����;� TeX output 1996.04.04:1001������x�������=������n
�����q�jcmr20�Alge��{brai���c��RGeom��x$etry�Hom�ew�or���k�����~ I���I.3��R#'s�6,7,8,12,14�����p�I���I.4��R#'s�2,�4��#�􍍍����i�����ffffcmr14�William���A.�St���e�bAin������ &a���JA��;}pr�:�il���4,�1996��- 􍍍�'���N� cmbx12�Prob�ٙlem��1�(3.6)����^�����@ cmti12�L��ffet������g� cmmi12�X�u)�b�e�an�inte�gr�al�scheme.� W�Show�that�the�lo�c�al�ring�����'�!",� cmsy10�O������2cmmi8��� i��of��8the�generic�p��ffoint���q��of��X�λ�is�a� eld.�drCal���l�it��K�ܞ�X�Q cmr12�(�X��)�.�Show�also�that�if����'�U��6�=��URSp�)�ec�� ���A�n�is�any�op��ffen�ane�subset�of��X���,��then��K�ܞ�(�X��)��is�isomorphic�to�the����'quotient�35 eld�of��A�.������'� U~�� cmcsc12�Pr��qoof.��W��Let�w��U�� �=��E%Sp�)�ec�� �l�A��b�)�e�an��ry�non�empt�y�o�p�)�en�an�e�su���b�!ls�:}et�of��X��.�ߒTh�en����'s�)�ince�t���h��re�clo�!lsure�of�a�gen�e� �r�2"i��Jc�p�S�oin��t�of��X���i�)�s�all�of��X��,�Yvev�e� �ry�o�p�)�en�s�:}et�m���us�[t����'con��t��rain���a�gen�e� �r�2"i��Jc�p�S�oin��t.� c�Th���us�if���7��i�)�s�a�gen�e� �r�2"i��Jc�p�S�oin��t,��t���h�en����8�2�C��U�@�.� c�Bu��9t����'�A����i�)�s�an�in��t��Eegral�dom���ain�so�(0)�i�s�t���h��re�u��9nique�gen�e� �r�2"i��Jc�p�S�oin��t�of��U�@�,�#Bwh�ence����'���˹=��X(0).� �lThi�)�s�z,sh���o��rws�t���h�e�gen�e� �r�2"i��Jc�p�S�oin��t�i�)�s�u��9nique�if�it�exi�s�[t��es.� �lSince��X�k��i�s����'in��t��Eegral��it�i�)�s�irre�S�d��ru�cib�ޔle��so�ev��re� �ry�o�p�)�en�s�:}et�in��t��Ee� �r�[s�ect��es��U�@�.���Th���us�ev��re� �ry�o�p�)�en�s�:}et����'con��t��rains�<E(0)��<�2���Sp�)�ec�� -��A��=��U�@�,�P�so��X�-ȹact��rually�con��t�ains�a�gen�e� �r�2"i��Jc�p�S�oin��t���t��=��<(0).����'F��Vurt���h��re� �rmore,���O�����������P���������԰������=������p�A�����|{Ycmr8�(0)��G$�i�)�s�t�h��re�quot�ien��t�eld�of��A�.������'�Prob�ٙlem��2�(3.7)����^��L��ffet�x��f�Ϲ:����X��S�!��Y��b�e�x�a�dominant,���generic�al���ly�nite�morph-����'ism�c�of�nite�typ��ffe�of�inte�gr�al�schemes.�!EShow�that�ther�e�is�an�op�en�dense�subset����'�U��6��UR�Y�ϥ�such�35that�the�induc��ffe�d�35morphism��f��G����2��K�cmsy8��1���{�(�U�@�)��!��U�t�is�nite.�����'�Pr��qoof.��W��Let�N��U�@n�=����Sp�)�ec�� L��B�鯹b�)�e�an�o��rp�en�an��re�su���b�!ls�:}et�of��Y���whi��Jc�h�con��t�ains�t���h�e����'gen��re��r�2"i��Jc�p�S�oin��t�of��Y��p�.��Let��V��$�=��Y�Sp�)�ec��!���A��b�)�e�an�o�p�)�en�an�e�su���b�!ls�:}et�of��f��G����2��1�� �{�(�U�@�).����'Since�d�f��c�i�)�s�of� nit��Ee�t��ryp�e��A��i�s�a� nit��Eely�gen��re� �ra���t�e�S�d��B���-alge���bra.� �Th��re�gen�e� �r�2"i��Jc����'p�S�oin��t���of��X��s�i�)�s�in��V�Q�s�ince�ev��re� �ry�o�p�)�en�s�:}et�con��t�ains�t���h�e�gen�e� �r�2"i��Jc�p�S�oin��t.� ��Let����'�'����:��B� ��!��A���b�)�e�t���h��re�h���omomorphi�sm�corre�S�sp�on��rdin��9g��t�o�t���h��re�in�d�u�ce�S�d�morphi�)�sm����'of��#an��re�s��xc�h�em�e�S�s��f��˹:�U��V��<�!��U�@�.� �RSince��#�f��"�i�)�s�domin���an��t,� w�e�kno�w�t���h�a���t��'��i�)�s��� ���1����*�x�������=�������'�inject��riv�e.� 8XTh�e��%in�d�u�ce�S�d�m���ap�on�s�[t�alks�t���h�en�giv�e�S�s�an�inclus�)�ion�of�fu��9nct�ion�����' elds�T��K�ܞ�(�Y��p�)���=��B�����(0)��1�,���!��A�����(0)���=��K�ܞ�(�X��).� wDSince�T��A��i�)�s�a� nit��Eely�gen��re� �ra���t�e�S�d��B���-����'alge���bra,� �K�ܞ�(�X��)��i�)�s�a� nit��Eely�gen��re� �ra���t�e�S�d� eld�ext�ens�)�ion�of��K�ܞ�(�Y��p�).���If�t���hi�s� eld����'ext��Eens�)�ion�p�i�s�not�of� nit��Ee�d���egree�t���h��ren��K�ܞ�(�X��)�m�us�[t�con��t��rain�an�elem�en��t�whi��Jc�h����'i�)�s��trans��xcen��rd���en��t�al�o�v�e� �r��K�ܞ�(�Y��p�).��Th���us��A��m�us�[t�con��t��rain�an�elem�en��t��t��whi��Jc�h�i�)�s����'trans��xcen��rd���en��t�al� "o�v�e� �r��B���.��OBu��9t�t���h�en�in nit��Eely�m���an�y�pr�2"im�e�S�s�of��A��lie�o�v�e� �r�(0).����'In��rd���ee�S�d,��s�)�ince��G�K�ܞ�(�X��)�i�s� nit��Eely�gen��re� �ra���t�e�S�d�o��rv�e� �r��G�K�ܞ�(�Y��p�),���K��(�X��)�i�)�s�a� nit��Ee�alge���brai��Jc����'ext��Eens�)�ion��?of��k�g �(�t�)�for�som��re� eld��k��.��hTh��ren�(s�)�ince�t���h�e�alge���brai��Jc�clo�!lsure�of�a� eld�i�)�s����'in nit��Ee),��t���h��re� �re��1are�in nit�ely�m���an��ry�irre�S�d�u�cib�ޔle�p�S�o�lynomials�in��k�g �[�t�].�ָSince��K�ܞ�(�X��)����'i�)�s�&� nit��Ee�alge���brai��Jc�o��rv�e� �r�&��k�g �(�t�)�in nit�ely�m���an��ry�of�t���h�e�S�s�:}e�m���us�[t�rem���ain�irre�d��ru�cib�ޔle�&�in����'�A�.�gfMul��9t��rip�ޔlyin�g���t���hrough�d���enomin���a���t��9or�[s�t�hi�)�s�giv��re�S�s�in nit��Eely�m���an�y�irre�S�d�u�cib�ޔle����'elem��ren��t��es� >of��A��whi��Jc�h�gen�e� �ra���t��Ee�pr�2"im�e�id���e�!lals�whi��Jc�h�lie�o�v�e� �r�(0).���Thi�)�s�w�ould����'con��tradi��Jct��vt���h��re�f�)�act�t�h��ra���t��f��u�i�)�s�gen�e� �r�2"i��Jcally� nit��Ee.� {JTh���us��K�ܞ�(�X��)�i�)�s� nit�e�o��rv�e� �r����'�K�ܞ�(�Y��p�).����8��Let�}k�x�����1����;����:�:�:��ʜ;���x�����n�� %��gen��re� �ra���t��Ee��A��as�a��B���-alge���bra.�vTh�en,��Ds�)�ince��K�ܞ�(�X��)�i�s� nit��Ee�o��rv�e� �r����'�K�ܞ�(�Y��p�)��%e�!lac��rh��x�����i�� ��sa���t�i�)�s e�S�s�som�e�p�S�o�ޔlynomial��f�����i�� ��wit���h�co�)�ecien��t��es�in��B���.�tWLet��b��b�e����'t���h��re���pro�S�d�u�ct�of�all�of�t���h�e�le�!ladin��9g�co�)�ecien��t��es�of�t���h�e�p�S�o�ޔlynomials��f�����i��dڹ.�%�If��b��i�)�s�a����'u��9nit��Oin��B�U�t���h��ren�so�are�all�of�t�h��re�le�!ladin��9g�co�)�ecien��t��es�of�t�h��re��f�����i��I)�so�w�e�can�divid���e����'b��ry�n�t���h�em�an�d�h�ence�as�!lsu��9m�e�t���h�e��f�����i���e�are�moni��Jc�p�S�o�ޔlynomials.�ĈIf�not,���rep�lace��B����'�b��ry��et���h�e�lo�S�caliza���t�ion��B�����b��A�an�d�rep�)�e�!la���t�t���h�e�wh���o�ޔle�argu��9m�en��t�wit���h��U����=��l�Sp�)�ec�� ���B�����b��"ܹ.�bIn����'e�S�it���h��re� �r��cas�:}e�w�e�m���ay�as�!lsu��9m�e�t���h�e��f�����i��y��are�moni��Jc�f�2"rom�whi�c��rh�w�e�conclud���e�t���h�a���t��A����'�i�)�s���a� nit��Eely�gen��re� �ra���t�e�S�d�in��t�egral�ext�ens�)�ion�of��B���,��Tt���h�us����A��i�s�a� nit��Ee�mo�S�d��rule�o�v�e� �r����'�B���.����8��No��rw�� let��U���=����Sp�)�ec��! �B�d�b�)�e�an�o�p�)�en�an�e�su���b�!ls�:}et�of��Y�ez�whi��Jc�h�con��t�ains�t���h�e����'gen��re� �r�2"i��Jc���p�S�oin��t.�e�Since��f�A��i�)�s�of� nit��Ee�t�yp�)�e�w�e�m���ay�wr�2"it��Ee��f��G����2��1�� �{�(�U�@�)�"�=��[�����i�=1�;�:::��\;n�� 7��V�����i�����'�wh��re� �re���e�!lac�h��V�����i���ƹ=��k�Sp�)�ec�� �3�A�����i��\ɹi�)�s� nit��Eely�gen�e� �ra���t��Ee�S�d��B���-alge���bra.��By�t���h�e�w�or��ek�a�b�S�o�v�e����'w��re��.m���ay�shr�2"ink��U��so�t���h�a���t�w�e�can�as�!lsu��9m�e�e�!lac�h��A�����i��3�i�)�s�act�ually�a� nit��Eely�gen�e� �ra���t��Ee�S�d����'�B���-mo�S�d��rule.��6T��Vo��comp�ޔlet��Ee�t���h�e�pro�S�of�w�e�n�ee�S�d�t��9o�sh���o�w�t���h�a���t�t���h�e� �re�i�)�s�a�di�s�[t��rin��9gui�s�:}e�S�d����'o��rp�)�en�=�su���b�!ls�:}et�of��U�~ݹ(whi��Jc�h�n�ece�S�s�!lsar�2"ily�con��t�ains�t���h�e�gen�e� �r�2"i��Jc�p�S�oin��t)�wh���o�!ls�:}e�in�v�e� �r�[s�:}e����'im���age�ɿu��9n��rd���e� �r��f���i�)�s�an�o�p�)�en�an�e�whi��Jc�h�i�)�s�t���h�e�sp�)�ectru��9m�of�a� nit��Eely�gen�e� �ra���t��Ee�S�d����'�B���-mo�S�d��rule.� uLet��_�'�����i�� ���:�M��B���!��A�����i�� 9�b�)�e�t���h��re�h���omomorphi�sm�whi��Jc��rh�in�d�u�ce�S�s��f�G��j�����V��8:�;�cmmi6�i������.����'Since��D�f�,C�i�)�s�domin���an��t,�"�e�!lac��rh��'�����i��I �i�s�an�inject��rion.�%�Th���us�w�e�m���ay��V,�"�for�not�a���t�ion���al����'con��rv�enience,��id���en��t�ify���B����wit���h�it's�im���age�S�s�in�t�h��re�v��X�ar�2"ious��A�����i��dڹ.���Th�e�morphi�)�sm��f����'�i�)�s��t���h��ren�in�d�u�ce�S�d�b�y�t���h�e�inclus�)�ion�m���ap��B��X,���!�UR�A�����i��dڹ.����8��Since�zX�\�����i�=1�;�:::��\;n�� 7��V�����i���2�i�)�s�o��rp�en�w��re�can,��Dfor�e�!lac�h��i�,��D1�I����i����n� |���1,� n��rd�zX� �����i�����2�I��A�����i�����'�su��rc�h� �t���h�a���t��Sp�)�ec�� l�(�A�����i��dڹ)����� ��8:�i��� ѭ����\�����i�=1�;�:::��\;n�� 7��V�����i���.��Since��A�����i�����i�)�s�a� nit��Ee�mo�S�d��rule�o�v�e� �r��B����t���h�e� �re��� ���2���� �x�������=�������'�i�)�s��an�in��t��Eegral�equa���t��rion������/� ��� �����n���ڍi���f��+����b�����n��1����� ��� �����n��1���ڍ�i���C�+���������UN�+��b�����0��V�=�UR0����'wh��re� �re��ze�!lac�h��b�����j�� Nu�2��k�B�r��an�d��b�����0�� �o�6�=��k0.��VLet��b��=���������u cmex10�Q���Z4���i�=1�;�:::��\;n��1��:n��b�����i��dڹ.��VTh��ren�an�y�pr�2"im�e�of�����'�A�����i����whi��Jc��rh���con��t�ains�� �����i����m���us�[t�also�con��t�ain��b�����i����an�d�h�ence��b�.���Th�e� �refore��Sp�)�ec�� ��(�A�����i��dڹ)�����b��x.������'�Sp�)�ec��CMG(�A�����i��dڹ)����� �����.��xW��Ve��pt���h��ren�h�a�v�e�t���h�a���t��g��n9���2��1�� ʵ�(�Sp�)�ec�� MG�B�����b��"ܹ)�UR=��[�����i�=1�;�:::��\;n��1���*f�Sp�)�ec��Fa�(�A�����i��dڹ)�����b���[��Sp�)�ec�� MG(�A�����n���P�)�����b��x.�=�����'Sp�)�ec��CMG(�A�����n���P�)�����b��"ܹ.� �Th��re�fla���t��2t��Ee� �r�equalit�y�fo�ޔllo�ws�s�)�ince,���for�1�UR���i����n������1,��Sp�)�ec�� ��(�A�����i��dڹ)�����b��x.�����'\�����i�=1�;�:::��\;n�� 7��V�����i��)��\�Ĩ�f��G����2��1�� �{�(�U�����b��"ܹ)��Q���f��G����2��1���(�U�����b��"ܹ)�Ĩ�\��V�����n�� >��=���QSp�)�ec�� �(�A�����n���P�)�����b���.��oW��Ve��t���h�us�s�:}ee�t�h��ra���t��U�����b��3��i�)�s�a����'d���ens�:}e���o��rp�)�en�su���b�!ls�et�of��Y�Ea�su��rc�h���t���h�a���t�t���h�e�morphi�)�sm��f��5�:��6�f��G����2��1�� �{�(�U�����b��"ܹ)��!��U�����b���͹i�)�s� nit��Ee����'(s�)�ince�� �f��G����2��1�� �{�(�U�����b��"ܹ)�i�s�t���h��re�an�e�s��xc�h�em�e��Sp�)�ec��!�P(�A�����n���P�)�����b�� ��whi��Jc�h�a� nit��Ee��B�����b��"ܹ-mo�S�d�ule).����'Thi�)�s��comp�ޔlet��Ee�S�s�t���h��re�pro�of.�������'�Prob�ٙlem��3�(3.8)����^��Normalization.�"eL��ffet� ��X� �b�e�an�inte�gr�al�scheme.�"eF���or�e�ach����'op��ffen�� ane�subset��U���=��ESp�)�ec��"�G�A�,�.�let����x���]�~������A���a)�b�e�the�inte�gr�al�closur�e�of��A��in�its����'quotient��@ eld,��>and�let����x�����~������U���L[�=��URSp�)�ec�����x��"��~����� ���A���(q��.�>mShow�that�one�c��ffan�glue�the�schemes����x�����~������U����I�to����'obtain�zAa�normal�inte��ffgr�al�zAscheme����x����~������X���,0�,��?c��ffal���le�d�zAthe�normalization�of��X���.�(�Show�also����'that�ݦther��ffe�is�a�morphism����x��AJ�~������X��� ��!����X���,�Chaving�the�fol���lowing�universal�pr�op�erty:����'for��revery�normal�inte��ffgr�al��rscheme��Z�ܞ�,�݂and�for�every�dominant�morphism��f����:����'�Z����!��[�X���,����f��/�factors�v0uniquely�thr��ffough����x���Թ~������X���( �.�/ZIf��X�g��is�of� nite�typ�e�over�a� eld��k�g �,����'then�35the�morphism����x���ٹ~������X���:v�!�UR�X�$��is�a�nite�morphism.�����'�Pr��qoof.�����8��W��Ve�1vr�[s�t�v��re��r�2"ify�t���h�e�u��9niv�e��r�[sal�pro�p�)�e��rt�y�for�an�e�s��xc�h�em�e�S�s�wh�e��re�it�i�)�s�cle�!lar����'wh��ra���t��t���h�e�norm���aliza���t�ion�i�)�s.�������'�Pro��p�o�&fs�0it�ion��1���|&	�Supp��ffose�C�X��	�=���Sp�)�ec��!=��A�,����x���j�~�����H��X����;�=���Sp�)�ec�����x��$W ~������A���/ ��its�normalization�and����'�Z�2b�=��U�Sp�)�ec�� � �B�X��is���a�normal�inte��ffgr�al���scheme.��Then�every�dominant�morphism����'�f��Q�:�UR�Z�1��!��X�$��factors�35uniquely�thr��ffough����x���ٹ~������X����$�.�����'�Pr��qoof.��W��Let�{�'�K�:��A��!��B��b�)�e�t���h��re�h���omomorphi�sm�corre�S�sp�on��rdin��9g�t�o��f�G��.��Th��ren,����'s�)�ince��f�P�i�s�domin���an��t,�5g�'��i�s�inject��riv�e.��ZIn�d���ee�S�d,�5g�f�G��(�Z�ܞ�)�UR���V��p�(�k��re� �r���'(�'�))�so�if��k��re� �r���>(�'�)��6�=�0����'t���h��ren����f�G��(�Z�ܞ�)�do�)�e�S�sn't�m�eet�t���h�e�non�empt�y�o�p�)�en�s�:}et��X�=���L<�V��p�(�k�e� �r���'(�'�))�(non�empt�y����'s�)�ince� �A��i�s�a�dom���ain�so�(0)�i�s�pr�2"im��re�so�(0)�bE�2��X�n&��|��V��p�(�k�e� �r���'(�'�)).��So� t���h�e� �re�i�)�s����'a�ǫu��9nique�ext��Eens�)�ion�of��'��t�o�a�h���omomorphi�)�sm�f�2"rom����x����~������A���d�!�̓�B���.���In��rd���ee�S�d,���d�e n�e�����'���&�fe�v�]ڍ�'���.�v�(�a=b�)�UR=��'�(�a�)�='�(�b�).�"�Th��ren��}s�)�ince��'��i�s�inject��riv�e��}t���hi�s�i�s�w��rell-d���e n�e�S�d��}s�ince��b�UR�6�=�0����'imp�ޔlie�S�s�%�'�(�b�)��<�6�=�0.��VF��Vurt���h��re� �rmore,� Dif�� ��^�i�)�s�anot�h��re� �r�p�S�o�!ls�s�)�ib�ޔle�ext��Eens�ion�of��'��t��9o����x��,b~������A��� ��,����'t���h��ren��u� �n9�(�b�)� ��(�a=b�)�']=�� �n9�(�a�)�=��'�(�a�)�=��'�(�b�)����&�fe�v�]ڍ�'����v�(�a=b�)�=�� ��(�b�)����&�fe�v�]ڍ�'����v�(�a=b�)��uso�cancellin��9g����'sh���o��rws�J�t���h�a���t�� �n9�(�a=b�)��#=�����&�fe�v�]ڍ�'��� ���(�a=b�).�Y�Th���us�t�h��re� �re�i�)�s�a�u��9nique�morphi�sm��f��G����2�0��[�:��#�Z����!����x��\ǹ~������X����� ����3����!ؠx�������=�������'�wh���o�!ls�:}e�(Acomp�S�o�s�)�it��rion�wit���h�t�h��re�n���a���t�ural�m���ap����x����~������X���/��!�UR�X�Ĺequals��f�G��.��(Th�e�n���a���t�ural�m���ap�����'i�)�s��in��rd�u�ce�S�d�b�y�t���h�e�inclus�)�ion��A�UR,���!����x��n��~������A���$;�.)����8��No��rw�O�w�e�pro�v�e�t���h�e�u��9niv�e��r�[sal�pro�p�)�e��rt�y�h���o�ޔlds�wh�en��Z�,D�i�)�s�an�arbitrary�norm���al����'in��t��Eegral��s��xc��rh�em�e�bu��9t��X��+�i�)�s�s�[t�ill�an�e.�������'�Pro��p�o�&fs�0it�ion��2���|&	�L��ffet��m�X�Fʹ=��UGSp�)�ec�� ���A�,����x��C��~��������X����1�=��UGSp�)�ec�����x��#��~������A���..��its�normalization�and��Z���b��ffe����'any��normal�inte��ffgr�al��scheme.��Then�every�dominant�morphism��f�D4�:��5�Z����!��X����'�factors�35uniquely�thr��ffough����x���ٹ~������X����$�.�����'�Pr��qoof.��W��Let�L��U�����i���d�b�)�e�a�co��rv�e� �r�L�of��Z�)(�b��ry�o�p�)�en�an�e�S�s.�+If��U��6�=�UR�U�����i���d�i�)�s�an�y��U�����i���d�t���h�en��U��n�i�)�s����'a��norm���al�in��t��Eegral�an��re�s��xc�h�em�e�an�d��f�G��j�����U�� �i�)�s�a�domin���an��t�morphi�sm.��In��rd���ee�S�d,�m�U�(��i�s����'d���ens�:}e� win��Z���s�)�ince��Z��i�)�s�irre�S�d��ru�cib�ޔle� w(Pro�p�o�!ls�)�it�ion� w3.1).��%Th���us��f��G����2��1�� �{�(����щfeq�� 3/��f�G��(�U�@�)���q�)�UR��������fe ;ɟ fb��U����m�=��Z����'�so����f��G����2��1�� �{�(����щfeq�� 3/��f�G��(�U�@�)���q�)�UR=��Z��9�so�����щfeq�� 3/��f�G��(�U�@�)��� ~����f�G��(�Z�ܞ�)�so�����щfeq�� 3/��f��(�U�@�)��� ~�=��UR���щfe �� 3/��f��(�Z�ܞ�)��� �E=�UR�X��.�'�W��Ve�can�t���h�us�ap��rp�ޔly����'t���h��re�s a�b�S�o�v�e�pro�p�S�o�!ls�)�it�ion�t��9o� n�d�a�u��9nique�morphi�)�sm��g�����i�� V�:��5�U�����i���!����x�� Tٹ~������X���/�su��rc�h�s t���h�a���t����'� ��6��L��g�����i��P�=��&�f�G��j�����U�� �W�wh��re� �re��� �Y_�:����x��N�~������X����;�!��X��.�&By�u��9niquen��re�S�s�!ls�on�a�co�v�e� �r�of��U�����i�����\�L��U�����j�� ? �b�y����'o��rp�)�en���an�e�S�s,����g�����i��d��j�����U��8:�i��,r�\�U��8:�j��� ��=�UR�g�����j��f �j�����U��8:�i��,r�\�U��8:�j����=�.�$�W��Ve�can�t���h�us�glue�t�h��re�morphi�)�sm��g�����i��عt��9o�obt�ain��/��'a�v	morphi�)�sm��g��ȹ:�B��Z�-�!����x���3�~������X���j��su��rc�h�v	t���h�a���t�� �w���	��g��ȹ=�B��f�G��.��Th�e�morphi�)�sm��g��B�i�s�evid���en��t���ly����'u��9nique.����8��No��rw�[�w�e�can�d���en�e�t���h�e�id���en��t�ica���t�ion�m���ap�!ls��'�����ij��J�.�	2Let��f�U�����i���,�=��URSp�)�ec�����A�����i��d��g��b�)�e�t���h�e����'o��rp�)�en�yan�e�su���b�!ls�:}et��es�of��X��.��Let��f����x��u�~�����U�����i�����x�=��G�Sp�)�ec�����x��#�=~����� ��A�����i����,���g��b�)�e�t�h��re�as�!lso�S�cia���t��Ee�d�norm���aliza-����'t��rions.��Let�c� �����i���:����x����~������
�U�����i�������!��
�U�����i��z=�b�)�e�t���h�e�morphi�)�sm�in�d�u�ce�S�d�b�y�t���h�e�inclus�)�ion��A�����i����,���!����x���J�~������
�A�����i�����й.����'Let���W�����ij��N��=��� ������n9��1���ԍ�i���ʵ�(�U�����i�����\�V��U�����j��f
�).�/}Th��ren��W�����ij��2k�i�)�s�an�o�p�)�en�su���b�!ls�:}et�of�a�norm���al�s��xc�h�em�e����'h��rence��}norm���al.�+'� �����i���,�:�UR�W�����ij��
�6�!��U�����i���l�\�V��U�����j���\���U�����j��'��so�t���h��re��re�i�)�s�a�u��9nique�morphi�sm�whi��Jc��rh����'w��re���call��'�����ij��
���:�s��W�����ij���!����x��u;�~������U�����j�����A�su��rc�h���t���h�a���t�� �����j��f
�j�����W��8:�j�Yi����%�����'�����ij��
���=�s�� �����i��d��j�����W��8:�ij���O�.�n�By�u��9niquen�e�S�s�!ls�w�e�s�:}ee����'t���h��ra���t��I�'�����ij��������'�����j�vi��
�6�=�UR�id��so��'�����ij���=�UR�'�������1���ԍ�j�vi���\|�.��kF��Vurt���h��re��rmore,�.\for�e�!lac�h��i;���j��;�k�g�,�.\�'�����ij��J�(�W�����ij����\����W�����ik��l�)�UR=����'� ������n9��1���ԍ�j���ʵ�(� �����i��dڹ(�W�����ij��	T�\��p�W�����ik��l�))�UR=�� ������n9��1���ԍ�j����(� �����i��dڹ(�W�����ij��J�))��p�\�� ������n9��1���ԍ�j����(� �����i��dڹ(�W�����ik��l�))�UR=��W�����j�vi��	T�\��p�W�����j�vk��		��.�/By�s�u��9nique-����'n��re�S�s�!ls,���'�����j�vk���/�����'�����ij��
���=�a��'�����ik���N�on����W�����ij��	�w�\��W�����ik��l�.�N�So�b��ry�t���h�e�glue�S�in��9g�lemm���a�(Exe��rci�)�s�:}e�2.12)����'w��re�rm���ay�glue�t��9o�obt�ain�a�s��xc�h�em�e����x��ղ~������X���#��.��W��Ve�can�also�glue�t���h�e�morphi�)�sms�� �����i����t��9o����'obt��rain��a�morphi�)�sm�� �Ë�:����x����~�����UR�X���\��!�UR�X��.����8��Next,�
�w��re��m���us�[t�v�e��r�2"ify�t���h�a���t�t���h�e�u��9niv�e��r�[sal�pro�p�)�e��rt�y�h���o�ޔlds�in�gen�e��ral.��7Let��Z����'�b�)�e�� an�arbitrary�norm���al�in��t��Eegral�s��xc��rh�em�e,�ξan�d�� let��X����an��rd����x���~������X����/�b�e�as�a��rb�S�o�v�e�� an�d����'sup��rp�S�o�!ls�:}e�U~�f��:����Z����!��X�G�i�)�s�a�morphi�sm.�	yaCo��rv�e��r��X�G�b�)�e�o�p�)�en�an�e�S�s��U�����i��dڹ.�	yaTh�en����'for�^�e�!lac��rh�morphi�)�sm��f�G��j����f���ǟ����q�%cmsy6���Aa�cmr6�1��
Ӈ�(�U��8:�i��,r�)��$Px�w�e�can�ap�p�ޔly�t���h�e�a�b�S�o�v�e�pro�p�S�o�!ls�)�it�ion�t��9o� n�d�a����'morphi�)�sm���g�����i���ڹsu��rc�h�t���h�a���t�� ��T���g�����i���J�=�_p�f�G��j����f���ǟ�����1�� Ӈ�(�U��8:�i��,r�)�� ��.� �By�u��9niquen�e�S�s�!ls�w�e�can�glue�t���h�e�S�s�:}e��=��'morphi�)�sm��t��9o�obt��rain�t���h�e�require�S�d�morphi�)�sm��g�Ë�:�UR�Z�1��!����x�����~������X���A�.����8��No��rw���w�e�c�h�ec�k�t���h�a���t����x���k~������X����}�i�)�s�a�norm���al�in��t��Eegral�s��xc�h�em�e.� �Not��Ee� r�[s�t�t���h��ra���t�e�!lac�h����x��V�~������U�����i�������'�i�)�s���t���h��re�sp�ectru��9m�of�an�in��t��Eegrally�clo�!ls�:}e�S�d�dom���ain�an��rd�i�s�h��rence�a�norm���al�in��t��Eegral����'s��xc��rh�em�e��e(s�)�ince�t���h��re�lo�S�caliza���t�ion�of�an�in��t��Eegrally�clo�!ls�:}e�S�d�dom���ain�i�)�s�in�t��Eegrally��� ���4����5;�x�������=�������'�clo�!ls�:}e�S�d).�U�Let��8�x�e��2����x���=�~������X�����.�Th��ren��8�x��i�)�s�con��t�ain�e�S�d�in�som�e����x���~������U�����i����S��.�U�Bu��9t�t���h�e�lo�S�cal�r�2"in��9g�of��x�����'�in����x��i�~�����H�X�����i�)�s�Ht���h��re�sam�e�as�t���h�e�lo�S�cal�r�2"in��9g�of��x��in����x���*~������U�����i����lO�whi��Jc�h�i�)�s�in��t��Eegrally�clo�!ls�:}e�S�d.���Thi�s����'sh���o��rws��t���h�a���t����x��NL~������X����?�i�)�s�norm���al.����8��Since��;�X�龹i�)�s�irre�S�d��ru�cib�ޔle,���ev�e� �ry��;�U�����i��]�in��t��Ee�r�[s�:}ect��es�ev��re�ry��U�����j��f �.�a�Th���us�ev��re�ry����x��� ~������U�����i����P5�in��t��Ee�r-����'s�:}ect��es���ev��re� �ry����x���7~������U�����j�����i�aft��Ee�r�glue�S�in��9g.�%<Since�e�!lac��rh����x���7~������U�����j�����i�i�)�s�irre�d��ru�cib�ޔle���an�d�t���h�ey�all�o�v�e� �rlap����'t���hi�)�s��]imp�ޔlie�S�s����x��~������X�����i�s�irre�S�d��ru�cib�ޔle.���In�d���ee�d,�� if����x��~������]�X��� ֹ=����A�1��[��B�Lc�wit���h��]�A��an��rd��B��clo�!ls�:}e�S�d,����'t���h��ren��eev�e� �ry����x���G~������U�����i�������i�)�s�e�S�it���h�e� �r�comp�ޔlet��Eely�con��t�ain�e�S�d�in��A��or�in��B���.��If�t���h�ey�are�not����'all�con��t��rain�e�S�d�in�on�e�of��A��or��B�� �t���h�en�w�e�can� n�d�an�o�p�)�en�su���b�!ls�:}et��U�H�con��t�ain�e�S�d����'in��s�A��an��rd�an�o�p�)�en�su���b�!ls�:}et��V�h�con��t�ain�e�S�d�in��B�gy�bu��9t�not�con��t�ain�e�S�d�in��A�.��BTh�en����'�V��¹=�UR(�U����\�G��V��p�)��[��(�U��@���2�c���@�\��V��)�UR=�(�A�G��\��V��)��[��(�U��@���2�c���@�\��V��)��Mwhi��Jc��rh�expre�S�s�!ls�:}e�s��M�V�V��as�a�u��9nion����'of�t��rw�o�pro�p�)�e� �r�clo�!ls�:}e�S�d�su���b�s�:}et��es�of��V��p�.���A�� �\��V����i�)�s�a�pro��rp�e� �r�su���b�!ls�:}et�of��V����s�ince��V����i�s����'not��Pcon��t��rain�e�S�d�in��A��an�d��U��@���2�c��F��\�ד�V� ��i�)�s�a�pro�p�)�e� �r�su���b�!ls�:}et�of��V� ��s�ince��U�w�\�ד�V����6�=�UR�;�.�mThi�s����'con��tradi��Jct��es���t���h��re�f�)�act�t�h��ra���t��V��5�i�)�s�irre�S�d�u�cib�ޔle.�K6Th���us����x��Ti~������X���m�=�_��A��or����x��Ti~������X����=�_��B��˹wh��rence����x��Ti~������X������'�i�)�s��irre�S�d��ru�cib�ޔle.����8��No��rw���w�e�c�h�ec�k�t���h�a���t�t���h�e�s�[tru�ct�ure�sh�e�!laf�h�as�no�nilp�S�ot��Een��t��es.��3Let��U�?��b�)�e�an�o�p�)�en����'su���b�!ls�:}et�@Iof����x����~������X���2��an��rd�sup�p�S�o�!ls�:}e��f�/�2��O��;U��d�~�����X��� ��(�U�@�)�i�)�s�nilp�ot��Een��t.�9�Th��ren�s�)�ince��f��H�i�s�nonze� �ro,����'t���h��re� �re��i�)�s�som�e�p�S�oin��t��x�UR�2����x�����~������X������so��t���h�a���t�t���h�e�s�[t�alk��f�����x�� 2��of��f�1��a���t��x��in�t���h�e�lo�S�cal�r�2"in��9g��O��;U��d�~�����X������'�i�)�s�x�nonze� �ro�an��rd�nilp�S�ot��Een��t�(us�:}e�sh�e�!laf�axiom�(iii)�an�d�t���h�e�d���e nit�ion�of��O��;U��d�~�����X��� ��.)��Let�������x��)��~�����'�U�����i����6T��b�)�e���som��re����x����~������U�����i����Io�whi��Jc�h�con��t�ains��x�.�WoTh�en�t���h�e�lo�S�cal�r�2"in��9g�a���t��x��i�)�s�a�lo�caliza���t��rion�of����'t���h��re��Hin��t��Eegral�dom���ain����x���,~������A�����i����4S�so�it�can't�con�t��rain�an�y�nilp�S�ot��Een��t��es.���Th���us�t�h��re�s��xc�h�em�e�������x��*c�~�����'�X���5���i�)�s��re�S�d��ru�ce�d.����8��No��rw��xw�e�c�h�ec�k�t���h�a���t�if��X����i�)�s�of� nit��Ee�t�yp�)�e�o�v�e� �r�a� eld��k�g �,���t���h�en�t���h�e�morphi�)�sm����'�f��˹:����x�� p~��������X�����!����X�:��i�)�s�Ia� nit��Ee�morphi�sm.� T,Th��re��U�����i����form�an�o�p�)�en�co�v�e� �r�of��X�:��an�d����'�f��G����2��1�� �{�(�U�����i��dڹ)��t=��Sp�)�ec�����x��#D�~����� +��A�����i����0���i�)�s�;9an��re�for�e�!lac�h��i�,�O]so�w�e�jus�[t�n�ee�S�d�t��9o�c�h�ec�k�t���h�a���t����x��Tv~������A�����i�����5�i�)�s�a����' nit��Ee��mo�S�d��rule�o�v�e� �r��A�����i��dڹ.�8�Thi�)�s�fo�ޔllo�ws�f�2"rom�Th�eorem�3.9A�of�c�h�apt��Ee� �r�I.�������'�Prob�ٙlem��4�(3.12)���� ��Close��ffd�35Subschemes�of���Pro�� j�� �J�S����.����8��(a)��TL��ffet��'��޹:��S�U��!��T���b�e��Ta�surje�ctive�homomorphism�of�gr�ade�d�rings,�[pr�e-����'serving�o�de��ffgr�e�es.� LShow�that�the�op�en�set��U����of�(Ex.� L2.14)�is�e�qual�to���Pro�� j�� ���T����,����'and�35the�morphism��f��Q�:��URPro�� j�� �g�T���!��UR�Pro�� j���S�� �is�35a�close��ffd�immersion.����8��(b)��vIf��I�F���UR�S�\M�is�a�homo��ffgene�ous��vide�al,��take��T���=�UR�S� �=I����and�let��Y�E��b�e�the�close�d����'subscheme���of��X�b��=��qPro�� j��!��S����de ne��ffd�as�the�image�of�the�close�d�immersion�����'�Pro�� j��BR�S� �=I�f�!�(��X���.� ��Show���that�di er��ffent�homo�gene�ous�ide�als�c�an�give�rise�to����'the���same�close��ffd�subscheme.���F���or�example,� let��d�����0�� e��b�e�an�inte�ger,� and�let��I�����2�0��醹=�����'�����L���2 t���d��d�� q�0���H"��I�����d��ߨ�.�fiShow�35that��I�$��and��I�����2�0�����determine�the�same�close��ffd�subscheme.�����'�Pr��qoof.��W��(a)�PjSince��'��i�)�s�grad���e�S�d�an��rd�surject�iv�e,�i��'�(�S�����+��x�)��=��T�����+��l�f�2"rom�Pjwhi��Jc�h�it�i�)�s����'imm��re�S�dia���t��Ee��t���h�a�t���U��6�=��URPro��j���g�T��ƹ.��By�t���h��re�r�[s�t��i�)�somorphi�sm�t���h��reorem��T�����P��������԰����=��������S��=�����k�e��r���%(�'�)������5����M��x�������=�������'�so��1�f�G��(�Pro��j��R�T��ƹ)���=��f��(�Pro��j��R�S��=�����k��re��r���%(�'�))�=��V��p�(�k��re��r���'(�'�))��1whi��Jc��rh�i�)�s�a�clo�!ls�:}e�S�d�su���b�s�:}et�of������'Pro��j��BR�S��׹.�
��(Thi�)�s��\i�s�jus�[t�t���h��re�f�act�t���h��ra���t�t�h��re��re�i�)�s�a�on�e�t��9o�on�e�corre�S�sp�on��rd���ence����'b�)�et��rw�een��h���omogen�eous�id���e�!lals�of��S��=�����k�e��r���%(�'�)�an�d�h���omogen�eous�id���e�!lals�of��S��whi��Jc�h����'con��t��rain���k�e��r��ʬ(�'�).)��wTh�e��m���ap�on�t���h��re�s�[t�alk�corre�S�sp�on�din��9g��t�o�a�p�S�oin��t��x����2���Pro��j�����T����'�i�)�s�f:t���h��re�m���ap��S����(�'�������1��	���(�x�))��&%8�!�'��T�����(�x�)��K��in�d�u�ce�S�d�b�y��'�.���Thi�)�s�m���ap�i�s�surject��riv�e�f:s�ince��'��i�s����'surject��riv�e.�8�Th���us��t�h��re�in�d�u�ce�S�d�m���ap�on�sh�e�!la�v�e�S�s�i�)�s�surject�iv�e.����8��(b)�)�Let��'���:��S��=I�����2�0�����!��S�=I�d�b�)�e�)�t���h��re�n���a���t�ural�pro��ject�ion�h���omomorphi�)�sm.���(Thi�s����'m���ak��re�S�s��ps�:}ens�e�b�)�eca��2us�e��S��=I���i�)�s�a�quot��rien��t�of��S�=I�����2�0�����.��xIn��rd���ee�S�d,��H�S�=I�Fչ=�UR(�S�=I�����2�0���)�=���������L���
ɹi�)�s�t���h�e����'id���en��t��rit�y�1*for��d�4����d�����0����.�eSo�1*b��ry�(Exe��rci�)�s�:}e�2.14c)��'��in�d�u�ce�S�s�an�i�)�somorphi�sm����'�f��Q�:��URPro��j���g�S��=I�F��!��UR�Pro��j���S�=I�����2�0�����.�Since��(t���hi�)�s�i�s�a�morphi�sm�o��rv�e��r���(Pro��j���=�S�C��(t���h�e��(corre�S�s-����'p�S�on��rdin��9g�
ftr�2"ian�gle�of�h���omomorphi�)�sms�comm���u�t��Ee�S�s)�it�fo�ޔllo��rws�t���h�a���t��I���an�d��I�����2�0���"�giv�e����'r�2"i�)�s�:}e��t��9o�t���h��re�sam�e�clo�!ls�:}e�S�d�su���b�s��xc��rh�em�e.�������'�Prob�ٙlem��5�(3.14)������If��X���is�a�scheme�of�nite�typ��ffe�over�a�eld,�M�show�that����'the��>close��ffd�p�oints�of��X����ar�e�dense.�΃Give�an�example�to�show�that�this�is�not����'true�35for�arbitr��ffary�schemes.�����'�Pr��qoof.��W��Since�Z*�X�K��i�)�s�of�nit��Ee�t��ryp�e�o��rv�e��r�Z*�k��G�w�e�can�co�v�e��r��X�K��wit���h�an�e�o�p�)�en�s�:}et��es����'�U�����i���0�=��KVSp�)�ec�� ���A�����i����wh��re��re�{1e�!lac�h��A�����i����i�)�s�a�nit��Eely�gen�e��ra���t��Ee�S�d��k�g�-alge���bra.��{Let��U���b�)�e�an����'o��rp�)�en�=Usu���b�!ls�:}et�of��X��.�0�W��Ve�m�us�[t�sh���o��rw�t�h��ra���t��U�~9�con��t�ains�a�clo�!ls�:}e�S�d�p�oin��t.�0�Since�t���h��re����'�U�����i���ιco��rv�e��r���X��,�(G�U�\عm���us�[t�in��t��Ee�r�[s�:}ect�som��re��U�����i��dڹ.���Th�en��U�
�\��8�U�����i���ιcon��t�ains�a�di�)�s�[t�in��9gui�s�:}e�S�d����'o��rp�)�en�b>su���b�!ls�:}et�of��U�����i��dڹ.���So,��$t��9o�sh���o�w�t���h�a���t�ev�e� �ry�o�p�)�en�s�:}et�con��t�ains�a�clo�!ls�:}e�S�d�p�oin��t,����'it�OSsuce�S�s�t��9o�sh���o��rw�t���h�a���t�ev�e� �ry�non�empt�y�di�)�s�[t�in��9gui�s�:}e�S�d�OSo�p�en�OSsu���b�!ls�:}et�of�e�ac��rh��U�����i�����'�con��t��rains�b�a�clo�!ls�:}e�S�d�p�oin��t��es�of��X��.���Since�a�di�)�s�[t��rin��9gui�sh�e�S�d�b�o�p�en�b�su���b�!ls�:}et�(�U�����i��dڹ)�����x�� ���of�a����'�U�����i��,�i�)�s��Ralso�t���h��re�sp�ectru��9m�of�a� nit��Eely�gen��re� �ra���t�e�S�d��k�g �-alge���bra��Sp�)�ec�� �(�A�����i��dڹ)�����x�� �9�w��re�can����'jus�[t���add�it�t��9o�our�co�ޔllect��rion��f�U�����i��d��g�.�+1Th�e�prob�ޔlem�t���h�us���re�S�d�u�ce�s���t��9o�sh���o�win��9g�t���h�a���t����'e�!lac��rh���U�����i��O��con��t�ains�a�clo�!ls�:}e�S�d�p�oin��t.������'�Pro��p�o�&fs�0it�ion��3���|& �With���the�notation�as�ab��ffove,�׫if��x�H��2��U�����i����is���close�d�in��U�����i����(her�e����'�U�����i����has�35the�subsp��ffac�e�35top�olo�gy)�then��x��is�close�d�in��X���.�����'�Pr��qoof.��W��Sup��rp�S�o�!ls�:}e����x��y�2��U�����j��f �.�~�Th�e� �re���i�)�s�a�n���a���t�ural�inject�ion��U�����i�����\�.��U�����j�� ��,���!��y�U�����j��f �.�~�Let�����'Sp�)�ec��CMG(�B�����i��dڹ)�����f�� �4�b�)�e�Fa�di�s�[t��rin��9gui�sh�e�S�d�Fo�p�en�Fsu���b�!ls�:}et�of��U�����i����con��t��rain�e�S�d�Fin��U�����i��M��\����U�����j��� �whi��Jc��rh����'con��t��rains����x�.�l�Th�en�w�e�h�a�v�e�a�morphi�)�sm��Sp�ec��!I%(�B�����i��dڹ)�����f�� �{�,���!�&\�U�����j�� �f�=��Sp�)�ec��!s��B�����j��f �.�l�W��Ve����'t���h�us��Uget�a�r�2"in��9g�h���omomorphi�)�sm��'�k�:��B�����j�����!��(�B�����i��dڹ)�����f�� t�of��UJacob�!lson�r�in��9gs.�#�Since�it����'i�)�s���in��rd�u�ce�S�d�b�y�a�re�S�s�[tr�2"i��Jct�ion�of�t���h�e�id���en��t�it�y�m���ap��X�T��!�co�X��v�whi��Jc�h�i�)�s�a�morphi�sm����'o��rv�e� �r�qQ�k�g �,����'��i�)�s�a��k��-alge���bra�h���omomorphi�)�sm.���Since�(�B�����i��dڹ)�����f�� �p�i�s�a� nit��Eely�gen��re� �ra���t�e�S�d��� ���6����cE�x�������=�������'�k�g �-alge���bra,�p�(�B�����i��dڹ)�����f�� �7�i�)�s�Valso�a� nit��Eely�gen��re� �ra���t�e�S�d��B�����j��f �-alge���bra.�{/Since��x��i�)�s�clo�!ls�:}e�d�in������'Sp�)�ec��CMG(�B�����i��dڹ)�����f��w �,���x�n1�i�)�s�a�m���axim�al�n1id���e�!lal�of�(�B�����i���)�����f��w �.��{Th���us�b��ry�page�132�of�Ei�)�s�:}en��ekbud's����'�Commutative�X7A��2lgebr��ffa��h�'����2��1�� \|�(�x�)�i�)�s�a�m���axim�al��hid���e�!lal�of��B�����j��f �.��uTh���us��x��i�s�also�a�clo�!ls�:}e�S�d����'p�S�oin��t�o�of��U�����j����in�t���h��re�su�b�!lspace�t��9o��rp�S�o�ޔlogy�on��U�����j��f �.���Th�us��X�����l�x�8<�=��[�����i��dڹ(�U�����i��jF���x�)�o�i�)�s�a����'u��9nion��of�o��rp�)�en�su���b�!ls�:}et��es�of��X��,�h�ence�o�p�)�en�in��X��,�so��x��i�s�clo�!ls�:}e�S�d.����8��T��Vo�� ni�)�sh�w��re�jus�[t�n�ee�S�d�t��9o�kno�w�t���h�a���t��U�����i��O��h�as�a�clo�!ls�:}e�S�d�p�oin��t.��K}����'�Pro��p�o�&fs�0it�ion��4���|& �L��ffet�t��X�Fչ=��URSp�)�ec�� ���A��b�e�an�ane�scheme�with��A��a� nitely�gener-����'ate��ffd�,�k�g �-algebr�a.�dThen�any�nonempty�distinguishe�d�op�en�subset�of��X� ��c�ontains����'a�35close��ffd�p�oint.�����'�Pr��qoof.��W��Th��re���k�ey�ob�!ls�:}e� �rv��X�a���t�ion�i�)�s�t���h�a���t��A��i�)�s�a�Jacob�!lson�alge���bra�s�ince�it� nit��Eely����'gen��re� �ra���t��Ee�S�d�6�o�v�e�r�6�a� eld,�Z�so�b��ry�page�131�of�Ei�)�s�:}en��ekbud's��Commutative���A��2lgebr��ffa��t���h�e����'Jacob�!lson��?radi��Jcal�of��A��equals�t���h��re�nilradi�cal�of��A�.�>�Let��D�S��(�f�G��)�b�)�e�a�non��rempt�y����'di�)�s�[t��rin��9gui�s�:}e�S�d�<zo�p�en�<zsu���b�!ls�:}et�of��X��.�.WTh�en�som�e�pr�2"im�e�omit��es��f��y�so��f��i�)�s�not�in�t���h��re����'nilradi��Jcal�4�of��A�.��Th���us��f�|��i�)�s�not�in�t�h��re�Jacob�!lson�radi��Jcal�of��A��so�t�h��re� �re�i�)�s�som�e����'m���axim�al��#id���e�!lal��m��so�t���h��ra���t��f�����" =��������2�����1��m�.�pRTh�en��m�t��2��D�S��(�f�G��)��#an�d��m��i�)�s�a�clo�!ls�:}e�S�d�p�oin��t�of����'�X��+�s�)�ince���m��i�s�m���axim�al.����8��Stran��9gely�x�enough�I�x�n��rev�e� �r�x�us�:}e�S�d�t���h��re�h�yp�S�ot���h�e�s�)�i�s�x�t���h�a���t��X�jk�i�)�s�of� nit��Ee�t�yp�)�e�o�v�e� �r����'�k�+�bu��9t��jus�[t�t���h��re�w�eek�e� �r�h�yp�S�ot���h�e�s�)�i�s��t���h�a���t��X����i�)�s��lo��ffc�al���ly���of� nit��Ee�t�yp�)�e�o�v�e� �r��k�g �.�&�Did�I����'mi�)�s�!ls��som��ret���hin��9g?����8��Fin���ally��V,�+w��re�axpre�S�s�:}en��t�a�cou��9n�t��Ee� �rexamp�ޔle�in�t���h��re�more�gen�e� �ral�s�)�it�ua���t�ion.��OLet����'�X�Fչ=��URSp�)�ec�� ���Z�����(2)�� \|�.�8Th��ren�R��X�D2�con��t�ains�preci�)�s�:}ely�on�e�clo�!ls�:}e�S�d�p�oin��t,�qt���h��re�id���e�!lal�(2).�8So����'t���h��re���s�:}et�of�clo�!ls�e�S�d�p�oin��t��es�in��X��-�i�)�s�not�d���ens�:}e�in��X��.�)6In�f�act,��if��X��-�i�s�t���h��re�sp�ectru��9m����'of��an��ry�D�VR�w�e�also�get�a�cou��9n��t��Ee� �rexamp�ޔle.������'�Prob�ٙlem��6�(4.2)����^��L��ffet�z��S�-��b�e�a�scheme,���let��X�[email protected]�b�e�a�r�e�duc�e�d�scheme�over��S����,���and����'let����Y��\�b��ffe�a�sep�er�ate�d�scheme�over��S����.�Q�L�et��f�����1�����and��f�����2���b��ffe�two��S����-morphisms�of��X����'�to�/��Y��J�which�agr��ffe�e�/�on�an�op��ffen�dense�subset��U�p��of��X���.�eKShow�that��f�����1��V�=�UR�f�����2����.�Give����'examples��ato�show�that�this�r��ffesult�fails�if�either�(a)��X����is�nonr�e�duc�e�d,��,or�(b)����'�Y�ϥ�is�35nonsep��ffar�ate�d.�����'�Pr��qoof.��W��Let�e�g��ι=�%�(�f�����1����;���f�����2���)�����S�� Cw�:��X��!��Y��f������S�� ��Y�s�b�)�e�et���h��re�pro�S�d�u�ct�of��f�����1�� %�an�d��f�����2�� %�o�v�e� �r����'�S��׹.�'�By��eh��ryp�S�ot���h�e�s�)�i�s��et���h��re�diagon���al��T���=�UR�����Y��P��(�Y��p�)�i�)�s�a�clo�!ls�:}e�d�su���b�!ls��xc��rh�em�e��eof��Y��c������S��_��Y��p�.����'Th���us�*/�Z���=��t�g��n9���2��1�� ʵ�(�T��ƹ)�i�)�s�a�clo�!ls�:}e�S�d�su�b�!ls��xc��rh�em�e�*/of��X��.��uIf��h��t�:��U�X�!��Y�Ɵ�i�)�s�*/t�h��re�common����'re�S�s�[tr�2"i��Jct��rion���of��f�����1�� o��an�d��f�����2�� o��t��9o��U�@�,�!Ct���h�en,�s�)�ince����g�n9�j�����U�� �3�m���ak�e�S�s�t���h�e�correct�diagram����'comm���u��9t��Ee,�|Dt�h��re�+�re�S�s�[tr�2"i��Jct�ion�of��g��+�t��9o��U�lֹi�)�s��g��n9���2�0�����=�x1(�h;���h�)�����S�� IԹan�d��g��n9���2�0�����=�x1�����Y�� �%���h�h��s�)�ince����'�����Y�� �e�����h�꨹m���ak��re�S�s�t���h�e�correct�diagram�comm���u��9t��Ee.��� ���7����w�x�������=�������'�Th���us���������1���c��Y��� \|�(�T��ƹ)�UR=��Y���imp�ޔlie�S�s���]��hC��g��n9�� ���1�� ʵ�(�T��ƹ)�UR���(�g��n9�� ��0��<r�)��� ���1�� \|�(�T��)�=��h��� ���1�� \|�(��� ����1���ڍ�Y����(�T��))�UR=��h��� ���1�� \|�(�Y��p�)�=��U��:����'�Th���us��n�g��n9���2��1�� ʵ�(�T��ƹ)�i�)�s�a�clo�!ls�:}e�S�d�s�et�whi��Jc��rh�con��t�ains�t���h�e�d���ens�:}e�s�et��U�@�.��"Th���us��g��n9���2��1�� ʵ�(�T��ƹ)�UR=��X�����'�so����g�n9�(�X��)������T��ƹ.���So,��b��ry�t���h�e�pro�p�S�o�!ls�)�it�ion�b�)�elo�w,��s�ince����X�ǂ�i�s�re�S�d��ru�ce�d,���g�D8�f�)�act��9or�[s����'as��X�g� >�=�������Y�� ���5V�f��W�wh��re� �re��f���:��X����!��Y��p�.���F��Vrom�t���h��re�d���e nit�ion�of������Y��P��,��Dw�e�s�:}ee�t���h�a���t����'������1������������Y�� ���=��7�id��������Y�� � �=�7�������2����������Y��P��.� N�Th���us����f�����1�� ��=�7�������1�����g���=�7�������1����������Y�� "����f�ݹ=�7��f�䍹an��rd����'�f�����2��V�=�UR������2��j������g�Ë�=�������2������������Y�� �e���f��Q�=�UR�f�2��so���f��=��f�����1��V�=��f�����2����,��as�d���e�S�s�)�ire�d.���؍���'�Pro��p�o�&fs�0it�ion��5���|& �L��ffet����X��Z�b�e�a�r�e�duc�e�d�scheme,��f�՘�:����X� �!��Y�xG�a�morphism,��Z��u�a����'close��ffd�V>subscheme�of��Y��p�,�_�j�C�:��3�Z�r�,���!��Y��,�_such�V>that��f�G��(�X��)��3���j��ӹ(�Z�ܞ�)�.�τThen�V>�f��=�factors����'uniquely�35as������ǈ��X�����K�� W�g�����F��!�����)�Z�����E����j�����1��,���!�������Y�� :�����'�Pr��qoof.��W��Fir�[s�t�Btas�!lsu��9m��re��X�3��an�d��Y���are�an�e,�Xg�X��E�=����Sp�)�ec�� 8 �A�,��Y��2�=����Sp�)�ec���B���,��Z���=�����'Sp�)�ec��CMG�B��=I��.��(Us�:}e�adexe� �rci�)�s�e�3.11�t��9o�s�ee�t���h��ra���t�ev�e� �ry�clo�!ls�:}e�S�d�su���b�s��xc��rh�em�e��Z�>�of��Y��Թi�)�s����'of���t���h��re�form��Sp�)�ec�� �B��=I��.)�&�Let��'�UR�:��B��X�!��A��йb�)�e�t�h��re�h���omomorphi�)�sm�whi��Jc�h�in�d�u�ce�S�s����'�f�G��.�)�Since��o�f��(�X��)�UR���Z�ܞ�,��zt���h��re�in�v�e� �r�[s�:}e�im���age�of�an�y�pr�2"im�e�of��A��con��t�ains��I��.�)�Since��A����'�i�)�s��re�S�d��ru�ce�d��t���h�e�in��t��Ee� �r�[s�:}ect�ion�of�all�pr�2"im�e�S�s�of��A��equals��f�0�g�.�8�Th���us���]�����2k��re� �r����Y(�'�)�UR=��'��� ���1�� \|�(�f�0�g�)�=��'��� ���1���(�\�����pr�$Dim�Îe�<rsp���Z�p�)����I����'�so���'��f�)�act��9or�[s�u�niquely�t���hrough��B��=I��.��t�������B�����K���W�j��v��-:�#�������X�!����E��B��=I�����E��~!�g��I{��-:�#������F��,���!����߷�A����'�Thi�)�s��pro��rv�e�S�s�t���h�e�pro�p�S�o�!ls�)�it�ion�wh�en��X��+�an�d��Y���are�an�e.�����8��No��rw��Esup�p�S�o�!ls�:}e��X��ȹi�)�s�an�arbitrary�re�d��ru�ce�S�d�s��xc�h�em�e.�Co�v�e��r��X��ȹb�y�o�p�)�en�an�e�S�s����'�X�e͹=�tJ�[�����i��d��U�����i���.�2�F��Vor��@e�!lac��rh��i��let��g�����i����b�)�e�t���h�e�u��9nique�m���ap�whi��Jc�h�f�)�act��9or�[s��f�G��j�����U��8:�i���
�ҹt���hrough����'�Z�ܞ�.�
T;By��qu��9niquen��re�S�s�!ls��g�����i��d��j�����U��8:�i��,r�\�U��8:�j����Q�=�;�g�����j��f
�j�����U��8:�i��,r�\�U��8:�j����=�,�cso�w�e�can�glue�t���h�e��g�����i��	K�t��9o�obt�ain�a����'morphi�)�sm�9��g�Iй:�ۗ�X���!��Z�(�su��rc�h�t���h�a���t��j��0���]�g�Iй=�ۗ�f�G��.�%�No�w�sup�p�S�o�!ls�:}e�b�ot���h��X�+
�an��rd��Y����are����'arbitrary��V.��Co��rv�e��r�(��Y���b�y�o�p�)�en�an�e�S�s,�8t�ak�e�t���h�e�S�ir�in�v�e��r�[s�:}e�im���age�S�s�in��X��,�8p�)�e�rform����'t���h��re��cons�[tru�ct�ion�lo�S�cally�for�e�!lac�h�on�e,�us�:}e�u��9niquen�e�S�s�!ls�an�d�glue.����'�Counter��ffexamples.����8��(a)���Let��A�w5�=��k�g�[�x;���y�n9�]�=�(�x����2�2����;�xy��),���let����X�h��=�w5�Y���=��Sp�)�ec�� �|�A��an��rd�let��S�*�=��Sp�)�ec�� �|�k�g�.����'Th��ren����Y�qI�i�)�s�an�e�h�ence�s�:}ep�)�e��ra�b�ޔle�o�v�e��r��S��׹,�ibu��9t��X��\�i�)�s�not�re�S�d�u�ce�d.��FLet����f��Q�:�UR�X�F��!��Y����'�b�)�e��;t���h��re�morphi�sm�in��rd�u�ce�S�d��;b�y�t���h�e�id���en��t�it�y�h���omomorphi�)�sm��id��a:����A��!��A�.���Let����'�g�#�:����X��]�!��Y�U��b�)�e��.t���h��re�morphi�sm�in��rd�u�ce�S�d��.b�y�t���h�e�h���omomorphi�)�sm��'��ڹ:��A��!��A��:������8����	���x�������=�������'�x�7��7!��0�;���y��-�7!��y�n9�.��RLet�o��U�xع=��D�S��(�y��)�=��Sp�)�ec�� �;�A�����y���
�.��RTh��ren�o�s�)�ince��A�����y������P���	5����԰���	M�=�������LSp�ec��3��k�g�[�y�n9;���y�����2��1��ʵ�],�����'t���h��re���lo�S�calize�d�h���omomorphi�)�sms�agree,���:id���pޟ���y��¦�=�T��'�����y���
�.��
Th���us��f�G��j�����U��n��=��g�n9�j�����U��B�.��
No��rw��X�r9�i�)�s����'irre�S�d��ru�cib�ޔle���s�)�ince��A��h��ras�jus�[t�on�e�minim���al�pr�2"im�e,��>n���am�ely�(�x�),��>so��U�ȹi�)�s�d���ens�:}e�in����'�X��.�8�Bu��9t,���f��Q�6�=�UR�g�n9�.�s�)�ince��f��G����2�#��2��=��URid��uH�6�=�UR�'��=��g��n9���2�#����.����8��(b)��]Let��X���b�)�e�t���h��re�an�e�lin�e�an�d��Y�D͹t���h�e�an�e�lin�e�wit���h�a�dou�b�ޔle�S�d�or�2"igin����'b�S�ot���h�ot�h���ough��rt�of�as�s��xc�h�em�e�S�s�o�v�e��r��S�^��=����Sp�)�ec����k�g�.��6Let��f�����1��kĹ:����X��C�!��Y��߹b�)�e�on��re�of�t���h�e����'inclus�)�ions��of�t���h��re�an�e�lin�e�in��Y��/�an�d�let��f�����2��V,�:��(�X����!��Y��/�b�)�e��t���h�e�ot���h�e��r�on�e.��&Th�en����'�f�����1�����an��rd���f�����2���agree�on��X��+�min���us�t�h��re�or�2"igin�bu��9t�not�on��X��.����8��[Refe��rence,��EGA,�I.8.2.2.1.]�������'�Prob�ٙlem��7�(4.4)����^��L��ffet����f���:���X����!��Y��I�b�e���a�morphism�of�sep�ar�ate�d�schemes�of����'nite�Ƙtyp��ffe�over�a�no�etherian�scheme��S����.� �L�et��Z��6�b�e�a�close�d�subscheme�of��X����'�which��Fis�pr��ffop�er��Fover��S����.�Y�Show�that��f�G��(�Z�ܞ�)��is�close��ffd�in��Y��p�,���and�that��f��(�Z�ܞ�)��with����'its�35image�subscheme�structur��ffe�is�pr�op�er�over��S����.�����'�Pr��qoof.��W��Fir�[s�t�w��re�sh���o�w�t���h�a���t�s�)�ince��X��,�#t�Y����an�d��Z��are�of�nit��Ee�t�yp�)�e�o�v�e��r��S���an�d����'�S��͹i�)�s���no�et���h��re��r�2"ian,���X��,��Y��f�an�d����Z�ɔ�are�no�)�et���h�e��r�2"ian.�?�Sup�p�S�o�!ls�:}e��g��w�:�Y>�X�J��!��S��͹i�)�s���t���h�e�m���ap����'f�2"rom���X���t��9o��S��׹.���Co��rv�e��r���S��_�b�y�nit��Eely�m���an�y��Sp�)�ec��/��A�����i��dڹ,�[�A�����i��Gb�no�)�et���h�e��r�2"ian.���Th�en�for�e�!lac�h����'�f��G����2��1���{�(�Sp�)�ec��MG�A�����i��dڹ)�
m=��[�����j���f
�Sp�)�ec�� �Q�B�����ij��J�,�q�wit���h�V��B�����ij�����a�nit��Eely�gen��re��ra���t�e�S�d��A�����i��dڹ-alge���bra.�}]Since����'�A�����i��@\�i�)�s�ۂno�et���h��re��r�2"ian�e�!lac�h��B�����ij��&f�i�)�s�no�et���h��re��r�2"ian�(t�hi�)�s�i�s�t���h��re�Hil�b�)�e��rt�bas�i�s�t���h��reorem).����'Since����X�M�=�n��[�����ij���J�Sp�)�ec��#�+�B�����ij��J�,�1]�X��U�i�)�s�no�et���h��re��r�2"ian.�
�_On�e���sh���o�ws�t���h�a���t��Y�YB�an�d��Z��p�are����'no�)�et���h��re��r�2"ian��in�exact�ly�t�h��re�sam�e�w�ay��V.����8��Since��t���h��re�fo�ޔllo�win��9g�diagram�comm���u�t��Ee�S�s�4.8(e)�imp�ޔlie�s��f�G��j�����Z��
��i�)�s�pro��rp�e��r.��k3׍�'Th���us�m0�f�G��j�����Z���8�(�Z�ܞ�)�i�)�s�clo�!ls�:}e�S�d�in��Y��p�.�
(I'm�as�su��9min�g�m0�Z�Iιi�)�s�an��S��׹-su���b�s��xc��rh�em�e�m0of��X�^��so�t���h��ra���t����'t���h��re��diagram�m�us�[t�comm�u��9t��Ee.)����8��W��Ve��3no��rw�h�a�v�e��f�G��(�Z�ܞ�)�UR�,���!��Y����!��S��׹.�dW��Ve��3m���us�[t�sh���o�w�t���h�e�comp�S�o�!ls�)�it�ion��f�G��(�Z�ܞ�)�UR�!��S����'�i�)�s�h�pro��rp�e��r.�	�nBy�Coro�ޔllary�4.8a�t���h��re�clo�!ls�:}e�S�d�imm�e��r�[s�)�ion��f�G��(�Z�ܞ�)����,���!��Y�G�i�)�s�pro��rp�e��r.����'W��Ve�!�are�giv��ren�t���h�a���t�t���h�e�m���ap��Y���!�g�S����i�)�s�s�:}ep�e��ra���t��Ee�S�d�an��rd�of�nit�e�t��ryp�)�e.�ޤSince����'t���h��re���comp�S�o�!ls�)�it�ion�of�s�:}ep�)�e��ra���t��Ee�S�d�morphi�sms�i�s�s�:}ep�e��ra���t��Ee�S�d�an��rd�t���h�e�comp�S�o�!ls�)�it�ion�of����'nit��Ee��-t��ryp�)�e�morphi�sms�i�s�of�nit��Ee�t��ryp�e,��t���h�e��-morphi�sm��f�G��(�Z�ܞ�)�UR�!��S���i�s��-s�:}ep�e��ra���t��Ee�S�d����'an��rd��of�nit��Ee�t�yp�)�e.�8�Th�e�h�ard�part�i�)�s�t��9o�sh���o�w�t���h�a���t�it�i�)�s�u��9niv�e��r�[sally�clo�!ls�:}e�S�d.������9����
��x�������=�������8��Since�Ct���h��re�morphi�)�sm��Z�|:�!����S���i�s�pro��rp�e��r�it�i�s�clo�!ls�:}e�S�d�an��rd�f�2"rom�a�b�S�o�v�e�t���h�e�����'morphi�)�sm���Z�C��!�g�f�G��(�Z�ܞ�)�i�s�clo�!ls�:}e�S�d�so�t���h��re�morphi�sm��f�G��(�Z�ܞ�)�g�!��S���i�s��clo�!ls�:}e�S�d.�X:Let��W����'�b�)�e�*?an�an��ry�s��xc�h�em�e�o�v�e��r��S��׹.���W��Ve�m���us�[t�sh���o�w�t���h�a���t�t���h�e�m���ap��f�G��(�Z�ܞ�)���������S�����W�cU�!����W���i�)�s����'clo�!ls�:}e�S�d.�8�W��Ve��h��ra�v�e�t���h�e�fo�ޔllo�win��9g�diagram.���g���'If�=Qw��re�can�sh���o�w�t���h�a���t��g�����1���U�i�)�s�surject�iv�e�w�e�will�b�)�e�don�e.�0�F��Vor�t���h�en�if��A��i�)�s�clo�!ls�:}e�S�d����'su���b�!ls�:}et��of��f�G��(�Z�ܞ�)���������S��Ȋ�W��ƹ,�������g�����2����(�A�)�UR=��g�����3���(�g������n9��1���ڍ1���ʵ�(�A�))�;����'�whi��Jc��rh,��Ps�)�ince����g�����3��	K��i�s�clo�!ls�:}e�S�d,��Pi�s�also�clo�!ls�:}e�S�d.��(W��Ve�w��rouldn't�h�a�v�e�equalit�y�in�t���h�e����'a��rb�S�o�v�e��expre�s�!ls�)�ion�if��g�����1�����w��re��ren't�surject�iv�e.)����8��In�q�ord���e��r�t��9o�e�S�s�[t��ra�b�ޔli�)�sh�q�t���h�e�surject�ivit�y�of��g�����1��	1ҹw�e�pro�v�e�t���h�a���t�t���h�e�pro�p�)�e��rt�y�of����'b�)�e�S�in��9g�2qa�surject��riv�e�2qmorphi�sm�i�s�pre�S�s�:}e��rv��re�d�2qu��9n�d���e��r�bas�:}e�ext��Eens�)�ion.�;It�will�t���h�en����'fo�ޔllo��rw,�&s�)�ince�ئ�g�����1��	���i�s�a�bas�:}e�ext��Eens�ion�of�t���h��re�surject�iv�e�morphi�)�sm��Z���!��i�f�G��(�Z�ܞ�),����'t���h��ra���t���g�����1�����i�)�s�surject�iv�e.�������'�Pro��p�o�&fs�0it�ion��6���|&	�L��ffet����X��s�and��Y�v�b�e�schemes�over��S����.�H�Supp�ose��x�UR�2��X��s�and����y�Ë�2��Y����'�b��ffoth�<�lie�over�the�same�p�oint��s�f��2��S����.���Then�<�ther�e�exists���zp�2�f��X��1������S��ϐ�Y�� �such�that����'�p�����X����(����)�UR=��x�35�and��p�����Y��P��(���)�UR=��y�n9�.�����'�Pr��qoof.��W��Let����g�����1��	�a�:���]Sp�)�ec��!/�(�k�g�(�x�))��]�!��X��o�an��rd��g�����2��	�a�:��Sp�)�ec��!/�(�k�g�(�y�n9�))��!��Y�p\�b�)�e�t���h��re�n���a���t-����'ural�m���ap�!ls�wit���h��g�����1����((0))�UR=��x��an��rd��g�����2���((0))�UR=��y�n9�.��Let��Z�1�=��Sp�)�ec����(�k�g�(�x�))�ѣ�����Sp�)�ec��MG��(�k�6��(�s�))���ff���'�Sp�)�ec��CMG(�k�g�(�y�n9�))�UR=��Sp�)�ec����(�k��(�x�)�
�����k�6��(�s�)���F�k��(�y�n9�)),��Han��rd��plet�������1��\t�b�)�e�t���h�e�pro��ject�ion�t��9o��Sp�)�ec���(�k�g�(�x�)),����'������2���)�t���h��re�\$%pro��ject�ion�t��9o��Sp�)�ec�� ql(�k�g�(�y�n9�)).��XLet��g�%f�=��-�g�����1����������S����g�����2���)�b�)�e�t���h�e�pro�S�d�u�ct�of��g�����1��������������1�����'�wit���h���g�����2��j�����������2����.�8�So��g�Ë�:�UR�Z�1��!��X��+������S��Ȋ�Y��p�.�See��t���h��re�fo�ޔllo�win��9g�diagram.������ 10�����R�x�������=�������'�Since���Z�o��i�)�s�t���h��re�sp�ectru��9m�of�t���h��re�t��Eensor�pro�S�d�u�ct�of�t�w�o�elds�o�v�e��r�a�common�����'bas�:}e��eld,�E�Z�1��6�=�UR�;��so�t���h��re��re�i�)�s�som�e��z��5�2�UR�Z�ܞ�.���By�t���h�e�d���enit�ion�of��g�n9�,�E�g�����1��ü���������1��V�=�UR�p�����x��L����g����'�an��rd�o��g�����2��o?���;������2��V�=�UR�p�����y���H���g��ɹso��x�UR�=��g�����1��o?���;������1����(�z���)�=��p�����x���"���g�n9�(�z���)�o�an��rd��y�Ë�=�UR�g�����2��o?��������2����(�z���)�=��p�����y���H���g�n9�(�z���)����'so��w��re�m���ay�t�ak�e���h�=�UR�g�n9�(�z���).�������'�Pro��p�o�&fs�0it�ion��7���|&	�If����f��D�:�|E�X�m��!��Y��h�is�a�surje��ffctive��S����-morphism�then��f�5n���o�1�:����'�X��+������S��Ȋ�S���ן��2�0���b�!�UR�Y�G������S���S���ן��2�0���E�is�35surje��ffctive.�����'�Pr��qoof.��W��W��Ve��h��ra�v�e�t���h�e�fo�ޔllo�win��9g�diagram.��k3׍�'Let�.F�y��n9���2�0�����2�|'�Y�#m������S��	���S���ן��2�0����.�	�Th��ren��q�n9�(�y�����2�0��<r�)��2��Y���=��f�G��(�X��)�.Fso�t���h��re��re�i�)�s��x��2��X�ɹsu��rc�h�.Ft���h�a���t����'�f�G��(�x�)�UR=��q�n9�(�y�����2�0��<r�).�*Th��ren��8b�y�t���h�e�a�b�S�o�v�e�pro�p�S�o�!ls�)�it�ion�t���h�e��re�i�)�s�som�e���h��2�UR�X�Af������S��m��S���ן��2�0��?H�su�c�h����'t���h��ra���t���p�(����)�UR=��x��an��rd�(�f�������1)(����)�=��y��n9���2�0��<r�.�8�Th���us��f�������1�i�)�s�surject��riv�e.������ 11���������;�x���U~��cmcsc12�q�%cmsy6��K�cmsy8�!",�
cmsy10�;�cmmi6��2cmmi8���g�cmmi12��Aa�cmr6�|{Ycmr8����@cmti12���N�cmbx12�����ffffcmr14����q�jcmr20�X�Qcmr12���u

cmex10��J�������`