Powered by CoCalc
����;� TeX output 1996.03.31:2044�����������3ڍ����&���K�`y

cmr10�Next���w���e�shall�supp�Gose�that���b>

cmmi10�C����ٓ�Rcmr7�1��|s�,���C����2��#	�are�em�b�Gedded�nonsingular�curv�es�with��C����1�����!",�

cmsy10��N��P��c���^��2����,���C����2�����P��c���^��2����,���resp�Gec-���tiv���ely��*�,��9and���that��C����1��|s�,��C����2�� �has�degree��d����1��|s�,��d����2���,�resp�Gectiv���ely��*�,�and���that��d����1����=�I��d����2��|s�,�and�furthermore�that��C����1�� �and��C����2�����are��isomorphic�as�abstract�nonsingular�curv���es�o�v�er�an�algebraically�closed�eld�of�arbitrary�c�haracteristic����p�,����p��
�b�Geing�either�a�prime�or�0�where�here�0�denotes�the�additiv���e�iden�tit�y�of�the�ring��Z�T)�of�in�tegers�whic�h�is���easily��seen�to�b�Ge�the�Grothendiec���k�group�of�the�additiv�e�monoid�of�natural�n�um�b�Gers��f�0�;����1�;��:�:�:��
UO�g�,�\or��whic�h�can���alternativ���ely�UUb�Ge�view�ed�as�the�divisor�class�group�of�pro��8jectiv�e��n�-space�(here�w�e�assume��n�����1).������`�1���*���;��3���G�!",�

cmsy10��b>

cmmi10�ٓ�Rcmr7�K�`y

cmr10��������