Sharedwww / mazur_eisenstein.dviOpen in CoCalc
����;� TeX output 1998.11.29:1859������x�������=�������'�߆�Tcmtt12�80c:14015�,�14G25�(10D05)�����'Mazur,�,�B.����'Modular�,�curves�and�the�Eisenstein�ideal.����'Inst.�,�Hautes�tudes�Sci.�Publ.�Math.�No.�47�(1977),�33--186�(1978).�����8���X�Qcmr12�The���main�sub��jects�treated�in�this�pap�S�er�are:�aX(i)�classication�of�rational����'p�S�oin��rts��of�nite�order�(resp�ectiv��rely��V,�F/rational�isogen�y)�of�elliptic�curv�es�o�v�er����'a���xed�n��rum�b�S�er���eld����g�cmmi12�K�ܞ�,��and�(ii)�study�of�rational�p�oin��rts�of��X�����|{Ycmr8�0����(�N�@�)�and�its����'Jacobian���J�r�,��gwhere��X���̼0����(�N�@�)�denotes�the�mo�S�dular�curv��re�o�v�er��"��N�cmbx12�Q��asso�S�ciated�to����'���̼0����(�N�@�).�Z1As��nfor�the�rst�problem�(i),���when��K�}�is��Q�,�there�is�a�conjecture�of����'A.��OOgg�whic��rh�asserts�that�the�group�of��Q�-rational�p�S�oin�ts�of�an�elliptic�curv�e����'o��rv�er�j��Q��is�isomorphic�to�one�of�the�follo��rwing�15�groups:�9 �Z�=m�Z��(�m�/g�!",�
cmsy10���10�j�or����'�m���=�12)�]Xor��Z�=�2�Z������Z�=�2�����Z�]X�(���O����4).���The�author�v��reries�this�conjecture�b�y����'sho��rwing���that�there�is�no�elliptic�curv�e�o�v�er��Q��whic�h�has��Q�-rational�p�S�oin�ts�of����'order�e�N�II�when��N��is�prime�and��N��Թ=���11�or��N�����17.��(W��Vork�of�D.�Kub�S�ert�had����'reduced��the�problem�to�this�case.)����8��The�D�pro�S�of�is�based�on�the�fact�lab�eled�(I�I�I)�DJb�elo��rw�concerning�rational����'p�S�oin��rts��of��J�r�.��eT��Vo�describ�e�the�results�on�the�second�problem�(ii),�`�to�whic��rh����'most��of�this�pap�S�er�is�dev��roted,�3glet��N�2��b�e�a�prime�n��rum�b�er��and�let��n��b�e�the����'n��rumerator��of�(�N������1)�=�12.��(W��Ve�hereafter�assume�that��n��v>��1��(or�equiv��X�alen�tly��V,����'�N��=��11��Bor��N�����17).�¯It�had�b�S�een�pro��rv�ed��Bb�y�Ogg�that�the�divisor�class�of����'(0)�/F���(�1�)�0�in��J�r�,�Vwhere�0�and��1��denote�t��rw�o�0�cusps�on��X���̼0����(�N�@�),�has�order��n�.���One����'of���the�main�results�on�the�structure�of��J�r�(�Q�)�is:�6�(I)���the�torsion�part�of��J��(�Q�)����'is��a�cyclic�group�of�order��n��generated�b��ry�the�class�of�(0)�S����(�1�).�*�In��addition,����'the�tZfollo��rwing�result�is�obtained:���(I�S�I)�t<the�\Shim�ura�subgroup"�is�the�maximal����'\���%DF��
cmmib10����~��-t��ryp�S�e"�b+subgroup�of��J�r�,��where�������ཹ-t�yp�S�e�means�that�it�is�the�Cartier�dual�of����'a�ʋconstan��rt�group,���and�the�Shim�ura�subgroup�is�a���������-t�yp�S�e�cyclic�subgroup�of����'order�꨾n��in��J��obtained�from�an����s�etale�co��rv�ering��of��X���̼0����(�N�@�).����8��T��Vo�ڷpro��rv�e�these�results�(b�S�oth�of�whic�h�had�b�S�een�conjectured�b�y�Ogg)����'and��to�obtain�more�information�ab�S�out�the�rational�p�oin��rts�of��J�r�,���the�author����'in��rtro�S�duces�u�the�\Eisenstein�ideal"�in�the�Hec�k�e�algebra.��nNamely��V,���let��T��(the����'Hec��rk�e�!Yalgebra)�denote�the��Z�-algebra�generated�b��ry�the�Hec�k�e�op�S�erators��T������2cmmi8�`�����'�(�`�x��prime,����6�=�G��N�@�)�and�the�in��rv�olution�x��w�R��,�acting�on�the�space�of�cusp�forms�of����'w��reigh�t��2�with�resp�S�ect�to����̼0����(�N�@�).�,�By�denition,��fthe�Eisenstein�ideal��+�%n�
eufm10�I��of��T��is����'the�lideal�generated�b��ry�1��+��`����T���̿`��d��(�`�l�prime,��e�6�=�UR�N�@�)�and�1��+��w�R��.���T�l�naturally�acts����'on���J�r�,��xand�one�can�decomp�S�ose�it�(up�to��Q�-isogen��ry��V,�or�equiv��X�alen��rtly��C�-isogen�y����'b��ry�1�a�result�of�K.�Rib�S�et)�according�to�the�decomp�osition�of��Sp�ec��:(�T�)�in��rto�its����'irreducible��comp�S�onen��rts.������1����*�x�������=�������8��Let����x��/[~�����\��J���T
�(the�\�Eisenstein�quotien��rt�of��J�r�)�b�S�e�the�quotien�t�b�y�an�ab�S�elian�sub-�����'v��X�ariet��ry��of��J�r�,���whose�simple�factors�corresp�S�ond�to�the�irreducible�comp�onen��rts����'of��SfSp�S�ec��&�(�T�)�Sfwhic��rh�meet�the�supp�S�ort�of��I�.�	sThen�it�is�true�that:�
\(I�I�I)�S	the����'Mordell-W��Veil�{Mgroup��J�r�(�Q�)�is�nite,��wand�the�natural�map��J�g��!����x��^�~�����K��J���a׹induces�an����'isomorphism��of�the�torsion�part�of��J�r�(�Q�)�on��rto����x����~������J���
���(�Q�).���F��Vrom�this,�>one�easily�ob-����'tains:��h(IV)�
the�
�group�of��Q�-rational�p�S�oin��rts�of��X���̼0����(�N�@�)�is�nite�(for��N�N��as�ab�o��rv�e).����'Next,��/let����J���̼+���;�=���(1�,+��w�R��)�J�r�,�and���let��J��r���2��K�cmsy8���ᘹb�S�e�the�quotien��rt�of��J�� �b�y��J���̼+��x�.�r�Then�it����'is��pro��rv�ed�that��J�v��!����x��-\�~�����Z��J���y��factors�through��J��!�Z��J��r���2�����,��yand�(V)���the�Mordell-W��Veil����'group�⨾J���̼+��x�(�Q�)�is�torsion�free�and�of�p�S�ositiv��re�rank�if��dim��w�J���̼+������q�1�(the�latter����'assertion�.�b�S�eing�in�accord�with�the�conjecture�of�Birc��rh�and�Swinnerton-Dy�er).����8��T��Vo��&obtain�these�results,���one�needs�a�detailed�study�of�the�algebra��T��and����'the�division�p�S�oin��rts�of��J�*s�b�y�ideals�of��T�,��esp�S�ecially�b�y��I��and�the�prime�ideals����'con��rtaining�T?�I�.�u�This�is�done�in�Chapter�I�S�I�T$of�this�pap�er.�u�The�main�to�ols�are����'the�>{theory�of�(quasi-)�nite�
at�group�sc��rhemes�o�v�er��Z��(Chapter�I),�and�the����'theory�فof�mo�S�dular�forms�o��rv�er�فrings�(the�rst�part�of�Chapter�I�I).�The�ab�o��rv�e����'results���(I)���-�(V)�(and�others)�are�then�established�in�Chapter�I�S�I�I.���Also�in�the����'nal��pt��rw�o�sections,��some�relev��X�an�t�results�in�connection�with�the�earlier�w�orks����'of��the�author�are�obtained.����8��F��Vor�W9a�more�detailed�surv��rey�of�the�con�ten�t�of�this�pap�S�er,��]the�reader�is����'referred��Ato�the�pap�S�er�b��ry�the�author�and�J.-P��V.�Serre�(Seminaire�Bourbaki����'(1974/1975),�j�Exp.��No.�469,�pp.�238�J�-�255,�Lecture�Notes�in�Math.,�V��Vol.��514,����'Springer,���Berlin,�1976;���MR��n58���#5681).��W��Ve�note�nally�that�the�problem�(ii)����'concerning�0�the��Q�-rational�isogen��ry�(of�prime�degree)�has�b�S�een�solv�ed�b�y�the����'author��in�a�subsequen��rt�pap�S�er�(In�v�en�t.�8�Math.�44��(1978),�no.�8�2,�129�-�162).����8��Review��red��b�y�M.�Oh�ta������2��������;�x���+�%n�
eufm10�%DF��
cmmib10�"��N�cmbx12��K�cmsy8�!",�
cmsy10��2cmmi8���g�cmmi12�|{Ycmr8�߆�Tcmtt12�X�Qcmr12�4�����