1\documentclass[12pt]{article}
2\author{William A. Stein}
3\title{Algebraic Geometry Homework\\
4II.3 \#'s 6,7,8,12,14\\ II.4 \#'s 2, 4}
5
6\font\grmn=eufm10 scaled \magstep 1
7
8\newcommand{\gp}{p}
9\newcommand{\ga}{a}
10\newcommand{\so}{\mathcal{O}}
11\newcommand{\id}{\mbox{\rm id}}
12
13\newtheorem{prob}{Problem}
14\newtheorem{prop}{Proposition}
15\newtheorem{theorem}{Theorem}
16
17\newcommand{\ov}{\overline{\varphi}}
18\newcommand{\ol}{\overline}
19\renewcommand{\phi}{\varphi}
20\newcommand{\fh}{f^{\#}}
21\newcommand{\proj}{\mbox{\rm Proj \hspace{.01in}}}
22\newcommand{\spec}{\mbox{\rm Spec \hspace{.01in}}}
23\newcommand{\proof}{\mbox{\sc Proof.\hspace{.1in}}}
24
25\newcommand{\diagram}{$$\vspace{.75in}$$}    %% space for diagrams
26
27
28\begin{document}
29\maketitle
30
31\begin{prob}[3.6]
32Let $X$ be an integral scheme. Show that the local ring $\so_{\xi}$ of
33the generic point $\xi$ of $X$ is a field. Call it $K(X)$. Show also
34that if $U=\spec A$ is any open affine subset of $X$, then $K(X)$ is
35isomorphic to the quotient field of $A$.
36\end{prob}
37\proof
38Let $U=\spec A$ be any nonempty open affine subset of $X$. Then since
39the closure of a generic point of $X$ is all of $X$, every open set
40must contain a generic point. Thus if $\xi$ is a generic point, then
41$\xi\in U$. But $A$ is an integral domain so $(0)$ is the unique
42generic point of $U$, whence $\xi=(0)$. This shows the generic point is
43unique if it exists. Since $X$ is integral it is irreducible so every
44open set intersects $U$. Thus every open set contains $(0)\in \spec A=U$,
45so $X$ actually contains a generic point $\xi=(0)$. Furthermore,
46$\so_{\xi}\cong A_{(0)}$ is the quotient field of $A$.
47
48\begin{prob}[3.7]
49Let $f:X\rightarrow Y$ be a dominant, generically finite morphism of
50finite type of integral schemes. Show that there is an open dense
51subset $U\subseteq Y$ such that the induced morphism
52$f^{-1}(U)\rightarrow U$ is finite.
53\end{prob}
54\proof
55Let $U=\spec B$ be an open affine subset of $Y$ which contains the
56generic point of $Y$. Let $V=\spec A$ be an open affine subset of
57$f^{-1}(U)$. Since $f$ is of finite type $A$ is a finitely generated
58$B$-algebra. The generic point of $X$ is in $V$ since every
59open set contains the generic point. Let $\phi:B\rightarrow A$ be
60the homomorphism corresponding to the induced morphism of affine schemes
61$f:V\rightarrow U$.
62Since $f$ is dominant, we know that $\phi$ is injective.
63The induced map on stalks then gives an inclusion
64of function fields $K(Y)=B_{(0)}\hookrightarrow A_{(0)}=K(X)$.
65Since $A$ is a finitely generated $B$-algebra, $K(X)$ is a finitely
66generated field extension of $K(Y)$. If this field extension is not of
67finite degree then $K(X)$ must contain an element which is
68transcendental over $K(Y)$. Thus $A$ must contain an
69element $t$ which is transcendental over $B$. But then infinitely
70many primes of $A$ lie over $(0)$. Indeed, since $K(X)$ is
71finitely generated over $K(Y)$, $K(X)$ is
72a finite algebraic extension of $k(t)$ for some field $k$.
73Then (since the algebraic closure of a field is
74infinite), there are infinitely many irreducible polynomials
75in $k[t]$. Since $K(X)$ is finite algebraic over $k(t)$
76infinitely many of these must remain irreducible in $A$.
77Multiplying through denominators this gives infinitely
78many irreducible elements of $A$ which generate prime ideals
79which lie over $(0)$. This would contradict the fact that
80$f$ is generically finite. Thus $K(X)$ is finite over $K(Y)$.
81
82Let $x_1,\ldots,x_n$ generate $A$ as a $B$-algebra. Then,
83since $K(X)$ is finite over $K(Y)$ each $x_i$ satisfies
84some polynomial $f_i$ with coefficients in $B$. Let $b$ be the
85product of all of the leading coefficients of the polynomials
86$f_i$. If $b$ is a unit in $B$ then so are all of the leading
87coefficients of the $f_i$ so we can divide by them and hence assume
88the $f_i$ are monic polynomials. If not, replace $B$ by the localization
89$B_b$ and repeat the whole argument with $U=\spec B_b$.
90In either case we may assume the $f_i$ are monic from which
91we conclude that $A$ is a finitely generated integral extension
92of $B$, thus $A$ is a finite module over $B$.
93
94Now let $U=\spec B$ be an open affine subset of $Y$ which contains the
95generic point. Since $f$ is of finite type we may write
96$f^{-1}(U)=\cup_{i=1,\ldots,n}V_i$ where each $V_i=\spec A_i$ is
97finitely generated $B$-algebra. By the work above we may shrink
98$U$ so that we can assume each $A_i$ is actually a finitely
99generated $B$-module. To complete the proof we need to show that
100there is a distinguised open subset of $U$ (which necessarily
101contains the generic point) whose inverse image under $f$ is an
102open affine which is the spectrum of a finitely generated $B$-module.
103Let $\phi_i:B\rightarrow A_i$ be the homomorphism which
104induces $f|_{V_i}$. Since $f$ is dominant, each $\phi_i$
105is an injection. Thus we may, for notational convenience,
106identify $B$ with it's images in the various $A_i$. The
107morphism $f$ is then induced by the inclusion map
108$B\hookrightarrow A_i$.
109
110Since $\cap_{i=1,\ldots,n}V_i$ is open we can,
111for each $i$, $1\leq i \leq n-1$, find $\alpha_i\in A_i$
112such that $\spec (A_i)_{\alpha_i}\subseteq \cap_{i=1,\ldots,n}V_i$.
113Since $A_i$ is a finite module over $B$ there is an
114integral equation
115$$\alpha_i^n+b_{n-1}\alpha_i^{n-1}+\cdots+b_0=0$$
116where each $b_j\in B$ and $b_0\not=0$.
117Let $b=\prod_{i=1,\ldots,n-1}b_i$. Then any
118prime of $A_i$ which contains $\alpha_i$ must
119also contain $b_i$ and hence $b$. Therefore
120$\spec (A_i)_{b}\subseteq \spec (A_i)_{\alpha}$.
121We then have that
122$g^{-1}(\spec B_b) 123= \cup_{i=1,\ldots,n-1}\spec (A_i)_b\cup\spec(A_n)_b 124= \spec(A_n)_b$.
125The latter equality follows since, for $1\leq i\leq n-1$,
126$\spec(A_i)_b\subseteq \cap_{i=1,\ldots,n} V_i \cap f^{-1}(U_b) 127\subseteq f^{-1}(U_b)\cap V_n = \spec (A_n)_b$.
128We thus see that $U_b$ is a dense open
129subset of $Y$ such that the morphism $f:f^{-1}(U_b)\rightarrow U_b$
130is finite (since $f^{-1}(U_b)$ is the affine scheme $\spec(A_n)_b$
131which a finite $B_b$-module). This completes the proof.
132
133\begin{prob}[3.8]
134Normalization. Let $X$ be an integral scheme. For each open affine
135subset $U=\spec A$, let $\tilde A$ be the integral closure of $A$
136in its quotient field, and let $\tilde U=\spec \tilde A$.
137Show that one can glue the schemes $\tilde U$ to obtain a normal integral
138scheme $\tilde X$, called the normalization of $X$. Show also that there
139is a morphism $\tilde X\rightarrow X$, having the following universal
140property: for every normal integral scheme $Z$, and for every
141dominant morphism $f:Z\rightarrow X$, $f$ factors uniquely through
142$\tilde X$. If $X$ is of finite type over a field $k$, then the morphism
143$\tilde X\rightarrow X$ is a finite morphism.
144\end{prob}
145\proof
146
147We first verify the universal property for affine schemes where
148it is clear what the normalization is.
149\begin{prop} Suppose $X=\spec A$, $\tilde X=\spec \tilde A$
150its normalization and $Z=\spec B$ is a normal integral scheme.
151Then every dominant morphism $f:Z\rightarrow X$ factors uniquely
152through $\tilde X$.
153\end{prop}
154\proof
155Let $\phi:A\rightarrow B$ be the homomorphism corresponding to $f$.
156Then, since $f$ is dominant, $\phi$ is injective. Indeed,
157$f(Z)\subseteq V(\ker(\phi))$ so if $\ker(\phi)\not = 0$
158then $f(Z)$ doesn't meet the nonempty open set
159$X-V(\ker(\phi))$ (nonempty since $A$ is a domain
160so $(0)$ is prime so $(0)\in X-V(\ker(\phi))$.
161So there is a unique extension of $\phi$ to a
162homomorphism from $\tilde A \rightarrow B$.
163Indeed, define $\ol{\phi}(a/b)=\phi(a)/\phi(b)$. Then
164since $\phi$ is injective this is well-defined since $b\not=0$
165implies $\phi(b)\not=0$. Furthermore, if $\psi$ is another
166possible extension of $\phi$ to $\tilde A$, then
167$\psi(b)\psi(a/b)=\psi(a)=\phi(a)=\phi(b)\ol{\phi}(a/b)=\psi(b)\ol{\phi}(a/b)$
168so cancelling shows that $\psi(a/b)=\ol{\phi}(a/b)$.
169Thus there is a unique morphism $f':Z\rightarrow 170\tilde X$ whose composition with the natural map $\tilde X\rightarrow X$
171equals $f$. (The natural map is induced by the inclusion
172$A\hookrightarrow \tilde A$.)
173
174Now we prove the universal property holds when $Z$ is an arbitrary
175normal integral scheme but $X$ is still affine.
176\begin{prop} Let $X=\spec A$, $\tilde X=\spec \tilde A$ its
177normalization and $Z$ be any normal integral scheme. Then
178every dominant morphism $f:Z\rightarrow X$ factors uniquely
179through $\tilde X$.
180\end{prop}
181\proof
182Let $U_i$ be a cover of $Z$ by open affines. If $U=U_i$ is any
183$U_i$ then $U$ is a normal
184integral affine scheme and $f|_U$ is a dominant morphism. Indeed,
185$U$ is dense in $Z$ since $Z$ is irreducible (Proposition 3.1).
186Thus $f^{-1}(\ol{f(U)})\supseteq \ol{U}=Z$ so
187$f^{-1}(\ol{f(U)})=Z$ so $\ol{f(U)}\supseteq f(Z)$ so
188$\ol{f(U)}=\ol{f(Z)}=X$.
189We can thus apply the above proposition to find a unique morphism
190$g_i:U_i\rightarrow \tilde{X}$ such that $\psi\circ g_i=f|_U$ where
191$\psi:\tilde{X}\rightarrow X$. By uniqueness on a cover of $U_i\cap U_j$
192by open affines, $g_i|_{U_i\cap U_j}=g_j|_{U_i\cap U_j}$. We
193can thus glue the morphism $g_i$ to obtain a morphism
194$g:Z\rightarrow \tilde{X}$ such that $\psi\circ g=f$. The
195morphism $g$ is evidently unique.
196
197Now we can define the identification maps $\phi_{ij}$. Let
198$\{U_i=\spec A_i\}$ be the open affine subsets of $X$. Let
199$\{\tilde U_i=\spec \tilde A_i\}$ be the associated normalizations.
200Let $\psi_i:\tilde U_i \rightarrow U_i$ be the morphism induced
201by the inclusion $A_i \hookrightarrow \tilde A_i$. Let
202$W_{ij}=\psi_i^{-1}(U_i\cap U_j)$. Then $W_{ij}$ is an open
203subset of a normal scheme hence normal. $\psi_i:W_{ij}\rightarrow 204U_i\cap U_j \subseteq U_j$ so there is a unique morphism
205which we call $\phi_{ij}:W_{ij}\rightarrow \tilde U_j$ such
206that $\psi_j|_{W_{ji}} \circ \phi_{ij} = \psi_i|_{W_{ij}}$.
207By uniqueness we see that $\phi_{ij}\circ\phi_{ji}=id$ so
208$\phi_{ij}=\phi_{ji}^{-1}$.  Furthermore, for each $i,j,k$,
209$\phi_{ij}(W_{ij}\cap W_{ik}) 210=\psi_j^{-1}(\psi_i(W_{ij}\cap W_{ik})) 211=\psi_j^{-1}(\psi_i(W_{ij}))\cap \psi_j^{-1}(\psi_i(W_{ik})) 212=W_{ji}\cap W_{jk}$. By uniqueness,
213$\phi_{jk}\circ\phi_{ij}=\phi_{ik}$ on $W_{ij}\cap W_{ik}$.
214So by the glueing lemma (Exercise 2.12) we may glue to obtain
215a scheme $\tilde X$. We can also glue the morphisms $\psi_i$
216to obtain a morphism $\psi:\tilde X\rightarrow X$.
217
218Next, we must verify that the universal property holds in general.
219Let $Z$ be an arbitrary normal integral scheme, and let $X$
220and $\tilde{X}$ be as above and suppose $f:Z\rightarrow X$ is a morphism.
221Cover $X$ be open affines $U_i$. Then for each morphism $f|_{f^{-1}(U_i)}$
222we can apply the above proposition to find a morphism $g_i$ such
223that $\psi\circ g_i=f|_{f^{-1}(U_i)}$. By uniqueness we can
224glue these morphism to obtain the required morphism
225$g:Z\rightarrow \tilde{X}$.
226
227Now we check that $\tilde{X}$ is a normal integral scheme.
228Note first that each $\tilde{U_i}$ is the spectrum of
229an integrally closed domain and is hence a normal integral
230scheme (since the localization of an integrally closed
231domain is integrally closed).
232Let $x\in\tilde{X}$. Then $x$ is contained in some $\tilde{U_i}$.
233But the local ring of $x$ in $\tilde{X}$ is the same as the
234local ring of $x$ in $\tilde{U_i}$ which is integrally closed.
235This shows that $\tilde{X}$ is normal.
236
237Since $X$ is irreducible,
238every $U_i$ intersects every $U_j$. Thus every $\tilde{U_i}$
239intersects every $\tilde{U_j}$ after glueing.
240Since each $\tilde{U_j}$ is irreducible and they all overlap
241this implies $\tilde{X}$ is irreducible. Indeed, if $\tilde{X}=A\cup B$
242with $A$ and $B$ closed, then every $\tilde{U_i}$ is either completely
243contained in $A$ or in $B$. If they are not all contained in one of
244$A$ or $B$ then we can find an open subset $U$ contained in $A$
245and an open subset $V$ contained in $B$ but not contained in $A$. Then
246$V=(U\cap V)\cup(U^c\cap V) 247 =(A\cap V)\cup(U^c\cap V)$
248which expresses $V$ as a union of two proper closed subsets of $V$.
249$A\cap V$ is a proper subset of $V$ since $V$ is not contained in
250$A$ and $U^c\cap V$ is a proper subset of $V$ since
251$U\cap V\not=\emptyset$. This contradicts the fact that $V$ is
252irreducible. Thus $\tilde{X}=A$ or $\tilde{X}=B$ whence $\tilde{X}$
253is irreducible.
254
255Now we check that the structure sheaf has no nilpotents.
256Let $U$ be an open subset of $\tilde{X}$ and suppose
257$f\in\so_{\tilde{X}}(U)$ is nilpotent. Then since $f$ is
258nonzero, there is some point $x\in \tilde{X}$ so that the
259stalk $f_x$ of $f$ at $x$ in the local ring $\so_{\tilde{X}}$ is
260nonzero and nilpotent (use sheaf axiom (iii) and the definition of
261$\so_{\tilde{X}}$.) Let $\tilde{U_i}$ be some $\tilde{U_i}$
262which contains $x$. Then the local ring at $x$ is a localization
263of the integral domain $\tilde{A_i}$ so it can't contain any
264nilpotents. Thus the scheme $\tilde{X}$ is reduced.
265
266Now we check that if $X$ is of finite type over a field $k$, then
267the morphism $f:\tilde X\rightarrow X$ is a finite morphism.
268The $U_i$ form an open cover of $X$ and $f^{-1}(U_i)=\spec \tilde A_i$
269is affine for each $i$, so we just need to check that
270$\tilde A_i$ is a finite module over $A_i$. This follows from
271Theorem 3.9A of chapter I.
272
273
274\begin{prob}[3.12]
275Closed Subschemes of $\proj S$.
276
277(a) Let $\phi:S\rightarrow T$ be a surjective homomorphism of graded
278rings, preserving degrees. Show that the open set $U$ of (Ex. 2.14)
279is equal to $\proj T$, and the morphism $f:\proj T\rightarrow\proj S$
280is a closed immersion.
281
282(b) If $I\subseteq S$ is a homogeneous ideal, take $T=S/I$ and let $Y$
283be the closed subscheme of $X=\proj S$ defined as the image of the
284closed immersion $\proj S/I\rightarrow X$. Show that different homogeneous
285ideals can give rise to the same closed subscheme. For example,
286let $d_0$ be an integer, and let $I'=\bigoplus_{d\geq d_0} I_d$. Show
287that $I$ and $I'$ determine the same closed subscheme.
288\end{prob}
289\proof
290(a) Since $\phi$ is graded and surjective, $\phi(S_{+})=T_{+}$ from which
291it is immediate that $U=\proj T$. By the first isomorphism theorem
292$T\cong S/\ker(\phi)$ so $f(\proj T)=f(\proj S/\ker(\phi)) 293=V(\ker(\phi))$ which is a closed subset of $\proj S$. (This is
294just the fact that there is a one to one correspondence between
295homogeneous ideals of $S/\ker(\phi)$ and homogeneous ideals of $S$
296which contain $\ker(\phi)$.) The map on the stalk corresponding
297to a point $x\in\proj T$ is the map
298$S_{(\phi^{-1}(x))}\rightarrow T_{(x)}$
299induced by $\phi$. This map is surjective since $\phi$ is surjective.
300Thus the induced map on sheaves is surjective.
301
302(b) Let $\phi:S/I'\rightarrow S/I$ be the natural projection homomorphism.
303(This makes sense because $S/I$ is a quotient of $S/I'$. Indeed,
304$S/I=(S/I')/\bigoplus_{0\leq d<d_0}I_d$.) Then $\phi$ is a graded homomorphism
305of graded rings such that $\phi_d$ is the identity for $d\geq d_0$.
306So by (Exercise 2.14c) $\phi$ induces an isomorphism
307$f:\proj S/I \rightarrow \proj S/I'$. Since this is a morphism
308over $\proj S$ (the corresponding triangle of homomorphisms commutes)
309it follows that $I$ and $I'$ give rise to the same closed subscheme.
310
311\begin{prob}[3.14]
312If $X$ is a scheme of finite type over a field, show that
313the closed points of $X$ are dense. Give an example to show that
314this is not true for arbitrary schemes.
315\end{prob}
316\proof
317Since $X$ is of finite type over $k$ we can cover $X$ with
318affine open sets $U_i=\spec A_i$ where each $A_i$ is a finitely
319generated $k$-algebra. Let $U$ be an open subset of $X$. We must
320show that $U$ contains a closed point. Since the $U_i$ cover
321$X$, $U$ must intersect some $U_i$. Then $U\cap U_i$ contains
322a distinguised open subset of $U_i$. So, to show that every open
323set contains a closed point, it suffices to show that every
324nonempty distinguised open subset of each $U_i$ contains
325a closed points of $X$. Since a distinguished open subset $(U_i)_x$ of
326a $U_i$ is also the spectrum of a finitely generated $k$-algebra
327$\spec (A_i)_x$ we can just add it to our collection $\{U_i\}$.
328The problem thus reduces to showing that each $U_i$ contains
329a closed point.
330
331\begin{prop}
332With the notation as above, if $x\in U_i$ is closed in $U_i$ (here
333$U_i$ has the subspace topology) then $x$ is closed in $X$.
334\end{prop}
335\proof
336Suppose $x\in U_j$. There is a natural injection
337$U_i\cap U_j\hookrightarrow U_j$. Let $\spec (B_i)_f$ be
338a distinguished open subset of $U_i$ contained in $U_i\cap U_j$
339which contains $x$. Then we have a morphism
340$\spec(B_i)_f\hookrightarrow U_j=\spec B_j$. We
341thus get a ring homomorphism $\phi:B_j\rightarrow (B_i)_f$
342of Jacobson rings. Since it is induced by a restriction of
343the identity map $X\rightarrow X$ which is a morphism over
344$k$, $\phi$ is a $k$-algebra homomorphism.
345Since $(B_i)_f$ is a finitely generated $k$-algebra, $(B_i)_f$ is
346also a finitely generated $B_j$-algebra. Since $x$ is closed
347in $\spec(B_i)_f$, $x$ is a maximal ideal of $(B_i)_f$.
348Thus by page 132 of Eisenbud's {\em Commutative Algebra}
349$\phi^{-1}(x)$ is a maximal ideal of $B_j$. Thus $x$ is also
350a closed point of $U_j$ in the subspace topology on $U_j$.
351Thus $X-x=\cup_{i}(U_i-x)$ is a union of open subsets of $X$,
352hence open in $X$, so $x$ is closed.
353
354To finish we just need to know that $U_i$ has a closed point.
355
356\begin{prop}
357Let $X=\spec A$ be an affine scheme with $A$ a finitely generated
358$k$-algebra. Then any nonempty distinguished open subset of $X$
359contains a closed point.
360\end{prop}
361\proof
362The key observation is that $A$ is a Jacobson algebra since it finitely
363generated over a field, so by page 131 of Eisenbud's {\em Commutative
364Algebra} the Jacobson radical of $A$ equals
365the nilradical of $A$. Let $D(f)$ be a nonempty
366distinguised open subset of $X$. Then some prime omits $f$
367so $f$ is not in the nilradical of $A$. Thus $f$ is not
368in the Jacobson radical of $A$ so there is some maximal
369ideal $m$ so that $f\notin m$. Then $m \in D(f)$ and
370$m$ is a closed point of $X$ since $m$ is maximal.
371
372Strangely enough I never used the hypothesis that $X$ is of
373finite type over $k$ but just the weeker hypothesis that
374$X$ is {\em locally} of finite type over $k$. Did I miss something?
375
376Finally, we present a counterexample in the more general situation. Let
377$X=\spec Z_{(2)}$. Then $X$ contains precisely one closed
378point, the ideal $(2)$. So the set of closed points in $X$ is
379not dense in $X$. In fact, if $X$ is the spectrum of any
380DVR we also get a counterexample.
381
382\begin{prob}[4.2]
383Let $S$ be a scheme, let $X$ be a reduced scheme over $S$, and let
384$Y$ be a seperated scheme over $S$. Let $f_1$ and $f_2$ be two $S$-morphisms
385of $X$ to $Y$ which agree on an open dense subset $U$ of $X$. Show that
386$f_1=f_2$. Give examples to show that this result fails if either (a)
387$X$ is nonreduced, or (b) $Y$ is nonseparated.
388\end{prob}
389\proof
390Let $g=(f_1,f_2)_S:X\rightarrow Y\times_S Y$ be the product of
391$f_1$ and $f_2$ over $S$. By hypothesis the diagonal $T=\Delta_Y(Y)$ is
392a closed subscheme of $Y\times_S Y$. Thus $Z=g^{-1}(T)$ is a closed
393subscheme of $X$. If $h:U\rightarrow Y$ is the common restriction
394of $f_1$ and $f_2$ to $U$, then, since $g|_U$ makes
395the correct diagram commute, the restriction of $g$ to $U$
396is $g'=(h,h)_S$ and $g'=\Delta_Y \circ h$ since
397$\Delta_Y\circ h$ makes the correct diagram commute.
398\diagram
399Thus $\Delta_Y^{-1}(T)=Y$ implies
400$$g^{-1}(T)\supseteq (g')^{-1}(T)=h^{-1}(\Delta_Y^{-1}(T))=h^{-1}(Y)=U.$$
401Thus $g^{-1}(T)$ is a closed set which contains the dense
402set $U$. Thus $g^{-1}(T)=X$ so $g(X)\subseteq T$.
403So, by the proposition below, since $X$ is reduced, $g$
404factors as $g=\Delta_Y\circ f$ where $f:X\rightarrow Y$.
405From the definition of $\Delta_Y$, we see that
406$\pi_1\circ \Delta_Y=\id_Y=\pi_2\circ \Delta_Y$.
407Thus $f_1=\pi_1\circ g=\pi_1\circ\Delta_Y\circ f=f$
408and $f_2=\pi_2\circ g=\pi_2\circ \Delta_Y\circ f=f$ so
409$f=f_1=f_2$, as desired.
410
411\begin{prop}
412Let $X$ be a reduced scheme, $f:X\rightarrow Y$ a morphism, $Z$
413a closed subscheme of $Y$, $j:Z\hookrightarrow Y$, such
414that $f(X)\subseteq j(Z)$. Then $f$ factors uniquely as
415$$X\stackrel{g}{\rightarrow}Z\stackrel{j}{\hookrightarrow}Y.$$
416\end{prop}
417\proof
418First assume $X$ and $Y$ are affine, $X=\spec A$, $Y=\spec B$,
419$Z=\spec B/I$.
420(Use exercise 3.11 to see that every closed subscheme $Z$ of
421$Y$ is of the form $\spec B/I$.)
422Let $\phi:B\rightarrow A$ be the homomorphism which induces $f$.
423Since $f(X)\subseteq Z$, the inverse image of any prime of $A$
424contains $I$. Since $A$ is reduced the intersection of all
425primes of $A$ equals $\{0\}$. Thus
426$$\ker(\phi)=\phi^{-1}(\{0\})=\phi^{-1}(\cap_{\mathrm{primes p}} p)\subseteq I$$
427so $\phi$ factors uniquely through $B/I$.
428$$B\stackrel{j^{\#}}{\rightarrow}B/I\stackrel{g^{\#}}{\hookrightarrow}A$$
429This proves the proposition when $X$ and $Y$ are affine.
430
431Now suppose $X$ is an arbitrary reduced scheme. Cover $X$ by open affines
432$X=\cup_i U_i$. For each $i$ let $g_i$ be the unique map which factors
433$f|_{U_i}$ through $Z$. By uniqueness $g_i|_{U_i\cap U_j}=g_j|_{U_i\cap U_j}$,
434so we can glue the $g_i$ to obtain a morphism $g:X\rightarrow Z$
435such that $j\circ g=f$. Now suppose both $X$ and $Y$ are arbitrary. Cover $Y$ by open affines,
436take their inverse images in $X$, perform the construction locally
437for each one, use uniqueness and glue.
438
439\noindent{\em Counterexamples.}
440
441(a) Let $A=k[x,y]/(x^2,xy)$, let $X=Y=\spec A$ and let $S=\spec k$.
442Then $Y$ is affine  hence seperable over $S$, but $X$ is not reduced.
443Let $f:X\rightarrow Y$ be the morphism induced by the identity homomorphism
444$\id: A\rightarrow A$. Let $g:X\rightarrow Y$ be the morphism induced
445by the homomorphism $\phi: A\rightarrow A: x\mapsto 0, y\mapsto y$.
446Let $U=D(y)=\spec A_y$. Then since $A_y\cong \spec k[y,y^{-1}]$,
447the localized homomorphisms agree, $\id_y=\phi_y$. Thus
448$f|_U=g|_U$. Now $X$ is irreducible since $A$ has just one
449minimal prime, namely $(x)$, so $U$ is dense in $X$. But, $f\not=g$.
450since $f^{\#}=\id\not=\phi=g^{\#}$.
451
452(b) Let $X$ be the affine line and $Y$ the affine line
453with a doubled origin both thought of as schemes over $S=\spec k$.
454Let $f_1:X\rightarrow Y$ be one of the inclusions of the affine
455line in $Y$ and let $f_2:X\rightarrow Y$ be the other one.
456Then $f_1$ and $f_2$ agree on $X$ minus the origin but not on $X$.
457
458[Reference, EGA, I.8.2.2.1.]
459
460\begin{prob}[4.4]
461Let $f:X\rightarrow Y$ be a morphism of separated schemes of finite type
462over a noetherian scheme $S$. Let $Z$ be a closed subscheme of $X$ which
463is proper over $S$. Show that $f(Z)$ is closed in $Y$, and that $f(Z)$
464with its image subscheme structure is proper over $S$.
465\end{prob}
466\proof
467First we show that since $X$, $Y$ and $Z$ are of finite type
468over $S$ and $S$ is noetherian, $X$, $Y$ and $Z$ are noetherian.
469Suppose $g:X\rightarrow S$ is the map from $X$ to $S$. Cover
470$S$ by finitely many $\spec A_i$, $A_i$ noetherian. Then for
471each $f^{-1}(\spec A_i)=\cup_j \spec B_{ij}$, with $B_{ij}$
472a finitely generated $A_i$-algebra. Since $A_i$ is noetherian
473each $B_{ij}$ is noetherian (this is the Hilbert basis theorem).
474Since $X=\cup_{ij}\spec B_{ij}$, $X$ is noetherian. One shows
475that $Y$ and $Z$ are noetherian in exactly the same way.
476
477Since the following diagram commutes 4.8(e) implies
478$f|_Z$ is proper. \diagram
479Thus $f|_Z(Z)$ is closed in $Y$.
480(I'm assuming $Z$ is an $S$-subscheme of $X$ so that
481the diagram must commute.)
482
483We now have $f(Z)\hookrightarrow Y\rightarrow S$. We must
484show the composition $f(Z)\rightarrow S$ is proper. By Corollary 4.8a the
485closed immersion $f(Z)\hookrightarrow Y$ is proper.
486We are given that the map $Y\rightarrow S$ is seperated
487and of finite type. Since the composition of seperated morphisms
488is seperated and the composition of finite type morphisms is of
489finite type, the morphism $f(Z)\rightarrow S$ is seperated and
490of finite type. The hard part is to show that it is universally closed.
491
492Since the morphism $Z\rightarrow S$ is proper it is closed
493and from above the morphism $Z\rightarrow f(Z)$ is closed so
494the morphism $f(Z)\rightarrow S$ is closed. Let $W$ be an
495any scheme over $S$. We must show that the map
496$f(Z)\times_S W\rightarrow W$ is closed.
497We have the following diagram.
498\diagram \diagram
499If we can show that $g_1$ is surjective we will be done. For then
500if $A$ is closed subset of $f(Z)\times_S W$,
501$$g_2(A)=g_3(g_1^{-1}(A)),$$
502which, since $g_3$ is closed, is also closed. (We wouldn't have
503equality in the above expression if $g_1$ weren't surjective.)
504
505In order to establish the surjectivity of $g_1$ we prove that
506the property of being a surjective morphism is preserved under
507base extension. It will then follow, since $g_1$ is a base
508extension of the surjective morphism $Z\rightarrow f(Z)$,
509that $g_1$ is surjective.
510
511\begin{prop}
512Let $X$ and $Y$ be schemes over $S$. Suppose $x\in X$ and $y\in Y$
513both lie over the same point $s\in S$. Then there exists
514$\alpha\in X\times_S Y$ such that $p_X(\alpha)=x$ and
515$p_Y(\alpha)=y$.
516\end{prop}
517\proof
518Let $g_1:\spec(k(x))\rightarrow X$ and
519$g_2:\spec(k(y))\rightarrow Y$ be the natural maps
520with $g_1((0))=x$ and $g_2((0))=y$.
521Let $Z=\spec(k(x))\times_{\spec(k(s))}\spec(k(y)) 522=\spec(k(x)\otimes_{k(s)}k(y))$, and let $\pi_1$
523be the projection to $\spec(k(x))$, $\pi_2$
524the projection to $\spec(k(y))$.
525Let $g=g_1\times_S g_2$ be the product of $g_1\circ \pi_1$
526with $g_2\circ \pi_2$. So $g:Z\rightarrow X\times_S Y$.
527See the following diagram.
528\diagram
529Since $Z$ is the spectrum of the tensor product of two
530fields over a common base field, $Z\not=\emptyset$ so
531there is some $z\in Z$.  By the definition of $g$,
532$g_1\circ\pi_1=p_x\circ g$ and
533$g_2\circ\pi_2=p_y\circ g$ so
534$x=g_1\circ\pi_1(z)=p_x\circ g(z)$ and
535$y=g_2\circ\pi_2(z)=p_y\circ g(z)$ so
536we may take $\alpha=g(z)$.
537
538\begin{prop}
539If $f:X\rightarrow Y$ is a surjective $S$-morphism then
540$f\times 1: X\times_S S' \rightarrow Y\times_S S'$ is surjective.
541\end{prop}
542\proof
543We have the following diagram.
544\diagram
545Let $y'\in Y\times_S S'$. Then
546$q(y')\in Y=f(X)$ so there is $x\in X$
547such that $f(x)=q(y')$. Then by the above proposition
548there is some $\alpha\in X\times_S S'$ such that
549$p(\alpha)=x$ and $(f\times 1)(\alpha)=y'$. Thus
550$f\times 1$ is surjective.
551
552
553\end{document}
554