4 - 13288*x^3 - 3218*x^2 + 1556*x + 55, x^24 - 3*x^23 - 36*x^22 + 101*x^21 + 561*x^20 - 1458*x^19 - 4965*x^18 + 11837*x^17 + 27468*x^16 - 59548*x^15 - 98340*x^14 + 192681*x^13 + 227670*x^12 - 402698*x^11 - 330179*x^10 + 531312*x^9 + 279022*x^8 - 419344*x^7 - 118357*x^6 + 179225*x^5 + 17301*x^4 - 35061*x^3 + 265*x^2 + 2444*x - 143, x^24 - 3*x^23 - 36*x^22 + 101*x^21 + 561*x^20 - 1458*x^19 - 4965*x^18 + 11837*x^17 + 27468*x^16 - 59548*x^15 - 98340*x^14 + 192681*x^13 + 227670*x^12 - 402698*x^11 - 330179*x^10 + 531312*x^9 + 279022*x^8 - 419344*x^7 - 118357*x^6 + 179225*x^5 + 17301*x^4 - 35061*x^3 + 265*x^2 + 2444*x - 143, -2*x^26 + 4*x^25 + 71*x^24 - 141*x^23 - 1089*x^22 + 2141*x^21 + 9489*x^20 - 18414*x^19 - 51957*x^18 + 99288*x^17 + 186614*x^16 - 351076*x^15 - 444590*x^14 + 827509*x^13 + 690996*x^12 - 1294946*x^11 - 661823*x^10 + 1311760*x^9 + 333842*x^8 - 812160*x^7 - 39038*x^6 + 272247*x^5 - 27757*x^4 - 37801*x^3 + 5935*x^2 + 1569*x - 187, -2*x^26 + 4*x^25 + 71*x^24 - 141*x^23 - 1089*x^22 + 2141*x^21 + 9489*x^20 - 18414*x^19 - 51957*x^18 + 99288*x^17 + 186614*x^16 - 351076*x^15 - 444590*x^14 + 827509*x^13 + 690996*x^12 - 1294946*x^11 - 661823*x^10 + 1311760*x^9 + 333842*x^8 - 812160*x^7 - 39038*x^6 + 272247*x^5 - 27757*x^4 - 37801*x^3 + 5935*x^2 + 1569*x - 187, x^27 - 2*x^26 - 37*x^25 + 75*x^24 + 595*x^23 - 1224*x^22 - 5468*x^21 + 11448*x^20 + 31736*x^19 - 67976*x^18 - 121143*x^17 + 267937*x^16 + 306141*x^15 - 711104*x^14 - 499741*x^13 + 1260346*x^12 + 489948*x^11 - 1447068*x^10 - 232803*x^9 + 1014869*x^8 - 2578*x^7 - 392230*x^6 + 43097*x^5 + 70012*x^4 - 10543*x^3 - 4420*x^2 + 543*x + 33, x^27 - 2*x^26 - 37*x^25 + 75*x^24 + 595*x^23 - 1224*x^22 - 5468*x^21 + 11448*x^20 + 31736*x^19 - 67976*x^18 - 121143*x^17 + 267937*x^16 + 306141*x^15 - 711104*x^14 - 499741*x^13 + 1260346*x^12 + 489948*x^11 - 1447068*x^10 - 232803*x^9 + 1014869*x^8 - 2578*x^7 - 392230*x^6 + 43097*x^5 + 70012*x^4 - 10543*x^3 - 4420*x^2 + 543*x + 33, x^27 - 2*x^26 - 39*x^25 + 78*x^24 + 662*x^23 - 1321*x^22 - 6432*x^21 + 12776*x^20 + 39578*x^19 - 78077*x^18 - 161140*x^17 + 315146*x^16 + 440166*x^15 - 853216*x^14 - 799430*x^13 + 1542291*x^12 + 931816*x^11 - 1818734*x^10 - 642070*x^9 + 1336935*x^8 + 208985*x^7 - 565866*x^6 + 981*x^5 + 118828*x^4 - 15030*x^3 - 8146*x^2 + 1828*x - 132, x^27 - 2*x^26 - 39*x^25 + 78*x^24 + 662*x^23 - 1321*x^22 - 6432*x^21 + 12776*x^20 + 39578*x^19 - 78077*x^18 - 161140*x^17 + 315146*x^16 + 440166*x^15 - 853216*x^14 - 799430*x^13 + 1542291*x^12 + 931816*x^11 - 1818734*x^10 - 642070*x^9 + 1336935*x^8 + 208985*x^7 - 565866*x^6 + 981*x^5 + 118828*x^4 - 15030*x^3 - 8146*x^2 + 1828*x - 132, x^25 - 2*x^24 - 36*x^23 + 70*x^22 + 560*x^21 - 1055*x^20 - 4942*x^19 + 9002*x^18 + 27274*x^17 - 48071*x^16 - 97628*x^15 + 167487*x^14 + 226755*x^13 - 384519*x^12 - 330269*x^11 + 573080*x^10 + 275577*x^9 - 532095*x^8 - 100081*x^7 + 284533*x^6 - 9920*x^5 - 75226*x^4 + 14762*x^3 + 6328*x^2 - 1773*x, x^25 - 2*x^24 - 36*x^23 + 70*x^22 + 560*x^21 - 1055*x^20 - 4942*x^19 + 9002*x^18 + 27274*x^17 - 48071*x^16 - 97628*x^15 + 167487*x^14 + 226755*x^13 - 384519*x^12 - 330269*x^11 + 573080*x^10 + 275577*x^9 - 532095*x^8 - 100081*x^7 + 284533*x^6 - 9920*x^5 - 75226*x^4 + 14762*x^3 + 6328*x^2 - 1773*x, 2*x^25 - 3*x^24 - 69*x^23 + 101*x^22 + 1021*x^21 - 1442*x^20 - 8513*x^19 + 11448*x^18 + 44204*x^17 - 55750*x^16 - 149079*x^15 + 173501*x^14 + 329963*x^13 - 348932*x^12 - 472174*x^11 + 448362*x^10 + 418763*x^9 - 354894*x^8 - 213539*x^7 + 160164*x^6 + 56418*x^5 - 35188*x^4 - 7342*x^3 + 2824*x^2 + 613*x - 99, 2*x^25 - 3*x^24 - 69*x^23 + 101*x^22 + 1021*x^21 - 1442*x^20 - 8513*x^19 + 11448*x^18 + 44204*x^17 - 55750*x^16 - 149079*x^15 + 173501*x^14 + 329963*x^13 - 348932*x^12 - 472174*x^11 + 448362*x^10 + 418763*x^9 - 354894*x^8 - 213539*x^7 + 160164*x^6 + 56418*x^5 - 35188*x^4 - 7342*x^3 + 2824*x^2 + 613*x - 99, -3*x^25 + 3*x^24 + 109*x^23 - 107*x^22 - 1710*x^21 + 1633*x^20 + 15202*x^19 - 13998*x^18 - 84498*x^17 + 74436*x^16 + 305566*x^15 - 256213*x^14 - 724605*x^13 + 578640*x^12 + 1106702*x^11 - 851039*x^10 - 1036719*x^9 + 790340*x^8 + 537505*x^7 - 431805*x^6 - 119504*x^5 + 118185*x^4 + 784*x^3 - 10426*x^2 + 995*x + 99, -3*x^25 + 3*x^24 + 109*x^23 - 107*x^22 - 1710*x^21 + 1633*x^20 + 15202*x^19 - 13998*x^18 - 84498*x^17 + 74436*x^16 + 305566*x^15 - 256213*x^14 - 724605*x^13 + 578640*x^12 + 1106702*x^11 - 851039*x^10 - 1036719*x^9 + 790340*x^8 + 537505*x^7 - 431805*x^6 - 119504*x^5 + 118185*x^4 + 784*x^3 - 10426*x^2 + 995*x + 99, -3*x^27 + 6*x^26 + 112*x^25 - 224*x^24 - 1816*x^23 + 3628*x^22 + 16811*x^21 - 33530*x^20 - 98210*x^19 + 195679*x^18 + 377503*x^17 - 753567*x^16 - 963934*x^15 + 1942836*x^14 + 1606129*x^13 - 3330066*x^12 - 1652059*x^11 + 3689246*x^10 + 910490*x^9 - 2498927*x^8 - 145653*x^7 + 937538*x^6 - 68516*x^5 - 164608*x^4 + 21645*x^3 + 11481*x^2 - 1615*x - 132, -3*x^27 + 6*x^26 + 112*x^25 - 224*x^24 - 1816*x^23 + 3628*x^22 + 16811*x^21 - 33530*x^20 - 98210*x^19 + 195679*x^18 + 377503*x^17 - 753567*x^16 - 963934*x^15 + 1942836*x^14 + 1606129*x^13 - 3330066*x^12 - 1652059*x^11 + 3689246*x^10 + 910490*x^9 - 2498927*x^8 - 145653*x^7 + 937538*x^6 - 68516*x^5 - 164608*x^4 + 21645*x^3 + 11481*x^2 - 1615*x - 132, x^26 - x^25 - 37*x^24 + 35*x^23 + 597*x^22 - 525*x^21 - 5536*x^20 + 4441*x^19 + 32731*x^18 - 23489*x^17 - 129344*x^16 + 81537*x^15 + 348015*x^14 - 190098*x^13 - 636986*x^12 + 300540*x^11 + 779178*x^10 - 323242*x^9 - 613770*x^8 + 235905*x^7 + 290289*x^6 - 112510*x^5 - 70629*x^4 + 29282*x^3 + 5451*x^2 - 2187*x - 88, x^26 - x^25 - 37*x^24 + 35*x^23 + 597*x^22 - 525*x^21 - 5536*x^20 + 4441*x^19 + 32731*x^18 - 23489*x^17 - 129344*x^16 + 81537*x^15 + 348015*x^14 - 190098*x^13 - 636986*x^12 + 300540*x^11 + 779178*x^10 - 323242*x^9 - 613770*x^8 + 235905*x^7 + 290289*x^6 - 112510*x^5 - 70629*x^4 + 29282*x^3 + 5451*x^2 - 2187*x - 88, x^28 - 2*x^27 - 38*x^26 + 76*x^25 + 628*x^24 - 1255*x^23 - 5935*x^22 + 11855*x^21 + 35463*x^20 - 70987*x^19 - 139675*x^18 + 282218*x^17 + 365628*x^16 - 758560*x^15 - 621076*x^14 + 1376757*x^13 + 630872*x^12 - 1654377*x^11 - 281744*x^10 + 1258985*x^9 - 88133*x^8 - 554232*x^7 + 155467*x^6 + 113924*x^5 - 57740*x^4 - 3963*x^3 + 6135*x^2 - 531*x - 121, x^28 - 2*x^27 - 38*x^26 + 76*x^25 + 628*x^24 - 1255*x^23 - 5935*x^22 + 11855*x^21 + 35463*x^20 - 70987*x^19 - 139675*x^18 + 282218*x^17 + 365628*x^16 - 758560*x^15 - 621076*x^14 + 1376757*x^13 + 630872*x^12 - 1654377*x^11 - 281744*x^10 + 1258985*x^9 - 88133*x^8 - 554232*x^7 + 155467*x^6 + 113924*x^5 - 57740*x^4 - 3963*x^3 + 6135*x^2 - 531*x - 121, -2*x^23 + 4*x^22 + 64*x^21 - 129*x^20 - 864*x^19 + 1747*x^18 + 6452*x^17 - 13020*x^16 - 29385*x^15 + 58859*x^14 + 84775*x^13 - 167887*x^12 - 154811*x^11 + 304259*x^10 + 170403*x^9 - 342379*x^8 - 96649*x^7 + 223885*x^6 + 12892*x^5 - 73006*x^4 + 7771*x^3 + 8204*x^2 - 1274*x - 165, -2*x^23 + 4*x^22 + 64*x^21 - 129*x^20 - 864*x^19 + 1747*x^18 + 6452*x^17 - 13020*x^16 - 29385*x^15 + 58859*x^14 + 84775*x^13 - 167887*x^12 - 154811*x^11 + 304259*x^10 + 170403*x^9 - 342379*x^8 - 96649*x^7 + 223885*x^6 + 12892*x^5 - 73006*x^4 + 7771*x^3 + 8204*x^2 - 1274*x - 165]>
       ]
>;

MOG[659] := 	// J_0(659)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 1,
           Coordinates        := [0, 1, 42, 65, 84, 121, 127, 172, 182, 204, 208, 215, 237, 301, 373, 410, 470, 540, 570, 619, 621, 623, 195*x + 569, 464*x + 569, 612*x + 39, 47*x + 39, 333*x + 207, 326*x + 207, 658*x + 473, x + 473, 176*x + 93, 483*x + 93, 61*x + 645, 598*x + 645, 528*x + 176, 131*x + 176, 267*x + 517, 392*x + 517, 619*x + 74, 40*x + 74, 157*x + 570, 502*x + 570, 287*x + 334, 372*x + 334, 542*x + 141, 117*x + 141, 521*x + 271, 138*x + 271, 45*x + 111, 614*x + 111, 207*x + 202, 452*x + 202, 171*x + 113, 488*x + 113, 448*x + 353, 211*x + 353]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, -1, 1, 1/2, -1/2, 1/2, -1/2, -1/2, 1/2, 1, -1, 1/2, -1/2, 0, 0, -1/2, 1/2, -1/2, 1/2, 1/2, -1/2, 0, 0, -1/2, 1/2, -1/2, 1/2, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x - 2,
           Coordinates        := [1, -1, 2, 2, 2, 1, -2, 3, -1, 1, -3, -3, 1, 1, 0, 3, 0, 2, -2, 0, 2, 1, 0, 0, -1, -1, -2, -2, 0, 0, -2, -2, 1, 1, 0, 0, -3, -3, 0, 0, 2, 2, 0, 0, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^16 + 3*x^15 - 14*x^14 - 47*x^13 + 67*x^12 + 280*x^11 - 107*x^10 - 798*x^9 - 95*x^8 + 1099*x^7 + 440*x^6 - 621*x^5 - 345*x^4 + 75*x^3 + 42*x^2 - 4*x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^14 - 3*x^13 + 10*x^12 + 35*x^11 - 29*x^10 - 146*x^9 + 2*x^8 + 256*x^7 + 96*x^6 - 159*x^5 - 92*x^4 + 8*x^3 + 6*x^2, x^14 + 3*x^13 - 10*x^12 - 35*x^11 + 29*x^10 + 146*x^9 - 2*x^8 - 256*x^7 - 96*x^6 + 159*x^5 + 92*x^4 - 8*x^3 - 6*x^2, -x^15 - 3*x^14 + 11*x^13 + 38*x^12 - 39*x^11 - 181*x^10 + 31*x^9 + 402*x^8 + 94*x^7 - 415*x^6 - 188*x^5 + 167*x^4 + 98*x^3 - 8*x^2 - 6*x, x^15 + 3*x^14 - 11*x^13 - 38*x^12 + 39*x^11 + 181*x^10 - 31*x^9 - 402*x^8 - 94*x^7 + 415*x^6 + 188*x^5 - 167*x^4 - 98*x^3 + 8*x^2 + 6*x, -x^13 - 3*x^12 + 10*x^11 + 35*x^10 - 29*x^9 - 146*x^8 + 2*x^7 + 256*x^6 + 96*x^5 - 159*x^4 - 92*x^3 + 8*x^2 + 6*x, x^13 + 3*x^12 - 10*x^11 - 35*x^10 + 29*x^9 + 146*x^8 - 2*x^7 - 256*x^6 - 96*x^5 + 159*x^4 + 92*x^3 - 8*x^2 - 6*x, -x^14 - 3*x^13 + 9*x^12 + 32*x^11 - 24*x^10 - 127*x^9 + 226*x^7 + 81*x^6 - 169*x^5 - 89*x^4 + 41*x^3 + 23*x^2 - 2*x - 1, x^14 + 3*x^13 - 9*x^12 - 32*x^11 + 24*x^10 + 127*x^9 - 226*x^7 - 81*x^6 + 169*x^5 + 89*x^4 - 41*x^3 - 23*x^2 + 2*x + 1, -x^14 - 3*x^13 + 9*x^12 + 32*x^11 - 23*x^10 - 123*x^9 - 3*x^8 + 202*x^7 + 75*x^6 - 126*x^5 - 66*x^4 + 18*x^3 + 7*x^2 - 2*x, x^14 + 3*x^13 - 9*x^12 - 32*x^11 + 23*x^10 + 123*x^9 + 3*x^8 - 202*x^7 - 75*x^6 + 126*x^5 + 66*x^4 - 18*x^3 - 7*x^2 + 2*x, -x^13 - 3*x^12 + 7*x^11 + 25*x^10 - 14*x^9 - 74*x^8 + 92*x^6 + 22*x^5 - 42*x^4 - 12*x^3 + 4*x^2, x^13 + 3*x^12 - 7*x^11 - 25*x^10 + 14*x^9 + 74*x^8 - 92*x^6 - 22*x^5 + 42*x^4 + 12*x^3 - 4*x^2, -x^13 - 3*x^12 + 8*x^11 + 29*x^10 - 17*x^9 - 102*x^8 - 13*x^7 + 154*x^6 + 77*x^5 - 84*x^4 - 63*x^3 + 2*x^2 + 5*x, x^13 + 3*x^12 - 8*x^11 - 29*x^10 + 17*x^9 + 102*x^8 + 13*x^7 - 154*x^6 - 77*x^5 + 84*x^4 + 63*x^3 - 2*x^2 - 5*x, -x^13 - 3*x^12 + 8*x^11 + 28*x^10 - 20*x^9 - 95*x^8 + 11*x^7 + 143*x^6 + 18*x^5 - 93*x^4 - 19*x^3 + 19*x^2 + x - 1, x^13 + 3*x^12 - 8*x^11 - 28*x^10 + 20*x^9 + 95*x^8 - 11*x^7 - 143*x^6 - 18*x^5 + 93*x^4 + 19*x^3 - 19*x^2 - x + 1, -x^13 - 3*x^12 + 8*x^11 + 30*x^10 - 14*x^9 - 105*x^8 - 30*x^7 + 146*x^6 + 104*x^5 - 56*x^4 - 72*x^3 - 13*x^2 + 5*x + 1, x^13 + 3*x^12 - 8*x^11 - 30*x^10 + 14*x^9 + 105*x^8 + 30*x^7 - 146*x^6 - 104*x^5 + 56*x^4 + 72*x^3 + 13*x^2 - 5*x - 1, -x^12 - 3*x^11 + 7*x^10 + 25*x^9 - 14*x^8 - 74*x^7 + 92*x^5 + 22*x^4 - 42*x^3 - 12*x^2 + 4*x, x^12 + 3*x^11 - 7*x^10 - 25*x^9 + 14*x^8 + 74*x^7 - 92*x^5 - 22*x^4 + 42*x^3 + 12*x^2 - 4*x, -x^12 - 4*x^11 + 3*x^10 + 28*x^9 + 14*x^8 - 60*x^7 - 59*x^6 + 35*x^5 + 55*x^4 + 5*x^3 - 11*x^2 - 2*x + 1, x^12 + 4*x^11 - 3*x^10 - 28*x^9 - 14*x^8 + 60*x^7 + 59*x^6 - 35*x^5 - 55*x^4 - 5*x^3 + 11*x^2 + 2*x - 1, -x^12 - 3*x^11 + 7*x^10 + 25*x^9 - 13*x^8 - 72*x^7 - 4*x^6 + 85*x^5 + 26*x^4 - 39*x^3 - 18*x^2 + 2*x + 1, x^12 + 3*x^11 - 7*x^10 - 25*x^9 + 13*x^8 + 72*x^7 + 4*x^6 - 85*x^5 - 26*x^4 + 39*x^3 + 18*x^2 - 2*x - 1, -x^12 - 4*x^11 + 3*x^10 + 28*x^9 + 14*x^8 - 59*x^7 - 57*x^6 + 33*x^5 + 47*x^4 + x^3 - 6*x^2 + x, x^12 + 4*x^11 - 3*x^10 - 28*x^9 - 14*x^8 + 59*x^7 + 57*x^6 - 33*x^5 - 47*x^4 - x^3 + 6*x^2 - x, -x^12 - 2*x^11 + 9*x^10 + 18*x^9 - 27*x^8 - 56*x^7 + 29*x^6 + 70*x^5 - 6*x^4 - 31*x^3 - 2*x^2 + 3*x, x^12 + 2*x^11 - 9*x^10 - 18*x^9 + 27*x^8 + 56*x^7 - 29*x^6 - 70*x^5 + 6*x^4 + 31*x^3 + 2*x^2 - 3*x, -x^11 - 4*x^10 + 4*x^9 + 30*x^8 + 9*x^7 - 69*x^6 - 51*x^5 + 45*x^4 + 45*x^3 - 4*x, x^11 + 4*x^10 - 4*x^9 - 30*x^8 - 9*x^7 + 69*x^6 + 51*x^5 - 45*x^4 - 45*x^3 + 4*x, -x^11 - 3*x^10 + 6*x^9 + 22*x^8 - 8*x^7 - 51*x^6 - 6*x^5 + 39*x^4 + 8*x^3 - 7*x^2 + x, x^11 + 3*x^10 - 6*x^9 - 22*x^8 + 8*x^7 + 51*x^6 + 6*x^5 - 39*x^4 - 8*x^3 + 7*x^2 - x, -x^11 - 3*x^10 + 5*x^9 + 22*x^8 + 3*x^7 - 47*x^6 - 40*x^5 + 19*x^4 + 39*x^3 + 14*x^2 - 2*x - 1, x^11 + 3*x^10 - 5*x^9 - 22*x^8 - 3*x^7 + 47*x^6 + 40*x^5 - 19*x^4 - 39*x^3 - 14*x^2 + 2*x + 1]>,
         rec<Eigen |
           DefiningPolynomial := x^37 + 2*x^36 - 60*x^35 - 119*x^34 + 1637*x^33 + 3220*x^32 - 26887*x^31 - 52450*x^30 + 296671*x^29 + 573775*x^28 - 2324192*x^27 - 4453116*x^26 + 13325404*x^25 + 25253019*x^24 - 56817530*x^23 - 106192830*x^22 + 181389200*x^21 + 332649864*x^20 - 433531231*x^19 - 773308446*x^18 + 771364917*x^17 + 1318533303*x^16 - 1011050641*x^15 - 1615276278*x^14 + 961298582*x^13 + 1377145237*x^12 - 648367747*x^11 - 779151001*x^10 + 299183140*x^9 + 272513132*x^8 - 88282480*x^7 - 53067552*x^6 + 14658304*x^5 + 5017024*x^4 - 1104640*x^3 - 196352*x^2 + 25600*x + 3072,
           Coordinates        := [-3/4*x^36 - 3/2*x^35 + 85/2*x^34 + 337/4*x^33 - 4363/4*x^32 - 4287/2*x^31 + 67101/4*x^30 + 65359/2*x^29 - 689649/4*x^28 - 1331339/4*x^27 + 1250547*x^26 + 2390029*x^25 - 6591793*x^24 - 49791509/4*x^23 + 25632305*x^22 + 47650059*x^21 - 147871697/2*x^20 - 134412560*x^19 + 631912405/4*x^18 + 277627686*x^17 - 993283945/4*x^16 - 1654098783/4*x^15 + 1135142529/4*x^14 + 432958997*x^13 - 231674810*x^12 - 1225520381/4*x^11 + 525044475/4*x^10 + 552368533/4*x^9 - 97646381/2*x^8 - 36218524*x^7 + 10644906*x^6 + 4857736*x^5 - 1090208*x^4 - 294304*x^3 + 33760*x^2 + 7616*x - 128, -1/4*x^36 - 1/2*x^35 + 12*x^34 + 95/4*x^33 - 999/4*x^32 - 489*x^31 + 11605/4*x^30 + 5615*x^29 - 78647/4*x^28 - 150153/4*x^27 + 64999*x^26 + 243199/2*x^25 + 89419*x^24 + 696825/4*x^23 - 4257577/2*x^22 - 3902111*x^21 + 23253171/2*x^20 + 20544849*x^19 - 150112097/4*x^18 - 63007367*x^17 + 324230191/4*x^16 + 503513865/4*x^15 - 485791301/4*x^14 - 333891211/2*x^13 + 126937528*x^12 + 576756709/4*x^11 - 363512625/4*x^10 - 307655595/4*x^9 + 84467911/2*x^8 + 22824325*x^7 - 11365082*x^6 - 3074836*x^5 + 1427160*x^4 + 138816*x^3 - 54304*x^2 - 4480*x + 896, x^36 + 2*x^35 - 57*x^34 - 113*x^33 + 1474*x^32 + 2897*x^31 - 22886*x^30 - 89187/2*x^29 + 475973/2*x^28 + 919179/2*x^27 - 1750831*x^26 - 3348077*x^25 + 9386773*x^24 + 35482819/2*x^23 - 37240787*x^22 - 69321168*x^21 + 109977411*x^20 + 400657187/2*x^19 - 482993049/2*x^18 - 425679996*x^17 + 783429421/2*x^16 + 1311022781/2*x^15 - 463890611*x^14 - 1427973227/2*x^13 + 787893015/2*x^12 + 530347588*x^11 - 465511791/2*x^10 - 254839231*x^9 + 180524241/2*x^8 + 73573106*x^7 - 20474064*x^6 - 11574320*x^5 + 2218320*x^4 + 839760*x^3 - 62144*x^2 - 20416*x - 1280, 4*x^30 + 14*x^29 - 337/2*x^28 - 608*x^27 + 3125*x^26 + 23401/2*x^25 - 33605*x^24 - 131591*x^23 + 464917/2*x^22 + 960667*x^21 - 1086479*x^20 - 4782634*x^19 + 3518769*x^18 + 16602573*x^17 - 16047863/2*x^16 - 40378070*x^15 + 26285045/2*x^14 + 68083001*x^13 - 32102775/2*x^12 - 77388436*x^11 + 15291037*x^10 + 112339953/2*x^9 - 22269577/2*x^8 - 23531989*x^7 + 5241660*x^6 + 4688908*x^5 - 1131208*x^4 - 332752*x^3 + 73984*x^2 + 5248*x - 768, 2*x^30 + 4*x^29 - 92*x^28 - 359/2*x^27 + 3795/2*x^26 + 3617*x^25 - 46277/2*x^24 - 43218*x^23 + 370175/2*x^22 + 340353*x^21 - 2035721/2*x^20 - 3711055/2*x^19 + 7837293/2*x^18 + 14298591/2*x^17 - 21088083/2*x^16 - 19498899*x^15 + 38894401/2*x^14 + 37093980*x^13 - 47256839/2*x^12 - 47683082*x^11 + 17683790*x^10 + 78630765/2*x^9 - 7329816*x^8 - 19218870*x^7 + 1472272*x^6 + 4988864*x^5 - 153776*x^4 - 588096*x^3 + 19200*x^2 + 16896*x + 256, x^34 + 2*x^33 - 51*x^32 - 101*x^31 + 1170*x^30 + 2299*x^29 - 31901/2*x^28 - 62341/2*x^27 + 143812*x^26 + 560441/2*x^25 - 903153*x^24 - 3518809/2*x^23 + 4054244*x^22 + 15831859/2*x^21 - 13148480*x^20 - 51550613/2*x^19 + 61648139/2*x^18 + 121281319/2*x^17 - 103828537/2*x^16 - 203798555/2*x^15 + 62286582*x^14 + 239421749/2*x^13 - 106127619/2*x^12 - 95166716*x^11 + 64890491/2*x^10 + 48820275*x^9 - 28856239/2*x^8 - 15044368*x^7 + 4424348*x^6 + 2459828*x^5 - 761480*x^4 - 159952*x^3 + 52896*x^2 + 1024*x - 640, 3/2*x^33 + 3*x^32 - 81*x^31 - 331/2*x^30 + 3901/2*x^29 + 8153/2*x^28 - 27646*x^27 - 59220*x^26 + 256376*x^25 + 564460*x^24 - 3271141/2*x^23 - 3715130*x^22 + 7349644*x^21 + 34609929/2*x^20 - 46886061/2*x^19 - 115055291/2*x^18 + 105820445/2*x^17 + 135984268*x^16 - 167313267/2*x^15 - 450489365/2*x^14 + 183450861/2*x^13 + 254605591*x^12 - 139929269/2*x^11 - 376645065/2*x^10 + 38207843*x^9 + 85338265*x^8 - 15056056*x^7 - 21262748*x^6 + 3678520*x^5 + 2427808*x^4 - 390528*x^3 - 96832*x^2 + 9472*x + 1536, -1/2*x^33 - x^32 + 20*x^31 + 81/2*x^30 - 655/2*x^29 - 693*x^28 + 5207/2*x^27 + 6311*x^26 - 6008*x^25 - 29536*x^24 - 154097/2*x^23 + 41165/2*x^22 + 891930*x^21 + 610355*x^20 - 4812891*x^19 - 4108955*x^18 + 16329879*x^17 + 28321919/2*x^16 - 74766613/2*x^15 - 30290512*x^14 + 117592133/2*x^13 + 41536961*x^12 - 125976951/2*x^11 - 35720517*x^10 + 88755737/2*x^9 + 35990165/2*x^8 - 19052886*x^7 - 4675766*x^6 + 4282992*x^5 + 560840*x^4 - 394080*x^3 - 45248*x^2 + 12352*x + 1408, 2*x^31 + 3*x^30 - 183/2*x^29 - 130*x^28 + 1851*x^27 + 4937/2*x^26 - 43601/2*x^25 - 53817/2*x^24 + 331287/2*x^23 + 184877*x^22 - 850044*x^21 - 1645629/2*x^20 + 2996528*x^19 + 2310656*x^18 - 7224688*x^17 - 3550360*x^16 + 23135763/2*x^15 + 656602*x^14 - 22607521/2*x^13 + 16923567/2*x^12 + 4712054*x^11 - 33137461/2*x^10 + 5423105/2*x^9 + 28810611/2*x^8 - 4752732*x^7 - 5959168*x^6 + 2364828*x^5 + 929080*x^4 - 379984*x^3 - 38368*x^2 + 12032*x + 896, -7/2*x^30 - 8*x^29 + 309/2*x^28 + 359*x^27 - 5967/2*x^26 - 7089*x^25 + 66179/2*x^24 + 162125/2*x^23 - 465129/2*x^22 - 1188853/2*x^21 + 2155177/2*x^20 + 2924811*x^19 - 6633969/2*x^18 - 9824231*x^17 + 13336237/2*x^16 + 45015445/2*x^15 - 8402604*x^14 - 69312961/2*x^13 + 6309891*x^12 + 34928057*x^11 - 3159116*x^10 - 22202973*x^9 + 2133054*x^8 + 8415356*x^7 - 1638064*x^6 - 1632392*x^5 + 619632*x^4 + 87168*x^3 - 67840*x^2 + 1664*x + 1536, -1/2*x^34 - x^33 + 24*x^32 + 95/2*x^31 - 1023/2*x^30 - 1005*x^29 + 12731/2*x^28 + 24971/2*x^27 - 51098*x^26 - 202183/2*x^25 + 274886*x^24 + 560034*x^23 - 987899*x^22 - 2170885*x^21 + 2217478*x^20 + 11874883/2*x^19 - 4367081/2*x^18 - 23016951/2*x^17 - 3393702*x^16 + 32241557/2*x^15 + 33270459/2*x^14 - 17511146*x^13 - 60623045/2*x^12 + 16602245*x^11 + 32079964*x^10 - 13753064*x^9 - 20326581*x^8 + 8124548*x^7 + 7075196*x^6 - 2661544*x^5 - 1133264*x^4 + 352416*x^3 + 73728*x^2 - 10752*x - 2304, x^34 + 2*x^33 - 53*x^32 - 105*x^31 + 2539/2*x^30 + 2494*x^29 - 18178*x^28 - 70887/2*x^27 + 173459*x^26 + 335822*x^25 - 1164167*x^24 - 4474709/2*x^23 + 5653891*x^22 + 10771170*x^21 - 40278945/2*x^20 - 75821879/2*x^19 + 105545251/2*x^18 + 97562569*x^17 - 101142063*x^16 - 363346595/2*x^15 + 279564987/2*x^14 + 239474591*x^13 - 272078727/2*x^12 - 215442878*x^11 + 179674017/2*x^10 + 124971972*x^9 - 37806103*x^8 - 42856006*x^7 + 8928372*x^6 + 7643964*x^5 - 860840*x^4 - 605056*x^3 - 8672*x^2 + 17856*x + 1920, 2*x^34 + 4*x^33 - 213/2*x^32 - 211*x^31 + 2550*x^30 + 5000*x^29 - 72575/2*x^28 - 140617/2*x^27 + 341857*x^26 + 1305687/2*x^25 - 2248695*x^24 - 4215115*x^23 + 21243439/2*x^22 + 38823763/2*x^21 - 36529493*x^20 - 128764475/2*x^19 + 183804435/2*x^18 + 153458457*x^17 - 337680309/2*x^16 - 259560877*x^15 + 449690035/2*x^14 + 608212333/2*x^13 - 427610217/2*x^12 - 237390910*x^11 + 281607765/2*x^10 + 232502487/2*x^9 - 60239535*x^8 - 32554777*x^7 + 14724462*x^6 + 4557752*x^5 - 1640120*x^4 - 278928*x^3 + 55968*x^2 + 4352*x + 512, 2*x^31 + 7/2*x^30 - 98*x^29 - 331/2*x^28 + 4293/2*x^27 + 6951/2*x^26 - 27750*x^25 - 85405/2*x^24 + 235616*x^23 + 340459*x^22 - 1384101*x^21 - 1846637*x^20 + 11552939/2*x^19 + 6947511*x^18 - 34644767/2*x^17 - 18143086*x^16 + 37317548*x^15 + 64708123/2*x^14 - 57054940*x^13 - 75883171/2*x^12 + 60144169*x^11 + 54366923/2*x^10 - 82593639/2*x^9 - 20434271/2*x^8 + 16588905*x^7 + 1385268*x^6 - 3210292*x^5 - 76520*x^4 + 264784*x^3 + 10752*x^2 - 6656*x - 768, 2*x^32 + 6*x^31 - 90*x^30 - 557/2*x^29 + 3557/2*x^28 + 11503/2*x^27 - 20217*x^26 - 139403/2*x^25 + 145042*x^24 + 550559*x^23 - 1345989/2*x^22 - 5955553/2*x^21 + 3886405/2*x^20 + 11280808*x^19 - 2802386*x^18 - 30125454*x^17 - 3107601/2*x^16 + 56423716*x^15 + 31705671/2*x^14 - 73146528*x^13 - 33404427*x^12 + 129238521/2*x^11 + 37388348*x^10 - 77359699/2*x^9 - 47848659/2*x^8 + 15885743*x^7 + 8301252*x^6 - 4293352*x^5 - 1301328*x^4 + 554384*x^3 + 73952*x^2 - 19392*x - 1664, -1/2*x^32 - 3/2*x^31 + 37/2*x^30 + 59*x^29 - 537/2*x^28 - 1923/2*x^27 + 1642*x^26 + 7953*x^25 + 1945*x^24 - 27591*x^23 - 209279/2*x^22 - 84057*x^21 + 807873*x^20 + 1418228*x^19 - 3394663*x^18 - 7503618*x^17 + 8826261*x^16 + 45974441/2*x^15 - 14396086*x^14 - 44686598*x^13 + 28218937/2*x^12 + 111292859/2*x^11 - 7342046*x^10 - 43062563*x^9 + 2630611/2*x^8 + 19310388*x^7 + 257502*x^6 - 4418264*x^5 - 135272*x^4 + 425568*x^3 + 31488*x^2 - 13760*x - 1408, 2*x^32 + 6*x^31 - 92*x^30 - 283*x^29 + 1878*x^28 + 11927/2*x^27 - 44841/2*x^26 - 74126*x^25 + 347403/2*x^24 + 1208897/2*x^23 - 916402*x^22 - 3402478*x^21 + 6728531/2*x^20 + 13549769*x^19 - 17310717/2*x^18 - 38492574*x^17 + 31285277/2*x^16 + 155369169/2*x^15 - 20194301*x^14 - 109604533*x^13 + 39857149/2*x^12 + 209749145/2*x^11 - 16867730*x^10 - 64639242*x^9 + 12054464*x^8 + 23482284*x^7 - 5668764*x^6 - 4264368*x^5 + 1251408*x^4 + 283040*x^3 - 97152*x^2 - 1280*x + 1280, -5/2*x^34 - 5*x^33 + 132*x^32 + 523/2*x^31 - 3136*x^30 - 6157*x^29 + 88603/2*x^28 + 172469/2*x^27 - 414380*x^26 - 1599599/2*x^25 + 5410235/2*x^24 + 5174862*x^23 - 12662075*x^22 - 23973228*x^21 + 43010638*x^20 + 160678365/2*x^19 - 106203578*x^18 - 389000819/2*x^17 + 378806125/2*x^16 + 672394819/2*x^15 - 240609945*x^14 - 405452553*x^13 + 426144421/2*x^12 + 328679991*x^11 - 254682071/2*x^10 - 169196176*x^9 + 48668662*x^8 + 50888319*x^7 - 10666116*x^6 - 8029908*x^5 + 1048744*x^4 + 604448*x^3 - 27904*x^2 - 16064*x - 512, 3/2*x^32 - 2*x^31 - 88*x^30 + 163/2*x^29 + 2276*x^28 - 1397*x^27 - 34383*x^26 + 12708*x^25 + 676477/2*x^24 - 60049*x^23 - 4568353/2*x^22 + 63968*x^21 + 21737969/2*x^20 + 1834301/2*x^19 - 73616909/2*x^18 - 11931427/2*x^17 + 88577223*x^16 + 18195416*x^15 - 299509633/2*x^14 - 63978859/2*x^13 + 348303993/2*x^12 + 64932265/2*x^11 - 269352007/2*x^10 - 34319829/2*x^9 + 65510060*x^8 + 3167481*x^7 - 18121138*x^6 + 531600*x^5 + 2382856*x^4 - 170320*x^3 - 120224*x^2 + 7936*x + 1792, x^35 + 2*x^34 - 55*x^33 - 109*x^32 + 1370*x^31 + 2691*x^30 - 40893/2*x^29 - 79601/2*x^28 + 203858*x^27 + 785951/2*x^26 - 1433560*x^25 - 5464069/2*x^24 + 7319453*x^23 + 27489301/2*x^22 - 27532652*x^21 - 101268137/2*x^20 + 153378917/2*x^19 + 273284695/2*x^18 - 315799659/2*x^17 - 534953535/2*x^16 + 238658379*x^15 + 743877631/2*x^14 - 523643071/2*x^13 - 354801148*x^12 + 409686669/2*x^11 + 219737994*x^10 - 220947283/2*x^9 - 81046984*x^8 + 38027898*x^7 + 15672732*x^6 - 7121344*x^5 - 1470528*x^4 + 596000*x^3 + 74752*x^2 - 17920*x - 1536, -5/2*x^35 - 5*x^34 + 137*x^33 + 543/2*x^32 - 3390*x^31 - 6658*x^30 + 50091*x^29 + 194993/2*x^28 - 492597*x^27 - 949808*x^26 + 3402260*x^25 + 6491887*x^24 - 33961685/2*x^23 - 63989127/2*x^22 + 124212103/2*x^21 + 115074838*x^20 - 167170322*x^19 - 604707297/2*x^18 + 660405403/2*x^17 + 1150750563/2*x^16 - 949004697/2*x^15 - 1556996423/2*x^14 + 978598253/2*x^13 + 1452957665/2*x^12 - 710029383/2*x^11 - 892542235/2*x^10 + 351128329/2*x^9 + 168166325*x^8 - 55566954*x^7 - 34942928*x^6 + 9903520*x^5 + 3468464*x^4 - 794720*x^3 - 139648*x^2 + 19072*x + 2304, 2*x^33 + 4*x^32 - 100*x^31 - 196*x^30 + 2248*x^29 + 4315*x^28 - 30023*x^27 - 112755/2*x^26 + 530407/2*x^25 + 486315*x^24 - 3265209/2*x^23 - 5828721/2*x^22 + 7192086*x^21 + 12429381*x^20 - 45865389/2*x^19 - 38000844*x^18 + 105985561/2*x^17 + 82788745*x^16 - 176371797/2*x^15 - 252227941/2*x^14 + 104378863*x^13 + 129817216*x^12 - 172398089/2*x^11 - 170917719/2*x^10 + 48022761*x^9 + 33001308*x^8 - 16801775*x^7 - 6606452*x^6 + 3179932*x^5 + 655288*x^4 - 271552*x^3 - 36864*x^2 + 8640*x + 768, -1/4*x^34 - 1/2*x^33 + 21/2*x^32 + 87/4*x^31 - 729/4*x^30 - 811/2*x^29 + 6281/4*x^28 + 4117*x^27 - 4646*x^26 - 22721*x^25 - 161877/4*x^24 + 151529/4*x^23 + 1101209/2*x^22 + 778469/2*x^21 - 6428637/2*x^20 - 6945411/2*x^19 + 23119205/2*x^18 + 58336391/4*x^17 - 110071657/4*x^16 - 76264953/2*x^15 + 175176477/4*x^14 + 130910157/2*x^13 - 182414825/4*x^12 - 73506688*x^11 + 118123921/4*x^10 + 208240417/4*x^9 - 21683497/2*x^8 - 21648271*x^7 + 1883994*x^6 + 4698684*x^5 - 61768*x^4 - 448192*x^3 - 25312*x^2 + 14464*x + 1408, -1/4*x^34 - 1/2*x^33 + 21/2*x^32 + 87/4*x^31 - 729/4*x^30 - 811/2*x^29 + 6281/4*x^28 + 4117*x^27 - 4646*x^26 - 22721*x^25 - 161877/4*x^24 + 151529/4*x^23 + 1101209/2*x^22 + 778469/2*x^21 - 6428637/2*x^20 - 6945411/2*x^19 + 23119205/2*x^18 + 58336391/4*x^17 - 110071657/4*x^16 - 76264953/2*x^15 + 175176477/4*x^14 + 130910157/2*x^13 - 182414825/4*x^12 - 73506688*x^11 + 118123921/4*x^10 + 208240417/4*x^9 - 21683497/2*x^8 - 21648271*x^7 + 1883994*x^6 + 4698684*x^5 - 61768*x^4 - 448192*x^3 - 25312*x^2 + 14464*x + 1408, -1/4*x^33 + 1/2*x^32 + 13*x^31 - 105/4*x^30 - 1239/4*x^29 + 1211/2*x^28 + 8953/2*x^27 - 32385/4*x^26 - 174865/4*x^25 + 278525/4*x^24 + 1215269/4*x^23 - 806941/2*x^22 - 3080331/2*x^21 + 1600701*x^20 + 11485497/2*x^19 - 17266129/4*x^18 - 15695831*x^17 + 30553235/4*x^16 + 124125977/4*x^15 - 32484711/4*x^14 - 173525185/4*x^13 + 3958024*x^12 + 82994313/2*x^11 + 495887*x^10 - 25952405*x^9 - 1036495*x^8 + 9871254*x^7 + 73848*x^6 - 1938868*x^5 + 28664*x^4 + 136640*x^3 + 16672*x^2 - 5056*x - 640, -1/4*x^33 + 1/2*x^32 + 13*x^31 - 105/4*x^30 - 1239/4*x^29 + 1211/2*x^28 + 8953/2*x^27 - 32385/4*x^26 - 174865/4*x^25 + 278525/4*x^24 + 1215269/4*x^23 - 806941/2*x^22 - 3080331/2*x^21 + 1600701*x^20 + 11485497/2*x^19 - 17266129/4*x^18 - 15695831*x^17 + 30553235/4*x^16 + 124125977/4*x^15 - 32484711/4*x^14 - 173525185/4*x^13 + 3958024*x^12 + 82994313/2*x^11 + 495887*x^10 - 25952405*x^9 - 1036495*x^8 + 9871254*x^7 + 73848*x^6 - 1938868*x^5 + 28664*x^4 + 136640*x^3 + 16672*x^2 - 5056*x - 640, -1/4*x^35 - 1/2*x^34 + 45/4*x^33 + 89/4*x^32 - 861/4*x^31 - 1679/4*x^30 + 4415/2*x^29 + 8409/2*x^28 - 11726*x^27 - 83743/4*x^26 + 9255*x^25 - 2213*x^24 + 1295343/4*x^23 + 1544245/2*x^22 - 2566083*x^21 - 11367523/2*x^20 + 10629745*x^19 + 23009585*x^18 - 112607849/4*x^17 - 239726979/4*x^16 + 100291863/2*x^15 + 415467073/4*x^14 - 122036953/2*x^13 - 119001673*x^12 + 204089197/4*x^11 + 349138937/4*x^10 - 29267212*x^9 - 77213717/2*x^8 + 11065626*x^7 + 9300602*x^6 - 2405892*x^5 - 1037696*x^4 + 232128*x^3 + 43040*x^2 - 5888*x - 768, -1/4*x^35 - 1/2*x^34 + 45/4*x^33 + 89/4*x^32 - 861/4*x^31 - 1679/4*x^30 + 4415/2*x^29 + 8409/2*x^28 - 11726*x^27 - 83743/4*x^26 + 9255*x^25 - 2213*x^24 + 1295343/4*x^23 + 1544245/2*x^22 - 2566083*x^21 - 11367523/2*x^20 + 10629745*x^19 + 23009585*x^18 - 112607849/4*x^17 - 239726979/4*x^16 + 100291863/2*x^15 + 415467073/4*x^14 - 122036953/2*x^13 - 119001673*x^12 + 204089197/4*x^11 + 349138937/4*x^10 - 29267212*x^9 - 77213717/2*x^8 + 11065626*x^7 + 9300602*x^6 - 2405892*x^5 - 1037696*x^4 + 232128*x^3 + 43040*x^2 - 5888*x - 768, x^33 + 7/4*x^32 - 101/2*x^31 - 177/2*x^30 + 4563/4*x^29 + 4013/2*x^28 - 60891/4*x^27 - 107781/4*x^26 + 267037/2*x^25 + 238570*x^24 - 1620849/2*x^23 - 1467133*x^22 + 13965737/4*x^21 + 6432025*x^20 - 10777428*x^19 - 20309037*x^18 + 95128285/4*x^17 + 184427779/4*x^16 - 37054627*x^15 - 148634229/2*x^14 + 39908076*x^13 + 165966235/2*x^12 - 115651289/4*x^11 - 246957447/4*x^10 + 54935625/4*x^9 + 57845605/2*x^8 - 4209461*x^7 - 7934756*x^6 + 822848*x^5 + 1191640*x^4 - 117008*x^3 - 74176*x^2 + 5440*x + 1408, x^33 + 7/4*x^32 - 101/2*x^31 - 177/2*x^30 + 4563/4*x^29 + 4013/2*x^28 - 60891/4*x^27 - 107781/4*x^26 + 267037/2*x^25 + 238570*x^24 - 1620849/2*x^23 - 1467133*x^22 + 13965737/4*x^21 + 6432025*x^20 - 10777428*x^19 - 20309037*x^18 + 95128285/4*x^17 + 184427779/4*x^16 - 37054627*x^15 - 148634229/2*x^14 + 39908076*x^13 + 165966235/2*x^12 - 115651289/4*x^11 - 246957447/4*x^10 + 54935625/4*x^9 + 57845605/2*x^8 - 4209461*x^7 - 7934756*x^6 + 822848*x^5 + 1191640*x^4 - 117008*x^3 - 74176*x^2 + 5440*x + 1408, 3/4*x^32 + 5/2*x^31 - 39*x^30 - 519/4*x^29 + 3599/4*x^28 + 6019/2*x^27 - 12125*x^26 - 164665/4*x^25 + 211433/2*x^24 + 1476287/4*x^23 - 623637*x^22 - 9119871/4*x^21 + 2525042*x^20 + 39734405/4*x^19 - 13892793/2*x^18 - 122911441/4*x^17 + 49769855/4*x^16 + 268263703/4*x^15 - 12858301*x^14 - 202810261/2*x^13 + 16470981/4*x^12 + 411661589/4*x^11 + 12511953/2*x^10 - 133661011/2*x^9 - 8209800*x^8 + 25931580*x^7 + 4111894*x^6 - 5492868*x^5 - 993232*x^4 + 581872*x^3 + 94432*x^2 - 20544*x - 2816, 3/4*x^32 + 5/2*x^31 - 39*x^30 - 519/4*x^29 + 3599/4*x^28 + 6019/2*x^27 - 12125*x^26 - 164665/4*x^25 + 211433/2*x^24 + 1476287/4*x^23 - 623637*x^22 - 9119871/4*x^21 + 2525042*x^20 + 39734405/4*x^19 - 13892793/2*x^18 - 122911441/4*x^17 + 49769855/4*x^16 + 268263703/4*x^15 - 12858301*x^14 - 202810261/2*x^13 + 16470981/4*x^12 + 411661589/4*x^11 + 12511953/2*x^10 - 133661011/2*x^9 - 8209800*x^8 + 25931580*x^7 + 4111894*x^6 - 5492868*x^5 - 993232*x^4 + 581872*x^3 + 94432*x^2 - 20544*x - 2816, x^34 + 2*x^33 - 52*x^32 - 413/4*x^31 + 1217*x^30 + 2401*x^29 - 33895/2*x^28 - 132997/4*x^27 + 312877/2*x^26 + 305446*x^25 - 1009433*x^24 - 7851155/4*x^23 + 4679499*x^22 + 18131371/2*x^21 - 15775294*x^20 - 121813219/4*x^19 + 77438237/2*x^18 + 148897933/2*x^17 - 137247461/2*x^16 - 131275089*x^15 + 86280324*x^14 + 327764393/2*x^13 - 149514281/2*x^12 - 140669790*x^11 + 42728324*x^10 + 159282933/2*x^9 - 30264653/2*x^8 - 28108079*x^7 + 3090282*x^6 + 5663200*x^5 - 354952*x^4 - 510240*x^3 + 1696*x^2 + 15296*x + 768, x^34 + 2*x^33 - 52*x^32 - 413/4*x^31 + 1217*x^30 + 2401*x^29 - 33895/2*x^28 - 132997/4*x^27 + 312877/2*x^26 + 305446*x^25 - 1009433*x^24 - 7851155/4*x^23 + 4679499*x^22 + 18131371/2*x^21 - 15775294*x^20 - 121813219/4*x^19 + 77438237/2*x^18 + 148897933/2*x^17 - 137247461/2*x^16 - 131275089*x^15 + 86280324*x^14 + 327764393/2*x^13 - 149514281/2*x^12 - 140669790*x^11 + 42728324*x^10 + 159282933/2*x^9 - 30264653/2*x^8 - 28108079*x^7 + 3090282*x^6 + 5663200*x^5 - 354952*x^4 - 510240*x^3 + 1696*x^2 + 15296*x + 768, x^32 + 7/4*x^31 - 50*x^30 - 339/4*x^29 + 4477/4*x^28 + 3655/2*x^27 - 59295/4*x^26 - 92639/4*x^25 + 517509/4*x^24 + 383677/2*x^23 - 3138377/4*x^22 - 1093495*x^21 + 3397165*x^20 + 17606077/4*x^19 - 10620515*x^18 - 50584763/4*x^17 + 95723179/4*x^16 + 103705921/4*x^15 - 153004281/4*x^14 - 150071131/4*x^13 + 167545177/4*x^12 + 149733087/4*x^11 - 117961219/4*x^10 - 24766259*x^9 + 23918721/2*x^8 + 10302069*x^7 - 2341282*x^6 - 2532692*x^5 + 209280*x^4 + 299424*x^3 - 12928*x^2 - 8832*x - 128, x^32 + 7/4*x^31 - 50*x^30 - 339/4*x^29 + 4477/4*x^28 + 3655/2*x^27 - 59295/4*x^26 - 92639/4*x^25 + 517509/4*x^24 + 383677/2*x^23 - 3138377/4*x^22 - 1093495*x^21 + 3397165*x^20 + 17606077/4*x^19 - 10620515*x^18 - 50584763/4*x^17 + 95723179/4*x^16 + 103705921/4*x^15 - 153004281/4*x^14 - 150071131/4*x^13 + 167545177/4*x^12 + 149733087/4*x^11 - 117961219/4*x^10 - 24766259*x^9 + 23918721/2*x^8 + 10302069*x^7 - 2341282*x^6 - 2532692*x^5 + 209280*x^4 + 299424*x^3 - 12928*x^2 - 8832*x - 128, x^33 + 2*x^32 - 201/4*x^31 - 197/2*x^30 + 4537/4*x^29 + 4357/2*x^28 - 30399/2*x^27 - 114307/4*x^26 + 269393/2*x^25 + 247340*x^24 - 832781*x^23 - 5946961/4*x^22 + 14786359/4*x^21 + 12723129/2*x^20 - 23916833/2*x^19 - 78159557/4*x^18 + 113515533/4*x^17 + 42901735*x^16 - 197751771/4*x^15 - 264928449/4*x^14 + 62891086*x^13 + 69679135*x^12 - 57503163*x^11 - 47383011*x^10 + 145335077/4*x^9 + 19095489*x^8 - 14549763*x^7 - 4014384*x^6 + 3130252*x^5 + 432736*x^4 - 302336*x^3 - 28448*x^2 + 9920*x + 768, x^33 + 2*x^32 - 201/4*x^31 - 197/2*x^30 + 4537/4*x^29 + 4357/2*x^28 - 30399/2*x^27 - 114307/4*x^26 + 269393/2*x^25 + 247340*x^24 - 832781*x^23 - 5946961/4*x^22 + 14786359/4*x^21 + 12723129/2*x^20 - 23916833/2*x^19 - 78159557/4*x^18 + 113515533/4*x^17 + 42901735*x^16 - 197751771/4*x^15 - 264928449/4*x^14 + 62891086*x^13 + 69679135*x^12 - 57503163*x^11 - 47383011*x^10 + 145335077/4*x^9 + 19095489*x^8 - 14549763*x^7 - 4014384*x^6 + 3130252*x^5 + 432736*x^4 - 302336*x^3 - 28448*x^2 + 9920*x + 768, -7/4*x^31 - 5*x^30 + 301/4*x^29 + 451/2*x^28 - 1402*x^27 - 17973/4*x^26 + 58945/4*x^25 + 104201/2*x^24 - 378693/4*x^23 - 389757*x^22 + 1474471/4*x^21 + 7885343/4*x^20 - 1461457/2*x^19 - 27485755/4*x^18 - 481177/2*x^17 + 16525882*x^16 + 11096295/2*x^15 - 54103681/2*x^14 - 30784089/2*x^13 + 117112953/4*x^12 + 22261983*x^11 - 39886763/2*x^10 - 74364657/4*x^9 + 7872586*x^8 + 8790403*x^7 - 1552332*x^6 - 2184616*x^5 + 120472*x^4 + 260128*x^3 - 8768*x^2 - 7680*x - 128, -7/4*x^31 - 5*x^30 + 301/4*x^29 + 451/2*x^28 - 1402*x^27 - 17973/4*x^26 + 58945/4*x^25 + 104201/2*x^24 - 378693/4*x^23 - 389757*x^22 + 1474471/4*x^21 + 7885343/4*x^20 - 1461457/2*x^19 - 27485755/4*x^18 - 481177/2*x^17 + 16525882*x^16 + 11096295/2*x^15 - 54103681/2*x^14 - 30784089/2*x^13 + 117112953/4*x^12 + 22261983*x^11 - 39886763/2*x^10 - 74364657/4*x^9 + 7872586*x^8 + 8790403*x^7 - 1552332*x^6 - 2184616*x^5 + 120472*x^4 + 260128*x^3 - 8768*x^2 - 7680*x - 128, x^35 + 2*x^34 - 54*x^33 - 107*x^32 + 2631/2*x^31 + 10331/4*x^30 - 19119*x^29 - 74385/2*x^28 + 369503/2*x^27 + 1424127/4*x^26 - 2505071/2*x^25 - 4779575/2*x^24 + 6128645*x^23 + 46254023/4*x^22 - 43879137/2*x^21 - 40843601*x^20 + 57672624*x^19 + 421972205/4*x^18 - 221750377/2*x^17 - 395545145/2*x^16 + 308501651/2*x^15 + 529350849/2*x^14 - 305530539/2*x^13 - 491996501/2*x^12 + 210768517/2*x^11 + 152286888*x^10 - 49223689*x^9 - 58946521*x^8 + 14890259*x^7 + 12910250*x^6 - 2659320*x^5 - 1353368*x^4 + 223248*x^3 + 50592*x^2 - 4480*x - 768, x^35 + 2*x^34 - 54*x^33 - 107*x^32 + 2631/2*x^31 + 10331/4*x^30 - 19119*x^29 - 74385/2*x^28 + 369503/2*x^27 + 1424127/4*x^26 - 2505071/2*x^25 - 4779575/2*x^24 + 6128645*x^23 + 46254023/4*x^22 - 43879137/2*x^21 - 40843601*x^20 + 57672624*x^19 + 421972205/4*x^18 - 221750377/2*x^17 - 395545145/2*x^16 + 308501651/2*x^15 + 529350849/2*x^14 - 305530539/2*x^13 - 491996501/2*x^12 + 210768517/2*x^11 + 152286888*x^10 - 49223689*x^9 - 58946521*x^8 + 14890259*x^7 + 12910250*x^6 - 2659320*x^5 - 1353368*x^4 + 223248*x^3 + 50592*x^2 - 4480*x - 768, x^33 + 2*x^32 - 48*x^31 - 373/4*x^30 + 4123/4*x^29 + 7747/4*x^28 - 52361/4*x^27 - 47281/2*x^26 + 109584*x^25 + 753715/4*x^24 - 1277443/2*x^23 - 4122749/4*x^22 + 10691361/4*x^21 + 15833085/4*x^20 - 16352155/2*x^19 - 42940191/4*x^18 + 73877547/4*x^17 + 81562155/4*x^16 - 61831749/2*x^15 - 52952227/2*x^14 + 38100053*x^13 + 22345343*x^12 - 134972449/4*x^11 - 43624239/4*x^10 + 81429825/4*x^9 + 3831279/2*x^8 - 7590516*x^7 + 687706*x^6 + 1481520*x^5 - 348512*x^4 - 104544*x^3 + 38880*x^2 - 192*x - 640, x^33 + 2*x^32 - 48*x^31 - 373/4*x^30 + 4123/4*x^29 + 7747/4*x^28 - 52361/4*x^27 - 47281/2*x^26 + 109584*x^25 + 753715/4*x^24 - 1277443/2*x^23 - 4122749/4*x^22 + 10691361/4*x^21 + 15833085/4*x^20 - 16352155/2*x^19 - 42940191/4*x^18 + 73877547/4*x^17 + 81562155/4*x^16 - 61831749/2*x^15 - 52952227/2*x^14 + 38100053*x^13 + 22345343*x^12 - 134972449/4*x^11 - 43624239/4*x^10 + 81429825/4*x^9 + 3831279/2*x^8 - 7590516*x^7 + 687706*x^6 + 1481520*x^5 - 348512*x^4 - 104544*x^3 + 38880*x^2 - 192*x - 640, -3/2*x^31 + 1/4*x^30 + 153/2*x^29 - 27/2*x^28 - 3495/2*x^27 + 310*x^26 + 94435/4*x^25 - 4029*x^24 - 839143/4*x^23 + 33179*x^22 + 5159327/4*x^21 - 735475/4*x^20 - 11239113/2*x^19 + 2861341/4*x^18 + 17471107*x^17 - 4074757/2*x^16 - 154055965/4*x^15 + 17781081/4*x^14 + 236132633/4*x^13 - 30433041/4*x^12 - 121443303/2*x^11 + 39158565/4*x^10 + 158089095/4*x^9 - 8403598*x^8 - 14720726*x^7 + 4016796*x^6 + 2596724*x^5 - 815696*x^4 - 160704*x^3 + 54592*x^2 + 1088*x - 640, -3/2*x^31 + 1/4*x^30 + 153/2*x^29 - 27/2*x^28 - 3495/2*x^27 + 310*x^26 + 94435/4*x^25 - 4029*x^24 - 839143/4*x^23 + 33179*x^22 + 5159327/4*x^21 - 735475/4*x^20 - 11239113/2*x^19 + 2861341/4*x^18 + 17471107*x^17 - 4074757/2*x^16 - 154055965/4*x^15 + 17781081/4*x^14 + 236132633/4*x^13 - 30433041/4*x^12 - 121443303/2*x^11 + 39158565/4*x^10 + 158089095/4*x^9 - 8403598*x^8 - 14720726*x^7 + 4016796*x^6 + 2596724*x^5 - 815696*x^4 - 160704*x^3 + 54592*x^2 + 1088*x - 640, 2*x^32 + 4*x^31 - 385/4*x^30 - 743/4*x^29 + 8315/4*x^28 + 15429/4*x^27 - 53275/2*x^26 - 189263/4*x^25 + 451339/2*x^24 + 763085/2*x^23 - 5334657/4*x^22 - 8518551/4*x^21 + 5656014*x^20 + 8437449*x^19 - 69789383/4*x^18 - 95731895/4*x^17 + 78523313/2*x^16 + 96750519/2*x^15 - 128066213/2*x^14 - 136780651/2*x^13 + 297673821/4*x^12 + 260577879/4*x^11 - 239036863/4*x^10 - 78091955/2*x^9 + 31466140*x^8 + 12910042*x^7 - 9910014*x^6 - 1718360*x^5 + 1551736*x^4 - 5264*x^3 - 75840*x^2 + 3456*x + 896, 2*x^32 + 4*x^31 - 385/4*x^30 - 743/4*x^29 + 8315/4*x^28 + 15429/4*x^27 - 53275/2*x^26 - 189263/4*x^25 + 451339/2*x^24 + 763085/2*x^23 - 5334657/4*x^22 - 8518551/4*x^21 + 5656014*x^20 + 8437449*x^19 - 69789383/4*x^18 - 95731895/4*x^17 + 78523313/2*x^16 + 96750519/2*x^15 - 128066213/2*x^14 - 136780651/2*x^13 + 297673821/4*x^12 + 260577879/4*x^11 - 239036863/4*x^10 - 78091955/2*x^9 + 31466140*x^8 + 12910042*x^7 - 9910014*x^6 - 1718360*x^5 + 1551736*x^4 - 5264*x^3 - 75840*x^2 + 3456*x + 896, -5/2*x^32 - 15/2*x^31 + 471/4*x^30 + 1453/4*x^29 - 9825/4*x^28 - 31447/4*x^27 + 119379/4*x^26 + 401423/4*x^25 - 933917/4*x^24 - 3359565/4*x^23 + 4899277/4*x^22 + 4845730*x^21 - 4333359*x^20 - 19729851*x^19 + 20045585/2*x^18 + 228311893/4*x^17 - 54249739/4*x^16 - 466501955/4*x^15 + 11737721/2*x^14 + 661359397/4*x^13 + 47337387/4*x^12 - 631147343/4*x^11 - 86752099/4*x^10 + 193812129/2*x^9 + 14867149*x^8 - 35899268*x^7 - 4658446*x^6 + 7245732*x^5 + 633728*x^4 - 677808*x^3 - 34272*x^2 + 18752*x + 1280, -5/2*x^32 - 15/2*x^31 + 471/4*x^30 + 1453/4*x^29 - 9825/4*x^28 - 31447/4*x^27 + 119379/4*x^26 + 401423/4*x^25 - 933917/4*x^24 - 3359565/4*x^23 + 4899277/4*x^22 + 4845730*x^21 - 4333359*x^20 - 19729851*x^19 + 20045585/2*x^18 + 228311893/4*x^17 - 54249739/4*x^16 - 466501955/4*x^15 + 11737721/2*x^14 + 661359397/4*x^13 + 47337387/4*x^12 - 631147343/4*x^11 - 86752099/4*x^10 + 193812129/2*x^9 + 14867149*x^8 - 35899268*x^7 - 4658446*x^6 + 7245732*x^5 + 633728*x^4 - 677808*x^3 - 34272*x^2 + 18752*x + 1280, -5/2*x^32 - 7/2*x^31 + 247/2*x^30 + 651/4*x^29 - 10947/4*x^28 - 6737/2*x^27 + 35964*x^26 + 163725/4*x^25 - 624509/2*x^24 - 324303*x^23 + 1889549*x^22 + 7038681/4*x^21 - 8193907*x^20 - 6682712*x^19 + 25780966*x^18 + 71334001/4*x^17 - 58894426*x^16 - 66098183/2*x^15 + 193255253/2*x^14 + 41213283*x^13 - 444278917/4*x^12 - 64711369/2*x^11 + 85581309*x^10 + 27302217/2*x^9 - 41085392*x^8 - 1532541*x^7 + 10897174*x^6 - 647832*x^5 - 1299064*x^4 + 135152*x^3 + 52384*x^2 - 3840*x - 768, -5/2*x^32 - 7/2*x^31 + 247/2*x^30 + 651/4*x^29 - 10947/4*x^28 - 6737/2*x^27 + 35964*x^26 + 163725/4*x^25 - 624509/2*x^24 - 324303*x^23 + 1889549*x^22 + 7038681/4*x^21 - 8193907*x^20 - 6682712*x^19 + 25780966*x^18 + 71334001/4*x^17 - 58894426*x^16 - 66098183/2*x^15 + 193255253/2*x^14 + 41213283*x^13 - 444278917/4*x^12 - 64711369/2*x^11 + 85581309*x^10 + 27302217/2*x^9 - 41085392*x^8 - 1532541*x^7 + 10897174*x^6 - 647832*x^5 - 1299064*x^4 + 135152*x^3 + 52384*x^2 - 3840*x - 768, 2*x^31 + 6*x^30 - 345/4*x^29 - 258*x^28 + 6609/4*x^27 + 9803/2*x^26 - 18611*x^25 - 216905/4*x^24 + 551353/4*x^23 + 1551159/4*x^22 - 713416*x^21 - 7529547/4*x^20 + 10748593/4*x^19 + 25367853/4*x^18 - 15173227/2*x^17 - 59668057/4*x^16 + 65282843/4*x^15 + 97271601/4*x^14 - 106290735/4*x^13 - 107520033/4*x^12 + 62974119/2*x^11 + 76972373/4*x^10 - 50450171/2*x^9 - 16202173/2*x^8 + 12230265*x^7 + 1608318*x^6 - 3060036*x^5 - 89488*x^4 + 331040*x^3 - 6976*x^2 - 8832*x - 128, 2*x^31 + 6*x^30 - 345/4*x^29 - 258*x^28 + 6609/4*x^27 + 9803/2*x^26 - 18611*x^25 - 216905/4*x^24 + 551353/4*x^23 + 1551159/4*x^22 - 713416*x^21 - 7529547/4*x^20 + 10748593/4*x^19 + 25367853/4*x^18 - 15173227/2*x^17 - 59668057/4*x^16 + 65282843/4*x^15 + 97271601/4*x^14 - 106290735/4*x^13 - 107520033/4*x^12 + 62974119/2*x^11 + 76972373/4*x^10 - 50450171/2*x^9 - 16202173/2*x^8 + 12230265*x^7 + 1608318*x^6 - 3060036*x^5 - 89488*x^4 + 331040*x^3 - 6976*x^2 - 8832*x - 128, -5/2*x^33 - 5*x^32 + 127*x^31 + 501/2*x^30 - 11579/4*x^29 - 5631*x^28 + 78217/2*x^27 + 300017/4*x^26 - 1394285/4*x^25 - 1317025/2*x^24 + 8637535/4*x^23 + 16042671/4*x^22 - 38190827/4*x^21 - 69471311/4*x^20 + 30483372*x^19 + 107853239/2*x^18 - 140799639/2*x^17 - 119588936*x^16 + 467784807/4*x^15 + 746091317/4*x^14 - 138113458*x^13 - 795597683/4*x^12 + 113836828*x^11 + 554149883/4*x^10 - 253791005/4*x^9 - 58639003*x^8 + 22450419*x^7 + 13456510*x^6 - 4427388*x^5 - 1432008*x^4 + 383408*x^3 + 61792*x^2 - 9792*x - 1152, -5/2*x^33 - 5*x^32 + 127*x^31 + 501/2*x^30 - 11579/4*x^29 - 5631*x^28 + 78217/2*x^27 + 300017/4*x^26 - 1394285/4*x^25 - 1317025/2*x^24 + 8637535/4*x^23 + 16042671/4*x^22 - 38190827/4*x^21 - 69471311/4*x^20 + 30483372*x^19 + 107853239/2*x^18 - 140799639/2*x^17 - 119588936*x^16 + 467784807/4*x^15 + 746091317/4*x^14 - 138113458*x^13 - 795597683/4*x^12 + 113836828*x^11 + 554149883/4*x^10 - 253791005/4*x^9 - 58639003*x^8 + 22450419*x^7 + 13456510*x^6 - 4427388*x^5 - 1432008*x^4 + 383408*x^3 + 61792*x^2 - 9792*x - 1152]>
       ]
>;

MOG[661] := 	// J_0(661)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [68, 190, 312, 343, 356, 512, 568, 591, 658, 193*x + 297, 468*x + 297, 626*x + 240, 35*x + 240, 14*x + 511, 647*x + 511, 633*x + 331, 28*x + 331, 82*x + 195, 579*x + 195, 72*x + 285, 589*x + 285, 482*x + 211, 179*x + 211, 638*x + 420, 23*x + 420, 62*x + 332, 599*x + 332, 432*x + 125, 229*x + 125, 634*x + 354, 27*x + 354, 307*x + 29, 354*x + 29, 398*x + 356, 263*x + 356, 112*x + 227, 549*x + 227, 592*x + 269, 69*x + 269, 578*x + 647, 83*x + 647, 175*x + 57, 486*x + 57, 352*x + 182, 309*x + 182, 208*x + 360, 453*x + 360, 591*x + 340, 70*x + 340, 240*x + 484, 421*x + 484, 209*x + 620, 452*x + 620, 374*x + 553, 287*x + 553]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - 2*x - 1,
           Coordinates        := [x + 1, -x + 1, -1, -x, 1, x, -1, -x - 1, -x, x, x, 1, 1, x - 1, x - 1, 0, 0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, -x, -x, -x, -x, 0, 0, 0, 0, -x - 1, -x - 1, -x, -x, x, x, 0, 0, x, x, -x, -x, -1, -1, x + 1, x + 1, x, x, 1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^23 + 9*x^22 + 10*x^21 - 133*x^20 - 387*x^19 + 622*x^18 + 3426*x^17 + 10*x^16 - 14590*x^15 - 10069*x^14 + 33796*x^13 + 38981*x^12 - 41980*x^11 - 70132*x^10 + 22556*x^9 + 66699*x^8 + 2943*x^7 - 32189*x^6 - 8115*x^5 + 6560*x^4 + 2581*x^3 - 333*x^2 - 240*x - 25,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, -x^22 - 9*x^21 - 12*x^20 + 115*x^19 + 359*x^18 - 425*x^17 - 2743*x^16 - 471*x^15 + 10137*x^14 + 7746*x^13 - 20444*x^12 - 23698*x^11 + 22539*x^10 + 35186*x^9 - 12069*x^8 - 27624*x^7 + 1505*x^6 + 10875*x^5 + 986*x^4 - 1781*x^3 - 273*x^2 + 85*x + 15, x^22 + 9*x^21 + 12*x^20 - 115*x^19 - 359*x^18 + 425*x^17 + 2743*x^16 + 471*x^15 - 10137*x^14 - 7746*x^13 + 20444*x^12 + 23698*x^11 - 22539*x^10 - 35186*x^9 + 12069*x^8 + 27624*x^7 - 1505*x^6 - 10875*x^5 - 986*x^4 + 1781*x^3 + 273*x^2 - 85*x - 15, -x^21 - 9*x^20 - 14*x^19 + 99*x^18 + 346*x^17 - 222*x^16 - 2263*x^15 - 1313*x^14 + 6672*x^13 + 8353*x^12 - 8967*x^11 - 18714*x^10 + 2815*x^9 + 19887*x^8 + 5161*x^7 - 9523*x^6 - 4809*x^5 + 1439*x^4 + 1141*x^3 + 18*x^2 - 76*x - 10, x^21 + 9*x^20 + 14*x^19 - 99*x^18 - 346*x^17 + 222*x^16 + 2263*x^15 + 1313*x^14 - 6672*x^13 - 8353*x^12 + 8967*x^11 + 18714*x^10 - 2815*x^9 - 19887*x^8 - 5161*x^7 + 9523*x^6 + 4809*x^5 - 1439*x^4 - 1141*x^3 - 18*x^2 + 76*x + 10, -x^21 - 9*x^20 - 14*x^19 + 98*x^18 + 337*x^17 - 239*x^16 - 2190*x^15 - 1010*x^14 + 6680*x^13 + 6930*x^12 - 10474*x^11 - 16232*x^10 + 7672*x^9 + 19188*x^8 - 713*x^7 - 11791*x^6 - 2320*x^5 + 3340*x^4 + 1167*x^3 - 266*x^2 - 149*x - 15, x^21 + 9*x^20 + 14*x^19 - 98*x^18 - 337*x^17 + 239*x^16 + 2190*x^15 + 1010*x^14 - 6680*x^13 - 6930*x^12 + 10474*x^11 + 16232*x^10 - 7672*x^9 - 19188*x^8 + 713*x^7 + 11791*x^6 + 2320*x^5 - 3340*x^4 - 1167*x^3 + 266*x^2 + 149*x + 15, -x^20 - 8*x^19 - 6*x^18 + 105*x^17 + 241*x^16 - 463*x^15 - 1800*x^14 + 487*x^13 + 6185*x^12 + 2168*x^11 - 11135*x^10 - 7579*x^9 + 10394*x^8 + 9493*x^7 - 4332*x^6 - 5191*x^5 + 382*x^4 + 1057*x^3 + 84*x^2 - 66*x - 10, x^20 + 8*x^19 + 6*x^18 - 105*x^17 - 241*x^16 + 463*x^15 + 1800*x^14 - 487*x^13 - 6185*x^12 - 2168*x^11 + 11135*x^10 + 7579*x^9 - 10394*x^8 - 9493*x^7 + 4332*x^6 + 5191*x^5 - 382*x^4 - 1057*x^3 - 84*x^2 + 66*x + 10, -x^20 - 8*x^19 - 7*x^18 + 98*x^17 + 239*x^16 - 379*x^15 - 1665*x^14 + 120*x^13 + 5292*x^12 + 2816*x^11 - 8589*x^10 - 7720*x^9 + 6836*x^8 + 8608*x^7 - 1982*x^6 - 4245*x^5 - 227*x^4 + 742*x^3 + 113*x^2 - 29*x - 5, x^20 + 8*x^19 + 7*x^18 - 98*x^17 - 239*x^16 + 379*x^15 + 1665*x^14 - 120*x^13 - 5292*x^12 - 2816*x^11 + 8589*x^10 + 7720*x^9 - 6836*x^8 - 8608*x^7 + 1982*x^6 + 4245*x^5 + 227*x^4 - 742*x^3 - 113*x^2 + 29*x + 5, -x^20 - 8*x^19 - 7*x^18 + 97*x^17 + 232*x^16 - 381*x^15 - 1579*x^14 + 272*x^13 + 4962*x^12 + 1862*x^11 - 8264*x^10 - 5350*x^9 + 7417*x^8 + 5944*x^7 - 3352*x^6 - 3031*x^5 + 602*x^4 + 635*x^3 - 12*x^2 - 46*x - 5, x^20 + 8*x^19 + 7*x^18 - 97*x^17 - 232*x^16 + 381*x^15 + 1579*x^14 - 272*x^13 - 4962*x^12 - 1862*x^11 + 8264*x^10 + 5350*x^9 - 7417*x^8 - 5944*x^7 + 3352*x^6 + 3031*x^5 - 602*x^4 - 635*x^3 + 12*x^2 + 46*x + 5, -x^20 - 9*x^19 - 15*x^18 + 89*x^17 + 321*x^16 - 158*x^15 - 1878*x^14 - 1088*x^13 + 5008*x^12 + 5604*x^11 - 6603*x^10 - 10648*x^9 + 3939*x^8 + 9889*x^7 - 473*x^6 - 4504*x^5 - 421*x^4 + 880*x^3 + 136*x^2 - 54*x - 10, x^20 + 9*x^19 + 15*x^18 - 89*x^17 - 321*x^16 + 158*x^15 + 1878*x^14 + 1088*x^13 - 5008*x^12 - 5604*x^11 + 6603*x^10 + 10648*x^9 - 3939*x^8 - 9889*x^7 + 473*x^6 + 4504*x^5 + 421*x^4 - 880*x^3 - 136*x^2 + 54*x + 10, -x^19 - 8*x^18 - 9*x^17 + 82*x^16 + 219*x^15 - 232*x^14 - 1260*x^13 - 245*x^12 + 3194*x^11 + 2405*x^10 - 3699*x^9 - 4443*x^8 + 1465*x^7 + 3296*x^6 + 337*x^5 - 924*x^4 - 286*x^3 + 66*x^2 + 42*x + 5, x^19 + 8*x^18 + 9*x^17 - 82*x^16 - 219*x^15 + 232*x^14 + 1260*x^13 + 245*x^12 - 3194*x^11 - 2405*x^10 + 3699*x^9 + 4443*x^8 - 1465*x^7 - 3296*x^6 - 337*x^5 + 924*x^4 + 286*x^3 - 66*x^2 - 42*x - 5, -x^19 - 8*x^18 - 8*x^17 + 90*x^16 + 230*x^15 - 297*x^14 - 1446*x^13 - 106*x^12 + 4072*x^11 + 2618*x^10 - 5605*x^9 - 5827*x^8 + 3305*x^7 + 5408*x^6 - 109*x^5 - 2103*x^4 - 544*x^3 + 208*x^2 + 98*x + 10, x^19 + 8*x^18 + 8*x^17 - 90*x^16 - 230*x^15 + 297*x^14 + 1446*x^13 + 106*x^12 - 4072*x^11 - 2618*x^10 + 5605*x^9 + 5827*x^8 - 3305*x^7 - 5408*x^6 + 109*x^5 + 2103*x^4 + 544*x^3 - 208*x^2 - 98*x - 10, -x^19 - 9*x^18 - 16*x^17 + 81*x^16 + 312*x^15 - 78*x^14 - 1672*x^13 - 1326*x^12 + 3871*x^11 + 5584*x^10 - 3733*x^9 - 9299*x^8 + 240*x^7 + 7287*x^6 + 1899*x^5 - 2460*x^4 - 1031*x^3 + 212*x^2 + 139*x + 15, x^19 + 9*x^18 + 16*x^17 - 81*x^16 - 312*x^15 + 78*x^14 + 1672*x^13 + 1326*x^12 - 3871*x^11 - 5584*x^10 + 3733*x^9 + 9299*x^8 - 240*x^7 - 7287*x^6 - 1899*x^5 + 2460*x^4 + 1031*x^3 - 212*x^2 - 139*x - 15, -x^18 - 8*x^17 - 10*x^16 + 73*x^15 + 198*x^14 - 193*x^13 - 1031*x^12 - 101*x^11 + 2506*x^10 + 1354*x^9 - 3066*x^8 - 2393*x^7 + 1794*x^6 + 1696*x^5 - 416*x^4 - 478*x^3 + 15*x^2 + 45*x + 5, x^18 + 8*x^17 + 10*x^16 - 73*x^15 - 198*x^14 + 193*x^13 + 1031*x^12 + 101*x^11 - 2506*x^10 - 1354*x^9 + 3066*x^8 + 2393*x^7 - 1794*x^6 - 1696*x^5 + 416*x^4 + 478*x^3 - 15*x^2 - 45*x - 5, -x^18 - 8*x^17 - 10*x^16 + 74*x^15 + 207*x^14 - 172*x^13 - 1067*x^12 - 310*x^11 + 2384*x^10 + 1923*x^9 - 2305*x^8 - 2919*x^7 + 525*x^6 + 1625*x^5 + 357*x^4 - 198*x^3 - 86*x^2 - 11*x, x^18 + 8*x^17 + 10*x^16 - 74*x^15 - 207*x^14 + 172*x^13 + 1067*x^12 + 310*x^11 - 2384*x^10 - 1923*x^9 + 2305*x^8 + 2919*x^7 - 525*x^6 - 1625*x^5 - 357*x^4 + 198*x^3 + 86*x^2 + 11*x, -x^18 - 7*x^17 - 2*x^16 + 84*x^15 + 133*x^14 - 378*x^13 - 890*x^12 + 756*x^11 + 2659*x^10 - 477*x^9 - 4112*x^8 - 536*x^7 + 3243*x^6 + 928*x^5 - 1146*x^4 - 427*x^3 + 110*x^2 + 56*x + 5, x^18 + 7*x^17 + 2*x^16 - 84*x^15 - 133*x^14 + 378*x^13 + 890*x^12 - 756*x^11 - 2659*x^10 + 477*x^9 + 4112*x^8 + 536*x^7 - 3243*x^6 - 928*x^5 + 1146*x^4 + 427*x^3 - 110*x^2 - 56*x - 5, -x^18 - 8*x^17 - 9*x^16 + 80*x^15 + 206*x^14 - 238*x^13 - 1137*x^12 - 20*x^11 + 2870*x^10 + 1349*x^9 - 3699*x^8 - 2602*x^7 + 2372*x^6 + 2044*x^5 - 610*x^4 - 668*x^3 + 3*x^2 + 69*x + 10, x^18 + 8*x^17 + 9*x^16 - 80*x^15 - 206*x^14 + 238*x^13 + 1137*x^12 + 20*x^11 - 2870*x^10 - 1349*x^9 + 3699*x^8 + 2602*x^7 - 2372*x^6 - 2044*x^5 + 610*x^4 + 668*x^3 - 3*x^2 - 69*x - 10, -x^17 - 9*x^16 - 21*x^15 + 39*x^14 + 229*x^13 + 144*x^12 - 688*x^11 - 1051*x^10 + 633*x^9 + 2050*x^8 + 329*x^7 - 1600*x^6 - 753*x^5 + 446*x^4 + 301*x^3 - 21*x^2 - 37*x - 5, x^17 + 9*x^16 + 21*x^15 - 39*x^14 - 229*x^13 - 144*x^12 + 688*x^11 + 1051*x^10 - 633*x^9 - 2050*x^8 - 329*x^7 + 1600*x^6 + 753*x^5 - 446*x^4 - 301*x^3 + 21*x^2 + 37*x + 5, -x^17 - 8*x^16 - 12*x^15 + 60*x^14 + 193*x^13 - 65*x^12 - 810*x^11 - 482*x^10 + 1394*x^9 + 1524*x^8 - 940*x^7 - 1671*x^6 + 20*x^5 + 726*x^4 + 200*x^3 - 77*x^2 - 42*x - 5, x^17 + 8*x^16 + 12*x^15 - 60*x^14 - 193*x^13 + 65*x^12 + 810*x^11 + 482*x^10 - 1394*x^9 - 1524*x^8 + 940*x^7 + 1671*x^6 - 20*x^5 - 726*x^4 - 200*x^3 + 77*x^2 + 42*x + 5, -x^17 - 8*x^16 - 13*x^15 + 52*x^14 + 178*x^13 - 28*x^12 - 657*x^11 - 436*x^10 + 1016*x^9 + 1179*x^8 - 598*x^7 - 1237*x^6 - 109*x^5 + 530*x^4 + 227*x^3 - 42*x^2 - 37*x - 5, x^17 + 8*x^16 + 13*x^15 - 52*x^14 - 178*x^13 + 28*x^12 + 657*x^11 + 436*x^10 - 1016*x^9 - 1179*x^8 + 598*x^7 + 1237*x^6 + 109*x^5 - 530*x^4 - 227*x^3 + 42*x^2 + 37*x + 5, -x^16 - 8*x^15 - 14*x^14 + 46*x^13 + 178*x^12 + 36*x^11 - 559*x^10 - 626*x^9 + 471*x^8 + 1134*x^7 + 318*x^6 - 532*x^5 - 477*x^4 - 94*x^3 + 78*x^2 + 42*x + 5, x^16 + 8*x^15 + 14*x^14 - 46*x^13 - 178*x^12 - 36*x^11 + 559*x^10 + 626*x^9 - 471*x^8 - 1134*x^7 - 318*x^6 + 532*x^5 + 477*x^4 + 94*x^3 - 78*x^2 - 42*x - 5, -x^17 - 10*x^16 - 26*x^15 + 46*x^14 + 297*x^13 + 169*x^12 - 1021*x^11 - 1365*x^10 + 1383*x^9 + 2998*x^8 - 470*x^7 - 2871*x^6 - 465*x^5 + 1182*x^4 + 366*x^3 - 140*x^2 - 60*x - 5, x^17 + 10*x^16 + 26*x^15 - 46*x^14 - 297*x^13 - 169*x^12 + 1021*x^11 + 1365*x^10 - 1383*x^9 - 2998*x^8 + 470*x^7 + 2871*x^6 + 465*x^5 - 1182*x^4 - 366*x^3 + 140*x^2 + 60*x + 5, -x^16 - 8*x^15 - 15*x^14 + 40*x^13 + 174*x^12 + 71*x^11 - 508*x^10 - 687*x^9 + 397*x^8 + 1263*x^7 + 324*x^6 - 785*x^5 - 465*x^4 + 91*x^3 + 88*x^2 + 10*x, x^16 + 8*x^15 + 15*x^14 - 40*x^13 - 174*x^12 - 71*x^11 + 508*x^10 + 687*x^9 - 397*x^8 - 1263*x^7 - 324*x^6 + 785*x^5 + 465*x^4 - 91*x^3 - 88*x^2 - 10*x, -x^16 - 6*x^15 + 61*x^13 + 79*x^12 - 208*x^11 - 431*x^10 + 227*x^9 + 894*x^8 + 114*x^7 - 823*x^6 - 367*x^5 + 320*x^4 + 215*x^3 - 34*x^2 - 36*x - 5, x^16 + 6*x^15 - 61*x^13 - 79*x^12 + 208*x^11 + 431*x^10 - 227*x^9 - 894*x^8 - 114*x^7 + 823*x^6 + 367*x^5 - 320*x^4 - 215*x^3 + 34*x^2 + 36*x + 5, -x^16 - 6*x^15 - x^14 + 53*x^13 + 64*x^12 - 171*x^11 - 278*x^10 + 273*x^9 + 516*x^8 - 231*x^7 - 481*x^6 + 67*x^5 + 191*x^4 + 19*x^3 - 7*x^2 - x, x^16 + 6*x^15 + x^14 - 53*x^13 - 64*x^12 + 171*x^11 + 278*x^10 - 273*x^9 - 516*x^8 + 231*x^7 + 481*x^6 - 67*x^5 - 191*x^4 - 19*x^3 + 7*x^2 + x, -2*x^15 - 14*x^14 - 15*x^13 + 101*x^12 + 251*x^11 - 144*x^10 - 923*x^9 - 390*x^8 + 1258*x^7 + 1139*x^6 - 497*x^5 - 820*x^4 - 122*x^3 + 119*x^2 + 47*x + 5, 2*x^15 + 14*x^14 + 15*x^13 - 101*x^12 - 251*x^11 + 144*x^10 + 923*x^9 + 390*x^8 - 1258*x^7 - 1139*x^6 + 497*x^5 + 820*x^4 + 122*x^3 - 119*x^2 - 47*x - 5]>,
         rec<Eigen |
           DefiningPolynomial := x^29 - 7*x^28 - 21*x^27 + 246*x^26 + 12*x^25 - 3720*x^24 + 3834*x^23 + 31540*x^22 - 53703*x^21 - 162870*x^20 + 378279*x^19 + 513196*x^18 - 1632262*x^17 - 880566*x^16 + 4557836*x^15 + 291087*x^14 - 8298505*x^13 + 1993215*x^12 + 9642224*x^11 - 4289164*x^10 - 6819019*x^9 + 4005659*x^8 + 2720287*x^7 - 1894205*x^6 - 532886*x^5 + 432870*x^4 + 34241*x^3 - 38932*x^2 + 1306*x + 355,
           Coordinates        := [1/4*x^28 - 3/2*x^27 - 25/4*x^26 + 209/4*x^25 + 171/4*x^24 - 3131/4*x^23 + 1047/4*x^22 + 26315/4*x^21 - 12673/2*x^20 - 67643/2*x^19 + 192933/4*x^18 + 431323/4*x^17 - 819493/4*x^16 - 801035/4*x^15 + 2133437/4*x^14 + 310193/2*x^13 - 3410973/4*x^12 + 274317/2*x^11 + 784637*x^10 - 846503/2*x^9 - 1330881/4*x^8 + 374925*x^7 - 48149/4*x^6 - 282589/2*x^5 + 52926*x^4 + 33611/2*x^3 - 40725/4*x^2 + 937/4*x + 315/4, -3/4*x^28 + 21/4*x^27 + 27/2*x^26 - 681/4*x^25 + 38*x^24 + 9313/4*x^23 - 6005/2*x^22 - 69291/4*x^21 + 140709/4*x^20 + 297661/4*x^19 - 214348*x^18 - 684491/4*x^17 + 1581865/2*x^16 + 387889/4*x^15 - 1834065*x^14 + 1067953/2*x^13 + 10564137/4*x^12 - 6152921/4*x^11 - 8934553/4*x^10 + 7453359/4*x^9 + 1939615/2*x^8 - 2280417/2*x^7 - 514169/4*x^6 + 1325769/4*x^5 - 120263/4*x^4 - 143237/4*x^3 + 7124*x^2 + 277/4*x - 89/2, -1/2*x^28 + 7/2*x^27 + 9*x^26 - 227/2*x^25 + 51/2*x^24 + 1553*x^23 - 4031/2*x^22 - 11547*x^21 + 23717*x^20 + 98567/2*x^19 - 145178*x^18 - 109870*x^17 + 1074875/2*x^16 + 39855*x^15 - 2491297/2*x^14 + 435531*x^13 + 1778675*x^12 - 2337249/2*x^11 - 2935607/2*x^10 + 1381309*x^9 + 599719*x^8 - 828670*x^7 - 60206*x^6 + 239329*x^5 - 26031*x^4 - 26098*x^3 + 10751/2*x^2 + 84*x - 111/2, x^28 - 7*x^27 - 18*x^26 + 225*x^25 - 75/2*x^24 - 6153/2*x^23 + 3657*x^22 + 23210*x^21 - 43138*x^20 - 207875/2*x^19 + 264129*x^18 + 269364*x^17 - 1971301/2*x^16 - 628051/2*x^15 + 4678559/2*x^14 - 462313/2*x^13 - 3519298*x^12 + 2633767/2*x^11 + 3231016*x^10 - 3722277/2*x^9 - 3324229/2*x^8 + 1264030*x^7 + 385960*x^6 - 818725/2*x^5 - 7461*x^4 + 48894*x^3 - 6169*x^2 - 473/2*x + 50, -1/2*x^24 + 5/2*x^23 + 13*x^22 - 79*x^21 - 129*x^20 + 1088*x^19 + 456*x^18 - 8422*x^17 + 3357/2*x^16 + 39702*x^15 - 22833*x^14 - 116391*x^13 + 193433/2*x^12 + 418117/2*x^11 - 214871*x^10 - 218419*x^9 + 530779/2*x^8 + 117952*x^7 - 349613/2*x^6 - 46421/2*x^5 + 105389/2*x^4 + 62*x^3 - 11859/2*x^2 + 439/2*x + 99/2, -3/2*x^24 + 10*x^23 + 23*x^22 - 282*x^21 + 88*x^20 + 3228*x^19 - 8359/2*x^18 - 38375/2*x^17 + 75947/2*x^16 + 61709*x^15 - 346619/2*x^14 - 93159*x^13 + 901039/2*x^12 - 3753*x^11 - 673375*x^10 + 214472*x^9 + 1098273/2*x^8 - 545503/2*x^7 - 218900*x^6 + 255711/2*x^5 + 34583*x^4 - 38969/2*x^3 - 1580*x^2 + 203*x + 37, x^27 - 7*x^26 - 16*x^25 + 211*x^24 - 65*x^23 - 2681*x^22 + 3439*x^21 + 37233/2*x^20 - 71865/2*x^19 - 152135/2*x^18 + 197580*x^17 + 359121/2*x^16 - 659652*x^15 - 201377*x^14 + 1391906*x^13 - 94921/2*x^12 - 1858205*x^11 + 843855/2*x^10 + 3071857/2*x^9 - 498328*x^8 - 1506405/2*x^7 + 268896*x^6 + 396533/2*x^5 - 69273*x^4 - 42499/2*x^3 + 6824*x^2 + 211/2*x - 115/2, -3/4*x^27 + 15/4*x^26 + 21*x^25 - 513/4*x^24 - 437/2*x^23 + 7565/4*x^22 + 780*x^21 - 63051/4*x^20 + 14607/4*x^19 + 326875/4*x^18 - 101821/2*x^17 - 1091775/4*x^16 + 245045*x^15 + 2348249/4*x^14 - 1319881/2*x^13 - 1571809/2*x^12 + 4276901/4*x^11 + 2400881/4*x^10 - 4132791/4*x^9 - 812223/4*x^8 + 563696*x^7 - 25633/2*x^6 - 616701/4*x^5 + 92367/4*x^4 + 64471/4*x^3 - 14295/4*x^2 - 47/2*x + 89/4, -1/2*x^27 + 7/2*x^26 + 8*x^25 - 213/2*x^24 + 40*x^23 + 1352*x^22 - 1925*x^21 - 9156*x^20 + 20284*x^19 + 68407/2*x^18 - 224981/2*x^17 - 114877/2*x^16 + 747017/2*x^15 - 45255*x^14 - 1515785/2*x^13 + 815053/2*x^12 + 1807217/2*x^11 - 1597595/2*x^10 - 561432*x^9 + 1494129/2*x^8 + 241883/2*x^7 - 346379*x^6 + 26031*x^5 + 71581*x^4 - 10332*x^3 - 5487*x^2 + 471*x + 127/2, 1/4*x^27 - 3/2*x^26 - 25/4*x^25 + 209/4*x^24 + 43*x^23 - 784*x^22 + 1021/4*x^21 + 26465/4*x^20 - 12515/2*x^19 - 137403/4*x^18 + 190723/4*x^17 + 112378*x^16 - 405841/2*x^15 - 902069/4*x^14 + 2133573/4*x^13 + 245799*x^12 - 3526155/4*x^11 - 271195/4*x^10 + 897643*x^9 - 587539/4*x^8 - 533517*x^7 + 172147*x^6 + 163721*x^5 - 72169*x^4 - 35547/2*x^3 + 40297/4*x^2 - 241*x - 335/4, 1/4*x^27 - 3/2*x^26 - 25/4*x^25 + 209/4*x^24 + 43*x^23 - 784*x^22 + 1021/4*x^21 + 26465/4*x^20 - 12515/2*x^19 - 137403/4*x^18 + 190723/4*x^17 + 112378*x^16 - 405841/2*x^15 - 902069/4*x^14 + 2133573/4*x^13 + 245799*x^12 - 3526155/4*x^11 - 271195/4*x^10 + 897643*x^9 - 587539/4*x^8 - 533517*x^7 + 172147*x^6 + 163721*x^5 - 72169*x^4 - 35547/2*x^3 + 40297/4*x^2 - 241*x - 335/4, -1/4*x^26 + 3/2*x^25 + 11/2*x^24 - 193/4*x^23 - 99/4*x^22 + 654*x^21 - 761/2*x^20 - 4860*x^19 + 23257/4*x^18 + 85907/4*x^17 - 144249/4*x^16 - 226283/4*x^15 + 504565/4*x^14 + 324159/4*x^13 - 1056213/4*x^12 - 153853/4*x^11 + 325862*x^10 - 174329/4*x^9 - 447537/2*x^8 + 233899/4*x^7 + 326603/4*x^6 - 41397/2*x^5 - 16933*x^4 + 5473/2*x^3 + 6541/4*x^2 - 361/4*x - 3/2, -1/4*x^26 + 3/2*x^25 + 11/2*x^24 - 193/4*x^23 - 99/4*x^22 + 654*x^21 - 761/2*x^20 - 4860*x^19 + 23257/4*x^18 + 85907/4*x^17 - 144249/4*x^16 - 226283/4*x^15 + 504565/4*x^14 + 324159/4*x^13 - 1056213/4*x^12 - 153853/4*x^11 + 325862*x^10 - 174329/4*x^9 - 447537/2*x^8 + 233899/4*x^7 + 326603/4*x^6 - 41397/2*x^5 - 16933*x^4 + 5473/2*x^3 + 6541/4*x^2 - 361/4*x - 3/2, 1/4*x^26 - 3/2*x^25 - 21/4*x^24 + 47*x^23 + 73/4*x^22 - 1233/2*x^21 + 919/2*x^20 + 17323/4*x^19 - 25467/4*x^18 - 33859/2*x^17 + 38015*x^16 + 125249/4*x^15 - 504429/4*x^14 + 38651/4*x^13 + 941031/4*x^12 - 166494*x^11 - 212856*x^10 + 319949*x^9 + 91887/4*x^8 - 1045011/4*x^7 + 188215/2*x^6 + 89824*x^5 - 107533/2*x^4 - 37871/4*x^3 + 8305*x^2 - 911/4*x - 309/4, 1/4*x^26 - 3/2*x^25 - 21/4*x^24 + 47*x^23 + 73/4*x^22 - 1233/2*x^21 + 919/2*x^20 + 17323/4*x^19 - 25467/4*x^18 - 33859/2*x^17 + 38015*x^16 + 125249/4*x^15 - 504429/4*x^14 + 38651/4*x^13 + 941031/4*x^12 - 166494*x^11 - 212856*x^10 + 319949*x^9 + 91887/4*x^8 - 1045011/4*x^7 + 188215/2*x^6 + 89824*x^5 - 107533/2*x^4 - 37871/4*x^3 + 8305*x^2 - 911/4*x - 309/4, -1/2*x^27 + 3*x^26 + 47/4*x^25 - 401/4*x^24 - 277/4*x^23 + 2871/2*x^22 - 2419/4*x^21 - 45991/4*x^20 + 47355/4*x^19 + 225049/4*x^18 - 166203/2*x^17 - 685979/4*x^16 + 659761/2*x^15 + 1252659/4*x^14 - 1612685/2*x^13 - 1159087/4*x^12 + 1224850*x^11 + 71049/4*x^10 - 4496717/4*x^9 + 427095/2*x^8 + 589498*x^7 - 722789/4*x^6 - 318505/2*x^5 + 59378*x^4 + 16414*x^3 - 13895/2*x^2 + 253/4*x + 57, -1/2*x^27 + 3*x^26 + 47/4*x^25 - 401/4*x^24 - 277/4*x^23 + 2871/2*x^22 - 2419/4*x^21 - 45991/4*x^20 + 47355/4*x^19 + 225049/4*x^18 - 166203/2*x^17 - 685979/4*x^16 + 659761/2*x^15 + 1252659/4*x^14 - 1612685/2*x^13 - 1159087/4*x^12 + 1224850*x^11 + 71049/4*x^10 - 4496717/4*x^9 + 427095/2*x^8 + 589498*x^7 - 722789/4*x^6 - 318505/2*x^5 + 59378*x^4 + 16414*x^3 - 13895/2*x^2 + 253/4*x + 57, -1/4*x^24 + 3/2*x^23 + 5/2*x^22 - 31*x^21 + 43/2*x^20 + 233*x^19 - 1739/4*x^18 - 1283/2*x^17 + 2546*x^16 - 3275/4*x^15 - 26431/4*x^14 + 8896*x^13 + 11019/2*x^12 - 69797/4*x^11 + 25817/4*x^10 + 11071/4*x^9 - 8188*x^8 + 102679/4*x^7 - 48593/4*x^6 - 42803/2*x^5 + 31055/2*x^4 + 11979/4*x^3 - 3217*x^2 + 705/4*x + 107/4, -1/4*x^24 + 3/2*x^23 + 5/2*x^22 - 31*x^21 + 43/2*x^20 + 233*x^19 - 1739/4*x^18 - 1283/2*x^17 + 2546*x^16 - 3275/4*x^15 - 26431/4*x^14 + 8896*x^13 + 11019/2*x^12 - 69797/4*x^11 + 25817/4*x^10 + 11071/4*x^9 - 8188*x^8 + 102679/4*x^7 - 48593/4*x^6 - 42803/2*x^5 + 31055/2*x^4 + 11979/4*x^3 - 3217*x^2 + 705/4*x + 107/4, 5/4*x^25 - 29/4*x^24 - 105/4*x^23 + 437/2*x^22 + 511/4*x^21 - 5571/2*x^20 + 5107/4*x^19 + 39085/2*x^18 - 80395/4*x^17 - 81930*x^16 + 476337/4*x^15 + 826883/4*x^14 - 1572293/4*x^13 - 583125/2*x^12 + 3096967/4*x^11 + 641079/4*x^10 - 900130*x^9 + 404897/4*x^8 + 578652*x^7 - 720671/4*x^6 - 179907*x^5 + 319847/4*x^4 + 19301*x^3 - 44807/4*x^2 + 481/2*x + 409/4, 5/4*x^25 - 29/4*x^24 - 105/4*x^23 + 437/2*x^22 + 511/4*x^21 - 5571/2*x^20 + 5107/4*x^19 + 39085/2*x^18 - 80395/4*x^17 - 81930*x^16 + 476337/4*x^15 + 826883/4*x^14 - 1572293/4*x^13 - 583125/2*x^12 + 3096967/4*x^11 + 641079/4*x^10 - 900130*x^9 + 404897/4*x^8 + 578652*x^7 - 720671/4*x^6 - 179907*x^5 + 319847/4*x^4 + 19301*x^3 - 44807/4*x^2 + 481/2*x + 409/4, -1/4*x^25 + 2*x^24 + 3/2*x^23 - 51*x^22 + 153/2*x^21 + 500*x^20 - 1386*x^19 - 8485/4*x^18 + 10433*x^17 + 3457/4*x^16 - 42271*x^15 + 113837/4*x^14 + 379751/4*x^13 - 241461/2*x^12 - 105559*x^11 + 227478*x^10 + 101835/4*x^9 - 862369/4*x^8 + 97945/2*x^7 + 391379/4*x^6 - 75161/2*x^5 - 34521/2*x^4 + 13555/2*x^3 + 3599/4*x^2 - 307/4*x - 37/2, -1/4*x^25 + 2*x^24 + 3/2*x^23 - 51*x^22 + 153/2*x^21 + 500*x^20 - 1386*x^19 - 8485/4*x^18 + 10433*x^17 + 3457/4*x^16 - 42271*x^15 + 113837/4*x^14 + 379751/4*x^13 - 241461/2*x^12 - 105559*x^11 + 227478*x^10 + 101835/4*x^9 - 862369/4*x^8 + 97945/2*x^7 + 391379/4*x^6 - 75161/2*x^5 - 34521/2*x^4 + 13555/2*x^3 + 3599/4*x^2 - 307/4*x - 37/2, 1/4*x^26 - 7/4*x^25 - 15/4*x^24 + 197/4*x^23 - 35/4*x^22 - 1203/2*x^21 + 592*x^20 + 16769/4*x^19 - 6021*x^18 - 73157/4*x^17 + 65395/2*x^16 + 203127/4*x^15 - 221275/2*x^14 - 337705/4*x^13 + 482189/2*x^12 + 249467/4*x^11 - 659097/2*x^10 + 65253/2*x^9 + 1030505/4*x^8 - 385171/4*x^7 - 90904*x^6 + 115255/2*x^5 + 17601/4*x^4 - 35793/4*x^3 + 1758*x^2 - 237/4*x - 101/4, 1/4*x^26 - 7/4*x^25 - 15/4*x^24 + 197/4*x^23 - 35/4*x^22 - 1203/2*x^21 + 592*x^20 + 16769/4*x^19 - 6021*x^18 - 73157/4*x^17 + 65395/2*x^16 + 203127/4*x^15 - 221275/2*x^14 - 337705/4*x^13 + 482189/2*x^12 + 249467/4*x^11 - 659097/2*x^10 + 65253/2*x^9 + 1030505/4*x^8 - 385171/4*x^7 - 90904*x^6 + 115255/2*x^5 + 17601/4*x^4 - 35793/4*x^3 + 1758*x^2 - 237/4*x - 101/4, x^26 - 7*x^25 - 55/4*x^24 + 791/4*x^23 - 109*x^22 - 9187/4*x^21 + 14411/4*x^20 + 13935*x^19 - 66549/2*x^18 - 179607/4*x^17 + 651997/4*x^16 + 225297/4*x^15 - 1894747/4*x^14 + 91848*x^13 + 1661093/2*x^12 - 447478*x^11 - 3390175/4*x^10 + 2725621/4*x^9 + 454456*x^8 - 497567*x^7 - 375387/4*x^6 + 680179/4*x^5 - 27577/4*x^4 - 21035*x^3 + 12549/4*x^2 + 179/2*x - 25, x^26 - 7*x^25 - 55/4*x^24 + 791/4*x^23 - 109*x^22 - 9187/4*x^21 + 14411/4*x^20 + 13935*x^19 - 66549/2*x^18 - 179607/4*x^17 + 651997/4*x^16 + 225297/4*x^15 - 1894747/4*x^14 + 91848*x^13 + 1661093/2*x^12 - 447478*x^11 - 3390175/4*x^10 + 2725621/4*x^9 + 454456*x^8 - 497567*x^7 - 375387/4*x^6 + 680179/4*x^5 - 27577/4*x^4 - 21035*x^3 + 12549/4*x^2 + 179/2*x - 25, -1/2*x^26 + 7/2*x^25 + 29/4*x^24 - 201/2*x^23 + 181/4*x^22 + 2391/2*x^21 - 3433/2*x^20 - 7540*x^19 + 65375/4*x^18 + 104863/4*x^17 - 163929/2*x^16 - 42555*x^15 + 243878*x^14 - 56009/4*x^13 - 1750133/4*x^12 + 369827/2*x^11 + 1812743/4*x^10 - 1268489/4*x^9 - 957555/4*x^8 + 482291/2*x^7 + 86237/2*x^6 - 83874*x^5 + 15699/2*x^4 + 20611/2*x^3 - 9809/4*x^2 - 41/4*x + 111/4, -1/2*x^26 + 7/2*x^25 + 29/4*x^24 - 201/2*x^23 + 181/4*x^22 + 2391/2*x^21 - 3433/2*x^20 - 7540*x^19 + 65375/4*x^18 + 104863/4*x^17 - 163929/2*x^16 - 42555*x^15 + 243878*x^14 - 56009/4*x^13 - 1750133/4*x^12 + 369827/2*x^11 + 1812743/4*x^10 - 1268489/4*x^9 - 957555/4*x^8 + 482291/2*x^7 + 86237/2*x^6 - 83874*x^5 + 15699/2*x^4 + 20611/2*x^3 - 9809/4*x^2 - 41/4*x + 111/4, x^27 - 7*x^26 - 67/4*x^25 + 865/4*x^24 - 56*x^23 - 5649/2*x^22 + 3563*x^21 + 20158*x^20 - 156435/4*x^19 - 335529/4*x^18 + 898063/4*x^17 + 193490*x^16 - 3117809/4*x^15 - 641733/4*x^14 + 3387301/2*x^13 - 628871/2*x^12 - 4553003/2*x^11 + 1003049*x^10 + 1810488*x^9 - 2243301/2*x^8 - 3162249/4*x^7 + 2431893/4*x^6 + 654317/4*x^5 - 314703/2*x^4 - 38321/4*x^3 + 63743/4*x^2 - 2723/4*x - 595/4, x^27 - 7*x^26 - 67/4*x^25 + 865/4*x^24 - 56*x^23 - 5649/2*x^22 + 3563*x^21 + 20158*x^20 - 156435/4*x^19 - 335529/4*x^18 + 898063/4*x^17 + 193490*x^16 - 3117809/4*x^15 - 641733/4*x^14 + 3387301/2*x^13 - 628871/2*x^12 - 4553003/2*x^11 + 1003049*x^10 + 1810488*x^9 - 2243301/2*x^8 - 3162249/4*x^7 + 2431893/4*x^6 + 654317/4*x^5 - 314703/2*x^4 - 38321/4*x^3 + 63743/4*x^2 - 2723/4*x - 595/4, -3/4*x^27 + 21/4*x^26 + 13*x^25 - 667/4*x^24 + 183/4*x^23 + 4441/2*x^22 - 2940*x^21 - 63949/4*x^20 + 131419/4*x^19 + 264111/4*x^18 - 764707/4*x^17 - 581017/4*x^16 + 1339267/2*x^15 + 330459/4*x^14 - 1461452*x^13 + 1485171/4*x^12 + 7857609/4*x^11 - 3907507/4*x^10 - 3111259/2*x^9 + 4134183/4*x^8 + 1347977/2*x^7 - 1076395/2*x^6 - 275555/2*x^5 + 531503/4*x^4 + 16687/2*x^3 - 12778*x^2 + 1917/4*x + 122, -3/4*x^27 + 21/4*x^26 + 13*x^25 - 667/4*x^24 + 183/4*x^23 + 4441/2*x^22 - 2940*x^21 - 63949/4*x^20 + 131419/4*x^19 + 264111/4*x^18 - 764707/4*x^17 - 581017/4*x^16 + 1339267/2*x^15 + 330459/4*x^14 - 1461452*x^13 + 1485171/4*x^12 + 7857609/4*x^11 - 3907507/4*x^10 - 3111259/2*x^9 + 4134183/4*x^8 + 1347977/2*x^7 - 1076395/2*x^6 - 275555/2*x^5 + 531503/4*x^4 + 16687/2*x^3 - 12778*x^2 + 1917/4*x + 122, x^25 - 6*x^24 - 71/4*x^23 + 663/4*x^22 + 36*x^21 - 1896*x^20 + 5525/4*x^19 + 46493/4*x^18 - 14482*x^17 - 165225/4*x^16 + 66881*x^15 + 346017/4*x^14 - 673145/4*x^13 - 108455*x^12 + 472839/2*x^11 + 99208*x^10 - 362685/2*x^9 - 401853/4*x^8 + 322815/4*x^7 + 162633/2*x^6 - 101015/4*x^5 - 126895/4*x^4 + 20343/4*x^3 + 17869/4*x^2 - 371*x - 179/4, x^25 - 6*x^24 - 71/4*x^23 + 663/4*x^22 + 36*x^21 - 1896*x^20 + 5525/4*x^19 + 46493/4*x^18 - 14482*x^17 - 165225/4*x^16 + 66881*x^15 + 346017/4*x^14 - 673145/4*x^13 - 108455*x^12 + 472839/2*x^11 + 99208*x^10 - 362685/2*x^9 - 401853/4*x^8 + 322815/4*x^7 + 162633/2*x^6 - 101015/4*x^5 - 126895/4*x^4 + 20343/4*x^3 + 17869/4*x^2 - 371*x - 179/4, -1/2*x^25 + 4*x^24 + 15/4*x^23 - 211/2*x^22 + 132*x^21 + 1116*x^20 - 10217/4*x^19 - 11733/2*x^18 + 20093*x^17 + 56077/4*x^16 - 174719/2*x^15 + 5587/2*x^14 + 450843/2*x^13 - 203765/2*x^12 - 1379455/4*x^11 + 1016789/4*x^10 + 593169/2*x^9 - 1161307/4*x^8 - 253591/2*x^7 + 658641/4*x^6 + 19399*x^5 - 44015*x^4 + 4409/4*x^3 + 4577*x^2 - 733/2*x - 45, -1/2*x^25 + 4*x^24 + 15/4*x^23 - 211/2*x^22 + 132*x^21 + 1116*x^20 - 10217/4*x^19 - 11733/2*x^18 + 20093*x^17 + 56077/4*x^16 - 174719/2*x^15 + 5587/2*x^14 + 450843/2*x^13 - 203765/2*x^12 - 1379455/4*x^11 + 1016789/4*x^10 + 593169/2*x^9 - 1161307/4*x^8 - 253591/2*x^7 + 658641/4*x^6 + 19399*x^5 - 44015*x^4 + 4409/4*x^3 + 4577*x^2 - 733/2*x - 45, x^26 - 7*x^25 - 59/4*x^24 + 811/4*x^23 - 341/4*x^22 - 4901/2*x^21 + 13749/4*x^20 + 15863*x^19 - 134369/4*x^18 - 230339/4*x^17 + 694003/4*x^16 + 205621/2*x^15 - 1069983/2*x^14 + 4589/4*x^13 + 1001702*x^12 - 1504805/4*x^11 - 2181959/2*x^10 + 1413723/2*x^9 + 613926*x^8 - 559764*x^7 - 525907/4*x^6 + 388767/2*x^5 - 13039/2*x^4 - 24010*x^3 + 14921/4*x^2 + 147*x - 99/4, x^26 - 7*x^25 - 59/4*x^24 + 811/4*x^23 - 341/4*x^22 - 4901/2*x^21 + 13749/4*x^20 + 15863*x^19 - 134369/4*x^18 - 230339/4*x^17 + 694003/4*x^16 + 205621/2*x^15 - 1069983/2*x^14 + 4589/4*x^13 + 1001702*x^12 - 1504805/4*x^11 - 2181959/2*x^10 + 1413723/2*x^9 + 613926*x^8 - 559764*x^7 - 525907/4*x^6 + 388767/2*x^5 - 13039/2*x^4 - 24010*x^3 + 14921/4*x^2 + 147*x - 99/4, -3/4*x^26 + 21/4*x^25 + 23/2*x^24 - 157*x^23 + 285/4*x^22 + 1937*x^21 - 5829/2*x^20 - 50319/4*x^19 + 116769/4*x^18 + 176631/4*x^17 - 307993/2*x^16 - 260557/4*x^15 + 966501/2*x^14 - 156515/2*x^13 - 1835453/2*x^12 + 1995947/4*x^11 + 4030229/4*x^10 - 1724841/2*x^9 - 2213781/4*x^8 + 2793215/4*x^7 + 326675/4*x^6 - 256194*x^5 + 34009*x^4 + 63959/2*x^3 - 33611/4*x^2 + 112*x + 279/4, -3/4*x^26 + 21/4*x^25 + 23/2*x^24 - 157*x^23 + 285/4*x^22 + 1937*x^21 - 5829/2*x^20 - 50319/4*x^19 + 116769/4*x^18 + 176631/4*x^17 - 307993/2*x^16 - 260557/4*x^15 + 966501/2*x^14 - 156515/2*x^13 - 1835453/2*x^12 + 1995947/4*x^11 + 4030229/4*x^10 - 1724841/2*x^9 - 2213781/4*x^8 + 2793215/4*x^7 + 326675/4*x^6 - 256194*x^5 + 34009*x^4 + 63959/2*x^3 - 33611/4*x^2 + 112*x + 279/4, 2*x^24 - 57/4*x^23 - 83/4*x^22 + 1459/4*x^21 - 651/2*x^20 - 3693*x^19 + 28677/4*x^18 + 36155/2*x^17 - 54812*x^16 - 36701*x^15 + 875585/4*x^14 - 128067/4*x^13 - 485672*x^12 + 620533/2*x^11 + 2267973/4*x^10 - 600526*x^9 - 273289*x^8 + 1992719/4*x^7 - 25447/2*x^6 - 706059/4*x^5 + 174815/4*x^4 + 40833/2*x^3 - 15951/2*x^2 + 947/4*x + 279/4, 2*x^24 - 57/4*x^23 - 83/4*x^22 + 1459/4*x^21 - 651/2*x^20 - 3693*x^19 + 28677/4*x^18 + 36155/2*x^17 - 54812*x^16 - 36701*x^15 + 875585/4*x^14 - 128067/4*x^13 - 485672*x^12 + 620533/2*x^11 + 2267973/4*x^10 - 600526*x^9 - 273289*x^8 + 1992719/4*x^7 - 25447/2*x^6 - 706059/4*x^5 + 174815/4*x^4 + 40833/2*x^3 - 15951/2*x^2 + 947/4*x + 279/4, -3/4*x^25 + 21/4*x^24 + 41/4*x^23 - 295/2*x^22 + 167/2*x^21 + 3357/2*x^20 - 10535/4*x^19 - 39287/4*x^18 + 92791/4*x^17 + 120061/4*x^16 - 426023/4*x^15 - 35163*x^14 + 1133821/4*x^13 - 200939/4*x^12 - 1764867/4*x^11 + 429343/2*x^10 + 1535111/4*x^9 - 538141/2*x^8 - 168426*x^7 + 151331*x^6 + 115587/4*x^5 - 72179/2*x^4 - 821*x^3 + 12265/4*x^2 - 365/4*x - 99/4, -3/4*x^25 + 21/4*x^24 + 41/4*x^23 - 295/2*x^22 + 167/2*x^21 + 3357/2*x^20 - 10535/4*x^19 - 39287/4*x^18 + 92791/4*x^17 + 120061/4*x^16 - 426023/4*x^15 - 35163*x^14 + 1133821/4*x^13 - 200939/4*x^12 - 1764867/4*x^11 + 429343/2*x^10 + 1535111/4*x^9 - 538141/2*x^8 - 168426*x^7 + 151331*x^6 + 115587/4*x^5 - 72179/2*x^4 - 821*x^3 + 12265/4*x^2 - 365/4*x - 99/4, x^25 - 15/2*x^24 - 35/4*x^23 + 769/4*x^22 - 423/2*x^21 - 7815/4*x^20 + 16911/4*x^19 + 38463/4*x^18 - 64579/2*x^17 - 77657/4*x^16 + 132708*x^15 - 21250*x^14 - 1253207/4*x^13 + 194552*x^12 + 828295/2*x^11 - 821597/2*x^10 - 269789*x^9 + 402920*x^8 + 201241/4*x^7 - 753519/4*x^6 + 20460*x^5 + 149071/4*x^4 - 27323/4*x^3 - 9965/4*x^2 + 1327/4*x + 69/4, x^25 - 15/2*x^24 - 35/4*x^23 + 769/4*x^22 - 423/2*x^21 - 7815/4*x^20 + 16911/4*x^19 + 38463/4*x^18 - 64579/2*x^17 - 77657/4*x^16 + 132708*x^15 - 21250*x^14 - 1253207/4*x^13 + 194552*x^12 + 828295/2*x^11 - 821597/2*x^10 - 269789*x^9 + 402920*x^8 + 201241/4*x^7 - 753519/4*x^6 + 20460*x^5 + 149071/4*x^4 - 27323/4*x^3 - 9965/4*x^2 + 1327/4*x + 69/4, x^25 - 6*x^24 - 41/2*x^23 + 727/4*x^22 + 343/4*x^21 - 9365/4*x^20 + 5155/4*x^19 + 66727/4*x^18 - 37451/2*x^17 - 285061/4*x^16 + 447011/4*x^15 + 365661/2*x^14 - 1514587/4*x^13 - 1025271/4*x^12 + 1542749/2*x^11 + 114611*x^10 - 926773*x^9 + 317933/2*x^8 + 2435101/4*x^7 - 225210*x^6 - 762235/4*x^5 + 384295/4*x^4 + 80565/4*x^3 - 26595/2*x^2 + 1297/4*x + 263/2, x^25 - 6*x^24 - 41/2*x^23 + 727/4*x^22 + 343/4*x^21 - 9365/4*x^20 + 5155/4*x^19 + 66727/4*x^18 - 37451/2*x^17 - 285061/4*x^16 + 447011/4*x^15 + 365661/2*x^14 - 1514587/4*x^13 - 1025271/4*x^12 + 1542749/2*x^11 + 114611*x^10 - 926773*x^9 + 317933/2*x^8 + 2435101/4*x^7 - 225210*x^6 - 762235/4*x^5 + 384295/4*x^4 + 80565/4*x^3 - 26595/2*x^2 + 1297/4*x + 263/2, -3/4*x^25 + 9/2*x^24 + 61/4*x^23 - 136*x^22 - 58*x^21 + 1729*x^20 - 4115/4*x^19 - 48193/4*x^18 + 27965/2*x^17 + 200399/4*x^16 - 319509/4*x^15 - 502837/4*x^14 + 1041081/4*x^13 + 711715/4*x^12 - 2062513/4*x^11 - 400861/4*x^10 + 1236813/2*x^9 - 132343/2*x^8 - 1695575/4*x^7 + 261345/2*x^6 + 571559/4*x^5 - 259227/4*x^4 - 63701/4*x^3 + 39295/4*x^2 - 1273/4*x - 389/4, -3/4*x^25 + 9/2*x^24 + 61/4*x^23 - 136*x^22 - 58*x^21 + 1729*x^20 - 4115/4*x^19 - 48193/4*x^18 + 27965/2*x^17 + 200399/4*x^16 - 319509/4*x^15 - 502837/4*x^14 + 1041081/4*x^13 + 711715/4*x^12 - 2062513/4*x^11 - 400861/4*x^10 + 1236813/2*x^9 - 132343/2*x^8 - 1695575/4*x^7 + 261345/2*x^6 + 571559/4*x^5 - 259227/4*x^4 - 63701/4*x^3 + 39295/4*x^2 - 1273/4*x - 389/4, -3/4*x^24 + 23/4*x^23 + 27/4*x^22 - 150*x^21 + 627/4*x^20 + 6241/4*x^19 - 6323/2*x^18 - 16081/2*x^17 + 48039/2*x^16 + 77229/4*x^15 - 97271*x^14 - 4084*x^13 + 448339/2*x^12 - 334295/4*x^11 - 577871/2*x^10 + 355685/2*x^9 + 195723*x^8 - 287475/2*x^7 - 138903/2*x^6 + 96995/2*x^5 + 29745/2*x^4 - 12461/2*x^3 - 6957/4*x^2 + 109*x + 55/2, -3/4*x^24 + 23/4*x^23 + 27/4*x^22 - 150*x^21 + 627/4*x^20 + 6241/4*x^19 - 6323/2*x^18 - 16081/2*x^17 + 48039/2*x^16 + 77229/4*x^15 - 97271*x^14 - 4084*x^13 + 448339/2*x^12 - 334295/4*x^11 - 577871/2*x^10 + 355685/2*x^9 + 195723*x^8 - 287475/2*x^7 - 138903/2*x^6 + 96995/2*x^5 + 29745/2*x^4 - 12461/2*x^3 - 6957/4*x^2 + 109*x + 55/2, 1/4*x^24 - 1/2*x^23 - 43/4*x^22 + 47/2*x^21 + 771/4*x^20 - 470*x^19 - 1815*x^18 + 5045*x^17 + 38069/4*x^16 - 126931/4*x^15 - 105943/4*x^14 + 484727/4*x^13 + 103961/4*x^12 - 1122249/4*x^11 + 99191/2*x^10 + 378878*x^9 - 656469/4*x^8 - 1096885/4*x^7 + 166128*x^6 + 92249*x^5 - 69413*x^4 - 37715/4*x^3 + 19783/2*x^2 - 1359/4*x - 427/4, 1/4*x^24 - 1/2*x^23 - 43/4*x^22 + 47/2*x^21 + 771/4*x^20 - 470*x^19 - 1815*x^18 + 5045*x^17 + 38069/4*x^16 - 126931/4*x^15 - 105943/4*x^14 + 484727/4*x^13 + 103961/4*x^12 - 1122249/4*x^11 + 99191/2*x^10 + 378878*x^9 - 656469/4*x^8 - 1096885/4*x^7 + 166128*x^6 + 92249*x^5 - 69413*x^4 - 37715/4*x^3 + 19783/2*x^2 - 1359/4*x - 427/4]>
       ]
>;

MOG[673] := 	// J_0(673)
   rec<SupersingularModule | 
       MonodromyWeights   := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 5,
           Coordinates        := [209, 259, 281, 397, 495, 568, 156*x + 371, 517*x + 371, 161*x + 135, 512*x + 135, 565*x + 430, 108*x + 430, 649*x + 148, 24*x + 148, 262*x + 397, 411*x + 397, 394*x + 57, 279*x + 57, 647*x + 291, 26*x + 291, 124*x + 3, 549*x + 3, 218*x + 223, 455*x + 223, 656*x + 243, 17*x + 243, 649*x + 139, 24*x + 139, 541*x + 239, 132*x + 239, 109*x + 427, 564*x + 427, 425*x + 2, 248*x + 2, 590*x + 171, 83*x + 171, 181*x + 244, 492*x + 244, 439*x + 55, 234*x + 55, 495*x + 592, 178*x + 592, 27*x + 53, 646*x + 53, 353*x + 438, 320*x + 438, 579*x + 366, 94*x + 366, 115*x + 560, 558*x + 560, 329*x + 638, 344*x + 638, 290*x + 666, 383*x + 666, 390*x + 390, 283*x + 390]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x^2 - 2*x + 1,
           Coordinates        := [-2*x - 2, x + 2, -2, x + 4, -x, x - 2, -x, -x, x + 2, x + 2, 0, 0, x, x, x - 2, x - 2, x + 2, x + 2, -2, -2, -x + 2, -x + 2, 2*x, 2*x, -x - 2, -x - 2, 0, 0, x + 2, x + 2, -x, -x, 0, 0, x, x, -x, -x, -x, -x, -x - 2, -x - 2, -2*x - 2, -2*x - 2, x, x, x, x, 0, 0, 2, 2, 0, 0, -x, -x]>,
         rec<Eigen |
           DefiningPolynomial := x^4 + x^3 - 5*x^2 - 5*x + 1,
           Coordinates        := [-2*x^3 + 2*x^2 + 4*x - 4, -2*x^3 + 2*x^2 + 4*x - 4, -4*x^2 + 2*x + 2, -4*x^2 + 2*x + 2, -2*x^2 - 6*x + 8, 4*x^3 - 10*x - 8, 2*x^3 - x^2 - 8*x, 2*x^3 - x^2 - 8*x, -2*x^3 + 2*x^2 + 4*x - 4, -2*x^3 + 2*x^2 + 4*x - 4, x^3 - 2*x^2 + 2*x + 6, x^3 - 2*x^2 + 2*x + 6, -x^3 - x + 2, -x^3 - x + 2, 2*x^3 - x^2 - 8*x, 2*x^3 - x^2 - 8*x, -4*x^3 + 4*x^2 + 15*x - 1, -4*x^3 + 4*x^2 + 15*x - 1, -x^3 + 4*x^2 + 4*x, -x^3 + 4*x^2 + 4*x, x^3 + x^2 - 3*x - 6, x^3 + x^2 - 3*x - 6, -3*x^2 - 2*x + 5, -3*x^2 - 2*x + 5, -3*x^3 + x^2 + 14*x + 2, -3*x^3 + x^2 + 14*x + 2, 3*x^3 - 4*x^2 - 9*x + 3, 3*x^3 - 4*x^2 - 9*x + 3, 4*x^3 + x^2 - 14*x - 5, 4*x^3 + x^2 - 14*x - 5, x^2 + 3*x + 3, x^2 + 3*x + 3, -3*x^3 - 3*x^2 + 9*x + 4, -3*x^3 - 3*x^2 + 9*x + 4, x^3 + x^2 - 3*x - 6, x^3 + x^2 - 3*x - 6, 2*x^3 - x^2 - 8*x, 2*x^3 - x^2 - 8*x, x^2 + 3*x + 3, x^2 + 3*x + 3, -x^3 - x^2 + 3*x - 1, -x^3 - x^2 + 3*x - 1, -7*x - 7, -7*x - 7, -3*x^3 + 2*x^2 + 10*x + 5, -3*x^3 + 2*x^2 + 10*x + 5, x^3 + x^2 - 3*x - 6, x^3 + x^2 - 3*x - 6, x^3 - 2*x^2 + 2*x + 6, x^3 - 2*x^2 + 2*x + 6, -3*x^2 - 2*x + 5, -3*x^2 - 2*x + 5, 4*x^2 - 2*x - 9, 4*x^2 - 2*x - 9, x^2 + 3*x + 3, x^2 + 3*x + 3]>,
         rec<Eigen |
           DefiningPolynomial := x^24 - 3*x^23 - 35*x^22 + 106*x^21 + 528*x^20 - 1611*x^19 - 4511*x^18 + 13800*x^17 + 24140*x^16 - 73333*x^15 - 84617*x^14 + 250642*x^13 + 197837*x^12 - 552627*x^11 - 309281*x^10 + 767633*x^9 + 319817*x^8 - 637358*x^7 - 210745*x^6 + 287683*x^5 + 78751*x^4 - 57277*x^3 - 12098*x^2 + 2245*x - 79,
           Coordinates        := [-x^23 + 6*x^22 + 23*x^21 - 189*x^20 - 163*x^19 + 2552*x^18 - 213*x^17 - 19357*x^16 + 9855*x^15 + 90802*x^14 - 64479*x^13 - 273385*x^12 + 213172*x^11 + 531035*x^10 - 400852*x^9 - 652003*x^8 + 428142*x^7 + 480158*x^6 - 245027*x^5 - 189148*x^4 + 65435*x^3 + 29636*x^2 - 5422*x + 219, x^23 - 4*x^22 - 29*x^21 + 127*x^20 + 349*x^19 - 1726*x^18 - 2243*x^17 + 13143*x^16 + 8181*x^15 - 61654*x^14 - 16049*x^13 + 184517*x^12 + 11082*x^11 - 352781*x^10 + 16050*x^9 + 419841*x^8 - 38612*x^7 - 294446*x^6 + 29317*x^5 + 110712*x^4 - 8253*x^3 - 17404*x^2 + 244*x + 81, x^23 - 4*x^22 - 27*x^21 + 121*x^20 + 289*x^19 - 1546*x^18 - 1481*x^17 + 10879*x^16 + 2803*x^15 - 46092*x^14 + 7175*x^13 + 120869*x^12 - 52532*x^11 - 195167*x^10 + 127040*x^9 + 190053*x^8 - 159450*x^7 - 111190*x^6 + 106417*x^5 + 40392*x^4 - 31519*x^3 - 7984*x^2 + 1690*x - 69, -x^23 + 2*x^22 + 37*x^21 - 75*x^20 - 577*x^19 + 1168*x^18 + 4997*x^17 - 9929*x^16 - 26633*x^15 + 50738*x^14 + 91435*x^13 - 161223*x^12 - 205574*x^11 + 317447*x^10 + 301030*x^9 - 372875*x^8 - 277488*x^7 + 239752*x^6 + 146835*x^5 - 69872*x^4 - 34907*x^3 + 5102*x^2 + 1068*x - 93, -x^23 + 2*x^22 + 35*x^21 - 67*x^20 - 533*x^19 + 972*x^18 + 4619*x^17 - 7987*x^16 - 24977*x^15 + 40730*x^14 + 86865*x^13 - 132535*x^12 - 193204*x^11 + 271995*x^10 + 265078*x^9 - 334913*x^8 - 209070*x^7 + 223460*x^6 + 83605*x^5 - 66548*x^4 - 10981*x^3 + 4516*x^2 - 1270*x + 77, -x^23 + 4*x^22 + 29*x^21 - 125*x^20 - 355*x^19 + 1678*x^18 + 2391*x^17 - 12675*x^16 - 9671*x^15 + 59230*x^14 + 24007*x^13 - 177061*x^12 - 35662*x^11 + 337583*x^10 + 29062*x^9 - 395565*x^8 - 10344*x^7 + 262090*x^6 + 141*x^5 - 82734*x^4 + 1789*x^3 + 7712*x^2 - 948*x + 29, x^23 - 4*x^22 - 28*x^21 + 122*x^20 + 326*x^19 - 1589*x^18 - 2038*x^17 + 11558*x^16 + 7333*x^15 - 51502*x^14 - 14959*x^13 + 145070*x^12 + 15470*x^11 - 257483*x^10 - 5705*x^9 + 278953*x^8 + 1125*x^7 - 172291*x^6 - 3941*x^5 + 51897*x^4 + 1939*x^3 - 4768*x^2 + 387*x - 5, x^23 - 4*x^22 - 28*x^21 + 122*x^20 + 326*x^19 - 1589*x^18 - 2038*x^17 + 11558*x^16 + 7333*x^15 - 51502*x^14 - 14959*x^13 + 145070*x^12 + 15470*x^11 - 257483*x^10 - 5705*x^9 + 278953*x^8 + 1125*x^7 - 172291*x^6 - 3941*x^5 + 51897*x^4 + 1939*x^3 - 4768*x^2 + 387*x - 5, -2*x^21 + 9*x^20 + 45*x^19 - 243*x^18 - 374*x^17 + 2747*x^16 + 1191*x^15 - 16956*x^14 + 1277*x^13 + 62399*x^12 - 20988*x^11 - 140123*x^10 + 64840*x^9 + 188621*x^8 - 94268*x^7 - 143685*x^6 + 67103*x^5 + 55196*x^4 - 20597*x^3 - 7773*x^2 + 1711*x - 78, -2*x^21 + 9*x^20 + 45*x^19 - 243*x^18 - 374*x^17 + 2747*x^16 + 1191*x^15 - 16956*x^14 + 1277*x^13 + 62399*x^12 - 20988*x^11 - 140123*x^10 + 64840*x^9 + 188621*x^8 - 94268*x^7 - 143685*x^6 + 67103*x^5 + 55196*x^4 - 20597*x^3 - 7773*x^2 + 1711*x - 78, x^22 - 5*x^21 - 22*x^20 + 140*x^19 + 164*x^18 - 1655*x^17 - 197*x^16 + 10785*x^15 - 4188*x^14 - 42370*x^13 + 28619*x^12 + 102960*x^11 - 87336*x^10 - 152668*x^9 + 144690*x^8 + 131193*x^7 - 129669*x^6 - 57862*x^5 + 57140*x^4 + 7671*x^3 - 9378*x^2 + 1461*x - 62, x^22 - 5*x^21 - 22*x^20 + 140*x^19 + 164*x^18 - 1655*x^17 - 197*x^16 + 10785*x^15 - 4188*x^14 - 42370*x^13 + 28619*x^12 + 102960*x^11 - 87336*x^10 - 152668*x^9 + 144690*x^8 + 131193*x^7 - 129669*x^6 - 57862*x^5 + 57140*x^4 + 7671*x^3 - 9378*x^2 + 1461*x - 62, x^22 - 4*x^21 - 25*x^20 + 114*x^19 + 239*x^18 - 1354*x^17 - 990*x^16 + 8693*x^15 + 495*x^14 - 32647*x^13 + 11508*x^12 + 72144*x^11 - 47357*x^10 - 88364*x^9 + 86368*x^8 + 49013*x^7 - 81498*x^6 - 1132*x^5 + 39439*x^4 - 8071*x^3 - 7924*x^2 + 1554*x - 70, x^22 - 4*x^21 - 25*x^20 + 114*x^19 + 239*x^18 - 1354*x^17 - 990*x^16 + 8693*x^15 + 495*x^14 - 32647*x^13 + 11508*x^12 + 72144*x^11 - 47357*x^10 - 88364*x^9 + 86368*x^8 + 49013*x^7 - 81498*x^6 - 1132*x^5 + 39439*x^4 - 8071*x^3 - 7924*x^2 + 1554*x - 70, -2*x^20 + 8*x^19 + 47*x^18 - 212*x^17 - 438*x^16 + 2344*x^15 + 2041*x^14 - 14077*x^13 - 4835*x^12 + 49981*x^11 + 4876*x^10 - 106704*x^9 - 346*x^8 + 132678*x^7 - 358*x^6 - 87698*x^5 - 2622*x^4 + 25195*x^3 + 1377*x^2 - 1533*x + 98, -2*x^20 + 8*x^19 + 47*x^18 - 212*x^17 - 438*x^16 + 2344*x^15 + 2041*x^14 - 14077*x^13 - 4835*x^12 + 49981*x^11 + 4876*x^10 - 106704*x^9 - 346*x^8 + 132678*x^7 - 358*x^6 - 87698*x^5 - 2622*x^4 + 25195*x^3 + 1377*x^2 - 1533*x + 98, x^21 - 5*x^20 - 21*x^19 + 131*x^18 + 157*x^17 - 1436*x^16 - 379*x^15 + 8610*x^14 - 1237*x^13 - 30939*x^12 + 10257*x^11 + 68534*x^10 - 27614*x^9 - 92576*x^8 + 37534*x^7 + 72508*x^6 - 26735*x^5 - 29140*x^4 + 9339*x^3 + 4050*x^2 - 1464*x + 85, x^21 - 5*x^20 - 21*x^19 + 131*x^18 + 157*x^17 - 1436*x^16 - 379*x^15 + 8610*x^14 - 1237*x^13 - 30939*x^12 + 10257*x^11 + 68534*x^10 - 27614*x^9 - 92576*x^8 + 37534*x^7 + 72508*x^6 - 26735*x^5 - 29140*x^4 + 9339*x^3 + 4050*x^2 - 1464*x + 85, -x^22 + 5*x^21 + 23*x^20 - 141*x^19 - 197*x^18 + 1684*x^17 + 663*x^16 - 11142*x^15 + 522*x^14 + 44815*x^13 - 11171*x^12 - 113063*x^11 + 36281*x^10 + 178009*x^9 - 55184*x^8 - 168328*x^7 + 41921*x^6 + 87816*x^5 - 15086*x^4 - 20656*x^3 + 2179*x^2 + 1015*x - 80, -x^22 + 5*x^21 + 23*x^20 - 141*x^19 - 197*x^18 + 1684*x^17 + 663*x^16 - 11142*x^15 + 522*x^14 + 44815*x^13 - 11171*x^12 - 113063*x^11 + 36281*x^10 + 178009*x^9 - 55184*x^8 - 168328*x^7 + 41921*x^6 + 87816*x^5 - 15086*x^4 - 20656*x^3 + 2179*x^2 + 1015*x - 80, x^21 - 4*x^20 - 23*x^19 + 109*x^18 + 190*x^17 - 1237*x^16 - 497*x^15 + 7604*x^14 - 2128*x^13 - 27583*x^12 + 19304*x^11 + 60431*x^10 - 59164*x^9 - 79106*x^8 + 89809*x^7 + 59894*x^6 - 66209*x^5 - 24706*x^4 + 19671*x^3 + 4319*x^2 - 924*x + 37, x^21 - 4*x^20 - 23*x^19 + 109*x^18 + 190*x^17 - 1237*x^16 - 497*x^15 + 7604*x^14 - 2128*x^13 - 27583*x^12 + 19304*x^11 + 60431*x^10 - 59164*x^9 - 79106*x^8 + 89809*x^7 + 59894*x^6 - 66209*x^5 - 24706*x^4 + 19671*x^3 + 4319*x^2 - 924*x + 37, x^21 - 3*x^20 - 27*x^19 + 83*x^18 + 301*x^17 - 949*x^16 - 1811*x^15 + 5841*x^14 + 6461*x^13 - 21142*x^12 - 14129*x^11 + 46372*x^10 + 18492*x^9 - 61934*x^8 - 11857*x^7 + 50164*x^6 - 769*x^5 - 23757*x^4 + 3924*x^3 + 5219*x^2 - 836*x + 32, x^21 - 3*x^20 - 27*x^19 + 83*x^18 + 301*x^17 - 949*x^16 - 1811*x^15 + 5841*x^14 + 6461*x^13 - 21142*x^12 - 14129*x^11 + 46372*x^10 + 18492*x^9 - 61934*x^8 - 11857*x^7 + 50164*x^6 - 769*x^5 - 23757*x^4 + 3924*x^3 + 5219*x^2 - 836*x + 32, x^20 - 6*x^19 - 16*x^18 + 148*x^17 + 35*x^16 - 1494*x^15 + 838*x^14 + 7965*x^13 - 7583*x^12 - 24117*x^11 + 28543*x^10 + 41518*x^9 - 55597*x^8 - 38768*x^7 + 56345*x^6 + 17973*x^5 - 27379*x^4 - 3221*x^3 + 4863*x^2 - 80*x - 20, x^20 - 6*x^19 - 16*x^18 + 148*x^17 + 35*x^16 - 1494*x^15 + 838*x^14 + 7965*x^13 - 7583*x^12 - 24117*x^11 + 28543*x^10 + 41518*x^9 - 55597*x^8 - 38768*x^7 + 56345*x^6 + 17973*x^5 - 27379*x^4 - 3221*x^3 + 4863*x^2 - 80*x - 20, x^20 - 5*x^19 - 21*x^18 + 131*x^17 + 153*x^16 - 1420*x^15 - 312*x^14 + 8294*x^13 - 1629*x^12 - 28444*x^11 + 10994*x^10 + 58419*x^9 - 26165*x^8 - 69932*x^7 + 29233*x^6 + 44261*x^5 - 13995*x^4 - 10578*x^3 + 1790*x^2 - 620*x + 41, x^20 - 5*x^19 - 21*x^18 + 131*x^17 + 153*x^16 - 1420*x^15 - 312*x^14 + 8294*x^13 - 1629*x^12 - 28444*x^11 + 10994*x^10 + 58419*x^9 - 26165*x^8 - 69932*x^7 + 29233*x^6 + 44261*x^5 - 13995*x^4 - 10578*x^3 + 1790*x^2 - 620*x + 41, -4*x^19 + 14*x^18 + 88*x^17 - 335*x^16 - 755*x^15 + 3263*x^14 + 3137*x^13 - 16733*x^12 - 5982*x^11 + 48728*x^10 + 1673*x^9 - 80991*x^8 + 11247*x^7 + 73701*x^6 - 15539*x^5 - 33806*x^4 + 6957*x^3 + 6124*x^2 - 756*x + 21, -4*x^19 + 14*x^18 + 88*x^17 - 335*x^16 - 755*x^15 + 3263*x^14 + 3137*x^13 - 16733*x^12 - 5982*x^11 + 48728*x^10 + 1673*x^9 - 80991*x^8 + 11247*x^7 + 73701*x^6 - 15539*x^5 - 33806*x^4 + 6957*x^3 + 6124*x^2 - 756*x + 21, -x^21 + 6*x^20 + 18*x^19 - 158*x^18 - 73*x^17 + 1730*x^16 - 592*x^15 - 10227*x^14 + 7192*x^13 + 35379*x^12 - 31017*x^11 - 72238*x^10 + 68422*x^9 + 82547*x^8 - 78928*x^7 - 44605*x^6 + 42635*x^5 + 4938*x^4 - 7281*x^3 + 2681*x^2 - 593*x + 33, -x^21 + 6*x^20 + 18*x^19 - 158*x^18 - 73*x^17 + 1730*x^16 - 592*x^15 - 10227*x^14 + 7192*x^13 + 35379*x^12 - 31017*x^11 - 72238*x^10 + 68422*x^9 + 82547*x^8 - 78928*x^7 - 44605*x^6 + 42635*x^5 + 4938*x^4 - 7281*x^3 + 2681*x^2 - 593*x + 33, x^21 - 3*x^20 - 29*x^19 + 92*x^18 + 343*x^17 - 1187*x^16 - 2081*x^15 + 8340*x^14 + 6485*x^13 - 34602*x^12 - 7207*x^11 + 86176*x^10 - 12854*x^9 - 125865*x^8 + 46269*x^7 + 102376*x^6 - 46908*x^5 - 43774*x^4 + 17012*x^3 + 8101*x^2 - 897*x + 16, x^21 - 3*x^20 - 29*x^19 + 92*x^18 + 343*x^17 - 1187*x^16 - 2081*x^15 + 8340*x^14 + 6485*x^13 - 34602*x^12 - 7207*x^11 + 86176*x^10 - 12854*x^9 - 125865*x^8 + 46269*x^7 + 102376*x^6 - 46908*x^5 - 43774*x^4 + 17012*x^3 + 8101*x^2 - 897*x + 16, x^20 - 2*x^19 - 30*x^18 + 62*x^17 + 366*x^16 - 771*x^15 - 2374*x^14 + 5020*x^13 + 8965*x^12 - 18565*x^11 - 20327*x^10 + 39284*x^9 + 27640*x^8 - 45118*x^7 - 21647*x^6 + 24283*x^5 + 8259*x^4 - 3722*x^3 - 1013*x^2 - 625*x + 54, x^20 - 2*x^19 - 30*x^18 + 62*x^17 + 366*x^16 - 771*x^15 - 2374*x^14 + 5020*x^13 + 8965*x^12 - 18565*x^11 - 20327*x^10 + 39284*x^9 + 27640*x^8 - 45118*x^7 - 21647*x^6 + 24283*x^5 + 8259*x^4 - 3722*x^3 - 1013*x^2 - 625*x + 54, x^21 - 4*x^20 - 25*x^19 + 110*x^18 + 258*x^17 - 1281*x^16 - 1431*x^15 + 8248*x^14 + 4717*x^13 - 32161*x^12 - 10001*x^11 + 78178*x^10 + 15372*x^9 - 117348*x^8 - 18671*x^7 + 103514*x^6 + 15456*x^5 - 47896*x^4 - 6444*x^3 + 8695*x^2 + 678*x - 97, x^21 - 4*x^20 - 25*x^19 + 110*x^18 + 258*x^17 - 1281*x^16 - 1431*x^15 + 8248*x^14 + 4717*x^13 - 32161*x^12 - 10001*x^11 + 78178*x^10 + 15372*x^9 - 117348*x^8 - 18671*x^7 + 103514*x^6 + 15456*x^5 - 47896*x^4 - 6444*x^3 + 8695*x^2 + 678*x - 97, x^19 - 9*x^18 - 11*x^17 + 225*x^16 - 75*x^15 - 2324*x^14 + 1777*x^13 + 12879*x^12 - 11437*x^11 - 41536*x^10 + 35735*x^9 + 78926*x^8 - 57662*x^7 - 85183*x^6 + 44863*x^5 + 47297*x^4 - 13888*x^3 - 10152*x^2 + 835*x - 1, x^19 - 9*x^18 - 11*x^17 + 225*x^16 - 75*x^15 - 2324*x^14 + 1777*x^13 + 12879*x^12 - 11437*x^11 - 41536*x^10 + 35735*x^9 + 78926*x^8 - 57662*x^7 - 85183*x^6 + 44863*x^5 + 47297*x^4 - 13888*x^3 - 10152*x^2 + 835*x - 1, -x^22 + x^21 + 35*x^20 - 31*x^19 - 530*x^18 + 408*x^17 + 4546*x^16 - 2985*x^15 - 24245*x^14 + 13336*x^13 + 82928*x^12 - 37529*x^11 - 180825*x^10 + 65845*x^9 + 241811*x^8 - 68205*x^7 - 183446*x^6 + 37150*x^5 + 68821*x^4 - 8927*x^3 - 9235*x^2 + 627*x + 7, -x^22 + x^21 + 35*x^20 - 31*x^19 - 530*x^18 + 408*x^17 + 4546*x^16 - 2985*x^15 - 24245*x^14 + 13336*x^13 + 82928*x^12 - 37529*x^11 - 180825*x^10 + 65845*x^9 + 241811*x^8 - 68205*x^7 - 183446*x^6 + 37150*x^5 + 68821*x^4 - 8927*x^3 - 9235*x^2 + 627*x + 7, x^20 - x^19 - 35*x^18 + 36*x^17 + 510*x^16 - 524*x^15 - 4025*x^14 + 4003*x^13 + 18782*x^12 - 17449*x^11 - 53100*x^10 + 44070*x^9 + 89635*x^8 - 62395*x^7 - 86058*x^6 + 45551*x^5 + 42904*x^4 - 14865*x^3 - 8431*x^2 + 1460*x - 57, x^20 - x^19 - 35*x^18 + 36*x^17 + 510*x^16 - 524*x^15 - 4025*x^14 + 4003*x^13 + 18782*x^12 - 17449*x^11 - 53100*x^10 + 44070*x^9 + 89635*x^8 - 62395*x^7 - 86058*x^6 + 45551*x^5 + 42904*x^4 - 14865*x^3 - 8431*x^2 + 1460*x - 57, -x^20 + x^19 + 35*x^18 - 40*x^17 - 494*x^16 + 591*x^15 + 3709*x^14 - 4395*x^13 - 16287*x^12 + 18186*x^11 + 42985*x^10 - 42621*x^9 - 66991*x^8 + 54094*x^7 + 57811*x^6 - 32811*x^5 - 24342*x^4 + 7316*x^3 + 3761*x^2 + 45*x - 28, -x^20 + x^19 + 35*x^18 - 40*x^17 - 494*x^16 + 591*x^15 + 3709*x^14 - 4395*x^13 - 16287*x^12 + 18186*x^11 + 42985*x^10 - 42621*x^9 - 66991*x^8 + 54094*x^7 + 57811*x^6 - 32811*x^5 - 24342*x^4 + 7316*x^3 + 3761*x^2 + 45*x - 28, -x^21 + x^20 + 34*x^19 - 34*x^18 - 481*x^17 + 456*x^16 + 3717*x^15 - 3149*x^14 - 17273*x^13 + 12078*x^12 + 49908*x^11 - 25325*x^10 - 89112*x^9 + 24897*x^8 + 93829*x^7 - 2864*x^6 - 51934*x^5 - 11200*x^4 + 10673*x^3 + 5346*x^2 + 650*x - 84, -x^21 + x^20 + 34*x^19 - 34*x^18 - 481*x^17 + 456*x^16 + 3717*x^15 - 3149*x^14 - 17273*x^13 + 12078*x^12 + 49908*x^11 - 25325*x^10 - 89112*x^9 + 24897*x^8 + 93829*x^7 - 2864*x^6 - 51934*x^5 - 11200*x^4 + 10673*x^3 + 5346*x^2 + 650*x - 84, -x^20 + 6*x^19 + 15*x^18 - 144*x^17 - 18*x^16 + 1412*x^15 - 934*x^14 - 7308*x^13 + 7737*x^12 + 21521*x^11 - 28290*x^10 - 36298*x^9 + 55362*x^8 + 33914*x^7 - 59180*x^6 - 16669*x^5 + 32511*x^4 + 3666*x^3 - 7091*x^2 - 58*x + 43, -x^20 + 6*x^19 + 15*x^18 - 144*x^17 - 18*x^16 + 1412*x^15 - 934*x^14 - 7308*x^13 + 7737*x^12 + 21521*x^11 - 28290*x^10 - 36298*x^9 + 55362*x^8 + 33914*x^7 - 59180*x^6 - 16669*x^5 + 32511*x^4 + 3666*x^3 - 7091*x^2 - 58*x + 43, x^22 - 4*x^21 - 27*x^20 + 120*x^19 + 295*x^18 - 1524*x^17 - 1642*x^16 + 10675*x^15 + 4669*x^14 - 45066*x^13 - 4847*x^12 + 117754*x^11 - 6126*x^10 - 188427*x^9 + 18568*x^8 + 176628*x^7 - 11014*x^6 - 88556*x^5 - 2135*x^4 + 19042*x^3 + 2315*x^2 - 608*x + 25, x^22 - 4*x^21 - 27*x^20 + 120*x^19 + 295*x^18 - 1524*x^17 - 1642*x^16 + 10675*x^15 + 4669*x^14 - 45066*x^13 - 4847*x^12 + 117754*x^11 - 6126*x^10 - 188427*x^9 + 18568*x^8 + 176628*x^7 - 11014*x^6 - 88556*x^5 - 2135*x^4 + 19042*x^3 + 2315*x^2 - 608*x + 25, x^20 - 4*x^19 - 21*x^18 + 95*x^17 + 176*x^16 - 933*x^15 - 790*x^14 + 4940*x^13 + 2429*x^12 - 15459*x^11 - 7045*x^10 + 29561*x^9 + 18358*x^8 - 34346*x^7 - 29875*x^6 + 22687*x^5 + 23070*x^4 - 7126*x^3 - 6500*x^2 + 591*x - 5, x^20 - 4*x^19 - 21*x^18 + 95*x^17 + 176*x^16 - 933*x^15 - 790*x^14 + 4940*x^13 + 2429*x^12 - 15459*x^11 - 7045*x^10 + 29561*x^9 + 18358*x^8 - 34346*x^7 - 29875*x^6 + 22687*x^5 + 23070*x^4 - 7126*x^3 - 6500*x^2 + 591*x - 5, x^19 - 30*x^17 + 2*x^16 + 370*x^15 - 31*x^14 - 2436*x^13 + 148*x^12 + 9261*x^11 - 43*x^10 - 20413*x^9 - 1542*x^8 + 24556*x^7 + 3994*x^6 - 13659*x^5 - 3035*x^4 + 2189*x^3 + 656*x^2 + 299*x - 27, x^19 - 30*x^17 + 2*x^16 + 370*x^15 - 31*x^14 - 2436*x^13 + 148*x^12 + 9261*x^11 - 43*x^10 - 20413*x^9 - 1542*x^8 + 24556*x^7 + 3994*x^6 - 13659*x^5 - 3035*x^4 + 2189*x^3 + 656*x^2 + 299*x - 27]>,
         rec<Eigen |
           DefiningPolynomial := x^25 + 7*x^24 - 11*x^23 - 176*x^22 - 117*x^21 + 1821*x^20 + 2821*x^19 - 9991*x^18 - 22125*x^17 + 30766*x^16 + 94175*x^15 - 48704*x^14 - 242498*x^13 + 14307*x^12 + 387797*x^11 + 83198*x^10 - 377989*x^9 - 149384*x^8 + 209059*x^7 + 112252*x^6 - 54115*x^5 - 38712*x^4 + 2387*x^3 + 4558*x^2 + 665*x + 25,
           Coordinates        := [0, 0, 0, 0, 0, 0, -x^24 - 7*x^23 + 9*x^22 + 162*x^21 + 132*x^20 - 1517*x^19 - 2533*x^18 + 7369*x^17 + 17372*x^16 - 19429*x^15 - 64637*x^14 + 24279*x^13 + 143683*x^12 + 1110*x^11 - 194819*x^10 - 43371*x^9 + 157407*x^8 + 54008*x^7 - 70401*x^6 - 28494*x^5 + 14812*x^4 + 6393*x^3 - 1008*x^2 - 492*x - 30, x^24 + 7*x^23 - 9*x^22 - 162*x^21 - 132*x^20 + 1517*x^19 + 2533*x^18 - 7369*x^17 - 17372*x^16 + 19429*x^15 + 64637*x^14 - 24279*x^13 - 143683*x^12 - 1110*x^11 + 194819*x^10 + 43371*x^9 - 157407*x^8 - 54008*x^7 + 70401*x^6 + 28494*x^5 - 14812*x^4 - 6393*x^3 + 1008*x^2 + 492*x + 30, -x^23 - 7*x^22 + 8*x^21 + 156*x^20 + 145*x^19 - 1380*x^18 - 2515*x^17 + 6091*x^16 + 16185*x^15 - 13100*x^14 - 55889*x^13 + 6275*x^12 + 112175*x^11 + 30465*x^10 - 130536*x^9 - 68123*x^8 + 81693*x^7 + 59941*x^6 - 21264*x^5 - 23156*x^4 - 568*x^3 + 2803*x^2 + 582*x + 35, x^23 + 7*x^22 - 8*x^21 - 156*x^20 - 145*x^19 + 1380*x^18 + 2515*x^17 - 6091*x^16 - 16185*x^15 + 13100*x^14 + 55889*x^13 - 6275*x^12 - 112175*x^11 - 30465*x^10 + 130536*x^9 + 68123*x^8 - 81693*x^7 - 59941*x^6 + 21264*x^5 + 23156*x^4 + 568*x^3 - 2803*x^2 - 582*x - 35, -x^23 - 7*x^22 + 7*x^21 + 148*x^20 + 143*x^19 - 1242*x^18 - 2238*x^17 + 5246*x^16 + 13353*x^15 - 11325*x^14 - 42926*x^13 + 9142*x^12 + 80803*x^11 + 9362*x^10 - 90046*x^9 - 27253*x^8 + 56965*x^7 + 23817*x^6 - 18039*x^5 - 9163*x^4 + 1947*x^3 + 1263*x^2 + 53*x - 10, x^23 + 7*x^22 - 7*x^21 - 148*x^20 - 143*x^19 + 1242*x^18 + 2238*x^17 - 5246*x^16 - 13353*x^15 + 11325*x^14 + 42926*x^13 - 9142*x^12 - 80803*x^11 - 9362*x^10 + 90046*x^9 + 27253*x^8 - 56965*x^7 - 23817*x^6 + 18039*x^5 + 9163*x^4 - 1947*x^3 - 1263*x^2 - 53*x + 10, -x^19 - 6*x^18 + 7*x^17 + 101*x^16 + 60*x^15 - 679*x^14 - 885*x^13 + 2190*x^12 + 4077*x^11 - 3147*x^10 - 8865*x^9 + 666*x^8 + 9252*x^7 + 2756*x^6 - 3878*x^5 - 2211*x^4 + 191*x^3 + 318*x^2 + 42*x - 5, x^19 + 6*x^18 - 7*x^17 - 101*x^16 - 60*x^15 + 679*x^14 + 885*x^13 - 2190*x^12 - 4077*x^11 + 3147*x^10 + 8865*x^9 - 666*x^8 - 9252*x^7 - 2756*x^6 + 3878*x^5 + 2211*x^4 - 191*x^3 - 318*x^2 - 42*x + 5, -x^22 - 6*x^21 + 13*x^20 + 137*x^19 + 18*x^18 - 1278*x^17 - 1187*x^16 + 6329*x^15 + 8748*x^14 - 18004*x^13 - 31508*x^12 + 29355*x^11 + 64283*x^10 - 24752*x^9 - 75714*x^8 + 5933*x^7 + 49137*x^6 + 5338*x^5 - 15380*x^4 - 3590*x^3 + 1590*x^2 + 527*x + 30, x^22 + 6*x^21 - 13*x^20 - 137*x^19 - 18*x^18 + 1278*x^17 + 1187*x^16 - 6329*x^15 - 8748*x^14 + 18004*x^13 + 31508*x^12 - 29355*x^11 - 64283*x^10 + 24752*x^9 + 75714*x^8 - 5933*x^7 - 49137*x^6 - 5338*x^5 + 15380*x^4 + 3590*x^3 - 1590*x^2 - 527*x - 30, -x^22 - 7*x^21 + 5*x^20 + 134*x^19 + 148*x^18 - 1008*x^17 - 1932*x^16 + 3749*x^15 + 10156*x^14 - 6781*x^13 - 28664*x^12 + 3359*x^11 + 46273*x^10 + 7327*x^9 - 42281*x^8 - 12342*x^7 + 20248*x^6 + 6735*x^5 - 4178*x^4 - 1208*x^3 + 244*x^2 + 18*x, x^22 + 7*x^21 - 5*x^20 - 134*x^19 - 148*x^18 + 1008*x^17 + 1932*x^16 - 3749*x^15 - 10156*x^14 + 6781*x^13 + 28664*x^12 - 3359*x^11 - 46273*x^10 - 7327*x^9 + 42281*x^8 + 12342*x^7 - 20248*x^6 - 6735*x^5 + 4178*x^4 + 1208*x^3 - 244*x^2 - 18*x, -x^22 - 7*x^21 + 6*x^20 + 141*x^19 + 147*x^18 - 1115*x^17 - 2087*x^16 + 4355*x^15 + 11555*x^14 - 8356*x^13 - 34216*x^12 + 4893*x^11 + 58500*x^10 + 8791*x^9 - 58161*x^8 - 17849*x^7 + 32114*x^6 + 12596*x^5 - 8687*x^4 - 3922*x^3 + 817*x^2 + 464*x + 30, x^22 + 7*x^21 - 6*x^20 - 141*x^19 - 147*x^18 + 1115*x^17 + 2087*x^16 - 4355*x^15 - 11555*x^14 + 8356*x^13 + 34216*x^12 - 4893*x^11 - 58500*x^10 - 8791*x^9 + 58161*x^8 + 17849*x^7 - 32114*x^6 - 12596*x^5 + 8687*x^4 + 3922*x^3 - 817*x^2 - 464*x - 30, -x^20 - 6*x^19 + 9*x^18 + 112*x^17 + 46*x^16 - 836*x^15 - 902*x^14 + 3192*x^13 + 4633*x^12 - 6692*x^11 - 11534*x^10 + 7816*x^9 + 15204*x^8 - 5134*x^7 - 10465*x^6 + 2000*x^5 + 3474*x^4 - 444*x^3 - 495*x^2 + 14*x + 5, x^20 + 6*x^19 - 9*x^18 - 112*x^17 - 46*x^16 + 836*x^15 + 902*x^14 - 3192*x^13 - 4633*x^12 + 6692*x^11 + 11534*x^10 - 7816*x^9 - 15204*x^8 + 5134*x^7 + 10465*x^6 - 2000*x^5 - 3474*x^4 + 444*x^3 + 495*x^2 - 14*x - 5, -2*x^18 - 11*x^17 + 14*x^16 + 157*x^15 + 17*x^14 - 1002*x^13 - 556*x^12 + 3545*x^11 + 2669*x^10 - 7150*x^9 - 5952*x^8 + 7890*x^7 + 6587*x^6 - 4211*x^5 - 3283*x^4 + 762*x^3 + 537*x^2 - 19*x - 5, 2*x^18 + 11*x^17 - 14*x^16 - 157*x^15 - 17*x^14 + 1002*x^13 + 556*x^12 - 3545*x^11 - 2669*x^10 + 7150*x^9 + 5952*x^8 - 7890*x^7 - 6587*x^6 + 4211*x^5 + 3283*x^4 - 762*x^3 - 537*x^2 + 19*x + 5, -x^21 - 6*x^20 + 10*x^19 + 120*x^18 + 50*x^17 - 949*x^16 - 1108*x^15 + 3844*x^14 + 6377*x^13 - 8428*x^12 - 18537*x^11 + 9066*x^10 + 30070*x^9 - 1658*x^8 - 26623*x^7 - 5466*x^6 + 11222*x^5 + 4186*x^4 - 1432*x^3 - 686*x^2 - 25*x - 5, x^21 + 6*x^20 - 10*x^19 - 120*x^18 - 50*x^17 + 949*x^16 + 1108*x^15 - 3844*x^14 - 6377*x^13 + 8428*x^12 + 18537*x^11 - 9066*x^10 - 30070*x^9 + 1658*x^8 + 26623*x^7 + 5466*x^6 - 11222*x^5 - 4186*x^4 + 1432*x^3 + 686*x^2 + 25*x + 5, -x^21 - 7*x^20 + 3*x^19 + 119*x^18 + 143*x^17 - 796*x^16 - 1534*x^15 + 2701*x^14 + 7002*x^13 - 4886*x^12 - 17589*x^11 + 4238*x^10 + 26002*x^9 - 477*x^8 - 22643*x^7 - 2073*x^6 + 10976*x^5 + 1537*x^4 - 2588*x^3 - 375*x^2 + 214*x + 20, x^21 + 7*x^20 - 3*x^19 - 119*x^18 - 143*x^17 + 796*x^16 + 1534*x^15 - 2701*x^14 - 7002*x^13 + 4886*x^12 + 17589*x^11 - 4238*x^10 - 26002*x^9 + 477*x^8 + 22643*x^7 + 2073*x^6 - 10976*x^5 - 1537*x^4 + 2588*x^3 + 375*x^2 - 214*x - 20, -x^21 - 7*x^20 + 2*x^19 + 115*x^18 + 163*x^17 - 701*x^16 - 1663*x^15 + 1843*x^14 + 7260*x^13 - 897*x^12 - 16941*x^11 - 6273*x^10 + 21763*x^9 + 15388*x^8 - 14074*x^7 - 15009*x^6 + 2885*x^5 + 6418*x^4 + 885*x^3 - 870*x^2 - 267*x - 10, x^21 + 7*x^20 - 2*x^19 - 115*x^18 - 163*x^17 + 701*x^16 + 1663*x^15 - 1843*x^14 - 7260*x^13 + 897*x^12 + 16941*x^11 + 6273*x^10 - 21763*x^9 - 15388*x^8 + 14074*x^7 + 15009*x^6 - 2885*x^5 - 6418*x^4 - 885*x^3 + 870*x^2 + 267*x + 10, -x^21 - 7*x^20 + 4*x^19 + 127*x^18 + 151*x^17 - 891*x^16 - 1798*x^15 + 2969*x^14 + 8710*x^13 - 4249*x^12 - 22303*x^11 - 571*x^10 + 31885*x^9 + 9404*x^8 - 24851*x^7 - 11221*x^6 + 9352*x^5 + 5241*x^4 - 1130*x^3 - 799*x^2 - 23*x + 10, x^21 + 7*x^20 - 4*x^19 - 127*x^18 - 151*x^17 + 891*x^16 + 1798*x^15 - 2969*x^14 - 8710*x^13 + 4249*x^12 + 22303*x^11 + 571*x^10 - 31885*x^9 - 9404*x^8 + 24851*x^7 + 11221*x^6 - 9352*x^5 - 5241*x^4 + 1130*x^3 + 799*x^2 + 23*x - 10, -x^19 - 5*x^18 + 11*x^17 + 81*x^16 - 44*x^15 - 603*x^14 - 8*x^13 + 2559*x^12 + 748*x^11 - 6445*x^10 - 2882*x^9 + 9521*x^8 + 5082*x^7 - 7813*x^6 - 4630*x^5 + 3006*x^4 + 1995*x^3 - 286*x^2 - 255*x - 15, x^19 + 5*x^18 - 11*x^17 - 81*x^16 + 44*x^15 + 603*x^14 + 8*x^13 - 2559*x^12 - 748*x^11 + 6445*x^10 + 2882*x^9 - 9521*x^8 - 5082*x^7 + 7813*x^6 + 4630*x^5 - 3006*x^4 - 1995*x^3 + 286*x^2 + 255*x + 15, -4*x^17 - 25*x^16 + x^15 + 280*x^14 + 337*x^13 - 1204*x^12 - 2156*x^11 + 2442*x^10 + 5795*x^9 - 2297*x^8 - 7747*x^7 + 846*x^6 + 5225*x^5 - 33*x^4 - 1649*x^3 - 51*x^2 + 208*x + 20, 4*x^17 + 25*x^16 - x^15 - 280*x^14 - 337*x^13 + 1204*x^12 + 2156*x^11 - 2442*x^10 - 5795*x^9 + 2297*x^8 + 7747*x^7 - 846*x^6 - 5225*x^5 + 33*x^4 + 1649*x^3 + 51*x^2 - 208*x - 20, -x^20 - 6*x^19 + 9*x^18 + 117*x^17 + 78*x^16 - 834*x^15 - 1251*x^14 + 2769*x^13 + 6141*x^12 - 4134*x^11 - 14890*x^10 + 978*x^9 + 19374*x^8 + 4588*x^7 - 13205*x^6 - 5387*x^5 + 4076*x^4 + 2172*x^3 - 336*x^2 - 255*x - 15, x^20 + 6*x^19 - 9*x^18 - 117*x^17 - 78*x^16 + 834*x^15 + 1251*x^14 - 2769*x^13 - 6141*x^12 + 4134*x^11 + 14890*x^10 - 978*x^9 - 19374*x^8 - 4588*x^7 + 13205*x^6 + 5387*x^5 - 4076*x^4 - 2172*x^3 + 336*x^2 + 255*x + 15, -2*x^20 - 11*x^19 + 23*x^18 + 212*x^17 + x^16 - 1651*x^15 - 1120*x^14 + 6807*x^13 + 6830*x^12 - 16155*x^11 - 19323*x^10 + 22116*x^9 + 29717*x^8 - 15987*x^7 - 24710*x^6 + 4235*x^5 + 9872*x^4 + 732*x^3 - 1279*x^2 - 277*x - 15, 2*x^20 + 11*x^19 - 23*x^18 - 212*x^17 - x^16 + 1651*x^15 + 1120*x^14 - 6807*x^13 - 6830*x^12 + 16155*x^11 + 19323*x^10 - 22116*x^9 - 29717*x^8 + 15987*x^7 + 24710*x^6 - 4235*x^5 - 9872*x^4 - 732*x^3 + 1279*x^2 + 277*x + 15, x^19 + 7*x^18 + x^17 - 96*x^16 - 172*x^15 + 427*x^14 + 1349*x^13 - 426*x^12 - 4467*x^11 - 2056*x^10 + 7243*x^9 + 6812*x^8 - 5302*x^7 - 8018*x^6 + 671*x^5 + 3881*x^4 + 928*x^3 - 534*x^2 - 234*x - 15, -x^19 - 7*x^18 - x^17 + 96*x^16 + 172*x^15 - 427*x^14 - 1349*x^13 + 426*x^12 + 4467*x^11 + 2056*x^10 - 7243*x^9 - 6812*x^8 + 5302*x^7 + 8018*x^6 - 671*x^5 - 3881*x^4 - 928*x^3 + 534*x^2 + 234*x + 15, -x^20 - 6*x^19 + 8*x^18 + 106*x^17 + 48*x^16 - 763*x^15 - 815*x^14 + 2913*x^13 + 4081*x^12 - 6408*x^11 - 10433*x^10 + 8226*x^9 + 14894*x^8 - 5850*x^7 - 11711*x^6 + 1825*x^5 + 4521*x^4 + 22*x^3 - 615*x^2 - 46*x + 5, x^20 + 6*x^19 - 8*x^18 - 106*x^17 - 48*x^16 + 763*x^15 + 815*x^14 - 2913*x^13 - 4081*x^12 + 6408*x^11 + 10433*x^10 - 8226*x^9 - 14894*x^8 + 5850*x^7 + 11711*x^6 - 1825*x^5 - 4521*x^4 - 22*x^3 + 615*x^2 + 46*x - 5, -x^20 - 9*x^19 - 13*x^18 + 106*x^17 + 350*x^16 - 285*x^15 - 2339*x^14 - 1018*x^13 + 6994*x^12 + 7287*x^11 - 9838*x^10 - 16030*x^9 + 4744*x^8 + 16119*x^7 + 2439*x^6 - 7023*x^5 - 2931*x^4 + 811*x^3 + 585*x^2 + 48*x - 5, x^20 + 9*x^19 + 13*x^18 - 106*x^17 - 350*x^16 + 285*x^15 + 2339*x^14 + 1018*x^13 - 6994*x^12 - 7287*x^11 + 9838*x^10 + 16030*x^9 - 4744*x^8 - 16119*x^7 - 2439*x^6 + 7023*x^5 + 2931*x^4 - 811*x^3 - 585*x^2 - 48*x + 5, -x^20 - 8*x^19 - 8*x^18 + 95*x^17 + 268*x^16 - 255*x^15 - 1776*x^14 - 923*x^13 + 4893*x^12 + 6523*x^11 - 5187*x^10 - 14055*x^9 - 1510*x^8 + 13320*x^7 + 7347*x^6 - 4552*x^5 - 4809*x^4 - 394*x^3 + 768*x^2 + 249*x + 15, x^20 + 8*x^19 + 8*x^18 - 95*x^17 - 268*x^16 + 255*x^15 + 1776*x^14 + 923*x^13 - 4893*x^12 - 6523*x^11 + 5187*x^10 + 14055*x^9 + 1510*x^8 - 13320*x^7 - 7347*x^6 + 4552*x^5 + 4809*x^4 + 394*x^3 - 768*x^2 - 249*x - 15, -x^20 - 8*x^19 - 5*x^18 + 112*x^17 + 243*x^16 - 550*x^15 - 1943*x^14 + 915*x^13 + 7280*x^12 + 1228*x^11 - 15081*x^10 - 7203*x^9 + 18106*x^8 + 11762*x^7 - 12297*x^6 - 9355*x^5 + 4083*x^4 + 3567*x^3 - 345*x^2 - 468*x - 35, x^20 + 8*x^19 + 5*x^18 - 112*x^17 - 243*x^16 + 550*x^15 + 1943*x^14 - 915*x^13 - 7280*x^12 - 1228*x^11 + 15081*x^10 + 7203*x^9 - 18106*x^8 - 11762*x^7 + 12297*x^6 + 9355*x^5 - 4083*x^4 - 3567*x^3 + 345*x^2 + 468*x + 35, x^19 + 5*x^18 - 14*x^17 - 106*x^16 + 3*x^15 + 790*x^14 + 648*x^13 - 2777*x^12 - 3582*x^11 + 4882*x^10 + 8445*x^9 - 3860*x^8 - 9853*x^7 + 494*x^6 + 5392*x^5 + 757*x^4 - 1070*x^3 - 177*x^2 + 50*x, -x^19 - 5*x^18 + 14*x^17 + 106*x^16 - 3*x^15 - 790*x^14 - 648*x^13 + 2777*x^12 + 3582*x^11 - 4882*x^10 - 8445*x^9 + 3860*x^8 + 9853*x^7 - 494*x^6 - 5392*x^5 - 757*x^4 + 1070*x^3 + 177*x^2 - 50*x, -2*x^18 - 14*x^17 - 9*x^16 + 140*x^15 + 285*x^14 - 412*x^13 - 1517*x^12 - 65*x^11 + 3206*x^10 + 2251*x^9 - 2386*x^8 - 3565*x^7 - 573*x^6 + 1754*x^5 + 1257*x^4 - 26*x^3 - 254*x^2 - 60*x - 5, 2*x^18 + 14*x^17 + 9*x^16 - 140*x^15 - 285*x^14 + 412*x^13 + 1517*x^12 + 65*x^11 - 3206*x^10 - 2251*x^9 + 2386*x^8 + 3565*x^7 + 573*x^6 - 1754*x^5 - 1257*x^4 + 26*x^3 + 254*x^2 + 60*x + 5, -4*x^16 - 17*x^15 + 35*x^14 + 210*x^13 - 83*x^12 - 1038*x^11 - 80*x^10 + 2602*x^9 + 591*x^8 - 3479*x^7 - 789*x^6 + 2424*x^5 + 377*x^4 - 787*x^3 - 75*x^2 + 99*x + 10, 4*x^16 + 17*x^15 - 35*x^14 - 210*x^13 + 83*x^12 + 1038*x^11 + 80*x^10 - 2602*x^9 - 591*x^8 + 3479*x^7 + 789*x^6 - 2424*x^5 - 377*x^4 + 787*x^3 + 75*x^2 - 99*x - 10]>
       ]
>;

MOG[677] := 	// J_0(677)
   rec<SupersingularModule | 
       MonodromyWeights   := [3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
       SupersingularBasis := rec<Eigen|
           DefiningPolynomial := x^2 + 2,
           Coordinates        := [0, 6, 10, 96, 103, 119, 227, 291, 309, 401, 405, 517, 553, 559, 655, 327*x + 247, 350*x + 247, 122*x + 451, 555*x + 451, 477*x + 98, 200*x + 98, 316*x + 408, 361*x + 408, 304*x + 359, 373*x + 359, 588*x + 451, 89*x + 451, 225*x + 596, 452*x + 596, 623*x + 598, 54*x + 598, 158*x + 592, 519*x + 592, 344*x + 265, 333*x + 265, 225*x + 398, 452*x + 398, 333*x + 33, 344*x + 33, 396*x + 192, 281*x + 192, 406*x + 283, 271*x + 283, 114*x + 21, 563*x + 21, 632*x + 64, 45*x + 64, 144*x + 119, 533*x + 119, 22*x + 323, 655*x + 323, 49*x + 119, 628*x + 119, x + 428, 676*x + 428, 99*x + 262, 578*x + 262]>,
       Eigenvectors := [
         rec<Eigen |
           DefiningPolynomial := x + 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1, 1, 0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 0, 0, -1, 1]>,
         rec<Eigen |
           DefiningPolynomial := x^2 + x - 1,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x - 2, x + 2, 0, 0, -x - 1, x + 1, x + 1, -x - 1, 1, -1, 0, 0, x + 1, -x - 1, x + 2, -x - 2, -x - 1, x + 1, x + 1, -x - 1, x + 1, -x - 1, -x - 1, x + 1, -x - 2, x + 2, -x - 2, x + 2, x + 2, -x - 2, 1, -1, 0, 0, -1, 1, -x - 1, x + 1, -x - 1, x + 1, 1, -1]>,
         rec<Eigen |
           DefiningPolynomial := x^18 + 2*x^17 - 21*x^16 - 39*x^15 + 181*x^14 + 306*x^13 - 828*x^12 - 1251*x^11 + 2158*x^10 + 2878*x^9 - 3173*x^8 - 3735*x^7 + 2393*x^6 + 2569*x^5 - 671*x^4 - 785*x^3 - 36*x^2 + 56*x + 8,
           Coordinates        := [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x^16 - 3*x^15 + 15*x^14 + 45*x^13 - 90*x^12 - 263*x^11 + 274*x^10 + 761*x^9 - 427*x^8 - 1146*x^7 + 278*x^6 + 859*x^5 + 6*x^4 - 269*x^3 - 51*x^2 + 18*x + 4, x^16 + 3*x^15 - 15*x^14 - 45*x^13 + 90*x^12 + 263*x^11 - 274*x^10 - 761*x^9 + 427*x^8 + 1146*x^7 - 278*x^6 - 859*x^5 - 6*x^4 + 269*x^3 + 51*x^2 - 18*x - 4, -x^16 - 3*x^15 + 14*x^14 + 44*x^13 - 76*x^12 - 254*x^11 + 199*x^10 + 734*x^9 - 244*x^8 - 1110*x^7 + 85*x^6 + 824*x^5 + 68*x^4 - 243*x^3 - 45*x^2 + 18*x + 4, x^16 + 3*x^15 - 14*x^14 - 44*x^13 + 76*x^12 + 254*x^11 - 199*x^10 - 734*x^9 + 244*x^8 + 1110*x^7 - 85*x^6 - 824*x^5 - 68*x^4 + 243*x^3 + 45*x^2 - 18*x - 4, -x^17 - 2*x^16 + 18*x^15 + 31*x^14 - 134*x^13 - 187*x^12 + 528*x^11 + 562*x^10 - 1161*x^9 - 902*x^8 + 1388*x^7 + 774*x^6 - 818*x^5 - 337*x^4 + 192*x^3 + 63*x^2 - 14*x - 4, x^17 + 2*x^16 - 18*x^15 - 31*x^14 + 134*x^13 + 187*x^12 - 528*x^11 - 562*x^10 + 1161*x^9 + 902*x^8 - 1388*x^7 - 774*x^6 + 818*x^5 + 337*x^4 - 192*x^3 - 63*x^2 + 14*x + 4, -x^17 - 2*x^16 + 18*x^15 + 31*x^14 - 136*x^13 - 190*x^12 + 554*x^11 + 591*x^10 - 1296*x^9 - 1008*x^8 + 1723*x^7 + 964*x^6 - 1211*x^5 - 512*x^4 + 373*x^3 + 134*x^2 - 24*x - 8, x^17 + 2*x^16 - 18*x^15 - 31*x^14 + 136*x^13 + 190*x^12 - 554*x^11 - 591*x^10 + 1296*x^9 + 1008*x^8 - 1723*x^7 - 964*x^6 + 1211*x^5 + 512*x^4 - 373*x^3 - 134*x^2 + 24*x + 8, -x^15 - 2*x^14 + 15*x^13 + 26*x^12 - 92*x^11 - 131*x^10 + 291*x^9 + 325*x^8 - 492*x^7 - 418*x^6 + 420*x^5 + 263*x^4 - 149*x^3 - 65*x^2 + 10*x + 4, x^15 + 2*x^14 - 15*x^13 - 26*x^12 + 92*x^11 + 131*x^10 - 291*x^9 - 325*x^8 + 492*x^7 + 418*x^6 - 420*x^5 - 263*x^4 + 149*x^3 + 65*x^2 - 10*x - 4, -x^16 - 2*x^15 + 17*x^14 + 29*x^13 - 119*x^12 - 160*x^11 + 440*x^10 + 425*x^9 - 903*x^8 - 568*x^7 + 992*x^6 + 364*x^5 - 514*x^4 - 99*x^3 + 91*x^2 + 10*x - 4, x^16 + 2*x^15 - 17*x^14 - 29*x^13 + 119*x^12 + 160*x^11 - 440*x^10 - 425*x^9 + 903*x^8 + 568*x^7 - 992*x^6 - 364*x^5 + 514*x^4 + 99*x^3 - 91*x^2 - 10*x + 4, -x^16 - 3*x^15 + 15*x^14 + 45*x^13 - 91*x^12 - 266*x^11 + 283*x^10 + 790*x^9 - 455*x^8 - 1247*x^7 + 305*x^6 + 1009*x^5 + 29*x^4 - 354*x^3 - 90*x^2 + 24*x + 8, x^16 + 3*x^15 - 15*x^14 - 45*x^13 + 91*x^12 + 266*x^11 - 283*x^10 - 790*x^9 + 455*x^8 + 1247*x^7 - 305*x^6 - 1009*x^5 - 29*x^4 + 354*x^3 + 90*x^2 - 24*x - 8, -x^16 - 3*x^15 + 14*x^14 + 43*x^13 - 79*x^12 - 245*x^11 + 228*x^10 + 706*x^9 - 345*x^8 - 1083*x^7 + 235*x^6 + 847*x^5 - 17*x^4 - 282*x^3 - 39*x^2 + 22*x + 4, x^16 + 3*x^15 - 14*x^14 - 43*x^13 + 79*x^12 + 245*x^11 - 228*x^10 - 706*x^9 + 345*x^8 + 1083*x^7 - 235*x^6 - 847*x^5 + 17*x^4 + 282*x^3 + 39*x^2 - 22*x - 4, -x^16 - 2*x^15 + 17*x^14 + 29*x^13 - 119*x^12 - 161*x^11 + 435*x^10 + 430*x^9 - 861*x^8 - 578*x^7 + 862*x^6 + 386*x^5 - 349*x^4 - 126*x^3 + 24*x^2 + 8*x, x^16 + 2*x^15 - 17*x^14 - 29*x^13 + 119*x^12 + 161*x^11 - 435*x^10 - 430*x^9 + 861*x^8 + 578*x^7 - 862*x^6 - 386*x^5 + 349*x^4 + 126*x^3 - 24*x^2 - 8*x, -x^14 - 3*x^13 + 10*x^12 + 31*x^11 - 39*x^10 - 118*x^9 + 77*x^8 + 200*x^7 - 83*x^6 - 141*x^5 + 46*x^4 + 29*x^3 - 10*x^2 - 4*x, x^14 + 3*x^13 - 10*x^12 - 31*x^11 + 39*x^10 + 118*x^9 - 77*x^8 - 200*x^7 + 83*x^6 + 141*x^5 - 46*x^4 - 29*x^3 + 10*x^2 + 4*x, -x^15 - 2*x^14 + 15*x^13 + 27*x^12 - 88*x^11 - 137*x^10 + 258*x^9 + 334*x^8 - 396*x^7 - 410*x^6 + 304*x^5 + 238*x^4 - 101*x^3 - 53*x^2 + 10*x + 4, x^15 + 2*x^14 - 15*x^13 - 27*x^12 + 88*x^11 + 137*x^10 - 258*x^9 - 334*x^8 + 396*x^7 + 410*x^6 - 304*x^5 - 238*x^4 + 101*x^3 + 53*x^2 - 10*x - 4, -x^15 - 3*x^14 + 12*x^13 + 36*x^12 - 60*x^11 - 168*x^10 + 161*x^9 + 380*x^8 - 241*x^7 - 422*x^6 + 185*x^5 + 201*x^4 - 58*x^3 - 22*x^2 + 4*x, x^15 + 3*x^14 - 12*x^13 - 36*x^12 + 60*x^11 + 168*x^10 - 161*x^9 - 380*x^8 + 241*x^7 + 422*x^6 - 185*x^5 - 201*x^4 + 58*x^3 + 22*x^2 - 4*x, -x^15 - 2*x^14 + 17*x^13 + 29*x^12 - 119*x^11 - 161*x^10 + 435*x^9 + 430*x^8 - 861*x^7 - 578*x^6 + 862*x^5 + 386*x^4 - 349*x^3 - 126*x^2 + 24*x + 8, x^15 + 2*x^14 - 17*x^13 - 29*x^12 + 119*x^11 + 161*x^10 - 435*x^9 - 430*x^8 + 861*x^7 + 578*x^6 - 862*x^5 - 386*x^4 + 349*x^3 + 126*x^2 - 24*x - 8, -x^14 - 4*x^13 + 8*x^12 + 43*x^11 - 18*x^10 - 175*x^9 - 7*x^8 + 332*x^7 + 77*x^6 - 291*x^5 - 93*x^4 + 93*x^3 + 32*x^2, x^14 + 4*x^13 - 8*x^12 - 43*x^11 + 18*x^10 + 175*x^9 + 7*x^8 - 332*x^7 - 77*x^6 + 291*x^5 + 93*x^4 - 93*x^3 - 32*x^2, -x^13 - 3*x^12 + 10*x^11 + 31*x^10 - 39*x^9 - 118*x^8 + 77*x^7 + 200*x^6 - 83*x^5 - 141*x^4 + 46*x^3 + 29*x^2 - 10*x - 4, x^13 + 3*x^12 - 10*x^11 - 31*x^10 + 39*x^9 + 118*x^8 - 77*x^7 - 200*x^6 + 83*x^5 + 141*x^4 - 46*x^3 - 29*x^2 + 10*x + 4, -x^14 - x^13 + 16*x^12 + 11*x^11 - 99*x^10 - 38*x^9 + 296*x^8 + 38*x^7 - 434*x^6 + 24*x^5 + 280*x^4 - 42*x^3 - 59*x^2 + 6*x + 4, x^14 + x^13 - 16*x^12 - 11*x^11 + 99*x^10 + 38*x^9 - 296*x^8 - 38*x^7 + 434*x^6 - 24*x^5 - 280*x^4 + 42*x^3 + 59*x^2 - 6*x - 4, -x^14 - x^13 + 15*x^12 + 12*x^11 - 83*x^10 - 53*x^9 + 211*x^8 + 120*x^7 - 254*x^6 - 150*x^5 + 133*x^4 + 88*x^3 - 22*x^2 - 12*x, x^14 + x^13 - 15*x^12 - 12*x^11 + 83*x^10 + 53*x^9 - 211*x^8 - 120*x^7 + 254*x^6 + 150*x^5 - 133*x^4 - 88*x^3 + 22*x^2 + 12*x, -x^14 - 3*x^13 + 11*x^12 + 34*x^11 - 49*x^10 - 151*x^9 + 111*x^8 + 329*x^7 - 127*x^6 - 355*x^5 + 52*x^4 + 167*x^3 + 11*x^2 - 22*x - 4, x^14 + 3*x^13 - 11*x^12 - 34*x^11 + 49*x^10 + 151*x^9 - 111*x^8 - 329*x^7 + 127*x^6 + 355*x^5 - 52*x^4 - 167*x^3 - 11*x^2 + 22*x + 4, -x^13 - 3*x^12 + 11*x^11 + 32*x^10 - 50*x^9 - 125*x^8 + 118*x^7 + 214*x^6 - 137*x^5 - 154*x^4 + 61*x^3 + 32*x^2, x^13 + 3*x^12 - 11*x^11 - 32*x^10 + 50*x^9 + 125*x^8 - 118*x^7 - 214*x^6 + 137*x^5 + 154*x^4 - 61*x^3 - 32*x^2, -x^13 + 17*x^11 + x^10 - 100*x^9 - 3*x^8 + 262*x^7 + 6*x^6 - 321*x^5 - 17*x^4 + 167*x^3 + 19*x^2 - 22*x - 4, x^13 - 17*x^11 - x^10 + 100*x^9 + 3*x^8 - 262*x^7 - 6*x^6 + 321*x^5 + 17*x^4 - 167*x^3 - 19*x^2 + 22*x + 4, -x^13 - 2*x^12 + 11*x^11 + 17*x^10 - 50*x^9 - 51*x^8 + 114*x^7 + 67*x^6 - 133*x^5 - 34*x^4 + 69*x^3 - 8*x, x^13 + 2*x^12 - 11*x^11 - 17*x^10 + 50*x^9 + 51*x^8 - 114*x^7 - 67*x^6 + 133*x^5 + 34*x^4 - 69*x^3 + 8*x]>,
         rec<Eigen |
           DefiningPolynomial := x^35 - 4*x^34 - 50*x^33 + 212*x^32 + 1111*x^31 - 5067*x^30 - 14436*x^29 + 72281*x^28 + 121200*x^27 - 686439*x^26 - 682560*x^25 + 4583258*x^24 + 2560907*x^23 - 22145932*x^22 - 5894207*x^21 + 78504622*x^20 + 5101807*x^19 - 204692297*x^18 + 14924229*x^17 + 389756455*x^16 - 63835990*x^15 - 532557128*x^14 + 115587477*x^13 + 506592976*x^12 - 120360221*x^11 - 319597978*x^10 + 72459781*x^9 + 123668959*x^8 - 22528592*x^7 - 25663309*x^6 + 2515066*x^5 + 2191445*x^4 + 64449*x^3 - 34886*x^2 - 1924*x + 32,
           Coordinates        := [-x^34 + 4*x^33 + 47*x^32 - 200*x^31 - 976*x^30 + 4491*x^29 + 11766*x^28 - 59910*x^27 - 90764*x^26 + 529287*x^25 + 462932*x^24 - 3268191*x^23 - 1532379*x^22 + 14505483*x^21 + 2895168*x^20 - 46863533*x^19 - 853617*x^18 + 110340830*x^17 - 11205756*x^16 - 187634637*x^15 + 32764998*x^14 + 225869365*x^13 - 47283989*x^12 - 186046303*x^11 + 39063274*x^10 + 99327583*x^9 - 17694707*x^8 - 31473912*x^7 + 3610181*x^6 + 5075013*x^5 - 123317*x^4 - 307522*x^3 - 22060*x^2 + 2280*x + 160, x^34 - 4*x^33 - 47*x^32 + 202*x^31 + 968*x^30 - 4571*x^29 - 11420*x^28 + 61286*x^27 + 84144*x^26 - 542479*x^25 - 388982*x^24 + 3343535*x^23 + 996333*x^22 - 14746263*x^21 - 245040*x^20 + 47079871*x^19 - 8284863*x^18 - 108784402*x^17 + 33290986*x^16 + 179911609*x^15 - 69809740*x^14 - 208088481*x^13 + 89364219*x^12 + 161862889*x^11 - 70072714*x^10 - 79429907*x^9 + 31503779*x^8 + 22025738*x^7 - 6893845*x^6 - 2812333*x^5 + 475209*x^4 + 127702*x^3 - 13468*x^2 - 616*x + 192, 2*x^27 - 6*x^26 - 70*x^25 + 212*x^24 + 1074*x^23 - 3254*x^22 - 9622*x^21 + 28598*x^20 + 56882*x^19 - 159832*x^18 - 238890*x^17 + 597332*x^16 + 747232*x^15 - 1530446*x^14 - 1767814*x^13 + 2714234*x^12 + 3081138*x^11 - 3311622*x^10 - 3694288*x^9 + 2677132*x^8 + 2721654*x^7 - 1278816*x^6 - 1009340*x^5 + 259068*x^4 + 111730*x^3 + 4616*x^2 + 248*x + 96, 2*x^29 - 6*x^28 - 94*x^27 + 296*x^26 + 1882*x^25 - 6238*x^24 - 21318*x^23 + 74902*x^22 + 152080*x^21 - 573176*x^20 - 715498*x^19 + 2948464*x^18 + 2242974*x^17 - 10437790*x^16 - 4570050*x^15 + 25501628*x^14 + 5544400*x^13 - 42319348*x^12 - 2879668*x^11 + 45910536*x^10 - 1123456*x^9 - 30323524*x^8 + 1868248*x^7 + 10694766*x^6 - 340898*x^5 - 1528094*x^4 - 139380*x^3 + 39200*x^2 + 4520*x - 48, 2*x^27 - 30*x^26 + 34*x^25 + 938*x^24 - 2476*x^23 - 12284*x^22 + 42972*x^21 + 86546*x^20 - 387786*x^19 - 343696*x^18 + 2133054*x^17 + 672458*x^16 - 7577688*x^15 + 57646*x^14 + 17666962*x^13 - 3393768*x^12 - 26710026*x^11 + 7577614*x^10 + 25165528*x^9 - 7549312*x^8 - 13675020*x^7 + 3325458*x^6 + 3703770*x^5 - 408878*x^4 - 355230*x^3 - 20356*x^2 + 3072*x + 176, -6*x^29 + 28*x^28 + 212*x^27 - 1132*x^26 - 3078*x^25 + 20082*x^24 + 22642*x^23 - 205972*x^22 - 73056*x^21 + 1354820*x^20 - 117724*x^19 - 5991878*x^18 + 2148746*x^17 + 18158646*x^16 - 9583336*x^15 - 37692008*x^14 + 23565060*x^13 + 52628312*x^12 - 34940012*x^11 - 47559362*x^10 + 30685340*x^9 + 25979596*x^8 - 14552458*x^7 - 7598816*x^6 + 2963002*x^5 + 943140*x^4 - 124908*x^3 - 30896*x^2 - 600*x - 80, 2*x^30 - 6*x^29 - 86*x^28 + 260*x^27 + 1626*x^26 - 4942*x^25 - 17852*x^24 + 54294*x^23 + 126632*x^22 - 382120*x^21 - 611168*x^20 + 1802210*x^19 + 2060598*x^18 - 5776970*x^17 - 4917770*x^16 + 12452116*x^15 + 8379312*x^14 - 17314300*x^13 - 10328580*x^12 + 14010604*x^11 + 9399960*x^10 - 4674320*x^9 - 6254874*x^8 - 1103074*x^7 + 2632150*x^6 + 1093506*x^5 - 434150*x^4 - 176282*x^3 - 19384*x^2 - 688*x + 32, 2*x^28 - 10*x^27 - 58*x^26 + 352*x^25 + 650*x^24 - 5402*x^23 - 3114*x^22 + 47842*x^21 - 314*x^20 - 273596*x^19 + 80774*x^18 + 1075112*x^17 - 447432*x^16 - 3024910*x^15 + 1293078*x^14 + 6249862*x^13 - 2347330*x^12 - 9473898*x^11 + 2928956*x^10 + 10065708*x^9 - 2632610*x^8 - 6722124*x^7 + 1548292*x^6 + 2277748*x^5 - 406406*x^4 - 218844*x^3 - 8984*x^2 - 400*x - 192, -6*x^29 + 24*x^28 + 228*x^27 - 976*x^26 - 3764*x^25 + 17570*x^24 + 35268*x^23 - 184530*x^22 - 204776*x^21 + 1254204*x^20 + 747288*x^19 - 5782698*x^18 - 1600520*x^17 + 18427614*x^16 + 1331388*x^15 - 40553246*x^14 + 2312968*x^13 + 60480126*x^12 - 7950458*x^11 - 58688730*x^10 + 9427040*x^9 + 34409240*x^8 - 5007836*x^7 - 10618760*x^6 + 809218*x^5 + 1277510*x^4 + 93402*x^3 - 25204*x^2 - 2240*x + 144, -6*x^30 + 26*x^29 + 230*x^28 - 1100*x^27 - 3748*x^26 + 20536*x^25 + 33412*x^24 - 223220*x^23 - 170824*x^22 + 1569776*x^21 + 431314*x^20 - 7505070*x^19 + 195404*x^18 + 24939252*x^17 - 5326112*x^16 - 57838470*x^15 + 18750650*x^14 + 92583676*x^13 - 34774558*x^12 - 99527732*x^11 + 37328220*x^10 + 68446552*x^9 - 22121100*x^8 - 27751218*x^7 + 6055468*x^6 + 5718790*x^5 - 397570*x^4 - 416550*x^3 - 25724*x^2 + 2800*x + 176, -6*x^30 + 24*x^29 + 236*x^28 - 1012*x^27 - 4020*x^26 + 18866*x^25 + 38734*x^24 - 205138*x^23 - 230224*x^22 + 1445260*x^21 + 851618*x^20 - 6928952*x^19 - 1782896*x^18 + 23088434*x^17 + 983668*x^16 - 53602758*x^15 + 5147880*x^14 + 85485174*x^13 - 15399370*x^12 - 90588662*x^11 + 19950456*x^10 + 60058444*x^9 - 13130958*x^8 - 22416600*x^7 + 3782266*x^6 + 3899110*x^5 - 201368*x^4 - 240686*x^3 - 26144*x^2 - 496*x + 32, -3*x^33 + 12*x^32 + 135*x^31 - 576*x^30 - 2670*x^29 + 12371*x^28 + 30436*x^27 - 157152*x^26 - 219628*x^25 + 1315067*x^24 + 1028528*x^23 - 7640449*x^22 - 2999039*x^21 + 31641089*x^20 + 4248190*x^19 - 94351467*x^18 + 3718473*x^17 + 202121818*x^16 - 31070992*x^15 - 306687763*x^14 + 68303488*x^13 + 320546673*x^12 - 81296947*x^11 - 220270395*x^10 + 54765074*x^9 + 92195047*x^8 - 18918411*x^7 - 20588296*x^6 + 2391749*x^5 + 1883923*x^4 + 42389*x^3 - 32606*x^2 - 1764*x + 32, 2*x^28 - 4*x^27 - 80*x^26 + 148*x^25 + 1428*x^24 - 2422*x^23 - 14946*x^22 + 23080*x^21 + 101238*x^20 - 141552*x^19 - 462392*x^18 + 582204*x^17 + 1442734*x^16 - 1625216*x^15 - 3063782*x^14 + 3066470*x^13 + 4369174*x^12 - 3879482*x^11 - 4134268*x^10 + 3315276*x^9 + 2625666*x^8 - 1963398*x^7 - 1170444*x^6 + 740342*x^5 + 364414*x^4 - 108598*x^3 - 53384*x^2 - 5120*x - 48, 2*x^28 - 18*x^27 - 30*x^26 + 640*x^25 - 420*x^24 - 9832*x^23 + 14772*x^22 + 85484*x^21 - 171984*x^20 - 462492*x^19 + 1125406*x^18 + 1609646*x^17 - 4647552*x^16 - 3584766*x^15 + 12568774*x^14 + 4872056*x^13 - 22288402*x^12 - 3559222*x^11 + 25258344*x^10 + 934734*x^9 - 17301428*x^8 + 19330*x^7 + 6477382*x^6 + 232992*x^5 - 1071880*x^4 - 136216*x^3 + 30424*x^2 + 4768*x + 192, x^33 - 4*x^32 - 45*x^31 + 196*x^30 + 874*x^29 - 4279*x^28 - 9476*x^27 + 54976*x^26 + 60876*x^25 - 462535*x^24 - 210810*x^23 + 2683041*x^22 + 87623*x^21 - 11001295*x^20 + 2852652*x^19 + 32147731*x^18 - 15062593*x^17 - 66595132*x^16 + 41400334*x^15 + 95939387*x^14 - 70444792*x^13 - 92638579*x^12 + 75563997*x^11 + 56218011*x^10 - 48956636*x^9 - 19111113*x^8 + 17126297*x^7 + 2918292*x^6 - 2443805*x^5 - 141735*x^4 + 39131*x^3 - 15874*x^2 - 876*x + 144, x^29 - 3*x^28 - 38*x^27 + 114*x^26 + 640*x^25 - 1925*x^24 - 6262*x^23 + 19013*x^22 + 39079*x^21 - 121395*x^20 - 160420*x^19 + 522298*x^18 + 430265*x^17 - 1533975*x^16 - 719283*x^15 + 3065126*x^14 + 651352*x^13 - 4124328*x^12 - 127393*x^11 + 3724772*x^10 - 344805*x^9 - 2294532*x^8 + 396477*x^7 + 955393*x^6 - 187964*x^5 - 236506*x^4 + 27607*x^3 + 24132*x^2 + 2536*x + 24, x^29 - 3*x^28 - 38*x^27 + 114*x^26 + 640*x^25 - 1925*x^24 - 6262*x^23 + 19013*x^22 + 39079*x^21 - 121395*x^20 - 160420*x^19 + 522298*x^18 + 430265*x^17 - 1533975*x^16 - 719283*x^15 + 3065126*x^14 + 651352*x^13 - 4124328*x^12 - 127393*x^11 + 3724772*x^10 - 344805*x^9 - 2294532*x^8 + 396477*x^7 + 955393*x^6 - 187964*x^5 - 236506*x^4 + 27607*x^3 + 24132*x^2 + 2536*x + 24, 2*x^28 - 7*x^27 - 72*x^26 + 253*x^25 + 1177*x^24 - 4099*x^23 - 11594*x^22 + 39475*x^21 + 76233*x^20 - 251351*x^19 - 346917*x^18 + 1106768*x^17 + 1092361*x^16 - 3409515*x^15 - 2313187*x^14 + 7261886*x^13 + 3078329*x^12 - 10342328*x^11 - 2146867*x^10 + 9269183*x^9 + 150486*x^8 - 4697274*x^7 + 790733*x^6 + 1090107*x^5 - 403684*x^4 - 67714*x^3 + 28672*x^2 + 3464*x - 24, 2*x^28 - 7*x^27 - 72*x^26 + 253*x^25 + 1177*x^24 - 4099*x^23 - 11594*x^22 + 39475*x^21 + 76233*x^20 - 251351*x^19 - 346917*x^18 + 1106768*x^17 + 1092361*x^16 - 3409515*x^15 - 2313187*x^14 + 7261886*x^13 + 3078329*x^12 - 10342328*x^11 - 2146867*x^10 + 9269183*x^9 + 150486*x^8 - 4697274*x^7 + 790733*x^6 + 1090107*x^5 - 403684*x^4 - 67714*x^3 + 28672*x^2 + 3464*x - 24, x^30 - 3*x^29 - 42*x^28 + 125*x^27 + 792*x^26 - 2326*x^25 - 8867*x^24 + 25534*x^23 + 65619*x^22 - 183950*x^21 - 337891*x^20 + 915201*x^19 + 1239574*x^18 - 3222947*x^17 - 3254378*x^16 + 8099857*x^15 + 6028321*x^14 - 14452684*x^13 - 7574896*x^12 + 17946582*x^11 + 5936330*x^10 - 14878991*x^9 - 2379675*x^8 + 7616065*x^7 + 191747*x^6 - 2066955*x^5 + 66877*x^4 + 200444*x^3 + 27248*x^2 + 1680*x + 72, x^30 - 3*x^29 - 42*x^28 + 125*x^27 + 792*x^26 - 2326*x^25 - 8867*x^24 + 25534*x^23 + 65619*x^22 - 183950*x^21 - 337891*x^20 + 915201*x^19 + 1239574*x^18 - 3222947*x^17 - 3254378*x^16 + 8099857*x^15 + 6028321*x^14 - 14452684*x^13 - 7574896*x^12 + 17946582*x^11 + 5936330*x^10 - 14878991*x^9 - 2379675*x^8 + 7616065*x^7 + 191747*x^6 - 2066955*x^5 + 66877*x^4 + 200444*x^3 + 27248*x^2 + 1680*x + 72, -2*x^28 + 12*x^27 + 51*x^26 - 414*x^25 - 431*x^24 + 6272*x^23 + 91*x^22 - 55345*x^21 + 25017*x^20 + 318483*x^19 - 216086*x^18 - 1267712*x^17 + 974888*x^16 + 3602026*x^1