Sharedwww / Tables / eigen_k2_N1-500_prec97.gpOpen in CoCalc
\\ This is a table of the first 97 Hecke eigenvalues
\\ of newforms for Gamma_0(N).
\\ Notation:
\\ f[N,k]  = [ 
\\            [g(x), [wq's], [a2(x),...,ap(x)]],
\\                  ...  
\\            [g(x), [wq's], [a2(x),...,ap(x)]]
\\          ];
\\ Where Q_f = Q(...a_n...) = Q[x]/g(x).
\\ The newforms are ordered by dimension, 
\\ then W_q's, then traces.

\\ William Stein ([email protected])

\\ uncomment the following two lines to make PARI-readable.
\\ {
\\ f = matrix(500,2);

f[11,2]=[
[x+2, [-1], [-2,-1,1,-2,1,4,-2,0,-1,0,7,3,-8,-6,8,-6,5,12,-7,-3,4,-10,-6,15,-7]]];

f[14,2]=[
[x+1, [1,-1], [-1,-2,0,1,0,-4,6,2,0,-6,-4,2,6,8,-12,6,-6,8,-4,0,2,8,-6,-6,-10]]];

f[15,2]=[
[x+1, [1,-1], [-1,-1,1,0,-4,-2,2,4,0,-2,0,-10,10,4,8,-10,-4,-2,12,-8,10,0,12,-6,2]]];

f[17,2]=[
[x+1, [-1], [-1,0,-2,4,0,-2,1,-4,4,6,4,-2,-6,4,0,6,-12,-10,4,-4,-6,12,-4,10,2]]];

f[19,2]=[
[x, [-1], [0,-2,3,-1,3,-4,-3,1,0,6,-4,2,-6,-1,-3,12,-6,-1,-4,6,-7,8,12,12,8]]];

f[20,2]=[
[x, [-1,1], [0,-2,-1,2,0,2,-6,-4,6,6,-4,2,6,-10,-6,-6,12,2,2,-12,2,8,6,-6,2]]];

f[21,2]=[
[x+1, [-1,1], [-1,1,-2,-1,4,-2,-6,4,0,-2,0,6,2,-4,0,6,12,-2,4,0,-6,-16,-12,-14,18]]];

f[23,2]=[
[x^2+x-1, [-1], [x,-2*x-1,2*x,2*x+2,-2*x-4,3,-2*x+2,-2,1,-3,6*x+3,-2*x,-4*x-1,0,-2*x-1,4*x-2,4*x+4,-8*x-2,2*x-4,2*x+11,-4*x+9,-8*x-6,2*x-10,-4*x-8,6*x+14]]];

f[24,2]=[
[x, [-1,1], [0,-1,-2,0,4,-2,2,-4,-8,6,8,6,-6,4,0,-2,4,-2,-4,8,10,-8,-4,-6,2]]];

f[26,2]=[
[x+1, [1,-1], [-1,1,-3,-1,6,1,-3,2,0,6,-4,-7,0,-1,3,0,-6,8,14,-3,2,8,12,-6,-10]],
[x-1, [-1,1], [1,-3,-1,1,-2,-1,-3,6,-4,2,4,3,0,-5,13,12,-10,-8,-2,-5,-10,-4,0,6,14]]];

f[27,2]=[
[x, [-1], [0,0,0,-1,0,5,0,-7,0,0,-4,11,0,8,0,0,0,-1,5,0,-7,17,0,0,-19]]];

f[29,2]=[
[x^2+2*x-1, [-1], [x,-x,-1,2*x+2,x+2,2*x+1,-2*x-4,6,-4*x-6,1,-5*x-2,-4,6*x+10,x+6,3*x+4,-6*x-5,4*x+6,2*x,-4*x-4,2*x-4,4,x,-4*x-2,6*x+2,-6*x-10]]];

f[30,2]=[
[x+1, [1,-1,1], [-1,1,-1,-4,0,2,6,-4,0,-6,8,2,-6,-4,0,-6,0,-10,-4,0,2,8,12,18,2]]];

f[31,2]=[
[x^2-x-1, [-1], [x,-2*x,1,2*x-3,2,-2*x,-2*x+4,-2*x+1,6*x-4,-2*x+6,1,-2,7,2*x-2,4*x-4,-4*x-4,2*x-1,10*x-8,8,-10*x+7,4*x+2,-6*x-2,-8*x-2,6*x+2,-8*x-3]]];

f[32,2]=[
[x, [-1], [0,0,-2,0,0,6,2,0,0,-10,0,-2,10,0,0,14,0,-10,0,0,-6,0,0,10,18]]];

f[33,2]=[
[x-1, [1,-1], [1,-1,-2,4,1,-2,-2,0,8,-6,-8,6,-2,0,8,6,-4,6,-4,0,-14,-4,12,-6,2]]];

f[34,2]=[
[x-1, [-1,1], [1,-2,0,-4,6,2,-1,-4,0,0,-4,-4,6,8,0,-6,0,-4,8,0,2,8,0,-6,14]]];

f[35,2]=[
[x, [1,-1], [0,1,-1,1,-3,5,3,2,-6,3,-4,2,-12,-10,9,12,0,8,-4,0,2,-1,12,-12,-1]],
[x^2+x-4, [-1,1], [x,-x-1,1,-1,x+1,x+3,-x-3,2*x-2,-2*x-2,-3*x-1,0,6,-2*x,2*x+6,3*x-1,2*x,-4,-6*x,-4*x,8,4*x-2,-x-5,4,2*x+4,-5*x-7]]];

f[36,2]=[
[x, [-1,1], [0,0,0,-4,0,2,0,8,0,0,-4,-10,0,8,0,0,0,14,-16,0,-10,-4,0,0,14]]];

f[37,2]=[
[x+2, [1], [-2,-3,-2,-1,-5,-2,0,0,2,6,-4,-1,-9,2,-9,1,8,-8,8,9,-1,4,-15,4,4]],
[x, [-1], [0,1,0,-1,3,-4,6,2,6,-6,-4,1,-9,8,3,-3,12,8,-4,-15,11,-10,9,6,8]]];

f[38,2]=[
[x+1, [1,-1], [-1,1,0,-1,-6,5,3,1,3,9,-4,2,0,8,0,-3,9,-10,5,-6,-7,-10,-6,-12,-10]],
[x-1, [-1,1], [1,-1,-4,3,2,-1,3,-1,-1,-5,-8,-2,-8,4,8,-1,15,2,3,2,9,-10,-6,0,-2]]];

f[39,2]=[
[x-1, [1,-1], [1,-1,2,-4,4,1,2,0,0,-10,4,-2,6,-12,0,6,12,-2,-8,0,2,8,4,-2,10]],
[x^2+2*x-1, [-1,1], [x,1,-2*x-2,2*x+2,-2,-1,4*x+6,-2*x-2,-4,2,2*x-2,-4*x-6,-2*x+6,-4*x,-4*x-10,-2,4*x+6,8*x+10,2*x+6,2,-4*x+2,-8*x-8,4*x+2,2*x+14,4*x+2]]];

f[40,2]=[
[x, [1,-1], [0,0,1,-4,4,-2,2,4,4,-2,-8,6,-6,-8,4,6,-4,-2,8,0,-6,0,-16,-6,-14]]];

f[41,2]=[
[x^3+x^2-5*x-1, [-1], [x,-1/2*x^2-x+3/2,-x-1,1/2*x^2+x+1/2,3/2*x^2+x-9/2,-x^2+3,-2,-3/2*x^2-x+13/2,-2*x^2-2*x+8,x^2+2*x-5,2*x+6,-3*x-3,1,x^2-5,3/2*x^2-3*x-13/2,x^2+2*x-1,-2*x^2-2*x+4,-x^2+2*x+5,-3/2*x^2-x+9/2,-3/2*x^2+x+25/2,4*x^2+x-15,1/2*x^2-x+17/2,2*x^2+4*x-6,-4*x^2-2*x+12,-2*x^2-4*x+8]]];

f[42,2]=[
[x-1, [-1,1,1], [1,-1,-2,-1,-4,6,2,-4,8,-2,0,-10,-6,-4,0,6,4,6,4,8,10,0,-4,-6,-14]]];

f[43,2]=[
[x+2, [1], [-2,-2,-4,0,3,-5,-3,-2,-1,-6,-1,0,5,-1,4,-5,-12,2,-3,2,2,-8,15,-4,7]],
[x^2-2, [-1], [x,-x,-x+2,x-2,2*x-1,2*x+1,2*x+5,-2*x-2,-4*x+1,3*x,-3,-6*x,-2*x-1,1,6,-2*x+11,2*x-2,3*x+4,6*x+1,-2*x-6,3*x-12,-2*x+2,4*x+9,-3*x-6,-2*x-1]]];

f[44,2]=[
[x, [-1,1], [0,1,-3,2,-1,-4,6,8,-3,0,5,-1,0,-10,0,-6,3,-4,-1,15,-4,2,6,-9,-7]]];

f[45,2]=[
[x-1, [-1,1], [1,0,-1,0,4,-2,-2,4,0,2,0,-10,-10,4,-8,10,4,-2,12,8,10,0,-12,6,2]]];

f[46,2]=[
[x+1, [1,-1], [-1,0,4,-4,2,-2,-2,-2,1,2,0,-4,6,10,0,-4,12,-8,-10,0,6,-12,14,-6,6]]];

f[47,2]=[
[x^4-x^3-5*x^2+5*x-1, [-1], [x,x^3-x^2-6*x+4,-4*x^3+2*x^2+20*x-10,3*x^3-x^2-16*x+7,2*x^3-2*x^2-10*x+6,-4*x^3+2*x^2+22*x-8,x^3+x^2-6*x,-2*x^3+10*x-2,-2*x^3+12*x-4,-2*x^3+2*x^2+10*x-10,4*x^3-2*x^2-22*x+8,3*x^3-x^2-14*x+8,-2*x+2,-2*x^3+2*x^2+14*x-8,1,5*x^3-3*x^2-30*x+13,7*x^3-x^2-36*x+11,-7*x^3+5*x^2+38*x-23,-12*x^3+6*x^2+60*x-26,7*x^3-3*x^2-34*x+12,-2*x^2-4*x+12,7*x^3-3*x^2-34*x+20,8*x^3-4*x^2-40*x+24,5*x^3+x^2-26*x+1,-9*x^3+7*x^2+46*x-21]]];

f[48,2]=[
[x, [1,-1], [0,1,-2,0,-4,-2,2,4,8,6,-8,6,-6,-4,0,-2,-4,-2,4,-8,10,8,4,-6,2]]];

f[49,2]=[
[x-1, [-1], [1,0,0,0,4,0,0,0,8,2,0,-6,0,-12,0,-10,0,0,4,16,0,8,0,0,0]]];

f[50,2]=[
[x+1, [1,-1], [-1,1,0,2,-3,-4,-3,5,6,0,2,2,-3,-4,12,6,0,2,-13,12,11,-10,-9,15,2]],
[x-1, [-1,1], [1,-1,0,-2,-3,4,3,5,-6,0,2,-2,-3,4,-12,-6,0,2,13,12,-11,-10,9,15,-2]]];

f[51,2]=[
[x, [-1,1], [0,1,3,-4,-3,-1,-1,-1,9,6,2,-4,-3,-7,-6,-6,6,8,-4,12,2,-10,-6,0,-16]],
[x^2+x-4, [1,-1], [x,-1,-x+1,0,-x-1,x+3,1,3*x+3,-x-5,4*x+2,-2*x-2,2*x,x-1,-3*x-3,2*x-6,-4*x+2,-2*x+2,-2*x+4,4,4*x+4,4*x-2,6*x+6,-2*x-6,2*x+4,-2*x-8]]];

f[52,2]=[
[x, [-1,1], [0,0,2,-2,-2,-1,6,-6,8,2,10,-6,-6,4,-2,6,-10,-2,10,10,2,-4,-6,-6,2]]];

f[53,2]=[
[x+1, [1], [-1,-3,0,-4,0,-3,-3,-5,7,-7,4,5,6,-2,-2,-1,-2,-8,-12,1,-4,-1,-1,-14,1]],
[x^3+x^2-3*x-1, [-1], [x,-x^2-x+3,x^2-3,x^2-1,x^2+2*x-3,1,2*x-1,x+4,2*x^2-x-4,-3*x^2-4*x+4,-x^2+4*x+3,x^2+6*x-2,-2*x-4,-3*x^2-6*x+11,-2*x^2-4*x,1,4*x^2+2*x-8,3*x^2-2*x-11,3*x^2+6*x-3,-3*x^2-7*x+3,x^2+4*x+1,5*x^2+3*x-13,3*x+10,-4*x^2+4*x+10,5*x^2-12]]];

f[54,2]=[
[x+1, [1,-1], [-1,0,3,-1,-3,-4,0,2,-6,6,5,2,-6,-10,6,9,12,8,14,0,-7,8,-3,-18,-1]],
[x-1, [-1,1], [1,0,-3,-1,3,-4,0,2,6,-6,5,2,6,-10,-6,-9,-12,8,14,0,-7,8,3,18,-1]]];

f[55,2]=[
[x-1, [-1,1], [1,0,1,0,-1,2,6,-4,4,6,-8,-2,2,4,-12,-2,4,-10,-16,8,14,8,-4,10,10]],
[x^2-2*x-1, [1,-1], [x,-2*x+2,-1,-2,1,2*x-6,2*x+2,0,-2*x+2,-4*x+6,0,-4*x+2,6,-6,2*x-2,4*x+2,4*x-8,-8*x+10,6*x-2,8*x-8,2*x-6,4,-6,-8*x+6,4*x-6]]];

f[56,2]=[
[x-2, [1,-1], [0,2,-4,1,0,0,-2,-2,8,2,4,-6,-2,8,-4,-10,6,4,-12,0,-14,-8,6,10,-2]],
[x, [-1,1], [0,0,2,-1,-4,2,-6,8,0,6,8,-2,2,-4,-8,6,0,-6,-4,-8,10,16,8,-6,-6]]];

f[57,2]=[
[x+1, [1,1], [-2,-1,-3,-5,1,2,-1,-1,-4,-2,-6,0,0,-1,-9,10,-8,-1,8,-12,-11,16,12,-6,-10]],
[x-1, [-1,1], [1,1,-2,0,0,6,-6,-1,4,2,8,-10,-2,-4,12,-6,-12,-2,-4,0,10,0,16,-2,10]],
[x-1, [-1,1], [-2,1,1,3,-3,-6,3,-1,4,-10,2,8,-8,-1,3,-6,0,7,8,12,-11,0,4,10,-2]]];

f[58,2]=[
[x+1, [1,1], [-1,-3,-3,-2,-1,3,-4,-8,0,-1,3,-8,-2,7,11,1,-4,4,-4,-2,-12,-7,0,-6,-6]],
[x-1, [-1,1], [1,-1,1,-2,-3,-1,8,0,4,-1,-3,8,2,-11,13,-11,0,-8,-12,2,4,15,4,-10,-2]]];

f[59,2]=[
[x^5-9*x^3+2*x^2+16*x-8, [-1], [x,-1/4*x^4+5/4*x^2-1/2*x,3/4*x^4+1/2*x^3-23/4*x^2-3*x+7,-1/2*x^4-1/2*x^3+7/2*x^2+3/2*x-3,-1/2*x^4-x^3+9/2*x^2+6*x-8,-1/2*x^4-x^3+9/2*x^2+6*x-6,x^4-8*x^2+9,3/4*x^4+3/2*x^3-23/4*x^2-8*x+9,-1/2*x^4+9/2*x^2+x-8,-x^4-1/2*x^3+8*x^2+1/2*x-7,x^4+x^3-9*x^2-3*x+14,-x^4+7*x^2-2,1/4*x^4+x^3-13/4*x^2-17/2*x+6,-x^3+5*x-2,-2*x-4,1/4*x^4+x^3-13/4*x^2-9/2*x+6,1,1/2*x^4+x^3-9/2*x^2-2*x+12,-1/2*x^4-2*x^3+13/2*x^2+11*x-16,-x^4-2*x^3+8*x^2+10*x-11,1/2*x^4+2*x^3-5/2*x^2-9*x,7/4*x^4+2*x^3-51/4*x^2-21/2*x+16,1/2*x^4+3*x^3-5/2*x^2-16*x+4,-3/2*x^4-x^3+19/2*x^2+4*x-4,-3/2*x^4-2*x^3+27/2*x^2+11*x-26]]];

f[61,2]=[
[x+1, [1], [-1,-2,-3,1,-5,1,4,-4,-9,-6,0,8,5,-8,4,6,9,-1,-7,-8,-11,3,4,-4,-14]],
[x^3-x^2-3*x+1, [-1], [x,-x^2+3,x^2-2*x-2,x^2-x-3,x+4,-2*x^2+2*x+1,-x^2+2*x+1,3*x^2-7,-x+2,-x^2+2*x+3,-x^2-4*x+3,3*x^2-9,4*x^2-4*x-7,-x^2+2*x-3,-4*x^2+6*x+6,-2*x,-x^2-3*x+13,1,-x^2-5*x+7,x^2+4*x+1,3*x^2-4*x-6,-4*x^2-x+14,4*x^2-12,4*x^2-2*x-10,-4*x^2+8*x+10]]];

f[62,2]=[
[x-1, [-1,1], [1,0,-2,0,0,2,-6,4,8,2,-1,10,-6,8,-8,-6,-12,-6,-12,8,10,-8,8,-6,2]],
[x^2-2*x-2, [1,-1], [-1,x,-2*x+2,2,x-4,-3*x+2,2*x-2,-4,0,3*x-6,1,3*x+2,-2*x+8,3*x-4,6,x+2,2*x-8,-3*x+2,8,-8*x+8,-10,-6*x+8,-5*x+8,6,6*x-4]]];

f[63,2]=[
[x-1, [-1,1], [1,0,2,-1,-4,-2,6,4,0,2,0,6,-2,-4,0,-6,-12,-2,4,0,-6,-16,12,14,18]],
[x^2-3, [1,-1], [x,0,-2*x,1,2*x,2,2*x,-4,-2*x,0,-4,2,6*x,-4,4*x,-4*x,-4*x,-10,-4,-6*x,14,8,0,-2*x,14]]];

f[64,2]=[
[x, [-1], [0,0,2,0,0,-6,2,0,0,10,0,2,10,0,0,-14,0,10,0,0,-6,0,0,10,18]]];

f[65,2]=[
[x+1, [1,1], [-1,-2,-1,-4,2,-1,2,-6,-6,2,-10,-2,-6,10,4,2,6,2,-4,6,-6,-12,-16,2,-2]],
[x^2-3, [1,-1], [x,-x+1,-1,2,x-3,1,2*x,3*x-1,x+3,-2*x-6,-3*x+5,-4,-2*x,3*x+5,6,-6*x,-7*x-3,6*x+2,-6*x-4,-x+3,-4,6*x+2,-6,4*x-6,2]],
[x^2+2*x-1, [-1,1], [x,x+1,1,-2*x,-x+1,-1,-2*x-4,x+3,-x-1,4*x+4,3*x+9,6*x+6,-2*x-8,5*x+1,2*x,-6*x-12,3*x+9,-8,-2,-7*x-5,-6*x-6,6*x+6,-2*x-8,6,4*x+2]]];

f[66,2]=[
[x+1, [1,-1,1], [-1,1,0,2,-1,-4,-6,-4,6,6,8,-10,6,8,-6,0,0,8,-4,6,2,14,-12,-6,14]],
[x+1, [-1,1,1], [1,-1,2,-4,-1,-6,2,4,4,6,0,6,-6,4,-12,2,12,-14,4,-12,-6,-4,4,10,-14]],
[x-1, [-1,-1,-1], [1,1,-4,-2,1,4,-2,0,-6,10,-8,-2,2,4,-2,4,0,-8,-12,2,-6,10,4,10,-2]]];

f[67,2]=[
[x-2, [-1], [2,-2,2,-2,-4,2,3,7,9,-5,-10,-1,0,-2,-1,10,9,-2,1,0,-7,-8,4,7,0]],
[x^2+3*x+1, [1], [x,-x-3,-3,3*x+4,-2*x-3,-3*x-8,-2*x-6,3*x+5,-4*x-3,4*x+3,-1,3*x+4,-x-3,-3*x-3,x-6,-9,6,9*x+10,-1,2*x+9,-4,-9*x-17,7*x+3,2*x+3,-12*x-17]],
[x^2+x-1, [-1], [x,x+1,-2*x+1,-x,1,x,-2*x+2,x-5,4*x+1,4*x+7,6*x+3,x+2,5*x+5,-5*x-7,-x-4,6*x+3,-6,-3*x-6,1,-14*x-7,8,-7*x-9,-3*x+5,6*x-5,6*x+3]]];

f[68,2]=[
[x^2-2*x-2, [-1,1], [0,x,-2*x+2,-x,x-4,2*x,-1,-2*x+4,x-4,2*x-2,3*x-4,-2*x+10,-6,-6*x+8,-4*x+4,4*x+2,-2*x+8,2*x-6,4*x+4,-3*x,2,-3*x-4,2*x-8,-2*x+8,-4*x+6]]];

f[69,2]=[
[x-1, [-1,1], [1,1,0,-2,4,-6,4,2,-1,2,4,2,2,10,0,-12,-12,-6,-10,8,-14,10,12,-16,-10]],
[x^2-5, [1,-1], [x,-1,-x-1,-x+1,4,2*x,-x-5,-x+5,1,-2*x,2*x-2,-2*x,4*x-2,3*x+1,-4,x-3,4*x+4,-2*x,x+3,-8,-4*x-2,-3*x+3,4,x+1,-2*x+4]]];

f[70,2]=[
[x-1, [-1,1,1], [1,0,-1,-1,4,-6,2,0,0,6,8,-10,2,4,8,-2,-8,-14,-12,-16,2,-8,8,10,2]]];

f[71,2]=[
[x^3-5*x+3, [-1], [x,-x^2+3,-x-1,2*x^2+2*x-6,-2*x^2-2*x+6,4,2*x^2+2*x-6,-x^2-x+7,2*x^2-4,x^2+2*x-5,-2*x-2,-3*x^2-x+13,2*x^2+2*x-2,-2*x^2-3*x+1,2*x^2-10,-2*x,2*x^2+2*x-14,-4*x^2-6*x+16,4*x-4,1,x+1,-2*x^2-7*x+9,-x^2-x+11,-5*x^2-2*x+21,-2*x^2-4*x+8]],
[x^3+x^2-4*x-3, [-1], [x,-x,-x^2+x+5,-2*x,2*x^2-6,-2*x^2+4,2*x^2+2*x-6,x^2+2*x-2,-4,-2*x^2+x+10,4,-x^2-2,-4*x-2,-x^2-x+7,2*x^2+2*x-4,-4*x^2+6,2*x^2-2*x-8,-4*x+4,-2*x^2+2,1,x^2+3*x+7,-x^2+3*x+3,x^2-2*x-10,-2*x^2-x+6,2*x+8]]];

f[72,2]=[
[x, [1,-1], [0,0,2,0,-4,-2,-2,-4,8,-6,8,6,6,4,0,2,-4,-2,-4,-8,10,-8,4,6,2]]];

f[73,2]=[
[x-1, [-1], [1,0,2,2,-2,-6,2,8,4,2,-2,-6,6,-2,6,10,-6,-14,8,0,1,-4,-14,-6,-10]],
[x^2+3*x+1, [1], [x,-x-3,x,-3,-x-3,3*x+5,-6*x-9,1,x-6,-4*x-3,6*x+10,-6*x-11,4*x+6,-1,-4*x-9,8*x+15,4*x,3*x+8,6*x+17,x-9,-1,3*x-5,-3*x-6,-2*x+3,-3*x-9]],
[x^2-x-3, [-1], [x,-x+1,-x,-1,x+3,x-1,2*x-3,-7,x+6,-4*x+3,2*x+2,-2*x+5,-6,-4*x+5,9,4*x-3,0,-x-4,-6*x+5,-3*x+3,1,3*x-1,-5*x+6,6*x+3,-3*x-1]]];

f[74,2]=[
[x^2-3*x-1, [1,-1], [-1,x,-x+1,-2*x+4,-x+1,x-2,-6,2,3*x-6,-3*x+6,-x+3,1,3*x,2*x-6,2*x-2,-6,2*x+4,5*x-9,-5*x+13,6,-x-9,7*x-14,-4*x+16,-4*x+4,-8*x+10]],
[x^2+x-1, [-1,1], [1,x,-3*x-1,2*x,-x-3,3*x+2,4*x+2,-4*x-2,-3*x-2,7*x+2,x+9,-1,-x+8,2*x-2,2*x+2,-4*x-6,-2*x-8,-x+9,-5*x-7,-8*x-10,-5*x-1,9*x+6,4*x-8,-4*x-8,4*x+6]]];

f[75,2]=[
[x-2, [1,-1], [2,-1,0,-3,2,1,2,-5,6,10,-3,2,-8,1,2,-4,-10,7,-3,-8,-14,0,6,0,17]],
[x-1, [-1,1], [1,1,0,0,-4,2,-2,4,0,-2,0,10,10,-4,-8,10,-4,-2,-12,-8,-10,0,-12,-6,-2]],
[x+2, [-1,1], [-2,1,0,3,2,-1,-2,-5,-6,10,-3,-2,-8,-1,-2,4,-10,7,3,-8,14,0,-6,0,-17]]];

f[76,2]=[
[x, [-1,1], [0,2,-1,-3,5,-4,-3,-1,8,-2,4,10,10,1,-1,-4,6,-13,-12,2,9,8,-12,12,-8]]];

f[77,2]=[
[x+3, [1,1], [0,-3,-1,-1,-1,-4,2,-6,-5,10,1,-5,-2,-8,8,-6,3,-2,-3,1,10,6,12,-15,-5]],
[x-1, [1,-1], [1,2,-2,-1,1,4,4,0,-4,-6,10,-6,4,12,-10,-6,2,0,8,-12,-8,8,0,-6,-10]],
[x-1, [-1,1], [0,1,3,1,-1,-4,-6,2,3,-6,5,11,6,8,0,-6,-9,-10,5,9,2,-10,12,-3,-1]],
[x^2-5, [-1,1], [x,-x+1,-2,1,-1,x+1,-x-1,2*x+2,2*x-2,2*x+4,x-5,-2*x-4,-x-9,8,-x+5,-2*x+4,-x+1,-x-5,2*x+10,-2*x-6,x-3,-4*x,-6*x+2,2,6*x+4]]];

f[78,2]=[
[x+1, [1,1,-1], [-1,-1,2,4,-4,1,2,-8,0,6,-4,-2,-10,4,8,-10,4,-2,-16,-8,2,8,12,14,10]]];

f[79,2]=[
[x+1, [1], [-1,-1,-3,-1,-2,3,-6,4,2,-6,-10,-2,-10,4,7,8,-3,-4,8,15,2,-1,-6,-7,-19]],
[x^5-6*x^3+8*x-1, [-1], [x,-x^4+x^3+3*x^2-3*x+1,x^4-4*x^2-x+3,x^4-x^3-5*x^2+3*x+3,-x^4-2*x^3+6*x^2+7*x-6,x^3+x^2-2*x-3,-2*x^3+6*x+2,-3*x^3+3*x^2+10*x-8,2*x^4+x^3-9*x^2-4*x+6,2*x^3-2*x^2-4*x+6,-x^4+2*x^3+6*x^2-5*x-6,2*x^4-2*x^3-10*x^2+4*x+8,2*x^3-6*x+6,-2*x^4+2*x^3+8*x^2-6*x-6,x^4-5*x^3-5*x^2+17*x+5,-4*x^4+16*x^2+2*x-6,x^4+x^3-5*x^2-7*x+5,-2*x^4+4*x^3+2*x^2-14*x+10,3*x^3-3*x^2-14*x+4,x^4+x^3-x^2-3*x-5,-x^3-x^2+2*x,1,2*x^4+2*x^3-10*x^2-6*x+2,-2*x^4-x^3+11*x^2+4*x-1,x^4-6*x^3+2*x^2+19*x-13]]];

f[80,2]=[
[x, [1,-1], [0,0,1,4,-4,-2,2,-4,-4,-2,8,6,-6,8,-4,6,4,-2,-8,0,-6,0,16,-6,-14]],
[x-2, [-1,1], [0,2,-1,-2,0,2,-6,4,-6,6,4,2,6,10,6,-6,-12,2,-2,12,2,-8,-6,-6,2]]];

f[81,2]=[
[x^2-3, [-1], [x,0,-x,2,-2*x,-1,3*x,2,2*x,x,8,-7,-4*x,2,4*x,0,8*x,-7,-10,-6*x,-7,2,-8*x,-3*x,2]]];

f[82,2]=[
[x+1, [1,1], [-1,-2,-2,-4,-2,4,-2,6,-8,0,-8,2,-1,-12,4,-4,8,-14,-2,8,10,4,12,-14,6]],
[x^2-2, [-1,1], [1,x,-2*x,-x-2,3*x,0,4*x+2,-x-4,-2*x+4,-4*x+4,2*x-4,6*x,-1,-4*x+4,-5*x-2,12,2*x-4,6,-3*x-4,x-2,-4*x-8,-3*x-6,4*x+12,-4*x-6,4*x-2]]];

f[83,2]=[
[x+1, [1], [-1,-1,-2,-3,3,-6,5,2,-4,-7,5,-11,-2,-8,0,6,5,5,-2,2,0,14,-1,0,-8]],
[x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [-1], [x,1/2*x^4-1/2*x^3-7/2*x^2+3/2*x+4,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-8*x-2,3/4*x^5-1/4*x^4-25/4*x^3+3/4*x^2+19/2*x,-1/4*x^5+1/4*x^4+5/4*x^3+1/4*x^2-4,x^3-5*x+2,1/4*x^5-3/4*x^4-7/4*x^3+17/4*x^2+7/2*x-4,3/2*x^5-1/2*x^4-23/2*x^3-1/2*x^2+16*x+4,-x^5+7*x^3+3*x^2-8*x-7,3/2*x^5-12*x^3-4*x^2+39/2*x+8,-3/4*x^5+3/4*x^4+23/4*x^3-21/4*x^2-8*x+8,-3/4*x^5+3/4*x^4+19/4*x^3-13/4*x^2-3*x+8,-x^5+9*x^3+x^2-16*x-1,1/2*x^5-1/2*x^4-9/2*x^3+3/2*x^2+10*x,-1/2*x^5+3/2*x^4+9/2*x^3-21/2*x^2-10*x+10,x^5-8*x^3+9*x,-5/4*x^5-1/4*x^4+39/4*x^3+11/4*x^2-29/2*x-4,3/2*x^5+2*x^4-14*x^3-16*x^2+55/2*x+16,-2*x^5-x^4+17*x^3+13*x^2-29*x-18,1/2*x^5+1/2*x^4-11/2*x^3-3/2*x^2+13*x-8,-1/2*x^5+5/2*x^4+7/2*x^3-31/2*x^2-5*x+12,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-10*x-4,1,-x^5-x^4+9*x^3+9*x^2-20*x-14,2*x^4-2*x^3-16*x^2+10*x+22]]];

f[84,2]=[
[x+1, [-1,1,1], [0,-1,4,-1,2,-6,-4,-4,2,-2,0,2,0,-4,12,-6,-8,6,-8,14,-2,12,-4,0,-2]],
[x-1, [-1,-1,-1], [0,1,0,1,-6,2,0,-4,-6,6,8,2,12,-4,12,-6,0,-10,8,6,-10,-4,-12,12,-10]]];

f[85,2]=[
[x-1, [1,-1], [1,2,-1,-2,2,2,1,0,6,-6,-10,2,10,4,12,-10,8,-14,8,-2,-14,-14,4,6,2]],
[x^2+2*x-1, [1,1], [x,-x-3,-1,x-1,x-3,-2*x-2,-1,-2*x-2,-x-3,-2*x-4,3*x+3,6*x+4,-6*x-4,4*x+6,-2*x-4,-4*x+2,2*x-10,4*x+6,2*x-4,-3*x-3,-2*x-4,x+5,8*x+6,4*x-4,4*x+2]],
[x^2-3, [-1,1], [x,-x+1,1,x-1,-x+3,-4,-1,2*x+2,3*x-3,2*x,x+5,-2*x-4,2*x,-2*x-4,-4*x+6,6,2*x+6,4*x+2,-10,-5*x+3,-6*x-4,-9*x-1,2*x+12,-6*x-6,4*x+2]]];

f[86,2]=[
[x^2+x-5, [1,-1], [-1,x,-x+1,2,0,2,x-4,-3*x-1,-x-5,x+2,3*x+2,3*x+2,3*x+3,1,-3*x-6,2*x+4,6,2,-10,4*x+2,14,3*x-1,2*x-2,2*x+4,-3*x-7]],
[x^2-x-1, [-1,1], [1,x,-x-1,-4*x+2,4*x-4,4*x-2,-x,x+5,-3*x+3,-3*x-2,x+6,-x-2,-3*x-1,-1,7*x-2,-2*x-4,-4*x+10,-8*x+6,2,4*x-10,8*x-2,x-1,-6*x-2,-6*x+4,-5*x-3]]];

f[87,2]=[
[x^2-x-1, [-1,1], [x,1,-2*x+2,-2*x-1,2*x+1,4*x-3,3,2*x-6,6*x-4,-1,-6*x,-2*x+4,2,4,-6*x+1,-2*x+10,-4*x+2,2*x-4,10*x-7,2*x-4,2*x+8,-2*x-14,-8*x-2,5,-14*x+10]],
[x^3-2*x^2-4*x+7, [1,-1], [x,-1,-2*x^2+8,x^2-x-2,x^2-x-6,-x^2-x+6,3*x^2-x-10,2*x-2,-2*x^2+10,1,-2*x^2+10,-2*x+4,4*x^2-4*x-14,-4*x^2+4*x+12,-3*x^2+3*x+6,2*x^2+4*x-8,-2*x^2+2*x,2*x,3*x^2-3*x-10,-2*x^2-4*x+6,2*x-4,-4*x^2+2*x+14,2*x^2+2*x-12,x^2+5*x-10,2*x^2-4*x-4]]];

f[88,2]=[
[x+3, [1,1], [0,-3,-3,-2,-1,0,-6,4,1,-8,-7,-1,4,6,-8,2,-1,4,-5,3,16,2,-2,15,-7]],
[x^2-x-4, [-1,1], [0,x,-x+2,-2*x,-1,2*x-2,2,-4,x+4,2*x-2,x-4,x-6,2*x+2,2*x-4,8,-4*x+6,-5*x,-2*x-2,-x+8,3*x-4,-2*x+2,2*x-8,2*x+4,-3*x-2,-x+14]]];

f[89,2]=[
[x+1, [1], [-1,-1,-1,-4,-2,2,3,-5,7,0,-9,-2,0,-7,-12,-3,4,6,12,-10,7,-6,12,-1,9]],
[x-1, [-1], [1,2,-2,2,-4,2,6,-2,2,-6,6,10,-6,2,12,-6,-10,-6,12,4,10,-12,-6,1,-18]],
[x^5+x^4-10*x^3-10*x^2+21*x+17, [-1], [x,-1/2*x^4+1/2*x^3+7/2*x^2-5/2*x-4,-x^2+4,1/2*x^4-4*x^2-x+13/2,-x^3+5*x+2,-x^4+x^3+8*x^2-5*x-11,x^4-x^3-7*x^2+4*x+4,1/2*x^3-1/2*x^2-3/2*x+9/2,x^4-3/2*x^3-13/2*x^2+17/2*x+11/2,-x^4+9*x^2-14,1/2*x^4-3/2*x^3-7/2*x^2+15/2*x+8,x^4-2*x^3-8*x^2+10*x+9,-x^4+x^3+8*x^2-3*x-11,-3/2*x^3+1/2*x^2+17/2*x-1/2,x^3-7*x-2,-x^4+7*x^2+x-8,1/2*x^4+x^3-3*x^2-8*x-1/2,-x^2+5,-x^4+9*x^2-2*x-14,-2*x^4+4*x^3+16*x^2-20*x-24,x^4-7*x^2+1,-x^4+2*x^3+8*x^2-10*x-1,1/2*x^4-4*x^2-3*x+1/2,1,-x^3-x^2+2*x+7]]];

f[90,2]=[
[x+1, [1,1,-1], [-1,0,1,2,6,-4,-6,-4,0,-6,-4,8,0,8,0,-6,6,2,-4,-12,-10,-4,12,12,2]],
[x+1, [-1,1,1], [1,0,-1,2,-6,-4,6,-4,0,6,-4,8,0,8,0,6,-6,2,-4,12,-10,-4,-12,-12,2]],
[x-1, [-1,-1,-1], [1,0,1,-4,0,2,-6,-4,0,6,8,2,6,-4,0,6,0,-10,-4,0,2,8,-12,-18,2]]];

f[91,2]=[
[x+2, [1,1], [-2,0,-3,-1,-6,-1,4,5,3,-5,-3,-4,-6,-1,7,-9,8,-10,-6,-8,-13,3,15,3,7]],
[x, [-1,-1], [0,-2,-3,1,0,1,-6,-7,3,-9,5,2,-6,-1,3,-9,0,-10,14,-6,11,-1,3,15,-1]],
[x^2-2, [-1,1], [x,-x,x+3,1,-3*x,-1,-x,3*x-3,2*x-3,2*x+3,-3*x-1,-3*x-2,-2*x+6,-5,x+3,-2*x-3,4*x+6,6,6*x-6,5*x-6,3*x-5,-6*x+7,-3*x+9,x+3,-9*x-1]],
[x^3-x^2-4*x+2, [1,-1], [x,-x^2+x+2,-x+1,-1,x^2-x-2,1,x^2+x-2,-x-1,-x^2-2*x+7,x^2+5,2*x^2-x-7,x^2+3*x-4,-2*x^2+2*x+6,-3*x^2-2*x+13,-4*x^2+x+9,-3*x^2+2*x+11,4*x^2+2*x-14,-2,4*x^2-6*x-14,-x^2+3*x,-4*x^2-x+9,-x^2+4*x-3,4*x^2-9*x-13,-2*x^2+5*x+5,-x-3]]];

f[92,2]=[
[x-1, [-1,1], [0,1,0,2,0,-1,-6,2,-1,-3,5,8,3,8,9,6,-12,14,8,-15,-7,-10,6,0,-10]],
[x+3, [-1,-1], [0,-3,-2,-4,2,-5,4,-2,1,-7,-3,2,-9,-8,9,2,0,-2,14,-3,-3,-6,8,12,0]]];

f[93,2]=[
[x^2+3*x+1, [1,1], [x,-1,-2*x-5,2*x+1,2*x,2*x+2,-4*x-8,-2*x-7,-2*x-2,2*x+4,-1,-6*x-8,6*x+9,-6*x-12,-4*x-4,8*x+12,-3,8,-12,9,2*x+4,4*x+10,-4*x-18,8*x+10,9]],
[x^3-4*x+1, [-1,1], [x,1,-x^2-x+2,-x^2-x+4,2*x^2-6,2*x^2-4,2*x^2+2*x-6,-x^2+3*x+4,-2*x-2,-4*x^2-2*x+8,-1,2*x,x^2-3*x-6,-2*x^2-4*x+10,4*x+4,-2*x^2+2*x+2,x^2-x+6,2*x^2+6*x-6,4,x^2+7*x-6,-6*x-4,-2*x^2-2*x+8,-2*x^2-2*x+12,-6,-x^2-3*x+4]]];

f[94,2]=[
[x-1, [-1,1], [1,0,0,0,2,-4,-2,-2,4,4,4,2,6,6,-1,2,12,2,2,8,-14,-16,-16,-10,-14]],
[x^2-8, [1,-1], [-1,x,-1/2*x+2,-x-2,-1/2*x+4,-1/2*x-2,0,3/2*x-4,-x,3/2*x+6,-3*x,3*x+2,-x-6,3/2*x-4,1,x+2,2*x-4,3*x-2,-5/2*x-4,x+6,6,0,x,0,6]]];

f[95,2]=[
[x^3-x^2-3*x+1, [-1,1], [x,-x^2+3,1,2*x^2-2*x-4,-2*x-2,x^2-2*x+1,-2*x^2+4*x+4,-1,2*x-2,2*x^2-8,4*x,x^2-2*x+5,2*x^2-4*x-4,-6*x^2+2*x+12,2*x^2-2*x-4,-x^2+2*x+7,-2*x^2-2,-2*x^2+6*x+2,x^2+4*x-3,-4*x^2+8,2*x^2-4,6*x^2-14,-2*x-10,6*x^2-4*x-12,-5*x^2-2*x+19]],
[x^4+2*x^3-6*x^2-8*x+9, [1,-1], [x,-x^3+5*x-2,-1,-2*x^2-2*x+8,2*x^2+2*x-6,x^3+2*x^2-3*x-4,2*x^3-10*x+6,1,-2*x^3-2*x^2+8*x,2*x^3-10*x+6,2*x^3-2*x^2-10*x+14,x^3-3*x+2,-2*x^2+12,-2*x^2-2*x+8,2*x^2-2*x-12,-x^3+3*x-6,2*x^2+4*x-6,4*x^2+2*x-10,-3*x^3-2*x^2+15*x-4,2*x^3-2*x^2-14*x+6,-2*x^3+10*x+2,2*x^2+4*x-10,2*x^3-2*x^2-12*x+12,-2*x^3+6*x-6,-x^3+4*x^2+7*x-10]]];

f[96,2]=[
[x-1, [1,-1], [0,1,2,-4,4,-2,-6,-4,0,2,4,-2,2,4,8,10,-4,6,4,-16,-6,4,12,10,-14]],
[x+1, [-1,1], [0,-1,2,4,-4,-2,-6,4,0,2,-4,-2,2,-4,-8,10,4,6,-4,16,-6,-4,-12,10,-14]]];

f[97,2]=[
[x^3+4*x^2+3*x-1, [1], [x,-x^2-3*x-2,2*x^2+5*x-1,-x^2-3*x-3,x-1,-x-2,x^2+4*x+1,-4*x^2-6*x+7,-3*x-8,-4*x^2-14*x-5,x^2-6,6*x^2+17*x+2,x^2+x-1,3*x^2+8*x+1,4*x^2+12*x-3,-2*x^2-13*x-10,2*x^2+7*x+9,-5*x^2-8*x+7,3*x^2+13*x+7,3*x^2+11*x-3,-x^2-3*x-1,4*x^2+7*x-8,-8*x-10,-5*x^2-14*x+2,-1]],
[x^4-3*x^3-x^2+6*x-1, [-1], [x,-x^2+x+2,-x+1,x^3-x^2-4*x+2,-2*x^3+4*x^2+3*x-3,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+3,-x^3+2*x^2+3*x-4,-x^3+4*x^2-1,x^3-2*x^2+x+2,3*x^3-7*x^2-3*x+7,-3*x^3+6*x^2+6*x-9,3*x^3-7*x^2-10*x+14,-x^2+5,x^3-4*x^2-x+12,-x^3-2*x^2+8*x+3,-2*x^3+11*x+1,4*x^3-9*x^2-8*x+11,3*x^3-x^2-10*x-6,-x^3-x^2+8*x+4,3*x^3-x^2-10*x-8,-3*x^3+14*x-1,2*x^3-4*x^2+2*x+4,x^3+3*x^2-11*x-11,1]]];

f[98,2]=[
[x+1, [1,-1], [-1,2,0,0,0,4,-6,-2,0,-6,4,2,-6,8,12,6,6,-8,-4,0,-2,8,6,6,10]],
[x^2-2, [-1,1], [1,x,-2*x,0,-2,0,x,5*x,-4,2,-6*x,10,7*x,2,-2*x,-2,x,-2*x,12,-12,x,-4,-7*x,5*x,-7*x]]];

f[99,2]=[
[x+4, [1,1], [-1,0,-4,-2,-1,-2,2,-6,4,-6,4,-6,-10,6,-8,0,4,-6,8,0,-2,-10,12,0,2]],
[x-1, [1,-1], [1,0,4,-2,1,-2,-2,-6,-4,6,4,-6,10,6,8,0,-4,-6,8,0,-2,-10,-12,0,2]],
[x-2, [-1,1], [-1,0,2,4,-1,-2,2,0,-8,6,-8,6,2,0,-8,-6,4,6,-4,0,-14,-4,-12,6,2]],
[x-2, [-1,1], [2,0,-1,-2,-1,4,2,0,1,0,7,3,8,-6,-8,6,-5,12,-7,3,4,-10,6,-15,-7]]];

f[100,2]=[
[x, [-1,1], [0,2,0,-2,0,-2,6,-4,-6,6,-4,-2,6,10,6,6,12,2,-2,-12,-2,8,-6,-6,-2]]];

f[101,2]=[
[x, [1], [0,-2,-1,-2,-2,1,3,-5,1,-4,-9,-2,8,-8,7,-2,-14,4,2,13,8,-9,-4,14,2]],
[x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [-1], [x,1/4*x^6+1/4*x^5-5/2*x^4-5/2*x^3+19/4*x^2+17/4*x+1/2,-1/2*x^6-3/4*x^5+11/2*x^4+7*x^3-29/2*x^2-45/4*x+15/2,-1/4*x^5-1/2*x^4+5/2*x^3+4*x^2-21/4*x-7/2,-1/4*x^6+3*x^4-35/4*x^2+5,3/4*x^6+x^5-17/2*x^4-9*x^3+91/4*x^2+12*x-10,3/4*x^6+3/4*x^5-8*x^4-7*x^3+79/4*x^2+45/4*x-21/2,1/2*x^5-5*x^3+21/2*x+2,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-21/2*x^2-7/2*x+2,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-19/2*x^2-7/2*x-1,-x^6-3/2*x^5+11*x^4+15*x^3-28*x^2-55/2*x+14,-5/4*x^6-9/4*x^5+13*x^4+21*x^3-113/4*x^2-135/4*x+13/2,1/2*x^6+3/2*x^5-5*x^4-14*x^3+19/2*x^2+41/2*x-1,x^6+3/2*x^5-11*x^4-13*x^3+27*x^2+35/2*x-3,-1/2*x^6-1/2*x^5+6*x^4+5*x^3-39/2*x^2-17/2*x+14,x^6+5/2*x^5-11*x^4-24*x^3+27*x^2+83/2*x-11,-3/4*x^5+1/2*x^4+15/2*x^3-4*x^2-63/4*x+15/2,-x^6-2*x^5+11*x^4+19*x^3-28*x^2-29*x+12,1/4*x^6+3/4*x^5-5/2*x^4-17/2*x^3+23/4*x^2+79/4*x-1/2,-x^6-2*x^5+10*x^4+18*x^3-20*x^2-28*x+5,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-19/2*x^2-11/2*x-1,1/2*x^6+x^5-5*x^4-11*x^3+23/2*x^2+26*x-7,9/4*x^6+5/2*x^5-25*x^4-22*x^3+255/4*x^2+55/2*x-26,-1/2*x^6-x^5+6*x^4+10*x^3-35/2*x^2-19*x+6,3/2*x^6+7/4*x^5-33/2*x^4-17*x^3+83/2*x^2+129/4*x-41/2]]];

f[102,2]=[
[x+1, [1,1,1], [-1,-1,-4,-2,0,-6,-1,4,6,-4,-6,-4,-10,-4,4,-2,12,-4,-12,-6,2,10,-12,-2,6]],
[x-1, [1,-1,1], [-1,1,0,2,0,2,-1,-4,-6,0,-10,8,6,-4,12,6,-12,8,-4,6,2,-10,12,-18,14]],
[x-1, [-1,-1,-1], [1,1,-2,0,-4,-2,1,4,0,-10,8,-2,10,12,0,6,12,-10,-12,0,10,-8,4,-6,-14]]];

f[103,2]=[
[x^2+3*x+1, [1], [x,-1,-x-3,-1,x,3*x+3,x-3,-3*x-2,-4*x-6,2*x,6*x+9,-6*x-9,-8*x-12,6*x+7,-5*x-9,-5*x-12,x+9,3*x+12,-12*x-17,5*x+9,3*x-3,9*x+17,7*x+12,-6*x-18,6*x+14]],
[x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [-1], [x,-x^5+3*x^4+3*x^3-11*x^2-x+8,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13,-x^4+2*x^3+4*x^2-5*x-3,-x^5+2*x^4+4*x^3-4*x^2-4*x-1,2*x^5-4*x^4-11*x^3+15*x^2+14*x-11,-3*x^5+7*x^4+16*x^3-30*x^2-21*x+30,-x^5+3*x^4+4*x^3-14*x^2-3*x+13,-4*x^5+9*x^4+22*x^3-38*x^2-29*x+34,3*x^5-8*x^4-13*x^3+31*x^2+14*x-21,x^5-3*x^4-3*x^3+11*x^2+3*x-12,5*x^5-13*x^4-23*x^3+53*x^2+27*x-44,x^4-4*x^3+13*x-4,-x^5+3*x^4+x^3-3*x^2+x-10,6*x^5-15*x^4-27*x^3+55*x^2+31*x-37,x^5-2*x^4-6*x^3+10*x^2+6*x-7,-7*x^5+17*x^4+34*x^3-70*x^2-39*x+60,-2*x^5+4*x^4+13*x^3-21*x^2-22*x+26,-3*x^5+7*x^4+13*x^3-23*x^2-15*x+12,6*x^5-17*x^4-23*x^3+65*x^2+21*x-53,-2*x^5+7*x^4+5*x^3-27*x^2-x+19,-4*x^5+8*x^4+23*x^3-35*x^2-28*x+29,2*x^4-3*x^3-11*x^2+8*x+10,2*x^5-2*x^4-16*x^3+14*x^2+20*x-22,-x^5+2*x^4+3*x^3+3*x^2-4*x-19]]];

f[104,2]=[
[x-1, [-1,1], [0,1,-1,5,-2,-1,-3,-2,4,-6,-4,11,8,-1,9,-12,6,0,6,7,-2,12,-16,-10,-10]],
[x^2-x-4, [1,-1], [0,x,-x+2,-x,-2*x,1,3*x-2,2*x,-8,-2,4,3*x+2,-2*x+2,-x+8,3*x-8,2*x-2,2*x,2*x+6,-2*x,-3*x,-6,8,4*x-8,10,-4*x+2]]];

f[105,2]=[
[x-1, [-1,-1,-1], [1,1,1,1,0,-6,2,-8,8,-2,4,-2,-6,4,8,10,4,-2,4,-12,-2,8,-4,-6,-18]],
[x^2-5, [1,1,-1], [x,-1,-1,1,-2*x+2,-2*x,-2,2*x+2,4,-2,2*x+6,4*x+2,-2,-4*x,-4*x+4,-2*x-8,4*x,-2,-4,2*x+10,2*x-8,-4*x+4,4*x-8,-2,-2*x+4]]];

f[106,2]=[
[x+1, [1,1], [-1,-1,-4,0,-4,1,5,-7,1,5,-4,1,-10,-10,-6,-1,-6,4,4,15,-8,1,-3,2,17]],
[x-2, [1,-1], [-1,2,1,-2,5,-4,3,-4,-3,-6,7,-6,2,7,4,1,7,2,16,12,-12,-7,-14,17,3]],
[x-1, [-1,1], [1,1,0,-4,0,5,-3,-1,3,9,-4,5,6,-10,6,-1,6,8,-4,-3,-4,-13,3,18,-7]],
[x+2, [-1,1], [1,-2,3,2,-3,-4,3,-4,-9,6,5,-10,6,-1,0,-1,15,-10,-4,12,8,11,-6,9,-13]]];

f[107,2]=[
[x^2+x-1, [1], [x,-x-2,-x-2,2*x-1,2*x+3,-6,x-1,-6*x-2,-4*x+1,-4*x-3,4*x+1,-3*x-8,2*x+6,3*x+6,2*x-6,8*x+1,9*x+6,-3*x-8,-2*x-6,-9*x-6,-6*x-7,3*x+2,-3*x,2*x+11,6*x-3]],
[x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [-1], [x,-1/4*x^6-1/4*x^5+5/2*x^4+3/4*x^3-29/4*x^2+2*x+4,1/2*x^6+1/2*x^5-4*x^4-5/2*x^3+15/2*x^2+x,-1/2*x^6-1/2*x^5+4*x^4+7/2*x^3-15/2*x^2-6*x+2,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+11/2*x,1/2*x^6-11/2*x^4+1/2*x^3+17*x^2-7/2*x-8,x^5+x^4-7*x^3-5*x^2+10*x+4,-3/4*x^6-5/4*x^5+6*x^4+33/4*x^3-45/4*x^2-19/2*x,3/4*x^6-3/4*x^5-9*x^4+23/4*x^3+113/4*x^2-21/2*x-16,x^5+x^4-7*x^3-4*x^2+12*x+1,x^4-7*x^2+2*x+8,-1/4*x^6+3/4*x^5+7/2*x^4-21/4*x^3-49/4*x^2+7*x+12,-3/4*x^6-3/4*x^5+13/2*x^4+21/4*x^3-51/4*x^2-7*x,1/2*x^6+3/2*x^5-3*x^4-17/2*x^3+5/2*x^2+8*x+6,x^5-9*x^3-x^2+18*x+3,-5/4*x^6-7/4*x^5+12*x^4+39/4*x^3-131/4*x^2-11/2*x+16,-x^5-2*x^4+7*x^3+12*x^2-10*x-14,-3/4*x^6-5/4*x^5+5*x^4+29/4*x^3-33/4*x^2-13/2*x+8,-x^6-x^5+10*x^4+7*x^3-29*x^2-10*x+14,3*x^4-x^3-19*x^2+5*x+12,-1/2*x^6-3/2*x^5+5*x^4+19/2*x^3-25/2*x^2-5*x+4,-x^6-1/2*x^5+19/2*x^4+2*x^3-49/2*x^2+1/2*x+8,2*x^6+2*x^5-18*x^4-10*x^3+47*x^2-25,1/2*x^6-9/2*x^4-3/2*x^3+6*x^2+13/2*x+4,1/2*x^6+1/2*x^5-2*x^4-3/2*x^3-5/2*x^2-2*x+2]]];

f[108,2]=[
[x, [-1,1], [0,0,0,5,0,-7,0,-1,0,0,-4,-1,0,8,0,0,0,-13,11,0,17,-13,0,0,5]]];

f[109,2]=[
[x-1, [-1], [1,0,3,2,1,0,-8,-5,7,-5,6,2,2,-4,9,12,12,-5,-12,-6,-5,8,-2,1,1]],
[x^3+2*x^2-x-1, [1], [x,-x-2,-2*x^2-3*x,3*x^2+5*x-3,x^2+2*x-5,-2*x^2-x+3,-x^2-3*x+1,-3*x^2-5*x+1,-5*x-3,4*x^2+9*x-4,-2*x^2-7*x-3,x^2-2,6*x^2+9*x-8,-3*x^2+9,5*x,x^2+1,-x^2-4*x-9,6*x^2+2*x-14,6*x^2+10*x-9,-5*x^2-7*x+2,x^2+2*x+6,-7*x^2-9*x+6,-5*x^2-10*x-1,-3*x^2-1,-5*x^2-5*x]],
[x^4+x^3-5*x^2-4*x+3, [-1], [x,-x^3+4*x+1,-x,x^3-x^2-4*x+2,x^3+x^2-5*x,2*x^2+x-7,x^3-x^2-2*x+6,-x^2-x+5,-x^3+2*x^2+4*x-6,2*x^3-2*x^2-7*x+6,2*x^3-7*x-1,-3*x^3-3*x^2+11*x+5,-x^3+4*x+3,2*x^3+x^2-6*x-1,x,-5*x^2+9,-3*x^2+15,x^3+4*x^2-5*x-13,-3*x^3+13*x+2,-4*x^3+x^2+19*x+6,2*x^3+x^2-4*x-4,-4*x^3-x^2+13*x-4,-2*x^3+3*x^2+8*x-3,-3*x^3+3*x^2+13*x-12,-x^3-x^2-1]]];

f[110,2]=[
[x-1, [1,1,-1], [-1,1,-1,5,1,2,3,-7,-6,-3,-7,-7,6,8,6,-3,-6,-1,8,3,2,-10,-6,9,-4]],
[x-1, [-1,1,1], [1,1,-1,-1,-1,2,-3,-1,6,-9,5,5,-6,8,6,9,6,5,8,-9,-10,14,-6,-15,8]],
[x+1, [-1,-1,-1], [1,-1,1,3,1,-6,-7,5,-6,5,-3,3,2,4,-2,-1,-10,7,8,7,14,10,-6,-15,-12]],
[x^2+x-8, [1,-1,1], [-1,x,1,-x,-1,2,-x-2,x+4,-2*x-4,-x-2,-x,-x+6,4*x+2,-4,-2*x-4,3*x+6,2*x+4,x-2,8,-3*x,4*x-2,-2*x-8,2*x+4,x+2,2*x-6]]];

f[111,2]=[
[x^3-3*x^2-x+5, [1,-1], [x,-1,-x^2+5,-2*x^2+2*x+4,2*x^2-4*x-2,2*x^2-4*x-4,-x^2+4*x+1,2*x^2-2*x-8,-x^2+2*x+1,-x^2+9,-4*x^2+6*x+6,1,6,-2*x-2,4*x^2-4*x-12,-6*x^2+8*x+12,3*x^2-6*x-3,-2,-2*x^2+6*x-4,4*x,2*x-4,-6*x^2+6*x+20,-6*x^2+8*x+14,x^2+4*x-9,2*x^2-12]],
[x^4-6*x^2+2*x+5, [-1,1], [x,1,-x^3-2*x^2+3*x+4,2*x^3+2*x^2-8*x-2,2*x^2-6,-2*x^3-4*x^2+6*x+10,-x^3+3*x-2,2*x^2+2*x-4,3*x^3+2*x^2-11*x-4,-x^3+7*x-2,-2*x^3-2*x^2+8*x+4,-1,2*x^3+2*x^2-10*x,-2*x^3-2*x^2+12*x+4,2*x^3+2*x^2-6*x-6,-2*x^2-4*x+8,-5*x^3-8*x^2+21*x+14,-4*x-2,-2*x^3-2*x^2+8*x+2,2*x^3+6*x^2-6*x-18,2*x^3-8*x+6,2*x^2-2*x-8,-2*x^3-4*x^2+6*x+4,5*x^3+6*x^2-19*x-4,-6*x^3-4*x^2+22*x+2]]];

f[112,2]=[
[x+2, [1,1], [0,-2,-4,-1,0,0,-2,2,-8,2,-4,-6,-2,-8,4,-10,-6,4,12,0,-14,8,-6,10,-2]],
[x, [1,-1], [0,0,2,1,4,2,-6,-8,0,6,-8,-2,2,4,8,6,0,-6,4,8,10,-16,-8,-6,-6]],
[x-2, [-1,1], [0,2,0,-1,0,-4,6,-2,0,-6,4,2,6,-8,12,6,6,8,4,0,2,-8,6,-6,-10]]];

f[113,2]=[
[x+1, [-1], [-1,2,2,0,0,2,-6,6,-6,-6,-4,2,-2,6,6,10,6,6,2,-6,2,10,-4,-14,-14]],
[x^2-2*x-2, [-1], [1,x,-2*x+2,4,-2*x,2*x-4,-2,x-4,x,2*x+2,-2*x+4,2*x-6,2*x-4,-5*x+8,3*x,2*x-8,3*x,-4*x+10,-x-4,-x-4,-8*x+10,5*x,-8*x+8,4*x+2,-2]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x-1,2*x^2+2*x-3,-x^2-x-2,-3*x^2-4*x+4,x^2+4*x-2,-x^2-5*x-2,3*x^2+5*x-4,3*x,-x^2+2*x+5,x^2-3*x-9,-6*x^2-11*x+4,-2*x^2-5*x+1,4*x^2+7*x-4,5*x^2+8*x-7,6*x^2+7*x-9,-4*x^2-3*x+11,-x^2-5,2*x^2-x-3,6*x^2+8*x-2,-3*x^2+x+3,-5*x^2-5*x+5,-x+4,-8*x^2-13*x+2,11*x^2+15*x-12]],
[x^3+2*x^2-5*x-9, [-1], [x,x^2-5,-1,-x^2-x+6,x^2-4,x^2-2,x^2-x-2,-3*x^2+x+16,-2*x^2-x+10,x^2-7,x^2+x-1,-4*x^2+x+22,-2*x^2+3*x+9,2*x^2-x-6,-x^2+2*x+9,2*x^2-x-17,-4*x^2-x+15,3*x^2-21,2*x^2+5*x-7,2*x^2-2,-3*x^2-x+13,3*x^2+x-13,-4*x^2-5*x+16,-2*x^2-5*x+4,3*x^2+3*x-8]]];

f[114,2]=[
[x+1, [1,1,-1], [-1,-1,0,4,4,0,-2,1,-2,-6,6,-8,10,-12,10,2,4,-10,0,-16,-2,10,-16,-2,-10]],
[x+1, [-1,1,1], [1,-1,2,0,-4,2,-6,-1,-4,-2,4,10,10,4,-4,-10,12,14,-12,8,-6,-4,12,-6,10]],
[x-1, [-1,-1,-1], [1,1,0,-4,0,-4,6,1,-6,6,2,-4,6,-4,6,6,-12,14,8,0,14,-10,-12,-6,-10]]];

f[115,2]=[
[x-2, [1,-1], [2,0,-1,1,2,-2,3,-2,1,7,-5,11,1,0,0,11,-13,-8,5,5,6,-12,9,4,-14]],
[x^2+3*x+1, [1,1], [x,-1,-1,-2*x-4,2*x+2,2*x-1,-4*x-8,6*x+10,-1,-4*x-11,-2*x-1,6*x+6,4*x+3,-6*x-12,-4*x-1,-6,-8*x-12,-10*x-14,-6*x-6,2*x-1,6*x+9,2*x+14,4*x+4,2*x+8,10*x+20]],
[x^4-2*x^3-4*x^2+5*x+2, [-1,1], [x,-x^2+x+2,1,x^3-2*x^2-4*x+3,-2*x+2,-2*x^3+3*x^2+7*x-4,-x^3+2*x^2+2*x-3,2*x-2,-1,x^3-x^2-3*x+5,-3*x^3+5*x^2+9*x-7,x^3+2*x^2-8*x-7,-x^3+x^2+3*x+3,2*x^3-2*x^2-8*x,-x^2+5*x+2,-x^3+9,3*x^3-4*x^2-12*x+11,-2*x^2+4*x+4,-3*x^3+4*x^2+10*x-5,3*x^3-7*x^2-7*x+11,2*x^3-3*x^2-7*x-4,-2*x^3+4*x^2+2*x-4,-x^3+4*x^2-13,-4*x^3+4*x^2+18*x-4,2*x^3-4*x^2-6*x+2]]];

f[116,2]=[
[x-1, [-1,1], [0,1,3,-4,3,5,-6,-4,-6,-1,5,8,0,-1,-3,3,6,2,8,6,-16,11,6,-12,8]],
[x-2, [-1,1], [0,2,-2,4,-6,2,2,-6,4,-1,-6,2,2,10,-2,10,0,10,-12,8,10,-6,16,2,10]],
[x+3, [-1,1], [0,-3,3,4,-1,-3,2,4,-6,-1,9,-8,-8,-5,-7,-5,-10,10,8,-2,0,-1,6,12,0]]];

f[117,2]=[
[x+1, [-1,-1], [-1,0,-2,-4,-4,1,-2,0,0,10,4,-2,-6,-12,0,-6,-12,-2,-8,0,2,8,-4,2,10]],
[x^2-3, [1,-1], [x,0,0,2,-2*x,1,-4*x,2,4*x,4*x,2,2,4*x,8,-6*x,0,2*x,-10,14,2*x,-10,-4,6*x,4*x,-10]],
[x^2-2*x-1, [-1,1], [x,0,-2*x+2,-2*x+2,2,-1,4*x-6,2*x-2,4,-2,-2*x-2,4*x-6,-2*x-6,4*x,-4*x+10,2,4*x-6,-8*x+10,-2*x+6,-2,4*x+2,8*x-8,4*x-2,2*x-14,-4*x+2]]];

f[118,2]=[
[x+1, [1,1], [-1,-1,-3,-1,-2,-2,-2,3,0,-1,10,-12,7,-6,-6,-11,-1,-12,10,4,12,-15,-14,4,0]],
[x-2, [1,-1], [-1,2,2,-3,1,3,-1,-8,8,-4,-4,-1,5,-9,2,12,1,10,4,-15,10,11,-11,-6,14]],
[x+1, [-1,1], [1,-1,1,3,2,-6,-2,-5,4,-5,2,8,7,-6,-2,9,-1,-8,-2,12,4,5,14,0,8]],
[x-2, [-1,1], [1,2,-2,-3,-1,-3,7,4,4,4,-4,-7,-11,9,10,0,-1,-2,4,9,-14,11,-13,18,2]]];

f[119,2]=[
[x^4+x^3-5*x^2-x+3, [-1,1], [x,-x^3-x^2+4*x+1,x^3+x^2-4*x,1,-2*x,2*x^3+4*x^2-6*x-4,-1,-2*x^3-4*x^2+4*x+8,2*x^2+4*x-6,-2*x,x^3-x^2-4*x+8,2*x^3+4*x^2-4*x-4,x^3+x^2-2*x+3,-x^3+x^2+8*x-7,-2*x^3-6*x^2+6*x+12,x^3+3*x^2-2*x-12,4*x^2-12,-x^3-x^2+10*x+5,-x^3-5*x^2+2*x+8,2*x^3-12*x,-x^3-x^2+2*x+5,-2*x^3-6*x^2+6*x+8,2*x^2+2*x-12,-2*x^3+2*x^2+10*x-12,-3*x^3-3*x^2+12*x+8]],
[x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,-1], [x,-x^4+6*x^2+x-4,2*x^4+x^3-15*x^2-6*x+18,-1,-2*x^4-2*x^3+14*x^2+12*x-14,-2*x^4+14*x^2-14,1,-2*x^4+14*x^2+2*x-14,2*x^2-10,4*x^4-28*x^2-2*x+28,2*x^4+x^3-13*x^2-6*x+10,-2*x^3+8*x+4,x^4-6*x^2-3*x+8,3*x^4+2*x^3-22*x^2-11*x+26,2*x^4-12*x^2-4*x+6,-2*x^4-x^3+13*x^2+8*x-10,4*x^4-28*x^2-4*x+32,-x^4+6*x^2+3*x,2*x^4+x^3-15*x^2-8*x+22,-6*x^4+42*x^2+6*x-46,-5*x^4-4*x^3+34*x^2+23*x-28,2*x^4-12*x^2+10,-4*x^4+26*x^2+2*x-24,2*x^3+2*x^2-14*x-4,-2*x^4+x^3+17*x^2-2*x-26]]];

f[120,2]=[
[x+1, [1,-1,1], [0,1,-1,4,0,-6,-2,4,-8,-6,0,-6,10,-4,8,10,0,6,-4,0,-14,16,12,2,2]],
[x-1, [-1,-1,-1], [0,1,1,0,-4,6,-6,-4,0,-2,-8,-2,-6,12,8,6,12,14,4,8,-6,-8,-12,10,2]]];

f[121,2]=[
[x, [1], [0,-1,-3,0,0,0,0,0,-9,0,-5,7,0,0,-12,6,-15,0,13,-3,0,0,0,-9,17]],
[x-1, [-1], [1,2,1,-2,0,1,-5,6,2,9,-2,-3,-5,0,2,9,8,6,2,12,-2,-10,6,-9,-13]],
[x+1, [-1], [-1,2,1,2,0,-1,5,-6,2,-9,-2,-3,5,0,2,9,8,-6,2,12,2,10,-6,-9,-13]],
[x-2, [-1], [2,-1,1,2,0,-4,2,0,-1,0,7,3,8,6,8,-6,5,-12,-7,-3,-4,10,6,15,-7]]];

f[122,2]=[
[x+2, [1,1], [-1,-2,1,-5,-3,-3,0,0,5,6,0,-12,-3,-8,12,-2,-9,-1,7,-16,-3,1,-12,12,2]],
[x^2-x-3, [1,-1], [-1,x,0,-x+3,-2*x+2,-2*x+4,2*x-2,3*x-1,-3*x,-x-5,-x,x-2,3*x-6,8,4*x+2,-5*x+2,0,1,4*x-2,3*x+3,3*x-1,4*x-8,3*x+3,2*x-8,5*x+6]],
[x^3+x^2-5*x+2, [-1,1], [1,x,-x^2-3*x+3,2*x^2+3*x-5,-x^2-x+1,-x^2-x+3,-2*x^2-4*x+4,x^2+2*x-4,3*x^2+4*x-9,x^2+4*x-2,-2*x^2-x+6,-4*x^2-9*x+14,3*x^2+8*x-7,-4*x^2-8*x+16,2*x^2+6*x-8,-2*x^2+3*x+12,-x^2-3*x-5,-1,5*x^2+7*x-9,3*x^2+6*x,-4*x^2-9*x+19,-3*x^2-9*x+9,5*x^2+6*x-20,-4*x^2-10*x+8,2*x^2+3*x-8]]];

f[123,2]=[
[x, [1,1], [0,-1,-2,-4,5,-4,-5,-2,4,1,-5,-7,-1,7,7,-14,-12,-3,-2,-3,13,-2,-2,18,-14]],
[x+2, [-1,-1], [-2,1,-4,-2,-3,-6,3,0,-6,5,7,-7,1,-1,3,-6,0,-3,-2,-3,-11,10,-16,-10,-12]],
[x^2-2, [-1,1], [x,1,-x+2,x-2,-x+1,-3*x+2,x+1,x-4,x,5*x+1,-3,6*x-1,-1,-5,-x+9,-2*x+4,6*x,4*x+1,-6*x+2,-5*x+3,8*x+1,4*x-2,-5*x-6,4*x-6,3*x+12]],
[x^3-x^2-4*x+2, [1,-1], [x,-1,-x^2+x+4,-x^2-x+4,-x-1,x^2-x,2*x^2-x-5,x^2-x-2,x^2-x-6,-3*x-1,x^2+4*x-5,-x^2+2*x+9,1,5*x^2-2*x-11,2*x^2+x-5,2*x^2-4*x,-2*x^2-2*x+4,x^2-2*x-5,-4*x^2+6*x+14,x-11,-3*x^2-2*x+11,-2*x^2+4*x-2,-3*x^2+x+4,-4*x+6,x^2-3*x-6]]];

f[124,2]=[
[x, [-1,1], [0,0,1,3,6,-4,0,-5,-4,2,-1,-2,-9,2,4,12,9,12,-12,5,-14,10,2,6,-7]],
[x+2, [-1,-1], [0,-2,-3,-1,-6,2,6,-1,-6,0,1,-10,-9,8,0,0,-3,-10,-4,-15,14,8,6,12,-7]]];

f[125,2]=[
[x^2+x-1, [1], [x,-x-2,0,-3,-3,3*x,-2*x+1,x-2,2*x+2,-6*x-3,-5*x-3,-6*x-6,-3,-9,7*x+3,-x+3,3*x+9,5*x+2,3*x-9,-3,-3*x-3,4*x+7,-4*x-6,12*x+6,-3*x+3]],
[x^2-x-1, [-1], [x,-x+2,0,3,-3,3*x,-2*x-1,-x-2,2*x-2,6*x-3,5*x-3,-6*x+6,-3,9,7*x-3,-x-3,-3*x+9,-5*x+2,3*x+9,-3,-3*x+3,-4*x+7,-4*x+6,-12*x+6,-3*x-3]],
[x^4-8*x^2+11, [-1], [x,-1/2*x^3+5/2*x,0,1/2*x^3-7/2*x,2,-2*x,-x^3+5*x,-x^2+9,1/2*x^3-3/2*x,-3/2*x^2+7/2,2,x^3-3*x,5/2*x^2-21/2,3/2*x^3-11/2*x,-1/2*x^3+1/2*x,2*x^3-10*x,2*x^2-8,-5/2*x^2+19/2,-x^3+5*x,-5*x^2+17,-2*x^3+16*x,x^2+1,-3/2*x^3+13/2*x,1/2*x^2-19/2,2*x^3-12*x]]];

f[126,2]=[
[x+1, [1,-1,1], [-1,0,2,-1,4,6,-2,-4,-8,2,0,-10,6,-4,0,-6,-4,6,4,-8,10,0,4,6,-14]],
[x-1, [-1,-1,-1], [1,0,0,1,0,-4,-6,2,0,6,-4,2,-6,8,12,-6,6,8,-4,0,2,8,6,6,-10]]];

f[127,2]=[
[x^3+3*x^2-3, [1], [x,-x^2-2*x,x^2+x-4,x^2+x-3,x^2+4*x+1,-3*x^2-4*x+4,-x-7,x^2+x-1,-2*x^2-3*x,x^2-x-3,-3*x^2-5*x+8,-4*x^2-2*x+10,-4*x^2-8*x,6*x^2+6*x-15,2*x^2+8*x+1,7*x^2+8*x-12,-x^2-4*x-1,6*x^2+14*x-5,-x^2-x+1,-2*x^2-10*x-3,7*x^2+9*x-11,7*x+10,-5*x^2-16*x+3,2*x^2-x-18,6*x^2+9*x-14]],
[x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [-1], [x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9,-x^5+x^4+7*x^3-7*x^2-9*x+8,x^6-2*x^5-6*x^4+13*x^3+3*x^2-15*x+6,-2*x^6+6*x^5+11*x^4-38*x^3-2*x^2+39*x-13,x^6-x^5-9*x^4+6*x^3+24*x^2-6*x-15,2*x^6-5*x^5-11*x^4+32*x^3+2*x^2-33*x+11,3*x^5-6*x^4-20*x^3+36*x^2+24*x-33,-2*x^6+5*x^5+13*x^4-31*x^3-15*x^2+29*x,-x^6+5*x^5-33*x^3+33*x^2+39*x-40,-4*x^5+6*x^4+27*x^3-37*x^2-32*x+35,-x^6+2*x^5+7*x^4-12*x^3-12*x^2+12*x+9,-3*x^6+8*x^5+17*x^4-51*x^3-5*x^2+54*x-19,-2*x^5+2*x^4+15*x^3-11*x^2-24*x+12,-x^6+4*x^5+4*x^4-26*x^3+6*x^2+33*x-6,-2*x^6+21*x^4-x^3-63*x^2+3*x+45,-x^6+9*x^4-24*x^2+2*x+20,2*x^6-9*x^5-3*x^4+57*x^3-49*x^2-61*x+62,x^6-2*x^5-9*x^4+12*x^3+20*x^2-8*x-6,x^6+x^5-12*x^4-5*x^3+41*x^2-x-31,-x^6+7*x^5-x^4-44*x^3+40*x^2+44*x-52,2*x^6-10*x^5-3*x^4+65*x^3-45*x^2-71*x+57,2*x^6-3*x^5-14*x^4+18*x^3+20*x^2-14*x-3,-2*x^6+5*x^5+12*x^4-34*x^3-10*x^2+42*x-1]]];

f[128,2]=[
[x+2, [1], [0,-2,-2,-4,2,-2,-2,-2,4,6,0,-10,-6,-6,-8,6,-14,-2,-10,12,14,-8,6,-2,-2]],
[x-2, [-1], [0,2,2,-4,-2,2,-2,2,4,-6,0,10,-6,6,-8,-6,14,2,10,12,14,-8,-6,-2,-2]],
[x+2, [-1], [0,2,-2,4,-2,-2,-2,2,-4,6,0,-10,-6,6,8,6,14,-2,10,-12,14,8,-6,-2,-2]],
[x-2, [-1], [0,-2,2,4,2,2,-2,-2,-4,-6,0,10,-6,-6,8,-6,-14,2,-10,-12,14,8,6,-2,-2]]];

f[129,2]=[
[x, [1,1], [0,-1,-2,-2,-5,3,-3,2,-1,0,-5,8,-7,-1,-8,3,12,-8,-15,-14,12,-16,15,10,11]],
[x-1, [-1,1], [1,1,2,0,0,-2,-6,4,-4,-6,8,6,2,-1,4,-2,0,14,12,8,2,-8,0,14,-14]],
[x^2-2*x-1, [1,-1], [x,-1,-x+2,-2*x+3,-x+4,-5,-2*x,4*x-5,6,3*x,4,-2*x-2,4*x-4,1,7*x-8,8*x-8,-8*x+10,2*x-6,-6*x,-2*x+8,4*x-2,6*x-2,-x-6,-6*x+6,2*x-3]],
[x^3+2*x^2-5*x-8, [-1,1], [x,1,-x-2,-x^2+6,x^2-x-5,3,-x^2+5,-x^2-2*x+2,3*x^2+2*x-9,-x,x^2+2*x-5,2*x^2+2*x-8,-x^2+2*x+1,-1,-4*x^2-3*x+16,x^2+2*x-5,-2*x^2+12,2*x^2-2*x-16,3*x^2+4*x-15,-2*x^2+2*x+18,-2*x^2+4,-2*x^2-2*x+16,3*x^2-x-17,-2*x-14,-2*x^2+2*x+11]]];

f[130,2]=[
[x+1, [1,-1,-1], [-1,-2,1,-4,-6,1,-6,2,6,-6,2,2,-6,2,-12,6,6,2,-4,-6,-10,-4,0,-6,2]],
[x-2, [-1,1,1], [1,2,-1,-4,-2,-1,2,6,6,2,-6,-2,10,-10,-12,2,10,2,-12,10,10,-4,0,-14,14]],
[x, [-1,-1,-1], [1,0,1,0,0,1,2,-8,-4,-2,-4,6,10,0,8,6,8,-2,4,-12,10,-8,12,10,-14]]];

f[131,2]=[
[x, [1], [0,-1,-2,-1,0,-3,4,-2,-2,0,-2,-8,-3,3,10,-9,1,-15,-6,10,4,-8,4,-11,12]],
[x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [-1], [x,1/8*x^8-2*x^6+81/8*x^4-67/4*x^2+5,-1/16*x^9+9/8*x^7+1/8*x^6-107/16*x^5-9/8*x^4+117/8*x^3+7/4*x^2-9*x+1,-1/8*x^9-1/4*x^8+7/4*x^7+7/2*x^6-57/8*x^5-63/4*x^4+11/2*x^3+47/2*x^2+15/2*x-3,-1/16*x^9+9/8*x^7-3/8*x^6-107/16*x^5+31/8*x^4+117/8*x^3-35/4*x^2-11*x+2,1/16*x^9+1/8*x^8-7/8*x^7-15/8*x^6+55/16*x^5+17/2*x^4-17/8*x^3-21/2*x^2-5*x+1,1/8*x^9+1/4*x^8-7/4*x^7-13/4*x^6+59/8*x^5+25/2*x^4-31/4*x^3-12*x^2-4*x-4,1/8*x^9-9/4*x^7+1/4*x^6+103/8*x^5-13/4*x^4-95/4*x^3+21/2*x^2+6*x-6,1/4*x^9+1/4*x^8-4*x^7-7/2*x^6+83/4*x^5+63/4*x^4-37*x^3-49/2*x^2+16*x+6,1/8*x^9-1/4*x^8-9/4*x^7+17/4*x^6+103/8*x^5-45/2*x^4-99/4*x^3+37*x^2+13*x-10,3/8*x^9+1/4*x^8-25/4*x^7-11/4*x^6+273/8*x^5+8*x^4-257/4*x^3-5*x^2+26*x-2,-1/4*x^8+7/2*x^6-1/2*x^5-59/4*x^4+7/2*x^3+35/2*x^2-2*x+2,-7/16*x^9-3/8*x^8+57/8*x^7+41/8*x^6-593/16*x^5-22*x^4+503/8*x^3+63/2*x^2-19*x-7,1/16*x^9-1/2*x^8-11/8*x^7+67/8*x^6+163/16*x^5-351/8*x^4-243/8*x^3+277/4*x^2+67/2*x-8,-1/4*x^9+4*x^7-x^6-85/4*x^5+10*x^4+83/2*x^3-23*x^2-23*x+4,x^5-9*x^3+x^2+14*x+3,3/16*x^9-25/8*x^7+1/8*x^6+265/16*x^5-1/8*x^4-225/8*x^3-25/4*x^2+13/2*x+8,-3/16*x^9+25/8*x^7-5/8*x^6-257/16*x^5+53/8*x^4+189/8*x^3-67/4*x^2-3/2*x+14,-1/4*x^9-1/4*x^8+4*x^7+3*x^6-81/4*x^5-41/4*x^4+63/2*x^3+17/2*x^2-2*x+4,1/8*x^9+1/2*x^8-5/4*x^7-29/4*x^6+11/8*x^5+135/4*x^4+55/4*x^3-101/2*x^2-30*x+8,3/8*x^9+1/2*x^8-23/4*x^7-29/4*x^6+221/8*x^5+135/4*x^4-161/4*x^3-109/2*x^2+x+18,-1/4*x^8+7/2*x^6-3/2*x^5-63/4*x^4+23/2*x^3+49/2*x^2-13*x-8,-1/8*x^9-1/4*x^8+7/4*x^7+15/4*x^6-55/8*x^5-18*x^4+17/4*x^3+30*x^2+8*x-14,-1/4*x^9+9/2*x^7-1/2*x^6-111/4*x^5+11/2*x^4+131/2*x^3-15*x^2-44*x+5,1/8*x^9+1/4*x^8-7/4*x^7-15/4*x^6+47/8*x^5+17*x^4+15/4*x^3-21*x^2-19*x-4]]];

f[132,2]=[
[x+1, [-1,1,1], [0,-1,2,2,-1,6,-4,-2,-8,0,0,-6,0,10,0,14,-12,-14,4,0,6,2,16,-14,-2]],
[x-1, [-1,-1,-1], [0,1,2,-2,1,-2,4,-6,0,-8,-8,10,8,-2,-8,-2,12,10,12,8,6,-2,16,-14,-2]]];

f[133,2]=[
[x^2+3*x+1, [1,1], [x,x,-2*x-3,-1,x-3,1,3*x+3,-1,-3,x-3,3*x+7,6*x+5,x+3,-2,-10*x-15,-5*x-12,-6*x-15,6*x+9,-9*x-17,-4*x-3,3*x+12,-10,3*x,6*x+18,-12*x-17]],
[x^2-x-1, [-1,1], [x,-x+2,1,1,x-1,-1,3*x-1,-1,-4*x+1,-x+3,9*x-5,4*x-9,-5*x+7,4*x+2,4*x+1,3*x,-2*x+11,-8*x+1,-7*x+9,6*x-1,-7*x,-4*x+2,-3*x+8,-2*x+6,4*x+1]],
[x^2+x-3, [-1,-1], [x,-x-2,-3,1,-x-3,2*x-1,x-3,1,-3,-3*x+3,-x-1,-2*x-1,x+3,-10,-4*x-3,3*x,4*x+3,4*x+5,3*x+5,-4*x+3,-5*x-10,-4*x+2,3*x-6,2*x-6,-2*x+5]],
[x^3-2*x^2-4*x+7, [1,-1], [x,-x^2+5,x^2-x-4,-1,-x+3,x^2-x-4,-2*x^2-x+11,1,x^2+x,-4*x^2+3*x+13,2*x^2-x-11,-x^2+3*x+2,6*x^2+x-27,2*x^2-2*x-8,3*x^2+x-10,-x^2-2*x+5,-3*x^2+x+8,x^2+3*x-8,2*x^2+3*x-11,-x^2-3*x+6,-x^2-4*x+7,-2*x^2-2*x+8,x^2+2*x+5,-6*x^2+4*x+12,3*x^2-3*x-20]]];

f[134,2]=[
[x^3-x^2-8*x+11, [1,-1], [-1,x,x^2+x-5,-2*x^2-2*x+12,-x^2-2*x+6,x^2-2,-x^2-x+5,2,x-4,0,4*x^2+2*x-22,-2*x^2-4*x+14,2*x^2-2*x-12,3*x^2+x-17,x^2+2*x-6,-2*x^2+x+10,-6*x^2-6*x+36,-2*x^2+x+18,1,3*x^2+5*x-17,3*x^2+4*x-26,-2*x^2+2*x+14,2*x^2-2*x-18,-2*x^2-x+18,-4*x^2-6*x+24]],
[x^3-3*x^2+1, [-1,1], [1,x,-x^2+x+1,2*x^2-6*x,-3*x^2+6*x+2,3*x^2-8*x-2,-x^2+5*x-3,-4*x^2+12*x+2,4*x^2-9*x-4,-4,-2*x+6,-6*x^2+16*x+2,2*x^2-6*x,x^2-7*x+5,x^2-2*x+6,-2*x^2+5*x-2,-2*x^2+6*x,-2*x^2+5*x+6,-1,-x^2-x+7,3*x^2-12*x+6,-2*x^2+2*x+2,-6*x^2+18*x+6,6*x^2-19*x+2,-4*x^2+14*x+4]]];

f[135,2]=[
[x+2, [1,1], [-2,0,-1,-3,-2,-5,-8,1,6,2,0,5,-10,4,4,-2,-8,7,-9,2,-5,-3,6,-12,-13]],
[x-2, [1,-1], [2,0,1,-3,2,-5,8,1,-6,-2,0,5,10,4,-4,2,8,7,-9,-2,-5,-3,-6,12,-13]],
[x^2+x-3, [1,-1], [x,0,1,2*x+2,-2*x,-2*x+2,-2*x-3,-2*x-1,-3,2*x+6,2*x-1,2,2*x,-2*x-4,4*x,-2*x-3,-2*x-6,4*x+5,-4*x-10,2*x+12,-2*x+8,2*x-7,3,6*x,8]],
[x^2-x-3, [-1,1], [x,0,-1,-2*x+2,-2*x,2*x+2,-2*x+3,2*x-1,3,2*x-6,-2*x-1,2,2*x,2*x-4,4*x,-2*x+3,-2*x+6,-4*x+5,4*x-10,2*x-12,2*x+8,-2*x-7,-3,6*x,8]]];

f[136,2]=[
[x-2, [-1,1], [0,2,0,0,2,-6,-1,4,4,0,-8,-4,6,8,-8,10,0,12,8,12,2,-4,16,10,-18]],
[x+2, [-1,-1], [0,-2,-2,-2,-6,2,1,0,6,-10,2,6,-6,-8,0,-10,-8,14,4,2,-14,-10,8,-10,2]],
[x^2+2*x-4, [1,-1], [0,x,2,-x,-x,2*x+2,1,-2*x-4,-x,2,x,-4*x-6,2,2*x-4,4*x+8,-2,2*x+12,4*x+2,-12,x+8,4*x+10,3*x+8,-2*x+4,2*x-10,2]]];

f[137,2]=[
[x^4+3*x^3-4*x-1, [1], [x,x^3+x^2-3*x-2,-2*x^3-3*x^2+3*x+1,-x^3-2*x^2+2*x-1,4*x^3+9*x^2-4*x-8,x^2+3*x-2,-x^3-5*x^2-2*x+5,-2*x^3-7*x^2-x+5,x^2-2*x-4,-x^3-5*x^2+x+11,5*x^3+9*x^2-7*x-11,2*x^3+7*x^2+3*x-7,-2*x^3-2*x^2+9*x+2,2*x^3+2*x^2-9*x-7,-3*x-5,-x^3-4*x^2-x+4,-7*x^3-12*x^2+13*x+11,-3*x^3-7*x^2+x+7,-x^3+4*x^2+11*x-6,4*x^3+8*x^2-4*x-4,-2*x^3+3*x-12,-8*x^3-15*x^2+6*x+9,3*x^3+14*x^2+8*x-15,3*x^3+6*x^2-3*x-1,x^3-3*x^2-x+8]],
[x^7-10*x^5+28*x^3+3*x^2-19*x-7, [-1], [x,-1/2*x^6+1/2*x^5+11/2*x^4-9/2*x^3-33/2*x^2+9*x+21/2,x^6-x^5-10*x^4+8*x^3+26*x^2-13*x-13,-x^6+9*x^4-x^3-21*x^2+3*x+11,2*x^6-x^5-19*x^4+10*x^3+47*x^2-21*x-22,x^6-9*x^4+2*x^3+22*x^2-8*x-10,x^5+x^4-7*x^3-5*x^2+9*x+3,x^6-x^5-10*x^4+8*x^3+28*x^2-13*x-17,-1/2*x^6+1/2*x^5+7/2*x^4-11/2*x^3-9/2*x^2+12*x+1/2,-x^6+x^5+11*x^4-8*x^3-32*x^2+15*x+16,1/2*x^6+1/2*x^5-9/2*x^4-3/2*x^3+21/2*x^2-2*x-3/2,-x^6+10*x^4-3*x^3-28*x^2+12*x+16,-3*x^6+x^5+26*x^4-12*x^3-57*x^2+27*x+24,5/2*x^6-1/2*x^5-49/2*x^4+13/2*x^3+127/2*x^2-17*x-57/2,-3/2*x^6-1/2*x^5+27/2*x^4+5/2*x^3-61/2*x^2-3*x+23/2,4*x^6-2*x^5-38*x^4+21*x^3+96*x^2-45*x-50,3*x^6-28*x^4+6*x^3+69*x^2-22*x-32,-5*x^6+4*x^5+47*x^4-37*x^3-118*x^2+70*x+65,3/2*x^6-1/2*x^5-31/2*x^4+11/2*x^3+81/2*x^2-16*x-23/2,-11/2*x^6+9/2*x^5+111/2*x^4-81/2*x^3-297/2*x^2+77*x+159/2,2*x^6-2*x^5-19*x^4+17*x^3+46*x^2-25*x-21,3/2*x^6-1/2*x^5-27/2*x^4+9/2*x^3+59/2*x^2-3*x-13/2,-5/2*x^6+1/2*x^5+49/2*x^4-15/2*x^3-127/2*x^2+22*x+65/2,-x^6+8*x^4-9*x^2-2*x-14,-2*x^6-x^5+17*x^4+5*x^3-37*x^2-2*x+14]]];

f[138,2]=[
[x+1, [1,1,1], [-1,-1,-2,-2,-6,-2,0,0,-1,6,8,0,10,-12,-8,2,-12,4,-12,0,-10,-6,14,0,-6]],
[x-1, [1,-1,1], [-1,1,0,2,0,2,0,2,-1,-6,-4,-10,-6,2,0,12,12,-10,14,0,2,-10,0,12,-10]],
[x+1, [-1,1,1], [1,-1,2,0,0,-2,2,-8,-1,-2,-8,2,10,8,8,2,-4,2,8,0,-6,8,-16,18,10]],
[x^2+2*x-4, [-1,-1,-1], [1,1,x,-2*x-2,-x-4,2*x+2,-4,3*x+2,1,-2*x-2,-2*x,x+10,-2,x-6,4,x+4,-4*x-4,-x+2,3*x+6,4*x+4,-2*x-2,2*x+2,x+12,-2*x-8,2*x-2]]];

f[139,2]=[
[x-1, [-1], [1,2,-1,3,5,-7,-6,-2,2,9,9,2,-6,-4,8,0,6,4,5,5,-6,-5,7,7,-12]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x,x^2+x-4,2*x^2+3*x-2,-3*x^2-4*x+1,-3*x^2-5*x+3,x^2+3*x-1,2*x^2