Sharedwww / job / SteinCV.dviOpen in CoCalc
����;� TeX output 1999.10.27:0226����������������������d�����*����ؽ�F
C��q
cmbxti10�Wil�8�liam��sA.�Stein��|�X�Qcmr12�Octob�S�er��27,�1999���V������3���':
�3
cmti10�(510)���883-9938�
3D�!",�
cmsy10���߆�Tcmtt12�[email protected]���fy�http://math.berkeley.edu/~was���������ff��������=���������������kAH
cmssbx10�EDUCA���fTION�����k�:����w�7���N�cmbx12�Univ��ersit�y��of�California�at�Berk��eley�����w��Ph.D.,��mathematics,�exp�S�ected�Ma��ry�2000.����w��Explicit��approac��hes�to�mo�`dular�ab�elian�v��@arieties��*������k�����w��Northern��Arizona�Univ��ersit�y�,��Flagsta.����w�M.S.��studen��rt,�mathematics,�1994{1995.����w�B.S.,��mathematics,�1994.�������������A����W���fARDS�����k�:����w�7�[email protected]��Valley��univ��rersit�y�fello�wship,�1999{2000.������k�����w��Sarah��M.�Hallam�departmen��rt�fello�wship,�Spring�1999.������k�����w��Vice��Chancellor�researc��rh�gran�t�(computing�equipmen�t),�1999.������k�����w��Graduate��studen��rt�researc�her,�F��Vall�1998.������k�����w��Outstanding��mathematics�senior,�1994.������k�����w��Applied��math�mo�S�deling�con��rtest,�meritorious�ranking,�1994.�����������IN�fhPROGRESS�����k�:����w�7����@cmti12�L��ffe�ctur�es�+�on�Serr��ffe's�c�onje�ctur�es�,�<�with��K.��WA.�Rib�S�et,�to�app�S�ear�in�the����w�IAS/P��rark��Cit�y�Mathematics�Institute�Lecture�Series.������k�����w��Mo��ffd�^��5��appr�o�aches�to�mo�dularity�of�ic�osahe�dr�al�Galois�r�epr�esentations�,����w�with��K.��WM.�Buzzard.������k�����w��Explicit�Wmappr��ffo�aches�to�mo�dular�ab�elian�varieties�,��UC�Berk��reley�Ph.D.����w�thesis��under�H.��WW.�Lenstra.������k�����w��He��ffcke:�fiThe�35mo�dular�forms�c�alculator�,��computer�soft��rw�are.������k�����w��The�35mo��ffdular�forms�datab�ase:��������http://shimura.math.berkeley.edu/~was/Tables������k�����w��Comp��ffonent�35gr�oups�of�optimal�quotients�of�Jac�obians�.������k�����w��Visibility�of�Shafar��ffevich-T���ate�gr�oups�of�mo�dular�ab�elian�varieties�,��Hwith����w�A.��Agash��r��s�e.������k�����w��Computing�A�analytic�invariants�of�mo��ffdular�eigenforms�,��with��7H.�V��Verrill.������k�����w��L��ffe�ctur�es���on�mo��ffdular�forms�and�Galois�r�epr�esentations�,�*�with���K.��WA.����w�Rib�S�et,��in��rtended�for�Springer-V��Verlag's�Univ�ersitext�series.�����������PUBLICA���fTIONS�����k�:����w�7�Empiric��ffal�F�evidenc�e�for�the�Bir�ch�and�Swinnerton-Dyer�c�onje�ctur�es�for����w�mo��ffdular��4Jac�obians�of�genus�2�curves�,���with�v>E.��WV.�Flynn,�F.�Lepr��r��s�ev�ost,����w�E.��WF.��Sc��rhaefer,�M.�Stoll,�J.�L.�W��Vetherell,�submitted.������k�����w��Parity��Tstructur��ffes�and�gener�ating�functions�fr�om�Bo�ole�an�rings�,��jwith����w�D.��WP��V.��Moulton,�submitted.������k�����w��F���al���lacies,���Flaws,�and�i�Flim
am�#92:�	��A��2n�Inductive�F�al���lacy�,��qwith����w�A.��Riskin,�College�Math.�Journal�26:5�(1995),�382.������*�����������������d�����*����ؽ�Wil�8�liam��sA.�Stein��|�Octob�S�er��27,�1999���V������3��(510)���883-9938�
3D���[email protected]���fy�http://math.berkeley.edu/~was���������ff��������=��������������TEA��"CHING�����k�?�NSF��Sp�`onsored�IAS/P��ark�Cit�y�Mathematics�Institute�������k�����w��T���e��ffaching���Assistant�,��)Summer�c�1999.�	�|Led�problem�sessions�and�pre-����w�pared���notes�for�Ken�Rib�S�et's�course�on�Serre's�conjectures�for�adv��X�anced����w�n��rum�b�S�er��theory�graduate�studen��rts.������k��Univ��ersit�y��of�California�at�Berk��eley������k�����w��Curriculum�+Development�,�;�F��Vall��>1997{Summer�1998.�a�Dev��relop�S�ed�cur-����w�riculum�fmaterials�and���-�
cmcsc10�Ma��32tlab��soft��rw�are�ffor�w��rorkshop�based�calculus����w�and��linear�algebra�courses�at�UC�Berk��reley��V.������k�����w��Instructor�,��0Summer�[1997.�	�&T��Vaugh��rt�discrete�mathematics�to�a�class����w�of��E20{30�undergraduates.��Duties�included�preparing�and�deliv��rering����w�lectures,��writing�and�grading�exams,�and�conducting�oce�hours.������k�����w��T���e��ffaching�(Assistant�,� �F��Vall��1995{Spring�1997.� �Led�discussion�sections����w�for�˔the�full�range�of�undergraduate�linear�algebra�and�calculus�courses.������k�����w��Ev��@aluation��a��v�erage:�5.8�out�of�7�from�300�studen�ts.����k�Northern��Arizona�Univ��ersit�y������k�����w��T���e��ffaching�,�b1994{1995.���T��Vaugh��rt�t�w�o�semesters�of�college�algebra�and����w�other��freshman�topics�to�a�class�of�30{40�undergraduates.�
�Duties����w�included��all�asp�S�ects�of�organizing�a�course,��%including�preparing�and����w�deliv��rering��lectures�and�grading�examinations.�������������LECTURES�����k�:����w�7�Deliv��rered���o�v�er�t�w�en�t�y�talks�and�organized�graduate�studen�t�seminars����w�on��mo�S�dular�forms�and�ab�elian�v��X�arieties�at�UC�Berk��reley��V.������k�����w��Particip��ffant�:�in�p�anel�discussion�on�the�use�of�te�chnolo�gy�in�the�class-����w�r��ffo�om�,��P��rark�Cit�y�Math.�Inst.,�July��V,�1999.������k�����w��Demonstr��ffations���of�numb�er�the�ory�softwar�e�,���P��rark�b�Cit�y�Math.�Inst.,����w�July��V,��1999.������k�����w��Shafar��ffevich-T���ate��gr�oups�of�mo�dular�ab�elian�varieties�,���P��rark���Cit�y�Math.����w�Inst.,��June,�1999.������k�����w��Shafar��ffevich-T���ate�%Qgr�oups�of�mo�dular�ab�elian�varieties�,��Adv��X�ances��in����w�Num��rb�S�er��Theory��V,�Leiden,�Netherlands,�April,�1999.������k�����w��Visibility�35of�Shafar��ffevich-T���ate�gr�oups�,��Arizona�Win��rter�Sc�ho�S�ol,�1999.���E���������COMPUTING�����k�?�Extensiv��re��exp�S�erience�with��C++�,�UNIX,��Ma���gma�,�and�P��VARI.�����������ADDRESS�����k�?�2041��F��Vrancisco�Street,�Apt.�14�����k�Berk��reley��V,��CA�94709����k�USA���E���������PERSONAL�����k�?�US��Citizen,�b�S�orn�F��Vebruary�,��1974.������O�����������������d�����*����ؽ�Wil�8�liam��sA.�Stein��|�Octob�S�er��27,�1999���V������3��(510)���883-9938�
3D���[email protected]���fy�http://math.berkeley.edu/~was���������ff��������=��������������REFERENCES�����k�:����w�7�Kevin��M.�Buzzard�����w��+44�35207�594�8523����w��Departmen��rt��of�Mathematics����w�Huxley��Building����w�Imp�S�erial��College����w�180��Queen's�Gate����w�London,��SW7�2BZ����w�England����w��[email protected]��������k�����w��Professor��Rob�`ert�Coleman����w��(510)�35642-5101����w��Departmen��rt��of�Mathematics�#3840����w�Univ��rersit�y��of�California����w�Berk��reley��V,��CA�94720-3840����w��[email protected]������k�����w��Professor��Hendrik�W.�Lenstra����w��(510)�35643-7857����w��Departmen��rt��of�Mathematics�#3840����w�Univ��rersit�y��of�California����w�Berk��reley��V,��CA�94720-3840����w��[email protected]������k�����w��Professor��Barry�Mazur����w��(617)�35495-2171�ext.�512����w��Departmen��rt��of�Mathematics����w�Harv��X�ard��Univ��rersit�y����w�One��Oxford�Street����w�Cam��rbridge,��MA�02138����w��[email protected]������k�����w��Professor��Lo������c�Merel����w��[email protected]������k�����w��Professor��Kenneth�A.�Rib�`et����w��(510)�35642-0648����w��Departmen��rt��of�Mathematics�#3840����w�Univ��rersit�y��of�California����w�Berk��reley��V,��CA�94720-3840����w��[email protected]������3�����������������d�����*����ؽ�Wil�8�liam��sA.�Stein��|�Octob�S�er��27,�1999���V������3��(510)���883-9938�
3D���[email protected]���fy�http://math.berkeley.edu/~was���������ff��������=��������������ABSTRA��"CTS�����k�:����w�7�L��ffe�ctur�es�.on�Serr��ffe's�c�onje�ctur�es�(77�p�ages):�6�This��is�an�exp�S�ository�pa-�����w�p�S�er�(�based�on�Ken�Rib�et's�lectures�at�the�1999�P��rark�Cit�y�Mathematics����w�Institute;��it�will�b�S�e�published�in�the�conference�pro�ceedings.��������k�����w��Mo��ffd����5��appr�o�aches�to�mo�dularity�of�ic�osahe�dr�al�Galois�r�epr�esentations����w�(16�f>p��ffages):���Consider�".a�con��rtin�uous�".o�S�dd�irreducible�represen��rtation����g�cmmi12���ӹ:�����w�Gal�����(�����fe
#��	n��Q���
#��=�Q�)�UR�!���GL��������|{Ycmr8�2����(�C�)�:�i�A�i�sp�S�ecial�case�of�a�general�conjecture�of�Artin����w�is��]that�the��L�-function��L�(�;���s�)�asso�S�ciated�to����is�en��rtire.��Buzzard�and�I����w�giv��re�	
new�examples�of�represen�tations����that�satises�this�conjecture.����w�These��w��rere�obtained�b�y�applying�a�recen�t�theorem�of�Buzzard�and����w�T��Va��rylor��to�a�mo�S�d�5�reduction�of���,�dDcom�bined�with�a�computational����w�v��rerication��of�mo�S�dularit�y�of�a�related�mo�S�d�5�represen�tation.������k�����w��Explicit��Xappr��ffo�aches�to�mo�dular�ab�elian�varieties�(130�p�ages):��չI��pgiv��re����w�algorithms���for�computing�on�mo�S�dular�ab�elian�v��X�arieties�of�an��ry�dimen-����w�sion.�	�3More�vnprecisely��V,��`I�v	describ�S�e�ho��rw�to�compute�congruences,�the����w�mo�S�dular���degree,��the�rational�part�of�the�sp�ecial�v��X�alue�of�the��L�-function����w�and�4Tof�its�t��rwists,���the�comp�S�onen�t�group�at�primes�of�m�ultiplicativ�e����w�reduction,���the�9?p�S�erio�d�lattice,���and�the�real�and�imaginary�v��rolumes.����w�There���are�still�man��ry�in�v��X�arian�ts�that�I���ha�v�e�not�b�S�een�able�to�compute����w�in�aEall�cases,�|�including�the�exact�structure�of�the�torsion�subgroup�and����w�the���regulator.�s�The�second�part�of�m��ry�thesis�con�tains�in�v�estigations����w�in��rto�]�sev�eral�op�S�en�problems,�zincluding�the�Birc�h�and�Swinnerton-Dy�er����w�conjecture,�@�Artin's�conjecture�on�complex�Galois�represen��rtations,�and����w�Serre's��conjecture.������k�����w��He��ffcke:�The��mo�dular�forms�c�alculator:�'<�Hec��rk�e�a�is�a��C++��pac��rk��X�age�for����w�computing��(with�spaces�of�mo�S�dular�forms�and�mo�dular�ab�elian�v��X�ari-����w�eties.�pI��Dha��rv�e��b�S�een�in��rvited�to�visit�the��Ma���gma��group�in�Sydney�in����w�order�-�to�mak��re�Hec�k�e�a�part�of�their�computer�algebra�system,�>�and�I����w�ha��rv�e��already�p�S�orted�m��ry�co�de�to��Ma���gma�.������k�����w��The��cmo��ffdular�forms�datab�ase:���This���is�a�collection�of�mo�S�dular�eigen-����w�forms,��sp�S�ecial���v��X�alues�of��L�-functions,�arithmetic�in��rv��X�arian�ts���of�mo�S�dular����w�ab�S�elian�,?v��X�arieties,�RTand�other�data.��hThese�tables,�whic��rh�are�freely�a�v��X�ail-����w�able��on�the�In��rternet,�ha�v�e�already�b�S�een�used�b�y�man�y�p�S�eople.������k�����w��Comp��ffonent�gr�oups�of�optimal�quotients�of�Jac�obians�(16�p�ages):��ĹLet��p�A����w��b�S�e��?an�optimal�quotien��rt�of��J���̼0����(�N�@�).�:�The�main�theorem�of�this�pap�er����w�giv��res�[~a�relationship�b�S�et�w�een�the�mo�S�dular�degree�of��A��and�the�order����w�of��the�comp�S�onen��rt�group�of��A�.��~F��Vrom�this�I��deduce�a�computable�for-������D�����������������d�����*����ؽ�Wil�8�liam��sA.�Stein��|�Octob�S�er��27,�1999���V������3��(510)���883-9938�
3D���[email protected]���fy�http://math.berkeley.edu/~was���������ff��������=�������w��m��rula���for�the�comp�S�onen�t�group�of�an�y�optimal�quotien�t�of��J���̼0����(�N�@�)�at�a�����w�prime��of�m��rultiplicativ�e��reduction.�(YI��then�compute�o��rv�er��one�thousand����w�examples���leading�me�to�conjecture�that�the�torsion�and�comp�S�onen��rt����w�groups��of�quotien��rts�of��J���̼0����(�p�)�are�as�simple�as�p�S�ossible.��������k�����w��Visibility�
�of�Shafar��ffevich-T���ate�gr�oups�of�mo�dular�ab�elian�varieties�(20����w�p��ffages):��l�W��Ve�?�study�Mazur's�notion�of�visibilit��ry�of�Shafarevic�h-T��Vate�of����w�mo�S�dular���ab�elian�v��X�arieties,��Zand�use�it�to�v��rerify�the�conjecture�of�Birc�h����w�and��Swinnerton-Dy��rer�for�sev�eral�sp�S�ecic�ab�elian�v��X�arieties.������k�����w��L��ffe�ctur�es�+Von�mo��ffdular�forms�and�Galois�r�epr�esentations�(170�p�ages):����w��In�bJ1996,�}�Ken�Rib�S�et�taugh��rt�an�adv��X�anced�course�on�mo�dular�forms�and����w�Galois��vrepresen��rtations.��In�collab�S�oration�with�Rib�et,��I��^am�turning�m��ry����w�course���notes�in��rto�a�b�S�o�ok���that�is�in�tended�for�publication�in�Springer-����w�V��Verlag's��Univ��rersitext�series.������k�����w��Empiric��ffal���evidenc�e�for�the�Bir�ch�and�Swinnerton-Dyer�c�onje�ctur�e�for����w�mo��ffdular��Jac�obians�of�genus�2�curves�(22�p�ages):�~X�W��Ve��dpro��rvide�sys-����w�tematic���n��rumerical�evidence�for�the�BSD��?conjecture�in�the�case�of����w�dimension�>t��rw�o.�y�This�conjecture�relates�six�quan�tities�asso�S�ciated�to�a����w�Jacobian���o��rv�er�the�rational�n�um�b�S�ers.��One�of�these�quan�tities�is�the����w�size�	�S��ȹof�the�Shafarevic��rh-T��Vate�group.���Unable�to�compute��S��directly��V,����w�w��re�X�compute�the�v�e�other�quan�tities�and�solv�e�for�the�conjectural����w�v��X�alue�DƾS���̼?���X�of��S��׹.��F��Vor�all�32�curv��res�considered,�e�the�real�n�um�b�S�er��S���̼?���X�is�v�ery����w�close�"�to�either�1,�2,�1or�4,�and�agrees�with�the�size�of�the�2-torsion�of����w�the��Shafarevic��rh-T��Vate�group,�whic�h�w�e�could�compute.������k�����w��Parity�:\structur��ffes�and�gener�ating�functions�fr�om�Bo�ole�an�rings���(8����w�p��ffages):�^1�Let�}Q�S�0(�b�S�e�a�nite�set�and��T��b�e�a�subset�of�the�p�o��rw�er�}Qset����w�of��;S��׹.�rPCall��T����a��p��ffarity�D�structur�e��͹for��S����if,��for�eac��rh�subset��b��of��S��of�o�S�dd����w�size,�u�the�&�n��rum�b�S�er�of�subsets�of��b��that�lie�in��T��c�is�ev�en.��W��Ve�classify����w�parit��ry���structures�using�generating�functions�from�a�free�b�S�o�olean���ring.����w�W��Ve�J�also�sho��rw�that�if��T��]�is�a�parit�y�structure,�b�then,�for�J�eac�h�subset��b����w��of�>��S��{�of�ev��ren�size,�athe�n�um�b�S�er�of�subsets�of��b��of�o�dd�size�that�lie�in��T��j�is����w�ev��ren.�CW��Ve�3tthen�giv�e�sev�eral�other�prop�S�erties�of�parit�y�structures�and����w�discuss��a�generalization.������,����;��ٞ׿�	��-�
cmcsc10��':
�3
cmti10�F
C��q
cmbxti10�߆�Tcmtt12����@cmti12���N�cmbx12�!",�
cmsy10���g�cmmi12�|{Ycmr8��kAH
cmssbx10�X�Qcmr12�9����