Sharedwww / Tables / hecke.dviOpen in CoCalc
����;� TeX output 2003.09.30:1924������y�����?������P'��src:9hecke.tex��-�ff
cmcsc10�HECKE:�p�The�Modular�F��zorms�Calcula��
<tor��N8��Ŏ4�src:10hecke.tex�K�`y

cmr10�William�UUA.�Stein��"ꨍ�>�src:13hecke.tex���N�cmbx12�What��is��߆�Tcmtt12�HECKE�?����>���<x

cmtt10�HECKE�X^�is�X�a�program�X�for�computing�with�mo�Gdular�forms.�{�It�implemen���ts�algo-����>rithms���of���Cremona,���Hijik��q�ata,�Merel,���Mestre-Oesterl�����Ge,�Shim�ura,�and���others.���It����>is�UUcompletely���':

cmti10�fr��}'e�e�UU�soft���w�are,�curren�tly�a�v��q�ailable�only�for�Lin�ux�mac�hines�at����>�src:20hecke.tex�$���http://shimura.math.berkeley.edu/~was/Tables/hecke.html����>�src:21hecke.tex�Unfortunately���it�is���still�in�dev���elopmen�t,��Eand���quite�a�bit�of�w���ork�remains�to�b�Ge����>done����^��ٓ�Rcmr7�1���|s�.��=I�o�should�p&emphasize�p'that��HECKE��is��not��y���et�\ro�Gc�k�p&solid"�and�ready�for����>general�vrelease,�~>so�y���ou�vshould�b�Ge�esp�ecially�sk���eptical�vof�the�results�it�giv���es�and����>a���w�are�:�that�:�the�in���terface�is�at�certain�p�Goin���ts�v�ery�:�primitiv�e.�h�Nonetheless,�?��HECKE����>�is��-capable�of�man���y�computations�whic�h�aren't�curren�tly�p�Gossible�in�an�y�other����>single,��Pin���tegrated,��Qpublicly�UQa�v��q�ailable,�pac�k��q�age.�q�The�UQmain�URdra�wbac�ks�are�URthat����>the��Qin���terface��Rma�y�b�Ge��Ra�wkw�ard�and��Rcertain�parts�of�the�implemen���tation�ha�v�e��Rnot����>b�Geen�UUprop�erly�optimized.��ꨍ�>�src:33hecke.tex�What��can��HECKE��do?��N8��A��HECKE�ϲconsists��b�Goth�of��a��C++��library�and�an�in���teractiv�e��calculator.�_JMost�of�the����>follo���wing�UUis�implemen�ted.�������M�
!",�

cmsy10�����W�src:37hecke.tex��"V

cmbx10�Mo�Q�dular��forms��and�Hec��9k�e�op�Q�erators:��V�Computations���on���the�spaces����W�
�b>

cmmi10�M����	0e�rcmmi7�k��됲(����1��|s�(�N��)�;���"�),�F��k������2�;�C`�o���v�er�C_cyclotomic�and�nite�elds.�k�F��*�unctions�include:�������[email protected]�{����m�src:42hecke.tex�Computation���of�bases���of�newforms.�.�Within�computational�limits,��the����mlev���el,���w�eigh�t,�and�Ͷc�haracter�ͷcan�b�Ge�prett���y�m�uc�h�ͷarbitrary��*�,���with�the����mrestriction�4Pthat��k������2�4Qb�Ge�an�in���teger.�f�F��*�urthermore,�:�all�eigenforms�are����mcomputed,�UU�not��just�the�ones�with�eigen���v��q�alues�in��Q�.�������[email protected]�{����m�src:48hecke.tex�Exact��computation�of�the��rational�n���um�b�Gers���L�(�M����f��/ �;���i�)�=�
����i��>b�where��M����f�����m�is�UUa�complex�torus�attac���hed�to��f�h�and�
����i�����is�a�certain�v�olume.�������[email protected]�{����m�src:51hecke.tex�Optimal�Ƙquotien���ts�Ɨ�A����f�����of��J����0��|s�(�N��)�asso�Gciated�to�newforms.�B3(An�optimal����mquotien���t�UUis�a�quotien�t��J����0��|s�(�N��)���!��A����f���u�with�UUconnected�k�ernel.)�������r�1.�����3�src:54hecke.texThe�mo�Gdular�degree�and�structure�of�the�canonical�p�Golarization.�������r�2.�����3�src:56hecke.texCongruences.�������r�3.�����3�src:57hecke.texOrder�UUof�image�of�(0)�8���(�1�).�������r�4.�����3�src:58hecke.texUpp�Ger�UUb�ound�on�torsion.�������r�5.�����3�src:59hecke.texT��*�amaga���w�a�x	n�um�b�Gers�xof�semistable�quotien���ts�of��J����0��|s�(�N��)�(curren���tly�����3only�UUfor��N�lp�prime).�������[email protected]�{����m�src:62hecke.tex�Discriminan���ts�UUof�Hec�k�e�algebras.��>�X-�ff��v�	J=�����"5��-:�!�Aa�cmr6�1����L�� |{Ycmr8�Hec�Îk�e��Xis�b�<reing�written�b�Îy�me,�with�advice�from�K.�Buzzard�and�H.W.�Lenstra.�������1����*�y�����?���������[email protected]�{����m�src:63hecke.tex�Numerical��computation��of�sp�Gecial�v��q�alues�and�p�Gerio�d��lattices�of�forms����mof��aev���en��bw�eigh�t��k�Sk��ղ2,�#in��bman�y�(but�not�all)��bcases.�v�When��f���has����mrational�7jF��*�ourier�7kco�Gecien���ts,�=fcomputation�of�the�in���v��q�arian�ts�7jof�the�as-����mso�Gciated�UUelliptic�curv���e�o�v�er��R�.�������M�����W�src:70hecke.tex�F��
�orm��9ulas:�Oi�The��classical��form���ulas,�Xsuc�h�as��the�n�um�b�Gers��of�cusps�on�mo�Gd-����Wular��curv���es,���dimensions�of�spaces�of��cusps�forms,���and�computation�of�����Wdim��iUX�S����k��됲(����1��|s�(�N��)�;���"�)�lTfor��k�謸���2�lUand��"��a�Diric���hlet�c�haracter�lUmo�Gdulo��N��o�(us-����Wing�UUthe�Hijik��q�ata�trace�form���ula).�������M�����W�src:77hecke.tex�Character��groups��of�tori:��$�Action�pof�pHec���k�e�op�Gerators�on�pthe�c�haracter����Wgroup��asso�Gciated��to��J����0��|s�(�p�)�(using�the�Mestre-Oesterl�����Ge�graph�metho�Gd).�M�The����Wmatrices�UUattained�in�this�w���a�y�UUare�v���ery�sparse.�������M�����W�src:82hecke.tex�T��
�ables:�qDzF��*�unctions�UUfor�making�tables�of�eigenforms.�������M�����W�src:84hecke.tex�More:�qDzAnd�UUm���uc�h�more...�� �ٍ�>�src:88hecke.tex�Wh��y��do�`es��HECKE��exist?��N8��ArR�HECKE�rJ�grew�rRout�of�w���ork�on�m�y�thesis�rQwhic�h�in�v�olv�es�computing�sp�Gecial�v��q�alues����>of��^�L�-functions,�#�congruences,�and�v���erifying�mo�Gdularit�y�of�certain�Galois�repre-����>sen���tations.�?�In�D�a�sense,����HECKE�D}�is�also�D�the�program�I�wish�had�D�existed�when�I����>w���as�,Ltaking�,Km�y�rst�mo�Gdular�,Kforms�course�and�w�an�ted�,Kto�see�lots�of�concrete����>examples�bof�mo�Gdular�forms.���(Some�of�the�tables�bcomputed�using��HECKE�b�can�b�e����>found�UUat��http://shimura.math.berkeley.edu/~was/Tables�.)���ߍ�>�src:97hecke.tex���N�ffcmbx12�Guided�fftour����B� �In�� this�guided�tour,�,Sy���ou�will�see�ho�w�to��!use��HECKE�Ϳ�to�compute�the�action����>of�̃Hec���k�e�op�Gerators,��Nbases�of�eigenforms,�and�̂obtain�information�ab�Gout�sp�ecial����>v��q�alues�UUof��L�-functions.��ꨍ�>�src:103hecke.tex�Starting���HECKE�.����AUU�T��*�o�UUstart��HECKE�,�t���yp�Ge��hecke��at�the�command�line.�q�Y�ou�will�see�something�lik���e���2��>�src:112hecke.tex�#�?�hecke����H�HECKE:�
�Modular�?�Forms�Calculator���Version�0.4�(June�14,�1999)�������William�?�A.�Stein����>Send�?�bug�reports�and�suggestions�to�[email protected]����>Type�?�?�for�help.����>HECKE>���1��>�src:113hecke.tex�T���yping�UU�?�qDzgiv�es�a�list�of�\mo�Gdes"�whic�h�include:����>�src:121hecke.tex�
��calc:��Motive�?�calculator����H�exsymbols:�?�Extended�modular�symbols�mode����H�formulas:�
�Formula�?�calculator�������2����9�y�����?������H��graphs:���Monodromy�?�pairing�calculator����H�msymbols:�
�Modular�?�symbols�calculator����H�tables:���Table�?�making�routines�� ꨍ�>�src:122hecke.tex�Mo�`dular��forms�and�Hec��k�e��op�erators�calculator.��N8��@p�T���yp�Ge�p��msymbols�p�to�start�the�mo�Gdular�forms�and�Hec���k�e�p�op�Gerators�calculator.�%�Y��*�ou����>will�E�b�Ge�E�ask���ed�for�sev�eral�E�bits�of�information�whic���h�dene�the�space�on�whic���h�to����>w���ork.�q�Answ�er�UUas�follo���ws:����>�src:131hecke.tex����level�?�N�=�389����M��character�?�chi�=�0����M��weight�?�k�=�2����>�src:132hecke.tex�After���a���brief�computation�the�calculator�in���terface�will�prin���t�some�information����>ab�Gout�UU�M����2��|s�(����0���(389))�and�a���w�ait�y�our�command.����>�src:141hecke.tex����---------------------------------------------------------------����M��Current�?�space:���M_2(Gamma_0(389);�Q)^+,�dim=33����M��Hecke�?�action�on:�V=M_2,�dim=33����M��---------------------------------------------------------------����M��M_2(389)�?�?����>�src:142hecke.tex�The�UUhelp�system�is�similar�to�that�in�P��*�ARI.�T���yping��?�qDzgiv�es�a�list�of�subtopics.����>�src:153hecke.tex����1:�?�computing�OPERATORS����M��2:�?�setting�current�SPACE����M��3:�?�cutting�out�SUBSPACES����M��4:�?�computing�BASIS����M��5:�?�CONVERSIONS�between�representations����M��6:�?�arithmetic�INVARIANTS�of�torus�A_V����M��7:�?�INVARIANTS�of�Hecke�algebra����M��8:�?�OPTIONS����>�src:154hecke.tex�T��*�o���get�an���idea�of�what��M����2��|s�(����0���(389))���lo�Goks�lik���e,��compute�the�c���haracteristic�p�Goly-����>nomials�c`of�casev���eral�Hec�k�e�op�Gerators�ca�T����n��q~�.���T�yp�e�c`�t�ca�then�en�ter�a�cap�Gositiv�e�in�teger����>�n�.����>�src:168hecke.tex����?�?�t����M��Tn:�?�Enter�values�of�n,�then�q�when�done.����M��2����M��f2=(x-3)*(x�?�+�2)*(x^2�-2)*(x^3�-4*x�-2)*����]�(x^20�?�-3*x^19�-29*x^18�+�91*x^17�+�338*x^16�-1130*x^15����b��-2023*x^14�?�+�7432*x^13�+�6558*x^12�-28021*x^11�-10909*x^10����b��+�?�61267*x^9�+�6954*x^8�-74752*x^7�+�1407*x^6�+�46330*x^5����b��-1087*x^4�?�-12558*x^3�-942*x^2�+�960*x�+�148)*����]�(x^6�?�+�3*x^5�-2*x^4�-8*x^3�+�2*x^2�+�4*x�-1);����M��q�������3�����y�����?������>�src:169hecke.tex�Let's�compute�the�action�of�a�few�Hec���k�e�op�Gerators�on�the�dimension�t���w�o�factor.����>T���yp�Ge�UU�subeigenpoly�,�then�select�the�dimension�t�w�o�factor:����>�src:187hecke.tex����M_2(389)�?�?�subeigenpoly����M��[...]����M��n�?�=�2��?�<----�you�type�this����M��Choose�?�one�of�the�following�factors.����g��1:�?�x+2����g��2:�?�x-3����g��3:�?�x^2-2����g��4:�?�x^3-4*x-2����g��5:�?�x^20-3*x^19-29*x^18+91*x^17+338*x^16-1130*x^15-2023*x^14+����g��7432*x^13+6558*x^12-28021*x^11-10909*x^10+61267*x^9+6954*x^8-����g��74752*x^7+1407*x^6+46330*x^5-1087*x^4-12558*x^3-942*x^2+960*x+148����g��6:�?�x^6+3*x^5-2*x^4-8*x^3+2*x^2+4*x-1����g��7:�?�ALL�factors����M��Select�?�a�factor:�3�N��<----�you�type�this����M�src:189hecke.tex�When��Mthe��N�M���E�ff&f��ǫ2(389)�?�?��i�prompt�app�Gears,��t���yp�e��M�opmatrix��to�turn�on�matrix����>displa���y�m�and��opcharpoly��to�turn�m�o�computation�of�c�haracteristic�p�Golynomials.����>No���w�o�y�ou�o�can�compute�matrices�whic���h�represen�t�o�the�Hec�k�e�o�op�Gerators�on�this����>dimension�UUt���w�o�space:����>�src:202hecke.tex����M_2(389)�?�?�t����M��2����M��T2=[2,1;-2,-2];����M��3����M��T3=[0,1;-2,-4];����M��6����M��T6=[-2,-2;4,6];����>�src:203hecke.tex�Let��A��denote�the�corresp�Gonding�dimension�t���w�o��optimal�quotien���t�of��J����0��|s�(389).�\�T��*�o����>compute�Jthe�BSD�I�v��q�alue��L�(�A;����1)�=�
����A�����,��<t���yp�Ge�J
�torusbsd�.�O��HECKE��outputs�0�along����>with��6the�rst�few��5terms�of�the��q�[ٲ-expansion�of��f�	Ųand�the�discriminan���t�of�the�ring����>�Z�[��:���:�:��
UO;���a����n��q~�;��:�:�:���].��The��sign��in�the�functional�equation�for�the��L�-function�is�min���us����>the�1sign�of�the�A���tkin-Lehner�in�v�olution��W����389��uY�.�Z�T��*�o�compute�this�in�v�olution,�t�yp�Ge����>�actatkin����and���then�en���ter��389��for��p�.�e��HECKE����compute�that��W����389����=�N�+1�on��A�,���so����>the�UUsign�in�the�functional�equation�is���1�and��L�(�A;����1)�is�forced�to�v��q�anish.����M�src:216hecke.texT��*�o��}obtain��~the��q�[ٲ-expansion�of�a�normalized�eigenform�in�our�dimension�t���w�o����>space,�UUt���yp�Ge��basisnew��then��n=7�.�q�The�result�is����>�src:222hecke.tex�s1=t^2-2;�
�s=Mod(t,t^2-2);����>f1�?�=�q�+�(s)*q^2�+�(s-2)*q^3�+�-1*q^5�+�(-2*s+2)*q^6�+�(-2*s-1)*q^7�+�O(q^8);����>�src:223hecke.tex�whic���h�UUmeans�that�a�normalized�newform�is����M.K�f����1��C��=���q����+���8��=V�p���
�7��=V�fe�ª��2�����8�q��[ٟ����2��,�+�8�(����=V�p���UW��=V�fe�ª��2�������2)�q��[ٟ����3��,���q��[ٟ����5���+�(��2����=V�p���UW��=V�fe�ª��2�����8+�2)�q��[ٟ����6���+�(��2����=V�p���UW��=V�fe�ª��2�����8���1)�q��[ٟ����7���+���������������4����$�y�����?������>�src:227hecke.tex�T��*�o��compute��the�discriminan���t�of�the�Hec���k�e��algebra��T�,��ot���yp�Ge��heckedisc�.����HECKE����>�computes�UUthe�discriminan���t�of�the��Z�-mo�Gdule�generated�b�y��T����1��|s�;����:�:�:����;���T��U�and�nds:����>592456554486106225601956409404798293104261020095616213409857536000000����>=��2������53��
����Ӳ3������4���G��Բ5������6���F���31������2����Ӳ37����97������2���F���389����3881����215517113148241����477439237737571441����>�src:235hecke.texThis�cis�bonly�kno���wn�example�in�whic���h��p���j���disc���g(�T����389��uY�)�c(there�are�no�other�suc���h����>�p��<��12000).��ꨍ�>�src:238hecke.tex�Non��trivial��c�haracter�and�w�eigh�t.��N8��A��Next,�*`compute��a�basis�of�eigenforms�for��S����4��|s�(����0���(13)�;���"�)��where��"���:�(�Z�=�13�Z�)��!��C���^��O!�cmsy7������>�is�*�a�c���haracter�*�whose�image�has�order�3.�c�T�yp�Ge��x��to�quit�*�computing�on��M����2��|s�(389),����>t���yp�Ge��/�msymbols��again�and�en�ter��N�?�=�13�,��e�chi�=�3�,�and��/�k�=�4�.��UIn�a�second,��ethe����>status�UUdispla���y�will�app�Gear:����>�src:251hecke.tex����-------------------------------------------------------------------����M��Current�?�space:���M_4(Gamma_0(13),�eps=[3];�Q[a]/(a^2-a+1))^+,�dim=5����M��Hecke�?�action�on:�V=M_4,�dim=5����M��-------------------------------------------------------------------����M��M_4(13)�?�?����>�src:252hecke.tex�(In�G�the�G�v���ersion�y�ou're�G�using,�JSthe�quadratic�G�p�Golynomial�migh�t�G�b�Ge�in��x��instead�of����>�a�.)�5�T���yp�Ge����basisnew�,���then����n�?�=�3��to���get�the�rst�3�terms�of�the��q�[ٲ-expansions�of����>a�B'basis�of�newforms.�kbNote:�h0only�one�represen���tativ�e�B'from�eac���h�Galois�conjugacy����>class�UUof�newforms�is�pro���vided.�q�The�output�is����>�src:262hecke.tex����f1�?�=�q�+�(-4*a)*q^2�+�(-2*a)*q^3�+�O(q^4);����M��s2=t^2+(-5*a)*t+(2*a-2);�?�s=Mod(t,t^2+(-5*a)*t+(2*a-2));����M��f2�?�=�q�+�(s)*q^2�+�((-3)*s+(5*a))*q^3�+�O(q^4);����>�src:263hecke.tex�This���means���that�there�are�t���w�o�(conjugacy���classes�of��)�eigenforms��f����1��_R�and��f����2��|s�.�K�The����>rst�"is�#�f����1��C��=���q�&T���|�4�aq��[ٟ�^��2���Ǹ��2�aq��[ٟ�^��3���+���������=�where�#�a�"�is�a�primitiv���e�cub�Ge�ro�ot�#of�1,�)-and�the����>second�t�is�tεf����2��C��=���q�ӭ�+�wԵsq��[ٟ�^��2��P �+�(��3�s��+�5�a�)�q��[ٟ�^��3���+���������A�where�tεs�tͲis�a�ro�Got�of��t���^��2���G��wԲ5�at��+�2�a����2��=�0.����M�src:269hecke.texT��*�o���w���ork�in�elds���of�c�haracteristic�other�than�0,��~use���the�extended�mo�Gde�b�y����>t���yping�UU�exsymbols��instead�of��msymbols��at�the��HECKE>��R�prompt.��ꨍ�>�src:273hecke.tex�Motiv��es��asso�`ciated�to�mo�dular�forms.��N8��A�The��msymbols��mo�Gde�is�useful�for�computing�basis�of�eigenforms�and�the�action����>of�}�Hec���k�e�}�op�Gerators�on�rather�general�spaces�of�mo�Gdular�forms.�)�It�is�less�useful�for����>computing�6sp�Gecic�information�ab�out�the�structure�of��J����0��|s�(�N��).�gVF��*�or�that,�<Duse�the����>�calc�p�mo�Gde.�_%T���yp�e��x�o�to�get�to�the��HECKE>��prompt,�(�then�t���yp�Ge��calc�.�_%When�ask�ed����>if��y���ou��w�an�t�to�w�ork�in��the�fast�+1�quotien�t,��}t�yping��n�.�6�(If�y�ou�t�yp�Ge���yes�,��|man�y����>computations�[email protected]�b�Ge�orders�of�magnitude�faster,�o{but�are�lik���ely�to�b�e�wrong�b���y����>a�UUp�Go���w�er�of�2.)�q�The�basic�syn�tax�of�a��calc��mo�Gde�command�is�as�follo�ws:����c�_�src:286hecke.tex�[lev��9el]k[w�eigh�t][isogen�y��Tclass].[command][(argumen�ts)]�������5����/��y�����?������>�src:288hecke.tex�Omitting��-the��.w���eigh�t�part�of��.the�command�is�the�same�as�sp�Gecifying��k���=��2.�<eT���yp�e����>�125�UU�to�obtain�a�list�of�optimal�quotien���ts�of��J����0��|s�(125).����>�src:299hecke.tex�
��?�?�125����H�******�?�SUMMARIZE�LEVEL.����H�125k2:���dim�W����M��A�)��2��+����M��B�)��2��-����M��C�)��4��-����>�src:300hecke.tex�This���means���that��J����0��|s�(125)�:ո��A�3���3��B��i���C���where����A;���B��q;�C���are�ab�Gelian���v��q�arieties����>of�-Idimensions�-J2,��F2,�and�4.�	��W��*�e�-Ican�compute��L�(�A;����1)�=�
����A�����,��G�L�(�B��q;��1)�=�
����B��U�and����>�L�(�C�(�;����1)�=�
����C���ڲ:����>�src:311hecke.tex����?�?�125A.bsdratio����M��0����M��?�?�125B.bsdratio����M��2^2/5����M��?�?�125C.bsdratio����M��1/5����>�src:312hecke.tex�The��bsigns�in�the��W���column�ab�Go���v�e��bgiv�e�the��asigns�of�the�A�tkin-Lehner�in�v�olu-����>tion���W����125��uY�.�	ȹTh���us�one��exp�Gects,���b�ecause��the�lev�el�is�lo�w,���that��J��9�(�Q�)�h��
�h��Q����T͍�������+3�����=��������>�A�(�Q�)�vQ�
��Q�೸��Q�vQ��vR�Q�.�
KThis�1�is�in�fact�the�case,���though�w���e�will�not�pro�v�e����>it���here.�G�(I��fha���v�en't���y�et�implemen�ted���a�function�for�computation��L���^��0���9�(�A;����1),��so����>the��rank�can't�y���et�b�Ge�b�ounded�from��within��HECKE�.)�What�ab�out�the�torsion?����>T���yp�Ge���125.torsionbound(13)��	�to�get�an�upp�Ger�b�ound�on�the��	torsion�subgroup����>of�=��J����0��|s�(125).�*�Then�t���yp�Ge�=��125.cusporder��to�compute�the�order�of�(0)�ӳ��Ӵ�(�1�)�J(�2����>�J����0��|s�(125)(�Q�).����>�src:327hecke.tex����?�?�125.torsionbound(13)����M��5^2����M��?�?�125.cusporder����M��5^2����>�src:328hecke.tex�W��*�e're��4luc���ky��3{�the�lo���w�er��4and�upp�Ger�b�ounds��4matc���h�up�and�w���e�conclude�that����>�J��9�(�Q�)��5���Z���^��2���Ÿ�9R�(�Z�=�25�Z�).�s�Next�U�t���yp�Ge�V�125A.intersection(B)��to�obtain�the�struc-����>ture��Wof�the��Xnite�ab�Gelian�group��A���^��0��IŸ\�{��B���q��^��0���p��mŵJ��9�,��Xwhere��A���^��0���9�,��B���q��^��0���are��Xthe�ab�Gelian�v��q�a-����>rieties�X�dual�to��A��and��B��q�.�|@The�answ���er��[2,2,2,2]��indicates�that�the�in�tersection����>is�2�(�Z�=�2�Z�)���^��4��|s�.�f7This�implies�2�that�the�corresp�Gonding�newforms�satisfy�a�congruence����>in�UUc���haracteristic�2.�q�T��*�o�exit��calc��mo�Gde,�t�yp�Ge��n�q�.����M�src:338hecke.texThis�_ftutorial�_ghas�barely�scratc���hed�the�surface�of�what�is�p�Gossible�using��HECKE�.����>If�UUy���ou�are�in�teresting�in�learning�more,�talk�to�me.������6����>����;�y��!�Aa�cmr6� |{Ycmr8��':

cmti10���<x

cmtt10�߆�Tcmtt12���N�cmbx12��-�ff
cmcsc10���N�ffcmbx12��"V

cmbx10�
!",�

cmsy10�O!�cmsy7�
�b>

cmmi10�	0e�rcmmi7�K�`y

cmr10�ٓ�Rcmr7�I�������