Sharedwww / merel-stein / B62-english.dviOpen in CoCalc
����;� TeX output 2000.01.06:0257����������s�������XO�2D��tG�cmr17�The�	�eld�generated�b��zAy�the�p���oin�ts�of�small���p��EYprime�	�order�on�an�elliptic�curv��zAe��4~���o���+�-�

cmcsc10�Lo����K��*��c��Merel��K�`y

cmr10�and��William�A.�Stein��Qkj���"V

cmbx10�In��9tro�Q�duction��##΍��Let�k��b>

cmmi10�p��b�Ge�a�prime�n���um�b�er.���Let���qƍ�<����:��k�Q���y��b�e�kan�algebraic�closure�of��Q�.���Denote�b���y��Q�(�����	0e�rcmmi7�p���R�)�the���cyclotomic�̢subeld�of���qƍ��g���:���Q���<ϫgenerated�b���y�the��p�th�ro�Gots�of�unit�y��*�.�׮Let��E�`/�b�Ge�an�elliptic�curv�e���o���v�er�UU�Q�(�����p���R�),�suc���h�that�the�p�Goin�ts�of�order��p��of��E����(���qƍ������:��Q������)�are�all��Q�(�����p���R�)-rational.�����Theorem�UU�.�q�|��$�':

cmti10�One���has��p��>��1000�,���p�<��6��or��p��=�13�.�����W��*�e�f�note�that�the�case��p��3�=�7�f�w���as�treated�b�y�Emman�uel�Halb�Gerstadt.��,The�part�of�the���theorem�that�concerns�the�case��p���!",�

cmsy10���3�	��(�mo�Gd���4)�is�giv���en�in�[2].���W��*�e�prop�Gose�to�giv�e�the���details���that�p�Germit�our�treating�the�more�dicult�case�in�whic���h��p�����1�	��(�mo�d���4).�Q�W��*�e���treat���this�UUlast�case�with�the�aid�of�Prop�Gosition�2�b�elo���w,�whic�h�is�not�presen�t�in��lo��}'c.���cit.�����It��ma���y�b�Ge�p�ossible�to�exclude�the�case�when��p��;�=�13��b���y�studying�the�mo�dular�curv���e����X����ٓ�Rcmr7�1��|s�(13)�UUand�its�Jacobian��J����1���(13).�����1.�pW��
�e��Trecall�the�results�of��[2]����Denote�u�b���y��J����0��|s�(�p�)�the�Jacobian�of�the�mo�Gdular�curv�e��X����0��|s�(�p�)�(whose�p�Goin�ts�are�isomor-���phism��classes�of�generalized�elliptic�curv���es�equipp�Ged�with�a�cyclic�subgroup�of�order��p�).���Consider��Athe�subring��T��of��End��&��J����0��|s�(�p�)�generated�b���y�the�Hec�k�e�op�Gerators.�0lW��*�e�refer�the�reader���to�UU[1]�for�an�in-depth�study�of�these�ob��8jects.����Let����S�1%�b�Ge�the�set�of�isomorphism�classes�of�sup�ersingular�elliptic�curv���es�in�c�haracter-���istic�NC�p�.�olDenote�b���y�����S��	J�the�group�formed�b�y�the�divisors�of�degree�0�with�supp�Gort�on��S����.�olIt���is���equipp�Ged�with�a�structure�of��T�-mo�dule�(deduced,���for�example,�from�the�action�of�the���Hec���k�e�UUcorresp�Gondences�on�the�b�er�at��p��of�the�regular�minimal�mo�del�of��X����0��|s�(�p�)�o���v�er�UU�Z�).����Let��ٱj���2���qƍ�w+����:��X��F����p�������s8�J����S����,�ºwhere��J����S��	w�denotes�the�set�of�sup�Gersingular�mo�dular�in���v��q�arian�ts.�xTW��*�e���denote��b���y������j��(S�the�homomorphism�of�groups�����S�����	��������!���qƍ��֫���:��˟�F����p������that�asso�Gciates�to��������u

cmex10�P�����E�����n����E���m�[�E����]�the���quan���tit�y��UU����P���
㐟�E��O��n����E���m�=�(�j��k��8�j����(�E����)),�UUwhere��j��(�E����)�denotes�the�mo�Gdular�in���v��q�arian�t�UUof��E��.����One�Gsa���ys�that�an�elemen�t��j�Y��2���F����p���h�pr��}'esents���an�anomaly�G�if�there�exists�an�elliptic�curv�e���o���v�er�}]�F����p��	��with�mo�Gdular�in���v��q�arian�t�}]�j��that�p�ossesses�an��F����p���R�-rational�p�oin���t�of�order��p��(then���necessarily�UU�j�����v=�����Y��2������g�J����S����).������;1���*�����s��������Pr��oposition��&�1.�Db|��Supp��}'ose��that��p��is�c�ongruent�to��1��mo�dulo��4�.�o�Supp�ose�that�for�al���l��j�Y��2���F����p�����that�pr��}'esent�an�anomaly�and�al���l�non-quadr�atic�Dirichlet�char�acters����:����(�Z�=p�Z�)���^��O!�cmsy7������M������j!����C�,���ther��}'e���exists��t������F5�2���T��and���'��2������S��	^��such�that��L�(�t�������J����0��|s�(�p�)�;���;��1)��6�=�0����and������j��6��(�t��������`�)��6�=�0�.����Then��for�al���l�sub��}'gr�oups���C���of�or��}'der��p��of��E����(���qƍ������:��Q������)�,�ther�e�exists�an�el���liptic�curve��E����C��
���over����Q�(�������p���UW�����fe�;��p����
]W�)��e��}'quipp�e�d�with�a��Q�(�������p���UW�����fe�;��p����
]W�)�-r�ational�sub�gr�oup��D����C��
8��or�or�der��p�,��?and�the�p�airs��(�E���;���C���)��and����(�E����C���ڱ;���D����C���)����ar��}'e���qƍ�e�����:���Q���7r�-isomorphic.���Pr��}'o�of�.���|�!W��*�e�indicate�ho���w�this�is�deduced�from�[2].�The�h���yp�Gothesis������j��6��(�t��������`�)���6�=�0�!forces����t����������	}E�=�����`ӷ2������5�p�T�eM�and,�iK�a���fortiori�,��t������`ӷ6�=��0���;�mIin�addition,�the�non-v��q�anishing�h���yp�Gothesis�on�the��L�-series���forces�UUthe�h���yp�Gothesis��H����p���R�(��)�of��lo��}'c.���cit�,�in�tro�Gduction.����According���to�Corollary�3�of�Prop�Gosition�6�of��lo��}'c.�n�cit�,��E�\��has�p�oten���tially�go�o�d�reduction���at� Qthe�prime�ideal��P��Ϋof��Z�[�����p���R�]�that�lies�ab�Go���v�e� Q�p��once�w���e�kno�w�that�h�yp�Gothesis��H����p���R�(��)�is���satised�6wfor�all�non-quadratic�Diric���hlet�c�haracters����of�conductor��p��(this�is�the�case�b�y���h���yp�Gothesis).����Denote�A�b���y��j��c�the�mo�Gdular�in�v��q�arian�t�of�the�b�Ger�at��P�U�of�the�N���Geron�mo�Gdel�of��E����.��According���to�UUthe�corollary�of�Prop�Gosition�15�of��lo��}'c.���cit.�,��j���presen���ts�an�anomaly��*�.����Let��N�C��j�b�Ge�a�subgroup�of��E����(���qƍ������:��Q������)�of�order��p�.�	!�By�assumption��E�x۫is�an�elliptic�curv���e���o���v�er�>'�Q�(�����p���R�)�whose�p�Goin���ts�of�order��p��are�all��Q�(�����p���)-rational,�x\so�the�pair�(�E���;���C���)�denes�a����Q�(�����p���R�)-rational�UUp�Goin���t��P���of�the�mo�dular�curv���e��X����0��|s�(�p�).����Consider�q�the�morphism��������F5�=�������t���O
�\cmmi5����
��(see��lo��}'c.�S�cit.�%��section�1.3).�When������j��6��(�t��������`�)���6�=�0,��tthis�q�is�a���formal�N=immersion�at�the�p�Goin���t��P���:�=�f$�cmbx7�F���p���uQ�,�O�according�to��lo��}'c.��icit.�,�Prop�Gosition�4.�ojThe�h���yp�othesis���that��u�L�(�t�������J����0��|s�(�p�)�;���;��1)��J�6�=�0�implies�that�the���-isot���ypical�comp�Gonen�t�of��t�������J����0��|s�(�p�)(�Q�(�����p���R�))�is���nite�#�(this�is�Kato's�theorem,�W�see�the�discussion�in��lo��}'c.���cit.�ݖ�section�1.5).�W��*�e�can�then���apply�a[Corollary�1�of�Prop�Gosition�6�of��lo��}'c.���cit�.���This�pro���v�es�a[that��P���is��Q�(�������p���UW�����fe�;��p����
]W�)-rational���;�g]this���translates�UUin���to�the�conclusion�of�Prop�Gosition�1.��V���2.�pA��Tlemma�ab�Q�out�elliptic�curv��9es���{��Pr��oposition��U�2.�Rr|��L��}'et�=m�p��b�e�a�prime�numb�er�that�is�c�ongruent�to��1��mo�dulo��4�.�|�L�et��E����b�e�an���el���liptic��curve�over���qƍ��m����:���Q����3�.�q,Ther��}'e�exists�a�cyclic�sub�gr�oup��C����of�or�der��p��of��E����(���qƍ������:��Q������)[�p�]�,�2�such�that�for���al���l�)el�liptic�curves��E������^��0��w��over���Q�(�������p���UW�����fe�;��p����
]W�)��%�R�e��}'quipp�e�d�with�a���Q�(�������p���UW�����fe�;��p����
]W�)��!�)�-r�ational�sub�gr�oup��C�����^��0���U�,�6�the�p�airs����(�E���;���C���)����and��(�E����^��0��aƱ;���C�����^��0���U�)��ar��}'e�not���qƍ�e�����:���Q���7r�-isomorphic.���Pr��}'o�of�.�p�|�[email protected]��*�e�pro�Gcede�b���y�con�tradiction.�p�Let��E����0��γ�b�Ge�an�elliptic�curv�e�o�v�er��Q�(�������p���UW�����fe�;��p����
]W�)�that�is���qƍ�$���:���Q������isomorphic��
to��E�Y��(it�exists�b���y�h�yp�Gothesis).�BW��*�e�rst�sho�w�that�the�subgroup��Gal��f(���qƍ������:��Q������=��Q�(�������p���UW�����fe�;��p����
]W�)���)���acts�UUb���y�scalars�on�the��F����p���R�-v�ector�space��E����0��|s�(���qƍ������:��Q������)[�p�].����Denote�!-b���y��X���(�p�)�the�algebraic�curv�e�o�v�er��Q��that�parametrizes�classes�(ne�b�Gecause����p���>��2)���of�generalized�elliptic�curv���es�equipp�Ged�with�an�em�b�Gedding���$��:�X�(�Z�=p�Z�)���^��2����������� t!����E����[�p�].��
^r�Consider��ithe�morphism�(of�algebraic�v��q�arieties�o���v�er��i�Q�)����:��X���(�p�)����V������	s!�V��X����0��|s�(�p�)���^��P����r���Zcmr5�1��� �(�F���p��2Ԯ)��U^�that�to���(�E���;����[٫)���asso�Gciates������Q���
`��t�2�P����1��� �(�F���p��2Ԯ)��0!:�(�E�;����[٫(�t�)).�G�Denote�b���y��X������ɫ(�p�)�the�image�of���.�The�co���v�ering���(of��
}v�algebraic���curv���es�o�v�er��Q�)�����^��0��k0�:��X���(�p�)����>{�����	Z�!�>{�X������ɫ(�p�)�is�Galois�with�Galois�group�isomorphic�to����F���^�����፴p����(the�UUaction�b�Geing�deduced�from�the�scalar�action�of��F���^�����፴p����on��E����[�p�]).��

��Let�sf�����0���٫b�Ge�an�em���b�edding�(�Z�=p�Z�)���^��2�����C������
`!���E����0��|s�[�p�].�&xDenote�b���y��P����the���qƍ�E+���:���Q����-rational�p�oin���t�of��X���(�p�)���deduced��>from�(�E����0��|s�;�������0���).�I�Its��>image�b���y����is��Q�(�������p���UW�����fe�;��p����
]W�)-rational�b�y�h�yp�Gothesis.�I�W��*�e�ha�v�e�then�a���c���haracter��5�����:��݇Gal��}�(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))���� �����	=X!� ��F���^�����፴p���*��suc�h�that���[٫(�P�c��)� �=���	z�(���)�:P��ī(��|��2���Gal����(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))).�gIn���other�UUw���ords,��Gal���W(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))�acts�b�y�scalars�on��E����0��|s�(���qƍ������:��Q������)[�p�]�via�the�c�haracter���	z�.������;2���
ҍ����s���������Because�Gof�the�W��*�eil�pairing,��r���	z��^��2����coincides�with�the�cyclotomic�c���haracter�mo�Gdulo��p�,���and���it�factors�through��Gal��5�(�Q�(�����p���R�)�=�Q�(�������p���UW�����fe�;��p����
]W�)).�3KBut,�%�when��p�����1�	��(�mo�Gd���4),�the���group����Gal���(�Q�(�����p���R�)�=��Q�(�������p���UW�����fe�;��p����
]W�)���)�g�is�of�ev���en�order,��and�the�c�haracters�mo�Gdulo��p��form�a�group�gener-���ated�UUb���y�the�reduction�mo�Gdulo��p��of�the�cyclotomic�c�haracter���;�it�th�us�can�not�b�Ge�a�square.��'�+��3.�pV��
�erication��Tof�the�h��9yp�Q�othesis�of�Prop�osition�1��m���Let��ıp��b�Ge�a�prime�n���um�b�er.��W��*�e���no�w�indicate�ho�w�to�computationally�v�erify�that�the���h���yp�Gothesis���of�Prop�osition�1�are�satised.�KTW��*�e�denote�b���y��S����2��|s�(����0���(�p�))���the�group�formed�b�y�the���cuspidal�+3mo�Gdular�forms�of�w���eigh�t�+32�for�the�congruence�subgroup�����0��|s�(�p�)�whic���h�ha�v�e�in�teger���F��*�ourier�̜co�Gecien���ts.�םBy�a�newform�w�e�mean�a�newform�in�the���qƍ��a���:���Q���p'�-v�ector�space�generated���b���y�UU�S����2��|s�(����0���(�p�)).��j���W��*�e�K�rst�list�the�mo�Gdular��j����-in���v��q�arian�ts�K�that�presen���t�an�anomaly�.�To\On�ne�s'in���t���Geresse���qu'����a�IIces�derniers."�M�(���?�?)�Let�II���b�Ge�a�Diric���hlet�c�haracter�(�Z�=p�Z�)���^��������������!�]��C���^�����-�and�supp�Gose����j�Y��2���P���^��1��|s�(�F����p���R�)�UUpresen���ts�an�anomaly��*�.����W��*�e�|2study�the�follo���wing�three��T�-mo�Gdules�:����T�,�������S����,�and�|2�S����2��|s�(����0���(�p�)).��_After�extension�of���scalars�	�to��Q�,�7"these�are��T��M�
��Q�-mo�Gdules�	�that�are�free�of�rank�1,�of�whic���h�the�irreducible���sub-�T���mo�Gdules�are�the�annihilators�of�the�minimal�prime�ideals�of��T�.�CWW��*�e�establish�a�list�of���the�-bminimal�prime�ideals�of��T�.�dvF��*�rom�an�algorithmic�p�Goin���t�of�view,�5_these�are�generated�b�y���the�Yminimal�p�Golynomials�of�small�degree�of�Hec���k�e�Yop�erators�of�small�index���;�Z�w���e�nd�these���p�Golynomials�UUb���y�utilizing�the�graph�metho�d�of�Mestre�and�Oesterl�����Ge�[3].����F��*�or�� eac���h�ideal��P�s��de��T�,��+w�e�can�determine�if�the�follo�wing�three�conditions�are�satised�:���i)�UUThere�exists��x���2������S��	 \�suc���h�UUthat��P��}�x���=�0�UUand������j��6��(�x�)���6�=�0.���ii)�UUAll�newforms��f�h�suc���h�that��P��}�f�ڧ�=��0�satisfy��L�(�f��V;���;��1)��6�=�0.���iii)�UUThe�image�of��P�'ҫin�the��T�-mo�Gdule��T�=p�T��is�a�direct�factor.����W��*�e��#study�the�case�when��P�Z��is�a�minimal�prime.�
2The�rst�condition�is�studied�b���y�the���graph���metho�Gd�of�Mestre�and�Oesterl�����Ge.�òThe�second�condition�is�v�eried�using�the�theory���of��mo�Gdular�sym���b�ols�(without�recourse�to�the�calculation�of�in���tegrals).�V�The�third�condition���is��Jv���eried�for��p�+<��1000��Jand��p�+�6�=�389,��Gb�Gecause��Jone�of�us�has�v�eried�that�the�discriminan�t���of�5n�T��is�prime�to��p��and�so�the�ring��T�=p�T��is�semi-simple.�g%F��*�or�all�prime�n���um�b�Gers�5n�p��dieren���t���than�e�2�;����3�;��5�;��7�;��13�and�389,�i�w���e�v�eried�the�existence�of�a�minimal�prime�ideal�that�satises���the�UUthree�conditions�giv���en�ab�Go�v�e.����In���the�case�when��p���=�389,��iw���e���nd��P�VH�in�the�follo�wing�w�a�y��*�.��)There�exists�t�w�o�minimal���prime���ideals��P����1��K;�and��P����2���that�satisfy�the�rst�t���w�o���conditions.�D�Because�the�discriminan���t�of��T����has���p�-adic�v��q�aluation�1,���the�image�of�at�least�one�of�the�ideals��P����1��|s�,��P����2��Ut�and��P����1�����\�@:P����2���is�a�direct���factor�UUof��T�=p�T�.�q�W��*�e�c���ho�Gose��P�'ҫto�b�e�one�of�these�that�is�appropriate.����When��our�three�conditions�are�satised�for�an�ideal��P��!�of��T�,��there�exists��t������F5�2���T��whic���h���is��annihilated�b���y��P����and�is�the�in�v�erse�image�of�a�pro��8jector�of��T�=p�T��on�the�complemen�t���of�5��P��ث+��[�p�T�.�uPutting������=�<̱x�,�m�one�has������j��6��(�t��������`�)�=������j���(��`�)��6�=�0�5�(b�Gecause������j��l;�tak���es�its�v��q�alues�in���c���haracteristic�RO�p�,�����2�is�annihilated�b�y��P�$̫and��t������F5�2���1�2�+��p�T��+��P��}�).�pThe�ROassertion��L�(�t�������J����0��|s�(�p�)�;���;��1)��6�=���0���follo���ws�easily�from�the�second�condition,��7since��L�(�t�������J����0��|s�(�p�)�;���;�s�)���is�the�pro�Gduct�of��L�(�f��V;���;�s�),���where�UU�f�h�runs�o���v�er�UUthe�newforms�that�are�not�annihilated�b���y��t�������.����The�UUpair�(�t�������;����`�)�th���us�satisfy�the�required�conditions.������;3���'�����s����������w�Bibliographie�����qū[1]���B.�)pMazur�,��+�Mo��}'dular��`curves�and�the�Eisenstein�ide�al�,��+Pub.�f/math.�de���l'IHES��v�47�,����33{186,�UU�1977�.�����q�[2]���L.�;�Merel�,��g�Sur��Bla�natur��}'e�non�cyclotomique�des�p�oints�d'or�dr�e�ni�des�c�ourb�es�el���lip-����tiques�,�UUPr�����Gepublication�,��1999�.�����q�[3]���J.-F.�
�Mestre����et��J.�Oesterl��g��*��e�,��D�Courb��}'es��el���liptiques�de�c�onducteur�pr�emier�,��DMan���uscrit����non�UUpubli�����Ge.������;4���:l���;�0s�v6�2D��tG�cmr17�+�-�

cmcsc10�$�':

cmti10�f$�cmbx7��"V

cmbx10���u

cmex10�O!�cmsy7�!",�

cmsy10�O
�\cmmi5�	0e�rcmmi7��b>

cmmi10���Zcmr5�ٓ�Rcmr7�K�`y

cmr10�<�������