CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / aim / def.dviOpen in CoCalc
����;� TeX output 2002.12.18:1857������y�����?������M�K�`y

cmr10�Things�UUthat�need�to�b�Ge�dened:�������M�
!",�

cmsy10�����W��"V

cmbx10�General��Tt��9yp�Q�e:����W�A�v��q�ariet���y��
�b>

cmmi10�X����is�of�general�t�yp�Ge�if�there�is�a�p�ositiv���e�p�o���w�er�of�the�canonical����Wbundle���whose�global�sections�determine�a�rational�map��f���:��[�X�P=�!��P���^��	0e�rcmmi7�n�����W�with����dim��"�f���(�X���)�\3=��dim�����X��.�~,(If��̵X�w��is�of�general�t���yp�Ge�then�there�exists�some����Wp�Gositiv���e���p�o�w�er���of�the�canonical�bundle�suc�h�that�the�corresp�Gonding�map����Wis�UUbirational�to�its�image.)����W\It���is�a�moral�judgemen���t�of�geometers�that�y�ou�w�ould�b�Ge�wise�to�sta�y�a�w�a�y����Wfrom�UUthe�blo�Go�dy�UUthings."�q�{�Swinnerton-Dy���er�������M�����W�W��
�aring's��Tproblem:����W�Giv���en�7յk�P��,�=�nd�the�smallest�n�um�b�Ger��g����k��#e�suc�h�that�ev�ery�p�Gositiv�e�in�teger�is�a����Wsum��}of��g����k���
�p�Gositiv���e��k�P��th�p�o���w�ers.�@The��}\easier"�W��*�aring's�problem�refers�to����Wthe��Zanalogous�problem�where�the��k�P��th�p�Go���w�ers��Zare�p�ermitted�to�b�e�either����Wp�Gositiv���e�M�or�negativ�e.�o/Mo�Gdication:�m�Giv�en��k�P��,�Ond�the�smallest�n�um�b�Ger��G����k�����W�suc���h�<3that�ev�ery�sucien�tly�large�p�Gositiv�e�in�teger�is�a�sum�of��G����k��'òp�Gositiv�e��k�P��th����Wp�Go���w�ers.�������M�����W�Diophan��9tine��Tset:����W�Let�f�R�yDzb�Ge�a�ring.���A�e�subset��A��߸��R��ǟ�^��n���E�is�fdiophan���tine�o�v�er��R�yDzif�there�exists�a����Wp�Golynomial�UU�f�ڧ�2���R�Dz[�t����ٓ�Rcmr7�1��|s�;����:�:�:����;���t����n��q~�;�x����1���;��:�:�:����;�x����m�����]�UUsuc���h�that�����xW�A���=��f���'����^��~���b�t���c��2��R��ǟ����n��L]�:��9����ȵ~��x���~4�2��R��ǟ����m�����suc���h�UUthat��7:��f���(���'����^��~���b�t����r;����p~�����x���aIJ)�=�0�g�:��������M�����W�The��TBrauer-Manin�obstruction�and�set��X���(�A����k��됲)���^��Br��
s�of�a�v��\rariet��9y:����W�The���terminology�is�utterly�a���w�eful!�9�Man�y���families�don't�satisfy�Hasse�Prin-����Wciple.�?SOne���explanation�of�Manin�(see�his�pap�Ger):�&a�cohomological�obstruc-����Wtion�UUusing�the�Brauer�group�of�the�v��q�ariet���y����WIf���a�v��q�ariet���y�has�a�lo�Gcal�p�oin���t�ev�erywhere�then�it�has�an�adelic�p�Goin�t.�0�Manin����Wdened,��using��Qa�cohomological�condition�in���v�olving��QBrauer�group,�a�subset����Wof�	�the�adelic�p�Goin���ts�that�m�ust�con�tain�the�global�p�Goin�ts.��ELet��X���(�A����k��됲)�b�Ge����Wthe��adelic�p�Goin���ts�of��X���.�\�Consider�the�subset�of�p�oin���ts��P�y�with�the�prop�ert���y����Wthat�Q�for�ev���ery�elemen�t��z�ܪ�2��l�Br��l(�X���)�the�system�of�elemen�ts�(�z����v���N�(�P�c��))����v��	;�has����Wsum�UUof�in���v��q�arian�ts�UU=��0.����WThe��B-M��is�an�in���teresting�construction�in�English.�pIt�is�a�nounal-phrase����Wdened���purely�in�terms�of�the�sen���tences�in�whic�h�in�whic�h�it�ma�y�o�Gccur.����WThere�UUis�no�suc���h�actual�ob��8ject�\the�Brauer-Manin�obstruction".����WExample:��wA��Dv��q�ariet���y��that�satises��X���(�A����k��됲)�o��6�=��;��and��X��(�A����k��됲)���^��Br���Ʋ=�o��;��is�a����Wcoun���terexample��to�the�Hasse�principle�explained�b�y�the�Brauer-Manin����Wobstruction.����WF��*�or�a�long�time�p�Geople�w���ere�in�terested�in�whether�there�are�coun�terexam-����Wples�4�ot�Hasse�principle�not�explained�b���y�the�Brauer-Manin�obstruction.������1����*�y�����?������W�X���(�A����k��됲)���^��Br��Ї�6�=��h�;�Ӆ�but�still�has�no�global�p�Goin���t�(Sk�orob�Gogota�v�found�rst�ex-����Wample).�����WAfter�7:one�glass�of�wine,�o�McCallum�adv���o�Gcates�that�\�X���(�A����k��됲)���^��Br��
nY�should�b�e����Wcalled�UUthe�set�of�Brauer�p�Goin���ts".��������M�����W�Hasse��TPrinciple:����W�A�{6family�{@of�v��q�arieties�satises�the�Hasse�principle�if�whenev���er�a�v�ariet���y�in����Wthe�UUfamily�has�p�Goin���ts�ev�erywhere�lo�Gcally�it�has�a�p�oin���t�globally��*�.�������M�����W�Hilb�Q�ert's��Tten��9th�problem:����W�Let�<��R�P��b�Ge�a�comm���utativ�e�<�ring.�RHilb�ert's�ten���th�problem�for��R�P��is�to�determine����Wif���there�is�an�algorithm�that�decides�whether�or�not�a�giv���en�system�of����Wp�Golynomial�UUequations�with�co�ecien���ts�in��R�i�has�a�solution�o�v�er��R�Dz.�������M�����W�W��
�eak��Tappro��9ximation:����W�F��*�or�r�a�pro��8jectiv���e�v��q�ariet�y��X�;��o�v�er�a�global�eld,��sa�y�w�eak�appro�ximation����Wholds�dif��X���(�K���)�is�dense�in�the�adelic�p�Goin���ts��X��(�A����K�����).���Simplest�example����Wwhere�&it�holds:�Z,�P���^��0��|s�,�/�also��P���^��1���.�b
It�do�Ges�not�hold�for�an�elliptic�curv���e�o�v�er��K���.����W(F��*�or��Aexample,�
if��E��βhas�rank�0�it�clearly�do�Gesn't�hold...�Rkbut�more�generally����Wcould��?divide�all�generators�b���y�2�and�c�ho�Gose�a�prime�that�splits�completely��*�.)�����WExample:�q�\W��*�eak�UUappro���ximation�do�Ges�not�hold�for�cubic�surfaces."����WExample:�d�\The�:�theory�of�ab�Gelian�descen���t�in�some�cases�reduces�the�ques-����Wtion���of�whether�the�Brauer-Manin�obstruction�is�the�only�obstruction�to����WHasse��Hon�a�base�v��q�ariet���y��X��*�to�the�question�of�whether�w�eak�appro�ximation����Wholds�UUfor�a�univ���ersal�torsor."�����WExample:�z�\W��*�eak�Y�appro���ximation�on�a�mo�Gduli�space�of�v��q�arieties�yields�the����Wexistence�of�v��q�arieties�o���v�er�a�global�eld�satisfying�certain�lo�Gcal�conditions.����WF��*�or�k�example,���w���e�w�an�t�to�kno�w�there�is�an�elliptic�curv�e�o�v�er��Q��with�certain����Wb�Geha���vior�W�at�3,���5,�13,�as�W�long�as�can�do�it�o�v�er�lo�Gcal�elds�with�that�b�eha���vior,����Ww���eak��nappro�ximation�on�the�mo�Gduli�space�giv�es�y�ou�a�global�curv�e�that�has����Wthose�UUprop�Gerties�(b�ecause��P���^��1���Ȳsatises�w���eak�appro�ximation).'�������M�����W�BSD��Tconjecture|Birc��9h�and�Swinnerton-Dy�er:����W�Let��	�A��b�Ge�an�ab�elian�v��q�ariet���y�o�v�er�a�global�eld��K�}%�and�let��L�(�A;���s�)�b�Ge�the����Wasso�Gciated���L�-function.�W�The�Birc���h�and�Swinnerton-Dy�er�conjecture�asserts����Wthat�õL�(�A;���s�)�extends�to�an�en���tire�function�and��ord���~����s�=1�� ��L�(�A;�s�)�equals�the����Wrank���of��A�(�K���).�;�Moreo���v�er,���the���conjecture�pro���vides�a�form�ula�for�the�leading����Wco�Gecien���t�Wof�the�T��*�a�ylor�expansions�of��L�(�A;���s�)�ab�Gout��s�t��=�1�Win�terms�of����Win���v��q�arian�ts�UUof��A�.�������M�����W�Selmer��Tgroup:����W�Giv���en�j�Galois�cohomology�denition�for�an�y��A�����B��q�.��=Example�jҵA��=��k�er��G[(��)����Wwhere�a����is�an�isogen���y�of�ab�Gelian�v��q�ariet�y��*�.��lAccessible.�It's�a�what�w�e�can����Wcompute,�UUat�least�in�theory��*�.�������M�����W�F��
�ano��Tv��\rariet��9y|F�ano:����W�An���ticanonical�divisor��!��[ٟ�^��O!�cmsy7�
�1��mT�is�ample.���This�class�of�v��q�arieties�is�\simple"������2����ՠy�����?������W�or���\close�to�rational".�^�F��*�or�example,�"�one�conjectures�that�Brauer-Manin����Wis�%oonly�obstruction.�a�Manin-Bat���yrev�conjecture:�Y�asymptotic�for�n�um�b�Ger�of����Wp�Goin���ts��of�b�ounded�heigh���t.���A���F��*�ano�v��q�ariet�y�of�dimension�t�w�o�is�also�called����Wa�UUDel�P���ezzo�surface.�������M�����W�Del��TP��9ezzo�surface:����W�A�UUDel�P���ezzo�surface�is�a�F��*�ano�v��q�ariet�y�of�dimension�t�w�o.����WIt�N6can�b�Ge�sho���wn�that�the�Del�P�ezzo�surfaces�are�exactly�the�surfaces�that����Ware���geometrically�either��P���^��1���8��sŹP���^��1��* �or�a�blo���wup�of��P���^��2���at�up�to�8�p�Goin���ts�in����Wgeneral�M�p�Gosition.�[email protected]���':

cmti10�gener��}'al���p�osition�M��w���e�mean�that�no�three�p�oin���ts�lie�on����Wa��line,�hno�six�p�Goin���ts�lie�on�a�conic,�and�no�eigh���t�lie�p�Goin�ts�lie�on�a�singular����Wcubic�UUwith�one�of�the�eigh���t�p�Goin�ts�on�the�singularit�y��*�.�������M�����W�Enriques��TSurface:����W�A�UUquotien���t�of�a�K3�surface�b�y�a�xed-p�Goin�t�free�in�v�olution.����WEquiv��q�alen���tly��*�,�նthe��	normalization�of�the�singular�surface�of�degree�6�in��P���^��3�����W�whose�UUsingularities�are�double�lines�that�form�a�general�tetrahedron.����WOv���er����C��an�Enriques�surface�can�b�Ge�c�haracterized�cohomologically�as�fol-����Wlo���ws:�qǵH������^��0��Lq�(
���^���2��b��X����$�)��=�0�UUand�2�K����X��
a<�=��0�but��K����X���6�=��0.�������M�����W�K3��Tsurface:����W�A�{�surface�{�with�trivial�canonical�bundle�and�trivial�fundamen���tal�group�(i.e.,����Wa�UUCalabi-Y��*�au�v��q�ariet���y�of�dimension�2).�������M�����W�Brauer-Sev��9eri��Tv��\rariet�y:����W�A��at���wist��wof�pro��8jectiv�e�space��P���^��n��q~�.�w-Brauer-Sev�eri�v��q�arieties�satisfy�the�Hasse����Wprinciple.�������M�����W�Ab�Q�elian��Tv��\rariet��9y:����W�A�qNsmo�Goth�q�pro��8jectiv���e�geometrically�in�tegral�group�v��q�ariet�y�o�v�er�a�eld.�%�Ov�er����Wthe�UUcomplex�n���um�b�Gers�UUab�elian�v��q�arieties�are�tori.�������M�����W�Shim��9ura��Tv��\rariet�y:����W�A��ev��q�ariet���y���ha�ving�a�Zariski�op�Gen�subset�whose�set�of�complex�p�oin���ts�is����Wanalytically�~4isomorphic�to�a�quotien���t�of�a�b�Gounded�symmetric�domain��X����W�b���y���a�congruence�subgroup�of�an�algebraic�group��G��that�acts�transitiv�ely����Won����X���.�3�Examples�include�mo�Gduli�spaces��X����0��|s�(�N��)�of�elliptic�curv���es�with�extra����Wstructure�5�and�Shim���ura�curv�es�whic�h�parametrize�quaternionic�m�ultiplica-����Wtion�UUab�Gelian�surfaces�with�extra�structure.�������M�����W�Prym��Tv��\rariet��9y:����W�A��!Prym��Ev��q�ariet���y�is�an�ab�Gelian�v�ariet���y�constructed�in�the�follo�wing�w�a�y��*�.�BLet����W�X�E�and�|*�Y���b�Ge�curv���es�and�supp�ose��f�ڧ�:���X����!��Y���is�|*a�degree�2�5
��Getale�(unramied)����Wco���v�er.�1�The�?�asso�Gciated�Prym�v��q�ariet���y�is�the�connected�comp�onen���t�of�the����Wk���ernel�wPof�the�Albanese�map��Jac���(�X���)��b�!���Jac��?�(�Y�8�).�׷The�wPPrym�v��q�ariet�y�can����Walso��6b�Ge�dened�as�the�connected�comp�onen���t�of�the���1�eigenspace�of�the����Win���v�olution�UUon��Jac���(�X���)�induced�b���y��f���.������3����9�y�����?���������M�����W�Jacobian:����W�The�>_Jacobian�of�a�nonsingular�pro��8jectiv���e�curv�e��X�A�is�an�ab�Gelian�v��q�ariet�y����Wwhose��p�Goin���ts�are�in�bijection�with�the�group��Pic��� ������0���'�(�X���)�of�isomorphism����Wclasses�UUof�in���v�ertible�UUshea�v�es�(or�divisor�classes)�of�degree�0.���>�����M�����W�Calabi-Y��
�au��Tv��\rariet��9y:����W�An���algebraic�v��q�ariet���y��X�S��o�v�er��C��is�a�Calabi-Y��*�au�v��q�ariet�y�if�it�has�trivial����Wcanonical�}�sheaf�(i.e.,�ǝthe�canonical�sheaf�is�isomorphic�to�the�structure����Wsheaf��)���and��X���(�C�)�is�simply�connected�as�a�top�Gological�space.�FNF��*�or�example,����Wan��elliptic�curv���e�is�not�a�Calabi-Y��*�au�v��q�ariet�y�b�Gecause��X���(�C�)�is�a�torus,����Wwhic���h�UUis�not�simply�connected.�������M�����W�Descen��9t:���͖�����`8�1.����mThe�oepro�Gcess�of�expressing�the�rational�p�oin���ts�on�a�v��q�ariet�y�as�the�union����mof�UUimages�of�rational�p�Goin���ts�from�other�v��q�arieties.���>�����`8�2.����mThe�_�descen���t�problem�is�as�follo�ws:��Giv�en�a�eld�extension��L=K��and����ma��v��q�ariet���y��X���o�v�er��L�,�Ptry�to�nd�a�v��q�ariet�y��Y�/�o�v�er��K��:�suc�h�that��X���=����m�Y�qĸ����K��	L�.�������M�����W�Picard��Tgroup:����W�The�̒Picard�group�of�a�v��q�ariet���y�is�the�group�of�isomorphism�classes�of�in-����Wv���ertible�UUshea�v�es.�������M�����W�Rationally��Tconnected�v��\rariet��9y:����W�There���are�three�denitions�of�rationally�connected.�\hThese�are�equiv��q�alen���t����Win�UUc���haracteristic�zero�but�not�in�c�haracteristic��p�.�������`8�1.����mF��*�or���an���y�t�w�o�p�Goin�ts��x;���y�>��2��ϵX��s�there�exists�a�morphism����:��P���^��1��_B�!��X����m�suc���h�UUthat���(0)��=��x�UU�and���(�1�)��=��y�[ٲ.���>�����`8�2.����mF��*�or��man���y��n��p�Goin�ts��x����1��|s�;����:�:�:����;���x����n��8��2���X�tO�there�exists�a�morphism����:��P���^��1��C��!��X����m�suc���h�UUthat��f�x����1��|s�;����:�:�:����;���x����n��q~�g��is�a�subset�of���(�P���^��1���).�������`8�3.����mF��*�or�P1an���y�t�w�o�p�Goin�ts��x;���y��	�2�i0�X��there�exist�morphisms������i���|�:��P���^��1��壸!��X����m�for�9D�i�B��=�1�;����:�:�:����;���r��a�suc���h�that������1��|s�(0)�=��x�,�[email protected]�����r��m��(0)�=��y�[ٲ,�and�9Dfor�eac���h��i�B��=����m1�;����:�:�:����;���r����8�1�UUthe�images�of������i�����and������i�+1��ɤ�ha���v�e�UUnon�trivial�in�tersection.���>�����M�����W�T��
�orsor:����W�Let��&�B�I��b�Ge�a�v��q�ariet���y�o�v�er�a�eld��k���and�let��G��b�Ge�an�algebraic�group�o�v�er��k�P��.�C
A����Wleft�5�B��q�-torsor�under��G��is�a��B��-sc���heme��X���with�a��B��-morphism��G��N�����k���޵X����!���X����W�suc���h��that�for�some�����Getale�co�v�ering��f�U����i�����!�s��B��q�g��there�is�a��G�-equiv��q�arian�t����Wisomorphism���of��U����i��TL�-sc���hemes�from��X��/���M�U����i���ֲto��G����U����i��TL�,��Lfor�all��i�.�2�If��B�G��=���Sp�Gec��7(�k�P��)����Wthese�UUare�also�called�principal�homogenous�spaces.�������M�����W�F��
�ermat��Tcurv��9es:����W�Go�Go�d���examples�of�man���y�phenomenon.��OGo�Go�d���source�of�c�hallenge�prob-����Wlems.�j�(E.g.,�C�FL��*�T.)�?�Lot�of�symmetry�so�y���ou�can�compute�a�lot�with�them.����WComputations�Tare�surprising�and�non���trivial.�[qThey're�ab�Gelian�co�v�ers�of��P���^��1�����W�ramied�UUat�3�p�Goin���ts,�so�they�o�ccur�in�the�fund.�q�group�of...������4����*��y�����?���������M�����W�Lang's��Tconjectures:��������`8�1.����mSupp�Gose�ͽ�k�T�is�a�n���um�b�er�ͽeld�and��X����is�a�v��q�ariet���y�o�v�er��k�T�of�general�t�yp�Ge.����mThen�6ԵX���(�k�P��)�is�not�Zariski�dense�in��X��.�E(Also�there�are�renemen���ts����mwhere��w���e�sp�Gecify�whic�h�Zariski�closed�subset�is�supp�Gosed�to�con�tain����m�X���(�k�P��).)�������`8�2.����mSupp�Gose���k���is�a�n���um�b�er��eld�and��X�|��is�a�v��q�ariet���y�o�v�er��k�P��.�<All�but�nitely����mman���y�UU�k�P��-rational�p�Goin�ts�on��X�7�lie�in�the�sp�Gecial�set.�������`8�3.����mLet�u�X��W�b�Ge�a�v��q�ariet���y�o�v�er�a�n�um�b�Ger�eld��k�P��.�W�Cho�ose�an�em���b�edding�of��k����m�in���to��the�complex�n�um�b�Ger��C�,��and�supp�ose�that��X���(�C�)�is�h���yp�erb�olic:����mthis��^means�that�ev���ery�holomorphic�map��C�ry�!��X���(�C�)��^is�constan�t.����mThen�UU�X���(�k�P��)�is�nite.�������M�����W�Sp�Q�ecial��TSet:����W�The���(algebraic)�sp�Gecial�set�of�a�v��q�ariet���y��X�k��is�the�Zariski�closure�of�the����Wunion��@of�all�p�Gositiv���e-dimensional�images�of�morphisms�from�ab�elian�v��q�ari-����Weties��Wto��X���.�CsNote�that�this�con���tains�all�rational�curv�es�(since�elliptic�curv�es����Wco���v�er�UU�P���^��1��|s�).�������M�����W�Sc��9hinzel's��THyp�Q�othesis:����W�Supp�Gose�8�f����1��|s�;����:�:�:����;���f����r��4��2���Z�[�x�]�are�irreducible�and�no�prime�divides��f����1���(�n�)�f����2���(�n�)������������f����r��m��(�n�)����Wfor�b�all��n�2Ǹ2��Z�.�
�
Then�b�there�are�innitely�man���y�in�tegers��n��suc�h�that����W�j�f����1��|s�(�n�)�j�;����:�:�:����;����j�f����r��m��(�n�)�j�UU�are�sim���ultaneously�prime.�������M�����W�Hardy-Littlew��9o�Q�o�d��Tcircle�metho�Q�d:����W�An�]�analytic�metho�Gd�for�obtaining�asymptotic�form���ulas�for�the�n�um�b�Ger�of����Wsolutions�UUto�certain�equations�satisfying�certain�b�Gounds.������5����8����;�y���':

cmti10��"V

cmbx10�
!",�

cmsy10�O!�cmsy7�
�b>

cmmi10�	0e�rcmmi7�K�`y

cmr10�ٓ�Rcmr7�A�����