Sharedwww / Tables / eigen_k2_N1-500_prec97.gpOpen in CoCalc
Author: William A. Stein
(File too big to render nicely. Download...)

\\ This is a table of the first 97 Hecke eigenvalues
\\ of newforms for Gamma_0(N).
\\ Notation:
\\ f[N,k]  = [
\\            [g(x), [wq's], [a2(x),...,ap(x)]],
\\                  ...
\\            [g(x), [wq's], [a2(x),...,ap(x)]]
\\          ];
\\ Where Q_f = Q(...a_n...) = Q[x]/g(x).
\\ The newforms are ordered by dimension,
\\ then W_q's, then traces.

\\ William Stein ([email protected])

\\ uncomment the following two lines to make PARI-readable.
\\ {
\\ f = matrix(500,2);

f[11,2]=[
[x+2, [-1], [-2,-1,1,-2,1,4,-2,0,-1,0,7,3,-8,-6,8,-6,5,12,-7,-3,4,-10,-6,15,-7]]];

f[14,2]=[
[x+1, [1,-1], [-1,-2,0,1,0,-4,6,2,0,-6,-4,2,6,8,-12,6,-6,8,-4,0,2,8,-6,-6,-10]]];

f[15,2]=[
[x+1, [1,-1], [-1,-1,1,0,-4,-2,2,4,0,-2,0,-10,10,4,8,-10,-4,-2,12,-8,10,0,12,-6,2]]];

f[17,2]=[
[x+1, [-1], [-1,0,-2,4,0,-2,1,-4,4,6,4,-2,-6,4,0,6,-12,-10,4,-4,-6,12,-4,10,2]]];

f[19,2]=[
[x, [-1], [0,-2,3,-1,3,-4,-3,1,0,6,-4,2,-6,-1,-3,12,-6,-1,-4,6,-7,8,12,12,8]]];

f[20,2]=[
[x, [-1,1], [0,-2,-1,2,0,2,-6,-4,6,6,-4,2,6,-10,-6,-6,12,2,2,-12,2,8,6,-6,2]]];

f[21,2]=[
[x+1, [-1,1], [-1,1,-2,-1,4,-2,-6,4,0,-2,0,6,2,-4,0,6,12,-2,4,0,-6,-16,-12,-14,18]]];

f[23,2]=[
[x^2+x-1, [-1], [x,-2*x-1,2*x,2*x+2,-2*x-4,3,-2*x+2,-2,1,-3,6*x+3,-2*x,-4*x-1,0,-2*x-1,4*x-2,4*x+4,-8*x-2,2*x-4,2*x+11,-4*x+9,-8*x-6,2*x-10,-4*x-8,6*x+14]]];

f[24,2]=[
[x, [-1,1], [0,-1,-2,0,4,-2,2,-4,-8,6,8,6,-6,4,0,-2,4,-2,-4,8,10,-8,-4,-6,2]]];

f[26,2]=[
[x+1, [1,-1], [-1,1,-3,-1,6,1,-3,2,0,6,-4,-7,0,-1,3,0,-6,8,14,-3,2,8,12,-6,-10]],
[x-1, [-1,1], [1,-3,-1,1,-2,-1,-3,6,-4,2,4,3,0,-5,13,12,-10,-8,-2,-5,-10,-4,0,6,14]]];

f[27,2]=[
[x, [-1], [0,0,0,-1,0,5,0,-7,0,0,-4,11,0,8,0,0,0,-1,5,0,-7,17,0,0,-19]]];

f[29,2]=[
[x^2+2*x-1, [-1], [x,-x,-1,2*x+2,x+2,2*x+1,-2*x-4,6,-4*x-6,1,-5*x-2,-4,6*x+10,x+6,3*x+4,-6*x-5,4*x+6,2*x,-4*x-4,2*x-4,4,x,-4*x-2,6*x+2,-6*x-10]]];

f[30,2]=[
[x+1, [1,-1,1], [-1,1,-1,-4,0,2,6,-4,0,-6,8,2,-6,-4,0,-6,0,-10,-4,0,2,8,12,18,2]]];

f[31,2]=[
[x^2-x-1, [-1], [x,-2*x,1,2*x-3,2,-2*x,-2*x+4,-2*x+1,6*x-4,-2*x+6,1,-2,7,2*x-2,4*x-4,-4*x-4,2*x-1,10*x-8,8,-10*x+7,4*x+2,-6*x-2,-8*x-2,6*x+2,-8*x-3]]];

f[32,2]=[
[x, [-1], [0,0,-2,0,0,6,2,0,0,-10,0,-2,10,0,0,14,0,-10,0,0,-6,0,0,10,18]]];

f[33,2]=[
[x-1, [1,-1], [1,-1,-2,4,1,-2,-2,0,8,-6,-8,6,-2,0,8,6,-4,6,-4,0,-14,-4,12,-6,2]]];

f[34,2]=[
[x-1, [-1,1], [1,-2,0,-4,6,2,-1,-4,0,0,-4,-4,6,8,0,-6,0,-4,8,0,2,8,0,-6,14]]];

f[35,2]=[
[x, [1,-1], [0,1,-1,1,-3,5,3,2,-6,3,-4,2,-12,-10,9,12,0,8,-4,0,2,-1,12,-12,-1]],
[x^2+x-4, [-1,1], [x,-x-1,1,-1,x+1,x+3,-x-3,2*x-2,-2*x-2,-3*x-1,0,6,-2*x,2*x+6,3*x-1,2*x,-4,-6*x,-4*x,8,4*x-2,-x-5,4,2*x+4,-5*x-7]]];

f[36,2]=[
[x, [-1,1], [0,0,0,-4,0,2,0,8,0,0,-4,-10,0,8,0,0,0,14,-16,0,-10,-4,0,0,14]]];

f[37,2]=[
[x+2, [1], [-2,-3,-2,-1,-5,-2,0,0,2,6,-4,-1,-9,2,-9,1,8,-8,8,9,-1,4,-15,4,4]],
[x, [-1], [0,1,0,-1,3,-4,6,2,6,-6,-4,1,-9,8,3,-3,12,8,-4,-15,11,-10,9,6,8]]];

f[38,2]=[
[x+1, [1,-1], [-1,1,0,-1,-6,5,3,1,3,9,-4,2,0,8,0,-3,9,-10,5,-6,-7,-10,-6,-12,-10]],
[x-1, [-1,1], [1,-1,-4,3,2,-1,3,-1,-1,-5,-8,-2,-8,4,8,-1,15,2,3,2,9,-10,-6,0,-2]]];

f[39,2]=[
[x-1, [1,-1], [1,-1,2,-4,4,1,2,0,0,-10,4,-2,6,-12,0,6,12,-2,-8,0,2,8,4,-2,10]],
[x^2+2*x-1, [-1,1], [x,1,-2*x-2,2*x+2,-2,-1,4*x+6,-2*x-2,-4,2,2*x-2,-4*x-6,-2*x+6,-4*x,-4*x-10,-2,4*x+6,8*x+10,2*x+6,2,-4*x+2,-8*x-8,4*x+2,2*x+14,4*x+2]]];

f[40,2]=[
[x, [1,-1], [0,0,1,-4,4,-2,2,4,4,-2,-8,6,-6,-8,4,6,-4,-2,8,0,-6,0,-16,-6,-14]]];

f[41,2]=[
[x^3+x^2-5*x-1, [-1], [x,-1/2*x^2-x+3/2,-x-1,1/2*x^2+x+1/2,3/2*x^2+x-9/2,-x^2+3,-2,-3/2*x^2-x+13/2,-2*x^2-2*x+8,x^2+2*x-5,2*x+6,-3*x-3,1,x^2-5,3/2*x^2-3*x-13/2,x^2+2*x-1,-2*x^2-2*x+4,-x^2+2*x+5,-3/2*x^2-x+9/2,-3/2*x^2+x+25/2,4*x^2+x-15,1/2*x^2-x+17/2,2*x^2+4*x-6,-4*x^2-2*x+12,-2*x^2-4*x+8]]];

f[42,2]=[
[x-1, [-1,1,1], [1,-1,-2,-1,-4,6,2,-4,8,-2,0,-10,-6,-4,0,6,4,6,4,8,10,0,-4,-6,-14]]];

f[43,2]=[
[x+2, [1], [-2,-2,-4,0,3,-5,-3,-2,-1,-6,-1,0,5,-1,4,-5,-12,2,-3,2,2,-8,15,-4,7]],
[x^2-2, [-1], [x,-x,-x+2,x-2,2*x-1,2*x+1,2*x+5,-2*x-2,-4*x+1,3*x,-3,-6*x,-2*x-1,1,6,-2*x+11,2*x-2,3*x+4,6*x+1,-2*x-6,3*x-12,-2*x+2,4*x+9,-3*x-6,-2*x-1]]];

f[44,2]=[
[x, [-1,1], [0,1,-3,2,-1,-4,6,8,-3,0,5,-1,0,-10,0,-6,3,-4,-1,15,-4,2,6,-9,-7]]];

f[45,2]=[
[x-1, [-1,1], [1,0,-1,0,4,-2,-2,4,0,2,0,-10,-10,4,-8,10,4,-2,12,8,10,0,-12,6,2]]];

f[46,2]=[
[x+1, [1,-1], [-1,0,4,-4,2,-2,-2,-2,1,2,0,-4,6,10,0,-4,12,-8,-10,0,6,-12,14,-6,6]]];

f[47,2]=[
[x^4-x^3-5*x^2+5*x-1, [-1], [x,x^3-x^2-6*x+4,-4*x^3+2*x^2+20*x-10,3*x^3-x^2-16*x+7,2*x^3-2*x^2-10*x+6,-4*x^3+2*x^2+22*x-8,x^3+x^2-6*x,-2*x^3+10*x-2,-2*x^3+12*x-4,-2*x^3+2*x^2+10*x-10,4*x^3-2*x^2-22*x+8,3*x^3-x^2-14*x+8,-2*x+2,-2*x^3+2*x^2+14*x-8,1,5*x^3-3*x^2-30*x+13,7*x^3-x^2-36*x+11,-7*x^3+5*x^2+38*x-23,-12*x^3+6*x^2+60*x-26,7*x^3-3*x^2-34*x+12,-2*x^2-4*x+12,7*x^3-3*x^2-34*x+20,8*x^3-4*x^2-40*x+24,5*x^3+x^2-26*x+1,-9*x^3+7*x^2+46*x-21]]];

f[48,2]=[
[x, [1,-1], [0,1,-2,0,-4,-2,2,4,8,6,-8,6,-6,-4,0,-2,-4,-2,4,-8,10,8,4,-6,2]]];

f[49,2]=[
[x-1, [-1], [1,0,0,0,4,0,0,0,8,2,0,-6,0,-12,0,-10,0,0,4,16,0,8,0,0,0]]];

f[50,2]=[
[x+1, [1,-1], [-1,1,0,2,-3,-4,-3,5,6,0,2,2,-3,-4,12,6,0,2,-13,12,11,-10,-9,15,2]],
[x-1, [-1,1], [1,-1,0,-2,-3,4,3,5,-6,0,2,-2,-3,4,-12,-6,0,2,13,12,-11,-10,9,15,-2]]];

f[51,2]=[
[x, [-1,1], [0,1,3,-4,-3,-1,-1,-1,9,6,2,-4,-3,-7,-6,-6,6,8,-4,12,2,-10,-6,0,-16]],
[x^2+x-4, [1,-1], [x,-1,-x+1,0,-x-1,x+3,1,3*x+3,-x-5,4*x+2,-2*x-2,2*x,x-1,-3*x-3,2*x-6,-4*x+2,-2*x+2,-2*x+4,4,4*x+4,4*x-2,6*x+6,-2*x-6,2*x+4,-2*x-8]]];

f[52,2]=[
[x, [-1,1], [0,0,2,-2,-2,-1,6,-6,8,2,10,-6,-6,4,-2,6,-10,-2,10,10,2,-4,-6,-6,2]]];

f[53,2]=[
[x+1, [1], [-1,-3,0,-4,0,-3,-3,-5,7,-7,4,5,6,-2,-2,-1,-2,-8,-12,1,-4,-1,-1,-14,1]],
[x^3+x^2-3*x-1, [-1], [x,-x^2-x+3,x^2-3,x^2-1,x^2+2*x-3,1,2*x-1,x+4,2*x^2-x-4,-3*x^2-4*x+4,-x^2+4*x+3,x^2+6*x-2,-2*x-4,-3*x^2-6*x+11,-2*x^2-4*x,1,4*x^2+2*x-8,3*x^2-2*x-11,3*x^2+6*x-3,-3*x^2-7*x+3,x^2+4*x+1,5*x^2+3*x-13,3*x+10,-4*x^2+4*x+10,5*x^2-12]]];

f[54,2]=[
[x+1, [1,-1], [-1,0,3,-1,-3,-4,0,2,-6,6,5,2,-6,-10,6,9,12,8,14,0,-7,8,-3,-18,-1]],
[x-1, [-1,1], [1,0,-3,-1,3,-4,0,2,6,-6,5,2,6,-10,-6,-9,-12,8,14,0,-7,8,3,18,-1]]];

f[55,2]=[
[x-1, [-1,1], [1,0,1,0,-1,2,6,-4,4,6,-8,-2,2,4,-12,-2,4,-10,-16,8,14,8,-4,10,10]],
[x^2-2*x-1, [1,-1], [x,-2*x+2,-1,-2,1,2*x-6,2*x+2,0,-2*x+2,-4*x+6,0,-4*x+2,6,-6,2*x-2,4*x+2,4*x-8,-8*x+10,6*x-2,8*x-8,2*x-6,4,-6,-8*x+6,4*x-6]]];

f[56,2]=[
[x-2, [1,-1], [0,2,-4,1,0,0,-2,-2,8,2,4,-6,-2,8,-4,-10,6,4,-12,0,-14,-8,6,10,-2]],
[x, [-1,1], [0,0,2,-1,-4,2,-6,8,0,6,8,-2,2,-4,-8,6,0,-6,-4,-8,10,16,8,-6,-6]]];

f[57,2]=[
[x+1, [1,1], [-2,-1,-3,-5,1,2,-1,-1,-4,-2,-6,0,0,-1,-9,10,-8,-1,8,-12,-11,16,12,-6,-10]],
[x-1, [-1,1], [1,1,-2,0,0,6,-6,-1,4,2,8,-10,-2,-4,12,-6,-12,-2,-4,0,10,0,16,-2,10]],
[x-1, [-1,1], [-2,1,1,3,-3,-6,3,-1,4,-10,2,8,-8,-1,3,-6,0,7,8,12,-11,0,4,10,-2]]];

f[58,2]=[
[x+1, [1,1], [-1,-3,-3,-2,-1,3,-4,-8,0,-1,3,-8,-2,7,11,1,-4,4,-4,-2,-12,-7,0,-6,-6]],
[x-1, [-1,1], [1,-1,1,-2,-3,-1,8,0,4,-1,-3,8,2,-11,13,-11,0,-8,-12,2,4,15,4,-10,-2]]];

f[59,2]=[
[x^5-9*x^3+2*x^2+16*x-8, [-1], [x,-1/4*x^4+5/4*x^2-1/2*x,3/4*x^4+1/2*x^3-23/4*x^2-3*x+7,-1/2*x^4-1/2*x^3+7/2*x^2+3/2*x-3,-1/2*x^4-x^3+9/2*x^2+6*x-8,-1/2*x^4-x^3+9/2*x^2+6*x-6,x^4-8*x^2+9,3/4*x^4+3/2*x^3-23/4*x^2-8*x+9,-1/2*x^4+9/2*x^2+x-8,-x^4-1/2*x^3+8*x^2+1/2*x-7,x^4+x^3-9*x^2-3*x+14,-x^4+7*x^2-2,1/4*x^4+x^3-13/4*x^2-17/2*x+6,-x^3+5*x-2,-2*x-4,1/4*x^4+x^3-13/4*x^2-9/2*x+6,1,1/2*x^4+x^3-9/2*x^2-2*x+12,-1/2*x^4-2*x^3+13/2*x^2+11*x-16,-x^4-2*x^3+8*x^2+10*x-11,1/2*x^4+2*x^3-5/2*x^2-9*x,7/4*x^4+2*x^3-51/4*x^2-21/2*x+16,1/2*x^4+3*x^3-5/2*x^2-16*x+4,-3/2*x^4-x^3+19/2*x^2+4*x-4,-3/2*x^4-2*x^3+27/2*x^2+11*x-26]]];

f[61,2]=[
[x+1, [1], [-1,-2,-3,1,-5,1,4,-4,-9,-6,0,8,5,-8,4,6,9,-1,-7,-8,-11,3,4,-4,-14]],
[x^3-x^2-3*x+1, [-1], [x,-x^2+3,x^2-2*x-2,x^2-x-3,x+4,-2*x^2+2*x+1,-x^2+2*x+1,3*x^2-7,-x+2,-x^2+2*x+3,-x^2-4*x+3,3*x^2-9,4*x^2-4*x-7,-x^2+2*x-3,-4*x^2+6*x+6,-2*x,-x^2-3*x+13,1,-x^2-5*x+7,x^2+4*x+1,3*x^2-4*x-6,-4*x^2-x+14,4*x^2-12,4*x^2-2*x-10,-4*x^2+8*x+10]]];

f[62,2]=[
[x-1, [-1,1], [1,0,-2,0,0,2,-6,4,8,2,-1,10,-6,8,-8,-6,-12,-6,-12,8,10,-8,8,-6,2]],
[x^2-2*x-2, [1,-1], [-1,x,-2*x+2,2,x-4,-3*x+2,2*x-2,-4,0,3*x-6,1,3*x+2,-2*x+8,3*x-4,6,x+2,2*x-8,-3*x+2,8,-8*x+8,-10,-6*x+8,-5*x+8,6,6*x-4]]];

f[63,2]=[
[x-1, [-1,1], [1,0,2,-1,-4,-2,6,4,0,2,0,6,-2,-4,0,-6,-12,-2,4,0,-6,-16,12,14,18]],
[x^2-3, [1,-1], [x,0,-2*x,1,2*x,2,2*x,-4,-2*x,0,-4,2,6*x,-4,4*x,-4*x,-4*x,-10,-4,-6*x,14,8,0,-2*x,14]]];

f[64,2]=[
[x, [-1], [0,0,2,0,0,-6,2,0,0,10,0,2,10,0,0,-14,0,10,0,0,-6,0,0,10,18]]];

f[65,2]=[
[x+1, [1,1], [-1,-2,-1,-4,2,-1,2,-6,-6,2,-10,-2,-6,10,4,2,6,2,-4,6,-6,-12,-16,2,-2]],
[x^2-3, [1,-1], [x,-x+1,-1,2,x-3,1,2*x,3*x-1,x+3,-2*x-6,-3*x+5,-4,-2*x,3*x+5,6,-6*x,-7*x-3,6*x+2,-6*x-4,-x+3,-4,6*x+2,-6,4*x-6,2]],
[x^2+2*x-1, [-1,1], [x,x+1,1,-2*x,-x+1,-1,-2*x-4,x+3,-x-1,4*x+4,3*x+9,6*x+6,-2*x-8,5*x+1,2*x,-6*x-12,3*x+9,-8,-2,-7*x-5,-6*x-6,6*x+6,-2*x-8,6,4*x+2]]];

f[66,2]=[
[x+1, [1,-1,1], [-1,1,0,2,-1,-4,-6,-4,6,6,8,-10,6,8,-6,0,0,8,-4,6,2,14,-12,-6,14]],
[x+1, [-1,1,1], [1,-1,2,-4,-1,-6,2,4,4,6,0,6,-6,4,-12,2,12,-14,4,-12,-6,-4,4,10,-14]],
[x-1, [-1,-1,-1], [1,1,-4,-2,1,4,-2,0,-6,10,-8,-2,2,4,-2,4,0,-8,-12,2,-6,10,4,10,-2]]];

f[67,2]=[
[x-2, [-1], [2,-2,2,-2,-4,2,3,7,9,-5,-10,-1,0,-2,-1,10,9,-2,1,0,-7,-8,4,7,0]],
[x^2+3*x+1, [1], [x,-x-3,-3,3*x+4,-2*x-3,-3*x-8,-2*x-6,3*x+5,-4*x-3,4*x+3,-1,3*x+4,-x-3,-3*x-3,x-6,-9,6,9*x+10,-1,2*x+9,-4,-9*x-17,7*x+3,2*x+3,-12*x-17]],
[x^2+x-1, [-1], [x,x+1,-2*x+1,-x,1,x,-2*x+2,x-5,4*x+1,4*x+7,6*x+3,x+2,5*x+5,-5*x-7,-x-4,6*x+3,-6,-3*x-6,1,-14*x-7,8,-7*x-9,-3*x+5,6*x-5,6*x+3]]];

f[68,2]=[
[x^2-2*x-2, [-1,1], [0,x,-2*x+2,-x,x-4,2*x,-1,-2*x+4,x-4,2*x-2,3*x-4,-2*x+10,-6,-6*x+8,-4*x+4,4*x+2,-2*x+8,2*x-6,4*x+4,-3*x,2,-3*x-4,2*x-8,-2*x+8,-4*x+6]]];

f[69,2]=[
[x-1, [-1,1], [1,1,0,-2,4,-6,4,2,-1,2,4,2,2,10,0,-12,-12,-6,-10,8,-14,10,12,-16,-10]],
[x^2-5, [1,-1], [x,-1,-x-1,-x+1,4,2*x,-x-5,-x+5,1,-2*x,2*x-2,-2*x,4*x-2,3*x+1,-4,x-3,4*x+4,-2*x,x+3,-8,-4*x-2,-3*x+3,4,x+1,-2*x+4]]];

f[70,2]=[
[x-1, [-1,1,1], [1,0,-1,-1,4,-6,2,0,0,6,8,-10,2,4,8,-2,-8,-14,-12,-16,2,-8,8,10,2]]];

f[71,2]=[
[x^3-5*x+3, [-1], [x,-x^2+3,-x-1,2*x^2+2*x-6,-2*x^2-2*x+6,4,2*x^2+2*x-6,-x^2-x+7,2*x^2-4,x^2+2*x-5,-2*x-2,-3*x^2-x+13,2*x^2+2*x-2,-2*x^2-3*x+1,2*x^2-10,-2*x,2*x^2+2*x-14,-4*x^2-6*x+16,4*x-4,1,x+1,-2*x^2-7*x+9,-x^2-x+11,-5*x^2-2*x+21,-2*x^2-4*x+8]],
[x^3+x^2-4*x-3, [-1], [x,-x,-x^2+x+5,-2*x,2*x^2-6,-2*x^2+4,2*x^2+2*x-6,x^2+2*x-2,-4,-2*x^2+x+10,4,-x^2-2,-4*x-2,-x^2-x+7,2*x^2+2*x-4,-4*x^2+6,2*x^2-2*x-8,-4*x+4,-2*x^2+2,1,x^2+3*x+7,-x^2+3*x+3,x^2-2*x-10,-2*x^2-x+6,2*x+8]]];

f[72,2]=[
[x, [1,-1], [0,0,2,0,-4,-2,-2,-4,8,-6,8,6,6,4,0,2,-4,-2,-4,-8,10,-8,4,6,2]]];

f[73,2]=[
[x-1, [-1], [1,0,2,2,-2,-6,2,8,4,2,-2,-6,6,-2,6,10,-6,-14,8,0,1,-4,-14,-6,-10]],
[x^2+3*x+1, [1], [x,-x-3,x,-3,-x-3,3*x+5,-6*x-9,1,x-6,-4*x-3,6*x+10,-6*x-11,4*x+6,-1,-4*x-9,8*x+15,4*x,3*x+8,6*x+17,x-9,-1,3*x-5,-3*x-6,-2*x+3,-3*x-9]],
[x^2-x-3, [-1], [x,-x+1,-x,-1,x+3,x-1,2*x-3,-7,x+6,-4*x+3,2*x+2,-2*x+5,-6,-4*x+5,9,4*x-3,0,-x-4,-6*x+5,-3*x+3,1,3*x-1,-5*x+6,6*x+3,-3*x-1]]];

f[74,2]=[
[x^2-3*x-1, [1,-1], [-1,x,-x+1,-2*x+4,-x+1,x-2,-6,2,3*x-6,-3*x+6,-x+3,1,3*x,2*x-6,2*x-2,-6,2*x+4,5*x-9,-5*x+13,6,-x-9,7*x-14,-4*x+16,-4*x+4,-8*x+10]],
[x^2+x-1, [-1,1], [1,x,-3*x-1,2*x,-x-3,3*x+2,4*x+2,-4*x-2,-3*x-2,7*x+2,x+9,-1,-x+8,2*x-2,2*x+2,-4*x-6,-2*x-8,-x+9,-5*x-7,-8*x-10,-5*x-1,9*x+6,4*x-8,-4*x-8,4*x+6]]];

f[75,2]=[
[x-2, [1,-1], [2,-1,0,-3,2,1,2,-5,6,10,-3,2,-8,1,2,-4,-10,7,-3,-8,-14,0,6,0,17]],
[x-1, [-1,1], [1,1,0,0,-4,2,-2,4,0,-2,0,10,10,-4,-8,10,-4,-2,-12,-8,-10,0,-12,-6,-2]],
[x+2, [-1,1], [-2,1,0,3,2,-1,-2,-5,-6,10,-3,-2,-8,-1,-2,4,-10,7,3,-8,14,0,-6,0,-17]]];

f[76,2]=[
[x, [-1,1], [0,2,-1,-3,5,-4,-3,-1,8,-2,4,10,10,1,-1,-4,6,-13,-12,2,9,8,-12,12,-8]]];

f[77,2]=[
[x+3, [1,1], [0,-3,-1,-1,-1,-4,2,-6,-5,10,1,-5,-2,-8,8,-6,3,-2,-3,1,10,6,12,-15,-5]],
[x-1, [1,-1], [1,2,-2,-1,1,4,4,0,-4,-6,10,-6,4,12,-10,-6,2,0,8,-12,-8,8,0,-6,-10]],
[x-1, [-1,1], [0,1,3,1,-1,-4,-6,2,3,-6,5,11,6,8,0,-6,-9,-10,5,9,2,-10,12,-3,-1]],
[x^2-5, [-1,1], [x,-x+1,-2,1,-1,x+1,-x-1,2*x+2,2*x-2,2*x+4,x-5,-2*x-4,-x-9,8,-x+5,-2*x+4,-x+1,-x-5,2*x+10,-2*x-6,x-3,-4*x,-6*x+2,2,6*x+4]]];

f[78,2]=[
[x+1, [1,1,-1], [-1,-1,2,4,-4,1,2,-8,0,6,-4,-2,-10,4,8,-10,4,-2,-16,-8,2,8,12,14,10]]];

f[79,2]=[
[x+1, [1], [-1,-1,-3,-1,-2,3,-6,4,2,-6,-10,-2,-10,4,7,8,-3,-4,8,15,2,-1,-6,-7,-19]],
[x^5-6*x^3+8*x-1, [-1], [x,-x^4+x^3+3*x^2-3*x+1,x^4-4*x^2-x+3,x^4-x^3-5*x^2+3*x+3,-x^4-2*x^3+6*x^2+7*x-6,x^3+x^2-2*x-3,-2*x^3+6*x+2,-3*x^3+3*x^2+10*x-8,2*x^4+x^3-9*x^2-4*x+6,2*x^3-2*x^2-4*x+6,-x^4+2*x^3+6*x^2-5*x-6,2*x^4-2*x^3-10*x^2+4*x+8,2*x^3-6*x+6,-2*x^4+2*x^3+8*x^2-6*x-6,x^4-5*x^3-5*x^2+17*x+5,-4*x^4+16*x^2+2*x-6,x^4+x^3-5*x^2-7*x+5,-2*x^4+4*x^3+2*x^2-14*x+10,3*x^3-3*x^2-14*x+4,x^4+x^3-x^2-3*x-5,-x^3-x^2+2*x,1,2*x^4+2*x^3-10*x^2-6*x+2,-2*x^4-x^3+11*x^2+4*x-1,x^4-6*x^3+2*x^2+19*x-13]]];

f[80,2]=[
[x, [1,-1], [0,0,1,4,-4,-2,2,-4,-4,-2,8,6,-6,8,-4,6,4,-2,-8,0,-6,0,16,-6,-14]],
[x-2, [-1,1], [0,2,-1,-2,0,2,-6,4,-6,6,4,2,6,10,6,-6,-12,2,-2,12,2,-8,-6,-6,2]]];

f[81,2]=[
[x^2-3, [-1], [x,0,-x,2,-2*x,-1,3*x,2,2*x,x,8,-7,-4*x,2,4*x,0,8*x,-7,-10,-6*x,-7,2,-8*x,-3*x,2]]];

f[82,2]=[
[x+1, [1,1], [-1,-2,-2,-4,-2,4,-2,6,-8,0,-8,2,-1,-12,4,-4,8,-14,-2,8,10,4,12,-14,6]],
[x^2-2, [-1,1], [1,x,-2*x,-x-2,3*x,0,4*x+2,-x-4,-2*x+4,-4*x+4,2*x-4,6*x,-1,-4*x+4,-5*x-2,12,2*x-4,6,-3*x-4,x-2,-4*x-8,-3*x-6,4*x+12,-4*x-6,4*x-2]]];

f[83,2]=[
[x+1, [1], [-1,-1,-2,-3,3,-6,5,2,-4,-7,5,-11,-2,-8,0,6,5,5,-2,2,0,14,-1,0,-8]],
[x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [-1], [x,1/2*x^4-1/2*x^3-7/2*x^2+3/2*x+4,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-8*x-2,3/4*x^5-1/4*x^4-25/4*x^3+3/4*x^2+19/2*x,-1/4*x^5+1/4*x^4+5/4*x^3+1/4*x^2-4,x^3-5*x+2,1/4*x^5-3/4*x^4-7/4*x^3+17/4*x^2+7/2*x-4,3/2*x^5-1/2*x^4-23/2*x^3-1/2*x^2+16*x+4,-x^5+7*x^3+3*x^2-8*x-7,3/2*x^5-12*x^3-4*x^2+39/2*x+8,-3/4*x^5+3/4*x^4+23/4*x^3-21/4*x^2-8*x+8,-3/4*x^5+3/4*x^4+19/4*x^3-13/4*x^2-3*x+8,-x^5+9*x^3+x^2-16*x-1,1/2*x^5-1/2*x^4-9/2*x^3+3/2*x^2+10*x,-1/2*x^5+3/2*x^4+9/2*x^3-21/2*x^2-10*x+10,x^5-8*x^3+9*x,-5/4*x^5-1/4*x^4+39/4*x^3+11/4*x^2-29/2*x-4,3/2*x^5+2*x^4-14*x^3-16*x^2+55/2*x+16,-2*x^5-x^4+17*x^3+13*x^2-29*x-18,1/2*x^5+1/2*x^4-11/2*x^3-3/2*x^2+13*x-8,-1/2*x^5+5/2*x^4+7/2*x^3-31/2*x^2-5*x+12,-1/2*x^5-1/2*x^4+9/2*x^3+7/2*x^2-10*x-4,1,-x^5-x^4+9*x^3+9*x^2-20*x-14,2*x^4-2*x^3-16*x^2+10*x+22]]];

f[84,2]=[
[x+1, [-1,1,1], [0,-1,4,-1,2,-6,-4,-4,2,-2,0,2,0,-4,12,-6,-8,6,-8,14,-2,12,-4,0,-2]],
[x-1, [-1,-1,-1], [0,1,0,1,-6,2,0,-4,-6,6,8,2,12,-4,12,-6,0,-10,8,6,-10,-4,-12,12,-10]]];

f[85,2]=[
[x-1, [1,-1], [1,2,-1,-2,2,2,1,0,6,-6,-10,2,10,4,12,-10,8,-14,8,-2,-14,-14,4,6,2]],
[x^2+2*x-1, [1,1], [x,-x-3,-1,x-1,x-3,-2*x-2,-1,-2*x-2,-x-3,-2*x-4,3*x+3,6*x+4,-6*x-4,4*x+6,-2*x-4,-4*x+2,2*x-10,4*x+6,2*x-4,-3*x-3,-2*x-4,x+5,8*x+6,4*x-4,4*x+2]],
[x^2-3, [-1,1], [x,-x+1,1,x-1,-x+3,-4,-1,2*x+2,3*x-3,2*x,x+5,-2*x-4,2*x,-2*x-4,-4*x+6,6,2*x+6,4*x+2,-10,-5*x+3,-6*x-4,-9*x-1,2*x+12,-6*x-6,4*x+2]]];

f[86,2]=[
[x^2+x-5, [1,-1], [-1,x,-x+1,2,0,2,x-4,-3*x-1,-x-5,x+2,3*x+2,3*x+2,3*x+3,1,-3*x-6,2*x+4,6,2,-10,4*x+2,14,3*x-1,2*x-2,2*x+4,-3*x-7]],
[x^2-x-1, [-1,1], [1,x,-x-1,-4*x+2,4*x-4,4*x-2,-x,x+5,-3*x+3,-3*x-2,x+6,-x-2,-3*x-1,-1,7*x-2,-2*x-4,-4*x+10,-8*x+6,2,4*x-10,8*x-2,x-1,-6*x-2,-6*x+4,-5*x-3]]];

f[87,2]=[
[x^2-x-1, [-1,1], [x,1,-2*x+2,-2*x-1,2*x+1,4*x-3,3,2*x-6,6*x-4,-1,-6*x,-2*x+4,2,4,-6*x+1,-2*x+10,-4*x+2,2*x-4,10*x-7,2*x-4,2*x+8,-2*x-14,-8*x-2,5,-14*x+10]],
[x^3-2*x^2-4*x+7, [1,-1], [x,-1,-2*x^2+8,x^2-x-2,x^2-x-6,-x^2-x+6,3*x^2-x-10,2*x-2,-2*x^2+10,1,-2*x^2+10,-2*x+4,4*x^2-4*x-14,-4*x^2+4*x+12,-3*x^2+3*x+6,2*x^2+4*x-8,-2*x^2+2*x,2*x,3*x^2-3*x-10,-2*x^2-4*x+6,2*x-4,-4*x^2+2*x+14,2*x^2+2*x-12,x^2+5*x-10,2*x^2-4*x-4]]];

f[88,2]=[
[x+3, [1,1], [0,-3,-3,-2,-1,0,-6,4,1,-8,-7,-1,4,6,-8,2,-1,4,-5,3,16,2,-2,15,-7]],
[x^2-x-4, [-1,1], [0,x,-x+2,-2*x,-1,2*x-2,2,-4,x+4,2*x-2,x-4,x-6,2*x+2,2*x-4,8,-4*x+6,-5*x,-2*x-2,-x+8,3*x-4,-2*x+2,2*x-8,2*x+4,-3*x-2,-x+14]]];

f[89,2]=[
[x+1, [1], [-1,-1,-1,-4,-2,2,3,-5,7,0,-9,-2,0,-7,-12,-3,4,6,12,-10,7,-6,12,-1,9]],
[x-1, [-1], [1,2,-2,2,-4,2,6,-2,2,-6,6,10,-6,2,12,-6,-10,-6,12,4,10,-12,-6,1,-18]],
[x^5+x^4-10*x^3-10*x^2+21*x+17, [-1], [x,-1/2*x^4+1/2*x^3+7/2*x^2-5/2*x-4,-x^2+4,1/2*x^4-4*x^2-x+13/2,-x^3+5*x+2,-x^4+x^3+8*x^2-5*x-11,x^4-x^3-7*x^2+4*x+4,1/2*x^3-1/2*x^2-3/2*x+9/2,x^4-3/2*x^3-13/2*x^2+17/2*x+11/2,-x^4+9*x^2-14,1/2*x^4-3/2*x^3-7/2*x^2+15/2*x+8,x^4-2*x^3-8*x^2+10*x+9,-x^4+x^3+8*x^2-3*x-11,-3/2*x^3+1/2*x^2+17/2*x-1/2,x^3-7*x-2,-x^4+7*x^2+x-8,1/2*x^4+x^3-3*x^2-8*x-1/2,-x^2+5,-x^4+9*x^2-2*x-14,-2*x^4+4*x^3+16*x^2-20*x-24,x^4-7*x^2+1,-x^4+2*x^3+8*x^2-10*x-1,1/2*x^4-4*x^2-3*x+1/2,1,-x^3-x^2+2*x+7]]];

f[90,2]=[
[x+1, [1,1,-1], [-1,0,1,2,6,-4,-6,-4,0,-6,-4,8,0,8,0,-6,6,2,-4,-12,-10,-4,12,12,2]],
[x+1, [-1,1,1], [1,0,-1,2,-6,-4,6,-4,0,6,-4,8,0,8,0,6,-6,2,-4,12,-10,-4,-12,-12,2]],
[x-1, [-1,-1,-1], [1,0,1,-4,0,2,-6,-4,0,6,8,2,6,-4,0,6,0,-10,-4,0,2,8,-12,-18,2]]];

f[91,2]=[
[x+2, [1,1], [-2,0,-3,-1,-6,-1,4,5,3,-5,-3,-4,-6,-1,7,-9,8,-10,-6,-8,-13,3,15,3,7]],
[x, [-1,-1], [0,-2,-3,1,0,1,-6,-7,3,-9,5,2,-6,-1,3,-9,0,-10,14,-6,11,-1,3,15,-1]],
[x^2-2, [-1,1], [x,-x,x+3,1,-3*x,-1,-x,3*x-3,2*x-3,2*x+3,-3*x-1,-3*x-2,-2*x+6,-5,x+3,-2*x-3,4*x+6,6,6*x-6,5*x-6,3*x-5,-6*x+7,-3*x+9,x+3,-9*x-1]],
[x^3-x^2-4*x+2, [1,-1], [x,-x^2+x+2,-x+1,-1,x^2-x-2,1,x^2+x-2,-x-1,-x^2-2*x+7,x^2+5,2*x^2-x-7,x^2+3*x-4,-2*x^2+2*x+6,-3*x^2-2*x+13,-4*x^2+x+9,-3*x^2+2*x+11,4*x^2+2*x-14,-2,4*x^2-6*x-14,-x^2+3*x,-4*x^2-x+9,-x^2+4*x-3,4*x^2-9*x-13,-2*x^2+5*x+5,-x-3]]];

f[92,2]=[
[x-1, [-1,1], [0,1,0,2,0,-1,-6,2,-1,-3,5,8,3,8,9,6,-12,14,8,-15,-7,-10,6,0,-10]],
[x+3, [-1,-1], [0,-3,-2,-4,2,-5,4,-2,1,-7,-3,2,-9,-8,9,2,0,-2,14,-3,-3,-6,8,12,0]]];

f[93,2]=[
[x^2+3*x+1, [1,1], [x,-1,-2*x-5,2*x+1,2*x,2*x+2,-4*x-8,-2*x-7,-2*x-2,2*x+4,-1,-6*x-8,6*x+9,-6*x-12,-4*x-4,8*x+12,-3,8,-12,9,2*x+4,4*x+10,-4*x-18,8*x+10,9]],
[x^3-4*x+1, [-1,1], [x,1,-x^2-x+2,-x^2-x+4,2*x^2-6,2*x^2-4,2*x^2+2*x-6,-x^2+3*x+4,-2*x-2,-4*x^2-2*x+8,-1,2*x,x^2-3*x-6,-2*x^2-4*x+10,4*x+4,-2*x^2+2*x+2,x^2-x+6,2*x^2+6*x-6,4,x^2+7*x-6,-6*x-4,-2*x^2-2*x+8,-2*x^2-2*x+12,-6,-x^2-3*x+4]]];

f[94,2]=[
[x-1, [-1,1], [1,0,0,0,2,-4,-2,-2,4,4,4,2,6,6,-1,2,12,2,2,8,-14,-16,-16,-10,-14]],
[x^2-8, [1,-1], [-1,x,-1/2*x+2,-x-2,-1/2*x+4,-1/2*x-2,0,3/2*x-4,-x,3/2*x+6,-3*x,3*x+2,-x-6,3/2*x-4,1,x+2,2*x-4,3*x-2,-5/2*x-4,x+6,6,0,x,0,6]]];

f[95,2]=[
[x^3-x^2-3*x+1, [-1,1], [x,-x^2+3,1,2*x^2-2*x-4,-2*x-2,x^2-2*x+1,-2*x^2+4*x+4,-1,2*x-2,2*x^2-8,4*x,x^2-2*x+5,2*x^2-4*x-4,-6*x^2+2*x+12,2*x^2-2*x-4,-x^2+2*x+7,-2*x^2-2,-2*x^2+6*x+2,x^2+4*x-3,-4*x^2+8,2*x^2-4,6*x^2-14,-2*x-10,6*x^2-4*x-12,-5*x^2-2*x+19]],
[x^4+2*x^3-6*x^2-8*x+9, [1,-1], [x,-x^3+5*x-2,-1,-2*x^2-2*x+8,2*x^2+2*x-6,x^3+2*x^2-3*x-4,2*x^3-10*x+6,1,-2*x^3-2*x^2+8*x,2*x^3-10*x+6,2*x^3-2*x^2-10*x+14,x^3-3*x+2,-2*x^2+12,-2*x^2-2*x+8,2*x^2-2*x-12,-x^3+3*x-6,2*x^2+4*x-6,4*x^2+2*x-10,-3*x^3-2*x^2+15*x-4,2*x^3-2*x^2-14*x+6,-2*x^3+10*x+2,2*x^2+4*x-10,2*x^3-2*x^2-12*x+12,-2*x^3+6*x-6,-x^3+4*x^2+7*x-10]]];

f[96,2]=[
[x-1, [1,-1], [0,1,2,-4,4,-2,-6,-4,0,2,4,-2,2,4,8,10,-4,6,4,-16,-6,4,12,10,-14]],
[x+1, [-1,1], [0,-1,2,4,-4,-2,-6,4,0,2,-4,-2,2,-4,-8,10,4,6,-4,16,-6,-4,-12,10,-14]]];

f[97,2]=[
[x^3+4*x^2+3*x-1, [1], [x,-x^2-3*x-2,2*x^2+5*x-1,-x^2-3*x-3,x-1,-x-2,x^2+4*x+1,-4*x^2-6*x+7,-3*x-8,-4*x^2-14*x-5,x^2-6,6*x^2+17*x+2,x^2+x-1,3*x^2+8*x+1,4*x^2+12*x-3,-2*x^2-13*x-10,2*x^2+7*x+9,-5*x^2-8*x+7,3*x^2+13*x+7,3*x^2+11*x-3,-x^2-3*x-1,4*x^2+7*x-8,-8*x-10,-5*x^2-14*x+2,-1]],
[x^4-3*x^3-x^2+6*x-1, [-1], [x,-x^2+x+2,-x+1,x^3-x^2-4*x+2,-2*x^3+4*x^2+3*x-3,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+3,-x^3+2*x^2+3*x-4,-x^3+4*x^2-1,x^3-2*x^2+x+2,3*x^3-7*x^2-3*x+7,-3*x^3+6*x^2+6*x-9,3*x^3-7*x^2-10*x+14,-x^2+5,x^3-4*x^2-x+12,-x^3-2*x^2+8*x+3,-2*x^3+11*x+1,4*x^3-9*x^2-8*x+11,3*x^3-x^2-10*x-6,-x^3-x^2+8*x+4,3*x^3-x^2-10*x-8,-3*x^3+14*x-1,2*x^3-4*x^2+2*x+4,x^3+3*x^2-11*x-11,1]]];

f[98,2]=[
[x+1, [1,-1], [-1,2,0,0,0,4,-6,-2,0,-6,4,2,-6,8,12,6,6,-8,-4,0,-2,8,6,6,10]],
[x^2-2, [-1,1], [1,x,-2*x,0,-2,0,x,5*x,-4,2,-6*x,10,7*x,2,-2*x,-2,x,-2*x,12,-12,x,-4,-7*x,5*x,-7*x]]];

f[99,2]=[
[x+4, [1,1], [-1,0,-4,-2,-1,-2,2,-6,4,-6,4,-6,-10,6,-8,0,4,-6,8,0,-2,-10,12,0,2]],
[x-1, [1,-1], [1,0,4,-2,1,-2,-2,-6,-4,6,4,-6,10,6,8,0,-4,-6,8,0,-2,-10,-12,0,2]],
[x-2, [-1,1], [-1,0,2,4,-1,-2,2,0,-8,6,-8,6,2,0,-8,-6,4,6,-4,0,-14,-4,-12,6,2]],
[x-2, [-1,1], [2,0,-1,-2,-1,4,2,0,1,0,7,3,8,-6,-8,6,-5,12,-7,3,4,-10,6,-15,-7]]];

f[100,2]=[
[x, [-1,1], [0,2,0,-2,0,-2,6,-4,-6,6,-4,-2,6,10,6,6,12,2,-2,-12,-2,8,-6,-6,-2]]];

f[101,2]=[
[x, [1], [0,-2,-1,-2,-2,1,3,-5,1,-4,-9,-2,8,-8,7,-2,-14,4,2,13,8,-9,-4,14,2]],
[x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [-1], [x,1/4*x^6+1/4*x^5-5/2*x^4-5/2*x^3+19/4*x^2+17/4*x+1/2,-1/2*x^6-3/4*x^5+11/2*x^4+7*x^3-29/2*x^2-45/4*x+15/2,-1/4*x^5-1/2*x^4+5/2*x^3+4*x^2-21/4*x-7/2,-1/4*x^6+3*x^4-35/4*x^2+5,3/4*x^6+x^5-17/2*x^4-9*x^3+91/4*x^2+12*x-10,3/4*x^6+3/4*x^5-8*x^4-7*x^3+79/4*x^2+45/4*x-21/2,1/2*x^5-5*x^3+21/2*x+2,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-21/2*x^2-7/2*x+2,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-19/2*x^2-7/2*x-1,-x^6-3/2*x^5+11*x^4+15*x^3-28*x^2-55/2*x+14,-5/4*x^6-9/4*x^5+13*x^4+21*x^3-113/4*x^2-135/4*x+13/2,1/2*x^6+3/2*x^5-5*x^4-14*x^3+19/2*x^2+41/2*x-1,x^6+3/2*x^5-11*x^4-13*x^3+27*x^2+35/2*x-3,-1/2*x^6-1/2*x^5+6*x^4+5*x^3-39/2*x^2-17/2*x+14,x^6+5/2*x^5-11*x^4-24*x^3+27*x^2+83/2*x-11,-3/4*x^5+1/2*x^4+15/2*x^3-4*x^2-63/4*x+15/2,-x^6-2*x^5+11*x^4+19*x^3-28*x^2-29*x+12,1/4*x^6+3/4*x^5-5/2*x^4-17/2*x^3+23/4*x^2+79/4*x-1/2,-x^6-2*x^5+10*x^4+18*x^3-20*x^2-28*x+5,-1/2*x^6-1/2*x^5+5*x^4+4*x^3-19/2*x^2-11/2*x-1,1/2*x^6+x^5-5*x^4-11*x^3+23/2*x^2+26*x-7,9/4*x^6+5/2*x^5-25*x^4-22*x^3+255/4*x^2+55/2*x-26,-1/2*x^6-x^5+6*x^4+10*x^3-35/2*x^2-19*x+6,3/2*x^6+7/4*x^5-33/2*x^4-17*x^3+83/2*x^2+129/4*x-41/2]]];

f[102,2]=[
[x+1, [1,1,1], [-1,-1,-4,-2,0,-6,-1,4,6,-4,-6,-4,-10,-4,4,-2,12,-4,-12,-6,2,10,-12,-2,6]],
[x-1, [1,-1,1], [-1,1,0,2,0,2,-1,-4,-6,0,-10,8,6,-4,12,6,-12,8,-4,6,2,-10,12,-18,14]],
[x-1, [-1,-1,-1], [1,1,-2,0,-4,-2,1,4,0,-10,8,-2,10,12,0,6,12,-10,-12,0,10,-8,4,-6,-14]]];

f[103,2]=[
[x^2+3*x+1, [1], [x,-1,-x-3,-1,x,3*x+3,x-3,-3*x-2,-4*x-6,2*x,6*x+9,-6*x-9,-8*x-12,6*x+7,-5*x-9,-5*x-12,x+9,3*x+12,-12*x-17,5*x+9,3*x-3,9*x+17,7*x+12,-6*x-18,6*x+14]],
[x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [-1], [x,-x^5+3*x^4+3*x^3-11*x^2-x+8,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13,-x^4+2*x^3+4*x^2-5*x-3,-x^5+2*x^4+4*x^3-4*x^2-4*x-1,2*x^5-4*x^4-11*x^3+15*x^2+14*x-11,-3*x^5+7*x^4+16*x^3-30*x^2-21*x+30,-x^5+3*x^4+4*x^3-14*x^2-3*x+13,-4*x^5+9*x^4+22*x^3-38*x^2-29*x+34,3*x^5-8*x^4-13*x^3+31*x^2+14*x-21,x^5-3*x^4-3*x^3+11*x^2+3*x-12,5*x^5-13*x^4-23*x^3+53*x^2+27*x-44,x^4-4*x^3+13*x-4,-x^5+3*x^4+x^3-3*x^2+x-10,6*x^5-15*x^4-27*x^3+55*x^2+31*x-37,x^5-2*x^4-6*x^3+10*x^2+6*x-7,-7*x^5+17*x^4+34*x^3-70*x^2-39*x+60,-2*x^5+4*x^4+13*x^3-21*x^2-22*x+26,-3*x^5+7*x^4+13*x^3-23*x^2-15*x+12,6*x^5-17*x^4-23*x^3+65*x^2+21*x-53,-2*x^5+7*x^4+5*x^3-27*x^2-x+19,-4*x^5+8*x^4+23*x^3-35*x^2-28*x+29,2*x^4-3*x^3-11*x^2+8*x+10,2*x^5-2*x^4-16*x^3+14*x^2+20*x-22,-x^5+2*x^4+3*x^3+3*x^2-4*x-19]]];

f[104,2]=[
[x-1, [-1,1], [0,1,-1,5,-2,-1,-3,-2,4,-6,-4,11,8,-1,9,-12,6,0,6,7,-2,12,-16,-10,-10]],
[x^2-x-4, [1,-1], [0,x,-x+2,-x,-2*x,1,3*x-2,2*x,-8,-2,4,3*x+2,-2*x+2,-x+8,3*x-8,2*x-2,2*x,2*x+6,-2*x,-3*x,-6,8,4*x-8,10,-4*x+2]]];

f[105,2]=[
[x-1, [-1,-1,-1], [1,1,1,1,0,-6,2,-8,8,-2,4,-2,-6,4,8,10,4,-2,4,-12,-2,8,-4,-6,-18]],
[x^2-5, [1,1,-1], [x,-1,-1,1,-2*x+2,-2*x,-2,2*x+2,4,-2,2*x+6,4*x+2,-2,-4*x,-4*x+4,-2*x-8,4*x,-2,-4,2*x+10,2*x-8,-4*x+4,4*x-8,-2,-2*x+4]]];

f[106,2]=[
[x+1, [1,1], [-1,-1,-4,0,-4,1,5,-7,1,5,-4,1,-10,-10,-6,-1,-6,4,4,15,-8,1,-3,2,17]],
[x-2, [1,-1], [-1,2,1,-2,5,-4,3,-4,-3,-6,7,-6,2,7,4,1,7,2,16,12,-12,-7,-14,17,3]],
[x-1, [-1,1], [1,1,0,-4,0,5,-3,-1,3,9,-4,5,6,-10,6,-1,6,8,-4,-3,-4,-13,3,18,-7]],
[x+2, [-1,1], [1,-2,3,2,-3,-4,3,-4,-9,6,5,-10,6,-1,0,-1,15,-10,-4,12,8,11,-6,9,-13]]];

f[107,2]=[
[x^2+x-1, [1], [x,-x-2,-x-2,2*x-1,2*x+3,-6,x-1,-6*x-2,-4*x+1,-4*x-3,4*x+1,-3*x-8,2*x+6,3*x+6,2*x-6,8*x+1,9*x+6,-3*x-8,-2*x-6,-9*x-6,-6*x-7,3*x+2,-3*x,2*x+11,6*x-3]],
[x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [-1], [x,-1/4*x^6-1/4*x^5+5/2*x^4+3/4*x^3-29/4*x^2+2*x+4,1/2*x^6+1/2*x^5-4*x^4-5/2*x^3+15/2*x^2+x,-1/2*x^6-1/2*x^5+4*x^4+7/2*x^3-15/2*x^2-6*x+2,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+11/2*x,1/2*x^6-11/2*x^4+1/2*x^3+17*x^2-7/2*x-8,x^5+x^4-7*x^3-5*x^2+10*x+4,-3/4*x^6-5/4*x^5+6*x^4+33/4*x^3-45/4*x^2-19/2*x,3/4*x^6-3/4*x^5-9*x^4+23/4*x^3+113/4*x^2-21/2*x-16,x^5+x^4-7*x^3-4*x^2+12*x+1,x^4-7*x^2+2*x+8,-1/4*x^6+3/4*x^5+7/2*x^4-21/4*x^3-49/4*x^2+7*x+12,-3/4*x^6-3/4*x^5+13/2*x^4+21/4*x^3-51/4*x^2-7*x,1/2*x^6+3/2*x^5-3*x^4-17/2*x^3+5/2*x^2+8*x+6,x^5-9*x^3-x^2+18*x+3,-5/4*x^6-7/4*x^5+12*x^4+39/4*x^3-131/4*x^2-11/2*x+16,-x^5-2*x^4+7*x^3+12*x^2-10*x-14,-3/4*x^6-5/4*x^5+5*x^4+29/4*x^3-33/4*x^2-13/2*x+8,-x^6-x^5+10*x^4+7*x^3-29*x^2-10*x+14,3*x^4-x^3-19*x^2+5*x+12,-1/2*x^6-3/2*x^5+5*x^4+19/2*x^3-25/2*x^2-5*x+4,-x^6-1/2*x^5+19/2*x^4+2*x^3-49/2*x^2+1/2*x+8,2*x^6+2*x^5-18*x^4-10*x^3+47*x^2-25,1/2*x^6-9/2*x^4-3/2*x^3+6*x^2+13/2*x+4,1/2*x^6+1/2*x^5-2*x^4-3/2*x^3-5/2*x^2-2*x+2]]];

f[108,2]=[
[x, [-1,1], [0,0,0,5,0,-7,0,-1,0,0,-4,-1,0,8,0,0,0,-13,11,0,17,-13,0,0,5]]];

f[109,2]=[
[x-1, [-1], [1,0,3,2,1,0,-8,-5,7,-5,6,2,2,-4,9,12,12,-5,-12,-6,-5,8,-2,1,1]],
[x^3+2*x^2-x-1, [1], [x,-x-2,-2*x^2-3*x,3*x^2+5*x-3,x^2+2*x-5,-2*x^2-x+3,-x^2-3*x+1,-3*x^2-5*x+1,-5*x-3,4*x^2+9*x-4,-2*x^2-7*x-3,x^2-2,6*x^2+9*x-8,-3*x^2+9,5*x,x^2+1,-x^2-4*x-9,6*x^2+2*x-14,6*x^2+10*x-9,-5*x^2-7*x+2,x^2+2*x+6,-7*x^2-9*x+6,-5*x^2-10*x-1,-3*x^2-1,-5*x^2-5*x]],
[x^4+x^3-5*x^2-4*x+3, [-1], [x,-x^3+4*x+1,-x,x^3-x^2-4*x+2,x^3+x^2-5*x,2*x^2+x-7,x^3-x^2-2*x+6,-x^2-x+5,-x^3+2*x^2+4*x-6,2*x^3-2*x^2-7*x+6,2*x^3-7*x-1,-3*x^3-3*x^2+11*x+5,-x^3+4*x+3,2*x^3+x^2-6*x-1,x,-5*x^2+9,-3*x^2+15,x^3+4*x^2-5*x-13,-3*x^3+13*x+2,-4*x^3+x^2+19*x+6,2*x^3+x^2-4*x-4,-4*x^3-x^2+13*x-4,-2*x^3+3*x^2+8*x-3,-3*x^3+3*x^2+13*x-12,-x^3-x^2-1]]];

f[110,2]=[
[x-1, [1,1,-1], [-1,1,-1,5,1,2,3,-7,-6,-3,-7,-7,6,8,6,-3,-6,-1,8,3,2,-10,-6,9,-4]],
[x-1, [-1,1,1], [1,1,-1,-1,-1,2,-3,-1,6,-9,5,5,-6,8,6,9,6,5,8,-9,-10,14,-6,-15,8]],
[x+1, [-1,-1,-1], [1,-1,1,3,1,-6,-7,5,-6,5,-3,3,2,4,-2,-1,-10,7,8,7,14,10,-6,-15,-12]],
[x^2+x-8, [1,-1,1], [-1,x,1,-x,-1,2,-x-2,x+4,-2*x-4,-x-2,-x,-x+6,4*x+2,-4,-2*x-4,3*x+6,2*x+4,x-2,8,-3*x,4*x-2,-2*x-8,2*x+4,x+2,2*x-6]]];

f[111,2]=[
[x^3-3*x^2-x+5, [1,-1], [x,-1,-x^2+5,-2*x^2+2*x+4,2*x^2-4*x-2,2*x^2-4*x-4,-x^2+4*x+1,2*x^2-2*x-8,-x^2+2*x+1,-x^2+9,-4*x^2+6*x+6,1,6,-2*x-2,4*x^2-4*x-12,-6*x^2+8*x+12,3*x^2-6*x-3,-2,-2*x^2+6*x-4,4*x,2*x-4,-6*x^2+6*x+20,-6*x^2+8*x+14,x^2+4*x-9,2*x^2-12]],
[x^4-6*x^2+2*x+5, [-1,1], [x,1,-x^3-2*x^2+3*x+4,2*x^3+2*x^2-8*x-2,2*x^2-6,-2*x^3-4*x^2+6*x+10,-x^3+3*x-2,2*x^2+2*x-4,3*x^3+2*x^2-11*x-4,-x^3+7*x-2,-2*x^3-2*x^2+8*x+4,-1,2*x^3+2*x^2-10*x,-2*x^3-2*x^2+12*x+4,2*x^3+2*x^2-6*x-6,-2*x^2-4*x+8,-5*x^3-8*x^2+21*x+14,-4*x-2,-2*x^3-2*x^2+8*x+2,2*x^3+6*x^2-6*x-18,2*x^3-8*x+6,2*x^2-2*x-8,-2*x^3-4*x^2+6*x+4,5*x^3+6*x^2-19*x-4,-6*x^3-4*x^2+22*x+2]]];

f[112,2]=[
[x+2, [1,1], [0,-2,-4,-1,0,0,-2,2,-8,2,-4,-6,-2,-8,4,-10,-6,4,12,0,-14,8,-6,10,-2]],
[x, [1,-1], [0,0,2,1,4,2,-6,-8,0,6,-8,-2,2,4,8,6,0,-6,4,8,10,-16,-8,-6,-6]],
[x-2, [-1,1], [0,2,0,-1,0,-4,6,-2,0,-6,4,2,6,-8,12,6,6,8,4,0,2,-8,6,-6,-10]]];

f[113,2]=[
[x+1, [-1], [-1,2,2,0,0,2,-6,6,-6,-6,-4,2,-2,6,6,10,6,6,2,-6,2,10,-4,-14,-14]],
[x^2-2*x-2, [-1], [1,x,-2*x+2,4,-2*x,2*x-4,-2,x-4,x,2*x+2,-2*x+4,2*x-6,2*x-4,-5*x+8,3*x,2*x-8,3*x,-4*x+10,-x-4,-x-4,-8*x+10,5*x,-8*x+8,4*x+2,-2]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x-1,2*x^2+2*x-3,-x^2-x-2,-3*x^2-4*x+4,x^2+4*x-2,-x^2-5*x-2,3*x^2+5*x-4,3*x,-x^2+2*x+5,x^2-3*x-9,-6*x^2-11*x+4,-2*x^2-5*x+1,4*x^2+7*x-4,5*x^2+8*x-7,6*x^2+7*x-9,-4*x^2-3*x+11,-x^2-5,2*x^2-x-3,6*x^2+8*x-2,-3*x^2+x+3,-5*x^2-5*x+5,-x+4,-8*x^2-13*x+2,11*x^2+15*x-12]],
[x^3+2*x^2-5*x-9, [-1], [x,x^2-5,-1,-x^2-x+6,x^2-4,x^2-2,x^2-x-2,-3*x^2+x+16,-2*x^2-x+10,x^2-7,x^2+x-1,-4*x^2+x+22,-2*x^2+3*x+9,2*x^2-x-6,-x^2+2*x+9,2*x^2-x-17,-4*x^2-x+15,3*x^2-21,2*x^2+5*x-7,2*x^2-2,-3*x^2-x+13,3*x^2+x-13,-4*x^2-5*x+16,-2*x^2-5*x+4,3*x^2+3*x-8]]];

f[114,2]=[
[x+1, [1,1,-1], [-1,-1,0,4,4,0,-2,1,-2,-6,6,-8,10,-12,10,2,4,-10,0,-16,-2,10,-16,-2,-10]],
[x+1, [-1,1,1], [1,-1,2,0,-4,2,-6,-1,-4,-2,4,10,10,4,-4,-10,12,14,-12,8,-6,-4,12,-6,10]],
[x-1, [-1,-1,-1], [1,1,0,-4,0,-4,6,1,-6,6,2,-4,6,-4,6,6,-12,14,8,0,14,-10,-12,-6,-10]]];

f[115,2]=[
[x-2, [1,-1], [2,0,-1,1,2,-2,3,-2,1,7,-5,11,1,0,0,11,-13,-8,5,5,6,-12,9,4,-14]],
[x^2+3*x+1, [1,1], [x,-1,-1,-2*x-4,2*x+2,2*x-1,-4*x-8,6*x+10,-1,-4*x-11,-2*x-1,6*x+6,4*x+3,-6*x-12,-4*x-1,-6,-8*x-12,-10*x-14,-6*x-6,2*x-1,6*x+9,2*x+14,4*x+4,2*x+8,10*x+20]],
[x^4-2*x^3-4*x^2+5*x+2, [-1,1], [x,-x^2+x+2,1,x^3-2*x^2-4*x+3,-2*x+2,-2*x^3+3*x^2+7*x-4,-x^3+2*x^2+2*x-3,2*x-2,-1,x^3-x^2-3*x+5,-3*x^3+5*x^2+9*x-7,x^3+2*x^2-8*x-7,-x^3+x^2+3*x+3,2*x^3-2*x^2-8*x,-x^2+5*x+2,-x^3+9,3*x^3-4*x^2-12*x+11,-2*x^2+4*x+4,-3*x^3+4*x^2+10*x-5,3*x^3-7*x^2-7*x+11,2*x^3-3*x^2-7*x-4,-2*x^3+4*x^2+2*x-4,-x^3+4*x^2-13,-4*x^3+4*x^2+18*x-4,2*x^3-4*x^2-6*x+2]]];

f[116,2]=[
[x-1, [-1,1], [0,1,3,-4,3,5,-6,-4,-6,-1,5,8,0,-1,-3,3,6,2,8,6,-16,11,6,-12,8]],
[x-2, [-1,1], [0,2,-2,4,-6,2,2,-6,4,-1,-6,2,2,10,-2,10,0,10,-12,8,10,-6,16,2,10]],
[x+3, [-1,1], [0,-3,3,4,-1,-3,2,4,-6,-1,9,-8,-8,-5,-7,-5,-10,10,8,-2,0,-1,6,12,0]]];

f[117,2]=[
[x+1, [-1,-1], [-1,0,-2,-4,-4,1,-2,0,0,10,4,-2,-6,-12,0,-6,-12,-2,-8,0,2,8,-4,2,10]],
[x^2-3, [1,-1], [x,0,0,2,-2*x,1,-4*x,2,4*x,4*x,2,2,4*x,8,-6*x,0,2*x,-10,14,2*x,-10,-4,6*x,4*x,-10]],
[x^2-2*x-1, [-1,1], [x,0,-2*x+2,-2*x+2,2,-1,4*x-6,2*x-2,4,-2,-2*x-2,4*x-6,-2*x-6,4*x,-4*x+10,2,4*x-6,-8*x+10,-2*x+6,-2,4*x+2,8*x-8,4*x-2,2*x-14,-4*x+2]]];

f[118,2]=[
[x+1, [1,1], [-1,-1,-3,-1,-2,-2,-2,3,0,-1,10,-12,7,-6,-6,-11,-1,-12,10,4,12,-15,-14,4,0]],
[x-2, [1,-1], [-1,2,2,-3,1,3,-1,-8,8,-4,-4,-1,5,-9,2,12,1,10,4,-15,10,11,-11,-6,14]],
[x+1, [-1,1], [1,-1,1,3,2,-6,-2,-5,4,-5,2,8,7,-6,-2,9,-1,-8,-2,12,4,5,14,0,8]],
[x-2, [-1,1], [1,2,-2,-3,-1,-3,7,4,4,4,-4,-7,-11,9,10,0,-1,-2,4,9,-14,11,-13,18,2]]];

f[119,2]=[
[x^4+x^3-5*x^2-x+3, [-1,1], [x,-x^3-x^2+4*x+1,x^3+x^2-4*x,1,-2*x,2*x^3+4*x^2-6*x-4,-1,-2*x^3-4*x^2+4*x+8,2*x^2+4*x-6,-2*x,x^3-x^2-4*x+8,2*x^3+4*x^2-4*x-4,x^3+x^2-2*x+3,-x^3+x^2+8*x-7,-2*x^3-6*x^2+6*x+12,x^3+3*x^2-2*x-12,4*x^2-12,-x^3-x^2+10*x+5,-x^3-5*x^2+2*x+8,2*x^3-12*x,-x^3-x^2+2*x+5,-2*x^3-6*x^2+6*x+8,2*x^2+2*x-12,-2*x^3+2*x^2+10*x-12,-3*x^3-3*x^2+12*x+8]],
[x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,-1], [x,-x^4+6*x^2+x-4,2*x^4+x^3-15*x^2-6*x+18,-1,-2*x^4-2*x^3+14*x^2+12*x-14,-2*x^4+14*x^2-14,1,-2*x^4+14*x^2+2*x-14,2*x^2-10,4*x^4-28*x^2-2*x+28,2*x^4+x^3-13*x^2-6*x+10,-2*x^3+8*x+4,x^4-6*x^2-3*x+8,3*x^4+2*x^3-22*x^2-11*x+26,2*x^4-12*x^2-4*x+6,-2*x^4-x^3+13*x^2+8*x-10,4*x^4-28*x^2-4*x+32,-x^4+6*x^2+3*x,2*x^4+x^3-15*x^2-8*x+22,-6*x^4+42*x^2+6*x-46,-5*x^4-4*x^3+34*x^2+23*x-28,2*x^4-12*x^2+10,-4*x^4+26*x^2+2*x-24,2*x^3+2*x^2-14*x-4,-2*x^4+x^3+17*x^2-2*x-26]]];

f[120,2]=[
[x+1, [1,-1,1], [0,1,-1,4,0,-6,-2,4,-8,-6,0,-6,10,-4,8,10,0,6,-4,0,-14,16,12,2,2]],
[x-1, [-1,-1,-1], [0,1,1,0,-4,6,-6,-4,0,-2,-8,-2,-6,12,8,6,12,14,4,8,-6,-8,-12,10,2]]];

f[121,2]=[
[x, [1], [0,-1,-3,0,0,0,0,0,-9,0,-5,7,0,0,-12,6,-15,0,13,-3,0,0,0,-9,17]],
[x-1, [-1], [1,2,1,-2,0,1,-5,6,2,9,-2,-3,-5,0,2,9,8,6,2,12,-2,-10,6,-9,-13]],
[x+1, [-1], [-1,2,1,2,0,-1,5,-6,2,-9,-2,-3,5,0,2,9,8,-6,2,12,2,10,-6,-9,-13]],
[x-2, [-1], [2,-1,1,2,0,-4,2,0,-1,0,7,3,8,6,8,-6,5,-12,-7,-3,-4,10,6,15,-7]]];

f[122,2]=[
[x+2, [1,1], [-1,-2,1,-5,-3,-3,0,0,5,6,0,-12,-3,-8,12,-2,-9,-1,7,-16,-3,1,-12,12,2]],
[x^2-x-3, [1,-1], [-1,x,0,-x+3,-2*x+2,-2*x+4,2*x-2,3*x-1,-3*x,-x-5,-x,x-2,3*x-6,8,4*x+2,-5*x+2,0,1,4*x-2,3*x+3,3*x-1,4*x-8,3*x+3,2*x-8,5*x+6]],
[x^3+x^2-5*x+2, [-1,1], [1,x,-x^2-3*x+3,2*x^2+3*x-5,-x^2-x+1,-x^2-x+3,-2*x^2-4*x+4,x^2+2*x-4,3*x^2+4*x-9,x^2+4*x-2,-2*x^2-x+6,-4*x^2-9*x+14,3*x^2+8*x-7,-4*x^2-8*x+16,2*x^2+6*x-8,-2*x^2+3*x+12,-x^2-3*x-5,-1,5*x^2+7*x-9,3*x^2+6*x,-4*x^2-9*x+19,-3*x^2-9*x+9,5*x^2+6*x-20,-4*x^2-10*x+8,2*x^2+3*x-8]]];

f[123,2]=[
[x, [1,1], [0,-1,-2,-4,5,-4,-5,-2,4,1,-5,-7,-1,7,7,-14,-12,-3,-2,-3,13,-2,-2,18,-14]],
[x+2, [-1,-1], [-2,1,-4,-2,-3,-6,3,0,-6,5,7,-7,1,-1,3,-6,0,-3,-2,-3,-11,10,-16,-10,-12]],
[x^2-2, [-1,1], [x,1,-x+2,x-2,-x+1,-3*x+2,x+1,x-4,x,5*x+1,-3,6*x-1,-1,-5,-x+9,-2*x+4,6*x,4*x+1,-6*x+2,-5*x+3,8*x+1,4*x-2,-5*x-6,4*x-6,3*x+12]],
[x^3-x^2-4*x+2, [1,-1], [x,-1,-x^2+x+4,-x^2-x+4,-x-1,x^2-x,2*x^2-x-5,x^2-x-2,x^2-x-6,-3*x-1,x^2+4*x-5,-x^2+2*x+9,1,5*x^2-2*x-11,2*x^2+x-5,2*x^2-4*x,-2*x^2-2*x+4,x^2-2*x-5,-4*x^2+6*x+14,x-11,-3*x^2-2*x+11,-2*x^2+4*x-2,-3*x^2+x+4,-4*x+6,x^2-3*x-6]]];

f[124,2]=[
[x, [-1,1], [0,0,1,3,6,-4,0,-5,-4,2,-1,-2,-9,2,4,12,9,12,-12,5,-14,10,2,6,-7]],
[x+2, [-1,-1], [0,-2,-3,-1,-6,2,6,-1,-6,0,1,-10,-9,8,0,0,-3,-10,-4,-15,14,8,6,12,-7]]];

f[125,2]=[
[x^2+x-1, [1], [x,-x-2,0,-3,-3,3*x,-2*x+1,x-2,2*x+2,-6*x-3,-5*x-3,-6*x-6,-3,-9,7*x+3,-x+3,3*x+9,5*x+2,3*x-9,-3,-3*x-3,4*x+7,-4*x-6,12*x+6,-3*x+3]],
[x^2-x-1, [-1], [x,-x+2,0,3,-3,3*x,-2*x-1,-x-2,2*x-2,6*x-3,5*x-3,-6*x+6,-3,9,7*x-3,-x-3,-3*x+9,-5*x+2,3*x+9,-3,-3*x+3,-4*x+7,-4*x+6,-12*x+6,-3*x-3]],
[x^4-8*x^2+11, [-1], [x,-1/2*x^3+5/2*x,0,1/2*x^3-7/2*x,2,-2*x,-x^3+5*x,-x^2+9,1/2*x^3-3/2*x,-3/2*x^2+7/2,2,x^3-3*x,5/2*x^2-21/2,3/2*x^3-11/2*x,-1/2*x^3+1/2*x,2*x^3-10*x,2*x^2-8,-5/2*x^2+19/2,-x^3+5*x,-5*x^2+17,-2*x^3+16*x,x^2+1,-3/2*x^3+13/2*x,1/2*x^2-19/2,2*x^3-12*x]]];

f[126,2]=[
[x+1, [1,-1,1], [-1,0,2,-1,4,6,-2,-4,-8,2,0,-10,6,-4,0,-6,-4,6,4,-8,10,0,4,6,-14]],
[x-1, [-1,-1,-1], [1,0,0,1,0,-4,-6,2,0,6,-4,2,-6,8,12,-6,6,8,-4,0,2,8,6,6,-10]]];

f[127,2]=[
[x^3+3*x^2-3, [1], [x,-x^2-2*x,x^2+x-4,x^2+x-3,x^2+4*x+1,-3*x^2-4*x+4,-x-7,x^2+x-1,-2*x^2-3*x,x^2-x-3,-3*x^2-5*x+8,-4*x^2-2*x+10,-4*x^2-8*x,6*x^2+6*x-15,2*x^2+8*x+1,7*x^2+8*x-12,-x^2-4*x-1,6*x^2+14*x-5,-x^2-x+1,-2*x^2-10*x-3,7*x^2+9*x-11,7*x+10,-5*x^2-16*x+3,2*x^2-x-18,6*x^2+9*x-14]],
[x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [-1], [x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9,-x^5+x^4+7*x^3-7*x^2-9*x+8,x^6-2*x^5-6*x^4+13*x^3+3*x^2-15*x+6,-2*x^6+6*x^5+11*x^4-38*x^3-2*x^2+39*x-13,x^6-x^5-9*x^4+6*x^3+24*x^2-6*x-15,2*x^6-5*x^5-11*x^4+32*x^3+2*x^2-33*x+11,3*x^5-6*x^4-20*x^3+36*x^2+24*x-33,-2*x^6+5*x^5+13*x^4-31*x^3-15*x^2+29*x,-x^6+5*x^5-33*x^3+33*x^2+39*x-40,-4*x^5+6*x^4+27*x^3-37*x^2-32*x+35,-x^6+2*x^5+7*x^4-12*x^3-12*x^2+12*x+9,-3*x^6+8*x^5+17*x^4-51*x^3-5*x^2+54*x-19,-2*x^5+2*x^4+15*x^3-11*x^2-24*x+12,-x^6+4*x^5+4*x^4-26*x^3+6*x^2+33*x-6,-2*x^6+21*x^4-x^3-63*x^2+3*x+45,-x^6+9*x^4-24*x^2+2*x+20,2*x^6-9*x^5-3*x^4+57*x^3-49*x^2-61*x+62,x^6-2*x^5-9*x^4+12*x^3+20*x^2-8*x-6,x^6+x^5-12*x^4-5*x^3+41*x^2-x-31,-x^6+7*x^5-x^4-44*x^3+40*x^2+44*x-52,2*x^6-10*x^5-3*x^4+65*x^3-45*x^2-71*x+57,2*x^6-3*x^5-14*x^4+18*x^3+20*x^2-14*x-3,-2*x^6+5*x^5+12*x^4-34*x^3-10*x^2+42*x-1]]];

f[128,2]=[
[x+2, [1], [0,-2,-2,-4,2,-2,-2,-2,4,6,0,-10,-6,-6,-8,6,-14,-2,-10,12,14,-8,6,-2,-2]],
[x-2, [-1], [0,2,2,-4,-2,2,-2,2,4,-6,0,10,-6,6,-8,-6,14,2,10,12,14,-8,-6,-2,-2]],
[x+2, [-1], [0,2,-2,4,-2,-2,-2,2,-4,6,0,-10,-6,6,8,6,14,-2,10,-12,14,8,-6,-2,-2]],
[x-2, [-1], [0,-2,2,4,2,2,-2,-2,-4,-6,0,10,-6,-6,8,-6,-14,2,-10,-12,14,8,6,-2,-2]]];

f[129,2]=[
[x, [1,1], [0,-1,-2,-2,-5,3,-3,2,-1,0,-5,8,-7,-1,-8,3,12,-8,-15,-14,12,-16,15,10,11]],
[x-1, [-1,1], [1,1,2,0,0,-2,-6,4,-4,-6,8,6,2,-1,4,-2,0,14,12,8,2,-8,0,14,-14]],
[x^2-2*x-1, [1,-1], [x,-1,-x+2,-2*x+3,-x+4,-5,-2*x,4*x-5,6,3*x,4,-2*x-2,4*x-4,1,7*x-8,8*x-8,-8*x+10,2*x-6,-6*x,-2*x+8,4*x-2,6*x-2,-x-6,-6*x+6,2*x-3]],
[x^3+2*x^2-5*x-8, [-1,1], [x,1,-x-2,-x^2+6,x^2-x-5,3,-x^2+5,-x^2-2*x+2,3*x^2+2*x-9,-x,x^2+2*x-5,2*x^2+2*x-8,-x^2+2*x+1,-1,-4*x^2-3*x+16,x^2+2*x-5,-2*x^2+12,2*x^2-2*x-16,3*x^2+4*x-15,-2*x^2+2*x+18,-2*x^2+4,-2*x^2-2*x+16,3*x^2-x-17,-2*x-14,-2*x^2+2*x+11]]];

f[130,2]=[
[x+1, [1,-1,-1], [-1,-2,1,-4,-6,1,-6,2,6,-6,2,2,-6,2,-12,6,6,2,-4,-6,-10,-4,0,-6,2]],
[x-2, [-1,1,1], [1,2,-1,-4,-2,-1,2,6,6,2,-6,-2,10,-10,-12,2,10,2,-12,10,10,-4,0,-14,14]],
[x, [-1,-1,-1], [1,0,1,0,0,1,2,-8,-4,-2,-4,6,10,0,8,6,8,-2,4,-12,10,-8,12,10,-14]]];

f[131,2]=[
[x, [1], [0,-1,-2,-1,0,-3,4,-2,-2,0,-2,-8,-3,3,10,-9,1,-15,-6,10,4,-8,4,-11,12]],
[x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [-1], [x,1/8*x^8-2*x^6+81/8*x^4-67/4*x^2+5,-1/16*x^9+9/8*x^7+1/8*x^6-107/16*x^5-9/8*x^4+117/8*x^3+7/4*x^2-9*x+1,-1/8*x^9-1/4*x^8+7/4*x^7+7/2*x^6-57/8*x^5-63/4*x^4+11/2*x^3+47/2*x^2+15/2*x-3,-1/16*x^9+9/8*x^7-3/8*x^6-107/16*x^5+31/8*x^4+117/8*x^3-35/4*x^2-11*x+2,1/16*x^9+1/8*x^8-7/8*x^7-15/8*x^6+55/16*x^5+17/2*x^4-17/8*x^3-21/2*x^2-5*x+1,1/8*x^9+1/4*x^8-7/4*x^7-13/4*x^6+59/8*x^5+25/2*x^4-31/4*x^3-12*x^2-4*x-4,1/8*x^9-9/4*x^7+1/4*x^6+103/8*x^5-13/4*x^4-95/4*x^3+21/2*x^2+6*x-6,1/4*x^9+1/4*x^8-4*x^7-7/2*x^6+83/4*x^5+63/4*x^4-37*x^3-49/2*x^2+16*x+6,1/8*x^9-1/4*x^8-9/4*x^7+17/4*x^6+103/8*x^5-45/2*x^4-99/4*x^3+37*x^2+13*x-10,3/8*x^9+1/4*x^8-25/4*x^7-11/4*x^6+273/8*x^5+8*x^4-257/4*x^3-5*x^2+26*x-2,-1/4*x^8+7/2*x^6-1/2*x^5-59/4*x^4+7/2*x^3+35/2*x^2-2*x+2,-7/16*x^9-3/8*x^8+57/8*x^7+41/8*x^6-593/16*x^5-22*x^4+503/8*x^3+63/2*x^2-19*x-7,1/16*x^9-1/2*x^8-11/8*x^7+67/8*x^6+163/16*x^5-351/8*x^4-243/8*x^3+277/4*x^2+67/2*x-8,-1/4*x^9+4*x^7-x^6-85/4*x^5+10*x^4+83/2*x^3-23*x^2-23*x+4,x^5-9*x^3+x^2+14*x+3,3/16*x^9-25/8*x^7+1/8*x^6+265/16*x^5-1/8*x^4-225/8*x^3-25/4*x^2+13/2*x+8,-3/16*x^9+25/8*x^7-5/8*x^6-257/16*x^5+53/8*x^4+189/8*x^3-67/4*x^2-3/2*x+14,-1/4*x^9-1/4*x^8+4*x^7+3*x^6-81/4*x^5-41/4*x^4+63/2*x^3+17/2*x^2-2*x+4,1/8*x^9+1/2*x^8-5/4*x^7-29/4*x^6+11/8*x^5+135/4*x^4+55/4*x^3-101/2*x^2-30*x+8,3/8*x^9+1/2*x^8-23/4*x^7-29/4*x^6+221/8*x^5+135/4*x^4-161/4*x^3-109/2*x^2+x+18,-1/4*x^8+7/2*x^6-3/2*x^5-63/4*x^4+23/2*x^3+49/2*x^2-13*x-8,-1/8*x^9-1/4*x^8+7/4*x^7+15/4*x^6-55/8*x^5-18*x^4+17/4*x^3+30*x^2+8*x-14,-1/4*x^9+9/2*x^7-1/2*x^6-111/4*x^5+11/2*x^4+131/2*x^3-15*x^2-44*x+5,1/8*x^9+1/4*x^8-7/4*x^7-15/4*x^6+47/8*x^5+17*x^4+15/4*x^3-21*x^2-19*x-4]]];

f[132,2]=[
[x+1, [-1,1,1], [0,-1,2,2,-1,6,-4,-2,-8,0,0,-6,0,10,0,14,-12,-14,4,0,6,2,16,-14,-2]],
[x-1, [-1,-1,-1], [0,1,2,-2,1,-2,4,-6,0,-8,-8,10,8,-2,-8,-2,12,10,12,8,6,-2,16,-14,-2]]];

f[133,2]=[
[x^2+3*x+1, [1,1], [x,x,-2*x-3,-1,x-3,1,3*x+3,-1,-3,x-3,3*x+7,6*x+5,x+3,-2,-10*x-15,-5*x-12,-6*x-15,6*x+9,-9*x-17,-4*x-3,3*x+12,-10,3*x,6*x+18,-12*x-17]],
[x^2-x-1, [-1,1], [x,-x+2,1,1,x-1,-1,3*x-1,-1,-4*x+1,-x+3,9*x-5,4*x-9,-5*x+7,4*x+2,4*x+1,3*x,-2*x+11,-8*x+1,-7*x+9,6*x-1,-7*x,-4*x+2,-3*x+8,-2*x+6,4*x+1]],
[x^2+x-3, [-1,-1], [x,-x-2,-3,1,-x-3,2*x-1,x-3,1,-3,-3*x+3,-x-1,-2*x-1,x+3,-10,-4*x-3,3*x,4*x+3,4*x+5,3*x+5,-4*x+3,-5*x-10,-4*x+2,3*x-6,2*x-6,-2*x+5]],
[x^3-2*x^2-4*x+7, [1,-1], [x,-x^2+5,x^2-x-4,-1,-x+3,x^2-x-4,-2*x^2-x+11,1,x^2+x,-4*x^2+3*x+13,2*x^2-x-11,-x^2+3*x+2,6*x^2+x-27,2*x^2-2*x-8,3*x^2+x-10,-x^2-2*x+5,-3*x^2+x+8,x^2+3*x-8,2*x^2+3*x-11,-x^2-3*x+6,-x^2-4*x+7,-2*x^2-2*x+8,x^2+2*x+5,-6*x^2+4*x+12,3*x^2-3*x-20]]];

f[134,2]=[
[x^3-x^2-8*x+11, [1,-1], [-1,x,x^2+x-5,-2*x^2-2*x+12,-x^2-2*x+6,x^2-2,-x^2-x+5,2,x-4,0,4*x^2+2*x-22,-2*x^2-4*x+14,2*x^2-2*x-12,3*x^2+x-17,x^2+2*x-6,-2*x^2+x+10,-6*x^2-6*x+36,-2*x^2+x+18,1,3*x^2+5*x-17,3*x^2+4*x-26,-2*x^2+2*x+14,2*x^2-2*x-18,-2*x^2-x+18,-4*x^2-6*x+24]],
[x^3-3*x^2+1, [-1,1], [1,x,-x^2+x+1,2*x^2-6*x,-3*x^2+6*x+2,3*x^2-8*x-2,-x^2+5*x-3,-4*x^2+12*x+2,4*x^2-9*x-4,-4,-2*x+6,-6*x^2+16*x+2,2*x^2-6*x,x^2-7*x+5,x^2-2*x+6,-2*x^2+5*x-2,-2*x^2+6*x,-2*x^2+5*x+6,-1,-x^2-x+7,3*x^2-12*x+6,-2*x^2+2*x+2,-6*x^2+18*x+6,6*x^2-19*x+2,-4*x^2+14*x+4]]];

f[135,2]=[
[x+2, [1,1], [-2,0,-1,-3,-2,-5,-8,1,6,2,0,5,-10,4,4,-2,-8,7,-9,2,-5,-3,6,-12,-13]],
[x-2, [1,-1], [2,0,1,-3,2,-5,8,1,-6,-2,0,5,10,4,-4,2,8,7,-9,-2,-5,-3,-6,12,-13]],
[x^2+x-3, [1,-1], [x,0,1,2*x+2,-2*x,-2*x+2,-2*x-3,-2*x-1,-3,2*x+6,2*x-1,2,2*x,-2*x-4,4*x,-2*x-3,-2*x-6,4*x+5,-4*x-10,2*x+12,-2*x+8,2*x-7,3,6*x,8]],
[x^2-x-3, [-1,1], [x,0,-1,-2*x+2,-2*x,2*x+2,-2*x+3,2*x-1,3,2*x-6,-2*x-1,2,2*x,2*x-4,4*x,-2*x+3,-2*x+6,-4*x+5,4*x-10,2*x-12,2*x+8,-2*x-7,-3,6*x,8]]];

f[136,2]=[
[x-2, [-1,1], [0,2,0,0,2,-6,-1,4,4,0,-8,-4,6,8,-8,10,0,12,8,12,2,-4,16,10,-18]],
[x+2, [-1,-1], [0,-2,-2,-2,-6,2,1,0,6,-10,2,6,-6,-8,0,-10,-8,14,4,2,-14,-10,8,-10,2]],
[x^2+2*x-4, [1,-1], [0,x,2,-x,-x,2*x+2,1,-2*x-4,-x,2,x,-4*x-6,2,2*x-4,4*x+8,-2,2*x+12,4*x+2,-12,x+8,4*x+10,3*x+8,-2*x+4,2*x-10,2]]];

f[137,2]=[
[x^4+3*x^3-4*x-1, [1], [x,x^3+x^2-3*x-2,-2*x^3-3*x^2+3*x+1,-x^3-2*x^2+2*x-1,4*x^3+9*x^2-4*x-8,x^2+3*x-2,-x^3-5*x^2-2*x+5,-2*x^3-7*x^2-x+5,x^2-2*x-4,-x^3-5*x^2+x+11,5*x^3+9*x^2-7*x-11,2*x^3+7*x^2+3*x-7,-2*x^3-2*x^2+9*x+2,2*x^3+2*x^2-9*x-7,-3*x-5,-x^3-4*x^2-x+4,-7*x^3-12*x^2+13*x+11,-3*x^3-7*x^2+x+7,-x^3+4*x^2+11*x-6,4*x^3+8*x^2-4*x-4,-2*x^3+3*x-12,-8*x^3-15*x^2+6*x+9,3*x^3+14*x^2+8*x-15,3*x^3+6*x^2-3*x-1,x^3-3*x^2-x+8]],
[x^7-10*x^5+28*x^3+3*x^2-19*x-7, [-1], [x,-1/2*x^6+1/2*x^5+11/2*x^4-9/2*x^3-33/2*x^2+9*x+21/2,x^6-x^5-10*x^4+8*x^3+26*x^2-13*x-13,-x^6+9*x^4-x^3-21*x^2+3*x+11,2*x^6-x^5-19*x^4+10*x^3+47*x^2-21*x-22,x^6-9*x^4+2*x^3+22*x^2-8*x-10,x^5+x^4-7*x^3-5*x^2+9*x+3,x^6-x^5-10*x^4+8*x^3+28*x^2-13*x-17,-1/2*x^6+1/2*x^5+7/2*x^4-11/2*x^3-9/2*x^2+12*x+1/2,-x^6+x^5+11*x^4-8*x^3-32*x^2+15*x+16,1/2*x^6+1/2*x^5-9/2*x^4-3/2*x^3+21/2*x^2-2*x-3/2,-x^6+10*x^4-3*x^3-28*x^2+12*x+16,-3*x^6+x^5+26*x^4-12*x^3-57*x^2+27*x+24,5/2*x^6-1/2*x^5-49/2*x^4+13/2*x^3+127/2*x^2-17*x-57/2,-3/2*x^6-1/2*x^5+27/2*x^4+5/2*x^3-61/2*x^2-3*x+23/2,4*x^6-2*x^5-38*x^4+21*x^3+96*x^2-45*x-50,3*x^6-28*x^4+6*x^3+69*x^2-22*x-32,-5*x^6+4*x^5+47*x^4-37*x^3-118*x^2+70*x+65,3/2*x^6-1/2*x^5-31/2*x^4+11/2*x^3+81/2*x^2-16*x-23/2,-11/2*x^6+9/2*x^5+111/2*x^4-81/2*x^3-297/2*x^2+77*x+159/2,2*x^6-2*x^5-19*x^4+17*x^3+46*x^2-25*x-21,3/2*x^6-1/2*x^5-27/2*x^4+9/2*x^3+59/2*x^2-3*x-13/2,-5/2*x^6+1/2*x^5+49/2*x^4-15/2*x^3-127/2*x^2+22*x+65/2,-x^6+8*x^4-9*x^2-2*x-14,-2*x^6-x^5+17*x^4+5*x^3-37*x^2-2*x+14]]];

f[138,2]=[
[x+1, [1,1,1], [-1,-1,-2,-2,-6,-2,0,0,-1,6,8,0,10,-12,-8,2,-12,4,-12,0,-10,-6,14,0,-6]],
[x-1, [1,-1,1], [-1,1,0,2,0,2,0,2,-1,-6,-4,-10,-6,2,0,12,12,-10,14,0,2,-10,0,12,-10]],
[x+1, [-1,1,1], [1,-1,2,0,0,-2,2,-8,-1,-2,-8,2,10,8,8,2,-4,2,8,0,-6,8,-16,18,10]],
[x^2+2*x-4, [-1,-1,-1], [1,1,x,-2*x-2,-x-4,2*x+2,-4,3*x+2,1,-2*x-2,-2*x,x+10,-2,x-6,4,x+4,-4*x-4,-x+2,3*x+6,4*x+4,-2*x-2,2*x+2,x+12,-2*x-8,2*x-2]]];

f[139,2]=[
[x-1, [-1], [1,2,-1,3,5,-7,-6,-2,2,9,9,2,-6,-4,8,0,6,4,5,5,-6,-5,7,7,-12]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x,x^2+x-4,2*x^2+3*x-2,-3*x^2-4*x+1,-3*x^2-5*x+3,x^2+3*x-1,2*x^2+7*x,4*x^2+5*x-7,-3*x-7,-3*x-1,-x^2-6*x-5,-2*x-4,-3*x^2-7*x+2,-4*x^2-5*x+8,3*x^2+9*x-4,-2*x^2-3*x-2,2*x^2+11*x+2,-2*x^2-2*x+8,6*x^2+3*x-9,9*x^2+13*x-5,5*x^2+7*x-1,3*x^2+x+4,-9*x^2-12*x+11,-9*x^2-10*x+9]],
[x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [-1], [x,1/2*x^6-1/2*x^5-9/2*x^4+4*x^3+19/2*x^2-6*x-4,-1/4*x^6-1/4*x^5+9/4*x^4+3/2*x^3-19/4*x^2-x+3,-1/4*x^6+1/4*x^5+11/4*x^4-2*x^3-35/4*x^2+7/2*x+6,-1/2*x^6+x^5+5*x^4-17/2*x^3-25/2*x^2+27/2*x+7,1/2*x^5+1/2*x^4-9/2*x^3-4*x^2+17/2*x+7,1/2*x^6+1/2*x^5-9/2*x^4-4*x^3+17/2*x^2+6*x+2,-x^4+7*x^2-8,1/2*x^6-1/2*x^5-9/2*x^4+5*x^3+21/2*x^2-10*x-8,-1/4*x^6+1/4*x^5+11/4*x^4-x^3-27/4*x^2-7/2*x+4,-3/4*x^6+1/4*x^5+27/4*x^4-7/2*x^3-57/4*x^2+10*x+3,-2*x^4+13*x^2-9,-x^6+3*x^5+10*x^4-25*x^3-28*x^2+44*x+27,1/2*x^6+1/2*x^5-9/2*x^4-3*x^3+21/2*x^2+3*x-8,x^6-x^5-11*x^4+9*x^3+31*x^2-18*x-15,1/2*x^6-3/2*x^5-9/2*x^4+13*x^3+21/2*x^2-23*x-4,-x^5+7*x^3-x^2-5*x,1/2*x^6+3/2*x^5-9/2*x^4-10*x^3+17/2*x^2+9*x+2,1/4*x^6-7/4*x^5-17/4*x^4+33/2*x^3+79/4*x^2-36*x-21,1/2*x^6-x^5-7*x^4+17/2*x^3+51/2*x^2-29/2*x-13,1/2*x^6-5/2*x^5-11/2*x^4+19*x^3+33/2*x^2-23*x-14,-1/4*x^6-1/4*x^5+9/4*x^4+5/2*x^3-3/4*x^2-8*x-11,-9/4*x^6+5/4*x^5+83/4*x^4-11*x^3-195/4*x^2+39/2*x+26,5/4*x^6-9/4*x^5-43/4*x^4+20*x^3+91/4*x^2-73/2*x-16,x^6-3*x^5-10*x^4+25*x^3+27*x^2-42*x-22]]];

f[140,2]=[
[x-3, [-1,1,1], [0,3,-1,-1,-5,-3,-1,6,6,-9,-4,2,-4,10,-1,4,-8,-8,12,8,2,13,-4,4,-13]],
[x-1, [-1,-1,-1], [0,1,1,1,3,-1,-3,2,-6,-9,8,-10,0,2,-3,0,12,8,8,0,14,5,-12,12,17]]];

f[141,2]=[
[x, [1,1], [0,-1,-1,-3,-3,-4,8,-6,3,-1,4,1,-10,-8,-1,10,-10,2,4,-6,-8,-3,-18,-2,5]],
[x+1, [1,-1], [-1,-1,0,4,0,6,-6,2,4,8,6,-6,-8,-6,1,2,12,2,-2,0,-10,-4,4,-10,-18]],
[x-1, [-1,1], [-1,1,2,0,4,-2,2,0,0,-6,-4,-10,-2,8,-1,-2,-4,14,-8,16,2,8,-4,18,-14]],
[x-2, [-1,1], [2,1,-1,-3,1,-2,2,6,3,3,2,-7,10,-10,-1,4,8,-10,10,-14,-10,17,8,6,1]],
[x+2, [-1,-1], [-2,1,-3,-3,-5,2,-6,-6,9,1,-2,1,6,2,1,0,-12,-2,2,-2,-2,-15,-4,10,1]],
[x^2+x-4, [1,-1], [x,-1,x+1,x+1,-x+3,-2*x-4,-2*x,6,-3*x-3,x-7,2*x+4,-x+5,-2*x+2,2*x+8,1,4*x-2,-2*x+2,2,-2*x,-2*x-2,-2*x+4,x-7,-2*x+2,4*x+2,7*x+1]]];

f[142,2]=[
[x+1, [1,1], [-1,-1,-2,-1,-2,-3,-6,5,-1,6,1,6,-6,5,-3,-6,2,-6,-14,-1,-17,10,4,9,-6]],
[x, [1,-1], [-1,0,2,0,6,4,6,-8,-4,-2,-8,10,-2,-8,-4,0,10,-8,2,1,-2,0,-4,6,14]],
[x-3, [1,-1], [-1,3,2,-3,-6,-5,6,1,5,-2,-5,-2,10,1,-1,6,-2,-2,2,1,7,-6,-4,9,2]],
[x-1, [-1,1], [1,1,0,-1,0,-1,0,-1,3,0,5,-4,0,-1,9,6,6,2,8,-1,-1,8,12,-3,-16]],
[x+3, [-1,-1], [1,-3,-4,-3,0,1,0,-5,-7,-8,7,4,4,-5,-13,-6,10,-2,-4,1,7,0,-4,-3,-4]]];

f[143,2]=[
[x, [1,1], [0,-1,-1,-2,-1,-1,-4,2,7,-2,-3,-11,10,-4,-4,2,-1,-2,-1,-9,-16,8,0,-7,-13]],
[x^4-3*x^3-x^2+5*x+1, [-1,1], [x,-x^3+3*x^2-3,-2*x^2+2*x+4,x^3-x^2-4*x+2,1,-1,-4*x^2+6*x+8,-3*x^3+7*x^2+2*x-3,x^3-x^2-2*x-2,-2*x^3+4*x^2+4*x-6,4*x^3-6*x^2-8*x+2,-4*x^2+8*x+8,x^3-3*x^2+4*x+2,-2*x+8,-2*x^3+2*x^2+6*x-4,-x^3+3*x^2-2*x-3,2*x^3-2*x^2-4*x-6,-2*x^3+4*x^2+6*x-8,-4*x^3+4*x^2+14*x,-4*x^3+14*x^2-4*x-18,3*x^3-3*x^2-12*x+7,2*x^3-8*x^2-4*x+12,-x^3+5*x^2-4*x-6,-2*x^3+6*x^2-2*x-2,-6*x^3+20*x^2-18]],
[x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,-1], [x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^5+2*x^4-8*x^3-14*x^2+12*x+15,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,-1,1,-2*x,-2*x^5-3*x^4+16*x^3+20*x^2-23*x-22,-3*x^5-4*x^4+25*x^3+29*x^2-38*x-33,2*x^5+2*x^4-16*x^3-14*x^2+22*x+18,3*x^5+4*x^4-26*x^3-28*x^2+44*x+29,-x^5-2*x^4+8*x^3+16*x^2-10*x-19,2*x^5+2*x^4-17*x^3-11*x^2+26*x+6,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-16,2*x^5+2*x^4-16*x^3-12*x^2+24*x+12,6*x^5+7*x^4-50*x^3-48*x^2+75*x+54,-5*x^5-6*x^4+42*x^3+38*x^2-66*x-33,4*x^5+6*x^4-32*x^3-42*x^2+44*x+50,x^5+2*x^4-8*x^3-16*x^2+12*x+23,-3*x^5-4*x^4+26*x^3+28*x^2-40*x-33,-x^4+8*x^2+x-4,2*x^5+2*x^4-16*x^3-14*x^2+22*x+20,2*x^4+x^3-15*x^2-6*x+12,x^5+2*x^4-10*x^3-14*x^2+20*x+9,-5*x^5-6*x^4+42*x^3+40*x^2-66*x-37]]];

f[144,2]=[
[x-2, [1,-1], [0,0,2,0,4,-2,-2,4,-8,-6,-8,6,6,-4,0,2,4,-2,4,8,10,8,-4,6,2]],
[x, [-1,1], [0,0,0,4,0,2,0,-8,0,0,4,-10,0,-8,0,0,0,14,16,0,-10,4,0,0,14]]];

f[145,2]=[
[x+1, [1,1], [-1,0,-1,-2,-6,2,-2,-2,2,-1,2,10,2,8,-12,-6,-8,-6,2,-12,-6,-10,-14,18,2]],
[x^2+2*x-1, [-1,-1], [x,-2,1,-2*x-4,2*x,-2,2*x+2,-2*x-4,2*x-4,1,6*x+4,-6*x-6,-6,-6,-4*x-10,-4*x-2,0,-4*x-2,6*x+4,-8*x-12,6*x+6,-6*x,-2*x+8,-4*x-6,-6*x-10]],
[x^3-3*x^2-x+5, [1,-1], [x,-x^2+2*x+1,-1,-x^2+3,x^2-2*x+1,2*x-4,-3*x^2+2*x+9,3*x^2-4*x-7,x^2-2*x+3,1,-3*x^2+4*x+11,-x^2-2*x+7,-2*x^2+2*x+2,x^2-2*x-5,3*x^2-6*x+1,2*x^2-2*x-2,-4*x^2+6*x+10,2*x,x^2-2*x-5,2*x+6,x^2-8*x+3,-5*x^2+6*x+15,-x^2+4*x-1,2*x^2,3*x^2-23]],
[x^3-x^2-3*x+1, [-1,1], [x,-x^2+3,1,x^2-1,x^2-2*x-1,-2*x,3*x^2-4*x-7,-x^2-1,-x^2+2*x+7,-1,x^2-7,-3*x^2+4*x+3,-2*x^2+6*x+2,5*x^2-11,-x^2+7,-2*x^2+2*x+6,2*x^2-6*x,-6*x,-x^2+2*x+11,-2*x^2+6*x+12,-7*x^2+6*x+9,-5*x^2+2*x+9,-3*x^2+11,2*x^2-8,3*x^2+2*x-5]]];

f[146,2]=[
[x^3-8*x+4, [1,-1], [-1,x,-1/2*x^2+2,1/2*x^2,-x^2-2*x+6,-1/2*x^2+4,x^2+2*x-6,-x^2-2*x+8,x^2-4,3/2*x^2-2*x-10,1/2*x^2+2*x-2,-2*x^2-2*x+6,-x-2,-2*x-2,3/2*x^2-6,1/2*x^2+2*x-4,-x^2-2*x+6,x^2+2*x+2,2*x^2+3*x-12,-2*x^2-2*x+16,1,-x^2+4*x+8,x^2+4*x-2,-x-2,x^2-4*x-10]],
[x^4-8*x^2+4*x+4, [-1,1], [1,x,-1/2*x^3-1/2*x^2+2*x+1,x^3+1/2*x^2-7*x+1,x^2-4,-3/2*x^2-x+5,-x^3-x^2+6*x,x^2+2*x-4,-x^3-x^2+8*x-2,3/2*x^3+1/2*x^2-10*x+3,-1/2*x^3+1/2*x^2+6*x-5,x^3-8*x+6,-2*x^3-2*x^2+13*x+2,-x^3+8*x+2,1/2*x^3+1/2*x^2-6*x-5,3*x^3+5/2*x^2-17*x+1,x^3+x^2-6*x+4,-x^3+x^2+10*x-4,-x^3-2*x^2+3*x+4,2*x^3-14*x,-1,-x^2+2*x+14,-x^3-x^2+4*x,-x^3-2*x^2+9*x+2,2*x^3+x^2-12*x+2]]];

f[147,2]=[
[x+1, [1,-1], [-1,-1,2,0,4,2,6,-4,0,-2,0,6,-2,-4,0,6,-12,2,4,0,6,-16,12,14,-18]],
[x+1, [1,-1], [2,-1,2,0,-2,-1,0,-1,0,4,-9,3,10,5,6,12,12,-10,-5,-6,3,-1,-6,-16,6]],
[x-1, [-1,1], [2,1,-2,0,-2,1,0,1,0,4,9,3,-10,5,-6,12,-12,10,-5,-6,-3,-1,6,16,-6]],
[x^2-2*x-7, [1,1], [-1/2*x-1/2,-1,1/2*x-5/2,0,-2,-1/2*x-7/2,-3/2*x-1/2,-x+1,2*x-4,x-5,x+3,-4,3/2*x-7/2,-2*x+2,-x+1,-2,x+3,3/2*x-19/2,2*x-2,-4*x+2,7/2*x-15/2,-2*x+10,4*x,-3/2*x+23/2,-1/2*x-7/2]],
[x^2-2*x-7, [-1,1], [-1/2*x-1/2,1,-1/2*x+5/2,0,-2,1/2*x+7/2,3/2*x+1/2,x-1,2*x-4,x-5,-x-3,-4,-3/2*x+7/2,-2*x+2,x-1,-2,-x-3,-3/2*x+19/2,2*x-2,-4*x+2,-7/2*x+15/2,-2*x+10,-4*x,3/2*x-23/2,1/2*x+7/2]]];

f[148,2]=[
[x+1, [-1,-1], [0,-1,-4,-3,5,0,-6,2,-6,-6,4,1,-9,4,-7,9,-4,-8,-12,3,-5,6,-1,2,0]],
[x^2+x-4, [-1,1], [0,x,2,-x,-x,2,-2*x+2,2*x-2,-2,4*x+2,-2*x-6,-1,-x+2,-4*x-2,-x+8,5*x+6,-2*x-2,2*x-6,4*x-4,x+8,7*x+2,6*x+6,x+4,2*x+10,-2*x-6]]];

f[149,2]=[
[x^3+x^2-2*x-1, [1], [x,-x^2-x,x^2-x-3,x^2+x-3,-2*x^2+x+2,-2*x^2-x+2,4*x^2+3*x-4,-2*x^2-x-3,-x^2-x+4,-4*x^2-3*x+5,3*x^2-11,6*x+3,-x^2-5*x+2,3*x^2-5*x-8,-7*x^2-3*x+10,2*x^2+5*x+1,4*x^2+x-6,x^2-4*x-2,x^2+x-9,7*x^2+7*x-11,9*x^2+10*x-12,2*x^2+4*x-5,x^2-1,4*x^2-4*x-11,-13*x^2-8*x+18]],
[x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [-1], [x,-3/4*x^8-1/4*x^7+23/2*x^6+5/4*x^5-233/4*x^4+13/4*x^3+209/2*x^2-49/4*x-44,-1/4*x^8-1/4*x^7+7/2*x^6+9/4*x^5-63/4*x^4-19/4*x^3+23*x^2+3/4*x-13/2,x^8+1/2*x^7-29/2*x^6-3*x^5+139/2*x^4-3/2*x^3-237/2*x^2+14*x+101/2,3/4*x^8-49/4*x^6+3/4*x^5+129/2*x^4-15/2*x^3-471/4*x^2+63/4*x+207/4,x^8+1/2*x^7-29/2*x^6-3*x^5+139/2*x^4-3/2*x^3-235/2*x^2+14*x+95/2,-1/4*x^8-1/2*x^7+11/4*x^6+19/4*x^5-10*x^4-25/2*x^3+59/4*x^2+29/4*x-25/4,-1/2*x^8+15/2*x^6-3/2*x^5-37*x^4+12*x^3+131/2*x^2-41/2*x-55/2,1/2*x^8-1/4*x^7-33/4*x^6+7/2*x^5+177/4*x^4-57/4*x^3-335/4*x^2+15*x+149/4,1/4*x^7+3/4*x^6-5/2*x^5-31/4*x^4+27/4*x^3+89/4*x^2-7/2*x-61/4,3/2*x^8+1/2*x^7-23*x^6-7/2*x^5+231/2*x^4+1/2*x^3-204*x^2+37/2*x+88,5/4*x^8+3/4*x^7-18*x^6-21/4*x^5+345/4*x^4+17/4*x^3-299/2*x^2+41/4*x+66,2*x^8+x^7-30*x^6-8*x^5+148*x^4+10*x^3-257*x^2+17*x+105,-3/4*x^8-1/2*x^7+43/4*x^6+21/4*x^5-49*x^4-16*x^3+297/4*x^2+49/4*x-97/4,-3/2*x^8+47/2*x^6-3/2*x^5-118*x^4+12*x^3+407/2*x^2-37/2*x-171/2,-1/2*x^8+1/4*x^7+33/4*x^6-3*x^5-171/4*x^4+47/4*x^3+307/4*x^2-14*x-151/4,-x^8-1/4*x^7+61/4*x^6+x^5-307/4*x^4+23/4*x^3+555/4*x^2-41/2*x-233/4,3/4*x^8+1/2*x^7-45/4*x^6-17/4*x^5+56*x^4+13/2*x^3-405/4*x^2+33/4*x+195/4,3/2*x^8-47/2*x^6+5/2*x^5+118*x^4-22*x^3-407/2*x^2+79/2*x+183/2,-13/4*x^8-5/4*x^7+49*x^6+31/4*x^5-969/4*x^4+17/4*x^3+420*x^2-171/4*x-345/2,-3*x^8-5/4*x^7+181/4*x^6+17/2*x^5-897/4*x^4-7/4*x^3+1559/4*x^2-69/2*x-639/4,-x^8+15*x^6-x^5-71*x^4+7*x^3+109*x^2-10*x-32,-3/4*x^8+1/4*x^7+13*x^6-15/4*x^5-291/4*x^4+83/4*x^3+144*x^2-149/4*x-141/2,2*x^8-32*x^6+3*x^5+166*x^4-26*x^3-300*x^2+45*x+128,-5/2*x^8-3/2*x^7+36*x^6+23/2*x^5-341/2*x^4-33/2*x^3+282*x^2-15/2*x-107]]];

f[150,2]=[
[x+1, [1,1,-1], [-1,-1,0,2,2,6,2,0,-4,0,-8,2,2,-4,-8,6,10,2,-8,12,-4,0,-4,-10,-8]],
[x+1, [-1,1,1], [1,-1,0,4,0,-2,-6,-4,0,-6,8,-2,-6,4,0,6,0,-10,4,0,-2,8,-12,18,-2]],
[x-1, [-1,-1,-1], [1,1,0,-2,2,-6,-2,0,4,0,-8,-2,2,4,8,-6,10,2,8,12,4,0,4,-10,8]]];

f[151,2]=[
[x^3+2*x^2-x-1, [1], [x,-x-1,-x^2-x-1,-1,2*x^2+4*x-3,3*x^2+5*x-3,-3*x^2-5*x,-5*x^2-6*x+5,3*x^2+6*x-2,-x^2-7*x-3,-4*x^2-7*x+3,-3*x^2-5*x+7,2*x^2+6*x-7,5*x^2+7*x,-4*x^2-12*x+1,3*x^2+x-8,7*x^2+8*x-9,5*x+3,-8*x^2-7*x+11,5*x^2+13*x-6,4*x^2+2*x-7,5*x^2+3*x-9,-4*x^2-6*x+3,-12,6*x^2+9*x-6]],
[x^3-5*x+3, [-1], [x,2,-x^2-2*x+5,-2,2*x^2+x-7,-2*x^2+6,-x+3,3*x^2+3*x-9,2*x,3*x^2+5*x-9,-x^2+3,-3*x+1,0,-x^2+3,-x^2-x-1,-6*x^2-6*x+18,-x^2+11,4*x^2-16,-4*x^2+14,-2*x,-2*x^2+10,-2*x^2-2,-2*x^2+2*x+16,2*x+12,7*x^2+9*x-25]],
[x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [-1], [x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^5-x^4-6*x^3+3*x^2+9*x+2,-x^4+3*x^2+3*x+3,x^3-5*x,2*x^5-3*x^4-11*x^3+12*x^2+13*x-4,-x^4-2*x^3+6*x^2+8*x,2*x^5-x^4-12*x^3+2*x^2+15*x+1,-x^5+6*x^3-7*x+1,3*x^5-5*x^4-17*x^3+19*x^2+24*x-3,-2*x^5+3*x^4+10*x^3-9*x^2-12*x-3,x^2+3*x-5,x^4-5*x^2-x+9,-3*x^5+6*x^4+14*x^3-22*x^2-16*x+5,-3*x^5+5*x^4+16*x^3-18*x^2-18*x+6,-2*x^4+3*x^3+11*x^2-10*x-9,x^4+x^3-4*x^2-4*x,3*x^5-7*x^4-15*x^3+28*x^2+20*x-7,x^5-x^4-x^3+4*x^2-14*x-11,-3*x^3-x^2+10*x+7,-4*x^5+3*x^4+22*x^3-5*x^2-29*x-9,-2*x^5+5*x^4+17*x^3-22*x^2-41*x-2,-2*x^5+5*x^4+8*x^3-21*x^2-7*x+9,-2*x^5+6*x^4+8*x^3-24*x^2-8*x+14,-2*x^5+2*x^4+13*x^3-8*x^2-20*x+3]]];

f[152,2]=[
[x+2, [1,1], [0,-2,-1,-3,-3,-4,5,-1,0,2,8,-10,6,-7,-9,-8,14,-5,0,-6,-15,-4,4,0,16]],
[x-1, [1,-1], [0,1,0,3,2,1,-5,1,-1,-3,4,2,-8,-8,-8,9,1,14,13,10,9,-10,10,-12,14]],
[x^3-x^2-10*x+8, [-1,1], [0,x,-1/2*x^2-1/2*x+4,1/2*x^2-1/2*x-2,-1/2*x^2-1/2*x+2,-x+2,-1/2*x^2+1/2*x+4,-1,x^2-2*x-8,x^2-10,0,-2,2*x+2,-1/2*x^2-5/2*x+10,-3/2*x^2+1/2*x+10,2*x^2+x-14,x-8,-1/2*x^2+3/2*x+4,-x^2+12,x^2+3*x-12,-1/2*x^2+5/2*x+4,2*x+8,-2*x^2+12,-x^2-3*x+14,x^2+x-10]]];

f[153,2]=[
[x+2, [1,1], [-2,0,-1,-2,-3,-5,-1,-1,-7,6,4,10,9,1,-12,-12,6,2,4,-8,0,-6,4,2,8]],
[x-2, [1,-1], [2,0,1,-2,3,-5,1,-1,7,-6,4,10,-9,1,12,12,-6,2,4,8,0,-6,-4,-2,8]],
[x-1, [-1,1], [1,0,2,4,0,-2,-1,-4,-4,-6,4,-2,6,4,0,-6,12,-10,4,4,-6,12,4,-10,2]],
[x, [-1,-1], [0,0,-3,-4,3,-1,1,-1,-9,-6,2,-4,3,-7,6,6,-6,8,-4,-12,2,-10,6,0,-16]],
[x^2-x-4, [-1,1], [x,0,-x-1,0,-x+1,-x+3,-1,-3*x+3,-x+5,4*x-2,2*x-2,-2*x,x+1,3*x-3,2*x+6,-4*x-2,-2*x-2,2*x+4,4,4*x-4,-4*x-2,-6*x+6,-2*x+6,2*x-4,2*x-8]]];

f[154,2]=[
[x, [1,1,1], [-1,0,-4,-1,-1,2,-4,-6,4,-2,-2,10,4,-8,2,6,-12,-14,-12,-8,4,0,-6,-6,-14]],
[x-2, [1,1,-1], [-1,2,2,-1,1,-4,0,4,4,2,-10,-6,0,-4,10,-14,10,-8,8,-4,4,16,4,10,6]],
[x, [-1,1,1], [1,0,2,-1,-1,2,2,0,-8,-2,-8,-2,10,4,8,6,0,10,-12,16,-14,0,0,-6,10]],
[x^2+2*x-4, [-1,-1,-1], [1,x,-x,1,1,-x-2,2*x,-x-6,4,2*x+2,2,4*x+2,-2*x,-2*x-8,-2,2*x+6,-x+4,x-2,6*x+4,2*x+4,4*x+8,0,-5*x-6,10,2*x+10]]];

f[155,2]=[
[x, [1,1], [0,-1,-1,0,-4,-6,5,-1,8,-10,-1,1,-3,-7,-6,5,11,-12,-2,9,-9,-10,9,0,-14]],
[x+1, [1,-1], [-1,2,-1,4,4,0,-8,4,2,-6,1,-4,-6,-6,8,-12,-4,10,8,0,-4,0,2,14,-18]],
[x+2, [-1,-1], [-2,-1,1,-2,2,-6,-7,-5,4,0,1,-7,-3,9,-2,9,-5,-8,8,-3,-1,0,-11,10,18]],
[x^4+x^3-8*x^2-4*x+12, [1,-1], [x,-1/2*x^3-1/2*x^2+3*x+1,-1,x^2+x-4,x^2-x-6,-x^2-x+8,-1/2*x^3+1/2*x^2+2*x-3,x^3+x^2-5*x-1,-x^3-2*x^2+3*x+6,-x^3+7*x,1,1/2*x^3-1/2*x^2-4*x+5,x^3+2*x^2-4*x-3,1/2*x^3-1/2*x^2-2*x+5,x^3+x^2-6*x-6,3/2*x^3+7/2*x^2-7*x-9,2*x^3+x^2-10*x+3,-x^3-x^2+6*x+8,-x^2+x+2,-2*x^2-x+9,-3/2*x^3-3/2*x^2+5*x+5,-3*x^2-3*x+8,-1/2*x^3-7/2*x^2+9,x^2+5*x-6,x^3+x^2-4*x+2]],
[x^4-x^3-6*x^2+4*x+4, [-1,1], [x,-1/2*x^3+1/2*x^2+2*x-1,1,-x^2-x+4,-x^2+x+2,x^3-5*x+2,1/2*x^3+1/2*x^2-3*x+1,-x^3+x^2+3*x-3,x^2+x-4,x^3-2*x^2-5*x+4,-1,-1/2*x^3-5/2*x^2+3*x+9,-x^3+8*x-3,3/2*x^3-1/2*x^2-7*x+5,-x^3+x^2+8*x-6,-5/2*x^3+5/2*x^2+10*x-3,2*x^3+x^2-10*x-5,x^3-x^2-4*x+8,-3*x^2+3*x+6,-x-5,-3/2*x^3-1/2*x^2+8*x+7,-4*x^3+3*x^2+19*x-8,-3/2*x^3-3/2*x^2+11*x+1,-x^2-5*x+2,-x^3-3*x^2+10*x+10]]];

f[156,2]=[
[x+1, [-1,1,-1], [0,-1,-4,-2,-4,1,2,-2,0,-6,-10,10,8,4,-4,-10,-8,-14,2,16,-10,-16,0,-4,-2]],
[x-1, [-1,-1,-1], [0,1,0,2,0,1,-6,2,0,-6,2,2,-12,-4,0,6,12,2,-10,12,14,8,12,0,-10]]];

f[157,2]=[
[x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1], [x,-x^4-3*x^3+3*x-1,2*x^4+7*x^3+x^2-10*x-2,-x^4-5*x^3-4*x^2+6*x+2,-x^4-2*x^3+4*x^2+5*x-6,x^3+3*x^2+x-3,x^4+x^3-3*x^2+3*x,-x^3-5*x^2-3*x+5,-x^4-5*x^3-6*x^2+3*x+3,x^4+5*x^3+3*x^2-8*x-2,-2*x^4-2*x^3+14*x^2+9*x-12,x^4-9*x^2-4*x+7,-3*x^4-7*x^3+6*x^2+9*x-3,-x^4+7*x^2+x-8,-x^3-2*x^2+x-1,-5*x^4-15*x^3+2*x^2+16*x-8,2*x^4+7*x^3-x^2-19*x-3,3*x^3+10*x^2+2*x-8,5*x^4+16*x^3-3*x^2-28*x-2,3*x^4+11*x^3+3*x^2-12*x-4,-6*x^3-12*x^2+12*x+9,-3*x^4-8*x^3+3*x^2+16*x+10,2*x^4+4*x^3-5*x^2-7*x-5,-9*x^4-31*x^3-x^2+48*x+7,-x^2+5*x+12]],
[x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [-1], [x,x^4-3*x^3-2*x^2+7*x+1,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3,-x^6+3*x^5+4*x^4-13*x^3-5*x^2+13*x+2,-x^6+4*x^5+x^4-15*x^3+3*x^2+13*x+1,x^6-3*x^5-5*x^4+17*x^3+4*x^2-22*x+3,x^6-3*x^5-4*x^4+13*x^3+6*x^2-16*x-2,4*x^6-14*x^5-12*x^4+61*x^3+9*x^2-65*x-3,x^5-4*x^4+12*x^2-4*x-4,-4*x^6+13*x^5+16*x^4-62*x^3-17*x^2+71*x+1,2*x^6-7*x^5-7*x^4+35*x^3+2*x^2-42*x+5,-2*x^6+8*x^5+x^4-30*x^3+13*x^2+28*x-11,2*x^5-5*x^4-9*x^3+16*x^2+13*x-5,-2*x^6+8*x^5+x^4-30*x^3+13*x^2+29*x-8,x^6-5*x^5+x^4+21*x^3-13*x^2-20*x+11,x^6-4*x^5-3*x^4+20*x^3+3*x^2-26*x-1,-2*x^6+7*x^5+3*x^4-20*x^3-x^2+8*x+8,-4*x^6+13*x^5+17*x^4-68*x^3-14*x^2+85*x-7,x^4-7*x^2-4*x+10,2*x^6-5*x^5-14*x^4+34*x^3+17*x^2-49*x+13,x^6-3*x^5-5*x^4+18*x^3-x^2-21*x+13,-2*x^5+5*x^4+6*x^3-9*x^2-6*x-6,4*x^6-13*x^5-13*x^4+55*x^3+9*x^2-56*x+8,6*x^6-23*x^5-12*x^4+98*x^3-11*x^2-99*x+14,-x^6+4*x^5+4*x^4-23*x^3+2*x^2+23*x-13]]];

f[158,2]=[
[x+1, [1,1], [-1,-1,-1,-3,4,-7,-4,-6,6,4,8,10,-8,-8,-3,2,1,0,-4,-11,-6,-1,6,-15,1]],
[x-1, [1,-1], [-1,1,3,-1,0,5,0,2,-6,0,-4,2,-12,8,-9,6,-9,8,-4,-9,2,1,18,9,17]],
[x+1, [-1,1], [1,-1,1,3,2,-1,-2,0,-6,-10,2,-2,2,4,3,4,5,12,8,-13,-6,-1,-6,-15,13]],
[x-2, [-1,1], [1,2,-2,0,-4,2,-2,0,0,8,8,4,-10,-2,0,-8,14,0,8,8,6,-1,12,6,10]],
[x+3, [-1,-1], [1,-3,-3,-3,-2,-5,6,0,-2,6,-10,-10,2,4,-3,-12,-1,12,-8,-3,-6,1,14,-7,-11]],
[x^2-6, [1,-1], [-1,x,-2,4,0,-2*x+2,-2*x+2,2*x,2*x+2,-3*x-2,-2*x-2,-x-2,2*x+6,x-8,-4*x,-x+2,x,-x-6,-2*x+8,-4,12,1,4*x+4,4,4*x-2]]];

f[159,2]=[
[x^4-3*x^3-x^2+7*x-3, [-1,1], [x,1,-x^3+x^2+2*x,x^3-3*x^2-2*x+5,4*x^3-6*x^2-12*x+12,-3*x^3+5*x^2+8*x-10,-4*x^3+8*x^2+10*x-12,2*x^2-4*x-4,-x^3+x^2+6*x-3,4*x^3-6*x^2-12*x+12,2*x^2+2*x-10,x^3-3*x^2-4*x+5,-x^3-3*x^2+8*x+9,-3*x^3+3*x^2+12*x-10,-4*x^3+6*x^2+14*x-12,-1,-2*x^3+8*x^2-12,-2*x^3+6*x^2+6*x-10,-4*x^2+2*x+8,-x^3-x^2+6*x,8*x^3-14*x^2-20*x+26,-2*x^2+8,-x^3+3*x^2-2*x,2*x^3-8*x^2-6*x+18,-x^3-x^2+8*x+2]],
[x^5-10*x^3+22*x+5, [1,-1], [x,-1,-x^3-x^2+6*x+4,1/3*x^4+4/3*x^3-2*x^2-7*x+4/3,-2/3*x^4-2/3*x^3+4*x^2+2*x-2/3,2/3*x^4-1/3*x^3-5*x^2+2*x+20/3,-2*x,-2/3*x^4-2/3*x^3+4*x^2+2*x-2/3,1/3*x^4+4/3*x^3-7*x-26/3,2*x^2-4,2/3*x^4+2/3*x^3-4*x^2-4*x+8/3,1/3*x^4+4/3*x^3-2*x^2-5*x+4/3,-x^4+8*x^2-x-6,-2/3*x^4-5/3*x^3+5*x^2+10*x-8/3,4/3*x^4+4/3*x^3-10*x^2-6*x+28/3,1,-2/3*x^4+4/3*x^3+6*x^2-10*x-38/3,-2/3*x^4-8/3*x^3+16*x+52/3,-2*x^4-2*x^3+14*x^2+8*x-10,-4/3*x^4-7/3*x^3+5*x^2+14*x+32/3,2/3*x^4+2/3*x^3-2*x-40/3,2/3*x^4+2/3*x^3-4*x^2-6*x+2/3,-4/3*x^4-7/3*x^3+9*x^2+14*x-40/3,4/3*x^4+10/3*x^3-8*x^2-18*x+22/3,2*x^4-x^3-15*x^2+6*x+12]]];

f[160,2]=[
[x+2, [1,1], [0,-2,-1,-2,-4,-6,2,8,-6,-2,4,2,-10,-2,-2,2,0,2,-6,-12,10,-8,-10,-6,10]],
[x-2, [-1,1], [0,2,-1,2,4,-6,2,-8,6,-2,-4,2,-10,2,2,2,0,2,6,12,10,8,10,-6,10]],
[x^2-8, [1,-1], [0,x,1,-x,-2*x,-2,2,0,x,6,2*x,-10,2,-3*x,-x,6,4*x,-2,-x,2*x,-6,4*x,x,10,2]]];

f[161,2]=[
[x+1, [-1,1], [-1,0,2,1,4,6,-2,4,-1,-2,-4,-2,-6,12,-12,-10,0,2,12,8,-14,8,-4,6,-10]],
[x^2+x-1, [1,1], [x,-1,-2*x-2,-1,4*x+2,2*x-1,0,-2*x-6,-1,-4*x+1,-9,-6*x-2,-2*x-1,4*x,-4*x-1,2*x+10,4*x-4,12*x+6,-10*x-6,-2*x-9,-6*x-3,-2*x-6,4*x+4,8*x+4,6*x]],
[x^3+x^2-5*x-1, [1,-1], [x,-1/2*x^2+5/2,-1/2*x^2+5/2,-1,-x+1,x^2-3,1/2*x^2-1/2,2*x^2+2*x-4,1,x^2+x-4,-3/2*x^2-4*x+19/2,x^2+2*x-5,2*x^2-12,x^2+4*x-5,3/2*x^2+2*x+1/2,-2*x^2-4*x+8,5/2*x^2+6*x-21/2,-3/2*x^2+2*x+19/2,-2*x^2-5*x+11,-4*x,-3*x^2+9,-2*x^2+x+13,-3*x^2-8*x+15,-7/2*x^2-2*x+27/2,1/2*x^2-2*x-1/2]],
[x^5-2*x^4-9*x^3+17*x^2+16*x-27, [-1,1], [x,1/2*x^4-1/2*x^3-4*x^2+5/2*x+11/2,-1/2*x^4-1/2*x^3+5*x^2+5/2*x-21/2,1,-x^4+8*x^2+x-12,x^4-9*x^2+14,1/2*x^4+1/2*x^3-3*x^2-5/2*x-3/2,-2*x+2,-1,-3*x^2+x+12,-1/2*x^4+1/2*x^3+4*x^2-5/2*x+1/2,x^4-x^3-8*x^2+7*x+11,-x^3+x^2+5*x-3,x^4+x^3-10*x^2-5*x+17,-3/2*x^4+3/2*x^3+14*x^2-19/2*x-45/2,-2*x^2+12,-1/2*x^4-1/2*x^3+5*x^2+1/2*x-9/2,-3/2*x^4+1/2*x^3+13*x^2-9/2*x-47/2,-x^4+10*x^2+5*x-22,2*x^4-x^3-17*x^2+5*x+27,-x^4+5*x^2+2,x^4-10*x^2-x+26,x^4+x^3-10*x^2-5*x+21,-3/2*x^4+1/2*x^3+13*x^2-1/2*x-51/2,-3/2*x^4-3/2*x^3+13*x^2+19/2*x-47/2]]];

f[162,2]=[
[x+3, [1,1], [-1,0,-3,-4,0,-1,-3,-4,0,9,-4,-1,6,8,-12,-6,0,-1,-4,-12,11,-16,-12,-3,2]],
[x, [1,-1], [-1,0,0,2,3,2,3,-1,6,-6,-4,-4,-9,-1,6,-12,-3,8,5,12,11,-4,-12,-6,5]],
[x, [-1,1], [1,0,0,2,-3,2,-3,-1,-6,6,-4,-4,9,-1,-6,12,3,8,5,-12,11,-4,12,6,5]],
[x-3, [-1,1], [1,0,3,-4,0,-1,3,-4,0,-9,-4,-1,-6,8,12,6,0,-1,-4,12,11,-16,12,3,2]]];

f[163,2]=[
[x, [1], [0,0,-4,2,-6,4,0,-6,6,-4,-6,-8,3,7,1,-9,-2,3,-2,-5,-2,-8,5,-14,-11]],
[x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1], [x,-2*x^4-5*x^3+6*x^2+13*x-3,2*x^4+5*x^3-7*x^2-15*x+2,3*x^4+8*x^3-8*x^2-22*x-1,-x^4-4*x^3+x^2+13*x+3,-x^4-3*x^3+2*x^2+8*x-2,-x^4-2*x^3+4*x^2+6*x-6,-2*x^4-3*x^3+9*x^2+8*x-3,2*x^4+3*x^3-8*x^2-7*x,-2*x^4-6*x^3+4*x^2+16*x-1,4*x^4+11*x^3-14*x^2-34*x+12,-3*x^4-7*x^3+10*x^2+18*x-5,2*x^4+8*x^3-2*x^2-25*x-6,3*x^4+8*x^3-10*x^2-22*x+7,-2*x^4-4*x^3+9*x^2+12*x-8,-3*x^4-7*x^3+10*x^2+17*x-9,-9*x^4-22*x^3+30*x^2+65*x-11,3*x^4+7*x^3-9*x^2-20*x-3,-x^4-5*x^3+18*x+4,2*x^3+4*x^2-10*x-5,3*x^4+8*x^3-5*x^2-16*x-8,7*x^4+21*x^3-17*x^2-61*x-2,-x^4-5*x^3+18*x+2,-2*x^4-8*x^3+x^2+18*x+1,11*x^4+28*x^3-36*x^2-77*x+25]],
[x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [-1], [x,x^5-x^4-6*x^3+5*x^2+5*x-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6,x^6-2*x^5-7*x^4+12*x^3+11*x^2-11*x-4,x^6-2*x^5-7*x^4+12*x^3+12*x^2-12*x-6,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+8,x^6-x^5-6*x^4+5*x^3+6*x^2-3*x,x^6-6*x^4-x^3+4*x^2+3*x+2,x^6-x^5-7*x^4+6*x^3+12*x^2-8*x-6,x^6-6*x^4+3*x^2-x+6,-x^6+x^5+5*x^4-4*x^3+2*x^2-x-10,3*x^6-6*x^5-17*x^4+33*x^3+11*x^2-21*x+2,x^6-4*x^5-4*x^4+22*x^3-3*x^2-14*x+3,-4*x^6+4*x^5+27*x^4-24*x^3-38*x^2+26*x+11,-2*x^6+3*x^5+17*x^4-17*x^3-42*x^2+16*x+27,x^6-3*x^5-8*x^4+20*x^3+18*x^2-24*x-9,-x^5-2*x^4+7*x^3+9*x^2-7*x,2*x^5-3*x^4-11*x^3+17*x^2+10*x-13,2*x^6-4*x^5-9*x^4+23*x^3-4*x^2-20*x+2,4*x^5-4*x^4-26*x^3+20*x^2+30*x-9,-x^6+x^5+4*x^4-3*x^3+5*x^2-7*x-4,-7*x^6+11*x^5+46*x^4-64*x^3-63*x^2+54*x+26,-4*x^6+5*x^5+24*x^4-28*x^3-23*x^2+22*x+9,2*x^6-3*x^5-13*x^4+15*x^3+18*x^2-4*x-6,-x^6+3*x^5+8*x^4-15*x^3-20*x^2+6*x+17]]];

f[164,2]=[
[x^4-2*x^3-10*x^2+22*x-2, [-1,1], [0,x,-2/3*x^3-1/3*x^2+16/3*x+2/3,x^3-9*x+4,1/3*x^3+2/3*x^2-11/3*x-4/3,2/3*x^3-2/3*x^2-22/3*x+22/3,-2/3*x^3-4/3*x^2+16/3*x+14/3,-2/3*x^3+2/3*x^2+19/3*x-16/3,-2/3*x^3+2/3*x^2+16/3*x-28/3,2*x-2,-4/3*x^3-2/3*x^2+32/3*x-8/3,x^2-2,-1,4/3*x^3+2/3*x^2-38/3*x+8/3,-2/3*x^3+2/3*x^2+25/3*x-28/3,2/3*x^3+4/3*x^2-22/3*x-26/3,2/3*x^3-2/3*x^2-16/3*x+28/3,2/3*x^3-2/3*x^2-22/3*x+40/3,-1/3*x^3-2/3*x^2+11/3*x+28/3,8/3*x^3+4/3*x^2-67/3*x+4/3,-4/3*x^3-5/3*x^2+32/3*x+22/3,2/3*x^3-2/3*x^2-13/3*x+4/3,-2*x^3+20*x-12,-2/3*x^3+2/3*x^2+28/3*x-22/3,4/3*x^3+8/3*x^2-32/3*x-22/3]]];

f[165,2]=[
[x^2+2*x-1, [1,1,1], [x,-1,-1,-2*x-4,-1,4*x+4,-2*x-6,2*x-2,-4,2*x,0,-4*x+2,-2*x,2*x-4,-4,-8*x-10,-4,4*x-2,4*x+4,4*x+12,-8*x-8,-6*x-6,-10,-4*x-6,-4*x+2]],
[x^2-3, [-1,1,1], [x,1,-1,2,-1,-2*x+2,0,-2*x+2,-4*x,2*x,4*x-4,4*x+2,-2*x,4*x+2,4*x,-4*x-6,4*x,2,8,-8*x,6*x+2,-2*x-10,2*x+12,-4*x-6,-10]],
[x^3+x^2-5*x-1, [-1,-1,-1], [x,1,1,-x^2-2*x+3,1,-x^2+3,x^2-2*x-5,2*x^2+2*x-4,2*x^2+4*x-6,-2*x-4,-2*x^2+10,-2,2*x-4,3*x^2+2*x-9,2*x^2-10,-2*x^2-4*x+4,-2*x^2-4*x+10,2*x^2+4*x-8,-2*x^2+6,-2*x^2+10,x^2+4*x-7,-2*x^2+2*x+12,-3*x^2+11,4*x-2,2*x^2]]];

f[166,2]=[
[x+1, [1,1], [-1,-1,-2,1,-5,-2,-3,-2,4,-3,1,1,6,8,12,-14,-3,-7,2,-14,-4,-6,-1,4,12]],
[x^2+2*x-4, [1,-1], [-1,x,1/2*x+2,1/2*x-1,-x+2,-1/2*x+1,1/2*x+4,-1/2*x-1,-3/2*x,4,1/2*x-4,-4*x-6,5/2*x+1,-5/2*x-2,-3*x+2,-5/2*x+1,-5*x-2,4*x+8,1/2*x-10,6*x+6,-x+8,-5*x-4,1,2*x+2,3*x-2]],
[x^3-x^2-6*x+4, [-1,1], [1,x,-1/2*x^2-1/2*x+2,1/2*x^2-3/2*x-1,-x+2,-1/2*x^2+1/2*x-1,3/2*x^2+1/2*x-8,-5/2*x^2+1/2*x+9,1/2*x^2+1/2*x,x^2,3/2*x^2+1/2*x-8,-x^2-2,-1/2*x^2+5/2*x+5,1/2*x^2+5/2*x-2,-x^2-3*x+6,-5/2*x^2+5/2*x+7,-2*x^2+3*x+10,x^2-4*x-8,-1/2*x^2+7/2*x+6,2,x^2+5*x-4,-x^2+x+8,-1,-2*x^2+10,-3*x^2-x+10]]];

f[167,2]=[
[x^2+x-1, [1], [x,-x-1,-1,x-2,0,-x-3,x-2,4*x+2,-x,-2*x+3,-2*x+2,2*x-5,-8*x-3,-8*x-7,7,2*x-4,-2*x-2,2*x+1,2*x-1,5*x-3,3*x-8,-4*x-1,8*x+3,10*x+4,3*x-9]],
[x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [-1], [x,544/933*x^11+157/933*x^10-10187/933*x^9-1063/311*x^8+68788/933*x^7+7637/311*x^6-200347/933*x^5-23356/311*x^4+76833/311*x^3+80543/933*x^2-60181/933*x-1147/311,-779/933*x^11+631/933*x^10+13207/933*x^9-2957/311*x^8-78341/933*x^7+12545/311*x^6+193997/933*x^5-13559/311*x^4-64281/311*x^3-12787/933*x^2+42281/933*x+1204/311,-98/311*x^11-34/311*x^10+1802/311*x^9+754/311*x^8-11866/311*x^7-5855/311*x^6+33461/311*x^5+18902/311*x^4-37164/311*x^3-21634/311*x^2+8350/311*x+2112/311,-623/933*x^11+628/933*x^10+10567/933*x^9-3008/311*x^8-62594/933*x^7+13132/311*x^6+154004/933*x^5-15052/311*x^4-49696/311*x^3-12775/933*x^2+24248/933*x+1943/311,652/933*x^11-491/933*x^10-11297/933*x^9+2227/311*x^8+69355/933*x^7-8631/311*x^6-182461/933*x^5+5275/311*x^4+67433/311*x^3+30887/933*x^2-59101/933*x-755/311,7/933*x^11+580/933*x^10-884/933*x^9-3202/311*x^8+12088/933*x^7+18170/311*x^6-54838/933*x^5-41428/311*x^4+26298/311*x^3+107774/933*x^2-19834/933*x-3027/311,973/933*x^11+382/933*x^10-18380/933*x^9-2525/311*x^8+125854/933*x^7+17726/311*x^6-374938/933*x^5-52886/311*x^4+149519/311*x^3+179474/933*x^2-131464/933*x-4635/311,125/933*x^11-1372/933*x^10-58/933*x^9+7154/311*x^8-17926/933*x^7-37362/311*x^6+112360/933*x^5+74590/311*x^4-63980/311*x^3-164318/933*x^2+79000/933*x+2815/311,938/933*x^11-1585/933*x^10-14893/933*x^9+7887/311*x^8+79409/933*x^7-37670/311*x^6-164192/933*x^5+60643/311*x^4+42909/311*x^3-78563/933*x^2-10835/933*x+237/311,1466/933*x^11-1021/933*x^10-25192/933*x^9+4724/311*x^8+152156/933*x^7-19272/311*x^6-385676/933*x^5+16332/311*x^4+130096/311*x^3+48868/933*x^2-83927/933*x-2166/311,91/311*x^11-235/311*x^10-1229/311*x^9+3565/311*x^8+4443/311*x^7-17555/311*x^6-393/311*x^5+31053/311*x^4-10941/311*x^3-19897/311*x^2+4953/311*x+2304/311,1585/933*x^11-491/933*x^10-28091/933*x^9+1605/311*x^8+177583/933*x^7+77/311*x^6-481021/933*x^5-33289/311*x^4+175039/311*x^3+187631/933*x^2-122545/933*x-4798/311,377/311*x^11-85/311*x^10-6691/311*x^9+641/311*x^8+42487/311*x^7+2623/311*x^6-116787/311*x^5-28007/311*x^4+133809/311*x^3+45435/311*x^2-38215/311*x-3428/311,-424/311*x^11+367/311*x^10+7295/311*x^9-5230/311*x^8-44211/311*x^7+22797/311*x^6+113029/311*x^5-27419/311*x^4-117010/311*x^3-1779/311*x^2+27171/311*x-1887/311,-634/933*x^11-550/933*x^10+12356/933*x^9+3090/311*x^8-87454/933*x^7-17820/311*x^6+268168/933*x^5+41430/311*x^4-107460/311*x^3-107894/933*x^2+93802/933*x-942/311,-316/933*x^11+1274/933*x^10+3386/933*x^9-6332/311*x^8-3214/933*x^7+30206/311*x^6-51020/933*x^5-49136/311*x^4+36396/311*x^3+73276/933*x^2-48566/933*x+74/311,773/311*x^11-595/311*x^10-13249/311*x^9+8219/311*x^8+80020/311*x^7-33265/311*x^6-204839/311*x^5+28182/311*x^4+216387/311*x^3+23839/311*x^2-54781/311*x-360/311,-73/933*x^11-1117/933*x^10+3221/933*x^9+5891/311*x^8-37159/933*x^7-31277/311*x^6+162295/933*x^5+64033/311*x^4-85207/311*x^3-142013/933*x^2+109675/933*x+956/311,570/311*x^11-621/311*x^10-9383/311*x^9+8759/311*x^8+53219/311*x^7-37285/311*x^6-122887/311*x^5+41301/311*x^4+111059/311*x^3+7771/311*x^2-13893/311*x-1983/311,2971/933*x^11-2276/933*x^10-51044/933*x^9+10446/311*x^8+308482/933*x^7-41896/311*x^6-783916/933*x^5+33146/311*x^4+265782/311*x^3+109868/933*x^2-163732/933*x-1115/311,-1241/311*x^11+915/311*x^10+21169/311*x^9-12425/311*x^8-126639/311*x^7+48197/311*x^6+317665/311*x^5-30295/311*x^4-321217/311*x^3-56841/311*x^2+69383/311*x+9570/311,1199/933*x^11-1285/933*x^10-19597/933*x^9+6145/311*x^8+109469/933*x^7-27017/311*x^6-246767/933*x^5+33917/311*x^4+75343/311*x^3-10721/933*x^2-51143/933*x+44/311,2864/933*x^11-1012/933*x^10-50860/933*x^9+3944/311*x^8+321371/933*x^7-8904/311*x^6-863750/933*x^5-28949/311*x^4+305596/311*x^3+239164/933*x^2-197768/933*x-6560/311,-3707/933*x^11+3271/933*x^10+62686/933*x^9-15301/311*x^8-369881/933*x^7+63871/311*x^6+907889/933*x^5-62521/311*x^4-297361/311*x^3-98920/933*x^2+173477/933*x+8338/311]]];

f[168,2]=[
[x+1, [1,1,-1], [0,-1,2,1,0,6,-2,4,-4,-10,-8,6,-2,-4,8,-10,12,-2,12,-12,-14,-8,12,-2,10]],
[x-1, [1,-1,1], [0,1,2,-1,0,-2,6,-4,-4,6,-8,-10,-10,12,-8,6,4,-10,12,4,2,8,4,6,10]]];

f[169,2]=[
[x^2-3, [-1], [x,2,-x,0,0,0,3,-2*x,6,3,2*x,5*x,3*x,-8,2*x,-3,-4*x,1,-2*x,2*x,-x,4,8*x,-4*x,4*x]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x,x^2+2*x-2,x^2-3,-x^2-2*x-2,0,-x^2+x+2,-2*x^2-x+2,2*x^2+4*x-3,5*x^2+8*x-5,-5*x^2-8*x+3,2*x^2+3*x+2,-4*x^2-10*x-1,-2*x^2-5*x+5,x^2-8,-4*x^2-11*x+1,-4*x^2-4*x-1,6*x^2+7*x-6,6*x^2+11*x-5,3*x^2+3*x-13,-6*x^2-3*x+13,-x^2+7*x+5,9*x^2+11*x-13,7*x^2+7*x-13,-x^2-8*x-1]],
[x^3-2*x^2-x+1, [-1], [x,-x^2+2*x,-x^2+2*x+2,-x^2+3,x^2-2*x+2,0,-x^2-x+2,2*x^2-x-2,2*x^2-4*x-3,5*x^2-8*x-5,5*x^2-8*x-3,-2*x^2+3*x-2,4*x^2-10*x+1,-2*x^2+5*x+5,-x^2+8,-4*x^2+11*x+1,4*x^2-4*x+1,6*x^2-7*x-6,-6*x^2+11*x+5,-3*x^2+3*x+13,6*x^2-3*x-13,-x^2-7*x+5,-9*x^2+11*x+13,-7*x^2+7*x+13,x^2-8*x+1]]];

f[170,2]=[
[x+1, [1,1,-1], [-1,-2,-1,2,6,2,1,8,-6,-6,2,2,-6,-4,12,6,0,2,8,-6,2,-10,12,6,2]],
[x-3, [1,1,-1], [-1,3,-1,2,-4,-3,1,3,-6,9,-3,-8,-6,6,-13,-9,15,7,-2,9,-3,0,12,-9,7]],
[x-1, [1,-1,1], [-1,1,1,2,0,5,-1,-1,6,-9,-1,-4,-6,2,-9,-9,3,-7,14,3,11,8,0,-9,-7]],
[x-1, [1,-1,-1], [-1,-2,1,-2,-2,-6,1,-8,-2,6,-2,6,2,-4,4,-10,0,-10,8,14,10,-14,-4,6,-14]],
[x-1, [-1,1,1], [1,1,-1,2,0,-1,-1,-1,-6,-3,5,8,6,-10,-3,-3,3,11,2,9,11,8,-12,15,-7]],
[x^2+x-4, [-1,-1,-1], [1,x,1,-2*x,-4,-x+2,1,x,2*x,3*x+2,x-4,2*x-2,-4*x-6,2*x+4,-x+4,x+2,-3*x-8,x+10,2*x-4,-3*x-12,5*x+6,0,4*x+4,3*x-2,3*x+6]]];

f[171,2]=[
[x+1, [-1,1], [-1,0,2,0,0,6,6,-1,-4,-2,8,-10,2,-4,-12,6,12,-2,-4,0,10,0,-16,2,10]],
[x+1, [-1,1], [2,0,-1,3,3,-6,-3,-1,-4,10,2,8,8,-1,-3,6,0,7,8,-12,-11,0,-4,-10,-2]],
[x-3, [-1,1], [2,0,3,-5,-1,2,1,-1,4,2,-6,0,0,-1,9,-10,8,-1,8,12,-11,16,-12,6,-10]],
[x, [-1,-1], [0,0,-3,-1,-3,-4,3,1,0,-6,-4,2,6,-1,3,-12,6,-1,-4,-6,-7,8,-12,-12,8]],
[x^4-9*x^2+12, [1,-1], [x,0,-1/2*x^3+5/2*x,-x^2+5,1/2*x^3-9/2*x,2,-1/2*x^3+5/2*x,1,x^3-7*x,x^3-7*x,2*x^2-10,2*x^2-4,-2*x,-3*x^2+11,-3/2*x^3+19/2*x,-x^3+11*x,4*x,-3*x^2+17,-4,2*x^3-14*x,-3*x^2+17,-4,-x^3+3*x,-x^3+11*x,4*x^2-22]]];

f[172,2]=[
[x+2, [-1,-1], [0,-2,0,-4,-3,-1,-3,2,-3,6,5,8,-3,1,-12,-9,-12,-10,11,6,-10,8,-15,0,-1]],
[x^2-4*x+2, [-1,1], [0,x,-x+2,-x+2,-2*x+5,-2*x+1,2*x-3,-2*x+2,3,3*x-8,4*x-9,2*x-8,-6*x+11,-1,4*x-2,-2*x-1,2*x-2,7*x-12,-6*x+11,-2*x+14,-x+4,-2*x+2,7,-3*x+10,-2*x+15]]];

f[173,2]=[
[x^4+x^3-3*x^2-x+1, [1], [x,-x^2-x,x^2-2,x^3+x^2-3*x-3,-3*x^3-4*x^2+6*x+2,-4*x^3-5*x^2+10*x+3,4*x^3+5*x^2-7*x-3,2*x^3+3*x^2-2*x-4,3*x^3+2*x^2-8*x-3,-2*x^3-2*x^2+3*x+3,2*x^3+4*x^2-x-3,3*x^3-x^2-10*x+1,x^3-2*x^2-10*x+5,3*x^3+2*x^2-7*x-6,-x^2-x,-4*x^3-6*x^2+10*x+7,-4*x^3-6*x^2+12*x+4,3*x^3+7*x^2-9*x-10,-x^3+3*x^2+2*x-15,7*x^3+7*x^2-14*x+1,-9*x^3-9*x^2+19*x+5,-5*x^3+14*x-7,4*x^3+12*x^2-4*x-17,x^3+3*x+4,-x^2-10*x+1]],
[x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [-1], [x,9/116*x^9-11/58*x^8-69/58*x^7+81/29*x^6+645/116*x^5-1439/116*x^4-235/29*x^3+465/29*x^2+98/29*x-303/116,-7/58*x^9+15/29*x^8+44/29*x^7-213/29*x^6-231/58*x^5+1783/58*x^4-179/29*x^3-1023/29*x^2+376/29*x+371/58,-1/58*x^9-37/116*x^8+79/116*x^7+537/116*x^6-849/116*x^5-579/29*x^4+3125/116*x^3+2767/116*x^2-2913/116*x-387/116,23/116*x^9+5/116*x^8-343/116*x^7-71/116*x^6+400/29*x^5+389/116*x^4-2399/116*x^3-921/116*x^2+715/116*x+275/58,-25/116*x^9-13/116*x^8+393/116*x^7+173/116*x^6-1007/58*x^5-791/116*x^4+3755/116*x^3+1455/116*x^2-2265/116*x-140/29,-5/58*x^9+9/58*x^8+67/58*x^7-151/58*x^6-126/29*x^5+735/58*x^4+171/58*x^3-927/58*x^2+127/58*x+31/29,-47/116*x^9+73/116*x^8+653/116*x^7-1083/116*x^6-1283/58*x^5+4647/116*x^4+2141/116*x^3-5141/116*x^2+463/116*x+224/29,5/58*x^9+10/29*x^8-48/29*x^7-142/29*x^6+687/58*x^5+1237/58*x^4-1028/29*x^3-827/29*x^2+908/29*x+489/58,1/116*x^9-27/58*x^8+1/29*x^7+183/29*x^6-257/116*x^5-2815/116*x^4+338/29*x^3+1215/58*x^2-292/29*x+179/116,-35/58*x^9+17/29*x^8+249/29*x^7-253/29*x^6-2083/58*x^5+2129/58*x^4+1164/29*x^3-1026/29*x^2-150/29*x-1/58,-53/116*x^9+5/29*x^8+387/58*x^7-171/58*x^6-3489/116*x^5+1643/116*x^4+2481/58*x^3-515/29*x^2-687/58*x+547/116,41/58*x^9-165/116*x^8-1093/116*x^7+2459/116*x^6+3837/116*x^5-2709/29*x^4-1279/116*x^3+13167/116*x^2-2947/116*x-2693/116,25/29*x^9-16/29*x^8-364/29*x^7+233/29*x^6+1608/29*x^5-891/29*x^4-2131/29*x^3+488/29*x^2+612/29*x+386/29,-14/29*x^9+31/29*x^8+205/29*x^7-446/29*x^6-897/29*x^5+1884/29*x^4+1111/29*x^3-2178/29*x^2-207/29*x+365/29,33/58*x^9-13/58*x^8-477/58*x^7+231/58*x^6+1052/29*x^5-1139/58*x^4-2799/58*x^3+1571/58*x^2+635/58*x-367/29,-9/116*x^9-9/29*x^8+49/29*x^7+273/58*x^6-1399/116*x^5-2621/116*x^4+1775/58*x^3+2173/58*x^2-1037/58*x-1959/116,3/29*x^9-17/29*x^8-17/29*x^7+253/29*x^6-162/29*x^5-1108/29*x^4+1069/29*x^3+1345/29*x^2-1039/29*x-333/29,-23/58*x^9+12/29*x^8+157/29*x^7-182/29*x^6-1223/58*x^5+1583/58*x^4+547/29*x^3-888/29*x^2+63/29*x+697/58,3/4*x^8-1/4*x^7-43/4*x^6+17/4*x^5+93/2*x^4-75/4*x^3-225/4*x^2+59/4*x+19/4,-33/58*x^9+171/116*x^8+867/116*x^7-2521/116*x^6-2903/116*x^5+2730/29*x^4+233/116*x^3-12741/116*x^2+3109/116*x+2135/116,53/116*x^9-34/29*x^8-179/29*x^7+983/58*x^6+2619/116*x^5-8487/116*x^4-799/58*x^3+5235/58*x^2-183/58*x-1881/116,-35/58*x^9+5/58*x^8+527/58*x^7-71/58*x^6-1230/29*x^5+157/58*x^4+3575/58*x^3+471/58*x^2-967/58*x-131/29,-35/116*x^9+23/29*x^8+191/58*x^7-659/58*x^6-459/116*x^5+5377/116*x^4-2055/58*x^3-1296/29*x^2+2837/58*x+57/116,-13/29*x^9+35/29*x^8+151/29*x^7-497/29*x^6-284/29*x^5+2027/29*x^4-1133/29*x^3-2068/29*x^2+1873/29*x+283/29]]];

f[174,2]=[
[x+1, [1,1,-1], [-1,-1,3,-3,6,0,7,5,-8,1,-8,-3,-5,3,9,-2,-11,-6,0,0,-10,-2,0,10,0]],
[x-2, [1,-1,1], [-1,1,2,0,-4,6,-2,4,0,-1,-4,-6,6,-12,-8,-6,8,10,-4,-8,2,4,0,14,18]],
[x+3, [1,-1,1], [-1,1,-3,5,6,-4,3,-1,0,-1,-4,-1,-9,-7,-3,-6,3,-10,-4,12,2,14,0,-6,8]],
[x+1, [-1,1,1], [1,-1,1,1,6,-4,-7,-3,4,-1,0,-7,5,-5,-5,10,3,10,0,-4,10,-6,16,-10,-8]],
[x-1, [-1,-1,-1], [1,1,-1,1,-2,0,-3,-1,-4,1,4,3,-7,9,-1,-2,-3,6,12,16,-10,10,0,6,0]]];

f[175,2]=[
[x, [1,1], [0,-1,0,-1,-3,-5,-3,2,6,3,-4,-2,-12,10,-9,-12,0,8,4,0,-2,-1,-12,-12,1]],
[x-2, [-1,1], [2,1,0,-1,-3,1,7,0,6,-5,2,2,2,-4,-3,6,10,-8,2,-8,6,-5,-4,0,7]],
[x+2, [-1,-1], [-2,-1,0,1,-3,-1,-7,0,-6,-5,2,-2,2,4,3,-6,10,-8,-2,-8,-6,-5,4,0,-7]],
[x^2-x-4, [1,-1], [x,-x+1,0,1,-x+1,x-3,-x+3,-2*x-2,-2*x+2,3*x-1,0,-6,2*x,2*x-6,3*x+1,2*x,-4,6*x,-4*x,8,4*x+2,x-5,-4,-2*x+4,-5*x+7]],
[x^2-x-1, [1,-1], [x,2*x-2,0,1,2*x+1,-2*x,-4*x,4*x-2,-2*x+5,5,-6*x,3,2*x+6,2*x+3,-2,-4*x+6,-6*x+8,6*x-6,2*x-3,-6*x+5,-2*x-10,10*x-5,6*x-4,-2*x+16,-2*x+4]],
[x^2+x-1, [-1,1], [x,2*x+2,0,-1,-2*x+1,-2*x,-4*x,-4*x-2,-2*x-5,5,6*x,-3,-2*x+6,2*x-3,2,-4*x-6,6*x+8,-6*x-6,2*x+3,6*x+5,-2*x+10,-10*x-5,6*x+4,2*x+16,-2*x-4]]];

f[176,2]=[
[x-3, [1,-1], [0,3,-3,2,1,0,-6,-4,-1,-8,7,-1,4,-6,8,2,1,4,5,-3,16,-2,2,15,-7]],
[x-1, [-1,1], [0,1,1,2,-1,4,-2,0,1,0,-7,3,-8,6,-8,-6,-5,12,7,3,4,10,6,15,-7]],
[x+1, [-1,-1], [0,-1,-3,-2,1,-4,6,-8,3,0,-5,-1,0,10,0,-6,-3,-4,1,-15,-4,-2,-6,-9,-7]],
[x^2+x-4, [1,-1], [0,x,x+2,-2*x,1,-2*x-2,2,4,x-4,-2*x-2,x+4,-x-6,-2*x+2,2*x+4,-8,4*x+6,-5*x,2*x-2,-x-8,3*x+4,2*x+2,2*x+8,2*x-4,3*x-2,x+14]]];

f[177,2]=[
[x^2+x-1, [1,1], [x,-1,-2*x-1,x-3,2*x+1,-2*x-5,3*x,5*x,-x-4,-x+7,-9*x-5,3*x-2,5*x+5,-6*x-5,-3*x-9,2*x+5,-1,3*x-5,6*x+7,-8*x-3,3*x-1,-3,-x-1,-11*x-7,3]],
[x^2-x-1, [-1,1], [x,1,1,-x+1,-2*x+3,-1,-3*x+2,3*x-4,3*x,-x+3,-3*x+1,-x-4,5*x-3,8*x-5,x+5,8*x-5,-1,-3*x+1,-8*x+7,6*x-1,x+1,-8*x+9,3*x+5,5*x-5,6*x-5]],
[x^2+3*x+1, [-1,-1], [x,1,-3,-x-5,-4*x-7,6*x+9,x,3*x+2,-x-4,-x-7,-x-5,-5*x-8,5*x+7,-6*x-3,3*x+3,-4*x-5,1,-5*x-1,2*x+1,-2*x-1,-5*x-5,-3,-3*x-9,-5*x-7,4*x+1]],
[x^3-4*x-1, [1,-1], [x,-1,-x^2+x+2,x+3,-x^2-x+2,-x^2-x+4,3*x^2-2*x-7,-x^2+5,-x^2-2*x+3,2*x^2+x-9,2*x^2-x-1,-x^2-2*x+1,-2*x^2+3*x+5,-3*x^2+5*x+10,4*x^2-x-7,x^2-5*x-2,1,4*x^2+x-11,5*x^2+x-10,x^2-3*x+6,-4*x^2-3*x+13,x^2-3*x-2,6*x^2-5*x-17,-4*x^2+3*x+3,x^2-5*x+2]]];

f[178,2]=[
[x-2, [1,-1], [-1,2,2,0,0,-4,2,-2,8,0,0,0,-10,-2,-8,6,10,-4,-8,8,-2,8,14,1,-2]],
[x-1, [-1,1], [1,1,3,-4,-6,2,3,5,-3,0,5,-10,0,-1,12,9,12,-10,-4,-6,-1,-10,-12,-1,17]],
[x^2+2*x-1, [1,1], [-1,x,-2*x-3,-2,2*x,-2,2*x-1,x+2,-x-8,-4*x-4,-x+2,4*x+10,4*x+4,-5*x-2,0,4*x-1,8*x+6,-4*x+2,-4*x-12,-6*x-8,-8*x-9,-2*x-8,-8*x-6,-1,10*x+9]],
[x^3-x^2-8*x+4, [-1,1], [1,x,-x,-1/2*x^2-1/2*x+3,2,1/2*x^2-3/2*x-3,-x^2+4,x-4,3/2*x^2+1/2*x-7,-3/2*x^2+5/2*x+9,1/2*x^2-1/2*x-9,1/2*x^2-3/2*x+1,-x^2+x+4,-x^2+2*x+2,x^2+x-2,2*x^2-x-4,-2*x-2,-3/2*x^2+1/2*x+9,-2*x+6,-x^2-3*x+10,-x^2+4*x+4,-x^2+x+2,-2*x^2+4*x+10,-1,-x^2+4*x-2]]];

f[179,2]=[
[x-2, [-1], [2,0,3,-4,4,-1,1,-3,6,3,-8,2,12,-11,1,0,-5,14,-9,0,10,10,17,-1,-14]],
[x^3+x^2-2*x-1, [1], [x,-x-1,-x^2-x,x-1,2*x^2+x-4,-x^2-2,5*x^2+2*x-7,-3*x^2+2,-3*x^2+8,-5*x^2+8,-5*x-2,3*x^2-4*x-7,2*x^2-3*x-4,4*x^2+x-3,-3*x^2-x+9,-5*x^2-3*x+4,-6*x^2-6*x+7,2*x^2-14,8*x^2+7*x-7,5*x^2+8*x-6,-11*x^2-7*x+15,6*x^2+9*x-11,6*x^2+x-10,7*x^2+5*x-6,3*x^2+11*x-4]],
[x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [-1], [x,-21/68*x^10-1/2*x^9+345/68*x^8+471/68*x^7-57/2*x^6-514/17*x^5+4241/68*x^4+2993/68*x^3-2895/68*x^2-311/34*x+45/17,-3/136*x^10-1/8*x^9+21/68*x^8+247/136*x^7-13/8*x^6-1151/136*x^5+309/68*x^4+1841/136*x^3-223/34*x^2-157/34*x+53/17,7/68*x^10+1/4*x^9-49/34*x^8-259/68*x^7+25/4*x^6+1303/68*x^5-279/34*x^4-2369/68*x^3-18/17*x^2+270/17*x+36/17,5/17*x^10+1/2*x^9-157/34*x^8-117/17*x^7+49/2*x^6+1009/34*x^5-1703/34*x^4-711/17*x^3+1041/34*x^2+123/17*x-4/17,-1/8*x^10-1/8*x^9+2*x^8+13/8*x^7-89/8*x^6-51/8*x^5+51/2*x^4+59/8*x^3-81/4*x^2-x+3,39/136*x^10+3/8*x^9-81/17*x^8-695/136*x^7+219/8*x^6+3029/136*x^5-2119/34*x^4-4689/136*x^3+2993/68*x^2+375/34*x+8/17,79/136*x^10+7/8*x^9-319/34*x^8-1631/136*x^7+415/8*x^6+7065/136*x^5-1928/17*x^4-10377/136*x^3+5687/68*x^2+621/34*x-166/17,-22/17*x^10-2*x^9+359/17*x^8+474/17*x^7-118*x^6-2111/17*x^5+4413/17*x^4+3278/17*x^3-3164/17*x^2-1041/17*x+242/17,155/136*x^10+13/8*x^9-1289/68*x^8-3083/136*x^7+873/8*x^6+13727/136*x^5-17189/68*x^4-21293/136*x^3+3429/17*x^2+857/17*x-415/17,31/68*x^10+1/2*x^9-519/68*x^8-433/68*x^7+89/2*x^6+405/17*x^5-7219/68*x^4-1627/68*x^3+6197/68*x^2-161/34*x-166/17,13/17*x^10+3/2*x^9-415/34*x^8-362/17*x^7+133/2*x^6+3317/34*x^5-4829/34*x^4-2702/17*x^3+3305/34*x^2+1010/17*x-126/17,41/34*x^10+2*x^9-659/34*x^8-939/34*x^7+106*x^6+2054/17*x^5-7681/34*x^4-6177/34*x^3+5283/34*x^2+914/17*x-268/17,-9/8*x^10-15/8*x^9+73/4*x^8+213/8*x^7-811/8*x^6-977/8*x^5+889/4*x^4+1595/8*x^3-161*x^2-145/2*x+19,-19/17*x^10-2*x^9+300/17*x^8+482/17*x^7-94*x^6-2218/17*x^5+3251/17*x^4+3698/17*x^3-1983/17*x^2-1484/17*x+141/17,5/17*x^10+1/2*x^9-157/34*x^8-117/17*x^7+49/2*x^6+1009/34*x^5-1669/34*x^4-694/17*x^3+803/34*x^2+72/17*x+98/17,99/136*x^10+9/8*x^9-795/68*x^8-2099/136*x^7+509/8*x^6+9083/136*x^5-9075/68*x^4-13221/136*x^3+3007/34*x^2+372/17*x-185/17,-11/34*x^10-3/4*x^9+325/68*x^8+178/17*x^7-91/4*x^6-3199/68*x^5+2509/68*x^4+1304/17*x^3-733/68*x^2-1141/34*x+69/17,135/136*x^10+13/8*x^9-1115/68*x^8-3159/136*x^7+745/8*x^6+14599/136*x^5-14211/68*x^4-24161/136*x^3+5139/34*x^2+1212/17*x-141/17,127/68*x^10+13/4*x^9-1025/34*x^8-3067/68*x^7+665/4*x^6+13547/68*x^5-12231/34*x^4-20793/68*x^3+4312/17*x^2+1654/17*x-430/17,101/68*x^10+11/4*x^9-809/34*x^8-2649/68*x^7+519/4*x^6+12117/68*x^5-9349/34*x^4-19843/68*x^3+3082/17*x^2+1948/17*x-180/17,-23/68*x^10-3/4*x^9+89/17*x^8+715/68*x^7-107/4*x^6-3169/68*x^5+819/17*x^4+4685/68*x^3-535/34*x^2-280/17*x-60/17,-91/136*x^10-7/8*x^9+361/34*x^8+1599/136*x^7-455/8*x^6-6773/136*x^5+1982/17*x^4+9921/136*x^3-4785/68*x^2-412/17*x-47/17,99/136*x^10+11/8*x^9-203/17*x^8-2711/136*x^7+539/8*x^6+12721/136*x^5-5107/34*x^4-21041/136*x^3+7323/68*x^2+899/17*x-185/17,-12/17*x^10-x^9+202/17*x^8+240/17*x^7-69*x^6-1085/17*x^5+2693/17*x^4+1720/17*x^3-2004/17*x^2-574/17*x+268/17]]];

f[180,2]=[
[x, [-1,-1,-1], [0,0,1,2,0,2,6,-4,-6,-6,-4,2,-6,-10,6,6,-12,2,2,12,2,8,-6,6,2]]];

f[181,2]=[
[x^5+3*x^4-x^3-7*x^2-2*x+1, [1], [x,-x^4-2*x^3+2*x^2+3*x-1,2*x^4+5*x^3-4*x^2-11*x-1,-2*x^3-2*x^2+5*x+1,-x^4-3*x^3+x^2+6*x-3,-2*x^4-3*x^3+8*x^2+8*x-5,2*x^4+4*x^3-5*x^2-8*x,-3*x^4-5*x^3+8*x^2+10*x-2,2*x^4+3*x^3-6*x^2-3*x+2,-x^4-x^3+3*x^2-x-5,-2*x^4-4*x^3+2*x^2+7*x+6,x^4+6*x^3+3*x^2-17*x-7,x^4+x^3+x^2+4*x-5,3*x^3+6*x^2-8*x-10,-3*x^4-5*x^3+7*x^2+8*x+1,-5*x^4-9*x^3+9*x^2+12*x+4,3*x^4+2*x^3-13*x^2-5*x+1,x^4-2*x^3-11*x^2+4*x+8,3*x^4+8*x^3-9*x^2-16*x+11,2*x^4+8*x^3-2*x^2-24*x-9,8*x^4+18*x^3-15*x^2-36*x,3*x^4+6*x^3-3*x^2-6*x-6,-3*x^4+18*x^2+5*x-15,4*x^4+8*x^3-8*x^2-17*x-2,-4*x^4-13*x^3+3*x^2+25*x+6]],
[x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [-1], [x,1/2*x^8-2*x^7-5/2*x^6+16*x^5-7/2*x^4-59/2*x^3+12*x^2+25/2*x-7/2,1/4*x^7-1/4*x^6-5/2*x^5+2*x^4+25/4*x^3-9/2*x^2-5/2*x+15/4,1/4*x^8-3/4*x^7-x^6+5*x^5-19/4*x^4-5*x^3+29/2*x^2-1/4*x-11/2,-1/2*x^8+1/2*x^7+6*x^6-4*x^5-47/2*x^4+8*x^3+35*x^2-9/2*x-12,-1/2*x^8+7/4*x^7+11/4*x^6-29/2*x^5+7/2*x^4+121/4*x^3-41/2*x^2-18*x+47/4,3/2*x^8-9/2*x^7-10*x^6+35*x^5+13/2*x^4-61*x^3+17*x^2+45/2*x-12,-3/4*x^8+11/4*x^7+7/2*x^6-21*x^5+33/4*x^4+67/2*x^3-53/2*x^2-33/4*x+11,-5/4*x^8+19/4*x^7+6*x^6-38*x^5+51/4*x^4+72*x^3-91/2*x^2-147/4*x+45/2,3/4*x^7-11/4*x^6-9/2*x^5+22*x^4+7/4*x^3-79/2*x^2+5/2*x+57/4,3/4*x^8-11/4*x^7-9/2*x^6+23*x^5+3/4*x^4-97/2*x^3+15/2*x^2+113/4*x-4,1/2*x^8-5/4*x^7-13/4*x^6+17/2*x^5+1/2*x^4-31/4*x^3+23/2*x^2-6*x-37/4,-x^8+5/2*x^7+15/2*x^6-19*x^5-10*x^4+61/2*x^3-3*x^2-7*x+9/2,x^8-1/2*x^7-27/2*x^6+6*x^5+56*x^4-47/2*x^3-73*x^2+23*x+43/2,-3/4*x^8+19/4*x^7-1/2*x^6-39*x^5+161/4*x^4+155/2*x^3-175/2*x^2-169/4*x+36,x^8-3*x^7-7*x^6+25*x^5+5*x^4-52*x^3+17*x^2+30*x-12,7/2*x^7-17/2*x^6-27*x^5+65*x^4+87/2*x^3-111*x^2-13*x+93/2,x^7-3*x^6-6*x^5+21*x^4+x^3-25*x^2+6*x-1,1/2*x^8-11/2*x^6-2*x^5+33/2*x^4+25/2*x^3-8*x^2-27/2*x-17/2,1/4*x^8-9/4*x^7+5/2*x^6+16*x^5-123/4*x^4-37/2*x^3+111/2*x^2-9/4*x-18,1/2*x^8-7/4*x^7-15/4*x^6+31/2*x^5+15/2*x^4-145/4*x^3-29/2*x^2+23*x+53/4,-x^8+4*x^7+3*x^6-30*x^5+26*x^4+47*x^3-71*x^2-15*x+35,-1/4*x^8+9/4*x^7-5/2*x^6-17*x^5+131/4*x^4+55/2*x^3-145/2*x^2-51/4*x+45,-x^8+11/2*x^7-3/2*x^6-40*x^5+60*x^4+111/2*x^3-127*x^2-10*x+111/2,-x^8+5*x^7-37*x^5+50*x^4+56*x^3-116*x^2-22*x+53]]];

f[182,2]=[
[x-1, [1,1,-1], [-1,1,4,-1,-1,1,4,2,-7,-8,3,7,-7,-8,3,0,-6,-13,7,4,9,-13,-16,-6,11]],
[x-3, [1,-1,1], [-1,3,0,1,-5,-1,-4,2,5,4,1,7,-9,-12,-7,-4,-6,13,11,0,7,-17,4,14,5]],
[x, [-1,1,1], [1,0,2,-1,4,-1,-6,0,8,-10,-8,6,-6,4,-8,6,8,10,4,-8,2,8,0,18,2]],
[x-3, [-1,1,1], [1,3,-4,-1,1,-1,0,-6,-7,-4,7,9,-3,4,7,0,-10,1,1,16,5,11,0,-6,-1]],
[x-1, [-1,-1,-1], [1,1,0,1,-3,1,0,2,-3,0,5,-7,3,8,-3,-12,6,-1,5,12,11,-1,12,-18,17]]];

f[183,2]=[
[x^2+2*x-1, [1,1], [x,-1,-1,-x-2,-x-2,-3,-6,4*x+6,3*x+2,-4*x-4,4*x+6,2*x,-2*x-5,-4*x+2,-6*x-10,6*x+4,-3*x-8,-1,-5*x-2,6,6*x+1,x,2*x-2,-4*x-12,-4*x-10]],
[x^3-x^2-3*x+1, [1,-1], [x,-1,2,-2*x^2+2*x+4,-x^2+3,2*x^2-2*x-2,-x^2-2*x+7,-2*x-2,3*x^2-4*x-5,-x^2+2*x+3,2*x^2+2*x-8,4*x^2-4*x-10,-2*x^2+4*x+4,-6*x+2,4*x,-3*x^2+6*x+9,7*x^2-4*x-13,1,4*x^2+2*x-10,3*x^2-4*x-1,-4*x^2+8*x+6,-4*x^2-2*x+6,4*x^2-12,5*x^2-6*x-11,2*x^2-2*x+2]],
[x^6-11*x^4+2*x^3+31*x^2-10*x-17, [-1,1], [x,1,1/2*x^5+x^4-5*x^3-8*x^2+21/2*x+10,-x^5-3/2*x^4+9*x^3+11*x^2-17*x-23/2,-1/2*x^4+3*x^2-x-5/2,-1/2*x^5+5*x^3-21/2*x+1,x^5+x^4-9*x^3-6*x^2+16*x+5,x^5+x^4-8*x^3-8*x^2+11*x+13,-1/2*x^4+5*x^2-x-17/2,x^4+x^3-8*x^2-5*x+9,-2*x^5-3*x^4+18*x^3+24*x^2-32*x-31,-x^5-x^4+8*x^3+6*x^2-9*x-5,-3/2*x^5-2*x^4+13*x^3+16*x^2-39/2*x-23,-x^4+8*x^2-9,x^5+x^4-10*x^3-8*x^2+19*x+9,2*x^5+2*x^4-19*x^3-16*x^2+35*x+20,-x^5-3/2*x^4+8*x^3+11*x^2-10*x-31/2,-1,x^5+5/2*x^4-9*x^3-21*x^2+19*x+57/2,-x^5+9*x^3-16*x-4,-1/2*x^5+5*x^3-25/2*x+5,-1/2*x^4-x^3+5*x^2+6*x-17/2,3*x^5+3*x^4-26*x^3-24*x^2+41*x+31,-2*x^5-3*x^4+19*x^3+20*x^2-37*x-11,-2*x^5-3*x^4+18*x^3+22*x^2-28*x-21]]];

f[184,2]=[
[x+2, [1,1], [0,-1,-2,-4,-2,7,-4,-6,-1,5,3,2,-9,8,-1,-6,-8,-10,2,-13,-3,6,0,-4,-8]],
[x, [1,-1], [0,0,0,4,6,-2,6,-6,1,-6,0,-8,6,-2,-8,-8,4,-4,2,-8,6,12,10,10,-18]],
[x-3, [1,-1], [0,3,0,-2,0,-5,-6,6,1,9,3,-8,3,-8,7,-2,4,-10,8,7,9,-6,-14,16,6]],
[x+4, [-1,-1], [0,-1,-4,2,-4,-5,-2,6,1,1,-9,-4,3,8,-5,6,-4,-10,-4,-5,-15,-6,6,-8,10]],
[x^2+x-4, [-1,1], [0,x,2,0,-2*x,-x+2,2*x+2,-2*x,-1,x+2,x-4,4*x+2,-5*x-2,-8,-3*x+4,2,4*x+4,-4*x+2,2*x,x+12,-3*x-10,2*x,4*x+8,6*x+2,6*x+2]]];

f[185,2]=[
[x-1, [1,1], [1,-2,-1,-2,0,-2,2,2,-8,2,-6,-1,10,-4,-10,-6,-6,2,-14,0,2,-6,18,2,-10]],
[x+2, [1,1], [-2,1,-1,-5,3,-2,-4,-4,-2,2,0,-1,7,-10,11,-3,0,-4,16,-15,11,-12,-3,-4,8]],
[x, [-1,-1], [0,-1,1,-3,-5,4,-4,-8,4,4,2,1,-5,-6,9,3,-8,-10,-4,5,-15,-14,11,-2,10]],
[x^5-2*x^4-8*x^3+14*x^2+11*x-12, [1,-1], [x,-1/2*x^3+5/2*x+1,-1,1/2*x^4-7/2*x^2-x+5,-x^2+3,-1/2*x^4+1/2*x^3+5/2*x^2-5/2*x+2,-1/2*x^4+1/2*x^3+9/2*x^2-9/2*x-6,-x^4+1/2*x^3+8*x^2-5/2*x-10,-x^4+9*x^2-12,-x^3+5*x,-1/2*x^4+x^3+5/2*x^2-4*x+2,1,-x^2+3,x^4-9*x^2+2*x+14,3/2*x^4-21/2*x^2-x+9,-x^3-x^2+9*x+3,1/2*x^4+x^3-9/2*x^2-6*x,x^4-x^3-7*x^2+7*x+2,-x^4+3/2*x^3+6*x^2-11/2*x+2,-x^4+2*x^3+6*x^2-12*x-3,2*x^3-x^2-14*x+5,1/2*x^4-x^3-9/2*x^2+2*x+14,-1/2*x^3+2*x^2+9/2*x-3,2*x^4-16*x^2+2*x+18,2*x^4-3*x^3-16*x^2+17*x+14]],
[x^5-8*x^3+2*x^2+11*x-2, [-1,1], [x,-1/2*x^4+7/2*x^2-x-3,1,-1/2*x^3-x^2+5/2*x+4,x^4+x^3-6*x^2-3*x+5,-1/2*x^4-1/2*x^3+7/2*x^2+1/2*x-3,-1/2*x^4-1/2*x^3+7/2*x^2+5/2*x-5,-1/2*x^4-x^3+5/2*x^2+2*x+2,x^4-7*x^2+6,x^4+2*x^3-5*x^2-8*x+2,x^4+3/2*x^3-7*x^2-11/2*x+9,-1,-2*x^3-x^2+10*x-1,x^4-5*x^2+2*x+2,-3/2*x^3+x^2+19/2*x-6,-x^3-x^2+5*x-1,-x^4-3/2*x^3+7*x^2+19/2*x-5,-x^4+x^3+7*x^2-7*x-2,-3/2*x^4+23/2*x^2+x-12,-3*x^4+20*x^2-2*x-11,x^4+x^3-8*x^2-3*x+9,x^4+1/2*x^3-5*x^2+3/2*x+7,-1/2*x^4+11/2*x^2-3*x-11,4*x^2-2*x-16,-x^3-6*x^2+3*x+18]]];

f[186,2]=[
[x+1, [1,1,-1], [-1,-1,-1,2,3,3,1,7,0,4,1,-10,-6,6,-5,-2,6,3,-3,7,-10,-1,17,6,5]],
[x-1, [1,-1,1], [-1,1,3,-2,5,-7,-1,7,4,-8,-1,-6,-2,-10,-1,6,-10,1,-3,3,14,-11,7,-6,-3]],
[x-1, [-1,-1,-1], [1,1,1,-2,-3,-1,3,-5,4,0,1,-2,2,-6,-7,14,10,7,-7,-3,-6,15,-1,10,13]],
[x^2-3*x-2, [-1,1,1], [1,-1,x,-2*x+4,x-2,x,-3*x+4,x-2,-8,2*x-6,-1,-4*x+6,-4*x+2,2*x-8,3*x-2,-2,2*x,x,3*x+2,-x-2,10,3*x-2,-5*x+10,4*x+2,5*x-12]]];

f[187,2]=[
[x, [1,-1], [2,0,4,-5,-1,4,1,2,-2,-3,4,-2,-3,-2,3,9,-3,-10,7,2,-3,0,14,1,-10]],
[x, [-1,1], [0,1,3,2,1,2,-1,2,-3,-6,-7,-7,12,-10,0,6,-3,8,-7,-9,2,8,6,15,11]],
[x^2+x-4, [-1,1], [2,x,-x,-x+1,1,0,-1,2*x-2,3*x+2,-x+7,x,-x+2,3*x-1,2,3*x-1,-x+5,-3,-2*x-6,-2*x-1,-3*x+2,3*x+7,6*x,-4*x-2,-6*x+1,-3*x-10]],
[x^2+2*x-2, [-1,-1], [x,-x-1,x-1,-2,1,-x-6,1,3*x+2,x-1,-x-4,x+5,x-1,-2*x+4,-2,-4*x-10,-2*x-8,3,-4*x-8,1,x+3,3*x+12,-3*x-6,-8*x-6,4*x-1,-x+13]],
[x^3+2*x^2-2*x-2, [1,1], [x,-x^2-x+1,-x-3,2*x^2+2*x-4,-1,3*x+2,-1,-2*x^2-5*x+4,-x^2-x-3,-x^2-3*x-4,2*x^2+5*x-5,-5*x^2-7*x+5,2*x^2+2*x-4,-4*x^2-8*x+8,3*x^2+4*x,x^2+4*x-10,-x^2+4*x+5,-2*x^2-2*x+2,4*x^2+6*x-11,3*x+1,-x^2-x-2,-x^2+x+8,-4*x,4*x^2+2*x-9,x^2-x-9]],
[x^4-x^3-6*x^2+2*x+2, [1,-1], [x,-x^3+x^2+5*x-1,-x+1,0,-1,x^3-2*x^2-5*x+4,1,x^3-7*x-2,x^3-x^2-7*x+3,x^2-x,-2*x^3+13*x-1,-x^3+x^2+7*x+3,2*x^3-2*x^2-10*x+4,2*x^3-4*x^2-10*x+8,x^3-x^2-4*x+2,x^3-x^2-4*x+8,2*x^3-3*x^2-8*x+9,4*x+2,x^3-10*x-1,-2*x^3+7*x+9,3*x^2-5*x-10,-2*x^3+3*x^2+13*x-12,-2*x^3+18*x+4,-3*x^3+22*x+1,-3*x^3+3*x^2+13*x+1]]];

f[188,2]=[
[x^2-x-3, [-1,1], [0,x,0,-x+3,-2*x+2,2,-x-2,-2*x+4,2*x-2,2*x-2,4*x-2,-3*x+2,-6,2*x,-1,-5*x-1,3*x-9,3*x-1,8,-5*x+8,4*x-2,3*x+8,4*x-4,7*x-1,x+1]],
[x^2+3*x+1, [-1,-1], [0,x,-2*x-4,-x-5,4*x+4,4*x+4,3*x+6,-6*x-10,-4*x-6,0,0,-3*x-10,2*x+12,-10,1,-5*x-13,-x-1,3*x+7,2*x-4,-5*x,-6*x-6,3*x,-8*x-12,3*x+3,-3*x-15]]];

f[189,2]=[
[x+2, [1,1], [-2,0,-1,-1,-4,-2,3,-8,-6,-4,6,-3,1,11,9,6,-15,4,-8,-12,6,-1,-9,2,12]],
[x-3, [1,-1], [0,0,3,1,6,-4,3,2,-6,-6,-4,-7,-3,-1,9,-6,9,-10,-4,0,2,-1,3,6,-10]],
[x-2, [-1,1], [2,0,1,-1,4,-2,-3,-8,6,4,6,-3,-1,11,-9,-6,15,4,-8,12,6,-1,9,-2,12]],
[x+3, [-1,-1], [0,0,-3,1,-6,-4,-3,2,6,6,-4,-7,3,-1,-9,6,-9,-10,-4,0,2,-1,-3,-6,-10]],
[x^2-3, [1,-1], [x,0,x,1,-x,2,-4*x,5,x,-6*x,5,-7,3*x,-4,4*x,8*x,-4*x,8,14,3*x,-4,8,-6*x,-5*x,-4]],
[x^2-7, [-1,1], [x,0,-x,-1,-x,-2,0,7,-3*x,2*x,3,-3,x,8,0,0,0,-8,-2,3*x,0,-4,6*x,-7*x,-12]]];

f[190,2]=[
[x+1, [1,1,1], [-1,-1,-1,-1,0,-3,-7,-1,-5,-5,10,2,2,6,0,9,-7,-4,7,0,-9,-10,-2,-10,-18]],
[x+3, [-1,1,-1], [1,-3,-1,-5,-4,-1,-3,1,7,-3,-2,-2,-6,6,0,-13,-9,-12,-3,0,11,-2,-10,2,-2]],
[x-1, [-1,-1,-1], [1,1,1,-1,0,-1,-3,1,3,-3,2,-10,6,2,0,3,3,8,-7,12,-13,14,6,6,-10]],
[x^2+x-4, [1,-1,1], [-1,x,1,x,4,-3*x-2,x+6,-1,-3*x,3*x+2,2*x,-6,-4*x+2,-2*x-8,-4*x-4,x-2,-x,-2*x+6,x,-4*x,3*x+6,2*x,2*x+8,2,6]]];

f[191,2]=[
[x^2+x-1, [1], [x,-1,-x-1,-x-1,x,3*x-2,0,-3,x,-2*x-1,5*x,-4*x-1,2*x-3,-4*x+2,-7*x-2,5*x+3,-6*x+3,-4*x-10,6*x+3,5*x+4,-10,-6*x-5,-4*x+1,4*x-7,-12*x-10]],
[x^14-23*x^12+x^11+205*x^10-13*x^9-895*x^8+35*x^7+1993*x^6+103*x^5-2135*x^4-465*x^3+853*x^2+374*x+41, [-1], [x,-145153/114035*x^13+32777/114035*x^12+3364061/114035*x^11-874037/114035*x^10-30238352/114035*x^9+8179107/114035*x^8+133274007/114035*x^7-31876833/114035*x^6-300314067/114035*x^5+43961084/114035*x^4+328052329/114035*x^3+4557079/114035*x^2-27781803/22807*x-29013772/114035,-44318/114035*x^13-468/114035*x^12+996676/114035*x^11-67192/114035*x^10-8645332/114035*x^9+1110732/114035*x^8+36541877/114035*x^7-5434583/114035*x^6-78444822/114035*x^5+7801444/114035*x^4+81404284/114035*x^3+2785164/114035*x^2-6622972/22807*x-6986182/114035,148787/114035*x^13-73368/114035*x^12-3418414/114035*x^11+1764598/114035*x^10+30273378/114035*x^9-15485288/114035*x^8-130230738/114035*x^7+59339692/114035*x^6+282975218/114035*x^5-90112966/114035*x^4-296004726/114035*x^3+24031844/114035*x^2+24591132/22807*x+24473743/114035,-317749/114035*x^13+87501/114035*x^12+7255723/114035*x^11-2329051/114035*x^10-63902811/114035*x^9+21925031/114035*x^8+273703901/114035*x^7-87350029/114035*x^6-592597121/114035*x^5+131174117/114035*x^4+615896407/114035*x^3-20228013/114035*x^2-50237157/22807*x-50606546/114035,169418/114035*x^13-44707/114035*x^12-3873501/114035*x^11+1208972/114035*x^10+34207957/114035*x^9-11502337/114035*x^8-147297467/114035*x^7+46178043/114035*x^6+321976277/114035*x^5-69816889/114035*x^4-339639974/114035*x^3+10698151/114035*x^2+28096743/22807*x+28321417/114035,303228/114035*x^13-86692/114035*x^12-6907461/114035*x^11+2286332/114035*x^10+60603762/114035*x^9-21383092/114035*x^8-257968172/114035*x^7+84810468/114035*x^6+552823792/114035*x^5-127305184/114035*x^4-565213084/114035*x^3+21919331/114035*x^2+45132248/22807*x+45171892/114035,-24374/114035*x^13+60751/114035*x^12+524093/114035*x^11-1347011/114035*x^10-4102891/114035*x^9+11125891/114035*x^8+13791251/114035*x^7-41743519/114035*x^6-16672401/114035*x^5+68606947/114035*x^4-1099913/114035*x^3-38565303/114035*x^2+1095165/22807*x+3360679/114035,39921/22807*x^13-4913/22807*x^12-908173/22807*x^11+165777/22807*x^10+7973795/22807*x^9-1768332/22807*x^8-34094825/22807*x^7+7468373/22807*x^6+73831676/22807*x^5-10996563/22807*x^4-76780679/22807*x^3-206151/22807*x^2+31072819/22807*x+6279936/22807,29682/22807*x^13+685/22807*x^12-686101/22807*x^11+22129/22807*x^10+6157277/22807*x^9-428091/22807*x^8-27138725/22807*x^7+1952471/22807*x^6+61244391/22807*x^5-1415669/22807*x^4-66926471/22807*x^3-5457861/22807*x^2+28139201/22807*x+6245485/22807,141063/114035*x^13-75647/114035*x^12-3159481/114035*x^11+1847727/114035*x^10+27001997/114035*x^9-16450667/114035*x^8-110256147/114035*x^7+64132173/114035*x^6+221254747/114035*x^5-101220029/114035*x^4-206018409/114035*x^3+37764231/114035*x^2+15179661/22807*x+14145902/114035,167816/114035*x^13-78339/114035*x^12-3890397/114035*x^11+1890079/114035*x^10+34906349/114035*x^9-16634679/114035*x^8-153103989/114035*x^7+63896051/114035*x^6+342297969/114035*x^5-96779723/114035*x^4-371525683/114035*x^3+22562677/114035*x^2+31806965/22807*x+31900929/114035,109052/114035*x^13+26507/114035*x^12-2575419/114035*x^11-464297/114035*x^10+23816353/114035*x^9+3077627/114035*x^8-109413823/114035*x^7-11105973/114035*x^6+260698903/114035*x^5+27705669/114035*x^4-302507261/114035*x^3-44093711/114035*x^2+26348063/22807*x+29909653/114035,-280138/114035*x^13+148042/114035*x^12+6449266/114035*x^11-3507382/114035*x^10-57247602/114035*x^9+30400207/114035*x^8+246884882/114035*x^7-115445898/114035*x^6-537574467/114035*x^5+174767114/114035*x^4+562072664/114035*x^3-48526026/114035*x^2-46322030/22807*x-44936252/114035,44413/22807*x^13-4001/22807*x^12-1027023/22807*x^11+143499/22807*x^10+9225799/22807*x^9-1559153/22807*x^8-40759657/22807*x^7+6499787/22807*x^6+92503875/22807*x^5-8540911/22807*x^4-102328221/22807*x^3-3931897/22807*x^2+43929527/22807*x+9158370/22807,25141/22807*x^13-4644/22807*x^12-576566/22807*x^11+133248/22807*x^10+5113390/22807*x^9-1307936/22807*x^8-22147988/22807*x^7+5284450/22807*x^6+48781852/22807*x^5-7641746/22807*x^4-51814858/22807*x^3-71354/22807*x^2+21454568/22807*x+4298329/22807,-288041/114035*x^13+74239/114035*x^12+6530347/114035*x^11-2045004/114035*x^10-56933909/114035*x^9+19728029/114035*x^8+240272059/114035*x^7-80227011/114035*x^6-508867829/114035*x^5+123969793/114035*x^4+512822688/114035*x^3-26098387/114035*x^2-40586271/22807*x-40138814/114035,91692/114035*x^13-55918/114035*x^12-2079854/114035*x^11+1312828/114035*x^10+18066838/114035*x^9-11298098/114035*x^8-75378138/114035*x^7+42741082/114035*x^6+155735858/114035*x^5-65136836/114035*x^4-150328326/114035*x^3+21048734/114035*x^2+11398046/22807*x+11894778/114035,-114617/114035*x^13+42023/114035*x^12+2608979/114035*x^11-1061183/114035*x^10-22873173/114035*x^9+9603433/114035*x^8+97309388/114035*x^7-37139012/114035*x^6-208586263/114035*x^5+54811961/114035*x^4+213958491/114035*x^3-10397619/114035*x^2-17316845/22807*x-17374838/114035,-100183/22807*x^13+20339/22807*x^12+2277225/22807*x^11-586111/22807*x^10-19953983/22807*x^9+5783181/22807*x^8+84984919/22807*x^7-23589515/22807*x^6-182809691/22807*x^5+35234715/22807*x^4+188385635/22807*x^3-3414751/22807*x^2-75853459/22807*x-15581638/22807,-434984/114035*x^13+75986/114035*x^12+9940448/114035*x^11-2240576/114035*x^10-87698686/114035*x^9+22295216/114035*x^8+376794526/114035*x^7-90418514/114035*x^6-819471506/114035*x^5+129440302/114035*x^4+854677672/114035*x^3+3832312/114035*x^2-69246534/22807*x-71390906/114035,71381/22807*x^13-26410/22807*x^12-1630959/22807*x^11+662239/22807*x^10+14356585/22807*x^9-5978601/22807*x^8-61333635/22807*x^7+23196447/22807*x^6+132044173/22807*x^5-34685009/22807*x^4-135987867/22807*x^3+7150975/22807*x^2+54930894/22807*x+11083434/22807,-125336/114035*x^13+62999/114035*x^12+2931567/114035*x^11-1482349/114035*x^10-26554249/114035*x^9+12749639/114035*x^8+117602329/114035*x^7-47853341/114035*x^6-265348119/114035*x^5+70193743/114035*x^4+290139953/114035*x^3-13756507/114035*x^2-24918393/22807*x-24358519/114035,-22358/22807*x^13+14409/22807*x^12+503329/22807*x^11-336523/22807*x^10-4318057/22807*x^9+2879435/22807*x^8+17635771/22807*x^7-10837501/22807*x^6-35093081/22807*x^5+16573765/22807*x^4+31787135/22807*x^3-6073783/22807*x^2-11131333/22807*x-1936739/22807,-268579/114035*x^13-25284/114035*x^12+6156038/114035*x^11+147684/114035*x^10-54739511/114035*x^9+1657176/114035*x^8+238951126/114035*x^7-11972544/114035*x^6-533911836/114035*x^5+8674237/114035*x^4+576985892/114035*x^3+45838772/114035*x^2-47702944/22807*x-52190521/114035]]];

f[192,2]=[
[x+2, [1,1], [0,-1,-2,-4,-4,2,-6,4,0,-2,4,2,2,-4,8,-10,4,-6,-4,-16,-6,4,-12,10,-14]],
[x-2, [1,-1], [0,1,2,0,-4,2,2,4,-8,-6,8,-6,-6,-4,0,2,-4,2,4,8,10,-8,4,-6,2]],
[x+2, [1,-1], [0,1,-2,4,4,2,-6,-4,0,-2,-4,2,2,4,-8,-10,-4,-6,4,16,-6,-4,12,10,-14]],
[x-2, [-1,1], [0,-1,2,0,4,2,2,-4,8,-6,-8,-6,-6,4,0,2,4,2,-4,-8,10,8,-4,-6,2]]];

f[193,2]=[
[x^2+3*x+1, [1], [x,-1,2*x+3,-3*x-5,-3*x-3,-3,2*x,-7,3*x,x+6,3*x+5,3*x+5,x+6,3*x+3,x-3,-10*x-18,-4*x-6,3*x+11,-9*x-18,2*x-6,6*x+8,3*x+11,5*x-3,-3*x-15,-6*x-8]],
[x^5+2*x^4-5*x^3-7*x^2+7*x+1, [1], [x,x^4-5*x^2+x+1,-x^4+5*x^2-2*x-4,-x^4-x^3+3*x^2+x-1,x^4+3*x^3-3*x^2-8*x+1,-x^4-4*x^3+3*x^2+13*x-4,2*x^4+2*x^3-7*x^2-2*x-1,2*x^3-9*x+6,-x^4-2*x^3+2*x^2+5*x-2,-4*x^3+18*x-7,x^4-4*x^2+x-2,-2*x^4+2*x^3+10*x^2-11*x-2,x^4+x^3-4*x^2-5*x-1,4*x^4+4*x^3-16*x^2-5*x+9,2*x^4+2*x^3-9*x^2-5*x-3,-2*x^4-3*x^3+7*x^2+11*x+1,2*x^4-6*x^2+5*x-10,-x^3-4*x^2+8,-x^4+3*x^3+4*x^2-16*x+5,-x^4+2*x^3+3*x^2-15*x+5,-x^4-2*x^3+5*x^2+5*x-11,-3*x^3-x^2+14*x-5,-5*x^4-4*x^3+25*x^2+7*x-17,4*x^4-4*x^3-22*x^2+23*x+11,4*x^4+5*x^3-10*x^2-4*x-10]],
[x^8-2*x^7-9*x^6+18*x^5+21*x^4-44*x^3-11*x^2+27*x+1, [-1], [x,-1/7*x^7+4/7*x^6+8/7*x^5-34/7*x^4-16/7*x^3+69/7*x^2+6/7*x-18/7,-8/7*x^7+4/7*x^6+78/7*x^5-27/7*x^4-212/7*x^3+41/7*x^2+160/7*x+10/7,15/7*x^7-11/7*x^6-148/7*x^5+83/7*x^4+408/7*x^3-146/7*x^2-307/7*x+18/7,3/7*x^7-5/7*x^6-31/7*x^5+39/7*x^4+97/7*x^3-67/7*x^2-95/7*x+19/7,-4/7*x^7+2/7*x^6+39/7*x^5-17/7*x^4-99/7*x^3+38/7*x^2+52/7*x-9/7,23/7*x^7-15/7*x^6-219/7*x^5+110/7*x^4+564/7*x^3-187/7*x^2-383/7*x+15/7,-26/7*x^7+13/7*x^6+264/7*x^5-93/7*x^4-759/7*x^3+149/7*x^2+604/7*x+22/7,-19/7*x^7+13/7*x^6+187/7*x^5-93/7*x^4-514/7*x^3+142/7*x^2+380/7*x+36/7,26/7*x^7-13/7*x^6-250/7*x^5+79/7*x^4+661/7*x^3-79/7*x^2-485/7*x-57/7,-13/7*x^7+10/7*x^6+132/7*x^5-64/7*x^4-390/7*x^3+50/7*x^2+344/7*x+81/7,-3*x^7+2*x^6+29*x^5-15*x^4-77*x^3+25*x^2+57*x,39/7*x^7-23/7*x^6-389/7*x^5+171/7*x^4+1093/7*x^3-290/7*x^2-850/7*x-19/7,26/7*x^7-20/7*x^6-250/7*x^5+142/7*x^4+654/7*x^3-198/7*x^2-443/7*x-57/7,4/7*x^7-9/7*x^6-32/7*x^5+73/7*x^4+43/7*x^3-136/7*x^2+46/7*x+65/7,-22/7*x^7+11/7*x^6+225/7*x^5-69/7*x^4-653/7*x^3+55/7*x^2+517/7*x+108/7,-x^5+9*x^3+x^2-14*x-3,-8/7*x^7+4/7*x^6+57/7*x^5-20/7*x^4-44/7*x^3+27/7*x^2-99/7*x-39/7,1/7*x^7-11/7*x^6-8/7*x^5+97/7*x^4+16/7*x^3-195/7*x^2+8/7*x+46/7,9/7*x^7-1/7*x^6-93/7*x^5-9/7*x^4+284/7*x^3+79/7*x^2-264/7*x-69/7,23/7*x^7-15/7*x^6-219/7*x^5+103/7*x^4+564/7*x^3-131/7*x^2-390/7*x-69/7,29/7*x^7-11/7*x^6-274/7*x^5+62/7*x^4+688/7*x^3-34/7*x^2-440/7*x-122/7,8/7*x^7-11/7*x^6-85/7*x^5+90/7*x^4+268/7*x^3-181/7*x^2-251/7*x+102/7,-10/7*x^7+12/7*x^6+80/7*x^5-88/7*x^4-146/7*x^3+130/7*x^2+53/7*x+37/7,-37/7*x^7+22/7*x^6+359/7*x^5-173/7*x^4-942/7*x^3+355/7*x^2+614/7*x-92/7]]];

f[194,2]=[
[x, [-1,1], [1,0,4,-4,4,-4,6,-6,-4,0,0,-8,-2,-8,0,6,6,10,6,0,-10,8,-2,14,-1]],
[x^4-2*x^3-9*x^2+18*x+1, [1,-1], [-1,x,-1/2*x^3-1/2*x^2+9/2*x+1,1/2*x^3-4*x+5/2,-x+1,x^3-8*x+3,x^3-x^2-9*x+6,-x^3-x^2+7*x+6,-1/2*x^3+3/2*x^2+9/2*x-7,1/2*x^3-2*x-3/2,-x^2-3*x+9,-3/2*x^3+x^2+11*x-17/2,x^2-x-9,-x^3-x^2+10*x,x^3-8*x+1,-x^3+2*x^2+6*x-13,-2*x+2,-2*x^3+14*x-4,-x^3+x^2+9*x-4,x^3+x^2-9*x+4,2*x^3+x^2-16*x-3,-x^3-x^2+7*x+12,-x^3+8*x-7,-x^2+2*x+8,1]],
[x^4-2*x^3-9*x^2+18*x-7, [-1,1], [1,x,1/2*x^3-1/2*x^2-11/2*x+4,-1/2*x^3+4*x-1/2,-2*x^3+2*x^2+19*x-17,x^3-x^2-11*x+10,x^3-x^2-9*x+6,x^3-x^2-9*x+8,3/2*x^3-3/2*x^2-29/2*x+10,-1/2*x^3+2*x^2+4*x-21/2,-2*x^3+3*x^2+21*x-21,1/2*x^3-x^2-3*x+19/2,-x^2+x+5,-3*x^3+3*x^2+28*x-22,x^3-2*x^2-10*x+7,x^3-2*x^2-10*x+13,-2*x^3+2*x^2+20*x-22,4*x^3-4*x^2-42*x+38,-x^3-x^2+11*x+6,x^3-12*x+7,2*x^3-3*x^2-20*x+25,-x^3+x^2+9*x-6,-3*x^3+2*x^2+30*x-23,-x^2+2*x,-1]]];

f[195,2]=[
[x+1, [1,-1,1], [2,-1,1,3,-1,-1,-1,-2,-3,-2,-6,11,-5,4,-10,11,8,13,12,-5,10,-3,-12,-15,17]],
[x+1, [-1,1,1], [2,1,-1,-1,5,-1,-7,-6,3,2,2,7,9,-8,10,5,0,5,-4,9,-6,-3,-4,11,-11]],
[x+1, [-1,-1,-1], [-1,1,1,0,4,1,2,-4,8,-2,-8,6,-6,-4,-8,6,-12,-2,-4,0,-6,16,-4,10,18]],
[x-1, [-1,-1,-1], [2,1,1,-3,-5,1,5,2,-1,10,-2,-3,-9,-4,10,9,0,-11,-4,15,6,-11,8,-11,-9]],
[x^3-7*x-2, [1,1,-1], [x,-1,-1,-x^2+5,-x^2+5,1,x^2-2*x-5,-2*x+2,x^2-2*x-7,6,2*x+2,-x^2-2*x+9,-x^2+2*x+5,4*x,-2*x-6,x^2-2*x-1,2*x^2-2*x-12,3*x^2-2*x-11,2*x^2-2*x-8,-x^2+1,4*x-2,x^2+2*x-3,-2*x^2+2*x+12,x^2-2*x-1,x^2-2*x-13]]];

f[196,2]=[
[x-1, [-1,1], [0,1,3,0,-3,2,3,-1,3,-6,-7,-1,6,-4,-9,3,9,-1,-7,0,-1,-13,12,15,-10]],
[x+1, [-1,-1], [0,-1,-3,0,-3,-2,-3,1,3,-6,7,-1,-6,-4,9,3,-9,1,-7,0,1,-13,-12,-15,10]],
[x^2-8, [-1,1], [0,x,-1/2*x,0,4,-3/2*x,-1/2*x,-x,-4,8,0,-8,5/2*x,-4,-2*x,10,-5*x,5/2*x,0,0,5/2*x,8,5*x,-5/2*x,1/2*x]]];

f[197,2]=[
[x+2, [1], [-2,0,0,-3,4,-2,-8,-3,-3,7,-10,7,9,1,-11,10,0,5,-10,8,6,2,-7,-8,-2]],
[x^5-5*x^3+x^2+3*x-1, [1], [x,-x^4+4*x^2-x-2,3*x^4+x^3-14*x^2-3*x+5,-2*x^4-2*x^3+9*x^2+6*x-6,-3*x^4-2*x^3+15*x^2+7*x-10,2*x^4+3*x^3-9*x^2-9*x+3,-3*x^4-x^3+14*x^2-4,4*x^4+x^3-19*x^2-x+5,-3*x^4-x^3+13*x^2+3*x-4,-4*x^4-3*x^3+17*x^2+8*x-5,x^3-6*x+1,9*x^4+3*x^3-43*x^2-4*x+16,11*x^4+6*x^3-52*x^2-13*x+23,-2*x^4+11*x^2-3*x-12,-2*x^4+x^3+11*x^2-4*x-3,-6*x^4+30*x^2-5*x-14,2*x^4+3*x^3-12*x^2-11*x+8,-10*x^4-4*x^3+47*x^2+12*x-21,7*x^4+2*x^3-33*x^2-5*x+6,2*x^2+5*x-5,-11*x^4-8*x^3+50*x^2+22*x-23,4*x^4-2*x^3-16*x^2+11*x+3,11*x^4+5*x^3-52*x^2-15*x+20,10*x^4+5*x^3-47*x^2-16*x+23,-4*x^4+19*x^2-x-16]],
[x^10-15*x^8+x^7+78*x^6-7*x^5-165*x^4+15*x^3+123*x^2-9*x-26, [-1], [x,1/4*x^8+1/2*x^7-5/2*x^6-17/4*x^5+15/2*x^4+9*x^3-27/4*x^2-7/4*x+5/2,-1/2*x^8+5*x^6-3/2*x^5-13*x^4+7*x^3+11/2*x^2-9/2*x+1,-x^7-x^6+10*x^5+8*x^4-27*x^3-18*x^2+14*x+9,-1/2*x^9+1/4*x^8+13/2*x^7-3*x^6-109/4*x^5+15/2*x^4+85/2*x^3+3/4*x^2-75/4*x-3/2,1/2*x^9+1/2*x^8-7*x^7-11/2*x^6+67/2*x^5+20*x^4-121/2*x^3-27*x^2+53/2*x+11,-1/2*x^9+1/2*x^8+7*x^7-11/2*x^6-63/2*x^5+16*x^4+105/2*x^3-11*x^2-49/2*x+1,x^3+x^2-5*x-1,x^9+1/2*x^8-12*x^7-4*x^6+91/2*x^5+11*x^4-60*x^3-23/2*x^2+41/2*x+2,1/4*x^9+x^8-7/2*x^7-45/4*x^6+18*x^5+38*x^4-143/4*x^3-157/4*x^2+17*x+8,-3/4*x^8+1/2*x^7+19/2*x^6-25/4*x^5-75/2*x^4+19*x^3+205/4*x^2-43/4*x-31/2,-1/4*x^9+9/2*x^7+9/4*x^6-25*x^5-19*x^4+195/4*x^3+165/4*x^2-22*x-16,3/4*x^9+x^8-17/2*x^7-35/4*x^6+32*x^5+22*x^4-189/4*x^3-63/4*x^2+25*x+4,x^9-12*x^7+2*x^6+45*x^5-11*x^4-57*x^3+14*x^2+15*x-1,-x^9-x^8+11*x^7+9*x^6-38*x^5-29*x^4+47*x^3+42*x^2-19*x-17,-3/4*x^9-3/2*x^8+15/2*x^7+63/4*x^6-43/2*x^5-56*x^4+61/4*x^3+301/4*x^2+5/2*x-26,-1/2*x^9-x^8+7*x^7+21/2*x^6-35*x^5-32*x^4+137/2*x^3+59/2*x^2-34*x-14,1/4*x^9-3/2*x^8-7/2*x^7+67/4*x^6+27/2*x^5-53*x^4-59/4*x^3+177/4*x^2-1/2*x-5,-1/2*x^9-5/4*x^8+9/2*x^7+12*x^6-43/4*x^5-73/2*x^4+7/2*x^3+161/4*x^2+15/4*x-17/2,-1/2*x^9-5/4*x^8+7/2*x^7+9*x^6-3/4*x^5-11/2*x^4-47/2*x^3-191/4*x^2+63/4*x+63/2,-3/2*x^8+19*x^6-5/2*x^5-79*x^4+12*x^3+245/2*x^2-17/2*x-45,1/2*x^9+1/4*x^8-13/2*x^7-3*x^6+107/4*x^5+29/2*x^4-75/2*x^3-121/4*x^2+53/4*x+33/2,3/2*x^9+1/2*x^8-19*x^7-7/2*x^6+159/2*x^5+10*x^4-249/2*x^3-18*x^2+103/2*x+14,x^9+2*x^8-10*x^7-19*x^6+29*x^5+52*x^4-23*x^3-33*x^2+5*x,1/4*x^9+2*x^8-3/2*x^7-89/4*x^6-x^5+77*x^4+65/4*x^3-357/4*x^2-20*x+29]]];

f[198,2]=[
[x, [1,1,-1], [-1,0,0,2,1,2,6,2,0,6,-4,2,-6,-10,-12,12,-12,-10,8,-12,14,2,12,0,2]],
[x-4, [1,-1,1], [-1,0,4,-2,-1,4,2,0,6,-10,-8,-2,-2,4,2,-4,0,-8,-12,-2,-6,10,-4,-10,-2]],
[x+2, [1,-1,-1], [-1,0,-2,-4,1,-6,-2,4,-4,-6,0,6,6,4,12,-2,-12,-14,4,12,-6,-4,-4,-10,-14]],
[x+1, [-1,1,1], [1,0,0,2,-1,2,-6,2,0,-6,-4,2,6,-10,12,-12,12,-10,8,12,14,2,-12,0,2]],
[x-1, [-1,-1,-1], [1,0,0,2,1,-4,6,-4,-6,-6,8,-10,-6,8,6,0,0,8,-4,-6,2,14,12,6,14]]];

f[199,2]=[
[x^2+x-1, [-1], [x,2,3,0,2*x-2,-4*x-1,-2*x,6*x+4,-6*x-3,-4*x+2,-2*x-3,6*x,2*x+4,-2*x-11,2*x+3,4*x-5,4*x+2,8*x+9,2,2*x-2,-2*x+4,-6*x-9,-2*x+8,9,8*x+8]],
[x^4+3*x^3-4*x-1, [1], [x,-x^3-2*x^2+x+1,x^3+x^2-3*x-2,2*x^3+5*x^2-2*x-6,-2*x^3-4*x^2+3*x+2,-2*x^3-3*x^2+5*x+3,-2*x^3-3*x^2+4*x-1,3*x^3+5*x^2-4*x-3,-4*x^2-4*x+5,3*x^2+6*x-7,-x^3-4*x^2-x+4,-2*x^3-4*x^2+x+5,-2*x^3-2*x^2+2*x-7,4*x^3+9*x^2-6*x-9,-6*x^3-10*x^2+10*x+10,5*x^3+7*x^2-15*x-9,x^3+8*x^2+9*x-7,x^3-2*x^2-6*x+5,-x^2-6*x+2,-6*x^3-8*x^2+8*x-3,3*x^3+4*x^2-9*x-5,-2*x^3-8*x^2+3*x+10,5*x^3+10*x^2-4*x-5,9*x^3+16*x^2-14*x-15,5*x^3+14*x^2+3*x-13]],
[x^10-5*x^9-4*x^8+51*x^7-32*x^6-154*x^5+151*x^4+168*x^3-168*x^2-54*x+27, [-1], [x,-2/9*x^9+7/9*x^8+23/9*x^7-9*x^6-89/9*x^5+287/9*x^4+151/9*x^3-107/3*x^2-35/3*x+3,4/9*x^9-14/9*x^8-37/9*x^7+16*x^6+97/9*x^5-430/9*x^4-122/9*x^3+136/3*x^2+37/3*x-4,7/9*x^9-29/9*x^8-58/9*x^7+34*x^6+109/9*x^5-964/9*x^4-74/9*x^3+337/3*x^2+40/3*x-14,11/9*x^9-34/9*x^8-104/9*x^7+39*x^6+278/9*x^5-1070/9*x^4-313/9*x^3+362/3*x^2+68/3*x-14,-1/3*x^9+4/3*x^8+3*x^7-44/3*x^6-22/3*x^5+50*x^4+8*x^3-181/3*x^2-6*x+13,-17/9*x^9+55/9*x^8+164/9*x^7-64*x^6-473/9*x^5+1796/9*x^4+658/9*x^3-623/3*x^2-182/3*x+29,1/3*x^8+1/3*x^7-16/3*x^6-3*x^5+79/3*x^4+20/3*x^3-119/3*x^2-7*x+6,19/9*x^9-68/9*x^8-175/9*x^7+239/3*x^6+454/9*x^5-2260/9*x^4-569/9*x^3+797/3*x^2+178/3*x-36,-17/9*x^9+58/9*x^8+158/9*x^7-202/3*x^6-410/9*x^5+1880/9*x^4+466/9*x^3-646/3*x^2-128/3*x+30,10/9*x^9-23/9*x^8-112/9*x^7+83/3*x^6+400/9*x^5-820/9*x^4-569/9*x^3+296/3*x^2+103/3*x-13,-5/3*x^9+17/3*x^8+16*x^7-181/3*x^6-137/3*x^5+194*x^4+63*x^3-635/3*x^2-54*x+30,-4/9*x^9+11/9*x^8+34/9*x^7-32/3*x^6-61/9*x^5+202/9*x^4-28/9*x^3-35/3*x^2+44/3*x+6,28/9*x^9-89/9*x^8-268/9*x^7+103*x^6+742/9*x^5-2875/9*x^4-899/9*x^3+1009/3*x^2+214/3*x-53,-11/9*x^9+28/9*x^8+116/9*x^7-97/3*x^6-377/9*x^5+893/9*x^4+481/9*x^3-304/3*x^2-68/3*x+18,5/3*x^9-16/3*x^8-50/3*x^7+57*x^6+149/3*x^5-548/3*x^4-181/3*x^3+193*x^2+37*x-24,22/9*x^9-71/9*x^8-211/9*x^7+247/3*x^6+583/9*x^5-2287/9*x^4-677/9*x^3+259*x^2+139/3*x-35,5/3*x^9-6*x^8-52/3*x^7+200/3*x^6+173/3*x^5-682/3*x^4-266/3*x^3+787/3*x^2+67*x-45,1/3*x^9-2/3*x^8-16/3*x^7+10*x^6+88/3*x^5-142/3*x^4-194/3*x^3+70*x^2+52*x-13,-22/9*x^9+71/9*x^8+220/9*x^7-256/3*x^6-673/9*x^5+2530/9*x^4+956/9*x^3-315*x^2-244/3*x+50,16/9*x^9-47/9*x^8-157/9*x^7+55*x^6+433/9*x^5-1549/9*x^4-389/9*x^3+523/3*x^2+31/3*x-23,-10/9*x^9+32/9*x^8+94/9*x^7-116/3*x^6-229/9*x^5+1153/9*x^4+146/9*x^3-428/3*x^2-22/3*x+26,5/9*x^9-19/9*x^8-41/9*x^7+68/3*x^6+65/9*x^5-665/9*x^4+2/9*x^3+83*x^2+23/3*x-19,10/9*x^9-32/9*x^8-94/9*x^7+113/3*x^6+238/9*x^5-1081/9*x^4-191/9*x^3+383/3*x^2+25/3*x-15,-2/3*x^9+x^8+19/3*x^7-17/3*x^6-53/3*x^5-23/3*x^4+65/3*x^3+131/3*x^2-7*x-17]]];

f[200,2]=[
[x-2, [1,-1], [0,2,0,2,-4,4,0,-4,-2,2,0,4,2,-6,-6,-4,-12,-10,14,8,8,16,2,6,16]],
[x+3, [1,-1], [0,-3,0,2,1,4,5,1,-2,-8,10,-6,-3,4,4,6,8,10,-1,-12,3,6,-13,-9,-14]],
[x, [-1,1], [0,0,0,4,4,2,-2,4,-4,-2,-8,-6,-6,8,-4,-6,-4,-2,-8,0,6,0,16,-6,14]],
[x-3, [-1,1], [0,3,0,-2,1,-4,-5,1,2,-8,10,6,-3,-4,-4,-6,8,10,1,-12,-3,6,13,-9,14]],
[x+2, [-1,-1], [0,-2,0,-2,-4,-4,0,-4,2,2,0,-4,2,6,6,4,-12,-10,-14,8,-8,16,-2,6,-16]]];

f[201,2]=[
[x-1, [1,1], [1,-1,-3,-3,0,4,2,-2,-7,-8,-1,-3,-9,9,0,1,-9,14,-1,-4,11,-16,5,0,16]],
[x+2, [1,1], [-2,-1,0,0,-6,4,-7,-5,-1,1,-4,3,0,-6,9,10,3,2,-1,-16,-7,8,-4,-15,4]],
[x+1, [-1,-1], [-1,1,-1,-5,-4,-4,6,-2,-3,4,-7,5,-3,7,8,-5,3,-2,1,-12,-13,-8,1,4,-12]],
[x^3-3*x^2-x+5, [1,-1], [x,-1,-x^2+x+3,-x^2+2*x+2,-x^2+7,-x^2+1,3*x^2-4*x-7,-x^2-2*x+5,3*x^2-5*x-5,-4*x^2+4*x+12,4*x^2-6*x-5,3*x^2-2*x-12,2*x^2+x-8,-1,-3*x^2+6*x+11,2*x^2-7*x+2,5*x,5*x^2-6*x-13,1,-3*x^2+2*x+15,-2*x^2+1,2*x^2-2*x+4,-2*x^2+5*x,-3*x^2-2*x+11,-7*x^2+14*x+9]],
[x^5-8*x^3+13*x+2, [-1,1], [x,1,1/2*x^4-1/2*x^3-7/2*x^2+5/2*x+3,-1/2*x^4-1/2*x^3+5/2*x^2+3/2*x+1,x^3-5*x,x^3-5*x+2,-x^4-x^3+6*x^2+3*x-5,x^4-x^3-6*x^2+5*x+5,1/2*x^4+1/2*x^3-5/2*x^2-5/2*x,x^3+3*x^2-5*x-9,-1/2*x^4+1/2*x^3+9/2*x^2-7/2*x-5,-1/2*x^4+1/2*x^3+7/2*x^2+1/2*x-2,-1/2*x^4-1/2*x^3+7/2*x^2+1/2*x-5,1/2*x^4-1/2*x^3-9/2*x^2+11/2*x+7,-x^4+x^3+6*x^2-5*x-5,-3/2*x^4-3/2*x^3+13/2*x^2+15/2*x-1,3/2*x^4+1/2*x^3-15/2*x^2-5/2*x,x^4+2*x^3-5*x^2-10*x+2,-1,-2*x^4-x^3+14*x^2+3*x-10,-1/2*x^4-5/2*x^3+11/2*x^2+27/2*x-10,-2*x^2+6*x+12,-1/2*x^4-1/2*x^3-1/2*x^2-3/2*x+11,2*x^3-x^2-8*x+1,2*x^4-x^3-16*x^2+7*x+18]]];

f[202,2]=[
[x, [1,-1], [-1,0,2,1,4,0,5,1,6,-5,0,-8,-4,-5,6,3,-12,-1,2,-10,-16,-2,16,0,13]],
[x^3+3*x^2-1, [1,1], [-1,x,x^2+x-3,-3*x^2-8*x,x^2+3*x-3,3*x^2+10*x,-2*x^2-5*x-2,-2,2*x^2+6*x-4,-4*x^2-6*x+6,4*x^2+8*x,4*x^2+7*x-4,-4*x^2-10*x+4,-2,-6*x^2-18*x-2,2*x+2,-3*x^2-10*x+2,8*x+8,4*x^2+7*x-12,4*x^2+16*x+2,-2*x^2-10*x-4,2*x^2-2*x-6,-5*x^2-15*x-5,6*x^2+8*x-12,9*x^2+21*x-1]],
[x^4+x^3-8*x^2+x+8, [-1,1], [1,x,x^3+2*x^2-5*x-2,-x^3-2*x^2+4*x+3,-3*x^3-8*x^2+11*x+16,-x^2-2*x+4,3*x^3+9*x^2-11*x-19,3*x^3+7*x^2-12*x-15,-2*x^3-4*x^2+10*x+6,-x^3-x^2+6*x+1,4*x^3+12*x^2-12*x-28,x,2*x,-3*x^3-7*x^2+12*x+11,-4*x^3-10*x^2+18*x+18,3*x^3+7*x^2-14*x-7,-2*x^3-7*x^2+2*x+20,-3*x^3-7*x^2+16*x+13,2*x^3+6*x^2-9*x-18,4*x^3+8*x^2-16*x-10,-2*x^2-2*x+12,-8*x^3-22*x^2+30*x+42,7*x^3+16*x^2-31*x-20,2*x^2+8*x-8,-6*x^3-13*x^2+27*x+21]]];

f[203,2]=[
[x-1, [-1,1], [1,2,2,1,-4,-2,4,2,0,-1,-2,2,0,0,-10,6,12,-4,12,-8,-4,12,-16,12,12]],
[x+2, [-1,1], [-2,-1,-4,1,2,4,-2,5,9,-1,-8,8,-3,-6,-7,9,0,2,3,7,-1,0,14,15,3]],
[x+1, [-1,-1], [-1,-1,1,1,-5,-5,-4,-4,6,1,7,-10,0,-9,7,3,0,14,-6,8,-16,-9,16,-6,0]],
[x^2+x-4, [1,-1], [-1,x,x+2,-1,x,-x+2,-2*x+2,4,2*x,1,-3*x-4,6,2*x-6,-3*x,-3*x-4,-5*x-6,-4*x-4,6,-6*x-4,-8,2*x+10,x+4,4*x+4,2,-6*x+2]],
[x^2-2*x-1, [1,-1], [2,x,-2*x+2,-1,-2*x,2*x+2,-2*x+2,3*x-2,2*x-3,1,2,6*x-6,-x+6,-6,3*x+2,-8*x+9,2*x-10,-6*x+6,-6*x+11,7,-7*x+4,-2*x-2,4*x-2,-3*x+8,-3*x+14]],
[x^3+x^2-3*x-1, [1,1], [x,-x^2-x+1,x^2-4,-1,x^2-x-1,-5,-3*x^2-2*x+7,x^2+4*x-3,4*x+2,-1,2*x^2+x-6,x^2-2*x-7,-2*x^2-2*x+4,-x^2-3*x-1,-3*x^2-3*x+5,-x^2+2*x-2,5*x^2+4*x-13,-2*x^2-4,-5*x^2-10*x+13,-3*x^2-6*x+5,2*x^2+4*x-6,4*x^2+5*x,x^2-5,7*x^2+4*x-11,4*x^2+12*x-8]],
[x^5-2*x^4-8*x^3+14*x^2+9*x-6, [-1,1], [x,-1/2*x^4+1/2*x^3+7/2*x^2-7/2*x-2,1/2*x^4-1/2*x^3-7/2*x^2+5/2*x+3,1,-1/2*x^4-1/2*x^3+5/2*x^2+7/2*x+3,1/2*x^4+1/2*x^3-7/2*x^2-9/2*x+5,-x^3+5*x,x^2-7,-x^3-x^2+7*x+3,-1,-3/2*x^4+3/2*x^3+23/2*x^2-21/2*x-7,-x^3+9*x+2,x^4-6*x^2-3,-1/2*x^4-1/2*x^3+9/2*x^2+3/2*x-1,-1/2*x^4-3/2*x^3+7/2*x^2+17/2*x,1/2*x^4+1/2*x^3-5/2*x^2-5/2*x-6,x^4-7*x^2+2*x,-x^4-x^3+5*x^2+9*x+8,x^4+x^3-8*x^2-3*x+5,2*x^3-x^2-12*x+3,-x^4+2*x^3+8*x^2-12*x-1,-1/2*x^4+1/2*x^3+5/2*x^2-3/2*x-1,x^4-2*x^3-5*x^2+12*x-6,2*x^3+x^2-14*x-9,x^4-2*x^3-10*x^2+12*x+11]]];

f[204,2]=[
[x+1, [-1,1,1], [0,-1,-1,4,3,3,-1,1,3,-10,6,-4,5,-1,-2,-14,-6,8,-12,12,2,-14,6,16,0]],
[x-1, [-1,-1,-1], [0,1,1,0,5,-5,1,1,-3,2,2,-8,-5,-9,6,-6,6,-4,12,-12,-2,10,-2,12,16]]];

f[205,2]=[
[x-2, [1,-1], [-1,2,-1,2,6,2,2,-6,-4,10,0,-6,1,-4,-2,-14,12,-10,-2,-2,6,-2,0,10,10]],
[x-1, [-1,1], [1,2,1,2,0,-4,4,0,-8,2,0,-6,-1,8,2,8,-12,2,10,8,-6,-8,12,14,-8]],
[x, [-1,-1], [-1,0,1,-4,0,-2,-6,0,-8,6,0,6,1,4,-4,6,-4,14,-8,-12,-6,-4,4,-6,-6]],
[x^2+x-1, [1,1], [x,-1,-1,-3*x,2*x-3,3*x,2*x+1,-3*x-4,-3,-x-2,5*x-1,-x,-1,3*x,-x-1,2*x,x-8,-6*x-5,x+4,-12*x-9,3*x+11,7*x-5,-5*x-13,-2*x-1,-2*x+6]],
[x^2+x-3, [-1,-1], [x,-3,1,-x-2,-3,-3*x-2,2*x-1,3*x,2*x+3,x-2,-3*x-3,3*x,1,-5*x-4,x-9,2*x-4,-3*x-10,2*x-5,3*x-2,2*x+11,-3*x-3,-x+7,x-7,-8*x-5,6*x+6]],
[x^3-2*x^2-4*x+7, [1,-1], [x,-x^2+x+4,-1,x^2-7,-x^2-x+6,-x^2+3,3*x^2-x-10,x^2+1,x^2-3*x,x^2+2*x-5,-2*x^2-x+9,-x^2+2*x-3,1,x^2-5,3*x+1,-4*x^2-2*x+20,3*x^2-7,3*x^2-3*x-8,5*x^2-4*x-19,-x^2+x,2*x^2-3*x-7,3*x+1,-x+7,5*x^2-3*x-22,-2*x^2-4*x+8]],
[x^3-4*x-1, [-1,1], [x,x^2-x-2,1,-x^2+3,-x^2+x+4,-x^2+2*x+3,-x^2-x+2,-x^2+1,x^2-x+4,x^2-7,2*x^2+3*x-9,x^2+1,-1,-x^2-2*x+3,-4*x^2+5*x+13,-2*x^2+2,-x^2+13,-x^2+x-2,3*x^2+4*x-13,-x^2+3*x+2,4*x^2+x-7,-8*x^2+3*x+17,2*x^2-x-1,3*x^2+x-10,4*x^2+2*x-14]]];

f[206,2]=[
[x-2, [1,-1], [-1,2,4,0,-6,-2,2,-4,0,-6,8,8,2,2,-8,-12,12,10,-2,0,10,0,-4,2,14]],
[x^2-x-7, [1,-1], [-1,x,-x+1,x-2,4,-2*x+2,-x-1,6,-x-3,-6,8,x-4,-x-6,-x-1,2*x-2,-x+5,-2*x-4,2*x-4,-3*x+4,4*x+2,2*x-4,-3*x+6,-4,2*x-2,-x-9]],
[x^2+3*x-1, [1,-1], [-1,x,x-1,x+4,0,2*x+6,-x+1,2,3*x+3,6,-4,-3*x-4,-x+4,-3*x-7,-2*x-10,-3*x-9,-6*x-12,2*x,-7*x-12,6,2*x+12,x+4,-4*x+4,2*x+10,3*x+5]],
[x^4-2*x^3-5*x^2+12*x-5, [-1,1], [1,x,-x^3+5*x-2,2*x^3-x^2-12*x+9,-2*x^3+2*x^2+10*x-10,2*x^3-10*x+4,2*x^3-3*x^2-12*x+12,-2*x^2-2*x+8,-4*x^3+3*x^2+24*x-20,-4*x^3+2*x^2+22*x-16,-4*x^3+2*x^2+22*x-14,2*x^3+2*x^2-11*x,2*x^3+x^2-8*x-5,5*x^3-4*x^2-27*x+26,2*x^3-2*x^2-8*x+10,3*x^3-4*x^2-17*x+20,2*x^3+2*x^2-12*x,-4*x^3+2*x^2+24*x-18,2*x^3-2*x^2-11*x+16,-2*x^3+12*x-4,-2*x+4,4*x^3-5*x^2-22*x+31,2*x^3-2*x^2-6*x+12,2*x^2-4*x-4,-8*x^3+3*x^2+44*x-30]]];

f[207,2]=[
[x+1, [-1,-1], [-1,0,0,-2,-4,-6,-4,2,1,-2,4,2,-2,10,0,12,12,-6,-10,-8,-14,10,-12,16,-10]],
[x^2+2*x-1, [1,1], [x,0,-x-3,x-1,-2*x-2,0,x-5,3*x+1,-1,6*x+6,-6*x-6,2*x,-4*x-8,-3*x-9,4*x+10,-5*x-7,4*x+2,2*x+4,x+11,-4*x+4,-8*x-6,-7*x-9,2*x-2,5*x-1,-10]],
[x^2-2*x-1, [1,-1], [x,0,-x+3,-x-1,-2*x+2,0,x+5,-3*x+1,1,6*x-6,6*x-6,-2*x,-4*x+8,3*x-9,4*x-10,-5*x+7,4*x-2,-2*x+4,-x+11,-4*x-4,8*x-6,7*x-9,2*x+2,5*x+1,-10]],
[x^2-5, [-1,1], [x,0,-x+1,x+1,-4,-2*x,-x+5,x+5,-1,-2*x,-2*x-2,2*x,4*x+2,-3*x+1,4,x+3,4*x-4,2*x,-x+3,8,4*x-2,3*x+3,-4,x-1,2*x+4]],
[x^2-x-1, [-1,1], [x,0,2*x,-2*x+2,-2*x+4,3,-2*x-2,-2,-1,3,-6*x+3,2*x,-4*x+1,0,-2*x+1,4*x+2,4*x-4,8*x-2,-2*x-4,2*x-11,4*x+9,8*x-6,2*x+10,-4*x+8,-6*x+14]]];

f[208,2]=[
[x+1, [1,1], [0,-1,-1,-5,2,-1,-3,2,-4,-6,4,11,8,1,-9,-12,-6,0,-6,-7,-2,-12,16,-10,-10]],
[x, [-1,1], [0,0,2,2,2,-1,6,6,-8,2,-10,-6,-6,-4,2,6,10,-2,-10,-10,2,4,6,-6,2]],
[x-3, [-1,1], [0,3,-1,-1,2,-1,-3,-6,4,2,-4,3,0,5,-13,12,10,-8,2,5,-10,4,0,6,14]],
[x+3, [-1,-1], [0,-1,-3,1,-6,1,-3,-2,0,6,4,-7,0,1,-3,0,6,8,-14,3,2,-8,-12,-6,-10]],
[x^2+x-4, [1,-1], [0,x,x+2,-x,-2*x,1,-3*x-2,2*x,8,-2,-4,-3*x+2,2*x+2,-x-8,3*x+8,-2*x-2,2*x,-2*x+6,-2*x,-3*x,-6,-8,4*x+8,10,4*x+2]]];

f[209,2]=[
[x, [-1,-1], [0,1,-3,-4,1,2,0,1,3,-6,-7,-7,0,-10,0,6,3,-10,11,15,8,-16,0,9,-1]],
[x^2-2, [1,1], [x,-x-1,-1,-x-2,-1,3*x-2,x+2,-1,-3,-3*x-2,-x-5,5*x+3,-4*x+4,-4*x+6,2*x+6,-6*x+4,x-3,-5*x-4,-x-9,-x-11,-6*x+4,x-16,x+2,7*x-5,x+1]],
[x^5-2*x^4-6*x^3+10*x^2+5*x-4, [-1,1], [x,1/2*x^4-x^3-5/2*x^2+4*x+1,-1/2*x^3+7/2*x-1,-1/2*x^3+3/2*x+2,1,-1/2*x^4+7/2*x^2-2,x^4-x^3-5*x^2+3*x,-1,-x^4+x^3+8*x^2-5*x-9,3/2*x^4-x^3-17/2*x^2+2*x+6,-1/2*x^4+2*x^3+5/2*x^2-10*x+1,x^4-8*x^2+9,-5/2*x^4+3*x^3+27/2*x^2-13*x-4,-x^4+5/2*x^3+4*x^2-15/2*x+4,x^4-9*x^2+8,-x^4-x^3+9*x^2+5*x-14,-x^4-x^3+6*x^2+5*x-1,x^4-x^3-5*x^2+5*x-2,-5/2*x^4+3*x^3+25/2*x^2-9*x-1,-1/2*x^4+3*x^3+1/2*x^2-10*x+7,x^4-4*x^3-7*x^2+22*x+8,x^3-5*x+8,x^4-3/2*x^3-4*x^2+17/2*x-6,x^3-x^2-5*x-3,2*x^4-2*x^3-13*x^2+4*x+15]],
[x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30, [1,-1], [x,-1/2*x^4+7/2*x^2-x-2,1/2*x^5-9/2*x^3+7*x+3,-1/4*x^6+3*x^4-37/4*x^2+13/2,-1,-1/4*x^6-1/2*x^5+5/2*x^4+9/2*x^3-27/4*x^2-9*x+7/2,x^4-x^3-9*x^2+7*x+12,1,1/2*x^6-5*x^4+21/2*x^2+2*x,-1/2*x^4+9/2*x^2-x-9,1/4*x^6+1/2*x^5-5/2*x^4-9/2*x^3+23/4*x^2+9*x+7/2,-x^5-x^4+10*x^3+8*x^2-21*x-13,-1/4*x^6-1/2*x^5+5/2*x^4+7/2*x^3-27/4*x^2-2*x+3/2,-1/2*x^6-1/2*x^5+5*x^4+9/2*x^3-21/2*x^2-9*x-1,x^4-2*x^3-9*x^2+14*x+12,-x^5-x^4+9*x^3+9*x^2-16*x-18,2*x^5+x^4-19*x^3-6*x^2+37*x+9,x^4-x^3-9*x^2+9*x+14,1/4*x^6-1/2*x^5-5/2*x^4+9/2*x^3+15/4*x^2-9*x+7/2,-1/2*x^6-x^5+9/2*x^4+9*x^3-6*x^2-17*x-9,1/2*x^6+x^5-5*x^4-7*x^3+27/2*x^2+6*x-7,x^3-9*x+8,-1/2*x^6+1/2*x^5+7*x^4-11/2*x^3-57/2*x^2+12*x+27,-1/2*x^6-x^5+4*x^4+8*x^3-3/2*x^2-13*x-18,x^5+2*x^4-10*x^3-17*x^2+27*x+23]]];

f[210,2]=[
[x+1, [1,1,1,1], [-1,-1,-1,-1,-4,-2,-6,0,-8,10,-8,2,-2,8,4,10,4,-6,0,-12,-6,-8,-4,14,2]],
[x-1, [1,-1,-1,-1], [-1,1,1,1,0,2,-6,8,0,6,-4,-10,-6,-4,0,-6,-12,-10,-4,12,-10,8,12,-6,-10]],
[x+1, [-1,1,-1,-1], [1,-1,1,1,4,-2,2,-4,-8,6,-8,-2,2,-12,-8,6,4,-2,12,8,-14,0,12,2,10]],
[x+1, [-1,-1,1,-1], [1,1,-1,1,0,2,-6,-4,0,-6,-4,2,6,8,-12,6,-12,2,8,0,14,-16,12,6,14]],
[x-1, [-1,-1,-1,1], [1,1,1,-1,-4,-2,2,4,-8,-2,0,6,-6,-4,0,-10,12,14,-12,-8,10,16,-12,10,2]]];

f[211,2]=[
[x^2-x-1, [-1], [x,x+1,-2*x+2,-x+1,-3,-2*x+5,-x+6,-3*x-1,2*x+3,2*x-1,5*x-8,8*x-6,-3,9,-x+1,x+6,6*x-3,-3,-12,-10*x+2,-5*x-1,6*x-8,4*x+2,-3*x+9,3*x-1]],
[x^3-4*x+1, [1], [x,-x-1,-x^2-x+1,x-1,-3,2*x^2-5,-x^2-3,x^2-2,-x^2+x+8,-x^2+x-4,-3*x^2+9,x^2-x-1,-x^2-5*x+2,-4*x+1,x^2+2*x-4,x^2-3,3*x^2-x-12,-3*x^2-3*x+8,0,5*x^2+5*x-17,-x+1,-7*x^2-3*x+17,2*x^2-2*x+4,4*x^2+7*x-9,-4*x^2-3*x+13]],
[x^3+2*x^2-x-1, [1], [x,-x^2-x+1,x^2+x-4,-x^2-4*x,3*x^2+7*x-2,2*x^2+3*x-3,x^2+3*x+2,-2*x^2-x+1,-x-7,-7*x^2-12*x+4,-x^2-5*x-3,-2*x^2+x+4,-4*x^2-6*x-2,x^2+4*x+2,x^2-x+1,5*x^2+5*x-10,-7*x^2-10*x+9,4*x^2+4*x-13,-x^2+x+5,5*x^2+9*x+2,-6*x^2-2*x+10,8*x^2+14*x-4,5*x^2+9*x-11,-2*x^2-x-7,-8*x^2-13*x+5]],
[x^9+x^8-14*x^7-11*x^6+66*x^5+36*x^4-123*x^3-38*x^2+72*x+8, [-1], [x,9/58*x^8+15/58*x^7-2*x^6-157/58*x^5+235/29*x^4+222/29*x^3-637/58*x^2-161/29*x+62/29,7/116*x^8+31/116*x^7-1/2*x^6-309/116*x^5+41/58*x^4+183/29*x^3+91/116*x^2-93/58*x+8/29,-13/58*x^8-41/58*x^7+2*x^6+433/58*x^5-101/29*x^4-630/29*x^3-111/58*x^2+500/29*x+78/29,3/29*x^8-19/58*x^7-3/2*x^6+112/29*x^5+381/58*x^4-374/29*x^3-280/29*x^2+665/58*x+167/29,3/116*x^8+5/116*x^7-33/116*x^5-43/29*x^4+8/29*x^3+271/116*x^2+7/29*x+49/29,-5/29*x^8-18/29*x^7+2*x^6+200/29*x^5-216/29*x^4-614/29*x^3+341/29*x^2+456/29*x-172/29,33/116*x^8+55/116*x^7-3*x^6-595/116*x^5+223/29*x^4+465/29*x^3-151/116*x^2-416/29*x-99/29,7/29*x^8+2/29*x^7-3*x^6-19/29*x^5+314/29*x^4+65/29*x^3-286/29*x^2-128/29*x-84/29,-4/29*x^8+3/29*x^7+2*x^6-43/29*x^5-283/29*x^4+170/29*x^3+499/29*x^2-192/29*x-68/29,17/58*x^8+9/58*x^7-3*x^6-13/58*x^5+228/29*x^4-180/29*x^3-301/58*x^2+350/29*x+72/29,25/58*x^8+16/29*x^7-9/2*x^6-275/58*x^5+703/58*x^4+259/29*x^3-313/58*x^2-105/58*x-121/29,-2/29*x^8+16/29*x^7+x^6-210/29*x^5-98/29*x^4+839/29*x^3+3/29*x^2-995/29*x+140/29,-35/116*x^8-39/116*x^7+7/2*x^6+385/116*x^5-669/58*x^4-277/29*x^3+1285/116*x^2+523/58*x-214/29,-83/116*x^8-177/116*x^7+7*x^6+1725/116*x^5-444/29*x^4-1101/29*x^3-383/116*x^2+744/29*x+365/29,-2/29*x^8+16/29*x^7+x^6-210/29*x^5-127/29*x^4+810/29*x^3+177/29*x^2-850/29*x-5/29,-12/29*x^8+9/29*x^7+6*x^6-100/29*x^5-791/29*x^4+307/29*x^3+1178/29*x^2-228/29*x-233/29,-21/58*x^8-35/58*x^7+4*x^6+347/58*x^5-384/29*x^4-431/29*x^3+1003/58*x^2+163/29*x-164/29,-1/58*x^8-21/58*x^7-x^6+185/58*x^5+338/29*x^4-160/29*x^3-1695/58*x^2+34/29*x+238/29,79/116*x^8+151/116*x^7-15/2*x^6-1565/116*x^5+1341/58*x^4+1158/29*x^3-2105/116*x^2-2135/58*x-34/29,-17/29*x^8-9/29*x^7+7*x^6+42/29*x^5-746/29*x^4+157/29*x^3+997/29*x^2-468/29*x-289/29,-16/29*x^8-5/58*x^7+13/2*x^6+2/29*x^5-1249/58*x^4+71/29*x^3+488/29*x^2-231/58*x+163/29,-22/29*x^8-56/29*x^7+8*x^6+590/29*x^5-701/29*x^4-1704/29*x^3+700/29*x^2+1264/29*x-55/29,69/58*x^8+115/58*x^7-13*x^6-1107/58*x^5+1183/29*x^4+1354/29*x^3-2351/58*x^2-722/29*x+282/29,19/58*x^8+51/58*x^7-4*x^6-557/58*x^5+422/29*x^4+836/29*x^3-797/58*x^2-617/29*x-172/29]]];

f[212,2]=[
[x-2, [-1,1], [0,2,2,0,-4,-2,2,2,-2,2,2,10,2,-4,-12,-1,-12,10,-2,6,10,10,-6,-10,14]],
[x+1, [-1,-1], [0,-1,-2,-2,2,-7,-3,5,-3,9,-8,-3,2,4,10,1,-2,-10,4,-9,-6,5,-11,-10,-3]],
[x^3+3*x^2-3*x-7, [-1,1], [0,x,-x^2-2*x+3,x^2+2*x-1,-x^2+7,5,-2*x-1,x^2-x-7,-x^2-3*x+1,x^2+2*x-6,x^2+4*x-3,x^2-8,2*x^2+2*x-10,-x^2-4*x+1,2*x^2+4*x,-1,2*x^2+2*x-10,-x^2-4*x+1,x^2-2*x-9,2*x^2+3*x-8,-x^2-2*x+11,-4*x^2-3*x+18,x^2+x-5,-4*x^2-4*x+14,x^2+6*x-2]]];

f[213,2]=[
[x-1, [-1,1], [1,1,2,2,0,-2,0,0,0,-2,-10,-6,0,-4,12,-4,12,10,2,-1,-10,4,-4,6,-2]],
[x^2+x-1, [1,1], [x,-1,-x,-3,-2*x-3,3*x-1,2*x+1,-2*x-5,5*x+1,3*x+3,-2,-9*x-3,x+8,9*x+3,-7*x-6,-5*x-4,6*x+3,-6*x-3,-5*x-11,-1,-2*x-6,5*x+2,-3,-6*x+3,9*x]],
[x^2-x-3, [-1,1], [x,1,-x,-1,3,-x-1,3,-2*x-1,-3*x+3,x+3,2,x-1,3*x,3*x+5,3*x-6,5*x,-3,2*x-13,3*x+5,-1,-6*x+2,-x-4,2*x+9,3,5*x+2]],
[x^2+3*x+1, [-1,-1], [x,1,-x-4,2*x+1,-2*x-7,-3*x-5,2*x+1,2*x-1,3*x+3,-7*x-9,4*x+10,5*x+7,-x-10,3*x-3,3*x+12,x+6,-10*x-13,5,-11*x-19,1,-2*x-2,-x-4,2*x-3,4*x-1,-7*x-8]],
[x^4-3*x^3-2*x^2+7*x+1, [1,-1], [x,-1,-x^2+2*x+1,-x^2+x+4,-x^3+x^2+3*x+1,-x^3+2*x^2+x,2*x^3-5*x^2-5*x+6,3*x^3-5*x^2-9*x+7,-x^3+4*x^2+x-8,-x^3+4*x^2-3*x-6,-x^3-2*x^2+8*x+7,-x^3+2*x^2+3*x+2,-x^3+3*x^2+2*x-10,x^3-5*x+4,-2*x^3+7*x^2-9,3*x^3-7*x^2-6*x+8,3*x^3-5*x^2-11*x+9,x^3-x^2+x-3,2*x^2-x+3,1,-2*x^3+6*x^2+4*x-10,-4*x^3+5*x^2+14*x-3,-x^3-x^2+x+13,x^3+x^2-11*x-5,2*x^3-x^2-8*x-3]]];

f[214,2]=[
[x-1, [1,1], [-1,1,-4,-2,-3,-1,6,1,-7,-6,4,-9,-5,12,8,7,-6,1,-10,6,-4,-7,4,-15,-6]],
[x+2, [1,1], [-1,-2,-1,4,-6,-4,-6,-2,5,0,-2,0,-11,-9,11,10,-3,-8,5,0,8,11,4,-15,-12]],
[x-1, [-1,1], [1,1,0,2,-3,-1,6,-7,9,-6,-4,-1,3,8,0,-9,6,-7,14,6,-4,-7,12,9,14]],
[x+2, [-1,-1], [1,-2,-3,-4,-2,4,-2,-2,1,-4,-10,12,-11,1,-1,6,-5,4,-5,-12,-16,7,-16,9,12]],
[x^2+2*x-2, [1,-1], [-1,x,x+3,x,-x,-x,-x+4,2,-x-1,-x+4,-4*x-6,-4,4*x+7,-9,x+1,-2*x+2,-2*x+3,-5*x-4,-4*x+1,-7*x-4,-x-6,9*x+7,-5*x-14,6*x+9,-9*x-6]],
[x^2-2*x-2, [-1,1], [1,x,-x+1,-x,-x+4,-x,x-4,2,-x-5,3*x,2,4*x-8,4*x-1,-7,x+5,-6*x+6,6*x-3,-x,-1,-5*x+8,-7*x+6,5*x+3,3*x+6,-6*x+9,x-2]]];

f[215,2]=[
[x, [1,1], [0,0,-1,-2,-1,-1,-3,-2,-1,4,3,-8,5,-1,0,-5,12,-4,-3,6,-8,0,-9,-6,-17]],
[x^3+2*x^2-3*x-3, [-1,1], [x,x+1,1,-x^2-2*x+1,-x^2+x+7,-2*x-2,-2*x+2,-2*x^2-4*x+6,2*x^2+4*x-6,2*x+2,x^2+1,x^2-x-1,2*x^2+x-1,-1,2*x^2-14,2*x+4,4*x^2+3*x-7,-4*x^2-6*x+6,2*x^2+4*x-6,4*x^2+2*x-14,-2*x^2-x+7,-3*x^2-5*x+1,6*x,-4*x^2-6*x+12,4*x^2+8*x-6]],
[x^5-2*x^4-7*x^3+13*x^2+5*x-4, [-1,1], [x,-x^3+5*x,1,x^4-x^3-6*x^2+6*x+2,x^3-6*x-1,-x^4+5*x^2+x+3,x^4-7*x^2+x+1,-2*x^4+14*x^2-2*x-10,-x^4+5*x^2-x+3,-2*x^4+2*x^3+14*x^2-12*x-8,2*x^4+x^3-13*x^2-5*x+7,-x^4+x^3+7*x^2-5*x-4,x^4-x^3-5*x^2+8*x-3,-1,-2*x^2-2*x+8,-x^4+7*x^2-x-9,-x^3+5*x,-2*x^4+10*x^2+2*x+8,-x^4+2*x^3+7*x^2-15*x+1,-4*x^4+2*x^3+26*x^2-14*x-10,x^3-2*x^2-5*x+8,-x^4+x^3+7*x^2-7*x+4,x^4-5*x^2+3*x-5,2*x^4-2*x^3-14*x^2+10*x+14,x^4-9*x^2+x+19]],
[x^6-3*x^5-5*x^4+17*x^3+3*x^2-17*x-3, [1,-1], [x,x^5-2*x^4-6*x^3+9*x^2+6*x-2,-1,-2*x^5+3*x^4+13*x^3-12*x^2-16*x+2,-3*x^5+3*x^4+23*x^3-9*x^2-38*x-9,-2*x+2,4*x^5-4*x^4-30*x^3+12*x^2+48*x+12,2*x^5-2*x^4-16*x^3+6*x^2+28*x+8,-2*x^5+4*x^4+12*x^3-16*x^2-14*x,2*x^5-2*x^4-16*x^3+8*x^2+26*x,2*x^5-3*x^4-15*x^3+14*x^2+24*x-4,-x^5+x^4+9*x^3-5*x^2-16*x+5,3*x^5-2*x^4-24*x^3+x^2+44*x+18,1,-2*x^5+2*x^4+14*x^3-6*x^2-18*x-6,-4*x^5+6*x^4+26*x^3-26*x^2-30*x+6,-3*x^5+2*x^4+24*x^3-3*x^2-40*x-18,-2*x^5+4*x^4+14*x^3-18*x^2-22*x+2,2*x^3-2*x^2-10*x+8,-4*x^5+6*x^4+28*x^3-26*x^2-40*x+6,-x^5+2*x^4+6*x^3-7*x^2-6*x+2,3*x^5-3*x^4-23*x^3+5*x^2+42*x+17,4*x^5-8*x^4-24*x^3+36*x^2+22*x-12,4*x^5-2*x^4-34*x^3+2*x^2+62*x+18,4*x^5-6*x^4-28*x^3+26*x^2+38*x+2]]];

f[216,2]=[
[x+4, [1,1], [0,0,-4,-3,-4,1,4,-1,-4,0,-4,-9,0,-8,12,8,-4,-5,11,-8,1,-5,-8,-12,5]],
[x+1, [1,-1], [0,0,-1,3,5,4,-8,2,2,6,-7,-6,-6,-2,6,5,-4,-8,-10,-8,1,16,-11,6,-1]],
[x-1, [-1,1], [0,0,1,3,-5,4,8,2,-2,-6,-7,-6,6,-2,-6,-5,4,-8,-10,8,1,16,11,-6,-1]],
[x-4, [-1,1], [0,0,4,-3,4,1,-4,-1,4,0,-4,-9,0,-8,-12,-8,4,-5,11,8,1,-5,8,12,5]]];

f[217,2]=[
[x^3+3*x^2-3, [1,1], [-x^2-2*x,x,x^2-3,-1,x^2+3*x-2,-3*x^2-4*x+4,-x^2-2*x-1,x^2+2*x,-2*x^2-3*x-3,-2*x^2-5*x-4,-1,-2*x^2-5*x+1,3*x+8,3*x^2+7*x-3,-2*x^2+2*x+5,x^2+4*x-2,4*x^2+x-12,x^2-x-3,-5*x^2-7*x+2,3*x^2+10*x-2,7*x^2+11*x-13,-2*x^2-2*x+8,9*x^2+13*x-13,10*x^2+17*x-6,-5*x^2-16*x+2]],
[x^3+3*x^2-1, [-1,-1], [-x^2-2*x,x,x^2+2*x-3,1,-3*x^2-9*x,3*x^2+6*x-4,-x^2-2*x-3,-3*x^2-6*x+2,2*x^2+7*x-3,-3*x,1,2*x^2+5*x+1,2*x^2+7*x-6,x^2+7*x+3,2*x^2+4*x-9,3*x^2+6*x,2*x^2+13*x+6,x^2+7*x+3,-x^2-x+4,-x^2-2*x-6,-x^2-x+1,2*x^2+2*x-8,-7*x^2-23*x-3,2*x^2+x-6,-x^2-4*x-8]],
[x^4-5*x^2+x+1, [-1,1], [x,-x^3+5*x,-x+1,1,-x^2-2*x+3,x^3-x^2-5*x+3,2*x^2+x-3,3*x^3+x^2-13*x+1,2*x^3+x^2-9*x+4,x^3+2*x^2-3*x-6,-1,-6*x^3-x^2+25*x-2,x^3-x+2,x^3-4*x-3,x^3-x^2-6*x+8,5*x^3-x^2-21*x+7,-3*x^3-2*x^2+9*x+4,-x^3-2*x^2+8*x+3,3*x^2-4*x-11,-3*x^3-x^2+17*x-1,3*x^3-2*x^2-14*x+5,2*x^2+4*x-6,5*x^3+2*x^2-22*x+5,-3*x^3-2*x^2+15*x+8,3*x^3-x^2-13*x+1]],
[x^5-3*x^4-5*x^3+16*x^2+6*x-19, [1,-1], [x,-x^3+2*x^2+3*x-4,x^4-2*x^3-5*x^2+6*x+6,-1,-x^4+2*x^3+4*x^2-5*x-2,-x^4+x^3+6*x^2-2*x-8,2*x^3-4*x^2-7*x+9,2*x^4-3*x^3-11*x^2+9*x+11,-x^2-x+8,-2*x^4+x^3+16*x^2-3*x-26,1,-x^4+4*x^3+2*x^2-12*x-3,-2*x^4+x^3+16*x^2-3*x-30,x^3-6*x^2+19,-x^4+x^3+10*x^2-5*x-13,-x^3+3*x^2+7*x-7,x^3-4*x^2+x+10,x^3-6*x^2-2*x+19,-x^2+4*x+1,2*x^4+x^3-19*x^2-5*x+37,x^3+2*x^2-4*x-11,-x^4+4*x^3+3*x^2-17*x+1,-x^4+3*x^3-x^2-9*x+16,x^4+x^3-9*x^2-2*x+9,2*x^4-3*x^3-13*x^2+9*x+19]]];

f[218,2]=[
[x+2, [-1,-1], [1,-2,-3,-4,3,-4,-6,5,3,-3,-4,-4,0,-10,-3,12,12,-7,-4,-12,-1,-16,6,-3,-19]],
[x^2+4*x+2, [1,1], [-1,x,-x-1,-x-4,2*x+3,2*x,x,-2*x-9,-5*x-11,3*x+9,3*x+4,3*x+4,5*x+14,-3*x-8,x+5,2*x+8,-6*x-14,-3*x-5,2*x+6,-x,-2*x-17,8*x+18,-6*x-10,7,-6*x-3]],
[x^2+2*x-2, [-1,1], [1,x,-x-1,x+4,1,-2*x,-x,2*x+1,-x-5,x-7,-3*x,3*x+4,-x+2,x-4,3*x+3,-2*x-4,-6,x+3,-8*x-10,5*x+8,-6*x-1,2*x+6,2*x+10,6*x+11,2*x+13]],
[x^2-3*x+1, [-1,1], [1,x,-2*x+4,-2,-2*x,3*x-3,-4*x+4,0,3*x-3,-2*x+8,6*x-12,-x+2,8*x-10,3*x-3,-3*x,5*x-6,-8*x+12,-6*x+16,-4*x+14,-4*x-2,-3*x+6,7*x-8,-3*x-9,11*x-14,-x+17]],
[x^3-3*x^2-3*x+8, [1,-1], [-1,x,-x^2+x+3,2,x^2-x-3,x^2-2*x,0,-x^2-x+7,-3*x+3,-x^2+x+3,-2*x^2+4*x+6,-3*x+2,-6,-x^2+2*x+4,x^2-4*x-3,2*x^2+x-12,4*x^2-4*x-12,3*x^2-3*x-13,-2*x^2-2*x+12,-6,-3*x^2+6*x+11,-3*x+8,-x^2+4*x+6,-x^2-2*x+9,4*x^2-5*x-15]]];

f[219,2]=[
[x-1, [1,1], [1,-1,-4,2,-4,-2,0,-4,0,8,6,-2,-10,-6,-8,-12,4,-14,8,-8,-1,8,16,-14,-2]],
[x+2, [1,1], [-2,-1,-1,2,-4,-2,-3,-1,0,-10,-6,1,2,6,7,3,1,-5,-13,10,-1,-1,-11,-2,-11]],
[x, [-1,-1], [0,1,-3,-4,0,-4,3,-1,6,-6,-10,-7,0,2,-3,9,-9,-1,-13,12,1,11,15,-18,5]],
[x^4-x^3-6*x^2+4*x+4, [1,-1], [x,-1,-1/2*x^3+1/2*x^2+2*x+1,-x^2+x+2,-x^2-x+4,-x^3+5*x+2,3/2*x^3-1/2*x^2-7*x+3,x^3+x^2-7*x-3,-x^3+3*x+2,x^3-5*x+2,x^3+x^2-6*x-6,2*x^3-2*x^2-11*x+3,-x^3-2*x^2+5*x+8,-x^3+x^2+8*x-6,1/2*x^3+3/2*x^2-4*x-3,3/2*x^3+3/2*x^2-7*x-3,3/2*x^3-1/2*x^2-5*x+3,x^3-2*x^2-2*x+11,-x^3+4*x-5,-2*x^3+3*x^2+13*x-4,1,2*x^3-2*x^2-11*x+5,-1/2*x^3+5/2*x^2+4*x-5,-x^3+x^2+10*x-2,2*x^3-3*x^2-6*x+9]],
[x^6+x^5-9*x^4-5*x^3+20*x^2+4*x-4, [-1,1], [x,1,-1/2*x^5-1/2*x^4+7/2*x^3+3/2*x^2-5*x+1,1/2*x^5+x^4-7/2*x^3-5*x^2+5*x+4,1/2*x^5-11/2*x^3+13*x,x^3-5*x+2,-1/2*x^5-1/2*x^4+9/2*x^3+3/2*x^2-10*x+1,x^3+x^2-5*x-1,x^3+2*x^2-5*x-6,-x^4-x^3+7*x^2+3*x-8,1/2*x^5-x^4-13/2*x^3+5*x^2+16*x,-x^5-x^4+8*x^3+4*x^2-13*x+1,x^3+4*x^2-3*x-12,3/2*x^5+3*x^4-19/2*x^3-15*x^2+14*x+8,x^5+5/2*x^4-6*x^3-27/2*x^2+9*x+7,1/2*x^5-1/2*x^4-13/2*x^3+7/2*x^2+16*x-5,-x^5-1/2*x^4+9*x^3+3/2*x^2-20*x-1,x^4-4*x^2+6*x-1,-x^5-x^4+9*x^3+6*x^2-16*x-5,-x^5-3*x^4+6*x^3+15*x^2-9*x-8,-1,-x^5-3*x^4+6*x^3+16*x^2-9*x-9,3/2*x^4+x^3-13/2*x^2-x-3,x^5+x^4-9*x^3-5*x^2+16*x+6,-x^5-2*x^4+5*x^3+9*x^2-2*x-3]]];

f[220,2]=[
[x+2, [-1,-1,1], [0,-2,1,-4,-1,-4,0,-4,-6,-6,8,2,6,8,6,-6,-12,2,-10,-12,-16,8,0,6,14]],
[x-2, [-1,-1,-1], [0,2,1,0,1,0,-4,-4,6,2,0,-6,-10,4,10,2,-4,-14,2,4,-4,-8,12,6,6]]];

f[221,2]=[
[x-1, [1,-1], [1,2,2,2,-6,-1,1,4,6,-6,-2,2,-6,0,-4,14,4,2,0,-10,10,14,12,-18,2]],
[x+1, [1,-1], [-1,0,4,-2,6,-1,1,8,4,-6,-2,-8,0,4,0,-6,0,-10,-8,2,0,0,-4,-2,-4]],
[x^2+x-1, [1,1], [x,x-1,-2*x-1,-x-1,3*x,-1,-1,3*x-2,-2*x+2,2*x-3,-7,4*x+7,-4*x,-11,2*x+2,x-1,-2*x-5,3*x+3,-10*x-6,4*x+10,8*x-1,-4*x-3,-2*x-5,-3*x+6,-9*x-1]],
[x^2-5, [1,-1], [x,-x+1,x-1,2,2,-1,1,-2*x+2,-x-3,-6,2*x,-x+5,-x+5,2*x-6,2*x-2,-2*x,2*x-2,2*x+4,4*x,4*x+2,3*x-7,x+7,4*x+4,-2,x-9]],
[x^2+x-5, [1,-1], [x,x+1,-1,-x-3,x+2,-1,1,-x+2,-2*x+2,9,2*x+5,-2*x-5,0,9,-2*x-2,x-5,-2*x+3,-x+9,-2*x-10,2,-2*x+3,2*x-3,-2*x-1,5*x-2,-5*x+1]],
[x^3-4*x+1, [-1,-1], [x,-x-1,-x^2-x+2,x-3,x^2-5,1,1,-x^2-3,4*x^2+2*x-10,-x^2+x+4,-3*x^2-x+6,x^2-5*x-4,-2*x^2+2*x+6,-3*x^2-x+10,-4*x^2-2*x+10,4*x^2+3*x-7,3*x^2-3*x-6,x-5,-2*x-6,2*x^2-2*x-12,5*x^2+3*x-12,3*x^2-x-16,-x^2+x+10,-x^2+2*x-3,2*x^2+7*x-5]],
[x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3, [-1,1], [x,-1/2*x^5+1/2*x^4+4*x^3-5/2*x^2-13/2*x+1,1/2*x^4-1/2*x^3-3*x^2+3/2*x+3/2,-x^3+5*x+2,-x^2+3,1,-1,x^5-x^4-8*x^3+6*x^2+13*x-1,1/2*x^5+1/2*x^4-4*x^3-7/2*x^2+13/2*x,-x^3+x^2+5*x-3,x^3+x^2-7*x-1,-x^5+1/2*x^4+17/2*x^3-2*x^2-29/2*x+1/2,-x^5+1/2*x^4+19/2*x^3-3*x^2-39/2*x+3/2,-x^4+5*x^2+2*x+2,-2*x^3+2*x^2+12*x-6,x^5-2*x^4-8*x^3+11*x^2+15*x-9,x^5-2*x^4-8*x^3+10*x^2+17*x,x^5-10*x^3-x^2+19*x+5,x^4+x^3-8*x^2-5*x+11,-x^4+x^3+8*x^2-9*x-9,-x^5+3/2*x^4+19/2*x^3-10*x^2-35/2*x+19/2,1/2*x^5+1/2*x^4-5*x^3-5/2*x^2+15/2*x-1,-x^5-x^4+9*x^3+10*x^2-20*x-9,x^5-x^4-6*x^3+4*x^2+5*x+3,-x^5+1/2*x^4+17/2*x^3-5*x^2-25/2*x+19/2]]];

f[222,2]=[
[x-2, [1,1,-1], [-1,-1,2,0,-4,6,6,8,0,-6,4,1,-6,-8,8,6,-4,-2,-12,0,10,-12,-4,-10,-6]],
[x+4, [1,1,-1], [-1,-1,-4,3,5,3,3,-7,9,0,-2,1,6,4,-10,3,-4,-2,6,-12,13,-6,5,11,6]],
[x-1, [1,-1,1], [-1,1,4,-1,-1,-3,3,-5,5,4,-10,-1,-6,4,2,-11,-12,10,14,0,-11,-10,-9,11,10]],
[x+1, [-1,1,1], [1,-1,0,3,1,1,-3,3,-1,-4,-6,-1,-10,12,-6,-1,0,2,2,0,-3,14,9,-3,-10]],
[x-1, [-1,-1,-1], [1,1,0,-1,3,-1,-3,-7,3,0,2,1,-6,-4,6,9,0,-10,2,12,5,2,3,-3,2]]];

f[223,2]=[
[x^2+2*x-1, [1], [x,x,-x-3,-x-1,-x,x+3,2*x-1,-x-3,3*x,-7,-2*x+2,2*x+3,-2*x-7,-3*x-9,-2*x-10,5,x+12,5*x+3,7*x+2,2*x-2,6*x+7,2,-6*x-2,-13,-9*x-3]],
[x^4+4*x^3+2*x^2-5*x-3, [1], [x,-x-1,-x^3-3*x^2+x+3,2*x^3+5*x^2-2*x-6,-2*x^3-6*x^2+x+4,x^3+4*x^2-8,x^3+x^2-4*x-5,x^3+4*x^2+3*x-1,-2*x^3-2*x^2+8*x+1,x^3+4*x^2+x-3,-4*x^3-12*x^2+3*x+14,-2*x^3-7*x^2-2*x+6,2*x^3+5*x^2-3*x-5,4*x^3+9*x^2-5*x-3,-4*x^3-13*x^2-3*x+15,2*x^3+3*x^2-6*x-9,-x^3-3*x^2-1,7*x^3+19*x^2-7*x-20,4*x^3+9*x^2-8*x-9,-4*x^2-9*x+4,-8*x^3-19*x^2+12*x+19,-x^2-6*x-6,x^3+7*x^2+5*x-13,-x^3+8*x+4,2*x^3+9*x^2+10*x-13]],
[x^12-7*x^11+6*x^10+57*x^9-122*x^8-105*x^7+430*x^6-73*x^5-499*x^4+242*x^3+143*x^2-52*x-19, [-1], [x,2*x^11-11*x^10-2*x^9+98*x^8-103*x^7-245*x^6+397*x^5+123*x^4-412*x^3+129*x^2+41*x-18,4*x^11-21*x^10-10*x^9+196*x^8-152*x^7-550*x^6+654*x^5+468*x^4-731*x^3+20*x^2+114*x+4,-9*x^11+45*x^10+34*x^9-435*x^8+235*x^7+1320*x^6-1172*x^5-1412*x^4+1388*x^3+350*x^2-263*x-61,-12*x^11+60*x^10+45*x^9-578*x^8+315*x^7+1739*x^6-1559*x^5-1813*x^4+1827*x^3+390*x^2-327*x-68,x^11-7*x^10+6*x^9+56*x^8-119*x^7-96*x^6+400*x^5-95*x^4-403*x^3+248*x^2+36*x-31,14*x^11-66*x^10-73*x^9+663*x^8-176*x^7-2169*x^6+1282*x^5+2737*x^4-1683*x^3-1153*x^2+418*x+185,10*x^11-50*x^10-37*x^9+481*x^8-268*x^7-1444*x^6+1319*x^5+1500*x^4-1550*x^3-318*x^2+285*x+56,x^11-4*x^10-8*x^9+42*x^8+15*x^7-147*x^6+5*x^5+204*x^4-23*x^3-97*x^2+x+10,3*x^11-14*x^10-17*x^9+144*x^8-26*x^7-492*x^6+245*x^5+674*x^4-335*x^3-336*x^2+86*x+53,13*x^11-63*x^10-59*x^9+620*x^8-244*x^7-1951*x^6+1410*x^5+2273*x^4-1739*x^3-773*x^2+371*x+120,-2*x^11+12*x^10-3*x^9-101*x^8+150*x^7+211*x^6-533*x^5+32*x^4+544*x^3-306*x^2-56*x+43,-23*x^11+114*x^10+92*x^9-1107*x^8+550*x^7+3389*x^6-2839*x^5-3699*x^4+3390*x^3+995*x^2-664*x-165,2*x^11-8*x^10-19*x^9+95*x^8+54*x^7-403*x^6-34*x^5+748*x^4-70*x^3-559*x^2+92*x+90,-3*x^11+17*x^10-147*x^8+182*x^7+338*x^6-671*x^5-81*x^4+681*x^3-287*x^2-55*x+34,-32*x^11+157*x^10+135*x^9-1532*x^8+698*x^7+4741*x^6-3752*x^5-5325*x^4+4530*x^3+1621*x^2-909*x-273,25*x^11-125*x^10-95*x^9+1209*x^8-646*x^7-3673*x^6+3229*x^5+3942*x^4-3822*x^3-998*x^2+730*x+181,16*x^11-74*x^10-91*x^9+754*x^8-130*x^7-2532*x^6+1264*x^5+3360*x^4-1754*x^3-1579*x^2+496*x+244,-5*x^11+24*x^10+23*x^9-234*x^8+88*x^7+721*x^6-507*x^5-796*x^4+591*x^3+224*x^2-93*x-35,-17*x^11+81*x^10+86*x^9-814*x^8+240*x^7+2670*x^6-1640*x^5-3403*x^4+2141*x^3+1476*x^2-542*x-232,-28*x^11+140*x^10+104*x^9-1347*x^8+745*x^7+4046*x^6-3671*x^5-4213*x^4+4309*x^3+911*x^2-783*x-162,-22*x^11+104*x^10+115*x^9-1050*x^8+277*x^7+3474*x^6-2034*x^5-4506*x^4+2710*x^3+2047*x^2-724*x-337,31*x^11-147*x^10-157*x^9+1469*x^8-431*x^7-4759*x^6+2942*x^5+5889*x^4-3781*x^3-2365*x^2+880*x+373,-24*x^11+117*x^10+106*x^9-1150*x^8+481*x^7+3611*x^6-2705*x^5-4194*x^4+3327*x^3+1431*x^2-707*x-236,x^11-5*x^10-2*x^9+43*x^8-42*x^7-94*x^6+168*x^5-7*x^4-159*x^3+130*x^2-15*x-12]]];

f[224,2]=[
[x+2, [1,1], [0,-2,0,-1,-4,-4,-2,-6,8,2,-4,10,-10,4,4,-2,10,-8,-8,0,-6,-16,2,18,-2]],
[x-2, [1,-1], [0,2,0,1,4,-4,-2,6,-8,2,4,10,-10,-4,-4,-2,-10,-8,8,0,-6,16,-2,18,-2]],
[x^2+2*x-4, [1,-1], [0,x,x+2,1,-2*x-4,-x+2,2*x+2,-x,4,-2*x-2,-2*x,-2*x-2,-2*x-6,2*x+4,2*x+8,-10,-x-8,x+10,4,-4*x,-4*x+2,4*x+8,-x-8,-6,2*x+10]],
[x^2-2*x-4, [-1,1], [0,x,-x+2,-1,-2*x+4,x+2,-2*x+2,-x,-4,2*x-2,-2*x,2*x-2,2*x-6,2*x-4,2*x-8,-10,-x+8,-x+10,-4,-4*x,4*x+2,4*x-8,-x+8,-6,-2*x+10]]];

f[225,2]=[
[x+5, [1,1], [0,0,0,-5,0,-5,0,-1,0,0,-7,10,0,-5,0,0,0,-13,-5,0,10,-4,0,0,-5]],
[x-5, [1,-1], [0,0,0,5,0,5,0,-1,0,0,-7,-10,0,5,0,0,0,-13,5,0,-10,-4,0,0,5]],
[x+1, [-1,1], [-1,0,0,0,4,2,2,4,0,2,0,10,-10,-4,8,-10,4,-2,-12,8,-10,0,12,6,-2]],
[x-2, [-1,1], [2,0,0,3,-2,-1,2,-5,6,-10,-3,-2,8,-1,2,-4,10,7,3,8,14,0,6,0,-17]],
[x+2, [-1,-1], [-2,0,0,-3,-2,1,-2,-5,-6,-10,-3,2,8,1,-2,4,10,7,-3,8,-14,0,-6,0,17]],
[x^2-5, [1,-1], [x,0,0,0,0,0,-2*x,4,-4*x,0,8,0,0,0,4*x,2*x,0,2,0,0,0,16,8*x,0,0]]];

f[226,2]=[
[x+2, [-1,-1], [1,-2,-4,0,-4,-2,-2,-2,4,-4,8,-8,-6,6,-12,10,-6,-6,2,-8,-14,8,16,-14,-2]],
[x^2-2, [1,1], [-1,x,-x-2,-2*x-2,-4,2,2*x-2,5*x,4*x,-5*x-2,-2*x-6,-3*x+6,-2,-x,0,-2*x+2,-5*x-8,-2*x+6,-x,-2*x-8,-4*x+6,-2*x-12,6*x-4,4*x+6,0]],
[x^2-2*x-2, [1,-1], [-1,x,2,0,-2*x+4,-2*x,-2,-3*x+4,-x+8,2,2*x,4*x-6,2*x+4,-x-8,5*x-8,-6*x+4,-5*x+8,-6,3*x-4,5*x-4,4*x-6,-x,8*x-4,-4*x+2,-8*x+6]],
[x^4-2*x^3-6*x^2+12*x-4, [-1,1], [1,x,1/2*x^3-x^2-4*x+6,-x^3+x^2+6*x-6,x^2-4,2*x^3-2*x^2-14*x+12,-2*x^3+2*x^2+12*x-10,-2*x^3+2*x^2+13*x-12,3/2*x^3-3*x^2-9*x+12,-3/2*x^3+x^2+10*x-6,2*x^3-x^2-12*x+6,-1/2*x^3-x^2+2*x+2,-x^3+3*x^2+8*x-12,-x^3+9*x-4,3/2*x^3-x^2-9*x+4,-3*x^3+4*x^2+22*x-20,2*x^3-2*x^2-13*x+16,x^3+2*x^2-8*x-2,-x-4,5/2*x^3-3*x^2-15*x+20,-3*x^3+2*x^2+24*x-14,3/2*x^3-3*x^2-15*x+16,x^2-2*x,14,-x^3+12*x]]];

f[227,2]=[
[x^2-2, [1], [x,-2,-x,-2*x-1,2*x+1,2*x-4,x-4,2*x+5,-2*x-3,-4*x-3,3*x-2,-x-10,3*x+6,2*x-5,6,2*x-3,-8*x-1,-6,6*x-2,-2*x+5,-6*x+1,-8*x-2,3*x-6,-2*x+5,-2*x+4]],
[x^2-5, [-1], [x,-1/2*x+3/2,-2,1/2*x+7/2,-1/2*x+1/2,-x-1,-4,1/2*x+13/2,-1/2*x+11/2,-3/2*x-3/2,-2*x,4,2*x-8,7/2*x+3/2,-9/2*x+1/2,11/2*x-3/2,8,x-7,3*x+1,5/2*x+9/2,-3/2*x-13/2,9/2*x+7/2,2*x-4,9/2*x-7/2,-1/2*x-9/2]],
[x^2+x-7, [-1], [1,x,2,-x+1,x+3,-2*x,-4,-x,x+4,-x+2,-6,8,-2,x-4,x-1,x+7,-8,2*x+8,-2*x-6,3*x+4,-x+5,-x-3,-4*x+2,3*x-6,5*x+2]],
[x^3+2*x^2-x-1, [1], [x,-x^2-2*x+1,x^2+x-3,x^2+3*x-2,x^2-x-3,-3,x+3,-4*x^2-7*x,-2*x^2+2*x+6,2*x^2+2*x-3,4*x^2+8*x-2,x^2+4*x-4,-4*x^2-5*x+4,5*x^2+2*x-8,-x^2-x-2,-9*x^2-17*x+7,x^2-2*x+1,9*x^2+12*x-9,-3*x^2-6*x-4,6*x^2+8*x-12,-7*x^2-13*x+1,-5*x^2-10*x+9,9*x^2+13*x-1,-4*x^2+3*x+14,3*x^2-17]],
[x^10-17*x^8-3*x^7+98*x^6+40*x^5-218*x^4-148*x^3+136*x^2+144*x+32, [-1], [x,1/16*x^9-21/16*x^7-3/16*x^6+75/8*x^5+9/4*x^4-209/8*x^3-33/4*x^2+23*x+10,-3/4*x^9+3/4*x^8+49/4*x^7-19/2*x^6-269/4*x^5+31*x^4+289/2*x^3-21/2*x^2-101*x-30,13/16*x^9-1/2*x^8-213/16*x^7+97/16*x^6+589/8*x^5-16*x^4-1281/8*x^3-53/4*x^2+227/2*x+42,1/8*x^9-1/4*x^8-15/8*x^7+27/8*x^6+35/4*x^5-51/4*x^4-53/4*x^3+11*x^2+7/2*x+1,-1/4*x^8+13/4*x^6-1/4*x^5-25/2*x^4+x^3+29/2*x^2+x,-9/8*x^9+x^8+149/8*x^7-101/8*x^6-415/4*x^5+81/2*x^4+901/4*x^3-19/2*x^2-157*x-46,3/8*x^9-1/8*x^8-49/8*x^7+x^6+271/8*x^5+2*x^4-297/4*x^3-85/4*x^2+53*x+23,-15/16*x^9+3/8*x^8+247/16*x^7-73/16*x^6-173/2*x^5+43/4*x^4+1539/8*x^3+20*x^2-140*x-51,3/4*x^9-3/8*x^8-25/2*x^7+33/8*x^6+563/8*x^5-15/2*x^4-154*x^3-85/4*x^2+105*x+37,1/8*x^9-1/4*x^8-21/8*x^7+23/8*x^6+37/2*x^5-8*x^4-201/4*x^3-2*x^2+42*x+18,-3/8*x^9+51/8*x^7+9/8*x^6-147/4*x^5-14*x^4+335/4*x^3+95/2*x^2-66*x-38,7/8*x^9-3/4*x^8-115/8*x^7+73/8*x^6+159/2*x^5-27*x^4-691/4*x^3+124*x+40,33/16*x^9-13/8*x^8-537/16*x^7+327/16*x^6+367/2*x^5-253/4*x^4-3133/8*x^3+3*x^2+270*x+89,-9/16*x^9+1/4*x^8+157/16*x^7-33/16*x^6-465/8*x^5-9/4*x^4+1069/8*x^3+135/4*x^2-92*x-39,3/16*x^9-1/2*x^8-35/16*x^7+127/16*x^6+47/8*x^5-79/2*x^4+17/8*x^3+265/4*x^2-17/2*x-24,-5/4*x^9+1/2*x^8+85/4*x^7-19/4*x^6-124*x^5-x^4+577/2*x^3+73*x^2-214*x-95,13/8*x^9-x^8-209/8*x^7+97/8*x^6+563/4*x^5-65/2*x^4-1185/4*x^3-41/2*x^2+206*x+74,-3/4*x^9+x^8+47/4*x^7-55/4*x^6-121/2*x^5+54*x^4+239/2*x^3-53*x^2-80*x-10,-21/8*x^9+15/8*x^8+343/8*x^7-23*x^6-1881/8*x^5+66*x^4+2007/4*x^3+75/4*x^2-345*x-121,-x^9+3/4*x^8+69/4*x^7-37/4*x^6-203/2*x^5+109/4*x^4+236*x^3+13/2*x^2-347/2*x-51,-3/16*x^9+1/4*x^8+47/16*x^7-51/16*x^6-119/8*x^5+41/4*x^4+223/8*x^3-7/4*x^2-16*x-9,-3/8*x^9+47/8*x^7+1/8*x^6-121/4*x^5-7/2*x^4+235/4*x^3+35/2*x^2-39*x-18,29/16*x^9-7/8*x^8-477/16*x^7+167/16*x^6+661/4*x^5-101/4*x^4-2849/8*x^3-63/2*x^2+240*x+79,37/16*x^9-7/4*x^8-609/16*x^7+333/16*x^6+1693/8*x^5-215/4*x^4-3709/8*x^3-167/4*x^2+331*x+128]]];

f[228,2]=[
[x-2, [-1,1,1], [0,-1,2,0,2,2,6,-1,2,4,-8,-2,-8,-8,2,-4,0,2,12,-4,6,-16,6,0,-2]],
[x+3, [-1,1,-1], [0,-1,-3,1,-5,-6,-5,1,4,6,6,-8,-8,9,1,2,-8,11,0,-4,-11,-8,-4,10,-10]],
[x^2-3*x-6, [-1,-1,-1], [0,1,x,-x+2,-x,2,-x,1,2*x-6,-2*x,2*x-4,-2*x+2,0,-x+2,x-12,2*x,0,-x-4,4*x-4,-12,x-4,8,-2*x+6,-2*x+12,14]]];

f[229,2]=[
[x+1, [1], [-1,1,-3,2,-3,-6,-7,3,4,-6,4,2,6,7,6,-10,4,5,-10,-9,-2,6,11,-18,-5]],
[x^6+4*x^5-12*x^3-3*x^2+9*x-1, [1], [x,x^4+2*x^3-3*x^2-4*x+1,-x^5-4*x^4-x^3+8*x^2+3*x-2,x^5+2*x^4-3*x^3-2*x^2+4*x-4,x^4+3*x^3-2*x^2-6*x-1,x^5+5*x^4+4*x^3-11*x^2-12*x+5,-x^4-4*x^3+x^2+10*x-1,x^5+4*x^4+x^3-8*x^2-2*x-1,-3*x^4-9*x^3+4*x^2+17*x-5,3*x^5+9*x^4-6*x^3-25*x^2+3*x+10,-x^5-x^4+7*x^3+5*x^2-8*x-2,-4*x^5-10*x^4+13*x^3+28*x^2-14*x-9,-2*x^5-6*x^4+5*x^3+17*x^2-7*x-9,-x^5-3*x^4-2*x^2-4*x+11,-2*x^5-8*x^4-6*x^3+14*x^2+21*x-7,-x^5-x^4+7*x^3+5*x^2-10*x-2,-2*x^5-8*x^4-x^3+19*x^2+7*x-11,6*x^5+17*x^4-13*x^3-43*x^2+8*x+12,3*x^4+6*x^3-12*x^2-20*x+9,6*x^4+16*x^3-9*x^2-26*x,2*x^5+8*x^4+4*x^3-17*x^2-13*x+12,-3*x^5-9*x^4-x^3+11*x^2+8*x,-7*x^4-14*x^3+22*x^2+25*x-21,2*x^5+9*x^4+6*x^3-14*x^2-12*x-1,-2*x^5-5*x^4+6*x^3+12*x^2-4*x+4]],
[x^11-5*x^10-4*x^9+50*x^8-26*x^7-165*x^6+152*x^5+193*x^4-207*x^3-50*x^2+52*x+1, [-1], [x,1/4*x^9-1/4*x^8-13/4*x^7+11/4*x^6+55/4*x^5-10*x^4-83/4*x^3+53/4*x^2+8*x-11/4,-1/4*x^9+1/4*x^8+11/4*x^7-5/4*x^6-43/4*x^5+65/4*x^3+15/4*x^2-6*x-3/4,-1/4*x^10+3/4*x^9+9/4*x^8-31/4*x^7-21/4*x^6+53/2*x^5-3/4*x^4-131/4*x^3+13/2*x^2+41/4*x+3/2,1/2*x^10-7/4*x^9-17/4*x^8+71/4*x^7+39/4*x^6-235/4*x^5-1/2*x^4+265/4*x^3-49/4*x^2-27/2*x+23/4,1/2*x^10-3/2*x^9-9/2*x^8+29/2*x^7+25/2*x^6-46*x^5-19/2*x^4+105/2*x^3-3*x^2-31/2*x+2,-1/2*x^10+5/2*x^9+5/2*x^8-25*x^7+6*x^6+82*x^5-89/2*x^4-93*x^3+54*x^2+39/2*x-15/2,-1/2*x^10+5/4*x^9+19/4*x^8-45/4*x^7-57/4*x^6+121/4*x^5+23/2*x^4-75/4*x^3+27/4*x^2-23/2*x-13/4,1/2*x^8-1/2*x^7-6*x^6+3*x^5+49/2*x^4-2*x^3-34*x^2-11/2*x+7,-1/2*x^9+3/2*x^8+9/2*x^7-29/2*x^6-25/2*x^5+46*x^4+17/2*x^3-99/2*x^2+4*x+17/2,1/2*x^10-2*x^9-7/2*x^8+41/2*x^7+2*x^6-141/2*x^5+26*x^4+88*x^3-85/2*x^2-23*x+15/2,3/4*x^9-3/4*x^8-33/4*x^7+15/4*x^6+125/4*x^5+2*x^4-179/4*x^3-77/4*x^2+19*x+21/4,-1/2*x^10+3/2*x^9+11/2*x^8-33/2*x^7-41/2*x^6+59*x^5+55/2*x^4-141/2*x^3-6*x^2+25/2*x,-1/2*x^10+5/4*x^9+23/4*x^8-53/4*x^7-97/4*x^6+185/4*x^5+95/2*x^4-235/4*x^3-169/4*x^2+45/2*x+19/4,7/4*x^10-21/4*x^9-67/4*x^8+213/4*x^7+207/4*x^6-357/2*x^5-215/4*x^4+857/4*x^3+15/2*x^2-243/4*x+11/2,-1/2*x^10+3/2*x^9+9/2*x^8-16*x^7-10*x^6+58*x^5-11/2*x^4-78*x^3+21*x^2+49/2*x-1/2,-x^10+7/2*x^9+8*x^8-34*x^7-33/2*x^6+217/2*x^5-5/2*x^4-247/2*x^3+39/2*x^2+69/2*x+5/2,1/2*x^10-2*x^9-4*x^8+43/2*x^7+13/2*x^6-157/2*x^5+27/2*x^4+217/2*x^3-65/2*x^2-79/2*x+4,-3/2*x^10+5*x^9+23/2*x^8-95/2*x^7-18*x^6+295/2*x^5-34*x^4-159*x^3+151/2*x^2+31*x-23/2,1/2*x^10-7/4*x^9-17/4*x^8+75/4*x^7+31/4*x^6-275/4*x^5+29/2*x^4+393/4*x^3-153/4*x^2-85/2*x+35/4,x^10-7/2*x^9-17/2*x^8+71/2*x^7+37/2*x^6-231/2*x^5+3*x^4+249/2*x^3-41/2*x^2-23*x-7/2,5/4*x^10-17/4*x^9-47/4*x^8+173/4*x^7+151/4*x^6-144*x^5-201/4*x^4+649/4*x^3+30*x^2-113/4*x-9,x^10-17/4*x^9-31/4*x^8+173/4*x^7+57/4*x^6-563/4*x^5+9*x^4+579/4*x^3-113/4*x^2-9*x+27/4,-1/2*x^9+3/2*x^8+9/2*x^7-25/2*x^6-35/2*x^5+34*x^4+77/2*x^3-69/2*x^2-35*x+15/2,-2*x^10+23/4*x^9+77/4*x^8-233/4*x^7-233/4*x^6+785/4*x^5+50*x^4-971/4*x^3+51/4*x^2+81*x-23/4]]];

f[230,2]=[
[x^2+x-5, [1,1,-1], [-1,x,-1,x+1,x+2,-x+3,-x-2,-x+3,1,-2*x+2,3*x+5,-4,x-4,-4*x,-2*x-10,6,2*x-8,-3*x+2,-4*x,-3*x,-6*x-4,8,-6,-4*x+4,5*x+6]],
[x^2-3*x-1, [1,-1,1], [-1,x,1,-x+3,-x-2,-x+3,-3*x+6,-3*x+5,-1,2*x-2,3*x-7,8,-3*x,4*x-8,2*x-2,4*x-10,-2*x-4,-5*x+10,-4,x-16,6*x-4,8*x-12,-4*x+10,0,-x+6]],
[x^2-x-1, [-1,-1,-1], [1,x,1,-x+1,-3*x+2,-5*x+1,5*x-2,3*x-3,1,-2*x-6,5*x+1,4*x,7*x-8,0,-6*x+6,4*x-6,6*x-8,-7*x+2,4*x+8,-5*x+4,2*x,-4*x+8,-8*x+6,-4*x-4,-x+14]],
[x^3-x^2-9*x+12, [-1,1,1], [1,x,-1,-x^2-2*x+8,2*x^2+x-12,-x^2+6,-x-2,-x^2-2*x+8,-1,2*x-2,x^2-8,2*x^2+2*x-14,-2*x^2-3*x+14,8,-2*x^2+8,-6,2*x+4,4*x^2+3*x-26,4*x^2+4*x-24,-x+4,-2*x^2+10,-4*x^2+24,-2*x^2-2*x+16,-2*x^2+2*x+18,-3*x-10]]];

f[231,2]=[
[x+1, [1,-1,1], [-1,-1,-2,1,-1,6,2,4,0,-2,8,6,10,-4,-8,6,4,-10,-12,0,2,16,4,18,2]],
[x^2+x-5, [1,-1,1], [x,-1,3,1,-1,1,2*x+4,-2*x-3,-2*x-2,-4*x-1,2*x,1,-4*x-4,2*x-2,-2*x+5,-2*x-6,2*x+1,10,2*x+5,4*x+4,7,4*x,-2*x-8,4*x+2,2*x-6]],
[x^2-x-1, [-1,-1,-1], [x,1,1,1,1,-4*x+1,-2*x+4,6*x-3,-6*x+2,5,2*x-4,-7,4*x,-6*x+2,-2*x-1,10*x-6,10*x-5,2,-2*x-11,4*x,4*x+7,4*x-12,2*x+8,4*x-2,-6*x+6]],
[x^3-6*x-1, [1,1,-1], [x,-1,-x^2+x+4,-1,1,-x^2+x+4,-2*x,-x^2-x+8,-2*x-2,x^2-x,2*x^2-10,x^2+3*x-4,2*x^2+2*x-6,-2*x+2,x^2+x-12,-2*x^2+8,-3*x^2+x+4,6,x^2+x,-4*x+4,x^2-x+4,4*x+4,2*x^2-14,4*x^2-10,2*x^2]],
[x^3-2*x^2-4*x+7, [-1,1,1], [x,1,-x^2-x+6,-1,-1,-3*x^2+x+10,4*x^2-2*x-12,x^2-x-6,2*x+2,-3*x^2+x+10,2*x^2-4*x-6,-x^2+3*x+2,2*x^2-2*x-2,4*x^2+2*x-22,x^2+3*x-6,-2*x^2+8,-3*x^2+3*x+10,-2,-5*x^2+x+18,4*x^2-20,3*x^2-x-18,-4*x^2+20,-6*x^2+26,4*x+6,2*x^2+4*x-12]]];

f[232,2]=[
[x+1, [1,1], [0,-1,-3,2,-3,-5,-4,0,0,-1,9,8,-2,-11,-7,9,4,-12,12,2,-4,3,-16,2,-14]],
[x-1, [-1,1], [0,1,1,2,3,-1,0,0,4,-1,3,-8,-6,-5,3,5,-8,0,-12,6,-4,1,-12,6,14]],
[x^2+2*x-1, [-1,-1], [0,x,-2*x-3,-4,-x-2,4*x+3,4*x+2,2,-2*x-4,1,-x-8,-4*x,-4*x-8,-x+2,-5*x-10,-7,6*x+8,6,-4*x-4,6*x+4,4,9*x+6,-2*x-8,-4*x-8,-8*x-4]],
[x^3-2*x^2-5*x+8, [1,-1], [0,x,-x^2+6,0,2*x^2-x-8,x^2-2*x-2,2,-2*x^2+8,-2*x,1,-x-4,2*x^2-10,-2*x^2+4*x+10,-2*x^2-x+8,2*x^2+3*x-12,-x^2-2*x+6,-2*x+4,4*x-2,4*x+4,-4*x^2-2*x+24,2*x^2-4*x-6,2*x^2+x-20,-2*x+12,6*x^2-4*x-22,2*x^2-14]]];

f[233,2]=[
[x-1, [-1], [1,-2,2,4,6,6,-6,-4,0,-2,4,-6,2,-2,2,-6,-10,-6,10,-8,-14,2,2,10,10]],
[x^7+2*x^6-6*x^5-10*x^4+10*x^3+8*x^2-7*x+1, [1], [x,x^5+x^4-5*x^3-4*x^2+3*x,-x^5-2*x^4+4*x^3+8*x^2-x-3,-x^6-3*x^5+5*x^4+16*x^3-6*x^2-16*x+3,-x^6-2*x^5+7*x^4+11*x^3-13*x^2-11*x+5,6*x^6+14*x^5-29*x^4-68*x^3+25*x^2+52*x-16,5*x^6+13*x^5-24*x^4-65*x^3+22*x^2+53*x-17,-5*x^6-10*x^5+24*x^4+46*x^3-18*x^2-28*x+6,-3*x^6-7*x^5+17*x^4+35*x^3-26*x^2-29*x+14,-4*x^6-11*x^5+19*x^4+57*x^3-16*x^2-51*x+13,x^6+x^5-7*x^4-5*x^3+11*x^2+4*x-4,3*x^6+7*x^5-13*x^4-34*x^3+6*x^2+24*x-8,-3*x^6-6*x^5+14*x^4+28*x^3-11*x^2-22*x+10,-3*x^6-9*x^5+13*x^4+41*x^3-9*x^2-22*x+7,2*x^6+8*x^5-10*x^4-41*x^3+16*x^2+34*x-18,-5*x^6-13*x^5+22*x^4+66*x^3-12*x^2-56*x+13,3*x^6+10*x^5-12*x^4-49*x^3+5*x^2+39*x-7,3*x^6+9*x^5-12*x^4-41*x^3+5*x^2+23*x-8,-3*x^6-8*x^5+13*x^4+41*x^3-7*x^2-36*x+4,6*x^6+12*x^5-29*x^4-55*x^3+20*x^2+30*x-5,-4*x^6-10*x^5+18*x^4+49*x^3-8*x^2-36*x+1,-4*x^6-5*x^5+22*x^4+22*x^3-24*x^2-14*x+2,3*x^6+7*x^5-10*x^4-34*x^3-10*x^2+28*x+4,2*x^6+3*x^5-12*x^4-15*x^3+20*x^2+17*x-9,-5*x^6-8*x^5+33*x^4+42*x^3-59*x^2-44*x+25]],
[x^11+2*x^10-16*x^9-30*x^8+91*x^7+158*x^6-213*x^5-349*x^4+152*x^3+290*x^2+41*x-19, [-1], [x,7/4*x^10-1/2*x^9-107/4*x^8+8*x^7+139*x^6-65/2*x^5-1147/4*x^4+31/4*x^3+883/4*x^2+203/4*x-16,27/2*x^10-9/2*x^9-409/2*x^8+145/2*x^7+1046*x^6-310*x^5-4193/2*x^4+183*x^3+1550*x^2+294*x-219/2,x^10-1/2*x^9-15*x^8+15/2*x^7+75*x^6-31*x^5-143*x^4+43/2*x^3+195/2*x^2+41/2*x-5/2,9/4*x^10-3/4*x^9-135/4*x^8+49/4*x^7+170*x^6-107/2*x^5-1331/4*x^4+75/2*x^3+242*x^2+37*x-81/4,-x^10+15*x^8-x^7-76*x^6+6*x^5+150*x^4+3*x^3-104*x^2-20*x+7,-21/2*x^10+4*x^9+319/2*x^8-63*x^7-819*x^6+268*x^5+3305/2*x^4-349/2*x^3-2477/2*x^2-455/2*x+92,33/2*x^10-13/2*x^9-499/2*x^8+205/2*x^7+1271*x^6-439*x^5-5055/2*x^4+306*x^3+1855*x^2+332*x-249/2,-9/2*x^10+2*x^9+135/2*x^8-31*x^7-339*x^6+132*x^5+1315/2*x^4-197/2*x^3-941/2*x^2-163/2*x+31,-33*x^10+12*x^9+500*x^8-191*x^7-2556*x^6+819*x^5+5112*x^4-544*x^3-3768*x^2-670*x+264,14*x^10-5*x^9-212*x^8+80*x^7+1083*x^6-345*x^5-2165*x^4+236*x^3+1600*x^2+268*x-118,29*x^10-23/2*x^9-438*x^8+363/2*x^7+2227*x^6-781*x^5-4415*x^4+1137/2*x^3+6467/2*x^2+1091/2*x-455/2,-13*x^10+9/2*x^9+196*x^8-145/2*x^7-995*x^6+312*x^5+1970*x^4-399/2*x^3-2875/2*x^2-529/2*x+193/2,-x^10+1/4*x^9+29/2*x^8-17/4*x^7-69*x^6+18*x^5+243/2*x^4-25/4*x^3-303/4*x^2-79/4*x+25/4,-19*x^10+25/4*x^9+575/2*x^8-401/4*x^7-1468*x^6+423*x^5+5869/2*x^4-881/4*x^3-8663/4*x^2-1747/4*x+613/4,35*x^10-27/2*x^9-529*x^8+427/2*x^7+2693*x^6-917*x^5-5350*x^4+1293/2*x^3+7853/2*x^2+1357/2*x-565/2,20*x^10-29/4*x^9-603/2*x^8+465/4*x^7+1529*x^6-503*x^5-6035/2*x^4+1409/4*x^3+8759/4*x^2+1495/4*x-617/4,-21*x^10+13/2*x^9+317*x^8-213/2*x^7-1613*x^6+459*x^5+3206*x^4-533/2*x^3-4693/2*x^2-865/2*x+341/2,-4*x^10+5/4*x^9+121/2*x^8-81/4*x^7-309*x^6+87*x^5+1237/2*x^4-217/4*x^3-1827/4*x^2-279/4*x+141/4,25/2*x^10-7/2*x^9-377/2*x^8+117/2*x^7+958*x^6-253*x^5-3797/2*x^4+132*x^3+1371*x^2+269*x-175/2,-28*x^10+21/2*x^9+426*x^8-331/2*x^7-2192*x^6+704*x^5+4435*x^4-907/2*x^3-6657/2*x^2-1227/2*x+493/2,-183/4*x^10+33/2*x^9+2771/4*x^8-263*x^7-3539*x^6+2253/2*x^5+28303/4*x^4-2923/4*x^3-20907/4*x^2-3819/4*x+379,-69/4*x^10+13/2*x^9+1049/4*x^8-103*x^7-1348*x^6+887/2*x^5+10885/4*x^4-1253/4*x^3-8109/4*x^2-1377/4*x+141,-30*x^10+11*x^9+453*x^8-175*x^7-2304*x^6+749*x^5+4574*x^4-492*x^3-3358*x^2-607*x+244,18*x^10-13/2*x^9-273*x^8+209/2*x^7+1399*x^6-456*x^5-2812*x^4+673/2*x^3+4169/2*x^2+663/2*x-299/2]]];

f[234,2]=[
[x+2, [1,1,1], [-1,0,-2,-2,-4,-1,0,-6,4,-8,-2,6,6,-8,8,12,4,10,-2,-16,14,-4,-12,-6,-10]],
[x-1, [1,-1,1], [-1,0,1,1,2,-1,3,6,4,-2,4,3,0,-5,-13,-12,10,-8,-2,5,-10,-4,0,-6,14]],
[x-2, [-1,1,1], [1,0,2,-2,4,-1,0,-6,-4,8,-2,6,-6,-8,-8,-12,-4,10,-2,16,14,-4,12,6,-10]],
[x+2, [-1,-1,-1], [1,0,-2,4,4,1,-2,-8,0,-6,-4,-2,10,4,-8,10,-4,-2,-16,8,2,8,-12,-14,10]],
[x-3, [-1,-1,-1], [1,0,3,-1,-6,1,3,2,0,-6,-4,-7,0,-1,-3,0,6,8,14,3,2,8,-12,6,-10]]];

f[235,2]=[
[x+1, [1,-1], [-1,-1,-1,1,3,3,6,-1,4,2,-3,0,4,0,1,8,-6,5,4,0,-13,-10,7,14,12]],
[x-2, [1,-1], [2,2,-1,-2,0,3,0,-4,1,8,6,-6,-2,9,1,8,3,-1,-8,3,5,-13,-14,-1,12]],
[x-1, [-1,-1], [-1,-1,1,1,-3,-3,-6,-7,4,-10,3,12,-8,0,1,-4,6,5,-8,12,5,14,-17,-10,0]],
[x^5+4*x^4-12*x^2-4*x+7, [1,1], [x,x^4+2*x^3-4*x^2-5*x+3,-1,-2*x^4-5*x^3+5*x^2+10*x-5,x^4+3*x^3+x^2-3*x-5,x^4+x^3-5*x^2-3*x+1,x^3+x^2-2*x-2,-x^4-x^3+3*x^2-x+1,-2*x^4-2*x^3+12*x^2+6*x-14,-4*x^3-8*x^2+10*x+8,x^4+x^3-9*x^2-5*x+15,2*x^4+5*x^3-3*x^2-8*x-4,-2*x^2-2*x,0,-1,-x^4-2*x^3+4*x^2+x-10,3*x^4+10*x^3-2*x^2-23*x-2,2*x^4+7*x^3-5*x^2-18*x+7,-2*x^3-4*x^2+2*x+4,4*x^4+3*x^3-23*x^2-4*x+24,3*x^4+7*x^3-5*x^2-11*x-7,-2*x^4-7*x^3+3*x^2+18*x-6,5*x^4+9*x^3-15*x^2-11*x+13,-x^4-4*x^3+7*x,-3*x^4-6*x^3+12*x^2+15*x-18]],
[x^7-x^6-10*x^5+8*x^4+28*x^3-17*x^2-19*x+2, [-1,1], [x,1/2*x^6-5*x^4+12*x^2-3/2*x-3,1,-1/2*x^6+4*x^4+x^3-7*x^2-3/2*x+1,-3/2*x^6+13*x^4+3*x^3-25*x^2-15/2*x+3,-1/2*x^6-x^5+5*x^4+9*x^3-11*x^2-33/2*x+2,x^6-8*x^4-3*x^3+13*x^2+9*x+2,1/2*x^6+2*x^5-5*x^4-17*x^3+9*x^2+57/2*x+3,x^6+x^5-10*x^4-10*x^3+24*x^2+17*x-7,-2*x+4,-1/2*x^6+5*x^4+x^3-11*x^2-5/2*x-1,2*x^6+2*x^5-18*x^4-19*x^3+33*x^2+34*x+2,-x^6+8*x^4+4*x^3-14*x^2-13*x+4,x^6-x^5-8*x^4+4*x^3+16*x^2-x-11,-1,-2*x^6+19*x^4+2*x^3-44*x^2-x+14,-x^6-x^5+11*x^4+6*x^3-30*x^2-2*x+15,1/2*x^6+x^5-4*x^4-11*x^3+3*x^2+51/2*x+12,-2*x^3+10*x-4,2*x^6+x^5-16*x^4-13*x^3+25*x^2+26*x+3,-5/2*x^6+x^5+23*x^4-5*x^3-51*x^2+19/2*x+12,-x^6-3*x^5+10*x^4+25*x^3-17*x^2-41*x-7,3/2*x^6-13*x^4-x^3+25*x^2-1/2*x-1,-x^5-x^4+8*x^3+8*x^2-9*x-7,-2*x^6+17*x^4+6*x^3-28*x^2-19*x-10]]];

f[236,2]=[
[x-1, [-1,1], [0,1,3,-1,6,-4,-6,5,0,9,-4,-4,-9,8,-12,-9,-1,2,2,0,14,-7,0,-6,2]],
[x+1, [-1,-1], [0,-1,-1,-3,-2,0,2,-5,-4,5,-4,8,-1,0,8,3,1,-2,-14,0,-2,-13,4,-18,2]],
[x^3-9*x+1, [-1,1], [0,x,-1/3*x^2+1/3*x+2/3,-1/3*x^2-2/3*x+14/3,2/3*x^2-2/3*x-10/3,-2/3*x^2+2/3*x+16/3,1,-1/3*x^2-5/3*x+14/3,-4/3*x^2-2/3*x+20/3,1/3*x^2-4/3*x-26/3,2/3*x^2+4/3*x-4/3,4/3*x^2-4/3*x-26/3,2*x^2+x-12,2*x^2-8,-4/3*x^2-8/3*x+32/3,-2/3*x^2-1/3*x+4/3,-1,2/3*x^2-2/3*x-22/3,2*x,4/3*x^2+8/3*x-47/3,-4/3*x^2-2/3*x+20/3,4/3*x^2-1/3*x+4/3,2/3*x^2+10/3*x+2/3,-2/3*x^2-10/3*x+22/3,4/3*x^2+14/3*x-26/3]]];

f[237,2]=[
[x^2-2*x-1, [1,-1], [x,-1,0,1,-x+4,-2*x+1,-x+2,-2,-3*x+6,-x+4,-2*x,6*x-6,-2*x+2,-2*x+9,4*x-2,-2*x+6,4*x+2,-6*x,2*x+6,2*x-2,6*x-9,1,5*x+2,8*x-8,-12*x+11]],
[x^4+3*x^3-x^2-5*x+1, [1,1], [x,-1,-x^3-3*x^2+2,2*x^3+4*x^2-4*x-4,-x^3-x^2+2*x-3,-x^3+x^2+6*x-5,2*x^3+4*x^2-2*x-4,-x^3-5*x^2-2*x+6,x^3+5*x^2+4*x-10,-2*x^3-8*x^2-4*x+8,3*x^3+5*x^2-4*x-1,-2*x^3-4*x^2+6*x+6,-2*x^3+8*x-4,-2*x^3-6*x^2+2,-4*x^3-10*x^2+4*x+8,2*x^3-2*x^2-14*x+4,4*x^3+10*x^2-4*x-10,4*x^2+6*x-2,x^3+5*x^2+6*x-14,-2*x^2-6*x-4,-3*x^3-x^2+10*x-2,-1,-8*x-8,3*x^3+11*x^2+4*x-11,x^3-x^2-10*x+6]],
[x^7-2*x^6-11*x^5+22*x^4+30*x^3-65*x^2-2*x+23, [-1,1], [x,1,-x^6+12*x^4-x^3-37*x^2+9*x+16,3/2*x^6-1/2*x^5-17*x^4+4*x^3+49*x^2-25/2*x-37/2,1/2*x^6+1/2*x^5-6*x^4-4*x^3+17*x^2+7/2*x-7/2,5/2*x^6-1/2*x^5-28*x^4+4*x^3+79*x^2-33/2*x-57/2,-5/2*x^6+1/2*x^5+27*x^4-2*x^3-73*x^2+11/2*x+53/2,-3*x^6+34*x^4+x^3-97*x^2+7*x+38,-3/2*x^6+1/2*x^5+17*x^4-5*x^3-48*x^2+33/2*x+33/2,5/2*x^6-1/2*x^5-29*x^4+4*x^3+87*x^2-35/2*x-81/2,-3*x^6+35*x^4-104*x^2+12*x+44,-x^6+x^5+10*x^4-6*x^3-26*x^2+5*x+15,3*x^6-x^5-34*x^4+10*x^3+98*x^2-33*x-41,1/2*x^6+1/2*x^5-7*x^4-4*x^3+25*x^2+13/2*x-23/2,3*x^6-x^5-32*x^4+6*x^3+86*x^2-15*x-35,x^6-x^5-10*x^4+6*x^3+28*x^2-5*x-21,x^6+x^5-14*x^4-8*x^3+48*x^2+9*x-21,-2*x^4+2*x^3+14*x^2-8*x-12,-6*x^6+x^5+68*x^4-9*x^3-193*x^2+40*x+71,-2*x^2+2*x+4,-5/2*x^6+1/2*x^5+29*x^4-5*x^3-88*x^2+47/2*x+85/2,-1,1/2*x^6-1/2*x^5-5*x^4+6*x^3+11*x^2-39/2*x+7/2,-x^6+13*x^4-2*x^3-44*x^2+12*x+20,-7/2*x^6+3/2*x^5+39*x^4-13*x^3-110*x^2+69/2*x+87/2]]];

f[238,2]=[
[x, [1,1,1], [-1,0,-2,-1,-2,0,-1,-2,-8,0,8,-4,-6,4,8,-6,10,10,8,4,-10,-4,-6,-6,-14]],
[x-2, [1,-1,1], [-1,2,4,1,-4,-4,-1,-6,0,6,4,-10,6,0,4,14,-6,-12,4,-8,2,0,10,10,6]],
[x-2, [-1,1,1], [1,2,0,-1,-2,-2,-1,0,4,4,0,8,-2,0,0,2,4,-12,-8,12,-14,12,4,-6,6]],
[x+2, [-1,-1,1], [1,-2,-4,1,-6,-2,-1,0,-4,8,0,4,-2,-8,-8,-6,-4,-8,-16,4,10,-12,12,10,6]],
[x, [-1,-1,-1], [1,0,2,1,0,-2,1,4,0,-6,0,-6,-6,-12,8,-2,4,2,12,0,2,-8,12,10,-14]],
[x^2-2*x-4, [1,1,-1], [-1,x,-x+2,-1,x+2,-2*x+4,1,-2*x-2,8,-3*x+4,2*x-8,-x,2*x-10,2*x-4,-2*x+4,-2*x+2,-6,x-2,2*x-8,-2*x+4,6*x-6,-2*x-4,2,2,-2*x-2]]];

f[239,2]=[
[x^3+x^2-2*x-1, [1], [x,-x^2-x+1,x^2-3,-1,x^2-2,x^2-4,-x^2+1,x^2+3*x-4,-x^2+x+3,-6*x^2-x+11,-2*x^2-2*x,3*x,4*x^2-3*x-9,x+2,6*x^2+x-9,-2*x^2-3*x+7,-3*x^2-x+7,-8*x^2-6*x+8,5*x^2-x-6,-5*x^2-4*x+7,-5*x-7,6*x^2+2*x-10,-6*x^2-6*x+8,2*x^2+6*x-11,7*x^2+4*x-18]],
[x^17-28*x^15+x^14+319*x^13-17*x^12-1903*x^11+91*x^10+6377*x^9-125*x^8-11967*x^7-233*x^6+11733*x^5+503*x^4-5015*x^3-94*x^2+609*x+49, [-1], [x,16771351/11107271*x^16-2866545/1586753*x^15-63196242/1586753*x^14+548454202/11107271*x^13+4613893796/11107271*x^12-5855599700/11107271*x^11-24126751696/11107271*x^10+4398458577/1586753*x^9+9469941088/1586753*x^8-82906055202/11107271*x^7-91822850183/11107271*x^6+108744026520/11107271*x^5+54627655140/11107271*x^4-59185678764/11107271*x^3-7102994828/11107271*x^2+7384450585/11107271*x+86905773/1586753,22511799/11107271*x^16-4122295/1586753*x^15-85029894/1586753*x^14+783888478/11107271*x^13+6223382488/11107271*x^12-8326382581/11107271*x^11-32632212856/11107271*x^10+6229020626/1586753*x^9+12852845780/1586753*x^8-117052738164/11107271*x^7-125297104388/11107271*x^6+153180936380/11107271*x^5+75340597103/11107271*x^4-83236570496/11107271*x^3-10250253852/11107271*x^2+10451957825/11107271*x+132668371/1586753,25677032/11107271*x^16-4808908/1586753*x^15-96911585/1586753*x^14+913041769/11107271*x^13+7082868525/11107271*x^12-9683160111/11107271*x^11-37044681867/11107271*x^10+7231854089/1586753*x^9+2075098395/226679*x^8-135617406635/11107271*x^7-140464578889/11107271*x^6+176959976663/11107271*x^5+83052116143/11107271*x^4-95724702685/11107271*x^3-10472865097/11107271*x^2+11880604573/11107271*x+142368927/1586753,11795867/11107271*x^16-1932394/1586753*x^15-44322451/1586753*x^14+372521827/11107271*x^13+3225743447/11107271*x^12-4005866463/11107271*x^11-16804920021/11107271*x^10+3031135855/1586753*x^9+6564330462/1586753*x^8-57627409134/11107271*x^7-63241803565/11107271*x^6+76509429271/11107271*x^5+37396414775/11107271*x^4-42451276279/11107271*x^3-5056555641/11107271*x^2+5464612926/11107271*x+75908807/1586753,12932667/11107271*x^16-2279337/1586753*x^15-48752987/1586753*x^14+433764071/11107271*x^13+3560780261/11107271*x^12-4604482467/11107271*x^11-18627365653/11107271*x^10+3435101051/1586753*x^9+7316629361/1586753*x^8-64145365971/11107271*x^7-71086180147/11107271*x^6+82910826763/11107271*x^5+42558283977/11107271*x^4-44016310883/11107271*x^3-5687517959/11107271*x^2+5215960508/11107271*x+67672208/1586753,21279582/11107271*x^16-576557/226679*x^15-11490920/226679*x^14+764328658/11107271*x^13+5888803376/11107271*x^12-8085603784/11107271*x^11-30866495077/11107271*x^10+6022752188/1586753*x^9+12144661700/1586753*x^8-112598812800/11107271*x^7-118266415576/11107271*x^6+146376439975/11107271*x^5+71289580280/11107271*x^4-78898734658/11107271*x^3-10026490116/11107271*x^2+9892317506/11107271*x+131645167/1586753,17310495/11107271*x^16-3414606/1586753*x^15-65437688/1586753*x^14+645668596/11107271*x^13+4788816728/11107271*x^12-6824305772/11107271*x^11-25069140146/11107271*x^10+5083421254/1586753*x^9+9834005994/1586753*x^8-95167008616/11107271*x^7-95086769046/11107271*x^6+124129226300/11107271*x^5+56185475128/11107271*x^4-67333009400/11107271*x^3-7048228324/11107271*x^2+8503642143/11107271*x+97915806/1586753,31722361/11107271*x^16-5850154/1586753*x^15-119732695/1586753*x^14+1112154343/11107271*x^13+8752755413/11107271*x^12-11810292925/11107271*x^11-45803042055/11107271*x^10+8833142877/1586753*x^9+17978970083/1586753*x^8-165930762117/11107271*x^7-174209659179/11107271*x^6+216989136849/11107271*x^5+103470227181/11107271*x^4-117637416119/11107271*x^3-13353180733/11107271*x^2+14550510082/11107271*x+176544419/1586753,37599616/11107271*x^16-6005504/1586753*x^15-141443329/1586753*x^14+1156074400/11107271*x^13+10313257723/11107271*x^12-12402758789/11107271*x^11-53893343681/11107271*x^10+9348637439/1586753*x^9+21162527937/1586753*x^8-176565199519/11107271*x^7-205761663785/11107271*x^6+231733252097/11107271*x^5+123644621259/11107271*x^4-126013913667/11107271*x^3-17196071544/11107271*x^2+15589598961/11107271*x+203454605/1586753,-24153904/11107271*x^16+4321005/1586753*x^15+91255413/1586753*x^14-822194252/11107271*x^13-6682216498/11107271*x^12+8733648358/11107271*x^11+35066854706/11107271*x^10-6528082826/1586753*x^9-1975726498/226679*x^8+122383812294/11107271*x^7+135081794294/11107271*x^6-159364496414/11107271*x^5-81358052074/11107271*x^4+85759333630/11107271*x^3+10925236722/11107271*x^2-10535502669/11107271*x-128905963/1586753,58834648/11107271*x^16-10469071/1586753*x^15-221869889/1586753*x^14+1994193703/11107271*x^13+16206951361/11107271*x^12-21201818723/11107271*x^11-84762261663/11107271*x^10+15858972953/1586753*x^9+33262149523/1586753*x^8-297518575153/11107271*x^7-322391208789/11107271*x^6+387851937953/11107271*x^5+191863930809/11107271*x^4-209242126735/11107271*x^3-25038696915/11107271*x^2+25744954717/11107271*x+307195088/1586753,-5091410/1586753*x^16+6296589/1586753*x^15+134149164/1586753*x^14-171689718/1586753*x^13-1396850890/1586753*x^12+1829049472/1586753*x^11+7286240890/1586753*x^10-9598012734/1586753*x^9-19946795440/1586753*x^8+25795618712/1586753*x^7+27497107226/1586753*x^6-33775036080/1586753*x^5-16283976750/1586753*x^4+18370260962/1586753*x^3+2126750114/1586753*x^2-2309551274/1586753*x-26521551/226679,5603860/11107271*x^16-527885/1586753*x^15-20920101/1586753*x^14+107551699/11107271*x^13+1517800821/11107271*x^12-1204056807/11107271*x^11-7927136319/11107271*x^10+934306285/1586753*x^9+3133913085/1586753*x^8-17926129575/11107271*x^7-31088507203/11107271*x^6+23612646723/11107271*x^5+19720702809/11107271*x^4-12812745305/11107271*x^3-3538208515/11107271*x^2+1627940543/11107271*x+30928808/1586753,-24555940/11107271*x^16+4696023/1586753*x^15+92976510/1586753*x^14-889945080/11107271*x^13-6822805204/11107271*x^12+9426489144/11107271*x^11+35883128460/11107271*x^10-7037461978/1586753*x^9-14189583104/1586753*x^8+132090532704/11107271*x^7+139225044572/11107271*x^6-172900729156/11107271*x^5-84924053952/11107271*x^4+94363709408/11107271*x^3+12458439408/11107271*x^2-12228743840/11107271*x-172224095/1586753,23137528/11107271*x^16-4480123/1586753*x^15-87305298/1586753*x^14+850602334/11107271*x^13+6377449362/11107271*x^12-9028740192/11107271*x^11-33320016078/11107271*x^10+6757917882/1586753*x^9+13036985292/1586753*x^8-127273739214/11107271*x^7-125469038104/11107271*x^6+167313001238/11107271*x^5+73238563952/11107271*x^4-91565654006/11107271*x^3-8564950502/11107271*x^2+11584957668/11107271*x+125291171/1586753,-11945783/11107271*x^16+1876578/1586753*x^15+44619165/1586753*x^14-363276259/11107271*x^13-3223860477/11107271*x^12+3916255107/11107271*x^11+16637719515/11107271*x^10-423520701/226679*x^9-6412919777/1586753*x^8+56237453787/11107271*x^7+60485206171/11107271*x^6-74229742161/11107271*x^5-34233248465/11107271*x^4+40708318227/11107271*x^3+3555872623/11107271*x^2-5013085222/11107271*x-45134671/1586753,-36380839/11107271*x^16+7132760/1586753*x^15+137864134/1586753*x^14-1347853120/11107271*x^13-10122241072/11107271*x^12+14239658896/11107271*x^11+53236163521/11107271*x^10-10604980572/1586753*x^9-21028113836/1586753*x^8+198534635168/11107271*x^7+205486667308/11107271*x^6-258899383859/11107271*x^5-123504253696/11107271*x^4+140147218986/11107271*x^3+16307246824/11107271*x^2-17544026569/11107271*x-201522668/1586753,9809140/11107271*x^16-2040824/1586753*x^15-37430986/1586753*x^14+381355014/11107271*x^13+2770423550/11107271*x^12-3986539362/11107271*x^11-14718446801/11107271*x^10+419804074/226679*x^9+5897630738/1586753*x^8-54420559902/11107271*x^7-58993335722/11107271*x^6+70066030045/11107271*x^5+37144228994/11107271*x^4-37428317540/11107271*x^3-5913881730/11107271*x^2+4874004078/11107271*x+74653926/1586753,-94120592/11107271*x^16+16610973/1586753*x^15+354859168/1586753*x^14-3169793038/11107271*x^13-25917554155/11107271*x^12+33765281400/11107271*x^11+135539819388/11107271*x^10-3616286076/226679*x^9-53188624940/1586753*x^8+476369994948/11107271*x^7+515523897584/11107271*x^6-624006180072/11107271*x^5-306773035260/11107271*x^4+339413628147/11107271*x^3+40273772004/11107271*x^2-42485977978/11107271*x-512199529/1586753,-4186516/11107271*x^16+1345097/1586753*x^15+16003654/1586753*x^14-246879960/11107271*x^13-1178076444/11107271*x^12+2544799398/11107271*x^11+6150472834/11107271*x^10-1860264970/1586753*x^9-2369974196/1586753*x^8+34439208134/11107271*x^7+21793525928/11107271*x^6-44810443752/11107271*x^5-10997689036/11107271*x^4+24518255452/11107271*x^3-75148870/11107271*x^2-3232613866/11107271*x-13149679/1586753,10474486/1586753*x^16-13640154/1586753*x^15-276653892/1586753*x^14+370103214/1586753*x^13+2887620096/1586753*x^12-3926062806/1586753*x^11-15098484106/1586753*x^10+20528162820/1586753*x^9+41438204538/1586753*x^8-55002104236/1586753*x^7-57291782314/1586753*x^6+71812742200/1586753*x^5+34052945740/1586753*x^4-38956944780/1586753*x^3-4490436660/1586753*x^2+4910175444/1586753*x+59950786/226679,-93248384/11107271*x^16+17501055/1586753*x^15+352403067/1586753*x^14-3318477552/11107271*x^13-25799309969/11107271*x^12+35152091087/11107271*x^11+135254239283/11107271*x^10-26224540689/1586753*x^9-53226988943/1586753*x^8+491234864689/11107271*x^7+517871642511/11107271*x^6-640102203955/11107271*x^5-310023870021/11107271*x^4+345527482837/11107271*x^3+41263354868/11107271*x^2-42752484179/11107271*x-541302430/1586753,7738728/11107271*x^16-1442330/1586753*x^15-29411227/1586753*x^14+273811255/11107271*x^13+2169468625/11107271*x^12-2903591549/11107271*x^11-11497132055/11107271*x^10+2168337551/1586753*x^9+657313205/226679*x^8-40652831355/11107271*x^7-46070406237/11107271*x^6+53014812465/11107271*x^5+29233146401/11107271*x^4-28691486919/11107271*x^3-4899746969/11107271*x^2+3640412239/11107271*x+59508035/1586753,-49646111/11107271*x^16+9570059/1586753*x^15+187805707/1586753*x^14-1809972259/11107271*x^13-13761874751/11107271*x^12+19128928509/11107271*x^11+72211549917/11107271*x^10-14241893681/1586753*x^9-28446584965/1586753*x^8+266276728301/11107271*x^7+277262296243/11107271*x^6-346284585415/11107271*x^5-166848895203/11107271*x^4+186521509577/11107271*x^3+22976272639/11107271*x^2-23102473088/11107271*x-295511152/1586753]]];

f[240,2]=[
[x+4, [1,1,1], [0,-1,-1,-4,0,-6,-2,-4,8,-6,0,-6,10,4,-8,10,0,6,4,0,-14,-16,-12,2,2]],
[x-1, [1,1,-1], [0,-1,1,0,4,6,-6,4,0,-2,8,-2,-6,-12,-8,6,-12,14,-4,-8,-6,8,12,10,2]],
[x-4, [-1,1,1], [0,-1,-1,4,0,2,6,4,0,-6,-8,2,-6,4,0,-6,0,-10,4,0,2,-8,-12,18,2]],
[x-1, [-1,-1,-1], [0,1,1,0,4,-2,2,-4,0,-2,0,-10,10,-4,-8,-10,4,-2,-12,8,10,0,-12,-6,2]]];

f[241,2]=[
[x^7+4*x^6-14*x^4-10*x^3+6*x^2+3*x-1, [1], [x,-x^6-3*x^5+3*x^4+11*x^3-x^2-6*x+1,x^6+2*x^5-6*x^4-9*x^3+10*x^2+8*x-4,2*x^6+9*x^5+3*x^4-29*x^3-28*x^2+4*x+3,-2*x^6-8*x^5-2*x^4+23*x^3+26*x^2+3*x-8,2*x^6+7*x^5-x^4-21*x^3-15*x^2+2*x+1,-5*x^6-21*x^5-4*x^4+68*x^3+60*x^2-12*x-10,-2*x^6-4*x^5+11*x^4+17*x^3-16*x^2-14*x+4,x^6+4*x^5+x^4-13*x^3-15*x^2+3*x+2,5*x^6+20*x^5+3*x^4-63*x^3-60*x^2+8*x+12,3*x^6+13*x^5+5*x^4-39*x^3-46*x^2-x+8,x^5+x^4-6*x^3-5*x^2+6*x+6,x^6+3*x^5-4*x^4-16*x^3+2*x^2+24*x-1,-x^6-10*x^5-18*x^4+28*x^3+72*x^2+8*x-20,-2*x^5-9*x^4-x^3+31*x^2+16*x-12,-8*x^6-28*x^5+7*x^4+90*x^3+57*x^2-14*x-11,-6*x^6-18*x^5+16*x^4+66*x^3+9*x^2-33*x-6,10*x^6+38*x^5+x^4-117*x^3-99*x^2+8*x+18,4*x^6+17*x^5+8*x^4-48*x^3-69*x^2-13*x+20,6*x^6+24*x^5+4*x^4-73*x^3-71*x^2+3*x+8,x^6+9*x^5+12*x^4-33*x^3-47*x^2+17*x+6,-4*x^6-18*x^5-6*x^4+60*x^3+57*x^2-20*x-13,-2*x^6-6*x^5+5*x^4+20*x^3-10*x,-5*x^6-24*x^5-14*x^4+71*x^3+92*x^2-23,-6*x^5-15*x^4+20*x^3+46*x^2-4*x-5]],
[x^12-3*x^11-14*x^10+44*x^9+65*x^8-219*x^7-123*x^6+444*x^5+105*x^4-328*x^3-45*x^2+18*x-1, [-1], [x,11/8*x^11-15/4*x^10-79/4*x^9+54*x^8+773/8*x^7-1043/4*x^6-1631/8*x^5+4025/8*x^4+827/4*x^3-1375/4*x^2-741/8*x+93/8,11/8*x^11-17/4*x^10-75/4*x^9+123/2*x^8+669/8*x^7-1199/4*x^6-1223/8*x^5+4717/8*x^4+589/4*x^3-1677/4*x^2-737/8*x+117/8,-15/16*x^11+7/4*x^10+61/4*x^9-205/8*x^8-1415/16*x^7+1011/8*x^6+3567/16*x^5-3951/16*x^4-1809/8*x^3+1283/8*x^2+813/16*x-71/16,-5/4*x^11+31/8*x^10+135/8*x^9-445/8*x^8-589/8*x^7+535/2*x^6+255/2*x^5-4119/8*x^4-443/4*x^3+711/2*x^2+65*x-85/8,7/8*x^11-5/2*x^10-25/2*x^9+145/4*x^8+487/8*x^7-707/4*x^6-1039/8*x^5+2759/8*x^4+569/4*x^3-947/4*x^2-613/8*x+47/8,-13/8*x^11+7/2*x^10+53/2*x^9-215/4*x^8-1237/8*x^7+1141/4*x^6+3173/8*x^5-4981/8*x^4-1715/4*x^3+1909/4*x^2+1127/8*x-133/8,5/16*x^11-7/8*x^10-27/8*x^9+41/4*x^8+111/16*x^7-249/8*x^6+287/16*x^5+99/16*x^4-423/8*x^3+311/8*x^2+501/16*x+15/16,9/16*x^11-15/8*x^10-59/8*x^9+107/4*x^8+483/16*x^7-1013/8*x^6-709/16*x^5+3751/16*x^4+205/8*x^3-1189/8*x^2-167/16*x+99/16,-11/4*x^11+17/2*x^10+38*x^9-124*x^8-695/4*x^7+1223/2*x^6+1323/4*x^5-4881/4*x^4-321*x^3+876*x^2+727/4*x-115/4,1/2*x^11+1/8*x^10-71/8*x^9-39/8*x^8+447/8*x^7+49*x^6-575/4*x^5-1439/8*x^4+425/4*x^3+219*x^2+233/4*x-73/8,-x^11+13/4*x^10+57/4*x^9-199/4*x^8-273/4*x^7+264*x^6+275/2*x^5-2335/4*x^4-277/2*x^3+471*x^2+181/2*x-81/4,-1/4*x^11+x^10+9/2*x^9-37/2*x^8-119/4*x^7+245/2*x^6+361/4*x^5-1361/4*x^4-132*x^3+331*x^2+365/4*x-55/4,-11/16*x^11+17/8*x^10+85/8*x^9-135/4*x^8-929/16*x^7+1503/8*x^6+2255/16*x^5-6989/16*x^4-1271/8*x^3+2871/8*x^2+1317/16*x-97/16,-2*x^9+5*x^8+26*x^7-64*x^6-104*x^5+245*x^4+143*x^3-276*x^2-67*x+14,-9/4*x^11+15/2*x^10+29*x^9-107*x^8-461/4*x^7+1019/2*x^6+665/4*x^5-3867/4*x^4-139*x^3+657*x^2+529/4*x-61/4,3/8*x^11-3/2*x^10-7/2*x^9+77/4*x^8+11/8*x^7-295/4*x^6+381/8*x^5+659/8*x^4-367/4*x^3-11/4*x^2+311/8*x+11/8,-15/8*x^11+23/4*x^10+109/4*x^9-87*x^8-1085/8*x^7+1815/4*x^6+2339/8*x^5-7837/8*x^4-1233/4*x^3+3065/4*x^2+1365/8*x-229/8,-11/4*x^11+35/4*x^10+143/4*x^9-491/4*x^8-291/2*x^7+1135/2*x^6+905/4*x^5-1024*x^4-210*x^3+1303/2*x^2+695/4*x-39/2,-51/16*x^11+37/4*x^10+171/4*x^9-1029/8*x^8-2947/16*x^7+4679/8*x^6+4979/16*x^5-16315/16*x^4-2069/8*x^3+4815/8*x^2+2153/16*x-115/16,41/8*x^11-63/4*x^10-291/4*x^9+469/2*x^8+2787/8*x^7-4777/4*x^6-5693/8*x^5+19991/8*x^4+2905/4*x^3-7589/4*x^2-3271/8*x+499/8,-11/2*x^11+59/4*x^10+315/4*x^9-841/4*x^8-1533/4*x^7+997*x^6+802*x^5-7455/4*x^4-1603/2*x^3+1216*x^2+337*x-169/4,5/4*x^11-17/4*x^10-57/4*x^9+225/4*x^8+81/2*x^7-465/2*x^6-19/4*x^5+332*x^4-17*x^3-257/2*x^2-233/4*x-7/2,11/8*x^11-4*x^10-21*x^9+251/4*x^8+903/8*x^7-1379/4*x^6-2163/8*x^5+6359/8*x^4+1245/4*x^3-2635/4*x^2-1361/8*x+127/8,-3/2*x^11+5*x^10+39/2*x^9-72*x^8-79*x^7+348*x^6+241/2*x^5-1351/2*x^4-225/2*x^3+947/2*x^2+105*x-17]]];

f[242,2]=[
[x+2, [1,-1], [-1,-2,-3,2,0,5,3,2,6,-3,2,-7,3,8,6,-3,0,-10,-10,12,14,2,18,-9,11]],
[x+2, [-1,-1], [1,-2,-3,-2,0,-5,-3,-2,6,3,2,-7,-3,-8,6,-3,0,10,-10,12,-14,-2,-18,-9,11]],
[x^2+2*x-2, [1,1], [-1,x,-x-1,-x-4,0,-3,3*x+3,x-2,x-2,3,3*x-2,-3*x-5,-3*x+3,0,-3*x-6,3*x+9,2*x+8,2*x-4,-3*x-8,-2*x-8,4*x-2,x+4,-3*x-6,2*x+5,-1]],
[x^2-3*x+1, [1,-1], [-1,x,-2*x+4,2,0,2*x-2,-x+1,-3*x+7,-2*x+2,4*x-6,2,6*x-6,x-6,-9*x+12,4*x-8,-4*x,x-9,-4*x+4,-5*x+13,2*x-6,-x-10,12*x-18,7*x-12,5*x-10,3*x+6]],
[x^2+2*x-2, [-1,1], [1,x,-x-1,x+4,0,3,-3*x-3,-x+2,x-2,-3,3*x-2,-3*x-5,3*x-3,0,-3*x-6,3*x+9,2*x+8,-2*x+4,-3*x-8,-2*x-8,-4*x+2,-x-4,3*x+6,2*x+5,-1]],
[x^2-3*x+1, [-1,1], [1,x,-2*x+4,-2,0,-2*x+2,x-1,3*x-7,-2*x+2,-4*x+6,2,6*x-6,-x+6,9*x-12,4*x-8,-4*x,x-9,4*x-4,-5*x+13,2*x-6,x+10,-12*x+18,-7*x+12,5*x-10,3*x+6]]];

f[243,2]=[
[x+4, [1], [0,0,0,-4,0,-7,0,-1,0,0,11,-10,0,5,0,0,0,-1,5,0,-7,-13,0,0,5]],
[x-5, [-1], [0,0,0,5,0,2,0,8,0,0,-7,-1,0,-13,0,0,0,-1,5,0,-7,-4,0,0,14]],
[x^2-3, [-1], [x,0,2*x,-1,-2*x,5,0,-1,-4*x,-2*x,5,-1,2*x,-1,-2*x,-6*x,2*x,2,8,6*x,2,-1,4*x,6*x,17]],
[x^2-6, [-1], [x,0,-x,2,x,-1,-3*x,-1,-x,-2*x,-1,8,2*x,11,4*x,3*x,-x,5,-7,3*x,11,-7,-5*x,0,-7]],
[x^3+3*x^2-3, [1], [x,0,-x-3,-2*x^2-3*x+2,3*x^2+4*x-6,x^2+3*x-1,-3,3*x^2+6*x-4,-3*x^2-4*x+3,-3*x^2-5*x,-2*x^2-3*x-1,-3*x-4,-3*x^2-x+9,x^2-7,-5*x-3,3*x^2+6*x-9,-x+6,-5*x^2-9*x+8,x^2-3*x-4,-3*x^2+3*x+15,-3*x^2+11,4*x^2+3*x-7,3*x^2+7*x,6*x^2+3*x-15,4*x^2-7]],
[x^3-3*x^2+3, [-1], [x,0,-x+3,-2*x^2+3*x+2,-3*x^2+4*x+6,x^2-3*x-1,3,3*x^2-6*x-4,3*x^2-4*x-3,3*x^2-5*x,-2*x^2+3*x-1,3*x-4,3*x^2-x-9,x^2-7,-5*x+3,-3*x^2+6*x+9,-x-6,-5*x^2+9*x+8,x^2+3*x-4,3*x^2+3*x-15,-3*x^2+11,4*x^2-3*x-7,-3*x^2+7*x,-6*x^2+3*x+15,4*x^2-7]]];

f[244,2]=[
[x, [-1,-1], [0,0,-3,-3,-1,1,-2,2,3,-8,0,-2,-3,8,-4,-10,9,1,13,-12,5,-17,12,-8,-18]],
[x^4-12*x^2+4*x+16, [-1,1], [0,x,1/4*x^3-2*x+2,-1/4*x^3-1/2*x^2+2*x+2,-1/4*x^3-1/2*x^2+x+2,1/4*x^3-3*x+2,-1/2*x^3-x^2+3*x+6,1/2*x^3-5*x,-1/4*x^3+1/2*x^2+3*x-2,x^2+x-2,x^2-x-6,-1/2*x^3+7*x-2,1/4*x^3+x^2-3*x-2,2*x^2+x-14,-x^2+4,x^2-6,3/4*x^3+1/2*x^2-6*x-2,-1,-1/4*x^3-1/2*x^2-2,x^3+x^2-11*x+2,-3/4*x^3-x^2+6*x-2,-1/4*x^3+1/2*x^2-x-2,2*x^2-8,-3/2*x^3-x^2+14*x+2,x^3-8*x+6]]];

f[245,2]=[
[x-3, [1,-1], [-2,3,-1,0,1,3,-3,6,-4,-1,6,0,6,-6,-9,-10,-6,0,-14,-8,6,-1,12,12,-15]],
[x, [-1,-1], [0,-1,1,0,-3,-5,-3,-2,-6,3,4,2,12,-10,-9,12,0,-8,-4,0,-2,-1,-12,12,1]],
[x+3, [-1,-1], [-2,-3,1,0,1,-3,3,-6,-4,-1,-6,0,-6,-6,9,-10,6,0,-14,-8,-6,-1,-12,-12,15]],
[x^2+2*x-1, [1,1], [-x-1,x,-1,0,2*x-1,-x-4,-3*x-2,-6,x+7,-4*x-7,-3*x-9,3*x+1,3*x+5,2,3*x+6,3*x+3,3*x+1,2*x+2,-3*x-7,2*x-4,6*x+6,6*x-1,0,8,-3*x-12]],
[x^2+x-4, [1,-1], [x,x+1,-1,0,x+1,-x-3,x+3,-2*x+2,-2*x-2,-3*x-1,0,6,2*x,2*x+6,-3*x+1,2*x,4,6*x,-4*x,8,-4*x+2,-x-5,-4,-2*x-4,5*x+7]],
[x^2+2*x-1, [1,-1], [x+2,x,-1,0,-2*x,2*x+4,-2*x-4,-2*x-2,x,-1,6,0,2*x+7,-x+4,-2,2*x-2,-6*x-2,-6*x-3,-x+10,6*x+2,2*x,2*x+14,-9*x-10,4*x+7,-4*x-10]],
[x^2-2*x-1, [-1,1], [x-1,x,1,0,-2*x-1,-x+4,-3*x+2,6,-x+7,4*x-7,-3*x+9,-3*x+1,3*x-5,2,3*x-6,-3*x+3,3*x-1,2*x-2,3*x-7,-2*x-4,6*x-6,-6*x-1,0,-8,-3*x+12]],
[x^2-2*x-1, [-1,1], [-x+2,x,1,0,2*x,2*x-4,-2*x+4,-2*x+2,-x,-1,-6,0,2*x-7,x+4,2,-2*x-2,-6*x+2,-6*x+3,x+10,-6*x+2,2*x,-2*x+14,-9*x+10,4*x-7,-4*x+10]]];

f[246,2]=[
[x+2, [1,1,1], [-1,-1,-2,2,-4,-4,-2,-8,4,-8,4,2,-1,4,-2,4,12,-6,16,6,-2,-14,4,-6,-2]],
[x-3, [1,1,-1], [-1,-1,3,-2,2,1,5,-1,6,8,3,-6,1,-4,-12,-14,3,10,-7,-3,1,12,7,-15,-10]],
[x+2, [1,-1,1], [-1,1,-2,2,4,4,-2,0,4,0,4,2,-1,-12,-2,-4,-4,10,-8,-10,-2,-14,-12,10,-18]],
[x-3, [1,-1,1], [-1,1,3,2,-6,-1,3,5,-6,0,-1,2,-1,8,-12,6,-9,-10,-13,15,-7,-4,3,15,2]],
[x+1, [-1,1,1], [1,-1,1,2,2,-7,7,7,-2,-8,-5,-10,-1,-8,4,-2,9,6,1,15,1,-8,-11,3,10]],
[x-1, [-1,-1,-1], [1,1,1,-2,2,-1,-7,5,-6,0,7,-2,1,4,-12,-6,5,2,3,-3,9,0,9,5,-2]],
[x+2, [-1,-1,-1], [1,1,-2,4,-4,2,2,-4,0,-6,-8,-2,1,4,12,-6,-4,-10,12,-12,-6,12,12,2,10]]];

f[247,2]=[
[x^2-x-1, [-1,1], [x,2*x-2,2*x,-2,2*x-4,1,-4*x+5,-1,-2*x+5,4*x-2,2*x+1,4*x+1,-3,-2*x+5,-8*x+2,-4*x+6,-6*x+3,7,2*x-3,-4*x+4,2*x+8,-6*x-2,14,10,-17]],
[x^3+3*x^2-3, [-1,-1], [x,-x^2-x+1,-x^2-2*x,2*x^2+3*x-4,x^2-3,1,x^2+4*x-3,1,-x^2-4*x-3,2*x^2+5*x-6,-4*x^2-3*x+8,5*x^2+6*x-7,-3*x^2-5*x+3,-3*x^2-6*x+8,-2*x^2-4*x+3,x^2+5*x-3,4*x^2+x-9,-6*x^2-12*x+2,-6*x^2-6*x+11,-2*x^2-2*x+9,3*x-4,3*x+5,3*x^2+6*x-9,-7*x^2-13*x+3,-8*x^2-12*x+14]],
[x^4+3*x^3-2*x^2-9*x-4, [1,1], [x,-x^3-2*x^2+3*x+4,x^3+2*x^2-4*x-7,x^3+x^2-5*x-3,x^2+2*x-3,-1,x^2-7,-1,-3*x^3-6*x^2+14*x+16,2*x^3+2*x^2-9*x-4,2*x^3+6*x^2-7*x-14,-5*x^3-10*x^2+18*x+24,-x^3-2*x^2+3*x-2,x^3-4*x-1,-2*x^3-4*x^2+6*x+3,-5*x^3-8*x^2+17*x+16,3*x^3+7*x^2-13*x-16,-x^3-x^2+6*x+11,5*x^3+7*x^2-16*x-10,-3*x^3-x^2+16*x+4,3*x^3+5*x^2-13*x-17,5*x^3+7*x^2-23*x-18,-x^3-4*x^2-2*x+4,-x^3-2*x^2+3*x-2,-6*x^3-10*x^2+24*x+20]],
[x^5-4*x^4+12*x^2-5*x-5, [1,-1], [x,-x^2+x+3,x^3-2*x^2-2*x+3,-x^4+2*x^3+3*x^2-4*x-1,x^4-4*x^3+9*x-2,-1,x^3-6*x+2,1,-2*x^4+3*x^3+10*x^2-8*x-10,-3*x^4+6*x^3+11*x^2-14*x-9,x^3-x^2-5*x+1,2*x^4-5*x^3-4*x^2+8*x+2,x^4-3*x^3-3*x^2+6*x+9,3*x^4-8*x^3-8*x^2+23*x-1,-x^4+3*x^3-5*x+7,-2*x^3+3*x^2+7*x-3,x^4-4*x^3+x^2+14*x-6,-x^4+x^3+4*x^2+3*x-6,4*x^4-12*x^3-6*x^2+24*x+1,-x^4+5*x^3-4*x^2-9*x+11,-x^4+2*x^3+5*x^2-8*x+3,-2*x^4+5*x^3+5*x^2-9*x-2,x^4-2*x^3-4*x^2+7*x+2,-6*x^4+14*x^3+21*x^2-37*x-13,-3*x^4+5*x^3+16*x^2-15*x-12]],
[x^5-9*x^3-x^2+19*x+4, [-1,1], [x,x^3-5*x,-x^3+4*x+1,-x^3-x^2+5*x+5,-x^2+5,1,x^2+1,-1,x^4-6*x^2-x+4,-x^4+x^3+6*x^2-6*x-4,x^4+x^3-6*x^2-4*x+2,-x^4+6*x^2-x-8,-x^3+2*x^2+7*x-2,x^3-6*x-1,x^4-x^3-4*x^2+5*x-1,2*x^4-x^3-10*x^2+3*x,x^4-7*x^2-2*x+8,x^4-2*x^3-5*x^2+7*x-1,-x^3+x^2+8*x-6,-2*x^4+x^3+9*x^2-2*x,-2*x^4-x^3+11*x^2+7*x-9,x^4-2*x^3-3*x^2+6*x-10,-3*x^4+2*x^3+18*x^2-7*x-16,3*x^3-2*x^2-13*x+2,-2*x^4+14*x^2-2*x-12]]];

f[248,2]=[
[x-1, [1,1], [0,-2,1,-3,-2,-2,-6,1,-6,4,-1,-2,7,4,8,8,3,-6,-12,3,-10,-12,2,-16,-7]],
[x-2, [-1,1], [0,-2,2,0,2,4,6,4,0,-4,-1,4,-10,-2,-8,4,0,0,12,0,2,12,-14,-14,14]],
[x, [-1,-1], [0,0,-3,-3,2,-4,0,1,4,-6,1,-10,7,-10,12,-4,3,12,-12,-13,2,6,6,-10,1]],
[x^2-3*x-6, [-1,1], [0,2,x,-x+2,-2,-2*x+4,-2,-x-2,2*x-4,8,-1,2*x-4,-x,2*x-2,0,0,x-2,-2*x+8,-4,x-10,4*x-6,4*x-4,-4*x+6,-2*x+6,-3*x-4]],
[x^3-2*x^2-6*x+8, [1,-1], [0,x,-1/2*x^2+x+1,-1/2*x^2-x+5,x^2-x-2,x^2-x-4,-x^2+4,-3/2*x^2+x+9,0,-x-6,1,-x+2,-1/2*x^2-3*x+3,x^2+x-2,x^2-2*x-4,3*x^2-x-16,-5/2*x^2+x+11,x^2+3*x-12,2*x^2-4*x-4,3/2*x^2-x-5,-2*x^2+4*x+10,x^2+4*x-6,x^2-3*x-6,-2*x^2+4*x+10,-3/2*x^2+3*x+13]]];

f[249,2]=[
[x-1, [1,1], [1,-1,-1,-4,-3,2,4,-1,-3,4,-6,-9,-2,4,8,7,-9,-13,5,0,-12,-12,-1,9,-6]],
[x+1, [1,1], [-1,-1,1,0,-3,-6,-4,-7,5,8,-10,7,-2,4,-12,9,-1,11,-5,-4,12,-4,-1,-9,-2]],
[x^2+2*x-1, [-1,-1], [x,1,-x-4,-2,2*x-1,0,-4*x-4,x,4*x+3,-6,-8,-1,-2*x-6,6,-2*x-6,-5*x-6,-4*x+5,2*x+7,3*x+2,-6*x-12,-4*x-2,8*x+10,1,9*x+6,-6*x-6]],
[x^4-2*x^3-4*x^2+8*x-1, [-1,1], [x,1,-x+2,-x^2+3,-2*x^3+x^2+8*x-2,-x^3+5*x-2,2*x^3-2*x^2-8*x+6,2*x^3-9*x,4*x^3-2*x^2-18*x+9,-2*x^3+3*x^2+8*x-9,-2*x^3+3*x^2+8*x-7,2*x^3-6*x-5,-2*x^3-x^2+12*x-1,-3*x^3+4*x^2+11*x-14,2*x^3-8*x+4,-3*x^3+14*x+2,-4*x^3+4*x^2+16*x-7,-2*x^3+3*x^2+8*x-12,x^3-4*x^2-2*x+6,3*x^3-2*x^2-9*x+8,3*x^3-4*x^2-11*x+6,-3*x^3+11*x+2,-1,-x^3+4*x^2+6*x-14,3*x^3-4*x^2-21*x+18]],
[x^5+3*x^4-4*x^3-14*x^2-3*x+1, [1,-1], [x,-1,-1/2*x^4-2*x^3+2*x^2+10*x+1/2,x^4+2*x^3-5*x^2-8*x+2,-1/2*x^4-2*x^3+x^2+9*x+9/2,x^3-5*x+2,2*x^4+4*x^3-10*x^2-18*x,-5/2*x^4-6*x^3+12*x^2+26*x+5/2,-1/2*x^4+4*x^2-x-5/2,-x^4-2*x^3+5*x^2+6*x-2,x^4+2*x^3-5*x^2-10*x+4,1/2*x^4-4*x^2-x+5/2,x^4+4*x^3-3*x^2-20*x-4,3*x^4+7*x^3-14*x^2-29*x+1,x^4+2*x^3-6*x^2-10*x+5,3/2*x^4+3*x^3-6*x^2-11*x-19/2,3/2*x^4+6*x^3-6*x^2-29*x-1/2,-5/2*x^4-6*x^3+11*x^2+29*x+13/2,-5/2*x^4-9*x^3+10*x^2+43*x+13/2,-2*x^4-5*x^3+10*x^2+19*x+2,x^3+2*x^2-x,x^4+3*x^3-2*x^2-9*x-5,1,1/2*x^4+x^3+2*x^2-x-25/2,-x^4+x^3+10*x^2-5*x-11]]];

f[250,2]=[
[x^2+3*x+1, [1,1], [-1,x,0,-3*x-5,2*x,2*x+4,-2*x-6,2*x-2,x-5,-x-4,-6*x-12,8*x+14,x+6,3*x+8,7*x+10,-8*x-16,-2*x-8,3*x+9,-4*x-4,-2*x-6,2*x+4,12*x+18,-5*x-9,-5*x-5,-10*x-8]],
[x^2-2*x-4, [1,-1], [-1,x,0,-1/2*x,-1/2*x+5,-1/2*x-1,-2*x+4,-1/2*x-2,-3/2*x+5,-x+6,-x-2,1/2*x-6,7/2*x-4,-2*x+8,-1/2*x-5,9/2*x-6,-9/2*x+2,-2*x-6,x+6,3*x+4,-3*x-6,2*x-2,-4,-5/2*x+5,5*x-8]],
[x^2+2*x-4, [-1,1], [1,x,0,-1/2*x,1/2*x+5,-1/2*x+1,-2*x-4,1/2*x-2,-3/2*x-5,x+6,x-2,1/2*x+6,-7/2*x-4,-2*x-8,-1/2*x+5,9/2*x+6,9/2*x+2,2*x-6,x-6,-3*x+4,-3*x+6,-2*x-2,4,5/2*x+5,5*x+8]],
[x^2-3*x+1, [-1,1], [1,x,0,-3*x+5,-2*x,2*x-4,-2*x+6,-2*x-2,x+5,x-4,6*x-12,8*x-14,-x+6,3*x-8,7*x-10,-8*x+16,2*x-8,-3*x+9,-4*x+4,2*x-6,2*x-4,-12*x+18,-5*x+9,5*x-5,-10*x+8]]];

f[251,2]=[
[x^4+2*x^3-2*x^2-3*x+1, [1], [-x^2-x+1,x,x^3+2*x^2-2*x-3,-x^3-x^2+x-1,-x^3-2*x^2+x+1,-x^2-1,-3*x^3-4*x^2+6*x+3,3*x^3+4*x^2-4*x-4,2*x^3+3*x^2-5*x-2,-2*x^3-3*x^2+7*x+1,-2*x^3-3*x^2,3*x^3+3*x^2-8*x-5,x^3-x^2-2*x+4,7*x^3+8*x^2-14*x-5,2*x^3+4*x^2-x,x^3+5*x^2+2*x-5,5*x^2+7*x-5,x^3-3*x-4,-5*x^3-5*x^2+15*x+8,6*x^3+9*x^2-8*x-8,-4*x^3+13*x-5,-7*x^3-15*x^2+9*x+10,-9*x^3-13*x^2+16*x+9,x^3-5*x^2-8*x+10,2*x^3+8*x^2+4*x-7]],
[x^17-2*x^16-28*x^15+54*x^14+317*x^13-582*x^12-1867*x^11+3178*x^10+6186*x^9-9216*x^8-11921*x^7+13680*x^6+13752*x^5-9400*x^4-8800*x^3+1920*x^2+2240*x+256, [-1], [x,69/1216*x^16-53/304*x^15-219/152*x^14+2819/608*x^13+903/64*x^12-1857/38*x^11-79979/1216*x^10+9809/38*x^9+87207/608*x^8-216513/304*x^7-7719/64*x^6+31535/32*x^5+6777/152*x^4-97473/152*x^3-3451/76*x^2+5735/38*x+434/19,-21/304*x^16-37/608*x^15+653/304*x^14+287/152*x^13-109/4*x^12-14297/608*x^11+27443/152*x^10+91723/608*x^9-200943/304*x^8-161767/304*x^7+20607/16*x^6+32619/32*x^5-21707/19*x^4-146925/152*x^3+5341/19*x^2+5948/19*x+743/19,7/19*x^16-85/304*x^15-801/76*x^14+1009/152*x^13+973/8*x^12-17893/304*x^11-13748/19*x^10+68557/304*x^9+89407/38*x^8-18169/76*x^7-4087*x^6-9741/16*x^5+518077/152*x^4+205791/152*x^3-68487/76*x^2-10829/19*x-1119/19,-4/19*x^16-11/152*x^15+967/152*x^14+203/76*x^13-313/4*x^12-5829/152*x^11+76243/152*x^10+42431/152*x^9-269993/152*x^8-42051/38*x^7+13471/4*x^6+18769/8*x^5-451977/152*x^4-89797/38*x^3+29179/38*x^2+14852/19*x+1622/19,-277/1216*x^16+47/304*x^15+2007/304*x^14-2231/608*x^13-4951/64*x^12+616/19*x^11+569887/1216*x^10-9297/76*x^9-946677/608*x^8+34695/304*x^7+177391/64*x^6+12773/32*x^5-720659/304*x^4-127435/152*x^3+25057/38*x^2+6630/19*x+606/19,17/64*x^16-11/32*x^15-59/8*x^14+275/32*x^13+5253/64*x^12-2657/32*x^11-29879/64*x^10+12219/32*x^9+45967/32*x^8-6455/8*x^7-150313/64*x^6+8557/16*x^5+30275/16*x^4+857/4*x^3-1051/2*x^2-379/2*x-11,167/304*x^16-113/304*x^15-1203/76*x^14+1315/152*x^13+2947/16*x^12-22429/304*x^11-336329/304*x^10+77359/304*x^9+552825/152*x^8-13795/152*x^7-102241/16*x^6-22063/16*x^5+815887/152*x^4+184777/76*x^3-26577/19*x^2-18561/19*x-2086/19,-301/1216*x^16+59/608*x^15+2199/304*x^14-1219/608*x^13-5483/64*x^12+8133/608*x^11+639823/1216*x^10-7751/608*x^9-1080393/608*x^8-8365/38*x^7+205535/64*x^6+14891/16*x^5-208521/76*x^4-47879/38*x^3+27539/38*x^2+17769/38*x+973/19,-455/608*x^16+127/152*x^15+3203/152*x^14-6385/304*x^13-7629/32*x^12+15531/76*x^11+840781/608*x^10-36001/38*x^9-1323811/304*x^8+306159/152*x^7+233493/32*x^6-20781/16*x^5-906415/152*x^4-26099/38*x^3+31473/19*x^2+10806/19*x+902/19,443/608*x^16-505/608*x^15-6233/304*x^14+6321/304*x^13+7423/32*x^12-122337/608*x^11-818923/608*x^10+562955/608*x^9+646365/152*x^8-591193/304*x^7-229025/32*x^6+38505/32*x^5+892785/152*x^4+110843/152*x^3-123189/76*x^2-10727/19*x-991/19,-71/304*x^16+2/19*x^15+511/76*x^14-309/152*x^13-1253/16*x^12+821/76*x^11+143605/304*x^10+1771/76*x^9-238323/152*x^8-31575/76*x^7+44837/16*x^6+11253/8*x^5-182785/76*x^4-65537/38*x^3+23569/38*x^2+11673/19*x+1306/19,-439/608*x^16+69/152*x^15+1585/76*x^14-3171/304*x^13-7797/32*x^12+6653/76*x^11+895465/608*x^10-44663/152*x^9-1485277/304*x^8+5099/76*x^7+277781/32*x^6+27531/16*x^5-139930/19*x^4-455885/152*x^3+150161/76*x^2+23038/19*x+2395/19,5/76*x^16+33/304*x^15-40/19*x^14-119/38*x^13+219/8*x^12+11065/304*x^11-3519/19*x^10-66455/304*x^9+52447/76*x^8+110091/152*x^7-2731/2*x^6-20963/16*x^5+187623/152*x^4+22503/19*x^3-12409/38*x^2-7059/19*x-590/19,11/32*x^16-1/2*x^15-19/2*x^14+205/16*x^13+3363/32*x^12-1029/8*x^11-18973/32*x^10+5059/8*x^9+28853/16*x^8-12325/8*x^7-92843/32*x^6+26157/16*x^5+9205/4*x^4-2157/4*x^3-1313/2*x^2-18*x-4,229/304*x^16-119/304*x^15-1661/76*x^14+1291/152*x^13+4105/16*x^12-19107/304*x^11-473867/304*x^10+38957/304*x^9+790243/152*x^8+84061/152*x^7-148563/16*x^6-47497/16*x^5+1199829/152*x^4+79123/19*x^3-39217/19*x^2-29688/19*x-3174/19,-31/152*x^16+177/304*x^15+401/76*x^14-1185/76*x^13-53*x^12+50353/304*x^11+39053/152*x^10-268391/304*x^9-45863/76*x^8+374427/152*x^7+4919/8*x^6-55455/16*x^5-48611/152*x^4+88489/38*x^3+7971/38*x^2-11008/19*x-1762/19,-481/608*x^16+243/304*x^15+3411/152*x^14-6055/304*x^13-8199/32*x^12+58157/304*x^11+914075/608*x^10-263551/304*x^9-1459949/304*x^8+66235/38*x^7+261563/32*x^6-6419/8*x^5-128007/19*x^4-43457/38*x^3+70401/38*x^2+13349/19*x+1200/19,137/1216*x^16+123/608*x^15-137/38*x^14-3557/608*x^13+2999/64*x^12+41453/608*x^11-385063/1216*x^10-249551/608*x^9+715691/608*x^8+103391/76*x^7-148427/64*x^6-19563/8*x^5+630587/304*x^4+41028/19*x^3-19325/38*x^2-12284/19*x-1369/19,249/608*x^16-107/152*x^15-1707/152*x^14+5603/304*x^13+3923/32*x^12-3606/19*x^11-411307/608*x^10+18320/19*x^9+603601/304*x^8-375739/152*x^7-97211/32*x^6+46895/16*x^5+353455/152*x^4-106961/76*x^3-13206/19*x^2+4075/19*x+626/19,-349/304*x^16+659/608*x^15+9895/304*x^14-4021/152*x^13-1487/4*x^12+149527/608*x^11+166077/76*x^10-637149/608*x^9-2131369/304*x^8+539625/304*x^7+192507/16*x^6+8019/32*x^5-1523083/152*x^4-438095/152*x^3+207185/76*x^2+26252/19*x+2629/19,-283/608*x^16+9/608*x^15+4205/304*x^14+283/304*x^13-5343/32*x^12-16991/608*x^11+637227/608*x^10+173085/608*x^9-551461/152*x^8-423443/304*x^7+215297/32*x^6+109175/32*x^5-890209/152*x^4-569849/152*x^3+29050/19*x^2+24386/19*x+2697/19,297/304*x^16-15/76*x^15-1093/38*x^14+387/152*x^13+5499/16*x^12+381/38*x^11-648687/304*x^10-12539/38*x^9+1110319/152*x^8+161815/76*x^7-214779/16*x^6-47213/8*x^5+443777/38*x^4+261019/38*x^3-59330/19*x^2-46138/19*x-4743/19,1009/1216*x^16-11/38*x^15-1847/76*x^14+3399/608*x^13+18451/64*x^12-8955/304*x^11-2154823/1216*x^10-21799/304*x^9+3638775/608*x^8+371113/304*x^7-692267/64*x^6-134531/32*x^5+1406227/152*x^4+807053/152*x^3-181205/76*x^2-73521/38*x-4304/19,-259/608*x^16-103/304*x^15+2015/152*x^14+3223/304*x^13-5381/32*x^12-40569/304*x^11+676617/608*x^10+263887/304*x^9-1236403/304*x^8-236717/76*x^7+253521/32*x^6+48571/8*x^5-538435/76*x^4-440531/76*x^3+34358/19*x^2+35343/19*x+4110/19]]];

f[252,2]=[
[x+4, [-1,-1,1], [0,0,-4,-1,-2,-6,4,-4,-2,2,0,2,0,-4,-12,6,8,6,-8,-14,-2,12,4,0,-2]],
[x, [-1,-1,-1], [0,0,0,1,6,2,0,-4,6,-6,8,2,-12,-4,-12,6,0,-10,8,-6,-10,-4,12,-12,-10]]];

f[253,2]=[
[x^3-3*x^2+3, [1,-1], [x,-x^2+x+3,x^2-2*x,-x^2+x+3,-1,x^2-3*x-1,-x^2+2*x+2,2*x^2-4*x+1,1,-x^2-3*x+6,3*x^2-4*x-5,-3*x^2+6*x-3,-3*x^2+6*x+7,x^2+2*x-5,2*x^2-6*x+2,-2*x^2+5*x+7,-4*x^2+6*x+3,x^2+4*x-9,-6*x^2+14*x+6,6*x^2-5*x-19,5*x-8,-x+4,6*x^2-10*x-1,-2*x^2+11*x+2,-x^2-x+1]],
[x^3+x^2-4*x+1, [-1,-1], [x,-x^2-x+1,x^2+2*x-4,-x^2-3*x+1,1,x^2+x-3,x^2-6,2*x-1,1,x^2+3*x+2,-5*x^2-8*x+11,x^2+2*x-7,5*x^2+6*x-11,-3*x^2-6*x+9,-2*x^2-2*x+2,2*x^2+3*x-3,-2*x-9,x^2-7,-2*x^2-2*x+2,-2*x^2-3*x-1,-4*x^2-7*x+16,7*x+4,-11,-2*x^2+x,-x^2-3*x-9]],
[x^5+4*x^4-14*x^2-13*x-1, [1,1], [x,-x^4-3*x^3+3*x^2+10*x+1,2*x^4+5*x^3-8*x^2-18*x-1,-2*x^4-4*x^3+9*x^2+13*x-3,-1,-x^4-3*x^3+3*x^2+10*x-1,-x^3-2*x^2+6*x+5,x^4+3*x^3-2*x^2-11*x-7,-1,2*x^4+4*x^3-7*x^2-11*x-4,-2*x^4-5*x^3+6*x^2+18*x+6,-x^4-4*x^3+2*x^2+17*x+8,-6*x^4-15*x^3+20*x^2+48*x+8,5*x^4+12*x^3-18*x^2-41*x-8,3*x^4+7*x^3-12*x^2-25*x-8,-x^3-x^2+x,-7*x^4-19*x^3+22*x^2+65*x+13,x^4+2*x^3-4*x^2-3*x+6,-4*x^4-10*x^3+12*x^2+30*x+8,3*x^4+10*x^3-7*x^2-40*x-14,2*x^4+7*x^3-5*x^2-25*x-13,-3*x^4-8*x^3+13*x^2+30*x-3,-7*x^4-17*x^3+26*x^2+55*x-5,3*x^4+8*x^3-7*x^2-24*x-9,-2*x^3-x^2+9*x+5]],
[x^6-3*x^5-4*x^4+16*x^3-3*x^2-10*x+1, [-1,1], [x,x^4-x^3-5*x^2+4*x+3,-x^3+4*x+1,-x^5+6*x^3+x^2-6*x-2,1,-2*x^5+3*x^4+11*x^3-15*x^2-6*x+5,2*x^5-4*x^4-9*x^3+20*x^2-2*x-7,4*x^5-5*x^4-21*x^3+22*x^2+11*x-3,-1,-2*x^5+14*x^3+3*x^2-21*x-6,x^5-7*x^3+2*x^2+9*x-7,4*x^5-5*x^4-22*x^3+24*x^2+15*x-8,-5*x^5+6*x^4+29*x^3-28*x^2-25*x+7,-2*x^5+3*x^4+12*x^3-16*x^2-15*x+12,-x^5+x^4+7*x^3-6*x^2-6*x+5,3*x^5-2*x^4-17*x^3+9*x^2+12*x-3,-x^4+x^3+4*x^2-3*x+7,-4*x^5+3*x^4+22*x^3-14*x^2-11*x,-4*x^4+2*x^3+20*x^2-10*x-4,-4*x^5+3*x^4+22*x^3-15*x^2-12*x+10,4*x^5-4*x^4-23*x^3+19*x^2+17*x-7,-x^5-3*x^4+6*x^3+15*x^2-x-8,-x^4+3*x^3+6*x^2-15*x+3,5*x^5-5*x^4-28*x^3+21*x^2+17*x+4,-3*x^5+8*x^4+16*x^3-39*x^2-8*x+14]]];

f[254,2]=[
[x, [1,1], [-1,0,-1,-3,1,-2,-1,-7,9,-6,-10,4,-3,12,10,-3,-4,10,-2,12,-14,-2,0,6,-8]],
[x, [-1,1], [1,0,2,0,4,-2,2,-4,0,-6,8,-2,-6,0,-8,-6,8,-2,-8,0,10,16,0,-6,10]],
[x, [-1,1], [1,-2,0,4,0,6,-6,8,4,-8,-8,-6,6,-6,-8,-4,-2,6,10,8,-6,-8,14,2,-2]],
[x+3, [-1,-1], [1,-2,-3,-1,-3,-4,3,-7,3,6,-4,2,9,-10,-6,3,0,-10,14,-12,2,-10,-12,0,8]],
[x^2+x-4, [-1,1], [1,2,x,-x,-x-4,-2*x-2,-x-2,3*x+4,3*x,2*x+4,0,2,5*x+2,6,-2*x+8,-5*x-4,-2*x-6,6,6,0,-6,6*x,-2*x-6,-6*x-6,-2*x-2]],
[x^5+2*x^4-10*x^3-16*x^2+10*x+16, [1,-1], [-1,x,-5/2*x^4-2*x^3+27*x^2+7*x-31,3/2*x^4+x^3-17*x^2-2*x+23,1/2*x^4+x^3-5*x^2-6*x+5,2,3/2*x^4+x^3-17*x^2-4*x+23,-3/2*x^4-x^3+17*x^2+2*x-19,-1/2*x^4-x^3+5*x^2+6*x-5,-2*x^4-x^3+22*x^2+x-26,3*x^4+2*x^3-33*x^2-6*x+42,-5*x^4-4*x^3+54*x^2+14*x-60,7/2*x^4+3*x^3-38*x^2-12*x+45,2*x^4+2*x^3-20*x^2-7*x+16,3*x^4+2*x^3-33*x^2-6*x+34,5/2*x^4+x^3-29*x^2+x+35,2*x^4+2*x^3-20*x^2-9*x+16,2*x^4+2*x^3-22*x^2-12*x+26,-7*x^4-5*x^3+78*x^2+13*x-98,-x^2-2*x,-5*x^4-4*x^3+56*x^2+16*x-70,2,4*x^4+3*x^3-44*x^2-11*x+48,4*x^4+4*x^3-42*x^2-16*x+50,9*x^4+6*x^3-98*x^2-14*x+120]]];

f[255,2]=[
[x^2-x-3, [1,1,-1], [x,-1,-1,2*x-1,5,-2*x-2,1,-2*x-1,-2*x+2,-2*x+5,-2*x-2,-4*x+3,2*x+5,4*x,4*x-7,-2*x+1,2*x,2*x+2,-2*x-8,-4*x+8,13,4*x-6,-4*x+8,2*x+4,-4*x+6]],
[x^2-3*x+1, [1,-1,1], [x,-1,1,-2*x+3,-4*x+7,-2*x+6,-1,2*x-9,2*x+2,-6*x+7,-2*x-2,4*x-1,6*x-9,4*x-12,-8*x+15,2*x+7,-2*x+4,2*x-10,-2*x,12*x-16,-8*x+17,12*x-18,12*x-16,6*x,-4*x-2]],
[x^3-4*x+1, [-1,-1,-1], [x,1,1,-x^2-x+4,-x^2+x+2,2*x^2-4,1,-3*x^2-3*x+8,-2*x-2,3*x^2-x-10,4*x^2+2*x-10,-x^2-3*x+8,3*x^2+3*x-10,4*x,x^2-x-6,x^2+x-6,2*x^2-4*x-10,-2*x^2+4*x+4,2*x^2+8*x-6,-4*x^2+12,-3*x^2+3*x+12,2*x^2+2*x-8,-4*x,-2*x,4*x^2-2]],
[x^4-x^3-8*x^2+7*x+9, [-1,1,1], [x,1,-1,-x^3-x^2+5*x+5,x^3+x^2-7*x-3,-2*x^2+8,-1,x^3+x^2-5*x-1,-2*x^3+10*x,x^3+x^2-5*x-3,-2*x+2,x^3+3*x^2-5*x-13,x^3+x^2-9*x-3,2*x^3-12*x+2,-x^3-x^2+7*x+3,-x^3-x^2+9*x+3,-2*x^2+6,-2*x^2+8,-2*x^3+2*x^2+12*x-4,-2*x^3+12*x-6,-x^3+x^2+5*x-7,-2*x^2+2*x+8,-2*x^3+12*x-6,-2*x^3-4*x^2+14*x+18,4*x+2]]];

f[256,2]=[
[x+4, [1], [0,0,-4,0,0,-4,-2,0,0,-4,0,12,-10,0,0,-4,0,12,0,0,-6,0,0,10,-18]],
[x+2, [1], [0,-2,0,0,-6,0,-6,-2,0,0,0,0,6,10,0,0,-6,0,14,0,-2,0,-18,-18,10]],
[x-4, [-1], [0,0,4,0,0,4,-2,0,0,4,0,-12,-10,0,0,4,0,-12,0,0,-6,0,0,10,-18]],
[x-2, [-1], [0,2,0,0,6,0,-6,2,0,0,0,0,6,-10,0,0,6,0,-14,0,-2,0,18,-18,10]],
[x^2-8, [-1], [0,x,0,0,-x,0,6,-3*x,0,0,0,0,6,3*x,0,0,-5*x,0,-3*x,0,2,0,x,18,-10]]];

f[257,2]=[
[x^7+3*x^6-3*x^5-11*x^4+3*x^3+10*x^2-x-1, [1], [x,x^4+2*x^3-3*x^2-4*x+1,-x^5-4*x^4-x^3+9*x^2+4*x-3,x^6+4*x^5-12*x^3-4*x^2+8*x-1,-x^6-2*x^5+6*x^4+9*x^3-9*x^2-7*x,x^6+2*x^5-5*x^4-5*x^3+11*x^2-6,2*x^6+8*x^5+x^4-22*x^3-9*x^2+14*x,-3*x^6-8*x^5+11*x^4+28*x^3-15*x^2-20*x+4,-x^6-5*x^5-2*x^4+16*x^3+9*x^2-12*x-4,x^5+x^4-7*x^3-8*x^2+6*x+9,-x^6-5*x^5-6*x^4+4*x^3+12*x^2+9*x-1,3*x^6+7*x^5-13*x^4-27*x^3+17*x^2+25*x-6,2*x^6+6*x^5-3*x^4-10*x^3+9*x^2-4*x-7,3*x^6+11*x^5-3*x^4-35*x^3-6*x^2+24*x-1,-4*x^6-14*x^5+4*x^4+41*x^3+2*x^2-28*x+5,4*x^6+13*x^5-7*x^4-41*x^3-x^2+27*x+1,x^6+6*x^5+8*x^4-6*x^3-17*x^2-11*x+5,x^4+4*x^3+4*x^2-3*x-8,-2*x^5-8*x^4-3*x^3+17*x^2+11*x-8,-4*x^5-7*x^4+17*x^3+15*x^2-22*x-2,4*x^6+12*x^5-5*x^4-30*x^3-8*x^2+11*x+5,-2*x^5-3*x^4+14*x^3+12*x^2-23*x-9,-5*x^6-16*x^5+10*x^4+46*x^3-10*x^2-24*x+5,2*x^6+8*x^5-30*x^3-16*x^2+28*x+9,-6*x^6-17*x^5+16*x^4+55*x^3-6*x^2-37*x-6]],
[x^14-2*x^13-21*x^12+42*x^11+163*x^10-327*x^9-568*x^8+1153*x^7+830*x^6-1755*x^5-318*x^4+825*x^3+10*x^2-96*x-1, [-1], [x,1755/144512*x^13-14949/144512*x^12-15147/72256*x^11+77379/36128*x^10+155093/144512*x^9-1184607/72256*x^8-21849/72256*x^7+8189141/144512*x^6-1591687/144512*x^5-6092391/72256*x^4+826663/36128*x^3+5567751/144512*x^2-838701/144512*x-479015/144512,6245/72256*x^13-7803/72256*x^12-66405/36128*x^11+40205/18064*x^10+1060043/72256*x^9-610385/36128*x^8-1969527/36128*x^7+4165227/72256*x^6+6795559/72256*x^5-3048569/36128*x^4-1165231/18064*x^3+2740441/72256*x^2+1042445/72256*x-214841/72256,3085/144512*x^13-803/144512*x^12-29405/72256*x^11+2701/36128*x^10+376483/144512*x^9-13089/72256*x^8-389111/72256*x^7-168493/144512*x^6-729569/144512*x^5+434759/72256*x^4+866533/36128*x^3-1185999/144512*x^2-1265867/144512*x+477775/144512,7307/36128*x^13-11013/36128*x^12-78211/18064*x^11+57571/9032*x^10+1255701/36128*x^9-887991/18064*x^8-2333329/18064*x^7+6124677/36128*x^6+7879545/36128*x^5-4385815/18064*x^4-1210133/9032*x^3+3144647/36128*x^2+698611/36128*x-95719/36128,215/36128*x^13-905/36128*x^12-2203/18064*x^11+4481/9032*x^10+29473/36128*x^9-63719/18064*x^8-22053/18064*x^7+383777/36128*x^6-252067/36128*x^5-201971/18064*x^4+208273/9032*x^3-46029/36128*x^2-424425/36128*x+76437/36128,255/4516*x^13-261/2258*x^12-5357/4516*x^11+5667/2258*x^10+10321/1129*x^9-91783/4516*x^8-140295/4516*x^7+338339/4516*x^6+47119/1129*x^5-135015/1129*x^4-35287/4516*x^3+66268/1129*x^2-7256/1129*x-6788/1129,-24769/144512*x^13+44607/144512*x^12+263521/72256*x^11-233793/36128*x^10-4182639/144512*x^9+3614269/72256*x^8+7602267/72256*x^7-24927727/144512*x^6-24546683/144512*x^5+17660933/72256*x^4+3435315/36128*x^3-11568517/144512*x^2-2663753/144512*x+320581/144512,-4017/36128*x^13+8927/36128*x^12+40089/18064*x^11-46449/9032*x^10-567343/36128*x^9+711749/18064*x^8+804483/18064*x^7-4870079/36128*x^6-1036987/36128*x^5+3480933/18064*x^4-481241/9032*x^3-2725669/36128*x^2+1005655/36128*x+299589/36128,1823/36128*x^13-5153/36128*x^12-21431/18064*x^11+25749/9032*x^10+391601/36128*x^9-373879/18064*x^8-873757/18064*x^7+2364609/36128*x^6+3881085/36128*x^5-1449695/18064*x^4-944983/9032*x^3+540475/36128*x^2+999399/36128*x-27731/36128,-8595/72256*x^13+9293/72256*x^12+93635/36128*x^11-46859/18064*x^10-1541405/72256*x^9+694983/36128*x^8+2976401/36128*x^7-4612349/72256*x^6-10800545/72256*x^5+3178799/36128*x^4+2019817/18064*x^3-1991999/72256*x^2-2301067/72256*x-59809/72256,-12759/72256*x^13+10857/72256*x^12+143191/36128*x^11-54583/18064*x^10-2452665/72256*x^9+799931/36128*x^8+5001293/36128*x^7-5150393/72256*x^6-19579405/72256*x^5+3307859/36128*x^4+4006917/18064*x^3-1552051/72256*x^2-3973391/72256*x-162125/72256,-5951/36128*x^13+4465/36128*x^12+65535/18064*x^11-22819/9032*x^10-1094769/36128*x^9+342739/18064*x^8+2157021/18064*x^7-2297985/36128*x^6-8021013/36128*x^5+1623515/18064*x^4+1485173/9032*x^3-1394475/36128*x^2-1033431/36128*x+223835/36128,-19879/144512*x^13+48809/144512*x^12+201863/72256*x^11-256959/36128*x^10-2940553/144512*x^9+4002099/72256*x^8+4434149/72256*x^7-28019609/144512*x^6-7732509/144512*x^5+20699307/72256*x^4-1680967/36128*x^3-16904979/144512*x^2+4334273/144512*x+1465907/144512,-26263/144512*x^13+38713/144512*x^12+277527/72256*x^11-198367/36128*x^10-4364505/144512*x^9+2995971/72256*x^8+7815541/72256*x^7-20288105/144512*x^6-24414317/144512*x^5+14441819/72256*x^4+3023001/36128*x^3-10932675/144512*x^2-1404527/144512*x+413859/144512,-6217/72256*x^13+16087/72256*x^12+61161/36128*x^11-82849/18064*x^10-850023/72256*x^9+1262725/36128*x^8+1189987/36128*x^7-8740807/72256*x^6-1773491/72256*x^5+6649517/36128*x^4-405973/18064*x^3-6691277/72256*x^2+627183/72256*x+628589/72256,7317/72256*x^13-10635/72256*x^12-76213/36128*x^11+51373/18064*x^10+1162971/72256*x^9-702753/36128*x^8-1947239/36128*x^7+3938299/72256*x^6+5041015/72256*x^5-1649481/36128*x^4-139711/18064*x^3-1902391/72256*x^2-808259/72256*x+751383/72256,-2471/36128*x^13+529/36128*x^12+24731/18064*x^11-3011/9032*x^10-352849/36128*x^9+41607/18064*x^8+517001/18064*x^7-98041/36128*x^6-891429/36128*x^5-408213/18064*x^4-138249/9032*x^3+2094405/36128*x^2+247241/36128*x-448485/36128,7679/36128*x^13-13209/36128*x^12-83367/18064*x^11+69063/9032*x^10+1364753/36128*x^9-1062871/18064*x^8-2607137/18064*x^7+7269833/36128*x^6+9188981/36128*x^5-5052295/18064*x^4-1519159/9032*x^3+2951539/36128*x^2+804023/36128*x+200077/36128,-18093/144512*x^13+40451/144512*x^12+184781/72256*x^11-204213/36128*x^10-2792931/144512*x^9+2986193/72256*x^8+4809847/72256*x^7-18800979/144512*x^6-14808895/144512*x^5+10939705/72256*x^4+2054403/36128*x^3-940177/144512*x^2-1112501/144512*x-1685263/144512,-2355/4516*x^13+3559/4516*x^12+12551/1129*x^11-74057/4516*x^10-398869/4516*x^9+567651/4516*x^8+723509/2258*x^7-1941601/4516*x^6-1153429/2258*x^5+2741235/4516*x^4+1219921/4516*x^3-930177/4516*x^2-186809/4516*x+13873/2258,5575/72256*x^13+2999/72256*x^12-64791/36128*x^11-14193/18064*x^10+1149257/72256*x^9+201517/36128*x^8-2421509/36128*x^7-1428263/72256*x^6+9815965/72256*x^5+1455557/36128*x^4-2171977/18064*x^3-3154957/72256*x^2+3102335/72256*x+870253/72256,1845/144512*x^13+24581/144512*x^12-24261/72256*x^11-131947/36128*x^10+530811/144512*x^9+2126359/72256*x^8-1550767/72256*x^7-15769429/144512*x^6+9983063/144512*x^5+12871551/72256*x^4-3882355/36128*x^3-13301511/144512*x^2+7185949/144512*x+1436679/144512,883/9032*x^13-41/9032*x^12-4705/2258*x^11+789/4516*x^10+146219/9032*x^9-5073/2258*x^8-243401/4516*x^7+114271/9032*x^6+560301/9032*x^5-139897/4516*x^4+57957/4516*x^3+226579/9032*x^2-116871/9032*x-45013/9032,-74/1129*x^13+364/1129*x^12+1590/1129*x^11-7566/1129*x^10-12649/1129*x^9+57946/1129*x^8+44897/1129*x^7-197851/1129*x^6-64276/1129*x^5+275866/1129*x^4+17603/1129*x^3-81430/1129*x^2-295/1129*x-2379/1129]]];

f[258,2]=[
[x-1, [1,1,1], [-1,-1,1,-5,1,-3,0,-7,-4,-3,-2,2,8,-1,7,-12,12,4,6,-8,0,-10,-3,-14,-7]],
[x+2, [1,1,-1], [-1,-1,-2,2,0,2,6,4,6,-2,4,4,-2,1,6,-4,-8,-12,4,0,-14,8,4,10,-2]],
[x-1, [1,-1,-1], [-1,1,-3,-3,-5,-3,0,7,-4,1,-6,-6,0,1,-3,12,-4,12,10,8,-16,-14,-9,2,1]],
[x+2, [-1,1,1], [1,-1,-2,4,4,6,-6,-4,-4,6,-8,2,2,-1,4,-6,-12,10,12,-8,-6,-16,-12,10,2]],
[x-3, [-1,1,1], [1,-1,3,-1,-1,1,4,1,-4,-9,2,2,-8,-1,-11,4,-12,0,2,12,4,14,3,-10,17]],
[x+1, [-1,-1,-1], [1,1,-1,1,5,-7,4,-1,-4,-5,-10,10,0,1,-1,12,4,-8,-2,-12,4,10,-7,6,-7]],
[x-2, [-1,-1,-1], [1,1,2,-2,-4,2,-2,-4,2,10,-4,-8,6,1,2,-12,4,-8,4,0,10,-8,8,6,14]]];

f[259,2]=[
[x-1, [-1,1], [1,0,4,1,4,4,0,-6,-4,-6,2,-1,-6,-4,-12,10,-10,-8,-4,0,2,4,0,16,4]],
[x^2-8, [1,-1], [0,x,1/2*x+3,-1,-x-3,-3/2*x+1,-x,2,-x,x,-3/2*x+1,1,-x+6,-6,2*x-6,x+3,-1/2*x+9,-3*x+4,3,-4*x+3,-10,4,-4*x+6,-3/2*x-3,3/2*x+3]],
[x^2-x-4, [-1,1], [x,0,-x+1,1,x-1,-x+1,-2*x+2,-2*x+4,4,-2*x+4,x-3,-1,10,2*x-6,-2*x-2,5*x+1,3*x+7,-2*x-6,x-9,-3*x-1,4*x-2,4*x-8,6*x+2,-x-3,-3*x+11]],
[x^3-x^2-2*x+1, [1,1], [x,-x^2+1,x^2-2*x-3,-1,x^2-2,-3*x^2+x+5,3*x^2+2*x-8,-2*x^2+1,-2*x^2+3*x+2,-4*x^2+x+3,6*x^2-x-9,-1,-4*x^2+x+2,3*x^2-6*x-1,5*x^2-5*x-11,3*x^2-5*x-7,-5*x^2+5*x+3,7*x^2-5*x-11,-x^2+5*x+8,-3*x^2-x+5,-5*x^2+2*x+9,-2*x^2-6*x+7,7*x^2-7*x-8,-12*x^2+7*x+10,4*x^2+4*x-4]],
[x^3+3*x^2-3, [-1,-1], [x,-x^2-2*x+1,x^2+2*x-3,1,x^2-6,3*x^2+3*x-7,-x^2-2*x,-2*x^2+5,2*x^2+3*x-6,3*x-3,-4*x^2-3*x+11,1,-4*x^2-7*x+6,-x^2-1,5*x^2+9*x-3,-7*x^2-11*x+9,5*x^2+7*x-9,x^2-3*x-7,-3*x^2-9*x-4,-x^2-7*x-3,-x^2+5,6*x^2+12*x-7,-5*x^2-11*x+6,-6*x^2-11*x+6,-4*x^2-12*x-4]],
[x^4-9*x^2+x+17, [1,-1], [x,-x^2+5,x^2-3,-1,-x^3-2*x^2+4*x+9,x^3-5*x+2,x^3+2*x^2-6*x-5,-x^3-x^2+6*x+2,x^3+x^2-5*x-5,-x+5,-2*x^3-4*x^2+9*x+19,1,-x^3-x^2+7*x+1,2*x^3+5*x^2-8*x-23,-x^3+5*x+4,-x^3-2*x^2+x+8,-x^3+3*x-2,-3*x^3-2*x^2+17*x+6,2*x^3+3*x^2-9*x-14,-x^3+9*x,7*x^2+2*x-27,-x^3-x^2+4*x+4,2*x^3+3*x^2-9*x-14,x^3-x^2-5*x+15,-2*x^3-2*x^2+8*x+2]],
[x^4-x^3-6*x^2+5*x+4, [-1,1], [x,-x^3+4*x,x^2-3,1,x^3-6*x+3,-x^2+x+1,-x^2+2*x+2,x^3+x^2-4*x-4,-2*x^3+7*x,x^3-x^2-5*x+8,-x-3,-1,-2*x^2-x+6,-x^3+4*x+2,x^3-2*x^2-3*x+10,-x^2-x+9,x^2+x-9,x^3-3*x+6,-x^3-4*x^2+7*x+15,-2*x^3-x^2+11*x+7,x^3+2*x^2-6*x-10,x^3+x^2-8*x-8,x^2+3*x-10,3*x^3-x^2-21*x+5,-x^3+x^2+10*x-9]]];

f[260,2]=[
[x-2, [-1,1,1], [0,2,-1,2,4,-1,2,0,-6,-10,0,10,-2,2,-6,2,-8,2,-6,-8,10,-16,6,10,2]],
[x^3-2*x^2-8*x+12, [-1,-1,-1], [0,x,1,-x^2+6,x^2-x-6,1,-2*x+2,-x^2-x+10,x-4,-x^2+10,x^2-x-10,x^2-2*x-6,2*x-2,-x,x^2-10,-2*x^2+2*x+6,x^2-3*x-10,x^2-2,-x^2+2*x+10,x^2-x-6,3*x^2-2*x-14,-2*x+4,x^2-4*x-6,-2*x^2+4*x+10,-2*x^2+22]]];

f[261,2]=[
[x^2-5, [1,1], [-1/2*x-1/2,0,-2,x,x-4,-2*x-1,-2*x-1,0,2*x-4,-1,-4*x,-4,2,2*x-4,3*x+2,8,-2*x-8,4*x-2,x+6,-4*x,-2,2*x+8,-4*x-8,6*x+1,8]],
[x^2-x-1, [1,-1], [x,0,2,2*x-1,-2*x+5,-4*x+1,4*x-1,0,-4*x+6,1,-8*x+4,-4,-2,4*x-6,-6*x+1,-8,4*x+6,8*x-6,2*x+5,8*x-4,-2,4*x+6,8*x+4,-12*x+5,8]],
[x^2-2*x-1, [-1,1], [x,0,1,-2*x+2,x-2,-2*x+1,-2*x+4,6,-4*x+6,-1,5*x-2,-4,6*x-10,-x+6,3*x-4,-6*x+5,4*x-6,-2*x,4*x-4,2*x+4,4,-x,-4*x+2,6*x-2,6*x-10]],
[x^2+2*x-4, [-1,-1], [-1/2*x-1,0,x,-x-3,-x-3,2*x+1,-3,x-4,-3*x-2,1,-3*x-6,-x+2,-2,4,3*x+5,x-8,2*x+2,x-2,5*x+3,-x+2,x+10,-x-16,4*x+10,-5,-7*x-4]],
[x^3+2*x^2-4*x-7, [-1,1], [x,0,2*x^2-8,x^2+x-2,-x^2-x+6,-x^2+x+6,-3*x^2-x+10,-2*x-2,2*x^2-10,-1,-2*x^2+10,2*x+4,-4*x^2-4*x+14,-4*x^2-4*x+12,3*x^2+3*x-6,-2*x^2+4*x+8,2*x^2+2*x,-2*x,3*x^2+3*x-10,2*x^2-4*x-6,-2*x-4,-4*x^2-2*x+14,-2*x^2+2*x+12,-x^2+5*x+10,2*x^2+4*x-4]]];

f[262,2]=[
[x, [1,1], [-1,0,0,-5,2,-2,-6,7,-6,-3,2,-1,-9,12,0,10,-4,-8,7,-10,6,-4,-11,13,-8]],
[x+2, [-1,-1], [1,-2,-2,-3,-6,4,-4,3,-4,3,-4,-3,11,0,0,-12,6,8,-1,-8,4,-14,-15,-15,-8]],
[x^2+x-3, [1,1], [-1,x,-x-3,-x+1,-x-4,x-2,2*x,-2,2*x,-6,-2*x+2,-2*x-4,3*x+6,3*x-3,-4*x-6,4*x-2,x+11,-5*x+1,4*x+4,-2*x+2,2*x-6,4*x+8,-2,10,-8*x-8]],
[x^2-2, [1,-1], [-1,x,-x+2,x+1,2*x+2,-3*x,-x+4,-x-1,x+6,2*x+3,-3*x-2,6*x+3,-2*x+3,4*x-4,-4*x-4,-5*x-4,-5*x-4,-8,-3*x-1,7*x-2,-5*x+4,3*x-12,-7*x-1,4*x-9,4*x-4]],
[x^2+2*x-2, [-1,1], [1,x,x+2,-x+1,-2*x-2,-x-4,-x,x+5,-x+6,-3,3*x-2,2*x-3,-2*x-5,0,4,-3*x,3*x+4,8*x+8,-5*x-11,x+2,-x+12,-3*x+4,5*x+9,-2*x-1,-12]],
[x^2-3*x+1, [-1,1], [1,x,-x+1,-x+1,-x+4,-3*x+6,2*x-4,4*x-10,-2*x,-4*x+6,-6*x+10,6*x-12,7*x-6,-x+5,8*x-14,4*x-2,-11*x+19,3*x-11,8,10*x-10,2*x-14,0,-4*x+10,-8*x+18,-4*x+8]]];

f[263,2]=[
[x^5+2*x^4-3*x^3-6*x^2+1, [1], [x,-x^4-x^3+3*x^2+2*x-1,x^4+x^3-4*x^2-3*x+1,x^4+2*x^3-3*x^2-6*x-1,-x^3+x^2+3*x-2,-x^3-x^2+4*x-1,-4*x^4-5*x^3+14*x^2+12*x-6,-x^4-3*x^3+3*x^2+10*x-1,3*x^4+4*x^3-10*x^2-10*x+2,-x^4+2*x^3+6*x^2-4*x-4,-2*x^4-4*x^3+5*x^2+12*x+1,-x^4+2*x^3+5*x^2-8*x-5,5*x^4+6*x^3-19*x^2-16*x+6,7*x^4+8*x^3-26*x^2-21*x+9,-6*x^4-10*x^3+18*x^2+24*x-1,-4*x^4-7*x^3+14*x^2+18*x-3,2*x^4+10*x^3-2*x^2-28*x-3,-6*x^4-9*x^3+20*x^2+17*x-7,-2*x^4+3*x^3+12*x^2-11*x-11,x^3-3*x^2-x+11,2*x^4+5*x^3-8*x^2-15*x-3,-4*x^4-5*x^3+16*x^2+14*x-5,2*x^4+3*x^3-10*x^2-7*x+6,6*x^4+7*x^3-26*x^2-20*x+12,-2*x^4-3*x^3+6*x^2+8*x-10]],
[x^17-x^16-26*x^15+24*x^14+274*x^13-225*x^12-1505*x^11+1041*x^10+4613*x^9-2467*x^8-7815*x^7+2761*x^6+6709*x^5-974*x^4-2284*x^3-239*x^2+135*x+19, [-1], [x,85010/668441*x^16-176339/668441*x^15-2241538/668441*x^14+4190472/668441*x^13+23933223/668441*x^12-39391493/668441*x^11-132842471/668441*x^10+186205893/668441*x^9+408643734/668441*x^8-465256935/668441*x^7-683138027/668441*x^6+586757546/668441*x^5+555506577/668441*x^4-303194375/668441*x^3-158959094/668441*x^2+17326687/668441*x+6750715/668441,143848/668441*x^16-199927/668441*x^15-3606981/668441*x^14+4857661/668441*x^13+36214213/668441*x^12-46276983/668441*x^11-186415557/668441*x^10+219401931/668441*x^9+523834133/668441*x^8-543663031/668441*x^7-789092227/668441*x^6+674003695/668441*x^5+572350237/668441*x^4-346151879/668441*x^3-145298876/668441*x^2+28757148/668441*x+6281260/668441,-43514/668441*x^16+387440/668441*x^15+1361549/668441*x^14-9030537/668441*x^13-16703058/668441*x^12+83027396/668441*x^11+103963774/668441*x^10-382002286/668441*x^9-350947554/668441*x^8+922397046/668441*x^7+629731852/668441*x^6-1116987852/668441*x^5-539197064/668441*x^4+560122572/668441*x^3+159965080/668441*x^2-45325035/668441*x-6004853/668441,-47976/668441*x^16-59269/668441*x^15+1131843/668441*x^14+1309592/668441*x^13-10511458/668441*x^12-11592732/668441*x^11+48829796/668441*x^10+52587277/668441*x^9-120312720/668441*x^8-129264310/668441*x^7+158327476/668441*x^6+165877480/668441*x^5-115340775/668441*x^4-92636576/668441*x^3+50139863/668441*x^2+9500135/668441*x-3596410/668441,81195/668441*x^16-58067/668441*x^15-2131430/668441*x^14+1449193/668441*x^13+22632202/668441*x^12-14341944/668441*x^11-124620842/668441*x^10+71906730/668441*x^9+378754518/668441*x^8-193643585/668441*x^7-622117679/668441*x^6+271133268/668441*x^5+494039702/668441*x^4-164894323/668441*x^3-139152381/668441*x^2+15752546/668441*x+8602445/668441,-163352/668441*x^16-181517/668441*x^15+3926005/668441*x^14+3879384/668441*x^13-37768822/668441*x^12-31928283/668441*x^11+185718644/668441*x^10+125556894/668441*x^9-494068580/668441*x^8-234706784/668441*x^7+687597052/668441*x^6+170902912/668441*x^5-422743240/668441*x^4-10753004/668441*x^3+54574006/668441*x^2+56457/668441*x+1613950/668441,-305545/668441*x^16+396376/668441*x^15+7729643/668441*x^14-9663251/668441*x^13-78677679/668441*x^12+92893507/668441*x^11+412897535/668441*x^10-447731635/668441*x^9-1189364747/668441*x^8+1138378461/668441*x^7+1843017565/668441*x^6-1462656613/668441*x^5-1374163219/668441*x^4+784387360/668441*x^3+357763439/668441*x^2-64709348/668441*x-17273024/668441,190268/668441*x^16+65799/668441*x^15-4573543/668441*x^14-1121760/668441*x^13+43799157/668441*x^12+6118939/668441*x^11-212988923/668441*x^10-5212643/668441*x^9+555260801/668441*x^8-59217770/668441*x^7-748409934/668441*x^6+192621427/668441*x^5+440494369/668441*x^4-187017515/668441*x^3-54965704/668441*x^2+29420594/668441*x+739471/668441,-27439/668441*x^16-331684/668441*x^15+234410/668441*x^14+7633817/668441*x^13+2530626/668441*x^12-68791754/668441*x^11-41010444/668441*x^10+306568660/668441*x^9+205630004/668441*x^8-704262848/668441*x^7-470330618/668441*x^6+790737304/668441*x^5+490154914/668441*x^4-351151409/668441*x^3-185873264/668441*x^2+19154680/668441*x+8867071/668441,28575/668441*x^16+481667/668441*x^15-172932/668441*x^14-11146025/668441*x^13-4279251/668441*x^12+101607191/668441*x^11+57300348/668441*x^10-462224165/668441*x^9-275732201/668441*x^8+1097405047/668441*x^7+612026151/668441*x^6-1291804681/668441*x^5-600172325/668441*x^4+610391623/668441*x^3+189762478/668441*x^2-35697637/668441*x-5682028/668441,-31476/668441*x^16-25008/668441*x^15+626712/668441*x^14+749181/668441*x^13-4650589/668441*x^12-8830599/668441*x^11+15488313/668441*x^10+52716960/668441*x^9-21329231/668441*x^8-170031529/668441*x^7+10613449/668441*x^6+287525021/668441*x^5-23987414/668441*x^4-215749803/668441*x^3+42275405/668441*x^2+38387049/668441*x-1957926/668441,-334446/668441*x^16+414188/668441*x^15+8310946/668441*x^14-10021407/668441*x^13-82684032/668441*x^12+95088758/668441*x^11+421956068/668441*x^10-448640878/668441*x^9-1178279294/668441*x^8+1102232812/668441*x^7+1777124662/668441*x^6-1340964050/668441*x^5-1316526260/668441*x^4+662007114/668441*x^3+363013458/668441*x^2-50012272/668441*x-17427705/668441,-270946/668441*x^16-223679/668441*x^15+6366957/668441*x^14+4796210/668441*x^13-59217056/668441*x^12-40001353/668441*x^11+276343433/668441*x^10+162246117/668441*x^9-675240947/668441*x^8-324089439/668441*x^7+808557145/668441*x^6+277237281/668441*x^5-352216651/668441*x^4-50689037/668441*x^3-26630978/668441*x^2-10283585/668441*x+3664701/668441,-46514/668441*x^16+259676/668441*x^15+1453391/668441*x^14-6072578/668441*x^13-18011740/668441*x^12+55787550/668441*x^11+114401112/668441*x^10-254900540/668441*x^9-398355956/668441*x^8+605676150/668441*x^7+747861528/668441*x^6-711181812/668441*x^5-685484320/668441*x^4+331659118/668441*x^3+230669776/668441*x^2-11443019/668441*x-10617242/668441,-47343/668441*x^16+71966/668441*x^15+1501497/668441*x^14-1861966/668441*x^13-19073453/668441*x^12+19912581/668441*x^11+124299025/668441*x^10-112353829/668441*x^9-440079567/668441*x^8+351318083/668441*x^7+819487283/668441*x^6-577600489/668441*x^5-699156465/668441*x^4+406209408/668441*x^3+178144553/668441*x^2-46755320/668441*x-7114451/668441,205020/668441*x^16-198980/668441*x^15-4886125/668441*x^14+4842522/668441*x^13+46200564/668441*x^12-46186276/668441*x^11-221234890/668441*x^10+218864418/668441*x^9+570484428/668441*x^8-538872172/668441*x^7-784140968/668441*x^6+652963356/668441*x^5+533857724/668441*x^4-318403610/668441*x^3-148166100/668441*x^2+27281781/668441*x+9158268/668441,-57660/668441*x^16+137927/668441*x^15+1337401/668441*x^14-3160661/668441*x^13-12158375/668441*x^12+28127886/668441*x^11+54912236/668441*x^10-122126460/668441*x^9-129888908/668441*x^8+265701544/668441*x^7+160906052/668441*x^6-262341124/668441*x^5-111460272/668441*x^4+75909716/668441*x^3+50591319/668441*x^2+13038356/668441*x-4172543/668441,-267139/668441*x^16+556093/668441*x^15+7037833/668441*x^14-13441888/668441*x^13-74760673/668441*x^12+127977477/668441*x^11+411119363/668441*x^10-608989053/668441*x^9-1248907473/668441*x^8+1518410641/668441*x^7+2059625383/668441*x^6-1887202333/668441*x^5-1657271071/668441*x^4+947587372/668441*x^3+476594710/668441*x^2-55991060/668441*x-19359497/668441,53820/668441*x^16+447189/668441*x^15-792041/668441*x^14-10245454/668441*x^13+1499415/668441*x^12+92537963/668441*x^11+31949329/668441*x^10-417500895/668441*x^9-225469377/668441*x^8+984410165/668441*x^7+588501153/668441*x^6-1154165969/668441*x^5-652331147/668441*x^4+545629811/668441*x^3+246672862/668441*x^2-28010906/668441*x-15688363/668441,-6987/668441*x^16-86335/668441*x^15+282081/668441*x^14+2028852/668441*x^13-4479721/668441*x^12-18138681/668441*x^11+35323131/668441*x^10+76187101/668441*x^9-146150361/668441*x^8-147259833/668441*x^7+307848213/668441*x^6+96362623/668441*x^5-287184959/668441*x^4+21996740/668441*x^3+74816724/668441*x^2-10328332/668441*x+581805/668441,89395/668441*x^16-109910/668441*x^15-2516153/668441*x^14+2900530/668441*x^13+28571091/668441*x^12-29947649/668441*x^11-168167207/668441*x^10+154124603/668441*x^9+547686377/668441*x^8-416429127/668441*x^7-970584469/668441*x^6+563650869/668441*x^5+846610475/668441*x^4-307753254/668441*x^3-275995463/668441*x^2+18773328/668441*x+16797931/668441,-270613/668441*x^16+162156/668441*x^15+6612107/668441*x^14-4028677/668441*x^13-64434026/668441*x^12+38645674/668441*x^11+320236475/668441*x^10-180891564/668441*x^9-864589864/668441*x^8+429362584/668441*x^7+1254527356/668441*x^6-481809128/668441*x^5-903469132/668441*x^4+195634274/668441*x^3+257105460/668441*x^2-3392213/668441*x-9739597/668441,404390/668441*x^16+163547/668441*x^15-9666125/668441*x^14-2870025/668441*x^13+91785797/668441*x^12+17843365/668441*x^11-441685111/668441*x^10-42562071/668441*x^9+1142880666/668441*x^8+3417857/668441*x^7-1561131507/668441*x^6+122357680/668441*x^5+1014887761/668441*x^4-127229731/668441*x^3-234561188/668441*x^2+13117516/668441*x+10933330/668441,-700879/668441*x^16+345782/668441*x^15+17000882/668441*x^14-9184074/668441*x^13-164265257/668441*x^12+94325275/668441*x^11+807569753/668441*x^10-478036563/668441*x^9-2145560027/668441*x^8+1260088387/668441*x^7+3020776319/668441*x^6-1651679419/668441*x^5-2016774957/668441*x^4+882862020/668441*x^3+453563599/668441*x^2-61734279/668441*x-9208285/668441]]];

f[264,2]=[
[x+1, [1,1,-1], [0,-1,2,0,1,2,6,0,4,2,0,-10,6,-8,-4,-6,-12,2,4,12,-14,16,-12,10,-14]],
[x+2, [1,-1,1], [0,1,-2,4,-1,6,6,-8,0,-6,0,6,-10,-8,0,6,4,-2,-12,-8,2,-4,-12,-6,2]],
[x-4, [1,-1,1], [0,1,4,-2,-1,0,-6,4,-6,6,0,6,-10,-8,6,-12,-8,4,-12,10,2,2,12,-6,14]],
[x, [-1,-1,-1], [0,1,0,2,1,0,-2,8,-2,-6,0,-2,2,4,-6,-8,-8,-4,12,-10,-6,-10,-4,10,-2]]];

f[265,2]=[
[x+1, [1,1], [-1,0,-1,2,0,-6,-6,-2,-8,2,10,2,-6,-2,-2,-1,4,10,0,-2,14,-10,8,-2,10]],
[x^2+x-5, [1,1], [x,-x-1,-1,-3,-5,2*x+1,-x-2,3,-x-4,2*x+4,2*x+2,-4*x-2,-2*x-3,-x-3,x+4,-1,-3*x+6,3*x-2,-10,-x-13,-x-2,4*x+4,3,-x-8,2*x-3]],
[x^2+2*x-1, [1,1], [x,x,-1,-2*x-4,2,-2*x-1,2*x+3,x,3*x-2,2*x-3,-6,-4*x-9,-2*x+4,2*x+2,-2*x-8,-1,-10,2*x+8,-4*x+2,-x-6,-4*x-14,9*x+10,3*x-6,10,8*x+7]],
[x^2-3, [1,-1], [x,2,-1,x+1,-2*x+2,-2*x,2,x-1,-2*x+4,2*x+6,-x-3,-4*x+2,2*x,-x-9,x+9,1,4*x-4,4*x-2,4*x+6,3*x-3,-2,-x-3,-4*x-6,2*x-6,6*x]],
[x^2-3*x+1, [1,-1], [x,x-3,-1,-2*x+5,3,1,-3*x+6,-7,-5*x+8,-2*x+4,-2*x+2,8*x-14,6*x-9,-x+13,-x+8,1,x,-3*x,-4*x+2,x+7,-9*x+10,8*x-4,-2*x+17,-x-2,12*x-19]],
[x^2+x-3, [-1,1], [x,x+1,1,-1,3,2*x-1,-3*x,-2*x-1,-x,-2*x,-2*x+2,2,-3,x+5,-x+6,-1,5*x,x+14,-4*x-10,-x+3,3*x+2,8,-2*x+9,-x-6,-2*x-13]],
[x^2+x-1, [-1,-1], [x,-x-1,1,2*x-1,-5,-4*x-1,-x,2*x-3,3*x-4,2*x,-6*x-6,4*x+6,4*x-1,x+5,x+2,1,-3*x-2,7*x+8,-8*x+2,-7*x-9,-5*x-2,-12*x-8,-9,3*x-4,4*x-5]],
[x^4+2*x^3-5*x^2-4*x+4, [-1,1], [-1/2*x^3-x^2+3/2*x+2,x,1,1/2*x^3+2*x^2-1/2*x-3,x^3+2*x^2-5*x-2,x^3+x^2-5*x,x^2+4*x-2,-1/2*x^3-2*x^2-1/2*x+7,-x^3-2*x^2+4*x+6,-3*x^2-4*x+8,-1/2*x^3-2*x^2+5/2*x+5,x^2+2*x-6,x^3+2*x^2-3*x,-5/2*x^3-8*x^2+13/2*x+11,1/2*x^3+2*x^2-9/2*x-7,-1,-2*x^2-4*x+8,2*x^2-2*x-14,x^3-9*x+4,1/2*x^3-7/2*x+9,-2*x^3-4*x^2+6*x-2,-3/2*x^3+17/2*x-3,2*x^3+6*x^2-3*x-12,2*x^2+4*x,x^3+x^2-7*x]]];

f[266,2]=[
[x^2-x-7, [1,1,-1], [-1,x,x-1,-1,-x+2,-2*x,-4,1,-2*x-2,-x+3,10,x+1,3*x-3,x+7,x-8,-x-2,-3*x+5,x-4,-2,-x+2,-2*x+2,-x+5,8,-3*x+12,-x+12]],
[x^2-3*x+1, [1,-1,1], [-1,x,-3*x+5,1,x+2,2*x,4*x-8,-1,-6*x+10,-3*x-1,-4*x+10,3*x-3,7*x-13,-x-5,-3*x+4,x-14,-3*x-1,-7*x+16,8*x-10,13*x-18,-2*x-2,-7*x+5,8*x-12,x-4,3*x-4]],
[x^2-x-3, [-1,-1,-1], [1,x,-x+1,1,-x-2,-2*x+4,0,1,2*x-2,-3*x-3,4*x-2,3*x-1,-x+1,x-5,3*x,5*x-2,x-7,3*x-4,-4*x-6,-3*x-6,-2*x+10,-3*x+11,4*x-4,-3*x+12,-x+12]],
[x^3+x^2-7*x+4, [-1,1,1], [1,x,-x^2-2*x+6,-1,2*x^2+3*x-8,2*x^2+4*x-10,-2*x^2-6*x+10,-1,-2*x^2-4*x+8,x^2+4*x-2,2*x^2+2*x-8,-x^2-4*x+6,-x^2-2*x+2,x^2+4*x-4,-x-4,3*x+2,-3*x^2-6*x+12,2*x^2+5*x-6,2*x^2+6*x-4,-2*x^2-3*x+12,-4*x^2-6*x+18,x^2,-4*x^2-8*x+12,2*x^2+3*x-10,2*x^2+5*x-10]]];

f[267,2]=[
[x+1, [1,-1], [0,-1,4,-2,2,6,4,-4,-3,3,8,-8,-11,8,-2,-8,-9,-12,3,10,1,-1,9,1,7]],
[x-1, [-1,1], [0,1,0,2,6,2,0,-4,3,-3,-4,-4,3,-4,6,0,9,8,-13,-6,-7,-1,-9,-1,-1]],
[x^3-3*x+1, [1,1], [x,-1,-x^2-2*x+1,-x^2,3*x^2+x-4,x^2+x-7,3*x^2+4*x-8,-3*x-2,-3*x^2+7,-5*x^2+8,-3*x^2+3,-4*x^2-3*x+5,-2*x^2+x+3,4*x^2-2*x-7,-4*x^2-3*x+10,3*x^2-3*x-9,-x^2-3*x+8,5*x^2+7*x-16,-3*x^2+x+7,4*x^2+3*x+1,3*x^2-4*x-12,-2*x^2+5*x+1,8*x^2+3*x-20,-1,-10*x^2-5*x+20]],
[x^3-2*x^2-3*x+5, [-1,1], [x,1,-x^2+5,-x^2+2,x^2-x-4,x^2+x-3,x^2-2*x,-2*x^2-x+6,-x^2+3,x^2-2*x+2,3*x^2-2*x-9,4*x^2-3*x-9,3*x+3,2*x^2-9,4*x^2-3*x-14,-5*x^2+3*x+15,3*x^2+3*x-16,-x^2+x-2,-7*x^2+3*x+17,-2*x^2+7*x+9,-x^2+8,-2*x^2+3*x-1,-2*x^2+7*x+6,-1,2*x^2-3*x-6]],
[x^3+4*x^2+3*x-1, [-1,-1], [x,1,x^2+2*x-3,-3*x^2-8*x-2,x^2+3*x-2,x^2+3*x-3,x^2+2*x-2,4*x^2+13*x+4,-x^2-6*x-7,-x^2+2*x+4,5*x^2+14*x+1,-6*x^2-13*x-1,-2*x^2-13*x-9,-6*x^2-16*x+1,4*x^2+5*x-10,-3*x^2-7*x-1,-3*x^2-3*x+6,7*x^2+15*x-4,7*x^2+15*x-5,-4*x^2-11*x-5,-x^2+4*x+8,-4*x^2-x+17,-2*x^2-7*x+2,1,-7*x-16]],
[x^4-x^3-7*x^2+6*x+7, [1,-1], [x,-1,x^2-3,-x^3-x^2+5*x+5,-x^2+x+2,-x^3-x^2+4*x+6,x^3+x^2-5*x-3,x^3-6*x+3,x^2-2*x-3,-x^3-x^2+5*x+3,-x^2+1,2*x^3+2*x^2-11*x-1,-3*x+3,-x^3-2*x^2+3*x+8,3*x^3+2*x^2-14*x-9,x^3-x^2-6*x+6,-4*x^3+x^2+19*x-2,4*x^3+x^2-19*x+2,x^3+x^2-4*x-4,-2*x^2-3*x+3,-x^3+x^2+9*x+1,2*x^3+4*x^2-9*x-15,x^3+2*x^2-4*x-5,1,-x^3-2*x^2+8*x+7]]];

f[268,2]=[
[x-2, [-1,1], [0,2,2,2,-4,-6,3,1,3,-1,2,-5,8,10,-3,-6,7,-10,-1,-8,-15,16,12,15,-8]],
[x^2-x-5, [-1,1], [0,x,-1,-x+1,5,x+1,-2*x+4,-x,-2*x+1,-1,-2*x-3,x-7,-x-2,3*x-2,-x+11,-3,4*x+2,-3*x-1,-1,4*x-1,12,-3*x-2,3*x+6,2*x-7,-8*x+5]],
[x^2+3*x+1, [-1,-1], [0,x,-2*x-3,x-1,-2*x-5,3*x+3,2*x,3*x+2,-2*x-7,3,-4*x-5,5*x+7,7*x+10,-5*x-2,-x-7,-2*x+3,-12*x-18,7*x+17,1,8*x+7,-8*x-8,5*x+10,7*x+4,2*x-7,-6*x-17]]];

f[269,2]=[
[x, [1], [0,0,1,-4,-3,2,-4,2,-1,-2,-8,7,11,3,-9,9,4,-1,-5,-6,-14,-8,10,-5,-9]],
[x^5+x^4-5*x^3-4*x^2+5*x+3, [1], [x,x^4-5*x^2+3,-x^4+5*x^2-x-5,-x^4-x^3+3*x^2+2*x-1,x^4-4*x^2,2*x^3+3*x^2-5*x-7,-x^3+x^2+4*x-1,-x^4-x^3+4*x^2+3*x-7,2*x^4+x^3-11*x^2-2*x+11,-2*x^4-x^3+7*x^2+3*x-2,3*x^4+x^3-15*x^2+13,-x^3+3*x-2,-x^4-3*x^3-x^2+9*x+8,-x^4+6*x^2-x-12,2*x^4+4*x^3-8*x^2-13*x+9,-2*x^4-4*x^3+9*x^2+8*x-9,4*x^4+4*x^3-15*x^2-7*x+7,4*x^4-2*x^3-18*x^2+5*x+8,5*x^4+3*x^3-20*x^2-5*x+10,x^4+2*x^3-8*x-6,-2*x^4+2*x^3+9*x^2-9*x-2,-3*x^3-x^2+9*x-5,-5*x^4-2*x^3+20*x^2+3*x-14,4*x^3+x^2-15*x-2,x^4-7*x^3-4*x^2+25*x+3]],
[x^16-x^15-28*x^14+27*x^13+314*x^12-283*x^11-1803*x^10+1435*x^9+5637*x^8-3547*x^7-9470*x^6+3701*x^5+7860*x^4-1001*x^3-2363*x^2-43*x+172, [-1], [x,18/683*x^15-991/10928*x^14-9143/10928*x^13+26463/10928*x^12+58569/5464*x^11-279911/10928*x^10-773187/10928*x^9+92792/683*x^8+693889/2732*x^7-4097871/10928*x^6-5203557/10928*x^5+5451909/10928*x^4+2147933/5464*x^3-2720323/10928*x^2-840769/10928*x+79841/2732,70/683*x^15-363/10928*x^14-30851/10928*x^13+11845/10928*x^12+84629/2732*x^11-148583/10928*x^10-1882165/10928*x^9+454851/5464*x^8+1392713/2732*x^7-2841689/10928*x^6-8410593/10928*x^5+4298529/10928*x^4+695081/1366*x^3-2654109/10928*x^2-976295/10928*x+93147/2732,2287/10928*x^15-333/1366*x^14-15109/2732*x^13+72055/10928*x^12+624789/10928*x^11-377619/5464*x^10-3183057/10928*x^9+478169/1366*x^8+8282669/10928*x^7-4746505/5464*x^6-5240293/5464*x^5+10399189/10928*x^4+5962023/10928*x^3-528717/1366*x^2-999017/10928*x+117181/2732,-581/2732*x^15+1717/5464*x^14+31231/5464*x^13-46055/5464*x^12-164865/2732*x^11+480091/5464*x^10+1727655/5464*x^9-1215601/2732*x^8-585729/683*x^7+6088951/5464*x^6+6340331/5464*x^5-6839219/5464*x^4-990813/1366*x^3+2851401/5464*x^2+722503/5464*x-73529/1366,3/2732*x^15+49/683*x^14+42/683*x^13-5167/2732*x^12-5311/2732*x^11+53695/2732*x^10+27423/1366*x^9-277997/2732*x^8-266457/2732*x^7+370859/1366*x^6+317525/1366*x^5-469565/1366*x^4-654743/2732*x^3+437761/2732*x^2+42097/683*x-12622/683,291/2732*x^15-2273/5464*x^14-15901/5464*x^13+59667/5464*x^12+42595/1366*x^11-610205/5464*x^10-905991/5464*x^9+380726/683*x^8+1259209/2732*x^7-7570837/5464*x^6-3661403/5464*x^5+8479841/5464*x^4+696685/1366*x^3-3408805/5464*x^2-632393/5464*x+88677/1366,91/2732*x^15+13/1366*x^14-2417/2732*x^13-553/2732*x^12+25131/2732*x^11+2401/1366*x^10-64265/1366*x^9-23935/2732*x^8+82837/683*x^7+77483/2732*x^6-391963/2732*x^5-34814/683*x^4+42337/683*x^3+81369/2732*x^2-6187/683*x-1298/683,117/1366*x^15-1525/5464*x^14-12723/5464*x^13+40185/5464*x^12+16985/683*x^11-413107/5464*x^10-721213/5464*x^9+1038961/2732*x^8+999273/2732*x^7-5235583/5464*x^6-2858339/5464*x^5+6047185/5464*x^4+1027237/2732*x^3-2636785/5464*x^2-427893/5464*x+72455/1366,1439/5464*x^15-575/2732*x^14-19129/2732*x^13+31815/5464*x^12+399863/5464*x^11-85489/1366*x^10-2075633/5464*x^9+892031/2732*x^8+5569797/5464*x^7-2303547/2732*x^6-921679/683*x^5+5392391/5464*x^4+4341637/5464*x^3-307307/683*x^2-774853/5464*x+66921/1366,-2125/5464*x^15+4369/5464*x^14+57897/5464*x^13-29201/1366*x^12-623357/5464*x^11+1218507/5464*x^10+1682807/2732*x^9-1554179/1366*x^8-9590531/5464*x^7+15858173/5464*x^6+14111367/5464*x^5-2303174/683*x^4-9912439/5464*x^3+7889031/5464*x^2+969499/2732*x-105353/683,-43/2732*x^15-247/683*x^14+845/1366*x^13+6278/683*x^12-26781/2732*x^11-61328/683*x^10+106893/1366*x^9+285096/683*x^8-879823/2732*x^7-2495623/2732*x^6+1688789/2732*x^5+1045595/1366*x^4-1082553/2732*x^3-288307/2732*x^2+110579/2732*x-6682/683,-119/683*x^15-34/683*x^14+6479/1366*x^13+2735/2732*x^12-70193/1366*x^11-9039/1366*x^10+768929/2732*x^9+15157/1366*x^8-1113901/1366*x^7+130439/2732*x^6+3235273/2732*x^5-556307/2732*x^4-493184/683*x^3+612485/2732*x^2+82537/683*x-28779/683,-531/2732*x^15+965/5464*x^14+28635/5464*x^13-26593/5464*x^12-76035/1366*x^11+284671/5464*x^10+1609305/5464*x^9-185068/683*x^8-552966/683*x^7+3820269/5464*x^6+6036055/5464*x^5-4483491/5464*x^4-1811879/2732*x^3+2048159/5464*x^2+554069/5464*x-59419/1366,481/2732*x^15-213/5464*x^14-26039/5464*x^13+7131/5464*x^12+139275/2732*x^11-89251/5464*x^10-1490955/5464*x^9+264943/2732*x^8+520203/683*x^7-1551587/5464*x^6-5737243/5464*x^5+2127763/5464*x^4+418046/683*x^3-1233989/5464*x^2-527699/5464*x+39845/1366,-2577/10928*x^15+3069/10928*x^14+69467/10928*x^13-5316/683*x^12-739297/10928*x^11+919669/10928*x^10+1968719/5464*x^9-608201/1366*x^8-10999429/10928*x^7+12918367/10928*x^6+15579965/10928*x^5-989612/683*x^4-10144225/10928*x^3+7381743/10928*x^2+958473/5464*x-101589/1366,779/10928*x^15-1645/5464*x^14-8923/5464*x^13+85317/10928*x^12+140813/10928*x^11-53115/683*x^10-362911/10928*x^9+251312/683*x^8-563527/10928*x^7-2232887/2732*x^6+230574/683*x^5+7630999/10928*x^4-3616553/10928*x^3-674793/5464*x^2+628589/10928*x-12545/2732,-1219/5464*x^15+3499/10928*x^14+63591/10928*x^13-93151/10928*x^12-323075/5464*x^11+958527/10928*x^10+3214579/10928*x^9-2370111/5464*x^8-4048989/5464*x^7+11329693/10928*x^6+9919149/10928*x^5-11490599/10928*x^4-2949725/5464*x^3+3885569/10928*x^2+1259513/10928*x-86101/2732,127/2732*x^15-177/1366*x^14-3133/2732*x^13+4579/1366*x^12+28333/2732*x^11-90547/2732*x^10-27075/683*x^9+210253/1366*x^8+59287/1366*x^7-222642/683*x^6+92429/1366*x^5+163241/683*x^4-135777/1366*x^3-33879/2732*x^2+29551/2732*x+230/683,3073/10928*x^15+195/10928*x^14-75841/10928*x^13-1903/5464*x^12+707221/10928*x^11+48309/10928*x^10-188439/683*x^9-31304/683*x^8+5306583/10928*x^7+2862001/10928*x^6-983269/10928*x^5-3473453/5464*x^4-4232821/10928*x^3+4862967/10928*x^2+587463/5464*x-78973/1366,-4119/10928*x^15+8873/10928*x^14+111519/10928*x^13-118857/5464*x^12-1189491/10928*x^11+2483173/10928*x^10+1583175/2732*x^9-1583863/1366*x^8-17675431/10928*x^7+32265743/10928*x^6+25328669/10928*x^5-18652371/5464*x^4-17540535/10928*x^3+15806963/10928*x^2+218142/683*x-101193/683,531/5464*x^15-2873/5464*x^14-16025/5464*x^13+38237/2732*x^12+193733/5464*x^11-799723/5464*x^10-149971/683*x^9+2070123/2732*x^8+4049817/5464*x^7-10947249/5464*x^6-7318537/5464*x^5+1707304/683*x^4+6248647/5464*x^3-6473395/5464*x^2-683039/2732*x+95961/683,-1133/5464*x^15+4067/5464*x^14+31489/5464*x^13-53693/2732*x^12-347375/5464*x^11+1108195/5464*x^10+484035/1366*x^9-2805247/2732*x^8-5776741/5464*x^7+14274285/5464*x^6+9123341/5464*x^5-2081178/683*x^4-7013579/5464*x^3+7127941/5464*x^2+685985/2732*x-99023/683,-485/2732*x^15+1325/2732*x^14+13137/2732*x^13-17519/1366*x^12-139479/2732*x^11+180545/1366*x^10+732795/2732*x^9-1817153/2732*x^8-1989857/2732*x^7+4563169/2732*x^6+2724809/2732*x^5-5215035/2732*x^4-1825287/2732*x^3+1118051/1366*x^2+380263/2732*x-61262/683,5953/10928*x^15-2467/5464*x^14-19799/1366*x^13+135835/10928*x^12+1654577/10928*x^11-723477/5464*x^10-8564709/10928*x^9+3716265/5464*x^8+22829437/10928*x^7-9329361/5464*x^6-7458601/2732*x^5+20638079/10928*x^4+17250953/10928*x^3-4246219/5464*x^2-2938743/10928*x+217687/2732]]];

f[270,2]=[
[x-1, [1,1,-1], [-1,0,1,2,-3,5,3,-4,9,3,5,-10,0,-1,-9,12,-12,2,-4,-12,-10,-13,-6,12,2]],
[x+1, [1,-1,1], [-1,0,-1,2,3,-1,3,8,-3,9,-7,2,12,-7,3,-12,-12,-10,-4,0,2,-1,-18,0,14]],
[x+1, [-1,1,1], [1,0,-1,2,3,5,-3,-4,-9,-3,5,-10,0,-1,9,-12,12,2,-4,12,-10,-13,6,-12,2]],
[x-1, [-1,-1,-1], [1,0,1,2,-3,-1,-3,8,3,-9,-7,2,-12,-7,-3,12,12,-10,-4,0,2,-1,18,0,14]]];

f[271,2]=[
[x^6+4*x^5+x^4-9*x^3-4*x^2+5*x+1, [1], [x,-x^5-3*x^4+x^3+5*x^2-x-1,x^5+4*x^4+2*x^3-6*x^2-4*x,x^5+2*x^4-5*x^3-7*x^2+5*x+2,x^5+3*x^4-x^3-4*x^2+3*x-2,-x^5-5*x^4-4*x^3+9*x^2+7*x-4,x^4+2*x^3-2*x^2-2*x-1,-2*x^5-7*x^4+x^3+15*x^2-6,-x^5-x^4+9*x^3+10*x^2-9*x-7,-x^5-4*x^4-3*x^3+x^2+2*x+2,x^5+6*x^4+8*x^3-10*x^2-14*x+6,-2*x^4-8*x^3-4*x^2+9*x+4,x^5+3*x^4-4*x^3-13*x^2+4*x+6,3*x^5+12*x^4+5*x^3-20*x^2-10*x+7,-x^5-4*x^4+2*x^3+18*x^2+4*x-13,x^5+9*x^4+17*x^3-6*x^2-22*x-4,4*x^5+16*x^4+x^3-39*x^2-9*x+14,-6*x^5-19*x^4+4*x^3+34*x^2-3*x-7,3*x^5+8*x^4-6*x^3-22*x^2-5*x+14,-5*x^5-23*x^4-15*x^3+37*x^2+24*x-10,-x^5+2*x^4+22*x^3+16*x^2-28*x-11,-3*x^5-8*x^4+2*x^3+6*x^2-3*x+4,-2*x^5-10*x^4-14*x^3+7*x^2+26*x+3,x^5-x^4-14*x^3-4*x^2+16*x-10,3*x^5+7*x^4-10*x^3-18*x^2+12*x+8]],

f[272,2]=[
[x+2, [1,1], [0,-2,0,0,-2,-6,-1,-4,-4,0,8,-4,6,-8,8,10,0,12,-8,-12,2,4,-16,10,-18]],
[x+2, [1,-1], [0,2,-2,2,6,2,1,0,-6,-10,-2,6,-6,8,0,-10,8,14,-4,-2,-14,10,-8,-10,2]],
[x, [-1,1], [0,2,0,4,-6,2,-1,4,0,0,4,-4,6,-8,0,-6,0,-4,-8,0,2,-8,0,-6,14]],
[x, [-1,-1], [0,0,-2,-4,0,-2,1,4,-4,6,-4,-2,-6,-4,0,6,12,-10,-4,4,-6,-12,4,10,2]],
[x^2-2*x-4, [1,-1], [0,x,2,-x,-x,-2*x+2,1,-2*x+4,-x,2,x,4*x-6,2,2*x+4,4*x-8,-2,2*x-12,-4*x+2,12,x-8,-4*x+10,3*x-8,-2*x-4,-2*x-10,2]],
[x^2+2*x-2, [-1,1], [0,x,2*x+2,-x,x+4,-2*x,-1,-2*x-4,x+4,-2*x-2,3*x+4,2*x+10,-6,-6*x-8,-4*x-4,-4*x+2,-2*x-8,-2*x-6,4*x-4,-3*x,2,-3*x+4,2*x+8,2*x+8,4*x+6]]];

f[273,2]=[
[x+2, [1,-1,-1], [-2,-1,-1,1,-2,1,-4,3,-9,-1,-5,-8,6,-9,-3,3,0,10,-2,12,5,-13,-11,1,1]],
[x-2, [-1,1,1], [2,1,1,-1,-2,-1,0,1,3,-5,9,0,2,-1,3,-9,0,-2,10,-12,15,11,3,-17,3]],
[x^2-2*x-1, [1,-1,1], [x,-1,0,1,2,-1,-2*x+4,-4*x+4,-2*x+6,-4*x+6,4*x-8,-4*x+2,4*x-4,4*x,-2*x+8,4*x-6,-6*x+4,4*x-10,4,14,-4*x+2,-8*x+8,10*x-8,8*x-4,-2]],
[x^3+2*x^2-3*x-2, [1,1,1], [x,-1,-x^2-2*x+1,-1,2*x^2+2*x-6,-1,-2*x-4,x^2+4*x-3,x^2+2*x-5,x^2+4*x-1,-3*x^2-4*x+5,-2*x^2-4*x+8,2*x-2,-x^2+3,x^2-9,-3*x^2-8*x+3,-2*x^2-4*x,4*x+6,-2*x^2-8*x+2,-4*x^2-6*x+8,5*x^2+8*x-13,-x^2-1,x^2+4*x-1,x^2-2*x-9,5*x^2+4*x-17]],
[x^4-x^3-7*x^2+5*x+6, [-1,-1,-1], [x,1,-x^2+3,1,-x^3+5*x,1,-2*x,x^3-x^2-5*x+5,x^3+x^2-7*x-3,-x^3+x^2+5*x-3,x^3-x^2-9*x+5,-2*x^3+2*x^2+10*x-4,x^3+2*x^2-5*x-12,-x^3-x^2+5*x+5,x^2+2*x-3,x^3+x^2-5*x-3,x^3-3*x-6,4*x+2,-2*x^3-2*x^2+14*x+2,-3*x^3+2*x^2+15*x-6,-x^3+3*x^2+x-13,x^3-x^2-x+5,x^2-2*x-3,2*x^3-3*x^2-10*x+9,-x^3-x^2+9*x-1]]];

f[274,2]=[
[x, [1,1], [-1,0,0,-4,-4,4,2,-4,-6,-8,10,-2,6,0,2,0,-12,6,8,-10,14,-14,12,-14,6]],
[x+3, [1,1], [-1,0,-3,2,-1,-2,-7,-1,0,1,-11,4,0,6,-7,9,9,0,2,5,11,-5,6,-8,12]],
[x+2, [-1,-1], [1,-2,-3,0,-3,-6,1,-3,0,-3,7,10,-10,6,3,-11,-5,-8,2,-1,7,5,-14,-14,-10]],
[x^3-2*x^2-4*x+4, [1,-1], [-1,x,-1/2*x^2+x+3,-x^2+x+4,x^2-2*x-1,x^2-x-6,-2*x^2+9,x^2-3*x-3,-x+4,5/2*x^2-2*x-5,1/2*x^2-x+3,x^2-3*x-6,-x,-2*x^2+4*x+2,1/2*x^2-x+3,3/2*x^2+2*x-9,-2*x^2+5*x+11,x^2-8,-6,-5/2*x^2-2*x+11,2*x^2-7*x-7,1/2*x^2-4*x+1,x^2-6,3*x^2-3*x-8,-2*x^2-x+8]],
[x^5-2*x^4-10*x^3+20*x^2-8, [-1,1], [1,x,1/2*x^4-1/2*x^3-11/2*x^2+4*x+5,-1/2*x^4+1/2*x^3+5*x^2-5*x-2,-3/4*x^4+1/2*x^3+8*x^2-5*x-5,1/2*x^3-5*x+2,-1/4*x^4+1/2*x^3+3*x^2-5*x-1,1/4*x^4-x^3-2*x^2+8*x-3,-1/2*x^4+x^3+5*x^2-9*x-2,x^4-x^3-23/2*x^2+9*x+9,1/2*x^4-x^3-11/2*x^2+8*x+1,x^4-1/2*x^3-11*x^2+7*x+8,-1/2*x^4-1/2*x^3+6*x^2+5*x-6,1/2*x^4-1/2*x^3-4*x^2+4*x-4,1/2*x^4-x^3-11/2*x^2+12*x+1,-1/2*x^4+x^3+11/2*x^2-9*x-3,-7/4*x^4+x^3+21*x^2-8*x-21,-5/2*x^4+3*x^3+25*x^2-28*x-8,3/2*x^4-5/2*x^3-16*x^2+24*x+4,2*x^4-3/2*x^3-43/2*x^2+13*x+17,3/4*x^4-x^3-7*x^2+8*x+3,1/2*x^3-1/2*x^2-3*x-1,1/2*x^3-x^2-8*x+8,x^4-1/2*x^3-11*x^2+7*x+14,-3/2*x^4+3/2*x^3+16*x^2-11*x-10]]];

f[275,2]=[
[x+1, [1,1], [-1,0,0,0,-1,-2,-6,-4,-4,6,-8,2,2,-4,12,2,4,-10,16,8,-14,8,4,10,-10]],
[x-2, [1,-1], [2,1,0,2,1,-4,2,0,1,0,7,-3,-8,6,-8,6,5,12,7,-3,-4,-10,6,15,7]],
[x^2+x-3, [1,1], [x,-x-1,0,x-2,-1,-5,-3*x-3,-1,x+6,3*x-3,4*x+5,2*x-5,-2*x-3,-4*x-2,3,x,-4*x-9,-3*x-4,4,-2*x,3*x+4,-3*x-7,5*x-3,-x+3,-x-14]],
[x^2-x-1, [1,-1], [x,x+1,0,-3*x+2,1,2*x+3,-x+1,-6*x+3,-5*x+4,x-3,-3,2*x+7,-3,-6,8*x-1,7*x-2,-4*x+7,5*x-8,8,10*x-8,-x+12,3*x+1,3*x-15,5*x-15,x]],
[x^2+2*x-1, [1,-1], [x,-2*x-2,0,2,1,2*x+6,2*x-2,0,-2*x-2,4*x+6,0,-4*x-2,6,6,2*x+2,4*x-2,-4*x-8,8*x+10,6*x+2,-8*x-8,2*x+6,4,6,8*x+6,4*x+6]],
[x^2-x-3, [-1,1], [x,-x+1,0,x+2,-1,5,-3*x+3,-1,x-6,-3*x-3,-4*x+5,2*x+5,2*x-3,-4*x+2,-3,x,4*x-9,3*x-4,-4,2*x,3*x-4,3*x-7,5*x+3,x+3,-x+14]],
[x^2+x-1, [-1,-1], [x,x-1,0,-3*x-2,1,2*x-3,-x-1,6*x+3,-5*x-4,-x-3,-3,2*x-7,-3,6,8*x+1,7*x+2,4*x+7,-5*x-8,-8,-10*x-8,-x-12,-3*x+1,3*x+15,-5*x-15,x]],
[x^4-7*x^2+4, [-1,1], [x,-1/2*x^3+7/2*x,0,-x^3+5*x,-1,0,x^3-7*x,4,1/2*x^3-7/2*x,2*x^2-4,x^2-3,5/2*x^3-31/2*x,2*x^2-4,-x^3+5*x,-x^3+9*x,-4*x,-x^2-1,-2*x^2+12,-1/2*x^3-1/2*x,-3*x^2+9,2*x^3-10*x,-2*x^2+14,x^3-9*x,x^2-5,1/2*x^3-11/2*x]]];

f[276,2]=[
[x^2-10, [-1,1,1], [0,-1,x,-x+2,0,4,-x+4,x+2,-1,-2*x+2,2*x,2*x-2,-2,-x-2,-2*x-6,-3*x-4,2*x-2,-2*x-6,-x-2,0,4*x-2,-x+10,-4,3*x,-2*x-10]],
[x^2-4*x+2, [-1,-1,-1], [0,1,x,x-2,-4*x+8,-4*x+8,3*x-4,3*x-10,1,-2*x+10,-2*x,-2*x-2,-2,x-6,6*x-14,x+4,2*x-10,2*x+2,-3*x-6,-8*x+16,4*x-2,5*x-10,4*x-12,-5*x+16,-10*x+22]]];

f[277,2]=[
[x-1, [1], [1,-2,2,-4,1,-5,2,-6,0,5,-3,-4,7,-1,-2,2,4,6,-12,6,-8,-16,-16,-15,4]],
[x^3+x^2-3*x-1, [-1], [x,2,x^2-1,-x^2-2*x+3,x+4,2*x+1,-3*x^2-2*x+5,-x^2-1,-x^2-2*x-1,x^2-2*x-2,3*x^2+5*x-9,4,-3*x^2+10,-x^2+3*x+3,4*x^2-6,3*x^2+4*x-11,x^2-4*x-1,-3*x^2-4*x-1,5*x^2+6*x-7,-x^2+4*x+7,6*x^2+10*x-12,-2*x^2-2*x+4,-3*x^2+11,2*x^2+4*x-1,2*x^2+6]],
[x^9+6*x^8+4*x^7-37*x^6-69*x^5+24*x^4+119*x^3+34*x^2-52*x-25, [1], [x,-6*x^8-26*x^7+19*x^6+189*x^5+101*x^4-302*x^3-213*x^2+131*x+95,8*x^8+34*x^7-27*x^6-247*x^5-122*x^4+394*x^3+260*x^2-171*x-117,-6*x^8-24*x^7+25*x^6+175*x^5+55*x^4-281*x^3-129*x^2+118*x+58,5*x^8+20*x^7-22*x^6-149*x^5-40*x^4+253*x^3+111*x^2-113*x-59,8*x^8+34*x^7-26*x^6-244*x^5-127*x^4+375*x^3+258*x^2-152*x-111,-7*x^8-28*x^7+30*x^6+208*x^5+63*x^4-352*x^3-170*x^2+160*x+83,2*x^8+7*x^7-12*x^6-52*x^5+10*x^4+86*x^3-9*x^2-32*x+4,-7*x^8-31*x^7+19*x^6+222*x^5+139*x^4-340*x^3-273*x^2+142*x+114,6*x^8+25*x^7-23*x^6-184*x^5-70*x^4+305*x^3+156*x^2-139*x-71,-10*x^8-42*x^7+36*x^6+304*x^5+131*x^4-477*x^3-269*x^2+196*x+113,9*x^8+38*x^7-33*x^6-280*x^5-119*x^4+463*x^3+267*x^2-205*x-119,7*x^8+30*x^7-23*x^6-220*x^5-115*x^4+360*x^3+256*x^2-158*x-120,-2*x^8-10*x^7+3*x^6+74*x^5+59*x^4-125*x^3-116*x^2+61*x+50,-3*x^8-13*x^7+10*x^6+99*x^5+52*x^4-181*x^3-130*x^2+95*x+64,-14*x^8-61*x^7+42*x^6+443*x^5+256*x^4-708*x^3-541*x^2+310*x+240,-19*x^8-81*x^7+65*x^6+592*x^5+286*x^4-960*x^3-626*x^2+421*x+281,-14*x^8-59*x^7+50*x^6+432*x^5+197*x^4-703*x^3-447*x^2+305*x+210,-3*x^7-10*x^6+19*x^5+77*x^4-18*x^3-140*x^2+6*x+62,-34*x^8-141*x^7+128*x^6+1031*x^5+421*x^4-1670*x^3-947*x^2+720*x+428,-19*x^8-81*x^7+64*x^6+590*x^5+294*x^4-945*x^3-640*x^2+401*x+293,17*x^8+72*x^7-59*x^6-527*x^5-252*x^4+859*x^3+559*x^2-385*x-250,2*x^8+10*x^7-71*x^5-85*x^4+110*x^3+173*x^2-58*x-87,-13*x^8-53*x^7+53*x^6+391*x^5+132*x^4-648*x^3-321*x^2+286*x+158,9*x^8+42*x^7-16*x^6-297*x^5-243*x^4+440*x^3+465*x^2-182*x-199]],
[x^9-4*x^8-6*x^7+37*x^6-3*x^5-100*x^4+49*x^3+64*x^2-20*x-1, [-1], [x,2*x^8-4*x^7-19*x^6+33*x^5+55*x^4-74*x^3-43*x^2+27*x+1,-2*x^8+4*x^7+19*x^6-33*x^5-54*x^4+72*x^3+38*x^2-19*x+3,-2*x^8+4*x^7+19*x^6-33*x^5-55*x^4+73*x^3+43*x^2-22*x,-x^8+2*x^7+10*x^6-19*x^5-28*x^4+51*x^3+15*x^2-29*x+1,-2*x^8+4*x^7+20*x^6-36*x^5-59*x^4+89*x^3+42*x^2-38*x+1,x^8-2*x^7-10*x^6+18*x^5+29*x^4-44*x^3-18*x^2+16*x-1,2*x^8-3*x^7-22*x^6+26*x^5+76*x^4-58*x^3-79*x^2+10*x+6,x^8-x^7-11*x^6+8*x^5+37*x^4-16*x^3-35*x^2+4,2*x^8-3*x^7-21*x^6+26*x^5+64*x^4-57*x^3-44*x^2+7*x-5,2*x^5-3*x^4-11*x^3+11*x^2+10*x+3,3*x^8-6*x^7-29*x^6+52*x^5+83*x^4-123*x^3-57*x^2+45*x-7,3*x^8-6*x^7-31*x^6+56*x^5+93*x^4-140*x^3-64*x^2+50*x-4,2*x^8-4*x^7-21*x^6+40*x^5+61*x^4-109*x^3-32*x^2+51*x-6,3*x^8-7*x^7-28*x^6+61*x^5+76*x^4-143*x^3-46*x^2+47*x,2*x^8-3*x^7-20*x^6+21*x^5+64*x^4-32*x^3-63*x^2-10*x+6,-x^8+x^7+13*x^6-10*x^5-52*x^4+24*x^3+62*x^2+x-1,8*x^8-15*x^7-78*x^6+124*x^5+231*x^4-273*x^3-183*x^2+81*x+2,-10*x^8+17*x^7+100*x^6-135*x^5-315*x^4+274*x^3+298*x^2-42*x-14,3*x^7-6*x^6-27*x^5+45*x^4+74*x^3-85*x^2-56*x+12,3*x^8-5*x^7-30*x^6+38*x^5+94*x^4-67*x^3-86*x^2-11*x-1,-13*x^8+24*x^7+129*x^6-203*x^5-386*x^4+457*x^3+301*x^2-131*x,x^5-3*x^4-2*x^3+13*x^2-8*x-1,-11*x^8+19*x^7+111*x^6-155*x^5-348*x^4+324*x^3+317*x^2-50*x-18,-3*x^8+6*x^7+30*x^6-53*x^5-89*x^4+128*x^3+67*x^2-54*x-9]]];

f[278,2]=[
[x+2, [1,-1], [-1,-2,3,-1,-3,5,6,2,6,-3,5,2,-6,8,0,-12,6,8,5,-15,2,-1,-9,15,8]],
[x+2, [-1,-1], [1,-2,-1,-5,-3,1,2,-2,-6,1,9,-6,-6,-4,0,12,10,-4,-11,-3,-10,-5,-1,-9,-16]],
[x^2-2, [1,1], [-1,x,-x-1,-x-3,-2*x+1,-x-5,5*x,x,3*x+2,3*x-3,x-3,2*x-4,-4*x+4,-3*x-6,-6*x+4,-7*x-4,10,x+4,8*x-1,3*x+3,-6*x-2,-3*x-7,-7,-6*x-3,-5*x+6]],
[x^3-3*x^2+3, [1,-1], [-1,x,-2*x^2+4*x+2,-x^2+x+5,2*x^2-4*x-2,4*x^2-6*x-6,-2*x+2,-x^2+6,2*x^2-2*x-6,-4*x+6,5*x^2-6*x-10,-2*x^2+10,-x^2+7*x-5,-x^2+3*x+1,-x-2,x^2-6*x+6,-x^2-4*x+2,-5*x^2+13*x+3,2*x-8,x^2-2*x-6,-2*x^2+10,-8*x^2+13*x+6,-4*x^2+8*x+6,2*x^2-x-12,-2*x+4]],
[x^5-x^4-10*x^3+11*x^2+12*x-2, [-1,1], [1,x,1/5*x^4+2/5*x^3-9/5*x^2-11/5*x+9/5,-2/5*x^4-4/5*x^3+13/5*x^2+17/5*x+7/5,x^3+x^2-8*x-1,3/5*x^4-4/5*x^3-27/5*x^2+37/5*x+17/5,-7/5*x^4+1/5*x^3+58/5*x^2-33/5*x-28/5,3/5*x^4+1/5*x^3-27/5*x^2+7/5*x+22/5,3/5*x^4+1/5*x^3-22/5*x^2-3/5*x+2/5,x^4-9*x^2+5*x+3,-3/5*x^4-6/5*x^3+22/5*x^2+23/5*x-7/5,2/5*x^4+4/5*x^3-8/5*x^2-22/5*x-12/5,-1/5*x^4-2/5*x^3+14/5*x^2+16/5*x-44/5,-4/5*x^4+7/5*x^3+46/5*x^2-61/5*x-46/5,7/5*x^4-1/5*x^3-58/5*x^2+28/5*x+28/5,-3/5*x^4-1/5*x^3+27/5*x^2+3/5*x-42/5,-2*x^3-x^2+16*x,6/5*x^4-3/5*x^3-54/5*x^2+39/5*x+24/5,x^3-x^2-6*x+9,-13/5*x^4-6/5*x^3+92/5*x^2-7/5*x+3/5,2/5*x^4+14/5*x^3+2/5*x^2-82/5*x-42/5,2*x^4-x^3-17*x^2+17*x+11,2/5*x^4+19/5*x^3+7/5*x^2-122/5*x-57/5,-11/5*x^4-2/5*x^3+79/5*x^2-34/5*x-9/5,-1/5*x^4-17/5*x^3-6/5*x^2+121/5*x+46/5]]];

f[279,2]=[
[x^2-3*x+1, [-1,1], [x,0,-2*x+5,-2*x+1,2*x,-2*x+2,-4*x+8,2*x-7,-2*x+2,2*x-4,-1,6*x-8,6*x-9,6*x-12,-4*x+4,8*x-12,3,8,-12,-9,-2*x+4,-4*x+10,-4*x+18,8*x-10,9]],
[x^2+x-1, [-1,-1], [x,0,-1,-2*x-3,-2,2*x,-2*x-4,2*x+1,6*x+4,-2*x-6,1,-2,-7,-2*x-2,4*x+4,-4*x+4,2*x+1,-10*x-8,8,-10*x-7,-4*x+2,6*x-2,-8*x+2,6*x-2,8*x-3]],
[x^3-4*x-1, [-1,1], [x,0,x^2-x-2,-x^2+x+4,-2*x^2+6,2*x^2-4,-2*x^2+2*x+6,-x^2-3*x+4,-2*x+2,4*x^2-2*x-8,-1,-2*x,-x^2-3*x+6,-2*x^2+4*x+10,4*x-4,2*x^2+2*x-2,-x^2-x-6,2*x^2-6*x-6,4,-x^2+7*x+6,6*x-4,-2*x^2+2*x+8,2*x^2-2*x-12,6,-x^2+3*x+4]],
[x^6-12*x^4+40*x^2-27, [1,-1], [x,0,-1/3*x^5+2*x^3-1/3*x,x^4-7*x^2+8,2/3*x^5-6*x^3+32/3*x,-2*x^2+8,-2/3*x^5+6*x^3-38/3*x,-x^4+7*x^2-4,2*x^3-10*x,-2*x,1,-2*x^4+12*x^2-4,-1/3*x^5+2*x^3-1/3*x,2*x^2-10,2*x^3-12*x,2/3*x^5-6*x^3+38/3*x,1/3*x^5-2*x^3+7/3*x,2*x^4-14*x^2+14,-4,-1/3*x^5+2*x^3+5/3*x,-2*x^4+16*x^2-16,-2*x^4+18*x^2-28,2/3*x^5-4*x^3+14/3*x,2*x^3-16*x,3*x^4-23*x^2+32]]];

f[280,2]=[
[x+1, [1,1,1], [0,-1,-1,-1,-5,1,3,-6,-6,-9,0,6,8,6,3,-12,8,-4,-4,8,10,-3,-12,-16,7]],
[x+3, [1,-1,-1], [0,-3,1,1,-5,-5,-7,-2,-2,7,4,-6,-12,-2,1,0,-4,4,8,0,6,-3,-4,0,13]],
[x^2+x-8, [-1,1,1], [0,x,-1,-1,x+4,x+2,-x+2,-2*x,-2*x,-x-2,-8,-2,2*x+2,-2*x-4,-3*x,2*x+6,8,-2*x+2,-4,8,-6,3*x+8,-4*x,2*x+10,-5*x+2]],
[x^2-x-4, [-1,-1,-1], [0,x,1,1,-x,-3*x+2,-x+6,2*x-4,-2*x,x+2,-4*x,4*x-2,2*x+2,2*x-4,x+4,2*x-10,-4,-2*x-10,-4*x-4,0,4*x+2,-3*x-4,12,-2*x+2,3*x+6]]];

f[281,2]=[
[x^7+2*x^6-5*x^5-9*x^4+7*x^3+10*x^2-2*x-1, [1], [x,x^6+x^5-6*x^4-4*x^3+9*x^2+3*x-2,-x^6-x^5+7*x^4+5*x^3-13*x^2-6*x+3,-x^6-x^5+5*x^4+3*x^3-6*x^2-2*x-1,-x^6-2*x^5+2*x^4+4*x^3+3*x^2+2*x-4,x^4-3*x^2+2*x-1,2*x^6+5*x^5-8*x^4-21*x^3+8*x^2+19*x-2,x^6+x^5-6*x^4-4*x^3+8*x^2+4*x-2,x^6-x^5-9*x^4+6*x^3+20*x^2-7*x-7,3*x^6+6*x^5-12*x^4-20*x^3+15*x^2+13*x-7,2*x^6+5*x^5-7*x^4-20*x^3+4*x^2+20*x-4,-x^6+2*x^5+10*x^4-7*x^3-19*x^2+4*x+4,-2*x^6-6*x^5+6*x^4+23*x^3-7*x^2-21*x+7,2*x^6+x^5-10*x^4+3*x^3+13*x^2-14*x-3,-2*x^6-5*x^5+10*x^4+19*x^3-19*x^2-13*x+9,-3*x^6-5*x^5+14*x^4+19*x^3-16*x^2-15*x+4,2*x^6+4*x^5-10*x^4-16*x^3+10*x^2+10*x+3,-x^6+x^5+10*x^4-x^3-19*x^2-4*x+2,-6*x^4-8*x^3+20*x^2+16*x-9,4*x^6+5*x^5-18*x^4-11*x^3+22*x^2-x-6,-2*x^6-2*x^5+11*x^4+3*x^3-19*x^2+7*x+6,-3*x^5-x^4+15*x^3-18*x-4,-x^6-3*x^5+x^4+10*x^3+11*x^2-7*x-11,3*x^6+9*x^5-12*x^4-44*x^3+11*x^2+47*x-5,x^6-x^5-7*x^4+6*x^3+11*x^2-10*x-2]],
[x^16+x^15-27*x^14-24*x^13+294*x^12+229*x^11-1650*x^10-1115*x^9+5054*x^8+2991*x^7-8223*x^6-4526*x^5+6338*x^4+3707*x^3-1604*x^2-1215*x-167, [-1], [x,-13665/151856*x^15-4453/75928*x^14+360823/151856*x^13+192549/151856*x^12-3808793/151856*x^11-393525/37964*x^10+10220589/75928*x^9+6015201/151856*x^8-58521373/151856*x^7-5496873/75928*x^6+85533697/151856*x^5+10360255/151856*x^4-55824393/151856*x^3-495365/9491*x^2+6299351/75928*x+2953595/151856,-5097/75928*x^15-73/9491*x^14+142687/75928*x^13-599/75928*x^12-1608837/75928*x^11+87021/37964*x^10+4649421/37964*x^9-1750371/75928*x^8-28958277/75928*x^7+3301675/37964*x^6+46755675/75928*x^5-9261139/75928*x^4-34843841/75928*x^3+249793/9491*x^2+1195511/9491*x+1626197/75928,599/18982*x^15+3543/37964*x^14-15197/18982*x^13-42087/18982*x^12+305459/37964*x^11+777481/37964*x^10-1529371/37964*x^9-3507895/37964*x^8+975791/9491*x^7+1985247/9491*x^6-2259949/18982*x^5-8255973/37964*x^4+1467147/37964*x^3+739551/9491*x^2+371647/37964*x+33381/18982,-12727/151856*x^15+204/9491*x^14+346247/151856*x^13-99493/151856*x^12-3793561/151856*x^11+144027/18982*x^10+10706791/75928*x^9-6451005/151856*x^8-66041481/151856*x^7+8902335/75928*x^6+108659163/151856*x^5-20422589/151856*x^4-86268599/151856*x^3+1062797/75928*x^2+1623433/9491*x+5250719/151856,1845/18982*x^15+1311/37964*x^14-101841/37964*x^13-8453/18982*x^12+1130421/37964*x^11-2887/9491*x^10-3205285/18982*x^9+515547/18982*x^8+19453149/37964*x^7-2577655/18982*x^6-7543373/9491*x^5+8568847/37964*x^4+5259886/9491*x^3-3199653/37964*x^2-5388413/37964*x-668059/37964,-12825/151856*x^15-137/75928*x^14+331621/151856*x^13-23651/151856*x^12-3407013/151856*x^11+270075/75928*x^10+1104410/9491*x^9-4198049/151856*x^8-48509991/151856*x^7+7224269/75928*x^6+67546421/151856*x^5-20784153/151856*x^4-42201483/151856*x^3+3879829/75928*x^2+4946355/75928*x+1356261/151856,7373/37964*x^15+5081/37964*x^14-48131/9491*x^13-55551/18982*x^12+1999655/37964*x^11+920249/37964*x^10-5237881/18982*x^9-1776419/18982*x^8+7219115/9491*x^7+6374821/37964*x^6-9890044/9491*x^5-5068599/37964*x^4+5685979/9491*x^3+2717221/37964*x^2-1985371/18982*x-746545/37964,-1471/151856*x^15-10767/75928*x^14+497/151856*x^13+534079/151856*x^12+470353/151856*x^11-327182/9491*x^10-2801443/75928*x^9+25536335/151856*x^8+27102325/151856*x^7-31740777/75928*x^6-61392841/151856*x^5+71502829/151856*x^4+61901993/151856*x^3-1415021/9491*x^2-11374473/75928*x-3762107/151856,4133/37964*x^15+5553/18982*x^14-105649/37964*x^13-65385/9491*x^12+1068203/37964*x^11+2386447/37964*x^10-5365733/37964*x^9-10595625/37964*x^8+13688985/37964*x^7+23574929/37964*x^6-15887983/37964*x^5-6124297/9491*x^4+5799147/37964*x^3+2425273/9491*x^2+228357/37964*x-494225/37964,-5857/37964*x^15-3745/18982*x^14+74385/18982*x^13+171509/37964*x^12-1490571/37964*x^11-1509711/37964*x^10+7426625/37964*x^9+1589060/9491*x^8-9479359/18982*x^7-3229211/9491*x^6+22656067/37964*x^5+11247503/37964*x^4-4702321/18982*x^3-2987479/37964*x^2+86059/18982*x-48488/9491,1299/75928*x^15-527/18982*x^14-30041/75928*x^13+56149/75928*x^12+251853/75928*x^11-293769/37964*x^10-208019/18982*x^9+3077775/75928*x^8+56775/75928*x^7-4253999/37964*x^6+5693565/75928*x^5+11955561/75928*x^4-10735111/75928*x^3-1814201/18982*x^2+619469/9491*x+1419859/75928,-2857/75928*x^15-4601/37964*x^14+45833/75928*x^13+245421/75928*x^12-107165/75928*x^11-1307983/37964*x^10-463559/18982*x^9+13957907/75928*x^8+13689949/75928*x^7-18968327/37964*x^6-35067955/75928*x^5+46515127/75928*x^4+36012177/75928*x^3-8397921/37964*x^2-6383945/37964*x-1810807/75928,16903/75928*x^15-121/18982*x^14-454001/75928*x^13+60545/75928*x^12+4885269/75928*x^11-555651/37964*x^10-6701943/18982*x^9+8134675/75928*x^8+78825111/75928*x^7-13585275/37964*x^6-119164227/75928*x^5+37630221/75928*x^4+81539629/75928*x^3-1531978/9491*x^2-2551358/9491*x-2966961/75928,-36863/151856*x^15-2755/18982*x^14+968923/151856*x^13+443363/151856*x^12-10124317/151856*x^11-790937/37964*x^10+26613631/75928*x^9+8777883/151856*x^8-146290605/151856*x^7-1729741/75928*x^6+196692711/151856*x^5-16534765/151856*x^4-107076663/151856*x^3+4181195/75928*x^2+1101863/9491*x+2544671/151856,-16225/151856*x^15-13087/75928*x^14+436261/151856*x^13+578465/151856*x^12-4695205/151856*x^11-2407497/75928*x^10+6391231/37964*x^9+18626615/151856*x^8-72977999/151856*x^7-16843405/75928*x^6+101599857/151856*x^5+27782983/151856*x^4-56321731/151856*x^3-7290403/75928*x^2+4466035/75928*x+3451281/151856,3094/9491*x^15+8857/37964*x^14-81935/9491*x^13-96259/18982*x^12+3467717/37964*x^11+1585485/37964*x^10-18641237/37964*x^9-6132925/37964*x^8+26734631/18982*x^7+5718365/18982*x^6-39353367/18982*x^5-10953447/37964*x^4+53002441/37964*x^3+2063064/9491*x^2-13213125/37964*x-1654683/18982,1899/75928*x^15+673/37964*x^14-56323/75928*x^13-27775/75928*x^12+650019/75928*x^11+93883/37964*x^10-456804/9491*x^9-331517/75928*x^8+10103873/75928*x^7-577339/37964*x^6-11504079/75928*x^5+4556191/75928*x^4+1140505/75928*x^3-2329929/37964*x^2+1523653/37964*x+1922205/75928,22749/151856*x^15+3901/18982*x^14-623201/151856*x^13-675785/151856*x^12+6841287/151856*x^11+1353543/37964*x^10-19056565/75928*x^9-19348225/151856*x^8+112317927/151856*x^7+14367079/75928*x^6-165920981/151856*x^5-12957385/151856*x^4+107182933/151856*x^3+2661687/75928*x^2-1578437/9491*x-4809085/151856,1293/9491*x^15-1357/37964*x^14-148345/37964*x^13+42309/37964*x^12+430668/9491*x^11-494733/37964*x^10-2589679/9491*x^9+2714641/37964*x^8+34183775/37964*x^7-6842087/37964*x^6-60346781/37964*x^5+2681581/18982*x^4+51248145/37964*x^3+3890373/37964*x^2-7979965/18982*x-957345/9491,3258/9491*x^15+1065/18982*x^14-87094/9491*x^13-4695/9491*x^12+1862497/18982*x^11-92107/18982*x^10-10124031/18982*x^9+1426167/18982*x^8+14650453/9491*x^7-3023942/9491*x^6-21506725/9491*x^5+9192325/18982*x^4+27715785/18982*x^3-1317472/9491*x^2-6051119/18982*x-485724/9491,6669/18982*x^15-2515/18982*x^14-371081/37964*x^13+81393/18982*x^12+1035971/9491*x^11-2013879/37964*x^10-23641091/37964*x^9+12076839/37964*x^8+72393203/37964*x^7-17949923/18982*x^6-57132629/18982*x^5+11595998/9491*x^4+82304175/37964*x^3-15050485/37964*x^2-10893857/18982*x-3167865/37964,-371/18982*x^15+3472/9491*x^14+10957/9491*x^13-362665/37964*x^12-759855/37964*x^11+3746339/37964*x^10+1486045/9491*x^9-19250403/37964*x^8-11673925/18982*x^7+50396615/37964*x^6+45442469/37964*x^5-60281489/37964*x^4-39704581/37964*x^3+11074609/18982*x^2+13160047/37964*x+1647937/37964,23395/75928*x^15+957/9491*x^14-627897/75928*x^13-140623/75928*x^12+6751201/75928*x^11+420915/37964*x^10-9260819/18982*x^9-1288429/75928*x^8+109215359/75928*x^7-1775689/37964*x^6-167007459/75928*x^5+8112409/75928*x^4+118309733/75928*x^3+987917/18982*x^2-3904728/9491*x-6272029/75928,8079/18982*x^15+3611/37964*x^14-108466/9491*x^13-26613/18982*x^12+4656153/37964*x^11+122879/37964*x^10-25391683/37964*x^9+1542761/37964*x^8+36907397/18982*x^7-2332666/9491*x^6-27388425/9491*x^5+15422335/37964*x^4+73018903/37964*x^3-1589461/18982*x^2-17420657/37964*x-1500579/18982]]];

f[282,2]=[
[x-2, [-1,1,1], [1,-1,2,0,0,2,2,0,0,2,-8,-2,2,-8,-1,-2,-4,-10,-8,0,10,0,12,10,2]],
[x+4, [-1,1,-1], [1,-1,-4,-4,0,-2,-6,6,-4,4,2,-6,-12,-2,1,-6,-4,2,10,8,-2,-12,12,-18,14]],
[x^2+2*x-2, [1,1,1], [-1,-1,x,-2*x-2,-x-4,3*x+2,-4,x-2,-2*x-8,-3*x-4,4*x+2,-4*x-6,8,5*x+6,-1,4*x+2,6*x+8,-4*x-2,-7*x-6,6,-2,12,-2*x-8,-4*x,4*x-6]],
[x^2-6, [1,-1,1], [-1,1,x,2,-x,-x+2,-2*x,x+2,2*x,-3*x,2,4*x+2,0,-3*x+2,-1,-6,2*x,-10,-3*x+2,-2*x-6,-10,4*x-4,2*x,2*x-12,-4*x+2]],
[x^3-2*x^2-8*x-4, [-1,-1,-1], [1,1,x,x^2-4*x-4,-2*x^2+5*x+8,-2*x^2+5*x+10,x^2-2*x-6,2*x^2-7*x-10,2*x^2-6*x-12,2*x^2-5*x-12,-2*x^2+8*x+10,-4*x^2+12*x+18,-4,2*x^2-3*x-10,1,-2*x^2+4*x+10,-2*x^2+6*x+4,-2*x^2+4*x+18,-2*x^2+7*x+6,5*x^2-14*x-24,-4*x+6,-2*x^2+8*x+12,-2*x^2+10*x+4,x^2-6*x-2,6]]];

f[283,2]=[
[x^9+6*x^8+5*x^7-29*x^6-50*x^5+27*x^4+83*x^3+19*x^2-13*x+1, [1], [x,1/5*x^8+2/5*x^7-13/5*x^6-22/5*x^5+53/5*x^4+13*x^3-77/5*x^2-53/5*x+14/5,x^7+4*x^6-3*x^5-23*x^4-4*x^3+34*x^2+12*x-5,3/5*x^8+16/5*x^7+11/5*x^6-66/5*x^5-111/5*x^4+6*x^3+169/5*x^2+76/5*x-23/5,-3/5*x^8-21/5*x^7-31/5*x^6+76/5*x^5+216/5*x^4+3*x^3-309/5*x^2-176/5*x+28/5,2/5*x^8+14/5*x^7+19/5*x^6-64/5*x^5-169/5*x^4+2*x^3+291/5*x^2+164/5*x-42/5,-2/5*x^8-19/5*x^7-39/5*x^6+79/5*x^5+284/5*x^4+x^3-461/5*x^2-199/5*x+42/5,-2*x^8-9*x^7+2*x^6+49*x^5+30*x^4-66*x^3-54*x^2,3/5*x^8+21/5*x^7+31/5*x^6-86/5*x^5-251/5*x^4-x^3+409/5*x^2+216/5*x-53/5,-x^8-5*x^7-x^6+26*x^5+26*x^4-33*x^3-45*x^2-2*x+2,-19/5*x^8-93/5*x^7-3/5*x^6+513/5*x^5+438/5*x^4-138*x^3-797/5*x^2-48/5*x+59/5,x^8+5*x^7+x^6-24*x^5-20*x^4+27*x^3+23*x^2+4*x+3,18/5*x^8+91/5*x^7+21/5*x^6-466/5*x^5-466/5*x^4+115*x^3+759/5*x^2+46/5*x-53/5,9/5*x^8+63/5*x^7+83/5*x^6-273/5*x^5-633/5*x^4+32*x^3+947/5*x^2+318/5*x-84/5,23/5*x^8+116/5*x^7+26/5*x^6-606/5*x^5-646/5*x^4+141*x^3+1114/5*x^2+211/5*x-83/5,13/5*x^8+71/5*x^7+36/5*x^6-351/5*x^5-466/5*x^4+69*x^3+744/5*x^2+221/5*x-83/5,2*x^8+9*x^7-4*x^6-54*x^5-19*x^4+91*x^3+40*x^2-28*x-2,-3*x^8-16*x^7-8*x^6+75*x^5+98*x^4-68*x^3-150*x^2-49*x+16,9/5*x^8+33/5*x^7-52/5*x^6-233/5*x^5+107/5*x^4+103*x^3-98/5*x^2-327/5*x+26/5,-21/5*x^8-107/5*x^7-27/5*x^6+557/5*x^5+597/5*x^4-133*x^3-1013/5*x^2-137/5*x+66/5,-16/5*x^8-77/5*x^7+3/5*x^6+422/5*x^5+302/5*x^4-125*x^3-543/5*x^2+118/5*x+56/5,14/5*x^8+78/5*x^7+43/5*x^6-398/5*x^5-568/5*x^4+78*x^3+957/5*x^2+298/5*x-64/5,14/5*x^8+53/5*x^7-62/5*x^6-343/5*x^5+42/5*x^4+129*x^3+42/5*x^2-267/5*x+36/5,-8/5*x^8-61/5*x^7-101/5*x^6+231/5*x^5+701/5*x^4+x^3-1019/5*x^2-471/5*x+78/5,-13/5*x^8-91/5*x^7-116/5*x^6+416/5*x^5+936/5*x^4-57*x^3-1464/5*x^2-466/5*x+148/5]],
[x^14-6*x^13-4*x^12+83*x^11-77*x^10-394*x^9+617*x^8+724*x^7-1566*x^6-370*x^5+1489*x^4-153*x^3-410*x^2+120*x-8, [-1], [x,17/94*x^13-41/47*x^12-85/47*x^11+1211/94*x^10+265/94*x^9-3265/47*x^8+1745/94*x^7+7844/47*x^6-2764/47*x^5-8227/47*x^4+4197/94*x^3+5787/94*x^2-526/47*x-102/47,-19/94*x^13+32/47*x^12+142/47*x^11-983/94*x^10-1673/94*x^9+2781/47*x^8+5343/94*x^7-7014/47*x^6-5357/47*x^5+7384/47*x^4+11621/94*x^3-4151/94*x^2-1552/47*x+302/47,-39/188*x^13+65/47*x^12+27/47*x^11-3685/188*x^10+3705/188*x^9+4587/47*x^8-27647/188*x^7-18971/94*x^6+34223/94*x^5+15263/94*x^4-63131/188*x^3-6403/188*x^2+4062/47*x-447/47,3/188*x^13+37/94*x^12-78/47*x^11-1047/188*x^10+4321/188*x^9+2559/94*x^8-22993/188*x^7-2526/47*x^6+27057/94*x^5+3779/94*x^4-53525/188*x^3-1279/188*x^2+7911/94*x-432/47,-79/94*x^13+323/94*x^12+489/47*x^11-4859/94*x^10-1911/47*x^9+26671/94*x^8+4509/94*x^7-64761/94*x^6-28/47*x^5+33230/47*x^4+745/94*x^3-9848/47*x^2+1231/94*x+239/47,-57/47*x^13+239/47*x^12+664/47*x^11-3560/47*x^10-2058/47*x^9+19130/47*x^8-797/47*x^7-44810/47*x^6+9594/47*x^5+44069/47*x^4-8189/47*x^3-13064/47*x^2+2297/47*x+214/47,73/47*x^13-330/47*x^12-777/47*x^11+4885/47*x^10+1572/47*x^9-26003/47*x^8+6556/47*x^7+59871/47*x^6-24794/47*x^5-56619/47*x^4+22598/47*x^3+14358/47*x^2-7260/47*x+816/47,73/47*x^13-613/94*x^12-871/47*x^11+4603/47*x^10+5917/94*x^9-49985/94*x^8-870/47*x^7+118379/94*x^6-7310/47*x^5-58123/47*x^4+5302/47*x^3+31301/94*x^2-4885/94*x+17/47,-231/188*x^13+535/94*x^12+554/47*x^11-15449/188*x^10-1461/188*x^9+39743/94*x^8-39791/188*x^7-43506/47*x^6+62913/94*x^5+76087/94*x^4-122299/188*x^3-32929/188*x^2+18491/94*x-1046/47,-12/47*x^13+33/47*x^12+214/47*x^11-559/47*x^10-1492/47*x^9+3451/47*x^8+5351/47*x^7-9451/47*x^6-10784/47*x^5+11034/47*x^4+10966/47*x^3-4002/47*x^2-3175/47*x+520/47,143/94*x^13-320/47*x^12-762/47*x^11+9407/94*x^10+3241/94*x^9-24896/47*x^8+11477/94*x^7+57121/47*x^6-22382/47*x^5-53959/47*x^4+39689/94*x^3+27833/94*x^2-5724/47*x+552/47,13/188*x^13-6/47*x^12-56/47*x^11+351/188*x^10+1397/188*x^9-354/47*x^8-4383/188*x^7+245/94*x^6+4353/94*x^5+2495/94*x^4-9287/188*x^3-4759/188*x^2+479/47*x-133/47,-103/94*x^13+218/47*x^12+609/47*x^11-6541/94*x^10-4033/94*x^9+17750/47*x^8+547/94*x^7-42043/47*x^6+5967/47*x^5+41209/47*x^4-9565/94*x^3-21355/94*x^2+2164/47*x-416/47,88/47*x^13-430/47*x^12-786/47*x^11+6230/47*x^10-323/47*x^9-32091/47*x^8+19619/47*x^7+70075/47*x^6-56528/47*x^5-60847/47*x^4+51778/47*x^3+13039/47*x^2-14442/47*x+1764/47,125/47*x^13-520/47*x^12-1485/47*x^11+7793/47*x^10+4951/47*x^9-42336/47*x^8-495/47*x^7+100888/47*x^6-16572/47*x^5-101096/47*x^4+15060/47*x^3+29397/47*x^2-5518/47*x+286/47,-90/47*x^13+871/94*x^12+806/47*x^11-6284/47*x^10+603/94*x^9+64455/94*x^8-20098/47*x^7-140167/94*x^6+58851/47*x^5+60947/47*x^4-55089/47*x^3-27835/94*x^2+30301/94*x-1693/47,-295/188*x^13+335/47*x^12+761/47*x^11-19809/188*x^10-4499/188*x^9+26204/47*x^8-38575/188*x^7-119343/94*x^6+66335/94*x^5+112185/94*x^4-125227/188*x^3-61135/188*x^2+9203/47*x-901/47,201/94*x^13-435/47*x^12-1146/47*x^11+13041/94*x^10+6379/94*x^9-35159/47*x^8+7837/94*x^7+82072/47*x^6-22437/47*x^5-78721/47*x^4+38089/94*x^3+39985/94*x^2-5575/47*x+862/47,42/47*x^13-233/47*x^12-279/47*x^11+3343/47*x^10-1593/47*x^9-16896/47*x^8+17015/47*x^7+35546/47*x^6-44271/47*x^5-28608/47*x^4+40532/47*x^3+4513/47*x^2-11048/47*x+1705/47,-124/47*x^13+529/47*x^12+1428/47*x^11-7860/47*x^10-4388/47*x^9+42303/47*x^8-1498/47*x^7-99697/47*x^6+19100/47*x^5+98367/47*x^4-15684/47*x^3-27865/47*x^2+5622/47*x+125/47,138/47*x^13-638/47*x^12-1380/47*x^11+9319/47*x^10+1742/47*x^9-48781/47*x^8+18669/47*x^7+109697/47*x^6-61211/47*x^5-99819/47*x^4+56157/47*x^3+23134/47*x^2-16433/47*x+1822/47,67/47*x^13-290/47*x^12-717/47*x^11+4253/47*x^10+1437/47*x^9-22421/47*x^8+6811/47*x^7+51080/47*x^6-27836/47*x^5-47718/47*x^4+30102/47*x^3+11981/47*x^2-10234/47*x+1311/47,-145/94*x^13+575/94*x^12+913/47*x^11-8615/94*x^10-3758/47*x^9+47085/94*x^8+11215/94*x^7-113757/94*x^6-3928/47*x^5+57863/47*x^4+10815/94*x^3-16600/47*x^2-2061/94*x+447/47,71/188*x^13-127/94*x^12-248/47*x^11+3985/188*x^10+4629/188*x^9-11347/94*x^8-7553/188*x^7+14243/47*x^6+115/94*x^5-30727/94*x^4+8571/188*x^3+22621/188*x^2-3123/94*x-542/47]]];

f[284,2]=[
[x^3-x^2-4*x+1, [-1,1], [0,x,-x^2+x+3,2,-2*x+2,2*x^2-2*x-4,0,-x^2+6,-2*x^2+2*x+6,2*x^2-3*x-8,2*x^2-4*x-2,-x^2+4*x+2,-2*x^2+2,3*x^2-3*x-7,2*x^2-8,2*x^2-8,2*x^2+2*x-10,-4*x^2-2*x+14,-4*x+6,-1,x^2-x-7,-x^2+5*x+1,-5*x^2+4*x+10,2*x^2-9*x-8,2*x^2+4*x-4]],
[x^3+3*x^2-3, [-1,-1], [0,x,-x^2-3*x-1,2*x^2+2*x-6,2*x,-4*x^2-6*x+4,4*x^2+6*x-6,-x^2-2,-2*x^2+8,6*x^2+9*x-8,-2*x-8,-x^2-4*x-2,-4*x^2-8*x+4,-x^2-3*x+1,-4*x^2-8*x+8,2*x+6,-2*x^2-4*x-2,6*x^2+8*x-14,2*x^2-4,1,-3*x^2+3*x+13,3*x^2+x-15,3*x^2-10,-6*x^2-5*x+12,10*x^2+20*x-10]]];

f[285,2]=[
[x+1, [1,1,1], [1,-1,-1,-2,-2,-4,2,-1,-4,4,0,0,0,-10,12,-2,4,2,-16,0,-2,-8,-12,0,-16]],
[x-1, [1,-1,1], [1,-1,1,4,4,2,2,-1,-4,-2,0,-6,-6,8,-12,-14,4,14,-4,0,-14,16,0,-6,-10]],
[x+1, [-1,1,-1], [-1,1,-1,-2,-6,0,-6,1,-8,4,0,4,0,-2,-8,2,12,2,-8,16,14,8,0,0,-12]],
[x^2-2*x-7, [1,1,-1], [1/2*x+1/2,-1,-1,1/2*x+3/2,-1/2*x+1/2,-1/2*x+9/2,-x-3,1,-2*x+4,5/2*x-9/2,-3*x+1,-5/2*x+13/2,1/2*x-13/2,1/2*x+3/2,2*x+4,4,-3*x+3,-2*x+2,12,3*x+1,-2,4*x-4,3*x-5,-9/2*x+5/2,3/2*x-3/2]],
[x^2-7, [1,-1,1], [x,-1,1,-x-1,x+3,-x-3,-4,-1,-2*x+4,-3*x+1,6,-x+1,x-7,-x+3,2*x+4,-2*x+6,-2*x+6,2*x-6,4*x+4,-2*x+2,10,-4*x-4,6,3*x-9,3*x+5]],
[x^2-2*x-7, [-1,1,1], [1/2*x+1/2,1,-1,-1/2*x+1/2,-3/2*x+7/2,-1/2*x-3/2,-x+5,-1,2*x,1/2*x-1/2,x-7,-1/2*x-3/2,-3/2*x+11/2,3/2*x+13/2,-2*x,8,3*x+1,4*x-8,-2*x-2,-x-7,-2*x,0,x+9,7/2*x-15/2,3/2*x-31/2]],
[x^2-3, [-1,-1,-1], [x,1,1,x-1,-x+3,-x-1,0,1,-2*x,-3*x+3,-4*x+2,3*x-1,x+3,-3*x-1,2*x,2*x-6,2*x+6,-2*x-10,8,6*x+6,4*x-10,4*x-4,4*x-6,-x+9,3*x-1]]];

f[286,2]=[
[x+1, [1,1,1], [-1,-1,-1,1,-1,-1,-1,-4,-8,-8,0,7,-8,11,-1,2,14,-8,8,9,-4,2,0,-4,8]],
[x+2, [1,1,-1], [-1,-2,3,-1,-1,1,6,8,-3,9,2,-10,9,-1,0,6,-3,-7,-7,12,-1,-4,0,12,-4]],
[x+1, [-1,1,1], [1,2,-1,1,-1,-1,2,-4,1,7,-6,-2,-5,5,8,2,5,7,-7,0,5,-4,0,-4,-16]],
[x+3, [-1,1,-1], [1,-1,-3,-5,-1,1,7,0,-4,-8,0,-3,-8,-5,-3,2,-14,8,0,-5,16,-6,-4,0,0]],
[x-1, [-1,-1,-1], [1,-1,1,3,1,1,3,0,4,0,-8,-7,-8,-1,-7,-6,10,-8,8,7,-16,10,4,0,8]],
[x-1, [-1,-1,-1], [1,2,1,-3,1,1,-6,0,1,-3,10,2,7,-1,-4,6,-5,-11,-1,16,-7,4,4,12,-16]],
[x^3-x^2-10*x+8, [1,-1,1], [-1,x,-1/2*x^2+1/2*x+4,-1/2*x^2+1/2*x+2,1,-1,x^2-6,-4,-1/2*x^2-5/2*x+6,-1/2*x^2-1/2*x+8,x^2+x-8,-x^2-2*x+10,1/2*x^2+1/2*x,1/2*x^2-1/2*x-10,x^2+2*x-12,-2*x^2+2*x+14,1/2*x^2+1/2*x-2,-1/2*x^2-1/2*x,1/2*x^2-3/2*x-10,-x^2-2*x+12,3/2*x^2+3/2*x-12,-2*x,-4*x+4,x^2-5*x-10,x^2-x-2]]];

f[287,2]=[
[x^2+x-1, [1,1], [-x-1,x,-x,-1,-1,2*x-3,2*x-1,-3*x-2,x-2,3*x-1,-5*x,-2*x-6,-1,-1,-6*x,x+4,x+10,-4*x+3,5*x-4,8*x+7,8*x+3,6*x-2,4*x+1,7*x+2,-9*x-12]],
[x^2+3*x+1, [-1,-1], [x+1,x,-x-2,1,-2*x-3,-3,4*x+3,-3*x-6,-x,3*x+9,-x-10,6*x+10,1,8*x+11,-2*x-4,-5*x-16,x+8,-11,-x+4,2*x+1,-15,-6*x-10,8*x+15,-9*x-18,3*x-4]],
[x^3-4*x^2+3*x+1, [1,-1], [x,-x+3,-2*x^2+4*x+2,-1,2*x^2-6*x,-x^2+5*x-1,-x^2-2*x+7,3*x^2-8*x-3,-2*x^2+7*x-7,-4*x^2+12*x-2,-6*x^2+18*x-4,3*x^2-9*x+3,1,3*x^2-4*x-1,x^2-3*x+5,-2*x^2+6*x-8,2*x^2+2*x-8,6*x^2-16*x+4,2*x^2-8*x-8,-4*x^2+8*x+2,4*x-6,-4*x+12,-8*x^2+20*x-2,11*x^2-27*x-1,2*x^2-3*x+1]],
[x^3-x^2-4*x+3, [-1,1], [x,x^2-x-3,2,1,-2,-x^2+6,-2*x^2+x+6,x+4,-x^2+x-1,-2*x+4,-2*x,5*x^2-14,-1,-4*x^2-3*x+16,-3*x^2+2*x+6,2*x^2+2*x-6,-4,2*x^2+2*x-8,-2*x^2-2*x+10,-2*x^2+4*x,-4*x^2+2*x+10,-2*x^2+2*x+10,4*x-2,-x^2+8*x+2,x^2-3*x+7]],
[x^5+x^4-6*x^3-4*x^2+6*x+3, [-1,1], [x,x+1,x^4-7*x^2+x+6,1,-x^4-x^3+3*x^2+2*x+3,-x^4-x^3+6*x^2+3*x-4,x^4+2*x^3-4*x^2-7*x+3,-x^4+x^3+6*x^2-6*x-4,2*x^4-12*x^2+x+9,2*x^4+x^3-10*x^2-3*x+3,-x^4+7*x^2-3*x-4,-2*x^4+13*x^2-3*x-13,-1,-3*x^4+18*x^2-3*x-13,-4*x^4-2*x^3+23*x^2+x-15,3*x^4-17*x^2+5*x+12,-x^4-2*x^3+7*x^2+11*x-6,x^4-x^3-7*x^2+6*x+11,-x^4-2*x^3+3*x^2+9*x+2,-x^4+3*x^3+9*x^2-12*x-15,x^4+x^3-5*x^2+11,-2*x^3+6*x-10,-5*x^4-5*x^3+25*x^2+12*x-15,-x^4+6*x^2-2*x-3,2*x^4-12*x^2-3*x+11]],
[x^6+x^5-10*x^4-10*x^3+23*x^2+24*x+5, [1,-1], [x,-x^3+5*x,x^5-9*x^3-x^2+19*x+6,-1,x^5+x^4-11*x^3-8*x^2+30*x+15,x^5+x^4-10*x^3-8*x^2+22*x+14,x^3+x^2-5*x-3,-x^4-x^3+6*x^2+4*x-2,-x^3+5*x+4,2*x^5+x^4-22*x^3-11*x^2+59*x+27,x^5-11*x^3-3*x^2+29*x+10,2*x^5-19*x^3-4*x^2+42*x+23,1,-2*x^5-2*x^4+19*x^3+15*x^2-43*x-19,x^3+2*x^2-6*x-11,-x^5+9*x^3-x^2-17*x+2,-x^5+13*x^3+5*x^2-39*x-24,x^5-x^4-7*x^3+4*x^2+6*x+3,x^5-11*x^3-x^2+29*x+12,x^5-x^4-11*x^3+4*x^2+28*x+7,x^5+x^4-11*x^3-8*x^2+32*x+23,2*x^5+2*x^4-20*x^3-16*x^2+46*x+26,-x^5+x^4+11*x^3-2*x^2-28*x-13,-x^5+12*x^3+3*x^2-31*x-21,-2*x^5+19*x^3-39*x-4]]];

f[288,2]=[
[x+4, [1,1], [0,0,-4,0,0,-6,-8,0,0,4,0,-2,8,0,0,4,0,-10,0,0,6,0,0,-16,-18]],
[x-2, [1,-1], [0,0,2,0,0,6,-2,0,0,10,0,-2,-10,0,0,-14,0,-10,0,0,-6,0,0,-10,18]],
[x-4, [1,-1], [0,0,-2,4,4,-2,6,4,0,-2,-4,-2,-2,-4,8,-10,-4,6,-4,-16,-6,-4,12,-10,-14]],
[x-4, [-1,1], [0,0,4,0,0,-6,8,0,0,-4,0,-2,-8,0,0,-4,0,-10,0,0,6,0,0,16,-18]],
[x+4, [-1,-1], [0,0,-2,-4,-4,-2,6,-4,0,-2,4,-2,-2,4,-8,-10,4,6,4,16,-6,4,-12,-10,-14]]];

f[289,2]=[
[x+1, [1], [-1,0,2,-4,0,-2,0,-4,-4,-6,-4,2,6,4,0,6,-12,10,4,4,6,-12,-4,10,-2]],
[x^2+x-3, [1], [-x-1,x,-x-1,x-1,-3,-x-2,0,3*x+2,-x-1,-3*x-6,-2*x-1,-2*x+2,-6,2*x-5,3,-3*x+6,6,6*x+1,2*x+10,4*x-2,2*x-3,-4*x-6,5*x-4,4*x-2,3*x+7]],
[x^2-x-3, [-1], [x-1,x,-x+1,x+1,3,x-2,0,-3*x+2,-x+1,-3*x+6,-2*x+1,-2*x-2,6,-2*x-5,3,3*x+6,6,6*x-1,-2*x+10,4*x+2,2*x+3,-4*x+6,-5*x-4,-4*x-2,3*x-7]],
[x^3+3*x^2-3, [1], [-x^2-x+2,x,x^2+x-4,-x-1,-2*x^2-4*x,3*x^2+5*x-2,0,-x^2-x+2,-x^2-1,-x^2+3,2*x^2+5*x-4,-x^2-5*x-1,x^2+5*x,-3*x^2-7*x+7,-x^2-2*x-6,2*x^2-12,4*x^2+9*x-6,-2*x^2-3*x+4,-7*x^2-8*x+10,3*x^2+2*x-14,5*x^2+8*x,6*x^2+10*x-9,2*x^2+8*x+5,-7*x^2-9*x+7,6*x+4]],
[x^3-3*x^2+3, [-1], [-x^2+x+2,x,-x^2+x+4,-x+1,2*x^2-4*x,3*x^2-5*x-2,0,-x^2+x+2,x^2+1,x^2-3,-2*x^2+5*x+4,x^2-5*x+1,-x^2+5*x,-3*x^2+7*x+7,-x^2+2*x-6,2*x^2-12,4*x^2-9*x-6,2*x^2-3*x-4,-7*x^2+8*x+10,-3*x^2+2*x+14,-5*x^2+8*x,-6*x^2+10*x+9,2*x^2-8*x+5,-7*x^2+9*x+7,6*x-4]],
[x^4-8*x^2+8, [-1], [-1/2*x^2+3,x,1/4*x^3-x,1/2*x^3-3*x,-1/2*x^3+3*x,-1/2*x^2+2,0,x^2-2,1/2*x^3-5*x,1/4*x^3,-3/2*x^3+9*x,-5/4*x^3+10*x,-3/4*x^3+2*x,-x^2+2,x^2+4,-1/2*x^2+2,6,-5/4*x^3+5*x,-x^2,-5*x,7/4*x^3-14*x,1/2*x^3-5*x,-2*x^2+14,1/2*x^2+6,5/4*x^3-11*x]]];

f[290,2]=[
[x, [1,1,1], [-1,0,-1,-2,2,-6,2,-2,-6,-1,-6,-2,10,-8,-4,10,8,10,2,4,6,-10,-6,-6,6]],
[x^2+x-3, [1,1,-1], [-1,-x,-1,x+3,-2*x-2,-x+4,3*x+3,2*x+4,x+4,1,3*x-1,-6*x-4,2*x-4,-x+1,0,3*x+3,3*x+6,-3*x-10,4*x,0,-5*x-9,3*x+2,2*x-4,2*x-10,3*x+8]],
[x^2+x-3, [1,-1,1], [-1,-x,1,-x+1,2*x+2,x,-x-1,2*x+4,3*x,-1,x+9,2*x+4,-2*x+4,-x+1,-4*x-4,x-11,-x-10,-x-2,-4,4*x+4,7*x+3,-3*x+2,6*x,-6*x-6,7*x]],
[x^3-3*x^2-3*x+8, [-1,1,1], [1,x,-1,-x^2+6,-2*x+2,2*x^2-3*x-6,x^2-2*x-2,-2*x^2+4*x+6,-2*x^2+3*x+2,-1,x^2-2*x-6,-2*x^2+10,2*x^2-14,x^2-2*x,4*x-4,3*x^2-6*x-6,-2*x^2+5*x,3*x+2,-2*x^2+6*x+10,-12,x^2-2*x-6,4*x^2-7*x-10,-2*x^2+4*x+10,-2*x+2,-2*x^2+3*x+10]],
[x^3+x^2-7*x+4, [-1,-1,-1], [1,x,1,-x^2-2*x+4,2*x^2+4*x-8,-2*x^2-5*x+10,x^2+2*x-6,-2*x,-x,1,-3*x^2-4*x+12,2*x^2+4*x-10,2*x^2+4*x-6,5*x^2+10*x-20,-8,-3*x^2-6*x+14,-2*x^2-7*x+8,x+2,-4*x,4*x,-3*x^2-2*x+18,6*x^2+9*x-24,2*x-8,4*x^2+10*x-14,2*x^2+3*x-2]]];

f[291,2]=[
[x, [1,1], [-1,-1,0,2,-4,-2,-8,-2,-4,0,8,10,-12,-8,8,-2,-8,-10,2,8,6,4,8,10,-1]],
[x+2, [1,-1], [-1,-1,-2,-4,4,6,2,-8,4,6,8,-2,10,-4,0,-10,8,14,8,-4,-6,-8,8,10,1]],
[x-2, [1,-1], [2,-1,1,2,4,0,2,-2,-8,-3,-1,4,7,-7,6,2,-7,5,-10,5,-9,-5,5,16,1]],
[x+2, [1,-1], [-2,-1,3,-2,0,-4,6,6,0,7,7,4,5,1,-10,10,-5,5,-14,15,7,-5,-9,-8,1]],
[x^2+x-3, [1,1], [x,-1,-3,-x+1,-x-2,x-1,-3*x+1,2*x-3,2*x+1,x-5,3*x-1,-5,4*x+4,x+8,-2*x-9,2*x-3,-4*x-9,-4*x-2,-x+4,2,-3,-2*x+8,-4*x-8,-x-9,-1]],
[x^2-3*x+1, [1,-1], [x,-1,3,-3*x+3,-x-2,-x+5,-5*x+7,2*x-1,-2*x+7,-x+5,3*x-9,-7,8*x-12,x-8,6*x-9,-6*x+9,-4*x+9,-6,-7*x+16,4*x-10,4*x-7,-6*x+16,8*x-4,-5*x+15,1]],
[x^2+x-1, [-1,-1], [x,1,-2*x-3,x-3,3*x+2,-x-5,x+1,-2*x-5,-4*x+1,5*x-1,-x-3,8*x+1,-8,-7*x-6,9,3,-6*x-5,-4*x-10,x+6,-2,-8*x+1,-10*x-4,4*x-4,9*x+9,1]],
[x^7-11*x^5+x^4+34*x^3-5*x^2-24*x-4, [-1,1], [x,1,-1/2*x^6+9/2*x^4-1/2*x^3-10*x^2+5/2*x+4,1/2*x^6+1/2*x^5-5*x^4-7/2*x^3+25/2*x^2+3*x-2,x^4-x^3-7*x^2+5*x+6,x^3-5*x+2,-x^5-x^4+9*x^3+7*x^2-18*x-8,1/2*x^6+1/2*x^5-4*x^4-9/2*x^3+11/2*x^2+8*x+4,1/2*x^6-1/2*x^5-5*x^4+7/2*x^3+25/2*x^2-5*x-6,-1/2*x^6+11/2*x^4-3/2*x^3-15*x^2+15/2*x+4,x^4-6*x^2+5,-2*x^5-x^4+16*x^3+7*x^2-26*x-8,-1/2*x^6+11/2*x^4-1/2*x^3-15*x^2+5/2*x+4,-2*x^5-2*x^4+18*x^3+15*x^2-36*x-17,x^4-3*x^2-6,x^4+2*x^3-7*x^2-8*x+6,x^6+3/2*x^5-21/2*x^4-10*x^3+59/2*x^2+21/2*x-14,x^5-9*x^3+x^2+18*x-1,3/2*x^6+3/2*x^5-14*x^4-21/2*x^3+65/2*x^2+13*x-10,x^6-1/2*x^5-23/2*x^4+6*x^3+69/2*x^2-39/2*x-18,-x^6+11*x^4-2*x^3-33*x^2+16*x+19,-x^6+12*x^4-4*x^3-38*x^2+24*x+19,-1/2*x^5-5/2*x^4+5*x^3+29/2*x^2-29/2*x-10,-x^6-2*x^5+9*x^4+14*x^3-16*x^2-14*x-8,-1]]];

f[292,2]=[
[x^2+x-1, [-1,-1], [0,x,-x-3,-2*x-1,-x-4,5*x+2,-2*x-5,2*x+1,5*x+3,4*x-1,-6*x,-6*x-5,-4*x-2,-2*x+1,6*x+9,-11,-4*x-4,-5*x-3,4*x-1,3*x+8,1,5*x+10,-9*x-7,2*x+1,x+6]],
[x^4-3*x^3-5*x^2+16*x-8, [-1,1], [0,x,x^3-2*x^2-7*x+10,-1/2*x^3+1/2*x^2+7/2*x-2,-3/2*x^3+5/2*x^2+21/2*x-10,-x+2,-x^3+2*x^2+6*x-6,x^2-x-4,-x^3+2*x^2+5*x-8,-x^2-x+6,5/2*x^3-11/2*x^2-33/2*x+22,x^3-8*x,-2*x^3+4*x^2+16*x-16,-5/2*x^3+9/2*x^2+31/2*x-22,7/2*x^3-11/2*x^2-45/2*x+22,x^2+x-2,-1/2*x^3-1/2*x^2+9/2*x-2,2*x^3-5*x^2-14*x+20,-4*x^3+7*x^2+27*x-32,-x^3+3*x^2+4*x-12,-1,2*x^2-x-16,7/2*x^3-11/2*x^2-55/2*x+30,5*x^3-8*x^2-36*x+38,-x^3+x^2+12*x-4]]];

f[293,2]=[
[x^8+3*x^7-4*x^6-15*x^5+4*x^4+21*x^3-2*x^2-8*x+1, [1], [x,x^5+x^4-5*x^3-3*x^2+5*x,-x^6-3*x^5+3*x^4+12*x^3-x^2-10*x,x^6+2*x^5-4*x^4-6*x^3+4*x^2+x-2,-2*x^7-4*x^6+10*x^5+17*x^4-16*x^3-17*x^2+9*x+1,x^7+3*x^6-4*x^5-15*x^4+2*x^3+19*x^2+4*x-6,2*x^7+7*x^6-3*x^5-29*x^4-12*x^3+30*x^2+14*x-9,-x^7-5*x^6+25*x^4+13*x^3-34*x^2-12*x+8,2*x^7+6*x^6-6*x^5-27*x^4-2*x^3+29*x^2+8*x-5,-x^7-5*x^6+23*x^4+12*x^3-25*x^2-11*x+5,-x^6-2*x^5+6*x^4+10*x^3-13*x^2-12*x+8,-3*x^7-9*x^6+9*x^5+38*x^4-2*x^3-37*x^2+x+2,-x^7-3*x^6+4*x^5+16*x^4-x^3-21*x^2-5*x+5,-x^7-2*x^6+4*x^5+3*x^4-8*x^3+11*x^2+11*x-13,3*x^6+8*x^5-8*x^4-29*x^3+21*x-2,x^7+2*x^6-5*x^5-3*x^4+13*x^3-15*x^2-15*x+15,-x^7-4*x^6-2*x^5+9*x^4+17*x^3+9*x^2-15*x-7,-2*x^7-9*x^6+3*x^5+40*x^4+9*x^3-38*x^2-7*x+4,2*x^6+6*x^5-5*x^4-23*x^3-x^2+16*x-7,-x^7-3*x^6+6*x^5+16*x^4-13*x^3-19*x^2+7*x,-x^7+2*x^6+13*x^5-10*x^4-40*x^3+15*x^2+30*x-9,7*x^7+17*x^6-30*x^5-75*x^4+33*x^3+77*x^2-13*x-10,x^7-3*x^6-12*x^5+18*x^4+31*x^3-37*x^2-18*x+21,-2*x^7-4*x^6+10*x^5+13*x^4-16*x^3+x^2+9*x-6,-x^7+4*x^6+17*x^5-19*x^4-52*x^3+27*x^2+30*x-13]],
[x^16-3*x^15-22*x^14+69*x^13+184*x^12-621*x^11-716*x^10+2758*x^9+1234*x^8-6287*x^7-554*x^6+7023*x^5-572*x^4-3385*x^3+508*x^2+526*x-111, [-1], [x,-577/16858*x^15+4393/33716*x^14+16563/33716*x^13-18220/8429*x^12-74523/33716*x^11+435367/33716*x^10+21555/8429*x^9-286976/8429*x^8+130715/33716*x^7+1398031/33716*x^6-320453/33716*x^5-230781/8429*x^4+82231/8429*x^3+483617/33716*x^2-38240/8429*x-18467/8429,761/33716*x^15-713/33716*x^14-17781/33716*x^13+6135/16858*x^12+163023/33716*x^11-65719/33716*x^10-739285/33716*x^9+44693/33716*x^8+1715335/33716*x^7+154804/8429*x^6-1882511/33716*x^5-1693565/33716*x^4+697325/33716*x^3+319291/8429*x^2+78445/33716*x-86901/16858,297/16858*x^15-479/33716*x^14-3143/8429*x^13+949/33716*x^12+115053/33716*x^11+34451/16858*x^10-597641/33716*x^9-139484/8429*x^8+1843485/33716*x^7+751603/16858*x^6-1559611/16858*x^5-1306309/33716*x^4+1221403/16858*x^3-53941/33716*x^2-576815/33716*x+54207/8429,-233/33716*x^15+1511/67432*x^14+8529/67432*x^13-16297/67432*x^12-49515/33716*x^11+18855/67432*x^10+844103/67432*x^9+245827/67432*x^8-4050371/67432*x^7-567485/67432*x^6+4635547/33716*x^5-340967/67432*x^4-8679221/67432*x^3+1068839/67432*x^2+1152697/33716*x-303691/67432,-623/33716*x^15+193/8429*x^14+5855/16858*x^13-9325/33716*x^12-82399/33716*x^11+6083/16858*x^10+130703/16858*x^9+62912/8429*x^8-155665/16858*x^7-1292109/33716*x^6-175301/33716*x^5+611969/8429*x^4+172165/8429*x^3-1923829/33716*x^2-471027/33716*x+411913/33716,5121/67432*x^15-20349/67432*x^14-59089/67432*x^13+79407/16858*x^12+58193/67432*x^11-1662399/67432*x^10+1575357/67432*x^9+2934123/67432*x^8-7273265/67432*x^7+145400/8429*x^6+12534279/67432*x^5-7704035/67432*x^4-9352905/67432*x^3+1452333/16858*x^2+2408533/67432*x-229595/16858,-1175/16858*x^15-6285/67432*x^14+169263/67432*x^13+8299/67432*x^12-248807/8429*x^11+947657/67432*x^10+10419633/67432*x^9-7553201/67432*x^8-25892511/67432*x^7+21334795/67432*x^6+14788541/33716*x^5-24100153/67432*x^4-14102421/67432*x^3+9874977/67432*x^2+1128119/33716*x-1024209/67432,-89/16858*x^15-763/67432*x^14+19937/67432*x^13-25799/67432*x^12-59937/16858*x^11+571695/67432*x^10+1027195/67432*x^9-3749195/67432*x^8-1173729/67432*x^7+10430077/67432*x^6-867699/33716*x^5-12637907/67432*x^4+3065513/67432*x^3+5895535/67432*x^2-301955/33716*x-589459/67432,3885/33716*x^15-11349/33716*x^14-71413/33716*x^13+103847/16858*x^12+522739/33716*x^11-1459075/33716*x^10-2073633/33716*x^9+5057349/33716*x^8+5231307/33716*x^7-2358918/8429*x^6-8467211/33716*x^5+9665959/33716*x^4+7114909/33716*x^3-1254647/8429*x^2-1876887/33716*x+443941/16858,5441/33716*x^15-2335/8429*x^14-66207/16858*x^13+220255/33716*x^12+1248809/33716*x^11-997553/16858*x^10-2874303/16858*x^9+2172635/8429*x^8+6711855/16858*x^7-18695269/33716*x^6-15276237/33716*x^5+4657938/8429*x^4+1932769/8429*x^3-7449369/33716*x^2-1475651/33716*x+857921/33716,4927/33716*x^15-2054/8429*x^14-110779/33716*x^13+171783/33716*x^12+244061/8429*x^11-1399111/33716*x^10-2122319/16858*x^9+5594357/33716*x^8+2351622/8429*x^7-2849107/8429*x^6-9947321/33716*x^5+2797941/8429*x^4+4322749/33716*x^3-4462107/33716*x^2-395485/16858*x+225443/16858,-8611/33716*x^15+31195/33716*x^14+143115/33716*x^13-287001/16858*x^12-848693/33716*x^11+4013201/33716*x^10+2117415/33716*x^9-13476055/33716*x^8-1853369/33716*x^7+5715155/8429*x^6-368767/33716*x^5-18711841/33716*x^4+763841/33716*x^3+1526212/8429*x^2+44141/33716*x-263355/16858,2009/33716*x^15-7969/16858*x^14-3237/8429*x^13+300935/33716*x^12-163313/33716*x^11-550069/8429*x^10+935115/16858*x^9+1991413/8429*x^8-1659980/8429*x^7-15154663/33716*x^6+9816929/33716*x^5+3564709/8429*x^4-1392496/8429*x^3-4981759/33716*x^2+796877/33716*x+313173/33716,2473/33716*x^15-12197/33716*x^14-8218/8429*x^13+112113/16858*x^12+57489/16858*x^11-796205/16858*x^10+60053/33716*x^9+1412759/8429*x^8-599275/33716*x^7-10979831/33716*x^6-384759/33716*x^5+11663275/33716*x^4+1049463/16858*x^3-2865043/16858*x^2-222183/8429*x+722135/33716,2141/33716*x^15-16981/33716*x^14-4872/8429*x^13+336735/33716*x^12-92791/33716*x^11-1299461/16858*x^10+413751/8429*x^9+9903025/33716*x^8-6969199/33716*x^7-19452821/33716*x^6+3056176/8429*x^5+4587438/8429*x^4-8453995/33716*x^3-3235347/16858*x^2+376260/8429*x+134319/16858,6247/33716*x^15-9323/16858*x^14-29294/8429*x^13+361203/33716*x^12+830135/33716*x^11-674180/8429*x^10-684678/8429*x^9+4893729/16858*x^8+1010041/8429*x^7-17872009/33716*x^6-1480079/33716*x^5+7531949/16858*x^4-732023/16858*x^3-4550133/33716*x^2+719091/33716*x+418557/33716,2969/67432*x^15+231/67432*x^14-81201/67432*x^13-4021/33716*x^12+879835/67432*x^11+88913/67432*x^10-4811453/67432*x^9-338683/67432*x^8+14030899/67432*x^7-16497/16858*x^6-21321103/67432*x^5+2553299/67432*x^4+15354417/67432*x^3-851297/16858*x^2-3775315/67432*x+385057/33716,-9229/33716*x^15+13633/16858*x^14+40560/8429*x^13-477247/33716*x^12-1080015/33716*x^11+769524/8429*x^10+1756399/16858*x^9-2248067/8429*x^8-1565942/8429*x^7+11787319/33716*x^6+6654379/33716*x^5-1394083/8429*x^4-1080018/8429*x^3+176719/33716*x^2+1509043/33716*x+190983/33716,2015/16858*x^15-6407/16858*x^14-18883/8429*x^13+124787/16858*x^12+268239/16858*x^11-468211/8429*x^10-447918/8429*x^9+3416615/16858*x^8+1389827/16858*x^7-6311847/16858*x^6-367198/8429*x^5+2793337/8429*x^4-212647/16858*x^3-995047/8429*x^2+134652/8429*x+57683/8429,-8279/16858*x^15+19121/16858*x^14+352181/33716*x^13-195748/8429*x^12-2925503/33716*x^11+6221089/33716*x^10+2983799/8429*x^9-24152799/33716*x^8-6149650/8429*x^7+47385443/33716*x^6+11794601/16858*x^5-10962785/8429*x^4-8511631/33716*x^3+3936897/8429*x^2+956597/33716*x-1368631/33716,45/16858*x^15+7773/67432*x^14-11217/67432*x^13-168037/67432*x^12+16810/8429*x^11+1443337/67432*x^10-504215/67432*x^9-6234631/67432*x^8-202277/67432*x^7+13990703/67432*x^6+586180/8429*x^5-14956821/67432*x^4-7800887/67432*x^3+6075267/67432*x^2+345898/8429*x-480647/67432,-34/8429*x^15+1559/16858*x^14+152/8429*x^13-35045/16858*x^12+707/16858*x^11+160152/8429*x^10+51871/16858*x^9-762235/8429*x^8-597155/16858*x^7+1993168/8429*x^6+1080047/8429*x^5-5462439/16858*x^4-1488918/8429*x^3+3302879/16858*x^2+1256111/16858*x-292356/8429,2061/33716*x^15-192/8429*x^14-17674/8429*x^13+72385/33716*x^12+806473/33716*x^11-261748/8429*x^10-1020285/8429*x^9+1450616/8429*x^8+4783777/16858*x^7-13849707/33716*x^6-9582415/33716*x^5+6455021/16858*x^4+795660/8429*x^3-2745105/33716*x^2-145333/33716*x-316623/33716,8703/33716*x^15-19917/33716*x^14-45922/8429*x^13+393337/33716*x^12+1537427/33716*x^11-1497639/16858*x^10-1626802/8429*x^9+11066245/33716*x^8+14685501/33716*x^7-20496739/33716*x^6-8507699/16858*x^5+4443339/8429*x^4+8858877/33716*x^3-1562343/8429*x^2-719079/16858*x+185411/8429]]];

f[294,2]=[
[x+3, [1,1,-1], [-1,-1,-3,0,3,4,0,4,0,9,1,8,0,-10,6,-3,-3,10,-10,-6,-2,-1,9,-6,1]],
[x-4, [1,1,-1], [-1,-1,4,0,-4,4,0,4,0,2,8,-6,0,4,-8,-10,4,-4,4,8,-16,-8,-12,8,8]],
[x-3, [1,-1,1], [-1,1,3,0,3,-4,0,-4,0,9,-1,8,0,-10,-6,-3,3,-10,-10,-6,2,-1,-9,6,-1]],
[x+4, [1,-1,-1], [-1,1,-4,0,-4,-4,0,-4,0,2,-8,-6,0,4,8,-10,-4,4,4,8,16,-8,12,-8,-8]],
[x+1, [-1,1,1], [1,-1,1,0,5,0,-4,8,-4,-5,3,-4,0,2,-6,-9,-11,-6,-2,2,10,3,-7,-6,7]],
[x+1, [-1,-1,-1], [1,1,-1,0,5,0,4,-8,-4,-5,-3,-4,0,2,6,-9,11,6,-2,2,-10,3,7,6,-7]],
[x-2, [-1,-1,-1], [1,1,2,0,-4,-6,-2,4,8,-2,0,-10,6,-4,0,6,-4,-6,4,8,-10,0,4,6,14]]];

f[295,2]=[
[x^3+x^2-2*x-1, [1,1], [x,-x^2-x+1,-1,2*x^2+x-3,-x^2-2*x-2,2*x^2-3,-x^2-2*x-3,2*x^2+5*x-2,-3*x^2+4,-3*x^2+1,-2*x^2-3*x,-4*x^2+4*x+10,3*x^2+2*x-8,x^2-x+1,x^2+4*x-1,x^2,-1,5*x^2-6*x-14,-6*x^2+x+17,-3*x^2+x+5,-6*x^2-9*x+10,5*x^2-3*x-9,2*x^2-3*x-2,2*x^2-4*x-13,-5*x^2-4*x+5]],
[x^3+3*x^2-3, [-1,-1], [x,x^2+x-3,1,-2*x^2-3*x+1,-x^2+4,2*x^2+2*x-7,-x^2-2*x-5,-3*x-2,3*x^2+8*x-2,x^2+4*x-3,-2*x^2-5*x+2,-4*x^2-8*x+2,3*x^2+10*x-4,3*x^2+5*x-5,7*x^2+10*x-7,-5*x^2-10*x,1,x^2+4*x,-6*x^2-9*x+9,3*x^2+x-7,2*x^2+3*x-10,3*x^2+9*x-1,2*x^2-3*x-10,4*x-3,5*x^2+2*x-9]],
[x^6-2*x^5-6*x^4+11*x^3+8*x^2-11*x-3, [-1,1], [x,-x^5+x^4+6*x^3-4*x^2-7*x+1,1,x^5-7*x^3-x^2+10*x+3,x^4-x^3-5*x^2+3*x+4,-x^4+x^3+4*x^2-3*x+1,x^5-x^4-7*x^3+5*x^2+10*x,x^3-x^2-3*x+1,x^5-2*x^4-6*x^3+9*x^2+5*x-1,-x^5-x^4+9*x^3+7*x^2-18*x-8,-x^3+x^2+x-3,-x^5-x^4+7*x^3+8*x^2-10*x-9,-x^4-x^3+5*x^2+5*x,-2*x^5+2*x^4+11*x^3-6*x^2-11*x-2,2*x^4-9*x^2-2*x+3,2*x^5-x^4-11*x^3-x^2+11*x+12,-1,2*x^5-x^4-11*x^3+x^2+11*x+2,-x^4+3*x^2+4*x,x^5-3*x^4-2*x^3+14*x^2-9*x-13,x^5-x^4-6*x^3+9*x^2+5*x-12,-x^5-x^4+6*x^3+8*x^2-5*x-15,-x^5+x^4+4*x^3-7*x^2+7*x+10,x^5+2*x^4-6*x^3-12*x^2+7*x+14,2*x^5+4*x^4-16*x^3-25*x^2+30*x+25]],
[x^7-x^6-10*x^5+7*x^4+27*x^3-11*x^2-10*x-1, [1,-1], [x,x^5-3*x^4-4*x^3+14*x^2-x-3,-1,x^6-x^5-10*x^4+8*x^3+25*x^2-15*x-4,-x^6+2*x^5+5*x^4-8*x^3-3*x^2-2*x+3,-2*x^6+4*x^5+15*x^4-23*x^3-30*x^2+23*x+7,x^6-x^5-9*x^4+6*x^3+21*x^2-9*x-1,x^6-2*x^5-10*x^4+16*x^3+27*x^2-30*x-6,3*x^6-5*x^5-24*x^4+31*x^3+51*x^2-40*x-14,-x^6+3*x^5+5*x^4-14*x^3-5*x^2+x+5,-3*x^6+4*x^5+26*x^4-24*x^3-59*x^2+30*x+12,-3*x^5+9*x^4+9*x^3-40*x^2+18*x+3,-x^6+13*x^4-4*x^3-39*x^2+18*x+13,-x^3+5*x-2,-x^6+14*x^4-7*x^3-45*x^2+33*x+14,-3*x^6+6*x^5+21*x^4-34*x^3-37*x^2+36*x+9,1,3*x^6-4*x^5-29*x^4+30*x^3+75*x^2-54*x-19,-x^6+2*x^5+5*x^4-9*x^3-x^2+3*x-5,3*x^5-9*x^4-8*x^3+38*x^2-23*x+1,-x^6+x^5+11*x^4-11*x^3-33*x^2+32*x+15,-3*x^5+11*x^4+6*x^3-52*x^2+31*x+15,x^6-3*x^5-5*x^4+19*x^3+3*x^2-24*x+1,-5*x^5+16*x^4+16*x^3-74*x^2+25*x+18,x^6-4*x^5+2*x^4+17*x^3-33*x^2-x+12]]];

f[296,2]=[
[x+2, [1,1], [0,-1,-2,1,1,-6,-4,-8,6,2,-4,-1,7,2,9,-3,-12,4,0,7,7,0,3,-12,-8]],
[x, [-1,-1], [0,-1,0,-3,-3,0,2,-2,-6,-2,-4,1,7,4,1,9,8,-4,12,-5,-13,-10,-1,-2,-12]],
[x^3-2*x^2-4*x+7, [-1,1], [0,x,x-1,x^2-x-1,-3*x^2+12,-3*x^2+13,2*x^2-2*x-8,2*x^2-2*x-4,-x^2+7,x^2-7,x+5,-1,-2*x^2+x+2,2*x^2+4*x-12,3*x^2+x-9,5*x^2-3*x-19,-2*x^2-4*x+10,2*x^2-3*x-1,-6*x^2+5*x+19,3*x^2-x-13,-3*x^2+10,x^2-2*x-3,5*x^2-3*x-21,-4*x+8,2*x^2+6*x-12]],
[x^4-2*x^3-8*x^2+15*x+4, [1,-1], [0,x,x^3-7*x+2,-x^3-x^2+7*x+4,x^2-4,-x^3-x^2+6*x+6,2,-2*x^3+12*x,x^3-x^2-8*x+4,x^3+x^2-8*x-2,3*x^3+2*x^2-21*x-8,1,2*x^2+x-10,-2*x^3+14*x,-x^3+x^2+5*x-12,-x^3-x^2+9*x+2,2*x^3-2*x^2-12*x+8,3*x^3-21*x+2,-x^3+5*x,-x^3+x^2+11*x-12,-4*x^3+x^2+28*x-6,x^3-x^2-12*x+12,3*x^3+3*x^2-23*x-8,2*x^2-2*x-14,2*x^3+2*x^2-18*x-6]]];

f[297,2]=[
[x+1, [1,1], [-1,0,2,-5,-1,-2,-7,0,1,-3,-8,-3,11,-9,1,12,-5,6,-4,0,4,5,6,6,11]],
[x-2, [-1,1], [2,0,2,1,-1,-5,2,3,4,6,-8,-9,-4,0,10,-6,-14,9,5,12,7,11,12,6,-7]],
[x-1, [-1,-1], [1,0,-2,-5,1,-2,7,0,-1,3,-8,-3,-11,-9,-1,-12,5,6,-4,0,4,5,-6,-6,11]],
[x+2, [-1,-1], [-2,0,-2,1,1,-5,-2,3,-4,-6,-8,-9,4,0,-10,6,14,9,5,-12,7,11,-12,-6,-7]],
[x^2+2*x-2, [1,1], [x,0,-x-2,x-1,-1,-x-3,-3*x-4,3*x+3,-8,x+4,2*x+6,2*x-1,2*x+4,-2*x-2,3*x-2,x-2,3*x-2,-x-7,-4*x-5,-8*x-8,-3*x-5,x-3,0,5*x+14,6*x+11]],
[x^2-2*x-2, [1,-1], [x,0,-x+2,-x-1,1,x-3,-3*x+4,-3*x+3,8,x-4,-2*x+6,-2*x-1,2*x-4,2*x-2,3*x+2,x+2,3*x+2,x-7,4*x-5,-8*x+8,3*x-5,-x-3,0,5*x-14,-6*x+11]],
[x^3+x^2-5*x-3, [1,-1], [x,0,x^2-3,-x+2,1,-x^2+5,-x^2-x+3,-x^2+2*x+5,x^2-2*x-6,-2*x^2-x+6,-x^2+5,3*x^2+4*x-10,-2*x^2-3*x+6,x^2+3*x-1,-2*x^2-2*x+9,-2*x^2+2*x+12,x^2+4*x-6,-3*x^2-2*x+5,x^2-4*x-1,-2*x^2+2*x+12,-2*x^2-2*x+8,5*x^2+x-13,3*x^2-15,2*x^2+4*x-12,3*x^2+6*x-10]],
[x^3-x^2-5*x+3, [-1,1], [x,0,-x^2+3,x+2,-1,-x^2+5,x^2-x-3,-x^2-2*x+5,-x^2-2*x+6,2*x^2-x-6,-x^2+5,3*x^2-4*x-10,2*x^2-3*x-6,x^2-3*x-1,2*x^2-2*x-9,2*x^2+2*x-12,-x^2+4*x+6,-3*x^2+2*x+5,x^2+4*x-1,2*x^2+2*x-12,-2*x^2+2*x+8,5*x^2-x-13,-3*x^2+15,-2*x^2+4*x+12,3*x^2-6*x-10]]];

f[298,2]=[
[x, [1,1], [-1,0,-4,4,2,-5,-7,-7,3,-8,2,-4,0,4,-6,4,10,2,-5,13,-7,1,-4,-2,-10]],
[x+2, [-1,-1], [1,-2,-2,-2,0,-5,-7,1,-1,8,4,0,-6,8,-6,-10,4,6,3,-15,9,1,0,2,-8]],
[x^2-2*x-2, [1,-1], [-1,x,-x+2,-x+2,x+2,x-3,5,-2*x+3,-x+3,-2*x+4,-x-4,0,5*x-8,2*x,-4*x+10,x-2,-3*x-2,-6,-2*x-7,-5*x-1,-3,7*x-3,12,6*x-10,3*x-14]],
[x^3+5*x^2+4*x-5, [1,1], [-1,x,-x^2-3*x+1,2*x^2+4*x-6,-3*x^2-8*x+2,0,x^2+4*x-2,2*x^2+6*x-2,x^2+3*x-7,4*x^2+9*x-8,2*x+2,-3*x^2-5*x+11,4*x^2+8*x-10,-x^2-4*x-6,-2*x^2-4*x+4,-4*x^2-11*x+4,x^2+5*x-5,-3*x^2-4*x+12,2*x^2+6*x,-2*x^2-5*x+8,2*x^2+9*x+8,4*x^2+8*x-4,-4*x^2-13*x-4,6*x+8,-2*x^2-6*x]],
[x^5-x^4-10*x^3+11*x^2+12*x-2, [-1,1], [1,x,2/5*x^4-1/5*x^3-18/5*x^2+13/5*x+18/5,-3/5*x^4-1/5*x^3+22/5*x^2-7/5*x-2/5,-1/5*x^4+3/5*x^3+9/5*x^2-29/5*x-4/5,3/5*x^4+6/5*x^3-17/5*x^2-33/5*x-3/5,-2/5*x^4+1/5*x^3+18/5*x^2-18/5*x-3/5,-x^3-x^2+6*x+1,-4/5*x^4-8/5*x^3+31/5*x^2+39/5*x-21/5,1/5*x^4+7/5*x^3-4/5*x^2-36/5*x+4/5,-1/5*x^4+3/5*x^3+14/5*x^2-19/5*x-24/5,7/5*x^4-6/5*x^3-68/5*x^2+68/5*x+48/5,-x^4-x^3+6*x^2+3*x+4,6/5*x^4+2/5*x^3-39/5*x^2+14/5*x-26/5,-8/5*x^4-6/5*x^3+72/5*x^2+8/5*x-62/5,2/5*x^4+4/5*x^3-18/5*x^2-7/5*x+18/5,2/5*x^4-1/5*x^3-18/5*x^2+23/5*x-2/5,x^2-4,-x^3-x^2+6*x-1,3*x^3+3*x^2-21*x-9,-7/5*x^4+6/5*x^3+63/5*x^2-68/5*x-33/5,3/5*x^4-14/5*x^3-37/5*x^2+127/5*x+37/5,3*x^4+x^3-24*x^2+6*x+12,-2*x^3-2*x^2+10*x+10,-1/5*x^4+3/5*x^3+4/5*x^2-39/5*x+46/5]]];

f[299,2]=[
[x^2-x-1, [1,1], [x,-x,-x-1,-1,x-2,-1,3*x-2,2*x-3,-1,-3*x+2,-3*x+2,-2*x-2,2*x+5,-3*x-2,3*x+3,-4*x-1,5,-4*x-3,4*x-1,-6*x+3,x+5,-x-1,-9*x+9,-6*x+2,-6*x-9]],
[x^2-5, [-1,1], [x,0,x+1,-x+1,-x-3,1,2,-x+5,-1,-2*x+4,-2*x+6,x+1,10,-2*x+6,-4,4*x+2,-2*x+2,-10,x-5,-2*x-10,-2*x-4,4*x+4,5*x-1,-3*x+1,3*x+11]],
[x^2-x-4, [-1,1], [x,-x+1,-x+1,2*x,-x+3,1,-6,-x+3,-1,2,-4*x,-2*x+6,-6,2*x-2,-8,-2*x+8,-8,2*x+4,3*x-5,4,6*x,2*x-10,3*x-5,6*x+2,-3*x-5]],
[x^2+x-5, [-1,1], [x,x,-x+1,1,x+2,1,x+2,-2*x-5,-1,-x-6,x+6,-2*x+6,-2*x-5,3*x+6,-x+1,7,4*x+7,5,5,-2*x+5,x+11,x-1,-5*x-1,-2*x+6,2*x+1]],
[x^2+x-1, [-1,-1], [x,x,-x-1,-2*x-3,-x,1,3*x,4*x+3,1,3*x-2,x-6,2*x-6,-6*x-9,x+4,-9*x-7,-2*x+7,-1,-2*x-11,6*x+1,6*x+5,-3*x-9,-11*x-7,3*x+5,6*x+10,1]],
[x^3+x^2-9*x-5, [-1,1], [0,x,-1/2*x^2+7/2,x+1,-1/2*x^2-x+9/2,1,-x^2+7,1/2*x^2+x-5/2,-1,-x^2-2*x+9,-4,x^2-x-4,x^2-2*x-5,x^2-2*x-9,-x^2+2*x+11,x^2-13,x^2-13,-4*x,1/2*x^2+2*x+5/2,-2*x-10,-x^2-2*x+11,x^2+2*x-1,3/2*x^2+4*x-17/2,-3*x^2-x+16,3/2*x^2-2*x-13/2]],
[x^10-x^9-19*x^8+18*x^7+127*x^6-109*x^5-357*x^4+252*x^3+400*x^2-192*x-128, [1,-1], [x,-3/16*x^9-3/16*x^8+47/16*x^7+11/4*x^6-233/16*x^5-195/16*x^4+397/16*x^3+141/8*x^2-23/2*x-7,7/32*x^9+9/32*x^8-117/32*x^7-65/16*x^6+649/32*x^5+565/32*x^4-1379/32*x^3-199/8*x^2+61/2*x+11,-3/16*x^9+1/16*x^8+51/16*x^7-x^6-289/16*x^5+73/16*x^4+617/16*x^3-29/8*x^2-25*x-4,7/32*x^9+13/32*x^8-105/32*x^7-95/16*x^6+481/32*x^5+849/32*x^4-711/32*x^3-39*x^2+21/2*x+15,-1,5/16*x^9+3/16*x^8-87/16*x^7-23/8*x^6+507/16*x^5+231/16*x^4-1121/16*x^3-119/4*x^2+47*x+22,-13/32*x^9-15/32*x^8+227/32*x^7+117/16*x^6-1355/32*x^5-1179/32*x^4+3245/32*x^3+68*x^2-165/2*x-35,1,-1/16*x^9-7/16*x^8+11/16*x^7+51/8*x^6-15/16*x^5-443/16*x^4-99/16*x^3+143/4*x^2+9*x-8,-5/8*x^9-7/8*x^8+83/8*x^7+53/4*x^6-459/8*x^5-499/8*x^4+989/8*x^3+100*x^2-93*x-44,-1/8*x^8-3/8*x^7+11/8*x^6+23/4*x^5-15/8*x^4-203/8*x^3-107/8*x^2+27*x+22,-1/16*x^9-3/16*x^8+23/16*x^7+29/8*x^6-183/16*x^5-367/16*x^4+569/16*x^3+103/2*x^2-31*x-30,-1/16*x^9+5/16*x^8+15/16*x^7-39/8*x^6-71/16*x^5+377/16*x^4+113/16*x^3-35*x^2-3*x+6,-1/16*x^9-3/16*x^8+7/16*x^7+21/8*x^6+41/16*x^5-143/16*x^4-327/16*x^3-3/2*x^2+24*x+12,3/16*x^9+5/16*x^8-49/16*x^7-41/8*x^6+269/16*x^5+433/16*x^4-583/16*x^3-201/4*x^2+27*x+24,13/16*x^9+11/16*x^8-223/16*x^7-87/8*x^6+1283/16*x^5+895/16*x^4-2857/16*x^3-439/4*x^2+129*x+68,-1/4*x^9-1/4*x^8+17/4*x^7+4*x^6-99/4*x^5-81/4*x^4+235/4*x^3+69/2*x^2-48*x-8,-19/32*x^9-21/32*x^8+305/32*x^7+153/16*x^6-1581/32*x^5-1377/32*x^4+2999/32*x^3+537/8*x^2-121/2*x-31,1/8*x^9+1/8*x^8-13/8*x^7-3/2*x^6+35/8*x^5+33/8*x^4+57/8*x^3+5/4*x^2-13*x-4,-3/16*x^9-1/16*x^8+61/16*x^7+11/8*x^6-421/16*x^5-181/16*x^4+1107/16*x^3+38*x^2-53*x-36,7/16*x^9+5/16*x^8-113/16*x^7-35/8*x^6+577/16*x^5+297/16*x^4-975/16*x^3-57/2*x^2+22*x+18,5/32*x^9+11/32*x^8-79/32*x^7-83/16*x^6+395/32*x^5+783/32*x^4-729/32*x^3-325/8*x^2+35/2*x+19,3/8*x^9+3/4*x^8-23/4*x^7-85/8*x^6+223/8*x^5+43*x^4-97/2*x^3-345/8*x^2+28*x-2,1/32*x^9+7/32*x^8+5/32*x^7-43/16*x^6-193/32*x^5+235/32*x^4+835/32*x^3+33/8*x^2-41/2*x-13]]];

f[300,2]=[
[x-1, [-1,1,1], [0,-1,0,1,6,-5,6,5,6,-6,-1,-2,0,1,-6,12,-6,-13,-11,0,-2,8,6,0,7]],
[x+4, [-1,1,-1], [0,-1,0,-4,-4,0,-4,0,-4,-6,4,8,-10,-4,4,12,4,2,4,0,8,-12,-4,-10,-8]],
[x+1, [-1,-1,-1], [0,1,0,-1,6,5,-6,5,-6,-6,-1,2,0,-1,6,-12,-6,-13,11,0,2,8,-6,0,-7]],
[x-4, [-1,-1,-1], [0,1,0,4,-4,0,4,0,4,-6,4,-8,-10,4,-4,-12,4,2,-4,0,-8,-12,4,-10,8]]];

f[301,2]=[
[x^4+4*x^3+2*x^2-5*x-3, [-1,-1], [x,-x^3-2*x^2+2*x+1,-x^2-2*x,1,-x^3-3*x^2+x,3*x^3+8*x^2-2*x-7,x^3+3*x^2-3*x-6,x^2+4*x-1,x^3+5*x^2+x-9,-4*x^3-12*x^2+2*x+9,5*x^3+13*x^2-6*x-13,-x^3-6*x^2-4*x+5,-x^3-2*x^2+6*x+6,1,-3*x^3-8*x^2+x+9,3*x^2+5*x-9,-x^3-3*x^2-3*x-3,-2*x^3-9*x^2-x+11,-2*x^3-7*x^2-3*x+5,-x^3+3*x^2+12*x-6,-9*x^3-25*x^2+4*x+26,-3*x^2-5*x-4,7*x^3+19*x^2-7*x-24,-3*x^3-8*x^2+7*x+12,-6*x^3-17*x^2+4*x+23]],
[x^5-6*x^3+x^2+5*x-2, [1,1], [x,x^4+x^3-6*x^2-5*x+4,-2*x^4-2*x^3+11*x^2+8*x-8,-1,3*x^4+x^3-17*x^2-4*x+7,-2*x^4-x^3+12*x^2+2*x-9,5*x^4+3*x^3-27*x^2-10*x+13,3*x^4+2*x^3-15*x^2-7*x+4,-4*x^4-3*x^3+21*x^2+13*x-11,-3*x^4+16*x^2-x-8,4*x^4+3*x^3-25*x^2-12*x+19,7*x^4+3*x^3-38*x^2-9*x+22,-11*x^4-7*x^3+60*x^2+27*x-37,-1,3*x^4+5*x^3-16*x^2-18*x+8,-2*x^3-x^2+7*x+5,3*x^4+x^3-17*x^2-6*x+4,-3*x^4+17*x^2-10,-8*x^4-4*x^3+45*x^2+11*x-25,2*x^4-x^3-11*x^2+6*x+2,-8*x^4-5*x^3+47*x^2+22*x-30,8*x^4+6*x^3-47*x^2-27*x+38,-7*x^4-3*x^3+37*x^2+10*x-25,4*x^4+3*x^3-22*x^2-17*x+10,6*x^4-35*x^2+19]],
[x^5-x^4-6*x^3+5*x^2+6*x-1, [1,-1], [x,-x^3+4*x+1,x^4-5*x^2+x+3,-1,x^4-x^3-5*x^2+4*x+5,-x^3-2*x^2+4*x+5,-x^4+x^3+7*x^2-6*x-7,2*x^3+x^2-8*x+1,-2*x^4+x^3+9*x^2-5*x-3,x^4-6*x^2-3*x+6,x^4+x^3-5*x^2-5*x+2,-x^3+2*x^2+4*x-7,-x^4+x^3+8*x^2-3*x-7,1,-x^4-x^3+4*x^2+2*x+2,-3*x^4+13*x^2-8,-2*x^4+x^3+9*x^2-x-1,-3*x^4-2*x^3+13*x^2+8*x-4,x^4+2*x^3-x^2-8*x-10,3*x^3-x^2-12*x+6,-4*x^4+x^3+21*x^2-6*x-12,x^2+3*x-4,-x^4-x^3+3*x^2+6*x+7,-2*x^4+x^3+8*x^2-7*x+8,2*x^4-4*x^3-13*x^2+22*x+11]],
[x^7-4*x^6-3*x^5+25*x^4-13*x^3-23*x^2+11*x+2, [-1,1], [x,-x^5+x^4+7*x^3-5*x^2-8*x+2,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,1,-x^6+3*x^5+5*x^4-18*x^3+x^2+13*x+1,x^6-x^5-8*x^4+6*x^3+14*x^2-7*x-3,-x^6+x^5+7*x^4-4*x^3-9*x^2-3*x+3,-x^6+2*x^5+7*x^4-13*x^3-10*x^2+15*x+4,2*x^6-2*x^5-16*x^4+11*x^3+29*x^2-9*x-7,-3*x^6+5*x^5+19*x^4-29*x^3-14*x^2+22*x-2,-x^5+2*x^4+5*x^3-10*x^2-x+5,3*x^5-5*x^4-19*x^3+25*x^2+18*x-8,-2*x^6+4*x^5+13*x^4-23*x^3-14*x^2+13*x+7,-1,2*x^5-3*x^4-13*x^3+16*x^2+14*x-8,-x^6+10*x^4+x^3-26*x^2-3*x+13,-2*x^6+5*x^5+11*x^4-29*x^3-2*x^2+19*x+2,-x^6+x^5+7*x^4-3*x^3-7*x^2-7*x-8,-3*x^6+6*x^5+18*x^4-35*x^3-12*x^2+27*x+3,x^6-3*x^5-4*x^4+18*x^3-5*x^2-15*x,2*x^6-4*x^5-14*x^4+23*x^3+19*x^2-14*x-6,x^6+x^5-10*x^4-11*x^3+27*x^2+24*x-12,-2*x^6+4*x^5+13*x^4-25*x^3-15*x^2+26*x+7,x^6-x^5-8*x^4+6*x^3+14*x^2-2*x-8,2*x^5-14*x^3-x^2+16*x-5]]];

f[302,2]=[
[x-2, [1,-1], [-1,2,2,4,-4,0,-6,0,0,6,0,-2,6,0,8,-12,-4,8,2,-12,10,-8,-14,-6,2]],
[x+1, [-1,-1], [1,-1,-4,-2,2,-6,3,0,-6,0,-3,-2,12,-6,-7,9,-10,-13,-7,12,4,10,-11,0,-7]],
[x+3, [-1,-1], [1,-3,0,-2,-6,-2,-5,-8,6,8,9,2,0,-6,-3,-9,2,5,3,4,-8,10,-1,8,-15]],
[x^2+2*x-1, [1,1], [-1,x,0,-2*x-4,-2*x,2*x-2,-5,2*x+2,4*x+6,-4*x-4,4*x+1,-2*x-8,6*x+2,-4*x-10,-2*x+5,3*x+10,2,-3*x-6,-5*x-2,2*x+10,-4*x-4,4*x-2,7*x+6,-6*x-14,-7]],
[x^4-10*x^2-6*x+9, [1,-1], [-1,x,2/3*x^3-x^2-14/3*x+1,-1/3*x^3+7/3*x+2,-x^2+2*x+5,1/3*x^3-7/3*x+2,3,-2/3*x^3+x^2+14/3*x+1,-1/3*x^3+1/3*x+2,2/3*x^3-20/3*x-4,2/3*x^3-3*x^2-8/3*x+12,2/3*x^3-2*x^2-14/3*x+10,-4/3*x^3+2*x^2+22/3*x-6,2/3*x^3-2*x^2-8/3*x+8,-2/3*x^3+2*x^2+8/3*x-9,-2/3*x^3+2*x^2+11/3*x-4,-4/3*x^3+x^2+28/3*x-7,2*x^2-3*x-12,-1/3*x^3+2*x^2+10/3*x-10,x^3-2*x^2-7*x+2,1/3*x^3-13/3*x-2,8/3*x^3-2*x^2-56/3*x-2,1/3*x^3-16/3*x-6,-3*x^3+4*x^2+21*x-4,2/3*x^3-20/3*x+1]],
[x^4-2*x^3-4*x^2+8*x-1, [-1,1], [1,x,-x^2+3,x^3-5*x+2,-2*x^3+x^2+8*x-3,-x^3+2*x^2+3*x-4,-1,2*x^3-x^2-10*x+5,x^3-2*x^2-3*x+4,-2*x,-2*x^3+x^2+8*x-2,2*x^2+4*x-10,2*x-4,-2*x^2-2*x+8,-6*x^3+4*x^2+24*x-13,4*x^3-2*x^2-15*x+4,6*x^3-x^2-26*x+5,-2*x^3+2*x^2+13*x-8,x^3-2*x^2-2*x+6,x^3-2*x^2-x+6,-3*x^3+9*x+2,4,-3*x^3+6*x^2+10*x-12,-x^3-4*x^2+5*x+8,-6*x^2+2*x+15]]];

f[303,2]=[
[x, [-1,-1], [0,1,-3,0,-2,-3,-7,-5,-5,6,7,10,6,4,-7,-4,-10,-2,10,-9,-8,7,2,-8,-10]],
[x+2, [-1,-1], [-2,1,-1,-2,-6,1,-5,7,-3,-6,-1,-10,-2,-12,11,4,4,10,-2,1,2,11,8,14,-10]],
[x^2-2, [1,1], [x,-1,-x-1,-x-2,2,2*x-3,-x-3,-3,3*x+1,2*x+2,2*x+1,-4,-2*x-6,-2*x-2,-x-3,0,3*x+6,-8*x-2,-4*x-6,-5*x+9,5*x-6,-2*x+3,5*x+6,9*x-4,-10*x-4]],
[x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-6, [-1,1], [x,1,x^4-x^3-5*x^2+3*x+5,-x^5+x^4+5*x^3-5*x^2-3*x+4,-2*x^4+x^3+11*x^2-4*x-8,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-x^4+x^3+3*x^2-3*x+3,-x^5+2*x^4+7*x^3-11*x^2-10*x+7,-2*x^5+3*x^4+11*x^3-13*x^2-13*x+7,2*x^5-11*x^3-3*x^2+10*x+8,-2*x^4-x^3+11*x^2+4*x-9,2*x^4+x^3-7*x^2-6*x-2,-3*x^5+4*x^4+17*x^3-17*x^2-18*x+8,x^5-2*x^4-3*x^3+9*x^2-4*x-8,2*x^5-5*x^4-11*x^3+25*x^2+13*x-17,x^5-2*x^4-5*x^3+9*x^2+4*x-2,-x^4+2*x^3+4*x^2-5*x-2,2*x^5-2*x^4-12*x^3+12*x^2+12*x-14,-4*x^4+22*x^2+4*x-22,-x^4-x^3+5*x^2+7*x-5,-x^5-3*x^4+7*x^3+19*x^2-13*x-16,x^5+2*x^4-7*x^3-17*x^2+10*x+21,-3*x^4+2*x^3+20*x^2-7*x-22,x^5+3*x^4-6*x^3-18*x^2+9*x+20,-x^5+4*x^4+5*x^3-19*x^2-4*x+14]],
[x^7-12*x^5+40*x^3+x^2-24*x-4, [1,-1], [x,-1,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,-x^6-2*x^5+8*x^4+12*x^3-14*x^2-5*x+4,-x^3-x^2+6*x+2,-x^6-3*x^5+5*x^4+20*x^3+4*x^2-18*x-3,x^6+3*x^5-6*x^4-20*x^3+2*x^2+17*x+5,-x^5+7*x^3-x^2-8*x+3,x^6+3*x^5-6*x^4-18*x^3+2*x^2+7*x+3,x^3-x^2-6*x+2,-x^6-x^5+7*x^4+8*x^3-8*x^2-14*x+3,-2*x^5-4*x^4+13*x^3+23*x^2-12*x-6,-x^6-2*x^5+5*x^4+12*x^3+6*x^2-4*x-10,x^6+4*x^5-7*x^4-28*x^3+8*x^2+30*x,-x^6-x^5+12*x^4+6*x^3-38*x^2-3*x+13,-x^6-4*x^5+5*x^4+28*x^3+6*x^2-32*x-12,2*x^5+3*x^4-12*x^3-18*x^2+5*x+6,-2*x^6-2*x^5+18*x^4+12*x^3-40*x^2-2*x+14,2*x^6+4*x^5-12*x^4-24*x^3+2*x^2+10*x+10,x^6+x^5-6*x^4-6*x^3+4*x^2+3*x-9,x^6+4*x^5-2*x^4-28*x^3-24*x^2+33*x+20,-2*x^6-5*x^5+12*x^4+33*x^3-3*x^2-26*x-5,2*x^6+2*x^5-19*x^4-12*x^3+46*x^2+5*x-14,-x^6+2*x^5+12*x^4-17*x^3-39*x^2+29*x+20,x^6+2*x^5-9*x^4-12*x^3+20*x^2+6*x+2]]];

f[304,2]=[
[x+3, [1,1], [0,-1,0,-3,-2,1,-5,-1,1,-3,-4,2,-8,8,8,9,-1,14,-13,-10,9,10,-10,-12,14]],
[x+1, [1,-1], [0,2,-1,3,3,-4,5,1,0,2,-8,-10,6,7,9,-8,-14,-5,0,6,-15,4,-4,0,16]],
[x-1, [-1,1], [0,-1,0,1,6,5,3,-1,-3,9,4,2,0,-8,0,-3,-9,-10,-5,6,-7,10,6,-12,-10]],
[x-3, [-1,1], [0,2,3,1,-3,-4,-3,-1,0,6,4,2,-6,1,3,12,6,-1,4,-6,-7,-8,-12,12,8]],
[x-1, [-1,-1], [0,1,-4,-3,-2,-1,3,1,1,-5,8,-2,-8,-4,-8,-1,-15,2,-3,-2,9,10,6,0,-2]],
[x+2, [-1,-1], [0,-2,-1,3,-5,-4,-3,1,-8,-2,-4,10,10,-1,1,-4,-6,-13,12,-2,9,-8,12,12,-8]],
[x^3+x^2-10*x-8, [1,-1], [0,x,-1/2*x^2+1/2*x+4,-1/2*x^2-1/2*x+2,1/2*x^2-1/2*x-2,x+2,-1/2*x^2-1/2*x+4,1,-x^2-2*x+8,x^2-10,0,-2,-2*x+2,1/2*x^2-5/2*x-10,3/2*x^2+1/2*x-10,2*x^2-x-14,x+8,-1/2*x^2-3/2*x+4,x^2-12,-x^2+3*x+12,-1/2*x^2-5/2*x+4,2*x-8,2*x^2-12,-x^2+3*x+14,x^2-x-10]]];

f[305,2]=[
[x^3-3*x+1, [1,1], [x,-x,-1,-2*x^2-x+2,-x^2+x,3*x^2+4*x-7,3*x^2-x-6,-x-5,x^2+2*x+1,-3*x^2-5*x+7,x-5,-2*x^2+x+5,3*x-4,-4*x^2-5*x+9,-7*x^2-4*x+13,2*x^2+x-1,-2*x^2-3*x-4,-1,5*x^2-x-7,8*x^2+4*x-15,x^2-4*x+2,5*x^2+8*x-15,2*x^2-3*x+2,-x^2-5*x+4,-5*x^2-x+2]],
[x^4+3*x^3-x^2-6*x-1, [-1,-1], [x,-x^3-2*x^2+2*x+1,1,x^3+2*x^2-2*x-5,x^2-x-4,-x^2-2*x+1,-2*x^3-x^2+7*x-2,-2*x^2-x+3,2*x^3+x^2-8*x-3,3*x^3+5*x^2-4*x-2,2*x^2+5*x-7,-2*x^2-x+1,-3*x^3-6*x^2+6*x+9,-2*x^3+11*x-1,-3*x^2-6*x+1,6*x^3+10*x^2-15*x-11,-3*x^3-6*x^2+10*x+11,1,x^3+5*x^2+6*x-12,-x^3-6*x^2-x+12,-x^3-5*x^2-5*x+5,-2*x^3+x^2+8*x-11,x^3+4*x^2-6*x-15,-4*x^3-7*x^2+9*x+8,3*x^2+3*x-8]],
[x^7+2*x^6-11*x^5-19*x^4+35*x^3+48*x^2-25*x-27, [1,-1], [x,-1/2*x^5+4*x^3-1/2*x^2-11/2*x-1/2,-1,x^4-7*x^2+2*x+8,1/2*x^6-5*x^4+1/2*x^3+25/2*x^2-3/2*x-6,-x^2+5,x^4+x^3-6*x^2-3*x+3,-x^4-x^3+5*x^2+3*x+2,-x^6+10*x^4-x^3-26*x^2+x+15,x^6-11*x^4+x^3+33*x^2-3*x-21,1/2*x^6+x^5-5*x^4-15/2*x^3+29/2*x^2+19/2*x-4,-x^5-x^4+7*x^3+6*x^2-8*x-7,-x^6+11*x^4-x^3-34*x^2+x+24,-x^6+9*x^4-18*x^2-6*x+8,x^6+1/2*x^5-11*x^4-5*x^3+63/2*x^2+25/2*x-33/2,-x^5-x^4+7*x^3+6*x^2-8*x-9,-1/2*x^6+5*x^4-3/2*x^3-23/2*x^2+17/2*x+3,1,x^6+x^5-11*x^4-7*x^3+34*x^2+10*x-22,-1/2*x^6+x^5+6*x^4-17/2*x^3-35/2*x^2+25/2*x+12,-x^6+10*x^4-24*x^2+11,1/2*x^6-6*x^4+3/2*x^3+39/2*x^2-9/2*x-10,x^6+3/2*x^5-10*x^4-9*x^3+61/2*x^2+7/2*x-45/2,-x^6+9*x^4-4*x^3-19*x^2+16*x+9,-x^6+x^5+13*x^4-6*x^3-42*x^2+x+26]],
[x^7-2*x^6-9*x^5+17*x^4+19*x^3-36*x^2+5*x+1, [-1,1], [x,-1/2*x^6+x^5+4*x^4-15/2*x^3-15/2*x^2+27/2*x,1,x^4-2*x^3-5*x^2+8*x+2,x^6-3/2*x^5-10*x^4+13*x^3+49/2*x^2-55/2*x-1/2,x^6-x^5-10*x^4+9*x^3+25*x^2-22*x-2,-x^5+x^4+7*x^3-5*x^2-10*x+4,x^4-x^3-5*x^2+3*x+2,-x^5+10*x^3-23*x+4,-x^5+3*x^4+2*x^3-13*x^2+11*x-2,-x^6+3/2*x^5+8*x^4-9*x^3-31/2*x^2+23/2*x+7/2,-x^4+x^3+5*x^2-5*x,-x^4+7*x^2+2*x-8,x^6-2*x^5-9*x^4+16*x^3+22*x^2-32*x-4,-1/2*x^6+5*x^4+1/2*x^3-21/2*x^2-3/2*x,x^5-x^4-5*x^3+2*x^2+2*x+3,x^6-3/2*x^5-6*x^4+6*x^3+11/2*x^2+3/2*x-7/2,-1,2*x^6-2*x^5-21*x^4+20*x^3+52*x^2-52*x+7,-3/2*x^5+x^4+10*x^3-9/2*x^2-21/2*x+5/2,-x^5+4*x^4+3*x^3-20*x^2+8*x+6,x^6-5/2*x^5-7*x^4+18*x^3+21/2*x^2-59/2*x+5/2,1/2*x^6-6*x^4+3/2*x^3+33/2*x^2-9/2*x-1,-x^6+2*x^5+7*x^4-8*x^3-15*x^2-6*x+11,x^4+x^3-8*x^2-3*x+9]]];

f[306,2]=[
[x-2, [1,-1,1], [-1,0,2,0,4,-2,-1,4,0,10,8,-2,-10,12,0,-6,-12,-10,-12,0,10,-8,-4,6,-14]],
[x, [1,-1,-1], [-1,0,0,-4,-6,2,1,-4,0,0,-4,-4,-6,8,0,6,0,-4,8,0,2,8,0,6,14]],
[x, [-1,-1,-1], [1,0,0,2,0,2,1,-4,6,0,-10,8,-6,-4,-12,-6,12,8,-4,-6,2,-10,-12,18,14]],
[x-4, [-1,-1,-1], [1,0,4,-2,0,-6,1,4,-6,4,-6,-4,10,-4,-4,2,-12,-4,-12,6,2,10,12,2,6]],
[x^2-6, [1,1,-1], [-1,0,x,x+2,-2*x,-2*x+2,1,2*x+2,x+6,-x,-3*x+2,-x-4,6,-4,2*x,-2*x-6,-2*x+6,x-4,2*x+2,-3*x+6,-10,-3*x+2,2*x-6,4*x-6,-2*x-10]],
[x^2-6, [-1,1,1], [1,0,x,-x+2,-2*x,2*x+2,-1,-2*x+2,x-6,-x,3*x+2,x-4,-6,-4,2*x,-2*x+6,-2*x-6,-x-4,-2*x+2,-3*x-6,-10,3*x+2,2*x+6,4*x+6,2*x-10]]];

f[307,2]=[
[x, [-1], [0,0,4,0,3,6,-1,-1,-2,0,4,3,5,-10,-6,-10,4,-8,-8,-15,2,-13,5,9,7]],
[x-1, [-1], [1,2,0,3,5,0,-5,-1,6,-6,-4,-9,-3,10,-4,5,6,-10,2,13,8,8,-16,6,-2]],
[x, [-1], [2,0,2,3,-4,0,3,1,2,6,-4,-6,2,-4,-10,-3,10,4,-4,-1,8,11,9,-3,11]],
[x-2, [-1], [2,2,0,-3,1,6,2,-4,-6,0,2,3,9,4,4,1,-12,14,2,8,-10,11,13,9,-5]],
[x^2+x-3, [-1], [x,-x-2,3,-x+2,-x+3,2*x-1,x+6,3*x+2,0,-3*x-3,-3*x-4,2*x+5,-9,x+5,2*x,-x+9,-9,-1,5,x,-7,6*x-1,-x,-3,-5*x+5]],
[x^9-3*x^8-11*x^7+30*x^6+46*x^5-87*x^4-91*x^3+50*x^2+62*x+13, [-1], [x,-x^8+2*x^7+11*x^6-18*x^5-38*x^4+44*x^3+39*x^2-24*x-13,x^7-x^6-11*x^5+5*x^4+36*x^3+3*x^2-24*x-9,x^7-x^6-12*x^5+5*x^4+44*x^3+5*x^2-36*x-13,x^8-2*x^7-10*x^6+15*x^5+31*x^4-26*x^3-23*x^2+6*x+3,x^8-x^7-12*x^6+6*x^5+45*x^4-2*x^3-45*x^2-8*x+6,-x^8+3*x^7+9*x^6-27*x^5-26*x^4+71*x^3+27*x^2-47*x-14,-x^8+13*x^6+6*x^5-52*x^4-39*x^3+51*x^2+32*x-1,-x^8-2*x^7+15*x^6+29*x^5-61*x^4-120*x^3+38*x^2+94*x+24,-x^6+2*x^5+8*x^4-12*x^3-19*x^2+13*x+13,-2*x^8+2*x^7+23*x^6-10*x^5-80*x^4-9*x^3+59*x^2+29*x+4,-x^7+2*x^6+9*x^5-13*x^4-26*x^3+17*x^2+20*x+3,3*x^8-6*x^7-31*x^6+49*x^5+98*x^4-103*x^3-75*x^2+44*x+18,x^8-3*x^7-11*x^6+32*x^5+42*x^4-101*x^3-70*x^2+78*x+42,-x^8+5*x^7+7*x^6-50*x^5-18*x^4+153*x^3+48*x^2-113*x-45,3*x^8-10*x^7-27*x^6+95*x^5+78*x^4-264*x^3-91*x^2+173*x+68,-2*x^8+3*x^7+21*x^6-22*x^5-62*x^4+33*x^3+24*x^2-3*x+4,-3*x^8+5*x^7+32*x^6-36*x^5-110*x^4+59*x^3+106*x^2-22*x-21,-2*x^7+x^6+25*x^5-94*x^3-36*x^2+77*x+31,-2*x^8+2*x^7+22*x^6-7*x^5-74*x^4-25*x^3+48*x^2+38*x+11,4*x^8-8*x^7-43*x^6+71*x^5+144*x^4-175*x^3-140*x^2+111*x+54,4*x^8-9*x^7-38*x^6+73*x^5+109*x^4-156*x^3-74*x^2+66*x+13,2*x^8-6*x^7-20*x^6+60*x^5+62*x^4-172*x^3-67*x^2+111*x+44,-x^6+x^5+14*x^4-8*x^3-51*x^2+9*x+22,2*x^8-x^7-26*x^6+4*x^5+100*x^4+15*x^3-92*x^2-21*x+7]],
[x^10+7*x^9+10*x^8-28*x^7-73*x^6+16*x^5+128*x^4+26*x^3-69*x^2-18*x-1, [1], [x,x^9+6*x^8+5*x^7-29*x^6-48*x^5+37*x^4+91*x^3-7*x^2-52*x-6,-x^9-6*x^8-4*x^7+34*x^6+50*x^5-57*x^4-111*x^3+22*x^2+69*x+7,-x^9-8*x^8-16*x^7+22*x^6+95*x^5+21*x^4-143*x^3-56*x^2+71*x+9,2*x^8+10*x^7+3*x^6-46*x^5-42*x^4+58*x^3+50*x^2-23*x-6,x^9+7*x^8+8*x^7-35*x^6-67*x^5+49*x^4+129*x^3-12*x^2-75*x-12,-x^9-7*x^8-10*x^7+24*x^6+58*x^5-10*x^4-68*x^3-6*x^2+20*x-2,2*x^8+12*x^7+10*x^6-51*x^5-71*x^4+57*x^3+76*x^2-23*x-6,2*x^9+12*x^8+10*x^7-56*x^6-88*x^5+72*x^4+150*x^3-25*x^2-75*x-7,3*x^9+19*x^8+23*x^7-67*x^6-146*x^5+25*x^4+173*x^3+35*x^2-41*x-8,-2*x^9-11*x^8-6*x^7+50*x^6+55*x^5-63*x^4-61*x^3+28*x^2+2*x+1,-2*x^9-14*x^8-21*x^7+48*x^6+131*x^5-11*x^4-180*x^3-35*x^2+70*x+3,x^9+6*x^8+5*x^7-31*x^6-53*x^5+47*x^4+112*x^3-21*x^2-68*x-3,-3*x^9-20*x^8-26*x^7+75*x^6+170*x^5-47*x^4-234*x^3-18*x^2+86*x+9,-x^9-8*x^8-14*x^7+37*x^6+118*x^5-29*x^4-266*x^3-40*x^2+189*x+24,-2*x^9-14*x^8-20*x^7+54*x^6+136*x^5-35*x^4-214*x^3-18*x^2+98*x+3,x^9+8*x^8+20*x^7-2*x^6-85*x^5-100*x^4+50*x^3+121*x^2+18*x-10,4*x^9+23*x^8+17*x^7-102*x^6-144*x^5+118*x^4+203*x^3-38*x^2-70*x-3,4*x^8+24*x^7+25*x^6-83*x^5-152*x^4+30*x^3+130*x^2+31*x+13,-x^9-8*x^8-15*x^7+27*x^6+96*x^5-154*x^3-33*x^2+73*x+5,2*x^9+10*x^8-2*x^7-71*x^6-55*x^5+154*x^4+171*x^3-86*x^2-129*x-14,-4*x^9-27*x^8-33*x^7+117*x^6+248*x^5-116*x^4-418*x^3-5*x^2+207*x+28,x^8-25*x^6-43*x^5+73*x^4+174*x^3-20*x^2-150*x-27,-x^9-11*x^8-29*x^7+29*x^6+173*x^5+39*x^4-293*x^3-99*x^2+163*x+21,2*x^9+13*x^8+13*x^7-69*x^6-133*x^5+99*x^4+299*x^3-13*x^2-198*x-28]]];

f[308,2]=[
[x+1, [-1,1,-1], [0,-1,-1,-1,1,-4,-6,-2,1,2,-1,-9,6,8,-8,10,1,-2,11,11,-14,-14,4,13,-9]],
[x^2-6, [-1,1,1], [0,x,2,-1,-1,-x+2,-x+2,-2*x,-2*x+4,2*x-2,x+4,4,-3*x-2,2*x-2,-x-4,4*x,3*x,3*x-2,-6*x,-2*x-8,x+10,-2*x-6,-2*x-12,6,-2*x+10]],
[x^3+x^2-6*x-2, [-1,-1,-1], [0,x,-x^2+4,1,1,x^2+x,-x^2-3*x+4,2*x,x^2+2*x-6,-2*x^2-2*x+10,-3*x-4,x^2-2,x^2+3*x-4,-2*x-2,x^2-x-6,2*x^2-8,-x-8,3*x^2+x-8,-x^2-2*x+2,3*x^2+2*x-14,x^2+3*x-8,-2*x^2+2*x+14,-2*x^2-6*x+8,x^2-4*x-12,x^2-2*x]]];

f[309,2]=[
[x+1, [-1,-1], [-1,1,-1,-2,-2,-5,0,-8,1,-2,5,2,8,-11,-2,10,-11,-5,11,16,12,6,1,-6,-7]],
[x^3-x^2-3*x+1, [1,-1], [x,-1,x,-x^2+2*x+1,-x^2+5,-2*x^2+2*x+3,-2*x+2,2*x^2-2*x,x+2,-x^2-2*x+3,-2*x+3,x^2-4*x-3,-3*x^2+2*x+7,x^2-2*x-2,x^2-4*x+3,-x^2+2*x-1,2*x^2+x,3*x^2+2*x-14,-4*x^2+4*x+7,-4*x^2+6*x+10,-x^2+4*x-3,3*x^2-4*x-5,x^2+x+3,5*x^2-2*x-3,2*x^2-8*x-1]],
[x^5+2*x^4-4*x^3-6*x^2+4*x+1, [1,1], [x,-1,x^4+x^3-5*x^2-3*x+3,-2*x^4-3*x^3+7*x^2+6*x-4,2*x^3+2*x^2-6*x-4,2*x^4+3*x^3-5*x^2-6*x-1,-3*x^3-x^2+10*x-4,-x^4-2*x^3+4*x^2+7*x-6,3*x^3+x^2-10*x+1,-2*x^4-3*x^3+7*x^2+8*x-6,-x^4-3*x^3+3*x^2+9*x-5,-2*x^3-2*x^2+10*x+4,-x^4-4*x^3+9*x-2,-x^4-3*x^3-3*x^2+3*x+11,2*x^4+4*x^3-6*x^2-10*x+4,2*x^4+6*x^3-4*x^2-14*x,3*x^4+4*x^3-14*x^2-13*x+7,x^4-2*x^3-8*x^2+7*x+3,3*x^4+7*x^3-7*x^2-17*x+3,-2*x^3+2*x^2+6*x-10,-4*x^4-4*x^3+16*x^2+8*x-4,x^4-2*x^2+9*x-4,3*x^4+4*x^3-10*x^2-13*x-1,2*x^4-4*x^3-10*x^2+20*x+6,3*x^4+10*x^3-4*x^2-23*x+1]],
[x^8+x^7-13*x^6-11*x^5+52*x^4+35*x^3-59*x^2-27*x+1, [-1,1], [x,1,-1/2*x^7+11/2*x^5-18*x^3-3/2*x^2+17*x+7/2,x^6-8*x^4+x^3+13*x^2-3*x,-x^6-x^5+8*x^4+6*x^3-14*x^2-5*x+3,1/2*x^7-11/2*x^5-x^4+18*x^3+15/2*x^2-18*x-11/2,-x^5+7*x^3-x^2-8*x+1,x^5+x^4-6*x^3-6*x^2+3*x+7,1/2*x^7-9/2*x^5-x^4+10*x^3+15/2*x^2-6*x-13/2,x^6+2*x^5-6*x^4-13*x^3+3*x^2+13*x+2,-1/2*x^7+13/2*x^5-26*x^3+1/2*x^2+29*x+1/2,x^6-3*x^5-10*x^4+24*x^3+24*x^2-37*x-9,-x^6+9*x^4-18*x^2-2*x+2,-1/2*x^7-x^6+7/2*x^5+6*x^4-4*x^3-7/2*x^2-2*x-1/2,-x^6-3*x^5+6*x^4+24*x^3-2*x^2-41*x-7,x^7+x^6-10*x^5-8*x^4+28*x^3+17*x^2-19*x-12,-1/2*x^7+13/2*x^5+2*x^4-25*x^3-21/2*x^2+25*x+5/2,3/2*x^7-x^6-31/2*x^5+8*x^4+43*x^3-21/2*x^2-24*x-3/2,1/2*x^7-9/2*x^5+2*x^4+10*x^3-25/2*x^2-x+23/2,2*x^5-14*x^3+2*x^2+18*x-4,x^7-x^6-10*x^5+8*x^4+28*x^3-9*x^2-21*x-6,-x^7-x^6+7*x^5+7*x^4-8*x^3-11*x^2+3,1/2*x^7+x^6-11/2*x^5-8*x^4+17*x^3+29/2*x^2-8*x-15/2,x^7-x^6-12*x^5+8*x^4+42*x^3-13*x^2-39*x,1/2*x^7-3/2*x^5+2*x^4-13*x^3-19/2*x^2+35*x+13/2]]];

f[310,2]=[
[x-2, [-1,1,1], [1,2,-1,0,2,0,2,-4,-4,-4,-1,-8,6,2,0,8,8,0,4,0,6,-4,6,-6,-2]],
[x+2, [-1,1,-1], [1,-2,-1,-4,0,-4,0,-4,-6,6,1,8,-6,-10,0,0,-12,14,8,0,-4,8,6,-18,-10]],
[x^2+2*x-2, [1,1,1], [-1,x,-1,-2*x-2,-x-2,x-2,-4,2*x+4,2*x-2,x,-1,-x-6,2*x-4,-x+4,-2*x-2,x-6,2*x+4,7*x+4,6*x+4,-8*x-8,-6*x,2*x+16,-x-4,4*x-2,4]],
[x^2-6, [1,-1,1], [-1,x,1,-2,x+2,x+2,-2*x,-2*x,2,-x+8,-1,-x+2,0,-x-8,6,-3*x-2,2*x+4,x-4,-2*x-8,4*x,-4,-2*x,-5*x+4,-4*x+6,2*x+4]],
[x^3-2*x^2-4*x+4, [-1,-1,-1], [1,x,1,-x^2+4,x^2-3*x-2,-x-2,-x^2+4,2*x^2-2*x-4,-x^2+2*x+2,-3*x^2+5*x+8,1,2*x^2-x-10,3*x^2-4*x-10,2*x^2+x-12,-x^2+4*x+8,2*x^2-x-14,-2*x+8,-x^2+3*x-4,-4*x^2+6*x+8,-2*x^2+4*x+8,-3*x^2+2*x+4,-6*x+4,2*x^2-x-4,2*x^2-2,-x^2-2*x+2]]];

f[311,2]=[
[x^4+x^3-3*x^2-x+1, [1], [x,-x^3-x^2+2*x,x^3+x^2-3*x-1,x^3-3*x,-1,x^2+x-3,-3*x^3-3*x^2+7*x,-x^3-x^2+2*x-1,3*x^2+3*x-4,-x^3-2*x^2+3*x+1,x^3+2*x^2+x-3,-4*x^3-8*x^2+7*x+6,2*x^3+x^2-4*x,4*x^3+7*x^2-4*x-7,-3*x^2-5*x+7,x^3+2*x^2-5*x-2,-x^3+2*x^2+4*x-4,-x^3+6*x-4,x^2-4*x-1,x^3-4*x^2-8*x+6,x^3+6*x^2+3*x-11,-8*x^3-11*x^2+13*x+6,5*x^3+7*x^2-10*x-2,2*x^2-2*x-3,5*x^3+2*x^2-15*x-2]],
[x^22-2*x^21-35*x^20+70*x^19+517*x^18-1033*x^17-4195*x^16+8357*x^15+20417*x^14-40403*x^13-61287*x^12+119701*x^11+113017*x^10-215615*x^9-124399*x^8+228609*x^7+76453*x^6-133295*x^5-23503*x^4+36742*x^3+3587*x^2-3200*x-473, [-1], [x,-1333218028123436678/106341562018576649119*x^21+1367946423136236257/106341562018576649119*x^20+49328489263264063408/106341562018576649119*x^19-48698618113739814119/106341562018576649119*x^18-780071490285978038489/106341562018576649119*x^17+731764058773877640305/106341562018576649119*x^16+6883435129930837071209/106341562018576649119*x^15-6029718454604453812991/106341562018576649119*x^14-37117408682963362048611/106341562018576649119*x^13+29643589741202443321628/106341562018576649119*x^12+125904278451589035925849/106341562018576649119*x^11-88764078616540344648331/106341562018576649119*x^10-266400248133720180154691/106341562018576649119*x^9+159042733994278329421197/106341562018576649119*x^8+336261615438596631255820/106341562018576649119*x^7-162008001244132052237259/106341562018576649119*x^6-230084343080867524283273/106341562018576649119*x^5+85032171085335940948597/106341562018576649119*x^4+71086649415902837709445/106341562018576649119*x^3-17051195074052769029465/106341562018576649119*x^2-6284781941061791629214/106341562018576649119*x-2035191172956196509/2473059581827363933,-21242974024529590/106341562018576649119*x^21-1434491652110563978/106341562018576649119*x^20+3209217338769634321/106341562018576649119*x^19+48282217898366329351/106341562018576649119*x^18-94578303848943192367/106341562018576649119*x^17-676590780104692901915/106341562018576649119*x^16+1270815302353166006692/106341562018576649119*x^15+5102603103564094427213/106341562018576649119*x^14-9439579417621543494677/106341562018576649119*x^13-22357866355125222974699/106341562018576649119*x^12+41280678241435124160901/106341562018576649119*x^11+57441564627509462184517/106341562018576649119*x^10-106882614769975285857639/106341562018576649119*x^9-83882843771650414225579/106341562018576649119*x^8+158593036380613931304765/106341562018576649119*x^7+66319079553842412941717/106341562018576649119*x^6-126427357236440356717803/106341562018576649119*x^5-28369596568106140688094/106341562018576649119*x^4+47782658911006380501745/106341562018576649119*x^3+8238984211089590694971/106341562018576649119*x^2-6439892278957108980653/106341562018576649119*x-30557112079337671866/2473059581827363933,504418815307781939/106341562018576649119*x^21-1021065885099576655/106341562018576649119*x^20-16604493185137817773/106341562018576649119*x^19+33056103831567470983/106341562018576649119*x^18+226015020692329680027/106341562018576649119*x^17-435479859114799908685/106341562018576649119*x^16-1641199345467818455453/106341562018576649119*x^15+2956466065705411278227/106341562018576649119*x^14+6861291586789371631471/106341562018576649119*x^13-10597470554231302540041/106341562018576649119*x^12-16835996047441621774817/106341562018576649119*x^11+16674122550262725807072/106341562018576649119*x^10+24918511100968457522896/106341562018576649119*x^9+4438859628397342489851/106341562018576649119*x^8-26019738542206463779319/106341562018576649119*x^7-47775179818655449476697/106341562018576649119*x^6+24030985031406062666739/106341562018576649119*x^5+52435121331955185077307/106341562018576649119*x^4-16943596953875463472297/106341562018576649119*x^3-19178717695756638586794/106341562018576649119*x^2+5034806783502259963324/106341562018576649119*x+39595990210148060592/2473059581827363933,-949531404212230610/106341562018576649119*x^21+1404606076267666588/106341562018576649119*x^20+31860596932911204463/106341562018576649119*x^19-46971051976902102427/106341562018576649119*x^18-443194299396015920727/106341562018576649119*x^17+654211796697056201475/106341562018576649119*x^16+3289263238009343513027/106341562018576649119*x^15-4909640949988760976063/106341562018576649119*x^14-13911354804136965503755/106341562018576649119*x^13+21492498277511827879899/106341562018576649119*x^12+32809246067622506014675/106341562018576649119*x^11-55848212667582391995663/106341562018576649119*x^10-37152948138636735453445/106341562018576649119*x^9+85393270687204170694965/106341562018576649119*x^8+5583375858342452495631/106341562018576649119*x^7-76499001320510405514675/106341562018576649119*x^6+25817695878266203276277/106341562018576649119*x^5+39666285577392711382787/106341562018576649119*x^4-19730812320902394420787/106341562018576649119*x^3-10921342107175992074971/106341562018576649119*x^2+3730720089149782086801/106341562018576649119*x+28348484555942980958/2473059581827363933,321226424163746048/106341562018576649119*x^21+3801901583102434231/106341562018576649119*x^20-18552232937067380885/106341562018576649119*x^19-129228358922459727636/106341562018576649119*x^18+415822499184604316188/106341562018576649119*x^17+1838181668057575308290/106341562018576649119*x^16-4909941181790293676126/106341562018576649119*x^15-14192061774488959599914/106341562018576649119*x^14+33996329744624815911691/106341562018576649119*x^13+64611826293534390239510/106341562018576649119*x^12-143009619717835957566812/106341562018576649119*x^11-177164866440755054595842/106341562018576649119*x^10+363135701598845915429974/106341562018576649119*x^9+289742407609106508486970/106341562018576649119*x^8-534122568544790467437490/106341562018576649119*x^7-275603753317877822408499/106341562018576649119*x^6+420748487273236095304854/106341562018576649119*x^5+145078038418898400990846/106341562018576649119*x^4-153245015674186693664582/106341562018576649119*x^3-38930610655526174141722/106341562018576649119*x^2+18299352733124579928085/106341562018576649119*x+96767738356241061887/2473059581827363933,4452381647471694094/106341562018576649119*x^21-9068371874454525600/106341562018576649119*x^20-153992947179709981857/106341562018576649119*x^19+309305459277894660434/106341562018576649119*x^18+2241142934119782305766/106341562018576649119*x^17-4414101082400495089032/106341562018576649119*x^16-17849102933154097864728/106341562018576649119*x^15+34138690020226395806430/106341562018576649119*x^14+84888616078482178708090/106341562018576649119*x^13-154986667317321532177050/106341562018576649119*x^12-247940630886815257914596/106341562018576649119*x^11+419002856056921869273834/106341562018576649119*x^10+444151988255289405124854/106341562018576649119*x^9-657580637032014020631760/106341562018576649119*x^8-476755702015183905849788/106341562018576649119*x^7+565228902091487119925104/106341562018576649119*x^6+285426523932612121998880/106341562018576649119*x^5-239125370165520923828736/106341562018576649119*x^4-80207143469841117045912/106341562018576649119*x^3+39063917958108087392762/106341562018576649119*x^2+6022433751456583734384/106341562018576649119*x-13918998523744547471/2473059581827363933,2060947601905836306/106341562018576649119*x^21-4832671238044683175/106341562018576649119*x^20-68573303399040677761/106341562018576649119*x^19+163608169101819422096/106341562018576649119*x^18+945067357347588828552/106341562018576649119*x^17-2310696191041279916506/106341562018576649119*x^16-6945163366149052550342/106341562018576649119*x^15+17606989366145028973364/106341562018576649119*x^14+29110744005390982374894/106341562018576649119*x^13-78197087165562781870272/106341562018576649119*x^12-68512622918921845946016/106341562018576649119*x^11+204416013113214253913886/106341562018576649119*x^10+80351459485752749582826/106341562018576649119*x^9-304229490665913015656534/106341562018576649119*x^8-24090178091362483895616/106341562018576649119*x^7+240402390067988455671396/106341562018576649119*x^6-34263402855534371727222/106341562018576649119*x^5-89455854323221778141268/106341562018576649119*x^4+26829327840793157634146/106341562018576649119*x^3+12894732713698986951570/106341562018576649119*x^2-4229275899838336784401/106341562018576649119*x-16475863908380734115/2473059581827363933,-183828183402467739/106341562018576649119*x^21+1039361525618415970/106341562018576649119*x^20+6101367191790319672/106341562018576649119*x^19-36335263579768053016/106341562018576649119*x^18-86097238365453050162/106341562018576649119*x^17+535013726770783983898/106341562018576649119*x^16+679936098218707440588/106341562018576649119*x^15-4304659386907177462172/106341562018576649119*x^14-3352483334807843958878/106341562018576649119*x^13+20525485479955595004164/106341562018576649119*x^12+10989624956073174280880/106341562018576649119*x^11-58778429143237160633642/106341562018576649119*x^10-24843801449515718243784/106341562018576649119*x^9+97604340848147573252008/106341562018576649119*x^8+38249882878989736086178/106341562018576649119*x^7-85409928933297878885242/106341562018576649119*x^6-36526711348597203705336/106341562018576649119*x^5+31341260738901659239774/106341562018576649119*x^4+18666517891163488220250/106341562018576649119*x^3-1652994415952016698357/106341562018576649119*x^2-3937341625041663583766/106341562018576649119*x-5194141489789705256/2473059581827363933,-4949554546469626151/106341562018576649119*x^21+5638410761951578121/106341562018576649119*x^20+176207117842749094505/106341562018576649119*x^19-191397314944231603028/106341562018576649119*x^18-2660490697073345263440/106341562018576649119*x^17+2707190973281190920048/106341562018576649119*x^16+22216248394573400487934/106341562018576649119*x^15-20597631528218833688502/106341562018576649119*x^14-112317687824702088138006/106341562018576649119*x^13+90712069956071996243772/106341562018576649119*x^12+354554649317530165235914/106341562018576649119*x^11-231162104592895901963896/106341562018576649119*x^10-697751720167008818836016/106341562018576649119*x^9+319889567020050596788750/106341562018576649119*x^8+831647493859939158411512/106341562018576649119*x^7-199844244260598778871414/106341562018576649119*x^6-560612132770439918559736/106341562018576649119*x^5+15800073124336849081422/106341562018576649119*x^4+188323919933396899399728/106341562018576649119*x^3+26727855000532543053163/106341562018576649119*x^2-23537886238855188251027/106341562018576649119*x-114397190965483473771/2473059581827363933,-132904553112721313/106341562018576649119*x^21-1176708245964174219/106341562018576649119*x^20+9904292068140553639/106341562018576649119*x^19+39065139067194949432/106341562018576649119*x^18-246905618631975767242/106341562018576649119*x^17-538471726425906035698/106341562018576649119*x^16+3080826924353390203226/106341562018576649119*x^15+3987676782018307963186/106341562018576649119*x^14-22005835609083581847834/106341562018576649119*x^13-17217508630054096872000/106341562018576649119*x^12+94182905922897950077050/106341562018576649119*x^11+44530024615877316807794/106341562018576649119*x^10-240788420412776223839324/106341562018576649119*x^9-70388526602452924678018/106341562018576649119*x^8+352048707552451713628708/106341562018576649119*x^7+71335855328798875924316/106341562018576649119*x^6-268841807668535375834654/106341562018576649119*x^5-45754557196087629322204/106341562018576649119*x^4+89914375314152864848222/106341562018576649119*x^3+16149501277969156542849/106341562018576649119*x^2-8829343406548919375683/106341562018576649119*x-46380259482200347787/2473059581827363933,7394664530843307306/106341562018576649119*x^21-7606811372112628985/106341562018576649119*x^20-265748373574771212515/106341562018576649119*x^19+262649542497701585053/106341562018576649119*x^18+4059724885732822776975/106341562018576649119*x^17-3798927284152887127595/106341562018576649119*x^16-34396095662365500835307/106341562018576649119*x^15+29807565684935758419707/106341562018576649119*x^14+176999555379210375255647/106341562018576649119*x^13-137367368061688512257791/106341562018576649119*x^12-570418410750884597129585/106341562018576649119*x^11+376728273526138216865739/106341562018576649119*x^10+1147527903105757245029711/106341562018576649119*x^9-597146212364599738977311/106341562018576649119*x^8-1393620714368475271214341/106341562018576649119*x^7+510797249529005350919693/106341562018576649119*x^6+946073752160513183531115/106341562018576649119*x^5-205880561965320549938131/106341562018576649119*x^4-309538691264250150171849/106341562018576649119*x^3+23820849468389444377459/106341562018576649119*x^2+33753100856119673756800/106341562018576649119*x+68552604153275274946/2473059581827363933,2330198925192321413/106341562018576649119*x^21-3090146595879975727/106341562018576649119*x^20-82530308525790117069/106341562018576649119*x^19+107831472204266184399/106341562018576649119*x^18+1234962920256167687279/106341562018576649119*x^17-1581141102230608848213/106341562018576649119*x^16-10160071052272144450167/106341562018576649119*x^15+12640327980660647116483/106341562018576649119*x^14+50135748115114353511897/106341562018576649119*x^13-59837040316205255203393/106341562018576649119*x^12-152177657649097679243841/106341562018576649119*x^11+170801310729443889903205/106341562018576649119*x^10+281180766342045539290163/106341562018576649119*x^9-287691489337670032976877/106341562018576649119*x^8-303280268575613208481891/106341562018576649119*x^7+269273936002067725022281/106341562018576649119*x^6+174530655583878613015541/106341562018576649119*x^5-123561478045454973427181/106341562018576649119*x^4-44441458604538740115375/106341562018576649119*x^3+21425693416436163745758/106341562018576649119*x^2+3287195290360532440862/106341562018576649119*x-19861941171313052168/2473059581827363933,-1846887930365785853/106341562018576649119*x^21+1520460471718293757/106341562018576649119*x^20+65228337920815452692/106341562018576649119*x^19-53903403124830438332/106341562018576649119*x^18-974995848187826736698/106341562018576649119*x^17+804583313629561954126/106341562018576649119*x^16+8029648120167743713362/106341562018576649119*x^15-6567820853326488395724/106341562018576649119*x^14-39749807100398915734988/106341562018576649119*x^13+31937380360396640454946/106341562018576649119*x^12+121146429673465218266196/106341562018576649119*x^11-94868169680078926942140/106341562018576649119*x^10-223775296201610850482780/106341562018576649119*x^9+171199885701321029964760/106341562018576649119*x^8+236190999739405980566038/106341562018576649119*x^7-183118669100660712214770/106341562018576649119*x^6-123537648119379271536652/106341562018576649119*x^5+109590480708375665563888/106341562018576649119*x^4+21533258937944195916016/106341562018576649119*x^3-30560571877557140837337/106341562018576649119*x^2+611758770632449038147/106341562018576649119*x+48093981727896490140/2473059581827363933,46433189470467441/106341562018576649119*x^21-260910529208913032/106341562018576649119*x^20+1102414192456999097/106341562018576649119*x^19+4848720540267625609/106341562018576649119*x^18-67967816668863141080/106341562018576649119*x^17+8269561906940516219/106341562018576649119*x^16+1095964759322511218505/106341562018576649119*x^15-894759696815022412013/106341562018576649119*x^14-8785323976504499826133/106341562018576649119*x^13+9511233472955728605475/106341562018576649119*x^12+39609030186997763045779/106341562018576649119*x^11-48037600070679816175273/106341562018576649119*x^10-102042145051328087705565/106341562018576649119*x^9+131284907768696687297631/106341562018576649119*x^8+143039524972192757416067/106341562018576649119*x^7-193402437290703085076549/106341562018576649119*x^6-95431283716181665350249/106341562018576649119*x^5+144012450011764084757347/106341562018576649119*x^4+18843115423488915093727/106341562018576649119*x^3-45739654395445164349379/106341562018576649119*x^2+3121181580244386542379/106341562018576649119*x+74470526435618318206/2473059581827363933,-4329495292882069520/106341562018576649119*x^21+3590648999357842600/106341562018576649119*x^20+157834344269401771754/106341562018576649119*x^19-121578407619976126612/106341562018576649119*x^18-2453229843310026810308/106341562018576649119*x^17+1710515726801216197192/106341562018576649119*x^16+21222111958947484846100/106341562018576649119*x^15-12873973887185376166692/106341562018576649119*x^14-111931351259342458686112/106341562018576649119*x^13+55442921615837726993416/106341562018576649119*x^12+370993421497117886286343/106341562018576649119*x^11-134494962220095370602912/106341562018576649119*x^10-768709379680133068426630/106341562018576649119*x^9+163900780714104315301205/106341562018576649119*x^8+958696497623291479603728/106341562018576649119*x^7-60153947228933081329268/106341562018576649119*x^6-662952536783890749549336/106341562018576649119*x^5-42866591282817099793888/106341562018576649119*x^4+219735069544521293825964/106341562018576649119*x^3+34101833190801002709676/106341562018576649119*x^2-24675882841215763025544/106341562018576649119*x-112974575921600657030/2473059581827363933,5621201825032573579/106341562018576649119*x^21-5869770867581617546/106341562018576649119*x^20-202351920148973395193/106341562018576649119*x^19+202124940046268440782/106341562018576649119*x^18+3099951025120276990996/106341562018576649119*x^17-2916766870429402637702/106341562018576649119*x^16-26383161120727253344686/106341562018576649119*x^15+22847192319660510025410/106341562018576649119*x^14+136723741747188899987842/106341562018576649119*x^13-105214964878282080161496/106341562018576649119*x^12-445351075155958324900552/106341562018576649119*x^11+288797256058635698858996/106341562018576649119*x^10+910027379077656309521142/106341562018576649119*x^9-459308662970412530043192/106341562018576649119*x^8-1129124749097739113376530/106341562018576649119*x^7+395384518793226206507186/106341562018576649119*x^6+787018738003471785670762/106341562018576649119*x^5-159512684543623942037332/106341562018576649119*x^4-264077679257747932409868/106341562018576649119*x^3+15835578795075255115283/106341562018576649119*x^2+29230993778949366469350/106341562018576649119*x+82775137608714758055/2473059581827363933,-3583420793017939023/106341562018576649119*x^21+8675354254760796882/106341562018576649119*x^20+119688299254442002703/106341562018576649119*x^19-294123955840994350382/106341562018576649119*x^18-1660248998262814109632/106341562018576649119*x^17+4159718928604024571886/106341562018576649119*x^16+12349384159626636232842/106341562018576649119*x^15-31734818675980894163120/106341562018576649119*x^14-53093368806306371640876/106341562018576649119*x^13+141051895415042979466510/106341562018576649119*x^12+132913509957353983447354/106341562018576649119*x^11-368488364473189425949808/106341562018576649119*x^10-187706333270731286203004/106341562018576649119*x^9+545413760525016522438188/106341562018576649119*x^8+143091001473558586379412/106341562018576649119*x^7-420998049638230728658378/106341562018576649119*x^6-58457047224399135589678/106341562018576649119*x^5+141730916081843913365122/106341562018576649119*x^4+15994914982044283437864/106341562018576649119*x^3-11563599974223539290013/106341562018576649119*x^2-2012326590968649994070/106341562018576649119*x-10567527002741523839/2473059581827363933,-5139989178742198646/106341562018576649119*x^21+9096432451439969938/106341562018576649119*x^20+178457705070845854600/106341562018576649119*x^19-310180784696958907786/106341562018576649119*x^18-2611012691539536760801/106341562018576649119*x^17+4417958393008438338545/106341562018576649119*x^16+20953972198205476085753/106341562018576649119*x^15-34009895747143110966363/106341562018576649119*x^14-100789819551293731589895/106341562018576649119*x^13+153014944617366737382517/106341562018576649119*x^12+299524111019582346001085/106341562018576649119*x^11-407004012587977765984095/106341562018576649119*x^10-551189859953466073292259/106341562018576649119*x^9+620984884257968779456093/106341562018576649119*x^8+617055042025566397030765/106341562018576649119*x^7-509767937695390462370227/106341562018576649119*x^6-396024171620222462096715/106341562018576649119*x^5+202617699320811656098293/106341562018576649119*x^4+127287329737312799119569/106341562018576649119*x^3-32163034780923796223689/106341562018576649119*x^2-13756478961471129781276/106341562018576649119*x+15932647091290718451/2473059581827363933,-1901706762010969543/106341562018576649119*x^21+4951119299593067454/106341562018576649119*x^20+56374537709591765869/106341562018576649119*x^19-163748260250769199528/106341562018576649119*x^18-638285998164339576484/106341562018576649119*x^17+2239333865145155630962/106341562018576649119*x^16+3105011878761310803492/106341562018576649119*x^15-16293237239499247670400/106341562018576649119*x^14-1679666132527592115772/106341562018576649119*x^13+67512737162793830257494/106341562018576649119*x^12-48501000091180529386524/106341562018576649119*x^11-157978727050907009066766/106341562018576649119*x^10+216006380948428053571158/106341562018576649119*x^9+194159596453057846140580/106341562018576649119*x^8-399253374832029919616500/106341562018576649119*x^7-106278903696007819417762/106341562018576649119*x^6+339550454560840591654842/106341562018576649119*x^5+15847595271237072081500/106341562018576649119*x^4-115256075297850952347358/106341562018576649119*x^3-2212576023886727671423/106341562018576649119*x^2+9367489454545716919356/106341562018576649119*x+36475465709339283185/2473059581827363933,-2789916658354649060/106341562018576649119*x^21+1704517612700781238/106341562018576649119*x^20+102262239995605387209/106341562018576649119*x^19-57406009413617968533/106341562018576649119*x^18-1598292922823348440603/106341562018576649119*x^17+801988954017805169318/106341562018576649119*x^16+13905562290019809137749/106341562018576649119*x^15-5977236690084860592107/106341562018576649119*x^14-73795574277336734189179/106341562018576649119*x^13+25372292869987189776749/106341562018576649119*x^12+246415211981593237820521/106341562018576649119*x^11-60115941605201895701091/106341562018576649119*x^10-516116563500689013863647/106341562018576649119*x^9+69707121589242372231853/106341562018576649119*x^8+656178858295618999851513/106341562018576649119*x^7-19071665053752701147843/106341562018576649119*x^6-471185859289182112823403/106341562018576649119*x^5-27369396677342522993039/106341562018576649119*x^4+166159660774939433312568/106341562018576649119*x^3+20072018805045962214097/106341562018576649119*x^2-20260756142588732114615/106341562018576649119*x-73323334338512941078/2473059581827363933,-1726901511470136247/106341562018576649119*x^21+4295273743451919212/106341562018576649119*x^20+57679160459632123303/106341562018576649119*x^19-140180149476046527618/106341562018576649119*x^18-802587987786053498780/106341562018576649119*x^17+1878117117232186395958/106341562018576649119*x^16+6041430759023182130698/106341562018576649119*x^15-13192620978947716099841/106341562018576649119*x^14-26919854486033331430210/106341562018576649119*x^13+50969431627962623499110/106341562018576649119*x^12+74450774975769738174386/106341562018576649119*x^11-100208715162087142743210/106341562018576649119*x^10-136232495444372064585942/106341562018576649119*x^9+59828690756671267076474/106341562018576649119*x^8+182319651120205014153614/106341562018576649119*x^7+94246172500924518580466/106341562018576649119*x^6-177877187983066661916609/106341562018576649119*x^5-154085872495877199164522/106341562018576649119*x^4+103304605577791656307928/106341562018576649119*x^3+65904417252489204177043/106341562018576649119*x^2-22369128980941599052062/106341562018576649119*x-154788936746448302795/2473059581827363933,534565224725554563/106341562018576649119*x^21+408540771200337000/106341562018576649119*x^20-14339266000307448628/106341562018576649119*x^19-16492647855950985018/106341562018576649119*x^18+128509517421139113302/106341562018576649119*x^17+282226651255100281606/106341562018576649119*x^16-150074055035157764802/106341562018576649119*x^15-2655042166488549832546/106341562018576649119*x^14-5123818339527707184078/106341562018576649119*x^13+14856185771657420648190/106341562018576649119*x^12+39224317685562121807331/106341562018576649119*x^11-49903337414297490560750/106341562018576649119*x^10-130443341113187113331564/106341562018576649119*x^9+96893008217644525987295/106341562018576649119*x^8+220554210919635949248934/106341562018576649119*x^7-100663641667863719272202/106341562018576649119*x^6-182573536978149919838338/106341562018576649119*x^5+51779602948767121031314/106341562018576649119*x^4+65005064524126894356962/106341562018576649119*x^3-9678741020968647085591/106341562018576649119*x^2-6247033152391215637522/106341562018576649119*x-17528217003691030028/2473059581827363933,2035238649709749187/106341562018576649119*x^21-4454007344983795609/106341562018576649119*x^20-72515892912051579371/106341562018576649119*x^19+156983849781700369402/106341562018576649119*x^18+1092517918055596859130/106341562018576649119*x^17-2337612390558999574569/106341562018576649119*x^16-9051963794705115145044/106341562018576649119*x^15+19127861820947459149004/106341562018576649119*x^14+44927002885639648894688/106341562018576649119*x^13-93743096900175172768224/106341562018576649119*x^12-136402817864560099496760/106341562018576649119*x^11+281707000074425374284192/106341562018576649119*x^10+247788593349020694259452/106341562018576649119*x^9-512268436551646988287652/106341562018576649119*x^8-249654775260405184509656/106341562018576649119*x^7+538795401014137771247828/106341562018576649119*x^6+113424034383828066256868/106341562018576649119*x^5-299639007774704740304216/106341562018576649119*x^4-7620418457172234087451/106341562018576649119*x^3+72352381471875732512215/106341562018576649119*x^2-3616489619198151607375/106341562018576649119*x-94447707579468172795/2473059581827363933,-5197187447595617615/106341562018576649119*x^21+5939013618558465321/106341562018576649119*x^20+181877619637387851064/106341562018576649119*x^19-199759935883166555137/106341562018576649119*x^18-2683693939142740016415/106341562018576649119*x^17+2794461185712232579141/106341562018576649119*x^16+21720479637311107810857/106341562018576649119*x^15-20976866147431402499441/106341562018576649119*x^14-105198684482171158200617/106341562018576649119*x^13+90865039292985178692927/106341562018576649119*x^12+313099287869482412218263/106341562018576649119*x^11-227029155658101197365127/106341562018576649119*x^10-569613033557758812649477/106341562018576649119*x^9+308072140018246555020371/106341562018576649119*x^8+616197745356728639593275/106341562018576649119*x^7-193108002650671244785289/106341562018576649119*x^6-374886068567764374986255/106341562018576649119*x^5+25019422612978476944661/106341562018576649119*x^4+117013821061364148432057/106341562018576649119*x^3+15049366697910302287080/106341562018576649119*x^2-15275311393231544596762/106341562018576649119*x-38443160508541577779/2473059581827363933]]];

f[312,2]=[
[x, [1,1,1], [0,-1,0,-4,-2,-1,-6,-4,4,10,-8,-2,0,-4,2,-2,10,10,8,2,-10,8,6,-12,-2]],
[x+2, [1,1,-1], [0,-1,-2,4,0,1,2,8,8,-2,4,-10,2,-4,-12,6,0,-2,8,-12,10,-8,0,-14,2]],
[x, [1,-1,1], [0,1,0,0,6,-1,2,0,4,-6,-4,-2,0,4,10,-10,-6,-6,-12,2,6,-16,6,4,14]],
[x-4, [-1,1,1], [0,-1,4,0,-2,-1,2,8,4,-6,-4,6,-12,4,-6,-2,-14,10,-4,2,-2,-8,14,0,-10]],
[x+4, [-1,-1,1], [0,1,-4,-4,-2,-1,-6,4,4,-6,8,-10,-4,-4,-6,6,-6,-6,0,10,-2,0,-10,8,-10]],
[x-2, [-1,-1,-1], [0,1,2,0,0,1,2,-4,0,6,0,-2,6,-12,-4,6,-8,-2,4,-12,-14,0,8,-18,-6]]];

f[313,2]=[
[x^2-x-1, [-1], [x,-x+2,x+1,2*x,-2*x+1,-3*x+5,2*x+1,-2*x,x+2,-8,3*x+5,-2*x-7,4*x+4,-x-10,-4*x+1,-10*x+7,-4*x+3,3,10*x,3*x-5,3*x-10,-1,4*x+1,7*x-3,2*x-4]],
[x^11+8*x^10+16*x^9-26*x^8-121*x^7-62*x^6+190*x^5+196*x^4-76*x^3-122*x^2+2*x+17, [1], [x,-29/13*x^10-184/13*x^9-159/13*x^8+1023/13*x^7+1831/13*x^6-1251/13*x^5-3525/13*x^4+133/13*x^3+2052/13*x^2+138/13*x-290/13,3/13*x^10+15/13*x^9-10/13*x^8-126/13*x^7-37/13*x^6+341/13*x^5+132/13*x^4-302/13*x^3-76/13*x^2+31/13*x+4/13,73/13*x^10+482/13*x^9+502/13*x^8-2559/13*x^7-5238/13*x^6+2582/13*x^5+9959/13*x^4+577/13*x^3-5875/13*x^2-602/13*x+834/13,-8/13*x^10-66/13*x^9-125/13*x^8+271/13*x^7+1013/13*x^6+135/13*x^5-1860/13*x^4-850/13*x^3+1117/13*x^2+368/13*x-197/13,73/13*x^10+482/13*x^9+502/13*x^8-2546/13*x^7-5199/13*x^6+2517/13*x^5+9751/13*x^4+655/13*x^3-5641/13*x^2-641/13*x+795/13,-3*x^10-20*x^9-21*x^8+107*x^7+217*x^6-114*x^5-408*x^4-6*x^3+232*x^2+11*x-31,-36/13*x^10-232/13*x^9-218/13*x^8+1252/13*x^7+2368/13*x^6-1349/13*x^5-4405/13*x^4-211/13*x^3+2459/13*x^2+395/13*x-373/13,16/13*x^10+106/13*x^9+107/13*x^8-581/13*x^7-1142/13*x^6+692/13*x^5+2225/13*x^4-120/13*x^3-1389/13*x^2+31/13*x+186/13,18/13*x^10+116/13*x^9+109/13*x^8-639/13*x^7-1236/13*x^6+720/13*x^5+2495/13*x^4+99/13*x^3-1587/13*x^2-152/13*x+245/13,-47/13*x^10-300/13*x^9-268/13*x^8+1662/13*x^7+3054/13*x^6-2010/13*x^5-5981/13*x^4+190/13*x^3+3678/13*x^2+251/13*x-561/13,16/13*x^10+132/13*x^9+237/13*x^8-607/13*x^7-2026/13*x^6+107/13*x^5+4019/13*x^4+1167/13*x^3-2663/13*x^2-567/13*x+433/13,90/13*x^10+580/13*x^9+519/13*x^8-3260/13*x^7-5907/13*x^6+4198/13*x^5+11604/13*x^4-935/13*x^3-7142/13*x^2-175/13*x+1095/13,-63/13*x^10-406/13*x^9-349/13*x^8+2347/13*x^7+4118/13*x^6-3300/13*x^5-8323/13*x^4+1116/13*x^3+5197/13*x^2-40/13*x-734/13,-224/13*x^10-1471/13*x^9-1459/13*x^8+8017/13*x^7+15702/13*x^6-9116/13*x^5-30435/13*x^4+29/13*x^3+18458/13*x^2+1217/13*x-2786/13,116/13*x^10+762/13*x^9+766/13*x^8-4092/13*x^7-8091/13*x^6+4380/13*x^5+15257/13*x^4+430/13*x^3-8793/13*x^2-734/13*x+1225/13,-186/13*x^10-1229/13*x^9-1265/13*x^8+6590/13*x^7+13305/13*x^6-6985/13*x^5-25513/13*x^4-880/13*x^3+15372/13*x^2+1419/13*x-2341/13,12*x^10+78*x^9+75*x^8-428*x^7-828*x^6+493*x^5+1635*x^4+7*x^3-1022*x^2-85*x+162,-19*x^10-125*x^9-126*x^8+675*x^7+1341*x^6-736*x^5-2577*x^4-56*x^3+1541*x^2+122*x-227,124/13*x^10+828/13*x^9+891/13*x^8-4402/13*x^7-9234/13*x^6+4440/13*x^5+17923/13*x^4+1137/13*x^3-11145/13*x^2-1284/13*x+1760/13,-11/13*x^10-81/13*x^9-128/13*x^8+319/13*x^7+985/13*x^6+184/13*x^5-1316/13*x^4-886/13*x^3+257/13*x^2+324/13*x+85/13,48/13*x^10+344/13*x^9+451/13*x^8-1769/13*x^7-4310/13*x^6+1504/13*x^5+8508/13*x^4+927/13*x^3-5519/13*x^2-661/13*x+818/13,-110/13*x^10-719/13*x^9-695/13*x^8+3970/13*x^7+7640/13*x^6-4777/13*x^5-15123/13*x^4+552/13*x^3+9564/13*x^2+367/13*x-1516/13,-215/13*x^10-1400/13*x^9-1372/13*x^8+7587/13*x^7+14889/13*x^6-8340/13*x^5-28934/13*x^4-669/13*x^3+17723/13*x^2+1544/13*x-2774/13,186/13*x^10+1229/13*x^9+1278/13*x^8-6525/13*x^7-13305/13*x^6+6595/13*x^5+25201/13*x^4+1465/13*x^3-14943/13*x^2-1588/13*x+2289/13]],
[x^12-6*x^11-2*x^10+69*x^9-68*x^8-268*x^7+399*x^6+368*x^5-701*x^4-57*x^3+262*x^2-22*x-19, [-1], [x,x^10-3*x^9-12*x^8+35*x^7+54*x^6-139*x^5-112*x^4+200*x^3+100*x^2-47*x-17,x^11-4*x^10-9*x^9+47*x^8+18*x^7-190*x^6+34*x^5+290*x^4-113*x^3-105*x^2+33*x+8,-3/2*x^11+11/2*x^10+31/2*x^9-67*x^8-47*x^7+283*x^6+27/2*x^5-919/2*x^4+99*x^3+387/2*x^2-69/2*x-33/2,x^11-5*x^10-7*x^9+63*x^8-11*x^7-279*x^6+172*x^5+491*x^4-344*x^3-260*x^2+95*x+32,-x^11+2*x^10+15*x^9-22*x^8-92*x^7+77*x^6+276*x^5-72*x^4-355*x^3-52*x^2+80*x+14,x^11-4*x^10-9*x^9+47*x^8+19*x^7-193*x^6+27*x^5+313*x^4-102*x^3-151*x^2+36*x+18,3*x^11-12*x^10-27*x^9+141*x^8+55*x^7-573*x^6+95*x^5+892*x^4-326*x^3-357*x^2+96*x+33,-7/2*x^11+29/2*x^10+63/2*x^9-176*x^8-57*x^7+743*x^6-333/2*x^5-2431/2*x^4+498*x^3+1075/2*x^2-307/2*x-101/2,-x^11+4*x^10+9*x^9-46*x^8-22*x^7+185*x^6-2*x^5-296*x^4+46*x^3+147*x^2-19*x-15,3/2*x^11-15/2*x^10-17/2*x^9+88*x^8-32*x^7-364*x^6+581/2*x^5+1225/2*x^4-527*x^3-689/2*x^2+285/2*x+77/2,4*x^11-14*x^10-44*x^9+171*x^8+159*x^7-720*x^6-183*x^5+1141*x^4-31*x^3-411*x^2+39*x+31,-3*x^11+10*x^10+34*x^9-121*x^8-131*x^7+501*x^6+182*x^5-764*x^4-35*x^3+228*x^2-17*x-14,5/2*x^11-19/2*x^10-49/2*x^9+115*x^8+62*x^7-482*x^6+93/2*x^5+1553/2*x^4-275*x^3-655/2*x^2+191/2*x+61/2,1/2*x^11-9/2*x^10+7/2*x^9+52*x^8-82*x^7-219*x^6+737/2*x^5+819/2*x^4-547*x^3-637/2*x^2+259/2*x+103/2,3*x^11-9*x^10-37*x^9+106*x^8+176*x^7-425*x^6-403*x^5+614*x^4+410*x^3-134*x^2-67*x-4,-13/2*x^11+45/2*x^10+143/2*x^9-275*x^8-253*x^7+1157*x^6+501/2*x^5-3673/2*x^4+165*x^3+1373/2*x^2-229/2*x-103/2,2*x^11-6*x^10-25*x^9+74*x^8+114*x^7-313*x^6-227*x^5+494*x^4+180*x^3-172*x^2-32*x+13,11/2*x^11-39/2*x^10-121/2*x^9+241*x^8+215*x^7-1030*x^6-447/2*x^5+3347/2*x^4-96*x^3-1323/2*x^2+101/2*x+119/2,-2*x^11+7*x^10+20*x^9-78*x^8-67*x^7+297*x^6+85*x^5-425*x^4-36*x^3+146*x^2+8*x-7,-4*x^11+13*x^10+47*x^9-160*x^8-191*x^7+675*x^6+298*x^5-1060*x^4-120*x^3+361*x^2+4*x-33,3*x^11-11*x^10-30*x^9+128*x^8+95*x^7-517*x^6-83*x^5+810*x^4-50*x^3-352*x^2+47*x+44,4*x^11-14*x^10-44*x^9+172*x^8+156*x^7-729*x^6-159*x^5+1172*x^4-81*x^3-458*x^2+48*x+41,-2*x^11+6*x^10+25*x^9-72*x^8-120*x^7+297*x^6+277*x^5-459*x^4-293*x^3+156*x^2+73*x-6,x^10-3*x^9-15*x^8+44*x^7+78*x^6-212*x^5-167*x^4+356*x^3+128*x^2-84*x-20]]];

f[314,2]=[
[x, [1,1], [-1,0,0,-3,-2,-1,3,-4,-1,0,-6,-1,0,1,0,12,-7,0,-2,10,12,-8,0,-3,-2]],
[x^6-3*x^5-9*x^4+26*x^3+20*x^2-43*x-25, [1,-1], [-1,x,-5/13*x^5+8/13*x^4+51/13*x^3-56/13*x^2-103/13*x+24/13,-2/13*x^5-2/13*x^4+23/13*x^3+14/13*x^2-49/13*x-6/13,5/13*x^5+5/13*x^4-64/13*x^3-61/13*x^2+181/13*x+171/13,8/13*x^5-18/13*x^4-66/13*x^3+126/13*x^2+92/13*x-80/13,8/13*x^5-5/13*x^4-92/13*x^3-4/13*x^2+248/13*x+154/13,6/13*x^5-7/13*x^4-56/13*x^3+36/13*x^2+82/13*x+70/13,-6/13*x^5-6/13*x^4+82/13*x^3+81/13*x^2-264/13*x-226/13,7/13*x^5-19/13*x^4-48/13*x^3+133/13*x^2+9/13*x-109/13,2/13*x^5+2/13*x^4-10/13*x^3-40/13*x^2-16/13*x+136/13,-10/13*x^5+16/13*x^4+76/13*x^3-86/13*x^2-76/13*x+22/13,-6/13*x^5-6/13*x^4+82/13*x^3+68/13*x^2-238/13*x-200/13,-10/13*x^5+16/13*x^4+76/13*x^3-86/13*x^2-76/13*x+22/13,10/13*x^5-16/13*x^4-102/13*x^3+86/13*x^2+206/13*x+56/13,-14/13*x^5+12/13*x^4+148/13*x^3-58/13*x^2-317/13*x-146/13,2/13*x^5+2/13*x^4-36/13*x^3-14/13*x^2+166/13*x+6/13,6/13*x^5-20/13*x^4-30/13*x^3+153/13*x^2-100/13*x-190/13,-16/13*x^5+10/13*x^4+184/13*x^3-5/13*x^2-496/13*x-230/13,-2/13*x^5-2/13*x^4+36/13*x^3+40/13*x^2-166/13*x-188/13,18/13*x^5-8/13*x^4-194/13*x^3+4/13*x^2+480/13*x+158/13,-5/13*x^5+8/13*x^4+51/13*x^3-82/13*x^2-77/13*x+128/13,2/13*x^5+2/13*x^4-36/13*x^3-14/13*x^2+140/13*x+32/13,-7/13*x^5+32/13*x^4+9/13*x^3-250/13*x^2+199/13*x+356/13,-22/13*x^5+30/13*x^4+214/13*x^3-132/13*x^2-448/13*x-222/13]],
[x^7+x^6-17*x^5-6*x^4+84*x^3-19*x^2-73*x+4, [-1,1], [1,x,-1/3*x^5+11/3*x^3-4/3*x^2-19/3*x+4/3,1/15*x^6+7/15*x^5-x^4-71/15*x^3+26/5*x^2+28/5*x+1/15,-1/15*x^6-2/15*x^5+4/3*x^4+2/5*x^3-41/5*x^2+86/15*x+74/15,-1/15*x^6+1/5*x^5+x^4-8/5*x^3-38/15*x^2-29/15*x+49/15,1/15*x^6-1/5*x^5-4/3*x^4+34/15*x^3+88/15*x^2-91/15*x-13/5,2/15*x^6+4/15*x^5-x^4-32/15*x^3-4/15*x^2+68/15*x+4/5,1/5*x^6+1/15*x^5-3*x^4-8/15*x^3+169/15*x^2+7/15*x-97/15,-1/3*x^6-2/3*x^5+14/3*x^4+6*x^3-17*x^2-16/3*x+8/3,2/15*x^6+4/15*x^5-8/3*x^4-14/5*x^3+72/5*x^2+38/15*x-118/15,-7/15*x^6-3/5*x^5+19/3*x^4+62/15*x^3-346/15*x^2+37/15*x+51/5,-8/15*x^6-2/5*x^5+22/3*x^4+38/15*x^3-128/5*x^2-22/15*x+172/15,1/15*x^6+7/15*x^5-5/3*x^4-22/5*x^3+178/15*x^2+3/5*x-33/5,-2/3*x^5+22/3*x^3-2/3*x^2-26/3*x-28/3,2/15*x^6+4/15*x^5-2*x^4-32/15*x^3+146/15*x^2-7/15*x-36/5,-1/5*x^6-1/15*x^5+5/3*x^4+6/5*x^3+46/15*x^2-157/15*x-163/15,2/5*x^6+4/5*x^5-14/3*x^4-106/15*x^3+193/15*x^2+58/5*x-4/15,2/3*x^4-4/3*x^3-23/3*x^2+12*x+14/3,2/5*x^6+4/5*x^5-16/3*x^4-116/15*x^3+308/15*x^2+68/5*x-194/15,2/5*x^6+4/5*x^5-14/3*x^4-106/15*x^3+208/15*x^2+58/5*x-64/15,-4/15*x^6-13/15*x^5+4*x^4+119/15*x^3-94/5*x^2-27/5*x+116/15,4/15*x^6-2/15*x^5-10/3*x^4+56/15*x^3+122/15*x^2-88/5*x-16/15,-7/15*x^6-4/15*x^5+5*x^4+17/15*x^3-42/5*x^2-26/5*x-37/15,-2/3*x^5-2/3*x^4+26/3*x^3+4*x^2-68/3*x+2]]];

f[315,2]=[
[x+1, [-1,1,-1], [-1,0,-1,1,0,-6,-2,-8,-8,2,4,-2,6,4,-8,-10,-4,-2,4,12,-2,8,4,6,-18]],
[x, [-1,-1,-1], [0,0,1,1,3,5,-3,2,6,-3,-4,2,12,-10,-9,-12,0,8,-4,0,2,-1,-12,12,-1]],
[x^2+2*x-1, [1,1,1], [x,0,-1,-1,-2*x-4,2*x,-4*x-6,-2*x-2,4*x+2,-8,6*x+6,-6,4*x+6,4*x,4,2*x-6,4,6,-8*x-12,-6*x-8,-10*x-8,4*x+4,8,8*x+2,2*x-4]],
[x^2-2*x-1, [1,-1,1], [x,0,1,-1,-2*x+4,-2*x,-4*x+6,2*x-2,4*x-2,8,-6*x+6,-6,4*x-6,-4*x,-4,2*x+6,-4,6,8*x-12,-6*x+8,10*x-8,-4*x+4,-8,8*x-2,-2*x-4]],
[x^2-x-4, [-1,1,1], [x,0,-1,-1,x-1,-x+3,-x+3,-2*x-2,-2*x+2,-3*x+1,0,6,-2*x,-2*x+6,3*x+1,2*x,4,6*x,4*x,-8,-4*x-2,x-5,-4,2*x-4,5*x-7]],
[x^2-5, [-1,-1,-1], [x,0,1,1,-2*x-2,2*x,2,-2*x+2,-4,2,-2*x+6,-4*x+2,2,4*x,-4*x-4,-2*x+8,4*x,-2,-4,2*x-10,-2*x-8,4*x+4,4*x+8,2,2*x+4]]];

f[316,2]=[
[x+1, [-1,1], [0,-1,1,3,2,-1,4,6,6,8,-4,-8,-10,4,-9,-2,5,-6,-10,-1,6,-1,0,9,-11]],
[x+3, [-1,-1], [0,-3,1,1,-6,-1,-4,-6,2,-8,4,4,-6,4,-3,14,-9,6,-10,5,6,1,4,1,-11]],
[x^2-3*x-1, [-1,1], [0,2,x,0,-x+3,-3*x+5,-2*x,3*x-6,-3*x+6,2*x-6,3*x-1,-2,2*x,-2,6,4*x-6,2*x,-6*x+6,-3*x+2,2*x+6,3*x-12,-1,0,-3*x-3,3*x-8]],
[x^2+5*x+3, [-1,-1], [0,0,x,-2*x-6,-x-5,x+1,2*x+6,3*x+6,x-2,-2*x-6,-x-1,2*x+8,-2*x+2,-6*x-14,-6,2*x,4*x+8,-6,x+10,-4*x-18,3*x+12,1,-4*x-16,-7*x-19,3*x+16]]];

f[317,2]=[
[x^11+3*x^10-10*x^9-32*x^8+31*x^7+109*x^6-42*x^5-147*x^4+35*x^3+68*x^2-19*x-1, [1], [x,113/1046*x^10-154/523*x^9-1081/523*x^8+2021/523*x^7+12971/1046*x^6-9125/523*x^5-14011/523*x^4+33587/1046*x^3+8762/523*x^2-10392/523*x+1175/1046,234/523*x^10+834/523*x^9-1950/523*x^8-8588/523*x^7+3603/523*x^6+27458/523*x^5+2/523*x^4-33780/523*x^3-1733/523*x^2+13352/523*x-964/523,-250/523*x^10-596/523*x^9+2432/523*x^8+5322/523*x^7-7041/523*x^6-12072/523*x^5+7673/523*x^4+5045/523*x^3-2109/523*x^2+3374/523*x-1822/523,7/523*x^10+92/523*x^9+116/523*x^8-990/523*x^7-1830/523*x^6+3271/523*x^5+6285/523*x^4-4001/523*x^3-4922/523*x^2+2031/523*x-1723/523,59/523*x^10+103/523*x^9-666/523*x^8-574/523*x^7+2806/523*x^6-1494/523*x^5-5976/523*x^4+9761/523*x^3+4165/523*x^2-9704/523*x+794/523,-677/523*x^10-1501/523*x^9+7385/523*x^8+14981/523*x^7-25638/523*x^6-44243/523*x^5+33797/523*x^4+43567/523*x^3-13575/523*x^2-8595/523*x-273/523,365/1046*x^10+456/523*x^9-1608/523*x^8-3770/523*x^7+7759/1046*x^6+6867/523*x^5-4435/523*x^4+427/1046*x^3+5415/523*x^2-3645/523*x-7507/1046,-77/523*x^10-1012/523*x^9-753/523*x^8+10890/523*x^7+11239/523*x^6-37550/523*x^5-28341/523*x^4+51333/523*x^3+14917/523*x^2-22864/523*x+2740/523,-573/523*x^10-956/523*x^9+6867/523*x^8+9014/523*x^7-28395/523*x^6-24485/523*x^5+50592/523*x^4+24021/523*x^3-33580/523*x^2-8530/523*x+3715/523,182/523*x^10+823/523*x^9-1168/523*x^8-9004/523*x^7-1033/523*x^6+32223/523*x^5+12786/523*x^4-47542/523*x^3-13958/523*x^2+26133/523*x-1912/523,-947/1046*x^10-769/523*x^9+6125/523*x^8+8241/523*x^7-54497/1046*x^6-27563/523*x^5+49786/523*x^4+65647/1046*x^3-33909/523*x^2-9285/523*x+8805/1046,-673/523*x^10-1822/523*x^9+5957/523*x^8+16582/523*x^7-13011/523*x^6-39983/523*x^5+3244/523*x^4+23947/523*x^3+10659/523*x^2+4221/523*x-5591/523,294/523*x^10+203/523*x^9-4542/523*x^8-2355/523*x^7+24079/523*x^6+8201/523*x^5-50353/523*x^4-6958/523*x^3+34902/523*x^2-3608/523*x-2807/523,1925/1046*x^10+1144/523*x^9-12815/523*x^8-11128/523*x^7+117551/1046*x^6+30578/523*x^5-109377/523*x^4-43815/1046*x^3+70069/523*x^2-4988/523*x-6263/1046,769/1046*x^10+197/523*x^9-5209/523*x^8-62/523*x^7+51421/1046*x^6-10738/523*x^5-57073/523*x^4+62691/1046*x^3+49344/523*x^2-21170/523*x-11165/1046,1162/523*x^10+2720/523*x^9-12647/523*x^8-27314/523*x^7+45061/523*x^6+81700/523*x^5-67019/523*x^4-82067/523*x^3+36484/523*x^2+15501/523*x-983/523,3107/1046*x^10+3532/523*x^9-16171/523*x^8-33596/523*x^7+106503/1046*x^6+91492/523*x^5-71783/523*x^4-168021/1046*x^3+36974/523*x^2+20420/523*x-7163/1046,-8/523*x^10+119/523*x^9+241/523*x^8-1633/523*x^7-1719/523*x^6+8216/523*x^5+4099/523*x^4-18813/523*x^3-3490/523*x^2+15685/523*x-2439/523,653/1046*x^10+1452/523*x^9-1239/523*x^8-13601/523*x^7-20313/1046*x^6+36276/523*x^5+46257/523*x^4-70195/1046*x^3-48394/523*x^2+13704/523*x+15445/1046,-1705/1046*x^10-1865/523*x^9+9109/523*x^8+17761/523*x^7-62695/1046*x^6-48362/523*x^5+44517/523*x^4+88119/1046*x^3-24435/523*x^2-11810/523*x+2469/1046,330/523*x^10-71/523*x^9-5365/523*x^8+1071/523*x^7+29461/523*x^6-5236/523*x^5-62784/523*x^4+10495/523*x^3+44854/523*x^2-9600/523*x-3599/523,672/523*x^10+987/523*x^9-8215/523*x^8-8745/523*x^7+34566/523*x^6+19044/523*x^5-60850/523*x^4-2829/523*x^3+34798/523*x^2-15793/523*x+2475/523,-889/1046*x^10-612/523*x^9+5186/523*x^8+4812/523*x^7-41119/1046*x^6-7661/523*x^5+34731/523*x^4-1275/1046*x^3-22173/523*x^2-572/523*x+7529/1046,701/523*x^10+1144/523*x^9-8631/523*x^8-11128/523*x^7+36025/523*x^6+30055/523*x^5-61261/523*x^4-19031/523*x^3+37120/523*x^2-8126/523*x-1824/523]],
[x^15-x^14-22*x^13+22*x^12+188*x^11-184*x^10-786*x^9+723*x^8+1666*x^7-1315*x^6-1715*x^5+910*x^4+829*x^3-168*x^2-129*x+1, [-1], [x,-2929/9028*x^14+3305/4514*x^13+31073/4514*x^12-35302/2257*x^11-248773/4514*x^10+573563/4514*x^9+919473/4514*x^8-4378801/9028*x^7-3005667/9028*x^6+1935368/2257*x^5+1592783/9028*x^4-5224775/9028*x^3-38286/2257*x^2+248643/2257*x-29861/9028,6887/4514*x^14-10787/4514*x^13-144831/4514*x^12+232879/4514*x^11+1153635/4514*x^10-1909601/4514*x^9-4281777/4514*x^8+3670378/2257*x^7+7216765/4514*x^6-12991581/4514*x^5-2205724/2257*x^4+8622515/4514*x^3+846049/4514*x^2-1576987/4514*x+2893/2257,-175/122*x^14+251/122*x^13+3703/122*x^12-5485/122*x^11-29711/122*x^10+45521/122*x^9+111249/122*x^8-88481/61*x^7-189781/122*x^6+316101/122*x^5+59244/61*x^4-210853/122*x^3-22725/122*x^2+38633/122*x-55/61,93/4514*x^14-1741/4514*x^13-2817/4514*x^12+35583/4514*x^11+30911/4514*x^10-277307/4514*x^9-158111/4514*x^8+512581/2257*x^7+392617/4514*x^6-1800053/4514*x^5-224672/2257*x^4+1279815/4514*x^3+214893/4514*x^2-246421/4514*x-3148/2257,-2172/2257*x^14+2583/2257*x^13+45696/2257*x^12-56593/2257*x^11-365097/2257*x^10+469928/2257*x^9+1366782/2257*x^8-1822073/2257*x^7-2356643/2257*x^6+3225372/2257*x^5+1542585/2257*x^4-2096010/2257*x^3-333769/2257*x^2+368683/2257*x+6380/2257,-1331/2257*x^14+3359/4514*x^13+55369/4514*x^12-73415/4514*x^11-434575/4514*x^10+608867/4514*x^9+1576641/4514*x^8-2363585/4514*x^7-1269561/2257*x^6+4210995/4514*x^5+1333379/4514*x^4-1396928/2257*x^3-103501/4514*x^2+509893/4514*x-20707/4514,-5113/9028*x^14+2227/2257*x^13+27379/2257*x^12-96937/4514*x^11-222537/2257*x^10+400941/2257*x^9+845411/2257*x^8-6220667/9028*x^7-5890799/9028*x^6+5556089/4514*x^5+3910273/9028*x^4-7456363/9028*x^3-501477/4514*x^2+676885/4514*x+58729/9028,16115/4514*x^14-24093/4514*x^13-339749/4514*x^12+524035/4514*x^11+2711963/4514*x^10-4328791/4514*x^9-10072577/4514*x^8+8377156/2257*x^7+16914173/4514*x^6-29824007/4514*x^5-5050561/2257*x^4+19893597/4514*x^3+1706727/4514*x^2-3701483/4514*x+27260/2257,1553/2257*x^14-921/2257*x^13-32698/2257*x^12+22740/2257*x^11+261188/2257*x^10-208659/2257*x^9-974375/2257*x^8+875377/2257*x^7+1658616/2257*x^6-1630991/2257*x^5-1029345/2257*x^4+1063558/2257*x^3+161992/2257*x^2-187810/2257*x+11815/2257,6683/4514*x^14-5559/2257*x^13-70600/2257*x^12+120478/2257*x^11+564211/2257*x^10-992156/2257*x^9-2093468/2257*x^8+7663319/4514*x^7+6987355/4514*x^6-6818910/2257*x^5-4089421/4514*x^4+9143453/4514*x^3+354317/2257*x^2-866859/2257*x+10787/4514,20437/9028*x^14-6599/2257*x^13-216293/4514*x^12+292305/4514*x^11+1735175/4514*x^10-1228459/2257*x^9-6487451/4514*x^8+19324327/9028*x^7+22018405/9028*x^6-8716942/2257*x^5-13481329/9028*x^4+23502269/9028*x^3+606540/2257*x^2-2236959/4514*x+8909/9028,3196/2257*x^14-8437/4514*x^13-135589/4514*x^12+185531/4514*x^11+1091693/4514*x^10-1549371/4514*x^9-4109965/4514*x^8+6059917/4514*x^7+3542179/2257*x^6-10891007/4514*x^5-4546235/4514*x^4+3663061/2257*x^3+926941/4514*x^2-1376345/4514*x-9993/4514,-14065/4514*x^14+10999/2257*x^13+148765/2257*x^12-239150/2257*x^11-1191184/2257*x^10+1974724/2257*x^9+4434241/2257*x^8-15276035/4514*x^7-14896263/4514*x^6+13578423/2257*x^5+8869393/4514*x^4-18051225/4514*x^3-778650/2257*x^2+1662008/2257*x-25581/4514,11435/9028*x^14-7811/4514*x^13-119927/4514*x^12+84497/2257*x^11+954521/4514*x^10-1387373/4514*x^9-3555091/4514*x^8+10662339/9028*x^7+12159461/9028*x^6-4697893/2257*x^5-7809617/9028*x^4+12257485/9028*x^3+400337/2257*x^2-526992/2257*x+19623/9028,-36765/9028*x^14+14602/2257*x^13+389175/4514*x^12-633731/4514*x^11-3122259/4514*x^10+2611956/2257*x^9+11674369/4514*x^8-40362223/9028*x^7-39644685/9028*x^6+17934232/2257*x^5+24423025/9028*x^4-47773865/9028*x^3-1181966/2257*x^2+4409499/4514*x-29497/9028,-5147/2257*x^14+6972/2257*x^13+107488/2257*x^12-150021/2257*x^11-851091/2257*x^10+1225302/2257*x^9+3149557/2257*x^8-4689700/2257*x^7-5335443/2257*x^6+8256574/2257*x^5+3356435/2257*x^4-5430777/2257*x^3-659094/2257*x^2+979694/2257*x-7019/2257,-37839/9028*x^14+27171/4514*x^13+199881/2257*x^12-296991/2257*x^11-1601301/2257*x^10+4932751/4514*x^9+5986059/2257*x^8-38401747/9028*x^7-40767359/9028*x^6+34401565/4514*x^5+25377509/9028*x^4-46291615/9028*x^3-2444959/4514*x^2+2164901/2257*x+8847/9028,3292/2257*x^14-12905/4514*x^13-139803/4514*x^12+276175/4514*x^11+1120999/4514*x^10-2244045/4514*x^9-4157539/4514*x^8+8538811/4514*x^7+3432137/2257*x^6-14922643/4514*x^5-3813489/4514*x^4+4856021/2257*x^3+525745/4514*x^2-1730153/4514*x+64959/4514,-43941/9028*x^14+20520/2257*x^13+233821/2257*x^12-883725/4514*x^11-1883624/2257*x^10+3615626/2257*x^9+7051200/2257*x^8-55498171/9028*x^7-47591579/9028*x^6+49063731/4514*x^5+28485117/9028*x^4-65251763/9028*x^3-2678623/4514*x^2+6013003/4514*x-20863/9028,7233/9028*x^14-2053/2257*x^13-73979/4514*x^12+86345/4514*x^11+574047/4514*x^10-344361/2257*x^9-2090865/4514*x^8+5159795/9028*x^7+7054225/9028*x^6-2234494/2257*x^5-4497889/9028*x^4+5806573/9028*x^3+169359/2257*x^2-465737/4514*x+125621/9028,8489/4514*x^14-12237/4514*x^13-176465/4514*x^12+264975/4514*x^11+1387013/4514*x^10-2182485/4514*x^9-5065657/4514*x^8+4227002/2257*x^7+8336827/4514*x^6-15179531/4514*x^5-2390345/2257*x^4+10410839/4514*x^3+651881/4514*x^2-2024931/4514*x+28098/2257,12983/2257*x^14-19483/2257*x^13-275240/2257*x^12+424996/2257*x^11+2211621/2257*x^10-3520466/2257*x^9-8282851/2257*x^8+13658008/2257*x^7+14080307/2257*x^6-24349750/2257*x^5-8633637/2257*x^4+16234388/2257*x^3+1541740/2257*x^2-2992441/2257*x+45003/2257,11793/9028*x^14-6576/2257*x^13-125713/4514*x^12+279127/4514*x^11+1015157/4514*x^10-1126653/2257*x^9-3817597/4514*x^8+17113883/9028*x^7+13028721/9028*x^6-7545876/2257*x^5-8133797/9028*x^4+20446833/9028*x^3+460110/2257*x^2-1931723/4514*x-121055/9028,-7513/2257*x^14+10590/2257*x^13+157677/2257*x^12-230022/2257*x^11-1254216/2257*x^10+1897920/2257*x^9+4655676/2257*x^8-7344475/2257*x^7-7879449/2257*x^6+13099492/2257*x^5+4898420/2257*x^4-8792509/2257*x^3-960175/2257*x^2+1632518/2257*x+4316/2257]]];

f[318,2]=[
[x+1, [1,1,1], [-1,-1,-1,0,-1,-2,-7,2,-5,-4,-1,-2,-4,-1,6,-1,9,10,-2,0,10,1,6,-1,-13]],
[x-4, [1,1,-1], [-1,-1,4,1,-1,-4,6,-1,9,-3,-8,12,5,-8,-2,1,4,-7,1,-3,6,-4,-8,-4,-3]],
[x, [1,-1,1], [-1,1,0,5,-3,-4,6,5,-3,3,8,-4,-3,-4,6,-1,-12,-1,-13,-15,2,-16,0,0,5]],
[x, [-1,1,1], [1,-1,0,1,5,0,2,-1,3,-1,-4,0,-9,0,6,-1,-4,-7,1,7,-14,-8,8,-12,13]],
[x+3, [-1,1,-1], [1,-1,-3,-4,-5,-2,5,6,-7,-8,1,2,4,-1,-6,1,-3,-2,-10,0,-6,15,-10,-5,19]],
[x^2-x-10, [1,-1,1], [-1,1,x,0,-x+2,6,-x-4,-2*x,-x+2,2*x-2,3*x-2,6,-2*x+2,-x+6,-2*x-4,-1,x-2,-6,2*x-8,0,2,-3*x-6,2*x,-3*x,-3*x]],
[x^2-x-4, [-1,-1,-1], [1,1,x,-x+1,-1,-2*x,-x-2,x+1,2*x-1,-x-3,x,2*x,-3*x-5,3*x,4*x-2,1,-3*x,-x+3,-5*x+7,-3*x-1,4*x-2,-x+8,-2*x-8,7*x-4,6*x-3]]];

f[319,2]=[
[x-2, [1,-1], [2,-3,1,4,-1,6,4,-2,3,1,-7,-11,4,-4,8,2,-3,2,-15,-7,2,6,-6,9,-17]],
[x^3-3*x-1, [-1,-1], [x,-x,-2*x^2+x+2,2*x^2-2*x-5,1,x^2+x-4,-x^2+x-2,x-4,-4*x^2+4*x+8,1,3*x^2-2*x-9,4*x^2-x-3,-x^2+2*x-3,-5*x^2+x+13,-2*x^2+x+3,-x^2-5*x,-2*x^2-3*x+4,4*x^2-8*x-11,x^2+4*x+3,-x^2-3*x+10,-2*x^2+5*x+1,-5*x^2+7*x+15,7*x^2-x-18,x^2+x-14,-6*x^2+x+10]],
[x^4+2*x^3-3*x^2-3*x+2, [1,1], [x,-x^3-2*x^2+2*x+1,x^3+2*x^2-2*x-3,x^3+2*x^2-3*x-2,-1,-2*x^3-5*x^2+x+4,3*x^2+5*x-6,x,-x^3-4*x^2-x+5,-1,-x^2+2*x+1,2*x^3+2*x^2-5*x-1,-x^3-x^2+x-10,5*x^3+11*x^2-6*x-8,-x^3+6*x-4,3*x^2+7*x,3*x^3+6*x^2-8*x-11,-3*x^3-4*x^2+13*x+4,2*x^3+9*x^2-2*x-15,x^3+7*x^2+6*x-15,-x^3-2*x^2-4*x-2,-3*x^3-9*x^2+10,-7*x^2-11*x+12,-5*x^3-13*x^2+10*x+9,-x^3-8*x^2-8*x+15]],
[x^7-3*x^6-4*x^5+15*x^4+x^3-14*x^2+1, [-1,1], [x,-x^4+x^3+5*x^2-3*x-3,x^5-x^4-6*x^3+4*x^2+7*x-1,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,1,x^5-2*x^4-4*x^3+6*x^2+2*x+1,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-1,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,-3*x^6+7*x^5+13*x^4-33*x^3-5*x^2+28*x-2,x^6-3*x^5-4*x^4+15*x^3-x^2-15*x+7,x^6-6*x^5-x^4+36*x^3-10*x^2-46*x+1,3*x^6-10*x^5-8*x^4+47*x^3-13*x^2-33*x+5,x^6-3*x^5-5*x^4+16*x^3+4*x^2-14*x-3,-2*x^6+2*x^5+14*x^4-11*x^3-25*x^2+16*x+9,x^6-3*x^5-x^4+11*x^3-15*x^2+2*x+12,2*x^6-6*x^5-8*x^4+29*x^3+3*x^2-24*x,-2*x^6+9*x^5+4*x^4-46*x^3+12*x^2+44*x+3,-x^5+4*x^4+4*x^3-16*x^2-4*x+7,-x^4+x^3+3*x^2-x+3]],
[x^8-13*x^6-x^5+50*x^4+7*x^3-54*x^2-5*x+1, [1,-1], [x,-1/9*x^7-1/9*x^6+16/9*x^5+10/9*x^4-26/3*x^3-25/9*x^2+113/9*x+14/9,4/9*x^7-2/9*x^6-49/9*x^5+17/9*x^4+56/3*x^3-26/9*x^2-143/9*x+13/9,-2/9*x^7-1/3*x^6+3*x^5+34/9*x^4-12*x^3-98/9*x^2+13*x+29/9,-1,2/3*x^7-2/9*x^6-73/9*x^5+16/9*x^4+86/3*x^3-2*x^2-254/9*x-13/9,1/3*x^6-1/3*x^5-8/3*x^4+3*x^3+3*x^2-17/3*x+11/3,1/9*x^7+2/9*x^6-20/9*x^5-8/3*x^4+37/3*x^3+64/9*x^2-148/9*x-2/3,-4/9*x^7-5/9*x^6+50/9*x^5+6*x^4-61/3*x^3-139/9*x^2+181/9*x+10/3,1,1/9*x^7-4/3*x^5+4/9*x^4+4*x^3-23/9*x^2-2/3*x+14/9,7/9*x^7-31/3*x^5-8/9*x^4+40*x^3+55/9*x^2-116/3*x-19/9,2/9*x^7+1/3*x^6-3*x^5-43/9*x^4+12*x^3+170/9*x^2-14*x-83/9,-1/9*x^7+7/3*x^5+5/9*x^4-14*x^3-13/9*x^2+65/3*x-59/9,-1/3*x^7+5*x^5+2/3*x^4-22*x^3-13/3*x^2+24*x+7/3,10/9*x^7-5/9*x^6-127/9*x^5+38/9*x^4+161/3*x^3-29/9*x^2-533/9*x-53/9,-7/9*x^7+4/9*x^6+86/9*x^5-10/3*x^4-103/3*x^3+38/9*x^2+316/9*x+2/3,5/9*x^7-4/9*x^6-62/9*x^5+31/9*x^4+70/3*x^3-19/9*x^2-151/9*x-88/9,-1/9*x^6-5/9*x^5+23/9*x^4+16/3*x^3-40/3*x^2-100/9*x+109/9,1/3*x^7+1/9*x^6-40/9*x^5-11/9*x^4+50/3*x^3+11/3*x^2-134/9*x-4/9,-7/9*x^7+31/3*x^5+8/9*x^4-42*x^3-37/9*x^2+158/3*x-35/9,2/3*x^7-8*x^5-4/3*x^4+25*x^3+29/3*x^2-14*x-38/3,-2/9*x^6-1/9*x^5+28/9*x^4+2/3*x^3-32/3*x^2-20/9*x+11/9,-8/9*x^7+35/3*x^5+4/9*x^4-44*x^3-32/9*x^2+124/3*x+95/9,-5/9*x^7+1/3*x^6+16/3*x^5-26/9*x^4-10*x^3+61/9*x^2-19/3*x-28/9]]];

f[320,2]=[
[x+4, [1,1], [0,0,-1,-4,-4,2,2,-4,4,2,-8,-6,-6,8,4,-6,4,2,-8,0,-6,0,16,-6,-14]],
[x-2, [1,-1], [0,2,1,2,0,-2,-6,4,6,-6,-4,-2,6,10,-6,6,-12,-2,-2,-12,2,8,-6,-6,2]],
[x+2, [1,-1], [0,2,1,-2,4,6,2,-8,-6,2,4,-2,-10,2,-2,-2,0,-2,6,-12,10,-8,10,-6,10]],
[x-2, [1,-1], [0,-2,1,2,-4,6,2,8,6,2,-4,-2,-10,-2,2,-2,0,-2,-6,12,10,8,-10,-6,10]],
[x-4, [-1,1], [0,0,-1,4,4,2,2,4,-4,2,8,-6,-6,-8,-4,-6,-4,2,8,0,-6,0,-16,-6,-14]],
[x+2, [-1,-1], [0,-2,1,-2,0,-2,-6,-4,-6,-6,4,-2,6,-10,6,6,12,-2,2,12,2,-8,6,-6,2]],
[x^2-8, [-1,1], [0,x,-1,x,-2*x,2,2,0,-x,-6,-2*x,10,2,-3*x,x,-6,4*x,2,-x,-2*x,-6,-4*x,x,10,2]]];

f[321,2]=[
[x^2+x-1, [1,1], [-x-1,-1,1,-2,2*x-2,-1,4*x+3,-2*x-5,-4*x-4,-2*x-2,-6,1,-8*x-4,2*x-2,-2*x+2,-2*x+6,8*x+8,-12*x-5,-2*x+4,-2*x-5,10*x+6,12*x+4,-4*x-8,2*x-4,6*x+2]],
[x^2+x-1, [-1,-1], [-x-1,1,-3,2*x,-2,-1,-4*x-5,-2*x-1,-4,2*x,-2,-8*x-3,-2*x-6,4*x+2,6*x+4,4*x-6,8*x+4,8*x+3,-4*x+4,-6*x-5,-6*x,-8,6*x+10,12*x+8,10]],
[x^6-3*x^5-5*x^4+18*x^3+x^2-19*x+3, [-1,1], [x,1,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+13/2*x,-1/2*x^5+1/2*x^4+3*x^3-5/2*x^2-5/2*x+2,-x^5+3/2*x^4+13/2*x^3-7*x^2-19/2*x+9/2,1/2*x^4+1/2*x^3-4*x^2-5/2*x+7/2,-1/2*x^5-1/2*x^4+5*x^3+5/2*x^2-21/2*x,x^5-x^4-7*x^3+4*x^2+10*x-1,x^5-3/2*x^4-11/2*x^3+6*x^2+9/2*x+3/2,-2*x^5+4*x^4+12*x^3-20*x^2-12*x+12,5/2*x^5-9/2*x^4-15*x^3+47/2*x^2+27/2*x-13,-x^5+1/2*x^4+13/2*x^3-19/2*x-11/2,x^5-2*x^4-5*x^3+9*x^2-3,-1/2*x^5+5/2*x^4+3*x^3-27/2*x^2-7/2*x+5,x^5-7/2*x^4-9/2*x^3+19*x^2+3/2*x-21/2,-x^5+2*x^4+7*x^3-9*x^2-10*x+3,x^5-9*x^3-3*x^2+20*x+9,-3*x^5+3/2*x^4+47/2*x^3-6*x^2-77/2*x-5/2,x^4-x^3-2*x^2+x-7,-x^5+2*x^4+4*x^3-6*x^2+3*x,-2*x^3-2*x^2+12*x+2,-x^5+7*x^3+x^2-6*x-1,x^5-3/2*x^4-19/2*x^3+8*x^2+41/2*x-9/2,2*x^5-4*x^4-14*x^3+22*x^2+24*x-18,x^5-2*x^4-7*x^3+9*x^2+14*x-7]],
[x^7-14*x^5-x^4+55*x^3+8*x^2-46*x-19, [1,-1], [x,-1,-1/4*x^6+1/4*x^5+11/4*x^4-5/2*x^3-31/4*x^2+25/4*x+13/4,1/2*x^6-7*x^4+x^3+26*x^2-7*x-27/2,-3/4*x^6+1/4*x^5+41/4*x^4-4*x^3-151/4*x^2+67/4*x+93/4,-1/2*x^6+1/2*x^5+7*x^4-11/2*x^3-55/2*x^2+15*x+21,x^6-1/2*x^5-27/2*x^4+6*x^3+97/2*x^2-39/2*x-28,-1/2*x^6+1/2*x^5+11/2*x^4-4*x^3-33/2*x^2+11/2*x+27/2,x^6-x^5-27/2*x^4+21/2*x^3+50*x^2-55/2*x-63/2,-2*x,-3/4*x^6+3/4*x^5+41/4*x^4-17/2*x^3-153/4*x^2+87/4*x+107/4,1/4*x^6-3/4*x^5-11/4*x^4+7*x^3+33/4*x^2-53/4*x-19/4,-1/2*x^6+1/2*x^5+13/2*x^4-4*x^3-43/2*x^2+11/2*x+15/2,-1/4*x^6+1/4*x^5+11/4*x^4-3/2*x^3-35/4*x^2-3/4*x+33/4,-7/4*x^6+5/4*x^5+97/4*x^4-15*x^3-363/4*x^2+179/4*x+229/4,-1/2*x^6+1/2*x^5+13/2*x^4-4*x^3-47/2*x^2+11/2*x+27/2,1/2*x^6-1/2*x^5-17/2*x^4+8*x^3+79/2*x^2-59/2*x-59/2,1/4*x^6-3/4*x^5-15/4*x^4+8*x^3+65/4*x^2-81/4*x-55/4,x^4-3*x^3-6*x^2+19*x+5,1/2*x^6-1/2*x^5-13/2*x^4+7*x^3+45/2*x^2-45/2*x-17/2,2*x^4-2*x^3-16*x^2+12*x+14,-x^6+13*x^4-x^3-46*x^2+9*x+34,3/2*x^4+1/2*x^3-13*x^2-5/2*x+27/2,1/2*x^6+1/2*x^5-17/2*x^4-3*x^3+73/2*x^2-7/2*x-41/2,-1/2*x^6+1/2*x^5+9/2*x^4-2*x^3-15/2*x^2-9/2*x+7/2]]];

f[322,2]=[
[x-2, [1,-1,1], [-1,2,0,1,4,0,6,-6,-1,10,4,-2,-10,-4,12,-6,-2,0,0,-8,-6,-8,-14,-14,-2]],
[x, [1,-1,-1], [-1,0,-2,1,-4,4,-8,-2,1,2,-6,-10,6,-8,6,2,0,10,8,-12,6,0,2,12,12]],
[x+2, [-1,1,-1], [1,-2,-2,-1,-2,-4,-6,0,1,-2,4,0,6,6,0,-12,-10,2,-2,8,2,8,-16,6,-2]],
[x-2, [-1,-1,-1], [1,2,-2,1,6,-4,-2,4,1,-10,-8,-8,-2,6,12,12,-6,-6,-2,16,2,0,4,-6,2]],
[x^2+2*x-4, [1,1,1], [-1,x,-x-2,-1,0,-2*x-4,x-4,2*x+2,-1,-2,x+2,6,-10,2*x,-x-10,-6,-x+8,-3*x+2,4,2*x+4,6*x+6,-4*x-4,4*x+6,5*x,-5*x-8]],
[x^2+2*x-2, [-1,-1,-1], [1,x,x+2,1,-2*x-2,-2*x,-x,-2,1,8,3*x-2,-2*x+2,-2,0,-3*x-6,2*x+2,-5*x-8,3*x+6,2*x-6,6*x+4,-2*x-6,4*x-2,-6*x-2,3*x+12,-x-8]],
[x^3-2*x^2-6*x+8, [-1,1,1], [1,x,-x+2,-1,-x^2+4,-x^2+6,x^2-x-2,x^2-2*x-4,-1,x^2+2*x-10,-x^2+x+4,-2*x^2+2*x+6,-2*x^2+4*x+10,2*x^2-12,x^2-x-4,2*x^2-2*x-10,3*x,2*x^2+x-14,x^2-4,-2*x^2+2*x,-4*x^2+2*x+18,x^2-6*x-8,x^2+4,-x^2-x+6,x^2+3*x-2]]];

f[323,2]=[
[x, [1,-1], [0,3,-2,4,-2,6,-1,1,0,-9,-9,2,-6,-1,-3,2,14,-6,-14,16,-2,8,-3,2,-7]],
[x^2+x-4, [1,-1], [x,x+1,2,-2*x,-2,2,-1,1,-2*x,x+5,x-3,-2*x+6,2*x+6,3*x-5,x+1,10,-2*x-6,-4*x-2,-2*x+2,-8,-4*x+2,4*x+8,5*x+9,-2,3*x+3]],
[x^4-6*x^2-x+7, [-1,-1], [x,x^3-2*x^2-4*x+5,-x^3+x^2+3*x-4,-x^3+2*x^2+3*x-8,-2*x^3+4*x^2+7*x-11,-2*x^3+x^2+7*x-4,1,1,3*x^3-8*x^2-9*x+21,2*x^3-x^2-7*x-1,3*x^3-4*x^2-7*x+10,x^3+2*x^2-3*x-12,-x^3+5*x^2-x-13,-x^3-3*x^2+6*x+6,3*x^3-2*x^2-10*x+4,x^3-6*x^2-x+12,-6*x^3+7*x^2+18*x-13,-5*x^3+3*x^2+16*x-8,-3*x^3+6*x^2+8*x-18,-x^3+5*x^2-2*x-15,3*x^3-5*x^2-10*x+7,-3*x^3+6*x^2+14*x-13,4*x^3+3*x^2-15*x-9,x^3-5*x^2+19,5*x^3-7*x^2-21*x+8]],
[x^5+3*x^4-2*x^3-7*x^2+2*x+1, [1,1], [x,-x^3-2*x^2+2*x+1,x^4+3*x^3-x^2-6*x-1,x^3+2*x^2-x-2,-2*x^4-6*x^3+2*x^2+9*x-1,-x^2-x-2,-1,-1,x^4+5*x^3+4*x^2-8*x-4,-3*x^4-10*x^3+5*x^2+24*x-4,x^3-2*x^2-9*x+4,4*x^4+11*x^3-8*x^2-21*x+2,-x^3-3*x^2+5*x+7,-2*x^4-7*x^3+5*x^2+20*x-6,5*x^4+15*x^3-6*x^2-29*x+3,x^3-2*x^2-9*x+4,2*x^4+6*x^3-5*x^2-14*x+7,-2*x^4-5*x^3+7*x^2+12*x-12,3*x^4+7*x^3-10*x^2-21*x+5,-3*x^4-7*x^3+9*x^2+19*x,x^4+7*x^3+3*x^2-19*x-2,4*x^4+11*x^3-6*x^2-16*x+3,5*x^4+12*x^3-11*x^2-20*x+2,-x^4-5*x^3-x^2+9*x-12,-5*x^4-17*x^3-x^2+26*x+3]],
[x^6-2*x^5-9*x^4+15*x^3+23*x^2-23*x-21, [1,-1], [x,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+6*x-1/2,-x^4+x^3+7*x^2-4*x-9,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+7*x+1/2,1/2*x^5-1/2*x^4-5*x^3+5/2*x^2+11*x+3/2,-x^5+x^4+8*x^3-4*x^2-13*x-1,-1,1,-1/2*x^5-1/2*x^4+4*x^3+11/2*x^2-8*x-21/2,x^4-9*x^2+12,1/2*x^5-1/2*x^4-4*x^3+9/2*x^2+5*x-11/2,-x^3+3*x+2,x^5-x^4-7*x^3+6*x^2+7*x-6,x^5-x^4-7*x^3+6*x^2+6*x-1,-x^5+2*x^4+5*x^3-13*x^2+x+18,x^3+2*x^2-5*x-12,-2*x^5+18*x^3+5*x^2-36*x-21,x^3-x^2-6*x+8,3*x^4-3*x^3-24*x^2+17*x+35,1/2*x^5+1/2*x^4-6*x^3-5/2*x^2+17*x-3/2,x^4-x^3-11*x^2+7*x+26,1/2*x^5-1/2*x^4-4*x^3+5/2*x^2+8*x-5/2,-x^5+2*x^4+6*x^3-8*x^2-4*x-3,2*x^5+x^4-19*x^3-13*x^2+41*x+30,-2*x^5+x^4+19*x^3-3*x^2-40*x-7]],
[x^7-x^6-10*x^5+9*x^4+26*x^3-19*x^2-12*x+8, [-1,1], [x,1/2*x^6-1/2*x^5-5*x^4+7/2*x^3+13*x^2-7/2*x-5,x^6-10*x^4+26*x^2+x-10,-x^3+5*x,-x^6+11*x^4+x^3-33*x^2-6*x+18,-x^2-x+6,1,-1,-x^4+x^3+6*x^2-4*x-4,3/2*x^6-1/2*x^5-15*x^4+7/2*x^3+39*x^2-5/2*x-15,-3/2*x^6+1/2*x^5+14*x^4-9/2*x^3-32*x^2+11/2*x+13,-3*x^6+x^5+30*x^4-6*x^3-78*x^2+36,-3*x^6+2*x^5+31*x^4-14*x^3-82*x^2+12*x+32,-2*x^6+x^5+19*x^4-7*x^3-44*x^2+4*x+13,x^6-x^5-9*x^4+8*x^3+20*x^2-12*x-9,-3*x^6+x^5+32*x^4-6*x^3-90*x^2+38,-x^6+9*x^4-x^3-20*x^2+7*x+6,-x^6-x^5+10*x^4+8*x^3-29*x^2-11*x+22,3*x^6-2*x^5-32*x^4+12*x^3+89*x^2-4*x-34,2*x^6-21*x^4-x^3+59*x^2+7*x-30,-4*x^6+2*x^5+41*x^4-13*x^3-107*x^2+5*x+42,-x^6+7*x^4-7*x^2-3*x-6,-2*x^6+x^5+18*x^4-8*x^3-40*x^2+8*x+13,2*x^6-19*x^4+x^3+45*x^2-x-18,5/2*x^6-1/2*x^5-26*x^4+7/2*x^3+70*x^2+9/2*x-25]]];

f[324,2]=[
[x+1, [-1,1], [0,0,3,-1,3,-1,6,-4,-3,3,5,2,3,-1,-9,-6,-3,-13,-7,-12,-10,11,-9,6,11]],
[x-2, [-1,1], [0,0,3,2,-6,5,-3,2,6,3,-4,5,-6,-10,0,-6,-12,5,2,6,-1,-10,0,-3,-10]],
[x-2, [-1,1], [0,0,-3,2,6,5,3,2,-6,-3,-4,5,6,-10,0,6,12,5,2,-6,-1,-10,0,3,-10]],
[x+1, [-1,-1], [0,0,-3,-1,-3,-1,-6,-4,3,-3,5,2,-3,-1,9,6,3,-13,-7,12,-10,11,9,-6,11]]];

f[325,2]=[
[x+1, [1,1], [0,-1,0,4,-6,-1,-6,-4,-3,-3,-4,-2,6,7,0,9,-6,-1,-14,-6,4,11,6,0,10]],
[x-1, [1,-1], [1,2,0,4,2,1,-2,-6,6,2,-10,2,-6,-10,-4,-2,6,2,4,6,6,-12,16,2,2]],
[x+2, [1,-1], [-2,-1,0,-2,2,1,-2,0,9,5,2,8,12,-1,8,-11,0,-13,-2,12,-6,15,4,-10,8]],
[x-2, [-1,1], [2,1,0,2,2,-1,2,0,-9,5,2,-8,12,1,-8,11,0,-13,2,12,6,15,-4,-10,-8]],
[x-1, [-1,-1], [0,1,0,-4,-6,1,6,-4,3,-3,-4,2,6,-7,0,-9,-6,-1,14,-6,-4,11,-6,0,-10]],
[x^2-3, [1,1], [x,-x-1,0,-2,-x-3,-1,2*x,-3*x-1,x-3,2*x-6,3*x+5,4,2*x,3*x-5,-6,-6*x,7*x-3,-6*x+2,-6*x+4,x+3,4,-6*x+2,6,-4*x-6,-2]],
[x^2-8, [1,-1], [-1/2*x+1,x,0,-1/2*x+1,-1/2*x+5,1,x-1,2*x+2,-x-6,-x-3,-3/2*x-3,-6,2*x,-x-2,1/2*x+5,3,-3/2*x+9,1,-3/2*x-7,4*x+2,-6,-6,-7/2*x-3,3*x,x+2]],
[x^2-2, [1,-1], [x+1,x,0,-2*x-2,x+2,1,-2*x+2,-x+2,-x,-4*x,-3*x+6,6*x,2*x-6,5*x+4,2*x+2,-6*x+6,-3*x+6,-8,2,7*x+2,-6*x,-6*x,-2*x+6,6,4*x+2]],
[x^2+2*x-1, [-1,1], [x,-2*x-2,0,x,-x+4,-1,-2*x-1,4*x+6,2*x+8,-2*x-5,-3*x-6,6,4*x+4,2*x+4,-x-6,-3,-3*x+6,1,3*x+10,8*x+10,6,-6,7*x+10,6*x+6,-2*x-4]],
[x^3-3*x^2-x+5, [-1,1], [x,-x^2+x+4,0,x^2-2*x-1,-x-1,-1,-2*x+4,-x+1,x^2-x+2,3*x^2-6*x-3,-2*x^2+3*x+1,3*x^2-4*x-7,-2*x^2+6,-3*x^2+x+12,-x^2+2*x+5,-2*x^2+6*x+4,2*x^2+x-11,-3*x^2+4*x+9,-x^2+6*x+1,6*x^2-5*x-21,-3*x^2+4*x-1,-2*x^2+6*x-4,-x^2+11,-4*x^2+8*x+10,-4*x^2+10*x]],
[x^3+3*x^2-x-5, [-1,-1], [x,x^2+x-4,0,-x^2-2*x+1,x-1,1,-2*x-4,x+1,-x^2-x-2,3*x^2+6*x-3,-2*x^2-3*x+1,-3*x^2-4*x+7,-2*x^2+6,3*x^2+x-12,x^2+2*x-5,2*x^2+6*x-4,2*x^2-x-11,-3*x^2-4*x+9,x^2+6*x-1,6*x^2+5*x-21,3*x^2+4*x+1,-2*x^2-6*x-4,x^2-11,-4*x^2-8*x+10,4*x^2+10*x]]];

f[326,2]=[
[x, [1,1], [-1,0,-1,-1,0,-5,6,-6,-3,-1,-3,-2,-3,1,10,-6,10,-12,10,-2,16,16,-1,-2,-5]],
[x+2, [1,-1], [-1,-2,-3,-1,0,5,0,2,-3,9,5,2,9,-1,-12,0,6,8,-4,-12,2,8,-3,12,-1]],
[x+2, [-1,-1], [1,-2,-1,-3,-4,-1,0,-2,-1,3,-9,6,1,7,-4,8,-6,-4,4,12,2,-16,5,0,-17]],
[x^5-3*x^4-8*x^3+27*x^2-5*x-17, [1,-1], [-1,x,-7/13*x^4+10/13*x^3+68/13*x^2-84/13*x-32/13,4/13*x^4-2/13*x^3-50/13*x^2+22/13*x+100/13,-3/13*x^4-5/13*x^3+31/13*x^2+42/13*x-49/13,6/13*x^4-3/13*x^3-62/13*x^2+33/13*x+72/13,8/13*x^4-4/13*x^3-74/13*x^2+18/13*x+70/13,10/13*x^4-18/13*x^3-99/13*x^2+120/13*x+120/13,14/13*x^4-20/13*x^3-136/13*x^2+142/13*x+116/13,-14/13*x^4+20/13*x^3+123/13*x^2-168/13*x-38/13,-4/13*x^4+2/13*x^3+50/13*x^2-22/13*x-48/13,-3/13*x^4-5/13*x^3+57/13*x^2+42/13*x-127/13,-3/13*x^4-5/13*x^3+31/13*x^2+68/13*x-101/13,14/13*x^4-20/13*x^3-136/13*x^2+142/13*x+142/13,9/13*x^4-24/13*x^3-80/13*x^2+186/13*x+30/13,-2/13*x^4+14/13*x^3+12/13*x^2-102/13*x+28/13,x^3-9*x-4,-20/13*x^4+36/13*x^3+198/13*x^2-266/13*x-136/13,-21/13*x^4+30/13*x^3+204/13*x^2-226/13*x-200/13,4/13*x^4-2/13*x^3-24/13*x^2-17/13*x-4/13,-32/13*x^4+42/13*x^3+296/13*x^2-358/13*x-176/13,-4/13*x^4+2/13*x^3+24/13*x^2+4/13*x-74/13,16/13*x^4-34/13*x^3-148/13*x^2+218/13*x+36/13,-22/13*x^4+24/13*x^3+236/13*x^2-160/13*x-394/13,-4/13*x^4+2/13*x^3+50/13*x^2-9/13*x-100/13]],
[x^6-5*x^5+29*x^3-25*x^2-35*x+36, [-1,1], [1,x,x^5-2*x^4-6*x^3+9*x^2+7*x-7,-3*x^5+7*x^4+18*x^3-37*x^2-23*x+41,3*x^5-8*x^4-17*x^3+44*x^2+19*x-48,x^5-3*x^4-7*x^3+19*x^2+12*x-23,2*x^2-2*x-6,-2*x^5+4*x^4+14*x^3-23*x^2-22*x+30,3*x^5-5*x^4-20*x^3+23*x^2+27*x-21,-5*x^5+11*x^4+32*x^3-60*x^2-43*x+65,-x^5+5*x^4+2*x^3-27*x^2+3*x+27,-x^5+4*x^4+3*x^3-22*x^2+3*x+22,2*x^5-5*x^4-11*x^3+25*x^2+14*x-27,3*x^5-9*x^4-16*x^3+51*x^2+19*x-59,x^4-8*x^2-2*x+10,2*x^5-4*x^4-14*x^3+22*x^2+24*x-30,6*x^5-14*x^4-39*x^3+78*x^2+57*x-86,4*x^5-12*x^4-20*x^3+66*x^2+18*x-72,-6*x^5+15*x^4+34*x^3-82*x^2-36*x+94,2*x^5-6*x^4-14*x^3+42*x^2+23*x-62,-4*x^5+8*x^4+26*x^3-44*x^2-30*x+52,2*x^5-6*x^4-10*x^3+34*x^2+6*x-32,-5*x^5+13*x^4+30*x^3-73*x^2-37*x+83,-8*x^5+18*x^4+52*x^3-100*x^2-76*x+118,7*x^5-19*x^4-42*x^3+109*x^2+54*x-125]]];

f[327,2]=[
[x+1, [-1,-1], [-1,1,-1,-2,-1,-4,-4,-7,1,7,-2,-6,-2,4,7,-4,4,11,-12,-10,11,8,14,5,-7]],
[x^3+3*x^2-x-5, [1,1], [x,-1,-1,-x^2-2*x+1,x^2+x-3,-x^2-2*x+1,2*x^2+2*x-8,x^2+x-1,x-2,x^2+2*x-4,4*x+6,-3*x^2-2*x+5,-4*x^2-4*x+6,-x^2+1,7*x^2+7*x-19,2*x^2-2*x-12,-7*x^2-6*x+19,4*x^2+8*x-5,-x^2+2*x+9,-x^2-6*x-3,4*x^2+2*x-19,x^2-2*x-1,-3*x^2-4*x+5,-8*x^2-12*x+17,-3*x^2+8]],
[x^6-4*x^5-2*x^4+20*x^3-8*x^2-16*x+1, [1,-1], [x,-1,1/2*x^5-1/2*x^4-9/2*x^3+5/2*x^2+19/2*x+1/2,-x^5+2*x^4+5*x^3-8*x^2-3*x+1,-1/2*x^5+1/2*x^4+9/2*x^3-5/2*x^2-19/2*x+3/2,x^5-x^4-7*x^3+3*x^2+11*x+3,-x^4+x^3+5*x^2-4*x+1,1/2*x^5-1/2*x^4-9/2*x^3+1/2*x^2+23/2*x+5/2,-5/2*x^5+11/2*x^4+27/2*x^3-47/2*x^2-31/2*x+17/2,-3/2*x^5+11/2*x^4+7/2*x^3-47/2*x^2+15/2*x+17/2,-x^5+2*x^4+5*x^3-6*x^2-7*x-5,2*x^3-12*x,x^5-2*x^4-6*x^3+6*x^2+9*x+6,4*x^5-9*x^4-20*x^3+37*x^2+16*x-8,5/2*x^5-11/2*x^4-23/2*x^3+47/2*x^2+3/2*x-9/2,-x^5+x^4+9*x^3-5*x^2-17*x+3,x^5-4*x^4-2*x^3+20*x^2-7*x-12,-3/2*x^5+9/2*x^4+15/2*x^3-45/2*x^2-13/2*x+21/2,-2*x^5+2*x^4+14*x^3-4*x^2-26*x-8,-x^5+3*x^4+5*x^3-15*x^2-3*x+7,-7/2*x^5+17/2*x^4+35/2*x^3-73/2*x^2-33/2*x+21/2,-2*x^4+2*x^3+12*x^2-8*x-8,x^5+x^4-11*x^3-9*x^2+29*x+13,-1/2*x^5-3/2*x^4+13/2*x^3+15/2*x^2-27/2*x+3/2,-1/2*x^5-1/2*x^4+13/2*x^3+1/2*x^2-23/2*x+11/2]],
[x^9-3*x^8-11*x^7+35*x^6+34*x^5-122*x^4-29*x^3+127*x^2+9*x-5, [-1,1], [x,1,-1/6*x^8-1/6*x^7+8/3*x^6+7/3*x^5-40/3*x^4-10*x^3+125/6*x^2+85/6*x-1/3,-1/3*x^8+2/3*x^7+13/3*x^6-22/3*x^5-53/3*x^4+22*x^3+68/3*x^2-44/3*x+1/3,3*x^8-7/2*x^7-79/2*x^6+33*x^5+163*x^4-72*x^3-217*x^2-5/2*x+23/2,-4/3*x^8+5/3*x^7+52/3*x^6-46/3*x^5-212/3*x^4+30*x^3+278/3*x^2+31/3*x-2/3,-7/3*x^8+8/3*x^7+91/3*x^6-73/3*x^5-368/3*x^4+48*x^3+473/3*x^2+43/3*x-11/3,8/3*x^8-17/6*x^7-211/6*x^6+77/3*x^5+433/3*x^4-48*x^3-562/3*x^2-163/6*x+35/6,-x^8+3/2*x^7+25/2*x^6-16*x^5-47*x^4+48*x^3+53*x^2-69/2*x-5/2,-3/2*x^8+3/2*x^7+20*x^6-13*x^5-84*x^4+20*x^3+231/2*x^2+49/2*x-9,-11/3*x^8+13/3*x^7+143/3*x^6-122/3*x^5-577/3*x^4+88*x^3+736/3*x^2+11/3*x-13/3,-5/3*x^8+4/3*x^7+68/3*x^6-32/3*x^5-292/3*x^4+10*x^3+409/3*x^2+116/3*x-22/3,x^8-x^7-14*x^6+9*x^5+62*x^4-14*x^3-87*x^2-22*x+2,17/3*x^8-19/3*x^7-224/3*x^6+176/3*x^5+925/3*x^4-122*x^3-1228/3*x^2-59/3*x+52/3,1/3*x^8-1/6*x^7-29/6*x^6+4/3*x^5+65/3*x^4-83/3*x^2-77/6*x-35/6,16/3*x^8-20/3*x^7-208/3*x^6+190/3*x^5+842/3*x^4-140*x^3-1082/3*x^2-4/3*x+26/3,-13/3*x^8+17/3*x^7+169/3*x^6-163/3*x^5-686/3*x^4+122*x^3+893/3*x^2-8/3*x-47/3,-1/6*x^8-1/6*x^7+11/3*x^6+7/3*x^5-73/3*x^4-12*x^3+287/6*x^2+145/6*x-4/3,14/3*x^8-16/3*x^7-185/3*x^6+152/3*x^5+766/3*x^4-112*x^3-1024/3*x^2-8/3*x+67/3,-5*x^8+6*x^7+66*x^6-58*x^5-272*x^4+134*x^3+357*x^2-12*x-18,3/2*x^8-3/2*x^7-20*x^6+13*x^5+83*x^4-20*x^3-213/2*x^2-45/2*x-3,2/3*x^8+2/3*x^7-29/3*x^6-34/3*x^5+130/3*x^4+56*x^3-184/3*x^2-236/3*x-5/3,-2/3*x^8+4/3*x^7+23/3*x^6-38/3*x^5-82/3*x^4+28*x^3+106/3*x^2-4/3*x-25/3,-1/2*x^8-1/2*x^7+8*x^6+9*x^5-40*x^4-50*x^3+125/2*x^2+169/2*x-1,31/6*x^8-41/6*x^7-200/3*x^6+197/3*x^5+805/3*x^4-150*x^3-2069/6*x^2+77/6*x+31/3]]];

f[328,2]=[
[x, [1,1], [0,0,-2,-2,0,-4,-2,4,-4,0,4,-6,-1,12,-6,-4,-4,10,12,-6,-2,-2,-4,-6,14]],
[x-2, [1,-1], [0,2,2,-2,2,6,-6,-2,0,6,-8,10,1,0,-6,-2,-4,-2,-10,-2,-2,-2,12,10,-6]],
[x^2-2*x-2, [-1,1], [0,x,0,-x+2,-x+4,0,2,-x+4,-2*x+4,-4*x+4,2*x-4,-4*x,-1,4*x-4,3*x-2,4*x-4,2*x+4,-10,-7*x+8,x-10,6*x-8,5*x-6,-4*x+4,-4*x+10,-4*x-2]],
[x^3+2*x^2-6*x-10, [1,-1], [0,x,-x^2+6,x+2,-x-2,-2*x-2,6,-2*x^2-x+8,2*x^2-8,2*x^2+2*x-6,-2*x^2+12,x^2-6,1,2*x^2-2*x-16,-3*x,-2*x^2+2*x+14,2*x^2-12,2*x^2+2*x-14,4*x^2+x-22,2*x^2-x-8,x^2-6,-x,-4*x^2+16,-2*x^2+6,-4*x+2]],
[x^3+4*x^2+2*x-2, [-1,-1], [0,x,-x^2-4*x-2,2*x^2+5*x-2,-2*x^2-5*x-2,2*x+2,-2,2*x^2+3*x-8,-2*x^2-4*x,2*x^2+6*x-2,-2*x^2-4*x+4,x^2+4*x+2,1,2*x^2+2*x-8,4*x^2+13*x+4,-2*x^2-2*x+2,-2*x^2-12*x-4,-2*x^2-10*x-2,-2*x^2-3*x+2,-6*x^2-13*x+4,x^2+8*x+10,-4*x^2-17*x-4,8*x^2+24*x,-2*x^2+14,-4*x-14]]];

f[329,2]=[
[x+1, [1,-1], [-1,-1,3,-1,3,-6,6,8,4,2,6,9,-5,-9,1,-1,3,-4,4,0,-13,8,7,-4,-6]],
[x^2-x-4, [-1,1], [-1,x,x-2,1,x-4,2,2,4,4,-2,-2*x,3*x+2,-3*x+2,5*x-4,-1,x-6,-3*x,-2*x-2,-4*x+8,-4*x,-3*x+2,-4*x,x-8,2*x-6,4*x+2]],
[x^3+2*x^2-x-1, [1,1], [-x^2-x+1,x,x^2+x-2,-1,-x-2,2*x^2+x-3,-4*x^2-7*x+5,-5*x^2-7*x+4,3*x^2+4*x-5,-x^2+3*x+2,3*x^2+8*x-6,4*x^2+6*x-8,2*x^2+2*x-1,-4*x^2-2*x+6,-1,-2*x+2,-2*x^2-3*x+5,5*x^2+7*x-7,-x^2+x-6,-3*x^2-4*x+7,-5*x^2-6*x+7,4*x^2+8*x-11,9*x^2+15*x-5,7*x^2+16*x-7,-4*x^2-4*x+9]],
[x^3-x^2-5*x+1, [1,-1], [x,x^2-x-3,1/2*x^2-2*x-3/2,-1,-1/2*x^2-x+5/2,-x-1,2*x-4,-x^2+2*x+3,-x^2+3*x+6,x^2+2*x-5,6,2*x^2-9,-3/2*x^2+x+11/2,-3/2*x^2-3*x+19/2,1,-2*x^2+x+2,3*x^2-6*x-10,-3*x^2+6*x+13,-x^2+x+8,-4*x^2+2*x+10,3/2*x^2-1/2,4,-2*x-7,-3*x^2+7,-3*x^2+6*x+7]],
[x^3+4*x^2+3*x-1, [-1,-1], [-x^2-3*x-1,x,x^2+x-2,1,3*x+4,-x-5,2*x^2+5*x-3,-x^2-3*x-4,-3*x^2-4*x+5,-3*x^2-9*x,-x^2-2*x-6,-8*x^2-22*x-4,-4*x^2-10*x-7,8*x^2+18*x-2,1,-4*x^2-14*x-2,4*x^2+9*x-3,x^2+9*x+9,9*x^2+25*x+8,5*x^2+12*x-5,-3*x^2-4*x+1,-11,5*x^2+13*x+3,-9*x^2-26*x-3,-2*x^2+1]],
[x^5-x^4-11*x^3+12*x^2+28*x-33, [1,-1], [x,-x^2+5,x-1,-1,-x^4+10*x^2+x-20,x^3-2*x^2-6*x+11,-x^4-x^3+9*x^2+5*x-18,x^4+2*x^3-11*x^2-12*x+28,-x^4-x^3+9*x^2+6*x-19,x^4+2*x^3-9*x^2-12*x+20,x^4-10*x^2-2*x+23,-2*x^4-2*x^3+18*x^2+10*x-34,-2*x^4-x^3+19*x^2+6*x-42,-x^4+9*x^2-x-13,1,-2*x^2+16,3*x^4+x^3-27*x^2-5*x+48,2*x^4+3*x^3-21*x^2-17*x+51,-2*x^4-2*x^3+18*x^2+13*x-41,-x^3+5*x+4,x^4+x^3-9*x^2-4*x+7,-x^4+x^3+8*x^2-3*x-1,-x^3+5*x^2+9*x-25,-2*x^4-x^3+16*x^2+5*x-24,x^4-x^3-8*x^2+7*x+7]],
[x^6-12*x^4+5*x^3+36*x^2-29*x+3, [-1,1], [x,-x^3+6*x-2,1/2*x^5+1/2*x^4-9/2*x^3-2*x^2+10*x-3/2,1,-1/2*x^5-1/2*x^4+9/2*x^3+x^2-11*x+15/2,-x^5-x^4+10*x^3+4*x^2-26*x+8,x^4+x^3-7*x^2-3*x+6,-x^4+7*x^2-2*x-4,x^5+2*x^4-8*x^3-9*x^2+16*x-6,-x^4-2*x^3+5*x^2+8*x,x^4+2*x^3-6*x^2-10*x+11,-x^5-2*x^4+10*x^3+10*x^2-29*x+5,-1/2*x^5-3/2*x^4+3/2*x^3+8*x^2+4*x-9/2,-1/2*x^5-1/2*x^4+17/2*x^3+2*x^2-33*x+25/2,-1,2*x^4+x^3-11*x^2-3,2*x^3-x^2-12*x+12,-x^5-3*x^4+6*x^3+17*x^2-7*x-4,-x^5-3*x^4+7*x^3+18*x^2-11*x-10,x^5-x^4-12*x^3+8*x^2+33*x-9,-1/2*x^5+1/2*x^4+15/2*x^3-3*x^2-23*x+19/2,x^5+2*x^4-10*x^3-12*x^2+25*x+2,-x^5-2*x^4+11*x^3+11*x^2-32*x+6,5*x^3+2*x^2-29*x+6,2*x^5+x^4-19*x^3-4*x^2+39*x-1]]];

f[330,2]=[
[x+1, [1,1,1,-1], [-1,-1,-1,0,1,2,-2,8,4,2,8,-2,6,8,-4,2,4,-6,-12,-12,2,0,4,-6,-14]],
[x-1, [1,1,-1,-1], [-1,-1,1,-4,1,-2,-2,-8,0,2,-8,-10,-10,0,0,14,-4,14,-4,8,10,12,4,-6,-14]],
[x+1, [-1,1,1,1], [1,-1,-1,4,-1,2,2,4,-4,6,0,-10,-6,-12,-4,-6,-4,10,-12,-4,10,4,4,10,18]],
[x-1, [-1,1,-1,-1], [1,-1,1,0,1,6,2,-4,0,-10,0,6,2,4,-8,-10,-4,-2,-4,-8,2,-8,-12,-6,18]],
[x-1, [-1,-1,-1,1], [1,1,1,0,-1,-2,2,-4,0,-2,0,-2,2,-12,8,6,-12,6,4,0,-6,-16,4,10,2]]];

f[331,2]=[
[x+1, [1], [-1,-2,1,2,0,-4,1,-3,-8,-10,7,-8,0,11,-4,1,-10,-8,7,1,8,-9,-12,6,8]],
[x^3+2*x^2-4*x-7, [1], [x,-x-1,-x^2+2,x^2-3,-x-3,-2*x^2-x+3,2*x^2-9,-x^2+6,2*x^2+4*x-6,-2*x^2-2*x+6,x^2+4*x-6,-3*x^2+2*x+17,x^2+x-10,x+2,-2*x^2-x+3,7*x^2+2*x-24,-3*x^2-2*x+7,-6*x^2-3*x+21,-2*x^2-2*x+11,3*x^2-3*x-15,-x^2-3*x,-2*x^2+17,-3*x^2-x+16,x^2-2*x-9,-2*x^2-2*x+16]],
[x^7+2*x^6-6*x^5-8*x^4+11*x^3+3*x^2-5*x+1, [1], [x,-x^6-3*x^5+4*x^4+13*x^3-4*x^2-9*x+3,4*x^6+10*x^5-19*x^4-42*x^3+23*x^2+25*x-11,-5*x^6-11*x^5+27*x^4+45*x^3-41*x^2-24*x+13,8*x^6+20*x^5-38*x^4-82*x^3+48*x^2+45*x-20,-7*x^6-17*x^5+34*x^4+70*x^3-42*x^2-38*x+14,-x^6-4*x^5+14*x^3+12*x^2-x-7,-6*x^6-17*x^5+22*x^4+67*x^3-11*x^2-31*x+2,9*x^6+22*x^5-44*x^4-91*x^3+58*x^2+49*x-21,2*x^6+7*x^5-4*x^4-27*x^3-8*x^2+13*x-1,-11*x^6-27*x^5+55*x^4+113*x^3-77*x^2-65*x+31,2*x^6+7*x^5-3*x^4-26*x^3-16*x^2+6*x+11,-8*x^6-19*x^5+39*x^4+76*x^3-51*x^2-36*x+17,x^6+2*x^5-4*x^4-5*x^3+4*x^2-2*x-4,11*x^6+28*x^5-52*x^4-117*x^3+63*x^2+63*x-22,3*x^6+8*x^5-11*x^4-31*x^3+2*x^2+12*x-1,4*x^6+12*x^5-12*x^4-48*x^3-7*x^2+25*x+3,4*x^6+7*x^5-27*x^4-31*x^3+54*x^2+22*x-23,19*x^6+46*x^5-96*x^4-194*x^3+134*x^2+117*x-54,-5*x^6-10*x^5+29*x^4+40*x^3-48*x^2-18*x+16,13*x^6+30*x^5-67*x^4-121*x^3+99*x^2+61*x-37,-4*x^6-11*x^5+15*x^4+47*x^3-x^2-31*x-5,x^6+3*x^5-5*x^4-16*x^3+7*x^2+20*x-5,-12*x^6-29*x^5+63*x^4+125*x^3-95*x^2-80*x+33,-23*x^6-59*x^5+105*x^4+242*x^3-121*x^2-128*x+45]],
[x^16-3*x^15-19*x^14+60*x^13+136*x^12-465*x^11-448*x^10+1747*x^9+657*x^8-3241*x^7-375*x^6+2695*x^5+230*x^4-855*x^3-110*x^2+56*x+8, [-1], [x,-1069/10445*x^15+5881/10445*x^14+17079/10445*x^13-23704/2089*x^12-84578/10445*x^11+923333/10445*x^10+43752/10445*x^9-3472853/10445*x^8+749508/10445*x^7+6394904/10445*x^6-1779062/10445*x^5-5163977/10445*x^4+881194/10445*x^3+1507308/10445*x^2-64022/10445*x-14094/2089,-193/41780*x^15+3141/41780*x^14+8817/41780*x^13-34827/20890*x^12-31464/10445*x^11+604449/41780*x^10+402503/20890*x^9-2602543/41780*x^8-2497031/41780*x^7+1153919/8356*x^6+3522077/41780*x^5-6042977/41780*x^4-85673/2089*x^3+2150027/41780*x^2+44617/10445*x-14807/10445,-5839/10445*x^15+9898/10445*x^14+114836/10445*x^13-191702/10445*x^12-859383/10445*x^11+1427727/10445*x^10+3015533/10445*x^9-5069699/10445*x^8-4853023/10445*x^7+1713921/2089*x^6+2824461/10445*x^5-5994991/10445*x^4-56504/2089*x^3+1607476/10445*x^2-86331/10445*x-91994/10445,-3028/10445*x^15+5627/10445*x^14+58148/10445*x^13-21605/2089*x^12-419726/10445*x^11+793671/10445*x^10+1386534/10445*x^9-2758186/10445*x^8-1983964/10445*x^7+4488793/10445*x^6+864276/10445*x^5-2892759/10445*x^4-153317/10445*x^3+679861/10445*x^2+75441/10445*x-4708/2089,11711/20890*x^15-26481/20890*x^14-223473/20890*x^13+258476/10445*x^12+798976/10445*x^11-3881061/20890*x^10-2583287/10445*x^9+13914713/20890*x^8+6823439/20890*x^7-23859907/20890*x^6-249959/4178*x^5+17062757/20890*x^4-942881/10445*x^3-884743/4178*x^2+295971/10445*x+126152/10445,-1163/20890*x^15-2383/10445*x^14+2987/2089*x^13+101753/20890*x^12-150653/10445*x^11-169427/4178*x^10+303653/4178*x^9+3466543/20890*x^8-396958/2089*x^7-3587263/10445*x^6+2479577/10445*x^5+3404271/10445*x^4-2254001/20890*x^3-2106001/20890*x^2+304807/20890*x+41803/10445,-6259/41780*x^15+4297/8356*x^14+112473/41780*x^13-107181/10445*x^12-181532/10445*x^11+3317291/41780*x^10+464876/10445*x^9-2492457/8356*x^8-625319/41780*x^7+23200151/41780*x^6-4108631/41780*x^5-3899193/8356*x^4+2021913/20890*x^3+6198629/41780*x^2-99793/4178*x-74482/10445,2332/10445*x^15+3189/10445*x^14-10849/2089*x^13-69647/10445*x^12+500884/10445*x^11+118145/2089*x^10-467090/2089*x^9-2461587/10445*x^8+1148618/2089*x^7+5226699/10445*x^6-6978761/10445*x^5-5264758/10445*x^4+3388984/10445*x^3+2024199/10445*x^2-540218/10445*x-148334/10445,8807/20890*x^15-2953/4178*x^14-175709/20890*x^13+143826/10445*x^12+672947/10445*x^11-2163643/20890*x^10-2463261/10445*x^9+1563499/4178*x^8+8701507/20890*x^7-13635973/20890*x^6-6721027/20890*x^5+2012599/4178*x^4+1138871/10445*x^3-2636267/20890*x^2-20260/2089*x+78272/10445,-3206/10445*x^15+2533/20890*x^14+136337/20890*x^13-7403/4178*x^12-570112/10445*x^11+81712/10445*x^10+4752891/20890*x^9-9247/10445*x^8-10289071/20890*x^7-1564493/20890*x^6+10877949/20890*x^5+3457649/20890*x^4-4630483/20890*x^3-961108/10445*x^2+455799/20890*x+18789/2089,1789/2089*x^15-14424/10445*x^14-174664/10445*x^13+274689/10445*x^12+258721/2089*x^11-1996708/10445*x^10-4469182/10445*x^9+6817782/10445*x^8+7022272/10445*x^7-10685442/10445*x^6-3974896/10445*x^5+6155623/10445*x^4+595163/10445*x^3-1044086/10445*x^2+25213/10445*x+5818/10445,4716/10445*x^15-7511/10445*x^14-92898/10445*x^13+140652/10445*x^12+698082/10445*x^11-992421/10445*x^10-2475539/10445*x^9+3200203/10445*x^8+4115764/10445*x^7-4389742/10445*x^6-555295/2089*x^5+1517937/10445*x^4+817033/10445*x^3+36232/2089*x^2-167743/10445*x-48106/10445,10394/10445*x^15-9153/20890*x^14-440189/20890*x^13+160171/20890*x^12+1825628/10445*x^11-539484/10445*x^10-14995457/20890*x^9+1728172/10445*x^8+31615597/20890*x^7-5163011/20890*x^6-6365449/4178*x^5+2876341/20890*x^4+12269569/20890*x^3-53260/2089*x^2-1081549/20890*x-1699/10445,413/10445*x^15-6624/10445*x^14-1297/2089*x^13+138997/10445*x^12+34171/10445*x^11-228281/2089*x^10-9394/2089*x^9+4634242/10445*x^8-30498/2089*x^7-9628449/10445*x^6+483971/10445*x^5+9433103/10445*x^4-265434/10445*x^3-3300124/10445*x^2-48832/10445*x+147004/10445,-8541/41780*x^15+10003/41780*x^14+34703/8356*x^13-48346/10445*x^12-344603/10445*x^11+293433/8356*x^10+272144/2089*x^9-5495119/41780*x^8-2260157/8356*x^7+10467473/41780*x^6+12267063/41780*x^5-9455731/41780*x^4-3401371/20890*x^3+3592003/41780*x^2+722507/20890*x-62132/10445,-4688/10445*x^15-10252/10445*x^14+109489/10445*x^13+218024/10445*x^12-1012656/10445*x^11-1797582/10445*x^10+4724332/10445*x^9+7252431/10445*x^8-11617752/10445*x^7-14797669/10445*x^6+2812553/2089*x^5+14122669/10445*x^4-6588524/10445*x^3-1006803/2089*x^2+819564/10445*x+342318/10445,-11501/20890*x^15+7271/4178*x^14+208987/20890*x^13-361118/10445*x^12-688671/10445*x^11+5547529/20890*x^10+1877408/10445*x^9-4113883/4178*x^8-2607621/20890*x^7+37319739/20890*x^6-3953009/20890*x^5-5933371/4178*x^4+1454157/10445*x^3+8567481/20890*x^2+16154/2089*x-173896/10445,369/8356*x^15-21281/41780*x^14-26401/41780*x^13+225083/20890*x^12+4771/2089*x^11-3732837/41780*x^10+121901/20890*x^9+15307023/41780*x^8-2274217/41780*x^7-32058563/41780*x^6+4547111/41780*x^5+31517137/41780*x^4-572397/10445*x^3-10971979/41780*x^2-3622/10445*x+74073/10445,-27547/41780*x^15+65521/41780*x^14+104041/8356*x^13-324877/10445*x^12-914301/10445*x^11+2000095/8356*x^10+572975/2089*x^9-37339473/41780*x^8-2796535/8356*x^7+68810311/41780*x^6+624441/41780*x^5-56588257/41780*x^4+2217113/20890*x^3+17564921/41780*x^2-331401/20890*x-220074/10445,-3019/4178*x^15+10853/20890*x^14+320463/20890*x^13-101809/10445*x^12-267358/2089*x^11+1481431/20890*x^10+5548067/10445*x^9-5204659/20890*x^8-23833409/20890*x^7+8932549/20890*x^6+24864947/20890*x^5-6843521/20890*x^4-5210488/10445*x^3+2408647/20890*x^2+575222/10445*x-122798/10445,9601/41780*x^15-105597/41780*x^14-99609/41780*x^13+1060889/20890*x^12-60907/10445*x^11-16428793/41780*x^10+3384339/20890*x^9+61186191/41780*x^8-30723433/41780*x^7-22214095/8356*x^6+52352811/41780*x^5+88178909/41780*x^4-1328276/2089*x^3-26034339/41780*x^2+626226/10445*x+341629/10445,-592/10445*x^15+4017/10445*x^14+5841/10445*x^13-79449/10445*x^12+27371/10445*x^11+602577/10445*x^10-562807/10445*x^9-2171321/10445*x^8+2642752/10445*x^7+3693404/10445*x^6-1012456/2089*x^5-2512659/10445*x^4+3613829/10445*x^3+115292/2089*x^2-722124/10445*x-23613/10445,3763/2089*x^15-34994/10445*x^14-368769/10445*x^13+678609/10445*x^12+550538/2089*x^11-5058063/10445*x^10-9657977/10445*x^9+17969217/10445*x^8+15695507/10445*x^7-30365677/10445*x^6-9834256/10445*x^5+21085453/10445*x^4+2172768/10445*x^3-5281046/10445*x^2-55332/10445*x+299603/10445,-4527/10445*x^15+7206/10445*x^14+17894/2089*x^13-134473/10445*x^12-675009/10445*x^11+189360/2089*x^10+478636/2089*x^9-3066158/10445*x^8-770304/2089*x^7+4349371/10445*x^6+1940636/10445*x^5-1969997/10445*x^4+468421/10445*x^3+340361/10445*x^2-207397/10445*x-69586/10445]]];

f[332,2]=[
[x^2-7, [-1,1], [0,x,x-1,-x,x+2,-x-3,3,-x+3,-2*x+2,-3,-x,2*x+3,-12,8,3*x-3,-2*x+8,-3*x,-1,14,-2*x+8,-3*x-7,x-11,-1,-2*x+2,-2*x+10]],
[x^2+2*x-1, [-1,-1], [0,x,-x-1,-x-4,-x-4,x+1,2*x+1,x-1,6*x+6,1,-x-4,2*x+3,-2*x-2,-4*x-8,-3*x-7,2*x+4,-5*x-2,-2*x+5,-4*x-10,-6*x,-x-7,7*x+5,1,2*x+14,-6*x-14]],
[x^3-4*x^2+3*x+1, [-1,1], [0,x,-2*x^2+4*x+2,-x^2+3*x+2,3*x^2-10*x+2,4*x^2-10*x+2,3*x^2-7*x-2,2*x^2-4*x,-4*x^2+8*x+3,-2*x^2+3*x,-3*x^2+2*x+10,-x^2-2,4*x^2-8*x-1,2*x^2-8*x+4,2*x^2-6,-4*x^2+10*x-8,-5*x^2+15*x-2,-2*x^2+11*x-8,-8*x^2+26*x-6,-6*x^2+18*x-4,-2*x^2+2*x+8,2*x^2-8*x+8,-1,4*x^2-14,-4*x-2]]];

f[333,2]=[
[x-1, [1,1], [1,0,-2,-4,4,-2,-6,-6,8,6,2,-1,0,-10,-12,4,-4,10,-4,-12,-10,10,0,-2,-2]],
[x+1, [1,1], [-1,0,2,-4,-4,-2,6,-6,-8,-6,2,-1,0,-10,12,-4,4,10,-4,12,-10,10,0,2,-2]],
[x-2, [-1,1], [2,0,2,-1,5,-2,0,0,-2,-6,-4,-1,9,2,9,-1,-8,-8,8,-9,-1,4,15,-4,4]],
[x, [-1,-1], [0,0,0,-1,-3,-4,-6,2,-6,6,-4,1,9,8,-3,3,-12,8,-4,15,11,-10,-9,-6,8]],
[x^3+3*x^2-x-5, [-1,-1], [x,0,x^2-5,-2*x^2-2*x+4,-2*x^2-4*x+2,2*x^2+4*x-4,x^2+4*x-1,2*x^2+2*x-8,x^2+2*x-1,x^2-9,-4*x^2-6*x+6,1,-6,2*x-2,-4*x^2-4*x+12,6*x^2+8*x-12,-3*x^2-6*x+3,-2,-2*x^2-6*x-4,4*x,-2*x-4,-6*x^2-6*x+20,6*x^2+8*x-14,-x^2+4*x+9,2*x^2-12]],
[x^4-6*x^2+3, [1,-1], [x,0,-x^3+5*x,2,0,2,x^3-5*x,-2*x^2+8,-x^3+3*x,x^3-9*x,2*x^2-4,1,2*x^3-10*x,2*x^2-4,-2*x^3+6*x,4*x^3-20*x,5*x^3-23*x,4*x^2-10,2,-2*x^3+14*x,2*x^2-10,-6*x^2+20,2*x^3-14*x,-3*x^3+19*x,-4*x^2+14]],
[x^4-6*x^2-2*x+5, [-1,1], [x,0,-x^3+2*x^2+3*x-4,-2*x^3+2*x^2+8*x-2,-2*x^2+6,2*x^3-4*x^2-6*x+10,-x^3+3*x+2,2*x^2-2*x-4,3*x^3-2*x^2-11*x+4,-x^3+7*x+2,2*x^3-2*x^2-8*x+4,-1,2*x^3-2*x^2-10*x,2*x^3-2*x^2-12*x+4,2*x^3-2*x^2-6*x+6,2*x^2-4*x-8,-5*x^3+8*x^2+21*x-14,4*x-2,2*x^3-2*x^2-8*x+2,2*x^3-6*x^2-6*x+18,-2*x^3+8*x+6,2*x^2+2*x-8,-2*x^3+4*x^2+6*x-4,5*x^3-6*x^2-19*x+4,6*x^3-4*x^2-22*x+2]]];

f[334,2]=[
[x, [-1,1], [1,0,3,1,0,-2,-2,2,2,-4,1,-3,2,4,-1,-11,-3,-4,-3,6,-4,-12,7,3,7]],
[x^2+x-1, [1,1], [-1,x,-1,-2*x-1,-x-3,-2*x-1,3*x-1,2*x+1,2*x-1,-2*x-7,6*x+1,9*x+6,-2*x-5,-5*x+2,-6*x-6,x+3,-4*x-3,x-2,-3*x+4,12*x+8,-x,2*x+7,3*x+13,-10*x-6,6*x]],
[x^2-8, [1,-1], [-1,x,-1/2*x+1,-3,x,x+4,x+2,-2*x+2,-x+6,-x+4,-x-5,-3/2*x-3,-2*x+6,2,-3*x-3,1/2*x-11,1/2*x+5,3*x,1/2*x-1,-3*x+6,-2*x-8,-3*x,7/2*x+5,2*x+3,x+1]],
[x^2+3*x+1, [-1,-1], [1,x,-2*x-5,-3,x-3,4*x+7,-5*x-7,4*x+5,2*x+3,2*x-5,-4*x-5,-3*x-6,4*x+9,-9*x-16,-6*x-6,-x-5,-4*x-1,-3*x,-7*x-10,-12,x+4,6*x+3,11*x+17,2*x+6,10*x+16]],
[x^3+x^2-5*x-4, [1,-1], [-1,x,-x^2+x+4,-x^2+x+4,x^2,-x^2-x,-x^2-2*x+6,x^2+3*x-4,-x^2-x,-x^2+x+10,-3*x^2-x+12,-x,x^2+x+2,2*x^2+3*x-10,2*x^2-8,x^2+2*x+4,-x^2+x+2,-4*x^2-3*x+10,-x-10,-4,4*x^2-3*x-18,3*x^2-x-12,x^2-10,-4*x^2-2*x+18,6*x^2-18]],
[x^3-x^2-7*x+8, [-1,1], [1,x,-1,1,-x^2-2*x+8,-x^2-x+6,-x^2+6,x^2-x-6,3*x^2+x-14,x^2+x-4,-2*x^2-2*x+9,x^2+2*x-7,x^2+x-6,2*x^2-x-12,-3*x^2+x+15,-x+9,2*x^2-7,4*x^2+x-20,-3*x^2+2*x+17,-2*x^2-2*x+14,-2*x^2+x+4,-3*x^2-x+20,3*x-5,x^2-3*x-5,3*x^2+3*x-25]]];

f[335,2]=[
[x, [-1,-1], [0,0,1,-2,-2,-2,-3,-1,-1,-9,0,-3,-2,6,9,12,5,0,1,-4,-1,-4,-4,3,-14]],
[x^2-2, [1,1], [x,-x,-1,-2,x,-2,x-3,-1,-x-3,-2*x+3,3*x+2,3*x-5,-x,-6,x+3,-3*x,3,-3*x-2,-1,-4*x+6,3*x-7,4,-8*x,-4*x+9,-9*x-2]],
[x^2-x-1, [1,-1], [x,2*x-1,-1,2*x-1,2*x-4,6,-6*x+2,4*x-4,-2*x+2,-4*x-3,-4*x+8,2*x-4,2*x+2,-2*x+3,-8,-1,6*x+3,12,1,4*x+8,2*x-4,-8*x+10,6*x+6,4*x-7,-4*x+5]],
[x^7-2*x^6-12*x^5+21*x^4+42*x^3-52*x^2-39*x-6, [1,-1], [x,-2*x^6+x^5+23*x^4-8*x^3-66*x^2+12*x+10,-1,2*x^6+2*x^5-23*x^4-26*x^3+61*x^2+81*x+20,-2*x^5+22*x^3+2*x^2-58*x-12,3*x^6-4*x^5-34*x^4+39*x^3+100*x^2-90*x-34,-3*x^6+4*x^5+34*x^4-41*x^3-100*x^2+100*x+39,2*x^3-12*x-1,x^6-4*x^5-12*x^4+45*x^3+42*x^2-122*x-39,3*x^6-5*x^5-33*x^4+51*x^3+96*x^2-124*x-45,-2*x^6+10*x^5+22*x^4-108*x^3-74*x^2+282*x+86,7*x^6-8*x^5-80*x^4+79*x^3+236*x^2-186*x-73,-2*x^6-4*x^5+22*x^4+50*x^3-50*x^2-154*x-48,-2*x^6-3*x^5+24*x^4+36*x^3-67*x^2-105*x-16,-x^6+10*x^4+3*x^3-24*x^2-16*x+3,-2*x^6-2*x^5+23*x^4+26*x^3-59*x^2-81*x-24,-x^6+3*x^5+12*x^4-33*x^3-41*x^2+87*x+27,2*x^6-6*x^5-24*x^4+66*x^3+80*x^2-174*x-58,1,-x^6+12*x^4+x^3-36*x^2-4*x,x^6-6*x^5-10*x^4+65*x^3+32*x^2-168*x-43,-8*x^6+92*x^4+16*x^3-256*x^2-90*x-4,-6*x^6+68*x^4+12*x^3-186*x^2-68*x-12,x^6-8*x^5-11*x^4+89*x^3+43*x^2-243*x-75,4*x^6-5*x^5-44*x^4+50*x^3+123*x^2-117*x-34]],
[x^11-18*x^9+2*x^8+114*x^7-24*x^6-306*x^5+86*x^4+332*x^3-109*x^2-114*x+46, [-1,1], [x,43/5261*x^10-84/5261*x^9-1344/5261*x^8+1488/5261*x^7+13496/5261*x^6-9411/5261*x^5-54847/5261*x^4+24218/5261*x^3+84666/5261*x^2-17145/5261*x-28424/5261,1,2136/5261*x^10+966/5261*x^9-37154/5261*x^8-11851/5261*x^7+223588/5261*x^6+42464/5261*x^5-550354/5261*x^4-52284/5261*x^3+499421/5261*x^2+31446/5261*x-115048/5261,-1271/5261*x^10+770/5261*x^9+22842/5261*x^8-13640/5261*x^7-141250/5261*x^6+78376/5261*x^5+351072/5261*x^4-160620/5261*x^3-307876/5261*x^2+86139/5261*x+57128/5261,1936/5261*x^10+1112/5261*x^9-34818/5261*x^8-16692/5261*x^7+219421/5261*x^6+85502/5261*x^5-576654/5261*x^4-176549/5261*x^3+579238/5261*x^2+109722/5261*x-156334/5261,-1169/5261*x^10-41/5261*x^9+20388/5261*x^8-2280/5261*x^7-123184/5261*x^6+27912/5261*x^5+306614/5261*x^4-76990/5261*x^3-293500/5261*x^2+41799/5261*x+82077/5261,1666/5261*x^10+783/5261*x^9-29560/5261*x^8-10864/5261*x^7+184597/5261*x^6+52588/5261*x^5-491156/5261*x^4-119399/5261*x^3+529424/5261*x^2+107018/5261*x-153673/5261,-769/5261*x^10-333/5261*x^9+15716/5261*x^8+7402/5261*x^7-114850/5261*x^6-58164/5261*x^5+359214/5261*x^4+182062/5261*x^3-453134/5261*x^2-177885/5261*x+164649/5261,-436/5261*x^10-2207/5261*x^9+6776/5261*x^8+34586/5261*x^7-38230/5261*x^6-176803/5261*x^5+105757/5261*x^4+327278/5261*x^3-149340/5261*x^2-160170/5261*x+87187/5261,1977/5261*x^10+1766/5261*x^9-34876/5261*x^8-26774/5261*x^7+214304/5261*x^6+136602/5261*x^5-547588/5261*x^4-276418/5261*x^3+549118/5261*x^2+171433/5261*x-178542/5261,-1793/5261*x^10-1269/5261*x^9+32306/5261*x^8+17970/5261*x^7-206472/5261*x^6-84866/5261*x^5+561262/5261*x^4+170832/5261*x^3-594982/5261*x^2-144961/5261*x+180119/5261,-815/5261*x^10+858/5261*x^9+13728/5261*x^8-16702/5261*x^7-74720/5261*x^6+107776/5261*x^5+137464/5261*x^4-257140/5261*x^3-31310/5261*x^2+173245/5261*x-34348/5261,-4423/5261*x^10-4084/5261*x^9+76703/5261*x^8+60320/5261*x^7-466184/5261*x^6-295966/5261*x^5+1199224/5261*x^4+566178/5261*x^3-1231802/5261*x^2-338288/5261*x+373222/5261,-3187/5261*x^10-2461/5261*x^9+55322/5261*x^8+34576/5261*x^7-337632/5261*x^6-159790/5261*x^5+877746/5261*x^4+294036/5261*x^3-917718/5261*x^2-180823/5261*x+261783/5261,2011/5261*x^10-258/5261*x^9-35694/5261*x^8+6825/5261*x^7+220326/5261*x^6-45064/5261*x^5-558900/5261*x^4+70626/5261*x^3+527605/5261*x^2+19867/5261*x-136906/5261,-4759/5261*x^10-1103/5261*x^9+82311/5261*x^8+10520/5261*x^7-489178/5261*x^6-20798/5261*x^5+1176084/5261*x^4+5978/5261*x^3-1029106/5261*x^2-22018/5261*x+223263/5261,-729/5261*x^10+690/5261*x^9+11040/5261*x^8-13726/5261*x^7-47728/5261*x^6+88954/5261*x^5+27770/5261*x^4-208704/5261*x^3+148544/5261*x^2+138955/5261*x-122762/5261,-1,688/5261*x^10-1344/5261*x^9-10982/5261*x^8+23808/5261*x^7+52845/5261*x^6-140054/5261*x^5-56836/5261*x^4+308573/5261*x^3-107902/5261*x^2-190144/5261*x+102882/5261,2477/5261*x^10+1401/5261*x^9-40716/5261*x^8-17302/5261*x^7+227352/5261*x^6+65834/5261*x^5-513404/5261*x^4-105172/5261*x^3+446904/5261*x^2+80963/5261*x-117415/5261,2018/5261*x^10+2420/5261*x^9-34934/5261*x^8-36856/5261*x^7+214448/5261*x^6+187702/5261*x^5-571132/5261*x^4-381548/5261*x^3+624218/5261*x^2+275232/5261*x-190228/5261,-542/5261*x^10+80/5261*x^9+11802/5261*x^8+86/5261*x^7-93522/5261*x^6-10578/5261*x^5+323302/5261*x^4+48084/5261*x^3-456420/5261*x^2-52816/5261*x+169368/5261,-1182/5261*x^10-505/5261*x^9+23486/5261*x^8+6691/5261*x^7-167884/5261*x^6-28582/5261*x^5+512714/5261*x^4+50272/5261*x^3-587163/5261*x^2-29608/5261*x+133003/5261,-682/5261*x^10-870/5261*x^9+12385/5261*x^8+10902/5261*x^7-81182/5261*x^6-36218/5261*x^5+231238/5261*x^4+21600/5261*x^3-252714/5261*x^2+11447/5261*x+67866/5261]]];

f[336,2]=[
[x-2, [1,1,-1], [0,-1,2,1,0,-2,6,4,4,6,8,-10,-10,-12,8,6,-4,-10,-12,-4,2,-8,-4,6,10]],
[x-2, [1,-1,1], [0,1,2,-1,0,6,-2,-4,4,-10,8,6,-2,4,-8,-10,-12,-2,-12,12,-14,8,-12,-2,10]],
[x, [-1,1,1], [0,-1,0,-1,6,2,0,4,6,6,-8,2,12,4,-12,-6,0,-10,-8,-6,-10,4,12,12,-10]],
[x+2, [-1,1,-1], [0,-1,-2,1,-4,-2,-6,-4,0,-2,0,6,2,4,0,6,-12,-2,-4,0,-6,16,12,-14,18]],
[x+2, [-1,-1,-1], [0,1,-2,1,4,6,2,4,-8,-2,0,-10,-6,4,0,6,-4,6,-4,-8,10,0,4,-6,-14]],
[x-4, [-1,-1,-1], [0,1,4,1,-2,-6,-4,4,-2,-2,0,2,0,4,-12,-6,8,6,8,-14,-2,-12,4,0,-2]]];

f[337,2]=[
[x^12+6*x^11+x^10-54*x^9-76*x^8+135*x^7+289*x^6-97*x^5-392*x^4-28*x^3+201*x^2+36*x-27, [1], [x,-41/27*x^11-23/3*x^10+148/27*x^9+679/9*x^8+1208/27*x^7-2122/9*x^6-5621/27*x^5+8552/27*x^4+7303/27*x^3-5185/27*x^2-316/3*x+124/3,76/27*x^11+40/3*x^10-356/27*x^9-1184/9*x^8-1393/27*x^7+3701/9*x^6+7618/27*x^5-14677/27*x^4-9914/27*x^3+8360/27*x^2+422/3*x-182/3,-49/27*x^11-22/3*x^10+356/27*x^9+671/9*x^8-362/27*x^7-2189/9*x^6-976/27*x^5+8845/27*x^4+1571/27*x^3-4607/27*x^2-68/3*x+68/3,2*x^11+26/3*x^10-13*x^9-268/3*x^8-3*x^7+895/3*x^6+107*x^5-1243/3*x^4-473/3*x^3+683/3*x^2+187/3*x-37,-5/3*x^11-22/3*x^10+31/3*x^9+224/3*x^8+20/3*x^7-731/3*x^6-293/3*x^5+976/3*x^4+401/3*x^3-491/3*x^2-146/3*x+19,29/27*x^11+14/3*x^10-187/27*x^9-439/9*x^8-107/27*x^7+1504/9*x^6+2018/27*x^5-6560/27*x^4-3319/27*x^3+4027/27*x^2+178/3*x-94/3,56/27*x^11+25/3*x^10-430/27*x^9-784/9*x^8+595/27*x^7+2677/9*x^6+830/27*x^5-11375/27*x^4-1960/27*x^3+6016/27*x^2+119/3*x-82/3,-65/27*x^11-31/3*x^10+421/27*x^9+946/9*x^8+62/27*x^7-3100/9*x^6-3161/27*x^5+12734/27*x^4+4678/27*x^3-6925/27*x^2-221/3*x+109/3,-20/27*x^11-2*x^10+223/27*x^9+175/9*x^8-982/27*x^7-502/9*x^6+2473/27*x^5+1304/27*x^4-3062/27*x^3+410/27*x^2+42*x-53/3,-43/9*x^11-68/3*x^10+209/9*x^9+227*x^8+739/9*x^7-729*x^6-4300/9*x^5+8977/9*x^4+5831/9*x^3-5249/9*x^2-790/3*x+112,-25/27*x^11-8/3*x^10+299/27*x^9+269/9*x^8-1376/27*x^7-1004/9*x^6+3314/27*x^5+4528/27*x^4-3877/27*x^3-2300/27*x^2+155/3*x+20/3,35/27*x^11+4*x^10-343/27*x^9-331/9*x^8+1354/27*x^7+847/9*x^6-3808/27*x^5-1607/27*x^4+5912/27*x^3-1433/27*x^2-106*x+107/3,-13/3*x^11-68/3*x^10+41/3*x^9+679/3*x^8+463/3*x^7-2182/3*x^6-2143/3*x^5+3062/3*x^4+2917/3*x^3-1987/3*x^2-1189/3*x+154,37/27*x^11+7*x^10-125/27*x^9-614/9*x^8-1129/27*x^7+1907/9*x^6+5014/27*x^5-7915/27*x^4-6542/27*x^3+5114/27*x^2+104*x-134/3,26/27*x^11+5*x^10-55/27*x^9-421/9*x^8-1175/27*x^7+1171/9*x^6+4958/27*x^5-3731/27*x^4-6490/27*x^3+1654/27*x^2+93*x-49/3,10/9*x^11+5*x^10-53/9*x^9-146/3*x^8-112/9*x^7+443/3*x^6+739/9*x^5-1651/9*x^4-980/9*x^3+803/9*x^2+46*x-14,8/27*x^11+8/3*x^10+116/27*x^9-172/9*x^8-1508/27*x^7+184/9*x^6+4184/27*x^5+868/27*x^4-3907/27*x^3-929/27*x^2+103/3*x+2/3,-173/27*x^11-80/3*x^10+1177/27*x^9+2410/9*x^8-559/27*x^7-7678/9*x^6-5294/27*x^5+29735/27*x^4+7333/27*x^3-14035/27*x^2-316/3*x+175/3,-137/27*x^11-25*x^10+592/27*x^9+2281/9*x^8+3320/27*x^7-7495/9*x^6-17921/27*x^5+31904/27*x^4+25441/27*x^3-19885/27*x^2-395*x+448/3,43/9*x^11+58/3*x^10-326/9*x^9-610/3*x^8+368/9*x^7+2095/3*x^6+1141/9*x^5-8908/9*x^4-2345/9*x^3+4814/9*x^2+380/3*x-73,-67/27*x^11-38/3*x^10+257/27*x^9+1163/9*x^8+1978/27*x^7-3878/9*x^6-10012/27*x^5+17008/27*x^4+14171/27*x^3-11213/27*x^2-682/3*x+290/3,-338/27*x^11-58*x^10+1768/27*x^9+5239/9*x^8+4529/27*x^7-16870/9*x^6-29570/27*x^5+69239/27*x^4+40117/27*x^3-40105/27*x^2-596*x+817/3,-5/9*x^11-2*x^10+22/9*x^9+31/3*x^8+2/9*x^7+71/3*x^6+310/9*x^5-1285/9*x^4-1076/9*x^3+1565/9*x^2+80*x-53,-14/27*x^11-8/3*x^10+40/27*x^9+220/9*x^8+425/27*x^7-601/9*x^6-1463/27*x^5+2072/27*x^4+1228/27*x^3-1270/27*x^2-40/3*x+49/3]],
[x^15-3*x^14-18*x^13+56*x^12+123*x^11-402*x^10-400*x^9+1395*x^8+643*x^7-2406*x^6-496*x^5+1843*x^4+200*x^3-388*x^2-69*x+1, [-1], [x,-1949/1618*x^14+1320/809*x^13+19977/809*x^12-22552/809*x^11-322023/1618*x^10+281379/1618*x^9+1285759/1618*x^8-383962/809*x^7-2607215/1618*x^6+826791/1618*x^5+2373167/1618*x^4-68300/809*x^3-287702/809*x^2-35427/809*x+4591/1618,971/1618*x^14-954/809*x^13-9264/809*x^12+16549/809*x^11+137225/1618*x^10-212741/1618*x^9-498023/1618*x^8+309926/809*x^7+915105/1618*x^6-797805/1618*x^5-761279/1618*x^4+176743/809*x^3+85396/809*x^2-10937/809*x-3535/1618,849/1618*x^14-685/809*x^13-8280/809*x^12+11507/809*x^11+125879/1618*x^10-139611/1618*x^9-470549/1618*x^8+180836/809*x^7+890021/1618*x^6-342519/1618*x^5-750325/1618*x^4-655/809*x^3+74829/809*x^2+24406/809*x+7347/1618,6103/3236*x^14-4299/1618*x^13-30978/809*x^12+36187/809*x^11+989877/3236*x^10-882049/3236*x^9-3925325/3236*x^8+575536/809*x^7+7937621/3236*x^6-2195013/3236*x^5-7252033/3236*x^4-12097/809*x^3+444324/809*x^2+86502/809*x+9625/3236,797/809*x^14-1207/809*x^13-16066/809*x^12+20440/809*x^11+127515/809*x^10-126146/809*x^9-503042/809*x^8+339199/809*x^7+1014207/809*x^6-356190/809*x^5-927323/809*x^4+52978/809*x^3+229839/809*x^2+28557/809*x+142/809,297/809*x^14-262/809*x^13-6462/809*x^12+4589/809*x^11+55127/809*x^10-29346/809*x^9-231190/809*x^8+81729/809*x^7+484013/809*x^6-86129/809*x^5-437957/809*x^4-221/809*x^3+89565/809*x^2+21112/809*x+2553/809,4399/3236*x^14-3433/1618*x^13-22077/809*x^12+29662/809*x^11+695493/3236*x^10-757317/3236*x^9-2709089/3236*x^8+543180/809*x^7+5356125/3236*x^6-2677477/3236*x^5-4752777/3236*x^4+248195/809*x^3+280212/809*x^2+2867/809*x-18751/3236,-843/3236*x^14+1189/1618*x^13+3519/809*x^12-10331/809*x^11-86489/3236*x^10+268213/3236*x^9+242333/3236*x^8-200875/809*x^7-326413/3236*x^6+1115229/3236*x^5+238737/3236*x^4-155353/809*x^3-30245/809*x^2+21947/809*x+25751/3236,-4577/1618*x^14+3043/809*x^13+47022/809*x^12-51190/809*x^11-760587/1618*x^10+620917/1618*x^9+3052801/1618*x^8-797474/809*x^7-6243287/1618*x^6+1420385/1618*x^5+5772927/1618*x^4+115904/809*x^3-730440/809*x^2-157784/809*x+1711/1618,-4961/3236*x^14+3147/1618*x^13+25232/809*x^12-25493/809*x^11-809243/3236*x^10+579087/3236*x^9+3227683/3236*x^8-319249/809*x^7-6582287/3236*x^6+505327/3236*x^5+6089839/3236*x^4+305414/809*x^3-382354/809*x^2-128732/809*x-14779/3236,177/809*x^14-197/809*x^13-3704/809*x^12+2694/809*x^11+31023/809*x^10-9350/809*x^9-133359/809*x^8-14689/809*x^7+310524/809*x^6+126765/809*x^5-365619/809*x^4-176698/809*x^3+164014/809*x^2+34858/809*x-8971/809,-2010/809*x^14+2909/809*x^13+40938/809*x^12-50146/809*x^11-327696/809*x^10+318753/809*x^9+1297878/809*x^8-905913/809*x^7-2602768/809*x^6+1083558/809*x^5+2324441/809*x^4-337459/809*x^3-530959/809*x^2-50073/809*x+2751/809,101/1618*x^14-415/809*x^13-682/809*x^12+8365/809*x^11+4539/1618*x^10-131681/1618*x^9+11631/1618*x^8+253471/809*x^7-97361/1618*x^6-970617/1618*x^5+188301/1618*x^4+405981/809*x^3-53777/809*x^2-88323/809*x-13465/1618,1287/1618*x^14-298/809*x^13-14001/809*x^12+3336/809*x^11+241041/1618*x^10-5007/1618*x^9-1032835/1618*x^8-91913/809*x^7+2258111/1618*x^6+776633/1618*x^5-2252695/1618*x^4-515677/809*x^3+332801/809*x^2+144171/809*x+7827/1618,-3531/1618*x^14+2726/809*x^13+35177/809*x^12-45931/809*x^11-550049/1618*x^10+561119/1618*x^9+2131505/1618*x^8-737837/809*x^7-4218715/1618*x^6+1456883/1618*x^5+3798443/1618*x^4-44215/809*x^3-467829/809*x^2-76240/809*x-689/1618,8273/3236*x^14-6471/1618*x^13-41188/809*x^12+54344/809*x^11+1288767/3236*x^10-1319959/3236*x^9-5008471/3236*x^8+857682/809*x^7+9989135/3236*x^6-3286291/3236*x^5-9161367/3236*x^4+18575/809*x^3+605574/809*x^2+91000/809*x-37357/3236,-2049/1618*x^14+1819/809*x^13+19643/809*x^12-30690/809*x^11-294109/1618*x^10+378403/1618*x^9+1089663/1618*x^8-513261/809*x^7-2079645/1618*x^6+1139845/1618*x^5+1866879/1618*x^4-159293/809*x^3-267266/809*x^2-1789/809*x+18179/1618,-6601/3236*x^14+4535/1618*x^13+33981/809*x^12-38507/809*x^11-1100911/3236*x^10+948367/3236*x^9+4417199/3236*x^8-627778/809*x^7-8987551/3236*x^6+2462955/3236*x^5+8152271/3236*x^4-4354/809*x^3-470261/809*x^2-94306/809*x-9395/3236,6003/3236*x^14-4609/1618*x^13-30336/809*x^12+39399/809*x^11+964397/3236*x^10-985657/3236*x^9-3801057/3236*x^8+677136/809*x^7+7635157/3236*x^6-2983817/3236*x^5-6949321/3236*x^4+157196/809*x^3+436744/809*x^2+43455/809*x-5911/3236,914/809*x^14-967/809*x^13-19200/809*x^12+15310/809*x^11+159430/809*x^10-83430/809*x^9-658273/809*x^8+164659/809*x^7+1381584/809*x^6+2417/809*x^5-1299650/809*x^4-271420/809*x^3+323076/809*x^2+100221/809*x+3207/809,-61/809*x^14+269/809*x^13+984/809*x^12-5042/809*x^11-5673/809*x^10+37374/809*x^9+12119/809*x^8-137989/809*x^7+3638/809*x^6+258385/809*x^5-41445/809*x^4-214612/809*x^3+29883/809*x^2+46669/809*x-1031/809,-9403/3236*x^14+7013/1618*x^13+47310/809*x^12-58822/809*x^11-1497409/3236*x^10+1430321/3236*x^9+5870993/3236*x^8-933619/809*x^7-11689633/3236*x^6+3596053/3236*x^5+10403861/3236*x^4+2104/809*x^3-589294/809*x^2-137416/809*x-7789/3236,329/809*x^14-549/809*x^13-5957/809*x^12+8600/809*x^11+41114/809*x^10-45411/809*x^9-136953/809*x^8+80312/809*x^7+233158/809*x^6+32868/809*x^5-194430/809*x^4-169541/809*x^3+53478/809*x^2+42849/809*x+4871/809,4366/809*x^14-5938/809*x^13-89208/809*x^12+100430/809*x^11+716694/809*x^10-615178/809*x^9-2854280/809*x^8+1615137/809*x^7+5783521/809*x^6-1548341/809*x^5-5282640/809*x^4-47120/809*x^3+1305326/809*x^2+266564/809*x-7439/809]]];

f[338,2]=[
[x, [1,1], [-1,0,1,-4,-4,0,3,0,-4,-1,-4,-3,9,-8,8,-9,4,7,-4,8,-11,-4,0,6,-2]],
[x+3, [1,1], [-1,-3,1,-1,2,0,-3,-6,-4,2,-4,-3,0,-5,-13,12,10,-8,2,5,10,-4,0,-6,-14]],
[x+1, [1,-1], [-1,-1,3,3,0,0,-3,6,6,0,0,3,0,1,3,-6,-6,-8,12,-15,6,10,-6,-6,12]],
[x, [-1,1], [1,0,-1,4,4,0,3,0,-4,-1,4,3,-9,-8,-8,-9,-4,7,4,-8,11,-4,0,-6,2]],
[x-1, [-1,1], [1,1,3,1,-6,0,-3,-2,0,6,4,7,0,-1,-3,0,6,8,-14,3,-2,8,-12,6,10]],
[x+1, [-1,-1], [1,-1,-3,-3,0,0,-3,-6,6,0,0,-3,0,1,-3,-6,6,-8,-12,15,-6,10,6,6,-12]],
[x^3-3*x^2-4*x+13, [1,-1], [-1,x,2*x^2-12,-4*x^2+2*x+22,3*x^2-x-17,0,-5*x^2+x+29,-5*x^2+2*x+26,6*x^2-4*x-30,-8*x^2+4*x+38,2*x^2-2*x-4,4*x^2-2*x-16,-5*x^2+4*x+22,7*x^2-2*x-34,4*x^2-4*x-18,-6*x^2+4*x+30,-3*x+4,16*x^2-8*x-84,-3*x-4,-6*x^2+4*x+34,10*x^2-7*x-50,-6*x^2+6*x+22,5*x^2-2*x-26,-2*x^2-3*x+6,11*x^2-3*x-67]],
[x^3-3*x^2-4*x+13, [-1,1], [1,x,-2*x^2+12,4*x^2-2*x-22,-3*x^2+x+17,0,-5*x^2+x+29,5*x^2-2*x-26,6*x^2-4*x-30,-8*x^2+4*x+38,-2*x^2+2*x+4,-4*x^2+2*x+16,5*x^2-4*x-22,7*x^2-2*x-34,-4*x^2+4*x+18,-6*x^2+4*x+30,3*x-4,16*x^2-8*x-84,3*x+4,6*x^2-4*x-34,-10*x^2+7*x+50,-6*x^2+6*x+22,-5*x^2+2*x+26,2*x^2+3*x-6,-11*x^2+3*x+67]]];

f[339,2]=[
[x+1, [1,-1], [2,-1,2,3,-6,5,3,0,3,-3,-7,2,-8,0,-9,4,-9,6,14,0,-10,-14,14,1,13]],
[x, [-1,-1], [0,1,-1,-3,-4,-2,-2,-2,1,-7,8,4,0,12,-9,-8,-3,-3,2,7,4,-4,-2,13,1]],
[x+2, [-1,-1], [-2,1,-3,1,-2,-2,-2,0,-5,-5,-4,-4,4,-12,-3,6,-9,-3,16,1,14,2,6,3,1]],
[x^2-2, [1,1], [x,-1,-x-1,-1,-x,-2*x-4,4*x+2,3*x-4,-3*x+3,x-7,2,2*x-4,4*x-4,2*x-4,-x+11,-x,x+1,-6*x+3,-5*x-4,x-11,5*x+2,-3*x-6,2*x+6,-5*x+3,-6*x+3]],
[x^2+2*x-1, [1,-1], [x,-1,-2*x-1,3,2*x+4,5,2*x-1,0,2*x-1,-4*x-2,7,2*x-2,6,6*x+2,-4*x-8,4*x+10,-2*x-5,4*x+5,8*x+12,-6*x-9,-2*x+8,2*x+10,-4*x-6,-6,-8*x-6]],
[x^2-3*x-2, [-1,1], [2,1,x,-x+1,-2*x+2,-3,-3,2*x,-3*x+7,4*x-5,2*x-3,-2*x+2,2*x+4,0,4*x-7,-2*x+8,-3*x+3,x+8,-10,-7*x+10,-2*x-2,-2*x+6,2,4*x-1,-3]],
[x^5-x^4-10*x^3+6*x^2+22*x+4, [1,-1], [x,-1,-x^3-x^2+7*x+5,1/2*x^4+1/2*x^3-3*x^2-3*x-2,-x^3+7*x+2,-1/2*x^4+1/2*x^3+3*x^2-3*x-1,-1/2*x^4-1/2*x^3+2*x^2+3*x+5,x^4+x^3-7*x^2-7*x+4,1/2*x^4-3/2*x^3-4*x^2+8*x+4,x^3+x^2-7*x-1,-1/2*x^4+1/2*x^3+3*x^2-3*x+1,x^4-x^3-8*x^2+4*x+12,-2*x^3+10*x+2,-x^4-x^3+8*x^2+4*x-4,x^3+x^2-7*x-7,-2*x^4-x^3+16*x^2+5*x-12,1/2*x^4+7/2*x^3-3*x^2-20*x-4,2*x^4+2*x^3-13*x^2-14*x+5,2*x^3+x^2-13*x-12,-x^4+x^3+6*x^2-5*x-1,-2*x^3-x^2+17*x+6,-x^4-3*x^3+7*x^2+19*x+2,x^4+x^3-4*x^2-6*x-18,x+7,2*x^4-15*x^2-2*x+13]],
[x^5-7*x^3-4*x^2+6*x+2, [-1,1], [x,1,-x^4+x^3+5*x^2-x-1,-x^4+2*x^3+3*x^2-4*x+1,2*x^4-3*x^3-10*x^2+5*x+6,-2*x^3+3*x^2+8*x-2,-x^4+2*x^3+4*x^2-4*x+2,3*x^4-3*x^3-17*x^2+x+8,x^3-7*x-1,2*x^4-x^3-11*x^2-5*x+9,2*x^4-2*x^3-11*x^2+4,-2*x^3+4*x^2+8*x-6,-2*x^4+14*x^2+4*x-10,-4*x^4+6*x^3+20*x^2-12*x-14,4*x^4-5*x^3-21*x^2+11*x+15,3*x^3-4*x^2-11*x+4,-7*x^4+7*x^3+37*x^2-3*x-19,3*x^4-2*x^3-15*x^2-4*x+1,-3*x^4+7*x^3+11*x^2-17*x-2,6*x^4-7*x^3-32*x^2+9*x+17,x^4-5*x^3+x^2+17*x-8,x^4-3*x^3+x^2+3*x-14,4*x^4-6*x^3-18*x^2+14*x+4,-x^4+x^3+2*x^2+3*x+3,-3*x^2+2*x+5]]];

f[340,2]=[
[x, [-1,1,-1], [0,0,-1,-4,2,-6,1,0,0,-6,6,-2,-6,6,-10,-6,0,10,-2,6,6,6,6,-18,-14]],
[x^3-8*x+4, [-1,-1,-1], [0,x,1,x,-x^2-x+6,-x^2-2*x+6,1,-2*x,2*x^2+x-8,-2*x^2-2*x+10,x^2-x-2,2*x-2,2*x+6,-x^2-2*x+2,x^2-6,2*x^2-6,2*x^2+2*x-16,4*x-2,x^2-14,-x^2-x+10,2*x^2-2*x-14,x^2+x-10,-3*x^2-2*x+10,-x^2-4*x+14,4*x^2+4*x-22]]];

f[341,2]=[
[x^2-x-1, [-1,-1], [x,-1,-x-1,-3*x+2,1,4*x-3,2*x-3,2*x-6,2*x-2,0,1,-2*x-1,-5*x+7,-x-8,-5*x-2,5*x-1,-2*x+1,5*x-8,-7,5*x-8,-6*x+7,-5,x+11,7*x-6,8*x+4]],
[x^4+2*x^3-5*x^2-6*x+4, [1,1], [-1/2*x^2-1/2*x+1,x,1/2*x^3+1/2*x^2-3*x-1,-1/2*x^3-1/2*x^2+2*x-1,-1,-x-2,-x^3-x^2+3*x,x-3,x^2+3*x-2,-x^3-2*x^2+5*x+2,-1,2*x^3+3*x^2-8*x-4,-1/2*x^3-1/2*x^2+x-1,-3/2*x^3-9/2*x^2+2*x+8,-3/2*x^3-7/2*x^2+7*x+10,5/2*x^3+11/2*x^2-11*x-8,2*x^3+3*x^2-5*x-3,-1/2*x^3-7/2*x^2+8,-x^2-2*x,-3/2*x^3-3/2*x^2+6*x+3,4*x^3+5*x^2-16*x-6,2*x^3+6*x^2-3*x-14,3/2*x^3+9/2*x^2-x-10,-5/2*x^3-3/2*x^2+14*x,-2*x^3+x^2+12*x-7]],
[x^8-x^7-14*x^6+11*x^5+60*x^4-31*x^3-74*x^2+5*x+3, [1,-1], [x,1/4*x^7-1/4*x^6-13/4*x^5+5/2*x^4+51/4*x^3-25/4*x^2-55/4*x+1,-1/2*x^4+1/2*x^3+3*x^2-5/2*x-3/2,-1/4*x^6+1/4*x^5+9/4*x^4-3/2*x^3-19/4*x^2+1/4*x+11/4,-1,1/2*x^5-1/2*x^4-5*x^3+5/2*x^2+23/2*x+2,-1/4*x^6-1/4*x^5+11/4*x^4+7/2*x^3-29/4*x^2-41/4*x+3/4,1/4*x^6+1/4*x^5-11/4*x^4-5/2*x^3+25/4*x^2+21/4*x+17/4,-1/4*x^7+1/4*x^6+13/4*x^5-3*x^4-45/4*x^3+37/4*x^2+25/4*x-3/2,-1/2*x^7+1/2*x^6+7*x^5-11/2*x^4-59/2*x^3+16*x^2+32*x-3,1,-1/2*x^7+7*x^5-1/2*x^4-59/2*x^3+4*x^2+35*x+1/2,1/2*x^7-7*x^5+1/2*x^4+55/2*x^3-3*x^2-25*x-3/2,1/2*x^6-1/2*x^5-11/2*x^4+4*x^3+33/2*x^2-15/2*x-11/2,x^5-2*x^4-9*x^3+12*x^2+18*x-6,-1/2*x^6+1/2*x^5+11/2*x^4-3*x^3-31/2*x^2+5/2*x+9/2,-1/2*x^7+x^6+6*x^5-19/2*x^4-47/2*x^3+21*x^2+32*x+3/2,1/2*x^7-1/4*x^6-31/4*x^5+15/4*x^4+37*x^3-59/4*x^2-203/4*x+29/4,-x^7+1/2*x^6+27/2*x^5-9/2*x^4-54*x^3+21/2*x^2+119/2*x-5/2,-1/2*x^7+8*x^5-1/2*x^4-75/2*x^3+3*x^2+44*x+3/2,1/2*x^7-1/4*x^6-25/4*x^5+9/4*x^4+24*x^3-29/4*x^2-109/4*x+29/4,-x^7+3/2*x^6+25/2*x^5-31/2*x^4-48*x^3+79/2*x^2+113/2*x+1/2,-x^5+x^4+7*x^3-7*x^2-6*x+6,-1/2*x^7+x^6+8*x^5-23/2*x^4-81/2*x^3+31*x^2+63*x-9/2,x^7-3/2*x^6-27/2*x^5+15*x^4+111/2*x^3-73/2*x^2-61*x+2]],
[x^11-x^10-20*x^9+20*x^8+141*x^7-135*x^6-421*x^5+347*x^4+530*x^3-288*x^2-239*x+17, [-1,1], [x,-7/88*x^10+1/44*x^9+3/2*x^8-15/44*x^7-867/88*x^6+67/44*x^5+2301/88*x^4-69/44*x^3-1029/44*x^2-17/11*x+171/88,-1/88*x^10-3/44*x^9+1/4*x^8+45/44*x^7-171/88*x^6-201/44*x^5+555/88*x^4+229/44*x^3-167/22*x^2+47/22*x+191/88,13/88*x^10+3/22*x^9-11/4*x^8-28/11*x^7+1563/88*x^6+721/44*x^5-4091/88*x^4-933/22*x^3+464/11*x^2+1627/44*x-107/88,1,3/88*x^10+9/44*x^9-3/4*x^8-157/44*x^7+513/88*x^6+933/44*x^5-1621/88*x^4-2183/44*x^3+201/11*x^2+827/22*x+219/88,-1/8*x^10+9/4*x^8-107/8*x^6-1/4*x^5+227/8*x^4+5/2*x^3-14*x^2-17/4*x-25/8,19/88*x^10+1/22*x^9-17/4*x^8-15/22*x^7+2545/88*x^6+167/44*x^5-6937/88*x^4-128/11*x^3+822/11*x^2+645/44*x-549/88,-23/88*x^10-3/44*x^9+5*x^8+45/44*x^7-2899/88*x^6-267/44*x^5+7661/88*x^4+889/44*x^3-3645/44*x^2-279/11*x+983/88,1/88*x^10+3/44*x^9-1/4*x^8-45/44*x^7+127/88*x^6+201/44*x^5-71/88*x^4-251/44*x^3-141/22*x^2+15/11*x+161/88,-1,-3/44*x^10+1/11*x^9+3/2*x^8-41/22*x^7-491/44*x^6+133/11*x^5+1401/44*x^4-567/22*x^3-617/22*x^2+108/11*x-43/44,1/44*x^10+3/22*x^9-1/2*x^8-28/11*x^7+171/44*x^6+355/22*x^5-577/44*x^4-428/11*x^3+222/11*x^2+283/11*x-477/44,-9/44*x^10-5/22*x^9+4*x^8+43/11*x^7-1165/44*x^6-511/22*x^5+2949/44*x^4+629/11*x^3-1147/22*x^2-556/11*x+47/44,-5/44*x^10-2/11*x^9+2*x^8+71/22*x^7-525/44*x^6-411/22*x^5+1213/44*x^4+859/22*x^3-427/22*x^2-531/22*x-13/44,-4/11*x^10-2/11*x^9+7*x^8+30/11*x^7-1005/22*x^6-323/22*x^5+2537/22*x^4+435/11*x^3-2143/22*x^2-971/22*x+197/22,-3/11*x^10-3/22*x^9+11/2*x^8+45/22*x^7-839/22*x^6-128/11*x^5+1148/11*x^4+779/22*x^3-2039/22*x^2-929/22*x-97/22,13/88*x^10+3/22*x^9-11/4*x^8-45/22*x^7+1519/88*x^6+435/44*x^5-3651/88*x^4-186/11*x^3+719/22*x^2+153/44*x-371/88,5/44*x^10+2/11*x^9-2*x^8-71/22*x^7+503/44*x^6+211/11*x^5-971/44*x^4-947/22*x^3+54/11*x^2+304/11*x+607/44,7/44*x^10-1/22*x^9-3*x^8+15/22*x^7+845/44*x^6-28/11*x^5-2103/44*x^4-63/22*x^3+454/11*x^2+409/22*x-369/44,-3/88*x^10+1/22*x^9+3/4*x^8-15/22*x^7-469/88*x^6+101/44*x^5+1137/88*x^4+26/11*x^3-127/22*x^2-257/44*x-527/88,3/44*x^10-1/11*x^9-x^8+41/22*x^7+161/44*x^6-144/11*x^5+95/44*x^4+809/22*x^3-170/11*x^2-394/11*x-23/44,-3/11*x^10-3/22*x^9+5*x^8+45/22*x^7-663/22*x^6-245/22*x^5+1405/22*x^4+669/22*x^3-609/22*x^2-349/11*x-317/22,1/22*x^10+3/11*x^9-x^8-101/22*x^7+171/22*x^6+278/11*x^5-272/11*x^4-1129/22*x^3+290/11*x^2+368/11*x-13/11,29/88*x^10-1/44*x^9-25/4*x^8+15/44*x^7+3507/88*x^6-1/44*x^5-8395/88*x^4-613/44*x^3+722/11*x^2+325/11*x+665/88]]];

f[342,2]=[
[x+2, [1,1,1], [-1,0,-2,0,-2,-4,0,-1,-8,2,-2,-8,2,4,4,-2,0,-10,0,16,6,14,6,18,10]],
[x-4, [1,-1,1], [-1,0,-2,0,4,2,6,-1,4,2,4,10,-10,4,4,10,-12,14,-12,-8,-6,-4,-12,6,10]],
[x-4, [1,-1,1], [-1,0,4,3,-2,-1,-3,-1,1,5,-8,-2,8,4,-8,1,-15,2,3,-2,9,-10,6,0,-2]],
[x, [1,-1,-1], [-1,0,0,-4,0,-4,-6,1,6,-6,2,-4,-6,-4,-6,-6,12,14,8,0,14,-10,12,6,-10]],
[x-2, [-1,1,1], [1,0,2,0,2,-4,0,-1,8,-2,-2,-8,-2,4,-4,2,0,-10,0,-16,6,14,-6,-18,10]],
[x+1, [-1,-1,-1], [1,0,0,-1,6,5,-3,1,-3,-9,-4,2,0,8,0,3,-9,-10,5,6,-7,-10,6,12,-10]],
[x-4, [-1,-1,-1], [1,0,0,4,-4,0,2,1,2,6,6,-8,-10,-12,-10,-2,-4,-10,0,16,-2,10,16,2,-10]]];

f[343,2]=[
[x^3+4*x^2+3*x-1, [1], [x,0,0,0,-x^2-4*x-5,0,0,0,2*x^2+7*x-1,4*x^2+7*x-9,0,-9*x^2-22*x-3,0,7*x^2+23*x+7,0,7*x^2+25*x+7,0,0,-6*x^2-7*x+17,-7*x^2-19*x-7,0,-7*x^2-27*x-7,0,0,0]],
[x^3-3*x^2-4*x+13, [-1], [x,0,0,0,-8*x^2+3*x+44,0,0,0,9*x^2-7*x-43,11*x^2-7*x-51,0,-2*x^2-x+18,0,-7*x^2+2*x+42,0,-7*x^2+4*x+42,0,0,-13*x^2+7*x+59,7*x^2+2*x-42,0,7*x^2-6*x-42,0,0,0]],
[x^6-20*x^4+124*x^2-232, [-1], [-1/4*x^4+7/2*x^2-10,x,1/4*x^5-7/2*x^3+11*x,0,1/2*x^2-3,1/4*x^5-4*x^3+14*x,-1/4*x^5+7/2*x^3-12*x,1/2*x^3-3*x,-1/4*x^4+5/2*x^2-1,1/4*x^4-9/2*x^2+17,-1/4*x^5+5/2*x^3-3*x,x^4-25/2*x^2+31,-1/4*x^5+5/2*x^3-4*x,1/4*x^4-x^2-11,-3/4*x^5+19/2*x^3-25*x,3/4*x^4-9*x^2+27,-1/4*x^5+4*x^3-13*x,1/2*x^5-13/2*x^3+16*x,-5/4*x^4+31/2*x^2-35,-3/4*x^4+10*x^2-29,-1/2*x^5+15/2*x^3-26*x,-5/4*x^4+19*x^2-65,-1/4*x^5+4*x^3-14*x,3/2*x^3-12*x,-1/4*x^5+9/2*x^3-22*x]]];

f[344,2]=[
[x, [-1,-1], [0,0,-2,-2,1,-1,-7,-6,9,4,1,-4,-11,1,0,11,12,0,7,-10,-4,-8,-3,6,3]],
[x^2+2*x-2, [1,1], [0,x,-x-2,-x-2,-3,-3,2*x+5,2*x-2,-1,3*x+4,-5,-2*x,4*x+7,-1,-6*x-6,-2*x-1,-4*x-6,-x-12,-4*x-5,2*x+2,3*x+8,-4*x+6,8*x+11,-3*x+2,-2*x-9]],
[x^3-3*x^2-x+4, [1,-1], [0,x,-x^2+2*x+2,2,-x^2-x+5,3*x^2-5*x-5,-x^2+1,x^2-2*x+2,2*x^2-3*x-3,-2*x^2+3*x+4,-3*x^2+4*x+9,2*x^2-7*x,2*x^2-3*x-7,1,-2*x^2+7*x+4,x^2+3*x-9,2*x^2-6*x-4,-2*x^2-2*x+12,-x^2+7*x-5,4*x^2-8*x-10,-2*x^2+6*x,-x^2-2*x+8,x^2+3*x-7,2*x^2-4*x-14,2*x^2-9*x-1]],
[x^5+x^4-13*x^3-8*x^2+42*x+8, [-1,1], [0,x,x^3-7*x+2,-x^3-x^2+7*x+4,-1/2*x^4+1/2*x^3+9/2*x^2-4*x-4,1/2*x^4-1/2*x^3-9/2*x^2+4*x+6,-1/2*x^4-1/2*x^3+7/2*x^2+2*x+2,x^2-4,-1/2*x^4+1/2*x^3+7/2*x^2-6*x,x^4+x^3-7*x^2-5*x+2,-1/2*x^4-1/2*x^3+7/2*x^2,x^3-x^2-6*x+6,1/2*x^4+3/2*x^3-3/2*x^2-10*x-6,-1,-x^3-x^2+6*x,-1/2*x^4-3/2*x^3+9/2*x^2+10*x-10,x^4+x^3-5*x^2-4*x-12,x^3+3*x^2-5*x-14,1/2*x^4-5/2*x^3-9/2*x^2+20*x+4,x^4-x^3-11*x^2+6*x+16,x^3-x^2-9*x+6,3*x^2+2*x-16,-3/2*x^4-5/2*x^3+23/2*x^2+12*x-12,-x^4+8*x^2-3*x-2,1/2*x^4-1/2*x^3-3/2*x^2+8*x-6]]];

f[345,2]=[
[x+1, [1,1,-1], [0,-1,-1,1,4,0,5,0,1,5,3,-5,3,-4,6,-3,9,10,-7,7,-12,8,-1,16,-6]],
[x-2, [1,-1,1], [2,-1,1,3,2,-2,5,-2,-1,-5,3,-7,-11,-8,8,5,-1,-8,-9,1,10,0,15,0,-10]],
[x-1, [-1,1,1], [1,1,-1,4,4,6,-2,-4,-1,-10,-8,2,2,-8,0,-6,0,6,8,-4,10,16,-12,-10,-10]],
[x+1, [-1,1,1], [-1,1,-1,4,-4,-2,6,8,-1,6,8,6,-6,-8,-8,2,-4,-10,8,0,-6,-4,-12,6,-14]],
[x-1, [-1,1,-1], [0,1,-1,-3,-4,0,-3,-8,1,9,-5,-9,7,4,-2,13,-3,-14,13,-13,-4,0,-1,-8,10]],
[x+2, [-1,-1,1], [-2,1,1,-5,-2,-6,1,2,-1,-1,-5,-7,-7,-8,-12,9,3,12,-1,5,-2,-8,3,8,14]],
[x^2-2, [1,1,1], [x,-1,-1,-2*x-1,-x-4,-x+2,5*x+1,3*x-2,-1,-x-5,-2*x-7,3,x-9,6,-x-10,-3*x+3,7*x+3,-x+4,6*x-3,-7*x-1,3*x-6,8*x-4,-5*x+7,-10*x-4,-2*x-4]],
[x^2+2*x-2, [1,-1,-1], [x,-1,1,-3,x,-3*x-2,-x-5,-x-6,1,x-1,4*x+1,4*x+9,x-1,2*x-6,-5*x-6,x-3,-3*x-1,7*x+8,2*x-1,x-1,5*x+6,-4*x-4,x-11,2*x+8,-4]],
[x^2-6, [-1,1,1], [x,1,-1,-1,-x,-x+2,x-3,-x+2,-1,-3*x+3,2*x+5,-2*x-1,-x+3,2,-x+6,x+3,-3*x+3,3*x+8,-7,3*x+3,3*x+2,-4,-5*x+3,2*x-12,2*x+8]],
[x^3+x^2-4*x-2, [-1,-1,-1], [x,1,1,x^2-1,-x^2-x+2,-x^2-x+4,-x-1,-x^2+x+4,1,3*x-1,-x^2-2*x+3,-x^2+3,4*x^2-x-13,-2*x+6,-x^2-3*x,-3*x-3,-2*x^2+3*x+3,-x^2+x+2,x^2+6*x-3,2*x^2-x-9,-5*x^2-x+12,4*x^2+4*x-12,2*x^2+x-3,4*x^2+6*x-8,6*x^2+4*x-12]]];

f[346,2]=[
[x-1, [-1,1], [1,1,-1,4,4,-6,-4,5,5,8,-7,-2,-5,-10,-3,-1,9,-15,-8,4,1,16,6,-6,-8]],
[x+1, [-1,-1], [1,-1,-3,-2,-4,0,-2,7,-3,-4,-7,-4,3,6,9,-3,-9,3,2,-12,-7,10,6,-10,-6]],
[x^3-x^2-6*x+4, [1,-1], [-1,x,-1/2*x^2+1/2*x+2,-1/2*x^2+1/2*x+1,4,-x^2+x+4,x^2+x-4,2*x^2-x-8,-x^2-2*x+8,-x^2-x+8,-x^2+6,-2,-1/2*x^2+1/2*x+8,-3/2*x^2-5/2*x+9,x+2,5/2*x^2-7/2*x-13,2*x^2+x-10,3/2*x^2+7/2*x-15,-1/2*x^2-9/2*x,-1/2*x^2+3/2*x-2,5/2*x^2-3/2*x-15,-9/2*x^2+3/2*x+14,1/2*x^2-3/2*x,-1/2*x^2-3/2*x+5,3*x^2-3*x-18]],
[x^4+2*x^3-5*x^2-5*x-1, [1,1], [-1,x,-3*x^3-5*x^2+16*x+7,5*x^3+8*x^2-29*x-14,3*x^3+4*x^2-18*x-9,-3*x^3-4*x^2+17*x+6,-2*x^3-4*x^2+10*x+6,-2*x^3-3*x^2+12*x+2,-3*x^3-3*x^2+20*x+3,-x^3-x^2+9*x-3,7*x^3+11*x^2-36*x-17,-5*x^3-9*x^2+25*x+17,2*x^3+5*x^2-12*x-16,-6*x^3-10*x^2+32*x+14,5*x^3+7*x^2-30*x-9,x^3+x^2-4*x+1,-10*x^3-14*x^2+59*x+22,3*x^3+3*x^2-18*x-3,-8*x^3-14*x^2+42*x+22,x^3+2*x^2-7*x-12,16*x^3+27*x^2-88*x-42,3*x^3+3*x^2-17*x-3,10*x^3+14*x^2-56*x-18,7*x^3+9*x^2-45*x-13,-2*x^3-2*x^2+16*x+6]],
[x^5+3*x^4-8*x^3-21*x^2+18*x+28, [-1,1], [1,x,-1/2*x^4-1/2*x^3+3*x^2+1/2*x,1/2*x^4+1/2*x^3-4*x^2-3/2*x+5,x^2-4,x^3+2*x^2-5*x-4,x^4+x^3-8*x^2-3*x+12,-x^4-x^3+7*x^2+x-8,2*x^3+4*x^2-10*x-12,-2*x^3-4*x^2+9*x+12,-2*x^3-4*x^2+10*x+10,-x^4-x^3+8*x^2+2*x-10,1/2*x^4-3/2*x^3-6*x^2+19/2*x+10,-1/2*x^4-3/2*x^3+2*x^2+17/2*x-1,x^4+x^3-6*x^2-x+2,3/2*x^4+1/2*x^3-12*x^2+9/2*x+15,-2*x^3-2*x^2+11*x+2,1/2*x^4-1/2*x^3-2*x^2+15/2*x-3,3/2*x^4+7/2*x^3-9*x^2-27/2*x+6,-1/2*x^4+5/2*x^3+11*x^2-25/2*x-28,1/2*x^4+3/2*x^3-3*x^2-9/2*x+3,-1/2*x^4-1/2*x^3+5*x^2-1/2*x-12,-3/2*x^4-3/2*x^3+13*x^2+15/2*x-22,-1/2*x^4+5/2*x^3+6*x^2-33/2*x-1,x^4+3*x^3-4*x^2-13*x-2]]];

f[347,2]=[
[x+2, [1], [-2,1,0,-2,-3,-2,4,-4,4,-9,8,-12,8,-7,-10,-6,8,5,-11,12,7,10,9,1,16]],
[x^2+x-1, [1], [1,x,-2*x-2,-2,-x+1,x-3,6*x+2,2*x+4,2*x-4,-3*x,-7*x-4,-2*x+4,0,-5*x-8,2*x-6,x-4,-x+8,x-7,x-5,-11*x-1,-11*x-8,6*x+8,5*x+3,12*x+2,2]],
[x^7+2*x^6-7*x^5-15*x^4+6*x^3+22*x^2+9*x+1, [1], [x,-x^6-3*x^5+7*x^4+23*x^3-7*x^2-35*x-8,-x^6-x^5+8*x^4+7*x^3-13*x^2-10*x-1,7*x^6+13*x^5-52*x^4-98*x^3+64*x^2+147*x+31,x^6+x^5-8*x^4-7*x^3+14*x^2+8*x-3,-7*x^6-12*x^5+52*x^4+89*x^3-65*x^2-130*x-30,9*x^6+17*x^5-66*x^4-128*x^3+78*x^2+192*x+41,-9*x^6-15*x^5+68*x^4+113*x^3-89*x^2-171*x-36,-11*x^6-17*x^5+82*x^4+126*x^3-103*x^2-184*x-40,-9*x^6-16*x^5+66*x^4+120*x^3-79*x^2-181*x-38,-7*x^6-11*x^5+52*x^4+83*x^3-64*x^2-125*x-30,3*x^6+7*x^5-22*x^4-53*x^3+25*x^2+79*x+13,10*x^6+14*x^5-77*x^4-104*x^3+108*x^2+156*x+26,6*x^6+8*x^5-44*x^4-58*x^3+52*x^2+85*x+25,-2*x^6-3*x^5+15*x^4+22*x^3-22*x^2-31*x+5,13*x^6+17*x^5-99*x^4-126*x^3+136*x^2+189*x+32,2*x^6+2*x^5-15*x^4-14*x^3+20*x^2+18*x,-6*x^6-9*x^5+46*x^4+68*x^3-64*x^2-103*x-20,-19*x^6-36*x^5+140*x^4+269*x^3-170*x^2-398*x-81,19*x^6+32*x^5-141*x^4-239*x^3+174*x^2+358*x+79,24*x^6+36*x^5-180*x^4-267*x^3+233*x^2+393*x+74,5*x^6+14*x^5-37*x^4-108*x^3+44*x^2+163*x+30,-12*x^6-16*x^5+93*x^4+119*x^3-136*x^2-182*x-21,-5*x^6-12*x^5+37*x^4+92*x^3-45*x^2-139*x-24,-9*x^6-14*x^5+67*x^4+104*x^3-84*x^2-152*x-43]],
[x^19-30*x^17+x^16+374*x^15-21*x^14-2509*x^13+166*x^12+9794*x^11-586*x^10-22435*x^9+749*x^8+28885*x^7+329*x^6-18752*x^5-878*x^4+4788*x^3-64*x^2-352*x+32, [-1], [x,2368973/4704816*x^18+1050541/1176204*x^17-31607009/2352408*x^16-36697577/1568272*x^15+339797849/2352408*x^14+1165084067/4704816*x^13-3751578757/4704816*x^12-1061167243/784136*x^11+5581476023/2352408*x^10+3170767733/784136*x^9-16906363175/4704816*x^8-10048243833/1568272*x^7+10241331209/4704816*x^6+22186663277/4704816*x^5-7109191/98017*x^4-2643825137/2352408*x^3-39417161/1176204*x^2+13783403/196034*x-855884/294051,-980543/1176204*x^18-1785727/1176204*x^17+6561631/294051*x^16+15589663/392068*x^15-283700599/1176204*x^14-494801387/1176204*x^13+790733963/588102*x^12+901585957/392068*x^11-1199040037/294051*x^10-674954441/98017*x^9+7585353371/1176204*x^8+2155488049/196034*x^7-1318656575/294051*x^6-4877268607/588102*x^5+327508265/392068*x^4+1268626007/588102*x^3-77888231/588102*x^2-14544684/98017*x+4691882/294051,254717/392068*x^18+110486/98017*x^17-3410281/196034*x^16-11527033/392068*x^15+18437081/98017*x^14+121308673/392068*x^13-411259833/392068*x^12-329234001/196034*x^11+311975523/98017*x^10+976357683/196034*x^9-1974765875/392068*x^8-3073671159/392068*x^7+1370183785/392068*x^6+2261308991/392068*x^5-60115173/98017*x^4-137696806/98017*x^3+6349214/98017*x^2+8587867/98017*x-682804/98017,522269/4704816*x^18+671615/2352408*x^17-6584189/2352408*x^16-11725677/1568272*x^15+32694409/1176204*x^14+371742047/4704816*x^13-639471631/4704816*x^12-168802541/392068*x^11+764712737/2352408*x^10+1002908423/784136*x^9-1284114683/4704816*x^8-3135543555/1568272*x^7-968651485/4704816*x^6+6656149319/4704816*x^5+288043943/784136*x^4-676439837/2352408*x^3-30767191/588102*x^2+1105024/98017*x+534685/294051,642419/4704816*x^18+434591/2352408*x^17-8711789/2352408*x^16-7419763/1568272*x^15+24019073/588102*x^14+229515917/4704816*x^13-1107152677/4704816*x^12-101525541/392068*x^11+1781542433/2352408*x^10+588817265/784136*x^9-6350978021/4704816*x^8-1824770561/1568272*x^7+5887629269/4704816*x^6+4077327977/4704816*x^5-443678627/784136*x^4-559454345/2352408*x^3+42697672/294051*x^2+4280313/196034*x-2624813/294051,-1498825/784136*x^18-338257/98017*x^17+20033323/392068*x^16+70906555/784136*x^15-216116265/392068*x^14-750681383/784136*x^13+2402147597/784136*x^12+2053493701/392068*x^11-3624129799/392068*x^10-6154392763/392068*x^9+11350532611/784136*x^8+19657542371/784136*x^7-7681463365/784136*x^6-14785685709/784136*x^5+151360905/98017*x^4+1897351113/392068*x^3-39234841/196034*x^2-32586531/98017*x+3020132/98017,885827/2352408*x^18+645773/1176204*x^17-12083705/1176204*x^16-11100075/784136*x^15+67088227/588102*x^14+345952373/2352408*x^13-1556862025/2352408*x^12-77162807/98017*x^11+2515379201/1176204*x^10+903435069/392068*x^9-8900138933/2352408*x^8-2828110589/784136*x^7+7858218881/2352408*x^6+6390223949/2352408*x^5-484112597/392068*x^4-881852441/1176204*x^3+54226883/294051*x^2+5216536/98017*x-2163100/294051,1633939/2352408*x^18+1387231/1176204*x^17-22102117/1176204*x^16-24276151/784136*x^15+121167269/588102*x^14+773091889/2352408*x^13-2756723237/2352408*x^12-353929127/196034*x^11+4310944543/1176204*x^10+2136084749/392068*x^9-14389040821/2352408*x^8-6910605289/784136*x^7+11276922925/2352408*x^6+16048723549/2352408*x^5-523837543/392068*x^4-2238258211/1176204*x^3+53348137/294051*x^2+13933767/98017*x-2191166/294051,-103549/98017*x^18-1582691/784136*x^17+10993967/392068*x^16+20740781/392068*x^15-234989867/784136*x^14-54916076/98017*x^13+1288844691/784136*x^12+2405153509/784136*x^11-476214844/98017*x^10-3608361961/392068*x^9+2869994205/392068*x^8+11548481693/784136*x^7-3492293489/784136*x^6-8715714161/784136*x^5+184015687/784136*x^4+1126014055/392068*x^3+4623933/392068*x^2-19454680/98017*x+1042728/98017,-1381283/4704816*x^18-1049771/2352408*x^17+18742649/2352408*x^16+18129915/1568272*x^15-25803286/294051*x^14-568069157/4704816*x^13+2365173301/4704816*x^12+254992049/392068*x^11-3745660505/2352408*x^10-1504251917/784136*x^9+12813708581/4704816*x^8+4757379401/1568272*x^7-10612637621/4704816*x^6-10929534929/4704816*x^5+571544015/784136*x^4+1597943177/2352408*x^3-62284679/588102*x^2-14333625/196034*x+2401052/294051,-5198741/2352408*x^18-4467947/1176204*x^17+69848393/1176204*x^16+78016097/784136*x^15-189648692/294051*x^14-2476258475/2352408*x^13+8510674255/2352408*x^12+1127823451/196034*x^11-13025013023/1176204*x^10-6749660287/392068*x^9+41875368971/2352408*x^8+21510548411/784136*x^7-30292526291/2352408*x^6-48406564283/2352408*x^5+1118317889/392068*x^4+6203522903/1176204*x^3-140150756/294051*x^2-36708983/98017*x+13391446/294051,-2793545/784136*x^18-641273/98017*x^17+37305901/392068*x^16+134658063/784136*x^15-401882027/392068*x^14-1428358551/784136*x^13+4456734461/784136*x^12+3915959271/392068*x^11-6697957435/392068*x^10-11768138795/392068*x^9+20824607731/784136*x^8+37726734611/784136*x^7-13834054377/784136*x^6-28551799013/784136*x^5+489873723/196034*x^4+3724807885/392068*x^3-63028639/196034*x^2-66101650/98017*x+5499334/98017,3376003/2352408*x^18+5849555/2352408*x^17-22753283/588102*x^16-51184965/784136*x^15+993161861/2352408*x^14+1629528253/2352408*x^13-2805899581/1176204*x^12-2981214573/784136*x^11+8693084161/1176204*x^10+2244032529/196034*x^9-28609733515/2352408*x^8-7222891217/392068*x^7+5490449947/588102*x^6+4142148578/294051*x^5-2048584865/784136*x^4-2237975003/588102*x^3+619904953/1176204*x^2+28660877/98017*x-12863060/294051,3091583/1176204*x^18+1461784/294051*x^17-20597380/294051*x^16-51146957/392068*x^15+221227228/294051*x^14+1626848933/1176204*x^13-4884996127/1176204*x^12-742779412/98017*x^11+7286774585/588102*x^10+4458587991/196034*x^9-22309212977/1176204*x^8-14261365059/392068*x^7+14168509277/1176204*x^6+32242410095/1176204*x^5-231161141/196034*x^4-4169785517/588102*x^3+38597017/294051*x^2+50358429/98017*x-13392566/294051,-16187045/4704816*x^18-14824751/2352408*x^17+216183611/2352408*x^16+259116373/1568272*x^15-1164328453/1176204*x^14-8231851331/4704816*x^13+25810939927/4704816*x^12+938025940/98017*x^11-38729407271/2352408*x^10-22465477527/784136*x^9+119844703787/4704816*x^8+71563497075/1568272*x^7-78252236159/4704816*x^6-160475539379/4704816*x^5+1595708911/784136*x^4+20233761587/2352408*x^3-65683015/294051*x^2-114732851/196034*x+14950676/294051,4420523/4704816*x^18+3958067/2352408*x^17-59160305/2352408*x^16-69272211/1568272*x^15+79858177/294051*x^14+2204269085/4704816*x^13-7104401005/4704816*x^12-1006640745/392068*x^11+10710153593/2352408*x^10+6039852853/784136*x^9-33405407213/4704816*x^8-19274414161/1568272*x^7+22216642061/4704816*x^6+43201455113/4704816*x^5-494024847/784136*x^4-5368873601/2352408*x^3+17980163/588102*x^2+27303093/196034*x-1277924/294051,8701955/4704816*x^18+7777325/2352408*x^17-116308043/2352408*x^16-135570411/1568272*x^15+627472255/1176204*x^14+4294550489/4704816*x^13-13958555785/4704816*x^12-1951748237/392068*x^11+21100640771/2352408*x^10+11655709513/784136*x^9-66433750277/4704816*x^8-37085384085/1568272*x^7+45677330453/4704816*x^6+83440347977/4704816*x^5-1297188643/784136*x^4-10722963047/2352408*x^3+109060889/588102*x^2+30692281/98017*x-6650225/294051,546545/1176204*x^18+977011/1176204*x^17-14573281/1176204*x^16-8544053/392068*x^15+156614575/1176204*x^14+135928183/588102*x^13-432549893/588102*x^12-124251197/98017*x^11+2582466757/1176204*x^10+747168095/196034*x^9-3953688791/1176204*x^8-1198035583/196034*x^7+2498236733/1176204*x^6+5434319963/1176204*x^5-33623815/196034*x^4-1405104175/1176204*x^3-8283193/588102*x^2+13777631/196034*x-652148/294051,17283385/4704816*x^18+15681181/2352408*x^17-231337567/2352408*x^16-274551713/1568272*x^15+312405872/294051*x^14+8742494143/4704816*x^13-27816625631/4704816*x^12-3997589867/392068*x^11+42005817415/2352408*x^10+24042150091/784136*x^9-131522558527/4704816*x^8-77085516595/1568272*x^7+88664195311/4704816*x^6+174749027443/4704816*x^5-2285134521/784136*x^4-22600586215/2352408*x^3+121411241/294051*x^2+129904833/196034*x-18854971/294051,1727336/294051*x^18+24672563/2352408*x^17-185315479/1176204*x^16-107820739/392068*x^15+4016846243/2352408*x^14+856897634/294051*x^13-22477469747/2352408*x^12-12518584031/784136*x^11+8573613151/294051*x^10+18801945195/392068*x^9-54877639817/1176204*x^8-60321165807/784136*x^7+78632229553/2352408*x^6+137578030177/2352408*x^5-5574268693/784136*x^4-18286320319/1176204*x^3+1364406679/1176204*x^2+111926284/98017*x-34461452/294051,1465067/196034*x^18+1301313/98017*x^17-19624967/98017*x^16-34109444/98017*x^15+424630015/196034*x^14+361268004/98017*x^13-2369310019/196034*x^12-1977714556/98017*x^11+7193594381/196034*x^10+5933536468/98017*x^9-11395771203/196034*x^8-18995309669/196034*x^7+7949872243/196034*x^6+7188777938/98017*x^5-745156197/98017*x^4-3780020721/196034*x^3+113138308/98017*x^2+140697412/98017*x-13855132/98017,5830679/1176204*x^18+10169143/1176204*x^17-156596089/1176204*x^16-88875291/392068*x^15+1700083543/1176204*x^14+706328384/294051*x^13-2384067880/294051*x^12-1289914205/98017*x^11+29211865561/1176204*x^10+7750166085/196034*x^9-47091937397/1176204*x^8-6217272263/98017*x^7+34380941411/1176204*x^6+56731400357/1176204*x^5-1315962711/196034*x^4-15058422967/1176204*x^3+655190477/588102*x^2+179820791/196034*x-31115492/294051,-1298889/392068*x^18-1192107/196034*x^17+17332085/196034*x^16+62443887/392068*x^15-93263049/98017*x^14-660595447/392068*x^13+2065395827/392068*x^12+902500167/98017*x^11-3095249299/196034*x^10-5400061227/196034*x^9+9558589923/392068*x^8+17198175797/392068*x^7-6208695131/392068*x^6-12867402411/392068*x^5+362927091/196034*x^4+1631163595/196034*x^3-17847510/98017*x^2-56022968/98017*x+4241769/98017,-1213441/784136*x^18-235481/98017*x^17+16426909/392068*x^16+49160903/784136*x^15-180227455/392068*x^14-518147783/784136*x^13+2051273837/784136*x^12+1410377299/392068*x^11-3208969663/392068*x^10-4203986363/392068*x^9+10714124531/784136*x^8+13358076763/784136*x^7-8406139841/784136*x^6-10026406517/784136*x^5+592926107/196034*x^4+1296682569/392068*x^3-89054815/196034*x^2-21902788/98017*x+3501326/98017]]];

f[348,2]=[
[x+2, [-1,1,1], [0,-1,-2,1,3,5,-1,6,4,-1,0,8,-10,4,7,-2,6,-8,3,-4,4,6,-14,-7,-2]],
[x, [-1,1,-1], [0,-1,0,-3,-3,-3,1,-4,-2,1,-2,-6,10,0,-3,4,10,-6,3,6,14,4,-18,7,0]],
[x+4, [-1,-1,1], [0,1,-4,-3,-1,-3,-5,4,-6,-1,2,6,6,-12,7,-12,-10,10,-13,-2,14,-8,6,5,0]],
[x-2, [-1,-1,-1], [0,1,2,1,1,-3,-3,2,8,1,-8,0,2,0,5,-2,-6,-12,3,4,-16,-2,-6,3,-6]]];

f[349,2]=[
[x^11+5*x^10-x^9-35*x^8-24*x^7+80*x^6+66*x^5-77*x^4-56*x^3+31*x^2+15*x-4, [1], [x,-3/2*x^10-13/2*x^9+5*x^8+91/2*x^7+7*x^6-205/2*x^5-35/2*x^4+181/2*x^3-11/2*x^2-51/2*x+7,1/2*x^9+3*x^8+2*x^7-33/2*x^6-49/2*x^5+22*x^4+87/2*x^3-7*x^2-39/2*x,5/2*x^10+21/2*x^9-11*x^8-159/2*x^7+2*x^6+401/2*x^5+27/2*x^4-399/2*x^3+27/2*x^2+125/2*x-14,-2*x^10-9*x^9+6*x^8+64*x^7+15*x^6-148*x^5-39*x^4+135*x^3+10*x^2-40*x+2,1/2*x^10+3*x^9+3*x^8-29/2*x^7-65/2*x^6+10*x^5+133/2*x^4+11*x^3-93/2*x^2-5*x+8,1/2*x^10+x^9-7*x^8-27/2*x^7+61/2*x^6+53*x^5-99/2*x^4-66*x^3+53/2*x^2+19*x-3,-7/2*x^9-18*x^8+229/2*x^6+183/2*x^5-217*x^4-369/2*x^3+149*x^2+169/2*x-31,-5/2*x^10-12*x^9+3*x^8+157/2*x^7+95/2*x^6-157*x^5-207/2*x^4+118*x^3+97/2*x^2-26*x-3,5/2*x^9+12*x^8-x^7-145/2*x^6-115/2*x^5+123*x^4+227/2*x^3-73*x^2-95/2*x+13,x^10+6*x^9+4*x^8-36*x^7-58*x^6+57*x^5+135*x^4-19*x^3-97*x^2-6*x+15,5*x^10+20*x^9-27*x^8-158*x^7+40*x^6+427*x^5-54*x^4-467*x^3+88*x^2+164*x-37,-1/2*x^10-x^9+8*x^8+31/2*x^7-79/2*x^6-67*x^5+159/2*x^4+96*x^3-131/2*x^2-37*x+14,1/2*x^10+4*x^9+7*x^8-35/2*x^7-115/2*x^6+x^5+215/2*x^4+40*x^3-119/2*x^2-23*x+6,-x^10-x^9+20*x^8+31*x^7-98*x^6-164*x^5+167*x^4+264*x^3-105*x^2-115*x+20,-9/2*x^10-24*x^9-4*x^8+299/2*x^7+291/2*x^6-269*x^5-585/2*x^4+164*x^3+267/2*x^2-27*x+4,-2*x^10-17/2*x^9+8*x^8+63*x^7+11/2*x^6-303/2*x^5-36*x^4+265/2*x^3+29*x^2-51/2*x-10,-17/2*x^10-77/2*x^9+22*x^8+533/2*x^7+86*x^6-1183/2*x^5-413/2*x^4+1045/2*x^3+121/2*x^2-311/2*x+20,1/2*x^10+6*x^9+16*x^8-41/2*x^7-225/2*x^6-30*x^5+405/2*x^4+103*x^3-225/2*x^2-50*x+11,3*x^10+14*x^9-8*x^8-102*x^7-32*x^6+249*x^5+88*x^4-251*x^3-46*x^2+79*x-2,-x^10-7/2*x^9+9*x^8+36*x^7-51/2*x^6-243/2*x^5+25*x^4+291/2*x^3-11*x^2-107/2*x+9,-3*x^10-12*x^9+18*x^8+101*x^7-30*x^6-288*x^5+29*x^4+313*x^3-46*x^2-98*x+22,-7/2*x^10-27/2*x^9+20*x^8+213/2*x^7-35*x^6-577/2*x^5+93/2*x^4+647/2*x^3-103/2*x^2-245/2*x+13,2*x^10+29/2*x^9+22*x^8-65*x^7-383/2*x^6+33/2*x^5+365*x^4+223/2*x^3-213*x^2-111/2*x+24,19/2*x^10+83/2*x^9-32*x^8-589/2*x^7-42*x^6+1371/2*x^5+213/2*x^4-1297/2*x^3+71/2*x^2+401/2*x-48]],
[x^17-5*x^16-14*x^15+102*x^14+26*x^13-792*x^12+474*x^11+2887*x^10-3021*x^9-4835*x^8+6673*x^7+2880*x^6-5373*x^5-164*x^4+1075*x^3+75*x^2-41*x-4, [-1], [x,715008/3463583*x^16-3971843/3463583*x^15-16588569/6927166*x^14+158865051/6927166*x^13-16523199/3463583*x^12-1193366371/6927166*x^11+1225665635/6927166*x^10+2040760680/3463583*x^9-6331983519/6927166*x^8-2910324614/3463583*x^7+12956859425/6927166*x^6+677682467/3463583*x^5-9771397341/6927166*x^4+1891397865/6927166*x^3+1628902717/6927166*x^2-173708857/6927166*x-26729619/3463583,954477/13854332*x^16-3024095/6927166*x^15-4718181/6927166*x^14+61112781/6927166*x^13-14161207/3463583*x^12-233310948/3463583*x^11+551154783/6927166*x^10+3290717187/13854332*x^9-2682361823/6927166*x^8-5084510469/13854332*x^7+2729699073/3463583*x^6+1087579147/6927166*x^5-8563127797/13854332*x^4+550576315/13854332*x^3+869328429/6927166*x^2+84175177/13854332*x-15215169/3463583,2905513/6927166*x^16-27261015/13854332*x^15-86394221/13854332*x^14+554333223/13854332*x^13+258068317/13854332*x^12-4278239417/13854332*x^11+1871113733/13854332*x^10+15393324859/13854332*x^9-6994671029/6927166*x^8-12444132529/6927166*x^7+31554547335/13854332*x^6+12622965207/13854332*x^5-24549976441/13854332*x^4+466327327/3463583*x^3+4093560537/13854332*x^2-260015547/13854332*x-28163165/3463583,1694339/13854332*x^16-6118499/13854332*x^15-31509881/13854332*x^14+126344463/13854332*x^13+207627961/13854332*x^12-999938265/13854332*x^11-523641917/13854332*x^10+941303368/3463583*x^9+19400320/3463583*x^8-6714025959/13854332*x^7+1333064643/13854332*x^6+4674545327/13854332*x^5-193589442/3463583*x^4-580301749/13854332*x^3-446523973/13854332*x^2-3306351/6927166*x+17995286/3463583,-307079/6927166*x^16+1424408/3463583*x^15-1232279/6927166*x^14-26858856/3463583*x^13+53251971/3463583*x^12+361410325/6927166*x^11-526373679/3463583*x^10-945585989/6927166*x^9+4338299075/6927166*x^8+95570172/3463583*x^7-4039539605/3463583*x^6+1360511433/3463583*x^5+2862527382/3463583*x^4-2663083419/6927166*x^3-763538811/6927166*x^2+225157233/6927166*x+6941920/3463583,2698673/6927166*x^16-28026303/13854332*x^15-70719525/13854332*x^14+566848915/13854332*x^13+41370511/13854332*x^12-4340118953/13854332*x^11+3328381171/13854332*x^10+15411437581/13854332*x^9-4780564465/3463583*x^8-6063387545/3463583*x^7+40761786819/13854332*x^6+11134012511/13854332*x^5-31818363241/13854332*x^4+661217942/3463583*x^3+5784664491/13854332*x^2-242863527/13854332*x-37906728/3463583,1722393/6927166*x^16-5062420/3463583*x^15-9056650/3463583*x^14+202075449/6927166*x^13-39350519/3463583*x^12-756500511/3463583*x^11+1787578417/6927166*x^10+5145409169/6927166*x^9-4406909975/3463583*x^8-3625533762/3463583*x^7+17740728377/6927166*x^6+788880719/3463583*x^5-13201772377/6927166*x^4+1149770855/3463583*x^3+1002861002/3463583*x^2-60560322/3463583*x-13432199/3463583,156980/3463583*x^16+98840/3463583*x^15-10910929/6927166*x^14+179770/3463583*x^13+70797455/3463583*x^12-58578045/6927166*x^11-446773604/3463583*x^10+293662381/3463583*x^9+2887694239/6927166*x^8-2389701929/6927166*x^7-2214032209/3463583*x^6+2149811799/3463583*x^5+2269192643/6927166*x^4-1395873813/3463583*x^3+276497241/6927166*x^2+119625054/3463583*x-17507217/3463583,1673905/6927166*x^16-20021703/13854332*x^15-34790195/13854332*x^14+400465941/13854332*x^13-162675785/13854332*x^12-3005182683/13854332*x^11+3567509397/13854332*x^10+10233474217/13854332*x^9-8801373433/6927166*x^8-3581659405/3463583*x^7+35818086437/13854332*x^6+2481613975/13854332*x^5-27659653187/13854332*x^4+2917526599/6927166*x^3+5154324181/13854332*x^2-876661761/13854332*x-45978824/3463583,-147529/3463583*x^16-637205/6927166*x^15+10695599/6927166*x^14+11943727/6927166*x^13-144759819/6927166*x^12-80093589/6927166*x^11+965194573/6927166*x^10+216690843/6927166*x^9-1702731057/3463583*x^8-68268776/3463583*x^7+6195175011/6927166*x^6-198161953/6927166*x^5-5075046499/6927166*x^4-30972968/3463583*x^3+1310289645/6927166*x^2+217300797/6927166*x-15699373/3463583,-6279271/13854332*x^16+35105987/13854332*x^15+73144699/13854332*x^14-703433505/13854332*x^13+137265359/13854332*x^12+5300866217/13854332*x^11-5301014985/13854332*x^10-9123276643/6927166*x^9+6843001421/3463583*x^8+26518624041/13854332*x^7-55608358727/13854332*x^6-7524469695/13854332*x^5+20408629339/6927166*x^4-7005914249/13854332*x^3-5619508281/13854332*x^2+189779269/6927166*x+11877959/3463583,1363961/13854332*x^16-4979739/13854332*x^15-26990565/13854332*x^14+105966125/13854332*x^13+203787753/13854332*x^12-875928107/13854332*x^11-747581827/13854332*x^10+882546396/3463583*x^9+753393497/6927166*x^8-7108133541/13854332*x^7-2218574917/13854332*x^6+6557829611/13854332*x^5+1473468849/6927166*x^4-2411963665/13854332*x^3-1848917361/13854332*x^2+96921181/3463583*x+40012386/3463583,-8391135/13854332*x^16+19446887/6927166*x^15+62391087/6927166*x^14-196893343/3463583*x^13-186677261/6927166*x^12+3018922223/6927166*x^11-1348543115/6927166*x^10-21456312077/13854332*x^9+10099610347/6927166*x^8+33649809877/13854332*x^7-11412874158/3463583*x^6-7338844533/6927166*x^5+35713401103/13854332*x^4-5218242703/13854332*x^3-1542568327/3463583*x^2+910660981/13854332*x+61923445/3463583,-9464623/13854332*x^16+12140571/3463583*x^15+62636119/6927166*x^14-489786461/6927166*x^13-24974999/3463583*x^12+3732814751/6927166*x^11-1401421315/3463583*x^10-26272251871/13854332*x^9+8144246927/3463583*x^8+40433789675/13854332*x^7-34738498849/6927166*x^6-4160641800/3463583*x^5+53827033059/13854332*x^4-6029332059/13854332*x^3-2351990851/3463583*x^2+257599955/13854332*x+63825787/3463583,2082945/6927166*x^16-3651999/3463583*x^15-38445023/6927166*x^14+74534339/3463583*x^13+124607621/3463583*x^12-1157599371/6927166*x^11-299398085/3463583*x^10+4211216919/6927166*x^9-42800975/6927166*x^8-3483944593/3463583*x^7+874793720/3463583*x^6+1909240752/3463583*x^5-387038122/3463583*x^4+320833793/6927166*x^3-713798943/6927166*x^2-29233303/6927166*x+23789316/3463583,-1403918/3463583*x^16+25992229/13854332*x^15+88763665/13854332*x^14-536947805/13854332*x^13-361153083/13854332*x^12+4247666141/13854332*x^11-895949435/13854332*x^10-15961796579/13854332*x^9+2487582243/3463583*x^8+14170754081/6927166*x^7-23794014241/13854332*x^6-19745719757/13854332*x^5+18600097067/13854332*x^4+1568126181/6927166*x^3-2931456749/13854332*x^2-388948561/13854332*x+17655913/3463583,-2273477/3463583*x^16+11755662/3463583*x^15+60477083/6927166*x^14-474423059/6927166*x^13-28577947/3463583*x^12+3615716645/6927166*x^11-2584012423/6927166*x^10-6355885008/3463583*x^9+15011766307/6927166*x^8+9741318010/3463583*x^7-31446439237/6927166*x^6-3908908352/3463583*x^5+23056212783/6927166*x^4-3028066255/6927166*x^3-3058008037/6927166*x^2+78915445/6927166*x+16298980/3463583,-2279512/3463583*x^16+10244460/3463583*x^15+72482605/6927166*x^14-209621861/3463583*x^13-151803298/3463583*x^12+3266114127/6927166*x^11-311644644/3463583*x^10-5969064628/3463583*x^9+7541712959/6927166*x^8+19941660015/6927166*x^7-8915663319/3463583*x^6-5668436095/3463583*x^5+13072051515/6927166*x^4-218702136/3463583*x^3-1423074363/6927166*x^2+43948675/3463583*x+13403317/3463583,-21340419/13854332*x^16+53563635/6927166*x^15+72996815/3463583*x^14-541041206/3463583*x^13-214570199/6927166*x^12+4132313075/3463583*x^11-5468173193/6927166*x^10-58362761649/13854332*x^9+16615038319/3463583*x^8+90375696819/13854332*x^7-35532786664/3463583*x^6-18959758783/6927166*x^5+107480603389/13854332*x^4-13562608675/13854332*x^3-8348752809/6927166*x^2+1208280193/13854332*x+123280839/3463583,15195707/13854332*x^16-17827597/3463583*x^15-56783508/3463583*x^14+362791958/3463583*x^13+352280615/6927166*x^12-5607057437/6927166*x^11+1151522657/3463583*x^10+40443341743/13854332*x^9-17602533011/6927166*x^8-65730408671/13854332*x^7+39566988823/6927166*x^6+8497951938/3463583*x^5-60322013953/13854332*x^4+4394841329/13854332*x^3+2282737150/3463583*x^2-648833111/13854332*x-76982770/3463583,12970631/13854332*x^16-34746349/6927166*x^15-40988842/3463583*x^14+350042540/3463583*x^13-9428185/6927166*x^12-2660365050/3463583*x^11+4435655101/6927166*x^10+37182024657/13854332*x^9-12211579504/3463583*x^8-55927536567/13854332*x^7+25434299566/3463583*x^6+9756217861/6927166*x^5-76547897317/13854332*x^4+12536072063/13854332*x^3+6013185879/6927166*x^2-1345923517/13854332*x-79694045/3463583,-3735562/3463583*x^16+20341513/3463583*x^15+89861805/6927166*x^14-815655329/6927166*x^13+53951879/3463583*x^12+6151665295/6927166*x^11-5901662885/6927166*x^10-10601331284/3463583*x^9+31230052129/6927166*x^8+15441702116/3463583*x^7-64415409325/6927166*x^6-4393320390/3463583*x^5+48588384885/6927166*x^4-8425020971/6927166*x^3-7849930973/6927166*x^2+749452247/6927166*x+122227523/3463583,3196687/3463583*x^16-32550637/6927166*x^15-85662807/6927166*x^14+329488884/3463583*x^13+87554455/6927166*x^12-5054576391/6927166*x^11+1820361789/3463583*x^10+18019820411/6927166*x^9-10756662107/3463583*x^8-28683745665/6927166*x^7+23087485902/3463583*x^6+14024085243/6927166*x^5-35931366705/6927166*x^4+2064908155/6927166*x^3+6297326731/6927166*x^2-5221024/3463583*x-81431418/3463583,1138929/6927166*x^16-3798716/3463583*x^15-9049605/6927166*x^14+152499669/6927166*x^13-57238459/3463583*x^12-1156334181/6927166*x^11+1702502105/6927166*x^10+4057833345/6927166*x^9-7971544965/6927166*x^8-6328736057/6927166*x^7+16256840095/6927166*x^6+1559869741/3463583*x^5-6640998685/3463583*x^4-16985686/3463583*x^3+3026345969/6927166*x^2+170682295/3463583*x-44257236/3463583]]];

f[350,2]=[
[x+1, [1,1,1], [-1,-1,0,-1,3,-2,-3,-7,0,-6,-4,-8,-9,-8,6,12,12,-10,7,6,-5,14,9,-15,10]],
[x, [1,1,-1], [-1,0,0,1,4,6,-2,0,0,6,8,10,2,-4,-8,2,-8,-14,12,-16,-2,-8,-8,10,-2]],
[x-3, [1,1,-1], [-1,3,0,1,-5,6,1,-3,0,-6,-4,-8,11,8,-2,-4,4,-2,-9,-10,7,-2,-11,-11,10]],
[x-2, [-1,1,1], [1,2,0,-1,0,4,-6,2,0,-6,-4,-2,6,-8,12,-6,-6,8,4,0,-2,8,6,-6,10]],
[x+3, [-1,-1,1], [1,-3,0,-1,-5,-6,-1,-3,0,-6,-4,8,11,-8,2,4,4,-2,9,-10,-7,-2,11,-11,-10]],
[x-1, [-1,-1,-1], [1,1,0,1,3,2,3,-7,0,-6,-4,8,-9,8,-6,-12,12,-10,-7,6,5,14,-9,-15,-10]],
[x^2-6, [1,-1,1], [-1,x,0,-1,2*x,-x+2,2,x+4,-2*x-2,-2*x+2,-2*x+4,2,-2*x-6,2*x+4,-2*x+4,2*x-6,-x-4,x+6,-8,-2*x-6,-2*x-2,-2*x+2,x,-10,-4*x+6]],
[x^2-6, [-1,-1,-1], [1,x,0,1,-2*x,-x-2,-2,-x+4,-2*x+2,2*x+2,2*x+4,-2,2*x-6,2*x-4,-2*x-4,2*x+6,x-4,-x+6,8,2*x-6,-2*x+2,2*x+2,x,-10,-4*x-6]]];

f[351,2]=[
[x^2+x-1, [1,1], [x,0,x-1,-2*x-1,-3*x-4,-1,x-3,5*x+4,3*x-2,-6*x-5,4*x-2,-2*x+3,-2*x-3,7*x,5*x+7,-3*x-7,-2*x+3,10*x+1,-5*x-3,6*x+10,x+5,-7*x-8,-8*x+1,2*x-14,-4*x-4]],
[x^2-x-3, [1,-1], [x,0,-x+3,-1,x,1,-x+3,x-4,-3*x,2*x+3,-4*x+2,-4*x-1,9,x+2,3*x+3,3*x-9,3,2*x+5,5*x-7,-6*x+6,3*x-7,3*x-10,-2*x-3,-2*x+6,8*x-4]],
[x^2-x-1, [-1,1], [x,0,x+1,2*x-1,-3*x+4,-1,x+3,-5*x+4,3*x+2,-6*x+5,-4*x-2,2*x+3,-2*x+3,-7*x,5*x-7,-3*x+7,-2*x-3,-10*x+1,5*x-3,6*x-10,-x+5,7*x-8,-8*x-1,2*x+14,4*x-4]],
[x^2+x-3, [-1,-1], [x,0,-x-3,-1,x,1,-x-3,-x-4,-3*x,2*x-3,4*x+2,4*x-1,-9,-x+2,3*x-3,3*x+9,-3,-2*x+5,-5*x-7,-6*x-6,-3*x-7,-3*x-10,-2*x+3,-2*x-6,-8*x-4]],
[x^4-7*x^2+3, [1,-1], [x,0,-x^3+6*x,2,-2*x,1,2*x,-2*x^2+8,2*x^3-14*x,-2*x^3+10*x,2*x^2-4,2*x^2-4,2*x^3-14*x,-2*x^2+5,3*x^3-18*x,0,x^3-10*x,2*x^2-7,2*x^2-10,x^3-4*x,8,-4,x^3,3*x^3-20*x,2*x^2+2]],
[x^4-9*x^2+19, [-1,1], [x,0,x^3-4*x,-4*x^2+18,-2*x^3+10*x,-1,-2*x,-2*x^2+12,2*x^3-10*x,2*x^3-10*x,2*x^2-4,2*x^2-8,-2*x,2*x^2-11,-x^3+4*x,4*x^3-20*x,-3*x^3+16*x,2*x^2-1,2*x^2-14,-x^3+2*x,-4*x^2+12,-8*x^2+36,-x^3+6*x,-x^3+10*x,10*x^2-38]]];

f[352,2]=[
[x-1, [1,1], [0,-1,1,-4,-1,-2,0,2,-9,4,-5,-9,2,6,4,-6,5,0,13,1,14,10,-14,-13,-19]],
[x+3, [1,1], [0,-1,-3,4,-1,-2,-8,-6,-5,4,-1,3,-6,6,12,-6,-3,0,-11,5,-10,2,2,-5,13]],
[x-1, [1,-1], [0,1,1,4,1,-2,0,-2,9,4,5,-9,2,-6,-4,-6,-5,0,-13,-1,14,-10,14,-13,-19]],
[x-3, [-1,1], [0,3,1,0,-1,-6,-4,6,3,-4,-9,7,-2,6,12,2,9,8,-15,-3,-6,-6,-6,-5,-3]],
[x+3, [-1,-1], [0,1,-3,-4,1,-2,-8,6,5,4,1,3,-6,-6,-12,-6,3,0,11,-5,-10,-2,-2,-5,13]],
[x+3, [-1,-1], [0,-3,1,0,1,-6,-4,-6,-3,-4,9,7,-2,-6,-12,2,-9,8,15,3,-6,6,6,-5,-3]],
[x^2-x-4, [1,-1], [0,x,-x+2,0,1,2,2*x+2,-2*x+4,-3*x,2*x+2,x-8,-3*x+2,-4*x+2,-2*x+4,-4,4*x-2,3*x-8,6*x-6,3*x,3*x+8,-6,-2*x-8,-6*x+4,x-2,3*x-2]],
[x^2+x-4, [-1,1], [0,x,x+2,0,-1,2,-2*x+2,-2*x-4,-3*x,-2*x+2,x+8,3*x+2,4*x+2,-2*x-4,4,-4*x-2,3*x+8,-6*x-6,3*x,3*x-8,-6,-2*x+8,-6*x-4,-x-2,-3*x-2]]];

f[353,2]=[
[x+1, [-1], [-1,2,2,-2,4,2,2,0,4,2,2,2,-2,8,-4,-6,-2,2,2,6,-10,-10,-12,-14,-14]],
[x^3-x^2-6*x+4, [-1], [x,-1/2*x^2+1/2*x+3,-x+1,-x+1,1/2*x^2-1/2*x-1,-1/2*x^2-1/2*x+6,x-5,x+1,-1/2*x^2-3/2*x-1,3/2*x^2-1/2*x-4,-x-3,5/2*x^2-3/2*x-6,x-9,2*x^2-2*x-4,1/2*x^2+5/2*x-6,-1/2*x^2+5/2*x+9,-2*x^2+x+13,-2*x^2+4*x+8,-3/2*x^2+3/2*x+13,5/2*x^2+1/2*x-12,-x^2+7,x^2+1,-1/2*x^2-11/2*x+3,-3/2*x^2-7/2*x+4,-1/2*x^2+3/2*x]],
[x^11+5*x^10-x^9-36*x^8-28*x^7+82*x^6+87*x^5-65*x^4-71*x^3+21*x^2+14*x-4, [1], [x,-5/2*x^10-21/2*x^9+19/2*x^8+77*x^7+15*x^6-177*x^5-153/2*x^4+259/2*x^3+99/2*x^2-39/2*x-3,3*x^10+14*x^9-6*x^8-99*x^7-58*x^6+213*x^5+186*x^4-132*x^3-134*x^2+8*x+17,-2*x^9-8*x^8+9*x^7+59*x^6+x^5-137*x^4-34*x^3+103*x^2+18*x-19,5/2*x^10+25/2*x^9-1/2*x^8-83*x^7-80*x^6+156*x^5+445/2*x^4-117/2*x^3-305/2*x^2-29/2*x+19,5/2*x^10+23/2*x^9-11/2*x^8-82*x^7-46*x^6+178*x^5+303/2*x^4-223/2*x^3-215/2*x^2+17/2*x+12,-5*x^10-26*x^9-x^8+175*x^7+176*x^6-338*x^5-486*x^4+139*x^3+343*x^2+31*x-49,-x^10-8*x^9-12*x^8+47*x^7+125*x^6-59*x^5-314*x^4-43*x^3+241*x^2+53*x-43,-7/2*x^10-39/2*x^9-13/2*x^8+128*x^7+167*x^6-237*x^5-895/2*x^4+169/2*x^3+655/2*x^2+57/2*x-49,1/2*x^10+7/2*x^9+5/2*x^8-25*x^7-37*x^6+55*x^5+193/2*x^4-73/2*x^3-133/2*x^2+7/2*x+4,2*x^10+13*x^9+12*x^8-78*x^7-153*x^6+112*x^5+379*x^4+25*x^3-271*x^2-50*x+41,-17/2*x^10-81/2*x^9+27/2*x^8+284*x^7+190*x^6-602*x^5-1163/2*x^4+731/2*x^3+809/2*x^2-61/2*x-48,-2*x^9-9*x^8+7*x^7+68*x^6+17*x^5-162*x^4-70*x^3+125*x^2+37*x-21,4*x^10+15*x^9-24*x^8-120*x^7+38*x^6+317*x^5-12*x^4-305*x^3+9*x^2+86*x-12,3/2*x^10+29/2*x^9+57/2*x^8-80*x^7-265*x^6+73*x^5+1301/2*x^4+281/2*x^3-987/2*x^2-243/2*x+82,-9/2*x^10-35/2*x^9+45/2*x^8+132*x^7-13*x^6-317*x^5-77/2*x^4+515/2*x^3-9/2*x^2-123/2*x+19,2*x^10+14*x^9+15*x^8-84*x^7-175*x^6+116*x^5+424*x^4+47*x^3-289*x^2-70*x+41,4*x^10+16*x^9-19*x^8-120*x^7+6*x^6+285*x^5+45*x^4-220*x^3-14*x^2+36*x-4,-9/2*x^10-43/2*x^9+15/2*x^8+151*x^7+96*x^6-318*x^5-571/2*x^4+363/2*x^3+357/2*x^2-13/2*x-21,9/2*x^10+43/2*x^9-13/2*x^8-151*x^7-108*x^6+322*x^5+667/2*x^4-407/2*x^3-487/2*x^2+51/2*x+34,-x^10-5*x^9+32*x^7+30*x^6-57*x^5-73*x^4+17*x^3+41*x^2+10*x-9,x^10+11*x^9+25*x^8-59*x^7-223*x^6+49*x^5+553*x^4+105*x^3-441*x^2-83*x+77,-23/2*x^10-113/2*x^9+23/2*x^8+391*x^7+307*x^6-804*x^5-1813/2*x^4+867/2*x^3+1293/2*x^2+9/2*x-81,11/2*x^10+47/2*x^9-37/2*x^8-167*x^7-48*x^6+358*x^5+391/2*x^4-423/2*x^3-247/2*x^2+7/2*x+14,-3/2*x^10+1/2*x^9+67/2*x^8+18*x^7-196*x^6-129*x^5+865/2*x^4+485/2*x^3-673/2*x^2-229/2*x+60]],
[x^14-4*x^13-14*x^12+71*x^11+47*x^10-452*x^9+101*x^8+1251*x^7-740*x^6-1488*x^5+1096*x^4+600*x^3-410*x^2-42*x-1, [-1], [x,1/8*x^13-7/8*x^12-9/8*x^11+65/4*x^10-55/8*x^9-855/8*x^8+405/4*x^7+2405/8*x^6-2763/8*x^5-2871/8*x^4+3453/8*x^3+1145/8*x^2-1245/8*x-75/8,7/4*x^13-25/4*x^12-103/4*x^11+221/2*x^10+415/4*x^9-2793/4*x^8+89/2*x^7+7619/4*x^6-3777/4*x^5-8801/4*x^4+6115/4*x^3+3263/4*x^2-2347/4*x-121/4,3/8*x^13-13/8*x^12-39/8*x^11+113/4*x^10+99/8*x^9-1409/8*x^8+253/4*x^7+3815/8*x^6-2637/8*x^5-4409/8*x^4+3663/8*x^3+1667/8*x^2-1371/8*x-53/8,-1/2*x^13+3/2*x^12+15/2*x^11-25*x^10-71/2*x^9+299/2*x^8+41*x^7-777/2*x^6+191/2*x^5+853/2*x^4-443/2*x^3-293/2*x^2+191/2*x+9/2,5/4*x^13-15/4*x^12-81/4*x^11+135/2*x^10+417/4*x^9-1735/4*x^8-287/2*x^7+4805/4*x^6-927/4*x^5-5623/4*x^4+2489/4*x^3+2093/4*x^2-1073/4*x-59/4,-1/2*x^12+x^11+17/2*x^10-33/2*x^9-52*x^8+195/2*x^7+277/2*x^6-250*x^5-309/2*x^4+271*x^3+101/2*x^2-90*x+1/2,11/4*x^13-39/4*x^12-163/4*x^11+173*x^10+669/4*x^9-4393/4*x^8+49*x^7+12061/4*x^6-5777/4*x^5-14059/4*x^4+9519/4*x^3+5281/4*x^2-3703/4*x-183/4,3/4*x^13-17/4*x^12-31/4*x^11+149/2*x^10-41/4*x^9-1881/4*x^8+693/2*x^7+5191/4*x^6-5029/4*x^5-6165/4*x^4+6355/4*x^3+2427/4*x^2-2251/4*x-117/4,3/2*x^13-33/4*x^12-16*x^11+581/4*x^10-59/4*x^9-1835/2*x^8+2693/4*x^7+10073/4*x^6-4993/2*x^5-11805/4*x^4+3200*x^3+4521/4*x^2-2311/2*x-211/4,7/8*x^13-25/8*x^12-107/8*x^11+229/4*x^10+447/8*x^9-2973/8*x^8+85/4*x^7+8219/8*x^6-4081/8*x^5-9429/8*x^4+6651/8*x^3+3271/8*x^2-2543/8*x-65/8,-7/4*x^13+27/4*x^12+99/4*x^11-119*x^10-349/4*x^9+3001/4*x^8-142*x^7-8173/4*x^6+4777/4*x^5+9419/4*x^4-7207/4*x^3-3465/4*x^2+2743/4*x+123/4,3/4*x^13-5/2*x^12-45/4*x^11+173/4*x^10+51*x^9-1077/4*x^8-147/4*x^7+733*x^6-897/4*x^5-1727/2*x^4+1701/4*x^3+349*x^2-667/4*x-20,-11/4*x^13+51/4*x^12+139/4*x^11-226*x^10-253/4*x^9+5737/4*x^8-692*x^7-15765/4*x^6+12609/4*x^5+18419/4*x^4-17111/4*x^3-6965/4*x^2+6267/4*x+299/4,-1/4*x^13+9/4*x^12+5/4*x^11-40*x^10+109/4*x^9+1019/4*x^8-265*x^7-2811/4*x^6+3251/4*x^5+3289/4*x^4-3837/4*x^3-1243/4*x^2+1341/4*x+73/4,-13/4*x^13+47/4*x^12+189/4*x^11-413/2*x^10-745/4*x^9+5199/4*x^8-211/2*x^7-14169/4*x^6+7159/4*x^5+16383/4*x^4-11489/4*x^3-6069/4*x^2+4433/4*x+203/4,45/8*x^13-151/8*x^12-677/8*x^11+1323/4*x^10+2985/8*x^9-16603/8*x^8-553/4*x^7+45085/8*x^6-17879/8*x^5-51847/8*x^4+32057/8*x^3+18977/8*x^2-12737/8*x-619/8,-13/4*x^13+23/2*x^12+191/4*x^11-807/4*x^10-196*x^9+5075/4*x^8-159/4*x^7-3461*x^6+6419/4*x^5+8041/2*x^4-10615/4*x^3-1517*x^2+4105/4*x+57,-21/8*x^13+79/8*x^12+309/8*x^11-715/4*x^10-1169/8*x^9+9219/8*x^8-703/4*x^7-25549/8*x^6+14431/8*x^5+29951/8*x^4-22473/8*x^3-11361/8*x^2+8649/8*x+499/8,-37/8*x^13+139/8*x^12+537/8*x^11-1247/4*x^10-1981/8*x^9+15967/8*x^8-1355/4*x^7-44041/8*x^6+25587/8*x^5+51415/8*x^4-39329/8*x^3-19309/8*x^2+14941/8*x+755/8,-17/4*x^12+15/2*x^11+319/4*x^10-563/4*x^9-530*x^8+3699/4*x^7+6025/4*x^6-2548*x^5-7225/4*x^4+5759/2*x^3+2801/4*x^2-971*x-151/4,-9/8*x^13+27/8*x^12+145/8*x^11-243/4*x^10-733/8*x^9+3119/8*x^8+449/4*x^7-8601/8*x^6+2115/8*x^5+9939/8*x^4-5109/8*x^3-3533/8*x^2+2213/8*x+127/8,-1/2*x^13+2*x^12+15/2*x^11-75/2*x^10-28*x^9+499/2*x^8-85/2*x^7-712*x^6+749/2*x^5+861*x^4-1103/2*x^3-335*x^2+389/2*x+10,-9/2*x^13+35/2*x^12+127/2*x^11-308*x^10-449/2*x^9+3883/2*x^8-351*x^7-10597/2*x^6+6019/2*x^5+12259/2*x^4-9077/2*x^3-4539/2*x^2+3415/2*x+167/2,7*x^13-61/2*x^12-92*x^11+1075/2*x^10+463/2*x^9-3396*x^8+2553/2*x^7+18617/2*x^6-6633*x^5-21721/2*x^4+9240*x^3+8209/2*x^2-3393*x-337/2]]];

f[354,2]=[
[x, [1,1,1], [-1,-1,0,-1,-5,1,1,0,-6,-10,-8,9,-5,3,0,4,-1,6,4,1,0,-3,7,16,-12]],
[x-2, [1,1,-1], [-1,-1,2,0,4,-6,2,4,8,2,8,2,2,0,8,-6,1,10,-8,-12,-14,-16,4,6,2]],
[x, [1,-1,1], [-1,1,0,-1,3,5,-3,8,-6,6,8,5,-9,-1,0,12,-1,-10,-4,-3,-16,5,-9,0,-4]],
[x, [-1,1,1], [1,-1,0,0,4,4,6,-4,-4,0,2,-8,6,4,-4,4,-1,0,-16,-14,2,-8,-4,14,-10]],
[x-4, [-1,1,1], [1,-1,4,0,-4,0,-2,4,4,4,-10,-4,-2,-12,4,0,-1,4,-8,6,-14,8,-4,-18,14]],
[x+4, [-1,1,-1], [1,-1,-4,-1,-3,-1,-7,-4,2,-2,0,7,3,5,12,-8,1,-14,-4,-15,-4,5,1,4,-4]],
[x^2-2*x-10, [1,-1,1], [-1,1,x,4,-2,-x,-2*x+2,-2,-2*x+4,-x-4,x-2,-x,-2*x+6,4,2*x,x-8,-1,-x,2*x-4,x+2,4*x-6,0,-4,2*x,2*x-14]],
[x^3-2*x^2-6*x+8, [-1,-1,-1], [1,1,x,-1/2*x^2-x+3,3/2*x^2-x-7,-1/2*x^2+3,-1/2*x^2+x+1,x^2-2*x-4,-x^2+2,-x^2+x+2,-x^2+x+4,-1/2*x^2+4*x+3,5/2*x^2-x-13,-3/2*x^2+x+5,2*x^2-2*x-12,-2*x^2+x+4,1,x^2-5*x-2,-2*x^2+2*x+12,3/2*x^2-11,-3*x^2-2*x+20,1/2*x^2-3*x-7,1/2*x^2-3*x-3,6*x-4,x^2+4]]];

f[355,2]=[
[x, [-1,1], [0,-2,1,-1,0,5,6,-1,0,-3,2,8,6,2,3,-3,-6,2,-4,-1,-4,-1,6,15,-7]],
[x^4+2*x^3-2*x^2-3*x+1, [1,1], [x,-x^3-x^2+2*x,-1,x^3-4*x+1,x^3+x^2-x-2,2*x^3+5*x^2-2*x-6,-x^3-4*x^2+4,-3*x^3-5*x^2+4*x+2,5*x^2+4*x-9,-x^3-2*x^2+3*x-2,4*x^3+8*x^2-3*x-8,-2*x^3-3*x^2+x+4,-4*x^3-9*x^2+4*x+6,-x^3-6*x^2+x+9,2*x^3+x^2-5*x+2,x^2+5*x-5,-2*x^3+2*x^2+7*x-7,-3*x^3+12*x-6,-2*x^3-x^2+4*x,-1,-11*x^3-15*x^2+18*x+11,-3*x^3-11*x^2-7*x+13,2*x^3+2*x^2-7*x,2*x^3+8*x^2-14,8*x^3+18*x^2-7*x-14]],
[x^4+4*x^3+2*x^2-5*x-3, [-1,-1], [x,-x^3-3*x^2+2,1,x^3+4*x^2+2*x-5,x^3+x^2-5*x-2,2*x^3+5*x^2-4*x-10,-3*x^3-8*x^2+2*x+4,3*x^3+9*x^2-2*x-10,-2*x^3-7*x^2+2*x+9,-x^3-4*x^2-x-2,-4*x^3-8*x^2+9*x+10,-2*x^3-5*x^2+3*x+2,x^2+4*x,3*x^3+8*x^2-3*x-9,-4*x^3-11*x^2+3*x+8,5*x^2+5*x-13,-4*x^2-x+15,5*x^3+10*x^2-8*x-6,2*x^3+7*x^2-2*x-8,1,5*x^3+13*x^2-8*x-21,-3*x^3-9*x^2+5*x+17,-6*x^3-18*x^2+x+20,-6*x^3-12*x^2+16*x+18,-2*x^3-10*x^2-5*x+12]],
[x^6-3*x^5-6*x^4+21*x^3+4*x^2-35*x+16, [-1,1], [x,-x^3+x^2+4*x-2,1,x^3-2*x^2-4*x+7,-x^5+2*x^4+7*x^3-12*x^2-12*x+16,x^4-2*x^3-3*x^2+7*x-3,x^5-2*x^4-7*x^3+11*x^2+11*x-10,-x^5+x^4+9*x^3-8*x^2-20*x+15,-x^5+x^4+10*x^3-8*x^2-24*x+16,x^5-x^4-7*x^3+5*x^2+9*x-3,x^5-2*x^4-8*x^3+11*x^2+18*x-14,-2*x^4+2*x^3+11*x^2-7*x-8,-x^5+6*x^3+4*x^2-5*x-10,-2*x^5+3*x^4+15*x^3-16*x^2-28*x+18,-x^5+3*x^4+4*x^3-14*x^2-3*x+11,x^5-2*x^4-6*x^3+12*x^2+6*x-11,3*x^5-7*x^4-18*x^3+37*x^2+27*x-38,x^5-4*x^4-7*x^3+25*x^2+15*x-30,x^5-2*x^4-4*x^3+8*x^2+x-4,-1,2*x^5-3*x^4-15*x^3+17*x^2+29*x-20,2*x^4-3*x^3-9*x^2+11*x-1,x^5+2*x^4-12*x^3-11*x^2+28*x+6,-x^5+x^4+12*x^3-9*x^2-30*x+15,-x^4+4*x^3-14*x+17]],
[x^8-4*x^7-5*x^6+31*x^5-3*x^4-57*x^3+5*x^2+32*x+8, [1,-1], [x,x^7-3*x^6-6*x^5+21*x^4+3*x^3-28*x^2+2*x+6,-1,-1/2*x^7-x^6+15/2*x^5+17/2*x^4-61/2*x^3-35/2*x^2+61/2*x+13,-x^7+12*x^5+x^4-42*x^3-5*x^2+39*x+12,3/2*x^7-3*x^6-21/2*x^5+39/2*x^4+25/2*x^3-45/2*x^2-5/2*x+5,x^7-3*x^6-5*x^5+21*x^4-5*x^3-30*x^2+13*x+12,-x^7+4*x^6+4*x^5-30*x^4+12*x^3+49*x^2-23*x-19,x^7-3*x^6-7*x^5+22*x^4+10*x^3-33*x^2-6*x+10,x^7+x^6-13*x^5-10*x^4+47*x^3+26*x^2-41*x-17,-x^6+2*x^5+6*x^4-11*x^3-x^2+3*x-6,x^6-x^5-8*x^4+5*x^3+15*x^2-2*x-8,x^7-2*x^6-6*x^5+11*x^4+x^3-3*x^2+6*x-2,2*x^7-5*x^6-13*x^5+35*x^4+8*x^3-48*x^2+15*x+14,3/2*x^7-2*x^6-25/2*x^5+19/2*x^4+55/2*x^3+13/2*x^2-47/2*x-17,-3/2*x^7+3*x^6+23/2*x^5-41/2*x^4-37/2*x^3+51/2*x^2+11/2*x+3,-2*x^6+5*x^5+13*x^4-32*x^3-15*x^2+33*x+14,-3*x^7+5*x^6+25*x^5-31*x^4-55*x^3+24*x^2+47*x+14,-x^7+2*x^6+6*x^5-9*x^4-3*x^3-11*x^2+14,1,-x^7+2*x^6+7*x^5-14*x^4-8*x^3+24*x^2-4*x-20,2*x^7-6*x^6-12*x^5+42*x^4+5*x^3-53*x^2+9*x+5,-5*x^7+13*x^6+29*x^5-87*x^4-2*x^3+106*x^2-36*x-30,-x^7+3*x^6+5*x^5-20*x^4+6*x^3+24*x^2-22*x-9,-1/2*x^7+2*x^6+5/2*x^5-33/2*x^4+3/2*x^3+65/2*x^2-1/2*x-17]]];

f[356,2]=[
[x+1, [-1,-1], [0,-1,-1,0,0,-4,-1,-5,-1,-6,3,-6,2,1,10,9,4,-4,-2,2,7,2,-4,1,1]],

f[357,2]=[
[x+1, [1,1,-1], [0,-1,1,-1,3,3,1,3,7,-6,10,4,-9,9,6,-10,-2,0,-12,-12,6,10,10,-4,8]],
[x-1, [1,-1,-1], [0,-1,1,1,-5,-5,1,-5,-1,-6,-6,4,7,-7,6,6,14,0,-12,4,6,-6,-6,12,8]],
[x-2, [-1,1,1], [2,1,1,-1,1,1,-1,1,-3,-2,0,-6,-1,5,12,0,0,-2,-8,0,6,-4,6,16,-12]],
[x+2, [-1,-1,1], [-2,1,-3,1,-3,1,-1,-7,1,-10,4,-10,3,-11,-8,-4,4,10,-8,8,-2,16,6,-8,-4]],
[x^2-2, [1,1,1], [x,-1,-x-1,-1,1,-x-3,-1,-x-5,2*x-1,-2*x+4,7*x,3*x-4,5*x+3,-2*x-3,-x-4,3*x+2,-3*x-8,-9*x-2,4*x-2,2,-2*x-6,-9*x-2,-6,-2*x+8,-4*x-4]],
[x^2+2*x-2, [-1,1,-1], [x,1,-x-3,-1,-5,3*x+1,1,-3*x-5,-3,4,-x-4,x+4,-x-11,6*x+5,x+4,-5*x-2,3*x,-x-6,-2*x-10,-2*x-2,-2*x-2,-3*x+2,-4*x-10,-6*x-8,8*x+8]],
[x^3-x^2-4*x+2, [-1,-1,-1], [x,1,-x+1,1,-x^2+5,-2*x^2+x+5,1,-x-1,x^2-1,2*x^2-4,-x^2+x-2,3*x^2-x-10,-x+5,x^2-4*x-1,x^2-5*x-2,-5*x^2+5*x+12,3*x^2+x-10,3*x^2-3*x-12,6*x+2,-4*x^2+6*x+10,2*x^2+2*x-14,-x^2-x+4,2*x^2+2,-4*x^2+2*x+8,-2*x^2+4]],
[x^4-2*x^3-5*x^2+8*x+2, [1,-1,1], [x,-1,-x^3+x^2+5*x-3,1,-x^2+2*x+3,x^3-x^2-5*x+3,-1,-x^3+x^2+3*x+1,-2*x^3+x^2+8*x+1,-2*x,x^3+2*x^2-7*x-8,x^3-7*x,x^3-3*x^2-5*x+5,-x^2-2*x+11,x^3+2*x^2-7*x-8,x^3+2*x^2-7*x-2,3*x^3-2*x^2-13*x+4,3*x^3-4*x^2-15*x+10,-2*x^2+14,-2*x^2-4*x+10,-2*x^2+6*x+6,x^3+x-6,-2*x^2+14,-2*x^3+2*x^2+10*x-12,-2*x^3+4*x^2+12*x-12]]];

f[358,2]=[
[x-2, [1,-1], [-1,2,0,-2,5,6,3,-2,2,2,5,-1,-6,-10,5,11,-12,-10,-8,12,8,-10,-2,-1,-2]],
[x+2, [-1,1], [1,-2,0,2,3,2,3,2,6,-6,5,-7,6,-10,-3,-3,0,2,-4,0,-4,-10,6,-9,2]],
[x^2-x-5, [1,-1], [-1,x,3,1,-1,-x-1,-2*x+1,-x-3,-x+1,-2*x+3,-2*x-3,-x+7,x+7,2*x+4,2*x+1,5,2*x+5,4*x-6,-2*x-4,3*x,x,-x-5,-x-3,x+9,-6*x+1]],
[x^2-x-11, [-1,1], [1,-1/3*x+5/3,x,2,-2/3*x-2/3,-1/3*x-16/3,-x+3,1/3*x-5/3,2/3*x-4/3,-1/3*x-7/3,7/3*x+4/3,2/3*x-10/3,-4/3*x-4/3,x-10,8,8,-7/3*x+11/3,1/3*x-5/3,5/3*x-1/3,2*x,-14/3*x+10/3,12,-x+6,-x+2,-2/3*x+28/3]],
[x^2-3*x+1, [-1,1], [1,x,1,-2*x+1,-2*x+5,-x+3,-2*x+1,x+1,5*x-11,-6*x+9,4*x-9,-3*x+5,5*x-13,-2*x+12,-8*x+15,12*x-19,5,4*x-14,10*x-12,-x-4,x-10,-7*x+3,9*x-7,-5*x+15,2*x-5]],
[x^2+3*x+1, [-1,-1], [1,x,-2*x-5,-3,2*x+3,3*x+3,-2*x-7,-3*x-9,3*x+3,3,6*x+11,-7*x-7,-5*x-9,-2*x-4,2*x-5,-2*x-1,-8*x-13,4*x+14,6*x+8,-9*x-18,3*x+6,-9*x-7,x-9,9*x+15,-2*x-5]],
[x^4+2*x^3-7*x^2-8*x-1, [1,1], [-1,x,1/2*x^3+1/2*x^2-9/2*x-3,-x^3-3/2*x^2+13/2*x+7/2,x^3+3/2*x^2-17/2*x-11/2,-x^3-2*x^2+7*x+4,-1/2*x^3-x^2+4*x-1/2,2*x^3+7/2*x^2-27/2*x-17/2,-1/2*x^3+4*x-7/2,-1/2*x^3+7*x-3/2,-1/2*x^3-1/2*x^2+5/2*x+1,1/2*x^3+2*x^2-2*x-17/2,-1/2*x^3-x^2+5*x+3/2,1/2*x^3+x^2-4*x-5/2,-3/2*x^2-3/2*x+1/2,-x^3-3/2*x^2+13/2*x+3/2,-5/2*x^3-5*x^2+16*x+23/2,5/2*x^3+3/2*x^2-43/2*x-5,7/2*x^3+7/2*x^2-55/2*x-8,-3/2*x^3-7/2*x^2+25/2*x+16,5/2*x^3+9/2*x^2-39/2*x-10,-3/2*x^3-3*x^2+15*x+33/2,x^2-2,-2*x^3-2*x^2+13*x+1,2*x^3+3/2*x^2-25/2*x-1/2]]];

f[359,2]=[
[x-1, [1], [1,-2,1,1,-2,-6,-3,-1,0,-4,-1,7,-2,1,0,4,11,2,12,-9,-7,-4,9,-6,-8]],
[x+1, [1], [-1,0,1,-1,-2,0,-3,1,-6,-6,1,-9,6,-5,8,6,5,-4,-4,13,1,-14,15,-2,10]],
[x^4+2*x^3-3*x^2-5*x+1, [1], [x,-x^3-x^2+3*x+1,-x-2,x^3+x^2-3*x-2,x^3+x^2-3*x-1,x^3-3*x,-x^3+x^2+4*x-3,-x^3+4*x-4,-2*x^2-3*x+5,x^3+2*x^2+1,-x^3-3*x^2+2*x+1,-3*x^3-3*x^2+8*x+1,-x^3-3*x^2+4*x+2,2*x^3-8*x+3,3*x^2+4*x-7,x^3+x^2+2,3*x^3-11*x-1,-2*x^3+6*x-6,-x^3-2*x^2-x,-2*x^3+3*x^2+10*x-8,x^2-6*x-10,-3*x^3+12*x+3,-2*x^3-x^2+6*x+2,-3*x^2-6*x+3,-3*x^3-3*x^2+13*x-3]],
[x^24-x^23-39*x^22+38*x^21+658*x^20-619*x^19-6300*x^18+5654*x^17+37740*x^16-31780*x^15-147096*x^14+113400*x^13+376092*x^12-255412*x^11-621508*x^10+349080*x^9+638532*x^8-266744*x^7-378124*x^6+98609*x^5+110695*x^4-14509*x^3-11972*x^2+780*x+381, [-1], [x,-1602259971281292311414/235747603462801695253721*x^23+2535070199865138113860/235747603462801695253721*x^22+58364780315011524436024/235747603462801695253721*x^21-87316532202790041766744/235747603462801695253721*x^20-914060976817924221583118/235747603462801695253721*x^19+1264665868878600575782134/235747603462801695253721*x^18+8088919438943353164191194/235747603462801695253721*x^17-10018516587867869759577110/235747603462801695253721*x^16-44752146629281025763159134/235747603462801695253721*x^15+47225317260747136454940921/235747603462801695253721*x^14+161849990574404999407680046/235747603462801695253721*x^13-134535096935674829898945662/235747603462801695253721*x^12-388545929698346391432449898/235747603462801695253721*x^11+222408874791265956416071774/235747603462801695253721*x^10+613906725607214891686644074/235747603462801695253721*x^9-183651607254654342889069074/235747603462801695253721*x^8-613267952857175869139934302/235747603462801695253721*x^7+28535102178044191495017546/235747603462801695253721*x^6+351940465805991912886831381/235747603462801695253721*x^5+51026380098522174374104544/235747603462801695253721*x^4-93412339482037596682677712/235747603462801695253721*x^3-21883690704068331298381066/235747603462801695253721*x^2+6227221811979044886354542/235747603462801695253721*x+1026953395498779305597052/235747603462801695253721,2845845013662546464739/235747603462801695253721*x^23-2447792018482001570617/235747603462801695253721*x^22-101596799773264261973636/235747603462801695253721*x^21+76404212950225242413899/235747603462801695253721*x^20+1547314517788223949714671/235747603462801695253721*x^19-958236983994120443104695/235747603462801695253721*x^18-13158464440448911424043463/235747603462801695253721*x^17+6045500883849570828566849/235747603462801695253721*x^16+68676383557081059207753001/235747603462801695253721*x^15-18699558052070012014843887/235747603462801695253721*x^14-227537807635293992915686339/235747603462801695253721*x^13+14267359498739287105320709/235747603462801695253721*x^12+477170573176822561669772612/235747603462801695253721*x^11+73651738052628121096722953/235747603462801695253721*x^10-607737947281787201499665289/235747603462801695253721*x^9-210728066092986939219944726/235747603462801695253721*x^8+422157970536179111909121713/235747603462801695253721*x^7+191589646943914323560838765/235747603462801695253721*x^6-123363657169095027209115171/235747603462801695253721*x^5-38101634714152134188816408/235747603462801695253721*x^4+10517562601958539988713856/235747603462801695253721*x^3-10255503074075539732514609/235747603462801695253721*x^2-1342706028625085600442226/235747603462801695253721*x+969740879854942598224584/235747603462801695253721,-3140151164664093291007/235747603462801695253721*x^23+458407022175633631052/235747603462801695253721*x^22+119861803682872242733257/235747603462801695253721*x^21-13204876435189221365070/235747603462801695253721*x^20-1971607964340997034402034/235747603462801695253721*x^19+133775356305913808218979/235747603462801695253721*x^18+18310581440368569048285533/235747603462801695253721*x^17-352867661979863664045897/235747603462801695253721*x^16-105662090233093338945990217/235747603462801695253721*x^15-3726267360428420153376431/235747603462801695253721*x^14+392794100154810843180147811/235747603462801695253721*x^13+37512623181767439350164961/235747603462801695253721*x^12-943599597386818461978694935/235747603462801695253721*x^11-152026494955699155837468431/235747603462801695253721*x^10+1430721336441804888988900597/235747603462801695253721*x^9+330558417519231746815222453/235747603462801695253721*x^8-1298840875371663911768671473/235747603462801695253721*x^7-391342160018673505469509525/235747603462801695253721*x^6+644841998130504491198834599/235747603462801695253721*x^5+231650733011752018906928272/235747603462801695253721*x^4-151714295960640239955706559/235747603462801695253721*x^3-57209110453375976111844952/235747603462801695253721*x^2+11761368072815550434303905/235747603462801695253721*x+3282214419272575620760487/235747603462801695253721,-4975284508894749084208/235747603462801695253721*x^23-1885966507969865227747/235747603462801695253721*x^22+202871705177743937677709/235747603462801695253721*x^21+57657250969201435183432/235747603462801695253721*x^20-3572612192677847926059913/235747603462801695253721*x^19-713445715874446701682734/235747603462801695253721*x^18+35574947430300041328981156/235747603462801695253721*x^17+4544314139729983484447578/235747603462801695253721*x^16-220318208812274214800729346/235747603462801695253721*x^15-15580417016815457449090158/235747603462801695253721*x^14+879668055335024691681716618/235747603462801695253721*x^13+27557935985880445312401597/235747603462801695253721*x^12-2272637286075763627424768130/235747603462801695253721*x^11-28381090590019355374659958/235747603462801695253721*x^10+3717217345612673115843299966/235747603462801695253721*x^9+61193565040696548170447242/235747603462801695253721*x^8-3661787458291825325700175535/235747603462801695253721*x^7-154254833078233761269112182/235747603462801695253721*x^6+1977285409091483549444642116/235747603462801695253721*x^5+159607236095480214549743126/235747603462801695253721*x^4-481041123485813689228832701/235747603462801695253721*x^3-56130468072617860810445281/235747603462801695253721*x^2+29473816041248689534163004/235747603462801695253721*x+3991312265997797979503931/235747603462801695253721,969380424784224618619/235747603462801695253721*x^23+2508674814477409255825/235747603462801695253721*x^22-47373563549591843668231/235747603462801695253721*x^21-76650330316937868506021/235747603462801695253721*x^20+958664243632398123401039/235747603462801695253721*x^19+934340141759355758848092/235747603462801695253721*x^18-10598593469475775120973006/235747603462801695253721*x^17-5634251907961684292013102/235747603462801695253721*x^16+70648362996302155076127230/235747603462801695253721*x^15+15726708240508670322130004/235747603462801695253721*x^14-294320866160295633335209924/235747603462801695253721*x^13-3101983071604815217852166/235747603462801695253721*x^12+766121724422905387651600722/235747603462801695253721*x^11-96123344447668685089673852/235747603462801695253721*x^10-1208216440193682290415559912/235747603462801695253721*x^9+237982646258405001874239702/235747603462801695253721*x^8+1080645208142704411800453810/235747603462801695253721*x^7-229895213862721708873530460/235747603462801695253721*x^6-486411162012764409954826960/235747603462801695253721*x^5+92450869102871749010500757/235747603462801695253721*x^4+86734285593739853642787003/235747603462801695253721*x^3-15179139862623490132348579/235747603462801695253721*x^2-1912808202391911782131331/235747603462801695253721*x+1349430867283171232987307/235747603462801695253721,1226935539412935380411/235747603462801695253721*x^23+710339093451040861244/235747603462801695253721*x^22-53936798745757011839379/235747603462801695253721*x^21-12422068485146042073209/235747603462801695253721*x^20+1009109126046267040560237/235747603462801695253721*x^19-44348423639775077021227/235747603462801695253721*x^18-10514610885417698190710975/235747603462801695253721*x^17+2695673163918660344924097/235747603462801695253721*x^16+67047179365905847495827254/235747603462801695253721*x^15-27808323279642558383678363/235747603462801695253721*x^14-270824395838042963324240285/235747603462801695253721*x^13+141377440654221924821349709/235747603462801695253721*x^12+694441823910634342861030869/235747603462801695253721*x^11-399316425890190401687222595/235747603462801695253721*x^10-1106490195196526962611380283/235747603462801695253721*x^9+622421069816417762037766937/235747603462801695253721*x^8+1051672008818011258645565537/235747603462801695253721*x^7-489970795730752991059191391/235747603462801695253721*x^6-560533574306131466613261535/235747603462801695253721*x^5+155297492049293841296665619/235747603462801695253721*x^4+147448491194926860391712833/235747603462801695253721*x^3-8680229969247209005954480/235747603462801695253721*x^2-13114194300286676686841648/235747603462801695253721*x+137342117541324040006980/235747603462801695253721,3132906211606059146108/235747603462801695253721*x^23-2316440607584288652696/235747603462801695253721*x^22-112363002321496566511478/235747603462801695253721*x^21+75293228610422971927652/235747603462801695253721*x^20+1708241047717295720097946/235747603462801695253721*x^19-1003318220811663381318189/235747603462801695253721*x^18-14313845306829692056826847/235747603462801695253721*x^17+7016663843196431275556381/235747603462801695253721*x^16+71713229883168069549526501/235747603462801695253721*x^15-27081413837494191291771677/235747603462801695253721*x^14-215860651348434912295436771/235747603462801695253721*x^13+53394221155770741408258121/235747603462801695253721*x^12+359261590538118735336197303/235747603462801695253721*x^11-32230362263039155109650519/235747603462801695253721*x^10-212226656694114153670518817/235747603462801695253721*x^9-42323173042070058930349277/235747603462801695253721*x^8-244472294644346629864138639/235747603462801695253721*x^7+31959862418119367283311323/235747603462801695253721*x^6+436205614599061706352426657/235747603462801695253721*x^5+54334087191197771833568967/235747603462801695253721*x^4-185718143424950887458632197/235747603462801695253721*x^3-36566713496360841471609003/235747603462801695253721*x^2+15276374999835375901266105/235747603462801695253721*x+2896389699589039037463155/235747603462801695253721,-8007481616829150437381/235747603462801695253721*x^23+11613482721190777600845/235747603462801695253721*x^22+289701392723987036628302/235747603462801695253721*x^21-401248731215303358631581/235747603462801695253721*x^20-4486393823963106811215041/235747603462801695253721*x^19+5839993412854062908245262/235747603462801695253721*x^18+38977718286113562977157299/235747603462801695253721*x^17-46637103177825787991481308/235747603462801695253721*x^16-209279688303622176527493958/235747603462801695253721*x^15+222896236816119246148619436/235747603462801695253721*x^14+721313709827107229070663632/235747603462801695253721*x^13-651196238550896607172405944/235747603462801695253721*x^12-1605558790714074482613194360/235747603462801695253721*x^11+1133419535573719731283922944/235747603462801695253721*x^10+2262487175760967425579431140/235747603462801695253721*x^9-1071337668270090643766976844/235747603462801695253721*x^8-1918779648456630779719885072/235747603462801695253721*x^7+401434295702202327735210600/235747603462801695253721*x^6+890462212128766721576616556/235747603462801695253721*x^5+68996925157090130186947943/235747603462801695253721*x^4-192293541946776632751471579/235747603462801695253721*x^3-68980296074104200293688683/235747603462801695253721*x^2+12122320403531156876405025/235747603462801695253721*x+5432481783577175799859887/235747603462801695253721,7170120625322846330858/235747603462801695253721*x^23-1386212856534948987802/235747603462801695253721*x^22-274110009309759242378068/235747603462801695253721*x^21+44103296806092678636035/235747603462801695253721*x^20+4511272183774151819767822/235747603462801695253721*x^19-557265354248968200045660/235747603462801695253721*x^18-41838229295844054980847478/235747603462801695253721*x^17+3423682510767356626204610/235747603462801695253721*x^16+240234163513448107193192398/235747603462801695253721*x^15-8777839784940302043077464/235747603462801695253721*x^14-882956383623518392749029388/235747603462801695253721*x^13-10198892997449969117080678/235747603462801695253721*x^12+2073066136755282599044348652/235747603462801695253721*x^11+127013222292952266418695312/235747603462801695253721*x^10-3008026844300244992882660054/235747603462801695253721*x^9-330580038454880555578099646/235747603462801695253721*x^8+2512114811094551084030828064/235747603462801695253721*x^7+376385111899477309071659034/235747603462801695253721*x^6-1067036195853763764677365462/235747603462801695253721*x^5-173406336194099357743220318/235747603462801695253721*x^4+198124723776264061763476066/235747603462801695253721*x^3+28128043670442192471022772/235747603462801695253721*x^2-12973284479176351786394287/235747603462801695253721*x-949274940203121865299962/235747603462801695253721,-2385996073415983603465/235747603462801695253721*x^23+4227699367845585038077/235747603462801695253721*x^22+85424324851987907913385/235747603462801695253721*x^21-150459465494710473005727/235747603462801695253721*x^20-1305967241230098786212422/235747603462801695253721*x^19+2279715821356760447540265/235747603462801695253721*x^18+11168913233940203279924317/235747603462801695253721*x^17-19252837488676839867576819/235747603462801695253721*x^16-58843917327738813497462319/235747603462801695253721*x^15+99697528521153889061657875/235747603462801695253721*x^14+198394997723280728276239375/235747603462801695253721*x^13-328209157169277748197948169/235747603462801695253721*x^12-431024047654340032290253405/235747603462801695253721*x^11+689317515550399824278171479/235747603462801695253721*x^10+592676479180693150158355761/235747603462801695253721*x^9-901922907575765184959821477/235747603462801695253721*x^8-490824150909566281517937361/235747603462801695253721*x^7+693728826073318435820247371/235747603462801695253721*x^6+219792529050451475114006057/235747603462801695253721*x^5-280707169866872188999842798/235747603462801695253721*x^4-42888711894611529348358018/235747603462801695253721*x^3+50216285594171776854027692/235747603462801695253721*x^2+3971635625536463626066562/235747603462801695253721*x-2285143631306209780470923/235747603462801695253721,3088934731749723539896/235747603462801695253721*x^23-321482714671017061641/235747603462801695253721*x^22-97959660641682872955698/235747603462801695253721*x^21-25127168421470219715982/235747603462801695253721*x^20+1251266171278351074391705/235747603462801695253721*x^19+1056636582138654735081873/235747603462801695253721*x^18-7968769555963989194710777/235747603462801695253721*x^17-15806288159763422224504657/235747603462801695253721*x^16+22945155587809380557414583/235747603462801695253721*x^15+123837246162575615999620951/235747603462801695253721*x^14+9655099330712789161176592/235747603462801695253721*x^13-563341276110714875070986485/235747603462801695253721*x^12-285715992802910894120287499/235747603462801695253721*x^11+1518381706496058324536697847/235747603462801695253721*x^10+925647594623738303405857067/235747603462801695253721*x^9-2343934230537184378940934009/235747603462801695253721*x^8-1450447236017787712967037833/235747603462801695253721*x^7+1872538654999416826579831042/235747603462801695253721*x^6+1149205403576493942088453171/235747603462801695253721*x^5-605200701559987502874417381/235747603462801695253721*x^4-368117665398630622628557182/235747603462801695253721*x^3+37089789869633004145736913/235747603462801695253721*x^2+23797100553009974738661971/235747603462801695253721*x+1604632883929891348777728/235747603462801695253721,1686232638571088797555/235747603462801695253721*x^23+8682261462064279630359/235747603462801695253721*x^22-88031495583829520684151/235747603462801695253721*x^21-294419183114172152882406/235747603462801695253721*x^20+1873448745631176489453320/235747603462801695253721*x^19+4202514860534737412335316/235747603462801695253721*x^18-21660538809718493077534960/235747603462801695253721*x^17-32948112795831314514807764/235747603462801695253721*x^16+151198328819984556102331824/235747603462801695253721*x^15+155616355405177131676444676/235747603462801695253721*x^14-665038568068654279022390229/235747603462801695253721*x^13-459156996649583122348774580/235747603462801695253721*x^12+1859521955120689778926949746/235747603462801695253721*x^11+858955182823318813282330856/235747603462801695253721*x^10-3250349985189292585205988688/235747603462801695253721*x^9-1033710885146071615877756636/235747603462801695253721*x^8+3401520203803317047509130484/235747603462801695253721*x^7+813102263588579133564333009/235747603462801695253721*x^6-1960325991452004672049421600/235747603462801695253721*x^5-395993708732580280926702505/235747603462801695253721*x^4+519857961820059845170012691/235747603462801695253721*x^3+91401640179545379064217499/235747603462801695253721*x^2-37345092383168687047224864/235747603462801695253721*x-4752579300263395350722750/235747603462801695253721,4019282525152545677117/235747603462801695253721*x^23+1576475572707628068487/235747603462801695253721*x^22-180163259050988670694736/235747603462801695253721*x^21-17920223309701208701724/235747603462801695253721*x^20+3443174473676896344435098/235747603462801695253721*x^19-414186548264770391961421/235747603462801695253721*x^18-36783324194537305934231763/235747603462801695253721*x^17+10272271395470654687362093/235747603462801695253721*x^16+241941136894259433489333941/235747603462801695253721*x^15-93010923181172753495796285/235747603462801695253721*x^14-1017419179633823052163174905/235747603462801695253721*x^13+445931313488792174440112701/235747603462801695253721*x^12+2752228571289296910438051073/235747603462801695253721*x^11-1208690379428168369611889681/235747603462801695253721*x^10-4705373477535017808243241911/235747603462801695253721*x^9+1800312768349534131555820359/235747603462801695253721*x^8+4869305060290872703179275341/235747603462801695253721*x^7-1300899751480058723717307327/235747603462801695253721*x^6-2794597865983196800717715275/235747603462801695253721*x^5+304120145663091940471664448/235747603462801695253721*x^4+722574181128753429596036486/235747603462801695253721*x^3+28075586224430650078850827/235747603462801695253721*x^2-46763433558972019324258679/235747603462801695253721*x-4997554412972110248232957/235747603462801695253721,-5864368170802186478722/235747603462801695253721*x^23+21769342435210807371758/235747603462801695253721*x^22+193319612110858490815136/235747603462801695253721*x^21-763717758766283279914673/235747603462801695253721*x^20-2646834351353878895141778/235747603462801695253721*x^19+11365256666767344730306082/235747603462801695253721*x^18+19469147945161321775824640/235747603462801695253721*x^17-93771497056786876361641520/235747603462801695253721*x^16-82950089835704341695371700/235747603462801695253721*x^15+470804901411013594961999184/235747603462801695253721*x^14+204669533449784197107884168/235747603462801695253721*x^13-1486916553273830991030796560/235747603462801695253721*x^12-272590079205753058834773620/235747603462801695253721*x^11+2953304321032704469159959609/235747603462801695253721*x^10+158598621087793661584893297/235747603462801695253721*x^9-3586151187509222819748917488/235747603462801695253721*x^8-16046277856816018896260350/235747603462801695253721*x^7+2494885768122799111198325272/235747603462801695253721*x^6+9812861926920369340813336/235747603462801695253721*x^5-873481547359783185475947602/235747603462801695253721*x^4-14554640113827467610318010/235747603462801695253721*x^3+121662809264706121926369096/235747603462801695253721*x^2+1713265419701903961748563/235747603462801695253721*x-4161677931731012371147754/235747603462801695253721,-1715471616214461402464/235747603462801695253721*x^23+11053763438378026074185/235747603462801695253721*x^22+65147302266354182347728/235747603462801695253721*x^21-409530681374502947712515/235747603462801695253721*x^20-1090972913115641299775499/235747603462801695253721*x^19+6501984055366835736790846/235747603462801695253721*x^18+10704605162079362706339468/235747603462801695253721*x^17-57861669838578859866004906/235747603462801695253721*x^16-68790621792010414336132068/235747603462801695253721*x^15+316668776140964500795067230/235747603462801695253721*x^14+304186305182453943355481464/235747603462801695253721*x^13-1098626352189325166012668498/235747603462801695253721*x^12-934609981400979028601668620/235747603462801695253721*x^11+2394714240804832555545758050/235747603462801695253721*x^10+1943895247955368735130699606/235747603462801695253721*x^9-3117701182740476256126362510/235747603462801695253721*x^8-2561028216456712612156590788/235747603462801695253721*x^7+2144600263977834932944429236/235747603462801695253721*x^6+1879005490597853207694307308/235747603462801695253721*x^5-564782211394217031688847758/235747603462801695253721*x^4-585701956884335551150936035/235747603462801695253721*x^3+4315473390721391926944172/235747603462801695253721*x^2+42466555333424293345359945/235747603462801695253721*x+2049895268504385591233659/235747603462801695253721,3873301348506434148943/235747603462801695253721*x^23-24798047989335585097313/235747603462801695253721*x^22-126686099550238932564553/235747603462801695253721*x^21+889239427260734526457690/235747603462801695253721*x^20+1744598412876986692789595/235747603462801695253721*x^19-13591340153582521696450189/235747603462801695253721*x^18-13412502793392691473855297/235747603462801695253721*x^17+115770244573990836918881489/235747603462801695253721*x^16+65829915328914836427799193/235747603462801695253721*x^15-602926367491124233268363013/235747603462801695253721*x^14-232447221919041754213295521/235747603462801695253721*x^13+1979366883792464995903894727/235747603462801695253721*x^12+654777537423044399321948327/235747603462801695253721*x^11-4061547394096205789786597181/235747603462801695253721*x^10-1453641828933403499016507849/235747603462801695253721*x^9+4947263898149646020467458219/235747603462801695253721*x^8+2188261656103370502003815577/235747603462801695253721*x^7-3127854964020983604413792585/235747603462801695253721*x^6-1809431187643948389782225743/235747603462801695253721*x^5+668600584250045784587978674/235747603462801695253721*x^4+597124124583849112390819678/235747603462801695253721*x^3+61586256372165984576759926/235747603462801695253721*x^2-40127601348206840520477859/235747603462801695253721*x-9812928801895020461385930/235747603462801695253721,15219716469048655027867/235747603462801695253721*x^23-20403241339055597238865/235747603462801695253721*x^22-557876201514929750748154/235747603462801695253721*x^21+710766826093742714045441/235747603462801695253721*x^20+8784965850825166708825196/235747603462801695253721*x^19-10456987791215996030650520/235747603462801695253721*x^18-77997699828913285568735212/235747603462801695253721*x^17+84724851278537633246237606/235747603462801695253721*x^16+430988810370870215762213280/235747603462801695253721*x^15-413113923972232562882990962/235747603462801695253721*x^14-1544325712556193428995066506/235747603462801695253721*x^13+1242047163840972021360920788/235747603462801695253721*x^12+3627235872110069052850418214/235747603462801695253721*x^11-2257915395996869943115924582/235747603462801695253721*x^10-5512413171894445540906383506/235747603462801695253721*x^9+2298375626120869404922189942/235747603462801695253721*x^8+5198919953848533270710845516/235747603462801695253721*x^7-1038302646044694538968828826/235747603462801695253721*x^6-2778711492816459944595038996/235747603462801695253721*x^5-12979758482969900526574883/235747603462801695253721*x^4+689939346404720269598600759/235747603462801695253721*x^3+104233037636256814126374778/235747603462801695253721*x^2-47899112055290654432767785/235747603462801695253721*x-6829996207965527251169464/235747603462801695253721,-2799399202904536874692/235747603462801695253721*x^23-6289683614944053317544/235747603462801695253721*x^22+117783013219117710255095/235747603462801695253721*x^21+233518976128762411140792/235747603462801695253721*x^20-2147316037653044005739613/235747603462801695253721*x^19-3731330935338945578074882/235747603462801695253721*x^18+22223341243764684421849122/235747603462801695253721*x^17+33650304755934326129715986/235747603462801695253721*x^16-143747251000987593503116828/235747603462801695253721*x^15-188792066893028227316208768/235747603462801695253721*x^14+603225041101865040230016282/235747603462801695253721*x^13+684898843364022579354211164/235747603462801695253721*x^12-1651139742468207101837548492/235747603462801695253721*x^11-1617287771950965740504465042/235747603462801695253721*x^10+2889608104334899196068483222/235747603462801695253721*x^9+2437349751969950564484030218/235747603462801695253721*x^8-3079591901866934106608808864/235747603462801695253721*x^7-2226713526797731389367566284/235747603462801695253721*x^6+1819495690471181392198883252/235747603462801695253721*x^5+1113879133322061713294282690/235747603462801695253721*x^4-491318486854669226973602522/235747603462801695253721*x^3-248537305234218508261411823/235747603462801695253721*x^2+34051506371775699619742090/235747603462801695253721*x+12781907831531292614412381/235747603462801695253721,4139169183053192911845/235747603462801695253721*x^23-8631082478971364892786/235747603462801695253721*x^22-155325576769121432178720/235747603462801695253721*x^21+324602427417747007234228/235747603462801695253721*x^20+2506975472788746505684343/235747603462801695253721*x^19-5237645776703029672608299/235747603462801695253721*x^18-22818506935741292413589861/235747603462801695253721*x^17+47449344906357320636432855/235747603462801695253721*x^16+129102718261102375246029511/235747603462801695253721*x^15-265019381905654826539032651/235747603462801695253721*x^14-472279795271911319790354887/235747603462801695253721*x^13+942297681936977663588206097/235747603462801695253721*x^12+1127885730454382874404209181/235747603462801695253721*x^11-2122994656230826020845885025/235747603462801695253721*x^10-1738562872816819248983951715/235747603462801695253721*x^9+2916686490287914075370215183/235747603462801695253721*x^8+1669918393685388246579053979/235747603462801695253721*x^7-2251272797421404727678536285/235747603462801695253721*x^6-913643451452069393218064517/235747603462801695253721*x^5+843232368027924633356520328/235747603462801695253721*x^4+214533486779840255214385649/235747603462801695253721*x^3-127472560116202130686072935/235747603462801695253721*x^2-5507956373838836692374031/235747603462801695253721*x+6273682497833126674920230/235747603462801695253721,-8587881521865769750953/235747603462801695253721*x^23-1959833089659458400355/235747603462801695253721*x^22+336012523924703576128156/235747603462801695253721*x^21+63689810590787196306882/235747603462801695253721*x^20-5658514110779525524320484/235747603462801695253721*x^19-871975192827028551167920/235747603462801695253721*x^18+53635154329948036650895575/235747603462801695253721*x^17+6586669388024911574047873/235747603462801695253721*x^16-314065422906089373858164403/235747603462801695253721*x^15-30412322488896159407709199/235747603462801695253721*x^14+1173232966025659157794773561/235747603462801695253721*x^13+91003973590441565906053905/235747603462801695253721*x^12-2787784274960037084102539451/235747603462801695253721*x^11-184322287152217404114579495/235747603462801695253721*x^10+4076347133898208277600409741/235747603462801695253721*x^9+250397903242475653495257533/235747603462801695253721*x^8-3428011662833004491847307271/235747603462801695253721*x^7-186310798874470931528099939/235747603462801695253721*x^6+1487238115143229961493682085/235747603462801695253721*x^5+24720132519357234278409120/235747603462801695253721*x^4-298087972843738567934560578/235747603462801695253721*x^3+17694842075877870482634419/235747603462801695253721*x^2+23412911591895522417180586/235747603462801695253721*x-602575547572775797058239/235747603462801695253721,-3923275757917744018181/235747603462801695253721*x^23+2698367698992259233762/235747603462801695253721*x^22+148576860837556675276992/235747603462801695253721*x^21-99970444432530217098312/235747603462801695253721*x^20-2416396370567289081039421/235747603462801695253721*x^19+1577665588258143373813528/235747603462801695253721*x^18+22076333791139803154656094/235747603462801695253721*x^17-13852126352246271230081216/235747603462801695253721*x^16-124362652055151632842264772/235747603462801695253721*x^15+74066094092528516418520120/235747603462801695253721*x^14+445925461086531550757657620/235747603462801695253721*x^13-247542006746403387839839464/235747603462801695253721*x^12-1013165893593375704854909747/235747603462801695253721*x^11+508686118132952751048896852/235747603462801695253721*x^10+1404380858072578605612312134/235747603462801695253721*x^9-602359310740928717964389199/235747603462801695253721*x^8-1093250661932747338823890528/235747603462801695253721*x^7+351449157034936454302388484/235747603462801695253721*x^6+405170472062224283200858632/235747603462801695253721*x^5-59162268742490075397270229/235747603462801695253721*x^4-48388954899914578447987454/235747603462801695253721*x^3-13812878290093409892580182/235747603462801695253721*x^2-1765752395518625142486400/235747603462801695253721*x+1887046657890280290054187/235747603462801695253721,-9103755913579293897483/235747603462801695253721*x^23+16299194575306463956830/235747603462801695253721*x^22+323672899446564889827456/235747603462801695253721*x^21-569225678488381145863942/235747603462801695253721*x^20-4907755899437462899982185/235747603462801695253721*x^19+8422358953205742368541237/235747603462801695253721*x^18+41574980936361280556316991/235747603462801695253721*x^17-69021859575718835029973653/235747603462801695253721*x^16-216739080965195610738762719/235747603462801695253721*x^15+344060911339641294044267111/235747603462801695253721*x^14+722853462595780267999850205/235747603462801695253721*x^13-1079976611320357497239416185/235747603462801695253721*x^12-1555709107805632391374455571/235747603462801695253721*x^11+2141729493289046820674565793/235747603462801695253721*x^10+2129102917023871888209482399/235747603462801695253721*x^9-2630936624760966730049549425/235747603462801695253721*x^8-1772288085685002218819966509/235747603462801695253721*x^7+1913527305226313991646052129/235747603462801695253721*x^6+811570297932312916066875899/235747603462801695253721*x^5-753106956582285109612573604/235747603462801695253721*x^4-161390049700386088208586683/235747603462801695253721*x^3+130780762870045010926523217/235747603462801695253721*x^2+5769021916836730856903681/235747603462801695253721*x-6765902624788804233728994/235747603462801695253721,-304965618501663893998/235747603462801695253721*x^23-1282947485169643864749/235747603462801695253721*x^22+21525122296674029317472/235747603462801695253721*x^21+24950739290024087320948/235747603462801695253721*x^20-519908422648053544305843/235747603462801695253721*x^19+9559018440086819800548/235747603462801695253721*x^18+6320660695851491992742662/235747603462801695253721*x^17-4117684806489143193866574/235747603462801695253721*x^16-44125605264495661704900022/235747603462801695253721*x^15+46864352739387193619860224/235747603462801695253721*x^14+185209019049521565105044706/235747603462801695253721*x^13-254964271176319460029235582/235747603462801695253721*x^12-465594165088660258818401464/235747603462801695253721*x^11+779828402552656115314927054/235747603462801695253721*x^10+665111655862470755673748518/235747603462801695253721*x^9-1371460919150678139978467364/235747603462801695253721*x^8-470848874891546717528604158/235747603462801695253721*x^7+1341291300858649705191178144/235747603462801695253721*x^6+102928007173157536803361508/235747603462801695253721*x^5-674863503108690630544218966/235747603462801695253721*x^4+22801085919028836928989247/235747603462801695253721*x^3+149577359920316388444251668/235747603462801695253721*x^2-3222335063075657643849310/235747603462801695253721*x-7570781967520386238308263/235747603462801695253721,-8948103696277122642563/235747603462801695253721*x^23-3484330273730826378134/235747603462801695253721*x^22+362834730396737189472069/235747603462801695253721*x^21+107076563264626690402165/235747603462801695253721*x^20-6343240198202079772017656/235747603462801695253721*x^19-1337396298231900784392158/235747603462801695253721*x^18+62554299853551836882045922/235747603462801695253721*x^17+8691037972544095530211624/235747603462801695253721*x^16-382315104734725469977496992/235747603462801695253721*x^15-31418641886846769381622504/235747603462801695253721*x^14+1498587676076271016527496390/235747603462801695253721*x^13+66013896706627833370909542/235747603462801695253721*x^12-3771338422546947812460921688/235747603462801695253721*x^11-109414568614434701386632954/235747603462801695253721*x^10+5939608774486717213382596932/235747603462801695253721*x^9+250714924315283777588877326/235747603462801695253721*x^8-5543530168561351464771217440/235747603462801695253721*x^7-483879375276718609893935642/235747603462801695253721*x^6+2784843915312954224090251962/235747603462801695253721*x^5+449343462222845832182316329/235747603462801695253721*x^4-625798825181922967909681564/235747603462801695253721*x^3-157329126527523404201896883/235747603462801695253721*x^2+33437646116071553116075053/235747603462801695253721*x+11013570253190752532223236/235747603462801695253721]]];

f[360,2]=[
[x-2, [1,1,-1], [0,0,1,2,-2,4,2,4,-8,10,4,0,0,-8,-8,-6,14,-14,-4,-12,6,-12,-4,12,-14]],
[x, [1,-1,1], [0,0,-1,0,4,6,6,-4,0,2,-8,-2,6,12,-8,-6,-12,14,4,-8,-6,-8,12,-10,2]],
[x-2, [-1,1,1], [0,0,-1,2,2,4,-2,4,8,-10,4,0,0,-8,8,6,-14,-14,-4,12,6,-12,4,-12,-14]],
[x+4, [-1,-1,1], [0,0,-1,-4,-4,-2,-2,4,-4,2,-8,6,6,-8,-4,-6,4,-2,8,0,-6,0,16,6,-14]],
[x-4, [-1,-1,-1], [0,0,1,4,0,-6,2,4,8,6,0,-6,-10,-4,-8,-10,0,6,-4,0,-14,16,-12,-2,2]]];

f[361,2]=[
[x, [1], [0,0,-1,3,-5,0,-7,0,-4,0,0,0,0,-1,13,0,0,15,0,0,-11,0,-16,0,0]],
[x-2, [-1], [0,2,3,-1,3,4,-3,0,0,-6,4,-2,6,-1,-3,-12,6,-1,4,-6,-7,-8,12,-12,-8]],
[x^2-x-1, [-1], [-2*x+1,2,x,2*x-2,2*x+2,-3*x+3,x-1,0,-4*x+2,5*x-1,-6,3*x+4,5*x-4,-4*x+6,-2*x+8,-5*x+8,2*x,3*x+5,-4*x+6,-2*x,-9*x,2,-6*x,-7*x+4,-5*x-3]],
[x^2-x-1, [-1], [2*x-1,-2,x,2*x-2,2*x+2,3*x-3,x-1,0,-4*x+2,-5*x+1,6,-3*x-4,-5*x+4,-4*x+6,-2*x+8,5*x-8,-2*x,3*x+5,4*x-6,2*x,-9*x,-2,-6*x,7*x-4,5*x+3]],
[x^2-x-1, [-1], [x,-x+2,2*x,3,-x,-1,-2*x+4,0,-x+7,-x-2,-3*x-4,3*x+4,-3,3*x-5,3,-7*x+5,7*x-11,-2*x-7,-7,-4*x-1,-6*x+7,12*x-6,4*x+2,2*x-11,3*x+9]],
[x^2+x-1, [-1], [x,-x-2,-2*x,3,x,1,2*x+4,0,x+7,-x+2,-3*x+4,3*x-4,3,-3*x-5,3,-7*x-5,7*x+11,2*x-7,7,-4*x+1,6*x+7,12*x+6,-4*x+2,2*x+11,3*x-9]],
[x^3+3*x^2-3, [1], [x,x^2+2*x-2,-x^2-2*x,-x-1,x^2+3*x,-x^2-4*x-1,x^2+x,0,2*x,x^2+2*x-6,2*x^2+5*x-4,-3*x^2-4*x+5,-4*x^2-5*x+3,-3*x^2-x+8,3*x^2+5*x-6,x^2-x-6,-2*x-9,-4*x^2-4*x+11,-2*x^2+2*x+14,-2*x-12,-4*x-4,6*x^2+5*x-16,9*x^2+12*x-15,3*x^2+5*x-9,-2*x^2-6*x+5]],
[x^3-3*x^2+3, [-1], [x,-x^2+2*x+2,-x^2+2*x,x-1,x^2-3*x,x^2-4*x+1,x^2-x,0,-2*x,-x^2+2*x+6,-2*x^2+5*x+4,3*x^2-4*x-5,4*x^2-5*x-3,-3*x^2+x+8,3*x^2-5*x-6,-x^2-x+6,-2*x+9,-4*x^2+4*x+11,2*x^2+2*x-14,-2*x+12,4*x-4,-6*x^2+5*x+16,9*x^2-12*x-15,-3*x^2+5*x+9,2*x^2-6*x-5]],
[x^4-5*x^2+5, [1], [x,-x,-2*x^2+4,2*x^2-7,x^2-5,-x^3+4*x,-4*x^2+8,0,x^2-4,2*x^3-5*x,-x,4*x^3-11*x,-3*x^3+12*x,7*x^2-16,-4*x^2+3,x^3-x,-x^3-x,-4*x^2+5,-3*x^3+4*x,-7*x^3+20*x,9,4*x^3-12*x,-2*x^2+4,5*x^3-22*x,7*x^3-23*x]]];

f[362,2]=[
[x+1, [1,1], [-1,-1,2,-4,-1,4,-6,-2,-3,4,-11,-12,4,-1,-11,6,9,5,12,3,-15,0,-2,16,-10]],
[x+1, [-1,-1], [1,-1,-2,-4,-1,-4,2,6,-1,-8,-1,0,0,-1,-1,-6,9,-1,-12,9,-7,-8,10,0,-14]],
[x^2+2*x-4, [1,1], [-1,x,-1/2*x-1,-1/2*x-2,-x-2,-1/2*x-4,4,-1/2*x-5,7/2*x+3,5/2*x+4,1/2*x+2,-1/2*x-5,-x-2,2*x-4,-3/2*x+5,-2*x-6,-2*x-8,2*x+12,-x-14,-7/2*x-3,3/2*x+4,6*x+6,-1/2*x+10,5*x+6,-4*x-4]],
[x^2-2*x-1, [-1,1], [1,x,-x+3,-2*x+2,x-6,x+3,3*x-1,-5*x+5,x-8,-4*x+4,5*x-2,x-1,x+3,-x-8,-3*x+4,2*x-10,5*x-2,2*x+5,8*x-6,5*x-4,-6*x+7,3*x-9,-7*x+7,x-5,5*x+1]],
[x^5-4*x^4-2*x^3+17*x^2-x-17, [1,-1], [-1,x,x^4-3*x^3-3*x^2+8*x+3,-x^3+2*x^2+3*x-2,x^3-3*x^2-2*x+7,-x^4+3*x^3+3*x^2-8*x-1,-x^4+3*x^3+3*x^2-8*x-3,-x^4+x^3+11*x^2-6*x-21,-x^3+5*x^2-2*x-11,-2*x^3+4*x^2+6*x-8,x^4-3*x^3-4*x^2+6*x+11,x^4-x^3-7*x^2+15,-3*x^4+7*x^3+15*x^2-18*x-25,x^4-x^3-10*x^2+4*x+23,x^4-x^3-8*x^2+4*x+13,-3*x^3+8*x^2+5*x-16,-x^4+3*x^3+2*x^2-6*x-1,x^4-3*x^3-3*x^2+7*x+3,3*x^3-8*x^2-7*x+20,2*x^4-4*x^3-16*x^2+15*x+30,x^4-2*x^3-2*x^2-4,x^4+x^3-19*x^2+4*x+39,-3*x^4+7*x^3+15*x^2-22*x-21,x^4-3*x^3+x^2+4*x-15,-x^4+x^3+5*x^2+4*x-7]],
[x^5-13*x^3+3*x^2+38*x-28, [-1,1], [1,x,-1/2*x^4+9/2*x^2+1/2*x-5,1/2*x^4-9/2*x^2-1/2*x+6,-x^2-x+6,1/2*x^4+x^3-13/2*x^2-19/2*x+16,-2*x,1/2*x^4-9/2*x^2-1/2*x+5,-1/2*x^4+11/2*x^2+3/2*x-7,-1/2*x^4-x^3+13/2*x^2+15/2*x-16,1/2*x^4+x^3-11/2*x^2-15/2*x+10,-1/2*x^4-2*x^3+17/2*x^2+33/2*x-25,-x^4-2*x^3+11*x^2+17*x-26,2*x^3-3*x^2-14*x+20,-1/2*x^4+11/2*x^2+5/2*x-13,-x^4-x^3+9*x^2+8*x-10,2*x^3-x^2-14*x+4,x^4-2*x^3-9*x^2+12*x+4,-3*x^3+4*x^2+23*x-26,1/2*x^4-5/2*x^2+1/2*x-5,3/2*x^4+x^3-33/2*x^2-19/2*x+32,2*x^4+2*x^3-22*x^2-18*x+46,-1/2*x^4-3*x^3+17/2*x^2+47/2*x-34,x^4+2*x^3-13*x^2-17*x+34,-2*x^4-2*x^3+24*x^2+16*x-48]]];

f[363,2]=[
[x+1, [1,-1], [-1,-1,-2,-4,0,2,2,0,8,6,-8,6,2,0,8,6,-4,-6,-4,0,14,4,-12,-6,2]],
[x-2, [1,-1], [2,-1,4,-1,0,2,-4,3,2,-6,-5,3,2,-12,2,6,-10,-3,-1,0,11,-11,-6,12,5]],
[x+2, [1,-1], [-2,-1,4,1,0,-2,4,-3,2,6,-5,3,-2,12,2,6,-10,3,-1,0,-11,11,6,12,5]],
[x^2-3, [1,1], [x,-1,-3,-2*x,0,-x,x,4*x,-6,-x,4,-11,-x,2*x,0,-9,-6,0,-2,-6,4*x,0,0,9,-7]],
[x^2+3*x+1, [1,1], [x,-1,x+2,-1,0,-2*x-5,-3*x-9,-3*x-2,-2*x-5,-6,5*x+7,2*x-1,-2*x-5,6*x+9,5*x+3,-x-3,x+10,9*x+12,-3*x-6,-7*x-8,6*x+10,11,-4*x-9,2*x-3,-3*x]],
[x^2-3*x+1, [1,-1], [x,-1,-x+2,1,0,-2*x+5,-3*x+9,-3*x+2,2*x-5,6,-5*x+7,-2*x-1,-2*x+5,6*x-9,-5*x+3,x-3,-x+10,9*x-12,3*x-6,7*x-8,6*x-10,-11,-4*x+9,-2*x-3,3*x]],
[x^2-5, [-1,1], [x,1,2,-2*x,0,0,2*x,-2*x,-4,2*x,0,2,-2*x,2*x,8,6,0,4*x,-12,-8,-4*x,6*x,-4*x,-14,2]],
[x^2-x-1, [-1,1], [x,1,x-2,3,0,2*x+3,-x+1,-3*x+4,-4*x+1,-4*x+2,-3*x+1,-2*x-1,8*x-7,-2*x+5,-x+1,x-9,-7*x+6,-3*x+6,9*x-4,9*x,2*x-2,-4*x+7,-6*x-3,4*x+3,13*x-6]],
[x^2+x-1, [-1,-1], [x,1,-x-2,-3,0,2*x-3,-x-1,-3*x-4,4*x+1,-4*x-2,3*x+1,2*x-1,8*x+7,-2*x-5,x+1,-x-9,7*x+6,-3*x-6,-9*x-4,-9*x,2*x+2,-4*x-7,-6*x+3,-4*x+3,-13*x-6]],
[x^4-7*x^2+4, [-1,1], [x,1,-x^2+4,-1/2*x^3+7/2*x,0,x^3-8*x,-x^3+4*x,1/2*x^3-3/2*x,2,-x,x^2+1,5,2*x^3-15*x,x^3-9*x,2*x^2-14,3*x^2-6,-6,-3/2*x^3+17/2*x,3*x^2-3,2*x^2-12,-3/2*x^3+25/2*x,-1/2*x^3+11/2*x,x^3-3*x,-x^2,-4*x^2+13]]];

f[364,2]=[
[x+2, [-1,1,-1], [0,-2,1,-1,-4,1,-2,-1,-7,-5,-9,-2,2,1,9,3,0,14,10,-14,3,5,5,-9,-1]],
[x, [-1,-1,1], [0,0,-3,1,-2,-1,-4,-1,-7,7,-5,4,-6,9,-7,11,0,-2,-10,0,7,1,-11,-1,-13]],
[x^2-6, [-1,1,1], [0,x,x-1,-1,-x+4,-1,-x,x+3,-2*x-1,2*x-1,-x+1,x-6,-2*x+6,1,-x+1,-2*x-3,14,-2,2*x-2,-x+10,-5*x-1,-2*x-7,3*x+3,x-9,-x-13]],
[x^2-2*x-2, [-1,-1,-1], [0,x,-x+1,1,-x+4,1,3*x,-3*x+5,3,-2*x-1,-3*x-1,-3*x+2,-2*x+2,-7,-x+7,4*x-7,6*x-6,-10,6*x-10,-x-2,3*x-7,6*x-7,-3*x-3,-3*x+9,3*x+5]]];

f[365,2]=[
[x^2-3, [-1,1], [x,2,1,-x+3,-x-3,2*x,-2*x,-2*x+2,4*x-2,-2*x-4,x+7,8,-2*x-2,3*x+3,-x-5,4*x+6,-x-3,-2*x-6,-2,8,-1,2*x-10,5*x+1,8*x-2,4*x+4]],
[x^3+x^2-2*x-1, [-1,-1], [x,x^2-3,1,-3*x^2-2*x+4,-3,3*x^2+x-5,x^2+2*x,2*x^2+x-8,-2*x^2-3*x+2,-x^2-2,x^2+2*x-8,-3*x^2+2*x+7,2*x^2-x-6,3*x-5,2*x^2+6*x-1,-2*x^2-7*x+3,8*x^2-15,2*x^2+7*x-2,5*x^2+2*x-10,x^2+2*x-3,1,2*x^2+6*x-3,-x+4,-9*x^2-12*x+11,4*x^2-4*x-8]],
[x^5+x^4-5*x^3-4*x^2+4*x+1, [1,1], [x,-x^2+1,-1,x^3-4*x-1,-2*x^4-x^3+9*x^2+2*x-4,-x^3+3*x-2,3*x^4+x^3-13*x^2-5*x+4,-2*x^4-x^3+9*x^2+5*x-7,-3*x^3+x^2+11*x-3,-x^4+x^3+5*x^2-x-2,2*x^4+x^3-10*x^2-4*x+5,-2*x^3+x^2+10*x-3,2*x^4+3*x^3-7*x^2-9*x+3,4*x^4+2*x^3-18*x^2-5*x+7,3*x^3-x^2-12*x,-x^4+2*x^3+3*x^2-8*x,2*x^4-x^3-11*x^2+2*x+8,-2*x^4-5*x^3+9*x^2+15*x-5,x^4-3*x^3-3*x^2+7*x-8,2*x^4+2*x^3-7*x^2-8*x+5,-1,3*x^4+7*x^3-14*x^2-25*x+7,-3*x^4-3*x^3+12*x^2+10*x-8,4*x^4+2*x^3-19*x^2+13,2*x^4+4*x^3-10*x^2-10*x+6]],
[x^7+x^6-12*x^5-9*x^4+39*x^3+19*x^2-16*x-3, [-1,1], [x,-1/2*x^5-1/2*x^4+5/2*x^3+2*x^2+2*x+1/2,1,x^5+2*x^4-6*x^3-11*x^2+3*x+3,-1/2*x^5-3/2*x^4+5/2*x^3+8*x^2+x+3/2,-1/2*x^6-1/2*x^5+13/2*x^4+4*x^3-22*x^2-11/2*x+6,1/2*x^6+1/2*x^5-9/2*x^4-3*x^3+9*x^2+5/2*x,x^3+x^2-5*x-1,1/2*x^5+1/2*x^4-5/2*x^3-3*x^2-3*x+5/2,-x^6-2*x^5+9*x^4+14*x^3-21*x^2-16*x+5,1/2*x^5+3/2*x^4-3/2*x^3-8*x^2-9*x+5/2,x^5-x^4-7*x^3+7*x^2+2*x-4,-1/2*x^6-3/2*x^5+1/2*x^4+8*x^3+13*x^2-5/2*x-2,-2*x^5-3*x^4+14*x^3+17*x^2-16*x-6,-2*x^6-3*x^5+16*x^4+18*x^3-28*x^2-13*x+4,-1/2*x^6-3/2*x^5+1/2*x^4+6*x^3+13*x^2+19/2*x-9,2*x^6+2*x^5-19*x^4-13*x^3+46*x^2+15*x-9,1/2*x^6+5/2*x^5-1/2*x^4-16*x^3-13*x^2+27/2*x+9,5/2*x^5+3/2*x^4-37/2*x^3-5*x^2+23*x-1/2,-x^5-x^4+9*x^3+7*x^2-18*x-4,-1,-x^6+11*x^4-2*x^3-32*x^2+8*x+14,-x^5-3*x^4+4*x^3+17*x^2+7*x-8,3/2*x^6+5/2*x^5-29/2*x^4-16*x^3+37*x^2+27/2*x-8,-x^6-2*x^5+4*x^4+13*x^3+12*x^2-17*x-11]],
[x^8-2*x^7-11*x^6+19*x^5+36*x^4-46*x^3-41*x^2+25*x+3, [1,-1], [x,-1/2*x^5+1/2*x^4+9/2*x^3-3*x^2-8*x+5/2,-1,1/2*x^7-1/2*x^6-5*x^5+7/2*x^4+23/2*x^3-9/2*x^2-3*x+7/2,-1/4*x^7+5/4*x^6+3/2*x^5-45/4*x^4-1/4*x^3+87/4*x^2+x-15/4,1/2*x^6-1/2*x^5-9/2*x^4+3*x^3+8*x^2-5/2*x+2,-3/4*x^7+5/4*x^6+15/2*x^5-43/4*x^4-77/4*x^3+85/4*x^2+27/2*x-27/4,x^3-x^2-5*x+5,-1/4*x^7-3/4*x^6+7/2*x^5+31/4*x^4-49/4*x^3-69/4*x^2+5*x+9/4,1/2*x^7-3/2*x^6-4*x^5+25/2*x^4+11/2*x^3-41/2*x^2+3/2,-1/2*x^7+1/2*x^6+11/2*x^5-4*x^4-16*x^3+17/2*x^2+11*x-7,x^5-x^4-9*x^3+7*x^2+16*x-4,1/4*x^7+1/4*x^6-7/2*x^5-7/4*x^4+51/4*x^3+1/4*x^2-17/2*x+9/4,-1/2*x^7+1/2*x^6+6*x^5-9/2*x^4-43/2*x^3+21/2*x^2+22*x-5/2,-1/2*x^7+1/2*x^6+5*x^5-7/2*x^4-23/2*x^3+11/2*x^2+3*x-9/2,-1/2*x^7+x^6+9/2*x^5-8*x^4-17/2*x^3+25/2*x^2-3/2*x-3/2,-1/2*x^7-3/2*x^6+8*x^5+31/2*x^4-69/2*x^3-69/2*x^2+33*x+9/2,x^7-1/2*x^6-21/2*x^5+1/2*x^4+28*x^3+14*x^2-33/2*x-10,-5/4*x^7+9/4*x^6+23/2*x^5-73/4*x^4-93/4*x^3+119/4*x^2+9*x-7/4,x^5-x^4-9*x^3+5*x^2+18*x-6,1,3/2*x^7-1/2*x^6-16*x^5-1/2*x^4+85/2*x^3+31/2*x^2-20*x-5/2,3/2*x^7-3/2*x^6-13*x^5+15/2*x^4+37/2*x^3+9/2*x^2+17*x-9/2,x^7+1/2*x^6-25/2*x^5-15/2*x^4+42*x^3+24*x^2-65/2*x-9,x^6-2*x^5-8*x^4+15*x^3+6*x^2-15*x+17]]];

f[366,2]=[
[x+2, [1,1,-1], [-1,-1,-2,4,-4,-2,6,4,8,10,4,6,2,-8,-8,-6,12,1,0,0,10,-12,-12,6,2]],
[x-1, [1,-1,1], [-1,1,1,-2,6,0,3,0,-1,6,0,3,12,1,-12,-2,0,-1,4,-13,-9,-14,3,-9,-1]],
[x+3, [1,-1,-1], [-1,1,-3,-1,-3,-1,-6,-4,3,0,-4,8,-9,-4,-6,12,3,1,5,0,-7,5,6,12,-10]],
[x+1, [-1,1,1], [1,-1,-1,2,2,4,1,4,-3,-2,4,-1,-4,-3,0,-6,4,-1,4,-15,-9,10,-3,-3,-1]],
[x+3, [-1,1,-1], [1,-1,-3,-3,-1,-5,2,-8,5,0,-4,4,3,4,2,0,-7,1,-13,-16,9,-1,14,-4,14]],
[x-1, [-1,-1,-1], [1,1,1,1,-1,-5,2,0,-3,8,4,-4,-9,-4,2,0,9,1,-9,0,-7,-5,14,-4,-2]],
[x+2, [-1,-1,-1], [1,1,1,-2,2,4,-7,0,9,-10,-8,-7,12,-1,8,-6,0,1,-12,-3,-1,10,-1,5,-17]],
[x^2-17, [1,1,-1], [-1,-1,x,1/2*x-3/2,-1/2*x+3/2,-1/2*x+7/2,-1/2*x-3/2,4,-5,x-1,4,3/2*x+5/2,-1/2*x+15/2,1/2*x-1/2,-x+3,-x+5,-1/2*x-17/2,1,-3/2*x-19/2,-7/2*x-1/2,-3*x+4,7/2*x+3/2,5/2*x-1/2,-3/2*x+19/2,-1/2*x-11/2]]];

f[367,2]=[
[x^11+8*x^10+16*x^9-26*x^8-121*x^7-61*x^6+197*x^5+212*x^4-66*x^3-132*x^2-12*x+13, [1], [x,-8*x^10-54*x^9-61*x^8+282*x^7+616*x^6-269*x^5-1230*x^4-177*x^3+729*x^2+149*x-83,24*x^10+162*x^9+181*x^8-852*x^7-1836*x^6+844*x^5+3668*x^4+472*x^3-2173*x^2-426*x+246,-17*x^10-114*x^9-124*x^8+605*x^7+1275*x^6-627*x^5-2555*x^4-279*x^3+1515*x^2+278*x-171,19*x^10+127*x^9+138*x^8-671*x^7-1419*x^6+680*x^5+2837*x^4+340*x^3-1673*x^2-321*x+184,-11*x^10-75*x^9-86*x^8+393*x^7+861*x^6-383*x^5-1716*x^4-227*x^3+1013*x^2+196*x-114,-6*x^10-40*x^9-43*x^8+211*x^7+441*x^6-214*x^5-871*x^4-104*x^3+505*x^2+101*x-60,29*x^10+196*x^9+220*x^8-1031*x^7-2231*x^6+1023*x^5+4474*x^4+564*x^3-2674*x^2-508*x+307,12*x^10+79*x^9+81*x^8-424*x^7-859*x^6+460*x^5+1730*x^4+163*x^3-1028*x^2-189*x+116,44*x^10+296*x^9+327*x^8-1561*x^7-3335*x^6+1569*x^5+6669*x^4+815*x^3-3956*x^2-755*x+449,-71*x^10-477*x^9-526*x^8+2515*x^7+5375*x^6-2518*x^5-10765*x^4-1354*x^3+6401*x^2+1255*x-733,-72*x^10-483*x^9-530*x^8+2548*x^7+5422*x^6-2565*x^5-10838*x^4-1323*x^3+6416*x^2+1231*x-726,-44*x^10-295*x^9-323*x^8+1559*x^7+3315*x^6-1576*x^5-6650*x^4-817*x^3+3955*x^2+778*x-451,-44*x^10-293*x^9-314*x^8+1553*x^7+3250*x^6-1597*x^5-6504*x^4-748*x^3+3845*x^2+736*x-434,59*x^10+397*x^9+440*x^8-2090*x^7-4481*x^6+2081*x^5+8957*x^4+1137*x^3-5311*x^2-1039*x+606,-56*x^10-379*x^9-427*x^8+1991*x^7+4319*x^6-1960*x^5-8645*x^4-1129*x^3+5147*x^2+1005*x-591,59*x^10+396*x^9+435*x^8-2090*x^7-4453*x^6+2099*x^5+8915*x^4+1124*x^3-5286*x^2-1053*x+600,-45*x^10-303*x^9-336*x^8+1597*x^7+3424*x^6-1599*x^5-6858*x^4-849*x^3+4088*x^2+780*x-474,13*x^10+88*x^9+100*x^8-457*x^7-999*x^6+425*x^5+1967*x^4+308*x^3-1143*x^2-253*x+133,47*x^10+318*x^9+356*x^8-1677*x^7-3612*x^6+1682*x^5+7236*x^4+892*x^3-4305*x^2-822*x+487,7*x^10+43*x^9+33*x^8-242*x^7-407*x^6+322*x^5+825*x^4-41*x^3-480*x^2-41*x+50,11*x^10+73*x^9+77*x^8-390*x^7-805*x^6+421*x^5+1621*x^4+129*x^3-969*x^2-139*x+113,-3*x^10-20*x^9-22*x^8+107*x^7+233*x^6-112*x^5-493*x^4-51*x^3+322*x^2+48*x-42,-64*x^10-428*x^9-465*x^8+2263*x^7+4782*x^6-2302*x^5-9569*x^4-1129*x^3+5670*x^2+1072*x-647,-11*x^10-78*x^9-102*x^8+391*x^7+961*x^6-294*x^5-1898*x^4-394*x^3+1124*x^2+261*x-125]],
[x^19-9*x^18+11*x^17+123*x^16-372*x^15-469*x^14+2884*x^13-550*x^12-10042*x^11+8029*x^10+17059*x^9-20350*x^8-12836*x^7+20779*x^6+2682*x^5-7739*x^4+63*x^3+899*x^2-27*x-29, [-1], [x,6827828/23610721*x^18-49682236/23610721*x^17-6832536/23610721*x^16+803001118/23610721*x^15-1171782712/23610721*x^14-4794282730/23610721*x^13+10991047449/23610721*x^12+12384298965/23610721*x^11-42478188938/23610721*x^10-9593322662/23610721*x^9+80448498286/23610721*x^8-13480943176/23610721*x^7-72276385698/23610721*x^6+24824130950/23610721*x^5+25244646700/23610721*x^4-151658173/387061*x^3-3069626859/23610721*x^2+818237984/23610721*x+127146744/23610721,-1297203/23610721*x^18+14414733/23610721*x^17-31674448/23610721*x^16-177259634/23610721*x^15+783001630/23610721*x^14+404568652/23610721*x^13-5772832937/23610721*x^12+3265357555/23610721*x^11+19924295543/23610721*x^10-21018429365/23610721*x^9-34798304039/23610721*x^8+47067197132/23610721*x^7+29544729494/23610721*x^6-45508663466/23610721*x^5-10825879428/23610721*x^4+257534213/387061*x^3+2047419967/23610721*x^2-1129150019/23610721*x-90300556/23610721,8668353/23610721*x^18-60265860/23610721*x^17-26834309/23610721*x^16+1000305143/23610721*x^15-1164221951/23610721*x^14-6298924244/23610721*x^13+11696035826/23610721*x^12+18538529455/23610721*x^11-46108329149/23610721*x^10-24448968422/23610721*x^9+88157892897/23610721*x^8+7995092958/23610721*x^7-79686807986/23610721*x^6+7666753393/23610721*x^5+27565886842/23610721*x^4-55256619/387061*x^3-2607470846/23610721*x^2+357675480/23610721*x+59087112/23610721,-30077634/23610721*x^18+201937607/23610721*x^17+143148399/23610721*x^16-3459315443/23610721*x^15+3250881584/23610721*x^14+22960525766/23610721*x^13-36028052556/23610721*x^12-74577894502/23610721*x^11+148691174127/23610721*x^10+123316420009/23610721*x^9-297147330507/23610721*x^8-98029311857/23610721*x^7+285049889325/23610721*x^6+34291926406/23610721*x^5-110318025294/23610721*x^4-142404670/387061*x^3+13659113660/23610721*x^2+560413723/23610721*x-430003319/23610721,-21308366/23610721*x^18+148805851/23610721*x^17+65861276/23610721*x^16-2489910668/23610721*x^15+2907770481/23610721*x^14+15894527391/23610721*x^13-29526537008/23610721*x^12-48033484574/23610721*x^11+118495883636/23610721*x^10+67667537788/23610721*x^9-233461068532/23610721*x^8-31591358547/23610721*x^7+223324379110/23610721*x^6-10402461182/23610721*x^5-88626492334/23610721*x^4+112771284/387061*x^3+12217451249/23610721*x^2-859979683/23610721*x-450724169/23610721,24624306/23610721*x^18-172529162/23610721*x^17-69456351/23610721*x^16+2864980227/23610721*x^15-3458884632/23610721*x^14-18031565302/23610721*x^13+34596501862/23610721*x^12+52865265147/23610721*x^11-137373773108/23610721*x^10-68509691335/23610721*x^9+266707582936/23610721*x^8+18956989439/23610721*x^7-248540472141/23610721*x^6+25774243432/23610721*x^5+93328638376/23610721*x^4-165532898/387061*x^3-12023094797/23610721*x^2+618292246/23610721*x+508424885/23610721,15470569/23610721*x^18-111428121/23610721*x^17-25580669/23610721*x^16+1828746255/23610721*x^15-2502559131/23610721*x^14-11256866378/23610721*x^13+24146895529/23610721*x^12+31384142455/23610721*x^11-95469312887/23610721*x^10-34422622025/23610721*x^9+187206810942/23610721*x^8-6227193416/23610721*x^7-180272442654/23610721*x^6+34142090712/23610721*x^5+74772716321/23610721*x^4-221019502/387061*x^3-12477883562/23610721*x^2+1015224998/23610721*x+661691893/23610721,-9546406/23610721*x^18+75517815/23610721*x^17-29625377/23610721*x^16-1158239073/23610721*x^15+2318172380/23610721*x^14+6149749262/23610721*x^13-19927192476/23610721*x^12-10646079569/23610721*x^11+74175756594/23610721*x^10-14728647969/23610721*x^9-135781816668/23610721*x^8+74741111633/23610721*x^7+115638656932/23610721*x^6-85163893433/23610721*x^5-35760456019/23610721*x^4+464164059/387061*x^3+4174795841/23610721*x^2-1981940263/23610721*x-182508686/23610721,5121172/23610721*x^18-32001656/23610721*x^17-36068612/23610721*x^16+554970102/23610721*x^15-327391083/23610721*x^14-3756488038/23610721*x^13+4327201245/23610721*x^12+12643296397/23610721*x^11-17508656363/23610721*x^10-22590515443/23610721*x^9+30711341059/23610721*x^8+22163427085/23610721*x^7-18738463523/23610721*x^6-14016316702/23610721*x^5-5057840115/23610721*x^4+113374486/387061*x^3+5435747898/23610721*x^2-864760360/23610721*x-459899672/23610721,19662269/23610721*x^18-134310204/23610721*x^17-77810773/23610721*x^16+2260032130/23610721*x^15-2334510740/23610721*x^14-14635285812/23610721*x^13+24342358151/23610721*x^12+45962881649/23610721*x^11-96678904025/23610721*x^10-72898796791/23610721*x^9+184424840809/23610721*x^8+56679889872/23610721*x^7-163820167428/23610721*x^6-24028285659/23610721*x^5+52340897473/23610721*x^4+166661283/387061*x^3-3124149248/23610721*x^2-1227941876/23610721*x-17439459/23610721,-36041396/23610721*x^18+256916399/23610721*x^17+74845102/23610721*x^16-4229917455/23610721*x^15+5546812029/23610721*x^14+26177989354/23610721*x^13-54107411647/23610721*x^12-73769113847/23610721*x^11+213732796128/23610721*x^10+83526633572/23610721*x^9-415595048386/23610721*x^8+8634249820/23610721*x^7+391196959048/23610721*x^6-75672757210/23610721*x^5-152102252069/23610721*x^4+504670962/387061*x^3+21578556257/23610721*x^2-2530134065/23610721*x-926645599/23610721,18381876/23610721*x^18-122487999/23610721*x^17-95772595/23610721*x^16+2120328792/23610721*x^15-1857267668/23610721*x^14-14315263196/23610721*x^13+21289438605/23610721*x^12+47911174233/23610721*x^11-89224750195/23610721*x^10-83908186672/23610721*x^9+181117463713/23610721*x^8+75307903674/23610721*x^7-177677822694/23610721*x^6-33611124820/23610721*x^5+71632436912/23610721*x^4+145136747/387061*x^3-9258382942/23610721*x^2-901877467/23610721*x+295106766/23610721,-37784997/23610721*x^18+271094940/23610721*x^17+59659015/23610721*x^16-4404976331/23610721*x^15+6087954515/23610721*x^14+26606264863/23610721*x^13-58027798536/23610721*x^12-70949302183/23610721*x^11+225585308944/23610721*x^10+65168855908/23610721*x^9-430169070276/23610721*x^8+47925587181/23610721*x^7+393018511449/23610721*x^6-109680532343/23610721*x^5-144915359025/23610721*x^4+640946604/387061*x^3+19850292591/23610721*x^2-2803237290/23610721*x-844152675/23610721,28677389/23610721*x^18-211824190/23610721*x^17-7599242/23610721*x^16+3384011239/23610721*x^15-5257910562/23610721*x^14-19790898502/23610721*x^13+48200147742/23610721*x^12+48745472598/23610721*x^11-184386174043/23610721*x^10-28864772540/23610721*x^9+347284572193/23610721*x^8-74664519914/23610721*x^7-312727637483/23610721*x^6+115718215478/23610721*x^5+112154399936/23610721*x^4-651235034/387061*x^3-14404707734/23610721*x^2+2814400484/23610721*x+535072727/23610721,38774386/23610721*x^18-278224339/23610721*x^17-69556998/23610721*x^16+4570158021/23610721*x^15-6181925270/23610721*x^14-28119784049/23610721*x^13+59855048845/23610721*x^12+77959720175/23610721*x^11-236114897641/23610721*x^10-82585307308/23610721*x^9+458507803039/23610721*x^8-25174738860/23610721*x^7-429347447889/23610721*x^6+95540383271/23610721*x^5+163898137148/23610721*x^4-590122365/387061*x^3-22520732475/23610721*x^2+2725948289/23610721*x+959894010/23610721,-32955169/23610721*x^18+223725170/23610721*x^17+140109293/23610721*x^16-3792378558/23610721*x^15+3799004617/23610721*x^14+24790561307/23610721*x^13-40540156465/23610721*x^12-78703095882/23610721*x^11+163579603966/23610721*x^10+125578567004/23610721*x^9-317675494042/23610721*x^8-94197443909/23610721*x^7+288861983123/23610721*x^6+30476382549/23610721*x^5-95546968527/23610721*x^4-131314062/387061*x^3+5423189180/23610721*x^2-37643702/23610721*x+178471337/23610721,66246132/23610721*x^18-466312495/23610721*x^17-174527507/23610721*x^16+7735811432/23610721*x^15-9559688407/23610721*x^14-48534326414/23610721*x^13+95126433654/23610721*x^12+140932926039/23610721*x^11-377657036929/23610721*x^10-176192631957/23610721*x^9+733087775842/23610721*x^8+30767892817/23610721*x^7-680553995946/23610721*x^6+91237409081/23610721*x^5+251034296150/23610721*x^4-586262644/387061*x^3-30958611827/23610721*x^2+2843080440/23610721*x+1253168891/23610721,-28809972/23610721*x^18+180606366/23610721*x^17+226706302/23610721*x^16-3267804077/23610721*x^15+1589574618/23610721*x^14+23633925399/23610721*x^13-24440689899/23610721*x^12-88439817043/23610721*x^11+109550027904/23610721*x^10+186676618302/23610721*x^9-227986544474/23610721*x^8-228536527413/23610721*x^7+220223332634/23610721*x^6+158618177733/23610721*x^5-76541107936/23610721*x^4-865124302/387061*x^3+2995367226/23610721*x^2+3855217382/23610721*x+261916433/23610721,48902612/23610721*x^18-343665224/23610721*x^17-129375368/23610721*x^16+5687439423/23610721*x^15-7020476726/23610721*x^14-35521322806/23610721*x^13+69691091085/23610721*x^12+102078894116/23610721*x^11-275452408314/23610721*x^10-123217821481/23610721*x^9+530644771567/23610721*x^8+9138330671/23610721*x^7-485372946450/23610721*x^6+81885995743/23610721*x^5+172091187447/23610721*x^4-547474442/387061*x^3-18525092481/23610721*x^2+3039924207/23610721*x+563763178/23610721,-72053730/23610721*x^18+513319999/23610721*x^17+139755186/23610721*x^16-8387197390/23610721*x^15+11150935106/23610721*x^14+51241788429/23610721*x^13-107471150036/23610721*x^12-140711370907/23610721*x^11+418978414637/23610721*x^10+147054500013/23610721*x^9-798584556538/23610721*x^8+44844761293/23610721*x^7+724809795197/23610721*x^6-165171279858/23610721*x^5-258865613159/23610721*x^4+994781993/387061*x^3+31397900030/23610721*x^2-4735447902/23610721*x-1247173152/23610721,14561490/23610721*x^18-101824272/23610721*x^17-35315102/23610721*x^16+1661941971/23610721*x^15-2129590769/23610721*x^14-10113417018/23610721*x^13+20910952170/23610721*x^12+27337154617/23610721*x^11-82453450259/23610721*x^10-25933556795/23610721*x^9+160342501316/23610721*x^8-18469884180/23610721*x^7-153180914787/23610721*x^6+46795382135/23610721*x^5+63792256450/23610721*x^4-332861502/387061*x^3-10598617453/23610721*x^2+2075001997/23610721*x+415342205/23610721,38437866/23610721*x^18-289698355/23610721*x^17+18461461/23610721*x^16+4618722015/23610721*x^15-7608288079/23610721*x^14-26870562379/23610721*x^13+69065266499/23610721*x^12+65037500738/23610721*x^11-265733423362/23610721*x^10-32680236400/23610721*x^9+509181773428/23610721*x^8-116965994127/23610721*x^7-477028926038/23610721*x^6+174124396364/23610721*x^5+190974745080/23610721*x^4-994545268/387061*x^3-32421827332/23610721*x^2+3987206085/23610721*x+1765883913/23610721,-31453792/23610721*x^18+234105321/23610721*x^17-5056343/23610721*x^16-3725230378/23610721*x^15+6045677209/23610721*x^14+21548128822/23610721*x^13-55235149298/23610721*x^12-51044029321/23610721*x^11+212830687454/23610721*x^10+19535846444/23610721*x^9-407737346279/23610721*x^8+110751521457/23610721*x^7+381602633598/23610721*x^6-159471419408/23610721*x^5-152844449607/23610721*x^4+946130280/387061*x^3+26137464167/23610721*x^2-4068268216/23610721*x-1275913544/23610721,58231610/23610721*x^18-413722023/23610721*x^17-128779716/23610721*x^16+6810927983/23610721*x^15-8760661140/23610721*x^14-42259410753/23610721*x^13+85453807570/23610721*x^12+120576603198/23610721*x^11-335886676192/23610721*x^10-145502268853/23610721*x^9+647837362131/23610721*x^8+17185058286/23610721*x^7-601712012925/23610721*x^6+81612448600/23610721*x^5+227076078877/23610721*x^4-483830622/387061*x^3-29805176504/23610721*x^2+1530539570/23610721*x+1125134231/23610721]]];

f[368,2]=[
[x, [1,1], [0,0,0,-4,-6,-2,6,6,-1,-6,0,-8,6,2,8,-8,-4,-4,-2,8,6,-12,-10,10,-18]],
[x+4, [1,1], [0,1,-4,-2,4,-5,-2,-6,-1,1,9,-4,3,-8,5,6,4,-10,4,5,-15,6,-6,-8,10]],
[x+3, [1,1], [0,-3,0,2,0,-5,-6,-6,-1,9,-3,-8,3,8,-7,-2,-4,-10,-8,-7,9,6,14,16,6]],
[x+2, [1,-1], [0,1,-2,4,2,7,-4,6,1,5,-3,2,-9,-8,1,-6,8,-10,-2,13,-3,-6,0,-4,-8]],
[x-4, [-1,1], [0,0,4,4,-2,-2,-2,2,-1,2,0,-4,6,-10,0,-4,-12,-8,10,0,6,12,-14,-6,6]],
[x-3, [-1,1], [0,3,-2,4,-2,-5,4,2,-1,-7,3,2,-9,8,-9,2,0,-2,-14,3,-3,6,-8,12,0]],
[x+1, [-1,-1], [0,-1,0,-2,0,-1,-6,-2,1,-3,-5,8,3,-8,-9,6,12,14,-8,15,-7,10,-6,0,-10]],
[x^2-x-4, [1,-1], [0,x,2,0,-2*x,x+2,-2*x+2,-2*x,1,-x+2,x+4,-4*x+2,5*x-2,8,-3*x-4,2,4*x-4,4*x+2,2*x,x-12,3*x-10,2*x,4*x-8,-6*x+2,-6*x+2]],
[x^2-5, [-1,1], [0,x,x-1,-x-1,x+3,3,-x+3,2,-1,-3,-3*x,-x+1,-2*x+1,0,x,2*x-4,-2*x-2,-4*x+2,-x+5,-x-10,-2*x+11,4*x+2,-x+11,-2*x-6,3*x+11]]];

f[369,2]=[
[x-2, [-1,1], [2,0,4,-2,3,-6,-3,0,6,-5,7,-7,-1,-1,-3,6,0,-3,-2,3,-11,10,16,10,-12]],
[x, [-1,-1], [0,0,2,-4,-5,-4,5,-2,-4,-1,-5,-7,1,7,-7,14,12,-3,-2,3,13,-2,2,-18,-14]],
[x^2-2, [-1,-1], [x,0,-x-2,-x-2,-x-1,3*x+2,x-1,-x-4,x,5*x-1,-3,-6*x-1,1,-5,-x-9,-2*x-4,6*x,-4*x+1,6*x+2,-5*x-3,-8*x+1,-4*x-2,-5*x+6,4*x+6,-3*x+12]],
[x^3+2*x^2-2*x-2, [1,1], [x,0,-x-2,-x^2-x+2,x-3,-x^2-3*x,3*x^2+3*x-7,3*x^2+7*x-4,2*x^2+x-8,-4*x^2-7*x+5,-3*x^2-2*x+3,3*x^2+6*x-3,-1,-2*x^2+7,-3*x^2-3*x+5,-x^2+2*x+4,-4*x^2-2*x+8,2*x^2-2*x-7,6*x^2+4*x-12,-3*x^2-5*x-5,-2*x^2-4*x-3,2*x^2-2*x-8,4*x^2+7*x,4*x^2+4*x-6,-5*x^2-5*x+2]],
[x^3-2*x^2-2*x+2, [1,-1], [x,0,-x+2,-x^2+x+2,x+3,-x^2+3*x,-3*x^2+3*x+7,3*x^2-7*x-4,-2*x^2+x+8,4*x^2-7*x-5,-3*x^2+2*x+3,3*x^2-6*x-3,1,-2*x^2+7,3*x^2-3*x-5,x^2+2*x-4,4*x^2-2*x-8,2*x^2+2*x-7,6*x^2-4*x-12,3*x^2-5*x+5,-2*x^2+4*x-3,2*x^2+2*x-8,-4*x^2+7*x,-4*x^2+4*x+6,-5*x^2+5*x+2]],
[x^3-x^2-5*x+1, [-1,1], [x,0,-x+1,1/2*x^2-x+1/2,-3/2*x^2+x+9/2,-x^2+3,2,-3/2*x^2+x+13/2,2*x^2-2*x-8,-x^2+2*x+5,-2*x+6,3*x-3,-1,x^2-5,-3/2*x^2-3*x+13/2,-x^2+2*x+1,2*x^2-2*x-4,-x^2-2*x+5,-3/2*x^2+x+9/2,3/2*x^2+x-25/2,4*x^2-x-15,1/2*x^2+x+17/2,-2*x^2+4*x+6,4*x^2-2*x-12,-2*x^2+4*x+8]],
[x^3+x^2-4*x-2, [-1,1], [x,0,x^2+x-4,-x^2+x+4,-x+1,x^2+x,-2*x^2-x+5,x^2+x-2,-x^2-x+6,-3*x+1,x^2-4*x-5,-x^2-2*x+9,-1,5*x^2+2*x-11,-2*x^2+x+5,-2*x^2-4*x,2*x^2-2*x-4,x^2+2*x-5,-4*x^2-6*x+14,x+11,-3*x^2+2*x+11,-2*x^2-4*x-2,3*x^2+x-4,-4*x-6,x^2+3*x-6]]];

f[370,2]=[
[x, [1,1,1], [-1,0,-1,0,-4,2,-2,-4,0,-6,-4,-1,-6,4,-8,10,4,10,-8,0,10,-4,0,2,6]],
[x+2, [1,1,-1], [-1,-2,-1,-1,3,-4,3,2,6,3,5,1,3,-1,12,3,0,-1,-4,6,-16,8,-12,-6,17]],
[x-2, [1,-1,1], [-1,2,1,1,3,0,3,-6,2,-3,3,-1,3,-1,4,13,0,-15,0,-2,0,-8,-4,-18,-7]],
[x+2, [-1,-1,-1], [1,-2,1,2,0,2,6,2,0,6,-10,1,-6,-4,-6,6,-6,-10,2,0,2,-10,-6,-6,2]],
[x^2+2*x-2, [1,-1,-1], [-1,x,1,-x-4,-2*x-4,-2*x-4,2*x+4,3*x+4,-8,4*x+2,x,1,-2,4*x+4,-x-4,-6,-3*x-8,-4*x-2,-5*x,4*x,-4*x+2,x+8,-x-8,-2,-2]],
[x^2+3*x-6, [-1,-1,-1], [1,2,1,x,-x-2,-2*x-2,-x-4,-2,2*x+4,3*x+4,x-4,1,x+4,x+6,-2*x-6,x,2*x+10,-x-4,2*x+2,-2*x-4,2*x+6,-2*x-2,-2*x+2,10,-3*x+4]],
[x^3-10*x+4, [-1,1,1], [1,x,-1,-1/2*x^2+3,-1/2*x^2-x+7,-2*x,1/2*x^2+x-3,x,-x^2-2*x+6,1/2*x^2-x-5,3/2*x^2-9,-1,-3/2*x^2-x+7,1/2*x^2-x-7,x^2+x-6,3/2*x^2+x-3,x^2+x-2,1/2*x^2-x-1,x^2+x-6,-x^2+2*x+14,x^2+2*x-12,-x^2+x-2,x^2-3*x-6,6,-3/2*x^2-x+3]]];

f[371,2]=[
[x-1, [1,1], [1,-1,0,-1,0,1,-7,-7,1,9,4,-3,-10,6,6,-1,-14,4,4,7,-8,1,-11,-6,-11]],
[x-2, [-1,1], [2,0,3,1,3,-6,6,-5,4,5,-11,5,-9,4,4,-1,-2,1,-12,4,-10,-10,5,16,10]],
[x^2+x-1, [-1,-1], [x,x,-x-2,1,-2*x-1,-x-2,3,-2*x-5,4*x-1,-1,3*x+1,x-8,8*x+6,x-5,-5*x+4,1,6*x+5,4*x-6,-6*x-7,-2*x-4,4*x+5,-x-10,-9*x-6,-8*x-7,-5*x+8]],
[x^3-4*x-1, [1,1], [x,-x,-x^2+1,-1,x^2-x-4,x-4,1,-2*x^2+2*x+5,2*x^2-5,2*x^2-2*x-7,-x-7,-2*x^2-x+4,4*x+2,x+1,-3*x^2+2*x+7,-1,-x^2+x+6,-2*x^2-2*x,-x^2-x+2,-5*x^2+5*x+15,3*x^2-7*x-8,-5*x+6,2*x^2+3*x,x^2-3*x+8,2*x^2-5*x-12]],
[x^9-15*x^7+x^6+74*x^5-9*x^4-132*x^3+24*x^2+64*x-16, [1,-1], [x,1/8*x^8-15/8*x^6-3/8*x^5+35/4*x^4+23/8*x^3-13*x^2-7/2*x+4,1/8*x^8-11/8*x^6+5/8*x^5+17/4*x^4-37/8*x^3-3*x^2+7*x,-1,-1/4*x^7+11/4*x^5-1/4*x^4-17/2*x^3+1/4*x^2+6*x+2,x^4+x^3-7*x^2-5*x+8,-1/4*x^8-1/2*x^7+11/4*x^6+21/4*x^5-9*x^4-63/4*x^3+17/2*x^2+13*x,-1/4*x^8+15/4*x^6+1/4*x^5-18*x^4-11/4*x^3+59/2*x^2+11/2*x-10,1/4*x^8+1/2*x^7-11/4*x^6-21/4*x^5+9*x^4+63/4*x^3-21/2*x^2-11*x+6,-1/4*x^8-1/2*x^7+11/4*x^6+21/4*x^5-10*x^4-67/4*x^3+33/2*x^2+16*x-9,-1/2*x^5-3/2*x^4+4*x^3+21/2*x^2-13/2*x-8,1/2*x^8+1/4*x^7-13/2*x^6-9/4*x^5+105/4*x^4+6*x^3-129/4*x^2-6*x+6,-1/4*x^8+15/4*x^6+1/4*x^5-19*x^4-11/4*x^3+69/2*x^2+11/2*x-8,-1/2*x^7-x^6+9/2*x^5+15/2*x^4-9*x^3-21/2*x^2-x-2,-3/4*x^8-1/2*x^7+41/4*x^6+19/4*x^5-44*x^4-49/4*x^3+121/2*x^2+8*x-16,1,1/2*x^8+x^7-13/2*x^6-21/2*x^5+28*x^4+61/2*x^3-44*x^2-19*x+16,-3/8*x^8+1/2*x^7+41/8*x^6-51/8*x^5-85/4*x^4+183/8*x^3+53/2*x^2-20*x,-1/4*x^8+11/4*x^6-5/4*x^5-15/2*x^4+37/4*x^3-x^2-14*x+6,3/4*x^8-41/4*x^6+3/4*x^5+89/2*x^4-15/4*x^3-63*x^2+x+12,-1/8*x^8-1/2*x^7+7/8*x^6+39/8*x^5+3/4*x^4-95/8*x^3-19/2*x^2+5/2*x+6,-3/4*x^8-1/2*x^7+41/4*x^6+15/4*x^5-45*x^4-17/4*x^3+131/2*x^2-3*x-16,-x^6-3/2*x^5+19/2*x^4+11*x^3-47/2*x^2-25/2*x+12,1/4*x^8-11/4*x^6+1/4*x^5+13/2*x^4-5/4*x^3+6*x^2-x-12,1/2*x^8-13/2*x^6+3/2*x^5+28*x^4-17/2*x^3-46*x^2+5*x+20]],
[x^11+x^10-20*x^9-19*x^8+140*x^7+125*x^6-396*x^5-333*x^4+359*x^3+298*x^2-4*x-24, [-1,1], [x,3/4*x^10+3/8*x^9-121/8*x^8-53/8*x^7+215/2*x^6+313/8*x^5-2513/8*x^4-715/8*x^3+315*x^2+127/2*x-38,-1/2*x^10-1/4*x^9+10*x^8+9/2*x^7-281/4*x^6-109/4*x^5+403/2*x^4+129/2*x^3-779/4*x^2-97/2*x+21,1,3*x^10+3/2*x^9-243/4*x^8-107/4*x^7+1733/4*x^6+160*x^5-5065/4*x^4-1487/4*x^3+5027/4*x^2+271*x-144,-13/8*x^10-7/8*x^9+263/8*x^8+31/2*x^7-1875/8*x^6-735/8*x^5+5485/8*x^4+841/4*x^3-1365/2*x^2-148*x+80,-13/8*x^10-7/8*x^9+263/8*x^8+31/2*x^7-1875/8*x^6-735/8*x^5+5485/8*x^4+845/4*x^3-1365/2*x^2-155*x+78,7/4*x^10+7/8*x^9-283/8*x^8-123/8*x^7+1007/4*x^6+725/8*x^5-5871/8*x^4-1673/8*x^3+2899/4*x^2+156*x-79,-3/4*x^10-3/8*x^9+123/8*x^8+55/8*x^7-445/4*x^6-345/8*x^5+2647/8*x^4+865/8*x^3-1345/4*x^2-175/2*x+39,-13/8*x^10-7/8*x^9+263/8*x^8+31/2*x^7-1875/8*x^6-735/8*x^5+5493/8*x^4+841/4*x^3-1381/2*x^2-148*x+87,3/4*x^10+1/4*x^9-61/4*x^8-9/2*x^7+437/4*x^6+109/4*x^5-1283/4*x^4-129/2*x^3+321*x^2+93/2*x-40,-15/8*x^10-7/8*x^9+305/8*x^8+31/2*x^7-2187/8*x^6-735/8*x^5+6439/8*x^4+845/4*x^3-3231/4*x^2-155*x+98,-5/4*x^10-3/4*x^9+101/4*x^8+13*x^7-717/4*x^6-299/4*x^5+2079/4*x^4+164*x^3-1015/2*x^2-221/2*x+54,-x^3+5*x+2,13/4*x^10+7/4*x^9-263/4*x^8-31*x^7+1875/4*x^6+735/4*x^5-5489/4*x^4-843/2*x^3+1372*x^2+301*x-162,-1,-1/2*x^10-1/4*x^9+41/4*x^8+17/4*x^7-149/2*x^6-95/4*x^5+897/4*x^4+199/4*x^3-467/2*x^2-32*x+30,9/4*x^10+5/4*x^9-91/2*x^8-89/4*x^7+324*x^6+531/4*x^5-1891/2*x^4-1221/4*x^3+3747/4*x^2+425/2*x-103,-6*x^10-3*x^9+243/2*x^8+107/2*x^7-1733/2*x^6-321*x^5+5065/2*x^4+1507/2*x^3-5023/2*x^2-561*x+284,1/2*x^10+3/8*x^9-79/8*x^8-53/8*x^7+68*x^6+317/8*x^5-1511/8*x^4-751/8*x^3+689/4*x^2+145/2*x-15,-7/4*x^10-3/4*x^9+71/2*x^8+53/4*x^7-507/2*x^6-315/4*x^5+1483/2*x^4+737/4*x^3-2959/4*x^2-139*x+95,3*x^10+13/8*x^9-485/8*x^8-227/8*x^7+431*x^6+1323/8*x^5-10029/8*x^4-2993/8*x^3+4929/4*x^2+547/2*x-133,-17/4*x^10-17/8*x^9+689/8*x^8+305/8*x^7-2459/4*x^6-1843/8*x^5+14397/8*x^4+4347/8*x^3-7175/4*x^2-402*x+201,-6*x^10-3*x^9+243/2*x^8+107/2*x^7-1733/2*x^6-320*x^5+5067/2*x^4+1483/2*x^3-5041/2*x^2-530*x+294,9/8*x^10+5/8*x^9-181/8*x^8-45/4*x^7+1279/8*x^6+553/8*x^5-3691/8*x^4-341/2*x^3+449*x^2+141*x-46]]];

f[372,2]=[
[x+1, [-1,1,-1], [0,-1,-1,-1,0,-6,-8,7,-6,-8,1,8,9,0,-8,4,3,0,12,-5,-4,14,2,-6,-7]],
[x+3, [-1,-1,1], [0,1,-3,-5,2,-4,-4,-5,4,10,-1,-6,-5,2,-4,-12,5,-8,12,9,-10,-2,10,-6,-15]],
[x+2, [-1,-1,-1], [0,1,-2,4,0,2,0,4,4,0,1,-2,2,-12,-10,8,-14,-2,-4,6,6,0,-16,4,-2]],
[x-3, [-1,-1,-1], [0,1,3,-1,0,2,0,-1,-6,0,1,8,-3,8,0,-12,-9,8,-4,-9,-4,-10,-6,-6,-7]],
[x^2-3*x-2, [-1,1,1], [0,-1,x,x-2,-2*x+4,-2*x+6,4,x-2,4,2*x,-1,-4*x+6,-x+8,2*x-8,-6*x+10,4,5*x-12,-2*x-6,-4,5*x-8,-2,-6*x+4,-2*x+4,-2*x-4,5*x]]];

f[373,2]=[
[x+2, [1], [-2,1,2,-4,-6,-1,-1,6,-4,2,-3,5,-5,2,-12,-8,-1,10,-2,5,3,-8,1,-3,14]],
[x^12+4*x^11-8*x^10-43*x^9+14*x^8+161*x^7+17*x^6-260*x^5-53*x^4+177*x^3+18*x^2-42*x+7, [1], [x,-183/839*x^11-627/839*x^10+1810/839*x^9+6913/839*x^8-5772/839*x^7-26330/839*x^6+5697/839*x^5+41863/839*x^4+3312/839*x^3-26479/839*x^2-5280/839*x+3976/839,580/839*x^11+2111/839*x^10-5081/839*x^9-22286/839*x^8+12352/839*x^7+80296/839*x^6-1895/839*x^5-119660/839*x^4-23756/839*x^3+67656/839*x^2+16982/839*x-9704/839,-810/839*x^11-2789/839*x^10+7255/839*x^9+27999/839*x^8-20693/839*x^7-92638/839*x^6+22768/839*x^5+119028/839*x^4-6893/839*x^3-49642/839*x^2-745/839*x+1864/839,1369/839*x^11+4663/839*x^10-12816/839*x^9-47965/839*x^8+40305/839*x^7+164796/839*x^6-56744/839*x^5-223651/839*x^4+41188/839*x^3+101083/839*x^2-18447/839*x-4441/839,-818/839*x^11-2280/839*x^10+9709/839*x^9+25367/839*x^8-43337/839*x^7-95898/839*x^6+91650/839*x^5+142695/839*x^4-89933/839*x^3-66007/839*x^2+32818/839*x-3771/839,-181/839*x^11-964/839*x^10+777/839*x^9+10088/839*x^8+3245/839*x^7-37261/839*x^6-16977/839*x^5+61326/839*x^4+18199/839*x^3-41475/839*x^2-4232/839*x+4336/839,-384/839*x^11-1577/839*x^10+2849/839*x^9+17133/839*x^8-1246/839*x^7-63351/839*x^6-29528/839*x^5+93978/839*x^4+64772/839*x^3-49717/839*x^2-30899/839*x+7229/839,463/839*x^11+2109/839*x^10-2961/839*x^9-23024/839*x^8-2933/839*x^7+85895/839*x^6+47576/839*x^5-128532/839*x^4-87108/839*x^3+67328/839*x^2+39574/839*x-13145/839,514/839*x^11+2325/839*x^10-2874/839*x^9-23025/839*x^8-3305/839*x^7+76893/839*x^6+35714/839*x^5-108358/839*x^4-55255/839*x^3+63319/839*x^2+26865/839*x-12355/839,-62/839*x^11-1299/839*x^10-2376/839*x^9+14840/839*x^8+30064/839*x^7-62181/839*x^6-112614/839*x^5+118187/839*x^4+159363/839*x^3-93898/839*x^2-70243/839*x+23239/839,-675/839*x^11-4142/839*x^10+33/839*x^9+41371/839*x^8+45541/839*x^7-141242/839*x^6-200565/839*x^5+211616/839*x^4+296995/839*x^3-147362/839*x^2-136399/839*x+43783/839,-371/839*x^11+8/839*x^10+7461/839*x^9+435/839*x^8-51286/839*x^7-582/839*x^6+151140/839*x^5-12335/839*x^4-191262/839*x^3+29838/839*x^2+82466/839*x-18118/839,505/839*x^11+905/839*x^10-7874/839*x^9-11723/839*x^8+44633/839*x^7+49314/839*x^6-113114/839*x^5-72189/839*x^4+131551/839*x^3+19214/839*x^2-60912/839*x+12873/839,-2919/839*x^11-10290/839*x^10+26409/839*x^9+106857/839*x^8-74009/839*x^7-371887/839*x^6+68824/839*x^5+513662/839*x^4-413/839*x^3-245319/839*x^2-7610/839*x+19091/839,1739/839*x^11+7760/839*x^10-10951/839*x^9-81450/839*x^8-6466/839*x^7+292918/839*x^6+137375/839*x^5-440446/839*x^4-245253/839*x^3+259128/839*x^2+116703/839*x-46072/839,2220/839*x^11+7675/839*x^10-20692/839*x^9-81772/839*x^8+57491/839*x^7+293858/839*x^6-32539/839*x^5-420659/839*x^4-64138/839*x^3+213306/839*x^2+49088/839*x-29968/839,972/839*x^11+4018/839*x^10-7028/839*x^9-41821/839*x^8+6877/839*x^7+149424/839*x^6+36778/839*x^5-225559/839*x^4-80998/839*x^3+132060/839*x^2+39488/839*x-16332/839,-310/839*x^11+217/839*x^10+7417/839*x^9-471/839*x^8-54396/839*x^7-2992/839*x^6+163504/839*x^5-3077/839*x^4-207468/839*x^3+28876/839*x^2+90099/839*x-23079/839,1549/839*x^11+3698/839*x^10-19369/839*x^9-38246/839*x^8+95896/839*x^7+129915/839*x^6-235663/839*x^5-166761/839*x^4+268504/839*x^3+57766/839*x^2-106190/839*x+17052/839,-635/839*x^11-814/839*x^10+9577/839*x^9+5869/839*x^8-59379/839*x^7-2448/839*x^6+179921/839*x^5-48510/839*x^4-243426/839*x^3+85483/839*x^2+112769/839*x-34595/839,84/839*x^11-1569/839*x^10-6470/839*x^9+16729/839*x^8+63250/839*x^7-63933/839*x^6-220700/839*x^5+111847/839*x^4+302239/839*x^3-92033/839*x^2-128818/839*x+36095/839,-537/839*x^11-3064/839*x^10+1749/839*x^9+33916/839*x^8+20845/839*x^7-133669/839*x^6-115597/839*x^5+233138/839*x^4+183997/839*x^3-172769/839*x^2-86740/839*x+36741/839,1060/839*x^11+4292/839*x^10-8852/839*x^9-48107/839*x^8+16007/839*x^7+186962/839*x^6+24108/839*x^5-297960/839*x^4-74517/839*x^3+167767/839*x^2+33582/839*x-19789/839,-2493/839*x^11-7400/839*x^10+27037/839*x^9+78372/839*x^8-107419/839*x^7-277997/839*x^6+200269/839*x^5+386254/839*x^4-172897/839*x^3-174918/839*x^2+60399/839*x+4320/839]],
[x^17-4*x^16-18*x^15+85*x^14+111*x^13-713*x^12-211*x^11+3017*x^10-469*x^9-6832*x^8+2513*x^7+8146*x^6-3634*x^5-4743*x^4+2092*x^3+1142*x^2-417*x-62, [-1], [x,10962/1330649*x^16-265741/2661298*x^15+489372/1330649*x^14+1557461/2661298*x^13-18088447/2661298*x^12+9973416/1330649*x^11+48773751/1330649*x^10-202067069/2661298*x^9-192189119/2661298*x^8+319203756/1330649*x^7+73893629/2661298*x^6-846614357/2661298*x^5+115213101/2661298*x^4+459872889/2661298*x^3-28306907/1330649*x^2-81401149/2661298*x-814958/1330649,-407799/2661298*x^16+748889/1330649*x^15+7168899/2661298*x^14-29547049/2661298*x^13-22986124/1330649*x^12+113930640/1330649*x^11+128101461/2661298*x^10-879317883/2661298*x^9-61910858/1330649*x^8+1795836473/2661298*x^7-63296739/2661298*x^6-1875483221/2661298*x^5+130028319/2661298*x^4+442512119/1330649*x^3-10590271/2661298*x^2-71735682/1330649*x-5909922/1330649,-132782/1330649*x^16+1533075/2661298*x^15+1209121/1330649*x^14-26739099/2661298*x^13+7723523/2661298*x^12+88186848/1330649*x^11-74026625/1330649*x^10-567955415/2661298*x^9+576995227/2661298*x^8+485531762/1330649*x^7-939553863/2661298*x^6-883437933/2661298*x^5+632351857/2661298*x^4+372074013/2661298*x^3-56650959/1330649*x^2-44855475/2661298*x-4821929/1330649,149313/1330649*x^16-3344217/5322596*x^15-2625427/2661298*x^14+56732533/5322596*x^13-19121565/5322596*x^12-89565281/1330649*x^11+82372259/1330649*x^10+1078781059/5322596*x^9-1219660959/5322596*x^8-839607101/2661298*x^7+1854259197/5322596*x^6+1379889043/5322596*x^5-1125253243/5322596*x^4-562428377/5322596*x^3+80147103/2661298*x^2+102871355/5322596*x+15162753/2661298,1070361/5322596*x^16-1496987/1330649*x^15-7913485/5322596*x^14+95474451/5322596*x^13-27696311/2661298*x^12-134826293/1330649*x^11+685775097/5322596*x^10+1306878505/5322596*x^9-581664567/1330649*x^8-1263561145/5322596*x^7+3337708399/5322596*x^6+201908005/5322596*x^5-2028216973/5322596*x^4+62692706/1330649*x^3+375128761/5322596*x^2-19459385/1330649*x+5626240/1330649,-1026627/5322596*x^16+1238917/1330649*x^15+12090187/5322596*x^14-84158317/5322596*x^13-12835953/2661298*x^12+134146067/1330649*x^11-137455367/5322596*x^10-1673422987/5322596*x^9+143576392/1330649*x^8+2871108483/5322596*x^7-492874097/5322596*x^6-2883720219/5322596*x^5-225312925/5322596*x^4+385000459/1330649*x^3+299275065/5322596*x^2-73689362/1330649*x-11265322/1330649,-248099/2661298*x^16+3020885/5322596*x^15+242822/1330649*x^14-40202911/5322596*x^13+61833429/5322596*x^12+36522830/1330649*x^11-227099411/2661298*x^10+44543259/5322596*x^9+1088956571/5322596*x^8-261950122/1330649*x^7-811727211/5322596*x^6+1556097975/5322596*x^5-81734267/5322596*x^4-612988099/5322596*x^3+27401212/1330649*x^2+20350393/5322596*x+11925175/2661298,1696/1330649*x^16+691009/5322596*x^15-2650437/2661298*x^14-1563449/5322596*x^13+83609253/5322596*x^12-23355454/1330649*x^11-118593896/1330649*x^10+780180601/5322596*x^9+1183729735/5322596*x^8-1189674189/2661298*x^7-1304550385/5322596*x^6+3168599157/5322596*x^5+583409763/5322596*x^4-1760227615/5322596*x^3-58018341/2661298*x^2+296904393/5322596*x+13765403/2661298,839505/5322596*x^16-2247449/2661298*x^15-5599085/5322596*x^14+68146869/5322596*x^13-14084924/1330649*x^12-84635162/1330649*x^11+646582913/5322596*x^10+505332711/5322596*x^9-1145950323/2661298*x^8+691756715/5322596*x^7+3703093521/5322596*x^6-2646032297/5322596*x^5-2917587011/5322596*x^4+1169815455/2661298*x^3+1037630465/5322596*x^2-304293369/2661298*x-25229106/1330649,246659/1330649*x^16-4607227/2661298*x^15+2334236/1330649*x^14+66563229/2661298*x^13-165354215/2661298*x^12-150930386/1330649*x^11+591537016/1330649*x^10+333471359/2661298*x^9-3583452345/2661298*x^8+417442072/1330649*x^7+5141212095/2661298*x^6-2118472337/2661298*x^5-3477410365/2661298*x^4+1475405891/2661298*x^3+496903094/1330649*x^2-332823657/2661298*x-35833166/1330649,289677/5322596*x^16-865303/2661298*x^15-70849/5322596*x^14+23470021/5322596*x^13-13231898/1330649*x^12-20828959/1330649*x^11+454903129/5322596*x^10-100577801/5322596*x^9-795571893/2661298*x^8+1127286131/5322596*x^7+2760059809/5322596*x^6-2233181077/5322596*x^5-2400828903/5322596*x^4+845842163/2661298*x^3+847064281/5322596*x^2-221091959/2661298*x-14629829/1330649,2579189/5322596*x^16-4413501/2661298*x^15-47123957/5322596*x^14+174126161/5322596*x^13+82169250/1330649*x^12-337464440/1330649*x^11-1123701287/5322596*x^10+5296456275/5322596*x^9+1026454495/2661298*x^8-11248543173/5322596*x^7-2204117603/5322596*x^6+12733525991/5322596*x^5+1697227125/5322596*x^4-3491663947/2661298*x^3-843510027/5322596*x^2+706822997/2661298*x+29049037/1330649,82225/2661298*x^16+2028387/5322596*x^15-4495229/1330649*x^14-9145641/5322596*x^13+270367531/5322596*x^12-52545411/1330649*x^11-799816557/2661298*x^10+2015059157/5322596*x^9+4510691441/5322596*x^8-1685227071/1330649*x^7-6476740701/5322596*x^6+10114111649/5322596*x^5+4881648639/5322596*x^4-6708389641/5322596*x^3-448093568/1330649*x^2+1552265687/5322596*x+95635957/2661298,1455047/2661298*x^16-10295991/5322596*x^15-13020636/1330649*x^14+200499733/5322596*x^13+357321689/5322596*x^12-384254950/1330649*x^11-613875941/2661298*x^10+6001312215/5322596*x^9+2380734647/5322596*x^8-3205163595/1330649*x^7-2903419743/5322596*x^6+14724449983/5322596*x^5+2418182529/5322596*x^4-8109917411/5322596*x^3-295024722/1330649*x^2+1595420501/5322596*x+107151871/2661298,961569/2661298*x^16-2717010/1330649*x^15-7775391/2661298*x^14+90520883/2661298*x^13-21335667/1330649*x^12-276536014/1330649*x^11+611063365/2661298*x^10+1563269681/2661298*x^9-1122811667/1330649*x^8-2143060213/2661298*x^7+3565597293/2661298*x^6+1340996777/2661298*x^5-2531510977/2661298*x^4-118480107/1330649*x^3+713083151/2661298*x^2-28417907/1330649*x-21328038/1330649,-570035/2661298*x^16+3732751/2661298*x^15+1519839/2661298*x^14-28208730/1330649*x^13+74430727/2661298*x^12+141821865/1330649*x^11-640690737/2661298*x^10-243018522/1330649*x^9+2027742443/2661298*x^8-165756623/2661298*x^7-1457255510/1330649*x^6+599772976/1330649*x^5+975801256/1330649*x^4-962447407/2661298*x^3-570994791/2661298*x^2+198074283/2661298*x+30296166/1330649,224247/2661298*x^16+949830/1330649*x^15-17648617/2661298*x^14-12459243/2661298*x^13+128544855/1330649*x^12-64874221/1330649*x^11-1522818585/2661298*x^10+1456042989/2661298*x^9+2177397078/1330649*x^8-5002965225/2661298*x^7-6317885385/2661298*x^6+7497223069/2661298*x^5+4600278823/2661298*x^4-2444563646/1330649*x^3-1495021327/2661298*x^2+546365076/1330649*x+66001112/1330649,-24538/1330649*x^16+4270757/5322596*x^15-10348843/2661298*x^14-33664025/5322596*x^13+342908145/5322596*x^12-44346716/1330649*x^11-486049649/1330649*x^10+2384208897/5322596*x^9+4729949695/5322596*x^8-3951752697/2661298*x^7-4954298709/5322596*x^6+10622328769/5322596*x^5+2159810439/5322596*x^4-5751620147/5322596*x^3-311004287/2661298*x^2+1006720117/5322596*x+69089679/2661298,-118628/1330649*x^16+18872/1330649*x^15+4762302/1330649*x^14-6699882/1330649*x^13-56356677/1330649*x^12+108421207/1330649*x^11+285210032/1330649*x^10-655099998/1330649*x^9-678618570/1330649*x^8+1823494251/1330649*x^7+776404640/1330649*x^6-2403078887/1330649*x^5-465448172/1330649*x^4+1384068099/1330649*x^3+165699960/1330649*x^2-277982816/1330649*x-24207579/1330649,-428729/5322596*x^16+1115779/2661298*x^15+2247681/5322596*x^14-30875001/5322596*x^13+9257242/1330649*x^12+30435080/1330649*x^11-365375397/5322596*x^10-833135/5322596*x^9+613624531/2661298*x^8-872981855/5322596*x^7-1982855105/5322596*x^6+1590755725/5322596*x^5+1755758259/5322596*x^4-440227201/2661298*x^3-791488949/5322596*x^2+63569127/2661298*x+25205181/1330649,-626089/2661298*x^16+3794069/5322596*x^15+7407766/1330649*x^14-93421735/5322596*x^13-267011707/5322596*x^12+222362107/1330649*x^11+579825473/2661298*x^10-4158281233/5322596*x^9-2594249349/5322596*x^8+2519560940/1330649*x^7+3184853045/5322596*x^6-12375271797/5322596*x^5-2506711039/5322596*x^4+6974470713/5322596*x^3+296651054/1330649*x^2-1392029983/5322596*x-89757609/2661298,436303/2661298*x^16-2038709/2661298*x^15-7099599/2661298*x^14+20322586/1330649*x^13+42163177/2661298*x^12-162183976/1330649*x^11-119363427/2661298*x^10+674700809/1330649*x^9+203607285/2661298*x^8-3146498873/2661298*x^7-152604373/1330649*x^6+1996388424/1330649*x^5+178137436/1330649*x^4-2395832143/2661298*x^3-167444523/2661298*x^2+502018981/2661298*x+17072630/1330649,278473/5322596*x^16+3846275/2661298*x^15-48655013/5322596*x^14-68813907/5322596*x^13+189121005/1330649*x^12-49929886/1330649*x^11-4484570427/5322596*x^10+3721035379/5322596*x^9+6203976969/2661298*x^8-13324985657/5322596*x^7-16884834119/5322596*x^6+19363006007/5322596*x^5+11336443433/5322596*x^4-5886751111/2661298*x^3-3534055335/5322596*x^2+1211595245/2661298*x+89080371/1330649,1397332/1330649*x^16-13877025/2661298*x^15-16478833/1330649*x^14+245271587/2661298*x^13+47653563/2661298*x^12-822483203/1330649*x^11+367723167/1330649*x^10+5385937129/2661298*x^9-3616631305/2661298*x^8-4632886149/1330649*x^7+6384550623/2661298*x^6+8254100107/2661298*x^5-4655229121/2661298*x^4-3293503931/2661298*x^3+563243377/1330649*x^2+404599087/2661298*x-3338167/1330649]]];

f[374,2]=[
[x, [1,1,1], [-1,0,0,-2,-1,-2,-1,-4,6,-4,-2,-4,-2,-4,0,2,4,0,12,2,2,-14,12,6,-2]],
[x^3+x^2-6*x-5, [1,1,-1], [-1,x,-x^2+4,-x^2+x+5,-1,x+4,1,x^2+x-3,2*x-2,-2*x+2,-2*x+4,-x^2-3*x+3,-3*x^2+12,x^2-2,x^2+4*x-2,4*x^2-16,-2*x^2+2,2*x,-2*x-8,2*x^2-2*x-18,-2*x^2+x+12,-x,-x^2-x-1,x^2+5*x-9,-4*x]],
[x^3-3*x^2-2*x+7, [-1,1,1], [1,x,-x^2+4,x^2-x-1,-1,-x,-1,-x^2-x+7,4*x^2-6*x-10,-4*x^2+6*x+10,-4*x^2+2*x+16,3*x^2-3*x-13,-x^2+4*x,-x^2+4*x+2,-3*x^2+4*x+2,-4*x+4,-2*x^2+4*x-2,2*x,-4*x^2+10*x+8,2*x^2-6*x-2,2*x^2-x-8,4*x^2-7*x-4,x^2+x-11,-3*x^2+5*x+7,4*x+4]],
[x^4-x^3-10*x^2+9*x+16, [1,-1,1], [-1,x,x^2-4,-x^3-2*x^2+7*x+10,1,2*x^3+2*x^2-13*x-10,-1,-x^3-2*x^2+5*x+12,-2*x+2,2*x^3+2*x^2-14*x-8,-2*x^3-2*x^2+14*x+10,-x^3-2*x^2+7*x+16,2*x^3+x^2-16*x-2,2*x^3+3*x^2-12*x-12,-2*x^3-x^2+12*x,-2*x^3-2*x^2+12*x+10,-2*x^3-4*x^2+16*x+20,-2*x+4,-2*x+4,4*x^3+2*x^2-26*x-10,-2*x^3+13*x-6,2*x^3+6*x^2-13*x-26,-3*x^3-2*x^2+19*x+4,3*x^3+2*x^2-19*x-10,2*x^3+2*x^2-16*x-10]],
[x^4-x^3-10*x^2+13*x-4, [-1,-1,-1], [1,x,2*x^3-x^2-20*x+14,-x^3+9*x-4,1,-6*x^3+2*x^2+61*x-38,1,-3*x^3+2*x^2+31*x-24,6*x^3-2*x^2-62*x+40,-2*x-2,-2*x,-3*x^3+31*x-14,2*x^3-x^2-20*x+10,6*x^3-3*x^2-64*x+44,2*x^3-x^2-20*x+16,-2*x^3+2*x^2+24*x-26,2*x^3-20*x+12,10*x^3-2*x^2-102*x+62,-8*x^3+4*x^2+82*x-52,-2*x^3+22*x-8,-10*x^3+4*x^2+99*x-66,4*x^3-39*x+20,-9*x^3+2*x^2+89*x-48,7*x^3-2*x^2-71*x+38,-6*x^3+2*x^2+64*x-46]]];

f[375,2]=[
[x^2+x-1, [1,1], [x,-1,0,x,-2*x+1,-2*x-5,-x-6,-5,-4*x-1,6*x+3,3*x-4,-2*x+1,5*x+2,9*x+3,-3,5*x+1,x+8,-x-6,-12*x-4,-x+9,-3*x-3,-6*x-8,13*x+10,-8*x-9,3*x-14]],
[x^2-3*x+1, [1,-1], [x,-1,0,-x+4,-2*x-1,3,-x+6,-1,-6*x+9,-2*x+1,-5*x+10,5,3*x-12,x-5,10*x-17,-x-1,11*x-18,-5*x+8,-8,-3*x+9,-3*x+17,-2*x+8,-7*x+10,-4*x+5,9*x-14]],
[x^2-x-1, [-1,1], [x,1,0,x,2*x+1,-2*x+5,-x+6,-5,-4*x+1,-6*x+3,-3*x-4,-2*x-1,-5*x+2,9*x-3,3,5*x-1,-x+8,x-6,-12*x+4,x+9,-3*x+3,6*x-8,13*x-10,8*x-9,3*x+14]],
[x^2+3*x+1, [-1,-1], [x,1,0,-x-4,2*x-1,-3,-x-6,-1,-6*x-9,2*x+1,5*x+10,-5,-3*x-12,x+5,10*x+17,-x+1,-11*x-18,5*x+8,8,3*x+9,-3*x-17,2*x+8,-7*x-10,4*x+5,9*x+14]],
[x^4+3*x^3-3*x^2-11*x-1, [1,-1], [x,-1,0,-2*x^3+10*x-2,-2*x^3-2*x^2+10*x+6,4*x^3+2*x^2-18*x+2,-3*x^3-3*x^2+12*x+4,-x^3-x^2+6*x+5,-x^3+x^2+4*x-8,4*x^3+2*x^2-20*x,5*x^3+3*x^2-24*x-2,-2*x^2-4*x+8,2*x^2+2*x,-2*x^3-4*x^2+4*x+10,x^3+x^2-6*x-3,5*x^3+x^2-24*x+5,-6*x^3-6*x^2+22*x+8,-3*x^3+x^2+16*x-5,2*x^3-6*x+8,4*x^3+6*x^2-18*x-18,2*x+2,3*x^3-x^2-18*x+1,5*x^3+5*x^2-22*x-15,6*x^3+2*x^2-28*x+10,-12*x^3-8*x^2+54*x+12]],
[x^4-3*x^3-3*x^2+11*x-1, [-1,1], [x,1,0,-2*x^3+10*x+2,2*x^3-2*x^2-10*x+6,4*x^3-2*x^2-18*x-2,-3*x^3+3*x^2+12*x-4,x^3-x^2-6*x+5,-x^3-x^2+4*x+8,-4*x^3+2*x^2+20*x,-5*x^3+3*x^2+24*x-2,2*x^2-4*x-8,2*x^2-2*x,-2*x^3+4*x^2+4*x-10,x^3-x^2-6*x+3,5*x^3-x^2-24*x-5,6*x^3-6*x^2-22*x+8,3*x^3+x^2-16*x-5,2*x^3-6*x-8,-4*x^3+6*x^2+18*x-18,2*x-2,-3*x^3-x^2+18*x+1,5*x^3-5*x^2-22*x+15,-6*x^3+2*x^2+28*x+10,-12*x^3+8*x^2+54*x-12]]];

f[376,2]=[
[x^2+2*x-4, [1,1], [0,-1/2*x-1,x,-1/2*x-2,x-2,-x,3/2*x-1,-2*x-4,-4,-3*x-2,x-4,-3/2*x+5,-2*x-4,3*x,-1,3/2*x+4,-5/2*x+2,3/2*x+8,3*x+4,-3/2*x+1,3*x+2,5/2*x+1,6*x+8,-1/2*x-8,-7/2*x+4]],
[x^2-x-11, [-1,-1], [0,-1/3*x-1/3,-2,x,-2,2/3*x-10/3,-5/3*x-5/3,-4/3*x+2/3,-2/3*x-2/3,-6,2/3*x+14/3,-7/3*x-7/3,2*x,-4/3*x+20/3,1,7/3*x-14/3,x-8,7/3*x-14/3,-4/3*x+2/3,-x-5,4/3*x+16/3,-11/3*x+1/3,8/3*x-4/3,-3*x+6,-7/3*x+14/3]],
[x^4-3*x^3-5*x^2+16*x-8, [1,-1], [0,x,1/2*x^3-3/2*x^2-5/2*x+6,x^3-2*x^2-7*x+10,-3/2*x^3+5/2*x^2+19/2*x-8,-3/2*x^3+5/2*x^2+23/2*x-14,-x^3+3*x^2+6*x-12,-3/2*x^3+5/2*x^2+19/2*x-8,3*x^3-5*x^2-21*x+24,1/2*x^3-3/2*x^2-13/2*x+10,-3*x^3+5*x^2+21*x-24,2*x^3-4*x^2-13*x+10,-x^3+3*x^2+7*x-14,1/2*x^3-3/2*x^2-5/2*x+8,1,-x^3+2*x^2+5*x-6,-2*x^3+5*x^2+14*x-20,x^3-9*x-2,1/2*x^3+1/2*x^2-9/2*x,2*x^3-4*x^2-13*x+18,2*x^3-4*x^2-16*x+14,3*x^3-5*x^2-24*x+24,-x^3-x^2+9*x+8,-3*x^2-2*x+20,x^2-2]],
[x^4+x^3-9*x^2-4*x+16, [-1,1], [0,x,1/2*x^3+1/2*x^2-5/2*x,-x^2+4,-1/2*x^3-1/2*x^2+5/2*x+2,-1/2*x^3-1/2*x^2+5/2*x+4,-2*x^2-x+10,1/2*x^3+1/2*x^2-9/2*x-2,-x^3-x^2+5*x+4,-1/2*x^3-5/2*x^2+1/2*x+12,x^3+3*x^2-5*x-12,2*x^2+x-6,x^3+3*x^2-3*x-10,1/2*x^3-3/2*x^2-9/2*x+6,-1,-x^3+2*x^2+9*x-6,-x^2-4*x+4,x^3-5*x+2,-1/2*x^3+3/2*x^2+9/2*x-14,x^3+5*x^2-2*x-20,-2*x^3-4*x^2+14*x+10,-x^3-x^2+4*x,-x^3-x^2+5*x,x^3+4*x^2-5*x-14,x^2-14]]];

f[377,2]=[
[x-1, [-1,-1], [1,0,-2,0,-4,1,2,-4,8,1,-8,2,-10,-8,8,6,12,6,12,-16,-10,-12,-12,-10,14]],
[x^2-3, [1,-1], [x,x+1,-2*x,x+3,2,-1,-2*x-4,-2*x,2*x+2,1,-2*x+4,-4*x+2,-2,-x+3,-2*x,2*x+2,-3*x-9,-2*x+4,x+7,-x-11,4*x,5*x+5,-3*x+3,4*x-2,-4*x+6]],
[x^5+x^4-5*x^3-3*x^2+6*x+1, [1,1], [x,x^3-3*x,-x^3-2*x^2+2*x+3,-x^4-x^3+4*x^2+2*x-5,x^3+3*x^2-2*x-5,-1,2*x^4+x^3-5*x^2-2,3*x^4+3*x^3-11*x^2-7*x+6,-2*x^4-x^3+6*x^2-x-3,-1,x^2+4*x-2,-2*x^4-5*x^3+4*x^2+12*x,-3*x^4-7*x^3+8*x^2+16*x-3,-2*x^4-2*x^3+7*x^2+4*x-9,2*x^4+6*x^3-6*x^2-15*x+2,2*x^4-3*x^3-13*x^2+10*x+13,2*x^4+5*x^3-4*x^2-16*x,-x^4-7*x^3-2*x^2+18*x+7,x^4+2*x^3-4*x^2-6*x,-4*x^4+2*x^3+17*x^2-8*x-9,-x^4+3*x^2-6*x+4,-x^4-5*x^3+2*x^2+15*x-7,3*x^4+4*x^3-4*x^2-7*x-4,-2*x^4-2*x^3+4*x^2+4*x+9,-x^4+5*x^3+10*x^2-11*x-9]],
[x^5+3*x^4-3*x^3-13*x^2-8*x-1, [-1,-1], [x,-2*x^4-5*x^3+8*x^2+21*x+6,2*x^4+5*x^3-8*x^2-22*x-7,x^4+3*x^3-4*x^2-14*x-7,-x^3-x^2+4*x+1,1,-2*x^4-3*x^3+11*x^2+12*x-2,x^4+3*x^3-3*x^2-11*x-8,-x^3+5*x-3,1,-x^2,2*x^4+3*x^3-12*x^2-12*x,-5*x^4-13*x^3+20*x^2+58*x+21,-4*x^4-8*x^3+19*x^2+36*x+5,6*x^4+14*x^3-26*x^2-59*x-18,-6*x^4-13*x^3+27*x^2+52*x+9,2*x^4+3*x^3-14*x^2-12*x+12,-x^4-3*x^3+6*x^2+14*x-3,x^4+4*x^3-2*x^2-14*x-12,2*x^4+6*x^3-7*x^2-26*x-5,5*x^4+12*x^3-21*x^2-54*x-22,-3*x^4-3*x^3+16*x^2+9*x-3,-9*x^4-22*x^3+38*x^2+95*x+26,-6*x^4-12*x^3+26*x^2+46*x+13,x^4-x^3-6*x^2+7*x-1]],
[x^7-3*x^6-8*x^5+26*x^4+9*x^3-36*x^2-14*x+3, [1,-1], [x,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+8*x+1,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+9*x,4*x^6-3*x^5-40*x^4+16*x^3+83*x^2+28*x-6,-5*x^6+5*x^5+49*x^4-32*x^3-97*x^2-13*x+11,-1,3*x^6-2*x^5-30*x^4+9*x^3+62*x^2+29*x-1,4*x^6-4*x^5-39*x^4+25*x^3+75*x^2+15*x-6,-6*x^6+5*x^5+59*x^4-28*x^3-117*x^2-39*x+8,1,4*x^6-5*x^5-37*x^4+33*x^3+62*x^2+8*x-5,5*x^6-3*x^5-51*x^4+12*x^3+110*x^2+51*x-4,-11*x^6+9*x^5+108*x^4-50*x^3-212*x^2-75*x+7,-3*x^6+4*x^5+26*x^4-26*x^3-32*x^2-11*x-6,-7*x^6+7*x^5+67*x^4-43*x^3-122*x^2-32*x,-3*x^6+x^5+33*x^4-4*x^3-85*x^2-19*x+17,-8*x^6+9*x^5+75*x^4-58*x^3-129*x^2-22*x+3,-3*x^6+5*x^5+26*x^4-34*x^3-34*x^2-x+1,3*x^6-3*x^5-28*x^4+19*x^3+48*x^2+11*x-2,15*x^6-16*x^5-142*x^4+100*x^3+252*x^2+59*x-2,10*x^6-14*x^5-89*x^4+96*x^3+129*x^2+2*x,-3*x^6+2*x^5+31*x^4-9*x^3-69*x^2-30*x+14,-2*x^6-4*x^5+27*x^4+40*x^3-90*x^2-79*x,14*x^6-11*x^5-139*x^4+59*x^3+285*x^2+102*x-32,2*x^6-4*x^5-17*x^4+33*x^3+22*x^2-35*x-9]],
[x^9-x^8-13*x^7+13*x^6+51*x^5-50*x^4-59*x^3+45*x^2+20*x-3, [-1,1], [x,3/4*x^8-37/4*x^6+133/4*x^4-1/4*x^3-31*x^2-17/4*x+7/4,1/2*x^8-13/2*x^6+51/2*x^4-1/2*x^3-29*x^2-1/2*x+9/2,-1/4*x^8-1/2*x^7+13/4*x^6+6*x^5-51/4*x^4-83/4*x^3+15*x^2+75/4*x+5/4,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+23*x^2-11/2*x-3/2,1,-1/2*x^8+13/2*x^6-51/2*x^4+1/2*x^3+28*x^2+1/2*x-3/2,-x^4+x^3+7*x^2-5*x-4,-1/2*x^8+11/2*x^6+x^5-33/2*x^4-13/2*x^3+9*x^2+17/2*x+15/2,-1,x^5-x^4-7*x^3+4*x^2+6*x+5,-3/2*x^8+39/2*x^6-x^5-151/2*x^4+17/2*x^3+82*x^2-9/2*x-23/2,1/2*x^8-13/2*x^6+x^5+51/2*x^4-15/2*x^3-30*x^2+11/2*x+15/2,-5/4*x^8+x^7+63/4*x^6-12*x^5-227/4*x^4+159/4*x^3+46*x^2-77/4*x-1/4,x^8+x^7-13*x^6-11*x^5+48*x^4+35*x^3-40*x^2-39*x-6,-1/2*x^8+13/2*x^6-x^5-49/2*x^4+15/2*x^3+25*x^2-11/2*x-15/2,-5/4*x^8-1/2*x^7+65/4*x^6+6*x^5-251/4*x^4-87/4*x^3+67*x^2+119/4*x-27/4,3/2*x^8+x^7-37/2*x^6-11*x^5+129/2*x^4+69/2*x^3-50*x^2-83/2*x-17/2,-3/4*x^8+1/2*x^7+35/4*x^6-6*x^5-113/4*x^4+83/4*x^3+20*x^2-43/4*x-1/4,-1/4*x^8+1/2*x^7+13/4*x^6-5*x^5-51/4*x^4+49/4*x^3+14*x^2-1/4*x-15/4,x^8-13*x^6+2*x^5+48*x^4-15*x^3-39*x^2+11*x-1,-7/4*x^8-x^7+85/4*x^6+12*x^5-293/4*x^4-159/4*x^3+59*x^2+173/4*x+29/4,1/4*x^8+1/2*x^7-13/4*x^6-7*x^5+55/4*x^4+107/4*x^3-22*x^2-79/4*x+27/4,3/2*x^8+x^7-39/2*x^6-11*x^5+147/2*x^4+71/2*x^3-69*x^2-93/2*x-3/2,3/2*x^8-37/2*x^6+135/2*x^4+1/2*x^3-70*x^2-27/2*x+25/2]]];

f[378,2]=[
[x+1, [1,1,1], [-1,0,-1,-1,-5,0,-2,-1,1,-4,-9,5,9,-10,-6,-12,14,0,-8,13,-2,6,4,9,16]],
[x, [1,1,-1], [-1,0,0,1,0,5,-3,2,9,3,5,2,6,-1,6,-3,3,-10,-13,-9,2,-10,12,-15,8]],
[x+4, [1,-1,1], [-1,0,-4,-1,4,3,7,2,1,-1,-9,2,-6,11,6,9,5,-6,7,7,-14,-6,4,3,-8]],
[x+3, [1,-1,-1], [-1,0,-3,1,3,-4,-6,-7,-3,0,5,-7,-9,-10,6,12,-6,8,-4,9,2,-10,0,15,8]],
[x-1, [-1,1,1], [1,0,1,-1,5,0,2,-1,-1,4,-9,5,-9,-10,6,12,-14,0,-8,-13,-2,6,-4,-9,16]],
[x-4, [-1,1,1], [1,0,4,-1,-4,3,-7,2,-1,1,-9,2,6,11,-6,-9,-5,-6,7,-7,-14,-6,-4,-3,-8]],
[x, [-1,-1,-1], [1,0,0,1,0,5,3,2,-9,-3,5,2,-6,-1,-6,3,-3,-10,-13,9,2,-10,-12,15,8]],
[x-3, [-1,-1,-1], [1,0,3,1,-3,-4,6,-7,3,0,5,-7,9,-10,-6,-12,6,8,-4,-9,2,-10,0,-15,8]]];

f[379,2]=[
[x^13+5*x^12-5*x^11-56*x^10-27*x^9+210*x^8+184*x^7-347*x^6-346*x^5+252*x^4+246*x^3-60*x^2-48*x-1, [1], [x,-2*x^12-5*x^11+23*x^10+54*x^9-91*x^8-187*x^7+164*x^6+262*x^5-121*x^4-154*x^3+20*x^2+33*x+2,x^12+x^11-12*x^10-x^9+52*x^8-62*x^7-105*x^6+246*x^5+67*x^4-255*x^3+4*x^2+46*x+1,4*x^12+13*x^11-46*x^10-162*x^9+180*x^8+704*x^7-321*x^6-1330*x^5+286*x^4+1020*x^3-99*x^2-203*x-8,-3*x^11-4*x^10+42*x^9+39*x^8-213*x^7-103*x^6+478*x^5+49*x^4-413*x^3+38*x^2+83*x-3,9*x^12+31*x^11-85*x^10-341*x^9+229*x^8+1234*x^7-239*x^6-1902*x^5+145*x^4+1200*x^3-77*x^2-200*x-8,2*x^12-41*x^10-15*x^9+270*x^8+139*x^7-693*x^6-354*x^5+688*x^4+322*x^3-204*x^2-74*x+4,8*x^12+25*x^11-82*x^10-275*x^9+268*x^8+992*x^7-399*x^6-1512*x^5+296*x^4+956*x^3-94*x^2-172*x-4,-18*x^12-57*x^11+196*x^10+667*x^9-710*x^8-2654*x^7+1188*x^6+4558*x^5-1009*x^4-3205*x^3+352*x^2+588*x+17,2*x^12+10*x^11-17*x^10-127*x^9+29*x^8+568*x^7+19*x^6-1111*x^5-6*x^4+848*x^3-45*x^2-140*x-6,x^12+10*x^11+2*x^10-122*x^9-86*x^8+525*x^7+271*x^6-1020*x^5-158*x^4+782*x^3-81*x^2-133*x+5,-16*x^12-45*x^11+186*x^10+524*x^9-752*x^8-2064*x^7+1429*x^6+3478*x^5-1292*x^4-2409*x^3+440*x^2+448*x-2,15*x^12+58*x^11-143*x^10-686*x^9+390*x^8+2788*x^7-419*x^6-4966*x^5+384*x^4+3600*x^3-292*x^2-659*x-11,3*x^12+2*x^11-52*x^10-32*x^9+308*x^8+164*x^7-734*x^6-293*x^5+653*x^4+198*x^3-146*x^2-33*x+4,8*x^12+29*x^11-76*x^10-330*x^9+208*x^8+1264*x^7-234*x^6-2100*x^5+208*x^4+1429*x^3-148*x^2-247*x-3,-20*x^12-70*x^11+194*x^10+792*x^9-557*x^8-3001*x^7+668*x^6+4901*x^5-516*x^4-3279*x^3+294*x^2+571*x+3,-14*x^12-38*x^11+173*x^10+463*x^9-756*x^8-1938*x^7+1521*x^6+3462*x^5-1408*x^4-2506*x^3+465*x^2+470*x+4,-4*x^12-12*x^11+40*x^10+127*x^9-122*x^8-426*x^7+151*x^6+577*x^5-65*x^4-317*x^3+4*x^2+57*x-5,12*x^12+36*x^11-125*x^10-392*x^9+421*x^8+1387*x^7-646*x^6-2047*x^5+459*x^4+1250*x^3-110*x^2-234*x-6,-13*x^12-53*x^11+116*x^10+622*x^9-257*x^8-2503*x^7+112*x^6+4425*x^5-46*x^4-3182*x^3+148*x^2+566*x+11,44*x^12+144*x^11-458*x^10-1653*x^9+1531*x^8+6394*x^7-2335*x^6-10644*x^5+1940*x^4+7242*x^3-785*x^2-1276*x-20,-5*x^12-9*x^11+57*x^10+69*x^9-227*x^8-50*x^7+421*x^6-396*x^5-271*x^4+593*x^3+x^2-144*x-2,-14*x^12-54*x^11+135*x^10+643*x^9-378*x^8-2640*x^7+425*x^6+4760*x^5-380*x^4-3497*x^3+264*x^2+645*x+12,-12*x^12-44*x^11+112*x^10+501*x^9-285*x^8-1921*x^7+223*x^6+3196*x^5-56*x^4-2181*x^3+37*x^2+388*x+14,7*x^11+18*x^10-74*x^9-181*x^8+254*x^7+542*x^6-388*x^5-563*x^4+243*x^3+157*x^2-44*x-5]],
[x^18-3*x^17-22*x^16+69*x^15+190*x^14-638*x^13-807*x^12+3041*x^11+1680*x^10-7967*x^9-1220*x^8+11334*x^7-1006*x^6-8079*x^5+1938*x^4+2287*x^3-752*x^2-68*x+24, [-1], [x,239646933/1793175190*x^17-484282877/1793175190*x^16-2918698602/896587595*x^15+10920077991/1793175190*x^14+29192188967/896587595*x^13-49015280444/896587595*x^12-309792337413/1793175190*x^11+446493548451/1793175190*x^10+468794375957/896587595*x^9-217714639577/358635038*x^8-160785930047/179317519*x^7+690161150041/896587595*x^6+143607053551/179317519*x^5-825796553337/1793175190*x^4-265893375512/896587595*x^3+37055169135/358635038*x^2+15664352337/896587595*x-3492196834/896587595,-587362301/3586350380*x^17+1362705089/3586350380*x^16+3490982682/896587595*x^15-31159994897/3586350380*x^14-33784895822/896587595*x^13+142584136593/1793175190*x^12+685645325291/3586350380*x^11-1335062480207/3586350380*x^10-975760111749/1793175190*x^9+678126786911/717270076*x^8+306882475889/358635038*x^7-2287907721217/1793175190*x^6-239276091071/358635038*x^5+2998847142899/3586350380*x^4+164405587057/896587595*x^3-149169579219/717270076*x^2+15788512921/1793175190*x+5934308694/896587595,345660171/1793175190*x^17-702742249/1793175190*x^16-4120088259/896587595*x^15+15812721467/1793175190*x^14+40042452629/896587595*x^13-70877456353/896587595*x^12-409354057071/1793175190*x^11+645708072847/1793175190*x^10+591085357224/896587595*x^9-315794194981/358635038*x^8-191825947930/179317519*x^7+1008875577592/896587595*x^6+161672018357/179317519*x^5-1220808555709/1793175190*x^4-287618713729/896587595*x^3+54423378047/358635038*x^2+20699218389/896587595*x-4083266708/896587595,-132736008/896587595*x^17+285175122/896587595*x^16+3108067204/896587595*x^15-6410410811/896587595*x^14-29427805654/896587595*x^13+57409574768/896587595*x^12+144807378128/896587595*x^11-261431891741/896587595*x^10-395843560339/896587595*x^9+128154480581/179317519*x^8+118727431138/179317519*x^7-826932759102/896587595*x^6-88759808824/179317519*x^5+515880487037/896587595*x^4+120250963559/896587595*x^3-25509324900/179317519*x^2+6461272046/896587595*x+6332734098/896587595,-30264879/896587595*x^17-6594934/896587595*x^16+870582572/896587595*x^15+230342647/896587595*x^14-10275736617/896587595*x^13-3222650196/896587595*x^12+63928825349/896587595*x^11+23296598632/896587595*x^10-223604548322/896587595*x^9-18609033847/179317519*x^8+86531089630/179317519*x^7+202344819449/896587595*x^6-84643457170/179317519*x^5-218774233984/896587595*x^4+171397060597/896587595*x^3+18772501151/179317519*x^2-16314528032/896587595*x-4256662976/896587595,-146108351/1793175190*x^17+188501929/1793175190*x^16+1902055069/896587595*x^15-4234622807/1793175190*x^14-20457998569/896587595*x^13+18794361623/896587595*x^12+234317317701/1793175190*x^11-167104337257/1793175190*x^10-382507571479/896587595*x^9+77843282301/358635038*x^8+140657995989/179317519*x^7-228547137492/896587595*x^6-133208557571/179317519*x^5+248528372249/1793175190*x^4+259457039619/896587595*x^3-10282825013/358635038*x^2-16700513004/896587595*x+1407321288/896587595,-1215443849/3586350380*x^17+2971233491/3586350380*x^16+14065403371/1793175190*x^15-67400410513/3586350380*x^14-131468921151/1793175190*x^13+305526007287/1793175190*x^12+1275988558639/3586350380*x^11-2829570734333/3586350380*x^10-859217509588/896587595*x^9+1419520582587/717270076*x^8+253438402568/179317519*x^7-4727174421043/1793175190*x^6-369366545749/358635038*x^5+6133620725511/3586350380*x^4+470202125351/1793175190*x^3-310148437835/717270076*x^2+12431252557/896587595*x+15343011526/896587595,115785587/1793175190*x^17-150281454/896587595*x^16-2724939751/1793175190*x^15+7075049449/1793175190*x^14+25839434521/1793175190*x^13-33741137556/896587595*x^12-126130776057/1793175190*x^11+167901325767/896587595*x^10+334306657081/1793175190*x^9-187154837807/358635038*x^8-92213140217/358635038*x^7+728555824754/896587595*x^6+27957857002/179317519*x^5-1184384230793/1793175190*x^4-45057693931/1793175190*x^3+81568779161/358635038*x^2+2164441221/1793175190*x-11293820916/896587595,450912671/1793175190*x^17-847968909/1793175190*x^16-5438739019/896587595*x^15+18988582387/1793175190*x^14+53546899699/896587595*x^13-84442615363/896587595*x^12-554699129301/1793175190*x^11+759238528537/1793175190*x^10+810609799579/896587595*x^9-363075256387/358635038*x^8-265250685508/179317519*x^7+1115363540672/896587595*x^6+223770953014/179317519*x^5-1261743695469/1793175190*x^4-391531916199/896587595*x^3+49912205679/358635038*x^2+19969891994/896587595*x-1163329128/896587595,-52266898/896587595*x^17+118302427/896587595*x^16+1262178604/896587595*x^15-2892916041/896587595*x^14-12385475839/896587595*x^13+29018965298/896587595*x^12+63514804458/896587595*x^11-154100141271/896587595*x^10-181938517514/896587595*x^9+93014975393/179317519*x^8+57302867160/179317519*x^7-790969930422/896587595*x^6-44152113450/179317519*x^5+695269872242/896587595*x^4+49931606239/896587595*x^3-50065116590/179317519*x^2+12664934346/896587595*x+13003623058/896587595,-265074377/3586350380*x^17+421693023/3586350380*x^16+3249233053/1793175190*x^15-9403941449/3586350380*x^14-32679086213/1793175190*x^13+41612690571/1793175190*x^12+347824662647/3586350380*x^11-372418636609/3586350380*x^10-262208179254/896587595*x^9+178506107155/717270076*x^8+88189022021/179317519*x^7-568700676419/1793175190*x^6-148945815165/358635038*x^5+752530222303/3586350380*x^4+240231261623/1793175190*x^3-44422247507/717270076*x^2-3133776184/896587595*x+2401780438/896587595,222146685/717270076*x^17-511123683/717270076*x^16-2630767511/358635038*x^15+11694618997/717270076*x^14+25308250811/358635038*x^13-53608916937/358635038*x^12-254512489967/717270076*x^11+504164958733/717270076*x^10+178855624693/179317519*x^9-1293408764175/717270076*x^8-277007048652/179317519*x^7+892672155597/358635038*x^6+425625722153/358635038*x^5-1228425548387/717270076*x^4-114841099993/358635038*x^3+339000360823/717270076*x^2-3469202370/179317519*x-2673088302/179317519,-695153577/1793175190*x^17+1183287823/1793175190*x^16+8494531543/896587595*x^15-26427458109/1793175190*x^14-85016104803/896587595*x^13+116995992116/896587595*x^12+899150581487/1793175190*x^11-1043116118269/1793175190*x^10-1348586537658/896587595*x^9+490330959591/358635038*x^8+455472826922/179317519*x^7-1449256216379/896587595*x^6-398181691338/179317519*x^5+1486455601453/1793175190*x^4+718182208073/896587595*x^3-41731670175/358635038*x^2-40161660853/896587595*x-2881141754/896587595,-109411141/1793175190*x^17+84276819/1793175190*x^16+1302616219/896587595*x^15-1640006777/1793175190*x^14-12479133954/896587595*x^13+5956499418/896587595*x^12+122856517671/1793175190*x^11-38676748497/1793175190*x^10-164010837039/896587595*x^9+9575446463/358635038*x^8+45734875552/179317519*x^7+4213617638/896587595*x^6-28403944375/179317519*x^5-45585539101/1793175190*x^4+19439524794/896587595*x^3+3976839589/358635038*x^2+1653173461/896587595*x-2703005322/896587595,-24926367/896587595*x^17+42518323/896587595*x^16+707803816/896587595*x^15-1003196654/896587595*x^14-8325971766/896587595*x^13+9400149192/896587595*x^12+52114369162/896587595*x^11-44479489904/896587595*x^10-185351502331/896587595*x^9+22459520208/179317519*x^8+74168344346/179317519*x^7-151185368233/896587595*x^6-78322397583/179317519*x^5+114406249223/896587595*x^4+199683314361/896587595*x^3-10454031149/179317519*x^2-41561095676/896587595*x+6581897412/896587595,55478428/179317519*x^17-116461202/179317519*x^16-1310654487/179317519*x^15+2605705505/179317519*x^14+12576306803/179317519*x^13-23129558888/179317519*x^12-63075073381/179317519*x^11+103489643339/179317519*x^10+176777372193/179317519*x^9-244618724341/179317519*x^8-272523719682/179317519*x^7+292164859607/179317519*x^6+208041356142/179317519*x^5-154132152048/179317519*x^4-58244988772/179317519*x^3+26817271442/179317519*x^2-279510732/179317519*x-1568204958/179317519,-20277718/896587595*x^17+173274909/1793175190*x^16+636454283/1793175190*x^15-1716834326/896587595*x^14-2377420103/1793175190*x^13+12451019548/896587595*x^12-4833905957/896587595*x^11-74307939927/1793175190*x^10+89726547657/1793175190*x^9+3498863857/179317519*x^8-41675817591/358635038*x^7+130253363688/896587595*x^6+11914053796/179317519*x^5-237942415218/896587595*x^4+111378308563/1793175190*x^3+23580951114/179317519*x^2-90072081803/1793175190*x-3441934832/896587595,1136945123/1793175190*x^17-1336620766/896587595*x^16-26761450299/1793175190*x^15+60872945481/1793175190*x^14+255776361699/1793175190*x^13-277351853739/896587595*x^12-1278592063193/1793175190*x^11+1293654956948/896587595*x^10+3583567448589/1793175190*x^9-1312247897157/358635038*x^8-1116205140503/358635038*x^7+4446945780621/896587595*x^6+441644707583/179317519*x^5-5936493891917/1793175190*x^4-1356611734909/1793175190*x^3+312996070185/358635038*x^2+15334347169/1793175190*x-31214541044/896587595,-402015533/896587595*x^17+809488942/896587595*x^16+9579168009/896587595*x^15-18481021531/896587595*x^14-92804002824/896587595*x^13+169195902318/896587595*x^12+470898289183/896587595*x^11-795261702656/896587595*x^10-1341984420434/896587595*x^9+408129395666/179317519*x^8+426477899438/179317519*x^7-2810939675047/896587595*x^6-348025933005/179317519*x^5+1906264735457/896587595*x^4+575936750789/896587595*x^3-102338788567/179317519*x^2-24917180039/896587595*x+25783890918/896587595,-419393213/896587595*x^17+1002016407/896587595*x^16+9831385139/896587595*x^15-22721338226/896587595*x^14-93532417629/896587595*x^13+205615801328/896587595*x^12+464946466288/896587595*x^11-947735855171/896587595*x^10-1292221687069/896587595*x^9+470720928341/179317519*x^8+395508523312/179317519*x^7-3073714354877/896587595*x^6-297858676502/179317519*x^5+1927834104437/896587595*x^4+370765956554/896587595*x^3-93543408881/179317519*x^2+43522895226/896587595*x+15068168458/896587595,-210563523/3586350380*x^17-115827633/3586350380*x^16+1545164246/896587595*x^15+2595290269/3586350380*x^14-18527864336/896587595*x^13-11270449621/1793175190*x^12+467668679433/3586350380*x^11+93301698399/3586350380*x^10-833046501257/1793175190*x^9-34725203251/717270076*x^8+333607529389/358635038*x^7+34535481639/1793175190*x^6-351190410997/358635038*x^5+130615398117/3586350380*x^4+410740231991/896587595*x^3-8419640665/717270076*x^2-94971353087/1793175190*x-8389077278/896587595,2782847537/3586350380*x^17-6595658273/3586350380*x^16-16278095279/896587595*x^15+149665869049/3586350380*x^14+154363183759/896587595*x^13-678291322851/1793175190*x^12-3054387367687/3586350380*x^11+6275644090559/3586350380*x^10+4218476928833/1793175190*x^9-3142627598387/717270076*x^8-1285100998949/358635038*x^7+10449562140379/1793175190*x^6+975715775523/358635038*x^5-13612889060683/3586350380*x^4-665576832804/896587595*x^3+700252961783/717270076*x^2-60422820047/1793175190*x-31408379658/896587595,-47299644/896587595*x^17+36575026/896587595*x^16+1133132232/896587595*x^15-688805223/896587595*x^14-11011251327/896587595*x^13+4621216429/896587595*x^12+55904826424/896587595*x^11-11684629123/896587595*x^10-159429687117/896587595*x^9-401160077/179317519*x^8+51298520234/179317519*x^7+51495049499/896587595*x^6-44500483438/179317519*x^5-53307805604/896587595*x^4+90193593027/896587595*x^3-917784407/179317519*x^2-8578838807/896587595*x+8397962664/896587595,-2025196/179317519*x^17+18372985/179317519*x^16+47217342/179317519*x^15-465835590/179317519*x^14-473855131/179317519*x^13+4874642811/179317519*x^12+2686879136/179317519*x^11-27163810230/179317519*x^10-9210255889/179317519*x^9+86502288758/179317519*x^8+18450408618/179317519*x^7-156336909826/179317519*x^6-19643785812/179317519*x^5+148168031255/179317519*x^4+10763373134/179317519*x^3-58666752606/179317519*x^2-2902730658/179317519*x+3829909601/179317519]]];

f[380,2]=[
[x-2, [-1,1,1], [0,2,-1,2,0,6,2,-1,-2,-2,4,-10,-10,6,-6,6,-4,2,-2,12,-6,8,-2,2,-18]],
[x, [-1,1,-1], [0,0,-1,-2,-4,-4,6,1,-2,-6,-8,4,6,-6,6,8,-12,6,0,0,-10,-8,14,14,16]],
[x^2+4*x+2, [-1,-1,1], [0,x,1,-2*x-6,-2,3*x+4,-2*x-6,-1,-6,6*x+14,2*x,-3*x-12,-4*x-10,-2*x-2,2*x+2,-5*x-8,-4*x,4*x,x,2*x+12,6*x+18,-4*x-12,8*x+14,6*x+14,3*x]],
[x^2-2*x-2, [-1,-1,-1], [0,x,1,2,-2*x+2,-x,-2*x+2,1,-2*x+2,2*x-2,-2*x+4,x+4,-6,-4*x+6,4*x+2,-x-8,4*x-4,6*x-4,x+4,2*x-8,2*x-6,4*x-8,2*x-2,-2*x-10,-9*x+8]]];

f[381,2]=[
[x-2, [-1,1], [2,1,3,-4,6,-7,-2,0,1,9,-5,-3,-6,4,2,-1,13,-5,-2,6,-1,0,-7,15,2]],
[x, [-1,-1], [0,1,-1,-2,-4,-3,0,-4,-3,5,-5,5,4,-4,12,-1,5,-5,-8,-6,-1,8,-3,7,4]],
[x^5+x^4-5*x^3-3*x^2+5*x+2, [1,1], [x,-1,-x^4-x^3+3*x^2+x-1,2*x^4+2*x^3-8*x^2-4*x+4,-x^3-x^2+2*x-2,-x^4+6*x^2-x-5,-x^4-2*x^3+4*x^2+5*x-4,-x^4+2*x^3+8*x^2-7*x-10,x^4-x^3-5*x^2+5*x+1,-x^4-x^3+5*x^2+5*x-7,2*x^4-x^3-13*x^2+6*x+11,-2*x^4-3*x^3+5*x^2+4*x+1,4*x^4+3*x^3-19*x^2-2*x+14,-2*x^2+2*x+4,3*x^3+7*x^2-6*x-14,-x^4+3*x^3+7*x^2-13*x-9,x^4+3*x^3+x^2-7*x-11,2*x^4+3*x^3-9*x^2-8*x+7,-4*x^4-6*x^3+12*x^2+10*x-2,-5*x^4-2*x^3+24*x^2+3*x-16,-3*x^4-8*x^3+10*x^2+21*x-3,-2*x^4-x^3+9*x^2-4*x-12,x^4-5*x^3-11*x^2+19*x+13,3*x^4+3*x^3-11*x^2-11*x+3,2*x^4+8*x^3-6*x^2-22*x+10]],
[x^5-2*x^4-6*x^3+10*x^2+5*x-4, [1,-1], [x,-1,1/2*x^4-x^3-5/2*x^2+4*x+1,-1/2*x^3+7/2*x,-1/2*x^4+7/2*x^2,-1/2*x^3+7/2*x-1,-x^4+x^3+5*x^2-3*x,x^4-x^3-7*x^2+3*x+8,x^4-x^3-6*x^2+3*x+7,1/2*x^4+x^3-9/2*x^2-5*x+7,x^4-x^3-4*x^2+x-1,-3/2*x^3+2*x^2+9/2*x-5,-x^4+7*x^2-2*x-4,-2*x^4+5/2*x^3+11*x^2-23/2*x-2,3/2*x^4-2*x^3-17/2*x^2+7*x+4,-3/2*x^4+2*x^3+19/2*x^2-8*x-7,-x^4+x^3+4*x^2-3*x+7,7/2*x^3-x^2-33/2*x-3,-2*x^4+5/2*x^3+15*x^2-19/2*x-14,-1/2*x^4+x^3+7/2*x^2-3*x-2,x^4-1/2*x^3-8*x^2+3/2*x+1,x^4-x^3-5*x^2+3*x+4,2*x^4-x^3-11*x^2-x+7,5/2*x^4-3*x^3-29/2*x^2+14*x+9,x^4-2*x^3-3*x^2+6*x-8]],
[x^9+2*x^8-14*x^7-26*x^6+59*x^5+99*x^4-66*x^3-102*x^2-24*x-1, [-1,1], [x,1,1/6*x^8+1/2*x^7-7/3*x^6-20/3*x^5+29/3*x^4+157/6*x^3-59/6*x^2-85/3*x-16/3,-3/4*x^8-5/4*x^7+43/4*x^6+65/4*x^5-95/2*x^4-247/4*x^3+247/4*x^2+251/4*x+31/4,5/12*x^8+3/4*x^7-73/12*x^6-113/12*x^5+169/6*x^4+401/12*x^3-499/12*x^2-349/12*x+17/12,1/3*x^8+1/2*x^7-31/6*x^6-19/3*x^5+76/3*x^4+67/3*x^3-235/6*x^2-109/6*x+13/3,2/3*x^8+x^7-28/3*x^6-38/3*x^5+119/3*x^4+140/3*x^3-145/3*x^2-139/3*x-16/3,2/3*x^8+x^7-28/3*x^6-38/3*x^5+119/3*x^4+140/3*x^3-145/3*x^2-139/3*x-10/3,-x^8-2*x^7+14*x^6+25*x^5-60*x^4-89*x^3+74*x^2+80*x+11,-5/4*x^8-9/4*x^7+73/4*x^6+117/4*x^5-165/2*x^4-445/4*x^3+439/4*x^2+453/4*x+43/4,x^8+2*x^7-14*x^6-26*x^5+59*x^4+99*x^3-68*x^2-103*x-14,-1/2*x^8-x^7+7*x^6+25/2*x^5-30*x^4-87/2*x^3+39*x^2+35*x+3/2,3/2*x^8+5/2*x^7-43/2*x^6-63/2*x^5+95*x^4+229/2*x^3-245/2*x^2-219/2*x-29/2,1/6*x^8-7/3*x^6-1/6*x^5+29/3*x^4+19/6*x^3-34/3*x^2-34/3*x+13/6,2/3*x^8+x^7-59/6*x^6-79/6*x^5+134/3*x^4+149/3*x^3-175/3*x^2-287/6*x-53/6,-9/4*x^8-17/4*x^7+129/4*x^6+217/4*x^5-285/2*x^4-801/4*x^3+735/4*x^2+773/4*x+87/4,2/3*x^8+x^7-31/3*x^6-38/3*x^5+152/3*x^4+140/3*x^3-229/3*x^2-139/3*x-4/3,19/12*x^8+11/4*x^7-275/12*x^6-409/12*x^5+617/6*x^4+1447/12*x^3-1643/12*x^2-1319/12*x-119/12,-1/3*x^8-1/2*x^7+31/6*x^6+16/3*x^5-76/3*x^4-40/3*x^3+229/6*x^2+25/6*x+2/3,3/4*x^8+7/4*x^7-43/4*x^6-91/4*x^5+97/2*x^4+347/4*x^3-265/4*x^2-363/4*x-37/4,-13/12*x^8-9/4*x^7+185/12*x^6+343/12*x^5-401/6*x^4-1261/12*x^3+965/12*x^2+1265/12*x+233/12,-1/2*x^8-1/2*x^7+15/2*x^6+13/2*x^5-35*x^4-51/2*x^3+101/2*x^2+63/2*x-5/2,2/3*x^8+x^7-28/3*x^6-35/3*x^5+122/3*x^4+110/3*x^3-169/3*x^2-64/3*x+11/3,2/3*x^8+x^7-59/6*x^6-73/6*x^5+134/3*x^4+122/3*x^3-178/3*x^2-191/6*x-35/6,-1/3*x^8-x^7+14/3*x^6+40/3*x^5-58/3*x^4-163/3*x^3+59/3*x^2+206/3*x+32/3]]];

f[382,2]=[
[x^3+x^2-4*x+1, [1,1], [-1,x,-x^2-2*x+1,x^2+x-3,x^2-4,-1,x-4,-2*x^2-4*x+5,-3*x^2-4*x+6,4*x^2+8*x-11,x+1,x^2+2*x-3,-5*x^2-7*x+9,-x^2-x+4,2*x^2+3*x-10,5*x^2+8*x-14,-4*x^2-5*x+10,-x^2-3*x+5,4*x^2+4*x-5,x^2+3*x-4,-6*x^2-6*x+15,-x^2-3*x+11,4*x^2+9*x-12,3*x^2+x-6,-6*x-5]],
[x^3+5*x^2+6*x+1, [-1,-1], [1,x,x^2+2*x-3,-3*x^2-11*x-7,3*x^2+12*x+6,-2*x^2-6*x-5,2*x^2+7*x,2*x^2+10*x+5,-3*x^2-10*x-4,6*x^2+22*x+11,2*x^2+3*x-5,-3*x^2-6*x+7,-5*x^2-23*x-13,-x^2-9*x-10,-2*x^2-7*x-8,-5*x^2-22*x-18,3*x-2,-7*x^2-23*x-7,4*x^2+10*x-3,-x^2-9*x-8,10*x^2+34*x+13,x^2+11*x+13,4*x^2+7*x-12,-5*x^2-11*x+6,12*x^2+42*x+27]],
[x^4-3*x^3-2*x^2+9*x-4, [-1,1], [1,x,x^3-2*x^2-4*x+6,-x^3+2*x^2+3*x-4,-x^2+4,-x^3+x^2+4*x-2,-2*x^3+4*x^2+7*x-10,x^3-x^2-6*x+4,x^2-2*x,-3*x^3+7*x^2+10*x-18,3*x^3-5*x^2-11*x+12,3*x^3-4*x^2-10*x+6,-x^3+7*x-2,2*x^3-7*x^2-5*x+16,4*x^3-8*x^2-13*x+20,2*x^3-3*x^2-6*x+6,-2*x^3+6*x^2+7*x-16,-3*x^3+8*x^2+11*x-22,-x^3+3*x^2+4*x-12,-6*x^3+11*x^2+25*x-28,-x^3+5*x^2+2*x-14,-x^3+9*x-4,-4*x^3+6*x^2+13*x-8,2*x^3-5*x^2-9*x+14,-x^3-x^2+4*x+2]],
[x^5-3*x^4-8*x^3+25*x^2+8*x-32, [1,-1], [-1,x,1/2*x^4-1/2*x^3-4*x^2+5/2*x+6,1/3*x^4-2/3*x^3-10/3*x^2+4*x+20/3,-7/12*x^4+5/12*x^3+13/3*x^2-5/4*x-8/3,-1/6*x^4+5/6*x^3+5/3*x^2-11/2*x-10/3,-7/6*x^4+5/6*x^3+32/3*x^2-11/2*x-40/3,-17/12*x^4+7/12*x^3+41/3*x^2-11/4*x-76/3,-1/3*x^4-1/3*x^3+7/3*x^2+x+10/3,7/12*x^4+7/12*x^3-19/3*x^2-19/4*x+38/3,1/2*x^4-1/2*x^3-5*x^2+3/2*x+8,-3/4*x^4+5/4*x^3+6*x^2-27/4*x-6,7/6*x^4+1/6*x^3-38/3*x^2-1/2*x+82/3,1/3*x^4+1/3*x^3-7/3*x^2-6*x+8/3,1/6*x^4+1/6*x^3-2/3*x^2-3/2*x+16/3,-5/12*x^4-17/12*x^3+17/3*x^2+33/4*x-34/3,-1/6*x^4-1/6*x^3+14/3*x^2+3/2*x-52/3,5/4*x^4-3/4*x^3-14*x^2+17/4*x+26,1/2*x^4-1/2*x^3-3*x^2+9/2*x,-1/6*x^4-1/6*x^3+11/3*x^2-1/2*x-40/3,x^3-x^2-8*x+2,-x^3+2*x^2+5*x-14,13/12*x^4+1/12*x^3-34/3*x^2+3/4*x+68/3,5/3*x^4-1/3*x^3-47/3*x^2-2*x+94/3,-5/6*x^4+13/6*x^3+19/3*x^2-19/2*x-20/3]]];

f[383,2]=[
[x^2+x-1, [1], [x,x-1,x+1,-2*x-3,-x+2,0,-2*x-6,-x-1,x,-2*x-2,4*x+7,3*x-5,-x+2,3*x-2,-4*x-4,-x-8,2*x+3,-6*x-9,4*x+9,x+3,6*x+2,9*x+3,-5*x+7,2*x+1,-3*x-12]],
[x^6+3*x^5-3*x^4-12*x^3-x^2+8*x+3, [1], [x,x^5+2*x^4-5*x^3-8*x^2+5*x+5,-x^5-2*x^4+5*x^3+8*x^2-6*x-6,-x^5-2*x^4+5*x^3+7*x^2-6*x-4,x^5+3*x^4-4*x^3-12*x^2+4*x+5,-2*x^5-5*x^4+8*x^3+18*x^2-7*x-11,-2*x^5-5*x^4+8*x^3+19*x^2-6*x-10,2*x^5+5*x^4-9*x^3-18*x^2+13*x+7,-3*x^5-9*x^4+11*x^3+36*x^2-9*x-20,6*x^5+13*x^4-29*x^3-51*x^2+32*x+29,x^5+2*x^4-4*x^3-6*x^2+2*x-1,8*x^5+20*x^4-32*x^3-75*x^2+27*x+38,5*x^5+13*x^4-20*x^3-51*x^2+17*x+27,-6*x^5-14*x^4+27*x^3+52*x^2-27*x-26,8*x^5+20*x^4-34*x^3-77*x^2+34*x+43,-8*x^5-18*x^4+35*x^3+66*x^2-34*x-32,-8*x^5-18*x^4+41*x^3+76*x^2-52*x-46,-4*x^5-11*x^4+17*x^3+45*x^2-15*x-22,x^5-6*x^3+2*x^2+2*x-7,2*x^5+7*x^4-9*x^3-32*x^2+13*x+23,7*x^5+17*x^4-33*x^3-70*x^2+40*x+37,2*x^4+6*x^3-2*x^2-16*x-6,x^5+2*x^4-5*x^3-10*x^2+6*x+7,12*x^5+27*x^4-54*x^3-103*x^2+50*x+54,-8*x^5-17*x^4+40*x^3+66*x^2-53*x-40]],
[x^24-5*x^23-26*x^22+160*x^21+244*x^20-2173*x^19-711*x^18+16368*x^17-4007*x^16-75111*x^15+42025*x^14+217575*x^13-160547*x^12-399209*x^11+331301*x^10+452295*x^9-388291*x^8-296126*x^7+247918*x^6+96139*x^5-75925*x^4-9553*x^3+8302*x^2-342*x-49, [-1], [x,1084096506569374761529/171261395095631272311751*x^23-4676875943116968677282/171261395095631272311751*x^22-31583475280793780500313/171261395095631272311751*x^21+152566634472831118219863/171261395095631272311751*x^20+372951514300544040527356/171261395095631272311751*x^19-2120956637059806820309931/171261395095631272311751*x^18-2237731450385977579008227/171261395095631272311751*x^17+16431900607176618615705457/171261395095631272311751*x^16+6639912945399504566900223/171261395095631272311751*x^15-77962372918852004962730187/171261395095631272311751*x^14-4380780678721158671743857/171261395095631272311751*x^13+234627743402340948897499420/171261395095631272311751*x^12-31477807299921149814988089/171261395095631272311751*x^11-448553612782604426400687115/171261395095631272311751*x^10+103564802957874038494431159/171261395095631272311751*x^9+528715210308935946866134213/171261395095631272311751*x^8-141619619359403870741784233/171261395095631272311751*x^7-356295368351683988050858160/171261395095631272311751*x^6+94637141308415036342531354/171261395095631272311751*x^5+115154983522165788227142836/171261395095631272311751*x^4-27506282984830510686812638/171261395095631272311751*x^3-9892974265624022859872873/171261395095631272311751*x^2+2311496093947297524326116/171261395095631272311751*x-389483847462182006318744/171261395095631272311751,1610980210331729423845/171261395095631272311751*x^23-8446847331575999174002/171261395095631272311751*x^22-39970741358661123724722/171261395095631272311751*x^21+267656685633220429785018/171261395095631272311751*x^20+335473799924255861905797/171261395095631272311751*x^19-3591725690932758179304004/171261395095631272311751*x^18-429234804791023809832334/171261395095631272311751*x^17+26664821150880028634189110/171261395095631272311751*x^16-11179077743671649715676360/171261395095631272311751*x^15-120306200079762732123826154/171261395095631272311751*x^14+85204117927300822187283972/171261395095631272311751*x^13+342184255162149946289579744/171261395095631272311751*x^12-292904552013233378168312504/171261395095631272311751*x^11-617741442439761706388305102/171261395095631272311751*x^10+555855261588572105838398752/171261395095631272311751*x^9+695093550349174674477524824/171261395095631272311751*x^8-588920867521043088632965786/171261395095631272311751*x^7-462229800092140980767054919/171261395095631272311751*x^6+322234199382349937387872098/171261395095631272311751*x^5+158957241591136791549689730/171261395095631272311751*x^4-74981843769039390084313492/171261395095631272311751*x^3-18197112748073666970506467/171261395095631272311751*x^2+5608668948767292210169994/171261395095631272311751*x-190592589254782134167054/171261395095631272311751,446531884989395433970/171261395095631272311751*x^23-1593549021570861503999/171261395095631272311751*x^22-12324863612854668810134/171261395095631272311751*x^21+45950555491051309168523/171261395095631272311751*x^20+139195026798951411090031/171261395095631272311751*x^19-542829681477573917280408/171261395095631272311751*x^18-840704363542814124475319/171261395095631272311751*x^17+3372141754473724405768217/171261395095631272311751*x^16+3068186246744384406610697/171261395095631272311751*x^15-11726493340444607794824513/171261395095631272311751*x^14-7710184518579787894752955/171261395095631272311751*x^13+22192215717407365795462739/171261395095631272311751*x^12+15029144633734287397588633/171261395095631272311751*x^11-18971162620638082394430297/171261395095631272311751*x^10-19452174270076326628604898/171261395095631272311751*x^9-1347394326315319506380746/171261395095631272311751*x^8+5049088090739986366317955/171261395095631272311751*x^7+14556980890289587298803049/171261395095631272311751*x^6+20263949941059083048246016/171261395095631272311751*x^5-10634268531414157056296795/171261395095631272311751*x^4-19542055240564648377459924/171261395095631272311751*x^3+3322181134719463911820304/171261395095631272311751*x^2+4194889044207177979046011/171261395095631272311751*x-280547494148786284298744/171261395095631272311751,-1063257354607501573315/171261395095631272311751*x^23+5131096048107555838560/171261395095631272311751*x^22+30211796504430793120076/171261395095631272311751*x^21-167301722115100105716386/171261395095631272311751*x^20-347029667276054017403976/171261395095631272311751*x^19+2330984801480687044787544/171261395095631272311751*x^18+2035822258628456818778006/171261395095631272311751*x^17-18191411666119987190263022/171261395095631272311751*x^16-6208446107465990545705752/171261395095631272311751*x^15+87727259461401532569263480/171261395095631272311751*x^14+7950633626153276854814930/171261395095631272311751*x^13-272419022391613160588296698/171261395095631272311751*x^12+2550633406569999292070108/171261395095631272311751*x^11+550317817450757613971893174/171261395095631272311751*x^10-11249909037064520615287860/171261395095631272311751*x^9-710475595977838981554158714/171261395095631272311751*x^8-12502582572788195620320368/171261395095631272311751*x^7+554161125525934628748267765/171261395095631272311751*x^6+39714610005936667929152072/171261395095631272311751*x^5-229721966347444087351006912/171261395095631272311751*x^4-25055356367985381871077926/171261395095631272311751*x^3+37217134448461737218517720/171261395095631272311751*x^2+3118260173142557083581708/171261395095631272311751*x-1023687666442773290860992/171261395095631272311751,536200684636879460234/171261395095631272311751*x^23-2340569815602960002914/171261395095631272311751*x^22-18595743201303365159783/171261395095631272311751*x^21+87760148293617451018312/171261395095631272311751*x^20+268172600976935021849649/171261395095631272311751*x^19-1410700359693895406866430/171261395095631272311751*x^18-2059277577649944868493615/171261395095631272311751*x^17+12706896985716606835947834/171261395095631272311751*x^16+8837891379785681812956640/171261395095631272311751*x^15-70406150344068089041458938/171261395095631272311751*x^14-19247366008346513354464238/171261395095631272311751*x^13+248202339205881445876888714/171261395095631272311751*x^12+8066957563125602564194918/171261395095631272311751*x^11-557242319060247759769802454/171261395095631272311751*x^10+52788439765439568352253268/171261395095631272311751*x^9+775583290634458769021955758/171261395095631272311751*x^8-111175694875439734695408398/171261395095631272311751*x^7-626809585090777056997607422/171261395095631272311751*x^6+86175589473873005637504256/171261395095631272311751*x^5+255415007910874927176503003/171261395095631272311751*x^4-26306320918998983689607774/171261395095631272311751*x^3-37134685094063345880893051/171261395095631272311751*x^2+2994215997131283169380060/171261395095631272311751*x+876517934786259523266137/171261395095631272311751,-236072408492509350533/171261395095631272311751*x^23+957273679878209951326/171261395095631272311751*x^22+6496885385971073849556/171261395095631272311751*x^21-25563577181397870695742/171261395095631272311751*x^20-80918948446961447471655/171261395095631272311751*x^19+265048639137375850243127/171261395095631272311751*x^18+674713065554221792427067/171261395095631272311751*x^17-1265918904311554387301808/171261395095631272311751*x^16-4548035197315011894114756/171261395095631272311751*x^15+1935773371551244576449578/171261395095631272311751*x^14+24051276644302979448747602/171261395095631272311751*x^13+6906981569451948205548370/171261395095631272311751*x^12-88001702791682992838968565/171261395095631272311751*x^11-37299052000407271135626662/171261395095631272311751*x^10+203127117402030506127863540/171261395095631272311751*x^9+72237055090330074159917650/171261395095631272311751*x^8-277516003667203907214900574/171261395095631272311751*x^7-71074867489570841349260336/171261395095631272311751*x^6+207305253184521406099556236/171261395095631272311751*x^5+35575234747817049925559792/171261395095631272311751*x^4-72530604733306541748063956/171261395095631272311751*x^3-6545039607978097844701347/171261395095631272311751*x^2+7759186747822006817842683/171261395095631272311751*x-3216082085952832826483/171261395095631272311751,2052062320461204603385/171261395095631272311751*x^23-11495942151840373187169/171261395095631272311751*x^22-48798011488103254563071/171261395095631272311751*x^21+359841921066199259291325/171261395095631272311751*x^20+369393878364133394379309/171261395095631272311751*x^19-4757792956003507718692569/171261395095631272311751*x^18+95763394818414983685811/171261395095631272311751*x^17+34694535611808885677306897/171261395095631272311751*x^16-17959575088751670380260653/171261395095631272311751*x^15-153189746558435928708322116/171261395095631272311751*x^14+120837889236205714431260403/171261395095631272311751*x^13+424511046642367883480113833/171261395095631272311751*x^12-398886577357335530672291921/171261395095631272311751*x^11-742026240520508754773411183/171261395095631272311751*x^10+752390188601627745742701255/171261395095631272311751*x^9+799289012774947619578626833/171261395095631272311751*x^8-824153325860934756302182053/171261395095631272311751*x^7-497756421576821731603838652/171261395095631272311751*x^6+496865893801952699155843092/171261395095631272311751*x^5+154963166591649052391717318/171261395095631272311751*x^4-142094156583048192051128599/171261395095631272311751*x^3-16177556973273721491618886/171261395095631272311751*x^2+12800888337565891608254976/171261395095631272311751*x+63113636340876099597840/171261395095631272311751,-1522457035533598278722/171261395095631272311751*x^23+5786466145721655333723/171261395095631272311751*x^22+50223187346580924778397/171261395095631272311751*x^21-202453739304006026001223/171261395095631272311751*x^20-696501914105892570290504/171261395095631272311751*x^19+3036268022609791269562757/171261395095631272311751*x^18+5242964001205180481905753/171261395095631272311751*x^17-25503089547978343007098591/171261395095631272311751*x^16-22940491968173428487534205/171261395095631272311751*x^15+131608904013833920335106085/171261395095631272311751*x^14+56821997346648901929144348/171261395095631272311751*x^13-431113837282754458911480459/171261395095631272311751*x^12-64166435122250302283241895/171261395095631272311751*x^11+895960100820143603771451445/171261395095631272311751*x^10-21086861531988049681326833/171261395095631272311751*x^9-1148917659321442678233111647/171261395095631272311751*x^8+140894940330236004832643243/171261395095631272311751*x^7+854269716499154423138111751/171261395095631272311751*x^6-144163852807651196893027760/171261395095631272311751*x^5-325456326209269841316729905/171261395095631272311751*x^4+56665757486152295390001860/171261395095631272311751*x^3+47555840732815375640122859/171261395095631272311751*x^2-7658081019082137762738832/171261395095631272311751*x-348093694433161449893964/171261395095631272311751,3767800759450027952618/171261395095631272311751*x^23-18417275921061088193245/171261395095631272311751*x^22-99158608253773212495193/171261395095631272311751*x^21+586046916257771985009469/171261395095631272311751*x^20+969672462691309435004950/171261395095631272311751*x^19-7908236334425077247387201/171261395095631272311751*x^18-3567197529047467423621107/171261395095631272311751*x^17+59149111183354365847045369/171261395095631272311751*x^16-6478235353244492790927874/171261395095631272311751*x^15-269510545957424990976240363/171261395095631272311751*x^14+107824751921121827875001309/171261395095631272311751*x^13+776295179344871830883822417/171261395095631272311751*x^12-420178884776795351337501957/171261395095631272311751*x^11-1422675236322950337886076723/171261395095631272311751*x^10+828037705509187898968482031/171261395095631272311751*x^9+1626453938069445843132350893/171261395095631272311751*x^8-888349763997762177050589849/171261395095631272311751*x^7-1098233267525516818743930741/171261395095631272311751*x^6+497221096578457991801120332/171261395095631272311751*x^5+387516494096822883398268706/171261395095631272311751*x^4-129400027022646064203297204/171261395095631272311751*x^3-51460237827703308453436392/171261395095631272311751*x^2+13594615286055429730614286/171261395095631272311751*x+234262037754529873899168/171261395095631272311751,398096391209807929281/171261395095631272311751*x^23+2081556864859151566/171261395095631272311751*x^22-18567649355212302654641/171261395095631272311751*x^21+8826178413050355115086/171261395095631272311751*x^20+351715866038628309752837/171261395095631272311751*x^19-270468210684405525012976/171261395095631272311751*x^18-3596044228391848738817000/171261395095631272311751*x^17+3458544495420188742726415/171261395095631272311751*x^16+21953664426206534100709777/171261395095631272311751*x^15-24024523493694448075299167/171261395095631272311751*x^14-82880156506707384969207165/171261395095631272311751*x^13+98758420251479512978144969/171261395095631272311751*x^12+192170497199383257422480236/171261395095631272311751*x^11-245806750641753412780025959/171261395095631272311751*x^10-258196638575540474716984047/171261395095631272311751*x^9+364784043537766128407401693/171261395095631272311751*x^8+165047882079093978632849091/171261395095631272311751*x^7-305643709752841983696876789/171261395095631272311751*x^6-2505563012972087824400331/171261395095631272311751*x^5+129884170268160128959605288/171261395095631272311751*x^4-42603864608190725909509511/171261395095631272311751*x^3-22760670398675885347042822/171261395095631272311751*x^2+9772607924364261963929535/171261395095631272311751*x+95392462494897262161447/171261395095631272311751,65959556376090805184/171261395095631272311751*x^23-1037087396951831925669/171261395095631272311751*x^22+2960371377150218359776/171261395095631272311751*x^21+22511659604516766818442/171261395095631272311751*x^20-119143894009715450292256/171261395095631272311751*x^19-130628238119963725123619/171261395095631272311751*x^18+1552737282427731873617879/171261395095631272311751*x^17-603926902018737432951175/171261395095631272311751*x^16-10144779973708430453491451/171261395095631272311751*x^15+11434723039934678494588405/171261395095631272311751*x^14+36117644666213342571216797/171261395095631272311751*x^13-62222871621949291144252545/171261395095631272311751*x^12-66026286620818307711046553/171261395095631272311751*x^11+173821139725152659463701987/171261395095631272311751*x^10+36403331533183197102573373/171261395095631272311751*x^9-269369449179090339642978907/171261395095631272311751*x^8+68550129899598639313890637/171261395095631272311751*x^7+224396225416474498869658347/171261395095631272311751*x^6-121473977637381402174171908/171261395095631272311751*x^5-86836372980725209608476729/171261395095631272311751*x^4+60008749318591401309040591/171261395095631272311751*x^3+9510925651449913681309061/171261395095631272311751*x^2-5537243737162736699942128/171261395095631272311751*x+669609629445553184977280/171261395095631272311751,4432608843644745244/860610025606187298049*x^23-30689962964352968682/860610025606187298049*x^22-90606731840307757351/860610025606187298049*x^21+1007080991204599919726/860610025606187298049*x^20+216069074487696932937/860610025606187298049*x^19-14075281676090265094739/860610025606187298049*x^18+9818141622630990064808/860610025606187298049*x^17+109515355943553744204615/860610025606187298049*x^16-125868569436408109896355/860610025606187298049*x^15-521132959969104029870943/860610025606187298049*x^14+734340450835282381305227/860610025606187298049*x^13+1572245597595201443283113/860610025606187298049*x^12-2449103789561944967317971/860610025606187298049*x^11-3025522162166954573874981/860610025606187298049*x^10+4885069694804304911592815/860610025606187298049*x^9+3650055716287348042682581/860610025606187298049*x^8-5720981049416340651871019/860610025606187298049*x^7-2624812515467360155792665/860610025606187298049*x^6+3646427718486837451726353/860610025606187298049*x^5+983652901745369073958250/860610025606187298049*x^4-1061380419195340864597987/860610025606187298049*x^3-124306911713558705455760/860610025606187298049*x^2+91173097421305727891910/860610025606187298049*x+372424921997336632135/860610025606187298049,-1940766006053684699312/171261395095631272311751*x^23+8467363397424753583277/171261395095631272311751*x^22+54496336649554353456519/171261395095631272311751*x^21-272762728947961112527608/171261395095631272311751*x^20-608521480459606818409381/171261395095631272311751*x^19+3750889776388000254737707/171261395095631272311751*x^18+3303800835092821211253543/171261395095631272311751*x^17-28884085084636902108646708/171261395095631272311751*x^16-7471454315105722198248744/171261395095631272311751*x^15+137621847515115768490030470/171261395095631272311751*x^14-8018903710743953056864678/171261395095631272311751*x^13-423856136469188390566296874/171261395095631272311751*x^12+89250808547483403206470782/171261395095631272311751*x^11+855001650251655000341927525/171261395095631272311751*x^10-223173312572186383593931706/171261395095631272311751*x^9-1111266684080383275257770530/171261395095631272311751*x^8+272517990971999960963301071/171261395095631272311751*x^7+877461976146035337443150958/171261395095631272311751*x^6-164757030935340216700666845/171261395095631272311751*x^5-367136013735947271079611573/171261395095631272311751*x^4+40316038594569103958625980/171261395095631272311751*x^3+59151425338452273437322457/171261395095631272311751*x^2-3266951213702049064755785/171261395095631272311751*x-1984372571739576121510391/171261395095631272311751,-963013636625830865928/171261395095631272311751*x^23+5374107006027261196490/171261395095631272311751*x^22+23167558927893518356963/171261395095631272311751*x^21-170916882855978569516997/171261395095631272311751*x^20-175658168638170443904723/171261395095631272311751*x^19+2303182035636872428640303/171261395095631272311751*x^18-114188895007112364632288/171261395095631272311751*x^17-17166144493655139514684193/171261395095631272311751*x^16+9836965742113190975356145/171261395095631272311751*x^15+77551304225702758326374933/171261395095631272311751*x^14-67813484867477850349418831/171261395095631272311751*x^13-218869762716040491986519365/171261395095631272311751*x^12+233957336471497442489219049/171261395095631272311751*x^11+382204808407386926074416561/171261395095631272311751*x^10-465780305466849408054454005/171261395095631272311751*x^9-389123015437837239236071317/171261395095631272311751*x^8+541847255055786739614992647/171261395095631272311751*x^7+194434945395908759352461543/171261395095631272311751*x^6-348237945861653639566698209/171261395095631272311751*x^5-20037775025954292501736640/171261395095631272311751*x^4+106344440376010278037243378/171261395095631272311751*x^3-10892956320185973349994792/171261395095631272311751*x^2-10593319907278785520608442/171261395095631272311751*x+845788671703104047675213/171261395095631272311751,3054161313758331717032/171261395095631272311751*x^23-14210686792424137982648/171261395095631272311751*x^22-83866310057695651781783/171261395095631272311751*x^21+460479851898301239768770/171261395095631272311751*x^20+885797143205025739765045/171261395095631272311751*x^19-6356901930258694646865170/171261395095631272311751*x^18-4047129778048883993404036/171261395095631272311751*x^17+48919820016201266744689528/171261395095631272311751*x^16+1590614912421608918904978/171261395095631272311751*x^15-230879126017273007305699852/171261395095631272311751*x^14+66452901384728095266225342/171261395095631272311751*x^13+693559537663406106828194274/171261395095631272311751*x^12-315658353723052090461674098/171261395095631272311751*x^11-1332374978095580921915816620/171261395095631272311751*x^10+697757102546212441992345948/171261395095631272311751*x^9+1596573619426865609117823472/171261395095631272311751*x^8-829218791538397189134021572/171261395095631272311751*x^7-1117480956947225866433736638/171261395095631272311751*x^6+510051862891392479193780610/171261395095631272311751*x^5+396412582791293410707884743/171261395095631272311751*x^4-137061787990248811076370252/171261395095631272311751*x^3-50102280524044600590908859/171261395095631272311751*x^2+10358968073618402609033232/171261395095631272311751*x+199212856378678015891898/171261395095631272311751,-2718965712863394085573/171261395095631272311751*x^23+11838330281773368684097/171261395095631272311751*x^22+72412858647786126022732/171261395095631272311751*x^21-370326339066539358677312/171261395095631272311751*x^20-720971750904665165076396/171261395095631272311751*x^19+4879219466878334572164760/171261395095631272311751*x^18+2759060688124775893681247/171261395095631272311751*x^17-35264206913191346042117698/171261395095631272311751*x^16+4240115972596832287956132/171261395095631272311751*x^15+152821895134632369055059522/171261395095631272311751*x^14-81163860488140512495502108/171261395095631272311751*x^13-408650553012522650971023354/171261395095631272311751*x^12+331298886583777891599027138/171261395095631272311751*x^11+670496073889543676311663924/171261395095631272311751*x^10-686988582061958022494415138/171261395095631272311751*x^9-650687145036017172778754840/171261395095631272311751*x^8+786117807042506814516225470/171261395095631272311751*x^7+345195741123935815503370451/171261395095631272311751*x^6-475469253830274012353216141/171261395095631272311751*x^5-85878664902128663589071262/171261395095631272311751*x^4+128674571203378097770112028/171261395095631272311751*x^3+7834376166796692529247360/171261395095631272311751*x^2-8829618955091477043912232/171261395095631272311751*x-545004898968992819559983/171261395095631272311751,4802771455088047647839/171261395095631272311751*x^23-20417579228689369090975/171261395095631272311751*x^22-135538925898061243353220/171261395095631272311751*x^21+657697416822404916498833/171261395095631272311751*x^20+1505684479450055079374848/171261395095631272311751*x^19-8998918937110094535500767/171261395095631272311751*x^18-7827755344427488702435158/171261395095631272311751*x^17+68323988992971940680141097/171261395095631272311751*x^16+12937529784251019084531065/171261395095631272311751*x^15-315940196190661192072110467/171261395095631272311751*x^14+59667791630217156419455839/171261395095631272311751*x^13+920405181297422958838766541/171261395095631272311751*x^12-376452619429354920896468843/171261395095631272311751*x^11-1689886573884865897159139209/171261395095631272311751*x^10+898154722777309424989331161/171261395095631272311751*x^9+1896942950811222938841200547/171261395095631272311751*x^8-1109399900424716128317030805/171261395095631272311751*x^7-1209140237906145553368706212/171261395095631272311751*x^6+708096708696124973184376982/171261395095631272311751*x^5+372129463861299587342463247/171261395095631272311751*x^4-208213608421149910043293194/171261395095631272311751*x^3-35489983021048217275007033/171261395095631272311751*x^2+22549141983736731837582422/171261395095631272311751*x-358757350001595927000371/171261395095631272311751,664939360733670253746/171261395095631272311751*x^23-336532859231354979910/171261395095631272311751*x^22-27617420504615835543735/171261395095631272311751*x^21+11974166191702391152912/171261395095631272311751*x^20+496003092115308433163217/171261395095631272311751*x^19-172276650633437680031819/171261395095631272311751*x^18-5050580492351334571115534/171261395095631272311751*x^17+1254387768126797153521606/171261395095631272311751*x^16+32114756795321195149780332/171261395095631272311751*x^15-4449661082115229315575736/171261395095631272311751*x^14-132331808211268402687193533/171261395095631272311751*x^13+2837912176246144309478232/171261395095631272311751*x^12+354690209606658927502302794/171261395095631272311751*x^11+34288116154075408039666336/171261395095631272311751*x^10-603409035363811202682495576/171261395095631272311751*x^9-123783344699338761218988508/171261395095631272311751*x^8+614161258028035174022100604/171261395095631272311751*x^7+174996590414067611638223558/171261395095631272311751*x^6-334803426418969603266244422/171261395095631272311751*x^5-97449744474662745138444660/171261395095631272311751*x^4+82922116582017768736753552/171261395095631272311751*x^3+7478441877904527400949881/171261395095631272311751*x^2-10777388082907236285621213/171261395095631272311751*x+1925467265820571864374048/171261395095631272311751,-7276268041848938065525/171261395095631272311751*x^23+31281377067949727986315/171261395095631272311751*x^22+208074792116918144956203/171261395095631272311751*x^21-1016074229004082849264115/171261395095631272311751*x^20-2370631613022793100070845/171261395095631272311751*x^19+14055140672747732447775559/171261395095631272311751*x^18+13105539823592787421169968/171261395095631272311751*x^17-108286520733168869671037927/171261395095631272311751*x^16-29218324014549426688620063/171261395095631272311751*x^15+510855508824796232311216065/171261395095631272311751*x^14-45449575037576186116921189/171261395095631272311751*x^13-1530419275167331415424607335/171261395095631272311751*x^12+439750954575839007929195203/171261395095631272311751*x^11+2924580081404991991912062396/171261395095631272311751*x^10-1127877866070718030354591085/171261395095631272311751*x^9-3483894632689753191392295827/171261395095631272311751*x^8+1437924286553686521620184968/171261395095631272311751*x^7+2438590553387512532730456530/171261395095631272311751*x^6-935842286515643998915077682/171261395095631272311751*x^5-882316203989781634953597408/171261395095631272311751*x^4+275247713994559270236627744/171261395095631272311751*x^3+118217557907824940340249108/171261395095631272311751*x^2-27457972525482963063103646/171261395095631272311751*x-1219896985524574527183389/171261395095631272311751,-1704722023875806570388/171261395095631272311751*x^23+8837333830044448946913/171261395095631272311751*x^22+45436276888758779024050/171261395095631272311751*x^21-288454531281478786809557/171261395095631272311751*x^20-448114895303952292668894/171261395095631272311751*x^19+4017159763453359670303617/171261395095631272311751*x^18+1590305619897311603179194/171261395095631272311751*x^17-31247447845013408654200854/171261395095631272311751*x^16+4505932182402428761497628/171261395095631272311751*x^15+149475200735157937605172208/171261395095631272311751*x^14-63598540686134589237381853/171261395095631272311751*x^13-457086396741826100514274396/171261395095631272311751*x^12+257233384489367979353674854/171261395095631272311751*x^11+900596939396321647612867284/171261395095631272311751*x^10-539910427171484431273070884/171261395095631272311751*x^9-1122124027207734977220237692/171261395095631272311751*x^8+619066989424686594337529964/171261395095631272311751*x^7+836383224056349648481660228/171261395095631272311751*x^6-357470768967238503921029477/171261395095631272311751*x^5-327616398008503476912175055/171261395095631272311751*x^4+80422410375386568945654967/171261395095631272311751*x^3+48031162684200809578352002/171261395095631272311751*x^2-3831437175103738209162783/171261395095631272311751*x-376477072928060246475262/171261395095631272311751,1700698952743198691249/171261395095631272311751*x^23-4367287045333001057421/171261395095631272311751*x^22-58817258151177131852413/171261395095631272311751*x^21+144917891416054351725490/171261395095631272311751*x^20+878813684204405929197385/171261395095631272311751*x^19-2038419822040454839252472/171261395095631272311751*x^18-7453169407445425044166515/171261395095631272311751*x^17+15811532212561116651000774/171261395095631272311751*x^16+39685793182812333586308460/171261395095631272311751*x^15-73631383310143076901255042/171261395095631272311751*x^14-138680848428653111268136286/171261395095631272311751*x^13+209605652204470836530949792/171261395095631272311751*x^12+322600820109494271040528372/171261395095631272311751*x^11-353278475258390370542021358/171261395095631272311751*x^10-493474987330789736981129872/171261395095631272311751*x^9+315994426019043301391999534/171261395095631272311751*x^8+472348552761453648390024500/171261395095631272311751*x^7-101202409874357578854937541/171261395095631272311751*x^6-251957307926875787799500623/171261395095631272311751*x^5-23145339941048676205647143/171261395095631272311751*x^4+58304974095892826904265056/171261395095631272311751*x^3+8186219264375755978854573/171261395095631272311751*x^2-3848210025538483175366836/171261395095631272311751*x+1104853570782810639975871/171261395095631272311751,-1716023980059244219671/171261395095631272311751*x^23+9336435014892999109961/171261395095631272311751*x^22+40512285800218470990081/171261395095631272311751*x^21-289727950149511634113291/171261395095631272311751*x^20-296858478778962609197865/171261395095631272311751*x^19+3777458186000301147448076/171261395095631272311751*x^18-274938606209162236123616/171261395095631272311751*x^17-26923951596407900890767812/171261395095631272311751*x^16+16648896086695884472092754/171261395095631272311751*x^15+114491856709182008377562736/171261395095631272311751*x^14-108626768103142767802037486/171261395095631272311751*x^13-298043571506433574161734880/171261395095631272311751*x^12+352560983028671608829857288/171261395095631272311751*x^11+469259547314066383001863984/171261395095631272311751*x^10-649775474309873965005147898/171261395095631272311751*x^9-423795816724321691027206624/171261395095631272311751*x^8+683811727783670186116537086/171261395095631272311751*x^7+194537378373630668651846059/171261395095631272311751*x^6-384347308482369568663545159/171261395095631272311751*x^5-36201965314046288121539797/171261395095631272311751*x^4+97007885393285396069560975/171261395095631272311751*x^3+5816339801746022672852003/171261395095631272311751*x^2-6858229679433530423421750/171261395095631272311751*x-1632898764814622694012352/171261395095631272311751,3213713130384232352173/171261395095631272311751*x^23-13993182962199547021826/171261395095631272311751*x^22-90638113871969610096177/171261395095631272311751*x^21+454667322606233518518002/171261395095631272311751*x^20+997759821665914149941967/171261395095631272311751*x^19-6282647019970310286007683/171261395095631272311751*x^18-4972514309799076067246733/171261395095631272311751*x^17+48232535929340769894097182/171261395095631272311751*x^16+5426249760644905690899138/171261395095631272311751*x^15-225775603028735018321822052/171261395095631272311751*x^14+61687290896354592007363358/171261395095631272311751*x^13+666596021974444306566579374/171261395095631272311751*x^12-339455879902896334798899602/171261395095631272311751*x^11-1243314955251496486704211268/171261395095631272311751*x^10+816783556161609053341009010/171261395095631272311751*x^9+1429225918156090067020177638/171261395095631272311751*x^8-1066217166097874115114669940/171261395095631272311751*x^7-957697936278560107984094521/171261395095631272311751*x^6+756929246384185730311504838/171261395095631272311751*x^5+334274032732264283948268573/171261395095631272311751*x^4-265879996356871587785526024/171261395095631272311751*x^3-44652454895616972085598805/171261395095631272311751*x^2+34046679701197263521136775/171261395095631272311751*x-132575771561897066911239/171261395095631272311751,1243894916858148846661/171261395095631272311751*x^23-3379201917851259781801/171261395095631272311751*x^22-42668093150291390980715/171261395095631272311751*x^21+119769586148726953893658/171261395095631272311751*x^20+616112764168101817993901/171261395095631272311751*x^19-1813897643019527334745962/171261395095631272311751*x^18-4838857463144099312914428/171261395095631272311751*x^17+15310785611827231980495007/171261395095631272311751*x^16+22186365993874791890337575/171261395095631272311751*x^15-78822485528080250373167629/171261395095631272311751*x^14-58351548619833916962339231/171261395095631272311751*x^13+254880711691205169232261761/171261395095631272311751*x^12+74872706638381513572329807/171261395095631272311751*x^11-515414250411072012113461915/171261395095631272311751*x^10-2905602168140615153209385/171261395095631272311751*x^9+631935351113927784796666487/171261395095631272311751*x^8-108730260185118975021847039/171261395095631272311751*x^7-442550878169295964818784510/171261395095631272311751*x^6+113209973118251258053741258/171261395095631272311751*x^5+160417438345771925452176914/171261395095631272311751*x^4-38345530321623908758893765/171261395095631272311751*x^3-25313727944785478206298368/171261395095631272311751*x^2+3993871049078727329910665/171261395095631272311751*x+2267584969986086487944575/171261395095631272311751]]];

f[384,2]=[
[x+2, [1,1], [0,-1,0,-2,-4,-6,6,0,-4,-4,-10,-2,-2,8,12,12,-4,-2,4,4,-10,6,12,2,-6]],
[x-2, [1,-1], [0,1,0,2,4,-6,6,0,4,-4,10,-2,-2,-8,-12,12,4,-2,-4,-4,-10,-6,-12,2,-6]],
[x+2, [1,-1], [0,1,0,-2,4,6,6,0,-4,4,-10,2,-2,-8,12,-12,4,2,-4,4,-10,6,-12,2,-6]],
[x-4, [1,-1], [0,1,4,2,-4,-2,-2,-8,4,0,-6,2,6,0,4,0,4,-14,-4,12,-10,10,12,-14,10]],
[x-2, [-1,1], [0,-1,0,2,-4,6,6,0,4,4,10,2,-2,8,-12,-12,-4,2,4,-4,-10,-6,12,2,-6]],
[x-4, [-1,1], [0,-1,4,-2,4,-2,-2,8,-4,0,6,2,6,0,-4,0,-4,-14,4,-12,-10,-10,-12,-14,10]],
[x+4, [-1,1], [0,-1,-4,2,4,2,-2,8,4,0,-6,-2,6,0,4,0,-4,14,4,12,-10,10,-12,-14,10]],
[x+4, [-1,-1], [0,1,-4,-2,-4,2,-2,-8,-4,0,6,-2,6,0,-4,0,4,14,-4,-12,-10,-10,12,-14,10]]];

f[385,2]=[
[x, [-1,1,-1], [-1,0,1,-1,1,-6,6,-4,-8,-10,-4,6,-10,4,-4,6,0,-6,4,0,6,-8,12,10,10]],
[x+2, [-1,-1,1], [-1,-2,1,1,-1,4,-4,-8,0,-6,-6,-6,0,-4,-6,10,-14,12,12,-12,-8,8,-16,-14,-2]],
[x^2-2*x-1, [1,1,-1], [x,x-1,-1,-1,1,-x+3,-x-1,0,-2*x+8,2*x,-3*x-3,2*x+2,-3*x+3,6,-x+1,-2*x+2,7*x-5,7*x-11,-6*x+4,2*x+10,5*x-3,-6*x+4,12,-2*x,-8*x+6]],
[x^2-3, [1,-1,1], [x,x+1,-1,1,-1,x-1,-3*x+3,-4,6,-2*x,-x+5,-4*x-4,x+9,-2*x-4,-x+3,4*x,-3*x+3,-x-1,-4*x+2,2*x+6,3*x+5,4*x-10,0,6*x,2]],
[x^3+2*x^2-2*x-2, [1,1,1], [-x^2-x+1,x,-1,-1,-1,2*x^2+x-4,-3*x-2,-2*x^2-2*x+6,-x^2-2*x-2,2*x^2+4*x-6,x^2+3*x-4,-3*x^2-4*x,-3*x^2-3*x+6,5*x^2+6*x-10,-2*x^2-x-2,-x^2-4*x-4,x^2-3*x,-5*x^2-7*x+12,-5*x^2-4*x+10,2*x^2+8*x-8,7*x+6,5*x^2+10*x-4,4*x^2-14,-4*x^2-8*x+12,6*x^2+12*x-8]],
[x^3+4*x^2+2*x-2, [1,-1,-1], [-x^2-3*x-1,x,-1,1,1,-x-4,-x-6,4*x^2+10*x-2,x^2+6*x+2,-2*x^2-8*x-2,-3*x^2-5*x+4,-x^2-8*x-4,-x^2-5*x-6,-3*x^2-10*x-2,-x-10,x^2+8*x+8,-3*x^2-7*x,-x^2-x,5*x^2+12*x-6,-2*x^2-4*x-4,4*x^2+9*x-6,-5*x^2-10*x+4,6*x^2+20*x+6,2*x^2+4*x-8,-4*x^2-12*x]],
[x^3-x^2-3*x+1, [-1,-1,-1], [x,x^2-x-2,1,1,1,x^2-x-2,-x^2+x+4,-2*x^2+8,-x^2+3,-4*x+2,-2*x^2+x+7,x^2+2*x-7,4*x^2-3*x-5,x^2-4*x-3,x^2+3*x,3*x^2-6*x-5,-x+3,-4*x^2+7*x+7,-x^2+2*x+1,-4*x^2+8,x^2-x-12,-x^2+2*x+3,6*x-4,-6*x^2+6*x+16,-6*x^2+6*x+4]],
[x^4-2*x^3-6*x^2+8*x+7, [-1,1,1], [x,-x^2+x+4,1,-1,-1,x^3-2*x^2-4*x+3,-x^2+x+2,-x^3+x^2+3*x+1,x^3-7*x+2,-2*x^3+2*x^2+10*x-4,3*x+1,-x^3+5*x+2,2*x^2-3*x-9,-x^3+2*x^2+3*x-8,-x^3-2*x^2+4*x+15,-3*x^3+4*x^2+11*x-6,2*x^3-13*x+3,x^3-x^2-4*x-2,-x^3+2*x^2+9*x-10,8,2*x^3-x^2-11*x-4,-2*x^3+3*x^2+8*x-1,x^3+x^2-5*x-9,x^3-x^2-5*x-1,-3*x^3+3*x^2+15*x-5]]];

f[386,2]=[
[x^2+x-1, [1,1], [-1,x,-x,-2,-2,-3*x-3,-2*x+2,2*x-2,6*x+2,4*x-2,-2*x-8,9*x+5,6*x+2,-3*x-5,-9*x-3,-5*x+4,-x+1,-4*x-10,7*x+8,-5*x-4,-2*x+2,5*x,11*x+9,-2*x+12,7*x+8]],
[x^2+3*x+1, [-1,-1], [1,x,-x-4,-2*x-4,2*x+2,3*x+1,2*x,-2*x-8,-4*x-2,4*x+6,6*x+6,3*x+5,-8*x-14,-9*x-13,x+11,-5*x-8,-3*x-3,-4*x-14,7*x+8,9*x+18,-10*x-16,-x-10,5*x+9,-2*x-10,-3*x-6]],
[x^6-x^5-12*x^4+7*x^3+40*x^2-13*x-37, [1,-1], [-1,x,-1/2*x^5+11/2*x^3+2*x^2-23/2*x-6,x^4-x^3-9*x^2+4*x+16,-x^4+x^3+8*x^2-3*x-11,1/2*x^5-1/2*x^4-9/2*x^3+1/2*x^2+17/2*x+13/2,x^4-2*x^3-8*x^2+9*x+12,x^2-x-1,x^5-10*x^3-7*x^2+18*x+22,-x^5+x^4+9*x^3-2*x^2-16*x-6,-x^5-x^4+11*x^3+14*x^2-24*x-24,-1/2*x^5-1/2*x^4+11/2*x^3+13/2*x^2-21/2*x-21/2,x^5-x^4-8*x^3+2*x^2+10*x+5,-x^5+11*x^3+4*x^2-24*x-9,3/2*x^5-1/2*x^4-31/2*x^3-1/2*x^2+61/2*x+11/2,3/2*x^5-31/2*x^3-7*x^2+67/2*x+16,-x^5+2*x^4+8*x^3-14*x^2-12*x+20,-x^4+12*x^2+x-22,-x^5+10*x^3+7*x^2-17*x-24,-1/2*x^5+3*x^4+3/2*x^3-24*x^2+7/2*x+36,-x^4+2*x^3+8*x^2-9*x-16,1/2*x^5-9/2*x^3-2*x^2+7/2*x+9,-x^4+11*x^2-x-24,x^4-10*x^2-5*x+14,x^5-11*x^3-3*x^2+21*x+3]],
[x^7-3*x^6-10*x^5+33*x^4+14*x^3-91*x^2+45*x+16, [-1,1], [1,x,-3*x^6+9/2*x^5+37*x^4-89/2*x^3-110*x^2+229/2*x+36,4*x^6-6*x^5-49*x^4+59*x^3+143*x^2-152*x-40,3*x^6-5*x^5-37*x^4+50*x^3+112*x^2-126*x-38,-7/2*x^6+6*x^5+85/2*x^4-60*x^3-249/2*x^2+150*x+36,-4*x^6+6*x^5+49*x^4-58*x^3-144*x^2+145*x+46,7*x^6-11*x^5-86*x^4+109*x^3+255*x^2-278*x-78,2*x^6-3*x^5-24*x^4+28*x^3+69*x^2-68*x-24,x^6-2*x^5-12*x^4+20*x^3+35*x^2-49*x-8,6*x^6-9*x^5-73*x^4+87*x^3+212*x^2-220*x-64,-15/2*x^6+12*x^5+183/2*x^4-117*x^3-543/2*x^2+290*x+92,-9*x^6+14*x^5+109*x^4-137*x^3-314*x^2+347*x+86,-11*x^6+18*x^5+134*x^4-178*x^3-394*x^2+449*x+116,-5/2*x^6+4*x^5+61/2*x^4-40*x^3-179/2*x^2+103*x+24,-9*x^6+27/2*x^5+111*x^4-265/2*x^3-331*x^2+681/2*x+108,8*x^6-13*x^5-98*x^4+128*x^3+294*x^2-320*x-104,-x^6+x^5+12*x^4-7*x^3-33*x^2+14*x+12,10*x^6-15*x^5-122*x^4+146*x^3+357*x^2-371*x-112,-11*x^6+35/2*x^5+134*x^4-343/2*x^3-394*x^2+861/2*x+120,10*x^6-16*x^5-123*x^4+160*x^3+366*x^2-407*x-110,6*x^6-19/2*x^5-73*x^4+185/2*x^3+216*x^2-459/2*x-76,8*x^6-12*x^5-97*x^4+116*x^3+279*x^2-291*x-80,14*x^6-22*x^5-171*x^4+216*x^3+502*x^2-545*x-150,x^6-12*x^4-4*x^3+29*x^2+8*x-2]]];

f[387,2]=[
[x-1, [1,1], [1,0,-1,-3,-3,-5,6,1,8,-9,-4,-6,8,-1,1,-8,0,-10,12,2,2,10,-15,2,-11]],
[x-1, [1,1], [-1,0,1,-3,3,-5,-6,1,-8,9,-4,-6,-8,-1,-1,8,0,-10,12,-2,2,10,15,-2,-11]],
[x-2, [-1,1], [0,0,2,-2,5,3,3,2,1,0,-5,8,7,-1,8,-3,-12,-8,-15,14,12,-16,-15,-10,11]],
[x+2, [-1,1], [-1,0,-2,0,0,-2,6,4,4,6,8,6,-2,-1,-4,2,0,14,12,-8,2,-8,0,-14,-14]],
[x-2, [-1,1], [2,0,4,0,-3,-5,3,-2,1,6,-1,0,-5,-1,-4,5,12,2,-3,-2,2,-8,-15,4,7]],
[x^2-12, [1,-1], [0,0,x,2,-3/2*x,5,1/2*x,2,-1/2*x,2*x,5,-4,3/2*x,1,-3*x,-7/2*x,-3*x,8,-1,-x,-4,8,-1/2*x,-5*x,-13]],
[x^2-2, [-1,-1], [x,0,-x-2,-x-2,2*x+1,-2*x+1,2*x-5,2*x-2,-4*x-1,3*x,-3,6*x,-2*x+1,1,-6,-2*x-11,2*x+2,-3*x+4,-6*x+1,-2*x+6,-3*x-12,2*x+2,4*x-9,-3*x+6,2*x-1]],
[x^2+2*x-1, [-1,-1], [x,0,-x-2,2*x+3,-x-4,-5,-2*x,-4*x-5,-6,3*x,4,2*x-2,4*x+4,1,7*x+8,8*x+8,-8*x-10,-2*x-6,6*x,-2*x-8,-4*x-2,-6*x-2,-x+6,-6*x-6,-2*x-3]],
[x^3-2*x^2-5*x+8, [-1,1], [x,0,-x+2,-x^2+6,-x^2-x+5,3,x^2-5,-x^2+2*x+2,-3*x^2+2*x+9,-x,x^2-2*x-5,2*x^2-2*x-8,x^2+2*x-1,-1,4*x^2-3*x-16,-x^2+2*x+5,2*x^2-12,2*x^2+2*x-16,3*x^2-4*x-15,2*x^2+2*x-18,-2*x^2+4,-2*x^2+2*x+16,-3*x^2-x+17,-2*x+14,-2*x^2-2*x+11]],
[x^4-9*x^2+4, [1,-1], [1/2*x^3-7/2*x,0,x,-x^2+4,x,x^2-2,-2*x,-x^2+4,-x^3+9*x,-3*x,0,6,-2*x^3+18*x,1,-3*x,-2*x^3+18*x,-x^3+9*x,-2,4,2*x^3-20*x,6,2*x^2-16,2*x^3-17*x,3*x^3-21*x,-x^2+14]]];

f[388,2]=[
[x^3+2*x^2-x-1, [-1,-1], [0,x,-x^2-2*x-1,2*x^2+x-3,-3*x^2-4*x+1,x^2+2*x-2,3*x^2+7*x-5,-2*x^2-6*x-1,x^2+4*x,-4*x^2-6*x-1,-x^2+3*x+6,x^2+8*x+2,-2*x^2-7*x-3,7*x^2+9*x-7,-2*x^2-4*x+5,x^2-4*x-8,9*x^2+16*x-7,-5*x^2-3*x+9,-6*x^2-7*x+7,-4*x^2-11*x+5,-12*x^2-17*x+11,x^2+2,-4*x^2-8*x-2,5*x^2+5*x-4,1]],
[x^5-2*x^4-9*x^3+15*x^2+20*x-24, [-1,1], [0,x,-x^3+x^2+5*x-2,1/2*x^4-9/2*x^2-1/2*x+8,x^3-x^2-5*x+4,-x^4+8*x^2+x-10,x^3-x^2-6*x+6,1/2*x^4-5/2*x^2-3/2*x,1/2*x^4-x^3-3/2*x^2+7/2*x-4,x^3-4*x^2-5*x+18,-2*x^3+3*x^2+9*x-12,x^4-10*x^2-3*x+22,-2*x^4+x^3+14*x^2-2*x-14,-2*x^4+x^3+15*x^2-2*x-20,x^4-x^3-5*x^2+2*x,x^4+2*x^3-8*x^2-13*x+12,1/2*x^4-11/2*x^2+1/2*x+12,x^4-x^3-4*x^2+3*x-8,-3/2*x^4+2*x^3+19/2*x^2-17/2*x-12,-1/2*x^4+2*x^3-3/2*x^2-15/2*x+12,-x^4+x^3+3*x^2+x+8,x^4-8*x^2-3*x+8,3/2*x^4-3*x^3-11/2*x^2+21/2*x-8,-2*x^4+4*x^3+11*x^2-13*x-4,-1]]];

f[389,2]=[
[x+2, [-1], [-2,-2,-3,-5,-4,-3,-6,5,-4,-6,4,-8,-3,12,-2,-6,3,-8,-5,-10,-7,-13,-12,-8,-9]],
[x^2-2, [1], [x,x-2,-1,-2*x-1,-2,2*x+1,-2*x+4,2*x-1,-x+2,2*x+4,x-8,-2*x+2,-2*x-1,-5*x+2,-4*x-2,-x-10,-5,5*x-2,2*x-3,3*x-8,4*x-3,-2*x-3,5*x+4,x+6,-7]],
[x^3-4*x-2, [1], [x,-x,-x^2+1,-1,x^2-4,-3,x^2-2*x-2,-3*x^2+2*x+5,3*x-2,2*x^2-4*x-6,4*x^2-5*x-10,-2*x^2+6*x+6,-x^2+4*x+5,-4*x^2+3*x+6,4*x^2-4*x-6,-4*x^2+3*x+10,-4*x^2+4*x+7,-2*x^2+x+10,5*x^2-8*x-21,-3*x+2,-2*x^2-2*x+5,-5*x^2+2*x+7,2*x^2-5*x+2,-4*x^2-x+12,9*x^2-6*x-17]],
[x^6+3*x^5-2*x^4-8*x^3+2*x^2+4*x-1, [1], [x,x^5+3*x^4-2*x^3-8*x^2+x+2,-x^5-2*x^4+4*x^3+6*x^2-4*x-2,-2*x^5-8*x^4-2*x^3+17*x^2+7*x-6,2*x^5+5*x^4-4*x^3-11*x^2+3,2*x^4+5*x^3-5*x^2-11*x+3,x^3+5*x^2+2*x-9,x^5+3*x^4-x^3-6*x^2-4,x^5+x^4-8*x^3-7*x^2+8*x+3,-4*x^5-14*x^4-x^3+25*x^2+8*x-5,3*x^5+11*x^4+x^3-23*x^2-4*x+6,5*x^5+18*x^4+x^3-36*x^2-9*x+8,-x^5-2*x^4+x^3+4*x^2+6*x-4,2*x^5+6*x^4-2*x^3-12*x^2+3*x+2,3*x^4+4*x^3-10*x^2-3*x+6,3*x^5+8*x^4-4*x^3-16*x^2+x+11,-7*x^5-24*x^4+2*x^3+49*x^2+3*x-13,-3*x^5-12*x^4-4*x^3+23*x^2+10*x-12,x^5+7*x^4+5*x^3-17*x^2-3*x+9,4*x^5+13*x^4-2*x^3-25*x^2+8,-2*x^5-8*x^4+2*x^3+27*x^2-x-16,2*x^5+5*x^4+x^3-x^2-6*x-6,-3*x^5-7*x^4+12*x^3+20*x^2-19*x-11,-x^5-4*x^4-6*x^3+17*x+4,-7*x^5-22*x^4+9*x^3+49*x^2-8*x-11]],
[x^20-3*x^19-29*x^18+91*x^17+338*x^16-1130*x^15-2023*x^14+7432*x^13+6558*x^12-28021*x^11-10909*x^10+61267*x^9+6954*x^8-74752*x^7+1407*x^6+46330*x^5-1087*x^4-12558*x^3-942*x^2+960*x+148, [-1], [x,-20146763/1097385680*x^19+20466323/219477136*x^18+119884773/274346420*x^17-753611053/274346420*x^16-381358355/109738568*x^15+3611475535/109738568*x^14+6349339639/1097385680*x^13-56878934241/274346420*x^12+71555185319/1097385680*x^11+163330998525/219477136*x^10-223188336749/548692840*x^9-169878973265/109738568*x^8+265944624817/274346420*x^7+199655892261/109738568*x^6-1167579836501/1097385680*x^5-619178000979/548692840*x^4+261766056911/548692840*x^3+4410485304/13717321*x^2-14646077211/274346420*x-1604641167/68586605,252247073/1097385680*x^19-89195955/109738568*x^18-6876716517/1097385680*x^17+13248231811/548692840*x^16+3639338697/54869284*x^15-32041245347/109738568*x^14-367946611589/1097385680*x^13+2037515640679/1097385680*x^12+816602908511/1097385680*x^11-368120881159/54869284*x^10-19595857657/1097385680*x^9+763403091515/54869284*x^8-403904463001/137173210*x^7-1743458092745/109738568*x^6+5304122556631/1097385680*x^5+9907751136883/1097385680*x^4-704659646193/274346420*x^3-236814032039/109738568*x^2+88326575941/274346420*x+37821733103/274346420,-39775309/274346420*x^19+6458830/13717321*x^18+564024213/137173210*x^17-3911580261/274346420*x^16-2533437265/54869284*x^15+9687600453/54869284*x^14+17684386693/68586605*x^13-158547430721/137173210*x^12-196249673593/274346420*x^11+237151369759/54869284*x^10+47009341559/68586605*x^9-127672839145/13717321*x^8+263943432849/274346420*x^7+302422095641/27434642*x^6-354882792659/137173210*x^5-1763634812489/274346420*x^4+214619964123/137173210*x^3+42696419019/27434642*x^2-13851314508/68586605*x-6725054004/68586605,2980761/27434642*x^19-40519427/109738568*x^18-324413157/109738568*x^17+599348931/54869284*x^16+1712230339/54869284*x^15-3604639961/27434642*x^14-2154216098/13717321*x^13+91078987557/109738568*x^12+18913069911/54869284*x^11-326505305885/109738568*x^10+1008925971/109738568*x^9+83920016323/13717321*x^8-77512727581/54869284*x^7-380562335831/54869284*x^6+125733598661/54869284*x^5+432237324953/109738568*x^4-66332195991/54869284*x^3-52749441099/54869284*x^2+2005234461/13717321*x+1799373559/27434642,-439672887/1097385680*x^19+75006137/54869284*x^18+12101299333/1097385680*x^17-22321474039/548692840*x^16-1625891079/13717321*x^15+54100172827/109738568*x^14+676736498991/1097385680*x^13-3448581869471/1097385680*x^12-1621748439689/1097385680*x^11+1249216368921/109738568*x^10+633899235433/1097385680*x^9-1297751833749/54869284*x^8+291323290537/68586605*x^7+2963292254483/109738568*x^6-8441184290969/1097385680*x^5-16753315901627/1097385680*x^4+572725946281/137173210*x^3+396656876947/109738568*x^2-139835925059/274346420*x-62765065187/274346420,-96200111/1097385680*x^19+7624809/27434642*x^18+2853118449/1097385680*x^17-4795763297/548692840*x^16-423432401/13717321*x^15+12411754799/109738568*x^14+203135935283/1097385680*x^13-853928410103/1097385680*x^12-622919458457/1097385680*x^11+336738706757/109738568*x^10+754599107669/1097385680*x^9-190842523479/27434642*x^8+33571717731/68586605*x^7+941835927157/109738568*x^6-2104972582597/1097385680*x^5-5575654493331/1097385680*x^4+83865827689/68586605*x^3+132711500843/109738568*x^2-43295694207/274346420*x-19899224791/274346420,82111709/274346420*x^19-13758531/13717321*x^18-1155056903/137173210*x^17+4165768503/137173210*x^16+1279191001/13717321*x^15-5157845168/13717321*x^14-139030839677/274346420*x^13+675125041837/274346420*x^12+179943620499/137173210*x^11-504618055349/54869284*x^10-224371009951/274346420*x^9+1085232917573/54869284*x^8-873645627239/274346420*x^7-1281612267983/54869284*x^6+900297300599/137173210*x^5+928578480591/68586605*x^4-256083272659/68586605*x^3-44584612267/13717321*x^2+31755395838/68586605*x+14279975219/68586605,361528801/548692840*x^19-469329025/219477136*x^18-20607647913/1097385680*x^17+35719791819/548692840*x^16+23258962967/109738568*x^15-44515496167/54869284*x^14-651844514603/548692840*x^13+5871304106201/1097385680*x^12+900582640591/274346420*x^11-4425959444819/219477136*x^10-3222387783273/1097385680*x^9+2400549885397/54869284*x^8-2937061857781/548692840*x^7-5714663430681/109738568*x^6+1836935375943/137173210*x^5+33289520944497/1097385680*x^4-4399252166429/548692840*x^3-800617114943/109738568*x^2+70700546851/68586605*x+127452412027/274346420,5506177/54869284*x^19-30186849/109738568*x^18-338631113/109738568*x^17+240627075/27434642*x^16+527539826/13717321*x^15-6319183801/54869284*x^14-3395655753/13717321*x^13+88231152703/109738568*x^12+47131691267/54869284*x^11-352513546207/109738568*x^10-160419763619/109738568*x^9+403196202045/54869284*x^8+34546356079/54869284*x^7-248987779583/27434642*x^6+30766716641/27434642*x^5+581192798143/109738568*x^4-53514563731/54869284*x^3-67136120597/54869284*x^2+1855170924/13717321*x+2059393637/27434642,21281459/137173210*x^19-126641469/219477136*x^18-4389199143/1097385680*x^17+9133854009/548692840*x^16+4238318731/109738568*x^15-2657576246/13717321*x^14-44543688079/274346420*x^13+1286098247731/1097385680*x^12+97651272727/548692840*x^11-872304044211/219477136*x^10+878256967417/1097385680*x^9+419553570571/54869284*x^8-1556791312041/548692840*x^7-888639623063/109738568*x^6+1823354529817/548692840*x^5+4830480473947/1097385680*x^4-812339073929/548692840*x^3-115485758833/109738568*x^2+23109909757/137173210*x+19292002117/274346420,-77763363/548692840*x^19+56391515/109738568*x^18+1025565821/274346420*x^17-4110700781/274346420*x^16-515942739/13717321*x^15+4853590653/27434642*x^14+95337883389/548692840*x^13-299456914927/274346420*x^12-165693969661/548692840*x^11+417338645439/109738568*x^10-22528280166/68586605*x^9-416158163661/54869284*x^8+550915685819/274346420*x^7+460980462593/54869284*x^6-1472859564331/548692840*x^5-1314351276119/274346420*x^4+357262105061/274346420*x^3+16340008413/13717321*x^2-21148069681/137173210*x-5180700504/68586605,186464801/1097385680*x^19-52643903/109738568*x^18-5642577669/1097385680*x^17+8314161247/548692840*x^16+3447973709/54869284*x^15-21618175309/109738568*x^14-432915485913/1097385680*x^13+1494547016783/1097385680*x^12+1449202446127/1097385680*x^11-148055415015/27434642*x^10-2294618824109/1097385680*x^9+168612545944/13717321*x^8+34114842674/68586605*x^7-1672626555713/109738568*x^6+2528917563727/1097385680*x^5+9974069518191/1097385680*x^4-493293080611/274346420*x^3-241256692763/109738568*x^2+67820927957/274346420*x+37792195331/274346420,-910289053/1097385680*x^19+280893467/109738568*x^18+26254777787/1097385680*x^17-42863892381/548692840*x^16-3772046090/13717321*x^15+107135503347/109738568*x^14+1744779071069/1097385680*x^13-7085872005799/1097385680*x^12-5153885005761/1097385680*x^11+2677808928999/109738568*x^10+6106789329617/1097385680*x^9-5817818895943/109738568*x^8+1816261982929/548692840*x^7+3456571628139/54869284*x^6-14899434732341/1097385680*x^5-39914030811773/1097385680*x^4+2386038257613/274346420*x^3+941052452249/109738568*x^2-315533902171/274346420*x-147424675393/274346420,361333901/1097385680*x^19-103900019/109738568*x^18-10895627919/1097385680*x^17+16390872447/548692840*x^16+1655691006/13717321*x^15-42568236783/109738568*x^14-824332813993/1097385680*x^13+2939166744283/1097385680*x^12+2713059348397/1097385680*x^11-1163072806655/109738568*x^10-4093013907089/1097385680*x^9+2645062815015/109738568*x^8+154395149857/548692840*x^7-1636558749277/54869284*x^6+5755882325477/1097385680*x^5+19447033732741/1097385680*x^4-1070170975961/274346420*x^3-467911679345/109738568*x^2+151803530527/274346420*x+74337784521/274346420,-47971297/274346420*x^19+69458753/109738568*x^18+2551407631/548692840*x^17-1264428002/68586605*x^16-651741010/13717321*x^15+11922183795/54869284*x^14+31209734573/137173210*x^13-733127501127/548692840*x^12-31147986831/68586605*x^11+507389120333/109738568*x^10-66665196569/548692840*x^9-249265987699/27434642*x^8+263696892321/137173210*x^7+534341186731/54869284*x^6-747505875889/274346420*x^5-2836883932609/548692840*x^4+357310829023/274346420*x^3+62274907659/54869284*x^2-10022703854/68586605*x-9969554279/137173210,-54512453/274346420*x^19+29900759/54869284*x^18+1623039857/274346420*x^17-4646720427/274346420*x^16-3891325137/54869284*x^15+11862517507/54869284*x^14+29836488001/68586605*x^13-401799166199/274346420*x^12-387938170111/274346420*x^11+77906417468/13717321*x^10+585233205767/274346420*x^9-347253119069/27434642*x^8-79315153667/274346420*x^7+421586783095/27434642*x^6-184011264474/68586605*x^5-615560259762/68586605*x^4+140552400428/68586605*x^3+29213552186/13717321*x^2-20743079456/68586605*x-9344082873/68586605,-48051643/274346420*x^19+58945947/109738568*x^18+2856267409/548692840*x^17-4602905947/274346420*x^16-3409552197/54869284*x^15+2954634446/13717321*x^14+103565658219/274346420*x^13-805711830823/548692840*x^12-328606772361/274346420*x^11+628835984235/109738568*x^10+910937231699/548692840*x^9-704211796589/54869284*x^8+40102783209/137173210*x^7+427979676917/27434642*x^6-835319816421/274346420*x^5-4958618178541/548692840*x^4+583085141667/274346420*x^3+114209351255/54869284*x^2-20596964246/68586605*x-17778609811/137173210,8051362/68586605*x^19-6535047/27434642*x^18-946420017/274346420*x^17+1880005777/274346420*x^16+2270884519/54869284*x^15-4353314995/54869284*x^14-72246714779/274346420*x^13+130512831269/274346420*x^12+66707243514/68586605*x^11-87248635777/54869284*x^10-592873957567/274346420*x^9+40997424330/13717321*x^8+795080620667/274346420*x^7-83610830389/27434642*x^6-614717089349/274346420*x^5+211869750599/137173210*x^4+113504148499/137173210*x^3-4168958577/13717321*x^2-5928806459/68586605*x+1107159443/68586605,-106396201/1097385680*x^19+19437729/109738568*x^18+3790915239/1097385680*x^17-3782841007/548692840*x^16-2722548707/54869284*x^15+11886322467/109738568*x^14+401190156753/1097385680*x^13-973296418563/1097385680*x^12-1581938599757/1097385680*x^11+446366227401/109738568*x^10+3062080901689/1097385680*x^9-1144278508565/109738568*x^8-860908590437/548692840*x^7+771850754009/54869284*x^6-2161937105317/1097385680*x^5-9565103494881/1097385680*x^4+543122414251/274346420*x^3+232396546661/109738568*x^2-80190919707/274346420*x-38250823381/274346420,-342331951/548692840*x^19+478274765/219477136*x^18+18939637373/1097385680*x^17-17965147557/274346420*x^16-10222388899/54869284*x^15+88151634419/109738568*x^14+265699750899/274346420*x^13-5704630440451/1097385680*x^12-1237002890667/548692840*x^11+4208195822295/219477136*x^10+346074414363/1097385680*x^9-4460944936489/109738568*x^8+4783253954001/548692840*x^7+2598798489595/54869284*x^6-4161025012891/274346420*x^5-29878609878107/1097385680*x^4+4543838272059/548692840*x^3+718549974053/109738568*x^2-70851726666/68586605*x-115849196337/274346420,-213136911/274346420*x^19+276541925/109738568*x^18+11968907653/548692840*x^17-20781633319/274346420*x^16-13244456187/54869284*x^15+12750396438/13717321*x^14+361122815703/274346420*x^13-3301584260561/548692840*x^12-477357230441/137173210*x^11+2436351904215/109738568*x^10+1470408571893/548692840*x^9-1291660688871/27434642*x^8+1787720482291/274346420*x^7+3008474124271/54869284*x^6-999953940003/68586605*x^5-17227570041777/548692840*x^4+2318710408789/274346420*x^3+408698877339/54869284*x^2-73585408052/68586605*x-64620735797/137173210,521839843/1097385680*x^19-82435207/54869284*x^18-14841050747/1097385680*x^17+24983574091/548692840*x^16+8355485713/54869284*x^15-61927796525/109738568*x^14-934544054999/1097385680*x^13+4056639250339/1097385680*x^12+2580404427771/1097385680*x^11-758477029273/54869284*x^10-2341705689877/1097385680*x^9+3261544936543/109738568*x^8-2009886845869/548692840*x^7-1921622411369/54869284*x^6+10177584588891/1097385680*x^5+22135061803893/1097385680*x^4-380604209947/68586605*x^3-527254869173/109738568*x^2+195478405341/274346420*x+84647796333/274346420,-37965253/54869284*x^19+60030389/27434642*x^18+542685545/27434642*x^17-1822471081/27434642*x^16-3081047485/13717321*x^15+11317615699/13717321*x^14+69989898149/54869284*x^13-297313245875/54869284*x^12-50083059190/13717321*x^11+1115153837765/54869284*x^10+215190505121/54869284*x^9-2405875323927/54869284*x^8+202799026637/54869284*x^7+2845664629617/54869284*x^6-161878856443/13717321*x^5-411208802276/13717321*x^4+100829885813/13717321*x^3+97663462000/13717321*x^2-13392282033/13717321*x-6226676332/13717321,931393613/1097385680*x^19-606456423/219477136*x^18-6476724013/274346420*x^17+45223147401/548692840*x^16+3537793223/13717321*x^15-27478580993/27434642*x^14-1514981208739/1097385680*x^13+878793838933/137173210*x^12+3880528984491/1097385680*x^11-5113903034139/219477136*x^10-1317268765641/548692840*x^9+5336255278027/109738568*x^8-3965722431979/548692840*x^7-6118494442645/109738568*x^6+16501838322381/1097385680*x^5+2167353353058/68586605*x^4-4653609172921/548692840*x^3-410619044779/54869284*x^2+286926064091/274346420*x+65297406839/137173210]]];

f[390,2]=[
[x+1, [1,1,1,1], [-1,-1,-1,0,0,-1,-6,0,-4,-10,0,-6,2,-4,0,-6,0,6,4,16,-2,0,4,-6,14]],
[x-1, [1,1,-1,1], [-1,-1,1,-2,4,-1,4,-2,2,8,4,6,10,4,0,6,-12,-2,-8,0,0,-8,-12,-10,-8]],
[x+1, [1,-1,1,1], [-1,1,-1,4,0,-1,-2,4,8,2,-8,2,-6,12,0,10,0,-10,-4,-16,-6,-8,-4,-14,-6]],
[x-1, [1,-1,-1,-1], [-1,1,1,2,0,1,0,2,-6,0,8,2,6,-4,0,-6,0,14,-4,0,-4,-16,-12,-6,-4]],
[x+1, [-1,1,1,1], [1,-1,-1,2,4,-1,8,-6,6,-4,0,-2,-2,-4,0,-10,4,-10,12,-8,-8,8,12,-14,-16]],
[x-1, [-1,1,-1,-1], [1,-1,1,0,4,1,-6,4,8,6,-8,-10,-6,4,0,-10,4,-2,-12,16,2,-16,-12,10,-6]],
[x+1, [-1,-1,1,-1], [1,1,-1,2,0,1,0,2,-6,0,-4,2,-6,-4,0,-6,0,-10,8,0,8,8,-12,6,8]],
[x^2-8, [-1,-1,-1,1], [1,1,1,x,-2*x,-1,-x-2,-x,3*x,x-6,4,2*x-6,2*x-2,-2*x+4,-8,-4*x+2,-2*x-8,6,-2*x,2*x,3*x-6,2*x+8,2*x+12,2*x-10,-x-6]]];

f[391,2]=[
[x^2+x-1, [1,1], [x,1,-2*x-2,2*x,-4,-1,-1,2,-1,-2*x-5,-4*x+1,8*x+4,6*x+1,-2*x+2,-2*x-9,4*x+2,4,4*x+2,-6*x+2,4*x-7,-6*x-9,-6*x,-4*x-2,4*x-4,-10*x-4]],
[x^3+x^2-4*x-3, [1,1], [x,-2,-x^2+2,-x,-x^2-x+3,2*x^2-x-6,-1,2*x^2+2*x-6,-1,2*x^2-10,2*x-2,-3*x^2-x+7,-8,4*x+2,-x^2+3*x+7,4*x^2+2*x-14,-3*x^2-6*x+10,-2*x^2-x+10,4*x^2-2*x-14,2*x^2-12,-4*x^2+2*x+16,-x^2+2*x-2,-2*x^2+12,4*x-4,7*x^2-3*x-23]],
[x^3+x^2-4*x+1, [-1,-1], [x,0,-x^2-2*x+2,-x-2,x^2+3*x-3,2*x^2+3*x-6,1,-2*x^2-4*x+4,1,2*x-2,4*x^2+8*x-12,3*x^2+3*x-7,-2*x^2-4*x+2,-2*x^2-6*x,-5*x^2-5*x+15,-4*x^2-6*x+4,x^2+2*x-6,-6*x^2-5*x+16,-4*x^2-4*x+14,-4*x^2-8*x+12,6*x^2+8*x-14,-5*x^2-8*x+14,4*x^2+2*x-6,2*x^2-4*x-16,-3*x^2+x+11]],
[x^9-2*x^8-12*x^7+23*x^6+43*x^5-79*x^4-43*x^3+78*x^2+11*x-21, [1,-1], [x,-1/4*x^8+1/4*x^7+7/2*x^6-5/2*x^5-33/2*x^4+7*x^3+57/2*x^2-19/4*x-47/4,-1/4*x^8+1/4*x^7+13/4*x^6-11/4*x^5-55/4*x^4+35/4*x^3+85/4*x^2-13/2*x-9,-1/4*x^7+1/4*x^6+13/4*x^5-11/4*x^4-47/4*x^3+31/4*x^2+33/4*x-5/2,1/4*x^8-15/4*x^6+1/4*x^5+73/4*x^4-9/4*x^3-125/4*x^2+9/2*x+57/4,-x^8+3/2*x^7+12*x^6-16*x^5-43*x^4+47*x^3+43*x^2-26*x-23/2,-1,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-177/4*x^2+3/4*x+37/2,1,-3/4*x^8+3/4*x^7+37/4*x^6-31/4*x^5-131/4*x^4+83/4*x^3+105/4*x^2-7*x+3/2,1/2*x^8-1/4*x^7-27/4*x^6+9/4*x^5+117/4*x^4-19/4*x^3-169/4*x^2-5/4*x+25/2,3/4*x^8-1/2*x^7-39/4*x^6+17/4*x^5+161/4*x^4-29/4*x^3-221/4*x^2-5*x+83/4,7/4*x^8-2*x^7-23*x^6+21*x^5+95*x^4-119/2*x^3-257/2*x^2+113/4*x+51,-3/2*x^8+2*x^7+79/4*x^6-85/4*x^5-329/4*x^4+247/4*x^3+451/4*x^2-137/4*x-169/4,-1/2*x^6+1/2*x^5+11/2*x^4-9/2*x^3-31/2*x^2+13/2*x+15/2,5/4*x^8-5/4*x^7-16*x^6+12*x^5+64*x^4-59/2*x^3-83*x^2+33/4*x+129/4,1/2*x^7-5*x^5-x^4+13*x^3+6*x^2-5*x-15/2,-3/2*x^8+7/4*x^7+75/4*x^6-73/4*x^5-289/4*x^4+207/4*x^3+349/4*x^2-99/4*x-28,3/4*x^8-3/2*x^7-39/4*x^6+69/4*x^5+153/4*x^4-221/4*x^3-169/4*x^2+37*x+47/4,3/2*x^8-9/4*x^7-18*x^6+24*x^5+66*x^4-71*x^3-147/2*x^2+39*x+93/4,x^8-x^7-53/4*x^6+39/4*x^5+227/4*x^4-105/4*x^3-341/4*x^2+81/4*x+143/4,1/4*x^8-3/4*x^7-11/4*x^6+29/4*x^5+41/4*x^4-81/4*x^3-55/4*x^2+19*x+2,-x^8+1/2*x^7+55/4*x^6-21/4*x^5-233/4*x^4+59/4*x^3+291/4*x^2-31/4*x-51/4,-1/2*x^8+7/4*x^7+11/2*x^6-37/2*x^5-33/2*x^4+105/2*x^3+6*x^2-49/2*x+27/4,5/4*x^8-x^7-63/4*x^6+41/4*x^5+249/4*x^4-121/4*x^3-317/4*x^2+39/2*x+101/4]],
[x^12-4*x^11-12*x^10+62*x^9+27*x^8-321*x^7+108*x^6+625*x^5-362*x^4-372*x^3+116*x^2+97*x+13, [-1,1], [x,-9/14*x^11+12/7*x^10+19/2*x^9-181/7*x^8-89/2*x^7+888/7*x^6+460/7*x^5-429/2*x^4-30/7*x^3+867/14*x^2+7*x+9/14,-1/14*x^11-9/14*x^10+3*x^9+141/14*x^8-69/2*x^7-368/7*x^6+1084/7*x^5+205/2*x^4-3677/14*x^3-443/7*x^2+201/2*x+379/14,3/14*x^11-1/14*x^10-9/2*x^9+9/7*x^8+35*x^7-58/7*x^6-851/7*x^5+43/2*x^4+2435/14*x^3-191/14*x^2-60*x-82/7,13/7*x^11-39/14*x^10-33*x^9+295/7*x^8+425/2*x^7-1464/7*x^6-4230/7*x^5+366*x^4+10195/14*x^3-795/7*x^2-256*x-635/14,15/7*x^11-40/7*x^10-32*x^9+608/7*x^8+153*x^7-3030/7*x^6-1678/7*x^5+764*x^4+303/7*x^3-2012/7*x^2-22*x+97/7,1,-15/14*x^11+75/14*x^10+19/2*x^9-570/7*x^8+22*x^7+2838/7*x^6-2577/7*x^5-1433/2*x^4+11569/14*x^3+4161/14*x^2-279*x-521/7,-1,-55/14*x^11+121/14*x^10+63*x^9-1835/14*x^8-693/2*x^7+4561/7*x^6+5384/7*x^5-2289/2*x^4-9259/14*x^3+2837/7*x^2+503/2*x+391/14,-89/14*x^11+221/14*x^10+195/2*x^9-1674/7*x^8-493*x^7+8296/7*x^6+6351/7*x^5-4127/2*x^4-6737/14*x^3+9913/14*x^2+209*x+90/7,x^11-11/2*x^10-8*x^9+84*x^8-67/2*x^7-422*x^6+408*x^5+762*x^4-1781/2*x^3-346*x^2+321*x+175/2,-6/7*x^11+16/7*x^10+25/2*x^9-485/14*x^8-113/2*x^7+1205/7*x^6+499/7*x^5-304*x^4+219/7*x^3+1695/14*x^2-41/2*x-163/14,16/7*x^11-111/14*x^10-59/2*x^9+1683/14*x^8+93*x^7-4177/7*x^6+648/7*x^5+1047*x^4-7867/14*x^3-5619/14*x^2+377/2*x+404/7,-15/7*x^11+26/7*x^10+37*x^9-391/7*x^8-229*x^7+1910/7*x^6+4331/7*x^5-455*x^4-5000/7*x^3+696/7*x^2+277*x+379/7,85/14*x^11-104/7*x^10-187/2*x^9+1578/7*x^8+953/2*x^7-7850/7*x^6-6250/7*x^5+3949/2*x^4+3480/7*x^3-10111/14*x^2-198*x-29/14,-17/7*x^11+71/7*x^10+27*x^9-1082/7*x^8-33*x^7+5415/7*x^6-2974/7*x^5-1383*x^4+8191/7*x^3+4125/7*x^2-411*x-823/7,-55/14*x^11+163/14*x^10+111/2*x^9-1236/7*x^8-233*x^7+6136/7*x^6+1457/7*x^5-3071/2*x^4+4335/14*x^3+7977/14*x^2-79*x-368/7,-19/7*x^11+127/14*x^10+36*x^9-968/7*x^8-251/2*x^7+4846/7*x^6-227/7*x^5-1234*x^4+7337/14*x^3+3473/7*x^2-163*x-907/14,-29/14*x^11+41/7*x^10+30*x^9-1245/14*x^8-134*x^7+3097/7*x^6+1147/7*x^5-1557/2*x^4+552/7*x^3+2035/7*x^2-69/2*x-122/7,-55/7*x^11+277/14*x^10+239/2*x^9-4195/14*x^8-594*x^7+10389/7*x^6+7310/7*x^5-2582*x^4-6359/14*x^3+12475/14*x^2+391/2*x-15/7,103/14*x^11-263/14*x^10-111*x^9+3985/14*x^8+1085/2*x^7-9878/7*x^6-6372/7*x^5+4921/2*x^4+4413/14*x^3-6031/7*x^2-331/2*x+121/14,-27/7*x^11+165/14*x^10+107/2*x^9-2501/14*x^8-214*x^7+6203/7*x^6+926/7*x^5-1550*x^4+5989/14*x^3+8023/14*x^2-231/2*x-393/7,-9/2*x^11+11*x^10+70*x^9-335/2*x^8-364*x^7+839*x^6+717*x^5-3007/2*x^4-468*x^3+603*x^2+359/2*x-6,39/7*x^11-215/14*x^10-82*x^9+1634/7*x^8+759/2*x^7-8144/7*x^6-3716/7*x^5+2054*x^4-817/14*x^3-5416/7*x^2+23*x+559/14]]];

f[392,2]=[
[x+1, [1,1], [0,-1,-1,0,3,-6,-5,1,-7,2,-5,3,-2,-4,5,-1,15,-5,-9,0,7,1,12,7,-2]],
[x-1, [1,-1], [0,1,1,0,3,6,5,-1,-7,2,5,3,2,-4,-5,-1,-15,5,-9,0,-7,1,-12,-7,2]],
[x+2, [1,-1], [0,-2,4,0,0,0,2,2,8,2,-4,-6,2,8,4,-10,-6,-4,-12,0,14,-8,-6,-10,2]],
[x-3, [-1,1], [0,3,-1,0,-1,2,3,5,-3,-6,-1,-5,-10,-4,1,-9,3,3,11,16,7,-11,-4,-9,6]],
[x, [-1,-1], [0,0,-2,0,-4,-2,6,-8,0,6,-8,-2,-2,-4,8,6,0,6,-4,-8,-10,16,-8,6,6]],
[x+3, [-1,-1], [0,-3,1,0,-1,-2,-3,-5,-3,-6,1,-5,10,-4,-1,-9,-3,-3,11,16,-7,-11,4,9,-6]],
[x^2-8, [1,-1], [0,x,x,0,-4,-x,-2*x,-x,0,2,-2*x,10,2*x,-4,2*x,6,-x,5*x,12,0,0,8,-5*x,0,2*x]],
[x^2-2, [-1,1], [0,x,2*x,0,6,-4*x,x,-3*x,4,-6,2*x,2,-x,10,-2*x,-2,x,-6*x,4,-12,-7*x,-4,x,-3*x,9*x]]];

f[393,2]=[
[x^2+2*x-1, [1,-1], [x,-1,-2*x-2,4,1,5,3*x,x,-2*x+2,3*x+2,x+2,4,4*x+8,-4*x-6,-6*x-4,-12,2*x+3,2*x-5,4*x+10,4*x+8,2*x+4,8*x+6,-4*x+6,-6*x+4,12*x+14]],
[x^4+x^3-4*x^2-2*x+3, [1,1], [x,-1,-x^3-x^2+2*x+1,x^3-3*x-1,2*x^3+x^2-7*x,-2*x^3-2*x^2+5*x,3*x^2+x-8,3*x^2+2*x-8,x^3+2*x^2-x-5,-x^3-2*x^2+3*x+6,-x^3-5*x^2+7,2*x^3+x^2-3*x-2,x^3-2*x+3,3*x^3+4*x^2-4*x-9,-4*x^3-8*x^2+9*x+10,2*x^3-3*x^2-5*x+9,-x^3+4*x^2+8*x-11,3*x^2+x-6,x^2-5*x-3,-3*x^3+3*x^2+11*x-11,-5*x^3-6*x^2+11*x+7,-3*x^3-10*x^2+5*x+16,-7*x^2-2*x+13,3*x^3+5*x^2-6*x-2,2*x^3+8*x^2-4*x-21]],
[x^4+3*x^3-4*x-1, [-1,-1], [x,1,-x^3-3*x^2+1,x^3+2*x^2-3*x-5,3*x^2+5*x-4,4*x^3+8*x^2-5*x-8,-3*x^2-3*x+2,-6*x^3-11*x^2+8*x+8,-3*x^3-4*x^2+5*x-3,3*x^3+6*x^2-5*x-10,x^3+x^2+2*x+3,2*x^3-x^2-9*x+4,-5*x^3-10*x^2+10*x+13,x^3+4*x^2+2*x-5,4*x^3+8*x^2-7*x-14,-2*x^3-5*x^2+3*x+1,x^3+2*x^2-4*x-5,-6*x^3-15*x^2+7*x+14,6*x^3+9*x^2-9*x-3,5*x^3+15*x^2-3*x-15,x^3+2*x^2-5*x-3,-7*x^3-12*x^2+11*x+12,-8*x^3-19*x^2+4*x+17,5*x^3+7*x^2-16*x-6,-2*x^2-6*x+5]],
[x^5-2*x^4-7*x^3+12*x^2+9*x-9, [1,-1], [x,-1,1/3*x^4-2/3*x^3-7/3*x^2+4*x+2,1/3*x^4-2/3*x^3-4/3*x^2+3*x,-2/3*x^4-2/3*x^3+11/3*x^2+5*x-2,-x^4+x^3+6*x^2-3*x-5,2/3*x^4-4/3*x^3-11/3*x^2+5*x+4,1/3*x^4+1/3*x^3-7/3*x^2-2*x+5,x^4-8*x^2-x+12,-x^3+2*x^2+3*x-10,x^4-7*x^2+10,x^2-3*x-4,2/3*x^4-1/3*x^3-8/3*x^2-5,-4/3*x^4-1/3*x^3+28/3*x^2+2*x-7,-5/3*x^4+1/3*x^3+32/3*x^2-3*x-1,-1/3*x^4+5/3*x^3+7/3*x^2-9*x-2,-2/3*x^4+1/3*x^3+20/3*x^2-2*x-15,-2*x^4+11*x^2+x,7/3*x^4-5/3*x^3-43/3*x^2+7*x+12,-2/3*x^4+7/3*x^3+11/3*x^2-9*x-7,-5/3*x^4-2/3*x^3+44/3*x^2+3*x-20,4/3*x^4-5/3*x^3-22/3*x^2+5*x+4,2/3*x^4+8/3*x^3-11/3*x^2-14*x-3,4/3*x^4+7/3*x^3-37/3*x^2-12*x+16,1/3*x^4+1/3*x^3-10/3*x^2+4*x+2]],
[x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-5, [-1,1], [x,1,-x^4+5*x^2-2,x^5-x^4-5*x^3+4*x^2+4*x-1,x^4-x^3-5*x^2+3*x+5,-x^5+2*x^4+5*x^3-10*x^2-4*x+7,x^5+x^4-6*x^3-5*x^2+6*x+4,-x^5+5*x^3-x^2-3*x+3,-x^5+x^4+7*x^3-4*x^2-12*x+3,-x^4+2*x^3+2*x^2-7*x+5,-x^3+3*x^2+2*x-7,x^5-9*x^3+x^2+18*x-3,-x^5+2*x^4+8*x^3-8*x^2-15*x+2,-3*x^5+2*x^4+16*x^3-6*x^2-17*x-2,-2*x^5+x^4+11*x^3-4*x^2-11*x+5,x^4-3*x^3-5*x^2+9*x+6,-x^4-2*x^3+6*x^2+8*x-4,3*x^4+3*x^3-15*x^2-11*x+5,-4*x^5+x^4+25*x^3-5*x^2-31*x+4,2*x^5-4*x^4-11*x^3+21*x^2+11*x-15,3*x^5-x^4-15*x^3+6*x^2+10*x-11,4*x^4+x^3-20*x^2-5*x+12,4*x^5-4*x^4-22*x^3+15*x^2+24*x-1,x^5+4*x^4-6*x^3-23*x^2+9*x+19,-x^5-5*x^4+8*x^3+26*x^2-11*x-23]]];

f[394,2]=[
[x^2-3*x-5, [-1,1], [1,0,x,2,-2*x+4,-x+3,2,-x-3,2,-8,x-5,2,x+4,3*x-4,-2*x+4,2*x,-x,-2*x,-10,-x-7,2*x+6,3*x-8,-3*x+3,-2*x+2,x-12]],
[x^2-5, [-1,1], [1,x,-1/2*x+5/2,-3,-3/2*x+3/2,3,1/2*x-1/2,-x+2,1/2*x-11/2,-1/2*x+9/2,-3*x,3/2*x+9/2,x-6,x-4,4*x-1,-3*x,1/2*x-5/2,5/2*x+5/2,6*x,2*x-2,-1/2*x-13/2,7/2*x-11/2,-5/2*x+1/2,1/2*x-11/2,-9/2*x+1/2]],
[x^2+x-5, [-1,1], [1,x,0,2,x-1,-2*x-2,-2*x+2,2,-2*x+2,-x+7,3*x+5,x-8,-x+4,-4,-6,3*x,0,-x,-x,x+8,-4,-x-3,2*x-2,12,x+13]],
[x^2+5*x+5, [-1,-1], [1,-1,x,-2*x-7,x,-4*x-11,5*x+10,4*x+11,5*x+11,-7*x-18,-4*x-11,x,-2*x-9,7,-2*x-5,2*x+11,-7*x-18,3*x-3,10,0,3*x+3,-3*x-10,7*x+10,-7*x-23,15*x+38]],
[x^4+3*x^3-2*x^2-7*x+1, [1,1], [-1,x,1/2*x^3-3*x-1/2,-x^3-x^2+3*x,1/2*x^3+2*x^2-11/2,x^3+x^2-5*x,-1/2*x^3-2*x^2-x+1/2,-2*x^3-5*x^2+5*x+5,3/2*x^3+5*x^2-17/2,-3/2*x^3-4*x^2+2*x+1/2,x^3+3*x^2+2*x-5,-1/2*x^3+3*x^2+7*x-13/2,-2*x^3-4*x^2+5*x+2,2*x^3+x^2-9*x+1,-x^3-3*x^2+5*x+6,-4*x^3-6*x^2+11*x+2,5/2*x^3+4*x^2-11*x-21/2,3/2*x^3-4*x+13/2,4*x^3+9*x^2-6*x-9,4*x^3+9*x^2-8*x-9,3/2*x^3-3*x^2-10*x+27/2,-5/2*x^3-8*x^2+6*x+27/2,-5/2*x^3-4*x^2+5*x+9/2,-7/2*x^3-5*x^2+10*x+9/2,1/2*x^3-4*x+25/2]],
[x^4-2*x^3-7*x^2+8*x-1, [1,-1], [-1,-1/2*x^2+1/2*x+5/2,x,-x^3+3/2*x^2+17/2*x-9/2,1/2*x^3-1/2*x^2-9/2*x+4,3/2*x^3-5/2*x^2-23/2*x+6,-1/2*x^3+1/2*x^2+5/2*x+2,5/2*x^3-7/2*x^2-37/2*x+10,1/2*x^3-x^2-2*x+9/2,-3/2*x^3+5/2*x^2+21/2*x-5,1/2*x^3+1/2*x^2-13/2*x-4,-3/2*x^3+5/2*x^2+21/2*x-11,1/2*x^3-4*x+11/2,-3/2*x^3+2*x^2+12*x-5/2,-2*x^3+9/2*x^2+27/2*x-25/2,2*x^3-7/2*x^2-29/2*x+15/2,-3*x^3+4*x^2+19*x-5,-7/2*x^3+5*x^2+30*x-31/2,-2*x^3+4*x^2+12*x-12,11/2*x^3-8*x^2-38*x+39/2,-1/2*x^3-x^2+6*x-5/2,x^3-2*x^2-9*x+5,-3*x^3+11/2*x^2+39/2*x-27/2,5/2*x^3-3*x^2-18*x+9/2,-x^3+2*x^2+7*x-9]]];

f[395,2]=[
[x, [-1,1], [-1,0,1,-4,4,6,6,-4,0,6,0,10,2,8,12,-14,-4,-10,-4,-8,2,-1,4,-6,10]],
[x-2, [-1,1], [-1,2,1,2,4,-6,0,4,8,-6,8,4,-10,10,-2,8,-12,2,-4,0,-10,-1,0,-10,-10]],
[x+2, [-1,1], [-2,-1,1,3,-3,4,-2,0,4,0,7,3,12,4,-12,9,0,12,-2,-8,14,-1,4,-10,8]],
[x^3-3*x+1, [1,1], [x,-x^2-x+2,-1,2*x^2+x-5,x^2-x-4,-x^2-x,-x+2,-2*x^2+x+1,-2*x^2-x+6,-x^2+x-1,-3*x^2-x+7,2*x^2+x-12,3*x^2+2*x-8,-2*x^2+2*x+2,2*x^2+5*x-2,5*x^2+3*x-9,3*x^2+6*x-9,2*x^2-2*x-11,x^2-4*x-3,2*x^2+x-7,x^2+3*x+1,-1,x^2-2*x+3,2*x^2-7*x-4,3*x+5]],
[x^3-x^2-5*x+3, [-1,1], [2,x,1,-x^2-x+5,x^2-2*x-2,0,x^2-2*x-3,-2*x^2+2*x+8,2*x^2-6,0,-2*x^2+2*x+3,x^2+x+1,-4,-x^2-1,-x^2+4*x+3,2*x^2+x-8,2*x^2+4*x-10,4*x^2-2*x-10,-2*x^2-2*x+2,-2*x-2,-2*x^2-2*x+14,-1,2*x^2-2,-4*x^2+6*x+12,2*x^2+4*x-14]],
[x^3+2*x^2-x-1, [-1,-1], [x,x^2+x-2,1,-2*x^2-3*x+1,-x^2-x+2,-x^2-x-2,2*x^2+3*x-6,4*x^2+5*x-5,2*x^2+3*x-6,-x^2-7*x-1,-5*x^2-5*x+5,4*x^2+9*x-8,3*x^2+8*x-2,2*x^2+6*x-2,-8*x^2-15*x+6,x^2+x-7,3*x^2+2*x+1,-2*x^2+5,7*x^2+14*x-7,6*x^2+15*x-1,3*x^2-3*x-11,1,3*x^2+4*x+3,-12*x^2-15*x+14,2*x^2+5*x-9]],
[x^4-x^3-7*x^2+6*x-1, [-1,1], [x,2*x^3-x^2-15*x+6,1,-x+1,2*x^3-x^2-15*x+4,-x^2-x+6,-3*x^3+2*x^2+22*x-7,-2*x^3+15*x-3,-x^3+8*x-5,x^3-x^2-4*x+4,-x^3+x^2+8*x-6,-5*x^3+4*x^2+34*x-19,5*x^3-3*x^2-35*x+11,-4*x^3+2*x^2+30*x-10,-5*x^3+4*x^2+34*x-17,-x^3+x^2+10*x,-4*x^3+3*x^2+26*x-9,-3*x^3+21*x-4,2*x^3-x^2-12*x+11,6*x^3-4*x^2-45*x+17,11*x^3-7*x^2-82*x+34,-1,-6*x^3+3*x^2+42*x-23,-3*x^3+2*x^2+24*x-11,-2*x^3+2*x^2+15*x-3]],
[x^11-21*x^9+x^8+159*x^7-18*x^6-511*x^5+105*x^4+604*x^3-208*x^2-128*x+48, [1,-1], [x,1/32*x^10+1/16*x^9-25/32*x^8-33/32*x^7+221/32*x^6+11/2*x^5-823/32*x^4-317/32*x^3+569/16*x^2+25/8*x-35/4,-1,7/32*x^10+1/16*x^9-143/32*x^8-43/32*x^7+1055/32*x^6+75/8*x^5-3305/32*x^4-727/32*x^3+1889/16*x^2+71/8*x-91/4,-1/16*x^10+17/16*x^8-1/16*x^7-99/16*x^6+7/8*x^5+243/16*x^4-57/16*x^3-35/2*x^2+17/4*x+6,1/8*x^10+1/4*x^9-21/8*x^8-33/8*x^7+157/8*x^6+45/2*x^5-491/8*x^4-353/8*x^3+277/4*x^2+39/2*x-13,1/8*x^10+1/8*x^9-19/8*x^8-2*x^7+16*x^6+79/8*x^5-363/8*x^4-14*x^3+381/8*x^2-5/2*x-15/2,1/16*x^10+1/8*x^9-25/16*x^8-33/16*x^7+221/16*x^6+11*x^5-807/16*x^4-301/16*x^3+513/8*x^2-3/4*x-23/2,-1/8*x^10+17/8*x^8-1/8*x^7-99/8*x^6+7/4*x^5+235/8*x^4-57/8*x^3-28*x^2+17/2*x+6,-1/8*x^10-1/4*x^9+21/8*x^8+33/8*x^7-157/8*x^6-45/2*x^5+491/8*x^4+361/8*x^3-277/4*x^2-53/2*x+15,3/16*x^10+1/8*x^9-67/16*x^8-31/16*x^7+531/16*x^6+39/4*x^5-1749/16*x^4-259/16*x^3+1017/8*x^2-1/4*x-41/2,-1/32*x^10+1/16*x^9+25/32*x^8-19/32*x^7-217/32*x^6-1/8*x^5+751/32*x^4+289/32*x^3-415/16*x^2-49/8*x+29/4,-1/4*x^10+21/4*x^8+1/4*x^7-159/4*x^6-7/2*x^5+509/4*x^4+53/4*x^3-295/2*x^2-7*x+30,5/16*x^10-97/16*x^8-11/16*x^7+671/16*x^6+67/8*x^5-1947/16*x^4-431/16*x^3+259/2*x^2+45/4*x-28,-5/16*x^10-1/4*x^9+105/16*x^8+63/16*x^7-787/16*x^6-157/8*x^5+2459/16*x^4+483/16*x^3-675/4*x^2+3/4*x+27,-13/32*x^10-1/16*x^9+277/32*x^8+53/32*x^7-2113/32*x^6-55/4*x^5+6763/32*x^4+1217/32*x^3-3897/16*x^2-93/8*x+195/4,1/2*x^10+1/4*x^9-21/2*x^8-19/4*x^7+315/4*x^6+123/4*x^5-246*x^4-289/4*x^3+1081/4*x^2+28*x-51,-5/16*x^10-1/8*x^9+101/16*x^8+37/16*x^7-729/16*x^6-15*x^5+2211/16*x^4+617/16*x^3-1221/8*x^2-101/4*x+67/2,-9/16*x^10-3/8*x^9+185/16*x^8+109/16*x^7-1369/16*x^6-165/4*x^5+4271/16*x^4+1417/16*x^3-2387/8*x^2-121/4*x+121/2,1/16*x^10+1/8*x^9-25/16*x^8-25/16*x^7+221/16*x^6+4*x^5-815/16*x^4+123/16*x^3+541/8*x^2-63/4*x-27/2,-7/16*x^10-1/8*x^9+143/16*x^8+43/16*x^7-1055/16*x^6-79/4*x^5+3321/16*x^4+887/16*x^3-1945/8*x^2-147/4*x+103/2,1,3/8*x^10-55/8*x^8-5/8*x^7+353/8*x^6+33/4*x^5-933/8*x^4-265/8*x^3+113*x^2+71/2*x-24,3/16*x^10+1/8*x^9-59/16*x^8-39/16*x^7+419/16*x^6+65/4*x^5-1253/16*x^4-659/16*x^3+653/8*x^2+99/4*x-27/2,3/8*x^10-63/8*x^8-5/8*x^7+473/8*x^6+33/4*x^5-1477/8*x^4-225/8*x^3+201*x^2+17/2*x-34]]];

f[396,2]=[
[x+2, [-1,-1,1], [0,0,-2,-2,-1,-2,-4,-6,0,8,-8,10,-8,-2,8,2,-12,10,12,-8,6,-2,-16,14,-2]],
[x-2, [-1,-1,-1], [0,0,-2,2,1,6,4,-2,8,0,0,-6,0,10,0,-14,12,-14,4,0,6,2,-16,14,-2]],
[x-3, [-1,-1,-1], [0,0,3,2,1,-4,-6,8,3,0,5,-1,0,-10,0,6,-3,-4,-1,-15,-4,2,-6,9,-7]]];

f[397,2]=[
[x^2+2*x-1, [1], [x,0,-2,x+4,-2*x-2,-2*x-6,2*x-2,-2*x+2,-2*x-2,-7,2*x+2,2*x-1,-2*x-10,6*x+6,6*x+6,2*x,3*x+2,-4*x-2,2*x+4,5*x+14,-5,-8*x-8,2*x,-10*x-8,12*x+11]],
[x^2-2*x-1, [-1], [x,-x+3,x-1,-2*x+1,x+1,3*x-1,-3*x+1,-2*x+2,4,-3,3*x-9,-4*x+3,-x+3,7*x-5,2*x+2,2*x-12,-2*x-1,6*x,2*x+4,2*x+5,-6*x+7,7*x-13,2*x-12,6,2*x-15]],
[x^5-6*x^3+x^2+7*x-1, [-1], [x,x+1,-x^3+4*x-1,-x^3-x^2+3*x+2,x^4+x^3-5*x^2-4*x+5,x^4-6*x^2+x+6,x^4+2*x^3-4*x^2-7*x+6,2*x^3+x^2-6*x-3,-x^4-3*x^3+3*x^2+9*x,-x^4-x^3+4*x^2+x,2*x^4-9*x^2+3*x+8,-x^4-2*x^3+5*x^2+4*x-5,-2*x^4-x^3+9*x^2-4,-x^4-2*x^3+7*x^2+5*x-9,-2*x^4+10*x^2-2*x-6,3*x^4+4*x^3-13*x^2-12*x+10,x^4-4*x^2+4,-x^4+3*x^2+6,-x^4+2*x^3+6*x^2-8*x-1,x^4+4*x^3+x^2-14*x-7,3*x^4+2*x^3-11*x^2-2*x+3,2*x^4-x^3-9*x^2+8*x+2,-3*x^4+14*x^2+2*x-3,3*x^4-x^3-20*x^2+5*x+17,-2*x^4+11*x^2-4]],
[x^10-7*x^9+8*x^8+43*x^7-105*x^6-26*x^5+234*x^4-119*x^3-82*x^2+47*x+3, [-1], [x,23/11*x^9-107/11*x^8-72/11*x^7+841/11*x^6-38*x^5-1753/11*x^4+1294/11*x^3+699/11*x^2-37*x-52/11,-57/11*x^9+280/11*x^8+122/11*x^7-2166/11*x^6+135*x^5+4342/11*x^4-4161/11*x^3-1409/11*x^2+125*x+60/11,x^9-5*x^8-2*x^7+39*x^6-27*x^5-81*x^4+75*x^3+35*x^2-26*x-4,35/11*x^9-170/11*x^8-89/11*x^7+1330/11*x^6-72*x^5-2736/11*x^4+2269/11*x^3+1002/11*x^2-63*x-27/11,5/11*x^9-29/11*x^8+3/11*x^7+223/11*x^6-22*x^5-438/11*x^4+607/11*x^3+118/11*x^2-20*x+4/11,-38/11*x^9+183/11*x^8+96/11*x^7-1422/11*x^6+79*x^5+2880/11*x^4-2510/11*x^3-976/11*x^2+75*x+18/11,-36/11*x^9+178/11*x^8+73/11*x^7-1368/11*x^6+87*x^5+2696/11*x^4-2628/11*x^3-788/11*x^2+77*x+46/11,16/11*x^9-84/11*x^8-8/11*x^7+630/11*x^6-58*x^5-1164/11*x^4+1685/11*x^3+195/11*x^2-58*x+48/11,74/11*x^9-361/11*x^8-169/11*x^7+2812/11*x^6-169*x^5-5763/11*x^4+5325/11*x^3+2193/11*x^2-169*x-174/11,-81/11*x^9+395/11*x^8+189/11*x^7-3067/11*x^6+179*x^5+6209/11*x^4-5528/11*x^3-2136/11*x^2+151*x+76/11,-12/11*x^9+63/11*x^8+6/11*x^7-478/11*x^6+44*x^5+939/11*x^4-1294/11*x^3-369/11*x^2+45*x+85/11,105/11*x^9-499/11*x^8-289/11*x^7+3913/11*x^6-204*x^5-8131/11*x^4+6686/11*x^3+3226/11*x^2-200*x-213/11,47/11*x^9-222/11*x^8-128/11*x^7+1731/11*x^6-93*x^5-3532/11*x^4+3035/11*x^3+1239/11*x^2-84*x-2/11,16/11*x^9-84/11*x^8-19/11*x^7+652/11*x^6-50*x^5-1307/11*x^4+1520/11*x^3+393/11*x^2-65*x+15/11,30/11*x^9-141/11*x^8-70/11*x^7+1052/11*x^6-65*x^5-1913/11*x^4+1970/11*x^3+257/11*x^2-48*x+90/11,13/11*x^9-71/11*x^8-1/11*x^7+527/11*x^6-50*x^5-921/11*x^4+1378/11*x^3+12/11*x^2-38*x+39/11,-49/11*x^9+227/11*x^8+151/11*x^7-1774/11*x^6+83*x^5+3639/11*x^4-2807/11*x^3-1306/11*x^2+76*x-26/11,-5/11*x^9+18/11*x^8+30/11*x^7-135/11*x^6-2*x^5+218/11*x^4-46/11*x^3+124/11*x^2-125/11,89/11*x^9-437/11*x^8-204/11*x^7+3404/11*x^6-199*x^5-6956/11*x^4+6145/11*x^3+2503/11*x^2-177*x-63/11,91/11*x^9-442/11*x^8-216/11*x^7+3425/11*x^6-200*x^5-6865/11*x^4+6291/11*x^3+2141/11*x^2-190*x-35/11,-159/11*x^9+766/11*x^8+426/11*x^7-6031/11*x^6+316*x^5+12626/11*x^4-10265/11*x^3-5112/11*x^2+313*x+370/11,51/11*x^9-254/11*x^8-108/11*x^7+1982/11*x^6-121*x^5-4065/11*x^4+3712/11*x^3+1505/11*x^2-113*x-45/11,64/11*x^9-303/11*x^8-164/11*x^7+2344/11*x^6-135*x^5-4700/11*x^4+4419/11*x^3+1561/11*x^2-145*x-105/11,-54/11*x^9+267/11*x^8+115/11*x^7-2085/11*x^6+129*x^5+4319/11*x^4-4041/11*x^3-1754/11*x^2+141*x+124/11]],
[x^13+7*x^12+5*x^11-63*x^10-124*x^9+157*x^8+526*x^7+2*x^6-794*x^5-328*x^4+408*x^3+203*x^2-66*x-23, [1], [x,-356/1325*x^12-372/265*x^11+358/265*x^10+20873/1325*x^9+7163/1325*x^8-83228/1325*x^7-10893/265*x^6+141118/1325*x^5+90693/1325*x^4-99828/1325*x^3-42657/1325*x^2+25211/1325*x+3304/1325,-181/265*x^12-207/53*x^11+65/53*x^10+10433/265*x^9+9023/265*x^8-35473/265*x^7-8923/53*x^6+45208/265*x^5+67048/265*x^4-17133/265*x^3-29932/265*x^2+2046/265*x+2719/265,804/1325*x^12+858/265*x^11-612/265*x^10-44907/1325*x^9-22817/1325*x^8+163102/1325*x^7+26727/265*x^6-238237/1325*x^5-200387/1325*x^4+129027/1325*x^3+81063/1325*x^2-26224/1325*x-8236/1325,1136/1325*x^12+1327/265*x^11-398/265*x^10-68988/1325*x^9-59853/1325*x^8+247493/1325*x^7+60423/265*x^6-357708/1325*x^5-470183/1325*x^4+202518/1325*x^3+225817/1325*x^2-51641/1325*x-23674/1325,-496/1325*x^12-557/265*x^11+338/265*x^10+30868/1325*x^9+19508/1325*x^8-121273/1325*x^7-23228/265*x^6+205338/1325*x^5+198013/1325*x^4-157398/1325*x^3-105837/1325*x^2+52276/1325*x+8489/1325,-1552/1325*x^12-1854/265*x^11+331/265*x^10+95091/1325*x^9+95021/1325*x^8-324501/1325*x^7-92351/265*x^6+401231/1325*x^5+695456/1325*x^4-133001/1325*x^3-308044/1325*x^2+16712/1325*x+25793/1325,-487/1325*x^12-494/265*x^11+521/265*x^10+26771/1325*x^9+4376/1325*x^8-108956/1325*x^7-9486/265*x^6+205336/1325*x^5+92761/1325*x^4-175181/1325*x^3-60814/1325*x^2+52022/1325*x+4758/1325,-3/1325*x^12-21/265*x^11-61/265*x^10+924/1325*x^9+3719/1325*x^8+311/1325*x^7-2019/265*x^6-16341/1325*x^5-4666/1325*x^4+33311/1325*x^3+25184/1325*x^2-16257/1325*x-8473/1325,3082/1325*x^12+3554/265*x^11-1286/265*x^10-186056/1325*x^9-155261/1325*x^8+666741/1325*x^7+161416/265*x^6-936871/1325*x^5-1277171/1325*x^4+464791/1325*x^3+625429/1325*x^2-82417/1325*x-62488/1325,4713/1325*x^12+5431/265*x^11-1954/265*x^10-282954/1325*x^9-233824/1325*x^8+1011319/1325*x^7+240949/265*x^6-1428514/1325*x^5-1882439/1325*x^4+745269/1325*x^3+897461/1325*x^2-170553/1325*x-85992/1325,-254/265*x^12-294/53*x^11+100/53*x^10+15162/265*x^9+12157/265*x^8-54582/265*x^7-12260/53*x^6+80322/265*x^5+94577/265*x^4-45202/265*x^3-44023/265*x^2+9259/265*x+3331/265,7/265*x^12-4/53*x^11-52/53*x^10+229/265*x^9+2629/265*x^8-1609/265*x^7-2444/53*x^6+5799/265*x^5+26964/265*x^4-6794/265*x^3-23606/265*x^2+1098/265*x+4842/265,-3246/1325*x^12-3642/265*x^11+1838/265*x^10+192843/1325*x^9+136408/1325*x^8-707598/1325*x^7-149093/265*x^6+1050563/1325*x^5+1184188/1325*x^4-603023/1325*x^3-566637/1325*x^2+138426/1325*x+46264/1325,3602/1325*x^12+4014/265*x^11-2196/265*x^10-213716/1325*x^9-144896/1325*x^8+786851/1325*x^7+162106/265*x^6-1161206/1325*x^5-1304031/1325*x^4+635276/1325*x^3+639769/1325*x^2-118587/1325*x-66793/1325,-1918/1325*x^12-2031/265*x^11+1634/265*x^10+109769/1325*x^9+51864/1325*x^8-412434/1325*x^7-66779/265*x^6+628329/1325*x^5+539604/1325*x^4-364709/1325*x^3-256596/1325*x^2+73858/1325*x+25587/1325,-298/1325*x^12-496/265*x^11-671/265*x^10+20234/1325*x^9+50979/1325*x^8-47724/1325*x^7-37844/265*x^6+19794/1325*x^5+259519/1325*x^4+22451/1325*x^3-118356/1325*x^2+5613/1325*x+12532/1325,-2693/1325*x^12-2951/265*x^11+1864/265*x^10+158994/1325*x^9+100564/1325*x^8-590909/1325*x^7-118774/265*x^6+872154/1325*x^5+987379/1325*x^4-455784/1325*x^3-511321/1325*x^2+67758/1325*x+58312/1325,-487/265*x^12-547/53*x^11+256/53*x^10+28626/265*x^9+21601/265*x^8-101536/265*x^7-22895/53*x^6+138291/265*x^5+174646/265*x^4-64941/265*x^3-77509/265*x^2+13862/265*x+7143/265,-2478/1325*x^12-2771/265*x^11+1289/265*x^10+141799/1325*x^9+101244/1325*x^8-494389/1325*x^7-104194/265*x^6+662609/1325*x^5+768809/1325*x^4-290239/1325*x^3-323816/1325*x^2+41668/1325*x+25127/1325,-3391/1325*x^12-3862/265*x^11+1628/265*x^10+203053/1325*x^9+159368/1325*x^8-732758/1325*x^7-168768/265*x^6+1043823/1325*x^5+1327898/1325*x^4-538383/1325*x^3-617877/1325*x^2+109246/1325*x+47044/1325,-8409/1325*x^12-9573/265*x^11+4182/265*x^10+504422/1325*x^9+383507/1325*x^8-1837892/1325*x^7-409077/265*x^6+2691177/1325*x^5+3258452/1325*x^4-1495292/1325*x^3-1601873/1325*x^2+334929/1325*x+162456/1325,-1056/265*x^12-1191/53*x^11+576/53*x^10+62898/265*x^9+45303/265*x^8-229728/265*x^7-49089/53*x^6+336343/265*x^5+390118/265*x^4-183363/265*x^3-188162/265*x^2+37311/265*x+16244/265,5041/1325*x^12+5607/265*x^11-3058/265*x^10-297853/1325*x^9-201418/1325*x^8+1102308/1325*x^7+226638/265*x^6-1666498/1325*x^5-1864748/1325*x^4+985958/1325*x^3+979952/1325*x^2-229571/1325*x-115819/1325,2401/1325*x^12+2762/265*x^11-1088/265*x^10-145908/1325*x^9-117973/1325*x^8+529313/1325*x^7+124718/265*x^6-761378/1325*x^5-996778/1325*x^4+414263/1325*x^3+497622/1325*x^2-114431/1325*x-56659/1325]]];

f[398,2]=[
[x-2, [1,-1], [-1,2,-2,0,2,6,6,6,0,-6,8,-8,-2,0,-8,-2,10,10,2,-8,10,-16,-6,-6,14]],
[x^2+x-1, [1,1], [-1,x,0,-x-2,-3*x-1,-2*x-4,2*x,4*x,-x-1,6*x+4,x+2,x-9,-4*x-4,4*x-2,7*x+3,4*x+2,-9*x-3,-6*x-2,-x-4,8,-4*x-6,x+9,-5*x+8,-5*x-4,12*x+6]],
[x^2+3*x+1, [-1,-1], [1,x,-2*x-4,x-2,-x-5,-2,4*x+8,0,7*x+9,-2*x-6,-5*x-10,-3*x-9,2*x+6,-2*x-2,-5*x-3,6*x+6,x+1,0,3*x-4,-4*x-10,-8*x-8,-7*x-13,-13*x-16,x+18,6*x-2]],
[x^6-x^5-14*x^4+5*x^3+54*x^2+9*x-27, [1,-1], [-1,x,1/3*x^5-x^4-3*x^3+7*x^2+23/3*x-5,1/9*x^5-1/9*x^4-5/9*x^3-4/9*x^2-x+4,-1/3*x^4+1/3*x^3+5/3*x^2+1/3*x+1,1/3*x^4-4/3*x^3-5/3*x^2+20/3*x+1,1/9*x^5-7/9*x^4+1/9*x^3+53/9*x^2-13/3*x-7,-1/9*x^5+4/9*x^4+11/9*x^3-38/9*x^2-13/3*x+6,-5/9*x^5+14/9*x^4+43/9*x^3-97/9*x^2-11*x+10,1/9*x^5+2/9*x^4-17/9*x^3-28/9*x^2+17/3*x+8,x^2-2*x-3,-5/9*x^5+14/9*x^4+34/9*x^3-88/9*x^2-4*x+14,-2/9*x^5+5/9*x^4+16/9*x^3-25/9*x^2-10/3*x+1,1/3*x^5-x^4-3*x^3+7*x^2+23/3*x-3,5/9*x^5-11/9*x^4-37/9*x^3+64/9*x^2+11/3*x-3,-1/3*x^5+x^4+x^3-5*x^2+19/3*x+3,2/3*x^4+1/3*x^3-16/3*x^2-11/3*x-4,10/9*x^5-25/9*x^4-80/9*x^3+143/9*x^2+44/3*x-9,-1/9*x^5-11/9*x^4+35/9*x^3+73/9*x^2-44/3*x-3,-5/9*x^5+14/9*x^4+43/9*x^3-70/9*x^2-13*x-6,-1/3*x^5+2/3*x^4+7/3*x^3-4/3*x^2-7/3*x-6,-7/9*x^5+22/9*x^4+47/9*x^3-137/9*x^2-17/3*x+10,-1/3*x^5-1/3*x^4+19/3*x^3+5/3*x^2-64/3*x-1,x^4-2*x^3-6*x^2+8*x+2,7/9*x^5-13/9*x^4-65/9*x^3+83/9*x^2+35/3*x-11]],
[x^6-3*x^5-6*x^4+21*x^3+2*x^2-21*x-5, [-1,1], [1,x,x^5-x^4-7*x^3+5*x^2+7*x+3,-x^5+x^4+7*x^3-6*x^2-7*x+2,-x^4+x^3+7*x^2-7*x-5,-2*x^5+3*x^4+14*x^3-17*x^2-14*x+1,x^5-x^4-9*x^3+5*x^2+17*x+3,-x^5+2*x^4+7*x^3-12*x^2-7*x+4,x^5-2*x^4-5*x^3+13*x^2-5*x-6,x^5-2*x^4-7*x^3+12*x^2+7*x-4,2*x^5-18*x^3-3*x^2+36*x+15,x^5-2*x^4-8*x^3+12*x^2+12*x-2,3*x^4-2*x^3-21*x^2+12*x+15,3*x^5-x^4-25*x^3+5*x^2+41*x+9,-x^5-x^4+11*x^3+8*x^2-29*x-13,-x^5+x^4+9*x^3-3*x^2-17*x-13,4*x^5-4*x^4-29*x^3+22*x^2+35*x+2,-x^4-2*x^3+9*x^2+10*x-13,x^5-x^4-9*x^3+5*x^2+16*x+7,-3*x^5+4*x^4+23*x^3-20*x^2-31*x-8,-x^5-2*x^4+13*x^3+16*x^2-39*x-22,-3*x^5+2*x^4+21*x^3-11*x^2-19*x-2,-x^5+x^4+5*x^3-7*x^2+4*x+3,-2*x^5-x^4+16*x^3+8*x^2-22*x-20,3*x^5-3*x^4-19*x^3+19*x^2+9*x-5]]];

f[399,2]=[
[x-1, [1,1,1], [1,-1,0,-1,-2,-4,-4,-1,2,-2,0,6,-6,8,0,-2,4,-10,14,-12,10,10,-12,-6,-4]],
[x+1, [1,-1,-1], [-1,-1,0,1,-2,0,-4,1,-6,-6,0,-2,-10,8,4,-6,-4,-2,-10,4,10,-6,0,-2,-8]],
[x-1, [-1,1,1], [-1,1,4,-1,-2,4,0,-1,-6,10,0,6,-10,8,12,-6,-12,-2,-2,-12,-6,2,0,-2,-12]],
[x^3-x^2-3*x+1, [1,1,-1], [x,-1,x^2-1,-1,-2*x^2+2*x+4,-2*x^2+2*x+6,-x^2+5,1,2*x^2-6*x-4,x^2-2*x+5,4*x^2-2*x-6,-4*x-2,-2*x^2-2*x+10,-4*x^2+2*x+6,-5*x^2+2*x+13,3*x^2-2*x-5,4,-4*x+6,-2*x^2+4*x+2,-5*x^2+4*x+11,2*x^2-8,4*x^2-8*x-12,x^2+6*x-9,-2*x^2-2*x+10,-4*x^2-4*x+14]],
[x^3-x^2-7*x+9, [-1,1,1], [x,1,-x^2+5,-1,-2*x^2-2*x+12,2*x^2+2*x-10,x^2-1,-1,-2*x^2-2*x+8,x^2-2*x-7,-2*x-2,4*x^2+4*x-22,-2*x^2-2*x+18,-2*x+6,x^2-2*x-5,3*x^2+6*x-17,4*x^2-16,-4*x^2-4*x+26,2*x^2+4*x-14,3*x^2+4*x-25,2*x^2-8,4*x^2-16,3*x^2+2*x-15,-6*x^2-2*x+30,4*x+6]],
[x^5-3*x^4-4*x^3+14*x^2-3*x-1, [1,-1,1], [x,-1,x^4-3*x^3-4*x^2+13*x-1,1,-2*x^4+4*x^3+10*x^2-18*x+2,x^4-4*x^3-4*x^2+20*x-3,x^4-x^3-6*x^2+3*x+5,-1,-2*x^2+2*x+8,-x^4+3*x^3+6*x^2-15*x-3,-x^4+4*x^3+2*x^2-20*x+7,-2*x^3+2*x^2+10*x-4,2*x^4-4*x^3-10*x^2+14*x+4,x^4-2*x^3-4*x^2+6*x-5,x^4-x^3-6*x^2+5*x+1,-x^4+x^3+4*x^2-x+3,-2*x^4+4*x^3+12*x^2-20*x-6,-4*x^4+10*x^3+18*x^2-42*x,2*x^3-14*x-4,-x^4+x^3+4*x^2-3*x+3,-4*x^4+8*x^3+22*x^2-36*x-4,2*x^3-2*x^2-6*x+2,-x^4+5*x^3-21*x+13,-2*x^4+4*x^3+14*x^2-18*x-8,-2*x^4+8*x^3+8*x^2-40*x]],
[x^5-x^4-8*x^3+6*x^2+13*x-3, [-1,-1,-1], [x,1,-x^3+5*x,1,x^4-6*x^2+3,-2*x+2,x^3-2*x^2-5*x+6,1,-x^4+6*x^2-3,-x^4-x^3+6*x^2+5*x-3,x^4-6*x^2+5,-2*x^3-2*x^2+10*x+8,2*x^2-2*x-6,-x^4+2*x^3+8*x^2-10*x-7,-x^4+x^3+6*x^2-5*x-9,-x^4+x^3+8*x^2-9*x-9,2*x^4-12*x^2+6,-2*x^3+2*x^2+10*x-4,x^4+2*x^3-8*x^2-8*x+11,-x^4+x^3+8*x^2-3*x-9,-2*x^2+4*x+8,x^4+2*x^3-6*x^2-8*x+5,x^4-x^3-4*x^2+x-9,4*x^3+2*x^2-22*x-6,-3*x^4+16*x^2+2*x-7]]];

f[400,2]=[
[x, [1,1], [0,0,0,-4,-4,2,-2,-4,4,-2,8,-6,-6,-8,4,-6,4,-2,8,0,6,0,-16,-6,14]],
[x+3, [1,1], [0,-3,0,2,-1,-4,-5,-1,-2,-8,-10,6,-3,4,4,-6,-8,10,-1,12,-3,-6,-13,-9,14]],
[x-2, [1,-1], [0,2,0,2,4,-4,0,4,-2,2,0,-4,2,-6,-6,4,12,-10,14,-8,-8,-16,2,6,-16]],
[x+2, [1,-1], [0,-2,0,-2,4,4,0,4,2,2,0,4,2,6,6,-4,12,-10,-14,-8,8,-16,-2,6,16]],
[x-3, [1,-1], [0,3,0,-2,-1,4,5,-1,2,-8,-10,-6,-3,-4,-4,6,-8,10,1,12,3,-6,13,-9,-14]],
[x-1, [-1,1], [0,1,0,2,3,4,3,-5,6,0,-2,-2,-3,-4,12,-6,0,2,-13,-12,-11,10,-9,15,-2]],
[x-2, [-1,1], [0,-2,0,2,0,-2,6,4,6,6,4,-2,6,-10,-6,6,-12,2,2,12,-2,-8,6,-6,-2]],
[x+1, [-1,-1], [0,-1,0,-2,3,-4,-3,-5,-6,0,-2,2,-3,4,-12,6,0,2,13,-12,11,10,9,15,2]]];

f[401,2]=[
[x^12+3*x^11-10*x^10-34*x^9+29*x^8+129*x^7-24*x^6-203*x^5+x^4+130*x^3-5*x^2-22*x+4, [1], [x,-2*x^11-4*x^10+21*x^9+43*x^8-66*x^7-151*x^6+63*x^5+211*x^4+5*x^3-114*x^2-17*x+13,11/2*x^11+23/2*x^10-60*x^9-124*x^8+417/2*x^7+863/2*x^6-274*x^5-1151/2*x^4+231/2*x^3+265*x^2+25/2*x-23,-2*x^11-4*x^10+23*x^9+43*x^8-89*x^7-147*x^6+145*x^5+183*x^4-94*x^3-64*x^2+5*x+1,-11/2*x^11-11/2*x^10+70*x^9+53*x^8-629/2*x^7-289/2*x^6+630*x^5+151/2*x^4-1093/2*x^3+101*x^2+253/2*x-36,11/2*x^11+15/2*x^10-65*x^9-76*x^8+521/2*x^7+473/2*x^6-446*x^5-487/2*x^4+643/2*x^3+41*x^2-111/2*x+7,1/2*x^11-9/2*x^10-12*x^9+54*x^8+171/2*x^7-435/2*x^6-239*x^5+733/2*x^4+521/2*x^3-251*x^2-167/2*x+39,13/2*x^11+13/2*x^10-84*x^9-66*x^8+767/2*x^7+409/2*x^6-773*x^5-379/2*x^4+1313/2*x^3-27*x^2-283/2*x+26,-5*x^11-10*x^10+54*x^9+107*x^8-183*x^7-369*x^6+226*x^5+487*x^4-80*x^3-220*x^2-13*x+13,-3*x^11-13*x^10+24*x^9+149*x^8-23*x^7-571*x^6-150*x^5+899*x^4+297*x^3-551*x^2-129*x+71,3*x^11+10*x^10-28*x^9-110*x^8+67*x^7+393*x^6-7*x^5-552*x^4-90*x^3+289*x^2+58*x-37,-13/2*x^11-13/2*x^10+84*x^9+62*x^8-777/2*x^7-325/2*x^6+817*x^5+115/2*x^4-1521/2*x^3+160*x^2+399/2*x-50,9/2*x^11-3/2*x^10-68*x^9+27*x^8+745/2*x^7-325/2*x^6-910*x^5+839/2*x^4+1879/2*x^3-432*x^2-543/2*x+85,-15/2*x^11-37/2*x^10+78*x^9+202*x^8-489/2*x^7-1435/2*x^6+240*x^5+1999/2*x^4+21/2*x^3-511*x^2-157/2*x+53,-x^11+4*x^10+21*x^9-51*x^8-147*x^7+227*x^6+428*x^5-441*x^4-502*x^3+352*x^2+166*x-55,x^11+9*x^10-4*x^9-103*x^8-29*x^7+387*x^6+149*x^5-583*x^4-180*x^3+338*x^2+57*x-45,3/2*x^11+29/2*x^10+4*x^9-165*x^8-313/2*x^7+1257/2*x^6+626*x^5-2011/2*x^4-1577/2*x^3+671*x^2+523/2*x-103,-9/2*x^11-3/2*x^10+61*x^9+12*x^8-583/2*x^7-43/2*x^6+604*x^5-57/2*x^4-1015/2*x^3+86*x^2+207/2*x-23,5*x^11+13*x^10-55*x^9-145*x^8+197*x^7+527*x^6-280*x^5-739*x^4+145*x^3+349*x^2+2*x-27,21/2*x^11+43/2*x^10-116*x^9-234*x^8+823/2*x^7+1661/2*x^6-555*x^5-2309/2*x^4+459/2*x^3+578*x^2+71/2*x-58,14*x^11+28*x^10-154*x^9-302*x^8+542*x^7+1055*x^6-724*x^5-1425*x^4+302*x^3+682*x^2+48*x-68,-8*x^11-17*x^10+89*x^9+186*x^8-321*x^7-663*x^6+449*x^5+920*x^4-203*x^3-448*x^2-24*x+35,-3/2*x^11+1/2*x^10+18*x^9-9*x^8-139/2*x^7+89/2*x^6+101*x^5-141/2*x^4-91/2*x^3+15*x^2+7/2*x+9,1/2*x^11-11/2*x^10-20*x^9+65*x^8+351/2*x^7-537/2*x^6-556*x^5+1011/2*x^4+1311/2*x^3-437*x^2-415/2*x+86,-11/2*x^11-21/2*x^10+61*x^9+109*x^8-447/2*x^7-703/2*x^6+351*x^5+789/2*x^4-523/2*x^3-113*x^2+115/2*x+4]],
[x^21-35*x^19+521*x^17+2*x^16-4305*x^15-51*x^14+21617*x^13+519*x^12-67876*x^11-2749*x^10+132085*x^9+8292*x^8-152221*x^7-14353*x^6+93934*x^5+12831*x^4-24699*x^3-4111*x^2+1058*x-44, [-1], [x,-18286877149/2056085485264*x^20-11127199047/2056085485264*x^19+83946583113/257010685658*x^18+82268698561/514021371316*x^17-10577086239965/2056085485264*x^16-4006759400165/2056085485264*x^15+5820872970774/128505342829*x^14+26143714096043/2056085485264*x^13-31289587591503/128505342829*x^12-100786701349185/2056085485264*x^11+1682873453689943/2056085485264*x^10+122664373913815/1028042742632*x^9-3480210083621745/2056085485264*x^8-413112998448921/2056085485264*x^7+2090208291142399/1028042742632*x^6+521232062879477/2056085485264*x^5-2588114268141401/2056085485264*x^4-216362373657685/1028042742632*x^3+634884906799859/2056085485264*x^2+70645897189647/1028042742632*x-3293700981999/514021371316,-722413535/128505342829*x^20+4850669160/128505342829*x^19+17729132132/128505342829*x^18-616176543847/514021371316*x^17-545133209029/514021371316*x^16+4061635213501/257010685658*x^15-81942846175/257010685658*x^14-28814567024775/257010685658*x^13+6461969206283/128505342829*x^12+59717775138331/128505342829*x^11-160937518187779/514021371316*x^10-294890352574975/257010685658*x^9+459977117780719/514021371316*x^8+853299070638225/514021371316*x^7-673509990918971/514021371316*x^6-695729399878955/514021371316*x^5+119791311761006/128505342829*x^4+302525984112977/514021371316*x^3-68216128320123/257010685658*x^2-28194703453239/257010685658*x+1197867446729/128505342829,11788227381/1028042742632*x^20-17556105935/1028042742632*x^19-175917004357/514021371316*x^18+277765645839/514021371316*x^17+4221110609895/1028042742632*x^16-7240673316675/1028042742632*x^15-3198938144554/128505342829*x^14+50222989912785/1028042742632*x^13+39080024046237/514021371316*x^12-200432877759707/1028042742632*x^11-80842481868219/1028042742632*x^10+116739845694491/257010685658*x^9-158230419832287/1028042742632*x^8-623823499506267/1028042742632*x^7+63600503938346/128505342829*x^6+471363605727771/1028042742632*x^5-464992827043603/1028042742632*x^4-26823439523891/128505342829*x^3+139429229628541/1028042742632*x^2+26480698676661/514021371316*x-286007594119/257010685658,-65872818475/1028042742632*x^20+24504892221/1028042742632*x^19+275445436750/128505342829*x^18-94128553210/128505342829*x^17-31019594825691/1028042742632*x^16+9424250012195/1028042742632*x^15+29901763784562/128505342829*x^14-61663707257231/1028042742632*x^13-551547004674839/514021371316*x^12+225232260705723/1028042742632*x^11+3120061386536981/1028042742632*x^10-112655572100787/257010685658*x^9-5350818255511181/1028042742632*x^8+422995988582409/1028042742632*x^7+1328612115857249/257010685658*x^6-25831277280967/1028042742632*x^5-2767570136776731/1028042742632*x^4-58048134220281/257010685658*x^3+593287325531071/1028042742632*x^2+53353117310705/514021371316*x-2788481204299/257010685658,5922142461/514021371316*x^20-4388103687/257010685658*x^19-190854757593/514021371316*x^18+282772054063/514021371316*x^17+1293881759277/257010685658*x^16-3745952572257/514021371316*x^15-9667642818631/257010685658*x^14+26267034142439/514021371316*x^13+88028827271723/514021371316*x^12-104417140872075/514021371316*x^11-256484825359039/514021371316*x^10+232486914297775/514021371316*x^9+489257916738043/514021371316*x^8-261224184161481/514021371316*x^7-601810751729847/514021371316*x^6+96962568271683/514021371316*x^5+430021502626571/514021371316*x^4+37497517466363/514021371316*x^3-129911109286611/514021371316*x^2-5918147205798/128505342829*x+1164757232946/128505342829,9354331725/514021371316*x^20-14630632579/257010685658*x^19-310472433251/514021371316*x^18+924337350471/514021371316*x^17+2174339827069/257010685658*x^16-12071288087343/514021371316*x^15-16829994603905/257010685658*x^14+84138714162195/514021371316*x^13+158852143543987/514021371316*x^12-336903298269333/514021371316*x^11-476779687011101/514021371316*x^10+774501168309915/514021371316*x^9+918273560798407/514021371316*x^8-955172014800243/514021371316*x^7-1100406271074901/514021371316*x^6+514435743408067/514021371316*x^5+736483474702639/514021371316*x^4-25844651336335/514021371316*x^3-199670719820553/514021371316*x^2-10578582540277/128505342829*x+732906735340/128505342829,19560055923/2056085485264*x^20+83428578419/2056085485264*x^19-44235265769/128505342829*x^18-666022272627/514021371316*x^17+10907735035495/2056085485264*x^16+35393334158353/2056085485264*x^15-23255725275895/514021371316*x^14-253344758111913/2056085485264*x^13+238602075943719/1028042742632*x^12+1057357625768757/2056085485264*x^11-1500286864381305/2056085485264*x^10-650532718677195/514021371316*x^9+2826906311914709/2056085485264*x^8+3646499843568451/2056085485264*x^7-748824329814221/514021371316*x^6-2681091340987393/2056085485264*x^5+1576536932169655/2056085485264*x^4+222169433006333/514021371316*x^3-335443937810391/2056085485264*x^2-44606561166255/1028042742632*x+4645881872331/514021371316,41890165043/2056085485264*x^20-117493570401/2056085485264*x^19-379820873039/514021371316*x^18+234914130250/128505342829*x^17+23531499422459/2056085485264*x^16-49972006570527/2056085485264*x^15-50909461062953/514021371316*x^14+357104005194783/2056085485264*x^13+540493577391165/1028042742632*x^12-1479551537157843/2056085485264*x^11-3629795412271505/2056085485264*x^10+445143419319317/257010685658*x^9+7638436761590461/2056085485264*x^8-4659598358491357/2056085485264*x^7-598715874427860/128505342829*x^6+2656081010713183/2056085485264*x^5+6397840212256703/2056085485264*x^4-141713838695/128505342829*x^3-1742131333927103/2056085485264*x^2-172394469464539/1028042742632*x+10917703709407/514021371316,33237272127/2056085485264*x^20+12515858277/2056085485264*x^19-523071738485/1028042742632*x^18-247005367077/1028042742632*x^17+13502207952929/2056085485264*x^16+8119184198997/2056085485264*x^15-22843759265753/514021371316*x^14-71738574102713/2056085485264*x^13+85145284094723/514021371316*x^12+366951354705153/2056085485264*x^11-646173453920921/2056085485264*x^10-545065981708513/1028042742632*x^9+357080894122149/2056085485264*x^8+1786004506344087/2056085485264*x^7+318288949584957/1028042742632*x^6-1404655951930429/2056085485264*x^5-948906923145845/2056085485264*x^4+166279465202455/1028042742632*x^3+308014940862725/2056085485264*x^2+21392607749449/1028042742632*x+1772840173967/514021371316,-9279772743/1028042742632*x^20+34558546045/1028042742632*x^19+161233419919/514021371316*x^18-277999796259/257010685658*x^17-4807633299301/1028042742632*x^16+14818488721359/1028042742632*x^15+5058241944549/128505342829*x^14-105562595883047/1028042742632*x^13-106365525442013/514021371316*x^12+432106560242233/1028042742632*x^11+725775751307935/1028042742632*x^10-505249343259197/514021371316*x^9-1598675703214837/1028042742632*x^8+1235692800963433/1028042742632*x^7+269851349872658/128505342829*x^6-564658722354737/1028042742632*x^5-1587503694005337/1028042742632*x^4-69526365361707/514021371316*x^3+480574859157299/1028042742632*x^2+61585977613059/514021371316*x-2818881017317/257010685658,48972673319/1028042742632*x^20+64766312769/1028042742632*x^19-857503239253/514021371316*x^18-1062063046557/514021371316*x^17+25481381831101/1028042742632*x^16+29222577001601/1028042742632*x^15-26164127151164/128505342829*x^14-219054802866929/1028042742632*x^13+129783040936358/128505342829*x^12+972784954543949/1028042742632*x^11-3190696828517025/1028042742632*x^10-1304870375013637/514021371316*x^9+6000704847254093/1028042742632*x^8+4152097043677227/1028042742632*x^7-3288274030738325/514021371316*x^6-3726805797057009/1028042742632*x^5+3776590249450851/1028042742632*x^4+855525292345967/514021371316*x^3-890920662328779/1028042742632*x^2-154017421800297/514021371316*x+6288346886539/257010685658,37325472637/1028042742632*x^20+12825374557/1028042742632*x^19-608160042725/514021371316*x^18-243165126471/514021371316*x^17+16528067695289/1028042742632*x^16+7807226458639/1028042742632*x^15-30351293977575/257010685658*x^14-68564760782791/1028042742632*x^13+261295056490185/514021371316*x^12+355781625437289/1028042742632*x^11-1337096473078063/1028042742632*x^10-551775428436749/514021371316*x^9+1972832757014313/1028042742632*x^8+1987282197292455/1028042742632*x^7-777076894323675/514021371316*x^6-1934293485590575/1028042742632*x^5+558140880093139/1028042742632*x^4+109200450201144/128505342829*x^3-62288853855805/1028042742632*x^2-62485112960723/514021371316*x+23539930355/257010685658,16908979957/514021371316*x^20+18061792925/514021371316*x^19-154374220852/128505342829*x^18-147766322642/128505342829*x^17+9615845635679/514021371316*x^16+8103285664051/514021371316*x^15-41634163050235/257010685658*x^14-60534593235891/514021371316*x^13+219211160942889/257010685658*x^12+268859815884419/514021371316*x^11-1441979883858623/514021371316*x^10-364952872535493/257010685658*x^9+2931310838761721/514021371316*x^8+1210316854429643/514021371316*x^7-878043334127517/128505342829*x^6-1205673174663947/514021371316*x^5+2232472125651381/514021371316*x^4+339867324099155/257010685658*x^3-586973791617731/514021371316*x^2-40645777311083/128505342829*x+4242369764016/128505342829,25236004213/1028042742632*x^20-9497770863/1028042742632*x^19-468896055219/514021371316*x^18+148252167633/514021371316*x^17+14867793636663/1028042742632*x^16-3784472664115/1028042742632*x^15-16397933905904/128505342829*x^14+25018627337113/1028042742632*x^13+352281270225685/514021371316*x^12-87137287736015/1028042742632*x^11-2366281939231027/1028042742632*x^10+15395215225104/128505342829*x^9+4911428588269205/1028042742632*x^8+127039549522609/1028042742632*x^7-1497366860939239/257010685658*x^6-665373078034973/1028042742632*x^5+3839609931665929/1028042742632*x^4+95385116432922/128505342829*x^3-993016393030707/1028042742632*x^2-127314619128303/514021371316*x+5402229436129/257010685658,-29060766867/514021371316*x^20-12152616647/514021371316*x^19+499188746251/257010685658*x^18+93909392449/128505342829*x^17-14542103987305/514021371316*x^16-4881748594957/514021371316*x^15+29267539205533/128505342829*x^14+34806771747865/514021371316*x^13-284584859877439/257010685658*x^12-149047208756423/514021371316*x^11+1714407394988863/514021371316*x^10+198022353762393/257010685658*x^9-3155417663812025/514021371316*x^8-660428437939619/514021371316*x^7+840768058921347/128505342829*x^6+696045964487299/514021371316*x^5-1850043490761405/514021371316*x^4-220306392119165/257010685658*x^3+410549599006347/514021371316*x^2+57999891382375/257010685658*x-2899662362620/128505342829,23453285803/1028042742632*x^20-18629915129/1028042742632*x^19-375630361521/514021371316*x^18+149172115787/257010685658*x^17+9997313519177/1028042742632*x^16-7901783973243/1028042742632*x^15-17873616021451/257010685658*x^14+56171683824331/1028042742632*x^13+148275020122645/514021371316*x^12-233924758868201/1028042742632*x^11-715655324201031/1028042742632*x^10+293970011582469/514021371316*x^9+942430367724341/1028042742632*x^8-888615327645369/1028042742632*x^7-68301367043725/128505342829*x^6+770574026209281/1028042742632*x^5+6560417670705/1028042742632*x^4-164981926862209/514021371316*x^3+72022519273013/1028042742632*x^2+21624660247067/514021371316*x-963825163719/257010685658,-126271872393/1028042742632*x^20+77944727037/1028042742632*x^19+1062956173081/257010685658*x^18-306144809108/128505342829*x^17-60488514977121/1028042742632*x^16+31535299923507/1028042742632*x^15+118584229810425/257010685658*x^14-213842131502009/1028042742632*x^13-280666829343493/128505342829*x^12+814976987500263/1028042742632*x^11+6612598011869531/1028042742632*x^10-852108017349055/514021371316*x^9-12051345972117389/1028042742632*x^8+1649344081575127/1028042742632*x^7+6533232021679063/514021371316*x^6-65561492751131/1028042742632*x^5-7662798224918813/1028042742632*x^4-484524199313779/514021371316*x^3+1901106138273759/1028042742632*x^2+216761778140197/514021371316*x-11664176592297/257010685658,58042421709/2056085485264*x^20+51202479553/2056085485264*x^19-481865913573/514021371316*x^18-104378029756/128505342829*x^17+26991256337433/2056085485264*x^16+23054963751403/2056085485264*x^15-51936080780473/514021371316*x^14-175403651510135/2056085485264*x^13+480639334285611/1028042742632*x^12+800842036601787/2056085485264*x^11-2754372018665447/2056085485264*x^10-559211189840215/514021371316*x^9+4869077319472131/2056085485264*x^8+3734773805864865/2056085485264*x^7-1282851033443049/514021371316*x^6-3489223345318091/2056085485264*x^5+2931544896645533/2056085485264*x^4+199206372935515/257010685658*x^3-679567337547933/2056085485264*x^2-134082420016729/1028042742632*x+2497214117317/514021371316,17051451781/2056085485264*x^20-123263248291/2056085485264*x^19-50126837015/514021371316*x^18+481266485353/257010685658*x^17-3515175060303/2056085485264*x^16-49460711085313/2056085485264*x^15+21744788993047/514021371316*x^14+337507607313513/2056085485264*x^13-370113205116215/1028042742632*x^12-1322275218741033/2056085485264*x^11+3267335017734193/2056085485264*x^10+188909684773520/128505342829*x^9-8022217673601385/2056085485264*x^8-4003612141609119/2056085485264*x^7+669580717950834/128505342829*x^6+3164156575672897/2056085485264*x^5-7068878104985795/2056085485264*x^4-420340983396297/514021371316*x^3+1850500757474735/2056085485264*x^2+238047581437751/1028042742632*x-12913484583715/514021371316,88916604921/2056085485264*x^20-75430993053/2056085485264*x^19-1457570764349/1028042742632*x^18+1212086215901/1028042742632*x^17+40098115755139/2056085485264*x^16-32254132964645/2056085485264*x^15-75283240600801/514021371316*x^14+229790046407833/2056085485264*x^13+336836638304257/514021371316*x^12-947337342081133/2056085485264*x^11-3683636197539307/2056085485264*x^10+1137806097104239/1028042742632*x^9+6082039612727339/2056085485264*x^8-3013857226963223/2056085485264*x^7-2895260777101365/1028042742632*x^6+1839418046134633/2056085485264*x^5+2882103783028849/2056085485264*x^4-93520174578865/1028042742632*x^3-593025569115581/2056085485264*x^2-74950183642729/1028042742632*x+2564545534541/514021371316,-35537163349/2056085485264*x^20+207681066713/2056085485264*x^19+50667636522/128505342829*x^18-414981881436/128505342829*x^17-4912574371561/2056085485264*x^16+87995586988051/2056085485264*x^15-2937285195069/257010685658*x^14-626262200490749/2056085485264*x^13+28411007137265/128505342829*x^12+2596463538887247/2056085485264*x^11-2473882151767285/2056085485264*x^10-3192667154740945/1028042742632*x^9+6660605562316827/2056085485264*x^8+9147815053182659/2056085485264*x^7-4651588391584711/1028042742632*x^6-7337911658109519/2056085485264*x^5+6221348922216527/2056085485264*x^4+1566820153001673/1028042742632*x^3-1585463721809973/2056085485264*x^2-282809769021217/1028042742632*x+12123888393897/514021371316,1404008281/514021371316*x^20+45109913879/514021371316*x^19-134432912503/514021371316*x^18-1451085392743/514021371316*x^17+847411522638/128505342829*x^16+9681201771031/257010685658*x^15-10047778023960/128505342829*x^14-138816450091711/514021371316*x^13+131929456772969/257010685658*x^12+289893137613637/257010685658*x^11-1012259593985415/514021371316*x^10-358722682351222/128505342829*x^9+566850560742834/128505342829*x^8+2063363851548959/514021371316*x^7-1414396908907279/257010685658*x^6-413619202332732/128505342829*x^5+1762579161572925/514021371316*x^4+349311399413011/257010685658*x^3-109093201841218/128505342829*x^2-59378714477847/257010685658*x+3421261345001/128505342829,45959093877/2056085485264*x^20-141490568481/2056085485264*x^19-777263307065/1028042742632*x^18+2300553016965/1028042742632*x^17+22281176841871/2056085485264*x^16-62474748859569/2056085485264*x^15-44275408614291/514021371316*x^14+459464874994245/2056085485264*x^13+214703194084495/514021371316*x^12-1986062109963137/2056085485264*x^11-2631907321005511/2056085485264*x^10+2560834289163143/1028042742632*x^9+5081937273523655/2056085485264*x^8-7627657007705315/2056085485264*x^7-2955219691090173/1028042742632*x^6+5976476269983245/2056085485264*x^5+3697616977098437/2056085485264*x^4-973271021130073/1028042742632*x^3-932809144215601/2056085485264*x^2+51371737056911/1028042742632*x+2398850277865/514021371316,39357283935/514021371316*x^20+1889557227/514021371316*x^19-1320213361461/514021371316*x^18-42194518889/514021371316*x^17+9357886477157/257010685658*x^16+197658044445/257010685658*x^15-36552747583372/128505342829*x^14-2390588252477/514021371316*x^13+172141622179771/128505342829*x^12+3057303542368/128505342829*x^11-2011038374286213/514021371316*x^10-12717755886556/128505342829*x^9+1806937100588437/257010685658*x^8+146753519563743/514021371316*x^7-1915817180621853/257010685658*x^6-66873379733519/128505342829*x^5+2181343115183373/514021371316*x^4+66577215138398/128505342829*x^3-133123138734850/128505342829*x^2-48796898750965/257010685658*x+3464874808290/128505342829]]];

f[402,2]=[
[x-1, [1,1,1], [-1,-1,1,-3,0,-4,2,-2,-3,0,-9,-3,3,-7,-8,-3,3,6,-1,4,11,0,9,16,0]],
[x-2, [1,-1,1], [-1,1,2,0,4,-2,2,-4,4,-2,0,6,-2,4,12,2,0,-10,-1,-4,-6,0,-16,-6,-6]],
[x+3, [1,-1,-1], [-1,1,-3,-1,0,-4,-6,2,-9,0,5,-7,3,-1,0,9,-3,-10,1,-12,11,8,15,0,8]],
[x-2, [-1,1,1], [1,-1,2,2,-4,0,6,4,-6,8,2,-2,-10,4,-6,-6,-8,8,-1,-14,-6,-2,-12,-6,-2]],
[x^2-12, [1,1,-1], [-1,-1,x,1/2*x+3,-2,-1/2*x-1,-x,2,1/2*x+7,-5/2*x-1,3/2*x+5,-2,-x-2,-2*x+4,-5/2*x+1,x+4,x-6,1/2*x-3,1,-3/2*x+3,6,-3/2*x+3,2*x+8,-10,3*x]],
[x^2-x-10, [-1,1,1], [1,-1,x,-x,4,4,-2,-2*x,x+4,-4,x-4,-x+8,-x,x-6,2*x-6,-3*x,-3*x-2,2*x-8,-1,-2*x-6,-3*x+8,-2*x-2,3*x+6,2*x-10,-2*x-6]],
[x^3-3*x^2-4*x+4, [-1,-1,-1], [1,1,x,1/2*x^2-3/2*x-1,-2*x+2,-3/2*x^2+7/2*x+3,-x^2+x+4,-2,3/2*x^2-9/2*x-3,3/2*x^2-7/2*x-3,-1/2*x^2+3/2*x-3,x^2+2*x-10,-2*x^2+7*x+6,x^2-6*x,-1/2*x^2+9/2*x-5,x+4,3*x-2,3/2*x^2-11/2*x-3,1,-3/2*x^2+11/2*x+5,x^2-6,-5/2*x^2+13/2*x-1,3*x^2-10*x-8,2*x^2-4*x-2,-x^2-x+8]]];

f[403,2]=[
[x^2-3*x+1, [-1,1], [x,-2,2*x-3,1,-4*x+6,1,-2*x+6,1,2*x-6,2*x,-1,-6*x+6,-2*x+3,-6*x+4,-8*x+12,-2*x+12,-4*x+3,6*x-2,-8,3,14,4,8*x-6,-2*x,6*x-7]],
[x^6+2*x^5-7*x^4-13*x^3+6*x^2+7*x-3, [-1,-1], [x,-x^5-3*x^4+5*x^3+19*x^2+6*x-8,3*x^5+8*x^4-17*x^3-51*x^2-8*x+18,-2*x^5-5*x^4+12*x^3+31*x^2-10,5*x^5+12*x^4-29*x^3-75*x^2-8*x+24,1,-3*x^5-8*x^4+17*x^3+51*x^2+6*x-24,-12*x^5-29*x^4+69*x^3+184*x^2+23*x-67,4*x^5+11*x^4-22*x^3-71*x^2-13*x+27,8*x^5+20*x^4-46*x^3-127*x^2-14*x+45,1,-3*x^4-3*x^3+20*x^2+17*x-13,-14*x^5-34*x^4+81*x^3+214*x^2+26*x-75,7*x^5+20*x^4-37*x^3-128*x^2-32*x+50,-x^5-2*x^4+5*x^3+13*x^2+9*x-6,-2*x^5-5*x^4+11*x^3+30*x^2+6*x-12,16*x^5+39*x^4-93*x^3-246*x^2-26*x+87,12*x^5+29*x^4-71*x^3-185*x^2-14*x+68,-9*x^5-22*x^4+50*x^3+139*x^2+26*x-55,7*x^5+16*x^4-39*x^3-102*x^2-20*x+39,-8*x^5-21*x^4+44*x^3+134*x^2+28*x-55,11*x^5+26*x^4-63*x^3-163*x^2-21*x+53,3*x^5+7*x^4-19*x^3-45*x^2+3*x+18,-12*x^5-33*x^4+67*x^3+211*x^2+34*x-84,11*x^5+25*x^4-65*x^3-155*x^2-10*x+47]],
[x^7-2*x^6-9*x^5+17*x^4+20*x^3-37*x^2+x+4, [1,-1], [x,x^5-3*x^4-3*x^3+13*x^2-6*x,-x^5+2*x^4+5*x^3-9*x^2-2*x+4,x^4-2*x^3-5*x^2+8*x+2,-x^6+3*x^5+3*x^4-14*x^3+7*x^2+5*x-1,-1,-x^5+4*x^4+x^3-17*x^2+14*x,-x^6+4*x^5+2*x^4-20*x^3+10*x^2+10*x,-x^6+4*x^5+2*x^4-19*x^3+9*x^2+4*x+4,x^6-4*x^5+x^4+13*x^3-23*x^2+19*x-2,1,-2*x^5+5*x^4+9*x^3-22*x^2-x+7,-x^6+4*x^5+x^4-16*x^3+14*x^2-9*x+2,x^5-4*x^4-x^3+20*x^2-16*x-8,3*x^5-8*x^4-13*x^3+39*x^2-x-16,-3*x^4+5*x^3+14*x^2-22*x+4,3*x^6-8*x^5-14*x^4+42*x^3+4*x^2-35*x-2,-2*x^6+6*x^5+9*x^4-31*x^3-x^2+20*x,x^6-3*x^5-3*x^4+13*x^3-7*x^2-x-2,x^6+x^5-15*x^4-2*x^3+50*x^2-13*x-14,4*x^6-12*x^5-17*x^4+62*x^3-2*x^2-40*x-1,x^6-3*x^5-x^4+10*x^3-17*x^2+14*x+2,2*x^6-9*x^5+3*x^4+37*x^3-53*x^2+11*x+8,x^6-4*x^5+18*x^3-23*x^2-x+15,-x^6+3*x^5+2*x^4-16*x^3+13*x^2+15*x-4]],
[x^8+5*x^7-30*x^5-24*x^4+54*x^3+54*x^2-28*x-29, [1,1], [x,-x^7-3*x^6+6*x^5+19*x^4-12*x^3-36*x^2+8*x+19,-x^5-2*x^4+5*x^3+7*x^2-6*x-6,x^4+2*x^3-3*x^2-4*x,2*x^7+7*x^6-9*x^5-43*x^4+8*x^3+77*x^2+x-37,-1,-x^6-x^5+9*x^4+4*x^3-25*x^2-x+17,-x^6-4*x^5+16*x^3+14*x^2-14*x-16,x^7+4*x^6-3*x^5-22*x^4-2*x^3+32*x^2+8*x-11,-x^7-2*x^6+7*x^5+11*x^4-14*x^3-12*x^2+7*x-5,-1,2*x^7+8*x^6-6*x^5-45*x^4-x^3+74*x^2+5*x-33,x^6-11*x^4-2*x^3+28*x^2+5*x-20,-x^7-6*x^6+35*x^4+11*x^3-59*x^2-7*x+28,-x^7-5*x^6+4*x^5+38*x^4+2*x^3-84*x^2-13*x+47,-x^7-5*x^6+x^5+29*x^4+10*x^3-49*x^2-10*x+19,-3*x^7-11*x^6+11*x^5+61*x^4-6*x^3-95*x^2-2*x+36,-2*x^7-8*x^6+10*x^5+55*x^4-13*x^3-111*x^2+62,2*x^7+7*x^6-9*x^5-41*x^4+11*x^3+69*x^2-5*x-30,3*x^7+10*x^6-18*x^5-69*x^4+35*x^3+145*x^2-23*x-87,-x^7-3*x^6+5*x^5+17*x^4-7*x^3-31*x^2-2*x+22,x^7+4*x^6-8*x^5-33*x^4+21*x^3+72*x^2-16*x-33,2*x^7+7*x^6-9*x^5-44*x^4+10*x^3+91*x^2-4*x-61,-2*x^6-4*x^5+13*x^4+15*x^3-33*x^2-8*x+22,-3*x^7-11*x^6+14*x^5+69*x^4-20*x^3-134*x^2+12*x+76]],
[x^8+x^7-11*x^6-10*x^5+37*x^4+33*x^3-36*x^2-33*x-4, [-1,1], [x,-x^5-x^4+7*x^3+5*x^2-10*x-4,-x^7+10*x^5-x^4-29*x^3+25*x+8,2*x^6+2*x^5-15*x^4-10*x^3+25*x^2+10*x-2,x^6+x^5-7*x^4-4*x^3+11*x^2+x-3,1,x^7-10*x^5+x^4+27*x^3-2*x^2-17*x,-x^7-x^6+9*x^5+7*x^4-22*x^3-15*x^2+13*x+8,x^7-x^6-11*x^5+9*x^4+35*x^3-16*x^2-33*x,-x^7-x^6+7*x^5+4*x^4-9*x^3-6*x-2,-1,-2*x^6-2*x^5+15*x^4+9*x^3-26*x^2-5*x+5,x^7+x^6-7*x^5-6*x^4+8*x^3+11*x^2+8*x-2,x^5-9*x^3-2*x^2+18*x+8,-2*x^7+21*x^5-63*x^3-9*x^2+51*x+20,-2*x^6-2*x^5+15*x^4+11*x^3-22*x^2-16*x-4,3*x^6+2*x^5-24*x^4-8*x^3+44*x^2+7*x-6,x^7-4*x^6-17*x^5+28*x^4+69*x^3-36*x^2-71*x-16,-x^6+x^5+11*x^4-9*x^3-29*x^2+19*x+14,3*x^6+5*x^5-19*x^4-30*x^3+18*x^2+41*x+14,-2*x^7+18*x^5-5*x^4-42*x^3+18*x^2+18*x-11,-3*x^6-7*x^5+19*x^4+44*x^3-23*x^2-58*x-10,3*x^7+2*x^6-28*x^5-12*x^4+77*x^3+26*x^2-68*x-28,x^6+6*x^5-2*x^4-40*x^3-11*x^2+53*x+13,-2*x^7+3*x^6+27*x^5-20*x^4-100*x^3+17*x^2+105*x+24]]];

f[404,2]=[
[x+2, [-1,1], [0,-2,3,2,-6,5,3,5,3,0,5,-10,12,8,-3,-6,-6,8,-10,-9,-4,5,-12,6,2]],
[x, [-1,-1], [0,0,-1,-2,-2,-3,-1,1,3,-2,-3,-2,2,4,-3,0,12,-10,2,-1,2,1,4,-6,-2]],
[x^7-2*x^6-17*x^5+36*x^4+64*x^3-148*x^2+11*x+58, [-1,1], [0,x,8*x^6+8*x^5-113*x^4-52*x^3+368*x^2-72*x-154,-18*x^6-17*x^5+256*x^4+105*x^3-844*x^2+189*x+360,-2*x^6-2*x^5+28*x^4+13*x^3-90*x^2+17*x+40,20*x^6+18*x^5-286*x^4-106*x^3+951*x^2-232*x-406,21*x^6+20*x^5-298*x^4-124*x^3+977*x^2-220*x-406,-22*x^6-22*x^5+310*x^4+142*x^3-1004*x^2+206*x+412,2*x^6+2*x^5-28*x^4-12*x^3+90*x^2-26*x-36,-6*x^6-6*x^5+84*x^4+38*x^3-268*x^2+60*x+106,-40*x^6-38*x^5+568*x^4+236*x^3-1866*x^2+412*x+788,21*x^6+20*x^5-298*x^4-124*x^3+977*x^2-220*x-402,-20*x^6-18*x^5+286*x^4+106*x^3-952*x^2+232*x+410,22*x^6+22*x^5-310*x^4-142*x^3+1004*x^2-206*x-416,14*x^6+12*x^5-202*x^4-68*x^3+684*x^2-170*x-308,-16*x^6-14*x^5+230*x^4+80*x^3-772*x^2+198*x+334,18*x^6+17*x^5-256*x^4-105*x^3+844*x^2-189*x-364,24*x^6+22*x^5-342*x^4-132*x^3+1130*x^2-268*x-478,20*x^6+20*x^5-282*x^4-130*x^3+914*x^2-179*x-376,-18*x^6-16*x^5+258*x^4+94*x^3-862*x^2+202*x+376,2*x^6-32*x^4+10*x^3+124*x^2-62*x-58,10*x^6+10*x^5-140*x^4-64*x^3+448*x^2-96*x-180,4*x^6+4*x^5-56*x^4-25*x^3+180*x^2-43*x-80,22*x^6+22*x^5-310*x^4-142*x^3+1004*x^2-204*x-414,-20*x^6-20*x^5+281*x^4+128*x^3-904*x^2+196*x+362]]];

f[405,2]=[
[x+1, [1,1], [0,0,-1,2,-3,-4,-6,-1,-6,-9,-1,8,3,-4,12,6,3,-10,14,-3,2,-16,-12,15,-4]],
[x-1, [1,1], [1,0,-1,-3,-2,-2,4,-8,3,-1,0,-4,5,-8,7,-2,-14,7,-3,2,4,-6,9,-15,2]],
[x+2, [1,1], [-2,0,-1,0,-5,4,4,-5,-6,5,-9,-10,-7,-2,-2,-8,1,-2,6,-1,-8,12,-6,9,14]],
[x-1, [1,-1], [0,0,1,2,3,-4,6,-1,6,9,-1,8,-3,-4,-12,-6,-3,-10,14,3,2,-16,12,-15,-4]],
[x-2, [1,-1], [2,0,1,0,5,4,-4,-5,6,-5,-9,-10,7,-2,2,8,-1,-2,6,1,-8,12,6,-9,14]],
[x+1, [-1,-1], [-1,0,1,-3,2,-2,-4,-8,-3,1,0,-4,-5,-8,-7,2,14,7,-3,-2,4,-6,-9,15,2]],
[x^2-2*x-2, [-1,1], [x,0,-1,x-4,-x+5,-2*x,-x+2,-2*x+3,-2*x+2,3*x-1,-3,x-2,-3*x+5,-3*x-2,-x+8,x-6,x+9,4,-2*x+2,-x+3,5*x-4,-2*x+14,3*x,3*x-3,5*x-6]],
[x^2+2*x-2, [-1,-1], [x,0,1,-x-4,-x-5,2*x,-x-2,2*x+3,-2*x-2,3*x+1,-3,-x-2,-3*x-5,3*x-2,-x-8,x+6,x-9,4,2*x+2,-x-3,-5*x-4,2*x+14,3*x,3*x+3,-5*x-6]],
[x^3-x^2-5*x+3, [1,-1], [x,0,1,-x+2,-x^2+3,-x^2+5,-x^2+3,-x^2+5,2*x^2-x-6,2*x^2-2*x-9,-x^2+4*x+5,x^2-2*x-1,-x^2-2*x,x^2+2*x-1,-x^2-3*x+9,-2*x,-2*x,x^2+2*x-4,3*x^2-x-7,3*x^2+2*x-15,4*x-4,-4*x+2,3*x-6,-3,-4*x^2+2*x+8]],
[x^3+x^2-5*x-3, [-1,1], [x,0,-1,x+2,x^2-3,-x^2+5,x^2-3,-x^2+5,-2*x^2-x+6,-2*x^2-2*x+9,-x^2-4*x+5,x^2+2*x-1,x^2-2*x,x^2-2*x-1,x^2-3*x-9,-2*x,-2*x,x^2-2*x-4,3*x^2+x-7,-3*x^2+2*x+15,-4*x-4,4*x+2,3*x+6,3,-4*x^2-2*x+8]]];

f[406,2]=[
[x, [1,1,1], [-1,0,0,-1,-4,0,-4,4,0,-1,-6,-2,-8,4,2,-2,-10,-2,8,16,0,-4,-6,0,12]],
[x-2, [1,-1,1], [-1,2,2,1,4,-2,-4,2,0,-1,-2,2,8,-8,6,6,-4,4,-4,8,-12,-12,0,4,4]],
[x-1, [1,-1,-1], [-1,1,-3,1,-3,-1,0,-4,-6,1,5,2,0,-7,-3,-9,12,-10,2,-12,8,5,12,6,8]],
[x+1, [-1,1,-1], [1,-1,-3,-1,-1,-1,-4,-4,-2,1,-1,6,0,3,-9,3,0,6,2,-8,0,-13,0,-14,16]],
[x^2-2*x-2, [-1,1,1], [1,2,x,-1,-2*x+2,-x,-3*x+2,-2*x+2,4*x-6,-1,3*x,-4,5*x-6,4*x,5*x-4,-4*x+2,-x+10,4,4*x-4,-4*x+6,x+6,-2*x-4,-9*x+10,-3*x+14,x-6]],
[x^3-x^2-8*x+4, [1,1,-1], [-1,x,1/2*x^2-1/2*x-1,-1,-x^2+6,-1/2*x^2+1/2*x+5,-1/2*x^2+3/2*x+5,-2*x-2,-x^2-x+8,1,-1/2*x^2-3/2*x+5,x^2-x-2,-1/2*x^2-5/2*x+9,-x^2+2*x,1/2*x^2-1/2*x-1,x^2-2,1/2*x^2-3/2*x+7,-x^2+x+2,2*x^2-16,x^2+3*x-4,-1/2*x^2+3/2*x-3,3*x-2,5/2*x^2-7/2*x-17,-1/2*x^2-9/2*x+1,-5/2*x^2-1/2*x+9]],
[x^4-x^3-10*x^2+4*x+8, [-1,-1,-1], [1,x,1/4*x^3-3/4*x^2-2*x+3,1,-x+2,-3/4*x^3+1/4*x^2+6*x-1,-1/4*x^3+3/4*x^2+x-3,1/2*x^3-1/2*x^2-5*x+2,-1/2*x^3+1/2*x^2+5*x,1,1/4*x^3+1/4*x^2-5*x-3,1/2*x^3-1/2*x^2-3*x-2,-3/4*x^3+9/4*x^2+7*x-9,-x^2+4,-3/4*x^3+5/4*x^2+5*x-7,-x^2+2*x+6,5/4*x^3-3/4*x^2-12*x+5,x^2+x-14,-2*x^3+2*x^2+14*x-4,3/2*x^3+1/2*x^2-15*x,1/4*x^3+5/4*x^2-3*x-13,-1/2*x^3-3/2*x^2+8*x+6,-9/4*x^3+7/4*x^2+18*x-5,-3/4*x^3+9/4*x^2+5*x-9,3/4*x^3-9/4*x^2-7*x+9]]];

f[407,2]=[
[x^4+x^3-4*x^2+1, [1,1], [x,x^3+x^2-4*x,-x^3-x^2+3*x,-2*x^3-3*x^2+6*x,-1,x^3+x^2-2*x-2,x^3+3*x^2-x-6,3*x^3+6*x^2-7*x-7,-x^3+5*x-3,x^3-6*x+2,3*x^3+2*x^2-11*x+4,-1,-x^3-x^2+2*x-2,-3*x^3-6*x^2+8*x+4,2*x^3+2*x^2-6*x+1,4*x^3+2*x^2-18*x+3,-3*x^3-7*x^2+2*x+9,-8*x^3-10*x^2+24*x+2,-6*x^3-6*x^2+25*x-1,4*x^3+6*x^2-11*x+2,3*x^3+2*x^2-10*x-5,2*x^3+6*x^2-2*x-1,5*x^2+x-12,-3*x^3-7*x^2+10*x+7,x^2+2*x-10]],
[x^4-x^3-4*x^2+2*x+3, [-1,-1], [x,-x^3+x^2+2*x-2,x^3-x^2-3*x,-x^2+2,1,-x^3+x^2+2*x-4,-x^3-x^2+3*x,3*x^3-4*x^2-7*x+5,-x^3+4*x^2+x-9,-3*x^3+4*x^2+10*x-6,x^3+x-4,1,-x^3+3*x^2,x^3+6*x^2-4*x-16,2*x^3-6*x^2-2*x+9,-6*x^2+2*x+15,-x^3-5*x^2+10*x+9,2*x^2-10,-4*x^3+2*x^2+9*x-1,2*x^3-2*x^2-11*x+6,-x^3+2*x-7,2*x^3-14*x-1,2*x^3+7*x^2-11*x-12,-x^3+3*x^2-2*x-9,7*x^2-4*x-22]],
[x^11-2*x^10-16*x^9+32*x^8+89*x^7-179*x^6-201*x^5+407*x^4+168*x^3-333*x^2-51*x+75, [1,-1], [x,10/59*x^10-1/59*x^9-156/59*x^8+831/59*x^6+78/59*x^5-1732/59*x^4-330/59*x^3+1171/59*x^2+305/59*x-196/59,-83/59*x^10+26/59*x^9+1342/59*x^8-6*x^7-7564/59*x^6+1630/59*x^5+17420/59*x^4-2512/59*x^3-14457/59*x^2+448/59*x+3090/59,61/59*x^10-12/59*x^9-987/59*x^8+3*x^7+5547/59*x^6-893/59*x^5-12701/59*x^4+1409/59*x^3+10512/59*x^2-57/59*x-2234/59,-1,100/59*x^10-10/59*x^9-1619/59*x^8+2*x^7+9136/59*x^6-459/59*x^5-21096/59*x^4+181/59*x^3+17610/59*x^2+1044/59*x-3671/59,-1/59*x^10+6/59*x^9-8/59*x^8-2*x^7+265/59*x^6+771/59*x^5-1467/59*x^4-1855/59*x^3+2532/59*x^2+1238/59*x-771/59,-148/59*x^10+3/59*x^9+2415/59*x^8-13762/59*x^6-175/59*x^5+32218/59*x^4+1167/59*x^3-27526/59*x^2-1977/59*x+6193/59,161/59*x^10-22/59*x^9-2606/59*x^8+5*x^7+14683/59*x^6-1411/59*x^5-33797/59*x^4+2121/59*x^3+28122/59*x^2-75/59*x-6141/59,-161/59*x^10+22/59*x^9+2606/59*x^8-5*x^7-14683/59*x^6+1352/59*x^5+33797/59*x^4-1590/59*x^3-28122/59*x^2-987/59*x+6141/59,202/59*x^10-32/59*x^9-3281/59*x^8+7*x^7+18627/59*x^6-1811/59*x^5-43565/59*x^4+2243/59*x^3+37531/59*x^2+615/59*x-8396/59,1,-113/59*x^10+29/59*x^9+1810/59*x^8-7*x^7-10057/59*x^6+2045/59*x^5+22675/59*x^4-3469/59*x^3-18324/59*x^2+772/59*x+4209/59,-52/59*x^10+17/59*x^9+823/59*x^8-4*x^7-4451/59*x^6+1093/59*x^5+9325/59*x^4-1647/59*x^3-5747/59*x^2+243/59*x+382/59,-79/59*x^10+2/59*x^9+1315/59*x^8-7680/59*x^6-156/59*x^5+18568/59*x^4+896/59*x^3-16797/59*x^2-1200/59*x+4227/59,-344/59*x^10+58/59*x^9+5567/59*x^8-13*x^7-31324/59*x^6+3441/59*x^5+71723/59*x^4-4401/59*x^3-58596/59*x^2-1111/59*x+11958/59,174/59*x^10-41/59*x^9-2797/59*x^8+9*x^7+15663/59*x^6-2289/59*x^5-35907/59*x^4+2931/59*x^3+30075/59*x^2+410/59*x-7092/59,-258/59*x^10+14/59*x^9+4190/59*x^8-2*x^7-23847/59*x^6+265/59*x^5+56285/59*x^4+903/59*x^3-49729/59*x^2-2736/59*x+12007/59,31/59*x^10-9/59*x^9-519/59*x^8+x^7+3113/59*x^6+171/59*x^5-7977/59*x^4-1495/59*x^3+7884/59*x^2+1506/59*x-1646/59,311/59*x^10-37/59*x^9-5064/59*x^8+8*x^7+28741/59*x^6-2070/59*x^5-66680/59*x^4+2186/59*x^3+55776/59*x^2+1963/59*x-12090/59,53/59*x^10-23/59*x^9-874/59*x^8+6*x^7+5012/59*x^6-1864/59*x^5-11634/59*x^4+3502/59*x^3+9469/59*x^2-1245/59*x-1676/59,241/59*x^10-30/59*x^9-3913/59*x^8+6*x^7+22157/59*x^6-1377/59*x^5-51429/59*x^4+1133/59*x^3+43626/59*x^2+1362/59*x-10010/59,5*x^10-x^9-81*x^8+14*x^7+456*x^6-68*x^5-1042*x^4+108*x^3+843*x^2-11*x-171,76/59*x^10-43/59*x^9-1221/59*x^8+11*x^7+6823/59*x^6-3313/59*x^5-15535/59*x^4+5929/59*x^3+12711/59*x^2-1930/59*x-2646/59,103/59*x^10-28/59*x^9-1713/59*x^8+7*x^7+9993/59*x^6-2123/59*x^5-24011/59*x^4+3917/59*x^3+21106/59*x^2-1431/59*x-4898/59]],
[x^12-x^11-18*x^10+18*x^9+111*x^8-104*x^7-274*x^6+212*x^5+255*x^4-129*x^3-78*x^2+4*x+1, [-1,1], [x,-370/249*x^11+52/249*x^10+6619/249*x^9-934/249*x^8-40324/249*x^7+1087/83*x^6+94670/249*x^5+5092/249*x^4-67508/249*x^3-10735/249*x^2+3599/249*x-66/83,142/249*x^11+11/249*x^10-2512/249*x^9-188/249*x^8+15010/249*x^7+704/83*x^6-33614/249*x^5-10396/249*x^4+19526/249*x^3+11563/249*x^2+2806/249*x-164/83,-239/249*x^11+113/249*x^10+4256/249*x^9-2135/249*x^8-25856/249*x^7+4078/83*x^6+61468/249*x^5-22588/249*x^4-49207/249*x^3+12121/249*x^2+8362/249*x-153/83,1,350/249*x^11+18/83*x^10-6250/249*x^9-285/83*x^8+38086/249*x^7+6716/249*x^6-89371/249*x^5-8440/83*x^4+61757/249*x^3+7256/83*x^2-320/249*x+1199/249,157/83*x^11+85/249*x^10-8470/249*x^9-1498/249*x^8+52099/249*x^7+12004/249*x^6-41344/83*x^5-43526/249*x^4+88595/249*x^3+39143/249*x^2-3587/249*x-512/249,-92/83*x^11+56/83*x^10+1631/83*x^9-1025/83*x^8-9830/83*x^7+5772/83*x^6+23147/83*x^5-10580/83*x^4-18885/83*x^3+5384/83*x^2+4227/83*x-143/83,295/249*x^11+55/249*x^10-1752/83*x^9-940/249*x^8+10630/83*x^7+7406/249*x^6-74114/249*x^5-27080/249*x^4+16469/83*x^3+25445/249*x^2+582/83*x-634/249,395/249*x^11+63/83*x^10-7018/249*x^9-1122/83*x^8+42250/249*x^7+23174/249*x^6-95131/249*x^5-22900/83*x^4+51602/249*x^3+19005/83*x^2+13654/249*x-1240/249,-733/249*x^11+14/83*x^10+13196/249*x^9-277/83*x^8-81284/249*x^7+926/249*x^6+194918/249*x^5+6900/83*x^4-146611/249*x^3-8946/83*x^2+13234/249*x-211/249,-1,-201/83*x^11-105/83*x^10+3613/83*x^9+1870/83*x^8-22218/83*x^7-12690/83*x^6+52454/83*x^5+36728/83*x^4-34487/83*x^3-30015/83*x^2-2043/83*x+818/83,-85/249*x^11-2/83*x^10+1589/249*x^9+87/83*x^8-10217/249*x^7-3310/249*x^6+25820/249*x^5+4848/83*x^4-20935/249*x^3-5528/83*x^2+2710/249*x+2117/249,270/83*x^11-143/249*x^10-14488/249*x^9+2693/249*x^8+88564/249*x^7-11852/249*x^6-70416/83*x^5+1186/249*x^4+163154/249*x^3+17009/249*x^2-22202/249*x-1157/249,-631/249*x^11+16/249*x^10+11422/249*x^9-115/249*x^8-70750/249*x^7-1549/83*x^6+170408/249*x^5+36082/249*x^4-127631/249*x^3-41017/249*x^2+11642/249*x+599/83,231/83*x^11-54/83*x^10-4125/83*x^9+1021/83*x^8+25160/83*x^7-5056/83*x^6-59946/83*x^5+4736/83*x^4+46807/83*x^3+1140/83*x^2-6403/83*x-37/83,-19/83*x^11-88/249*x^10+1006/249*x^9+1504/249*x^8-6121/249*x^7-9094/249*x^6+4756/83*x^5+22412/249*x^4-7721/249*x^3-17306/249*x^2-4105/249*x+284/249,-437/249*x^11+17/249*x^10+7685/249*x^9-449/249*x^8-45572/249*x^7+258/83*x^6+101254/249*x^5+10916/249*x^4-59803/249*x^3-14183/249*x^2-5465/249*x-593/83,28/249*x^11+499/249*x^10-139/83*x^9-8800/249*x^8+646/83*x^7+53063/249*x^6+400/249*x^5-123770/249*x^4-7824/83*x^3+86594/249*x^2+8629/83*x-2248/249,448/249*x^11-565/249*x^10-8083/249*x^9+9928/249*x^8+49600/249*x^7-18730/83*x^6-119594/249*x^5+111944/249*x^4+102860/249*x^3-64589/249*x^2-25625/249*x+516/83,-365/249*x^11-265/249*x^10+6506/249*x^9+4597/249*x^8-39557/249*x^7-9822/83*x^6+91042/249*x^5+79454/249*x^4-52147/249*x^3-63065/249*x^2-12887/249*x+895/83,216/83*x^11-99/83*x^10-3869/83*x^9+1775/83*x^8+23606/83*x^7-9380/83*x^6-55868/83*x^5+14382/83*x^4+42224/83*x^3-5463/83*x^2-4421/83*x+195/83,175/249*x^11+92/83*x^10-3125/249*x^9-1595/83*x^8+19292/249*x^7+29254/249*x^6-46304/249*x^5-23974/83*x^4+31003/249*x^3+17738/83*x^2+2081/249*x-3011/249,-427/83*x^11-191/249*x^10+22958/249*x^9+3287/249*x^8-140414/249*x^7-27542/249*x^6+110100/83*x^5+106084/249*x^4-226351/249*x^3-98233/249*x^2-356/249*x+3163/249]]];

f[408,2]=[
[x, [1,-1,1], [0,1,0,2,0,2,-1,4,2,0,6,0,-10,4,-4,-2,-4,0,4,-2,-14,6,-12,-2,-2]],
[x+3, [1,-1,-1], [0,1,-3,-4,1,-5,1,-7,1,2,-6,8,7,-1,-6,-2,-10,8,-12,12,-14,10,-14,8,12]],
[x-3, [-1,1,1], [0,-1,3,0,-1,3,-1,1,7,6,-2,-4,9,-1,10,-2,-6,-12,-4,-12,-10,2,-14,4,12]],
[x-2, [-1,-1,-1], [0,1,2,-4,4,6,1,4,-4,-6,-4,10,-6,4,-8,6,-4,-14,-12,-12,10,-4,4,-6,-6]],
[x^2+x-4, [1,1,1], [0,-1,x,-2*x-2,x-4,-x-2,-1,3*x,-x-6,-2*x-4,4*x+2,-4,-3*x+2,-3*x,2*x-4,6,-6*x-4,-4,12,6*x+2,4*x+2,2,2*x+4,2*x+6,2*x-2]],
[x^2+x-14, [-1,-1,-1], [0,1,x,4,-x-2,-x,1,-x-2,-x-2,2,2*x,2*x-2,-x+4,x-6,-2*x-4,-10,-2*x,2*x+6,4,-4,10,2*x,2*x,2*x+6,-2*x-2]]];

f[409,2]=[
[x^13+6*x^12+2*x^11-47*x^10-64*x^9+117*x^8+226*x^7-94*x^6-278*x^5+9*x^4+134*x^3+15*x^2-22*x-4, [1], [x,1/2*x^12+2*x^11-5*x^10-51/2*x^9+14*x^8+237/2*x^7+x^6-241*x^5-45*x^4+397/2*x^3+34*x^2-97/2*x-7,3*x^12+19*x^11+14*x^10-128*x^9-237*x^8+208*x^7+696*x^6+102*x^5-617*x^4-284*x^3+134*x^2+91*x+9,-11/2*x^12-33*x^11-14*x^10+483/2*x^9+349*x^8-1029/2*x^7-1088*x^6+219*x^5+1021*x^4+277/2*x^3-245*x^2-141/2*x-9,x^12+6*x^11+2*x^10-46*x^9-60*x^8+111*x^7+191*x^6-90*x^5-180*x^4+31*x^3+42*x^2-7*x-1,5/2*x^12+17*x^11+18*x^10-213/2*x^9-246*x^8+243/2*x^7+697*x^6+265*x^5-602*x^4-855/2*x^3+118*x^2+263/2*x+14,-1/2*x^12-3*x^11+55/2*x^9+26*x^8-189/2*x^7-111*x^6+152*x^5+170*x^4-229/2*x^3-96*x^2+65/2*x+14,-7*x^12-44*x^11-29*x^10+305*x^9+525*x^8-555*x^7-1557*x^6-33*x^5+1383*x^4+462*x^3-285*x^2-160*x-27,8*x^12+45*x^11+x^10-365*x^9-371*x^8+987*x^7+1317*x^6-1038*x^5-1437*x^4+478*x^3+491*x^2-78*x-37,-x^12+2*x^11+45*x^10+62*x^9-288*x^8-585*x^7+575*x^6+1597*x^5-219*x^4-1483*x^3-161*x^2+391*x+75,5/2*x^12+16*x^11+12*x^10-217/2*x^9-199*x^8+369/2*x^7+580*x^6+56*x^5-499*x^4-435/2*x^3+76*x^2+155/2*x+17,-x^12-12*x^11-37*x^10+36*x^9+324*x^8+233*x^7-796*x^6-1026*x^5+556*x^4+1069*x^3-14*x^2-293*x-47,12*x^12+68*x^11+5*x^10-543*x^9-575*x^8+1433*x^7+1986*x^6-1453*x^5-2101*x^4+673*x^3+690*x^2-124*x-48,-17/2*x^12-59*x^11-68*x^10+723/2*x^9+890*x^8-707/2*x^7-2495*x^6-1090*x^5+2118*x^4+3197/2*x^3-388*x^2-937/2*x-58,-7/2*x^12-22*x^11-14*x^10+311/2*x^9+264*x^8-595/2*x^7-806*x^6+25*x^5+765*x^4+407/2*x^3-201*x^2-155/2*x-4,-4*x^12-15*x^11+44*x^10+198*x^9-148*x^8-947*x^7+94*x^6+1969*x^5+280*x^4-1646*x^3-311*x^2+412*x+83,-5*x^11-31*x^10-16*x^9+228*x^8+348*x^7-491*x^6-1085*x^5+225*x^4+1039*x^3+104*x^2-263*x-55,15/2*x^12+46*x^11+25*x^10-657/2*x^9-524*x^8+1301/2*x^7+1615*x^6-128*x^5-1533*x^4-709/2*x^3+397*x^2+265/2*x+6,14*x^12+79*x^11+3*x^10-637*x^9-650*x^8+1712*x^7+2264*x^6-1804*x^5-2392*x^4+876*x^3+779*x^2-164*x-57,-17/2*x^12-57*x^11-57*x^10+723/2*x^9+803*x^8-885/2*x^7-2273*x^6-779*x^5+1917*x^4+2547/2*x^3-319*x^2-741/2*x-69,-23/2*x^12-72*x^11-44*x^10+1023/2*x^9+847*x^8-2009/2*x^7-2586*x^6+179*x^5+2446*x^4+1165/2*x^3-625*x^2-471/2*x-8,17*x^12+102*x^11+41*x^10-757*x^9-1072*x^8+1673*x^7+3401*x^6-884*x^5-3310*x^4-254*x^3+888*x^2+170*x+1,-3/2*x^12+50*x^10+175/2*x^9-301*x^8-1403/2*x^7+563*x^6+1819*x^5-140*x^4-3277/2*x^3-223*x^2+853/2*x+86,6*x^12+25*x^11-52*x^10-296*x^9+113*x^8+1304*x^7+127*x^6-2569*x^5-635*x^4+2111*x^3+509*x^2-532*x-119,13*x^12+89*x^11+93*x^10-570*x^9-1285*x^8+739*x^7+3673*x^6+1074*x^5-3225*x^4-1837*x^3+680*x^2+548*x+62]],
[x^20-5*x^19-19*x^18+126*x^17+100*x^16-1283*x^15+247*x^14+6767*x^13-4554*x^12-19689*x^11+18771*x^10+31011*x^9-35515*x^8-23548*x^7+31466*x^6+5354*x^5-10552*x^4+1129*x^3+523*x^2-54*x-4, [-1], [x,5906164375/162850891556*x^19-15774159671/81425445778*x^18-107686582751/162850891556*x^17+798722115271/162850891556*x^16+481520956263/162850891556*x^15-2050473493008/40712722889*x^14+2498437987155/162850891556*x^13+21972471737353/81425445778*x^12-7959712712957/40712722889*x^11-131831067667341/162850891556*x^10+30712236161176/40712722889*x^9+221211978185803/162850891556*x^8-55611571523398/40712722889*x^7-48608103951096/40712722889*x^6+46652982992112/40712722889*x^5+17979458538027/40712722889*x^4-28038937609583/81425445778*x^3-2326223684821/162850891556*x^2+443586426186/40712722889*x-44065152976/40712722889,-2560786107/162850891556*x^19+9076732659/162850891556*x^18+60298895933/162850891556*x^17-229379147681/162850891556*x^16-275927126505/81425445778*x^15+2347011223577/162850891556*x^14+597961855763/40712722889*x^13-3120181347050/40712722889*x^12-4248976214165/162850891556*x^11+36854713614423/162850891556*x^10-613197361755/40712722889*x^9-59975401748255/162850891556*x^8+21817021655123/162850891556*x^7+12621195418983/40712722889*x^6-32869974381839/162850891556*x^5-9941198174579/81425445778*x^4+19691957684943/162850891556*x^3+4110537282939/162850891556*x^2-1895999523577/81425445778*x-33987898180/40712722889,25967484603/162850891556*x^19-57287577643/81425445778*x^18-136636999142/40712722889*x^17+2908280870845/162850891556*x^16+3943405627137/162850891556*x^15-29902354806501/162850891556*x^14-1852661628937/40712722889*x^13+159894514950179/162850891556*x^12-11094767296944/40712722889*x^11-237527794880135/81425445778*x^10+133859388171295/81425445778*x^9+775451110931723/162850891556*x^8-140433841924434/40712722889*x^7-635389645330641/162850891556*x^6+128860831319787/40712722889*x^5+194732099068897/162850891556*x^4-42558736550317/40712722889*x^3+1528087372629/81425445778*x^2+3059320582297/81425445778*x-14140300195/40712722889,10914238563/325701783112*x^19-29673377197/162850891556*x^18-205434567225/325701783112*x^17+1520932471077/325701783112*x^16+1066479838551/325701783112*x^15-7946023085995/162850891556*x^14+2622590359827/325701783112*x^13+43689523869755/162850891556*x^12-23469433898305/162850891556*x^11-272921271717275/325701783112*x^10+93548041203723/162850891556*x^9+489467605119575/325701783112*x^8-42211064794523/40712722889*x^7-242484222571247/162850891556*x^6+140271650291825/162850891556*x^5+117544975345383/162850891556*x^4-11034497100645/40712722889*x^3-39745436607747/325701783112*x^2+3899677406031/162850891556*x+435370372621/81425445778,32049403425/162850891556*x^19-33909880642/40712722889*x^18-692164300671/162850891556*x^17+3439765523177/162850891556*x^16+5339890532871/162850891556*x^15-8839357204006/40712722889*x^14-14317952707495/162850891556*x^13+47328312802098/40712722889*x^12-12602053520053/81425445778*x^11-565386893447353/162850891556*x^10+59039918075223/40712722889*x^9+937073342406945/162850891556*x^8-264395441890469/81425445778*x^7-401484825414553/81425445778*x^6+247631367575193/81425445778*x^5+145072020213637/81425445778*x^4-41882994058594/40712722889*x^3-20644361846253/162850891556*x^2+1932254681161/40712722889*x+157473499787/40712722889,30128947659/162850891556*x^19-134862255993/162850891556*x^18-157849172126/40712722889*x^17+3431412588733/162850891556*x^16+1126932777902/40712722889*x^15-17707174872785/81425445778*x^14-7932753034815/162850891556*x^13+190559920917919/162850891556*x^12-54777944057259/162850891556*x^11-286255787588921/81425445778*x^10+79723298760756/40712722889*x^9+954989470968277/162850891556*x^8-660500969665581/162850891556*x^7-821387907366689/162850891556*x^6+597485171753503/162850891556*x^5+292676591523933/162850891556*x^4-192628332924385/162850891556*x^3-4158484987447/40712722889*x^2+3531120947733/81425445778*x+177202893806/40712722889,-69407407613/325701783112*x^19+42206358748/40712722889*x^18+1355988548009/325701783112*x^17-8541171808379/325701783112*x^16-7859892462299/325701783112*x^15+43715965600403/162850891556*x^14-8069814523501/325701783112*x^13-58083995650478/40712722889*x^12+33790925469385/40712722889*x^11+1367616837473615/325701783112*x^10-588895388849991/162850891556*x^9-2195022474299657/325701783112*x^8+1141145222465073/162850891556*x^7+216417464744711/40712722889*x^6-256267048161562/40712722889*x^5-114825203078279/81425445778*x^4+344492233514139/162850891556*x^3-46515508608545/325701783112*x^2-15859451546583/162850891556*x+328577054011/81425445778,2702449149/81425445778*x^19-16418677867/81425445778*x^18-36200646061/81425445778*x^17+394649390085/81425445778*x^16-55709305939/40712722889*x^15-3734237057153/81425445778*x^14+2278645267171/40712722889*x^13+8691653179460/40712722889*x^12-32899379721745/81425445778*x^11-39435061913259/81425445778*x^10+55666725277550/40712722889*x^9+29785633210691/81425445778*x^8-194597748563943/81425445778*x^7+16509387882073/40712722889*x^6+167397018736807/81425445778*x^5-31742681792598/40712722889*x^4-56062437951145/81425445778*x^3+24249976778507/81425445778*x^2+802572620517/40712722889*x-195103923399/40712722889,14512196427/162850891556*x^19-18410075138/40712722889*x^18-281035536009/162850891556*x^17+1878934883909/162850891556*x^16+1589983271265/162850891556*x^15-4871740618877/40712722889*x^14+2116149316033/162850891556*x^13+52844006232209/81425445778*x^12-14496486831873/40712722889*x^11-321347300980551/162850891556*x^10+123602061398325/81425445778*x^9+545110347063599/162850891556*x^8-235285585948725/81425445778*x^7-239173760339207/81425445778*x^6+103335079624302/40712722889*x^5+85681684660725/81425445778*x^4-67854947526543/81425445778*x^3-5330028183415/162850891556*x^2+3896325901615/81425445778*x-67947930598/40712722889,-26458908317/81425445778*x^19+254486088635/162850891556*x^18+261687753028/40712722889*x^17-3219916352591/81425445778*x^16-6371295474007/162850891556*x^15+66021049412473/162850891556*x^14-1578534207471/162850891556*x^13-176145454743653/81425445778*x^12+176885704380449/162850891556*x^11+261756557447589/40712722889*x^10-396372526181893/81425445778*x^9-860583107308653/81425445778*x^8+1530316984769795/162850891556*x^7+361875362825407/40712722889*x^6-1354214195555301/162850891556*x^5-243885490191163/81425445778*x^4+447157413450181/162850891556*x^3+2902236731998/40712722889*x^2-11463926001181/81425445778*x+106139367935/40712722889,-5397312033/40712722889*x^19+31399802613/81425445778*x^18+274980358861/81425445778*x^17-399098112689/40712722889*x^16-2841865318175/81425445778*x^15+4092579982368/40712722889*x^14+7650203258043/40712722889*x^13-43284030898093/81425445778*x^12-45743586456007/81425445778*x^11+124873733224881/81425445778*x^10+36967624058132/40712722889*x^9-94742206080042/40712722889*x^8-53296574302883/81425445778*x^7+126753356813161/81425445778*x^6-2733734296809/81425445778*x^5-12118726544137/81425445778*x^4+19835588953783/81425445778*x^3-10229858583045/81425445778*x^2-1240426816483/40712722889*x+264853066907/40712722889,29103474385/162850891556*x^19-59800492341/81425445778*x^18-164451324184/40712722889*x^17+3102250064821/162850891556*x^16+5536318339593/162850891556*x^15-32853278641699/162850891556*x^14-4846092025606/40712722889*x^13+183182483720361/162850891556*x^12+3425652864801/81425445778*x^11-289523301204763/81425445778*x^10+35382346348480/40712722889*x^9+1041999271470971/162850891556*x^8-97328179291038/40712722889*x^7-1013193485049449/162850891556*x^6+199033428804105/81425445778*x^5+461574620957463/162850891556*x^4-72167877133149/81425445778*x^3-17104605963032/40712722889*x^2+2914902226212/40712722889*x+393525562144/40712722889,41382608307/325701783112*x^19-91037209683/162850891556*x^18-882199971737/325701783112*x^17+4643610164881/325701783112*x^16+6577082433547/325701783112*x^15-24048762842801/162850891556*x^14-14843054908181/325701783112*x^13+130071085472037/162850891556*x^12-27448687011357/162850891556*x^11-786868964930475/325701783112*x^10+191559020673745/162850891556*x^9+1322352335130095/325701783112*x^8-208944622898133/81425445778*x^7-571083663230235/162850891556*x^6+395461790461585/162850891556*x^5+201156601165535/162850891556*x^4-34209527526066/40712722889*x^3-19906870454595/325701783112*x^2+4832778936281/162850891556*x-9121328461/81425445778,36533849203/325701783112*x^19-55280792767/81425445778*x^18-563902775927/325701783112*x^17+5520835842377/325701783112*x^16+396434194201/325701783112*x^15-27788183147279/162850891556*x^14+41866967638067/325701783112*x^13+72264680723975/81425445778*x^12-42177307485039/40712722889*x^11-827477981030121/325701783112*x^10+587589690150375/162850891556*x^9+1283177643491159/325701783112*x^8-1026305812813553/162850891556*x^7-121516430900257/40712722889*x^6+214428425370984/40712722889*x^5+60200459706769/81425445778*x^4-266054767949589/162850891556*x^3+34131358228239/325701783112*x^2+7545499197491/162850891556*x+315516989137/81425445778,913411238/40712722889*x^19+5107958710/40712722889*x^18-188703070587/162850891556*x^17-252172486869/81425445778*x^16+848895861341/40712722889*x^15+4990714636565/162850891556*x^14-30248818392375/162850891556*x^13-25154052027427/162850891556*x^12+37376460284129/40712722889*x^11+67025910360197/162850891556*x^10-210481765989701/81425445778*x^9-41958799557881/81425445778*x^8+163104364798202/40712722889*x^7+14739781792347/162850891556*x^6-123573106810631/40712722889*x^5+63823678616995/162850891556*x^4+64336201889457/81425445778*x^3-43108792437597/162850891556*x^2+362588051329/81425445778*x+337323541460/40712722889,-14498853920/40712722889*x^19+129912473917/81425445778*x^18+1200041065789/162850891556*x^17-3278776043375/81425445778*x^16-2079731947580/40712722889*x^15+66899118480059/162850891556*x^14+11961112154677/162850891556*x^13-353732453948829/162850891556*x^12+60423507984445/81425445778*x^11+1032959933532657/162850891556*x^10-326036755340725/81425445778*x^9-409329626707516/40712722889*x^8+660817263136505/81425445778*x^7+1262834011099161/162850891556*x^6-592028414069107/81425445778*x^5-312582910475237/162850891556*x^4+94776617617403/40712722889*x^3-43543707284303/162850891556*x^2-4765919950013/81425445778*x+527357009252/40712722889,-5986076951/40712722889*x^19+34787041975/81425445778*x^18+307739796933/81425445778*x^17-893846323861/81425445778*x^16-3232060808571/81425445778*x^15+4675138389970/40712722889*x^14+17883020998133/81425445778*x^13-25619920712670/40712722889*x^12-28010063468778/40712722889*x^11+157727466845467/81425445778*x^10+98962818258553/81425445778*x^9-135847452160895/40712722889*x^8-90779129137837/81425445778*x^7+245282420321885/81425445778*x^6+16319709048116/40712722889*x^5-99557549222249/81425445778*x^4-96687380437/40712722889*x^3+14742958938625/81425445778*x^2+1384558353465/81425445778*x-447314262356/40712722889,9564530677/81425445778*x^19-86659049057/162850891556*x^18-98150607196/40712722889*x^17+551569008059/40712722889*x^16+2616085847973/162850891556*x^15-22762414759215/162850891556*x^14-2068221064921/162850891556*x^13+30549379266343/40712722889*x^12-53522428813669/162850891556*x^11-91170260467548/40712722889*x^10+67209154431888/40712722889*x^9+298935581123951/81425445778*x^8-550189512932897/162850891556*x^7-122426228908261/40712722889*x^6+512216150086997/162850891556*x^5+71514319351453/81425445778*x^4-179749351596481/162850891556*x^3+2725809777292/40712722889*x^2+2952220840899/40712722889*x-124791205775/40712722889,-10734596369/162850891556*x^19+7628234889/81425445778*x^18+319253534861/162850891556*x^17-382059310945/162850891556*x^16-4012743613513/162850891556*x^15+958473073948/40712722889*x^14+27691549744735/162850891556*x^13-9781482360483/81425445778*x^12-28471914856999/40712722889*x^11+52665778544455/162850891556*x^10+70722603794430/40712722889*x^9-67527089837945/162850891556*x^8-102246829815789/40712722889*x^7+5406305187261/40712722889*x^6+77750959134847/40712722889*x^5+5460821149684/40712722889*x^4-49692990525207/81425445778*x^3-7990149010669/162850891556*x^2+2148561410404/40712722889*x+255615006818/40712722889,41954181743/162850891556*x^19-38656834616/40712722889*x^18-958863942727/162850891556*x^17+3889112577335/162850891556*x^16+8294291676301/162850891556*x^15-19716798564733/81425445778*x^14-31637999461247/162850891556*x^13+103081040626729/81425445778*x^12+16022378470715/81425445778*x^11-588896473617861/162850891556*x^10+33194394614528/40712722889*x^9+890761115910075/162850891556*x^8-222198851727567/81425445778*x^7-152747816928322/40712722889*x^6+246060343447543/81425445778*x^5+21298627874663/40712722889*x^4-47501336351615/40712722889*x^3+39802631624811/162850891556*x^2+1626935028912/40712722889*x-314858073119/40712722889,9164996260/40712722889*x^19-84628279451/81425445778*x^18-776861749949/162850891556*x^17+2190914541207/81425445778*x^16+1418131926958/40712722889*x^15-46324342326711/162850891556*x^14-11148486514093/162850891556*x^13+257925196096637/162850891556*x^12-30927807664205/81425445778*x^11-814420728315625/162850891556*x^10+193434007524763/81425445778*x^9+366039217842625/40712722889*x^8-415407993065197/81425445778*x^7-1420826488308261/162850891556*x^6+391097860817387/81425445778*x^5+641175251288929/162850891556*x^4-68013620139229/40712722889*x^3-89143119933709/162850891556*x^2+9420815489159/81425445778*x+508307045102/40712722889,39745412123/162850891556*x^19-44291480695/40712722889*x^18-806756572025/162850891556*x^17+4406858585867/162850891556*x^16+5349212676621/162850891556*x^15-11011456750294/40712722889*x^14-5115118057617/162850891556*x^13+56466080139930/40712722889*x^12-48026552730875/81425445778*x^11-627621973199087/162850891556*x^10+118952550762181/40712722889*x^9+908197319639371/162850891556*x^8-468827145619523/81425445778*x^7-281292313314935/81425445778*x^6+416935188069261/81425445778*x^5+5964027872965/81425445778*x^4-68851633337420/40712722889*x^3+74912081761973/162850891556*x^2+2341027215730/40712722889*x-457495555425/40712722889,5592561880/40712722889*x^19-92998387677/162850891556*x^18-240241925927/81425445778*x^17+585137321703/40712722889*x^16+3621103712087/162850891556*x^15-23711120768553/162850891556*x^14-8382427326893/162850891556*x^13+30837375095835/40712722889*x^12-29823456495505/162850891556*x^11-173310725267873/81425445778*x^10+107435485515529/81425445778*x^9+124289395821694/40712722889*x^8-477386097753859/162850891556*x^7-67599926742098/40712722889*x^6+455492779532489/162850891556*x^5-31898381761453/81425445778*x^4-151120329808771/162850891556*x^3+37426558831117/81425445778*x^2+46754957937/40712722889*x-701779629983/40712722889,25480339645/162850891556*x^19-72902423929/81425445778*x^18-422228310107/162850891556*x^17+3657164025087/162850891556*x^16+977355286693/162850891556*x^15-18508014043717/81425445778*x^14+22424431665197/162850891556*x^13+96875337782617/81425445778*x^12-101053683984357/81425445778*x^11-558592275504809/162850891556*x^10+366642855100189/81425445778*x^9+872058557937449/162850891556*x^8-330152051986475/40712722889*x^7-331220129913929/81425445778*x^6+572914382449207/81425445778*x^5+81328629378691/81425445778*x^4-95875086371386/40712722889*x^3+21931080052651/162850891556*x^2+9953926602525/81425445778*x-50661433653/40712722889]]];

f[410,2]=[
[x+2, [1,-1,1], [-1,-2,1,2,0,-4,0,8,0,6,8,2,-1,8,-6,0,12,2,14,-12,2,-4,-12,6,-4]],
[x, [1,-1,-1], [-1,0,1,-2,-6,-2,8,-6,0,-8,0,-6,1,-4,6,2,8,10,-8,-4,-6,-8,-4,-2,12]],
[x+2, [-1,1,-1], [1,-2,-1,-2,2,-6,-6,-2,-4,-6,0,10,1,4,2,-6,12,-10,2,10,-10,-6,0,10,2]],
[x, [-1,-1,-1], [1,0,1,4,0,-2,2,0,0,-2,0,6,1,-4,-12,-10,-4,-2,-8,-4,-6,4,-4,10,18]],
[x^2+2*x-4, [1,1,1], [-1,x,-1,-x-2,-x,-4,-2*x-2,x-4,2*x+4,2*x+8,2*x-4,-2,-1,-4,-3*x-6,4,2*x-4,-4*x-6,3*x+4,5*x+2,2*x-6,-3*x+6,-4*x-12,10,-2*x-10]],
[x^2-2*x-2, [1,1,-1], [-1,x,-1,2,0,-2*x+4,x+2,2*x,-2*x+2,-3*x,-2*x+4,8,1,-6*x+8,-2*x+2,4*x-4,-6,2,5*x,-7*x+10,6*x-10,3*x-10,-4*x+4,-2*x-10,-x-6]],
[x^2-2*x-16, [1,-1,1], [-1,2,1,x,-x+2,4,-x-2,-x+2,0,x,0,-6,-1,-2*x+4,x,2*x-4,2*x,2,-6,-2*x-4,-6,8,4*x-4,-2*x+2,-3*x+6]],
[x^2-6, [-1,-1,-1], [1,x,1,-2,-2*x,4,-x+2,0,-6,-x+4,-2*x,2*x,1,2*x-4,-2*x+6,2*x-4,2*x+2,-4*x-2,x+4,5*x+2,2*x+6,3*x-2,-16,-2*x-2,x-6]],
[x^3-8*x+4, [-1,1,1], [1,x,-1,2,-x^2+4,-x^2-2*x+8,x^2-x-6,-x^2-2*x+8,x^2-4,x-4,2*x^2+2*x-8,x^2-2*x-6,-1,2*x,2*x-2,-3*x^2-4*x+16,x^2-2*x-8,2*x^2+4*x-10,-2*x^2-x+8,x^2+3*x-10,2*x^2+2*x-2,x^2+x-6,2*x^2-8,-2*x+2,-x^2+x+2]]];

f[411,2]=[
[x^3-x^2-2*x+1, [1,1], [x,-1,-x^2+1,-x^2-x+1,x^2-2*x-2,x-4,3*x^2-2*x-3,4*x^2+x-8,x^2+3*x-1,-x^2+x-6,-7*x^2+5*x+9,5*x^2-7*x-9,2*x^2-5*x-3,-4*x^2+5,-3*x^2+5*x+9,-9*x^2+6*x+13,-3*x+3,-4*x^2+4*x-3,3*x^2+4*x-8,-7*x^2+8*x+14,-2*x^2+3*x+4,3*x^2-9*x-8,6*x^2-6*x-4,-7*x^2-2*x+15,5*x^2-6*x-9]],
[x^3-2*x^2-3*x+5, [-1,1], [2,1,x,-x^2-x+4,2*x^2-2*x-4,2*x^2-6,-4*x^2+2*x+12,x^2+2*x-6,x^2-4*x-2,x^2-2*x-2,-4*x^2+4*x+8,-4*x^2+3*x+10,-2*x^2+4*x+1,2*x^2-4*x-6,3*x^2-3*x-2,-2*x^2+8*x+5,-4*x+4,3*x^2+x-12,-6*x^2-2*x+24,6*x^2-21,5*x^2-x-16,2*x^2-2*x-4,-6*x^2+x+20,x^2-3*x+2,6*x^2-2*x-20]],
[x^3+3*x^2-3, [-1,-1], [x,1,-x^2-2*x-1,x^2+x-3,x^2+2*x-4,-2*x^2-3*x+2,3*x^2+4*x-7,-2*x^2-x+4,x^2-x-5,x^2+x-6,-x^2-3*x+1,-x^2-x-1,5*x+3,-2*x^2+2*x+11,x^2+5*x-3,3*x^2+4*x-5,-4*x^2-9*x+1,4*x^2+8*x-7,-3*x^2-6*x+4,-5*x^2-10*x-4,8*x^2+9*x-12,-5*x^2-7*x+10,-10*x^2-18*x+8,5*x^2+4*x-7,5*x^2+6*x+1]],
[x^5+x^4-7*x^3-10*x^2+1, [-1,1], [x,1,-x^4-x^3+7*x^2+9*x+1,-x^4+6*x^2+4*x,x^4+x^3-7*x^2-11*x,2*x^4-x^3-13*x^2-3*x+5,2*x^4-13*x^2-10*x+3,-x^4+2*x^3+5*x^2-6*x-3,-x^4+2*x^3+4*x^2-4*x+4,-x^3+2*x^2+5*x+1,2*x^4+x^3-12*x^2-15*x-4,x^4-6*x^2-4*x,-x^4+7*x^2+4*x+2,-3*x^4-3*x^3+22*x^2+27*x-3,-x^4+6*x^2+2*x,4*x^3-5*x^2-20*x+5,5*x^4-31*x^2-22*x,2*x^4+2*x^3-12*x^2-22*x-3,-x^4+x^3+5*x^2-3*x-6,5*x^4+x^3-31*x^2-27*x,3*x^4+4*x^3-23*x^2-32*x+3,3*x^4+2*x^3-20*x^2-26*x-5,x^4-3*x^3-6*x^2+19*x+12,-x^4-3*x^3+7*x^2+23*x+5,-2*x^4-4*x^3+17*x^2+28*x-7]],
[x^9-16*x^7+x^6+82*x^5-9*x^4-141*x^3+18*x^2+52*x+8, [1,-1], [x,-1,-1/8*x^8+2*x^6-5/8*x^5-43/4*x^4+45/8*x^3+165/8*x^2-41/4*x-6,3/16*x^8-1/8*x^7-11/4*x^6+35/16*x^5+51/4*x^4-179/16*x^3-309/16*x^2+63/4*x+21/4,1/8*x^8+1/4*x^7-3/2*x^6-23/8*x^5+11/2*x^4+71/8*x^3-55/8*x^2-9/2*x+3/2,-3/8*x^8-1/4*x^7+11/2*x^6+21/8*x^5-25*x^4-53/8*x^3+273/8*x^2-7/2,-1/4*x^8+4*x^6-1/4*x^5-41/2*x^4+9/4*x^3+137/4*x^2-9/2*x-8,3/16*x^8+1/8*x^7-11/4*x^6-13/16*x^5+13*x^4-11/16*x^3-345/16*x^2+9/2*x+39/4,1/16*x^8-1/8*x^7-5/4*x^6+17/16*x^5+15/2*x^4-25/16*x^3-235/16*x^2+25/4,5/16*x^8-1/8*x^7-21/4*x^6+21/16*x^5+27*x^4-77/16*x^3-671/16*x^2+19/2*x+49/4,x^3-7*x+2,-1/8*x^8+2*x^6+3/8*x^5-39/4*x^4-19/8*x^3+109/8*x^2-5/4*x+2,-5/8*x^8+1/4*x^7+19/2*x^6-37/8*x^5-45*x^4+197/8*x^3+535/8*x^2-38*x-31/2,-3/8*x^8-1/4*x^7+11/2*x^6+21/8*x^5-24*x^4-53/8*x^3+217/8*x^2+1/2,-7/16*x^8+1/8*x^7+27/4*x^6-23/16*x^5-129/4*x^4+71/16*x^3+745/16*x^2-25/4*x-45/4,3/8*x^8+1/4*x^7-11/2*x^6-13/8*x^5+26*x^4-11/8*x^3-321/8*x^2+9*x+13/2,1/4*x^8-1/2*x^7-5*x^6+25/4*x^5+29*x^4-97/4*x^3-191/4*x^2+30*x+9,3/16*x^8+3/8*x^7-7/4*x^6-61/16*x^5+9/4*x^4+173/16*x^3+131/16*x^2-39/4*x-15/4,3/8*x^8-1/4*x^7-13/2*x^6+27/8*x^5+71/2*x^4-107/8*x^3-493/8*x^2+35/2*x+29/2,-1/8*x^8+1/4*x^7+5/2*x^6-25/8*x^5-15*x^4+105/8*x^3+243/8*x^2-21*x-35/2,5/16*x^8-3/8*x^7-21/4*x^6+85/16*x^5+107/4*x^4-373/16*x^3-635/16*x^2+119/4*x+39/4,3/8*x^8-1/4*x^7-13/2*x^6+35/8*x^5+73/2*x^4-187/8*x^3-549/8*x^2+77/2*x+41/2,1/2*x^8-1/4*x^7-15/2*x^6+4*x^5+141/4*x^4-19*x^3-217/4*x^2+95/4*x+25/2,7/16*x^8+3/8*x^7-23/4*x^6-73/16*x^5+91/4*x^4+297/16*x^3-449/16*x^2-105/4*x+33/4,-1/8*x^8-1/4*x^7+3/2*x^6+31/8*x^5-7/2*x^4-151/8*x^3-57/8*x^2+59/2*x+17/2]]];

f[412,2]=[
[x^2+x-5, [-1,-1], [0,-1,x,-2*x-1,x-1,-x-4,x+4,x-5,-6,2*x-2,-2*x-5,5,-4,2*x-3,-x-4,-5*x-1,3*x+6,-x+5,-4*x-1,x+8,x,7*x+2,3*x-1,2*x+12,-2*x-8]],
[x^2+2*x-4, [-1,-1], [0,x,-x-2,-1/2*x-2,-2,-1/2*x-1,1/2*x-4,3/2*x+3,1/2*x-3,3/2*x,2,x-4,1/2*x+9,2*x+2,-4*x-2,2*x-4,-1/2*x-10,-5/2*x-4,-2,-2*x-10,-x+8,-9/2*x+3,3/2*x-10,5*x+10,1/2*x+12]],
[x^4-2*x^3-5*x^2+6*x+4, [-1,1], [0,x,1/2*x^3-3/2*x^2-x+4,1/2*x^3-x^2-3/2*x+3,-1/2*x^3+1/2*x^2+x+2,-x^3+3/2*x^2+7/2*x-2,-x^3+3/2*x^2+9/2*x-3,-1/2*x^2-1/2*x+2,1/2*x^3-9/2*x+4,1/2*x^3+2*x^2-7/2*x-7,-x^3-x^2+7*x+4,-x^3+2*x^2+4*x-6,1/2*x^3-2*x^2-1/2*x+4,2*x^3-x^2-12*x+2,-5/2*x^3+11/2*x^2+7*x-8,3/2*x^3-5/2*x^2-8*x+8,-x^3+1/2*x^2+15/2*x-3,-x^3+7/2*x^2+3/2*x-9,-x^3+4*x^2+4*x-14,-1/2*x^3+9/2*x^2-10,3/2*x^3-3/2*x^2-8*x-2,x^3-1/2*x^2-5/2*x-2,-x^3-1/2*x^2+3/2*x+9,-x^2-x+2,-1/2*x^3+7/2*x-9]]];

f[413,2]=[
[x^2-5, [1,-1], [x,1/2*x-1/2,x+1,-1,1/2*x-5/2,-3/2*x+1/2,-6,1/2*x-3/2,-1/2*x+15/2,7/2*x+1/2,-x+5,8,-2*x,-7/2*x+9/2,3*x+3,-3/2*x+13/2,1,-6,3/2*x+17/2,4,-1/2*x-27/2,-5*x+3,-6,5/2*x-1/2,-1/2*x-19/2]],
[x^3-3*x^2-x+4, [1,-1], [-1,x,2*x-2,-1,x,-3*x^2+4*x+6,2,-x^2+4,-x^2+4*x,-2*x^2+x+10,-4*x^2+6*x+8,2*x^2-6*x-2,4*x-6,x^2+4,-2*x^2+4*x,3*x^2-4*x-10,1,-4*x^2+8*x+6,-x,4*x^2-4*x-8,-2*x^2-3*x+14,2*x^2-8*x,2*x^2-2*x-4,2*x^2-5*x-10,-6*x^2+13*x+6]],
[x^5+2*x^4-3*x^3-5*x^2+x+1, [1,1], [x,-x^3-x^2+3*x,x^4+2*x^3-3*x^2-5*x+1,-1,x^4+x^3-4*x^2-3*x,x^4+3*x^3-2*x^2-6*x,-3*x^4-4*x^3+12*x^2+8*x-7,-3*x^4-4*x^3+10*x^2+5*x-4,-2*x^4-6*x^3+3*x^2+15*x+1,2*x^4+4*x^3-3*x^2-6*x-4,-2*x^4-3*x^3+8*x^2+7*x-7,2*x^4+x^3-11*x^2-x+5,-3*x^4-3*x^3+10*x^2+6*x,-2*x^4-2*x^3+8*x^2+6*x-9,-3*x^4-4*x^3+9*x^2+8*x-1,-x^4+2*x^3+9*x^2-7*x-7,-1,5*x^4+5*x^3-22*x^2-13*x+13,5*x^4+9*x^3-15*x^2-18*x-1,-x^4-x^3-4*x+2,6*x^4+8*x^3-21*x^2-10*x+10,-3*x^4-6*x^3+13*x^2+18*x-11,3*x^4+2*x^3-14*x^2+10,5*x^4+11*x^3-10*x^2-23*x-1,2*x^4-6*x^2+3*x-4]],
[x^5-4*x^4-3*x^3+29*x^2-35*x+11, [1,-1], [x,-x^3+x^2+7*x-6,x^4-2*x^3-7*x^2+15*x-5,-1,x^4-x^3-8*x^2+9*x+4,x^4-3*x^3-6*x^2+22*x-12,x^4-8*x^2+9,x^4-4*x^3-6*x^2+29*x-14,-4*x^4+10*x^3+25*x^2-77*x+39,-2*x^4+4*x^3+13*x^2-30*x+12,-4*x^4+9*x^3+26*x^2-71*x+31,x^3-x^2-9*x+7,x^4-3*x^3-4*x^2+26*x-24,-4*x^4+10*x^3+26*x^2-76*x+37,3*x^4-6*x^3-21*x^2+44*x-11,-x^4+2*x^3+5*x^2-15*x+15,1,-x^4+3*x^3+8*x^2-19*x-5,3*x^4-5*x^3-21*x^2+42*x-7,3*x^4-5*x^3-22*x^2+40*x-10,2*x^4-4*x^3-13*x^2+32*x-10,5*x^4-14*x^3-31*x^2+110*x-59,3*x^4-8*x^3-18*x^2+60*x-38,-x^4+5*x^3+4*x^2-41*x+29,-2*x^4+14*x^2-x]],
[x^5-5*x^3-x^2+5*x+1, [-1,-1], [x,x^3-x^2-3*x,-x^4+3*x^2+x-1,1,3*x^4-3*x^3-10*x^2+5*x+4,-x^4+x^3+4*x^2-4*x-6,-3*x^4+4*x^3+12*x^2-10*x-9,x^4-4*x^2+x-2,3*x^2-x-7,2*x^4-4*x^3-7*x^2+10*x+4,4*x^4-3*x^3-16*x^2+5*x+9,-4*x^4-x^3+17*x^2+7*x-11,x^4-3*x^3-2*x^2+6*x+2,-6*x^2+2*x+9,x^4+4*x^3-7*x^2-8*x+5,5*x^4+2*x^3-21*x^2-7*x+11,1,3*x^4-3*x^3-6*x^2+3*x-9,-3*x^4+7*x^3+7*x^2-18*x-5,-5*x^4+5*x^3+16*x^2-10*x-2,2*x^4-6*x^3-5*x^2+12*x,x^4-2*x^3-7*x^2+10*x+9,-x^4+2*x^3+2*x^2-6*x-4,-5*x^4+3*x^3+22*x^2-7*x-15,-6*x^4+4*x^3+20*x^2-7*x-6]],
[x^9-13*x^7+x^6+54*x^5-7*x^4-75*x^3+9*x^2+17*x-3, [-1,1], [x,-3/8*x^8+1/8*x^7+5*x^6-11/8*x^5-169/8*x^4+7/2*x^3+229/8*x^2+3/4*x-25/8,-1/4*x^8-1/4*x^7+3*x^6+11/4*x^5-47/4*x^4-9*x^3+67/4*x^2+17/2*x-15/4,1,1/8*x^8+1/8*x^7-2*x^6-15/8*x^5+79/8*x^4+17/2*x^3-119/8*x^2-47/4*x+15/8,-3/8*x^8-3/8*x^7+4*x^6+29/8*x^5-93/8*x^4-19/2*x^3+53/8*x^2+25/4*x+19/8,1/2*x^8+1/2*x^7-6*x^6-11/2*x^5+45/2*x^4+18*x^3-55/2*x^2-17*x+9/2,5/8*x^8+1/8*x^7-8*x^6-11/8*x^5+263/8*x^4+13/2*x^3-363/8*x^2-57/4*x+79/8,-3/8*x^8-3/8*x^7+5*x^6+29/8*x^5-173/8*x^4-19/2*x^3+245/8*x^2+25/4*x-21/8,5/8*x^8+1/8*x^7-7*x^6-3/8*x^5+183/8*x^4-7/2*x^3-163/8*x^2+35/4*x-9/8,1/4*x^8+1/4*x^7-3*x^6-7/4*x^5+43/4*x^4+x^3-43/4*x^2+9/2*x+11/4,x^8+x^7-12*x^6-9*x^5+45*x^4+21*x^3-54*x^2-13*x+8,x^8-13*x^6+54*x^4+x^3-73*x^2-5*x+9,-5/8*x^8-5/8*x^7+8*x^6+51/8*x^5-259/8*x^4-37/2*x^3+347/8*x^2+59/4*x-59/8,1/4*x^8-3/4*x^7-3*x^6+33/4*x^5+43/4*x^4-26*x^3-39/4*x^2+41/2*x-9/4,-1/8*x^8+3/8*x^7+2*x^6-33/8*x^5-75/8*x^4+27/2*x^3+103/8*x^2-59/4*x-27/8,-1,1/2*x^8+1/2*x^7-6*x^6-11/2*x^5+45/2*x^4+17*x^3-55/2*x^2-14*x+13/2,3/8*x^8+3/8*x^7-4*x^6-21/8*x^5+93/8*x^4+1/2*x^3-69/8*x^2+35/4*x+61/8,-x^6+x^5+10*x^4-7*x^3-24*x^2+10*x+3,1/8*x^8+9/8*x^7-95/8*x^5-65/8*x^4+75/2*x^3+193/8*x^2-143/4*x-41/8,-3/4*x^8-3/4*x^7+9*x^6+29/4*x^5-133/4*x^4-16*x^3+149/4*x^2-1/2*x-1/4,3/2*x^8+1/2*x^7-19*x^6-9/2*x^5+151/2*x^4+9*x^3-195/2*x^2+x+39/2,3/8*x^8+11/8*x^7-3*x^6-109/8*x^5+29/8*x^4+73/2*x^3+35/8*x^2-85/4*x+45/8,17/8*x^8+1/8*x^7-25*x^6+9/8*x^5+719/8*x^4-25/2*x^3-791/8*x^2+65/4*x+103/8]]];

f[414,2]=[
[x+2, [1,-1,-1], [-1,0,-2,0,0,-2,-2,-8,1,2,-8,2,-10,8,-8,-2,4,2,8,0,-6,8,16,-18,10]],
[x+4, [-1,-1,1], [1,0,-4,-4,-2,-2,2,-2,-1,-2,0,-4,-6,10,0,4,-12,-8,-10,0,6,-12,-14,6,6]],
[x, [-1,-1,-1], [1,0,0,2,0,2,0,2,1,6,-4,-10,6,2,0,-12,-12,-10,14,0,2,-10,0,-12,-10]],
[x-2, [-1,-1,-1], [1,0,2,-2,6,-2,0,0,1,-6,8,0,-10,-12,8,-2,12,4,-12,0,-10,-6,-14,0,-6]],
[x^2+2*x-6, [1,1,-1], [-1,0,x,2,-x,2*x+2,-2*x,-x+2,1,2*x+6,-2*x+2,3*x+2,6,-x+2,6,-x,0,-x+2,-3*x-10,-6,-2*x-4,4*x+2,-x-12,0,-2*x+2]],
[x^2-2*x-4, [1,-1,1], [-1,0,x,2*x-2,-x+4,-2*x+2,4,-3*x+2,-1,-2*x+2,2*x,-x+10,2,-x-6,-4,x-4,-4*x+4,x+2,-3*x+6,4*x-4,2*x-2,-2*x+2,x-12,-2*x+8,-2*x-2]],
[x^2-2*x-6, [-1,1,1], [1,0,x,2,-x,-2*x+2,-2*x,x+2,-1,2*x-6,2*x+2,-3*x+2,-6,x+2,-6,-x,0,x+2,3*x-10,6,2*x-4,-4*x+2,-x+12,0,2*x+2]]];

f[415,2]=[
[x-1, [-1,1], [1,3,1,1,3,-6,-7,2,4,-7,5,-7,6,4,-4,-10,-3,5,2,14,-4,-14,-1,12,8]],
[x^2+x-1, [-1,-1], [x,-x-1,1,2*x+1,-2,-x-2,-x-4,-2*x-3,-4*x-5,2*x-3,3*x-1,-3*x-4,-12,-3*x+5,6*x+8,9*x+5,6*x-1,x-1,4*x+3,-7*x-1,x+12,1,1,-11*x-5,3]],
[x^6-2*x^5-5*x^4+9*x^3+5*x^2-6*x-1, [1,-1], [x,-x^4+x^3+5*x^2-3*x-3,-1,x^5-x^4-5*x^3+3*x^2+5*x,2*x^5-3*x^4-10*x^3+12*x^2+9*x-4,-x^3+x^2+2*x,-x^5+2*x^4+4*x^3-8*x^2-2*x+7,x^5-3*x^4-3*x^3+11*x^2-x-2,x^5-x^4-5*x^3+3*x^2+3*x+2,-2*x^5+3*x^4+10*x^3-12*x^2-11*x+7,x^5+x^4-6*x^3-4*x^2+5*x-2,-3*x^5+4*x^4+14*x^3-16*x^2-8*x+7,2*x^5-3*x^4-12*x^3+14*x^2+15*x-6,x^5-x^4-4*x^3+4*x^2-3*x-2,x^5+2*x^4-5*x^3-11*x^2+2*x+9,2*x^5-6*x^4-11*x^3+27*x^2+14*x-11,-x^4+2*x^3+6*x^2-7*x-3,-2*x^5+2*x^4+7*x^3-5*x^2+2*x-3,-3*x^5+4*x^4+15*x^3-13*x^2-12*x+2,-4*x^5+5*x^4+23*x^3-21*x^2-25*x+9,x^5-x^4-4*x^3-2*x^2+3*x+11,-3*x^5+5*x^4+13*x^3-17*x^2-7*x+2,1,-2*x^5+5*x^4+5*x^3-21*x^2+13*x+17,-x^5+2*x^4+3*x^3-5*x^2+4*x]],
[x^7+3*x^6-6*x^5-19*x^4+9*x^3+28*x^2-4*x-8, [1,1], [x,-1/4*x^6-1/4*x^5+2*x^4+3/4*x^3-19/4*x^2+1/2*x+2,-1,-1/4*x^6-3/4*x^5+3/2*x^4+19/4*x^3-9/4*x^2-7*x,x^6+5/2*x^5-11/2*x^4-13*x^3+11/2*x^2+21/2*x,-x^5-2*x^4+5*x^3+8*x^2-4*x-4,-1/4*x^6-3/4*x^5+3/2*x^4+15/4*x^3-9/4*x^2-2*x-4,-1/2*x^6-3/2*x^5+2*x^4+15/2*x^3+5/2*x^2-4*x-6,1/2*x^6+1/2*x^5-4*x^4-5/2*x^3+17/2*x^2+4*x-5,3/4*x^6+15/4*x^5-2*x^4-85/4*x^3-15/4*x^2+41/2*x+4,-1/2*x^5-7/2*x^4+x^3+37/2*x^2-1/2*x-12,1/2*x^6+2*x^5-1/2*x^4-21/2*x^3-9*x^2+17/2*x+6,-x^6-2*x^5+8*x^4+12*x^3-20*x^2-14*x+11,1/2*x^6+1/2*x^5-4*x^4-1/2*x^3+19/2*x^2-4*x-4,1/2*x^6+5/2*x^5-27/2*x^3-17/2*x^2+15*x+2,-1/2*x^6-1/2*x^5+4*x^4+5/2*x^3-15/2*x^2-2,-5/4*x^6-19/4*x^5+9/2*x^4+103/4*x^3+7/4*x^2-22*x-4,-5/4*x^6-13/4*x^5+10*x^4+87/4*x^3-87/4*x^2-55/2*x+8,-x^6-2*x^5+6*x^4+13*x^3-5*x^2-21*x,x^6+2*x^5-5*x^4-12*x^3-2*x^2+16*x+10,1/2*x^6+3/2*x^5-6*x^4-25/2*x^3+39/2*x^2+19*x-12,2*x^5+5*x^4-12*x^3-25*x^2+16*x+16,-1,-x^6-x^5+6*x^4+4*x^3-3*x^2-5*x-12,1/2*x^6+1/2*x^5-3*x^4-3/2*x^3+1/2*x^2-5*x+2]],
[x^11-20*x^9-x^8+146*x^7+15*x^6-464*x^5-76*x^4+567*x^3+136*x^2-100*x-8, [-1,1], [x,-x^10-7/4*x^9+65/4*x^8+119/4*x^7-83*x^6-164*x^5+483/4*x^4+1195/4*x^3+213/4*x^2-93/2*x-6,1,1/4*x^9-1/4*x^8-15/4*x^7+7/2*x^6+18*x^5-61/4*x^4-115/4*x^3+83/4*x^2+7*x-4,3/4*x^10+9/4*x^9-51/4*x^8-37*x^7+137/2*x^6+789/4*x^5-425/4*x^4-1401/4*x^3-91/2*x^2+133/2*x+6,-x^3-x^2+6*x+4,3/2*x^10+11/4*x^9-99/4*x^8-187/4*x^7+261/2*x^6+517/2*x^5-847/4*x^4-1913/4*x^3-117/4*x^2+96*x+4,x^10+5/2*x^9-33/2*x^8-83/2*x^7+85*x^6+223*x^5-237/2*x^4-791/2*x^3-165/2*x^2+62*x+10,-3/2*x^10-4*x^9+25*x^8+133/2*x^7-131*x^6-719/2*x^5+194*x^4+651*x^3+193/2*x^2-132*x-9,x^10+13/4*x^9-67/4*x^8-213/4*x^7+87*x^6+282*x^5-473/4*x^4-1965/4*x^3-395/4*x^2+143/2*x+8,13/4*x^10+19/4*x^9-213/4*x^8-82*x^7+557/2*x^6+1835/4*x^5-1791/4*x^4-3387/4*x^3-121/2*x^2+263/2*x+6,-7/4*x^10-11/4*x^9+113/4*x^8+95/2*x^7-287/2*x^6-1065/4*x^5+839/4*x^4+1979/4*x^3+81*x^2-171/2*x-8,-2*x^10-3*x^9+33*x^8+52*x^7-175*x^6-293*x^5+294*x^4+551*x^3+6*x^2-110*x+3,-5/2*x^10-3*x^9+41*x^8+105/2*x^7-217*x^6-595/2*x^5+371*x^4+556*x^3-41/2*x^2-88*x+4,-5/2*x^10-5*x^9+41*x^8+169/2*x^7-212*x^6-927/2*x^5+315*x^4+844*x^3+267/2*x^2-147*x-18,-7/2*x^10-8*x^9+58*x^8+267/2*x^7-304*x^6-1445/2*x^5+465*x^4+1298*x^3+335/2*x^2-226*x-14,4*x^10+33/4*x^9-265/4*x^8-555/4*x^7+697/2*x^6+758*x^5-2189/4*x^4-5519/4*x^3-573/4*x^2+256*x+12,x^10+5/4*x^9-63/4*x^8-89/4*x^7+76*x^6+128*x^5-365/4*x^4-957/4*x^3-355/4*x^2+47/2*x+12,1/2*x^10+1/2*x^9-17/2*x^8-9*x^7+48*x^6+107/2*x^5-195/2*x^4-223/2*x^3+44*x^2+41*x-8,7/2*x^10+13/2*x^9-115/2*x^8-110*x^7+300*x^6+1209/2*x^5-937/2*x^4-2209/2*x^3-115*x^2+196*x+10,-x^10-1/2*x^9+31/2*x^8+21/2*x^7-75*x^6-69*x^5+207/2*x^4+289/2*x^3+75/2*x^2-15*x-8,-5/2*x^10-11/2*x^9+83/2*x^8+92*x^7-218*x^6-999/2*x^5+671/2*x^4+1801/2*x^3+113*x^2-154*x-8,-1,3/2*x^10+5/2*x^9-49/2*x^8-43*x^7+127*x^6+481/2*x^5-393/2*x^4-895/2*x^3-50*x^2+79*x+8,5*x^10+23/2*x^9-163/2*x^8-385/2*x^7+413*x^6+1045*x^5-1117/2*x^4-3757/2*x^3-811/2*x^2+303*x+38]]];

f[416,2]=[
[x-1, [1,-1], [0,1,1,3,2,1,-3,2,4,2,4,5,-12,7,-9,4,6,-4,-10,-15,-2,-8,-4,2,10]],
[x+1, [-1,-1], [0,-1,1,-3,-2,1,-3,-2,-4,2,-4,5,-12,-7,9,4,-6,-4,10,15,-2,8,4,2,10]],
[x^2+x-4, [1,1], [0,x,-x-2,-x-2,-2,-1,x+2,-6,0,4*x+2,2*x-2,3*x-2,-2*x+2,-5*x-4,3*x+6,-2*x-10,6,-6*x-2,-6,-3*x-6,10,-12,-6*x+2,4*x+2,-6]],
[x^2-5, [-1,1], [0,x,3,x,-2*x,-1,-3,-2*x,-4*x,10,0,3,0,3*x,x,4,-2*x,0,6*x,3*x,14,-4*x,8*x,-10,-2]],
[x^2-x-4, [-1,1], [0,x,x-2,-x+2,2,-1,-x+2,6,0,-4*x+2,2*x+2,-3*x-2,2*x+2,-5*x+4,3*x-6,2*x-10,-6,6*x-2,6,-3*x+6,10,12,-6*x-2,-4*x+2,-6]],
[x^4-13*x^2+32, [1,-1], [0,x,-x^2+6,1/2*x^3-7/2*x,-1/2*x^3+9/2*x,1,-x^2+10,1/2*x^3-9/2*x,0,-2,1/2*x^3-13/2*x,-x^2+6,-2*x^2+10,-x^3+8*x,1/2*x^3-7/2*x,2*x^2-18,-1/2*x^3+1/2*x,2*x^2-10,1/2*x^3-17/2*x,-1/2*x^3+15/2*x,-6,-x^3+5*x,1/2*x^3-5/2*x,-6,4*x^2-30]]];

f[417,2]=[
[x-1, [1,-1], [1,-1,2,0,5,5,-3,7,2,0,-6,-7,-6,11,11,9,-6,-8,-4,-16,-12,-8,4,4,-18]],
[x^2+x-1, [-1,-1], [x,1,-1,-x-4,-2*x-1,2*x-2,-3*x-4,4*x+3,2*x-1,4*x+4,-3*x-3,-x-5,6*x+9,-3*x-6,3*x-6,-2,-5*x-3,-5*x-9,5*x-4,4*x+2,-8*x-1,2*x+1,-8*x-1,3*x+14,9*x+4]],
[x^3-2*x^2-4*x+7, [1,-1], [x^2-4,-1,-x^2+x+4,x+1,1,x^2-x-5,x^2,-1,-x^2-x+10,0,-x^2-2*x+9,2*x^2-x-10,x^2-3*x-2,-5*x^2+2*x+18,-3*x^2+2*x+12,-3*x^2-3*x+13,3*x^2-2*x-3,-x^2+4*x-3,-5*x-1,-2*x^2+2*x+12,-5*x^2-x+24,5*x^2-x-22,5*x^2-x-18,-3*x+1,-2*x^2+5*x+13]],
[x^3-2*x^2-4*x+7, [-1,1], [x^2-4,1,-x^2-x+6,x+1,x^2-x-2,2*x,-x-3,-x^2+x+6,x^2-3*x-4,-2*x^2+2*x+2,-3*x^2+11,x^2-2*x+3,x^2-x,-4*x^2+x+9,2*x^2-3*x-1,4*x-2,-3*x^2+4*x+11,-x^2-1,-4*x^2+3*x+19,2*x^2+2*x-12,5*x^2+3*x-24,5*x^2-5*x-18,x^2+x,4*x^2+3*x-15,-4*x^2+x+7]],
[x^7+3*x^6-6*x^5-19*x^4+9*x^3+30*x^2-8, [1,1], [x,-1,1/2*x^6+x^5-7/2*x^4-11/2*x^3+6*x^2+11/2*x-1,-3/4*x^6-7/4*x^5+5*x^4+37/4*x^3-41/4*x^2-10*x+3,-1/4*x^6+1/4*x^5+7/2*x^4-1/4*x^3-37/4*x^2-3/2*x+2,1/4*x^6-1/4*x^5-9/2*x^4+1/4*x^3+65/4*x^2-1/2*x-10,1/2*x^6+3/2*x^5-2*x^4-17/2*x^3-1/2*x^2+12*x,x^4+2*x^3-3*x^2-6*x-2,-x^4+7*x^2-2*x-10,-3/4*x^6-7/4*x^5+4*x^4+25/4*x^3-29/4*x^2+x+3,1/2*x^6+x^5-9/2*x^4-13/2*x^3+13*x^2+21/2*x-9,-x^6-3*x^5+7*x^4+19*x^3-15*x^2-22*x+7,1/2*x^6+1/2*x^5-4*x^4-5/2*x^3+17/2*x^2+3*x-5,-x^6-2*x^5+8*x^4+10*x^3-23*x^2-6*x+16,-1/2*x^6-3/2*x^5+3*x^4+15/2*x^3-15/2*x^2-5*x+1,2*x^2+2*x-8,-1/2*x^6-1/2*x^5+4*x^4+1/2*x^3-23/2*x^2+x+8,3/2*x^6+9/2*x^5-11*x^4-55/2*x^3+51/2*x^2+32*x-6,-1/2*x^6+9/2*x^4-7/2*x^3-13*x^2+21/2*x+7,3/4*x^6+5/4*x^5-15/2*x^4-29/4*x^3+91/4*x^2+13/2*x-14,x^6+2*x^5-6*x^4-7*x^3+11*x^2-x-6,3/2*x^6+4*x^5-15/2*x^4-37/2*x^3+5*x^2+23/2*x+9,7/4*x^6+15/4*x^5-14*x^4-93/4*x^3+129/4*x^2+28*x-17,3/4*x^6+11/4*x^5-2*x^4-61/4*x^3-27/4*x^2+17*x+9,-3/2*x^6-9/2*x^5+8*x^4+43/2*x^3-25/2*x^2-14*x+4]],
[x^7-14*x^5+2*x^4+57*x^3-14*x^2-56*x+8, [-1,1], [x,1,-1/2*x^3+7/2*x-1,1/4*x^6-5/2*x^4+21/4*x^2+1,-1/4*x^6-1/2*x^5+3*x^4+4*x^3-39/4*x^2-11/2*x+4,-1/4*x^6+5/2*x^4-1/2*x^3-25/4*x^2+3/2*x+4,1/2*x^4-7/2*x^2+4,1/2*x^5-7/2*x^3+2*x+2,-x^4+7*x^2-2*x-2,1/4*x^6-5/2*x^4+x^3+21/4*x^2-5*x+1,1/2*x^3-3/2*x+3,1/2*x^5+x^4-7/2*x^3-6*x^2+2*x+3,1/2*x^6-6*x^4+x^3+37/2*x^2-7*x-9,1/2*x^5-11/2*x^3+14*x+4,-1/2*x^4+x^3+13/2*x^2-7*x-11,-1/2*x^6+11/2*x^4-14*x^2-2*x,-1/2*x^6+5*x^4-x^3-21/2*x^2+5*x-4,-1/2*x^6-x^5+6*x^4+9*x^3-39/2*x^2-16*x+14,-x^5+15/2*x^3-11/2*x-5,-3/4*x^6-1/2*x^5+17/2*x^4+4*x^3-103/4*x^2-11/2*x+12,x^4-x^3-9*x^2+7*x+10,x^5-19/2*x^3+39/2*x+5,-1/4*x^6-x^5+3/2*x^4+11*x^3+7/4*x^2-26*x-7,3/4*x^6+x^5-17/2*x^4-10*x^3+107/4*x^2+23*x-21,-1/2*x^6-x^5+6*x^4+11*x^3-39/2*x^2-26*x+16]]];

f[418,2]=[
[x+1, [-1,1,-1], [1,-1,-2,-3,-1,1,-7,1,-5,1,10,-6,6,-4,0,-1,3,-12,3,-10,3,8,8,-8,8]],
[x, [-1,-1,-1], [1,0,2,2,1,-2,6,1,-8,-6,6,8,6,-8,-8,12,0,-8,-8,-6,-14,-12,-12,2,-2]],
[x-3, [-1,-1,-1], [1,3,-2,1,1,-7,-3,1,3,1,2,-6,-2,4,0,3,7,-12,15,6,-9,-8,16,-16,8]],
[x^2-x-4, [1,-1,1], [-1,x,2,-x+2,1,x-2,-x+2,-1,-x+4,-3*x+2,2,-2*x,2,0,8,5*x,-3*x,4*x-4,-3*x,6,-3*x-2,-4,4*x+4,2*x-6,-2*x-2]],
[x^2+3*x-1, [1,-1,-1], [-1,x,-x-2,x+1,1,-x-3,-2*x-4,1,2*x-2,-x-8,-x-3,4*x+4,3*x+3,-3*x+2,-6,-2*x-10,0,4*x+10,-5*x-5,x-10,-2*x-2,6*x+14,x+14,2*x+4,8]],
[x^2+x-5, [-1,-1,-1], [1,x,x+2,-x-3,1,-x+3,-2*x-4,1,-2*x+2,-x+4,-x-9,8,-x+1,3*x+2,4*x+2,-2*x+2,0,2,-x-3,-3*x-6,2*x+6,-2*x-2,-x-2,2*x-8,8]],
[x^3-6*x-3, [1,1,1], [-1,x,-x^2+3,x^2-2*x-6,-1,x^2-2*x-4,-x^2+x+1,-1,-x^2+x-1,2*x^2-x-6,3*x-1,-2*x^2+2*x+6,-2*x^2-x+5,x^2+2*x-11,2*x^2+2*x-12,x^2-5*x-7,x^2+x-5,2*x^2-2*x,-3*x^2+4*x+12,-x^2-4*x+11,-x^2+x+3,-4*x^2+2*x+14,x^2-2*x-15,2*x^2-6,-4*x^2+4*x+20]],
[x^3-x^2-5*x+4, [-1,1,1], [1,x,-x+2,-x^2+4,-1,x^2-2,2*x^2-6,-1,-2*x^2+8,-2*x^2-x+10,x^2-2*x-4,-2*x^2+2*x+2,-x^2+2*x+2,2*x^2-3*x-8,-2*x^2-2*x+8,2*x-6,4*x^2+4*x-20,2,-x^2+4,2*x^2-x-8,4*x^2+2*x-14,2*x^2+4*x-8,-2*x^2+5*x+8,-2*x^2+8*x+10,-2*x^2+2*x+2]]];

f[419,2]=[
[x^9+2*x^8-7*x^7-13*x^6+15*x^5+25*x^4-9*x^3-15*x^2-x+1, [1], [x,x^8+x^7-8*x^6-5*x^5+21*x^4+5*x^3-19*x^2+3,x^8+2*x^7-7*x^6-13*x^5+15*x^4+24*x^3-10*x^2-12*x,-2*x^8-3*x^7+15*x^6+17*x^5-37*x^4-24*x^3+32*x^2+6*x-6,x^5-5*x^3+x^2+4*x-1,2*x^8+3*x^7-16*x^6-18*x^5+42*x^4+29*x^3-36*x^2-13*x+2,-3*x^8-4*x^7+24*x^6+25*x^5-61*x^4-43*x^3+50*x^2+20*x-7,-x^8+11*x^6+x^5-36*x^4-5*x^3+34*x^2+8*x-4,-x^8-x^7+7*x^6+4*x^5-14*x^4-x^3+6*x^2-3*x-1,x^8+x^7-6*x^6-4*x^5+7*x^4+x^3+7*x^2+3*x-7,3*x^8+3*x^7-27*x^6-21*x^5+79*x^4+44*x^3-77*x^2-27*x+10,x^8-9*x^6+x^5+24*x^4-7*x^3-18*x^2+12*x-1,-4*x^8-10*x^7+23*x^6+61*x^5-35*x^4-104*x^3+11*x^2+47*x+1,-3*x^8-3*x^7+27*x^6+21*x^5-78*x^4-45*x^3+69*x^2+30*x-3,-2*x^8-3*x^7+15*x^6+15*x^5-38*x^4-16*x^3+32*x^2+4*x-1,4*x^8+6*x^7-31*x^6-36*x^5+79*x^4+60*x^3-70*x^2-29*x+12,3*x^8+5*x^7-23*x^6-34*x^5+57*x^4+74*x^3-45*x^2-54*x+2,4*x^8+7*x^7-29*x^6-43*x^5+65*x^4+74*x^3-42*x^2-37*x-4,6*x^8+11*x^7-45*x^6-69*x^5+111*x^4+119*x^3-94*x^2-51*x+10,7*x^8+10*x^7-54*x^6-59*x^5+135*x^4+91*x^3-110*x^2-32*x+10,-x^8+x^7+16*x^6-x^5-65*x^4-14*x^3+77*x^2+20*x-14,2*x^8+3*x^7-17*x^6-20*x^5+45*x^4+36*x^3-34*x^2-16*x-2,-x^7+10*x^5-3*x^4-34*x^3+8*x^2+33*x+6,-4*x^8-4*x^7+35*x^6+26*x^5-96*x^4-46*x^3+80*x^2+23*x-5,-6*x^8-12*x^7+42*x^6+72*x^5-91*x^4-113*x^3+58*x^2+40*x-2]],
[x^26-2*x^25-43*x^24+85*x^23+807*x^22-1571*x^21-8689*x^20+16575*x^19+59362*x^18-110217*x^17-268789*x^16+481513*x^15+817911*x^14-1398615*x^13-1658267*x^12+2674771*x^11+2166607*x^10-3262315*x^9-1701132*x^8+2384864*x^7+697992*x^6-932912*x^5-104448*x^4+158080*x^3-4736*x^2-6656*x+512, [-1], [x,11600552657805477/618506107859120384*x^25-1445919658165295/309253053929560192*x^24-489898657622267755/618506107859120384*x^23+107914954606597717/618506107859120384*x^22+8985089110311196755/618506107859120384*x^21-1677761853489598063/618506107859120384*x^20-93908850339439447893/618506107859120384*x^19+13918818822044869947/618506107859120384*x^18+308521474664772454481/309253053929560192*x^17-64913077960712591713/618506107859120384*x^16-2653463884228242370997/618506107859120384*x^15+158054791007502082829/618506107859120384*x^14+7542124894930787266803/618506107859120384*x^13-114826826055616751971/618506107859120384*x^12-13997662661670064334423/618506107859120384*x^11-303774076907980503369/618506107859120384*x^10+16402726266989189697963/618506107859120384*x^9+721388016885671188593/618506107859120384*x^8-2858156076211631583195/154626526964780096*x^7-131421687286070081665/154626526964780096*x^6+133526089632281764867/19328315870597512*x^5+3114222442535169313/19328315870597512*x^4-5479963010523513969/4832078967649378*x^3+347436269895930943/9664157935298756*x^2+115195871402394161/2416039483824689*x-9403602456845085/2416039483824689,-15339110851698681/618506107859120384*x^25+1659882976959243/154626526964780096*x^24+647804819296844439/618506107859120384*x^23-261094882733415019/618506107859120384*x^22-11883707853507702469/618506107859120384*x^21+4379051822405265577/618506107859120384*x^20+124269331201630752739/618506107859120384*x^19-40851748330058436361/618506107859120384*x^18-204353554500038141865/154626526964780096*x^17+232298733292163357085/618506107859120384*x^16+3522271328534996747539/618506107859120384*x^15-833773198676597351211/618506107859120384*x^14-10047619638821988328637/618506107859120384*x^13+1911697358637588946733/618506107859120384*x^12+18759839398286226300949/618506107859120384*x^11-2833518240599129473281/618506107859120384*x^10-22190495513779505976209/618506107859120384*x^9+2802903817103605614913/618506107859120384*x^8+7838747736618934727003/309253053929560192*x^7-7422528181590734491/2416039483824689*x^6-745747450776653745449/77313263482390048*x^5+51094395904343293019/38656631741195024*x^4+31404172083373982729/19328315870597512*x^3-2622227156419926079/9664157935298756*x^2-358926392933727053/4832078967649378*x+23150340870738341/2416039483824689,-8863839496337407/309253053929560192*x^25-891227784723507/38656631741195024*x^24+385167517531066755/309253053929560192*x^23+296011659624924835/309253053929560192*x^22-7296357727589355205/309253053929560192*x^21-5316969070158088675/309253053929560192*x^20+79079629987114027495/309253053929560192*x^19+54137797970389542119/309253053929560192*x^18-270475397670112461457/154626526964780096*x^17-343712030514259712015/309253053929560192*x^16+2430211827232656201389/309253053929560192*x^15+1408518450537328044749/309253053929560192*x^14-7233604422337648843241/309253053929560192*x^13-3723633221392188900391/309253053929560192*x^12+14065380090305185317589/309253053929560192*x^11+6154287517520404208367/309253053929560192*x^10-17214441168598886170513/309253053929560192*x^9-5932646140944618265895/309253053929560192*x^8+3097908679538199990775/77313263482390048*x^7+1463080099193828555373/154626526964780096*x^6-580251204341804069003/38656631741195024*x^5-67739723955687955103/38656631741195024*x^4+45087263596456571019/19328315870597512*x^3-420740139153670539/9664157935298756*x^2-422904240001996079/4832078967649378*x+20162886288801526/2416039483824689,2624951423839507/309253053929560192*x^25+864714761109041/77313263482390048*x^24-115190386680000141/309253053929560192*x^23-141931181194005311/309253053929560192*x^22+2206926087781757503/309253053929560192*x^21+2515920062426191125/309253053929560192*x^20-24231593512952764345/309253053929560192*x^19-25245059275215458725/309253053929560192*x^18+42057341458042821857/77313263482390048*x^17+157823923829239306385/309253053929560192*x^16-768596413957611044153/309253053929560192*x^15-637436787342126079951/309253053929560192*x^14+2332253342452014421831/309253053929560192*x^13+1668307758579552752553/309253053929560192*x^12-4638386215069439223647/309253053929560192*x^11-2761098638629791825261/309253053929560192*x^10+5836044142774413189363/309253053929560192*x^9+2733789611335979463661/309253053929560192*x^8-2179139808976009405541/154626526964780096*x^7-11464838695214791855/2416039483824689*x^6+216225308932095586355/38656631741195024*x^5+22175334591203582665/19328315870597512*x^4-2384269020723186934/2416039483824689*x^3-168604006548282602/2416039483824689*x^2+144988979787663183/2416039483824689*x+2533241512306150/2416039483824689,18286899019576087/618506107859120384*x^25-5894344397986029/309253053929560192*x^24-766111264106621881/618506107859120384*x^23+471168870486082791/618506107859120384*x^22+13922639055892491201/618506107859120384*x^21-8069778480182433605/618506107859120384*x^20-144001763638989605479/618506107859120384*x^19+77397866044694049257/618506107859120384*x^18+467579448862133101323/309253053929560192*x^17-456656313606355035067/618506107859120384*x^16-3970050046577309300871/618506107859120384*x^15+1719687671324427722719/618506107859120384*x^14+11130371603133618637169/618506107859120384*x^13-4174582169576353238401/618506107859120384*x^12-20361915844234980816541/618506107859120384*x^11+6503610407720369451005/618506107859120384*x^10+23492863605680564906457/618506107859120384*x^9-6410159455082569400069/618506107859120384*x^8-4015981862327647639385/154626526964780096*x^7+965970510415925839073/154626526964780096*x^6+364245782918146239653/38656631741195024*x^5-41070925522691941949/19328315870597512*x^4-14040041850842425621/9664157935298756*x^3+1609898669988803781/4832078967649378*x^2+120809385477014950/2416039483824689*x-20763481876800285/2416039483824689,-9452065314873201/309253053929560192*x^25+569808323358243/154626526964780096*x^24+403334789788890787/309253053929560192*x^23-41526874078466881/309253053929560192*x^22-7491566561964566371/309253053929560192*x^21+623800518564105935/309253053929560192*x^20+79524390043194009893/309253053929560192*x^19-4908978635890839331/309253053929560192*x^18-266341658225461798347/154626526964780096*x^17+21056295622004569393/309253053929560192*x^16+2346602429988253206817/309253053929560192*x^15-45169471823807203565/309253053929560192*x^14-6877117319855274668643/309253053929560192*x^13+35824022697376113459/309253053929560192*x^12+13276630541977197198879/309253053929560192*x^11-42177179955584271871/309253053929560192*x^10-16382280786694921546019/309253053929560192*x^9+302910843731533481607/309253053929560192*x^8+764172038113645304419/19328315870597512*x^7-4952251742929815629/2416039483824689*x^6-626264687981311231349/38656631741195024*x^5+3759431168880174677/2416039483824689*x^4+7339515286718525658/2416039483824689*x^3-1988234325440504521/4832078967649378*x^2-388905248750884814/2416039483824689*x+45540379097120744/2416039483824689,-25393254810891759/309253053929560192*x^25-3041399972389495/154626526964780096*x^24+1085390644728523277/309253053929560192*x^23+266758956152745225/309253053929560192*x^22-20186052923794734741/309253053929560192*x^21-5096342249122415191/309253053929560192*x^20+214373256731097884019/309253053929560192*x^19+55583263415901127051/309253053929560192*x^18-717121244323166467809/154626526964780096*x^17-380110916451324653025/309253053929560192*x^16+6292099717272352700071/309253053929560192*x^15+1681697238852161604581/309253053929560192*x^14-18270317143985779596309/309253053929560192*x^13-4786935594043997250859/309253053929560192*x^12+34647043681260543233721/309253053929560192*x^11+8442758483294117538455/309253053929560192*x^10-41393002037736227935285/309253053929560192*x^9-8545186374596961334719/309253053929560192*x^8+3648283620175782594325/38656631741195024*x^7+67221230426802773909/4832078967649378*x^6-1351272974277776802267/38656631741195024*x^5-45716940443506545803/19328315870597512*x^4+26423312776526565267/4832078967649378*x^3-472839460313177852/2416039483824689*x^2-522030965267204306/2416039483824689*x+45580231439791752/2416039483824689,-2558841842108261/154626526964780096*x^25-4409568375306127/154626526964780096*x^24+28912322350853323/38656631741195024*x^23+2805962348895829/2416039483824689*x^22-2285256228690932977/154626526964780096*x^21-3149700732293670429/154626526964780096*x^20+25909323659093759761/154626526964780096*x^19+31133925954963975081/154626526964780096*x^18-23236778008763873855/19328315870597512*x^17-47636438661404718111/38656631741195024*x^16+219529049124898831311/38656631741195024*x^15+746548872918122285453/154626526964780096*x^14-2755183189896665951463/154626526964780096*x^13-1868556244211686049869/154626526964780096*x^12+5663744465467580011047/154626526964780096*x^11+2885177144106761857731/154626526964780096*x^10-7356334349617622597347/154626526964780096*x^9-2533640325967535251555/154626526964780096*x^8+176424820035076364909/4832078967649378*x^7+1059232063151933495967/154626526964780096*x^6-282982611182841518911/19328315870597512*x^5-6783269681089184067/9664157935298756*x^4+5849252779116850044/2416039483824689*x^3-1842809530593762597/9664157935298756*x^2-198747817175734094/2416039483824689*x+30273790865496723/2416039483824689,65656112147742251/618506107859120384*x^25+10375673337710817/309253053929560192*x^24-2822201815919056525/618506107859120384*x^23-889738846283759921/618506107859120384*x^22+52829778649655403793/618506107859120384*x^21+16580584390992559387/618506107859120384*x^20-565290592996993899079/618506107859120384*x^19-176003797134111449551/618506107859120384*x^18+1907651598612382911725/309253053929560192*x^17+1169513158714447418457/618506107859120384*x^16-16910200049446342903263/618506107859120384*x^15-5023204878143048616145/618506107859120384*x^14+49699208942178544544289/618506107859120384*x^13+13876135324370740718991/618506107859120384*x^12-95628933217123903268853/618506107859120384*x^11-23721691283881082684499/618506107859120384*x^10+116330913436966558970129/618506107859120384*x^9+23130896872620346280571/618506107859120384*x^8-655972931017878638773/4832078967649378*x^7-2736289406989009382227/154626526964780096*x^6+1003756215693545203703/19328315870597512*x^5+46884857350281933033/19328315870597512*x^4-164879743763169148121/19328315870597512*x^3+2020854318529102097/4832078967649378*x^2+1684992635394927047/4832078967649378*x-65625674033591298/2416039483824689,-26855390630130931/309253053929560192*x^25-533455301792255/77313263482390048*x^24+1144733303407208417/309253053929560192*x^23+105449559218637135/309253053929560192*x^22-21225401377224350915/309253053929560192*x^21-2255305416999625273/309253053929560192*x^20+224679623386828522029/309253053929560192*x^19+27330958990851922817/309253053929560192*x^18-46817760895882357965/9664157935298756*x^17-205517504119654892437/309253053929560192*x^16+6551496564010627398377/309253053929560192*x^15+985617139899510956323/309253053929560192*x^14-18973299300077098464483/309253053929560192*x^13-2985029578250747169917/309253053929560192*x^12+35930229022446316685459/309253053929560192*x^11+5466820783003066708265/309253053929560192*x^10-42970065561628294111223/309253053929560192*x^9-5546252251761476835161/309253053929560192*x^8+15235408572403679212959/154626526964780096*x^7+652680677828681825793/77313263482390048*x^6-1433121154936485846251/38656631741195024*x^5-17678119118850968543/19328315870597512*x^4+29172263575227468901/4832078967649378*x^3-1512651843443052025/4832078967649378*x^2-633886799502314386/2416039483824689*x+52139113121572668/2416039483824689,60166597258267563/618506107859120384*x^25+395202586687591/309253053929560192*x^24-2553718586362508837/618506107859120384*x^23-86806555389895861/618506107859120384*x^22+47105944308862011325/618506107859120384*x^21+2716344467727527855/618506107859120384*x^20-495496902460019074459/618506107859120384*x^19-41692333847033391467/618506107859120384*x^18+1639237469889937743455/309253053929560192*x^17+368855559684931024225/618506107859120384*x^16-14199923132204739221211/618506107859120384*x^15-1994140228784523803197/618506107859120384*x^14+40632030070040651491213/618506107859120384*x^13+6650769065691434446803/618506107859120384*x^12-75774357815327124704825/618506107859120384*x^11-13338659558194553388999/618506107859120384*x^10+88818415847738160513733/618506107859120384*x^9+15135974931914865805055/618506107859120384*x^8-15323199192292792654229/154626526964780096*x^7-2176311555648773641323/154626526964780096*x^6+1384975414788801864911/38656631741195024*x^5+123406275944681811165/38656631741195024*x^4-104780231032893912089/19328315870597512*x^3-366815333206146175/9664157935298756*x^2+474670583379550183/2416039483824689*x-14700746571043152/2416039483824689,-13325586402375983/309253053929560192*x^25+5778590445692791/154626526964780096*x^24+552759299654242025/309253053929560192*x^23-458544744375432155/309253053929560192*x^22-9923189350930765309/309253053929560192*x^21+7778521783969637193/309253053929560192*x^20+101083651862699927915/309253053929560192*x^19-73631448452379149693/309253053929560192*x^18-322015447224623095233/154626526964780096*x^17+426191652555466331235/309253053929560192*x^16+2669108675307944554627/309253053929560192*x^15-1557261010702665915507/309253053929560192*x^14-7258233018478526734613/309253053929560192*x^13+3592113972247472447213/309253053929560192*x^12+12771162952055785007921/309253053929560192*x^11-5111410674377317326201/309253053929560192*x^10-14017394282583809174077/309253053929560192*x^9+4289731890133039145489/309253053929560192*x^8+562556328224331888867/19328315870597512*x^7-497673000348463984739/77313263482390048*x^6-379816419199121374241/38656631741195024*x^5+62669894616615612089/38656631741195024*x^4+27832163716760689691/19328315870597512*x^3-1241201197954240597/4832078967649378*x^2-348571642454362727/4832078967649378*x+36385187762430771/2416039483824689,-4680557580279153/38656631741195024*x^25-1228899682900723/309253053929560192*x^24+795400184519014079/154626526964780096*x^23+83484984927090145/309253053929560192*x^22-29382707850976381199/309253053929560192*x^21-2197924525875026069/309253053929560192*x^20+309641884114419411281/309253053929560192*x^19+30886685385440736043/309253053929560192*x^18-2054081314557294297069/309253053929560192*x^17-129787417349202897679/154626526964780096*x^16+8929370692087299325219/309253053929560192*x^15+1360077040884956983471/309253053929560192*x^14-25683507279225165262811/309253053929560192*x^13-4452720270473117906701/309253053929560192*x^12+48251183648251196728461/309253053929560192*x^11+8850153091389203024281/309253053929560192*x^10-57153174267941126696785/309253053929560192*x^9-10038514395214748441749/309253053929560192*x^8+40033292065756809238033/309253053929560192*x^7+1456006590992700764117/77313263482390048*x^6-462397811147250887603/9664157935298756*x^5-10539210725933163072/2416039483824689*x^4+145462184843115326605/19328315870597512*x^3+234143037990000513/4832078967649378*x^2-735819455333610354/2416039483824689*x+37993571013219577/2416039483824689,53597055313393197/309253053929560192*x^25+511725077172671/19328315870597512*x^24-2296265766472341007/309253053929560192*x^23-363352082912574165/309253053929560192*x^22+42828484897563866849/309253053929560192*x^21+7026824183985983171/309253053929560192*x^20-456468044002321567727/309253053929560192*x^19-77561641318788691395/309253053929560192*x^18+767003832420341234995/77313263482390048*x^17+535765746100226577467/309253053929560192*x^16-13541060937484036311667/309253053929560192*x^15-2381731424803541030833/309253053929560192*x^14+39641545832859221047617/309253053929560192*x^13+6736605503618510694095/309253053929560192*x^12-76035642068896427781001/309253053929560192*x^11-11539343301701188766003/309253053929560192*x^10+92338568947223298750165/309253053929560192*x^9+10763697869779978031219/309253053929560192*x^8-33351474422360381753735/154626526964780096*x^7-1056290909159566759745/77313263482390048*x^6+3206199786280425934697/38656631741195024*x^5-2704544879281497687/9664157935298756*x^4-266306811054946101611/19328315870597512*x^3+2624469983214958364/2416039483824689*x^2+2798972978172847159/4832078967649378*x-139804760268539123/2416039483824689,-2478374203365673/38656631741195024*x^25-585155837259433/38656631741195024*x^24+213426584395225541/77313263482390048*x^23+1564020686583059/2416039483824689*x^22-4004128233636943101/77313263482390048*x^21-929477079902653063/77313263482390048*x^20+42972655131268380571/77313263482390048*x^19+9819087734260505477/77313263482390048*x^18-291207466722483561095/77313263482390048*x^17-64748401720606761727/77313263482390048*x^16+324480479883351258037/19328315870597512*x^15+274337908111034067817/77313263482390048*x^14-3844787837270026269385/77313263482390048*x^13-738327316232828199379/77313263482390048*x^12+7482134871304434020575/77313263482390048*x^11+1196641245932033180773/77313263482390048*x^10-9252811124322551419471/77313263482390048*x^9-1031200199677419805217/77313263482390048*x^8+6840610359986337082869/77313263482390048*x^7+324941736138787728125/77313263482390048*x^6-1354554026081790655285/38656631741195024*x^5+16789815159141098887/19328315870597512*x^4+29066564443448973683/4832078967649378*x^3-2878665198949109103/4832078967649378*x^2-590017080726051564/2416039483824689*x+65993144208792064/2416039483824689,25589397372339839/618506107859120384*x^25+5688524087829171/309253053929560192*x^24-1091877423555447329/618506107859120384*x^23-491574128575847825/618506107859120384*x^22+20254131463232121033/618506107859120384*x^21+9246333574087554579/618506107859120384*x^20-214266688718507290863/618506107859120384*x^19-99283447745763487999/618506107859120384*x^18+712635198573129635379/309253053929560192*x^17+669666528482852178413/618506107859120384*x^16-6198726070581174982431/618506107859120384*x^15-2937688487216090403401/618506107859120384*x^14+17765395844383561332281/618506107859120384*x^13+8382895415052845524999/618506107859120384*x^12-33030550499676000108245/618506107859120384*x^11-15129683209859408545675/618506107859120384*x^10+38297382844878283658993/618506107859120384*x^9+16287192773961047948515/618506107859120384*x^8-6446227644174140151985/154626526964780096*x^7-2363523381543430706667/154626526964780096*x^6+552246448527084867511/38656631741195024*x^5+150982471023324880331/38656631741195024*x^4-36582051246265238919/19328315870597512*x^3-2083897878116117419/9664157935298756*x^2+127096049792997747/2416039483824689*x-8084442956906186/2416039483824689,23107592161191521/309253053929560192*x^25-75547973402893/38656631741195024*x^24-986213110337518919/309253053929560192*x^23+9873748003596199/309253053929560192*x^22+18313638722990952769/309253053929560192*x^21+143558744464034059/309253053929560192*x^20-194216436193537416695/309253053929560192*x^19-5267009501704785347/309253053929560192*x^18+81130204945165059333/19328315870597512*x^17+60539661374209165875/309253053929560192*x^16-5693935632173599483567/309253053929560192*x^15-363566793919327916241/309253053929560192*x^14+16557039729279341678505/309253053929560192*x^13+1233699381097831325943/309253053929560192*x^12-31524950490715699638409/309253053929560192*x^11-2295745743880393116179/309253053929560192*x^10+37968673079390401212245/309253053929560192*x^9+2011161793797673867587/309253053929560192*x^8-13579680359285103091569/154626526964780096*x^7-5390401825430997031/4832078967649378*x^6+1290532429569027087073/38656631741195024*x^5-7267269712719432175/4832078967649378*x^4-53399158634896094875/9664157935298756*x^3+3140660260856990157/4832078967649378*x^2+640139206700199790/2416039483824689*x-76898339633254128/2416039483824689,1695753868648249/154626526964780096*x^25-6214789855318879/154626526964780096*x^24-66728344129685177/154626526964780096*x^23+63629890578828207/38656631741195024*x^22+561264934634951123/77313263482390048*x^21-2248162809996898283/77313263482390048*x^20-5276270004334285381/77313263482390048*x^19+11218926093550638951/38656631741195024*x^18+60941414940264183991/154626526964780096*x^17-278534545194804834595/154626526964780096*x^16-7026943971866338485/4832078967649378*x^15+558157273049295766701/77313263482390048*x^14+269853914451051406797/77313263482390048*x^13-1454134052588448873121/77313263482390048*x^12-53732553495580897099/9664157935298756*x^11+2422138251137316872561/77313263482390048*x^10+119059779133892408017/19328315870597512*x^9-2477694719400169894391/77313263482390048*x^8-780485126589281458597/154626526964780096*x^7+726494612040499464741/38656631741195024*x^6+28048777827220239959/9664157935298756*x^5-54660083246501512737/9664157935298756*x^4-4027566712512521405/4832078967649378*x^3+3344779038764771011/4832078967649378*x^2+122201972240523052/2416039483824689*x-43976835484335628/2416039483824689,-10279272389350531/309253053929560192*x^25-90849373247233/154626526964780096*x^24+435321020250383909/309253053929560192*x^23+17608769140574737/309253053929560192*x^22-8008749892615108281/309253053929560192*x^21-533758177585665803/309253053929560192*x^20+83979333294865920119/309253053929560192*x^19+8098339287988391375/309253053929560192*x^18-276806090393846101609/154626526964780096*x^17-71468810959878973001/309253053929560192*x^16+2387640331042342842159/309253053929560192*x^15+388046703329630548121/309253053929560192*x^14-6799709628503204752433/309253053929560192*x^13-1310100448231253705471/309253053929560192*x^12+12620395935252432241109/309253053929560192*x^11+2693508148774260116211/309253053929560192*x^10-14743396144823219243041/309253053929560192*x^9-3210819541239382924059/309253053929560192*x^8+1274345142334765653629/38656631741195024*x^7+512880782167282787969/77313263482390048*x^6-468450232497133960401/38656631741195024*x^5-38407191875804099899/19328315870597512*x^4+4634374732206361037/2416039483824689*x^3+1004221119315459239/4832078967649378*x^2-170544780213571342/2416039483824689*x-7397998902505716/2416039483824689,-11623061769458875/618506107859120384*x^25-4074576320352045/309253053929560192*x^24+509644016293371981/618506107859120384*x^23+332786174448142665/618506107859120384*x^22-9761228921362594937/618506107859120384*x^21-5861536850533929107/618506107859120384*x^20+107243696391381578399/618506107859120384*x^19+58314742788683990903/618506107859120384*x^18-373129355567530483537/309253053929560192*x^17-360200605810728895129/618506107859120384*x^16+3426923708318572821671/618506107859120384*x^15+1428358044536739611577/618506107859120384*x^14-10499484198109339243881/618506107859120384*x^13-3625557196272615741383/618506107859120384*x^12+21233216930815982904909/618506107859120384*x^11+5673013278904395472491/618506107859120384*x^10-27461796406161130805449/618506107859120384*x^9-5010189454980409518067/618506107859120384*x^8+2679561467159692163465/77313263482390048*x^7+510241667074290645107/154626526964780096*x^6-285500920372477092017/19328315870597512*x^5-4376790575113717331/19328315870597512*x^4+55997936192738202573/19328315870597512*x^3-670957796973375053/4832078967649378*x^2-876040943301339071/4832078967649378*x+26691195620503166/2416039483824689,5440807518831347/154626526964780096*x^25+730522262045643/19328315870597512*x^24-242482064697250505/154626526964780096*x^23-238375212326307411/154626526964780096*x^22+4723334961489968155/154626526964780096*x^21+4189684094934421797/154626526964780096*x^20-52789562055251259085/154626526964780096*x^19-41533466317142978393/154626526964780096*x^18+46693445255947632363/19328315870597512*x^17+255160204821918904145/154626526964780096*x^16-1742280944733759776705/154626526964780096*x^15-1004318414548746131827/154626526964780096*x^14+5408611292199121813063/154626526964780096*x^13+2525788752389817193069/154626526964780096*x^12-11036181112974554162411/154626526964780096*x^11-3912736210418016472385/154626526964780096*x^10+14302228972535310411015/154626526964780096*x^9+3427576812067773413785/154626526964780096*x^8-5526495966161819643695/77313263482390048*x^7-21909396989240206005/2416039483824689*x^6+1138730086309840578557/38656631741195024*x^5+29127572335592488431/38656631741195024*x^4-102278899030448508401/19328315870597512*x^3+782297171594096444/2416039483824689*x^2+591661684555735238/2416039483824689*x-46670531894349185/2416039483824689,10977953717884489/309253053929560192*x^25-4605902837975015/154626526964780096*x^24-460485995631578651/309253053929560192*x^23+373824941779685793/309253053929560192*x^22+8384593353563927203/309253053929560192*x^21-6529763025896392863/309253053929560192*x^20-86980905611429745733/309253053929560192*x^19+64272072833878029331/309253053929560192*x^18+283752738309388779191/154626526964780096*x^17-392524523861219226313/309253053929560192*x^16-2427079501373034212433/309253053929560192*x^15+1547384169981952284909/309253053929560192*x^14+6884657719205902384915/309253053929560192*x^13-3984578714267944160819/309253053929560192*x^12-12831299726430343658991/309253053929560192*x^11+6662052889212471929535/309253053929560192*x^10+15247887259942904850771/309253053929560192*x^9-7059142582865723258119/309253053929560192*x^8-1366075307408487937939/38656631741195024*x^7+280558805167525418443/19328315870597512*x^6+536032304665739145923/38656631741195024*x^5-95951528003455534365/19328315870597512*x^4-12035161494691267015/4832078967649378*x^3+3553150947524990273/4832078967649378*x^2+331278709940212634/2416039483824689*x-68390277540785186/2416039483824689,9465396412009275/77313263482390048*x^25+2097023005232803/77313263482390048*x^24-101856904478542991/19328315870597512*x^23-22207518552842391/19328315870597512*x^22+7641110359140318317/77313263482390048*x^21+1633207339114200383/77313263482390048*x^20-81972593989827925227/77313263482390048*x^19-17073977085287281291/77313263482390048*x^18+69404695251407907183/9664157935298756*x^17+55680879566243996587/38656631741195024*x^16-618326626768500367129/19328315870597512*x^15-466130726393007875753/77313263482390048*x^14+7320995641599923730389/77313263482390048*x^13+1235070600113306677991/77313263482390048*x^12-14230713250718190131093/77313263482390048*x^11-1951210251030115747005/77313263482390048*x^10+17564712636077188313125/77313263482390048*x^9+1583920052910513032157/77313263482390048*x^8-1617605547768743125491/9664157935298756*x^7-369806636236278091035/77313263482390048*x^6+2547810459944532768731/38656631741195024*x^5-52154050355210714377/19328315870597512*x^4-108764747511109723565/9664157935298756*x^3+6040102639050889241/4832078967649378*x^2+1161933569828045156/2416039483824689*x-140303566313905602/2416039483824689,1559166091272763/309253053929560192*x^25-5844069139011969/309253053929560192*x^24-60367594775526875/309253053929560192*x^23+29638268126695543/38656631741195024*x^22+497363772268897035/154626526964780096*x^21-2070574196043121303/154626526964780096*x^20-4551829862106555577/154626526964780096*x^19+5094324477392306351/38656631741195024*x^18+50764439492382872825/309253053929560192*x^17-248585610420818235473/309253053929560192*x^16-44760244670522408037/77313263482390048*x^15+487347180293335321869/154626526964780096*x^14+203549604736452430941/154626526964780096*x^13-1234282967520955674017/154626526964780096*x^12-154254829890427193645/77313263482390048*x^11+1977814834316936815033/154626526964780096*x^10+169146964872481155611/77313263482390048*x^9-1903811947255867432795/154626526964780096*x^8-580398131369328800323/309253053929560192*x^7+494915904237424533055/77313263482390048*x^6+43280414974536800585/38656631741195024*x^5-26726295548962001895/19328315870597512*x^4-6299774683905609659/19328315870597512*x^3-4498942141592774/2416039483824689*x^2+81943951313388931/2416039483824689*x+32902997588153533/2416039483824689]]];

f[420,2]=[
[x+1, [-1,1,1,1], [0,-1,-1,-1,2,4,6,6,-8,-2,10,2,10,-4,-8,4,-8,6,12,-6,-12,-8,-4,-10,8]],
[x-1, [-1,1,-1,-1], [0,-1,1,1,-2,4,2,2,4,6,-2,10,-10,12,-8,0,-8,-2,-12,-10,4,0,-12,2,-8]],
[x+1, [-1,-1,1,-1], [0,1,-1,1,6,-4,6,2,0,6,-10,2,-6,-4,0,-12,0,14,-4,6,-4,-16,-12,6,-16]],
[x-1, [-1,-1,-1,1], [0,1,1,-1,2,4,2,-2,4,-2,-6,-6,6,-4,0,8,0,-10,-12,-14,4,-8,12,-14,8]]];

f[421,2]=[
[x^15+6*x^14-2*x^13-71*x^12-74*x^11+296*x^10+488*x^9-494*x^8-1157*x^7+205*x^6+1137*x^5+203*x^4-374*x^3-127*x^2+3*x+3, [1], [x,-25193/24617*x^14-139169/24617*x^13+111469/24617*x^12+1714563/24617*x^11+1101947/24617*x^10-7699217/24617*x^9-8792218/24617*x^8+15213141/24617*x^7+21912927/24617*x^6-12318890/24617*x^5-22124776/24617*x^4+1991679/24617*x^3+7618866/24617*x^2+844015/24617*x-229186/24617,22400/24617*x^14+122208/24617*x^13-106252/24617*x^12-1516251/24617*x^11-900656/24617*x^10+6884713/24617*x^9+7511320/24617*x^8-13885777/24617*x^7-18990607/24617*x^6+11807197/24617*x^5+19349004/24617*x^4-2528241/24617*x^3-6727668/24617*x^2-555389/24617*x+212047/24617,-9732/24617*x^14-52251/24617*x^13+49908/24617*x^12+654805/24617*x^11+351986/24617*x^10-3026606/24617*x^9-3132051/24617*x^8+6356091/24617*x^7+8147248/24617*x^6-6082602/24617*x^5-8594613/24617*x^4+2265940/24617*x^3+3152696/24617*x^2-229332/24617*x-135633/24617,15431/24617*x^14+87106/24617*x^13-62166/24617*x^12-1066618/24617*x^11-729237/24617*x^10+4759078/24617*x^9+5469436/24617*x^8-9377862/24617*x^7-13019022/24617*x^6+7761488/24617*x^5+12265003/24617*x^4-1665986/24617*x^3-3686252/24617*x^2-271133/24617*x-1979/24617,20552/24617*x^14+123942/24617*x^13-45052/24617*x^12-1495721/24617*x^11-1499873/24617*x^10+6485166/24617*x^9+10133695/24617*x^8-11956949/24617*x^7-24682389/24617*x^6+8005410/24617*x^5+25309884/24617*x^4+535357/24617*x^3-9036331/24617*x^2-1313376/24617*x+200892/24617,-22369/24617*x^14-143737/24617*x^13+12512/24617*x^12+1712070/24617*x^11+2095321/24617*x^10-7260440/24617*x^9-13200156/24617*x^8+12769687/24617*x^7+31439211/24617*x^6-7278221/24617*x^5-31704107/24617*x^4-2007574/24617*x^3+11119222/24617*x^2+1615379/24617*x-339807/24617,-44034/24617*x^14-245934/24617*x^13+170512/24617*x^12+2977902/24617*x^11+2217452/24617*x^10-12977225/24617*x^9-16641683/24617*x^8+24202052/24617*x^7+40814214/24617*x^6-17016384/24617*x^5-40931907/24617*x^4+361281/24617*x^3+14001439/24617*x^2+2037806/24617*x-402233/24617,38328/24617*x^14+212764/24617*x^13-162498/24617*x^12-2608718/24617*x^11-1756591/24617*x^10+11644851/24617*x^9+13710835/24617*x^8-22892062/24617*x^7-34026157/24617*x^6+18745886/24617*x^5+34553847/24617*x^4-3878121/24617*x^3-12348815/24617*x^2-590313/24617*x+478167/24617,50847/24617*x^14+311554/24617*x^13-94659/24617*x^12-3758611/24617*x^11-3915675/24617*x^10+16335309/24617*x^9+25977848/24617*x^8-30527054/24617*x^7-62823259/24617*x^6+22075756/24617*x^5+64133950/24617*x^4-1731884/24617*x^3-23124562/24617*x^2-1803712/24617*x+789075/24617,-33461/24617*x^14-195671/24617*x^13+117050/24617*x^12+2433349/24617*x^11+1885158/24617*x^10-11134701/24617*x^9-13802561/24617*x^8+22938972/24617*x^7+33916419/24617*x^6-20752676/24617*x^5-34066929/24617*x^4+5992804/24617*x^3+11660581/24617*x^2+253185/24617*x-375164/24617,29281/24617*x^14+164426/24617*x^13-119290/24617*x^12-2027035/24617*x^11-1434697/24617*x^10+9109718/24617*x^9+11105865/24617*x^8-18060362/24617*x^7-27890693/24617*x^6+15009554/24617*x^5+28753034/24617*x^4-3503675/24617*x^3-10182630/24617*x^2-198186/24617*x+382169/24617,-26309/24617*x^14-151869/24617*x^13+88963/24617*x^12+1853243/24617*x^11+1493778/24617*x^10-8229352/24617*x^9-10776922/24617*x^8+16128266/24617*x^7+26346728/24617*x^6-13357549/24617*x^5-26773637/24617*x^4+3054989/24617*x^3+9631890/24617*x^2+422236/24617*x-405524/24617,11459/24617*x^14+72610/24617*x^13+5434/24617*x^12-817883/24617*x^11-1229900/24617*x^10+3051984/24617*x^9+7546445/24617*x^8-3586312/24617*x^7-18005988/24617*x^6-1885147/24617*x^5+18504605/24617*x^4+4980143/24617*x^3-6539149/24617*x^2-1383196/24617*x+37186/24617,-20361/24617*x^14-113651/24617*x^13+69418/24617*x^12+1350666/24617*x^11+1156224/24617*x^10-5680917/24617*x^9-8429496/24617*x^8+9778271/24617*x^7+20946996/24617*x^6-5235031/24617*x^5-21735326/24617*x^4-1591331/24617*x^3+7651806/24617*x^2+1106371/24617*x-114552/24617,-23254/24617*x^14-162808/24617*x^13-42261/24617*x^12+1903572/24617*x^11+2854381/24617*x^10-7848331/24617*x^9-16746584/24617*x^8+13160613/24617*x^7+38806169/24617*x^6-6644655/24617*x^5-38821268/24617*x^4-2711920/24617*x^3+14137799/24617*x^2+1796074/24617*x-597833/24617,-126216/24617*x^14-705760/24617*x^13+531769/24617*x^12+8704150/24617*x^11+5870215/24617*x^10-39225868/24617*x^9-45800581/24617*x^8+78359758/24617*x^7+114030215/24617*x^6-65917808/24617*x^5-116014865/24617*x^4+14223571/24617*x^3+40964840/24617*x^2+2609745/24617*x-1497185/24617,-12242/24617*x^14-77550/24617*x^13+15701/24617*x^12+934241/24617*x^11+1027363/24617*x^10-4022484/24617*x^9-6559825/24617*x^8+7289023/24617*x^7+15385208/24617*x^6-4685561/24617*x^5-15165972/24617*x^4-352963/24617*x^3+5419138/24617*x^2+628481/24617*x-275654/24617,18399/24617*x^14+111176/24617*x^13-35134/24617*x^12-1306970/24617*x^11-1322205/24617*x^10+5467166/24617*x^9+8416814/24617*x^8-9538048/24617*x^7-18947009/24617*x^6+5628899/24617*x^5+17128220/24617*x^4+1215787/24617*x^3-4983110/24617*x^2-1317032/24617*x+80090/24617,-28360/24617*x^14-175121/24617*x^13+51704/24617*x^12+2114552/24617*x^11+2162252/24617*x^10-9236089/24617*x^9-14139622/24617*x^8+17477126/24617*x^7+33393573/24617*x^6-12919215/24617*x^5-32573883/24617*x^4+844867/24617*x^3+10728139/24617*x^2+1427913/24617*x-309832/24617,-73793/24617*x^14-425417/24617*x^13+239134/24617*x^12+5150010/24617*x^11+4322066/24617*x^10-22512841/24617*x^9-30914537/24617*x^8+42545629/24617*x^7+75704500/24617*x^6-31676759/24617*x^5-77288487/24617*x^4+3465587/24617*x^3+27681356/24617*x^2+2351668/24617*x-814755/24617,-61815/24617*x^14-326519/24617*x^13+316577/24617*x^12+4007699/24617*x^11+2157603/24617*x^10-17847609/24617*x^9-19081304/24617*x^8+34607257/24617*x^7+48924387/24617*x^6-26764150/24617*x^5-50755985/24617*x^4+3602098/24617*x^3+18387561/24617*x^2+1579736/24617*x-744664/24617,-1044/24617*x^14+26236/24617*x^13+126648/24617*x^12-287962/24617*x^11-1582956/24617*x^10+1019998/24617*x^9+7773353/24617*x^8-897281/24617*x^7-17829673/24617*x^6-1868184/24617*x^5+18745782/24617*x^4+3716079/24617*x^3-7426045/24617*x^2-1391953/24617*x+240028/24617,-27558/24617*x^14-157171/24617*x^13+108906/24617*x^12+1945099/24617*x^11+1357137/24617*x^10-8862746/24617*x^9-10251903/24617*x^8+18244842/24617*x^7+25119453/24617*x^6-16693544/24617*x^5-25141363/24617*x^4+5045778/24617*x^3+8807163/24617*x^2+171281/24617*x-375192/24617,56445/24617*x^14+335554/24617*x^13-154085/24617*x^12-4103257/24617*x^11-3765279/24617*x^10+18234981/24617*x^9+26420100/24617*x^8-35469621/24617*x^7-65633420/24617*x^6+28101738/24617*x^5+68689921/24617*x^4-4840525/24617*x^3-25351857/24617*x^2-1278987/24617*x+950187/24617]],
[x^19-4*x^18-20*x^17+93*x^16+145*x^15-874*x^14-402*x^13+4263*x^12-159*x^11-11551*x^10+3133*x^9+17375*x^8-5935*x^7-14018*x^6+4016*x^5+5896*x^4-1088*x^3-1185*x^2+101*x+89, [-1], [x,1430551/9117529*x^18-2454755/9117529*x^17-38550465/9117529*x^16+61521646/9117529*x^15+433188182/9117529*x^14-634476014/9117529*x^13-2625122576/9117529*x^12+3471841595/9117529*x^11+9256149754/9117529*x^10-10815766925/9117529*x^9-19082230913/9117529*x^8+19034855015/9117529*x^7+21961332366/9117529*x^6-17464171573/9117529*x^5-12883617829/9117529*x^4+6876539232/9117529*x^3+3602610333/9117529*x^2-873971523/9117529*x-365040381/9117529,878109/9117529*x^18-3976489/18235058*x^17-21432487/9117529*x^16+93225979/18235058*x^15+430254627/18235058*x^14-443104396/9117529*x^13-2297447469/18235058*x^12+2196150081/9117529*x^11+3529600990/9117529*x^10-12170815053/18235058*x^9-12628043807/18235058*x^8+9426980563/9117529*x^7+6363626036/9117529*x^6-15616138215/18235058*x^5-3338288148/9117529*x^4+6319228471/18235058*x^3+808920540/9117529*x^2-881163033/18235058*x-131854079/18235058,-3123478/9117529*x^18+10913861/9117529*x^17+62919987/9117529*x^16-243654208/9117529*x^15-465583763/9117529*x^14+2157201832/9117529*x^13+1401909094/9117529*x^12-9590529875/9117529*x^11-392497374/9117529*x^10+22254628727/9117529*x^9-6746201733/9117529*x^8-25130945901/9117529*x^7+12798978544/9117529*x^6+11178019495/9117529*x^5-7155824038/9117529*x^4-1582051080/9117529*x^3+1443353266/9117529*x^2+25568693/9117529*x-93458019/9117529,-2511386/9117529*x^18+11518462/9117529*x^17+43831365/9117529*x^16-259192754/9117529*x^15-222042511/9117529*x^14+2323024199/9117529*x^13-240681170/9117529*x^12-10539230756/9117529*x^11+5909574641/9117529*x^10+25384240468/9117529*x^9-20487342529/9117529*x^8-31070335861/9117529*x^7+28829195477/9117529*x^6+17231982875/9117529*x^5-15964886849/9117529*x^4-4333558975/9117529*x^3+3475081261/9117529*x^2+391178212/9117529*x-233236203/9117529,-3069490/9117529*x^18+11917235/9117529*x^17+58364913/9117529*x^16-267836413/9117529*x^15-373504203/9117529*x^14+2394578183/9117529*x^13+544241389/9117529*x^12-10808158877/9117529*x^11+3973912107/9117529*x^10+25728350239/9117529*x^9-19534553843/9117529*x^8-30517753704/9117529*x^7+34046371348/9117529*x^6+15211847262/9117529*x^5-25581601586/9117529*x^4-2596994859/9117529*x^3+8234394600/9117529*x^2+32311354/9117529*x-879264013/9117529,-6632113/9117529*x^18+57597521/18235058*x^17+120726369/9117529*x^16-1301780639/18235058*x^15-1391464565/18235058*x^14+5870926341/9117529*x^13+623168701/18235058*x^12-26896805418/9117529*x^11+11531705461/9117529*x^10+131654576719/18235058*x^9-90325301861/18235058*x^8-82900008965/9117529*x^7+67175097742/9117529*x^6+96861536419/18235058*x^5-39574247231/9117529*x^4-25464584337/18235058*x^3+9502357248/9117529*x^2+2463637405/18235058*x-1542912925/18235058,-5516639/18235058*x^18+13176573/9117529*x^17+99047245/18235058*x^16-606829545/18235058*x^15-276657450/9117529*x^14+5622237595/18235058*x^13+55748063/9117529*x^12-13411210911/9117529*x^11+9644208749/18235058*x^10+70066834279/18235058*x^9-17476209983/9117529*x^8-49384719015/9117529*x^7+45770343899/18235058*x^6+35249025633/9117529*x^5-18479183815/18235058*x^4-11771476052/9117529*x^3+704326133/18235058*x^2+2724439229/18235058*x+204122672/9117529,-2207865/18235058*x^18+2327251/9117529*x^17+48348645/18235058*x^16-95491415/18235058*x^15-204145682/9117529*x^14+730118119/18235058*x^13+795349599/9117529*x^12-1193582541/9117529*x^11-2176156879/18235058*x^10+1780222845/18235058*x^9-1884574422/9117529*x^8+3842923456/9117529*x^7+16775418293/18235058*x^6-8509023970/9117529*x^5-20936566169/18235058*x^4+4924976367/9117529*x^3+10020156005/18235058*x^2-1568599917/18235058*x-709083774/9117529,-3739536/9117529*x^18+16446982/9117529*x^17+69831198/9117529*x^16-377013529/9117529*x^15-436206667/9117529*x^14+3472739560/9117529*x^13+629626804/9117529*x^12-16441145167/9117529*x^11+3988088439/9117529*x^10+42506626391/9117529*x^9-17418258848/9117529*x^8-59084727273/9117529*x^7+23004359724/9117529*x^6+41475666239/9117529*x^5-7562754341/9117529*x^4-13801558124/9117529*x^3-1068011639/9117529*x^2+1620353731/9117529*x+434704950/9117529,-8643167/9117529*x^18+31499454/9117529*x^17+175251345/9117529*x^16-717655156/9117529*x^15-1309535943/9117529*x^14+6548139116/9117529*x^13+4011244295/9117529*x^12-30528308217/9117529*x^11-1286359871/9117529*x^10+76861703466/9117529*x^9-19742260579/9117529*x^8-101713518615/9117529*x^7+40097830233/9117529*x^6+64967978999/9117529*x^5-25734298941/9117529*x^4-18829330586/9117529*x^3+5900523395/9117529*x^2+1895351283/9117529*x-372202951/9117529,-3651234/9117529*x^18+15382618/9117529*x^17+65763326/9117529*x^16-342756981/9117529*x^15-366430291/9117529*x^14+3026591132/9117529*x^13+8666401/9117529*x^12-13398920115/9117529*x^11+7208238367/9117529*x^10+30835742346/9117529*x^9-27497442139/9117529*x^8-34087739411/9117529*x^7+41638952128/9117529*x^6+13940693999/9117529*x^5-26126412945/9117529*x^4-1054174331/9117529*x^3+6918871923/9117529*x^2-237982061/9117529*x-668912884/9117529,-388418/9117529*x^18-8307066/9117529*x^17+32206180/9117529*x^16+192031125/9117529*x^15-609221949/9117529*x^14-1791527205/9117529*x^13+5149701884/9117529*x^12+8649015523/9117529*x^11-22854574368/9117529*x^10-23047848084/9117529*x^9+54988476666/9117529*x^8+33552662385/9117529*x^7-68575833661/9117529*x^6-25024919848/9117529*x^5+39517382456/9117529*x^4+8485773635/9117529*x^3-9832556043/9117529*x^2-1029057353/9117529*x+838536075/9117529,442797/18235058*x^18+6240083/9117529*x^17-39429795/18235058*x^16-301359925/18235058*x^15+378442497/9117529*x^14+2974689075/18235058*x^13-3218684193/9117529*x^12-7729548174/9117529*x^11+28622049537/18235058*x^10+45352025909/18235058*x^9-34322776383/9117529*x^8-37281511047/9117529*x^7+84464658407/18235058*x^6+31781784782/9117529*x^5-46676417051/18235058*x^4-11533866508/9117529*x^3+10404382689/18235058*x^2+2658781337/18235058*x-338048789/9117529,-20185313/18235058*x^18+36239306/9117529*x^17+417341953/18235058*x^16-1664476983/18235058*x^15-1619646486/9117529*x^14+15360372569/18235058*x^13+5492657111/9117529*x^12-36418139111/9117529*x^11-10299186705/18235058*x^10+188372103871/18235058*x^9-14389130604/9117529*x^8-130393364402/9117529*x^7+73198270989/18235058*x^6+89841398555/9117529*x^5-49927059781/18235058*x^4-28248654942/9117529*x^3+11808425589/18235058*x^2+6019191123/18235058*x-393505779/9117529,-8319539/9117529*x^18+43528976/9117529*x^17+130544074/9117529*x^16-981214844/9117529*x^15-401962300/9117529*x^14+8817743790/9117529*x^13-3829550682/9117529*x^12-40178404422/9117529*x^11+33580950836/9117529*x^10+97500210788/9117529*x^9-102391160791/9117529*x^8-121038063547/9117529*x^7+139057087176/9117529*x^6+68976792981/9117529*x^5-77787959748/9117529*x^4-17678477641/9117529*x^3+17545807852/9117529*x^2+1569846601/9117529*x-1329584112/9117529,11018361/18235058*x^18-30339709/9117529*x^17-157335065/18235058*x^16+1350831899/18235058*x^15+85382950/9117529*x^14-11910359387/18235058*x^13+4233660630/9117529*x^12+26301083137/9117529*x^11-60992030093/18235058*x^10-120592328067/18235058*x^9+89993278686/9117529*x^8+66254837848/9117529*x^7-249225646801/18235058*x^6-26934103444/9117529*x^5+151485669937/18235058*x^4+2259149791/9117529*x^3-39171986063/18235058*x^2+710418957/18235058*x+1746148236/9117529,8134832/9117529*x^18-32446487/9117529*x^17-157488521/9117529*x^16+740124696/9117529*x^15+1061800463/9117529*x^14-6764273163/9117529*x^13-2210523695/9117529*x^12+31607515353/9117529*x^11-6110030945/9117529*x^10-79823224923/9117529*x^9+37035430485/9117529*x^8+105993723961/9117529*x^7-62098148770/9117529*x^6-67562337542/9117529*x^5+39731903437/9117529*x^4+18719163865/9117529*x^3-10269923332/9117529*x^2-1646168644/9117529*x+902854602/9117529,-6106875/9117529*x^18+28390046/9117529*x^17+103751431/9117529*x^16-634788602/9117529*x^15-474817681/9117529*x^14+5633821745/9117529*x^13-1185410191/9117529*x^12-25149844406/9117529*x^11+17197180608/9117529*x^10+58825339233/9117529*x^9-57005523888/9117529*x^8-67767796973/9117529*x^7+79710093063/9117529*x^6+32500687698/9117529*x^5-45129887116/9117529*x^4-6523082657/9117529*x^3+10522243592/9117529*x^2+565325746/9117529*x-845618095/9117529,12639817/18235058*x^18-25696889/9117529*x^17-243747867/18235058*x^16+1171316297/18235058*x^15+820828398/9117529*x^14-10694231055/18235058*x^13-1768114850/9117529*x^12+24959732103/9117529*x^11-7816345995/18235058*x^10-126009956001/18235058*x^9+24328415924/9117529*x^8+83870102610/9117529*x^7-74697365669/18235058*x^6-54323827989/9117529*x^5+37502019455/18235058*x^4+16111301652/9117529*x^3-6244036413/18235058*x^2-3302673411/18235058*x+132918088/9117529,2688859/9117529*x^18-11056285/9117529*x^17-54726644/9117529*x^16+259419998/9117529*x^15+413821976/9117529*x^14-2465335973/9117529*x^13-1330207015/9117529*x^12+12182425662/9117529*x^11+957566599/9117529*x^10-33439667729/9117529*x^9+4014069545/9117529*x^8+50504075176/9117529*x^7-7998542504/9117529*x^6-39141380349/9117529*x^5+3432314940/9117529*x^4+13388171345/9117529*x^3-303164808/9117529*x^2-1389244477/9117529*x-18090196/9117529,7925944/9117529*x^18-27580004/9117529*x^17-165676624/9117529*x^16+631904056/9117529*x^15+1313765447/9117529*x^14-5813146931/9117529*x^13-4703419045/9117529*x^12+27446377495/9117529*x^11+5909102791/9117529*x^10-70562163111/9117529*x^9+6470701578/9117529*x^8+96936875041/9117529*x^7-22225185781/9117529*x^6-66400774334/9117529*x^5+15634179383/9117529*x^4+21321962080/9117529*x^3-3846935055/9117529*x^2-2482538346/9117529*x+243454268/9117529,28604169/18235058*x^18-57470492/9117529*x^17-547451041/18235058*x^16+2609767683/18235058*x^15+1794865583/9117529*x^14-23694084927/18235058*x^13-3224868031/9117529*x^12+54809202541/9117529*x^11-27808928879/18235058*x^10-272473349597/18235058*x^9+73541256389/9117529*x^8+176078305636/9117529*x^7-243390549255/18235058*x^6-107164445108/9117529*x^5+159302179113/18235058*x^4+28423865358/9117529*x^3-43012654983/18235058*x^2-4945088975/18235058*x+2004456309/9117529,4514440/9117529*x^18-7450147/9117529*x^17-111940297/9117529*x^16+158921144/9117529*x^15+1152600857/9117529*x^14-1306411474/9117529*x^13-6411247434/9117529*x^12+5065959957/9117529*x^11+21019952191/9117529*x^10-8555166745/9117529*x^9-41599980897/9117529*x^8+1623380812/9117529*x^7+48737944415/9117529*x^6+9973069683/9117529*x^5-31327936140/9117529*x^4-6476316088/9117529*x^3+9317851367/9117529*x^2+909961300/9117529*x-918023238/9117529,-1197089/9117529*x^18+26875559/18235058*x^17+325932/9117529*x^16-611784493/18235058*x^15+719159225/18235058*x^14+2792108677/9117529*x^13-8631690639/18235058*x^12-13060811577/9117529*x^11+22054763777/9117529*x^10+66482322651/18235058*x^9-113367147485/18235058*x^8-45367333148/9117529*x^7+72133410876/9117529*x^6+63129212749/18235058*x^5-40524272787/9117529*x^4-21962585227/18235058*x^3+9735917492/9117529*x^2+2868563325/18235058*x-1646987979/18235058]]];

f[422,2]=[
[x, [1,1], [-1,0,1,-2,-3,-7,4,7,-6,-6,2,-7,2,-3,7,6,12,-8,-8,-9,-10,-3,16,16,-12]],
[x^2-3*x+1, [1,-1], [-1,x,-2*x+4,4,-2*x+4,0,-2,4*x-6,4*x-6,x-5,-2*x+6,-4*x+6,-8*x+14,2*x+2,7*x-15,-4*x+6,4*x-2,x-1,5*x-13,9*x-16,-11*x+14,-5*x-3,-10,6*x-14,-8*x+18]],
[x^3+x^2-8*x-3, [1,1], [-1,x,-1/3*x^2-2/3*x,-x-2,1/3*x^2-1/3*x+1,-2/3*x^2-1/3*x,2/3*x^2+1/3*x-6,-x-5,3,-5/3*x^2-1/3*x+10,x^2+3*x-7,1/3*x^2-1/3*x-6,7/3*x^2+2/3*x-12,-x^2-2*x,1/3*x^2-1/3*x-4,4/3*x^2+14/3*x-11,-5/3*x^2-7/3*x+13,-x^2+2*x+4,x^2-3*x-5,-5/3*x^2+2/3*x+16,-2/3*x^2+2/3*x+3,-8/3*x^2-4/3*x+16,5/3*x^2+1/3*x-12,-3*x^2-x+13,1/3*x^2-13/3*x-2]],
[x^3+x^2-6*x-5, [1,-1], [-1,x,x^2-4,-x,-x^2+x+3,x+4,x+2,-x+3,-2*x-1,x^2-x,-x^2+x+5,x^2-x+2,-x^2+4,-x^2-2*x+2,-x^2+x+6,-2*x^2-4*x+9,x^2-x-9,x^2-2*x,x^2-x+5,x^2-10,-2*x^2+2*x+11,4*x+4,3*x^2-3*x-12,-x^2-3*x-5,3*x^2-3*x-10]],
[x^3+5*x^2+6*x+1, [-1,-1], [1,x,x^2+2*x-2,-2*x^2-7*x-6,-3*x^2-11*x-7,2*x^2+9*x+4,2*x^2+9*x+4,4*x^2+13*x+3,4*x^2+16*x+7,-3*x^2-5*x+8,-x^2-3*x-3,-5*x^2-19*x-12,-5*x^2-16*x-6,-3*x^2-16*x-12,x^2+x-4,-4*x-1,-x^2-9*x-15,-7*x^2-32*x-20,9*x^2+35*x+19,3*x^2+4*x-6,2*x^2+6*x-9,8*x^2+24*x+4,-5*x^2-11*x+2,-11*x^2-33*x-7,x^2+5*x-2]],
[x^6-4*x^5-4*x^4+28*x^3-15*x^2-33*x+28, [-1,1], [1,x,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,x^5-3*x^4-8*x^3+23*x^2+11*x-32,-3*x^5+8*x^4+23*x^3-53*x^2-30*x+63,x^5-3*x^4-7*x^3+20*x^2+6*x-22,-5*x^5+13*x^4+38*x^3-86*x^2-45*x+98,-3*x^5+8*x^4+22*x^3-53*x^2-24*x+62,-7*x^5+19*x^4+53*x^3-129*x^2-63*x+153,3*x^5-8*x^4-23*x^3+54*x^2+29*x-66,-8*x^5+20*x^4+61*x^3-130*x^2-72*x+149,-10*x^5+25*x^4+78*x^3-166*x^2-98*x+195,-5*x^5+13*x^4+39*x^3-88*x^2-48*x+102,x^5-4*x^4-6*x^3+29*x^2+4*x-36,10*x^5-26*x^4-76*x^3+173*x^2+92*x-204,2*x^5-6*x^4-15*x^3+44*x^2+21*x-60,-3*x^5+9*x^4+21*x^3-61*x^2-18*x+67,2*x^5-6*x^4-15*x^3+45*x^2+18*x-58,6*x^5-12*x^4-51*x^3+73*x^2+74*x-79,14*x^5-35*x^4-107*x^3+227*x^2+128*x-256,9*x^5-20*x^4-74*x^3+129*x^2+102*x-152,-2*x^5+3*x^4+19*x^3-15*x^2-36*x+16]]];

f[423,2]=[
[x+3, [1,1], [-2,0,-3,1,3,0,0,-4,-7,1,0,-3,-10,-12,-1,-2,6,14,-14,-6,-10,5,2,-2,9]],
[x-1, [1,-1], [2,0,3,1,-3,0,0,-4,7,-1,0,-3,10,-12,1,2,-6,14,-14,6,-10,5,-2,2,9]],
[x, [-1,1], [1,0,0,4,0,6,6,2,-4,-8,6,-6,8,-6,-1,-2,-12,2,-2,0,-10,-4,-4,10,-18]],
[x+3, [-1,1], [2,0,3,-3,5,2,6,-6,-9,-1,-2,1,-6,2,-1,0,12,-2,2,2,-2,-15,4,-10,1]],
[x, [-1,-1], [0,0,1,-3,3,-4,-8,-6,-3,1,4,1,10,-8,1,-10,10,2,4,6,-8,-3,18,2,5]],
[x+2, [-1,-1], [1,0,-2,0,-4,-2,-2,0,0,6,-4,-10,2,8,1,2,4,14,-8,-16,2,8,4,-18,-14]],
[x-1, [-1,-1], [-2,0,1,-3,-1,-2,-2,6,-3,-3,2,-7,-10,-10,1,-4,-8,-10,10,14,-10,17,-8,-6,1]],
[x^2-x-4, [-1,1], [x,0,x-1,-x+1,-x-3,2*x-4,-2*x,6,-3*x+3,x+7,-2*x+4,x+5,-2*x-2,-2*x+8,-1,4*x+2,-2*x-2,2,2*x,-2*x+2,2*x+4,-x-7,-2*x-2,4*x-2,-7*x+1]],
[x^3+2*x^2-3*x-2, [1,1], [x,0,-x-1,-x^2-2*x+1,x^2+2*x-5,2*x,-4,-x^2-x+2,x^2-3,2*x^2+x-9,3*x^2+7*x-6,-x^2+2*x+5,-3*x^2-5*x+4,x^2+x+2,-1,-4*x^2-6*x+6,2*x^2-6,-2*x-6,-3*x^2-9*x+4,-2*x^2+2*x+14,4*x^2+4*x-6,-x^2-2*x-3,-6*x^2-10*x+10,4*x^2+10*x-6,-5*x^2-10*x+9]],
[x^3-2*x^2-3*x+2, [1,-1], [x,0,-x+1,-x^2+2*x+1,-x^2+2*x+5,-2*x,4,-x^2+x+2,-x^2+3,-2*x^2+x+9,3*x^2-7*x-6,-x^2-2*x+5,3*x^2-5*x-4,x^2-x+2,1,4*x^2-6*x-6,-2*x^2+6,2*x-6,-3*x^2+9*x+4,2*x^2+2*x-14,4*x^2-4*x-6,-x^2+2*x-3,6*x^2-10*x-10,-4*x^2+10*x+6,-5*x^2+10*x+9]],
[x^4+x^3-5*x^2-5*x-1, [-1,1], [x,0,-4*x^3-2*x^2+20*x+10,-3*x^3-x^2+16*x+7,2*x^3+2*x^2-10*x-6,4*x^3+2*x^2-22*x-8,x^3-x^2-6*x,2*x^3-10*x-2,-2*x^3+12*x+4,-2*x^3-2*x^2+10*x+10,-4*x^3-2*x^2+22*x+8,-3*x^3-x^2+14*x+8,-2*x-2,2*x^3+2*x^2-14*x-8,-1,5*x^3+3*x^2-30*x-13,7*x^3+x^2-36*x-11,7*x^3+5*x^2-38*x-23,12*x^3+6*x^2-60*x-26,7*x^3+3*x^2-34*x-12,-2*x^2+4*x+12,-7*x^3-3*x^2+34*x+20,8*x^3+4*x^2-40*x-24,5*x^3-x^2-26*x-1,9*x^3+7*x^2-46*x-21]]];

f[424,2]=[
[x^2+2*x-1, [1,1], [0,x,-2,-2*x,-2*x-4,2*x-1,-3,3*x+2,x,-5,4*x+6,-4*x-5,4*x-2,-4*x,6*x+8,-1,-2*x-4,6,-2,3*x-6,4*x-2,5*x+10,-x-10,2,-10*x-15]],
[x^3-2*x^2-3*x+2, [-1,1], [0,x,-x^2+2*x+3,2,-x^2+5,x^2-2*x-4,2*x^2-4*x-5,-2*x^2+x+6,3*x^2-5*x-3,x^2-2*x-2,x^2-2*x+1,-3*x^2+6*x+6,-4*x+6,x^2-2*x-5,2*x+4,-1,-x^2+6*x+3,-2*x^2+2*x+2,4*x^2-2*x-16,-5*x+2,4*x^2-6*x-12,3*x^2-3*x-11,5*x-4,-x^2+4*x+5,4*x^2-8*x-13]],
[x^3+x^2-3*x-1, [-1,-1], [0,x,-x^2-2*x+1,x^2-5,x^2+2*x-3,2*x^2-5,-4*x^2-2*x+7,-x^2-x-1,-x^2+x+1,-x^2-2*x,-x^2-1,3*x^2+4*x-2,4*x^2+6*x-8,-x^2+2*x+5,-4*x-6,1,-2*x^2-2*x+2,-3*x^2+9,7*x^2+6*x-11,-5*x-6,-x^2-2*x+9,6*x^2+x-16,-5*x^2-7*x+13,-4*x-10,x^2-2*x-2]],
[x^5-x^4-13*x^3+9*x^2+42*x-16, [1,-1], [0,x,1/2*x^4-1/2*x^3-7/2*x^2+5/2*x+2,-x^3+7*x,-1/2*x^4+1/2*x^3+7/2*x^2-5/2*x,x^3-x^2-7*x+6,-1/2*x^4+1/2*x^3+5/2*x^2-5/2*x+6,-x^3+2*x^2+6*x-8,1/2*x^4-5/2*x^3-3/2*x^2+31/2*x-8,-2*x^3+x^2+12*x-2,1/2*x^4-1/2*x^3-7/2*x^2+1/2*x,-x^2+6,2*x^3-2*x^2-12*x+10,1/2*x^4+3/2*x^3-11/2*x^2-23/2*x+8,2*x^3-2*x^2-14*x+8,1,-1/2*x^4+3/2*x^3+11/2*x^2-19/2*x-8,-x^4-2*x^3+11*x^2+12*x-18,x^4-2*x^3-7*x^2+10*x,-x^4+x^3+9*x^2-6*x-12,-x^3+2*x^2+9*x-14,-1/2*x^4+7/2*x^3+7/2*x^2-41/2*x-8,-x^4+4*x^3+3*x^2-25*x+16,-1/2*x^4-1/2*x^3+11/2*x^2+5/2*x-10,1/2*x^4-7/2*x^3-1/2*x^2+47/2*x-10]]];

f[425,2]=[
[x, [1,1], [1,0,0,-4,0,2,-1,-4,-4,6,4,2,-6,-4,0,-6,-12,-10,-4,-4,6,12,4,10,-2]],
[x-1, [1,1], [-1,1,0,-1,-4,1,-1,-6,0,0,-7,4,-2,-4,6,-11,8,10,-8,7,-4,-11,8,-6,16]],
[x+2, [1,1], [-1,-2,0,2,2,-2,-1,0,-6,-6,-10,-2,10,-4,-12,10,8,-14,-8,-2,14,-14,-4,6,-2]],
[x+1, [-1,-1], [1,-1,0,1,-4,-1,1,-6,0,0,-7,-4,-2,4,-6,11,8,10,8,7,4,-11,-8,-6,-16]],
[x^2-3, [1,-1], [x,-x-1,0,x+1,x+3,4,1,-2*x+2,3*x+3,-2*x,-x+5,-2*x+4,-2*x,-2*x+4,-4*x-6,-6,-2*x+6,-4*x+2,10,5*x+3,-6*x+4,9*x-1,2*x-12,6*x-6,4*x-2]],
[x^2-2*x-1, [1,-1], [x,-x+3,0,x+1,-x-3,-2*x+2,1,2*x-2,-x+3,2*x-4,-3*x+3,6*x-4,6*x-4,4*x-6,-2*x+4,-4*x-2,-2*x-10,-4*x+6,2*x+4,3*x-3,-2*x+4,-x+5,8*x-6,-4*x-4,4*x-2]],
[x^4-2*x^3-4*x^2+8*x-1, [-1,1], [x,-x^3+x^2+4*x-2,0,-x+3,x^2+x-4,3*x^3-2*x^2-13*x+8,-1,2*x^3-2*x^2-10*x+8,-x^3-x^2+4*x+4,-2*x^3+10*x-2,-x^3-2*x^2+4*x+3,-2*x^3+10*x+2,x^3-x^2-7*x+3,-x^3+2*x^2+5*x-2,3*x^3-2*x^2-13*x+8,4*x^2-10,-2,x^3+3*x^2-5*x-7,3*x^3-13*x+2,-2*x^3-x^2+9*x,-3*x^3-x^2+17*x+1,x^3-5,3*x^3-4*x^2-15*x+10,4*x^3-3*x^2-16*x+15,-4*x^3+2*x^2+14*x-6]],
[x^4+2*x^3-4*x^2-8*x-1, [-1,-1], [x,-x^3-x^2+4*x+2,0,-x-3,x^2-x-4,3*x^3+2*x^2-13*x-8,1,-2*x^3-2*x^2+10*x+8,-x^3+x^2+4*x-4,2*x^3-10*x-2,x^3-2*x^2-4*x+3,-2*x^3+10*x-2,-x^3-x^2+7*x+3,-x^3-2*x^2+5*x+2,3*x^3+2*x^2-13*x-8,-4*x^2+10,-2,-x^3+3*x^2+5*x-7,3*x^3-13*x-2,2*x^3-x^2-9*x,-3*x^3+x^2+17*x-1,-x^3-5,3*x^3+4*x^2-15*x-10,-4*x^3-3*x^2+16*x+15,-4*x^3-2*x^2+14*x+6]],
[x^5+x^4-10*x^3-6*x^2+21*x-3, [1,-1], [x,-1/2*x^3+1/2*x^2+7/2*x-5/2,0,-1/2*x^4-1/2*x^3+7/2*x^2+5/2*x-2,1/2*x^4-4*x^2+x+9/2,-x^3+6*x-2,1,-x^2-2*x+5,1/2*x^4+x^3-3*x^2-6*x+3/2,x^4+x^3-8*x^2-5*x+9,-x^4-1/2*x^3+17/2*x^2+7/2*x-11/2,x^2-2*x-5,x^3-5*x,x^4-9*x^2-2*x+10,x^4+x^3-9*x^2-7*x+12,x^2,-x^4+x^3+8*x^2-5*x-3,x^3-x^2-7*x+5,2*x^3+2*x^2-12*x-8,1/2*x^4+3/2*x^3-5/2*x^2-23/2*x+3,-x^4+5*x^2+10,1/2*x^4+5/2*x^3-9/2*x^2-33/2*x+17,-x^4-x^3+7*x^2+5*x-6,-x^4-3*x^3+10*x^2+21*x-21,-x^4-x^3+7*x^2+7*x-8]],
[x^5-x^4-10*x^3+6*x^2+21*x+3, [-1,1], [x,-1/2*x^3-1/2*x^2+7/2*x+5/2,0,1/2*x^4-1/2*x^3-7/2*x^2+5/2*x+2,1/2*x^4-4*x^2-x+9/2,-x^3+6*x+2,-1,-x^2+2*x+5,-1/2*x^4+x^3+3*x^2-6*x-3/2,x^4-x^3-8*x^2+5*x+9,-x^4+1/2*x^3+17/2*x^2-7/2*x-11/2,-x^2-2*x+5,-x^3+5*x,-x^4+9*x^2-2*x-10,-x^4+x^3+9*x^2-7*x-12,-x^2,-x^4-x^3+8*x^2+5*x-3,-x^3-x^2+7*x+5,2*x^3-2*x^2-12*x+8,1/2*x^4-3/2*x^3-5/2*x^2+23/2*x+3,x^4-5*x^2-10,1/2*x^4-5/2*x^3-9/2*x^2+33/2*x+17,x^4-x^3-7*x^2+5*x+6,-x^4+3*x^3+10*x^2-21*x-21,x^4-x^3-7*x^2+7*x+8]]];

f[426,2]=[
[x+2, [1,1,1], [-1,-1,-2,2,-2,0,0,-4,-4,-6,-2,-6,0,-4,0,6,-10,0,4,-1,10,-8,-8,6,18]],
[x-3, [1,-1,1], [-1,1,3,-1,3,2,-6,5,-6,-9,11,-4,9,5,12,-6,-3,-1,-4,-1,-7,-10,-6,-6,14]],
[x-1, [-1,-1,-1], [1,1,1,3,-3,-6,-2,5,-6,5,7,8,7,-11,-12,-6,-5,-13,8,1,9,10,-6,-10,18]],
[x^2-2*x-7, [1,1,-1], [-1,-1,x,3/2*x-5/2,-1/2*x+11/2,-x-3,-x+1,1,-x+7,2*x+1,-5/2*x+7/2,-x-7,1/2*x-3/2,x+6,-x+1,6,1/2*x+1/2,-9/2*x+7/2,x+7,1,-7,3*x-5,-2*x,x-7,-2*x-8]],
[x^2+3*x-2, [1,-1,1], [-1,1,x,x+4,-x-2,2,-2*x,-3*x-2,2*x+4,x+4,x,2*x+6,-3*x-6,x+2,-4,-2*x,-3*x-2,x+4,2*x+6,-1,-5*x-8,-6*x-8,6*x+8,4*x-2,-18]],
[x^3-4*x^2-3*x+10, [-1,1,1], [1,-1,x,1/2*x^2-3/2*x-1,-1/2*x^2-1/2*x+5,-x^2+3*x+4,x^2-3*x,-x^2+2*x+4,x^2-3*x-2,-x^2+10,1/2*x^2+1/2*x-5,x^2-3*x-4,-3/2*x^2+9/2*x+5,-x-6,x^2-x-6,-2*x^2+6*x+6,1/2*x^2+5/2*x-9,1/2*x^2-7/2*x-3,-x^2+5*x-2,-1,x^2-6*x-6,x^2-7*x-2,2*x-8,3*x^2-7*x-8,-6]],
[x^3-x^2-12*x+4, [-1,-1,-1], [1,1,x,-x,1/2*x^2-1/2*x-3,-1/2*x^2-1/2*x+7,-x^2+x+6,-x-2,x^2-x-6,x-4,-x-4,2*x-2,x-6,-x^2+2*x+12,-x^2-x+6,3/2*x^2-1/2*x-11,3/2*x^2-3/2*x-13,-1/2*x^2+5/2*x+9,1/2*x^2-3/2*x-11,1,-2*x^2+3*x+16,x^2-x-6,-x^2+x+2,-4*x+2,x^2-3*x-4]]];

f[427,2]=[
[x+1, [1,1], [-1,1,0,-1,-5,4,-5,-7,9,-6,0,2,-10,1,7,-6,-6,-1,5,1,10,-3,1,-13,10]],
[x, [-1,1], [0,2,4,1,-2,2,5,-8,-6,2,1,4,0,8,-8,-12,1,-1,6,6,-10,-14,-2,10,-2]],
[x-1, [-1,-1], [1,1,-4,1,-3,-4,5,1,7,-10,-8,10,-6,-1,-9,-2,-6,1,3,-1,-2,-5,-15,5,14]],
[x^6+5*x^5+2*x^4-18*x^3-12*x^2+18*x+5, [1,1], [x,x^5+3*x^4-3*x^3-9*x^2+4*x+3,-x^5-3*x^4+2*x^3+7*x^2-2*x-2,-1,-x^5-3*x^4+3*x^3+9*x^2-4*x-4,-x^5-2*x^4+8*x^3+12*x^2-14*x-10,-x^4-4*x^3-x^2+9*x+2,-x^5-x^4+10*x^3+7*x^2-21*x-1,-2*x^4-6*x^3+3*x^2+11*x-5,x^5+6*x^4+6*x^3-14*x^2-13*x+5,x^5+2*x^4-4*x^3-2*x^2+9*x-3,2*x^4+4*x^3-5*x^2-6*x-3,2*x^5+3*x^4-14*x^3-15*x^2+19*x+12,-x^5-3*x^4-x+11,x^5+2*x^4-6*x^3-5*x^2+15*x-4,x^5+4*x^4-x^3-13*x^2+x+1,-x^4-4*x^3+8*x+2,-1,-x^4-2*x^3+2*x^2+3*x-1,-3*x^5-10*x^4+5*x^3+29*x^2-16,x^5-9*x^3+4*x^2+20*x-6,-x^5-3*x^4+4*x^3+3*x^2-18*x+12,-2*x^5-4*x^4+7*x^3+3*x^2-11*x+11,x^5+x^4-10*x^3-8*x^2+19*x+4,x^5+5*x^4+6*x^3-11*x^2-21*x+8]],
[x^6+5*x^5+2*x^4-22*x^3-30*x^2+9, [-1,-1], [x,-1/3*x^5-5/3*x^4+1/3*x^3+25/3*x^2+4*x-5,x^5+3*x^4-4*x^3-15*x^2-2*x+6,1,-5/3*x^5-13/3*x^4+23/3*x^3+59/3*x^2-2*x-6,-x^5-4*x^4+2*x^3+20*x^2+10*x-10,2*x^5+7*x^4-6*x^3-33*x^2-13*x+6,x^5+3*x^4-4*x^3-15*x^2-3*x+5,2/3*x^5+10/3*x^4-2/3*x^3-47/3*x^2-7*x+3,-1/3*x^5-2/3*x^4+4/3*x^3+10/3*x^2+x-3,5*x^5+16*x^4-16*x^3-74*x^2-25*x+23,-2*x^5-6*x^4+8*x^3+27*x^2+4*x-7,-2*x^5-7*x^4+6*x^3+35*x^2+15*x-18,-x^5-3*x^4+6*x^3+16*x^2-5*x-7,-5/3*x^5-10/3*x^4+26/3*x^3+41/3*x^2-3*x,1/3*x^5-4/3*x^4-19/3*x^3+17/3*x^2+19*x-3,-4/3*x^5-11/3*x^4+10/3*x^3+46/3*x^2+12*x-6,1,-x^4-4*x^3+2*x^2+15*x+5,5/3*x^5+10/3*x^4-35/3*x^3-53/3*x^2+16*x+12,-7*x^5-22*x^4+25*x^3+106*x^2+26*x-46,-3*x^5-11*x^4+6*x^3+51*x^2+32*x-10,-8/3*x^5-22/3*x^4+35/3*x^3+107/3*x^2-x-21,5/3*x^5+13/3*x^4-14/3*x^3-62/3*x^2-19*x+6,5*x^5+17*x^4-16*x^3-85*x^2-29*x+38]],
[x^7-4*x^6-3*x^5+26*x^4-12*x^3-38*x^2+23*x+11, [-1,1], [x,-2*x^6+5*x^5+13*x^4-31*x^3-21*x^2+38*x+13,x^6-2*x^5-7*x^4+12*x^3+13*x^2-14*x-7,1,-x^6+2*x^5+7*x^4-13*x^3-13*x^2+18*x+9,x^6-4*x^5-6*x^4+26*x^3+10*x^2-34*x-9,4*x^6-10*x^5-27*x^4+64*x^3+47*x^2-83*x-28,x^5-x^4-6*x^3+3*x^2+7*x+3,-x^2-x+5,x^6-2*x^5-6*x^4+12*x^3+6*x^2-15*x+2,3*x^6-6*x^5-20*x^4+36*x^3+30*x^2-41*x-10,4*x^6-8*x^5-28*x^4+50*x^3+51*x^2-66*x-29,-x^6+x^5+9*x^4-6*x^3-21*x^2+5*x+11,-7*x^6+16*x^5+49*x^4-102*x^3-90*x^2+133*x+52,-6*x^6+15*x^5+40*x^4-94*x^3-65*x^2+115*x+36,x^6-2*x^5-8*x^4+13*x^3+19*x^2-17*x-12,3*x^6-9*x^5-19*x^4+58*x^3+30*x^2-72*x-21,-1,x^4-4*x^2-x-5,-8*x^6+17*x^5+54*x^4-103*x^3-91*x^2+120*x+50,-2*x^6+5*x^5+16*x^4-35*x^3-40*x^2+56*x+34,2*x^6-7*x^5-15*x^4+48*x^3+37*x^2-70*x-36,-5*x^6+13*x^5+34*x^4-85*x^3-61*x^2+113*x+42,-3*x^5+x^4+20*x^3+2*x^2-29*x-12,x^5+3*x^4-12*x^3-19*x^2+29*x+20]],
[x^9-5*x^8-3*x^7+45*x^6-32*x^5-108*x^4+123*x^3+30*x^2-43*x+4, [1,-1], [x,-5/16*x^8+9/8*x^7+37/16*x^6-85/8*x^5-15/8*x^4+217/8*x^3-161/16*x^2-161/16*x+7/4,1/8*x^8-1/4*x^7-9/8*x^6+5/4*x^5+15/4*x^4+3/4*x^3-43/8*x^2-43/8*x+5/2,-1,-1/16*x^8+5/8*x^7-15/16*x^6-41/8*x^5+93/8*x^4+85/8*x^3-461/16*x^2-13/16*x+27/4,1/8*x^8-1/4*x^7-9/8*x^6+5/4*x^5+19/4*x^4-5/4*x^3-83/8*x^2+21/8*x+9/2,-5/16*x^8+9/8*x^7+37/16*x^6-77/8*x^5-31/8*x^4+177/8*x^3-33/16*x^2-145/16*x+11/4,-5/16*x^8+9/8*x^7+37/16*x^6-85/8*x^5-15/8*x^4+225/8*x^3-193/16*x^2-241/16*x+31/4,1/16*x^8-5/8*x^7-1/16*x^6+57/8*x^5-37/8*x^4-173/8*x^3+269/16*x^2+189/16*x-11/4,x^8-4*x^7-6*x^6+36*x^5-4*x^4-88*x^3+53*x^2+32*x-14,-3/4*x^8+5/2*x^7+23/4*x^6-45/2*x^5-17/2*x^4+115/2*x^3-47/4*x^2-127/4*x+4,-1/2*x^8+2*x^7+5/2*x^6-16*x^5+3*x^4+33*x^3-43/2*x^2-11/2*x+10,-1/2*x^8+2*x^7+7/2*x^6-19*x^5-2*x^4+49*x^3-35/2*x^2-37/2*x+6,13/16*x^8-25/8*x^7-93/16*x^6+237/8*x^5+23/8*x^4-601/8*x^3+537/16*x^2+393/16*x-39/4,1/16*x^8+3/8*x^7-33/16*x^6-23/8*x^5+107/8*x^4+51/8*x^3-403/16*x^2-115/16*x+29/4,-1/2*x^8+x^7+11/2*x^6-9*x^5-19*x^4+22*x^3+37/2*x^2-23/2*x+6,1/8*x^8-5/4*x^7+7/8*x^6+45/4*x^5-49/4*x^4-125/4*x^3+237/8*x^2+189/8*x-29/2,1,1/16*x^8-5/8*x^7-1/16*x^6+73/8*x^5-61/8*x^4-285/8*x^3+477/16*x^2+541/16*x-27/4,-7/16*x^8+11/8*x^7+71/16*x^6-95/8*x^5-157/8*x^4+259/8*x^3+613/16*x^2-491/16*x-35/4,3/4*x^8-7/2*x^7-11/4*x^6+61/2*x^5-35/2*x^4-145/2*x^3+287/4*x^2+111/4*x-19,-3/16*x^8+7/8*x^7+3/16*x^6-59/8*x^5+71/8*x^4+135/8*x^3-423/16*x^2-23/16*x+1/4,-5/16*x^8+1/8*x^7+85/16*x^6-29/8*x^5-183/8*x^4+121/8*x^3+383/16*x^2-129/16*x-9/4,3/16*x^8-7/8*x^7-35/16*x^6+75/8*x^5+89/8*x^4-247/8*x^3-393/16*x^2+487/16*x+31/4,3/2*x^8-5*x^7-23/2*x^6+44*x^5+16*x^4-101*x^3+61/2*x^2+45/2*x-16]]];

f[428,2]=[
[x-1, [-1,1], [0,1,2,4,-3,5,-6,1,-1,6,4,-3,-5,6,8,-11,0,-5,-10,6,-16,-1,4,-3,12]],
[x+1, [-1,-1], [0,-1,2,-4,-5,1,2,-1,-3,-10,4,-7,3,-6,0,1,8,7,2,-6,-8,13,12,-3,-12]],
[x^2+3*x-1, [-1,-1], [0,x,-x-2,-1,1,-2,x-3,-2*x-6,2*x-1,5,2*x-3,-x+4,2*x+2,-x-4,-2*x-2,4*x+5,x,3*x+4,-2*x-6,3*x+12,2*x+3,-3*x-8,-5*x-2,-6*x-9,6*x+3]],
[x^5-5*x^4-2*x^3+32*x^2-10*x-43, [-1,1], [0,x,-2/3*x^4+5/3*x^3+4*x^2-19/3*x-17/3,1/3*x^4-1/3*x^3-3*x^2+2/3*x+19/3,-x^2+x+6,x^4-3*x^3-6*x^2+13*x+9,x^4-2*x^3-9*x^2+9*x+22,1/3*x^4-4/3*x^3-2*x^2+17/3*x+22/3,-2/3*x^4+5/3*x^3+5*x^2-25/3*x-23/3,-3,1/3*x^4-1/3*x^3-3*x^2-4/3*x+25/3,2/3*x^4-2/3*x^3-8*x^2+7/3*x+62/3,-4/3*x^4+7/3*x^3+14*x^2-38/3*x-103/3,-4/3*x^4+7/3*x^3+12*x^2-29/3*x-73/3,-5/3*x^4+11/3*x^3+15*x^2-58/3*x-104/3,-4/3*x^4+7/3*x^3+11*x^2-23/3*x-73/3,x^3-4*x^2-x+13,-5/3*x^4+11/3*x^3+12*x^2-46/3*x-65/3,-2*x^3+4*x^2+10*x-4,-x^3+2*x^2+3*x-7,-x^4+3*x^3+7*x^2-14*x-11,x^4-4*x^3-4*x^2+18*x+6,-1/3*x^4-2/3*x^3+7*x^2+7/3*x-67/3,2*x^4-6*x^3-11*x^2+23*x+16,-7/3*x^4+13/3*x^3+21*x^2-68/3*x-127/3]]];

f[429,2]=[
[x+1, [1,-1,-1], [-1,-1,0,0,1,1,-4,-8,0,4,-6,-6,6,-2,-8,6,0,-14,14,-4,6,-10,-12,12,-2]],
[x-1, [-1,1,-1], [-1,1,-2,0,-1,1,-6,-4,-8,-10,0,6,10,4,8,-10,-12,14,-12,0,-6,8,12,2,-14]],
[x^2-3, [1,1,1], [x,-1,-x-1,-2,-1,-1,-x+5,-2*x-4,-2,3*x+1,3*x-3,-2,2*x-2,3*x-1,2*x+2,2,2*x-10,-4*x-2,3*x-7,-4*x,-4*x-4,5*x+5,-8*x,5*x-7,-4*x+2]],
[x^2+2*x-1, [-1,-1,1], [x,1,x-1,-2*x-4,1,-1,-x-5,-6,-2*x,3*x+3,3*x+3,4*x+6,-12,5*x+3,-6*x-6,8*x+10,-2*x-10,-2,-5*x-1,-4*x-4,6*x+10,-5*x-7,8*x+8,-x-15,10]],
[x^3+x^2-5*x-3, [1,-1,1], [x,-1,x^2+x-4,x^2-3,1,-1,-x-1,-x^2+7,x^2+2*x-7,2*x^2+x-3,x^2+x+2,-2*x^2-4*x+6,x^2-4*x-5,2*x^2-x-13,-2*x^2-2*x+6,-2*x-4,-2*x^2-2*x+12,-2*x+2,-x^2-3*x+12,2*x^2-8,-3*x^2+4*x+15,x+7,2*x^2-2*x,-3*x^2-x+4,2*x^2+4*x-10]],
[x^3-3*x^2-x+5, [-1,1,1], [x,1,-x^2+x+4,-x^2+3,-1,-1,-x+1,x^2-3,-x^2-2*x+7,4*x^2-7*x-7,x^2-x+2,-4*x+4,x^2-5,-6*x^2+9*x+11,4*x^2-6*x-4,-4*x^2+2*x+12,2*x^2-2*x+4,2*x^2+2*x-12,7*x^2-9*x-16,-4*x^2+12*x+6,3*x^2-8*x-11,4*x^2-5*x-17,2*x^2-2*x,x^2-x-2,4*x-8]],
[x^3-x^2-3*x+1, [-1,-1,-1], [x,1,-x^2+x+2,-x^2+2*x+1,1,1,2*x^2-3*x-1,-x^2-2*x+5,x^2-2*x+1,-2*x^2+x+5,x^2-x-4,-2*x^2+2*x,-x^2-2*x+7,4*x^2-5*x-7,-2*x^2+4*x+4,6*x^2-2*x-14,2*x^2-6*x,2*x^2-6,3*x^2-x-6,-2*x^2-2*x+6,3*x^2+2*x-9,2*x^2-3*x+1,2*x-2,3*x^2+5*x-12,-2*x^2+2*x]],
[x^4+2*x^3-6*x^2-12*x-1, [1,1,-1], [x,-1,x^3-6*x-1,x^3-5*x,-1,1,-x^3-x^2+8*x+4,x^3-5*x+4,-x^2-2*x+3,-2*x^3-2*x^2+11*x+7,-x^3-2*x^2+4*x+11,x^3-x^2-5*x+3,x^3+2*x^2-5*x-8,-3*x^3-x^2+18*x+14,-x^3+x^2+3*x-3,2*x^2-2*x-10,2*x^3+4*x^2-12*x-14,-x^3-3*x^2+7*x+11,x^3-2*x^2-6*x+7,-x^3-3*x^2+5*x+15,-3*x^3+19*x+2,5*x^3+x^2-28*x-10,-2*x^3+2*x^2+12*x-8,-x^2+x+6,-x^3-3*x^2+x+13]]];

f[430,2]=[
[x+1, [1,1,1], [-1,0,-1,1,-4,-1,0,1,-4,-5,-9,4,-7,-1,6,-2,0,-7,15,-6,-5,9,0,0,-2]],
[x-1, [1,-1,-1], [-1,0,1,-3,0,-3,-4,-1,0,-3,7,-8,-7,1,-6,-6,-4,7,5,2,-1,9,8,4,-2]],
[x+1, [-1,1,-1], [1,-2,-1,-1,-6,5,-6,-7,-6,-3,5,2,-3,1,12,6,-12,-1,-13,12,11,-1,0,6,8]],
[x-1, [-1,-1,1], [1,-2,1,-5,-2,-5,2,3,-6,-1,-11,-10,5,-1,4,10,8,-3,-3,-8,7,7,0,6,12]],
[x^2-2*x-2, [1,-1,1], [-1,x,1,-2*x+3,-x+2,2*x-1,x+4,2*x-5,-3*x+6,-x+9,-x-7,-3*x+2,-2*x+1,-1,-x+8,-2*x,2*x-12,-x+1,3*x-3,x-6,3*x+1,-7*x+5,2*x-2,7*x-10,-9*x+6]],
[x^2-6, [-1,1,1], [1,x,-1,1,-x+2,-1,-x,-2*x+1,x+2,-x+7,-x-3,-x-2,2*x-7,-1,-x,4*x+4,-2*x,x-1,x-3,-3*x+6,x-5,-x+9,6,5*x+6,x-14]],
[x^2-2, [-1,-1,-1], [1,x,1,1,-x+2,-2*x+1,x,-1,-5*x+2,3*x-3,-x+1,3*x-2,-2*x+1,1,5*x,-4*x,2*x-4,5*x-7,-3*x+3,7*x+2,-3*x-5,-x-7,4*x-2,-5*x-2,11*x-2]],
[x^3+2*x^2-6*x-8, [1,1,-1], [-1,x,-1,1/2*x^2+x-4,-x^2+x+8,-3/2*x^2-x+6,x^2+x-2,-1/2*x^2+x+4,x^2+x,-1/2*x^2-4*x+2,3/2*x^2-8,-2*x^2-3*x+6,-3/2*x^2+x+14,1,x,-x^2-4*x+10,2*x^2+2*x-4,3/2*x^2+4*x-6,1/2*x^2-2*x-12,-x^2+x+4,5/2*x^2-2*x-18,3/2*x^2+2*x-8,-x^2-4*x+4,-4*x^2-3*x+14,-2*x^2-3*x+6]]];

f[431,2]=[
[x-1, [1], [-1,1,1,-2,-5,-2,-2,5,-1,-3,-4,4,2,-6,6,-9,15,-14,-2,-2,2,4,4,14,-13]],
[x-3, [-1], [-1,3,-3,2,1,-2,6,7,1,-7,4,4,2,6,-6,-13,-11,2,2,10,-6,4,12,-18,-5]],
[x^3-x^2-4*x+3, [1], [x,-x,-x^2+2,-2,0,-2,-2,x-4,x^2-x-3,3*x^2-x-7,-2*x^2+8,2*x-4,-x^2-x-3,2*x+6,4*x,2*x^2-x-2,-x^2+2*x-2,-2*x^2-x+2,-2,-2*x^2-4*x+6,-2*x^2-2*x+12,-2*x^2-2*x+4,-2*x^2+2*x+8,-2*x^2+2*x+8,-3*x^2-3*x+7]],
[x^3-5*x+1, [-1], [x,x^2-3,x^2+x-3,-2*x,-4,2*x^2-4,-2*x^2-2*x+6,-x^2+3,2*x^2+x-5,x-1,-2*x^2+2*x+8,4,x+3,2*x^2+4*x-12,4*x^2-10,x^2+2*x+3,x^2-x-3,x^2-2*x-1,-2*x^2-4*x+10,2*x^2-12,-2*x^2+2*x+8,-6*x^2-2*x+18,-2*x^2+4,-4*x^2-4*x+12,-4*x^2-x+13]],
[x^4+x^3-3*x^2-x+1, [1], [x,-x^3-x^2+3*x,x^3+x^2-3*x-2,-x^2-x+2,-x^3-2*x^2+2,2*x^3+3*x^2-4*x-4,-x^3+2*x^2+3*x-4,x^3+3*x^2-5,2*x^3+4*x^2-2*x-3,-x^2+2*x+1,x^3+x^2-3*x-7,-5*x^3-8*x^2+8*x+7,-2*x^2+4*x+5,-x^3-3*x^2+2*x,-5*x^3-9*x^2+8*x+8,-7*x^3-9*x^2+14*x+8,-x^3+2*x^2+4*x-3,2*x^3+4*x^2+2*x-3,6*x^3+6*x^2-13*x-1,4*x^3+6*x^2-4*x-2,-x^2-x-11,-8*x^3-9*x^2+13*x+7,7*x^3+7*x^2-17*x-8,-2*x^3+x^2+4*x-13,2*x^3+9*x^2-x-14]],
[x^24-x^23-40*x^22+40*x^21+692*x^20-687*x^19-6790*x^18+6631*x^17+41657*x^16-39533*x^15-166175*x^14+150668*x^13+434546*x^12-367120*x^11-733353*x^10+555013*x^9+766426*x^8-486022*x^7-458392*x^6+216189*x^5+133642*x^4-39443*x^3-11021*x^2+2767*x+13, [-1], [x,7935096512256799/3739222839496792400*x^23+810620141708163/3739222839496792400*x^22-173528413706803033/1869611419748396200*x^21-23895258075624573/3739222839496792400*x^20+3321529293701165417/1869611419748396200*x^19+252660572416622679/3739222839496792400*x^18-73061583647644979333/3739222839496792400*x^17-75898348765588621/373922283949679240*x^16+509534382412117002413/3739222839496792400*x^15-3325298853080540599/1869611419748396200*x^14-1172645596977846012287/1869611419748396200*x^13+903232533678644389/46740285493709905*x^12+3592287897607973222257/1869611419748396200*x^11-146985643477082908299/1869611419748396200*x^10-14402977230229462788321/3739222839496792400*x^9+590485552799907048989/3739222839496792400*x^8+9016487276459122122203/1869611419748396200*x^7-20629371559270104601/149568913579871696*x^6-6400831287872758553179/1869611419748396200*x^5+27385716846365639607/3739222839496792400*x^4+4165925951152361601299/3739222839496792400*x^3+1735042892911132546/46740285493709905*x^2-321943156993297734389/3739222839496792400*x+5458880528184681463/1869611419748396200,-3001918608458321/1869611419748396200*x^23-12759708706795807/1869611419748396200*x^22+287562107923492403/3739222839496792400*x^21+501204055954295587/1869611419748396200*x^20-1502875401940431783/934805709874198100*x^19-16932298038253081847/3739222839496792400*x^18+71928844431916175609/3739222839496792400*x^17+16082743684625791651/373922283949679240*x^16-543060246362583052439/3739222839496792400*x^15-942558898465922137941/3739222839496792400*x^14+672495179452626345253/934805709874198100*x^13+43971863404446227282/46740285493709905*x^12-4402363403637250822151/1869611419748396200*x^11-4160062215272089935323/1869611419748396200*x^10+9344614349012167227349/1869611419748396200*x^9+749898640478464070373/233701427468549525*x^8-24465019598760262751343/3739222839496792400*x^7-194198287645854433175/74784456789935848*x^6+4449007914580759656591/934805709874198100*x^5+3820952747901107923889/3739222839496792400*x^4-5722288875361777878787/3739222839496792400*x^3-65155149072801915771/373922283949679240*x^2+432741984388948972677/3739222839496792400*x+13141980820492227997/3739222839496792400,-35787630121593423/934805709874198100*x^23+60838198471411969/934805709874198100*x^22+2762862931361266489/1869611419748396200*x^21-1199874237164921817/467402854937099050*x^20-5701355671340015062/233701427468549525*x^19+81164032958702374919/1869611419748396200*x^18+420267533363728485827/1869611419748396200*x^17-76932407036315675173/186961141974839620*x^16-2364107843674217645287/1869611419748396200*x^15+4484158474116657032417/1869611419748396200*x^14+2082273536237051378129/467402854937099050*x^13-414568701735154291454/46740285493709905*x^12-9027675086674334802323/934805709874198100*x^11+19344563224878302703031/934805709874198100*x^10+11193625240884537479557/934805709874198100*x^9-6827092791113231079522/233701427468549525*x^8-12859267713092377364969/1869611419748396200*x^7+423349137133297982245/18696114197483962*x^6+78779879839721496879/233701427468549525*x^5-14513082675683417024733/1869611419748396200*x^4+1380624963049885371359/1869611419748396200*x^3+127841944903195665451/186961141974839620*x^2-199872708878746885179/1869611419748396200*x+2536591119424755451/1869611419748396200,67451628528872241/934805709874198100*x^23-178381295431168471/1869611419748396200*x^22-5263676873162652613/1869611419748396200*x^21+883990536502760732/233701427468549525*x^20+88165023682539439007/1869611419748396200*x^19-60082273243396943499/934805709874198100*x^18-828758988874183178759/1869611419748396200*x^17+228817619540220105807/373922283949679240*x^16+1199086738530658518801/467402854937099050*x^15-6695788342786408228039/1869611419748396200*x^14-2203960559996380512259/233701427468549525*x^13+2484792598180848632307/186961141974839620*x^12+5117534687443172292929/233701427468549525*x^11-29055452393678218321127/934805709874198100*x^10-7204941516849953122536/233701427468549525*x^9+82034651111372343981617/1869611419748396200*x^8+44915454252547421150973/1869611419748396200*x^7-631979535643729838637/18696114197483962*x^6-16212915484088264656369/1869611419748396200*x^5+10536673360327159360893/934805709874198100*x^4+2137673101958312288797/1869611419748396200*x^3-314055386251067002129/373922283949679240*x^2+10488029403829973459/934805709874198100*x-8195451031441757417/1869611419748396200,-3965788332294317/93480570987419810*x^23+3634312478198232/46740285493709905*x^22+611279236173504637/373922283949679240*x^21-573916898969329491/186961141974839620*x^20-5028730118744766573/186961141974839620*x^19+3887258035684495681/74784456789935848*x^18+92094632736615785917/373922283949679240*x^17-92280444266947515073/186961141974839620*x^16-512090653399603532709/373922283949679240*x^15+1078291414505118846211/373922283949679240*x^14+441096077126211234921/93480570987419810*x^13-999910732526446038811/93480570987419810*x^12-364938383406133393559/37392228394967924*x^11+4683768668335092704381/186961141974839620*x^10+1003342404512496038719/93480570987419810*x^9-6646727273593904524437/186961141974839620*x^8-1327357990671847060093/373922283949679240*x^7+1039734140656992144775/37392228394967924*x^6-587746046558773202937/186961141974839620*x^5-3658445731262792228403/373922283949679240*x^4+790005540385847834561/373922283949679240*x^3+189052398495358553097/186961141974839620*x^2-16741947394844237877/74784456789935848*x-1614440688059823903/373922283949679240,-29447136684089627/934805709874198100*x^23+26242082770678841/934805709874198100*x^22+2345774219566058361/1869611419748396200*x^21-1051490124684271081/934805709874198100*x^20-20179765126407933267/934805709874198100*x^19+36108015743634470311/1869611419748396200*x^18+393111367649484952283/1869611419748396200*x^17-34742062422939077753/186961141974839620*x^16-2387382828795524287593/1869611419748396200*x^15+2055713742392103141083/1869611419748396200*x^14+1173424114548608289668/233701427468549525*x^13-385990220104677040989/93480570987419810*x^12-12021016151207630045487/934805709874198100*x^11+9147877141766781032099/934805709874198100*x^10+19678938479459677643163/934805709874198100*x^9-3277892713557832986098/233701427468549525*x^8-39351539612496011857941/1869611419748396200*x^7+410660936171269500743/37392228394967924*x^6+11056654390522333660009/934805709874198100*x^5-6880564126349736047357/1869611419748396200*x^4-5916477909164850037369/1869611419748396200*x^3+40484263614205801513/186961141974839620*x^2+354268671653852247999/1869611419748396200*x-6811392445559260811/1869611419748396200,281324527852433579/3739222839496792400*x^23-487863155509851437/3739222839496792400*x^22-5433285670939605743/1869611419748396200*x^21+19248787131524483207/3739222839496792400*x^20+89738988857424479177/1869611419748396200*x^19-325624394582622090381/3739222839496792400*x^18-1653790237158210929973/3739222839496792400*x^17+308769485432725196897/373922283949679240*x^16+9293556051720599052513/3739222839496792400*x^15-9002463445374763282479/1869611419748396200*x^14-16316138267871312663867/1869611419748396200*x^13+832613639603157873633/46740285493709905*x^12+35047728827772297694077/1869611419748396200*x^11-77715498527294256512019/1869611419748396200*x^10-84686031783071407416061/3739222839496792400*x^9+219319594061300561909349/3739222839496792400*x^8+21934623940625771095853/1869611419748396200*x^7-6786257730990343557381/149568913579871696*x^6+2203243439578220729541/1869611419748396200*x^5+57801766203859116535267/3739222839496792400*x^4-8469578900572476561741/3739222839496792400*x^3-250495123848414801967/186961141974839620*x^2+1186889311028330763071/3739222839496792400*x-11938862166570034437/1869611419748396200,-300064858386950083/3739222839496792400*x^23+257215934031731507/1869611419748396200*x^22+1451537093226821259/467402854937099050*x^21-20306849741568284399/3739222839496792400*x^20-192347237029403583093/3739222839496792400*x^19+21482896856541313792/233701427468549525*x^18+1780425538563949674841/3739222839496792400*x^17-652354038136722868957/747844567899358480*x^16-5039977423176476678693/1869611419748396200*x^15+2379806836396731606627/467402854937099050*x^14+17927715416585691893119/1869611419748396200*x^13-7052637928883114100471/373922283949679240*x^12-9868618492719564725531/467402854937099050*x^11+82447215071084262345723/1869611419748396200*x^10+100848043033609128682127/3739222839496792400*x^9-116706853360008662737209/1869611419748396200*x^8-15687653704087081535383/934805709874198100*x^7+7265311263152485767021/149568913579871696*x^6+8538491663870001558411/3739222839496792400*x^5-3921068259642160526754/233701427468549525*x^4+4182140668683639313737/3739222839496792400*x^3+1138982061306427044877/747844567899358480*x^2-407401473617555930651/1869611419748396200*x-1564918695811353343/934805709874198100,123746154424603511/3739222839496792400*x^23-97855527515094349/1869611419748396200*x^22-2404341430872620187/1869611419748396200*x^21+7711085975715111123/3739222839496792400*x^20+80159023387407028921/3739222839496792400*x^19-65107715382203920407/1869611419748396200*x^18-749468325999438460527/3739222839496792400*x^17+49285578935300719769/149568913579871696*x^16+1078399864190620442613/934805709874198100*x^15-3583924832897931718611/1869611419748396200*x^14-7892325194318492176963/1869611419748396200*x^13+2645588380913185401099/373922283949679240*x^12+9153704654540844335169/934805709874198100*x^11-30817801415303532257681/1869611419748396200*x^10-52025429995054248404179/3739222839496792400*x^9+43509053521505799356793/1869611419748396200*x^8+21052772641180506610437/1869611419748396200*x^7-2707275799135844042433/149568913579871696*x^6-17252733288009915874887/3739222839496792400*x^5+11697403526580336482429/1869611419748396200*x^4+3258795554522567368601/3739222839496792400*x^3-402924597960333272653/747844567899358480*x^2-3900764045610082361/233701427468549525*x+11266173076706579377/1869611419748396200,-74331153196484057/1869611419748396200*x^23+44537224295419579/467402854937099050*x^22+2777371083381009163/1869611419748396200*x^21-7044560108709693211/1869611419748396200*x^20-43739839388714993087/1869611419748396200*x^19+119531173679220216603/1869611419748396200*x^18+46867496194078608693/233701427468549525*x^17-227571779188582385349/373922283949679240*x^16-1869277202179051591509/1869611419748396200*x^15+6667135146830276236339/1869611419748396200*x^14+2605311599599147538191/934805709874198100*x^13-2480927900756682671271/186961141974839620*x^12-2955728078598767556151/934805709874198100*x^11+7287587723976778978883/233701427468549525*x^10-7052400762745517024247/1869611419748396200*x^9-41505022280194972582601/934805709874198100*x^8+29958506931988938703917/1869611419748396200*x^7+2606580722914642385861/74784456789935848*x^6-33258467339853242066131/1869611419748396200*x^5-23144871264411291503801/1869611419748396200*x^4+1624991049349791126046/233701427468549525*x^3+512938210700342034217/373922283949679240*x^2-1125454309693886680273/1869611419748396200*x+2019438237556022657/1869611419748396200,-43549720290049949/373922283949679240*x^23+14170601039249629/93480570987419810*x^22+1698395884000162021/373922283949679240*x^21-2243193097444878423/373922283949679240*x^20-5686220275637555403/74784456789935848*x^19+38039190792584214067/373922283949679240*x^18+6677061224741748195/9348057098741981*x^17-361340669636851249047/373922283949679240*x^16-1544722186951023311289/373922283949679240*x^15+2109225810354888259703/373922283949679240*x^14+2837925217338127515403/186961141974839620*x^13-3902180574523987762189/186961141974839620*x^12-6590029525449853899589/186961141974839620*x^11+909713427720337832197/18696114197483962*x^10+18581957497928840094309/373922283949679240*x^9-12803406123747742303913/186961141974839620*x^8-14544555135823176402433/373922283949679240*x^7+3938055775625319006653/74784456789935848*x^6+5306581768390794512833/373922283949679240*x^5-1318129829562537309073/74784456789935848*x^4-175319470729785918039/93480570987419810*x^3+518123240683760203003/373922283949679240*x^2-9347559174541960237/373922283949679240*x-361238798587682663/373922283949679240,89193038851794301/934805709874198100*x^23-138714773014017893/934805709874198100*x^22-860186171348158096/233701427468549525*x^21+5470511954276046893/934805709874198100*x^20+14192173429533199984/233701427468549525*x^19-92444174940022128899/934805709874198100*x^18-522803879236003522857/934805709874198100*x^17+8750754609163422806/9348057098741981*x^16+2939498822120133439307/934805709874198100*x^15-1272568862250068478513/233701427468549525*x^14-5175579775908394086833/467402854937099050*x^13+938622878867497043932/46740285493709905*x^12+11210210907037800564183/467402854937099050*x^11-21823244116959759181921/467402854937099050*x^10-27730054783083320685539/934805709874198100*x^9+61374778336882272733101/934805709874198100*x^8+3931128316036333066496/233701427468549525*x^7-1896848821093091815191/37392228394967924*x^6-100630694284735602348/233701427468549525*x^5+16323431148302536680253/934805709874198100*x^4-1942796307551795538509/934805709874198100*x^3-156290146927065160069/93480570987419810*x^2+251488280027976746309/934805709874198100*x+2505032893397491766/233701427468549525,2026218631620301/233701427468549525*x^23-18594457245163367/934805709874198100*x^22-639121582821411797/1869611419748396200*x^21+362655541810290651/467402854937099050*x^20+5406711412027772099/934805709874198100*x^19-24265334109314982827/1869611419748396200*x^18-102603812279910383001/1869611419748396200*x^17+11377567651427486911/93480570987419810*x^16+598576915737107602141/1869611419748396200*x^15-1312370793629197109641/1869611419748396200*x^14-276473662764327896831/233701427468549525*x^13+24013006189893818291/9348057098741981*x^12+2564782858062180452159/934805709874198100*x^11-5544409053678167581903/934805709874198100*x^10-887396866536075209049/233701427468549525*x^9+1936755423108794989141/233701427468549525*x^8+5182088513883054929117/1869611419748396200*x^7-59473095557013084960/9348057098741981*x^6-709879235867928782243/934805709874198100*x^5+4048228132838620930329/1869611419748396200*x^4-42874377995521256577/1869611419748396200*x^3-3518619811381152105/18696114197483962*x^2+42242457771201108457/1869611419748396200*x-4954429938923080243/1869611419748396200,-114100088687039151/1869611419748396200*x^23+129687701989756393/1869611419748396200*x^22+1125382910425873221/467402854937099050*x^21-5161597362868219793/1869611419748396200*x^20-19138849385093124259/467402854937099050*x^19+88052743985853791749/1869611419748396200*x^18+735173739324147680957/1869611419748396200*x^17-4209078035048033247/9348057098741981*x^16-4387971652602859327107/1869611419748396200*x^15+618585489232118249194/233701427468549525*x^14+8444829848191484173133/934805709874198100*x^13-461420618584399215796/46740285493709905*x^12-21063221515802787961633/934805709874198100*x^11+21712451519496480281021/934805709874198100*x^10+66712784609740853699289/1869611419748396200*x^9-61781793349384394046701/1869611419748396200*x^8-15995347605167628143171/467402854937099050*x^7+1924433995547814855835/74784456789935848*x^6+4280452425600807571924/233701427468549525*x^5-16257476443056638363803/1869611419748396200*x^4-8828947232261382836791/1869611419748396200*x^3+115340569052756578769/186961141974839620*x^2+510323480242923880991/1869611419748396200*x-4760937335377346441/467402854937099050,1544916381655493/149568913579871696*x^23-20545313292166529/747844567899358480*x^22-27969971334163635/74784456789935848*x^21+816312304376956341/747844567899358480*x^20+1054554241676575919/186961141974839620*x^19-13913069214914094581/747844567899358480*x^18-33860406010150880247/747844567899358480*x^17+33247064788239349233/186961141974839620*x^16+150089941004254126501/747844567899358480*x^15-78208187496420345191/74784456789935848*x^14-154710819252860157721/373922283949679240*x^13+729789219363352075997/186961141974839620*x^12-73682192133657133103/373922283949679240*x^11-3437612881945501513661/373922283949679240*x^10+2282628086425716553357/747844567899358480*x^9+9798377248558446556977/747844567899358480*x^8-2496403451148620585299/373922283949679240*x^7-1535861855457294967947/149568913579871696*x^6+235678817802934483391/37392228394967924*x^5+2699713105445112400083/747844567899358480*x^4-1756939053639551137303/747844567899358480*x^3-140217736474774502659/373922283949679240*x^2+165436965978330021131/747844567899358480*x-462340018688210889/373922283949679240,-2540128655690125/37392228394967924*x^23+16469086580410393/93480570987419810*x^22+384844338707017757/149568913579871696*x^21-645061630501322057/93480570987419810*x^20-3858719334495220277/93480570987419810*x^19+86682150815887603441/747844567899358480*x^18+271995289804118287337/747844567899358480*x^17-408153606269449988461/373922283949679240*x^16-1420517582545916194671/747844567899358480*x^15+945637227857469775373/149568913579871696*x^14+545456261159311782559/93480570987419810*x^13-1086183697384833004033/46740285493709905*x^12-3457897686902305524847/373922283949679240*x^11+20155132392185886514861/373922283949679240*x^10+215972274869226050101/93480570987419810*x^9-28303515141064802753681/373922283949679240*x^8+11387134202474345260563/747844567899358480*x^7+2187726183836809897187/37392228394967924*x^6-197003640351140083262/9348057098741981*x^5-15174027379243938108543/747844567899358480*x^4+6528588588362253189453/747844567899358480*x^3+773964744368859416019/373922283949679240*x^2-589990341063256679751/747844567899358480*x-453688548334486377/747844567899358480,74216241679906571/934805709874198100*x^23-145239306033074943/934805709874198100*x^22-1421712511272561407/467402854937099050*x^21+5715701007218161613/934805709874198100*x^20+23213430738196205683/467402854937099050*x^19-96450159773008468089/934805709874198100*x^18-420697987810122636767/934805709874198100*x^17+91241823884316293097/93480570987419810*x^16+2304287074606397115207/934805709874198100*x^15-2654522318649434801171/467402854937099050*x^14-3876920179175973627353/467402854937099050*x^13+980337253770312977766/46740285493709905*x^12+7679463078712006145563/467402854937099050*x^11-22856846353967418047851/467402854937099050*x^10-15129454996148038217449/934805709874198100*x^9+64585912665475742376491/934805709874198100*x^8+792746816692277073567/467402854937099050*x^7-2012610915890584583279/37392228394967924*x^6+4342844328527160657059/467402854937099050*x^5+17639226874753614369143/934805709874198100*x^4-4662606150207642249919/934805709874198100*x^3-89707625836505956016/46740285493709905*x^2+460589442359558028549/934805709874198100*x+1858344398148958057/467402854937099050,43100144622046353/373922283949679240*x^23-16154248972583659/93480570987419810*x^22-839467358895684861/186961141974839620*x^21+2545684384323555237/373922283949679240*x^20+28059046367828477581/373922283949679240*x^19-4297790296175827699/37392228394967924*x^18-262986947162312078947/373922283949679240*x^17+406483922541351722971/373922283949679240*x^16+379081836020135429001/93480570987419810*x^15-295345125613925981107/46740285493709905*x^14-2774087174575860600977/186961141974839620*x^13+4354039783049536606307/186961141974839620*x^12+640480889659053628323/18696114197483962*x^11-10116546469112673231361/186961141974839620*x^10-17912506272661394020361/373922283949679240*x^9+3552106423833023862438/46740285493709905*x^8+6923712435302160576959/186961141974839620*x^7-4373686694762421333315/74784456789935848*x^6-4955078649939543101451/373922283949679240*x^5+3691663309069680010669/186961141974839620*x^4+651741905891071160629/373922283949679240*x^3-604505144078765984359/373922283949679240*x^2+533555389834325769/18696114197483962*x+375909797827929527/93480570987419810,-11288849784476046/233701427468549525*x^23+60951015156051137/934805709874198100*x^22+1740734803577154381/934805709874198100*x^21-1201037066798210081/467402854937099050*x^20-14353014803549067487/467402854937099050*x^19+40514767835780932841/934805709874198100*x^18+132144822349660076019/467402854937099050*x^17-7644135568447429713/18696114197483962*x^16-1485894734340789149513/934805709874198100*x^15+2211294085063825252543/934805709874198100*x^14+2616482438685417666997/467402854937099050*x^13-404410036369395747253/46740285493709905*x^12-2833482619312802070861/233701427468549525*x^11+4642296122474551657407/233701427468549525*x^10+6997084419770344040413/467402854937099050*x^9-25579666997174459375559/934805709874198100*x^8-7826881454251692973181/934805709874198100*x^7+190171730627716591327/9348057098741981*x^6-22000573141305073711/467402854937099050*x^5-5946606575489668565377/934805709874198100*x^4+595034675529170661403/467402854937099050*x^3+18336342871573971283/46740285493709905*x^2-171333911539383397881/934805709874198100*x+11185656286960639649/934805709874198100,4296657345589469/233701427468549525*x^23-20735078856909121/1869611419748396200*x^22-1336753724343165593/1869611419748396200*x^21+216715157108668519/467402854937099050*x^20+22307987443857630687/1869611419748396200*x^19-1938171241143479786/233701427468549525*x^18-208715194348124751469/1869611419748396200*x^17+31056823052414361551/373922283949679240*x^16+299866099302179709701/467402854937099050*x^15-956122536829685807879/1869611419748396200*x^14-544474172604085990389/233701427468549525*x^13+74757480563779015577/37392228394967924*x^12+2467887703331691052773/467402854937099050*x^11-4619909641493284814507/934805709874198100*x^10-6573197334839966129549/934805709874198100*x^9+13905124906496497343707/1869611419748396200*x^8+8736900113708095342973/1869611419748396200*x^7-58610994646480847716/9348057098741981*x^6-1378221473701634625909/1869611419748396200*x^5+592888867238057251972/233701427468549525*x^4-747466156120689590413/1869611419748396200*x^3-30113539392943757209/74784456789935848*x^2+57445857062485652279/934805709874198100*x+22172650116757628283/1869611419748396200,-118592919763411951/1869611419748396200*x^23+95382800955614519/934805709874198100*x^22+2292743962720160167/934805709874198100*x^21-7576281033599700173/1869611419748396200*x^20-75848334839309034491/1869611419748396200*x^19+64539616374501556277/934805709874198100*x^18+700346452672442169767/1869611419748396200*x^17-246706065449880206217/373922283949679240*x^16-1973397314854665965481/934805709874198100*x^15+1813718457262362319463/467402854937099050*x^14+6955962557890040682313/934805709874198100*x^13-2709643134617640815943/186961141974839620*x^12-7511215678227584772259/467402854937099050*x^11+31956700303302822832151/934805709874198100*x^10+36604990958742977801579/1869611419748396200*x^9-45669867288168006231993/934805709874198100*x^8-9678470895902458534247/934805709874198100*x^7+2875740886292825897487/74784456789935848*x^6-1475660169222561894383/1869611419748396200*x^5-12677308708500309812459/934805709874198100*x^4+3431120745306398915299/1869611419748396200*x^3+507952468910786518001/373922283949679240*x^2-210205652506335131707/934805709874198100*x-3344257215359867631/467402854937099050,2984083270571103/934805709874198100*x^23-61244446448455663/1869611419748396200*x^22-29109473069711063/233701427468549525*x^21+1192471878741034589/934805709874198100*x^20+3816958081759510161/1869611419748396200*x^19-39900430023951257039/1869611419748396200*x^18-8487926955480985433/467402854937099050*x^17+74990199359991630203/373922283949679240*x^16+175321701622773108037/1869611419748396200*x^15-1085534294693143534681/934805709874198100*x^14-63485653971929132967/233701427468549525*x^13+159771194603191454999/37392228394967924*x^12+314177376912360718613/934805709874198100*x^11-4637882071772147935373/467402854937099050*x^10+64177687993909648307/233701427468549525*x^9+25990678670890298276471/1869611419748396200*x^8-318894834331087143332/233701427468549525*x^7-394685838856003919693/37392228394967924*x^6+2709120785566802831973/1869611419748396200*x^5+6242278295475445921053/1869611419748396200*x^4-113862599156019657083/233701427468549525*x^3-10163387295458346061/74784456789935848*x^2+100679426792461209799/1869611419748396200*x-11956975759865681613/934805709874198100,-113258426942852833/934805709874198100*x^23+105289029762898837/467402854937099050*x^22+2183845738704026711/467402854937099050*x^21-8287874991786261339/934805709874198100*x^20-17988838947260665202/233701427468549525*x^19+139862266758165264937/934805709874198100*x^18+165100520066808271824/233701427468549525*x^17-132306246728230843319/93480570987419810*x^16-3687829435528766651751/934805709874198100*x^15+1924278600462088877179/233701427468549525*x^14+6406322742144405327909/467402854937099050*x^13-2841317760593499952063/93480570987419810*x^12-13491639274788102834479/467402854937099050*x^11+16544341339193867451819/233701427468549525*x^10+31144466467867114732297/934805709874198100*x^9-23318582442789859196587/233701427468549525*x^8-6712910897939295863181/467402854937099050*x^7+2888817385829022022097/37392228394967924*x^6-2551209135620459871407/467402854937099050*x^5-24814998347471473265559/934805709874198100*x^4+1139463436055551438558/233701427468549525*x^3+228216316097184832133/93480570987419810*x^2-567324712490932450367/934805709874198100*x+56570019775434512/233701427468549525,-9710972909212039/149568913579871696*x^23+35200603509259489/373922283949679240*x^22+187672420560223405/74784456789935848*x^21-2780625640019456767/747844567899358480*x^20-31060371661032389437/747844567899358480*x^19+23528702002697063241/373922283949679240*x^18+287496344189356799799/747844567899358480*x^17-446059525521093811749/747844567899358480*x^16-203782037762476388869/93480570987419810*x^15+259791786903976747889/74784456789935848*x^14+2913743580426977591447/373922283949679240*x^13-4795037981491114603763/373922283949679240*x^12-3247029699963206890727/186961141974839620*x^11+11152907719272248726137/373922283949679240*x^10+17097255085608404046671/747844567899358480*x^9-15668367108092506585337/373922283949679240*x^8-5811820211997479087507/373922283949679240*x^7+4820478793223004948281/149568913579871696*x^6+545552869869563029991/149568913579871696*x^5-4073495511627498727163/373922283949679240*x^4+216585268511356719631/747844567899358480*x^3+695562392008586326101/747844567899358480*x^2-24099116854333795173/186961141974839620*x+2223036301027003933/373922283949679240]]];

f[432,2]=[
[x+1, [1,1], [0,0,-1,-3,-5,4,-8,-2,-2,6,7,-6,-6,2,-6,5,4,-8,10,8,1,-16,11,6,-1]],
[x-1, [1,-1], [0,0,1,-3,5,4,8,-2,2,-6,7,-6,6,2,6,-5,-4,-8,10,-8,1,-16,-11,-6,-1]],
[x-4, [1,-1], [0,0,4,3,-4,1,-4,1,-4,0,4,-9,0,8,12,-8,-4,-5,-11,-8,1,5,-8,12,5]],
[x+4, [1,-1], [0,0,-4,3,4,1,4,1,4,0,4,-9,0,8,-12,8,4,-5,-11,8,1,5,8,-12,5]],
[x-1, [-1,1], [0,0,0,1,0,5,0,7,0,0,4,11,0,-8,0,0,0,-1,-5,0,-7,-17,0,0,-19]],
[x-3, [-1,1], [0,0,3,1,3,-4,0,-2,6,6,-5,2,-6,10,-6,9,-12,8,-14,0,-7,-8,3,-18,-1]],
[x+5, [-1,-1], [0,0,0,-5,0,-7,0,1,0,0,4,-1,0,-8,0,0,0,-13,-11,0,17,13,0,0,5]],
[x+3, [-1,-1], [0,0,-3,1,-3,-4,0,-2,-6,-6,-5,2,6,10,6,-9,12,8,-14,0,-7,-8,-3,18,-1]]];

f[433,2]=[
[x+1, [-1], [-1,-2,-4,-3,-4,-5,-3,-4,8,2,-9,-3,-9,-7,9,-5,-8,-8,-7,-9,-2,10,9,0,-12]],
[x^3-8*x+4, [-1], [1,x,x,-1/2*x^2+5,-x+2,-x^2-2*x+7,-x^2-x+5,x-2,-x+2,2*x+2,1/2*x^2-x-7,2*x^2+3*x-11,3,3/2*x^2+x-5,-3/2*x^2-5*x+11,2*x^2-2*x-13,-x^2-2*x+8,-x^2-x,5/2*x^2+2*x-7,7/2*x^2-17,3*x^2-14,x^2+2*x-14,1/2*x^2+x-9,-x+4,-3*x^2-5*x+20]],
[x^15+10*x^14+29*x^13-22*x^12-251*x^11-272*x^10+583*x^9+1252*x^8-186*x^7-1821*x^6-675*x^5+899*x^4+482*x^3-93*x^2-27*x-1, [1], [x,7/2*x^14+30*x^13+59*x^12-158*x^11-1291/2*x^10-46*x^9+2030*x^8+1468*x^7-2510*x^6-5207/2*x^5+2113/2*x^4+1328*x^3-137/2*x^2-153/2*x-6,-11/2*x^14-95/2*x^13-95*x^12+248*x^11+2073/2*x^10+189/2*x^9-3276*x^8-2403*x^7+4121*x^6+8483/2*x^5-1864*x^4-4315/2*x^3+429/2*x^2+106*x+13/2,31/4*x^14+267/4*x^13+263/2*x^12-358*x^11-5825/4*x^10-227/4*x^9+9379/2*x^8+6327/2*x^7-6135*x^6-22843/4*x^5+6209/2*x^4+11653/4*x^3-2129/4*x^2-243/2*x-9/4,7/2*x^14+31*x^13+67*x^12-146*x^11-1397/2*x^10-197*x^9+2115*x^8+1987*x^7-2435*x^6-6677/2*x^5+1613/2*x^4+1740*x^3+103/2*x^2-281/2*x-11,2*x^14+17*x^13+32*x^12-97*x^11-369*x^10+32*x^9+1244*x^8+677*x^7-1780*x^6-1306*x^5+1114*x^4+662*x^3-297*x^2+5*x+3,-21/2*x^14-90*x^13-176*x^12+482*x^11+3895/2*x^10+81*x^9-6233*x^8-4278*x^7+8027*x^6+15465/2*x^5-7745/2*x^4-3989*x^3+1133/2*x^2+409/2*x+4,-8*x^14-139/2*x^13-141*x^12+359*x^11+1532*x^10+351/2*x^9-4842*x^8-3650*x^7+6101*x^6+6423*x^5-5545/2*x^4-6609/2*x^3+328*x^2+373/2*x+7/2,-x^14-17/2*x^13-17*x^12+42*x^11+181*x^10+73/2*x^9-543*x^8-486*x^7+597*x^6+824*x^5-303/2*x^4-835/2*x^3-37*x^2+67/2*x-3/2,-15/2*x^14-127/2*x^13-119*x^12+357*x^11+2705/2*x^10-179/2*x^9-4439*x^8-2557*x^7+6002*x^6+9625/2*x^5-3277*x^4-4841/2*x^3+1307/2*x^2+50*x-1/2,-1/4*x^14+1/4*x^13+29/2*x^12+39*x^11-297/4*x^10-1385/4*x^9+29/2*x^8+2159/2*x^7+507*x^6-5751/4*x^5-906*x^4+3003/4*x^3+1695/4*x^2-103*x-59/4,-7/2*x^14-30*x^13-59*x^12+159*x^11+1299/2*x^10+38*x^9-2072*x^8-1450*x^7+2669*x^6+5207/2*x^5-2625/2*x^4-1360*x^3+441/2*x^2+181/2*x-5,7*x^14+59*x^13+111*x^12-323*x^11-1241*x^10+17*x^9+3963*x^8+2550*x^7-5048*x^6-4670*x^5+2333*x^4+2379*x^3-270*x^2-118*x-6,63/4*x^14+537/4*x^13+515/2*x^12-735*x^11-11521/4*x^10+103/4*x^9+18621/2*x^8+11773/2*x^7-12236*x^6-43127/4*x^5+6242*x^4+21819/4*x^3-4309/4*x^2-200*x+1/4,-31/4*x^14-261/4*x^13-239/2*x^12+377*x^11+5525/4*x^10-707/4*x^9-9221/2*x^8-4757/2*x^7+6433*x^6+18587/4*x^5-3770*x^4-9463/4*x^3+3449/4*x^2+42*x-37/4,-22*x^14-188*x^13-365*x^12+1011*x^11+4043*x^10+119*x^9-12920*x^8-8719*x^7+16567*x^6+15746*x^5-7864*x^4-8041*x^3+1050*x^2+400*x+20,31/2*x^14+265/2*x^13+256*x^12-721*x^11-5707/2*x^10-31/2*x^9+9198*x^8+5946*x^7-12011*x^6-21677/2*x^5+6003*x^4+11023/2*x^3-1929/2*x^2-242*x-1/2,13/2*x^14+109/2*x^13+100*x^12-309*x^11-2287/2*x^10+193/2*x^9+3737*x^8+2143*x^7-4966*x^6-8169/2*x^5+2563*x^4+4209/2*x^3-881/2*x^2-101*x+15/2,35/4*x^14+295/4*x^13+279/2*x^12-399*x^11-6201/4*x^10-95/4*x^9+9793/2*x^8+6675/2*x^7-6054*x^6-24171/4*x^5+5005/2*x^4+12293/4*x^3-457/4*x^2-325/2*x-61/4,-19/4*x^14-167/4*x^13-175/2*x^12+208*x^11+3741/4*x^10+675/4*x^9-5851/2*x^8-4753/2*x^7+3644*x^6+16291/4*x^5-3299/2*x^4-8217/4*x^3+905/4*x^2+185/2*x-7/4,-32*x^14-273*x^13-527*x^12+1478*x^11+5860*x^10+95*x^9-18789*x^8-12446*x^7+24231*x^6+22605*x^5-11670*x^4-11514*x^3+1642*x^2+513*x+25,-27/2*x^14-233/2*x^13-234*x^12+600*x^11+5071/2*x^10+605/2*x^9-7915*x^8-6107*x^7+9636*x^6+21343/2*x^5-3840*x^4-10881/2*x^3+251/2*x^2+325*x+57/2,-17/4*x^14-143/4*x^13-133/2*x^12+200*x^11+3023/4*x^10-153/4*x^9-4921/2*x^8-2987/2*x^7+3248*x^6+11301/4*x^5-1639*x^4-5993/4*x^3+999/4*x^2+105*x-19/4,15*x^14+127*x^13+240*x^12-700*x^11-2696*x^10+57*x^9+8688*x^8+5509*x^7-11254*x^6-10234*x^5+5410*x^4+5340*x^3-707*x^2-310*x-11,-35*x^14-298*x^13-569*x^12+1645*x^11+6406*x^10-143*x^9-20876*x^8-12933*x^7+27868*x^6+24009*x^5-14773*x^4-12325*x^3+2792*x^2+460*x-2]],
[x^16-7*x^15-5*x^14+129*x^13-125*x^12-929*x^11+1471*x^10+3333*x^9-6394*x^8-6443*x^7+13118*x^6+7162*x^5-12217*x^4-4691*x^3+3598*x^2+1114*x-3, [-1], [x,3364/49429*x^15-28373/98858*x^14-107815/98858*x^13+258788/49429*x^12+350948/49429*x^11-3787471/98858*x^10-2600707/98858*x^9+7085854/49429*x^8+3337167/49429*x^7-14044214/49429*x^6-12055899/98858*x^5+13153828/49429*x^4+12276925/98858*x^3-7391141/98858*x^2-1965284/49429*x-162529/98858,7937/49429*x^15-80035/98858*x^14-239229/98858*x^13+793664/49429*x^12+600510/49429*x^11-12594013/98858*x^10-2013751/98858*x^9+25390228/49429*x^8+503083/49429*x^7-54050496/49429*x^6-10121395/98858*x^5+54992077/49429*x^4+28175043/98858*x^3-33332341/98858*x^2-5344871/49429*x-82767/98858,13927/49429*x^15-65146/49429*x^14-451983/98858*x^13+1307187/49429*x^12+1299411/49429*x^11-10432928/49429*x^10-6129257/98858*x^9+41960809/49429*x^8+3228040/49429*x^7-88189139/49429*x^6-7409068/49429*x^5+176059573/98858*x^4+34422491/98858*x^3-26963958/49429*x^2-13190897/98858*x+179455/98858,-68823/98858*x^15+319749/98858*x^14+555916/49429*x^13-3177931/49429*x^12-6425979/98858*x^11+50230627/98858*x^10+7934153/49429*x^9-99992803/49429*x^8-10277701/49429*x^7+416113753/98858*x^6+23198686/49429*x^5-411857973/98858*x^4-91203129/98858*x^3+63067083/49429*x^2+34013857/98858*x-95214/49429,-182691/197716*x^15+213527/49429*x^14+2938339/197716*x^13-8509457/98858*x^12-16723251/197716*x^11+67437849/98858*x^10+39072321/197716*x^9-134692546/49429*x^8-21136039/98858*x^7+1125412803/197716*x^6+102144287/197716*x^5-1117812989/197716*x^4-57707857/49429*x^3+340584749/197716*x^2+87448217/197716*x-555115/197716,43733/197716*x^15-104421/98858*x^14-734087/197716*x^13+2182945/98858*x^12+4283369/197716*x^11-9060544/49429*x^10-9511945/197716*x^9+37852911/49429*x^8+3067465/98858*x^7-330347305/197716*x^6-17025899/197716*x^5+342265579/197716*x^4+29652905/98858*x^3-108729889/197716*x^2-24124475/197716*x+1553055/197716,-15745/49429*x^15+68919/49429*x^14+269921/49429*x^13-1384684/49429*x^12-1745622/49429*x^11+11068873/49429*x^10+5467284/49429*x^9-44565234/49429*x^8-10328817/49429*x^7+93553252/49429*x^6+18237915/49429*x^5-92921144/49429*x^4-24485211/49429*x^3+28542368/49429*x^2+8313550/49429*x+120653/49429,40653/49429*x^15-184451/49429*x^14-668744/49429*x^13+3665810/49429*x^12+3993317/49429*x^11-28877289/49429*x^10-10592931/49429*x^9+114092589/49429*x^8+15449149/49429*x^7-234202178/49429*x^6-30283345/49429*x^5+227210030/49429*x^4+51818148/49429*x^3-67683176/49429*x^2-18797898/49429*x+35034/49429,-68265/98858*x^15+168594/49429*x^14+1022737/98858*x^13-3289121/49429*x^12-5195223/98858*x^11+25707277/49429*x^10+9493749/98858*x^9-102350616/49429*x^8-3416775/49429*x^7+431431277/98858*x^6+39945447/98858*x^5-435485439/98858*x^4-52753976/49429*x^3+132362749/98858*x^2+40136677/98858*x+321753/98858,133499/98858*x^15-317716/49429*x^14-1051866/49429*x^13+6301174/49429*x^12+11556873/98858*x^11-49789143/49429*x^10-12456539/49429*x^9+198841570/49429*x^8+11417524/49429*x^7-833693139/98858*x^6-71222143/98858*x^5+417238377/49429*x^4+177882947/98858*x^3-256907871/98858*x^2-34264061/49429*x+509501/49429,52165/197716*x^15-137423/98858*x^14-674431/197716*x^13+2600727/98858*x^12+1989469/197716*x^11-9783468/49429*x^10+7013315/197716*x^9+37245108/49429*x^8-22518647/98858*x^7-299718017/197716*x^6+58260161/197716*x^5+290897251/197716*x^4+4557819/98858*x^3-84688417/197716*x^2-12929043/197716*x+395459/197716,258237/197716*x^15-313286/49429*x^14-3818537/197716*x^13+12012369/98858*x^12+18918989/197716*x^11-91894163/98858*x^10-30963607/197716*x^9+178271289/49429*x^8+715407/98858*x^7-1460082397/197716*x^6-66835737/197716*x^5+1436932507/197716*x^4+65395351/49429*x^3-442507479/197716*x^2-106810647/197716*x+2191245/197716,-30785/49429*x^15+149507/49429*x^14+901323/98858*x^13-2850490/49429*x^12-2191374/49429*x^11+21705571/49429*x^10+6595831/98858*x^9-83924338/49429*x^8+1374338/49429*x^7+171334936/49429*x^6+4161130/49429*x^5-335440321/98858*x^4-54185727/98858*x^3+50868246/49429*x^2+23164671/98858*x-516035/98858,110285/49429*x^15-511072/49429*x^14-3545953/98858*x^13+10113118/49429*x^12+10190370/49429*x^11-79560375/49429*x^10-50070793/98858*x^9+315353762/49429*x^8+32810828/49429*x^7-653410245/49429*x^6-76139928/49429*x^5+1287398963/98858*x^4+297829377/98858*x^3-194405914/49429*x^2-110019565/98858*x-108063/98858,-407555/197716*x^15+471522/49429*x^14+6579595/197716*x^13-18698463/98858*x^12-38122187/197716*x^11+147456895/98858*x^10+95424585/197716*x^9-293049292/49429*x^8-64768355/98858*x^7+2435906527/197716*x^6+291776003/197716*x^5-2406815197/197716*x^4-138788915/49429*x^3+732753501/197716*x^2+204007637/197716*x-1342995/197716,61699/98858*x^15-155065/49429*x^14-870631/98858*x^13+2951812/49429*x^12+3788717/98858*x^11-22369283/49429*x^10-2598579/98858*x^9+85746795/49429*x^8-6950100/49429*x^7-345997229/98858*x^6+1820849/98858*x^5+334214601/98858*x^4+28369346/49429*x^3-97925819/98858*x^2-26529443/98858*x-236943/98858,14847/49429*x^15-127531/98858*x^14-511561/98858*x^13+1267231/49429*x^12+1691611/49429*x^11-20042233/98858*x^10-11159463/98858*x^9+39863013/49429*x^8+11139225/49429*x^7-82270923/49429*x^6-36459855/98858*x^5+79229784/49429*x^4+42975779/98858*x^3-45074483/98858*x^2-6752742/49429*x-874145/98858,-141711/98858*x^15+333959/49429*x^14+1116797/49429*x^13-6566850/49429*x^12-12504569/98858*x^11+51513913/49429*x^10+14707933/49429*x^9-204489528/49429*x^8-18344107/49429*x^7+852089949/98858*x^6+94124009/98858*x^5-422082458/49429*x^4-194628527/98858*x^3+253452103/98858*x^2+36351209/49429*x+79379/49429,-62381/98858*x^15+152646/49429*x^14+467794/49429*x^13-2958708/49429*x^12-4831637/98858*x^11+22977609/49429*x^10+4843357/49429*x^9-90943919/49429*x^8-5279954/49429*x^7+381263263/98858*x^6+42834521/98858*x^5-191099341/49429*x^4-96669549/98858*x^3+113671055/98858*x^2+17472829/49429*x+645765/49429,112547/49429*x^15-531264/49429*x^14-1768744/49429*x^13+10455871/49429*x^12+9759913/49429*x^11-81978712/49429*x^10-21650782/49429*x^9+324730625/49429*x^8+21803552/49429*x^7-674426972/49429*x^6-60199600/49429*x^5+667228971/49429*x^4+141516370/49429*x^3-202565401/49429*x^2-54496428/49429*x+229232/49429,2277/49429*x^15-15737/49429*x^14-50249/49429*x^13+439885/49429*x^12+278689/49429*x^11-4438346/49429*x^10+43953/49429*x^9+21296956/49429*x^8-3027406/49429*x^7-51607047/49429*x^6+1620894/49429*x^5+58662602/49429*x^4+10777467/49429*x^3-20569075/49429*x^2-5927203/49429*x+574472/49429,-123985/98858*x^15+297104/49429*x^14+990087/49429*x^13-5981891/49429*x^12-10900869/98858*x^11+47855655/49429*x^10+11179330/49429*x^9-192730743/49429*x^8-6935607/49429*x^7+810538391/98858*x^6+52724335/98858*x^5-404074219/49429*x^4-162765393/98858*x^3+242356241/98858*x^2+33240436/49429*x+611316/49429,-34003/98858*x^15+182341/98858*x^14+194743/49429*x^13-1589401/49429*x^12-1007957/98858*x^11+22139291/98858*x^10-1212660/49429*x^9-39644867/49429*x^8+5041335/49429*x^7+153874439/98858*x^6+3113648/49429*x^5-147225081/98858*x^4-37896131/98858*x^3+22882575/49429*x^2+14746509/98858*x-490149/49429,-27809/98858*x^15+143657/98858*x^14+181341/49429*x^13-1309776/49429*x^12-1509393/98858*x^11+19452155/98858*x^10+908161/49429*x^9-37797217/49429*x^8-353171/49429*x^7+159887685/98858*x^6+7036100/49429*x^5-162968893/98858*x^4-37257489/98858*x^3+24512859/49429*x^2+14060971/98858*x-11275/49429]]];

f[434,2]=[
[x, [1,1,1], [-1,0,0,-1,-2,-2,2,-6,0,8,-1,-8,-10,-6,-4,4,6,6,-4,-8,14,-16,8,-6,14]],
[x-2, [-1,1,1], [1,2,2,-1,-6,4,2,-4,-4,0,-1,8,-2,6,8,0,0,-8,4,-8,6,0,6,6,-2]],
[x+3, [-1,1,1], [1,-3,-3,-1,4,4,2,6,-9,5,-1,-2,8,6,-7,10,0,12,-1,-8,11,5,11,-9,8]],
[x+2, [-1,-1,1], [1,-2,-2,1,-2,-4,-2,-8,0,0,-1,-8,6,2,8,0,12,-8,4,0,-14,4,2,-6,14]],
[x-1, [-1,-1,-1], [1,1,3,1,0,-4,-6,2,-3,3,1,2,12,-10,3,6,0,8,-13,-12,11,-1,-9,-9,8]],
[x^2-2*x-1, [1,-1,1], [-1,x,2*x-3,1,0,-2*x+6,-2*x+2,2,-x-2,-x+6,-1,-2*x-2,-2*x+2,4*x+2,-6*x+11,6*x-10,-6*x+10,2*x-2,4*x-3,-2*x+10,x+4,-3*x+2,3*x-14,-7*x+8,2*x-6]],
[x^2-x-4, [-1,1,1], [1,x,-x+2,-1,4,-2*x-2,2,2*x-4,-x+4,-x+2,-1,-2,-2*x+2,2*x-4,x-12,-4*x-2,4*x-4,6*x-2,3*x,8,x-2,5*x+4,-x-8,-3*x-2,6*x-6]],
[x^3+2*x^2-5*x-8, [1,1,-1], [-1,x,-x^2+4,-1,-2*x^2+10,2*x+2,2*x-2,6,2*x^2+x-4,-2*x^2-3*x+8,1,-2*x^2+2*x+16,-2*x-2,-4*x^2-4*x+14,-3*x^2-4*x+12,2*x^2+2*x-12,2*x+2,2*x+2,x^2-2*x-4,2*x^2-2*x-16,2*x^2+x-14,-2*x^2+3*x+12,6*x^2+3*x-24,2*x^2+x-18,-4*x^2-6*x+14]],
[x^3-x^2-8*x+4, [-1,-1,-1], [1,x,-x,1,-x^2+x+4,4,-x^2-x+8,x^2-x-2,-x-2,x^2-2*x-8,1,-2*x-4,2*x-6,-x^2-x+4,-x^2+4,2*x-4,3*x^2-x-14,-2*x^2-2*x+12,-x^2+4*x+8,2*x^2-2*x-12,3*x-8,2*x^2+3*x-14,2*x^2+x-12,-2*x^2+5*x+12,-2*x^2+4*x+14]]];

f[435,2]=[
[x+1, [1,1,-1], [0,-1,-1,-2,1,6,4,-2,3,1,-4,-3,7,5,6,13,0,0,-10,6,3,0,9,-10,17]],
[x-1, [-1,1,1], [0,1,-1,2,3,2,0,2,3,-1,8,-1,-3,-1,-6,-3,-12,8,14,-6,-7,-4,9,-6,11]],
[x-1, [-1,-1,-1], [1,1,1,4,-4,6,6,-4,-4,1,-8,2,-6,4,0,-10,-12,-10,8,-8,-2,0,8,-6,-2]],
[x+1, [-1,-1,-1], [-1,1,1,-4,0,6,2,8,-4,1,4,6,2,-4,0,6,-12,6,-8,16,-6,12,-16,2,-14]],
[x^2-5, [-1,1,1], [x,1,-1,2,-2,2,-2*x,2,-2,-1,-2,-2*x+4,2,4,-4*x+4,2,8,-4*x-2,-4*x-6,4,2*x+8,4*x+6,4*x-6,-6,6*x-4]],
[x^2+x-1, [-1,1,-1], [x,1,-1,-3,-4*x-3,-2*x-5,4*x+1,6*x+4,0,1,-8,-8,-4*x-2,2*x+2,6*x+3,2*x-8,2*x+4,-6*x-2,-4*x-9,2*x+6,-8,-10*x,-6*x,10*x+5,-2*x+4]],
[x^2-x-4, [-1,-1,-1], [x,1,1,-2*x+2,-x-3,-2,2*x-4,-2*x+2,-x+5,1,4,3*x+3,3*x+3,-3*x+3,2*x-10,-x-5,12,2*x+4,6*x-2,-2*x-6,-3*x-3,-12,x-1,-4*x+6,3*x-1]],
[x^2+x-5, [-1,-1,-1], [x,1,1,1,5,-2*x-1,-3,2*x,-4,1,4,-4,-4*x-2,-2*x-6,2*x+7,-2*x+4,-2*x-4,6*x+2,-4*x+3,-2*x-6,4,2*x+4,-2*x-8,-2*x+5,2*x+8]],
[x^3-x^2-5*x+4, [1,-1,1], [x,-1,1,-x^2+x+2,3,x^2+x-2,-x^2+x+4,-2*x^2+6,-x^2-3*x+5,-1,0,-x^2-3*x+9,x^2-x+1,x^2-3*x-7,3*x^2-x-10,-3*x^2-3*x+11,-2*x+8,2*x^2-4,x^2+3*x-14,6*x-2,5*x^2-x-17,4*x^2+2*x-16,x^2+x-9,-3*x^2-3*x+22,-x^2-5*x+5]],
[x^4+3*x^3-2*x^2-7*x+1, [1,1,1], [x,-1,-1,-x^3-3*x^2+x+5,x^3+3*x^2-x-5,x^3+x^2-5*x-3,-x^3-x^2+3*x-3,2*x^3+4*x^2-6*x-6,-2*x^3-2*x^2+6*x-4,-1,2*x^3+2*x^2-6*x,2*x^2+6*x-6,4*x^2+8*x-10,-2*x^3+10*x-4,x^3+x^2-x-1,2*x^3-10*x+2,-6*x^2-8*x+14,-4*x^3-10*x^2+8*x+8,x^3+3*x^2+3*x-1,-2*x^3-4*x^2+2*x,-2*x^2-6*x+2,-2*x^3-4*x^2+10*x+14,2*x^3+8*x^2-2*x-18,x^3+5*x^2-5*x-15,4*x^3+8*x^2-6*x-12]]];

f[436,2]=[
[x^2-8, [-1,1], [0,x,x+1,-2,-1/2*x-3,0,-x+4,-3/2*x-3,-3/2*x-3,-2*x-1,6,-x+2,-x+2,3*x,3/2*x+9,2*x,-2*x+6,7,2*x-10,2*x+10,3,-2*x-2,3*x-6,-x+7,-x-1]],
[x^3-3*x-1, [-1,-1], [0,x,-x-2,-x^2-x+1,3*x^2-2*x-7,-2*x^2+x+3,x^2+x-5,-3*x^2+3*x+5,2*x^2-x-7,-2*x^2+3*x+2,-2*x^2+x+3,7*x^2-2*x-12,-2*x^2+x-2,5*x^2-4*x-5,-2*x^2+5*x+6,-5*x^2+5,-7*x^2+13,-2*x^2-2*x+6,-2*x^2-2*x+9,-x^2-7*x+2,5*x^2-10*x-14,x^2+7*x,-5*x^2+6*x+17,5*x^2-8*x-21,x^2+x+6]],
[x^4-7*x^2-x+8, [-1,1], [0,x,-x+2,x^3-x^2-4*x+4,-x^3+x^2+5*x-2,-x^3+4*x+2,x^3-3*x^2-4*x+10,-x^3+x^2+4*x-2,x^3-4*x+2,2*x^2-x-2,-x^3+2*x^2+4*x-8,-3*x^2+10,-x+2,-x^3+x^2+3*x-4,4*x^2-x-14,-x^3-3*x^2+7*x+10,-x^3-x^2+7*x-2,2*x^2+2*x-10,x^3+2*x^2-7*x-10,2*x^3-x^2-9*x,x^2+2*x-6,-3*x^2-x+6,x^3-x^2-9*x+4,x^3+x^2-7*x-2,x^2+x-10]]];

f[437,2]=[
[x-2, [1,-1], [2,2,1,-3,5,-2,3,-1,1,4,-4,-8,0,-3,-3,12,4,5,12,12,1,-10,12,-6,10]],
[x, [-1,-1], [0,2,-1,-5,-1,0,-7,1,1,6,4,2,-2,-5,-3,-4,6,11,-16,-10,-7,4,4,-16,-4]],
[x^2+3*x+1, [1,1], [-1,x,2*x+4,-3*x-4,-3*x-7,4*x+6,-2*x-2,-1,-1,-2*x-8,-x-9,-x-6,-6*x-6,x-7,-2*x-2,3*x+7,7*x+11,2*x+16,4*x-2,5*x+1,3*x-6,0,9*x+12,-3*x-3,-12*x-22]],
[x^2-5, [-1,-1], [x,-1/2*x-1/2,-x-1,-1/2*x-5/2,-1/2*x-7/2,2*x,x+3,1,1,x+1,-5/2*x-7/2,-1/2*x-21/2,-3*x+3,-1/2*x-15/2,3*x-3,-3/2*x+7/2,3/2*x-23/2,x+1,-4*x-6,5/2*x+15/2,-1/2*x-9/2,4,7/2*x+3/2,-9/2*x+13/2,4*x+6]],
[x^2-2, [-1,-1], [x,x-2,-x-1,x-1,x+1,-4*x,x-3,1,1,-5*x-2,2*x+4,x,6,x-9,3,6*x-4,2,7*x-5,-7*x-6,x+6,-2*x+3,-8,-4*x,-6*x+8,-2*x-12]],
[x^5+x^4-7*x^3-2*x^2+12*x-4, [1,1], [x,-x^2-x+2,x^2+x-3,-x^2-x+1,-x^4-x^3+6*x^2+x-7,-x^4-2*x^3+5*x^2+6*x-8,2*x^4+2*x^3-11*x^2-5*x+11,-1,-1,-x^4-3*x^3+2*x^2+7*x+2,2*x^4+5*x^3-8*x^2-14*x+8,-2*x^4-5*x^3+9*x^2+17*x-14,-x^4-2*x^3+7*x^2+12*x-14,x^2+3*x-3,x^4+3*x^3-7*x^2-12*x+13,4*x^4+8*x^3-20*x^2-24*x+24,-x^4-x^3+5*x^2-2,3*x^2+5*x-11,-3*x^4-6*x^3+12*x^2+19*x-12,-x^4-3*x^3+4*x^2+7*x-10,x^4+x^3-3*x^2-2*x+1,3*x^4+5*x^3-15*x^2-12*x+16,2*x^4+8*x^3-8*x^2-28*x+16,-3*x^4-7*x^3+9*x^2+18*x-4,-3*x^4-5*x^3+13*x^2+16*x-12]],
[x^8-13*x^6+47*x^4-2*x^3-37*x^2-2*x+2, [1,-1], [x,-3/10*x^7+1/10*x^6+37/10*x^5-9/10*x^4-64/5*x^3+11/5*x^2+51/5*x+6/5,1/10*x^7+3/10*x^6-7/5*x^5-16/5*x^4+51/10*x^3+81/10*x^2-17/5*x-12/5,-1/2*x^7+13/2*x^5-1/2*x^4-23*x^3+9/2*x^2+16*x,-1/5*x^7-1/10*x^6+23/10*x^5+19/10*x^4-67/10*x^3-41/5*x^2+14/5*x+29/5,3/10*x^7-1/10*x^6-21/5*x^5+7/5*x^4+163/10*x^3-47/10*x^2-66/5*x-1/5,3/10*x^7-1/10*x^6-21/5*x^5+7/5*x^4+173/10*x^3-57/10*x^2-91/5*x+4/5,-1,1,-3/10*x^7+1/10*x^6+21/5*x^5-12/5*x^4-153/10*x^3+117/10*x^2+31/5*x-19/5,1/10*x^7+3/10*x^6-19/10*x^5-27/10*x^4+48/5*x^3+23/5*x^2-62/5*x+8/5,-6/5*x^7+2/5*x^6+153/10*x^5-51/10*x^4-527/10*x^3+203/10*x^2+159/5*x-21/5,x^7-12*x^5-x^4+39*x^3+3*x^2-26*x,11/10*x^7-1/5*x^6-139/10*x^5+23/10*x^4+233/5*x^3-99/10*x^2-132/5*x+28/5,19/10*x^7-3/10*x^6-118/5*x^5+11/5*x^4+789/10*x^3-71/10*x^2-248/5*x+2/5,9/10*x^7-3/10*x^6-111/10*x^5+27/10*x^4+182/5*x^3-33/5*x^2-98/5*x-8/5,1/10*x^7+3/10*x^6-19/10*x^5-27/10*x^4+48/5*x^3+33/5*x^2-62/5*x-42/5,-2/5*x^7-1/5*x^6+28/5*x^5+4/5*x^4-107/5*x^3+18/5*x^2+73/5*x-7/5,2*x^4-x^3-14*x^2+5*x+14,-1/5*x^7+2/5*x^6+33/10*x^5-51/10*x^4-147/10*x^3+163/10*x^2+59/5*x-31/5,7/10*x^7-2/5*x^6-93/10*x^5+41/10*x^4+181/5*x^3-113/10*x^2-179/5*x-4/5,x^7-13*x^5+46*x^3-30*x,1/5*x^7+1/10*x^6-23/10*x^5-29/10*x^4+77/10*x^3+86/5*x^2-39/5*x-84/5,-1/5*x^7-3/5*x^6+23/10*x^5+79/10*x^4-87/10*x^3-257/10*x^2+74/5*x+39/5,-2/5*x^7-1/5*x^6+23/5*x^5+24/5*x^4-77/5*x^3-107/5*x^2+88/5*x+38/5]],
[x^12-2*x^11-19*x^10+35*x^9+137*x^8-219*x^7-483*x^6+605*x^5+866*x^4-707*x^3-682*x^2+236*x+96, [-1,1], [x,-47/244*x^11+91/244*x^10+391/122*x^9-23/4*x^8-1137/61*x^7+117/4*x^6+5647/122*x^5-13993/244*x^4-10833/244*x^3+2207/61*x^2+299/61*x-140/61,-6/61*x^11+22/61*x^10+175/122*x^9-6*x^8-395/61*x^7+69/2*x^6+1099/122*x^5-5044/61*x^4+120/61*x^3+9121/122*x^2-408/61*x-675/61,5/244*x^11+63/244*x^10-50/61*x^9-17/4*x^8+1105/122*x^7+97/4*x^6-2327/61*x^5-14239/244*x^4+14601/244*x^3+3311/61*x^2-1379/61*x-355/61,7/122*x^11+15/122*x^10-79/61*x^9-5/2*x^8+1325/122*x^7+37/2*x^6-4967/122*x^5-3605/61*x^4+7607/122*x^3+8623/122*x^2-1348/61*x-567/61,-13/122*x^11+7/122*x^10+215/122*x^9-1/2*x^8-616/61*x^7-x^6+2985/122*x^5+1861/122*x^4-2973/122*x^3-3605/122*x^2+473/61*x+626/61,13/122*x^11-7/122*x^10-215/122*x^9+1/2*x^8+616/61*x^7+x^6-2985/122*x^5-1861/122*x^4+2851/122*x^3+3483/122*x^2-168/61*x-321/61,1,-1,8/61*x^11+43/122*x^10-198/61*x^9-6*x^8+3473/122*x^7+73/2*x^6-6487/61*x^5-5983/61*x^4+19383/122*x^3+6465/61*x^2-3787/61*x-930/61,1/122*x^11-85/122*x^10+41/61*x^9+12*x^8-694/61*x^7-73*x^6+6959/122*x^5+23187/122*x^4-6232/61*x^3-11571/61*x^2+2840/61*x+1688/61,1/4*x^11-5/4*x^10-3*x^9+81/4*x^8+7*x^7-449/4*x^6+21*x^5+1027/4*x^4-313/4*x^3-437/2*x^2+50*x+26,-15/61*x^11+49/122*x^10+529/122*x^9-6*x^8-3317/122*x^7+28*x^6+8939/122*x^5-2484/61*x^4-9099/122*x^3-469/122*x^2+383/61*x+600/61,26/61*x^11-89/122*x^10-430/61*x^9+11*x^8+2464/61*x^7-107/2*x^6-11757/122*x^5+11527/122*x^4+9879/122*x^3-4917/122*x^2+304/61*x-247/61,-47/122*x^11+76/61*x^10+330/61*x^9-41/2*x^8-2657/122*x^7+117*x^6+889/61*x^5-34489/122*x^4+3215/61*x^3+16187/61*x^2-3184/61*x-2415/61,2/61*x^11+13/61*x^10-80/61*x^9-7/2*x^8+884/61*x^7+41/2*x^6-7483/122*x^5-3280/61*x^4+11937/122*x^3+3431/61*x^2-2426/61*x-324/61,-15/61*x^11+49/122*x^10+529/122*x^9-13/2*x^8-3317/122*x^7+71/2*x^6+4439/61*x^5-4680/61*x^4-4336/61*x^3+6607/122*x^2+139/61*x-132/61,15/122*x^11+3/61*x^10-295/122*x^9-1/2*x^8+2055/122*x^7+1/2*x^6-5903/122*x^5+593/122*x^4+2900/61*x^3-833/122*x^2+22/61*x+5/61,4/61*x^11-9/122*x^10-137/122*x^9+x^8+913/122*x^7-4*x^6-3315/122*x^5+272/61*x^4+6855/122*x^3+243/122*x^2-2778/61*x+206/61,21/122*x^11-69/61*x^10-115/61*x^9+19*x^8+193/122*x^7-223/2*x^6+4131/122*x^5+33819/122*x^4-11827/122*x^3-16071/61*x^2+3581/61*x+2142/61,-71/244*x^11+57/244*x^10+627/122*x^9-13/4*x^8-1959/61*x^7+53/4*x^6+10467/122*x^5-3303/244*x^4-21821/244*x^3-983/122*x^2+1111/61*x+161/61,-19/122*x^11+45/61*x^10+211/122*x^9-25/2*x^8-163/122*x^7+149/2*x^6-4243/122*x^5-23191/122*x^4+6412/61*x^3+22641/122*x^2-4123/61*x-1450/61,73/244*x^11-349/244*x^10-423/122*x^9+95/4*x^8+761/122*x^7-549/4*x^6+4605/122*x^5+82129/244*x^4-29459/244*x^3-38995/122*x^2+4535/61*x+2808/61,-75/122*x^11+153/122*x^10+1231/122*x^9-19*x^8-3521/61*x^7+187/2*x^6+8627/61*x^5-20899/122*x^4-8278/61*x^3+11119/122*x^2+1049/61*x-330/61,41/122*x^11-65/61*x^10-603/122*x^9+35/2*x^8+2689/122*x^7-197/2*x^6-2845/122*x^5+27737/122*x^4-2850/61*x^3-23025/122*x^2+4383/61*x+1010/61]]];

f[438,2]=[
[x, [1,1,1], [-1,-1,0,-2,4,-6,0,-4,0,-4,2,-10,-2,2,-12,0,-4,-6,8,8,-1,8,8,10,14]],
[x-2, [1,-1,1], [-1,1,2,-2,2,4,4,-4,0,6,-2,-6,6,8,8,6,-10,-2,-12,-8,-1,0,-6,-6,2]],
[x, [1,-1,-1], [-1,1,0,-4,-6,-4,-6,8,0,0,8,2,-6,2,0,-12,6,-10,-4,0,1,-16,6,6,14]],
[x+4, [1,-1,-1], [-1,1,-4,0,2,0,-6,-8,-8,-4,-4,2,10,-6,4,-8,14,-2,12,0,1,8,-18,6,-2]],
[x+2, [-1,1,-1], [1,-1,-2,-4,0,-2,-6,-4,0,6,-4,6,10,-8,4,-2,-8,-2,-4,8,1,-8,0,-6,-14]],
[x-2, [-1,-1,-1], [1,1,0,2,0,-4,6,-4,0,0,2,2,6,-4,-6,-12,0,-10,-4,12,1,-4,0,6,2]],
[x+2, [-1,-1,-1], [1,1,0,-2,4,4,-2,4,0,0,-10,-6,-10,-8,6,4,12,-2,12,-12,1,-12,12,6,2]],
[x^2-8, [1,1,-1], [-1,-1,x,x,-2,-x+4,2,0,-2*x,x,x+4,10,2,6,x-4,-x+4,-4*x+2,-2*x-2,4*x+4,-8,1,-2*x-8,-4*x+2,4*x-2,-4*x-2]],
[x^2+2*x-4, [-1,1,1], [1,-1,x,2,-x,-x+2,-2*x,4,4*x+4,x-4,2*x+6,2*x-2,-4*x-2,-3*x-2,-2*x,-x-8,x-8,2*x+2,-2*x,-4*x-4,-1,-4*x,-3*x-4,-2,6*x+10]]];

f[439,2]=[
[x^2-x-1, [1], [-1,x,-x+1,-2,-2*x+2,-3*x,4*x-4,2*x-6,-3*x+1,-x-3,3*x,8*x-4,-2*x,3*x-1,x-3,3*x-8,-5*x-5,7*x,-7*x+4,4*x,-13*x+8,x+8,4,-4,-4*x+14]],
[x^9+x^8-12*x^7-6*x^6+49*x^5-x^4-72*x^3+30*x^2+18*x-9, [1], [x,1/9*x^8+1/9*x^7-5/3*x^6-x^5+76/9*x^4+17/9*x^3-46/3*x^2+2/3*x+5,-7/9*x^8-10/9*x^7+28/3*x^6+9*x^5-343/9*x^4-158/9*x^3+167/3*x^2+10/3*x-16,1/3*x^8+2/3*x^7-11/3*x^6-6*x^5+40/3*x^4+15*x^3-52/3*x^2-10*x+5,8/9*x^8+14/9*x^7-29/3*x^6-12*x^5+320/9*x^4+187/9*x^3-142/3*x^2-2/3*x+8,4/3*x^8+5/3*x^7-47/3*x^6-13*x^5+187/3*x^4+24*x^3-268/3*x^2-4*x+24,-28/9*x^8-49/9*x^7+100/3*x^6+43*x^5-1093/9*x^4-740/9*x^3+500/3*x^2+58/3*x-46,-2/3*x^8-2/3*x^7+9*x^6+6*x^5-119/3*x^4-37/3*x^3+59*x^2-x-14,-7/9*x^8-10/9*x^7+28/3*x^6+10*x^5-334/9*x^4-221/9*x^3+155/3*x^2+40/3*x-16,-38/9*x^8-71/9*x^7+128/3*x^6+61*x^5-1304/9*x^4-1021/9*x^3+562/3*x^2+80/3*x-47,-x^8-8/3*x^7+25/3*x^6+21*x^5-21*x^4-125/3*x^3+65/3*x^2+18*x-8,13/3*x^8+25/3*x^7-45*x^6-66*x^5+472/3*x^4+380/3*x^3-205*x^2-31*x+47,49/9*x^8+88/9*x^7-172/3*x^6-78*x^5+1834/9*x^4+1385/9*x^3-821/3*x^2-133/3*x+70,-x^8-10/3*x^7+23/3*x^6+26*x^5-18*x^4-151/3*x^3+58/3*x^2+18*x-3,4*x^8+7*x^7-41*x^6-53*x^5+141*x^4+91*x^3-183*x^2-5*x+42,-2/9*x^8+1/9*x^7+11/3*x^6-x^5-152/9*x^4+50/9*x^3+61/3*x^2-34/3*x+1,-32/9*x^8-56/9*x^7+110/3*x^6+48*x^5-1145/9*x^4-793/9*x^3+499/3*x^2+56/3*x-38,16/3*x^8+23/3*x^7-182/3*x^6-60*x^5+697/3*x^4+108*x^3-961/3*x^2-7*x+77,-2/3*x^8-1/3*x^7+28/3*x^6+x^5-131/3*x^4+8*x^3+212/3*x^2-19*x-20,13/9*x^8+34/9*x^7-37/3*x^6-30*x^5+304/9*x^4+557/9*x^3-128/3*x^2-88/3*x+16,4/3*x^8+4*x^7-34/3*x^6-32*x^5+94/3*x^4+193/3*x^3-122/3*x^2-25*x+19,-10/3*x^8-5*x^7+118/3*x^6+40*x^5-472/3*x^4-220/3*x^3+677/3*x^2+4*x-60,-64/9*x^8-94/9*x^7+241/3*x^6+84*x^5-2767/9*x^4-1487/9*x^3+1298/3*x^2+100/3*x-115,-35/9*x^8-68/9*x^7+113/3*x^6+58*x^5-1076/9*x^4-979/9*x^3+430/3*x^2+101/3*x-38,11/3*x^8+16/3*x^7-127/3*x^6-42*x^5+500/3*x^4+77*x^3-707/3*x^2-5*x+50]],

f[440,2]=[
[x+1, [1,1,1], [0,0,-1,-2,-1,0,0,-8,-8,10,8,-10,-2,-6,-8,14,-4,10,4,0,-8,-4,10,6,-10]],
[x-1, [1,-1,1], [0,0,1,4,-1,6,-6,4,4,-2,8,-10,10,0,4,-10,-4,-2,-8,0,-14,-16,-8,-6,2]],
[x-3, [1,-1,1], [0,3,1,1,-1,-6,3,-5,-2,-5,5,-1,-2,12,-2,-13,2,1,16,15,10,2,-14,9,-16]],
[x-1, [-1,1,-1], [0,0,-1,-2,1,-4,-4,0,0,-6,0,-2,6,2,0,-10,12,-6,-12,16,4,-4,2,6,-2]],
[x^2-3*x-2, [1,1,-1], [0,-x+2,-1,x,1,-2*x+4,x+2,-x+6,2*x,x-4,3*x-2,5*x-8,-10,2*x-2,-2*x,x-8,-6*x+8,-x,0,x-6,-2*x+12,-2*x+8,10,5*x-8,2*x+10]],
[x^2-5*x+2, [-1,1,1], [0,x-2,-1,x,-1,-2*x+8,-3*x+6,-x+6,2*x-8,x+4,x-6,-x+12,-4*x+6,-2*x+6,-6*x+16,3*x-4,2*x-8,-x-8,0,3*x-10,2*x-8,-6*x+16,-6,3*x-4,2*x-14]],
[x^2+x-4, [-1,-1,-1], [0,x,1,x,1,2,x+2,-x,-2*x,-3*x+2,-x+4,3*x+2,2,-4*x,2*x-8,-x+2,-2*x-4,3*x+10,-4*x-4,-3*x-4,-2,6*x,-2*x,x-10,-2*x+2]]];

f[441,2]=[
[x+7, [1,1], [0,0,0,0,0,-7,0,-7,0,0,-7,-1,0,5,0,0,0,14,11,0,-7,-13,0,0,14]],
[x-7, [1,-1], [0,0,0,0,0,7,0,7,0,0,7,-1,0,5,0,0,0,-14,11,0,7,-13,0,0,-14]],
[x-2, [-1,1], [-2,0,2,0,2,1,0,1,0,-4,9,3,10,5,6,-12,12,10,-5,6,-3,-1,-6,-16,-6]],
[x-1, [-1,-1], [1,0,-2,0,-4,2,-6,-4,0,2,0,6,2,-4,0,-6,12,2,4,0,6,-16,-12,-14,-18]],
[x+1, [-1,-1], [-1,0,0,0,-4,0,0,0,-8,-2,0,-6,0,-12,0,10,0,0,4,-16,0,8,0,0,0]],
[x+2, [-1,-1], [-2,0,-2,0,2,-1,0,-1,0,-4,-9,3,-10,5,-6,-12,-12,-10,-5,6,3,-1,6,16,6]],
[x^2-7, [1,-1], [x,0,0,0,-2*x,0,0,0,2*x,-4*x,0,6,0,12,0,-4*x,0,0,4,-2*x,0,8,0,0,0]],
[x^2-3, [1,-1], [x,0,2*x,0,2*x,-2,-2*x,4,-2*x,0,4,2,-6*x,-4,-4*x,-4*x,4*x,10,-4,-6*x,-14,8,0,2*x,-14]],
[x^2-4*x+2, [-1,1], [-x+3,0,x,0,2,x-6,-3*x+8,2*x-4,4*x-6,2*x,-2*x+8,-4,3*x-4,4*x-8,-2*x+4,2,2*x-8,-3*x-2,-4*x+8,-8*x+18,-7*x+10,4*x,8*x-20,-3*x-4,x-6]],
[x^2+4*x+2, [-1,1], [x+3,0,x,0,2,x+6,-3*x-8,2*x+4,-4*x-6,-2*x,-2*x-8,-4,3*x+4,-4*x-8,-2*x-4,2,2*x+8,-3*x+2,4*x+8,8*x+18,-7*x-10,-4*x,8*x+20,-3*x+4,x+6]]];

f[442,2]=[
[x-2, [1,1,-1], [-1,2,2,2,2,-1,1,-4,-2,2,-2,2,2,0,4,-2,12,-6,8,6,2,-10,-12,14,-6]],
[x-2, [-1,1,1], [1,0,2,4,-2,-1,-1,0,2,8,-8,-6,12,4,-8,-6,-4,-8,-8,-8,8,-10,0,6,-16]],
[x+2, [-1,1,1], [1,2,-2,2,4,-1,-1,-4,8,-8,10,-10,-8,-12,8,2,12,0,-4,-6,-4,-4,12,-2,12]],
[x-4, [-1,1,1], [1,2,4,-4,-2,-1,-1,-4,-4,-8,4,8,10,0,8,2,0,12,8,0,-10,-4,0,-14,-6]],
[x+4, [-1,1,-1], [1,0,-4,-2,-2,-1,1,0,-4,2,-2,0,0,4,-8,-6,8,-2,16,-14,-16,8,-12,-18,-4]],
[x^2-2*x-4, [1,-1,1], [-1,x,2,-x,-x+2,1,-1,2*x,-x+6,-4,-3*x+4,-4*x+2,-4*x+4,4,8,10,4,-12,2*x-8,x-4,-8,-x-6,2*x,-6,8*x-8]],
[x^2+4*x+2, [1,-1,-1], [-1,x,-x-2,2*x+4,-2*x-6,1,1,2,-x-6,-8,-4,-x-6,3*x+4,-6*x-16,-2*x-2,6*x+8,8*x+14,-2*x-4,0,-6*x-4,x+8,-x+2,-16,2*x+6,9*x+16]],
[x^3+2*x^2-4*x-4, [1,1,1], [-1,x,-x^2-x+2,x^2-4,-2*x-2,-1,-1,-x^2,x^2+3*x-6,-x^2-2*x+4,x^2+2*x,x^2+x-2,2*x^2+3*x-8,2*x^2+6*x-4,x^2+2*x-12,-3*x^2-2*x+6,-x^2-4*x-4,-x^2-4*x+4,-2*x^2-4*x,3*x^2+8*x-8,-2*x^2-x+8,-3*x^2-3*x+10,-2*x^2+8,-2*x^2+2*x+10,-2*x^2+x+12]],
[x^3-2*x^2-6*x+8, [-1,-1,-1], [1,x,-x+2,0,-x^2+4,1,1,-x^2+4,x^2-x-4,x^2-2,-2*x,-x+2,x^2+3*x-10,-2*x^2+2*x+4,x^2+2*x-8,-3*x^2+2*x+14,x^2-4*x-4,-x^2+2*x+6,2*x^2-12,4*x,x^2-3*x-2,3*x^2-x-12,2*x^2-12,2*x+2,-x^2+x+6]]];

f[443,2]=[
[x, [1], [0,1,-2,2,-2,-3,-2,-8,6,-4,-10,7,10,4,-7,12,5,-10,8,9,4,-8,-18,-1,6]],
[x+1, [1], [-1,-2,0,1,3,3,-5,-7,-3,0,7,-3,-6,-8,-2,4,6,-13,-8,16,-8,-2,-7,-1,-10]],
[x-1, [-1], [1,-2,4,-1,5,3,3,-1,3,4,-7,-3,10,-8,6,4,-10,-13,-8,4,-4,-2,-1,-9,6]],
[x^12+3*x^11-13*x^10-39*x^9+64*x^8+181*x^7-159*x^6-357*x^5+226*x^4+264*x^3-156*x^2-20*x+6, [1], [x,-953/3391*x^11-2407/3391*x^10+12118/3391*x^9+28943/3391*x^8-54989/3391*x^7-118907/3391*x^6+107898/3391*x^5+192792/3391*x^4-89082/3391*x^3-106533/3391*x^2+22942/3391*x+7855/3391,1928/10173*x^11+5446/10173*x^10-7892/3391*x^9-22794/3391*x^8+101843/10173*x^7+100645/3391*x^6-64436/3391*x^5-184296/3391*x^4+197453/10173*x^3+360922/10173*x^2-126538/10173*x-5494/3391,2606/10173*x^11+10126/10173*x^10-8613/3391*x^9-41834/3391*x^8+70319/10173*x^7+182256/3391*x^6-4206/3391*x^5-331390/3391*x^4-88522/10173*x^3+670810/10173*x^2-16183/10173*x-19590/3391,-2324/10173*x^11-6649/10173*x^10+7923/3391*x^9+24732/3391*x^8-67316/10173*x^7-92015/3391*x^6+4110/3391*x^5+130128/3391*x^4+116590/10173*x^3-173890/10173*x^2-59543/10173*x-3438/3391,-1705/10173*x^11-8288/10173*x^10+4749/3391*x^9+34907/3391*x^8-15523/10173*x^7-153681/3391*x^6-34989/3391*x^5+273166/3391*x^4+202298/10173*x^3-485564/10173*x^2-26056/10173*x-8315/3391,-1439/10173*x^11-3421/10173*x^10+7417/3391*x^9+17164/3391*x^8-126830/10173*x^7-92754/3391*x^6+110517/3391*x^5+210185/3391*x^4-402674/10173*x^3-504637/10173*x^2+188080/10173*x+10872/3391,1660/10173*x^11+3296/10173*x^10-7597/3391*x^9-12337/3391*x^8+114934/10173*x^7+41988/3391*x^6-89164/3391*x^5-35786/3391*x^4+296029/10173*x^3-64720/10173*x^2-118784/10173*x+14082/3391,5849/10173*x^11+14506/10173*x^10-23330/3391*x^9-55393/3391*x^8+282881/10173*x^7+211205/3391*x^6-144341/3391*x^5-302722/3391*x^4+163049/10173*x^3+424012/10173*x^2+99749/10173*x-26696/3391,-3020/10173*x^11-7222/10173*x^10+11574/3391*x^9+25672/3391*x^8-126242/10173*x^7-81985/3391*x^6+44101/3391*x^5+60202/3391*x^4+56623/10173*x^3+162848/10173*x^2-75239/10173*x-30440/3391,-553/3391*x^11-3247/3391*x^10+4420/3391*x^9+43108/3391*x^8-4987/3391*x^7-205891/3391*x^6-18699/3391*x^5+425374/3391*x^4-7495/3391*x^3-343442/3391*x^2+90779/3391*x+29270/3391,-7957/10173*x^11-19574/10173*x^10+33394/3391*x^9+76910/3391*x^8-455038/10173*x^7-311010/3391*x^6+308981/3391*x^5+504013/3391*x^4-869752/10173*x^3-849740/10173*x^2+312134/10173*x-2389/3391,-1355/10173*x^11-15805/10173*x^10-1735/3391*x^9+68851/3391*x^8+163021/10173*x^7-320343/3391*x^6-214759/3391*x^5+632911/3391*x^4+621688/10173*x^3-1419805/10173*x^2+126130/10173*x+30852/3391,4352/10173*x^11-1679/10173*x^10-28325/3391*x^9+8193/3391*x^8+583493/10173*x^7-46307/3391*x^6-566552/3391*x^5+122616/3391*x^4+1911206/10173*x^3-383186/10173*x^2-479845/10173*x-7336/3391,918/3391*x^11+785/3391*x^10-10851/3391*x^9-1147/3391*x^8+38491/3391*x^7-46762/3391*x^6-16666/3391*x^5+213021/3391*x^4-125798/3391*x^3-241212/3391*x^2+146988/3391*x+18035/3391,5066/10173*x^11+25306/10173*x^10-14560/3391*x^9-106896/3391*x^8+81797/10173*x^7+475966/3391*x^6+15519/3391*x^5-879018/3391*x^4+99401/10173*x^3+1766734/10173*x^2-426559/10173*x-34184/3391,-181/3391*x^11+41/3391*x^10+2483/3391*x^9-1196/3391*x^8-7519/3391*x^7+9316/3391*x^6-20089/3391*x^5-19095/3391*x^4+112430/3391*x^3-10797/3391*x^2-105578/3391*x+17141/3391,-3406/10173*x^11-1664/10173*x^10+17136/3391*x^9-389/3391*x^8-282226/10173*x^7+50935/3391*x^6+217462/3391*x^5-235106/3391*x^4-454444/10173*x^3+884737/10173*x^2-231394/10173*x-19554/3391,-286/3391*x^11+1957/3391*x^10+6284/3391*x^9-33102/3391*x^8-43449/3391*x^7+200682/3391*x^6+104403/3391*x^5-514111/3391*x^4-16778/3391*x^3+475309/3391*x^2-131566/3391*x-37438/3391,8515/10173*x^11+14333/10173*x^10-39449/3391*x^9-51588/3391*x^8+603835/10173*x^7+169375/3391*x^6-462271/3391*x^5-137909/3391*x^4+1380262/10173*x^3-263713/10173*x^2-387950/10173*x+35321/3391,9436/10173*x^11+19520/10173*x^10-42424/3391*x^9-73821/3391*x^8+643837/10173*x^7+276980/3391*x^6-512223/3391*x^5-383396/3391*x^4+1725823/10173*x^3+452078/10173*x^2-645008/10173*x-13986/3391,2010/3391*x^11+5952/3391*x^10-21897/3391*x^9-70819/3391*x^8+69672/3391*x^7+287223/3391*x^6-30263/3391*x^5-462516/3391*x^4-135722/3391*x^3+272664/3391*x^2+114786/3391*x-40322/3391,-31/10173*x^11+6508/10173*x^10+3539/3391*x^9-31549/3391*x^8-108301/10173*x^7+174216/3391*x^6+112130/3391*x^5-439316/3391*x^4-249907/10173*x^3+1291096/10173*x^2-172120/10173*x-21422/3391,-4675/3391*x^11-8833/3391*x^10+64114/3391*x^9+97461/3391*x^8-327954/3391*x^7-344861/3391*x^6+768976/3391*x^5+404385/3391*x^4-777428/3391*x^3-62823/3391*x^2+187366/3391*x+4673/3391,2039/10173*x^11+12334/10173*x^10-4484/3391*x^9-49078/3391*x^8-1627/10173*x^7+195075/3391*x^6+31340/3391*x^5-283790/3391*x^4+11318/10173*x^3+296782/10173*x^2-182968/10173*x+11704/3391]],
[x^22-x^21-35*x^20+33*x^19+523*x^18-456*x^17-4360*x^16+3428*x^15+22226*x^14-15227*x^13-71363*x^12+40569*x^11+143034*x^10-62774*x^9-170342*x^8+51992*x^7+107186*x^6-20952*x^5-26926*x^4+5536*x^3+1736*x^2-512*x+32, [-1], [x,24331639715/276511903884*x^21-8125806695/122894179504*x^20-3412458404095/1106047615536*x^19+2389711908563/1106047615536*x^18+51138378435019/1106047615536*x^17-32431419686159/1106047615536*x^16-214033136471141/553023807768*x^15+4926713915392/23042658657*x^14+548510219486683/276511903884*x^13-166235001605939/184341269256*x^12-7092131576110951/1106047615536*x^11+2420044653883823/1106047615536*x^10+14322072309976415/1106047615536*x^9-771797422040513/276511903884*x^8-2861400783481183/184341269256*x^7+748307574118151/553023807768*x^6+2701481312105405/276511903884*x^5+88077002352901/553023807768*x^4-221305411235065/92170634628*x^3+2558974223989/553023807768*x^2+15160229436083/92170634628*x-2044922361293/138255951942,-4487692457/553023807768*x^21+464915797/92170634628*x^20+17265814817/69127975971*x^19-58814741377/276511903884*x^18-447258475993/138255951942*x^17+1990589437673/553023807768*x^16+6368715278051/276511903884*x^15-497959835343/15361772438*x^14-27419742322367/276511903884*x^13+10498224082397/61447089752*x^12+18621638832281/69127975971*x^11-149378130661807/276511903884*x^10-260756674651403/553023807768*x^9+277082845647397/276511903884*x^8+24477554211125/46085317314*x^7-280269013911485/276511903884*x^6-98494826092843/276511903884*x^5+134782019264321/276511903884*x^4+3280809564745/30723544876*x^3-27800586430795/276511903884*x^2-684082799419/46085317314*x+369225624443/69127975971,-77378520413/1106047615536*x^21+11248192515/122894179504*x^20+2786326409257/1106047615536*x^19-3235313679647/1106047615536*x^18-42837539306137/1106047615536*x^17+21602664606733/553023807768*x^16+22968487627630/69127975971*x^15-26030166998233/92170634628*x^14-964027086846113/553023807768*x^13+440416402259833/368682538512*x^12+6368731241805277/1106047615536*x^11-3284291651518895/1106047615536*x^10-3277415486212031/276511903884*x^9+2261376132136177/553023807768*x^8+2659389515200819/184341269256*x^7-729926036929771/276511903884*x^6-5065503313809637/553023807768*x^5+144727804023313/276511903884*x^4+412422490650353/184341269256*x^3-40909468337813/276511903884*x^2-6718151258917/46085317314*x+1360277665744/69127975971,22030898407/276511903884*x^21-22355967073/184341269256*x^20-1602149670475/553023807768*x^19+2133015121595/553023807768*x^18+24838378447063/553023807768*x^17-28390101913589/553023807768*x^16-107299333802765/276511903884*x^15+8542868734255/23042658657*x^14+141583156365272/69127975971*x^13-72468197810867/46085317314*x^12-3761550886522039/553023807768*x^11+2183765319954767/553023807768*x^10+7787958126000041/553023807768*x^9-772557788684753/138255951942*x^8-1593947275306051/92170634628*x^7+1077979190630885/276511903884*x^6+774143588048455/69127975971*x^5-286253750311157/276511903884*x^4-67097718790501/23042658657*x^3+68665841942827/276511903884*x^2+3442866847655/15361772438*x-1993849215107/69127975971,-28106337295/737365077024*x^21+1790239187/245788359008*x^20+952185112427/737365077024*x^19-190843830589/737365077024*x^18-13706797493867/737365077024*x^17+1392565355075/368682538512*x^16+13664759825365/92170634628*x^15-1838677236247/61447089752*x^14-263987050082995/368682538512*x^13+35189455123363/245788359008*x^12+1585535871843647/737365077024*x^11-322273338485437/737365077024*x^10-732378231481303/184341269256*x^9+323065131836135/368682538512*x^8+532566927912329/122894179504*x^7-209230094037173/184341269256*x^6-961664330793791/368682538512*x^5+153056014419467/184341269256*x^4+97746233271315/122894179504*x^3-40755672026287/184341269256*x^2-2256745894127/30723544876*x+376488821731/23042658657,-184730416735/553023807768*x^21+2970771027/15361772438*x^20+1606832864495/138255951942*x^19-1766895502019/276511903884*x^18-23884705688453/138255951942*x^17+48308129073523/553023807768*x^16+99087424664059/69127975971*x^15-14722512766432/23042658657*x^14-2011480604792599/276511903884*x^13+495494412401261/184341269256*x^12+6428035752534421/276511903884*x^11-1781190829595273/276511903884*x^10-25609437570600349/553023807768*x^9+547608872895077/69127975971*x^8+1257697137294668/23042658657*x^7-904241581362559/276511903884*x^6-9293189186137943/276511903884*x^5-280292174684543/276511903884*x^4+736991822131795/92170634628*x^3+6333960798037/276511903884*x^2-12194932406789/23042658657*x+3291493747678/69127975971,7303311105/61447089752*x^21+14576458/23042658657*x^20-370061358029/92170634628*x^19+2577698432/23042658657*x^18+1776216758601/30723544876*x^17-522448076357/184341269256*x^16-42694246113701/92170634628*x^15+1228140760147/46085317314*x^14+208337956593377/92170634628*x^13-21933863295427/184341269256*x^12-636571552546919/92170634628*x^11+10835532522751/46085317314*x^10+802741492178233/61447089752*x^9-3697767687389/92170634628*x^8-111570420537581/7680886219*x^7-15409116636869/30723544876*x^6+779161228227629/92170634628*x^5+15536651889861/30723544876*x^4-184677539047787/92170634628*x^3-1777855487693/92170634628*x^2+6696514337983/46085317314*x-221092595977/23042658657,124062045775/553023807768*x^21-28105623923/184341269256*x^20-4328756627543/553023807768*x^19+2759569427881/553023807768*x^18+64501513552631/553023807768*x^17-18754723003085/276511903884*x^16-134056867263557/138255951942*x^15+22848440342635/46085317314*x^14+1362548576791999/276511903884*x^13-387466726716091/184341269256*x^12-8714456684729639/553023807768*x^11+2855888145050833/553023807768*x^10+2169991924254206/69127975971*x^9-1887616161343853/276511903884*x^8-3410391324500561/92170634628*x^7+532316295879419/138255951942*x^6+6318601928645915/276511903884*x^5-39180937928387/138255951942*x^4-510363018926531/92170634628*x^3+23589995439223/138255951942*x^2+2815070284467/7680886219*x-2590479494044/69127975971,-19687019897/368682538512*x^21+3813715383/122894179504*x^20+685975236451/368682538512*x^19-374850311417/368682538512*x^18-10210094100523/368682538512*x^17+634096740079/46085317314*x^16+21202737604435/92170634628*x^15-3052243188701/30723544876*x^14-215399007377105/184341269256*x^13+50446049312905/122894179504*x^12+1377312208331071/368682538512*x^11-352474453994129/368682538512*x^10-1371180455516209/184341269256*x^9+204380368844869/184341269256*x^8+537338819879421/61447089752*x^7-16193607014009/46085317314*x^6-985382146382221/184341269256*x^5-5304764952878/23042658657*x^4+77116410856601/61447089752*x^3-332669001655/46085317314*x^2-734184411535/7680886219*x+304299932611/23042658657,-56729238653/184341269256*x^21+19250031749/61447089752*x^20+2015724670693/184341269256*x^19-1858655082371/184341269256*x^18-30600643270141/184341269256*x^17+12464396317987/92170634628*x^16+32422513352546/23042658657*x^15-15028238776255/15361772438*x^14-672731078716757/92170634628*x^13+252893250552225/61447089752*x^12+4397678760703153/184341269256*x^11-1853842226488019/184341269256*x^10-1120819456295038/23042658657*x^9+1219399947630025/92170634628*x^8+1803876516165511/30723544876*x^7-338740777144057/46085317314*x^6-3410851515540241/92170634628*x^5+15806280328999/46085317314*x^4+275471525401189/30723544876*x^3-10174738166003/46085317314*x^2-4612941266422/7680886219*x+1416432776348/23042658657,-22810511171/138255951942*x^21+17969006199/122894179504*x^20+6432538363571/1106047615536*x^19-5200615152895/1106047615536*x^18-96816602595431/1106047615536*x^17+69529541228239/1106047615536*x^16+406471509653227/553023807768*x^15-10413564078764/23042658657*x^14-1043229030489485/276511903884*x^13+346709808308485/184341269256*x^12+13480705599653063/1106047615536*x^11-4987788087259075/1106047615536*x^10-27136415687949199/1106047615536*x^9+789349770110267/138255951942*x^8+5387970963743051/184341269256*x^7-1555428734101543/553023807768*x^6-5039864738087521/276511903884*x^5-119551218922889/553023807768*x^4+407854831722077/92170634628*x^3-12304780097513/553023807768*x^2-26875508337877/92170634628*x+4231520364529/138255951942,-86308364389/553023807768*x^21+22405008853/92170634628*x^20+1557211057417/276511903884*x^19-1077715973839/138255951942*x^18-23994365612155/276511903884*x^17+57855371027971/553023807768*x^16+103208297502563/138255951942*x^15-35101160318947/46085317314*x^14-1087209354374593/276511903884*x^13+599724129086395/184341269256*x^12+903136132175686/69127975971*x^11-1133667951553435/138255951942*x^10-15008419329750889/553023807768*x^9+796695504246383/69127975971*x^8+771773984136023/23042658657*x^7-2123789598001567/276511903884*x^6-6002091376435481/276511903884*x^5+428815172950657/276511903884*x^4+503618233036505/92170634628*x^3-78990459782603/276511903884*x^2-2920504630661/7680886219*x+2569635803281/69127975971,-42977625973/1106047615536*x^21+56261966107/368682538512*x^20+1778411041727/1106047615536*x^19-5222614371469/1106047615536*x^18-30783845436743/1106047615536*x^17+4218494585809/69127975971*x^16+73292665897001/276511903884*x^15-13081208656415/30723544876*x^14-845073047498845/553023807768*x^13+211946540201815/122894179504*x^12+6085768872765875/1106047615536*x^11-4448493233357173/1106047615536*x^10-6775169794330505/553023807768*x^9+2696037546698597/553023807768*x^8+2940043955555057/184341269256*x^7-277191966976903/138255951942*x^6-5835101933259833/553023807768*x^5-49832048534446/69127975971*x^4+150203219880119/61447089752*x^3+24267009899185/138255951942*x^2-3479023214198/23042658657*x+491520782765/69127975971,7770026059/30723544876*x^21-91673858941/368682538512*x^20-3318474053737/368682538512*x^19+2913445226197/368682538512*x^18+16803246288647/122894179504*x^17-38507173567385/368682538512*x^16-213487709464097/184341269256*x^15+17103789124600/23042658657*x^14+552256231772341/92170634628*x^13-562595343545363/184341269256*x^12-7182919898297293/368682538512*x^11+2660591251611553/368682538512*x^10+4840216497751323/122894179504*x^9-412951943026649/46085317314*x^8-2884283205340009/61447089752*x^7+258681013851995/61447089752*x^6+2680017922791241/92170634628*x^5+30278080205277/61447089752*x^4-636083516623831/92170634628*x^3+5059996971943/184341269256*x^2+41773432172941/92170634628*x-1822155197599/46085317314,-14044457771/92170634628*x^21+4630441999/46085317314*x^20+81561040215/15361772438*x^19-75757307005/23042658657*x^18-3636234453455/46085317314*x^17+1370836058947/30723544876*x^16+5016278591066/7680886219*x^15-7489828634582/23042658657*x^14-50652475969259/15361772438*x^13+126259724216639/92170634628*x^12+80241740149848/7680886219*x^11-76786922697292/23042658657*x^10-1894101423878435/92170634628*x^9+99704045713198/23042658657*x^8+182956447386516/7680886219*x^7-107114116227869/46085317314*x^6-662910476475785/46085317314*x^5+2014140422039/46085317314*x^4+154949066298811/46085317314*x^3-447791967511/15361772438*x^2-4605783892949/23042658657*x+250212332150/23042658657,-83761986731/737365077024*x^21-36207488515/737365077024*x^20+925609467149/245788359008*x^19+960716947871/737365077024*x^18-39262082700295/737365077024*x^17-1739868735667/122894179504*x^16+12887589244697/30723544876*x^15+14954462281759/184341269256*x^14-248031796576053/122894179504*x^13-194589262954675/737365077024*x^12+1502684591197641/245788359008*x^11+364511818017215/737365077024*x^10-2135103787758791/184341269256*x^9-198074257073893/368682538512*x^8+1614940787498381/122894179504*x^7+65813060089103/184341269256*x^6-2979109856419115/368682538512*x^5-17885324480465/184341269256*x^4+799441762179277/368682538512*x^3-6038501233409/61447089752*x^2-17010123738061/92170634628*x+470146659433/23042658657,1306787055/61447089752*x^21-1495311831/7680886219*x^20-15193159093/15361772438*x^19+188873466217/30723544876*x^18+141568826172/7680886219*x^17-5020420918439/61447089752*x^16-1417557323364/7680886219*x^15+9116467379347/15361772438*x^14+33892283613043/30723544876*x^13-157139022747247/61447089752*x^12-125541035714419/30723544876*x^11+203654848326817/30723544876*x^10+573732810121793/61447089752*x^9-76552692982170/7680886219*x^8-192616387673551/15361772438*x^7+242282515820407/30723544876*x^6+268834211800719/30723544876*x^5-85534803183069/30723544876*x^4-72121733614165/30723544876*x^3+17196755955955/30723544876*x^2+1461583964486/7680886219*x-284756564373/7680886219,-76503000611/553023807768*x^21+35326359779/184341269256*x^20+2766276013009/553023807768*x^19-3368110672811/553023807768*x^18-42722171050273/553023807768*x^17+11169628013099/138255951942*x^16+184211820825017/276511903884*x^15-8894247030799/15361772438*x^14-972587026069133/276511903884*x^13+148565772008757/61447089752*x^12+6476450622980359/553023807768*x^11-3251909627736311/553023807768*x^10-6733893322483483/276511903884*x^9+534592633109206/69127975971*x^8+2768380241945071/92170634628*x^7-299471111295794/69127975971*x^6-5366810041444561/276511903884*x^5+26690016586603/138255951942*x^4+149842665737507/30723544876*x^3-6576753795971/138255951942*x^2-16012776034279/46085317314*x+1874036773328/69127975971,720620150461/2212095231072*x^21-299318836901/737365077024*x^20-25692890302061/2212095231072*x^19+28866379253923/2212095231072*x^18+391056618638621/2212095231072*x^17-193816321909127/1106047615536*x^16-415100117085775/276511903884*x^15+234775947306457/184341269256*x^14+8622953359876081/1106047615536*x^13-3992467038422833/737365077024*x^12-56408850374159825/2212095231072*x^11+29919097565907571/2212095231072*x^10+3596710673840438/69127975971*x^9-20696069659418585/1106047615536*x^8-23193818033595551/368682538512*x^7+6693608818844885/553023807768*x^6+44084433195673661/1106047615536*x^5-1266517045103387/553023807768*x^4-3624733446447785/368682538512*x^3+296194723770835/553023807768*x^2+21042868261803/30723544876*x-5645696536957/69127975971,343895065279/1106047615536*x^21-112554520775/368682538512*x^20-12240927911303/1106047615536*x^19+10893304447849/1106047615536*x^18+186243489565463/1106047615536*x^17-73245345723233/553023807768*x^16-98943463078361/69127975971*x^15+88571853369799/92170634628*x^14+4120570546836067/553023807768*x^13-1495196646029179/368682538512*x^12-27059610214199483/1106047615536*x^11+10992632160579193/1106047615536*x^10+6938009252139653/138255951942*x^9-7235720527655231/553023807768*x^8-11258383847197325/184341269256*x^7+1983879478745723/276511903884*x^6+21556224281763047/553023807768*x^5-45344774580089/276511903884*x^4-1786233756011459/184341269256*x^3+50987249621497/276511903884*x^2+10518238882463/15361772438*x-4507390203488/69127975971,6951039703/368682538512*x^21-7061211767/368682538512*x^20-232715530381/368682538512*x^19+91228385717/122894179504*x^18+3380576538365/368682538512*x^17-547010569483/46085317314*x^16-1756067707462/23042658657*x^15+9436447735523/92170634628*x^14+74053738958123/184341269256*x^13-191531664167837/368682538512*x^12-515906126622013/368682538512*x^11+193913293028077/122894179504*x^10+593244849543659/184341269256*x^9-170626214607559/61447089752*x^8-286343360702479/61447089752*x^7+118983747338113/46085317314*x^6+232121681771317/61447089752*x^5-49313040264289/46085317314*x^4-246048957863209/184341269256*x^3+5003755330550/23042658657*x^2+6933837347251/46085317314*x-151309855226/7680886219,153268874993/1106047615536*x^21-34580838401/368682538512*x^20-5234599444153/1106047615536*x^19+3628514279927/1106047615536*x^18+76450487978041/1106047615536*x^17-26381842163095/553023807768*x^16-78064793559251/138255951942*x^15+11524039755391/30723544876*x^14+1566136047920765/553023807768*x^13-212756920579495/122894179504*x^12-9955098054762349/1106047615536*x^11+5251165868353079/1106047615536*x^10+2489468619716425/138255951942*x^9-4106222487394837/553023807768*x^8-3983725717574539/184341269256*x^7+1641470655904405/276511903884*x^6+7628212675404193/553023807768*x^5-560123588676883/276511903884*x^4-213546035868167/61447089752*x^3+133230901514819/276511903884*x^2+11465652853445/46085317314*x-2780843405866/69127975971,-34245200725/276511903884*x^21+55949110949/368682538512*x^20+4896075549659/1106047615536*x^19-5279048506111/1106047615536*x^18-74471636109167/1106047615536*x^17+69190687776835/1106047615536*x^16+314691786974695/553023807768*x^15-10196886680833/23042658657*x^14-808758522995123/276511903884*x^13+336614307170183/184341269256*x^12+10395739410403343/1106047615536*x^11-4891004667763843/1106047615536*x^10-20640698352624523/1106047615536*x^9+412454739699436/69127975971*x^8+4001957613049931/184341269256*x^7-2166731859551371/553023807768*x^6-3624428259727771/276511903884*x^5+550402158940267/553023807768*x^4+286959439004047/92170634628*x^3-146086424694701/553023807768*x^2-6060249369075/30723544876*x+4342577134501/138255951942,34046805835/122894179504*x^21-82689448217/368682538512*x^20-3579078397727/368682538512*x^19+2703171481349/368682538512*x^18+17838321892381/122894179504*x^17-9208627297063/92170634628*x^16-111490736731835/92170634628*x^15+67814966868935/92170634628*x^14+1134388258987057/184341269256*x^13-1167971457481499/368682538512*x^12-7250458163428307/368682538512*x^11+2960357473428269/368682538512*x^10+2400568250172321/61447089752*x^9-2096720191704601/184341269256*x^8-2814561402524081/61447089752*x^7+60242632643895/7680886219*x^6+5171624428914373/184341269256*x^5-31709748496369/15361772438*x^4-1238290736022811/184341269256*x^3+13801178378734/23042658657*x^2+10315212208988/23042658657*x-1441963185535/23042658657]]];

f[444,2]=[
[x, [-1,1,1], [0,-1,0,0,4,-2,0,6,8,8,6,-1,2,-6,0,2,0,2,8,0,-6,-10,-12,-12,-10]],
[x+2, [-1,-1,1], [0,1,-2,-4,-4,-6,6,-2,2,-2,2,-1,6,-2,-4,10,-6,-14,-4,-12,-2,-10,0,-10,10]],
[x^2+2*x-2, [-1,1,-1], [0,-1,x,-2*x-2,-4,2*x+2,-x-4,-2*x-6,3*x,-x-4,4*x+2,1,-2*x-2,4*x+2,-6*x-4,-4*x-10,-3*x-4,10,6*x+6,2*x-4,-2*x+8,2*x+2,6*x+8,7*x+12,-2*x+10]],
[x^2-6, [-1,-1,-1], [0,1,x,2,0,-2*x+2,-x,2,-x,-x,2*x+2,1,2*x-6,2*x+2,-2*x,-6,x,2,-4*x+2,-2*x,4*x-4,4*x+2,-6*x,-x-12,-2*x+2]]];

f[445,2]=[
[x^2+2*x-4, [1,1], [-1,x,-1,-x,2*x,-2*x,-2,-x-6,-x-4,-2*x-2,x+2,2*x,-10,x+4,8,2,-x-2,2*x-2,2*x+4,-2*x-12,2,4*x+8,x-12,-1,-6]],
[x^2-3, [-1,1], [x,x+1,1,-x-1,0,2,0,x-1,-x+3,-2*x,-3*x-1,-2*x-4,-2*x,-x+11,-4*x+6,-4*x,3*x+9,2,6*x-4,-2*x+6,4*x+2,6*x+2,-3*x-3,-1,-4]],
[x^2-2*x-1, [-1,1], [x,-x+1,1,x-1,4,-2*x+4,2*x+2,-3*x+5,-3*x-1,-2*x-4,x+1,-4*x+6,-2*x,5*x-5,-2*x,-2*x+2,3*x+3,-10,2,-2*x+2,4*x+2,-2*x-6,-5*x+13,-1,2*x-2]],
[x^4-x^3-5*x^2+7*x-1, [1,1], [x,x^3-5*x+2,-1,-4*x^3-2*x^2+16*x-3,-x^3+5*x-6,5*x^3+3*x^2-21*x+2,x^3+3*x^2-3*x-7,6*x^3+x^2-26*x+11,-3*x^3-3*x^2+11*x+1,5*x^3+2*x^2-19*x+3,-7*x^3-2*x^2+28*x-13,2*x^3+3*x^2-4*x-4,-6*x^3-5*x^2+22*x,3*x^3-x^2-13*x+12,6*x^3+3*x^2-23*x-1,-7*x^3-5*x^2+31*x-2,6*x^3+2*x^2-26*x+3,-12*x^3-10*x^2+47*x,-3*x^3-2*x^2+14*x-4,6*x^3+4*x^2-26*x+7,-12*x^3-6*x^2+49*x-10,8*x^3+6*x^2-29*x-6,x^3-x^2-10*x+8,-1,10*x^3+3*x^2-42*x+25]],
[x^4-x^3-5*x^2+5*x+1, [-1,1], [x,x^3-5*x+2,1,3,-x^3+3*x,-x^3-x^2+5*x,-x^3+x^2+3*x-3,-2*x^3+x^2+10*x-5,-x^3-x^2+5*x+5,x^3-2*x^2-x+9,3*x^3-2*x^2-12*x+5,3*x^2+2*x-10,2*x^3+3*x^2-10*x-4,x^3-x^2-7*x+2,-4*x^3+x^2+19*x-5,3*x^3+3*x^2-15*x-4,2*x^3+2*x^2-6*x-9,-2*x^3-2*x^2+5*x+4,-3*x^3+2*x^2+10*x-4,-2*x^3+10*x-9,-2*x^2-3*x+6,2*x^3+2*x^2-7*x-6,-x^3-x^2+8*x+6,-1,-3*x^2+5]],
[x^7+4*x^6-3*x^5-24*x^4-8*x^3+29*x^2+6*x-9, [-1,-1], [x,2/3*x^6+5/3*x^5-4*x^4-9*x^3+14/3*x^2+19/3*x-3,1,-1/3*x^6-4/3*x^5+x^4+7*x^3+5/3*x^2-14/3*x-2,-1/3*x^6-1/3*x^5+4*x^4+3*x^3-40/3*x^2-20/3*x+7,-5/3*x^6-17/3*x^5+5*x^4+28*x^3+40/3*x^2-37/3*x-10,-1/3*x^6+5/3*x^5+8*x^4-9*x^3-97/3*x^2+16/3*x+14,x^5+2*x^4-6*x^3-9*x^2+4*x,5/3*x^6+14/3*x^5-8*x^4-23*x^3+11/3*x^2+34/3*x-5,x^6+3*x^5-3*x^4-14*x^3-9*x^2+5*x+7,2/3*x^6+2/3*x^5-8*x^4-5*x^3+80/3*x^2+28/3*x-15,-2*x^5-5*x^4+11*x^3+24*x^2-11*x-11,-1/3*x^6-13/3*x^5-7*x^4+23*x^3+122/3*x^2-44/3*x-14,-1/3*x^6-4/3*x^5+x^4+8*x^3+8/3*x^2-23/3*x-5,3*x^5+7*x^4-17*x^3-34*x^2+16*x+13,x^6+5*x^5+x^4-26*x^3-26*x^2+19*x+8,-1/3*x^6-10/3*x^5-5*x^4+15*x^3+101/3*x^2+10/3*x-22,-4/3*x^6-7/3*x^5+9*x^4+9*x^3-49/3*x^2+10/3*x+10,-4/3*x^6-13/3*x^5+5*x^4+22*x^3+23/3*x^2-29/3*x-10,2*x^6+8*x^5-3*x^4-39*x^3-33*x^2+13*x+24,8/3*x^6+17/3*x^5-17*x^4-29*x^3+65/3*x^2+46/3*x-4,-2/3*x^6-5/3*x^5+3*x^4+9*x^3+1/3*x^2-28/3*x+2,-x^6-3*x^5+4*x^4+15*x^3+5*x^2-x-11,1,2/3*x^6+8/3*x^5-12*x^3-49/3*x^2-2/3*x+9]],
[x^8-x^7-11*x^6+9*x^5+34*x^4-19*x^3-27*x^2+11*x-1, [1,-1], [x,x^7-1/2*x^6-23/2*x^5+4*x^4+38*x^3-6*x^2-65/2*x+9/2,-1,3*x^7-5/2*x^6-67/2*x^5+21*x^4+106*x^3-37*x^2-173/2*x+33/2,-x^3+5*x+2,x^7-x^6-12*x^5+9*x^4+42*x^3-19*x^2-39*x+9,4*x^7-3*x^6-45*x^5+26*x^4+145*x^3-49*x^2-126*x+26,-3/2*x^7+3/2*x^6+17*x^5-13*x^4-55*x^3+49/2*x^2+91/2*x-8,-2*x^7+3/2*x^6+43/2*x^5-12*x^4-64*x^3+18*x^2+95/2*x-15/2,7*x^7-6*x^6-77*x^5+51*x^4+238*x^3-90*x^2-192*x+37,-9/2*x^7+7/2*x^6+51*x^5-29*x^4-164*x^3+97/2*x^2+271/2*x-22,-x^7+x^6+12*x^5-9*x^4-43*x^3+19*x^2+44*x-11,7*x^7-6*x^6-77*x^5+51*x^4+239*x^3-91*x^2-195*x+40,3*x^7-5/2*x^6-67/2*x^5+23*x^4+107*x^3-48*x^2-187/2*x+39/2,-8*x^7+6*x^6+89*x^5-51*x^4-281*x^3+92*x^2+232*x-43,3*x^7-3*x^6-34*x^5+25*x^4+112*x^3-43*x^2-103*x+17,-9/2*x^7+7/2*x^6+50*x^5-30*x^4-158*x^3+107/2*x^2+265/2*x-18,-10*x^7+8*x^6+111*x^5-67*x^4-349*x^3+117*x^2+290*x-54,5*x^7-5*x^6-53*x^5+43*x^4+156*x^3-78*x^2-122*x+24,-6*x^7+5*x^6+67*x^5-43*x^4-213*x^3+79*x^2+180*x-31,-5*x^7+4*x^6+56*x^5-35*x^4-181*x^3+68*x^2+162*x-35,13*x^7-10*x^6-146*x^5+85*x^4+467*x^3-154*x^2-394*x+75,-8*x^7+13/2*x^6+179/2*x^5-56*x^4-284*x^3+106*x^2+471/2*x-97/2,1,-7*x^7+6*x^6+77*x^5-52*x^4-240*x^3+98*x^2+204*x-44]]];

f[446,2]=[
[x+1, [1,1], [-1,-1,0,0,1,-2,1,-4,1,-3,-10,-3,-5,-6,6,-9,-1,4,9,4,-5,0,14,-5,2]],
[x+3, [1,-1], [-1,-3,-4,-4,-5,-6,1,0,-5,-3,2,5,-5,-6,-6,-1,-11,0,11,-12,-5,-8,-6,3,-18]],
[x-2, [-1,1], [1,2,0,0,-2,4,-2,8,-8,-6,8,-6,10,-12,0,6,-10,4,-6,4,10,12,8,-2,-10]],
[x+1, [-1,-1], [1,-1,-2,-2,-3,0,1,-6,-3,5,2,-7,3,0,2,-1,3,6,-11,0,7,-8,-6,15,12]],
[x^7-x^6-14*x^5+12*x^4+50*x^3-36*x^2-38*x+18, [-1,1], [1,x,-6/239*x^6+37/239*x^5+92/239*x^4-388/239*x^3-526/239*x^2+703/239*x+858/239,-41/239*x^6-26/239*x^5+549/239*x^4+376/239*x^3-1762/239*x^2-972/239*x+1322/239,36/239*x^6+17/239*x^5-552/239*x^4-301/239*x^3+2200/239*x^2+801/239*x-1324/239,64/239*x^6-76/239*x^5-822/239*x^4+713/239*x^3+2424/239*x^2-1205/239*x-1026/239,42/239*x^6-20/239*x^5-644/239*x^4+326/239*x^3+2487/239*x^2-1336/239*x-1704/239,-2*x,73/239*x^6-12/239*x^5-960/239*x^4+100/239*x^3+2974/239*x^2-228/239*x-1118/239,-95/239*x^6+68/239*x^5+1138/239*x^4-726/239*x^3-2672/239*x^2+1770/239*x+440/239,-43/239*x^6+66/239*x^5+500/239*x^4-550/239*x^3-1061/239*x^2+298/239*x-304/239,13/239*x^6-120/239*x^5-40/239*x^4+1478/239*x^3-374/239*x^2-3714/239*x+292/239,-63/239*x^6+30/239*x^5+966/239*x^4-250/239*x^3-3850/239*x^2+92/239*x+1600/239,22/239*x^6-56/239*x^5-178/239*x^4+626/239*x^3-302/239*x^2-1064/239*x+2112/239,-11/239*x^6+28/239*x^5+328/239*x^4-552/239*x^3-2239/239*x^2+1966/239*x+2290/239,39/239*x^6+118/239*x^5-598/239*x^4-1302/239*x^3+2224/239*x^2+2720/239*x-1992/239,-5/239*x^6-9/239*x^5+236/239*x^4-164/239*x^3-1952/239*x^2+1263/239*x+2866/239,-27/239*x^6+47/239*x^5+414/239*x^4-551/239*x^3-1172/239*x^2+1371/239*x-680/239,-137/239*x^6+88/239*x^5+1782/239*x^4-813/239*x^3-4920/239*x^2+955/239*x+1666/239,176/239*x^6+30/239*x^5-2380/239*x^4-728/239*x^3+8100/239*x^2+2482/239*x-6048/239,-20/239*x^6-36/239*x^5+227/239*x^4+300/239*x^3-160/239*x^2+272/239*x-2398/239,-158/239*x^6+98/239*x^5+2104/239*x^4-976/239*x^3-6522/239*x^2+1862/239*x+3952/239,-124/239*x^6-32/239*x^5+1742/239*x^4+426/239*x^3-5772/239*x^2-130/239*x+2436/239,126/239*x^6-60/239*x^5-1454/239*x^4+500/239*x^3+3159/239*x^2-1140/239*x-810/239,-86/239*x^6+132/239*x^5+1000/239*x^4-1578/239*x^3-2600/239*x^2+4898/239*x+1782/239]],
[x^8-4*x^7-12*x^6+54*x^5+34*x^4-204*x^3+6*x^2+160*x+34, [1,-1], [-1,x,-1/33*x^7+19/33*x^5+2/33*x^4-116/33*x^3+2/33*x^2+221/33*x-10/33,4/33*x^6-2/33*x^5-25/11*x^4+46/33*x^3+114/11*x^2-212/33*x-184/33,2/33*x^7-2/11*x^6-35/33*x^5+92/33*x^4+163/33*x^3-32/3*x^2-91/33*x+164/33,-2/33*x^7+4/33*x^6+12/11*x^5-38/33*x^4-73/11*x^3+16/33*x^2+395/33*x+86/11,-7/33*x^6+20/33*x^5+30/11*x^4-196/33*x^3-117/11*x^2+404/33*x+322/33,8/33*x^7-2/3*x^6-36/11*x^5+248/33*x^4+148/11*x^3-676/33*x^2-470/33*x+56/11,-2/33*x^7+6/11*x^6-4/33*x^5-218/33*x^4+206/33*x^3+718/33*x^2-644/33*x-452/33,-2*x+2,-4/33*x^7+1/3*x^6+18/11*x^5-124/33*x^4-74/11*x^3+305/33*x^2+202/33*x+60/11,2/11*x^7-6/11*x^6-24/11*x^5+70/11*x^4+64/11*x^3-18*x^2+30/11*x+54/11,-4/33*x^6+2/33*x^5+14/11*x^4+20/33*x^3-26/11*x^2-184/33*x+52/33,4/33*x^7-8/33*x^6-24/11*x^5+142/33*x^4+102/11*x^3-626/33*x^2-64/33*x+136/11,-4/11*x^7+10/11*x^6+60/11*x^5-130/11*x^4-250/11*x^3+423/11*x^2+178/11*x-104/11,-2/11*x^7+2/3*x^6+70/33*x^5-84/11*x^4-212/33*x^3+224/11*x^2+28/33*x-82/33,5/33*x^7-4/33*x^6-31/11*x^5+32/33*x^4+178/11*x^3+4/3*x^2-893/33*x-120/11,-2/11*x^6+1/11*x^5+32/11*x^4-23/11*x^3-116/11*x^2+117/11*x+70/11,-x^3+9*x,14/33*x^7-4/3*x^6-178/33*x^5+500/33*x^4+656/33*x^3-1348/33*x^2-166/11*x+184/33,4/33*x^7-14/33*x^6-12/11*x^5+139/33*x^4+24/11*x^3-380/33*x^2-76/33*x+118/11,-2/11*x^7+14/33*x^6+74/33*x^5-56/11*x^4-172/33*x^3+194/11*x^2-406/33*x-28/3,-2/33*x^7+4/33*x^6+12/11*x^5-38/33*x^4-62/11*x^3+16/33*x^2+230/33*x-24/11,-2/11*x^7+26/33*x^6+68/33*x^5-98/11*x^4-232/33*x^3+261/11*x^2+80/33*x-134/33,-14/33*x^6+40/33*x^5+60/11*x^4-458/33*x^3-212/11*x^2+1270/33*x+446/33]]];

f[447,2]=[
[x^3+x^2-2*x-1, [1,1], [x,-1,0,-2*x^2-x+2,x^2-x-1,2*x^2-6,-2*x^2-2*x,x^2+2*x-2,4*x^2+x-8,-2*x^2-2*x+4,3*x^2+x-5,x^2+4*x-6,3*x^2+7*x-5,4*x-2,-4*x^2+2*x+10,-8*x^2-4*x+8,-3*x^2-4*x+8,-3*x^2+x+3,-7*x^2-5*x+9,9*x^2+8*x-12,4*x^2-7*x-12,8*x^2+2*x-12,4*x^2+3*x,-6*x^2+3*x+14,8*x^2+4*x-16]],
[x^3+3*x^2-3, [-1,-1], [x,1,-2,-x-2,-x^2-3*x-3,-2*x^2-2*x+4,2*x^2+4*x-4,x^2+2*x-2,4*x^2+9*x-4,4*x^2+4*x-10,-3*x^2-3*x+7,x^2-6,-3*x^2-7*x-3,-2*x^2+8,-2*x^2-2*x,-8*x^2-10*x+14,3*x^2+4*x-14,7*x^2+9*x-9,-x^2+7*x+9,-x^2-8*x-6,-6*x^2-11*x,-2*x^2-4*x+4,4*x^2+3*x-12,-6*x^2-9*x+14,6*x^2+6*x-14]],
[x^9-4*x^8-6*x^7+37*x^6-3*x^5-101*x^4+49*x^3+72*x^2-21*x-13, [-1,1], [x,1,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,-4*x^8+9*x^7+39*x^6-77*x^5-120*x^4+178*x^3+117*x^2-63*x-26,-2*x^8+4*x^7+21*x^6-34*x^5-73*x^4+77*x^3+88*x^2-25*x-19,6*x^8-13*x^7-60*x^6+112*x^5+192*x^4-262*x^3-202*x^2+98*x+49,2*x^8-5*x^7-19*x^6+43*x^5+57*x^4-99*x^3-55*x^2+31*x+16,-3*x^8+6*x^7+31*x^6-52*x^5-102*x^4+120*x^3+108*x^2-36*x-24,-5*x^8+11*x^7+51*x^6-97*x^5-166*x^4+232*x^3+175*x^2-88*x-40,-9*x^8+20*x^7+89*x^6-175*x^5-273*x^4+415*x^3+253*x^2-152*x-55,-3*x^8+7*x^7+30*x^6-63*x^5-94*x^4+156*x^3+91*x^2-67*x-21,-x^8+2*x^7+11*x^6-20*x^5-36*x^4+54*x^3+34*x^2-24*x-10,12*x^8-26*x^7-121*x^6+226*x^5+389*x^4-531*x^3-406*x^2+191*x+97,-x^8+x^7+12*x^6-8*x^5-48*x^4+18*x^3+68*x^2-9*x-19,13*x^8-29*x^7-128*x^6+250*x^5+396*x^4-580*x^3-384*x^2+197*x+89,-12*x^8+27*x^7+118*x^6-234*x^5-362*x^4+544*x^3+342*x^2-180*x-77,7*x^8-16*x^7-68*x^6+139*x^5+203*x^4-325*x^3-177*x^2+111*x+37,13*x^8-29*x^7-128*x^6+251*x^5+396*x^4-588*x^3-385*x^2+213*x+87,x^8-3*x^7-8*x^6+25*x^5+18*x^4-56*x^3-7*x^2+15*x-3,-x^8+2*x^7+10*x^6-17*x^5-31*x^4+41*x^3+27*x^2-21*x-1,-x^7+3*x^6+9*x^5-26*x^4-24*x^3+59*x^2+17*x-16,3*x^8-6*x^7-32*x^6+54*x^5+108*x^4-128*x^3-116*x^2+35*x+22,-5*x^8+11*x^7+51*x^6-97*x^5-164*x^4+228*x^3+163*x^2-70*x-30,-17*x^8+37*x^7+171*x^6-323*x^5-544*x^4+764*x^3+553*x^2-282*x-132,-15*x^8+34*x^7+147*x^6-295*x^5-449*x^4+691*x^3+423*x^2-248*x-99]],
[x^10-3*x^9-12*x^8+37*x^7+44*x^6-142*x^5-50*x^4+181*x^3-5*x^2-30*x+1, [1,-1], [x,-1,-135/647*x^9+358/647*x^8+1898/647*x^7-4732/647*x^6-8776/647*x^5+19642/647*x^4+14058/647*x^3-26097/647*x^2-2602/647*x+2962/647,29/647*x^9-144/647*x^8-355/647*x^7+1860/647*x^6+1636/647*x^5-7579/647*x^4-4357/647*x^3+10667/647*x^2+5572/647*x-1983/647,-51/647*x^9+164/647*x^8+602/647*x^7-2334/647*x^6-2007/647*x^5+10986/647*x^4+1170/647*x^3-17666/647*x^2+2784/647*x+2528/647,270/647*x^9-716/647*x^8-3149/647*x^7+8170/647*x^6+11082/647*x^5-27638/647*x^4-12588/647*x^3+28902/647*x^2+1322/647*x-1395/647,-55/647*x^9+50/647*x^8+941/647*x^7-538/647*x^6-5780/647*x^5+1724/647*x^4+14354/647*x^3-2293/647*x^2-10166/647*x+2333/647,16/647*x^9-191/647*x^8-62/647*x^7+2521/647*x^6-436/647*x^5-10830/647*x^4+1612/647*x^3+16148/647*x^2-1254/647*x-1808/647,-253/647*x^9+877/647*x^8+2517/647*x^7-9980/647*x^6-5884/647*x^5+33681/647*x^4-1389/647*x^3-36169/647*x^2+10043/647*x+5297/647,181/647*x^9-341/647*x^8-2238/647*x^7+3488/647*x^6+9140/647*x^5-9532/647*x^4-15570/647*x^3+6205/647*x^2+9187/647*x+898/647,166/647*x^9-445/647*x^8-2099/647*x^7+5694/647*x^6+8093/647*x^5-22590/647*x^4-8832/647*x^3+28107/647*x^2-3467/647*x-1289/647,-42/647*x^9+97/647*x^8+648/647*x^7-1199/647*x^6-3708/647*x^5+4328/647*x^4+10326/647*x^3-3892/647*x^2-13692/647*x+864/647,-95/647*x^9+204/647*x^8+1096/647*x^7-1988/647*x^6-4043/647*x^5+4860/647*x^4+6442/647*x^3-3196/647*x^2-5090/647*x+2324/647,82/647*x^9-251/647*x^8-803/647*x^7+2002/647*x^6+2618/647*x^5-994/647*x^4-6296/647*x^3-11380/647*x^2+7969/647*x+6909/647,38/647*x^9-211/647*x^8-309/647*x^7+2348/647*x^6+582/647*x^5-7120/647*x^4-1024/647*x^3+5678/647*x^2+95/647*x-2353/647,-276/647*x^9+1192/647*x^8+2687/647*x^7-14534/647*x^6-6066/647*x^5+54506/647*x^4-1280/647*x^3-65690/647*x^2+8368/647*x+7249/647,239/647*x^9-629/647*x^8-2948/647*x^7+7855/647*x^6+11118/647*x^5-31160/647*x^4-12638/647*x^3+41773/647*x^2-1020/647*x-8244/647,220/647*x^9-847/647*x^8-1823/647*x^7+9916/647*x^6+475/647*x^5-35364/647*x^4+17636/647*x^3+42169/647*x^2-23389/647*x-6097/647,46/647*x^9+17/647*x^8-987/647*x^7+50/647*x^6+6187/647*x^5-1536/647*x^4-10570/647*x^3+4047/647*x^2-2473/647*x-1963/647,487/647*x^9-1325/647*x^8-5850/647*x^7+15551/647*x^6+22476/647*x^5-54744/647*x^4-32942/647*x^3+59147/647*x^2+11246/647*x-5212/647,3/647*x^9-238/647*x^8+231/647*x^7+3182/647*x^6-2508/647*x^5-12787/647*x^4+6287/647*x^3+13865/647*x^2-2904/647*x+4837/647,356/647*x^9-853/647*x^8-4938/647*x^7+10964/647*x^6+22002/647*x^5-43956/647*x^4-32068/647*x^3+57144/647*x^2+4125/647*x-7878/647,107/647*x^9-509/647*x^8-819/647*x^7+5658/647*x^6-166/647*x^5-17835/647*x^4+9001/647*x^3+16601/647*x^2-13643/647*x-4327/647,149/647*x^9+41/647*x^8-2761/647*x^7-260/647*x^6+16482/647*x^5-165/647*x^4-34969/647*x^3+1083/647*x^2+20753/647*x-15/647,213/647*x^9-723/647*x^8-2362/647*x^7+8530/647*x^6+8268/647*x^5-31192/647*x^4-12346/647*x^3+39795/647*x^2+6679/647*x-6600/647]]];

f[448,2]=[
[x+1, [1,1], [0,0,-2,-1,4,-2,-6,-8,0,-6,8,2,2,4,-8,-6,0,6,4,-8,10,16,-8,-6,-6]],
[x-1, [1,-1], [0,2,0,1,0,4,6,-2,0,6,-4,-2,6,-8,-12,-6,6,-8,4,0,2,8,6,-6,-10]],
[x-4, [1,-1], [0,-2,4,1,0,0,-2,2,8,-2,4,6,-2,-8,-4,10,-6,-4,12,0,-14,-8,-6,10,-2]],
[x+1, [-1,1], [0,2,0,-1,4,4,-2,6,8,-2,-4,-10,-10,-4,4,2,-10,8,8,0,-6,-16,-2,18,-2]],
[x-4, [-1,1], [0,2,4,-1,0,0,-2,-2,-8,-2,-4,6,-2,8,4,10,6,-4,-12,0,-14,8,6,10,-2]],
[x+1, [-1,1], [0,-2,0,-1,0,4,6,2,0,6,4,-2,6,8,12,-6,-6,-8,-4,0,2,-8,-6,-6,-10]],
[x-1, [-1,-1], [0,0,-2,1,-4,-2,-6,8,0,-6,-8,2,2,-4,8,-6,0,6,-4,8,10,-16,8,-6,-6]],
[x-1, [-1,-1], [0,-2,0,1,-4,4,-2,-6,-8,-2,4,-10,-10,4,-4,2,10,8,-8,0,-6,16,2,18,-2]],
[x^2+2*x-4, [1,1], [0,x,-x-2,-1,-2*x-4,x-2,2*x+2,-x,-4,2*x+2,2*x,2*x+2,-2*x-6,2*x+4,-2*x-8,10,-x-8,-x-10,4,4*x,-4*x+2,-4*x-8,-x-8,-6,2*x+10]],
[x^2-2*x-4, [1,-1], [0,x,x-2,1,-2*x+4,-x-2,-2*x+2,-x,4,-2*x+2,2*x,-2*x+2,2*x-6,2*x-4,-2*x+8,10,-x+8,x-10,-4,4*x,4*x+2,-4*x+8,-x+8,-6,-2*x+10]]];

f[449,2]=[
[x^14+3*x^13-13*x^12-42*x^11+59*x^10+214*x^9-117*x^8-503*x^7+109*x^6+576*x^5-50*x^4-309*x^3+14*x^2+62*x-3, [1], [x,1367/581*x^13+2544/581*x^12-21440/581*x^11-35460/581*x^10+130273/581*x^9+25269/83*x^8-397316/581*x^7-387181/581*x^6+91749/83*x^5+359615/581*x^4-504323/581*x^3-105389/581*x^2+145130/581*x-6416/581,-689/581*x^13-1037/581*x^12+11692/581*x^11+15082/581*x^10-77477/581*x^9-11333/83*x^8+255690/581*x^7+183819/581*x^6-62325/83*x^5-177694/581*x^4+352434/581*x^3+49678/581*x^2-102958/581*x+5809/581,291/581*x^13+1035/581*x^12-3099/581*x^11-13492/581*x^10+8490/581*x^9+8691/83*x^8+3319/581*x^7-115074/581*x^6-4771/83*x^5+87935/581*x^4+28887/581*x^3-19559/581*x^2-5371/581*x-1821/581,-1275/581*x^13-2672/581*x^12+18861/581*x^11+36126/581*x^10-106601/581*x^9-24622/83*x^8+302097/581*x^7+354412/581*x^6-66075/83*x^5-303487/581*x^4+350578/581*x^3+81426/581*x^2-98052/581*x+3684/581,-1506/581*x^13-3260/581*x^12+21920/581*x^11+44015/581*x^10-121175/581*x^9-29968/83*x^8+335676/581*x^7+432049/581*x^6-72910/83*x^5-373914/581*x^4+397996/581*x^3+102307/581*x^2-118436/581*x+5441/581,948/581*x^13+1485/581*x^12-15738/581*x^11-20899/581*x^10+102110/581*x^9+15003/83*x^8-331157/581*x^7-228612/581*x^6+79370/83*x^5+202026/581*x^4-434544/581*x^3-46857/581*x^2+120038/581*x-9610/581,-2082/581*x^13-5692/581*x^12+28114/581*x^11+77585/581*x^10-138531/581*x^9-53614/83*x^8+328777/581*x^7+791909/581*x^6-61441/83*x^5-714083/581*x^4+303987/581*x^3+213485/581*x^2-86158/581*x+2337/581,-1523/581*x^13-4171/581*x^12+19801/581*x^11+55954/581*x^10-90285/581*x^9-37784/83*x^8+182741/581*x^7+540758/581*x^6-25734/83*x^5-469162/581*x^4+86312/581*x^3+132280/581*x^2-16581/581*x+2864/581,481/83*x^13+1081/83*x^12-7099/83*x^11-14870/83*x^10+40020/83*x^9+72776/83*x^8-113261/83*x^7-155314/83*x^6+174109/83*x^5+140140/83*x^4-134230/83*x^3-40328/83*x^2+39107/83*x-1913/83,2189/581*x^13+4659/581*x^12-33027/581*x^11-64521/581*x^10+191475/581*x^9+45573/83*x^8-557407/581*x^7-691547/581*x^6+124427/83*x^5+640377/581*x^4-667715/581*x^3-195576/581*x^2+185914/581*x-6828/581,492/581*x^13+2852/581*x^12-1490/581*x^11-36300/581*x^10-36642/581*x^9+22615/83*x^8+251668/581*x^7-289321/581*x^6-82271/83*x^5+228624/581*x^4+524026/581*x^3-79447/581*x^2-158320/581*x+12722/581,7684/581*x^13+17273/581*x^12-111252/581*x^11-234824/581*x^10+609781/581*x^9+161621/83*x^8-1666487/581*x^7-2370035/581*x^6+354803/83*x^5+2103797/581*x^4-1882733/581*x^3-595563/581*x^2+540310/581*x-29732/581,-1377/581*x^13-3490/581*x^12+18348/581*x^11+46755/581*x^10-86846/581*x^9-31512/83*x^8+184524/581*x^7+450068/581*x^6-26707/83*x^5-392745/581*x^4+83453/581*x^3+121243/581*x^2-11565/581*x-3644/581,-4752/581*x^13-10187/581*x^12+71145/581*x^11+140127/581*x^10-408704/581*x^9-98011/83*x^8+1179887/581*x^7+1466960/581*x^6-262260/83*x^5-1333414/581*x^4+1409712/581*x^3+395190/581*x^2-399823/581*x+13900/581,-481/83*x^13-1164/83*x^12+6767/83*x^11+15783/83*x^10-35621/83*x^9-75764/83*x^8+92926/83*x^7+157970/83*x^6-134103/83*x^5-139227/83*x^4+101528/83*x^3+38336/83*x^2-30060/83*x+2328/83,-1710/581*x^13-5477/581*x^12+20313/581*x^11+73407/581*x^10-75855/581*x^9-49558/83*x^8+86005/581*x^7+712254/581*x^6+5328/83*x^5-632608/581*x^4-104299/581*x^3+198790/581*x^2+33041/581*x-3405/581,6996/581*x^13+17725/581*x^12-97043/581*x^11-240335/581*x^10+499899/581*x^9+164682/83*x^8-1266462/581*x^7-2398934/581*x^6+253222/83*x^5+2115336/581*x^4-1303454/581*x^3-611729/581*x^2+376063/581*x-16526/581,2245/581*x^13+4379/581*x^12-35001/581*x^11-60377/581*x^10+212755/581*x^9+42221/83*x^8-657451/581*x^7-625278/581*x^6+155886/83*x^5+543539/581*x^4-878282/581*x^3-135971/581*x^2+254255/581*x-16145/581,-38/581*x^13+937/581*x^12+3124/581*x^11-12855/581*x^10-38095/581*x^9+9128/83*x^8+177696/581*x^7-146581/581*x^6-52570/83*x^5+162863/581*x^4+326128/581*x^3-75244/581*x^2-98436/581*x+8252/581,222/581*x^13+550/581*x^12-3053/581*x^11-7891/581*x^10+14557/581*x^9+5944/83*x^8-27087/581*x^7-101972/581*x^6+1247/83*x^5+120788/581*x^4+21169/581*x^3-63318/581*x^2-9015/581*x+9524/581,-3600/581*x^13-8228/581*x^12+51785/581*x^11+112495/581*x^10-279289/581*x^9-78026/83*x^8+737019/581*x^7+1155102/581*x^6-147584/83*x^5-1035374/581*x^4+718677/581*x^3+297168/581*x^2-186080/581*x+9650/581,-1286/581*x^13-3364/581*x^12+18481/581*x^11+46517/581*x^10-102232/581*x^9-32892/83*x^8+293570/581*x^7+505102/581*x^6-69096/83*x^5-490990/581*x^4+410521/581*x^3+178230/581*x^2-128045/581*x-3315/581,-555/83*x^13-1292/83*x^12+7923/83*x^11+17611/83*x^10-42410/83*x^9-85179/83*x^8+111832/83*x^7+179483/83*x^6-159810/83*x^5-160870/83*x^4+117103/83*x^3+46743/83*x^2-33280/83*x+1837/83,963/581*x^13+3485/581*x^12-9357/581*x^11-45685/581*x^10+14020/581*x^9+30053/83*x^8+91449/581*x^7-426070/581*x^6-45002/83*x^5+400457/581*x^4+317028/581*x^3-159531/581*x^2-97449/581*x+14776/581]],
[x^23-38*x^21+x^20+623*x^19-31*x^18-5771*x^17+398*x^16+33229*x^15-2753*x^14-123306*x^13+11230*x^12+296022*x^11-28009*x^10-450008*x^9+43215*x^8+412760*x^7-40559*x^6-210040*x^5+21311*x^4+50781*x^3-5664*x^2-3789*x+621, [-1], [x,3587401463/505414861488*x^22-7650779429/336943240992*x^21-150864645115/505414861488*x^20+825392841079/1010829722976*x^19+5450047860893/1010829722976*x^18-6344315242307/505414861488*x^17-27696702887935/505414861488*x^16+108892865144615/1010829722976*x^15+6012670597195/17428098672*x^14-71421083468347/126353715372*x^13-470356381031857/336943240992*x^12+943155604067327/505414861488*x^11+1228712346186743/336943240992*x^10-1940384255679473/505414861488*x^9-3041227590875047/505414861488*x^8+43884038119555/9359534472*x^7+6017749368007493/1010829722976*x^6-1532894924053417/505414861488*x^5-809680458782215/252707430744*x^4+194797323522557/252707430744*x^3+86827452979241/112314413664*x^2-1239867085561/336943240992*x-4509261066899/112314413664,36207620017/1516244584464*x^22-392715416/31588428843*x^21-347942083499/379061146116*x^20+326631794837/758122292232*x^19+11567268044365/758122292232*x^18-9606455528161/1516244584464*x^17-108957607448593/758122292232*x^16+78030276152777/1516244584464*x^15+2760254289026/3267768501*x^14-381574682954333/1516244584464*x^13-812551049946659/252707430744*x^12+286698557455579/379061146116*x^11+4027851952874915/505414861488*x^10-1032782020658657/758122292232*x^9-9557529760524427/758122292232*x^8+75413531184863/56157206832*x^7+9196221796045171/758122292232*x^6-791176870326971/1516244584464*x^5-9824972033892583/1516244584464*x^4-24143673588209/189530573058*x^3+133443099270145/84235810248*x^2+55513767426557/505414861488*x-15548291459519/168471620496,-3203239213/379061146116*x^22-595819192/31588428843*x^21+131419749017/379061146116*x^20+135495968281/189530573058*x^19-578128330394/94765286529*x^18-2208746478799/189530573058*x^17+11406429012787/189530573058*x^16+10118781621100/94765286529*x^15-4772077428473/13071074004*x^14-57120718814416/94765286529*x^13+177572889554965/126353715372*x^12+204603006231941/94765286529*x^11-108026982272480/31588428843*x^10-1843832442646961/379061146116*x^9+1928985934508705/379061146116*x^8+46197173442761/7019650854*x^7-1647721213925357/379061146116*x^6-1835788779751429/379061146116*x^5+369514164098459/189530573058*x^4+151311038776075/94765286529*x^3-17053794357965/42117905124*x^2-4474501036763/31588428843*x+1456347043919/42117905124,1316367895/13071074004*x^22+143938909/4357024668*x^21-98901947617/26142148008*x^20-31767174607/26142148008*x^19+800451361073/13071074004*x^18+504571904809/26142148008*x^17-14614387602187/26142148008*x^16-4536403667465/26142148008*x^15+10335990602869/3267768501*x^14+12686579651077/13071074004*x^13-50010652113031/4357024668*x^12-91081664277415/26142148008*x^11+232891347633433/8714049336*x^10+104039493898811/13071074004*x^9-507807968945921/13071074004*x^8-1338455500426/121028463*x^7+217470996651883/6535537002*x^6+223508416742801/26142148008*x^5-398585214435515/26142148008*x^4-83332756026185/26142148008*x^3+9178192928377/2904683112*x^2+450488942858/1089256167*x-550385323477/2904683112,195233617/42117905124*x^22-414868283/14039301708*x^21-15796492285/84235810248*x^20+86437170467/84235810248*x^19+135808599155/42117905124*x^18-1277406335507/84235810248*x^17-2585591022709/84235810248*x^16+10490165145163/84235810248*x^15+256148401301/1452341556*x^14-6555531117833/10529476281*x^13-2189147016799/3509825427*x^12+164502933796967/84235810248*x^11+36917895584197/28078603416*x^10-40262902255258/10529476281*x^9-30931084418797/21058952562*x^8+21094288477639/4679767236*x^7+22239202918745/42117905124*x^6-248588646677557/84235810248*x^5+28578818562373/84235810248*x^4+74722840056937/84235810248*x^3-2281389091951/9359534472*x^2-1034343318067/14039301708*x+227399339381/9359534472,88002718247/1516244584464*x^22+10925722735/252707430744*x^21-3239423762143/1516244584464*x^20-2210520254689/1516244584464*x^19+12854551419151/379061146116*x^18+15830558250203/758122292232*x^17-461306948458645/1516244584464*x^16-126033726189091/758122292232*x^15+44427337177589/26142148008*x^14+1226832235106759/1516244584464*x^13-1551080504666563/252707430744*x^12-3784849173621427/1516244584464*x^11+3643525903509929/252707430744*x^10+3714767680701977/758122292232*x^9-16383778323756815/758122292232*x^8-336124856803139/56157206832*x^7+7475679096523723/379061146116*x^6+3279776451096295/758122292232*x^5-1898161170113935/189530573058*x^4-2552510712973697/1516244584464*x^3+395325240126181/168471620496*x^2+137657116885567/505414861488*x-1475247623749/10529476281,25502272139/252707430744*x^22+11172317581/168471620496*x^21-468578945891/126353715372*x^20-1119805517981/505414861488*x^19+29635985271683/505414861488*x^18+3969176954069/126353715372*x^17-65999641395515/126353715372*x^16-125046061830961/505414861488*x^15+25121604129577/8714049336*x^14+150490974185599/126353715372*x^13-1720662067455427/168471620496*x^12-229573053726175/63176857686*x^11+3922610514420995/168471620496*x^10+1779731026495639/252707430744*x^9-8427452502526159/252707430744*x^8-3290035012081/389980603*x^7+14389086226350347/505414861488*x^6+744483749633839/126353715372*x^5-3340769426990135/252707430744*x^4-553595313671117/252707430744*x^3+158753655111089/56157206832*x^2+56067427171349/168471620496*x-9462160679579/56157206832,-3364541729/189530573058*x^22+875917163/505414861488*x^21+63981269999/94765286529*x^20-44996192671/1516244584464*x^19-16991602049183/1516244584464*x^18-70634658133/758122292232*x^17+20229679038469/189530573058*x^16+9157756998271/1516244584464*x^15-16853553493141/26142148008*x^14-47843884012853/758122292232*x^13+1300094476625923/505414861488*x^12+31577702696180/94765286529*x^11-3454945871113937/505414861488*x^10-777365076792937/758122292232*x^9+9005340111786973/758122292232*x^8+53151200398223/28078603416*x^7-19483186096599059/1516244584464*x^6-1547479722067781/758122292232*x^5+2972113761731023/379061146116*x^4+888253191864785/758122292232*x^3-368188015746797/168471620496*x^2-139748321474903/505414861488*x+24583484858717/168471620496,215348032747/1516244584464*x^22+21963707233/505414861488*x^21-8172241837535/1516244584464*x^20-299653783195/189530573058*x^19+133679107912181/1516244584464*x^18+4730958767707/189530573058*x^17-1233669105418181/1516244584464*x^16-340593154897603/1516244584464*x^15+30429045595351/6535537002*x^14+1923188103260689/1516244584464*x^13-8643089525344747/505414861488*x^12-7032207084781475/1516244584464*x^11+20398622740094621/505414861488*x^10+1030684044513533/94765286529*x^9-22606511390748707/379061146116*x^8-875725763056777/56157206832*x^7+79167938242187513/1516244584464*x^6+2367497478607739/189530573058*x^5-4680546785556305/189530573058*x^4-7382800050900223/1516244584464*x^3+112421887653421/21058952562*x^2+85503964111997/126353715372*x-55203800446847/168471620496,-112071112939/1516244584464*x^22-3912787691/252707430744*x^21+4279881245573/1516244584464*x^20+820983678863/1516244584464*x^19-8814960458293/189530573058*x^18-3121941934445/379061146116*x^17+656471937396011/1516244584464*x^16+27284840436889/379061146116*x^15-65476148685727/26142148008*x^14-607378473001003/1516244584464*x^13+2358311208922511/252707430744*x^12+2233946330936921/1516244584464*x^11-709773249047462/31588428843*x^10-2698072087893457/758122292232*x^9+25912977574744333/758122292232*x^8+303521623662667/56157206832*x^7-11838504088614245/379061146116*x^6-453771493148938/94765286529*x^5+11878071131346077/758122292232*x^4+3391385990521963/1516244584464*x^3-608611769371835/168471620496*x^2-211693296901871/505414861488*x+18769434509809/84235810248,66599443705/1516244584464*x^22-13257573929/505414861488*x^21-2574526100993/1516244584464*x^20+324837131287/379061146116*x^19+43082463302291/1516244584464*x^18-4398889049395/379061146116*x^17-408949332736295/1516244584464*x^16+126577130518847/1516244584464*x^15+20896242763787/13071074004*x^14-509118355145009/1516244584464*x^13-3102449774654593/505414861488*x^12+1054830267308143/1516244584464*x^11+7749331940177207/505414861488*x^10-142983882223921/379061146116*x^9-2310164722007744/94765286529*x^8-67117055668087/56157206832*x^7+35582586151682843/1516244584464*x^6+222400930816996/94765286529*x^5-4734423918267259/379061146116*x^4-2365318990302541/1516244584464*x^3+64035197193829/21058952562*x^2+44890163619545/126353715372*x-31378939930961/168471620496,-71882668823/758122292232*x^22+9256955573/505414861488*x^21+5529283669865/1516244584464*x^20-215519884039/379061146116*x^19-91884431297813/1516244584464*x^18+10681497903049/1516244584464*x^17+863956889210435/1516244584464*x^16-8020802273827/189530573058*x^15-87162176977843/26142148008*x^14+19319156803939/189530573058*x^13+6358021295323093/505414861488*x^12+254750813749415/1516244584464*x^11-7752737340852337/252707430744*x^10-635640566439611/379061146116*x^9+8947335145837147/189530573058*x^8+117835183646639/28078603416*x^7-65942720992154459/1516244584464*x^6-7333854265691911/1516244584464*x^5+33228103233298171/1516244584464*x^4+3999810574099723/1516244584464*x^3-427279834837975/84235810248*x^2-275008673861687/505414861488*x+26245244953081/84235810248,-217058532593/3032489168928*x^22-74543515937/1010829722976*x^21+7734677547835/3032489168928*x^20+227126863679/94765286529*x^19-117795894596305/3032489168928*x^18-49501943106899/1516244584464*x^17+1002074001904861/3032489168928*x^16+734767068427337/3032489168928*x^15-5628545277650/3267768501*x^14-3232937099959067/3032489168928*x^13+5741245466981279/1010829722976*x^12+8592357658716055/3032489168928*x^11-11946290438472427/1010829722976*x^10-3361027618482769/758122292232*x^9+1424322630144785/94765286529*x^8+426948029406119/112314413664*x^7-33052572006221125/3032489168928*x^6-2414587893146125/1516244584464*x^5+5969830279493719/1516244584464*x^4+923731215872195/3032489168928*x^3-24027288386855/42117905124*x^2-12662061328517/505414861488*x+9176263975765/336943240992,2176914323/34856197344*x^22+399265547/11618732448*x^21-80885878609/34856197344*x^20-4733456507/4357024668*x^19+1296867855979/34856197344*x^18+248718132497/17428098672*x^17-11764837438759/34856197344*x^16-3519341557811/34856197344*x^15+2080166135662/1089256167*x^14+14547745988657/34856197344*x^13-81439283305733/11618732448*x^12-35801863725397/34856197344*x^11+195619633091113/11618732448*x^10+13068367044691/8714049336*x^9-28417146927929/1089256167*x^8-1793574017173/1290970272*x^7+872273124956407/34856197344*x^6+19887403204135/17428098672*x^5-237362968363909/17428098672*x^4-30627731627657/34856197344*x^3+838097248165/242056926*x^2+1718931297539/5809366224*x-822599955031/3872910816,-88355413295/1516244584464*x^22-11813039407/252707430744*x^21+1660204303307/758122292232*x^20+645165053695/379061146116*x^19-6751750907975/189530573058*x^18-40503005022931/1516244584464*x^17+249485222677151/758122292232*x^16+359152004023529/1516244584464*x^15-49762068341711/26142148008*x^14-1979288953959767/1516244584464*x^13+1811624186650699/252707430744*x^12+1752924194430277/379061146116*x^11-8951761562477353/505414861488*x^10-3978172049209945/379061146116*x^9+5349788614372709/189530573058*x^8+825008518649129/56157206832*x^7-21054791978000801/758122292232*x^6-17721324749723687/1516244584464*x^5+23455155560229311/1516244584464*x^4+1723437947765015/379061146116*x^3-338428480169399/84235810248*x^2-321973069167619/505414861488*x+46202532692515/168471620496,143984854733/1516244584464*x^22+15716115863/505414861488*x^21-5650425629209/1516244584464*x^20-234915517883/189530573058*x^19+95388886873771/1516244584464*x^18+2033791647934/94765286529*x^17-905732120244715/1516244584464*x^16-319842466473413/1516244584464*x^15+22882819360253/6535537002*x^14+1953228465978095/1516244584464*x^13-6614063829025469/505414861488*x^12-7607568871664461/1516244584464*x^11+15730375056022747/505414861488*x^10+1164612830771032/94765286529*x^9-17304990488877715/379061146116*x^8-1008517449138335/56157206832*x^7+58761977671624519/1516244584464*x^6+2680595973929389/189530573058*x^5-1630046697267581/94765286529*x^4-7679281872300545/1516244584464*x^3+71292216223319/21058952562*x^2+70163710137367/126353715372*x-36073228359313/168471620496,27477437405/252707430744*x^22+9226700387/84235810248*x^21-2055015440525/505414861488*x^20-1884475814657/505414861488*x^19+16555451769079/252707430744*x^18+27330971147525/505414861488*x^17-301016639109569/505414861488*x^16-221132307911989/505414861488*x^15+29284435464835/8714049336*x^14+137257595552795/63176857686*x^13-513822340325677/42117905124*x^12-3467372412965933/505414861488*x^11+4817068824261701/168471620496*x^10+1741691214118433/126353715372*x^9-5347957256348477/126353715372*x^8-159906161799991/9359534472*x^7+9516083284058005/252707430744*x^6+6160545124567759/505414861488*x^5-9314832389888299/505414861488*x^4-2230903467575131/505414861488*x^3+235018353492857/56157206832*x^2+50521147748425/84235810248*x-14995572257135/56157206832,17544779591/126353715372*x^22+11734520837/168471620496*x^21-324920573195/63176857686*x^20-1151964191665/505414861488*x^19+41441845874671/505414861488*x^18+7975714207655/252707430744*x^17-23273836207447/31588428843*x^16-122495311941515/505414861488*x^15+35762209735697/8714049336*x^14+287836215441259/252707430744*x^13-2474303895014891/168471620496*x^12-107912761139104/31588428843*x^11+5707965584398765/168471620496*x^10+1671249905495657/252707430744*x^9-12451919125694465/252707430744*x^8-25396375480859/3119844824*x^7+21717456852308179/505414861488*x^6+1546503822344575/252707430744*x^5-649313286210437/31588428843*x^4-664634657195761/252707430744*x^3+255508983920485/56157206832*x^2+83332184527939/168471620496*x-15351157837489/56157206832,-28485664649/758122292232*x^22+19089710987/505414861488*x^21+288032743363/189530573058*x^20-2213740384939/1516244584464*x^19-40054368033539/1516244584464*x^18+9126168136309/379061146116*x^17+97908592832489/379061146116*x^16-334902862869407/1516244584464*x^15-40831269222583/26142148008*x^14+467384814628715/379061146116*x^13+3059226726676015/505414861488*x^12-815878622871959/189530573058*x^11-7621749466350899/505414861488*x^10+7052607928605203/758122292232*x^9+17892858405021793/758122292232*x^8-41597202503522/3509825427*x^7-33370143061552079/1516244584464*x^6+1502702264188285/189530573058*x^5+8428431972831467/758122292232*x^4-1537698688707667/758122292232*x^3-428845709223821/168471620496*x^2-8012239491821/505414861488*x+22863827758127/168471620496,-47928240479/758122292232*x^22-1842093271/505414861488*x^21+222402824717/94765286529*x^20+56913044195/1516244584464*x^19-57256120639073/1516244584464*x^18+93275378824/94765286529*x^17+65580165049813/189530573058*x^16-34208464751921/1516244584464*x^15-52163213536789/26142148008*x^14+73129579929995/379061146116*x^13+3817654725279889/505414861488*x^12-327481110834217/379061146116*x^11-9594079624624445/505414861488*x^10+1602874157914397/758122292232*x^9+23679423607884619/758122292232*x^8-36023910302645/14039301708*x^7-48775463563853249/1516244584464*x^6+82405747053767/94765286529*x^5+14246224007580647/758122292232*x^4+579875210182241/758122292232*x^3-845629222666667/168471620496*x^2-229292282314655/505414861488*x+51643883138381/168471620496,-267888419009/1010829722976*x^22+969998069/42117905124*x^21+10267109374435/1010829722976*x^20-853222177265/1010829722976*x^19-84868554642635/505414861488*x^18+3206938143893/252707430744*x^17+1584631312223737/1010829722976*x^16-50244585361049/505414861488*x^15-158377867812689/17428098672*x^14+423129581526307/1010829722976*x^13+2854415804049923/84235810248*x^12-812272952283653/1010829722976*x^11-13726893876708563/168471620496*x^10-89969594848511/505414861488*x^9+62345024567651357/505414861488*x^8+44317356230519/12479379296*x^7-56388625330178393/505414861488*x^6-1502789447513315/252707430744*x^5+27802520137434121/505414861488*x^4+4256197478552885/1010829722976*x^3-1390558364766031/112314413664*x^2-369748785717691/336943240992*x+10085453745563/14039301708,-787929611065/3032489168928*x^22-21812449591/252707430744*x^21+29568766096139/3032489168928*x^20+8751704194187/3032489168928*x^19-239125528502185/1516244584464*x^18-31265398672037/758122292232*x^17+4365671473516913/3032489168928*x^16+502799348596757/1516244584464*x^15-426537716894893/52284296016*x^14-5045652646782589/3032489168928*x^13+3758410587239357/126353715372*x^12+16521507722334371/3032489168928*x^11-35384168066696341/505414861488*x^10-17789504999095387/1516244584464*x^9+157687665252945289/1516244584464*x^8+1813554289092757/112314413664*x^7-140534860278426847/1516244584464*x^6-10080439180972357/758122292232*x^5+68671671021356585/1516244584464*x^4+17936391940751989/3032489168928*x^3-3433744936242875/336943240992*x^2-1085953051858991/1010829722976*x+51488483836031/84235810248,-26321525221/189530573058*x^22-52510045895/505414861488*x^21+7842194655967/1516244584464*x^20+2645758283849/758122292232*x^19-125859930755497/1516244584464*x^18-75503975421403/1516244584464*x^17+1140036272600389/1516244584464*x^16+74881107590641/189530573058*x^15-110547899554007/26142148008*x^14-1453655924444953/758122292232*x^13+7737396221238389/505414861488*x^12+8947694555758693/1516244584464*x^11-9047565954005009/252707430744*x^10-4375013005163161/379061146116*x^9+20057089744467493/379061146116*x^8+195967734521723/14039301708*x^7-71302240873822915/1516244584464*x^6-14926703310943331/1516244584464*x^5+34881310421487299/1516244584464*x^4+5596144163409917/1516244584464*x^3-54952530674182/10529476281*x^2-291698821053757/505414861488*x+26932635486851/84235810248,13760141317/252707430744*x^22+4650146243/168471620496*x^21-1022980899295/505414861488*x^20-59720691989/63176857686*x^19+16408115748385/505414861488*x^18+7042435030153/505414861488*x^17-148811215249303/505414861488*x^16-29420604207667/252707430744*x^15+7242481157473/4357024668*x^14+154243664304949/252707430744*x^13-1021079574044099/168471620496*x^12-1055824961924611/505414861488*x^11+301878876441923/21058952562*x^10+1178028425594171/252707430744*x^9-5440962982166141/252707430744*x^8-10146078099597/1559922412*x^7+9886968677492425/505414861488*x^6+2627713120696403/505414861488*x^5-4988649716094557/505414861488*x^4-1050882361883255/505414861488*x^3+32712887419033/14039301708*x^2+53868893374261/168471620496*x-4211680007795/28078603416]]];

f[450,2]=[
[x+6, [1,1,1], [-1,0,0,-2,-6,4,-6,-4,0,6,-4,-8,0,-8,0,-6,-6,2,4,12,10,-4,12,-12,-2]],
[x-3, [1,-1,1], [-1,0,0,-2,3,4,-3,5,6,0,2,-2,3,4,12,6,0,2,13,-12,-11,-10,-9,-15,-2]],
[x-4, [1,-1,1], [-1,0,0,4,0,-2,6,-4,0,6,8,-2,6,4,0,-6,0,-10,4,0,-2,8,12,-18,-2]],
[x+2, [1,-1,-1], [-1,0,0,-2,-2,-6,2,0,-4,0,-8,-2,-2,4,-8,6,-10,2,8,-12,4,0,-4,10,8]],
[x+2, [-1,1,1], [1,0,0,-2,6,4,6,-4,0,-6,-4,-8,0,-8,0,6,6,2,4,-12,10,-4,-12,12,-2]],
[x+2, [-1,-1,-1], [1,0,0,2,-2,6,-2,0,4,0,-8,2,-2,-4,8,-6,-10,2,-8,-12,-4,0,4,10,-8]],
[x-3, [-1,-1,-1], [1,0,0,2,3,-4,3,5,-6,0,2,2,3,-4,-12,-6,0,2,-13,-12,11,-10,9,-15,2]]];

f[451,2]=[
[x, [1,1], [0,1,-3,4,-1,-6,2,-8,-5,-8,3,7,-1,6,0,-2,9,12,-9,-13,6,10,-12,13,-5]],
[x^5+2*x^4-5*x^3-10*x^2+4*x+9, [1,1], [x,-x^4-x^3+6*x^2+3*x-8,-2*x^4-x^3+11*x^2+3*x-12,2*x^4+x^3-12*x^2-4*x+13,-1,3*x^4+x^3-18*x^2-3*x+21,-3*x^4+19*x^2-25,-3*x^4-x^3+17*x^2+2*x-17,3*x^4+3*x^3-15*x^2-8*x+13,2*x^4-x^3-12*x^2+4*x+10,6*x^4+3*x^3-35*x^2-9*x+39,x^4-x^3-10*x^2+4*x+16,-1,-5*x^4-3*x^3+29*x^2+11*x-30,8*x^4+6*x^3-48*x^2-19*x+54,-x^4-2*x^3+3*x^2+4*x-2,-3*x^4+20*x^2+4*x-27,2*x^4+2*x^3-9*x^2-5*x+3,-7*x^4-4*x^3+37*x^2+10*x-36,x^4-3*x^3-7*x^2+13*x+5,7*x^4+4*x^3-36*x^2-13*x+33,-8*x^4-2*x^3+44*x^2+5*x-44,-4*x^4-5*x^3+25*x^2+17*x-30,-10*x^4-8*x^3+57*x^2+23*x-68,-3*x^4-2*x^3+19*x^2+4*x-23]],
[x^5+2*x^4-3*x^3-4*x^2+2*x+1, [-1,-1], [x,-x^4-x^3+4*x^2+x-2,-x^3-3*x^2+x+2,2*x^4+3*x^3-6*x^2-4*x+1,1,x^4+3*x^3-5*x-3,-x^4-4*x^3+x^2+8*x-1,x^4+3*x^3+x^2-2*x-5,-x^4-3*x^3+x^2+6*x-1,-x^3-2*x^2+4*x-2,-4*x^4-9*x^3+7*x^2+13*x-3,-3*x^4-3*x^3+14*x^2+2*x-10,1,3*x^4+9*x^3-5*x^2-19*x,-2*x^4-4*x^3+4*x^2+9*x,-5*x^4-12*x^3+7*x^2+18*x-4,x^4+4*x^3-12*x-3,8*x^4+16*x^3-19*x^2-19*x+5,-3*x^4-6*x^3+5*x^2+4*x+6,7*x^4+11*x^3-23*x^2-17*x+11,x^4+6*x^3+4*x^2-9*x-3,-8*x^4-18*x^3+14*x^2+25*x-2,-6*x^4-17*x^3+5*x^2+25*x+4,-4*x^4-8*x^3+9*x^2+5*x-6,7*x^4+16*x^3-15*x^2-24*x+11]],
[x^10-4*x^9-6*x^8+38*x^7-7*x^6-105*x^5+74*x^4+77*x^3-74*x^2+8, [-1,1], [x,7/2*x^9-12*x^8-28*x^7+117*x^6+89/2*x^5-685/2*x^4+54*x^3+605/2*x^2-74*x-44,1/4*x^9-x^8-3/2*x^7+19/2*x^6-7/4*x^5-105/4*x^4+35/2*x^3+81/4*x^2-27/2*x-2,5/2*x^9-17/2*x^8-20*x^7+83*x^6+63/2*x^5-244*x^4+79/2*x^3+437/2*x^2-105/2*x-33,1,5/2*x^9-8*x^8-21*x^7+77*x^6+81/2*x^5-439/2*x^4+18*x^3+365/2*x^2-40*x-23,-3/4*x^9+3*x^8+11/2*x^7-61/2*x^6-19/4*x^5+383/4*x^4-49/2*x^3-383/4*x^2+47/2*x+18,-19/4*x^9+31/2*x^8+79/2*x^7-301/2*x^6-295/4*x^5+1749/4*x^4-40*x^3-1523/4*x^2+79*x+55,9/4*x^9-15/2*x^8-37/2*x^7+147/2*x^6+133/4*x^5-875/4*x^4+23*x^3+817/4*x^2-42*x-35,7/4*x^9-13/2*x^8-27/2*x^7+129/2*x^6+71/4*x^5-777/4*x^4+38*x^3+723/4*x^2-44*x-25,-7/2*x^9+23/2*x^8+29*x^7-112*x^6-107/2*x^5+327*x^4-61/2*x^3-575/2*x^2+115/2*x+41,-21/4*x^9+37/2*x^8+83/2*x^7-363/2*x^6-249/4*x^5+2147/4*x^4-91*x^3-1941/4*x^2+113*x+77,-1,-13/2*x^9+21*x^8+55*x^7-205*x^6-217/2*x^5+1201/2*x^4-39*x^3-1063/2*x^2+101*x+80,-3/2*x^9+5*x^8+13*x^7-50*x^6-55/2*x^5+303/2*x^4-4*x^3-279/2*x^2+20*x+18,-x^9+4*x^8+6*x^7-38*x^6+5*x^5+108*x^4-58*x^3-94*x^2+42*x+18,-27/2*x^9+89/2*x^8+111*x^7-432*x^6-395/2*x^5+1255*x^4-297/2*x^3-2189/2*x^2+511/2*x+161,-8*x^9+27*x^8+65*x^7-265*x^6-108*x^5+784*x^4-118*x^3-704*x^2+177*x+102,-5/2*x^9+9*x^8+19*x^7-89*x^6-41/2*x^5+533/2*x^4-76*x^3-483/2*x^2+86*x+28,13/2*x^9-21*x^8-55*x^7+205*x^6+219/2*x^5-1201/2*x^4+34*x^3+1059/2*x^2-103*x-76,12*x^9-41*x^8-97*x^7+401*x^6+160*x^5-1177*x^4+174*x^3+1037*x^2-259*x-146,1/2*x^9-x^8-6*x^7+10*x^6+49/2*x^5-61/2*x^4-39*x^3+63/2*x^2+24*x-7,21/2*x^9-35*x^8-86*x^7+341*x^6+299/2*x^5-1991/2*x^4+131*x^3+1745/2*x^2-219*x-126,-15*x^9+50*x^8+123*x^7-487*x^6-216*x^5+1422*x^4-176*x^3-1251*x^2+300*x+180,-5/2*x^9+8*x^8+21*x^7-77*x^6-83/2*x^5+435/2*x^4-10*x^3-335/2*x^2+31*x+6]],
[x^12-3*x^11-16*x^10+48*x^9+93*x^8-270*x^7-251*x^6+633*x^5+359*x^4-582*x^3-248*x^2+136*x+32, [1,-1], [x,-11/232*x^11-15/232*x^10+27/29*x^9+36/29*x^8-1559/232*x^7-883/116*x^6+4841/232*x^5+3869/232*x^4-5605/232*x^3-1119/116*x^2+188/29*x-31/29,59/232*x^11-83/232*x^10-487/116*x^9+147/29*x^8+5599/232*x^7-1369/58*x^6-13121/232*x^5+9213/232*x^4+11403/232*x^3-1179/58*x^2-485/58*x+103/29,-7/232*x^11+1/232*x^10+37/58*x^9+1/58*x^8-1203/232*x^7-61/116*x^6+4557/232*x^5+353/232*x^4-7553/232*x^3+63/116*x^2+959/58*x-54/29,-1,-49/232*x^11+123/232*x^10+86/29*x^9-214/29*x^8-3085/232*x^7+3923/116*x^6+4291/232*x^5-13073/232*x^4+489/232*x^3+3283/116*x^2-312/29*x-30/29,-1/29*x^11+71/116*x^10-19/116*x^9-277/29*x^8+172/29*x^7+5983/116*x^6-828/29*x^5-12927/116*x^4+4471/116*x^3+9787/116*x^2-441/58*x-244/29,21/232*x^11-61/232*x^10-135/116*x^9+229/58*x^8+825/232*x^7-1141/58*x^6+1061/232*x^5+8627/232*x^4-5703/232*x^3-823/29*x^2+519/29*x+220/29,-21/58*x^11+35/116*x^10+685/116*x^9-191/58*x^8-1927/58*x^7+921/116*x^6+2181/29*x^5+1277/116*x^4-7415/116*x^3-3797/116*x^2+418/29*x+251/29,-35/232*x^11+63/232*x^10+283/116*x^9-227/58*x^8-3231/232*x^7+540/29*x^6+7821/232*x^5-7225/232*x^4-7779/232*x^3+607/58*x^2+208/29*x+136/29,13/58*x^11-35/58*x^10-96/29*x^9+527/58*x^8+925/58*x^7-1345/29*x^6-1561/58*x^5+2682/29*x^4+387/29*x^3-1944/29*x^2-367/58*x+281/29,2/29*x^11+3/116*x^10-165/116*x^9-23/58*x^8+294/29*x^7+243/116*x^6-1647/58*x^5-507/116*x^4+2513/116*x^3+465/116*x^2+267/29*x-5/29,1,-21/116*x^11+61/116*x^10+135/58*x^9-229/29*x^8-825/116*x^7+1141/29*x^6-1061/116*x^5-8511/116*x^4+5587/116*x^3+1385/29*x^2-835/29*x-150/29,-27/116*x^11-21/116*x^10+273/58*x^9+95/29*x^8-3911/116*x^7-592/29*x^6+11661/116*x^5+5927/116*x^4-12487/116*x^3-1372/29*x^2+596/29*x+296/29,-x^4+7*x^2-2*x-2,9/116*x^11-51/116*x^10-31/29*x^9+449/58*x^8+453/116*x^7-2747/58*x^6-59/116*x^5+13723/116*x^4-787/116*x^3-6229/58*x^2-291/58*x+375/29,39/116*x^11+11/116*x^10-173/29*x^9-105/29*x^8+4399/116*x^7+1997/58*x^6-11817/116*x^5-13749/116*x^4+11689/116*x^3+7769/58*x^2-297/29*x-608/29,23/232*x^11-53/232*x^10-38/29*x^9+75/29*x^8+1467/232*x^7-1001/116*x^6-3373/232*x^5+1359/232*x^4+3705/232*x^3+1359/116*x^2-140/29*x-241/29,103/232*x^11+35/232*x^10-237/29*x^9-113/29*x^8+12299/232*x^7+3723/116*x^6-33413/232*x^5-23721/232*x^4+35505/232*x^3+12587/116*x^2-1357/29*x-585/29,27/58*x^11-37/58*x^10-215/29*x^9+245/29*x^8+2345/58*x^7-1020/29*x^6-4991/58*x^5+2715/58*x^4+3381/58*x^3-475/29*x^2+171/29*x+278/29,-117/232*x^11+199/232*x^10+216/29*x^9-321/29*x^8-8441/232*x^7+5203/116*x^6+14223/232*x^5-12925/232*x^4-2123/232*x^3+67/116*x^2-932/29*x+158/29,-77/116*x^11+69/116*x^10+669/58*x^9-221/29*x^8-8245/116*x^7+839/29*x^6+21475/116*x^5-3135/116*x^4-22125/116*x^3-161/29*x^2+1385/29*x-28/29,-67/232*x^11+109/232*x^10+263/58*x^9-192/29*x^8-5615/232*x^7+3675/116*x^6+11369/232*x^5-14071/232*x^4-6289/232*x^3+5243/116*x^2-152/29*x-115/29,185/232*x^11-275/232*x^10-375/29*x^9+486/29*x^8+17045/232*x^7-9267/116*x^6-40395/232*x^5+34353/232*x^4+39071/232*x^3-11467/116*x^2-1493/29*x+263/29]]];

f[452,2]=[
[x^3+3*x^2-1, [-1,-1], [0,x,-1,-x^2-4*x-1,2*x^2+3*x-3,x-3,-3*x^2-6*x+1,x^2+4*x-1,-3*x^2-7*x+2,4*x^2+13*x,7*x^2+18*x-2,3*x^2+7*x-6,-3*x^2-13*x-5,-3*x^2-7*x-2,-2*x^2-3*x+8,5*x^2+11*x-3,-5*x^2-7*x+9,-8*x^2-17*x+4,-7*x^2-19*x+1,-4*x^2-14*x+4,x^2+2*x-8,-x^2+4*x+8,5*x^2+19*x-2,x^2+3*x+6,x^2-4*x-11]],
[x^7-3*x^6-12*x^5+33*x^4+40*x^3-98*x^2-16*x+58, [-1,1], [0,x,x^6-2*x^5-13*x^4+16*x^3+52*x^2-22*x-44,-3*x^6+5*x^5+44*x^4-46*x^3-188*x^2+82*x+156,4*x^6-7*x^5-58*x^4+64*x^3+246*x^2-112*x-200,-2*x^6+4*x^5+27*x^4-34*x^3-111*x^2+52*x+96,3*x^6-5*x^5-44*x^4+46*x^3+188*x^2-82*x-154,-x^6+x^5+17*x^4-11*x^3-78*x^2+23*x+66,-x^6+2*x^5+13*x^4-17*x^3-50*x^2+27*x+38,x^6-3*x^5-9*x^4+22*x^3+24*x^2-28*x-16,-8*x^6+15*x^5+111*x^4-132*x^3-458*x^2+220*x+374,-3*x^6+6*x^5+40*x^4-52*x^3-160*x^2+86*x+130,2*x^6-3*x^5-30*x^4+28*x^3+127*x^2-50*x-98,2*x^6-3*x^5-31*x^4+30*x^3+136*x^2-61*x-110,13*x^6-25*x^5-178*x^4+217*x^3+730*x^2-355*x-600,-4*x^6+7*x^5+58*x^4-64*x^3-247*x^2+110*x+206,-3*x^6+7*x^5+36*x^4-56*x^3-134*x^2+79*x+104,3*x^6-5*x^5-45*x^4+48*x^3+194*x^2-90*x-154,-6*x^6+10*x^5+88*x^4-93*x^3-372*x^2+169*x+296,-3*x^6+5*x^5+45*x^4-46*x^3-198*x^2+79*x+166,6*x^6-11*x^5-85*x^4+100*x^3+356*x^2-178*x-288,-x^5+4*x^4+5*x^3-24*x^2+x+8,-3*x^6+6*x^5+40*x^4-50*x^3-164*x^2+76*x+140,-13*x^6+24*x^5+182*x^4-212*x^3-758*x^2+356*x+622,7*x^6-11*x^5-106*x^4+106*x^3+458*x^2-198*x-368]]];

f[453,2]=[
[x^2-3, [1,-1], [x,-1,2,1,x+2,2*x,0,0,-2*x+6,-2*x,2*x+6,-4*x+1,-3*x-6,-2*x,-x+2,-x+6,-5*x+2,-2*x-4,5,4*x+6,-4*x-8,-4*x-5,-2*x-2,4*x,4*x-1]],
[x^2-3*x+1, [1,-1], [x,-1,x-3,1,-2*x+6,-1,-4*x+9,0,2*x-3,-x+6,-3*x-2,-3*x+7,3*x-3,1,-4*x+6,-6*x+9,-3*x+3,-3*x+1,-3*x+9,7*x-9,6*x-3,-3*x+12,-x+15,-10*x+15,-14]],
[x^2+3*x+1, [-1,1], [x,1,x+3,-2*x-5,2*x+6,-2*x+1,-1,4*x+8,5,3*x+2,-5*x-10,-x+3,-7*x-13,4*x+13,10,-3,-3*x-7,-11*x-19,-3*x+1,-3*x+5,-4*x-9,7*x+2,x+5,-5,4*x+10]],
[x^2+x-1, [-1,-1], [x,1,-x-1,-3,2*x-2,-1,-2*x-1,-4,-4*x-5,3*x+6,5*x,-3*x-3,-3*x+3,4*x-3,4*x+2,8*x+3,-x-3,9*x+7,-3*x-9,5*x+9,-6*x-11,-11*x-2,x-7,-3,-12*x-6]],
[x^3+x^2-2*x-1, [1,1], [x,-1,-2*x^2-x+2,2*x^2+2*x-2,-x^2-3*x+1,-2*x-2,-x^2-x-5,5*x^2+2*x-6,2*x^2+2*x-8,-x^2+2*x,-2*x^2+3*x+6,-x^2-5*x+1,2*x^2+2*x,-2*x^2-x-6,7*x^2-12,8*x+2,7*x+4,-2*x^2-4*x-2,-4*x^2+4*x+6,-6*x-4,-6*x^2+6*x+18,4*x^2-8,-6*x^2-4*x+8,4*x^2-2*x-6,-7*x^2-4*x+18]],
[x^5+3*x^4-6*x^3-18*x^2+8*x+19, [1,1], [x,-1,-x^4-x^3+6*x^2+2*x-6,x^4+x^3-7*x^2-4*x+7,x^4-7*x^2+2*x+3,-x^4+x^3+9*x^2-6*x-11,2*x^4+x^3-14*x^2+18,-2*x^4-2*x^3+13*x^2+5*x-15,x^4-x^3-9*x^2+6*x+11,-2*x^4-x^3+15*x^2-20,2*x^4+2*x^3-11*x^2-4*x+5,3*x-3,x^4-7*x^2+3*x+2,-x^4+4*x^2-5*x+3,x^2+3*x-7,-x^4-x^3+5*x^2+2*x-3,-x^4+x^3+10*x^2-6*x-22,x^4-2*x^3-11*x^2+9*x+22,-x^4+7*x^2-3*x-14,-x^4+5*x^2-3*x,x^4-x^3-11*x^2+6*x+21,2*x^4-x^3-16*x^2+11*x+21,-3*x^4+27*x^2-3*x-42,-3*x^4-3*x^3+15*x^2+6*x-5,4*x^4+2*x^3-25*x^2-3*x+13]],
[x^9-6*x^8+3*x^7+42*x^6-68*x^5-62*x^4+168*x^3-15*x^2-98*x+31, [-1,1], [x,1,2*x^8-7*x^7-12*x^6+56*x^5+5*x^4-123*x^3+38*x^2+74*x-27,-3/2*x^8+11/2*x^7+8*x^6-43*x^5+3*x^4+90*x^3-38*x^2-99/2*x+47/2,-15/2*x^8+55/2*x^7+42*x^6-218*x^5-x^4+470*x^3-159*x^2-543/2*x+195/2,2*x^8-8*x^7-10*x^6+64*x^5-8*x^4-140*x^3+54*x^2+82*x-26,3*x^8-12*x^7-14*x^6+95*x^5-20*x^4-206*x^3+99*x^2+123*x-50,6*x^8-23*x^7-31*x^6+182*x^5-18*x^4-392*x^3+160*x^2+227*x-87,2*x^8-6*x^7-14*x^6+46*x^5+22*x^4-92*x^3-2*x^2+46*x-6,-2*x^8+9*x^7+7*x^6-72*x^5+32*x^4+158*x^3-104*x^2-95*x+49,2*x^8-7*x^7-12*x^6+56*x^5+5*x^4-121*x^3+36*x^2+66*x-21,-3/2*x^8+13/2*x^7+6*x^6-52*x^5+19*x^4+114*x^3-73*x^2-135/2*x+81/2,9/2*x^8-35/2*x^7-22*x^6+137*x^5-23*x^4-290*x^3+140*x^2+333/2*x-155/2,9*x^8-34*x^7-48*x^6+270*x^5-17*x^4-585*x^3+228*x^2+341*x-136,3/2*x^8-11/2*x^7-9*x^6+45*x^5+3*x^4-102*x^3+34*x^2+125/2*x-59/2,-1/2*x^8+3/2*x^7+4*x^6-13*x^5-9*x^4+34*x^3+8*x^2-61/2*x-9/2,-5/2*x^8+17/2*x^7+16*x^6-67*x^5-16*x^4+143*x^3-24*x^2-165/2*x+49/2,-6*x^8+22*x^7+34*x^6-176*x^5-4*x^4+388*x^3-120*x^2-236*x+76,-23/2*x^8+87/2*x^7+62*x^6-347*x^5+17*x^4+756*x^3-278*x^2-883/2*x+323/2,9*x^8-33*x^7-50*x^6+260*x^5-554*x^3+190*x^2+313*x-123,-5*x^8+17*x^7+32*x^6-136*x^5-30*x^4+298*x^3-56*x^2-177*x+55,19/2*x^8-71/2*x^7-52*x^6+283*x^5-9*x^4-616*x^3+224*x^2+723/2*x-263/2,-4*x^8+16*x^7+20*x^6-130*x^5+18*x^4+296*x^3-120*x^2-192*x+64,3*x^8-11*x^7-18*x^6+88*x^5+12*x^4-190*x^3+30*x^2+103*x-19,-17/2*x^8+63/2*x^7+47*x^6-251*x^5+5*x^4+546*x^3-196*x^2-631/2*x+235/2]]];

f[454,2]=[
[x^2+3*x+1, [-1,-1], [1,x,-2*x-4,x-1,x-3,-2*x-2,2*x,3*x+4,-3*x-6,5*x+4,2*x+2,0,-6*x-12,-3*x-4,3*x+9,x+3,-8*x-8,8*x+16,-6*x-10,-x-10,9*x+13,-7*x-13,-6*x,-3*x-6,-9*x-10]],
[x^4+2*x^3-3*x^2-2*x+1, [1,1], [-1,x,-x^3-3*x^2+x+2,x^3+3*x^2-2*x-3,x^3+2*x^2-3*x-4,3*x^3+6*x^2-8*x-5,-2*x^3-3*x^2+5*x-1,-2*x^3-4*x^2+5*x+2,-3*x^3-8*x^2+5*x+7,3*x^3+7*x^2-4*x-10,-3*x^2-5*x+5,-2*x^3-4*x^2+8*x+2,x^3+5*x^2+7*x-8,-4*x^3-6*x^2+15*x+4,-5*x^3-9*x^2+12*x+5,4*x^3+4*x^2-19*x-3,2*x^2-6,-2*x^3-3*x^2+7*x-3,-2*x^2-4*x+8,5*x^3+10*x^2-9*x-7,2*x^3-x^2-12*x+8,3*x^3+x^2-16*x+3,-x^3+3*x^2+11*x-6,4*x^3+11*x^2+2*x-11,2*x^3+7*x^2+2*x-5]],
[x^5+x^4-11*x^3-8*x^2+28*x+8, [1,-1], [-1,x,1/4*x^4-3/4*x^3-7/4*x^2+5*x+1,1/2*x^4-4*x^2+1/2*x+3,-x^2+6,-1/4*x^4-3/4*x^3+9/4*x^2+11/2*x-3,1/2*x^4+1/2*x^3-7/2*x^2-2*x+4,-x^3-x^2+6*x+4,-1/4*x^4+5/4*x^3+9/4*x^2-15/2*x-1,-x+6,3/2*x^4-3/2*x^3-23/2*x^2+9*x+8,-1/2*x^4+x^3+2*x^2-15/2*x+7,1/2*x^4-3/2*x^3-11/2*x^2+8*x+14,x^4-x^3-5*x^2+7*x-8,-1/4*x^4-5/4*x^3+3/4*x^2+7*x+5,x^4-7*x^2+x+8,x^3+x^2-7*x-4,-1/2*x^4+2*x^3+5*x^2-29/2*x-7,x^4+1/2*x^3-17/2*x^2-7/2*x+7,1/4*x^4+1/4*x^3-3/4*x^2-3*x-5,-1/4*x^4+5/4*x^3+5/4*x^2-13/2*x-1,-3/4*x^4+3/4*x^3+27/4*x^2-5/2*x-11,3/4*x^4-11/4*x^3-23/4*x^2+37/2*x+1,-1/2*x^3+1/2*x^2+7/2*x-3,x^4-3/2*x^3-9/2*x^2+23/2*x-15]],
[x^7-4*x^6-9*x^5+48*x^4-11*x^3-92*x^2+28*x+56, [-1,1], [1,x,-1/4*x^6+x^5+9/4*x^4-11*x^3+7/4*x^2+12*x+1,-3/2*x^6+7/2*x^5+39/2*x^4-81/2*x^3-105/2*x^2+123/2*x+59,2*x^6-5*x^5-26*x^4+58*x^3+70*x^2-90*x-78,5/4*x^6-7/2*x^5-57/4*x^4+79/2*x^3+85/4*x^2-103/2*x-23,5/2*x^6-7*x^5-59/2*x^4+79*x^3+109/2*x^2-104*x-64,3*x^6-7*x^5-39*x^4+81*x^3+105*x^2-124*x-116,-9/4*x^6+11/2*x^5+117/4*x^4-127/2*x^3-313/4*x^2+189/2*x+89,-6*x^6+15*x^5+76*x^4-172*x^3-187*x^2+249*x+210,-1/2*x^6+2*x^5+7/2*x^4-22*x^3+31/2*x^2+21*x-16,5/2*x^6-11/2*x^5-67/2*x^4+127/2*x^3+195/2*x^2-195/2*x-107,-3/2*x^6+3*x^5+43/2*x^4-36*x^3-149/2*x^2+66*x+82,-x^6+2*x^5+15*x^4-24*x^3-57*x^2+45*x+64,-21/4*x^6+12*x^5+281/4*x^4-140*x^3-825/4*x^2+224*x+231,-x^6+2*x^5+14*x^4-24*x^3-46*x^2+43*x+48,8*x^6-19*x^5-104*x^4+219*x^3+280*x^2-329*x-312,5/2*x^6-11/2*x^5-69/2*x^4+131/2*x^3+219/2*x^2-225/2*x-125,x^6-3/2*x^5-16*x^4+39/2*x^3+68*x^2-91/2*x-75,-7/4*x^6+3*x^5+107/4*x^4-37*x^3-415/4*x^2+76*x+113,-21/4*x^6+27/2*x^5+269/4*x^4-313/2*x^3-685/4*x^2+479/2*x+189,-7/4*x^6+7/2*x^5+99/4*x^4-83/2*x^3-331/4*x^2+143/2*x+91,-27/4*x^6+37/2*x^5+323/4*x^4-421/2*x^3-635/4*x^2+575/2*x+185,8*x^6-39/2*x^5-104*x^4+451/2*x^3+281*x^2-683/2*x-323,-x^6+5/2*x^5+13*x^4-61/2*x^3-34*x^2+109/2*x+33]]];

f[455,2]=[
[x-1, [1,1,1], [1,0,-1,-1,0,-1,-2,-4,0,-2,0,2,6,-4,-8,6,-4,-10,12,4,-10,0,12,-18,-2]],
[x+1, [-1,1,-1], [-1,0,1,-1,0,1,-6,0,-4,-2,-4,-10,2,-8,0,-2,0,-2,-4,12,-6,8,4,2,-14]],
[x^4+x^3-5*x^2-3*x+1, [1,1,-1], [x,x^3+x^2-4*x-2,-1,-1,2*x^3+2*x^2-10*x-4,1,x^3-x^2-6*x+3,-x^3-x^2+6*x+7,2*x^3-10*x-2,-x^3-x^2+6*x+2,x^3+x^2-6*x+2,x^3+x^2-8*x-2,-3*x^3-3*x^2+12*x+9,-2*x,2*x^2-10,-2*x^3+2*x^2+10*x-6,-x^3-x^2+6*x+10,2*x^3+4*x^2-10*x-10,3*x^3+x^2-10*x+3,2*x^3-2*x^2-12*x+4,-2*x^3-2*x^2+6*x+12,-x^3-x^2+4*x+5,2*x^3+6*x^2-6*x-14,3*x^3+x^2-10*x+6,-4*x^3+22*x+2]],
[x^4-3*x^3-x^2+5*x+1, [-1,1,1], [x,-x^3+3*x^2-2,1,-1,-2*x^3+2*x^2+6*x,-1,-x^3+x^2+2*x+5,x^3+x^2-6*x-3,2*x^3-8*x^2+2*x+10,-x^3+3*x^2-2*x-2,3*x^3-5*x^2-6*x+2,5*x^3-11*x^2-8*x+10,3*x^3-5*x^2-4*x+3,4*x^2-2*x-12,-6*x^2+12*x+10,2*x^3+2*x^2-14*x-2,-3*x^3+5*x^2+6*x-6,2*x^3-8*x^2+6*x+14,-5*x^3+13*x^2+2*x-13,-2*x^3+2*x^2+12*x-8,-2*x^3+2*x^2+2*x+12,-x^3+3*x^2-4*x-7,2*x^3-6*x^2-2*x+6,x^3-5*x^2+6*x-2,-8*x^2+10*x+14]],
[x^6-3*x^5-6*x^4+20*x^3+6*x^2-31*x+9, [-1,-1,-1], [x,-x^3+x^2+4*x-2,1,1,-x^5+2*x^4+6*x^3-10*x^2-8*x+9,1,x^5-x^4-6*x^3+2*x^2+7*x+3,x^4-2*x^3-4*x^2+5*x+2,-x^5+2*x^4+6*x^3-8*x^2-8*x+3,-x^5+11*x^3-3*x^2-26*x+9,-2*x^4+3*x^3+9*x^2-8*x-4,x^5-2*x^4-7*x^3+11*x^2+10*x-7,x^5-x^4-8*x^3+2*x^2+17*x+3,-x^5+2*x^4+8*x^3-12*x^2-20*x+17,2*x^2-4*x-6,-2*x^5+2*x^4+16*x^3-12*x^2-28*x+18,2*x^4-3*x^3-9*x^2+8*x,-2*x^3+4*x^2+6*x-10,x^5-x^4-6*x^3+2*x^2+7*x+5,x^5-4*x^4-4*x^3+20*x^2+4*x-15,-2*x^3+6*x^2+6*x-16,x^5-5*x^4-4*x^3+26*x^2+5*x-19,-2*x^3+2*x^2+10*x-6,3*x^5-6*x^4-17*x^3+27*x^2+20*x-21,-2*x^5+2*x^4+18*x^3-14*x^2-36*x+26]],

f[456,2]=[
[x-4, [1,1,-1], [0,-1,4,4,-4,-4,6,1,-6,2,2,4,-6,4,-2,-6,-4,-10,8,0,-2,14,-16,-18,14]],
[x-2, [1,-1,1], [0,1,2,0,0,2,2,-1,0,2,-4,2,6,-4,0,10,-4,-2,-12,0,-6,-4,-8,6,-14]],
[x+3, [1,-1,-1], [0,1,-3,-3,-1,-2,-5,1,-4,-6,-2,8,-8,13,13,-6,4,-13,4,-8,-3,-4,4,-6,2]],
[x-1, [-1,1,-1], [0,-1,1,-3,-5,-2,-1,1,4,-6,-10,0,0,-11,9,10,4,-5,-4,8,13,4,-4,-6,2]],
[x^2+x-10, [1,1,-1], [0,-1,x,-x-2,x+2,6,-x,1,4,2,2*x+4,-2*x+2,-2*x+2,3*x+2,-x+2,-6,-4,-x+4,-12,0,x+4,-4*x,-4*x,-4*x-2,-6]],
[x^2-x-4, [-1,-1,-1], [0,1,x,x,-x+4,-2*x,-3*x+2,1,-2*x+6,4*x-2,-2,-8,2*x-2,x,3*x-2,-4*x-2,12,-3*x+2,-4*x,0,7*x-6,-6*x+2,4,-6,-4*x-2]]];

f[457,2]=[
[x^2-x-1, [1], [x,-x+1,-2,-x,-5,x+4,6*x-3,-2*x-4,-x-2,2*x-2,6*x-2,x+5,-8*x+1,-2*x+4,-7*x+4,-2*x+7,-x-9,5*x-11,-4*x+5,4*x-7,-4*x+11,-6*x+3,2*x+3,-4*x-3,-x+2]],
[x^15+10*x^14+27*x^13-43*x^12-324*x^11-310*x^10+917*x^9+1910*x^8-330*x^7-3170*x^6-1281*x^5+1917*x^4+1110*x^3-506*x^2-232*x+79, [1], [x,-22/3*x^14-176/3*x^13-248/3*x^12+1409/3*x^11+4334/3*x^10-488*x^9-17000/3*x^8-9601/3*x^7+24824/3*x^6+23065/3*x^5-14540/3*x^4-15932/3*x^3+4537/3*x^2+1170*x-1043/3,-8/3*x^14-79/3*x^13-184/3*x^12+502/3*x^11+2524/3*x^10+255*x^9-9145/3*x^8-9500/3*x^7+12118/3*x^6+18116/3*x^5-5953/3*x^4-11923/3*x^3+1877/3*x^2+878*x-661/3,5*x^14+51*x^13+123*x^12-326*x^11-1682*x^10-488*x^9+6221*x^8+6214*x^7-8724*x^6-12108*x^5+5002*x^4+8277*x^3-1832*x^2-1925*x+546,-7/3*x^14-77/3*x^13-206/3*x^12+455/3*x^11+2684/3*x^10+373*x^9-9638/3*x^8-10615/3*x^7+12791/3*x^6+19645/3*x^5-6359/3*x^4-12755/3*x^3+1999/3*x^2+921*x-680/3,11*x^14+85*x^13+105*x^12-706*x^11-1967*x^10+997*x^9+7813*x^8+3498*x^7-11471*x^6-9202*x^5+6665*x^4+6226*x^3-1917*x^2-1275*x+375,53/3*x^14+445/3*x^13+736/3*x^12-3337/3*x^11-11770/3*x^10+428*x^9+44569/3*x^8+32813/3*x^7-61669/3*x^6-70244/3*x^5+32200/3*x^4+46633/3*x^3-9203/3*x^2-3330*x+2569/3,50/3*x^14+421/3*x^13+706/3*x^12-3130/3*x^11-11221/3*x^10+298*x^9+42418/3*x^8+32393/3*x^7-58642/3*x^6-68993/3*x^5+30763/3*x^4+46282/3*x^3-9107/3*x^2-3370*x+2623/3,-32/3*x^14-280/3*x^13-511/3*x^12+2038/3*x^11+7852/3*x^10-24*x^9-29791/3*x^8-23765/3*x^7+42187/3*x^6+50105/3*x^5-23827/3*x^4-34381/3*x^3+7916/3*x^2+2608*x-2209/3,-88/3*x^14-707/3*x^13-1028/3*x^12+5546/3*x^11+17603/3*x^10-1552*x^9-68123/3*x^8-42907/3*x^7+97046/3*x^6+98737/3*x^5-53987/3*x^4-67268/3*x^3+16303/3*x^2+4894*x-4091/3,-34/3*x^14-296/3*x^13-533/3*x^12+2159/3*x^11+8192/3*x^10-64*x^9-30791/3*x^8-24244/3*x^7+42497/3*x^6+50329/3*x^5-22238/3*x^4-33188/3*x^3+6460/3*x^2+2364*x-1826/3,-4*x^14-25*x^13-3*x^12+251*x^11+346*x^10-773*x^9-1584*x^8+771*x^7+2506*x^6-127*x^5-1484*x^4+76*x^3+256*x^2-104*x+28,32/3*x^14+241/3*x^13+274/3*x^12-2017/3*x^11-5356/3*x^10+1000*x^9+21220/3*x^8+9242/3*x^7-30538/3*x^6-24962/3*x^5+16750/3*x^4+16852/3*x^3-4394/3*x^2-1138*x+916/3,56/3*x^14+442/3*x^13+607/3*x^12-3517/3*x^11-10681/3*x^10+1165*x^9+41389/3*x^8+24410/3*x^7-58543/3*x^6-57314/3*x^5+31708/3*x^4+38449/3*x^3-8993/3*x^2-2710*x+2194/3,-52/3*x^14-392/3*x^13-443/3*x^12+3302/3*x^11+8708/3*x^10-1706*x^9-34712/3*x^8-14116/3*x^7+50660/3*x^6+39100/3*x^5-28844/3*x^4-26357/3*x^3+8017/3*x^2+1775*x-1589/3,7*x^13+41*x^12-12*x^11-443*x^10-440*x^9+1600*x^8+2323*x^7-2413*x^6-4169*x^5+1745*x^4+3019*x^3-857*x^2-781*x+254,-7*x^14-31*x^13+73*x^12+442*x^11-186*x^10-2383*x^9-297*x^8+6148*x^7+1831*x^6-7901*x^5-2183*x^4+4819*x^3+467*x^2-1157*x+207,-17/3*x^14-91/3*x^13+77/3*x^12+1045/3*x^11+517/3*x^10-1423*x^9-3403/3*x^8+8269/3*x^7+5995/3*x^6-9028/3*x^5-3481/3*x^4+5900/3*x^3+11/3*x^2-555*x+398/3,-8/3*x^14-91/3*x^13-265/3*x^12+463/3*x^11+3310/3*x^10+713*x^9-11356/3*x^8-15533/3*x^7+13573/3*x^6+27692/3*x^5-4900/3*x^4-17845/3*x^3+1355/3*x^2+1309*x-862/3,40/3*x^14+299/3*x^13+317/3*x^12-2588/3*x^11-6530/3*x^10+1542*x^9+26714/3*x^8+8362/3*x^7-40841/3*x^6-26881/3*x^5+25601/3*x^4+19016/3*x^3-7846/3*x^2-1338*x+1379/3,-37/3*x^14-350/3*x^13-746/3*x^12+2372/3*x^11+10631/3*x^10+580*x^9-39164/3*x^8-35818/3*x^7+53144/3*x^6+70147/3*x^5-27269/3*x^4-45740/3*x^3+8239/3*x^2+3276*x-2498/3,-48*x^14-396*x^13-622*x^12+3037*x^11+10246*x^10-1840*x^9-39358*x^8-26915*x^7+55853*x^6+59849*x^5-31056*x^4-40743*x^3+9598*x^2+8993*x-2507,15*x^14+112*x^13+125*x^12-938*x^11-2487*x^10+1375*x^9+9966*x^8+4541*x^7-14707*x^6-12466*x^5+8679*x^4+8934*x^3-2686*x^2-2021*x+603,50/3*x^14+394/3*x^13+547/3*x^12-3097/3*x^11-9550/3*x^10+897*x^9+36715/3*x^8+23357/3*x^7-51052/3*x^6-53549/3*x^5+26485/3*x^4+35755/3*x^3-7190/3*x^2-2505*x+1909/3,15*x^14+126*x^13+208*x^12-950*x^11-3343*x^10+406*x^9+12765*x^8+9228*x^7-18015*x^6-20053*x^5+9916*x^4+13576*x^3-3030*x^2-2971*x+796]],

f[458,2]=[
[x+3, [1,1], [-1,-3,1,-2,1,2,1,-1,-4,-2,-4,-6,-2,-5,-2,-2,0,-7,-14,15,-2,14,-9,18,3]],
[x+1, [-1,-1], [1,-1,-1,-4,-1,-2,-3,1,2,-6,8,-6,0,1,-2,2,-2,-1,-10,-1,-4,4,5,12,3]],
[x^2-x-3, [1,1], [-1,0,x,-x-1,-2*x,-4,-x-1,4*x-2,-x,2*x+2,-3*x-4,3*x-3,4,-8,x-3,x,-x-2,x+7,-3*x-2,2*x-2,4,-3*x-7,4*x+2,-6*x+6,-x-2]],
[x^7-4*x^6-6*x^5+31*x^4+12*x^3-77*x^2-10*x+59, [1,-1], [-1,x,x^6-5*x^5+x^4+24*x^3-22*x^2-27*x+31,x^6-5*x^5+26*x^3-16*x^2-33*x+23,-x^5+4*x^4+3*x^3-20*x^2-x+24,-x^6+6*x^5-4*x^4-30*x^3+37*x^2+38*x-44,x^6-7*x^5+7*x^4+37*x^3-58*x^2-48*x+77,-x^5+3*x^4+6*x^3-17*x^2-9*x+23,-2*x^6+10*x^5-55*x^3+40*x^2+73*x-60,x^6-5*x^5-x^4+30*x^3-17*x^2-43*x+29,3*x^6-15*x^5+x^4+80*x^3-67*x^2-101*x+107,2*x^6-12*x^5+8*x^4+60*x^3-78*x^2-74*x+108,2*x^5-8*x^4-6*x^3+38*x^2+4*x-42,-2*x^5+7*x^4+12*x^3-44*x^2-20*x+64,x^6-4*x^5-3*x^4+23*x^3-8*x^2-32*x+23,-2*x^6+12*x^5-8*x^4-60*x^3+80*x^2+70*x-110,-2*x^6+14*x^5-14*x^4-72*x^3+112*x^2+90*x-146,-x^6+5*x^5-x^4-26*x^3+30*x^2+33*x-53,2,-x^6+5*x^5-x^4-28*x^3+32*x^2+39*x-55,2*x^6-8*x^5-6*x^4+44*x^3-10*x^2-54*x+28,3*x^6-15*x^5+x^4+80*x^3-62*x^2-108*x+91,2*x^6-14*x^5+14*x^4+74*x^3-117*x^2-98*x+160,-2*x^6+8*x^5+6*x^4-42*x^3+6*x^2+52*x-28,-2*x^6+10*x^5+x^4-56*x^3+32*x^2+74*x-48]],
[x^9-2*x^8-20*x^7+41*x^6+112*x^5-241*x^4-160*x^3+385*x^2+28*x-112, [-1,1], [1,x,-737/145364*x^8-4313/72682*x^7+2682/36341*x^6+163547/145364*x^5-12038/36341*x^4-827039/145364*x^3+54071/36341*x^2+956203/145364*x-16071/36341,9607/145364*x^8+1685/72682*x^7-48570/36341*x^6-43925/145364*x^5+291336/36341*x^4+61617/145364*x^3-596202/36341*x^2+27859/145364*x+362990/36341,3537/72682*x^8+1271/36341*x^7-32942/36341*x^6-51465/72682*x^5+161896/36341*x^4+303949/72682*x^3-195820/36341*x^2-618113/72682*x+39266/36341,-7608/36341*x^8+3656/36341*x^7+153397/36341*x^6-75906/36341*x^5-890164/36341*x^4+435950/36341*x^3+1528695/36341*x^2-473202/36341*x-503048/36341,-9643/145364*x^8-4657/72682*x^7+50772/36341*x^6+157633/145364*x^5-318699/36341*x^4-657633/145364*x^3+627344/36341*x^2+601685/145364*x-179358/36341,1177/36341*x^8+4555/36341*x^7-21472/36341*x^6-79482/36341*x^5+101850/36341*x^4+334705/36341*x^3-131702/36341*x^2-280086/36341*x+10454/36341,2967/145364*x^8+2669/72682*x^7-17947/36341*x^6-116593/145364*x^5+138304/36341*x^4+751781/145364*x^3-343762/36341*x^2-1407269/145364*x+116769/36341,4539/72682*x^8-804/36341*x^7-46497/36341*x^6+30125/72682*x^5+267804/36341*x^4-114527/72682*x^3-378842/36341*x^2-187967/72682*x+16792/36341,18477/145364*x^8-943/72682*x^7-94458/36341*x^6+75697/145364*x^5+570634/36341*x^4-703805/145364*x^3-1101992/36341*x^2+1011921/145364*x+491863/36341,32345/145364*x^8-2823/72682*x^7-155329/36341*x^6+156625/145364*x^5+814853/36341*x^4-1216409/145364*x^3-1085863/36341*x^2+1449281/145364*x+177556/36341,-6875/36341*x^8-4530/36341*x^7+131534/36341*x^6+71985/36341*x^5-684582/36341*x^4-256875/36341*x^3+886122/36341*x^2+288003/36341*x+14336/36341,-1721/36341*x^8-1504/36341*x^7+33434/36341*x^6+25103/36341*x^5-168901/36341*x^4-110555/36341*x^3+156634/36341*x^2+211285/36341*x+49492/36341,20653/145364*x^8-7045/72682*x^7-106420/36341*x^6+293213/145364*x^5+637685/36341*x^4-1745769/145364*x^3-1126924/36341*x^2+2450037/145364*x+322894/36341,2859/145364*x^8-6247/72682*x^7-11341/36341*x^6+224531/145364*x^5+19874/36341*x^4-1036267/145364*x^3+258438/36341*x^2+1062819/145364*x-495247/36341,-58005/145364*x^8+8377/72682*x^7+295453/36341*x^6-382717/145364*x^5-1760454/36341*x^4+2451333/145364*x^3+3243146/36341*x^2-2432069/145364*x-1428661/36341,9463/145364*x^8-10203/72682*x^7-39762/36341*x^6+410907/145364*x^5+145543/36341*x^4-2322447/145364*x^3+37140/36341*x^2+3127491/145364*x-138076/36341,26641/145364*x^8+2751/72682*x^7-145617/36341*x^6-110535/145364*x^5+973508/36341*x^4+579135/145364*x^3-2115548/36341*x^2-945407/145364*x+898781/36341,6561/72682*x^8-3468/36341*x^7-75809/36341*x^6+136451/72682*x^5+543324/36341*x^4-726153/72682*x^3-1248461/36341*x^2+866327/72682*x+515032/36341,14119/36341*x^8-2696/36341*x^7-280668/36341*x^6+71481/36341*x^5+1582522/36341*x^4-536263/36341*x^3-2540292/36341*x^2+639119/36341*x+728164/36341,-31663/145364*x^8+18747/72682*x^7+162068/36341*x^6-744059/145364*x^5-956671/36341*x^4+4003807/145364*x^3+1626504/36341*x^2-4338847/145364*x-611794/36341,-12520/36341*x^8+208/36341*x^7+252856/36341*x^6-10044/36341*x^5-1481700/36341*x^4+80626/36341*x^3+2664479/36341*x^2+217048/36341*x-1203778/36341,14999/72682*x^8-5419/36341*x^7-151078/36341*x^6+239611/72682*x^5+881300/36341*x^4-1520931/72682*x^3-1548974/36341*x^2+2354763/72682*x+600980/36341,-14131/145364*x^8+12471/72682*x^7+70901/36341*x^6-445443/145364*x^5-386581/36341*x^4+1936595/145364*x^3+415294/36341*x^2-1156091/145364*x+194125/36341]]];

f[459,2]=[
[x-1, [1,1], [1,0,-1,-2,0,-5,-1,-1,-1,9,-8,-2,-3,7,6,6,0,-10,1,-11,6,0,4,2,2]],
[x+4, [1,1], [-2,0,-4,1,6,1,-1,-7,-4,-6,-8,1,0,4,-6,0,-6,-7,1,4,3,-9,-14,14,-1]],
[x-3, [1,-1], [0,0,3,2,-3,2,1,5,0,-3,8,8,6,-4,-6,12,-12,-10,5,-15,2,-10,-6,0,14]],
[x+2, [1,-1], [2,0,-2,4,3,7,1,-4,1,-9,-2,-8,-9,7,0,6,0,2,7,-7,6,-12,14,-8,-10]],
[x-4, [1,-1], [2,0,4,1,-6,1,1,-7,4,6,-8,1,0,4,6,0,6,-7,1,-4,3,-9,14,-14,-1]],
[x+3, [-1,1], [0,0,-3,2,3,2,-1,5,0,3,8,8,-6,-4,6,-12,12,-10,5,15,2,-10,6,0,14]],
[x-2, [-1,1], [-2,0,2,4,-3,7,-1,-4,-1,9,-2,-8,9,7,0,-6,0,2,7,7,6,-12,-14,8,-10]],
[x+1, [-1,-1], [-1,0,1,-2,0,-5,1,-1,1,-9,-8,-2,3,7,-6,-6,0,-10,1,11,6,0,-4,-2,2]],
[x^2-x-1, [1,1], [x,0,-x-1,-3*x,2*x-5,2*x,-1,3,5*x-4,-2*x-5,2*x+1,4*x-6,x-8,3*x,-7*x,-7*x+1,-5*x+4,-13*x+7,3*x-8,-2*x+5,-4*x-5,3*x-3,4*x+9,-7*x+5,5*x+4]],
[x^2+x-1, [1,-1], [x,0,-x+1,3*x,2*x+5,-2*x,1,3,5*x+4,-2*x+5,-2*x+1,-4*x-6,x+8,-3*x,-7*x,-7*x-1,-5*x-4,13*x+7,-3*x-8,-2*x-5,4*x-5,-3*x-3,4*x-9,-7*x-5,-5*x+4]],
[x^2-x-3, [-1,1], [x,0,-x+3,-x+2,3,2*x-4,-1,-1,-x,3,2*x-1,-4*x+2,3*x,-x-10,-3*x,3*x+3,3*x,-3*x-1,-x+2,4*x-3,4*x+5,x-7,-2*x+3,-x+15,3*x+2]],
[x^2+x-3, [-1,-1], [x,0,-x-3,x+2,-3,-2*x-4,1,-1,-x,-3,-2*x-1,4*x+2,3*x,x-10,-3*x,3*x-3,3*x,3*x-1,x+2,4*x+3,-4*x+5,-x-7,-2*x-3,-x-15,-3*x+2]],
[x^3+x^2-7*x-9, [1,-1], [x,0,x^2-6,x^2-2*x-7,2*x^2-2*x-12,-2*x^2+2*x+11,1,x^2-2*x-4,-2*x^2+9,-x^2+6,2*x^2-10,x^2-1,-x^2+6,x^2-2*x-4,3*x^2-4*x-15,-x^2-2*x+3,-x^2+15,-x^2+17,-x^2+2*x-4,4*x^2-4*x-15,5*x^2-25,x^2-2*x-1,-6*x^2+4*x+30,-2*x^2,-x^2+5]],
[x^3-x^2-7*x+9, [-1,1], [x,0,-x^2+6,x^2+2*x-7,-2*x^2-2*x+12,-2*x^2-2*x+11,-1,x^2+2*x-4,2*x^2-9,x^2-6,2*x^2-10,x^2-1,x^2-6,x^2+2*x-4,-3*x^2-4*x+15,x^2-2*x-3,x^2-15,-x^2+17,-x^2-2*x-4,-4*x^2-4*x+15,5*x^2-25,x^2+2*x-1,6*x^2+4*x-30,2*x^2,-x^2+5]]];

f[460,2]=[
[x, [-1,1,1], [0,0,-1,-1,6,6,7,2,-1,-5,1,-5,-7,8,8,3,13,-8,-9,7,-2,-12,-5,-12,2]],
[x-3, [-1,1,1], [0,3,-1,2,0,-3,4,-4,-1,1,1,-8,11,-10,-1,-6,-8,-8,12,13,7,-12,16,-6,2]],
[x-1, [-1,1,-1], [0,1,-1,-4,-6,-1,0,2,1,9,5,2,-9,-4,-3,-6,0,2,-10,-3,-7,-10,-12,0,8]],
[x+1, [-1,-1,1], [0,-1,1,-2,-4,1,0,-4,-1,-7,-7,-4,3,6,-13,10,-8,0,8,13,11,4,-4,-6,-2]],
[x^2-x-4, [-1,-1,-1], [0,x,1,-x+1,2,x-2,-x+1,6,1,-2*x+3,-4*x+1,x-3,-2*x+1,0,-3*x,x-3,3*x+1,2*x-4,x-7,-2*x+7,-x-6,2*x+8,7*x-3,-4*x+8,2*x-10]]];

f[461,2]=[
[x^2+x-1, [1], [x,x-1,2*x+1,-2*x-2,-2*x-1,-1,-3*x+3,x-3,-2*x-4,2*x-1,0,3*x-1,-3*x,3*x,-6*x-3,-2*x+1,-12,4*x+10,7*x+9,7*x-4,-6*x-3,2*x-6,-3,6*x+12,4*x-2]],
[x^3+2*x^2-x-1, [1], [x,2*x^2+3*x-2,-2*x^2-4*x+1,-1,-x^2-3*x-3,-2*x^2-x+2,2*x^2+5*x+1,-x^2-x-1,3*x^2+4*x,6*x^2+9*x-6,3*x^2+4*x-9,-5*x^2-8*x+4,3*x^2+5*x-3,-x^2-9*x-5,-4*x^2-5*x+4,x^2+5*x-5,-x^2+2*x-1,-2*x^2-5*x-1,2*x^2+6*x-7,-6*x^2-2*x+16,-2*x^2-7*x+2,x^2-3*x-4,-5*x^2-16*x+1,4*x^2+x-11,-3*x+3]],
[x^7-8*x^5+x^4+18*x^3-2*x^2-12*x+1, [1], [x,x^5-6*x^3+x^2+6*x-1,-x^5+6*x^3-x^2-7*x,-2*x^5+12*x^3-4*x^2-13*x+5,x^6+2*x^5-6*x^4-11*x^3+8*x^2+13*x-1,-x^6+2*x^5+6*x^4-14*x^3-2*x^2+16*x-7,2*x^6-2*x^5-13*x^4+15*x^3+16*x^2-18*x-4,2*x^6-2*x^5-12*x^4+17*x^3+11*x^2-23*x-1,-2*x^6+x^5+15*x^4-8*x^3-26*x^2+10*x+6,-x^6-x^5+4*x^4+4*x^3+4*x^2-5*x-10,2*x^6-14*x^4+21*x^2+6*x-5,3*x^6+3*x^5-19*x^4-13*x^3+29*x^2+14*x-10,-4*x^6+x^5+26*x^4-12*x^3-35*x^2+18*x+6,-x^5-2*x^4+4*x^3+7*x^2-7,2*x^5-2*x^4-14*x^3+10*x^2+19*x-2,-2*x^6-2*x^5+12*x^4+10*x^3-14*x^2-14*x+3,6*x^6-3*x^5-39*x^4+25*x^3+47*x^2-27*x+3,-8*x^6+5*x^5+53*x^4-40*x^3-71*x^2+45*x+9,-x^6+x^5+8*x^4-6*x^3-16*x^2+x+3,-x^6-x^5+8*x^4+8*x^3-19*x^2-18*x+11,-x^6+6*x^5+11*x^4-36*x^3-23*x^2+43*x+10,-3*x^5+17*x^3-4*x^2-18*x+2,-2*x^6+4*x^5+10*x^4-32*x^3+x^2+45*x-9,-2*x^6-6*x^5+11*x^4+36*x^3-16*x^2-45*x+3,4*x^6-9*x^5-28*x^4+61*x^3+35*x^2-71*x-5]],
[x^26-3*x^25-41*x^24+126*x^23+726*x^22-2303*x^21-7266*x^20+24054*x^19+45144*x^18-158550*x^17-179824*x^16+687620*x^15+456511*x^14-1985932*x^13-703693*x^12+3785104*x^11+571532*x^10-4624305*x^9-111938*x^8+3430214*x^7-156745*x^6-1399829*x^5+108715*x^4+249906*x^3-21297*x^2-6102*x+223, [-1], [x,-18411620439/79452970167808*x^25+126031151319/19863242541952*x^24-470141107935/79452970167808*x^23-20612532444589/79452970167808*x^22+36754184162415/79452970167808*x^21+22764870934587/4965810635488*x^20-376755454739613/39726485083904*x^19-227622383281801/4965810635488*x^18+2018423496755725/19863242541952*x^17+11326187917526589/39726485083904*x^16-26228962700185675/39726485083904*x^15-45346845828395343/39726485083904*x^14+217656635876641153/79452970167808*x^13+233496124711315187/79452970167808*x^12-291123266455105609/39726485083904*x^11-186910251706688363/39726485083904*x^10+491677426961778207/39726485083904*x^9+343467078638191121/79452970167808*x^8-992645198412472247/79452970167808*x^7-150194664903861945/79452970167808*x^6+33623281419871289/4965810635488*x^5+13620998787985797/79452970167808*x^4-15604395470821721/9931621270976*x^3+2882108350923733/39726485083904*x^2+4325996849510437/79452970167808*x-48453363884879/79452970167808,-66708447915/9931621270976*x^25+1070948233227/79452970167808*x^24+22722271687947/79452970167808*x^23-5520329320915/9931621270976*x^22-422227565561867/79452970167808*x^21+394820114143867/39726485083904*x^20+1124752237877955/19863242541952*x^19-2006819824054707/19863242541952*x^18-15190685955581691/39726485083904*x^17+3195486240749447/4965810635488*x^16+33922841696430085/19863242541952*x^15-53002421103439993/19863242541952*x^14-101545454520251913/19863242541952*x^13+576100090591804269/79452970167808*x^12+101105735051602811/9931621270976*x^11-503425332035968073/39726485083904*x^10-130315349099232313/9931621270976*x^9+539895927632019101/39726485083904*x^8+823928140449728253/79452970167808*x^7-81202495763665461/9931621270976*x^6-358732742406467765/79452970167808*x^5+183920627873384021/79452970167808*x^4+127308678222668/155181582359*x^3-7698956149363327/39726485083904*x^2-88440564889987/39726485083904*x+94898764459539/79452970167808,134986310209/39726485083904*x^25-225519826069/39726485083904*x^24-369877425839/2482905317744*x^23+9407163275881/39726485083904*x^22+57043913829535/19863242541952*x^21-21390306431563/4965810635488*x^20-636385462338977/19863242541952*x^19+891413207208671/19863242541952*x^18+4549950049989865/19863242541952*x^17-367128514188453/1241452658872*x^16-21811234967951493/19863242541952*x^15+3188720575098113/2482905317744*x^14+142502138509697805/39726485083904*x^13-73744083555671587/19863242541952*x^12-157944985051604145/19863242541952*x^11+69929455528581719/9931621270976*x^10+231857784944446415/19863242541952*x^9-333506203840142317/39726485083904*x^8-213927999988339131/19863242541952*x^7+229261867508367987/39726485083904*x^6+223507617872364169/39726485083904*x^5-38233185025212671/19863242541952*x^4-12957876382463147/9931621270976*x^3+4327660884127357/19863242541952*x^2+1957652666438971/39726485083904*x-67557870131361/19863242541952,-654486464095/79452970167808*x^25+2148325256257/79452970167808*x^24+6496572109073/19863242541952*x^23-88816208595081/79452970167808*x^22-220320799354331/39726485083904*x^21+99425645318785/4965810635488*x^20+518644303261825/9931621270976*x^19-8090481763598131/39726485083904*x^18-5883528544434441/19863242541952*x^17+12867741258759761/9931621270976*x^16+10094087718921487/9931621270976*x^15-26578370375021325/4965810635488*x^14-153557123852975485/79452970167808*x^13+286616405147251015/19863242541952*x^12+48565206237547849/39726485083904*x^11-246876899706545611/9931621270976*x^10+90448954185759211/39726485083904*x^9+2066518903949019575/79452970167808*x^8-3069536255204099/620726329436*x^7-1194265712543343851/79452970167808*x^6+264312392250545123/79452970167808*x^5+39697453469731843/9931621270976*x^4-31432328321029291/39726485083904*x^3-11618431809321535/39726485083904*x^2+1892099576957565/79452970167808*x+104525183946031/19863242541952,255589912167/19863242541952*x^25-1475482310713/39726485083904*x^24-20761175829129/39726485083904*x^23+30491050325005/19863242541952*x^22+363366019136511/39726485083904*x^21-272988162097069/9931621270976*x^20-1792107785174111/19863242541952*x^19+5551313599531537/19863242541952*x^18+1366728673015023/2482905317744*x^17-35293777849825571/19863242541952*x^16-42589410541860253/19863242541952*x^15+145601539668576133/19863242541952*x^14+52711935399555833/9931621270976*x^13-782702040196782319/39726485083904*x^12-39933939419955829/4965810635488*x^11+669385327624253147/19863242541952*x^10+68705267787917029/9931621270976*x^9-85971741876398599/2482905317744*x^8-122684280458123357/39726485083904*x^7+188567793908914639/9931621270976*x^6+35108008136135037/39726485083904*x^5-165241435990433233/39726485083904*x^4-5182356150084189/19863242541952*x^3-46910812983423/4965810635488*x^2+733271797518791/19863242541952*x+170585471510307/39726485083904,-146465896685/39726485083904*x^25+1363761679523/79452970167808*x^24+10730239086177/79452970167808*x^23-28320846337741/39726485083904*x^22-159790030772685/79452970167808*x^21+509584325843241/39726485083904*x^20+74018458376191/4965810635488*x^19-325447285501243/2482905317744*x^18-1839687255381395/39726485083904*x^17+4160763639676075/4965810635488*x^16-930715509545949/9931621270976*x^15-69110730830587623/19863242541952*x^14+55456558940103853/39726485083904*x^13+749823533249269627/79452970167808*x^12-109655714476121229/19863242541952*x^11-651022474323610171/39726485083904*x^10+226290277188598423/19863242541952*x^9+86190413031941927/4965810635488*x^8-1026505322535081365/79452970167808*x^7-407353146738415087/39726485083904*x^6+594964629034538111/79452970167808*x^5+226592473836418915/79452970167808*x^4-4471554250587305/2482905317744*x^3-9125570378924811/39726485083904*x^2+636452553281923/9931621270976*x+148846416186893/79452970167808,30709045003/19863242541952*x^25-62107158425/19863242541952*x^24-652558119177/9931621270976*x^23+2597734694667/19863242541952*x^22+187838265329/155181582359*x^21-5860299000845/2482905317744*x^20-125975231551235/9931621270976*x^19+239178773494679/9931621270976*x^18+828489843531799/9931621270976*x^17-759321283641333/4965810635488*x^16-3560388067990971/9931621270976*x^15+3110250247078521/4965810635488*x^14+20201114255306147/19863242541952*x^13-8229255789354419/4965810635488*x^12-18705752117561631/9931621270976*x^11+13618047564771939/4965810635488*x^10+21935779193970513/9931621270976*x^9-51571935765997079/19863242541952*x^8-965804839592009/620726329436*x^7+21177469098014429/19863242541952*x^6+11868173647588553/19863242541952*x^5+130787100800585/1241452658872*x^4-468124106910965/4965810635488*x^3-1488434787750435/9931621270976*x^2+67359472572025/19863242541952*x+14422797991597/2482905317744,-135601064743/9931621270976*x^25+714228650355/39726485083904*x^24+24100965413519/39726485083904*x^23-930191571773/1241452658872*x^22-470330041978875/39726485083904*x^21+269535627229685/19863242541952*x^20+1325955590935025/9931621270976*x^19-348072514916843/2482905317744*x^18-19130031232332563/19863242541952*x^17+9058213355858821/9931621270976*x^16+46148237973736069/9931621270976*x^15-9666801745443219/2482905317744*x^14-2362574715916353/155181582359*x^13+437789148310366389/39726485083904*x^12+167261583508772937/4965810635488*x^11-405638424106463425/19863242541952*x^10-243274569648163053/4965810635488*x^9+473732240305580211/19863242541952*x^8+1760038540109037577/39726485083904*x^7-161590610371948035/9931621270976*x^6-886483669493431737/39726485083904*x^5+222239734452630721/39726485083904*x^4+23993139639087753/4965810635488*x^3-13992727453374137/19863242541952*x^2-2066732531714833/19863242541952*x+239604003251763/39726485083904,-60026660177/9931621270976*x^25+195185724023/19863242541952*x^24+2645015587525/9931621270976*x^23-4100299989867/9931621270976*x^22-102218739882291/19863242541952*x^21+149494886919161/19863242541952*x^20+1139785003632797/19863242541952*x^19-1550720457923985/19863242541952*x^18-8122815303868847/19863242541952*x^17+10087885593124871/19863242541952*x^16+38726604550186743/19863242541952*x^15-42762289611061755/19863242541952*x^14-125690745958903673/19863242541952*x^13+59410327638308253/9931621270976*x^12+138592864541552737/9931621270976*x^11-52986541146594091/4965810635488*x^10-50861950366590195/2482905317744*x^9+57472819695779053/4965810635488*x^8+379194665128353561/19863242541952*x^7-135207294693684525/19863242541952*x^6-101223698195912811/9931621270976*x^5+32492317370425887/19863242541952*x^4+47690299403153447/19863242541952*x^3-472725788093605/19863242541952*x^2-1395370868154421/19863242541952*x+8194587867063/4965810635488,-688413474255/79452970167808*x^25+1246190459547/79452970167808*x^24+15042415075061/39726485083904*x^23-52198936956765/79452970167808*x^22-144102623923179/19863242541952*x^21+237326972786893/19863242541952*x^20+1592960066321727/19863242541952*x^19-4915898065069579/39726485083904*x^18-11253653663565721/19863242541952*x^17+3995117108017761/4965810635488*x^16+53183500078955927/19863242541952*x^15-33890688961130807/9931621270976*x^14-684226775042464625/79452970167808*x^13+377402781788403877/39726485083904*x^12+746907424682649489/39726485083904*x^11-337701670513548349/19863242541952*x^10-1082347965820212017/39726485083904*x^9+1471634963057707587/79452970167808*x^8+989353429377570243/39726485083904*x^7-869086089696285367/79452970167808*x^6-1023515656467856259/79452970167808*x^5+103603087030085811/39726485083904*x^4+113808354060710219/39726485083904*x^3+106985458250667/39726485083904*x^2-4414409494712907/79452970167808*x-294631617940265/39726485083904,157719948323/39726485083904*x^25-47317100369/2482905317744*x^24-5763048527635/39726485083904*x^23+31492003110789/39726485083904*x^22+85282564175321/39726485083904*x^21-283551167781677/19863242541952*x^20-77720042640047/4965810635488*x^19+2896255290649451/19863242541952*x^18+900673749513715/19863242541952*x^17-9233579669196231/9931621270976*x^16+650539995734539/4965810635488*x^15+19050582854149131/4965810635488*x^14-64479973549777735/39726485083904*x^13-407880779948765293/39726485083904*x^12+123467744433484091/19863242541952*x^11+344523452206298341/19863242541952*x^10-249097437093544875/19863242541952*x^9-688233831476651349/39726485083904*x^8+549260326664870779/39726485083904*x^7+353676940443156771/39726485083904*x^6-151826798932209995/19863242541952*x^5-63331315038364461/39726485083904*x^4+32790523469740769/19863242541952*x^3-128377822607601/1241452658872*x^2-145177269453103/39726485083904*x-193423338487051/39726485083904,209364876561/39726485083904*x^25-920818075199/79452970167808*x^24-17356222992669/79452970167808*x^23+18587003246179/39726485083904*x^22+312943214325869/79452970167808*x^21-323998290160635/39726485083904*x^20-402922408247845/9931621270976*x^19+1595511348506027/19863242541952*x^18+10478491700840607/39726485083904*x^17-9750468461596421/19863242541952*x^16-11225104574770683/9931621270976*x^15+19090686855839505/9931621270976*x^14+128830091139695915/39726485083904*x^13-381013379635276715/79452970167808*x^12-123743491427797373/19863242541952*x^11+288989748371716615/39726485083904*x^10+157561399901631687/19863242541952*x^9-58594838526552699/9931621270976*x^8-520596246921557295/79452970167808*x^7+59543028986411503/39726485083904*x^6+260824246663565873/79452970167808*x^5+66330355758333801/79452970167808*x^4-955076654919541/1241452658872*x^3-17357376062194867/39726485083904*x^2+95735238967649/4965810635488*x+798217101070051/79452970167808,363901192511/19863242541952*x^25-1671881893039/39726485083904*x^24-30650178956623/39726485083904*x^23+34697113502897/19863242541952*x^22+561791342930821/39726485083904*x^21-156115827634241/4965810635488*x^20-2943189957641319/19863242541952*x^19+6390216947738333/19863242541952*x^18+9739194684620863/9931621270976*x^17-40975066676499799/19863242541952*x^16-84974433641990917/19863242541952*x^15+171067390781767425/19863242541952*x^14+123900958545820811/9931621270976*x^13-935901327398694129/39726485083904*x^12-60077228606911391/2482905317744*x^11+822635562346054785/19863242541952*x^10+303463384742763431/9931621270976*x^9-442497923753611359/9931621270976*x^8-957939576182559391/39726485083904*x^7+264770451806763597/9931621270976*x^6+433576079895746055/39726485083904*x^5-289333992644422123/39726485083904*x^4-43699416583264901/19863242541952*x^3+5001937122197595/9931621270976*x^2+874808545370745/19863242541952*x-87559890996739/39726485083904,214584086335/79452970167808*x^25-1659456513451/79452970167808*x^24-3370211422925/39726485083904*x^23+69166502458785/79452970167808*x^22+9110541293101/9931621270976*x^21-156429346967309/9931621270976*x^20-29679758290611/19863242541952*x^19+6443286403867581/39726485083904*x^18-1107486807134657/19863242541952*x^17-20799454500725699/19863242541952*x^16+11772300226393175/19863242541952*x^15+87408007947038367/19863242541952*x^14-234562935556901727/79452970167808*x^13-480393291994534251/39726485083904*x^12+335457976699267107/39726485083904*x^11+421801542858038705/19863242541952*x^10-561184146897646739/39726485083904*x^9-1787426243335825947/79452970167808*x^8+517382224126023497/39726485083904*x^7+1011770634049919719/79452970167808*x^6-452848594309642825/79452970167808*x^5-111764572361856063/39726485083904*x^4+34594364541438553/39726485083904*x^3-1458314029638689/39726485083904*x^2+345691875290283/79452970167808*x-89813698997305/39726485083904,657146057185/79452970167808*x^25-1128695899507/39726485083904*x^24-26323087557985/79452970167808*x^23+93656472258435/79452970167808*x^22+453277723869145/79452970167808*x^21-421588689888693/19863242541952*x^20-2191271310764849/39726485083904*x^19+269956222712721/1241452658872*x^18+1628454268835029/4965810635488*x^17-55480837571676219/39726485083904*x^16-48976002101166887/39726485083904*x^15+231962758806955577/39726485083904*x^14+230146943546865577/79452970167808*x^13-1269480363102956131/79452970167808*x^12-160420359470583789/39726485083904*x^11+1113219403368014031/39726485083904*x^10+119392917743128459/39726485083904*x^9-2376605884473036283/79452970167808*x^8-85988136402480949/79452970167808*x^7+1395190702481500767/79452970167808*x^6+16278377462649979/39726485083904*x^5-362939976989947745/79452970167808*x^4-458449499061701/2482905317744*x^3+9969358805291655/39726485083904*x^2+1545753687524609/79452970167808*x-338923508406609/79452970167808,-816303203399/39726485083904*x^25+1732030315769/39726485083904*x^24+2173401653179/2482905317744*x^23-72137293685053/39726485083904*x^22-323168522040197/19863242541952*x^21+40756574161103/1241452658872*x^20+1722336070106211/9931621270976*x^19-6714114603588395/19863242541952*x^18-5822292149197605/4965810635488*x^17+1356750623142621/620726329436*x^16+52185668159043455/9931621270976*x^15-45853628095499317/4965810635488*x^14-629976687466638937/39726485083904*x^13+255180209957305653/9931621270976*x^12+638287619352820677/19863242541952*x^11-230082267080358751/4965810635488*x^10-851643227864615205/19863242541952*x^9+2060464871269613551/39726485083904*x^8+179433350768091587/4965810635488*x^7-1317570480139723359/39726485083904*x^6-698684452789021477/39726485083904*x^5+3197004277812521/310363164718*x^4+77214599502678803/19863242541952*x^3-21082614222152823/19863242541952*x^2-5137124513997503/39726485083904*x+121832865749385/9931621270976,135691037781/39726485083904*x^25+149398435619/79452970167808*x^24-11844141603503/79452970167808*x^23-4439993349291/39726485083904*x^22+226456089126335/79452970167808*x^21+107369419049343/39726485083904*x^20-621379524142383/19863242541952*x^19-712456504415289/19863242541952*x^18+8610058916728295/39726485083904*x^17+5806350328966061/19863242541952*x^16-19461896982533479/19863242541952*x^15-1905296884090093/1241452658872*x^14+114212318768981389/39726485083904*x^13+417852923336834115/79452970167808*x^12-103653146578559929/19863242541952*x^11-460673490638237227/39726485083904*x^10+101215052573126773/19863242541952*x^9+312281657927317709/19863242541952*x^8-108536165851129529/79452970167808*x^7-473041071776677515/39726485083904*x^6-116051050712451445/79452970167808*x^5+326276878876248439/79452970167808*x^4+15478912195591593/19863242541952*x^3-15658642963800781/39726485083904*x^2-24621938611291/4965810635488*x-169819925362499/79452970167808,-325356547781/19863242541952*x^25+846215908401/19863242541952*x^24+6580029869605/9931621270976*x^23-34512258901985/19863242541952*x^22-114460487155013/9931621270976*x^21+304186611219719/9931621270976*x^20+558840058365399/4965810635488*x^19-758731165422755/2482905317744*x^18-837062250466131/1241452658872*x^17+18847835427022843/9931621270976*x^16+6292665638002219/2482905317744*x^15-75456232065560159/9931621270976*x^14-115157445584086059/19863242541952*x^13+97449780180449887/4965810635488*x^12+70421851869321607/9931621270976*x^11-157744925883383063/4965810635488*x^10-20787153466951523/9931621270976*x^9+598141886319509621/19863242541952*x^8-47947086354485251/9931621270976*x^7-288876416351944153/19863242541952*x^6+99651567585519965/19863242541952*x^5+24682732004017143/9931621270976*x^4-13222970664850467/9931621270976*x^3+734116719075851/4965810635488*x^2-903118202878893/19863242541952*x-7025405897173/4965810635488,787640604977/39726485083904*x^25-1448087424411/39726485083904*x^24-16900605882047/19863242541952*x^23+59632591559245/39726485083904*x^22+79287034726353/4965810635488*x^21-66515689219247/2482905317744*x^20-3422295102936949/19863242541952*x^19+5396914103522877/19863242541952*x^18+23499185359786895/19863242541952*x^17-17142384140834433/9931621270976*x^16-107340987391651717/19863242541952*x^15+70904919122984607/9931621270976*x^14+662698398600305725/39726485083904*x^13-192372630146570625/9931621270976*x^12-688332994905290177/19863242541952*x^11+168358060097128847/4965810635488*x^10+940248250925546295/19863242541952*x^9-1458976165229882689/39726485083904*x^8-100546141629087313/2482905317744*x^7+908192067106738739/39726485083904*x^6+781772062313516119/39726485083904*x^5-17897956552456597/2482905317744*x^4-42836758121701551/9931621270976*x^3+17502384629967177/19863242541952*x^2+6526235237743079/39726485083904*x-161555992227927/9931621270976,516930267451/79452970167808*x^25+186673913941/39726485083904*x^24-25212060063135/79452970167808*x^23-15550910420271/79452970167808*x^22+540086262882647/79452970167808*x^21+69669513153259/19863242541952*x^20-3339171477767835/39726485083904*x^19-87684913505035/2482905317744*x^18+6585903029247945/9931621270976*x^17+8683352587654911/39726485083904*x^16-138345133194105325/39726485083904*x^15-33859571383533357/39726485083904*x^14+979225663994514163/79452970167808*x^13+162650751674094291/79452970167808*x^12-1156194429285886671/39726485083904*x^11-109600392784253807/39726485083904*x^10+1763135032576190697/39726485083904*x^9+116469317423381935/79452970167808*x^8-3258645162296135491/79452970167808*x^7+49621825809130677/79452970167808*x^6+812770340297080343/39726485083904*x^5-71405983987291847/79452970167808*x^4-21672370815063419/4965810635488*x^3+8332752048536937/39726485083904*x^2+10654027460693875/79452970167808*x+246784286075441/79452970167808,813798821751/79452970167808*x^25-1525442260705/39726485083904*x^24-29522243034007/79452970167808*x^23+122856722176121/79452970167808*x^22+431293417283715/79452970167808*x^21-265956236796811/9931621270976*x^20-1520962570265243/39726485083904*x^19+5175459868461119/19863242541952*x^18+460236989604047/4965810635488*x^17-61975227362243631/39726485083904*x^16+20905675745891495/39726485083904*x^15+234680751627934613/39726485083904*x^14-411628074820717065/79452970167808*x^13-1106940283764039777/79452970167808*x^12+777213516215300321/39726485083904*x^11+757823742719834033/39726485083904*x^10-1608815165253376359/39726485083904*x^9-969033516686541253/79452970167808*x^8+3745398455701220637/79452970167808*x^7-12490767597568495/79452970167808*x^6-1131591729344650465/39726485083904*x^5+277665923633303273/79452970167808*x^4+17592323885201051/2482905317744*x^3-42426479414041321/39726485083904*x^2-16434642773815057/79452970167808*x+1887615510263669/79452970167808,218483646875/79452970167808*x^25-309897878155/79452970167808*x^24-4938747509679/39726485083904*x^23+13052061411345/79452970167808*x^22+12241537438727/4965810635488*x^21-59283018710977/19863242541952*x^20-561003395269421/19863242541952*x^19+1219952828585251/39726485083904*x^18+4116840516868325/19863242541952*x^17-1963244837328809/9931621270976*x^16-20263479242542481/19863242541952*x^15+515853980550471/620726329436*x^14+272129851590208125/79452970167808*x^13-92048439513735355/39726485083904*x^12-310214734350623581/39726485083904*x^11+84943952444787267/19863242541952*x^10+467879425685621541/39726485083904*x^9-409212541119182295/79452970167808*x^8-441101902999846461/39726485083904*x^7+313196307983827307/79452970167808*x^6+463584112212727731/79452970167808*x^5-71712082805545749/39726485083904*x^4-51681399628013051/39726485083904*x^3+15366745058738201/39726485083904*x^2+1981084777841767/79452970167808*x-12031023639705/39726485083904,293355112237/19863242541952*x^25-3266235869571/79452970167808*x^24-48380391248583/79452970167808*x^23+16917268291695/9931621270976*x^22+864051191629531/79452970167808*x^21-1215818734322217/39726485083904*x^20-2191183686893573/19863242541952*x^19+3105157022500493/9931621270976*x^18+27830993629711839/39726485083904*x^17-39752949951930775/19863242541952*x^16-57547060483690845/19863242541952*x^15+82832609136593463/9931621270976*x^14+2444754082470083/310363164718*x^13-1809139843011976037/79452970167808*x^12-138503825725321059/9931621270976*x^11+1586749861912533893/39726485083904*x^10+156354225729058511/9931621270976*x^9-1703124923141625379/39726485083904*x^8-882168809111735217/79452970167808*x^7+508629126477466203/19863242541952*x^6+377403645111291017/79452970167808*x^5-556895722190306313/79452970167808*x^4-9526478399435997/9931621270976*x^3+19977910113279481/39726485083904*x^2+383086798568409/39726485083904*x-765697964825883/79452970167808,324447803343/79452970167808*x^25-168316179161/9931621270976*x^24-11516625994817/79452970167808*x^23+54400834813457/79452970167808*x^22+161531326433361/79452970167808*x^21-118329898173231/9931621270976*x^20-513205737326937/39726485083904*x^19+1159490692824035/9931621270976*x^18+129724504445037/9931621270976*x^17-28070951155037177/39726485083904*x^16+14380216382499925/39726485083904*x^15+108203805490334511/39726485083904*x^14-213909145788992485/79452970167808*x^13-527476883171182951/79452970167808*x^12+376078005241731417/39726485083904*x^11+388599718300705003/39726485083904*x^10-751653631069480571/39726485083904*x^9-623629780885243929/79452970167808*x^8+1708659059853432459/79452970167808*x^7+213238236850780677/79452970167808*x^6-253296120366148653/19863242541952*x^5-11529398207664233/79452970167808*x^4+62763807303482387/19863242541952*x^3-1651688984292561/39726485083904*x^2-9383519481078585/79452970167808*x+322190118315099/79452970167808]]];

f[462,2]=[
[x, [1,1,1,1], [-1,-1,0,-1,-1,-2,-4,6,-4,-10,6,-6,-12,-8,2,6,-8,6,-4,0,-12,0,14,10,10]],
[x-2, [1,1,1,-1], [-1,-1,2,-1,1,2,6,-8,4,2,8,6,6,8,4,10,4,-14,-4,-4,-14,-8,4,-14,18]],
[x+2, [1,1,-1,-1], [-1,-1,-2,1,1,2,-6,-4,-4,2,-4,-2,-6,0,-8,-14,12,-14,4,12,6,0,0,-6,-14]],
[x, [1,-1,1,1], [-1,1,0,-1,-1,6,4,6,-4,6,-2,10,-4,8,-6,-10,0,-2,-4,16,12,-16,-2,-6,-6]],
[x+1, [-1,1,-1,1], [1,-1,-4,1,-1,-6,-4,-2,-8,-6,6,-6,12,4,6,2,0,10,4,-12,0,-16,-14,-14,-14]],
[x-2, [-1,-1,1,-1], [1,1,2,-1,1,-2,-2,0,0,-2,4,-2,-10,4,4,-2,-12,-2,12,8,6,-8,-8,-14,-14]],
[x, [-1,-1,-1,1], [1,1,0,1,-1,2,0,2,0,-6,2,2,0,-4,-6,-6,0,2,-4,-12,-4,8,6,-6,2]],
[x^2-12, [1,-1,-1,-1], [-1,1,x,1,1,2,-x,-x+2,-2*x,-6,-x+2,2*x+2,-x,2*x-4,-x+6,2*x+6,-2*x,2,-2*x+8,-12,-x-4,2*x-4,-3*x-6,2*x+6,2]]];

f[463,2]=[
[x^16+9*x^15+17*x^14-70*x^13-282*x^12+7*x^11+1223*x^10+1073*x^9-2045*x^8-2946*x^7+1137*x^6+2847*x^5+88*x^4-954*x^3-47*x^2+118*x-9, [1], [x,16567/27157*x^15+123555/27157*x^14+7867/2089*x^13-1241603/27157*x^12-2734229/27157*x^11+3506452/27157*x^10+13535438/27157*x^9-203986/27157*x^8-2042287/2089*x^7-10979775/27157*x^6+21686537/27157*x^5+12171527/27157*x^4-6229152/27157*x^3-202430/2089*x^2+913821/27157*x-7771/27157,6394/2089*x^15+42479/2089*x^14+6706/2089*x^13-475877/2089*x^12-683687/2089*x^11+1793911/2089*x^10+3791707/2089*x^9-2575474/2089*x^8-8085535/2089*x^7+839943/2089*x^6+7462280/2089*x^5+668947/2089*x^4-2727902/2089*x^3-128487/2089*x^2+371447/2089*x-33144/2089,-100601/27157*x^15-682759/27157*x^14-15891/2089*x^13+7436061/27157*x^12+11817341/27157*x^11-26290788/27157*x^10-63030099/27157*x^9+30652400/27157*x^8+9949387/2089*x^7+5968668/27157*x^6-111675910/27157*x^5-24976422/27157*x^4+35430488/27157*x^3+363111/2089*x^2-4565284/27157*x+330669/27157,51912/27157*x^15+357832/27157*x^14+12242/2089*x^13-3738178/27157*x^12-6545388/27157*x^11+11919997/27157*x^10+33076029/27157*x^9-8494259/27157*x^8-4846435/2089*x^7-15977128/27157*x^6+46393421/27157*x^5+21152721/27157*x^4-8688081/27157*x^3-231023/2089*x^2+593608/27157*x-175870/27157,-178593/27157*x^15-1226292/27157*x^14-35551/2089*x^13+13173181/27157*x^12+21987011/27157*x^11-45123967/27157*x^10-115304471/27157*x^9+46716958/27157*x^8+17954689/2089*x^7+24575881/27157*x^6-197951075/27157*x^5-53985991/27157*x^4+60659504/27157*x^3+783143/2089*x^2-7530115/27157*x+452346/27157,-101253/27157*x^15-664997/27157*x^14-3438/2089*x^13+7617746/27157*x^12+10288033/27157*x^11-30017111/27157*x^10-59206352/27157*x^9+48027286/27157*x^8+10113851/2089*x^7-25919185/27157*x^6-129162684/27157*x^5-2426140/27157*x^4+52168763/27157*x^3+83680/2089*x^2-7273051/27157*x+539102/27157,42335/27157*x^15+263275/27157*x^14-5836/2089*x^13-3182760/27157*x^12-3240864/27157*x^11+13851296/27157*x^10+20711147/27157*x^9-27147067/27157*x^8-3755094/2089*x^7+24467270/27157*x^6+50768076/27157*x^5-8605659/27157*x^4-21474637/27157*x^3+45181/2089*x^2+2488625/27157*x-56265/27157,-27166/27157*x^15-205265/27157*x^14-15172/2089*x^13+1969766/27157*x^12+4737696/27157*x^11-4735478/27157*x^10-22601446/27157*x^9-4193168/27157*x^8+3246641/2089*x^7+26574256/27157*x^6-31409704/27157*x^5-27189684/27157*x^4+6724780/27157*x^3+513071/2089*x^2-621211/27157*x-234580/27157,-13163/27157*x^15-51180/27157*x^14+20123/2089*x^13+1242380/27157*x^12-1250376/27157*x^11-9968287/27157*x^10-1178686/27157*x^9+34924343/27157*x^8+1573915/2089*x^7-55789717/27157*x^6-45635702/27157*x^5+36586703/27157*x^4+34940154/27157*x^3-482514/2089*x^2-6086245/27157*x+654954/27157,86868/27157*x^15+603456/27157*x^14+22134/2089*x^13-6300668/27157*x^12-11251811/27157*x^11+20042259/27157*x^10+56992762/27157*x^9-13822675/27157*x^8-8466365/2089*x^7-29252213/27157*x^6+84620802/27157*x^5+40772913/27157*x^4-19482627/27157*x^3-704864/2089*x^2+1971317/27157*x+141384/27157,270507/27157*x^15+1868887/27157*x^14+56319/2089*x^13-20213611/27157*x^12-34095586/27157*x^11+70256093/27157*x^10+181118989/27157*x^9-76528966/27157*x^8-28979196/2089*x^7-30147921/27157*x^6+338072718/27157*x^5+79128431/27157*x^4-118297503/27157*x^3-1178379/2089*x^2+16602237/27157*x-1442668/27157,-290889/27157*x^15-1978897/27157*x^14-46221/2089*x^13+21671304/27157*x^12+34481804/27157*x^11-77613622/27157*x^10-185814373/27157*x^9+94729386/27157*x^8+29966953/2089*x^7+7119445/27157*x^6-353034737/27157*x^5-66316815/27157*x^4+125975906/27157*x^3+1066533/2089*x^2-17610715/27157*x+1297558/27157,15063/27157*x^15+135871/27157*x^14+18484/2089*x^13-1139222/27157*x^12-4096562/27157*x^11+1298655/27157*x^10+18179847/27157*x^9+9630938/27157*x^8-2486040/2089*x^7-27262918/27157*x^6+22815521/27157*x^5+21262802/27157*x^4-4420062/27157*x^3-211605/2089*x^2+519434/27157*x-99598/27157,99750/27157*x^15+630719/27157*x^14-10952/2089*x^13-7701036/27157*x^12-8411006/27157*x^11+33941890/27157*x^10+54699610/27157*x^9-67297410/27157*x^8-10425570/2089*x^7+60285230/27157*x^6+153503652/27157*x^5-19516387/27157*x^4-75237374/27157*x^3+69250/2089*x^2+11561360/27157*x-825138/27157,255972/27157*x^15+1789940/27157*x^14+67954/2089*x^13-18800337/27157*x^12-33875412/27157*x^11+60772728/27157*x^10+173251671/27157*x^9-46753066/27157*x^8-26334548/2089*x^7-74826911/27157*x^6+278134187/27157*x^5+108113498/27157*x^4-76311893/27157*x^3-1638500/2089*x^2+8894935/27157*x-335781/27157,-18276/27157*x^15-173047/27157*x^14-28556/2089*x^13+1223797/27157*x^12+5664023/27157*x^11+1157393/27157*x^10-22869332/27157*x^9-24770209/27157*x^8+2480295/2089*x^7+59128248/27157*x^6-5546912/27157*x^5-46862531/27157*x^4-15011004/27157*x^3+613431/2089*x^2+3464380/27157*x-327786/27157,-190413/27157*x^15-1337800/27157*x^14-52578/2089*x^13+14061941/27157*x^12+25588289/27157*x^11-45549754/27157*x^10-131107595/27157*x^9+35524160/27157*x^8+20072819/2089*x^7+54585820/27157*x^6-215821053/27157*x^5-78942096/27157*x^4+62511106/27157*x^3+1108863/2089*x^2-7799152/27157*x+747400/27157,81817/27157*x^15+498560/27157*x^14-16496/2089*x^13-6180500/27157*x^12-5599486/27157*x^11+27985125/27157*x^10+38309225/27157*x^9-58348261/27157*x^8-7318344/2089*x^7+57752631/27157*x^6+106173468/27157*x^5-23797323/27157*x^4-50731102/27157*x^3+228470/2089*x^2+7467214/27157*x-634507/27157,293741/27157*x^15+2026324/27157*x^14+61429/2089*x^13-21806438/27157*x^12-36838201/27157*x^11+74919022/27157*x^10+194113671/27157*x^9-78081667/27157*x^8-30600003/2089*x^7-40271591/27157*x^6+346449368/27157*x^5+89461941/27157*x^4-113901383/27157*x^3-1241406/2089*x^2+15815141/27157*x-1396082/27157,373056/27157*x^15+2490914/27157*x^14+32274/2089*x^13-28121523/27157*x^12-40897593/27157*x^11+107412057/27157*x^10+230526380/27157*x^9-158087693/27157*x^8-38980434/2089*x^7+55869711/27157*x^6+493821131/27157*x^5+41696430/27157*x^4-198740717/27157*x^3-938825/2089*x^2+28545518/27157*x-1904087/27157,-25076/27157*x^15-201723/27157*x^14-17200/2089*x^13+2045220/27157*x^12+5194508/27157*x^11-5864266/27157*x^10-26828824/27157*x^9+462113/27157*x^8+4540159/2089*x^7+18846339/27157*x^6-61093289/27157*x^5-21847729/27157*x^4+28250036/27157*x^3+426585/2089*x^2-4889880/27157*x+218801/27157,-55685/27157*x^15-400245/27157*x^14-23050/2089*x^13+3868674/27157*x^12+8267477/27157*x^11-9595231/27157*x^10-38515878/27157*x^9-6363252/27157*x^8+4998480/2089*x^7+47203763/27157*x^6-32858311/27157*x^5-46782538/27157*x^4-7458271/27157*x^3+731816/2089*x^2+2681441/27157*x-556986/27157,-320159/27157*x^15-2159999/27157*x^14-41418/2089*x^13+23910979/27157*x^12+36727063/27157*x^11-87587837/27157*x^10-200913056/27157*x^9+114375674/27157*x^8+32816546/2089*x^7-9354177/27157*x^6-392027374/27157*x^5-62279590/27157*x^4+141156047/27157*x^3+1088710/2089*x^2-18635007/27157*x+1074492/27157,-63290/27157*x^15-424568/27157*x^14-8574/2089*x^13+4601653/27157*x^12+7103691/27157*x^11-16170813/27157*x^10-37436904/27157*x^9+18975373/27157*x^8+5722334/2089*x^7+1572047/27157*x^6-59538497/27157*x^5-10174213/27157*x^4+14837418/27157*x^3-63891/2089*x^2-1479222/27157*x+392352/27157]],
[x^22-8*x^21-x^20+161*x^19-281*x^18-1216*x^17+3523*x^16+3859*x^15-19383*x^14-1030*x^13+56835*x^12-26406*x^11-90387*x^10+71356*x^9+71796*x^8-76057*x^7-22452*x^6+32959*x^5+1404*x^4-4772*x^3-174*x^2+237*x+25, [-1], [x,88081079557/2192028849037*x^21-14422074891/115369939423*x^20-2628417572230/2192028849037*x^19+8497220344229/2192028849037*x^18+32189971934528/2192028849037*x^17-109880752912386/2192028849037*x^16-208266773801349/2192028849037*x^15+771496154587641/2192028849037*x^14+755393757720071/2192028849037*x^13-3202984347030693/2192028849037*x^12-1452100823408494/2192028849037*x^11+8005041723954874/2192028849037*x^10+999239360848340/2192028849037*x^9-11686683734002023/2192028849037*x^8+993848469210485/2192028849037*x^7+9112869445104238/2192028849037*x^6-1892870464522139/2192028849037*x^5-162616003952727/115369939423*x^4+771221864284476/2192028849037*x^3+13552403923130/115369939423*x^2-57299624398580/2192028849037*x-4959079589235/2192028849037,-97598814399/2192028849037*x^21-12060154791/115369939423*x^20+6158276837549/2192028849037*x^19-2974529732687/2192028849037*x^18-107461690992292/2192028849037*x^17+138090235403933/2192028849037*x^16+872349945365154/2192028849037*x^15-1503806189886096/2192028849037*x^14-3795322820045360/2192028849037*x^13+7940622433385189/2192028849037*x^12+8965478486377590/2192028849037*x^11-23099866942251974/2192028849037*x^10-10123163282652780/2192028849037*x^9+37400061934068795/2192028849037*x^8+1939259022320828/2192028849037*x^7-31536458444330130/2192028849037*x^6+5092393651938517/2192028849037*x^5+616389647891872/115369939423*x^4-2812510092495637/2192028849037*x^3-71953936327624/115369939423*x^2+225193380521624/2192028849037*x+56904893671196/2192028849037,-222625289944/2192028849037*x^21+104367160850/115369939423*x^20-901430985342/2192028849037*x^19-38899721488001/2192028849037*x^18+88315032444433/2192028849037*x^17+278295627293925/2192028849037*x^16-1026555612083387/2192028849037*x^15-739309575040831/2192028849037*x^14+5523724445972888/2192028849037*x^13-823645537379160/2192028849037*x^12-16093317475926696/2192028849037*x^11+9581679579189143/2192028849037*x^10+25700475951367957/2192028849037*x^9-22473039772819819/2192028849037*x^8-20833485990737514/2192028849037*x^7+22689966688318300/2192028849037*x^6+6991023755631008/2192028849037*x^5-490147675928233/115369939423*x^4-617237644097082/2192028849037*x^3+58642933476640/115369939423*x^2+21782425702458/2192028849037*x-26555072225671/2192028849037,-377503382094/2192028849037*x^21+161920021237/115369939423*x^20+264598916261/2192028849037*x^19-62513375389721/2192028849037*x^18+109084437083606/2192028849037*x^17+482375572081841/2192028849037*x^16-1363387321551088/2192028849037*x^15-1635812937585184/2192028849037*x^14+7518281570385921/2192028849037*x^13+1244080279270289/2192028849037*x^12-22160897233422553/2192028849037*x^11+7367200619029801/2192028849037*x^10+35571494323123671/2192028849037*x^9-21980826006363710/2192028849037*x^8-28767100539855269/2192028849037*x^7+23077657560880722/2192028849037*x^6+9419865419517220/2192028849037*x^5-470749222297896/115369939423*x^4-713138500460331/2192028849037*x^3+42194862635974/115369939423*x^2+44460554853556/2192028849037*x-5346927633707/2192028849037,-185526721264/2192028849037*x^21+46321696138/115369939423*x^20+3478976124052/2192028849037*x^19-20528968497307/2192028849037*x^18-23280988978840/2192028849037*x^17+198754862672365/2192028849037*x^16+53710403893317/2192028849037*x^15-1039476970694517/2192028849037*x^14+90359649147676/2192028849037*x^13+3199445832292557/2192028849037*x^12-704435592600010/2192028849037*x^11-5940627969286164/2192028849037*x^10+1288720310058817/2192028849037*x^9+6649399195956646/2192028849037*x^8-761357837048641/2192028849037*x^7-4500790243338669/2192028849037*x^6-143120577976740/2192028849037*x^5+96904157671244/115369939423*x^4+161930939692913/2192028849037*x^3-19386056764491/115369939423*x^2+4468507737272/2192028849037*x+18152844079943/2192028849037,942220397459/2192028849037*x^21-342562738532/115369939423*x^20-7043861092395/2192028849037*x^19+138022374248054/2192028849037*x^18-126980759363803/2192028849037*x^17-1151457961648849/2192028849037*x^16+2050054929501081/2192028849037*x^15+4675777484018986/2192028849037*x^14-12119511022402491/2192028849037*x^13-8579410915247792/2192028849037*x^12+36881899270311071/2192028849037*x^11+890728920926339/2192028849037*x^10-60324016294552892/2192028849037*x^9+20852330365885051/2192028849037*x^8+49513176455522328/2192028849037*x^7-28051921511621284/2192028849037*x^6-16518783274273842/2192028849037*x^5+617454070112045/115369939423*x^4+1277918674900624/2192028849037*x^3-57403794095820/115369939423*x^2-50655474734857/2192028849037*x+22010586320984/2192028849037,-245215183679/2192028849037*x^21+83799520203/115369939423*x^20+2804841300515/2192028849037*x^19-36519583048610/2192028849037*x^18+13499008227907/2192028849037*x^17+344612867411533/2192028849037*x^16-384765592590090/2192028849037*x^15-1733869741312447/2192028849037*x^14+2662063981670221/2192028849037*x^13+5032955247769979/2192028849037*x^12-9280455509774705/2192028849037*x^11-8530735446274825/2192028849037*x^10+18098528400942363/2192028849037*x^9+8236168572389438/2192028849037*x^8-19715049711377152/2192028849037*x^7-4407609512093720/2192028849037*x^6+11294502689358286/2192028849037*x^5+73240136951301/115369939423*x^4-2961244366479204/2192028849037*x^3-15390941484210/115369939423*x^2+224637856808414/2192028849037*x+35653309161728/2192028849037,-53290737426/115369939423*x^21+411261981150/115369939423*x^20+138399388704/115369939423*x^19-8350147644968/115369939423*x^18+12986051755585/115369939423*x^17+64275521772287/115369939423*x^16-168556964363505/115369939423*x^15-215954234181577/115369939423*x^14+933829177454324/115369939423*x^13+147450488909587/115369939423*x^12-2732056584700595/115369939423*x^11+1059041688073627/115369939423*x^10+4295608397237125/115369939423*x^9-3104195641223828/115369939423*x^8-3303874120518632/115369939423*x^7+3286395600446275/115369939423*x^6+911754781231712/115369939423*x^5-1318214535174254/115369939423*x^4+8053077740243/115369939423*x^3+139955155524479/115369939423*x^2-4013827021570/115369939423*x-3550742613354/115369939423,-1282403682668/2192028849037*x^21+476563615009/115369939423*x^20+8541900644959/2192028849037*x^19-191313765924786/2192028849037*x^18+198253458733597/2192028849037*x^17+1584519121394344/2192028849037*x^16-3048642493860153/2192028849037*x^15-6326627879602590/2192028849037*x^14+17924946488940473/2192028849037*x^13+10956411234513852/2192028849037*x^12-54897141004158222/2192028849037*x^11+1871485407205770/2192028849037*x^10+91499473277160316/2192028849037*x^9-34762876427624861/2192028849037*x^8-78626438451677320/2192028849037*x^7+44934050115961093/2192028849037*x^6+30017450973688511/2192028849037*x^5-1015824662544047/115369939423*x^4-4118350372717030/2192028849037*x^3+107715471126882/115369939423*x^2+254550401122197/2192028849037*x-21869935989285/2192028849037,701994617345/2192028849037*x^21-232285219714/115369939423*x^20-7378966336936/2192028849037*x^19+94944539142470/2192028849037*x^18-44899093838930/2192028849037*x^17-810972514432872/2192028849037*x^16+1047621194046386/2192028849037*x^15+3445462613574825/2192028849037*x^14-6543591632110941/2192028849037*x^13-7138710561651195/2192028849037*x^12+19991537071464541/2192028849037*x^11+4208454028581150/2192028849037*x^10-31704123909679719/2192028849037*x^9+8568983962813193/2192028849037*x^8+23632472639059946/2192028849037*x^7-14457973110325390/2192028849037*x^6-5351019357953792/2192028849037*x^5+331139690972657/115369939423*x^4-748272646595414/2192028849037*x^3-30483465398408/115369939423*x^2+105080101476212/2192028849037*x+16646473762773/2192028849037,-568399264883/2192028849037*x^21+209784044822/115369939423*x^20+3844135559901/2192028849037*x^19-83740138281462/2192028849037*x^18+85333441398052/2192028849037*x^17+687032857031352/2192028849037*x^16-1311557836226886/2192028849037*x^15-2690969730482398/2192028849037*x^14+7631183954716764/2192028849037*x^13+4378163194684718/2192028849037*x^12-22919532359219667/2192028849037*x^11+2013639858079556/2192028849037*x^10+36793840319635030/2192028849037*x^9-17092372070706707/2192028849037*x^8-29015168924051042/2192028849037*x^7+21230800204608899/2192028849037*x^6+8390386837745160/2192028849037*x^5-482493199247130/115369939423*x^4+87029526971215/2192028849037*x^3+61140785421201/115369939423*x^2-111960744819716/2192028849037*x-51860617410258/2192028849037,408823942564/2192028849037*x^21-183212807473/115369939423*x^20+582070568527/2192028849037*x^19+69672471178807/2192028849037*x^18-137506043261206/2192028849037*x^17-521182568382150/2192028849037*x^16+1650476162479398/2192028849037*x^15+1617472491149168/2192028849037*x^14-8942286383811356/2192028849037*x^13-243811771327783/2192028849037*x^12+25949980733903360/2192028849037*x^11-11593029573767343/2192028849037*x^10-40732459135307616/2192028849037*x^9+29889464465399678/2192028849037*x^8+31455281094772943/2192028849037*x^7-29922358676524084/2192028849037*x^6-8882111179427375/2192028849037*x^5+586759321446410/115369939423*x^4+60827109363984/2192028849037*x^3-47688184991505/115369939423*x^2+9767543166949/2192028849037*x+16691720345214/2192028849037,528913876656/2192028849037*x^21-242836815936/115369939423*x^20+1747166695804/2192028849037*x^19+90114431264497/2192028849037*x^18-199517754879461/2192028849037*x^17-638831400545348/2192028849037*x^16+2325038047628244/2192028849037*x^15+1644265366734438/2192028849037*x^14-12430160509086467/2192028849037*x^13+2245629922468309/2192028849037*x^12+35707951908964472/2192028849037*x^11-22983770108127225/2192028849037*x^10-55459129707438716/2192028849037*x^9+52671650153734218/2192028849037*x^8+42194460003878515/2192028849037*x^7-51886418296953139/2192028849037*x^6-11509558620693226/2192028849037*x^5+1066833023509225/115369939423*x^4-57386551189572/2192028849037*x^3-110265029439063/115369939423*x^2+33635517532422/2192028849037*x+44085004613477/2192028849037,682148097844/2192028849037*x^21-248501596163/115369939423*x^20-4473491107229/2192028849037*x^19+97193410829797/2192028849037*x^18-103131271743895/2192028849037*x^17-767030110606344/2192028849037*x^16+1546076615096443/2192028849037*x^15+2738649400857117/2192028849037*x^14-8753005202649483/2192028849037*x^13-2903867183576068/2192028849037*x^12+25127787768391526/2192028849037*x^11-8997718909303823/2192028849037*x^10-36813195884358367/2192028849037*x^9+31152984269294807/2192028849037*x^8+22430894683373461/2192028849037*x^7-34811659740695229/2192028849037*x^6+718144767955759/2192028849037*x^5+786747713762918/115369939423*x^4-4175009950772279/2192028849037*x^3-110212695088017/115369939423*x^2+542373021732837/2192028849037*x+114040638704095/2192028849037,41243054290/2192028849037*x^21-51694277377/115369939423*x^20+3446490357899/2192028849037*x^19+17012452908249/2192028849037*x^18-91260062874846/2192028849037*x^17-87388447090738/2192028849037*x^16+892077366066079/2192028849037*x^15-95134850363805/2192028849037*x^14-4509823874541923/2192028849037*x^13+2635255998717630/2192028849037*x^12+12839274271942096/2192028849037*x^11-10852465067157395/2192028849037*x^10-20531902843248860/2192028849037*x^9+20617773442767100/2192028849037*x^8+17154726037005576/2192028849037*x^7-19066474506509182/2192028849037*x^6-6367531138918933/2192028849037*x^5+396479688614909/115369939423*x^4+838750363067655/2192028849037*x^3-45743670830036/115369939423*x^2-51972494593105/2192028849037*x+10112230434637/2192028849037,-344241421405/2192028849037*x^21+172124818789/115369939423*x^20-3091853287721/2192028849037*x^19-59983694413019/2192028849037*x^18+170153292390731/2192028849037*x^17+365440602401138/2192028849037*x^16-1833911770428867/2192028849037*x^15-362628328774666/2192028849037*x^14+9269652296431074/2192028849037*x^13-5492986319133986/2192028849037*x^12-24747820083086013/2192028849037*x^11+27073971692361361/2192028849037*x^10+33438816193408420/2192028849037*x^9-54258461102583084/2192028849037*x^8-16605659512878107/2192028849037*x^7+50996557114679252/2192028849037*x^6-4796491071124341/2192028849037*x^5-1056020030347636/115369939423*x^4+5006251241129516/2192028849037*x^3+130951024426100/115369939423*x^2-493193400357562/2192028849037*x-116327684879890/2192028849037,-138321184948/2192028849037*x^21-5381819903/115369939423*x^20+7647449410746/2192028849037*x^19-8491584240530/2192028849037*x^18-126050568053724/2192028849037*x^17+223545972318347/2192028849037*x^16+972849793910129/2192028849037*x^15-2170702299691720/2192028849037*x^14-3964110918653760/2192028849037*x^13+10898648883692006/2192028849037*x^12+8312518228236361/2192028849037*x^11-30845551423630782/2192028849037*x^10-6373806230121082/2192028849037*x^9+49208339253908451/2192028849037*x^8-5444418269121796/2192028849037*x^7-41352411656191250/2192028849037*x^6+11737740950519964/2192028849037*x^5+821735408069739/115369939423*x^4-5289789546522642/2192028849037*x^3-104311593539569/115369939423*x^2+496698975766813/2192028849037*x+85320236241740/2192028849037,-1415197907312/2192028849037*x^21+565935104659/115369939423*x^20+4092502432033/2192028849037*x^19-216070998045812/2192028849037*x^18+330357477008834/2192028849037*x^17+1629113411549328/2192028849037*x^16-4271536825431063/2192028849037*x^15-5164947170446127/2192028849037*x^14+23256758837161444/2192028849037*x^13+1469272210264799/2192028849037*x^12-65755647884992060/2192028849037*x^11+34438050693021694/2192028849037*x^10+96143325225509115/2192028849037*x^9-92113501131760990/2192028849037*x^8-60121275761632176/2192028849037*x^7+95788963409521885/2192028849037*x^6+1295773436147222/2192028849037*x^5-2067021790469409/115369939423*x^4+8783306049722429/2192028849037*x^3+263587937390961/115369939423*x^2-1005789987998399/2192028849037*x-236693386118321/2192028849037,629980226112/2192028849037*x^21-207014831730/115369939423*x^20-7702525230058/2192028849037*x^19+89379692788375/2192028849037*x^18-20437432200047/2192028849037*x^17-832876524945826/2192028849037*x^16+817879739544364/2192028849037*x^15+4117523774064979/2192028849037*x^14-5728140846469460/2192028849037*x^13-11653759058929993/2192028849037*x^12+19562044982095881/2192028849037*x^11+19059152047716674/2192028849037*x^10-36568732611731346/2192028849037*x^9-17689942143712085/2192028849037*x^8+37216626534516956/2192028849037*x^7+9709983733752400/2192028849037*x^6-19365736642303661/2192028849037*x^5-211356731573080/115369939423*x^4+4689867284862275/2192028849037*x^3+60828278644132/115369939423*x^2-429099050643889/2192028849037*x-99593393106089/2192028849037,115157164271/2192028849037*x^21-26063768371/115369939423*x^20-2363604855805/2192028849037*x^19+11540339599579/2192028849037*x^18+19579293365998/2192028849037*x^17-111543769885757/2192028849037*x^16-86346144029416/2192028849037*x^15+579416763213651/2192028849037*x^14+234554292064228/2192028849037*x^13-1740348029084341/2192028849037*x^12-468921127972622/2192028849037*x^11+2993197715477330/2192028849037*x^10+789405424626137/2192028849037*x^9-2654919825045278/2192028849037*x^8-957281301936153/2192028849037*x^7+785126878697908/2192028849037*x^6+585624590035340/2192028849037*x^5+14443383196951/115369939423*x^4-89681106204080/2192028849037*x^3-8089819549418/115369939423*x^2-7380682306197/2192028849037*x+15762087275423/2192028849037,-902380743474/2192028849037*x^21+416247981113/115369939423*x^20-3131481189669/2192028849037*x^19-154688877967603/2192028849037*x^18+344463405609887/2192028849037*x^17+1100797673501264/2192028849037*x^16-4015370095844627/2192028849037*x^15-2878723451606849/2192028849037*x^14+21542149841014883/2192028849037*x^13-3521763846063784/2192028849037*x^12-62357218243707992/2192028849037*x^11+38400469112640279/2192028849037*x^10+98474383080761145/2192028849037*x^9-88579255436358952/2192028849037*x^8-78248107624970674/2192028849037*x^7+87336830090668374/2192028849037*x^6+25296505635624004/2192028849037*x^5-1783859435815544/115369939423*x^4-2308533178819189/2192028849037*x^3+172618216336506/115369939423*x^2+240519543351533/2192028849037*x-43576719501090/2192028849037,1005175342439/2192028849037*x^21-284601292335/115369939423*x^20-16660236169722/2192028849037*x^19+127655017807716/2192028849037*x^18+67621209110453/2192028849037*x^17-1251566689096434/2192028849037*x^16+360844472961304/2192028849037*x^15+6626790258121134/2192028849037*x^14-4419311390124749/2192028849037*x^13-20601276882000111/2192028849037*x^12+17746721056886490/2192028849037*x^11+38281444733101713/2192028849037*x^10-36481226812286041/2192028849037*x^9-41540250390051287/2192028849037*x^8+40286656437774315/2192028849037*x^7+24731286387814519/2192028849037*x^6-22658186159789928/2192028849037*x^5-372380081145717/115369939423*x^4+5549537469825879/2192028849037*x^3+34939298223682/115369939423*x^2-365291173129414/2192028849037*x-29754259155913/2192028849037,992521272677/2192028849037*x^21-278552183538/115369939423*x^20-16238779016216/2192028849037*x^19+122674178655449/2192028849037*x^18+65745796940871/2192028849037*x^17-1173436826373611/2192028849037*x^16+315283247711271/2192028849037*x^15+6006312901035464/2192028849037*x^14-3789024046302260/2192028849037*x^13-17803010669497733/2192028849037*x^12+14249033197326572/2192028849037*x^11+30881231043702373/2192028849037*x^10-26207085669785493/2192028849037*x^9-30322475546068603/2192028849037*x^8+23761705885176340/2192028849037*x^7+15741878954391448/2192028849037*x^6-9024984138214522/2192028849037*x^5-200227036519091/115369939423*x^4+808606860506400/2192028849037*x^3+8632924533013/115369939423*x^2+9691351914362/2192028849037*x+33963851577889/2192028849037,1042946176201/2192028849037*x^21-334931126557/115369939423*x^20-12033288567267/2192028849037*x^19+137913574168071/2192028849037*x^18-41506902657502/2192028849037*x^17-1192514339012579/2192028849037*x^16+1309662216903028/2192028849037*x^15+5185129579288051/2192028849037*x^14-8411617162511642/2192028849037*x^13-11368544054016977/2192028849037*x^12+25583126911827724/2192028849037*x^11+9084184882615274/2192028849037*x^10-39219333043041451/2192028849037*x^9+7623119894554396/2192028849037*x^8+25921470027682985/2192028849037*x^7-17082031568761176/2192028849037*x^6-1551767911178654/2192028849037*x^5+419842434585230/115369939423*x^4-3542624564028529/2192028849037*x^3-48340264596188/115369939423*x^2+496535149005879/2192028849037*x+53574747639626/2192028849037]]];

f[464,2]=[
[x+3, [1,1], [0,1,-3,-2,3,-5,-4,0,0,-1,-9,8,-2,11,7,9,-4,-12,-12,-2,-4,-3,16,2,-14]],
[x-1, [1,1], [0,-1,1,-2,-3,-1,0,0,-4,-1,-3,-8,-6,5,-3,5,8,0,12,-6,-4,-1,12,6,14]],
[x-1, [-1,1], [0,1,1,2,3,-1,8,0,-4,-1,3,8,2,11,-13,-11,0,-8,12,-2,4,-15,-4,-10,-2]],
[x-3, [-1,1], [0,-1,3,4,-3,5,-6,4,6,-1,-5,8,0,1,3,3,-6,2,-8,-6,-16,-11,-6,-12,8]],
[x+2, [-1,1], [0,-2,-2,-4,6,2,2,6,-4,-1,6,2,2,-10,2,10,0,10,12,-8,10,6,-16,2,10]],
[x-3, [-1,1], [0,3,3,-4,1,-3,2,-4,6,-1,-9,-8,-8,5,7,-5,10,10,-8,2,0,1,-6,12,0]],
[x+3, [-1,1], [0,3,-3,2,1,3,-4,8,0,-1,-3,-8,-2,-7,-11,1,4,4,4,2,-12,7,0,-6,-6]],
[x^2-2*x-1, [1,-1], [0,x,2*x-3,4,-x+2,-4*x+3,-4*x+2,-2,-2*x+4,1,-x+8,4*x,4*x-8,-x-2,-5*x+10,-7,6*x-8,6,-4*x+4,6*x-4,4,9*x-6,-2*x+8,4*x-8,8*x-4]],
[x^2+2*x-1, [-1,-1], [0,x,-1,-2*x-2,-x-2,2*x+1,-2*x-4,-6,4*x+6,1,5*x+2,-4,6*x+10,-x-6,-3*x-4,-6*x-5,-4*x-6,2*x,4*x+4,-2*x+4,4,-x,4*x+2,6*x+2,-6*x-10]],
[x^3+2*x^2-5*x-8, [1,-1], [0,x,-x^2+6,0,-2*x^2-x+8,x^2+2*x-2,2,2*x^2-8,-2*x,1,-x+4,2*x^2-10,-2*x^2-4*x+10,2*x^2-x-8,-2*x^2+3*x+12,-x^2+2*x+6,-2*x-4,-4*x-2,4*x-4,4*x^2-2*x-24,2*x^2+4*x-6,-2*x^2+x+20,-2*x-12,6*x^2+4*x-22,2*x^2-14]]];

f[465,2]=[
[x-1, [1,-1,-1], [1,-1,1,-2,-4,0,2,-8,-8,0,1,8,-6,0,4,6,10,-14,2,6,-16,0,4,4,6]],
[x+1, [-1,-1,1], [-1,1,1,-4,-4,2,-6,-4,0,-6,-1,10,-6,-12,0,-2,-8,6,8,-12,6,-8,12,6,-6]],
[x^2-3, [1,1,1], [x,-1,-1,-x-3,-2*x+2,x-3,-2*x+2,2*x+2,2*x-4,x-1,-1,-x-5,2*x,-4,-6,6*x+2,-3*x-7,-6*x,-3*x-5,3*x-9,5*x-3,-10,2*x+12,-x+9,-2]],
[x^2+2*x-1, [-1,1,-1], [x,1,-1,-x-3,2*x+2,-x-5,-4,-2*x-2,-6,-3*x-5,1,x+1,2*x+4,8*x+8,2*x,-4,3*x+7,6*x+4,-7*x-13,-7*x-7,7*x+11,6*x,-4*x-10,-5*x-7,-4*x+6]],
[x^3-x^2-5*x+3, [1,1,-1], [x,-1,-1,-x+3,2*x,x+1,-x^2+5,-2*x^2+6,x^2-2*x-1,-x^2-3*x+4,1,x+3,-2*x-2,-2*x+4,-3*x^2+2*x+7,x^2-2*x-3,x^2-x-6,-2,2*x^2-x-1,3*x^2+x-8,3*x+5,-x^2-2*x+11,3*x^2-2*x-3,5*x^2-5*x-14,-2*x^2+6*x+8]],
[x^3-3*x^2-x+5, [-1,1,1], [x,1,-1,-2*x^2+3*x+5,-2*x^2+2*x+6,-x-1,-x^2+5,2*x^2-4*x-6,x^2-2*x+3,-x^2-x+10,-1,2*x^2-x-9,2*x^2+2*x-8,2*x^2-6*x-2,7*x^2-10*x-11,x^2-6*x+5,-x^2-x-4,-4*x-2,6*x^2-5*x-17,-x^2+x+4,6*x^2-7*x-19,5*x^2-2*x-15,-5*x^2+6*x+9,3*x^2-3*x-10,-8*x^2+6*x+26]],
[x^3-x^2-3*x+1, [-1,-1,-1], [x,1,1,-x+1,2,-2*x^2+3*x+3,-x^2-2*x+3,0,-x^2+3,3*x^2-x-4,1,4*x^2-7*x-7,-4*x+4,-2*x^2+4*x,-3*x^2+5,-x^2+4*x+1,5*x^2-3*x-6,2*x^2-4*x-4,5*x-7,-x^2-3*x+10,4*x^2-x-9,5*x^2-6*x-7,5*x^2-11,-7*x^2+7*x+12,-12]],
[x^4-2*x^3-6*x^2+12*x-1, [1,-1,1], [x,-1,1,-x^3+x^2+6*x-4,x^3-x^2-7*x+7,-2*x^3+11*x-1,x^3-5*x-2,4,-x^3-2*x^2+7*x+8,x^3-6*x+1,-1,x^3-x^2-8*x+8,-x^3+x^2+3*x-5,3*x^3-x^2-17*x+7,-x^3+2*x^2+3*x-8,x^3-7*x,-x^3-2*x^2+4*x+9,4*x^3-2*x^2-24*x+12,-3*x+1,2*x^3+x^2-13*x+4,-x^3+x^2+4*x-12,-x^2+6*x+7,x^3-2*x^2-7*x+8,3*x^2+x-16,-x^3+x^2+7*x-9]]];

f[466,2]=[
[x-2, [1,-1], [-1,2,0,0,2,2,6,0,8,-2,0,2,6,-10,0,0,-10,4,14,8,-6,-4,-6,6,-10]],
[x-1, [-1,1], [1,1,0,2,0,5,0,-4,6,3,-4,-7,-6,-1,9,6,3,-10,-7,-12,14,-13,-9,-3,14]],
[x^3+2*x^2-3*x-5, [1,-1], [-1,x,x^2+x-1,2*x^2+x-5,-x^2+6,-2*x^2+5,-x-2,-x^2-2*x+3,x^2-3*x-5,-x+5,-x^2-4*x+2,-x^2-x-2,-x^2+5,-4*x^2+x+19,x+8,-3*x^2-2*x+11,x^2+x+4,2*x^2+2*x-3,4*x^2+3*x-18,-7*x^2-5*x+21,5*x^2-3*x-20,5*x^2+2*x-13,6*x^2+4*x-13,x^2-5*x-3,3*x^2+2*x-16]],
[x^3+4*x^2+3*x-1, [-1,-1], [1,x,-x^2-3*x-3,2*x^2+3*x-3,-3*x^2-8*x-4,2*x^2+6*x-1,-2*x^2-3*x,3*x^2+12*x+5,-3*x^2-7*x+1,4*x^2+9*x-3,-x^2-2*x+2,x^2+5*x+2,-x^2-4*x-7,-2*x^2-13*x-9,-2*x^2-5*x,-5*x^2-6*x+11,7*x^2+13*x-10,-6*x^2-16*x-5,-4*x^2-13*x-2,9*x^2+23*x+3,-x^2-5*x-6,-9*x^2-16*x+9,-10*x-13,-x^2+x-1,3*x^2+6*x-12]],
[x^5-8*x^3+x^2+5*x-1, [1,1], [-1,x,x^4-8*x^2+3,-7/5*x^4-1/5*x^3+53/5*x^2-3/5*x-24/5,-4/5*x^4+3/5*x^3+31/5*x^2-21/5*x-23/5,4/5*x^4+2/5*x^3-26/5*x^2-14/5*x+3/5,-7/5*x^4-6/5*x^3+53/5*x^2+32/5*x-34/5,-4/5*x^4-2/5*x^3+31/5*x^2+4/5*x-23/5,13/5*x^4+4/5*x^3-102/5*x^2-18/5*x+41/5,11/5*x^4-2/5*x^3-89/5*x^2+24/5*x+37/5,-8/5*x^4-9/5*x^3+57/5*x^2+63/5*x-31/5,11/5*x^4+8/5*x^3-94/5*x^2-46/5*x+72/5,2/5*x^4+6/5*x^3-13/5*x^2-32/5*x-31/5,-12/5*x^4-11/5*x^3+98/5*x^2+82/5*x-54/5,12/5*x^4+6/5*x^3-88/5*x^2-37/5*x+14/5,-12/5*x^4-6/5*x^3+103/5*x^2+32/5*x-69/5,-2*x^4-x^3+15*x^2+6*x-9,-12/5*x^4-11/5*x^3+88/5*x^2+47/5*x-24/5,-2/5*x^4+4/5*x^3+18/5*x^2-23/5*x+6/5,x^4+2*x^3-6*x^2-10*x-3,3*x^4+3*x^3-24*x^2-15*x+17,31/5*x^4+8/5*x^3-234/5*x^2-41/5*x+87/5,9/5*x^4-3/5*x^3-71/5*x^2+16/5*x+28/5,-21/5*x^4-13/5*x^3+154/5*x^2+81/5*x-62/5,-2*x^4-3*x^3+17*x^2+21*x-7]],
[x^6-x^5-13*x^4+10*x^3+43*x^2-12*x-36, [-1,1], [1,x,1/4*x^5-3/4*x^4-11/4*x^3+7*x^2+19/4*x-13/2,-1/6*x^5+1/6*x^4+13/6*x^3-5/3*x^2-37/6*x+1,x^4-10*x^2+x+16,1/6*x^5-1/6*x^4-13/6*x^3+5/3*x^2+31/6*x-1,-1/2*x^5+1/2*x^4+11/2*x^3-5*x^2-23/2*x+7,-1/3*x^5+4/3*x^4+10/3*x^3-40/3*x^2-13/3*x+20,1/3*x^5-1/3*x^4-10/3*x^3+13/3*x^2+13/3*x-10,-1/3*x^5+1/3*x^4+10/3*x^3-10/3*x^2-19/3*x+4,-1/6*x^5+1/6*x^4+7/6*x^3-2/3*x^2-1/6*x-3,-x^4+10*x^2-2*x-14,-7/6*x^5+7/6*x^4+67/6*x^3-38/3*x^2-85/6*x+19,-1/6*x^5-5/6*x^4+13/6*x^3+22/3*x^2-31/6*x-11,1/4*x^5-3/4*x^4-7/4*x^3+8*x^2-9/4*x-33/2,-7/12*x^5+1/12*x^4+61/12*x^3-10/3*x^2-37/12*x+17/2,1/6*x^5-1/6*x^4-7/6*x^3+14/3*x^2-5/6*x-17,19/12*x^5-25/12*x^4-193/12*x^3+64/3*x^2+301/12*x-49/2,-x^5+x^4+9*x^3-10*x^2-8*x+10,x^5-x^4-10*x^3+11*x^2+17*x-14,1/3*x^5-1/3*x^4-13/3*x^3+13/3*x^2+40/3*x-10,-1/4*x^5-5/4*x^4+11/4*x^3+13*x^2-23/4*x-47/2,-3/2*x^5+7/2*x^4+31/2*x^3-35*x^2-41/2*x+49,2/3*x^5+1/3*x^4-17/3*x^3-10/3*x^2+17/3*x+10,-7/6*x^5+7/6*x^4+73/6*x^3-38/3*x^2-127/6*x+13]]];

f[467,2]=[
[x, [1], [0,-3,2,1,4,-6,-7,2,-7,-8,6,-2,6,-4,4,-9,-3,-10,-4,-12,14,-10,11,-2,9]],
[x^12+5*x^11-3*x^10-46*x^9-28*x^8+144*x^7+140*x^6-182*x^5-197*x^4+102*x^3+104*x^2-22*x-17, [1], [x,-3/7*x^11-10/7*x^10+4*x^9+103/7*x^8-97/7*x^7-387/7*x^6+155/7*x^5+633/7*x^4-114/7*x^3-417/7*x^2+40/7*x+81/7,x^6+3*x^5-3*x^4-13*x^3-3*x^2+8*x+2,1/7*x^11+1/7*x^10-3*x^9-25/7*x^8+149/7*x^7+192/7*x^6-425/7*x^5-554/7*x^4+458/7*x^3+545/7*x^2-172/7*x-146/7,4/7*x^11+11/7*x^10-7*x^9-135/7*x^8+204/7*x^7+544/7*x^6-377/7*x^5-858/7*x^4+355/7*x^3+528/7*x^2-128/7*x-108/7,-2/7*x^11-16/7*x^10-3*x^9+113/7*x^8+276/7*x^7-188/7*x^6-830/7*x^5-103/7*x^4+792/7*x^3+247/7*x^2-237/7*x-93/7,3/7*x^11+17/7*x^10-152/7*x^8-176/7*x^7+429/7*x^6+678/7*x^5-423/7*x^4-719/7*x^3+200/7*x^2+205/7*x-32/7,12/7*x^11+61/7*x^10-2*x^9-489/7*x^8-480/7*x^7+1121/7*x^6+1816/7*x^5-432/7*x^4-1840/7*x^3-453/7*x^2+561/7*x+201/7,4/7*x^11+32/7*x^10+7*x^9-198/7*x^8-573/7*x^7+215/7*x^6+1646/7*x^5+465/7*x^4-1577/7*x^3-648/7*x^2+460/7*x+172/7,-2*x^10-9*x^9+8*x^8+75*x^7+20*x^6-207*x^5-110*x^4+211*x^3+106*x^2-68*x-25,-15/7*x^11-64/7*x^10+11*x^9+571/7*x^8+75/7*x^7-1662/7*x^6-737/7*x^5+1772/7*x^4+641/7*x^3-762/7*x^2-73/7*x+76/7,-11/7*x^11-53/7*x^10+4*x^9+429/7*x^8+251/7*x^7-1104/7*x^6-967/7*x^5+970/7*x^4+807/7*x^3-318/7*x^2-131/7*x+3/7,9/7*x^11+51/7*x^10+x^9-393/7*x^8-472/7*x^7+846/7*x^6+1495/7*x^5-261/7*x^4-1156/7*x^3-261/7*x^2+174/7*x+93/7,-10/7*x^11-45/7*x^10+7*x^9+404/7*x^8+36/7*x^7-1269/7*x^6-405/7*x^5+1690/7*x^4+432/7*x^3-1012/7*x^2-121/7*x+193/7,-18/7*x^11-74/7*x^10+16*x^9+702/7*x^8-29/7*x^7-2189/7*x^6-736/7*x^5+2482/7*x^4+912/7*x^3-934/7*x^2-236/7*x+45/7,-18/7*x^11-88/7*x^10+7*x^9+772/7*x^8+545/7*x^7-2077/7*x^6-2374/7*x^5+1635/7*x^4+2396/7*x^3-157/7*x^2-614/7*x-165/7,18/7*x^11+67/7*x^10-20*x^9-646/7*x^8+358/7*x^7+2217/7*x^6-363/7*x^5-3175/7*x^4+180/7*x^3+1669/7*x^2-79/7*x-157/7,-5/7*x^11-26/7*x^10+2*x^9+258/7*x^8+214/7*x^7-785/7*x^6-1046/7*x^5+747/7*x^4+1308/7*x^3-191/7*x^2-428/7*x-19/7,17/7*x^11+73/7*x^10-14*x^9-684/7*x^8+13/7*x^7+2214/7*x^6+622/7*x^5-2880/7*x^4-733/7*x^3+1383/7*x^2+121/7*x-130/7,-1/7*x^11-1/7*x^10+2*x^9+11/7*x^8-58/7*x^7+4/7*x^6+117/7*x^5-167/7*x^4-171/7*x^3+225/7*x^2+60/7*x-50/7,-18/7*x^11-74/7*x^10+15*x^9+674/7*x^8-1/7*x^7-1993/7*x^6-708/7*x^5+2076/7*x^4+751/7*x^3-696/7*x^2-187/7*x-4/7,4/7*x^11+11/7*x^10-7*x^9-135/7*x^8+204/7*x^7+579/7*x^6-272/7*x^5-991/7*x^4-128/7*x^3+556/7*x^2+229/7*x-87/7,-11/7*x^11-46/7*x^10+10*x^9+436/7*x^8-92/7*x^7-1489/7*x^6-113/7*x^5+2160/7*x^4+177/7*x^3-1137/7*x^2+23/7*x+94/7,-2*x^11-8*x^10+16*x^9+85*x^8-33*x^7-320*x^6-11*x^5+504*x^4+65*x^3-306*x^2-22*x+49,-5/7*x^11-26/7*x^10+x^9+209/7*x^8+158/7*x^7-547/7*x^6-563/7*x^5+523/7*x^4+503/7*x^3-184/7*x^2-50/7*x-5/7]],
[x^26-5*x^25-30*x^24+181*x^23+338*x^22-2813*x^21-1420*x^20+24571*x^19-4052*x^18-132574*x^17+73889*x^16+457016*x^15-370842*x^14-1004824*x^13+992642*x^12+1361654*x^11-1526411*x^10-1049992*x^9+1309411*x^8+383566*x^7-569750*x^6-29300*x^5+105328*x^4-5888*x^3-6944*x^2+448*x+128, [-1], [x,-10363332061373394879/190951794041939941664*x^25+51389231163521491841/190951794041939941664*x^24+80019126352002634403/47737948510484985416*x^23-1882904756544570716139/190951794041939941664*x^22-959680986289643624655/47737948510484985416*x^21+29730865760402852498863/190951794041939941664*x^20+10015383816473721072581/95475897020969970832*x^19-265271003727621598421621/190951794041939941664*x^18-2881811573462802471715/95475897020969970832*x^17+736837612793348039826313/95475897020969970832*x^16-496365418214858053022663/190951794041939941664*x^15-2647270102974250620737669/95475897020969970832*x^14+1423878514093438197846391/95475897020969970832*x^13+1546441062721262435079611/23868974255242492708*x^12-3923850587050531791151451/95475897020969970832*x^11-9211780225271573005475419/95475897020969970832*x^10+11902990260931105127268297/190951794041939941664*x^9+8314765549120022629884007/95475897020969970832*x^8-9631358723228384283624077/190951794041939941664*x^7-2058648482385531448474417/47737948510484985416*x^6+1836658457006210980201059/95475897020969970832*x^5+451129485124831156674183/47737948510484985416*x^4-67520378971189597291845/23868974255242492708*x^3-18805552891279119484097/23868974255242492708*x^2+648925921645097637440/5967243563810623177*x+109989621903187974549/5967243563810623177,-4029184431302972343/190951794041939941664*x^25+15763452463375189915/190951794041939941664*x^24+68601516212658445503/95475897020969970832*x^23-578651503020959378503/190951794041939941664*x^22-979105098377673291591/95475897020969970832*x^21+9152059304801185273007/190951794041939941664*x^20+3773930036834474796649/47737948510484985416*x^19-81757147036446757376673/190951794041939941664*x^18-16695201479502400540563/47737948510484985416*x^17+227176371461999730195255/95475897020969970832*x^16+159660039055582213638969/190951794041939941664*x^15-203827603637749118458689/23868974255242492708*x^14-62983940073826103474403/95475897020969970832*x^13+474711165586489754761095/23868974255242492708*x^12-147857694587039073009851/95475897020969970832*x^11-2810056512575026906278885/95475897020969970832*x^10+823023238886017952063445/190951794041939941664*x^9+628620678135233452422751/23868974255242492708*x^8-728731115144094434535201/190951794041939941664*x^7-1241362696239549483505069/95475897020969970832*x^6+114544613380854490108475/95475897020969970832*x^5+141932788991934379222389/47737948510484985416*x^4-2177601531082898401825/23868974255242492708*x^3-3244467657779586060113/11934487127621246354*x^2+6840037831302791688/5967243563810623177*x+38004299798490972900/5967243563810623177,-24058256997224544661/381903588083879883328*x^25+104771983448012659849/381903588083879883328*x^24+392166681247250988043/190951794041939941664*x^23-3836511191260278131057/381903588083879883328*x^22-5207672470421337122625/190951794041939941664*x^21+60511751116108371014929/381903588083879883328*x^20+17504036413243302622977/95475897020969970832*x^19-538910129304975291308647/381903588083879883328*x^18-54968371946281115618649/95475897020969970832*x^17+1492379569288074670110699/190951794041939941664*x^16-34470232451786793377853/381903588083879883328*x^15-1333923458153226212647391/47737948510484985416*x^14+1380417207011523733264985/190951794041939941664*x^13+386641590828689103611019/5967243563810623177*x^12-4914093636737770210468421/190951794041939941664*x^11-18211319986093291653856943/190951794041939941664*x^10+16532879257118188567265383/381903588083879883328*x^9+4043439679190274925829591/47737948510484985416*x^8-14211645013372546337052079/381903588083879883328*x^7-7886327995460899147685679/190951794041939941664*x^6+2858349078854733632467191/190951794041939941664*x^5+880337007242497500805807/95475897020969970832*x^4-27372181925020789340219/11934487127621246354*x^3-19915642953182849296567/23868974255242492708*x^2+547854074294746894132/5967243563810623177*x+135151403670025766004/5967243563810623177,5539631980151634831/47737948510484985416*x^25-24943768875661465677/47737948510484985416*x^24-178279866466378877963/47737948510484985416*x^23+228311239337119265811/11934487127621246354*x^22+289322471040218933412/5967243563810623177*x^21-7201833424821692437247/23868974255242492708*x^20-7414314072166685840055/23868974255242492708*x^19+32074284427417296266701/11934487127621246354*x^18+9852461150934733127487/11934487127621246354*x^17-710913431898261385033623/47737948510484985416*x^16+67899423761855046172989/47737948510484985416*x^15+636053532700214641836159/11934487127621246354*x^14-839738506785233058105021/47737948510484985416*x^13-2954850900032745687392281/23868974255242492708*x^12+675845470349281103458917/11934487127621246354*x^11+4360704123038690772277361/23868974255242492708*x^10-4388094444460064779928967/47737948510484985416*x^9-971194395853022086907797/5967243563810623177*x^8+1853701281537468968421953/23868974255242492708*x^7+1894403822222040463303045/23868974255242492708*x^6-1481868911759459805558399/47737948510484985416*x^5-207653872116574842664415/11934487127621246354*x^4+117249175946869486425735/23868974255242492708*x^3+9038615292801684305042/5967243563810623177*x^2-1338136797015159583850/5967243563810623177*x-248976659248758607976/5967243563810623177,2884905614890067771/47737948510484985416*x^25-13388554416385002171/47737948510484985416*x^24-183271188330616455283/95475897020969970832*x^23+979947265729563456017/95475897020969970832*x^22+1161738686185651020577/47737948510484985416*x^21-15449556769444113601773/95475897020969970832*x^20-7046512426073746354545/47737948510484985416*x^19+137572986225388063560165/95475897020969970832*x^18+1831267776408749060821/5967243563810623177*x^17-762278237841008687888997/95475897020969970832*x^16+66812345291974326690939/47737948510484985416*x^15+1364673276004412033719177/47737948510484985416*x^14-1089072426646941362359655/95475897020969970832*x^13-793701137514040539017875/11934487127621246354*x^12+1639829041167414356797937/47737948510484985416*x^11+2351517361315408361689283/23868974255242492708*x^10-648216829614290509055117/11934487127621246354*x^9-4224979981174956612530721/47737948510484985416*x^8+4327335719501245560763455/95475897020969970832*x^7+1048545605418484246408999/23868974255242492708*x^6-1723659842187868453588445/95475897020969970832*x^5-475707039069005431372385/47737948510484985416*x^4+137753985690635897536977/47737948510484985416*x^3+20976715804563158366791/23868974255242492708*x^2-771854896766172956264/5967243563810623177*x-115517196270271981612/5967243563810623177,-17650080084038593523/190951794041939941664*x^25+71114469886441183593/190951794041939941664*x^24+36782536098694419469/11934487127621246354*x^23-2591968902670833875659/190951794041939941664*x^22-2030707235185140376509/47737948510484985416*x^21+40628482895205018886427/190951794041939941664*x^20+29487497825365273606965/95475897020969970832*x^19-358773543774020347183241/190951794041939941664*x^18-114417334546187521962471/95475897020969970832*x^17+981833337828979160039697/95475897020969970832*x^16+344284615534635042429609/190951794041939941664*x^15-3451187121527344881110683/95475897020969970832*x^14+369500937500004182008107/95475897020969970832*x^13+3901764501702459255262567/47737948510484985416*x^12-2191052413629608899775903/95475897020969970832*x^11-11048149979284205468426863/95475897020969970832*x^10+8372199045788701127135693/190951794041939941664*x^9+9216137028658982442063613/95475897020969970832*x^8-7690866887670962209094401/190951794041939941664*x^7-2021616442955560625558629/47737948510484985416*x^6+1643313345094532448616047/95475897020969970832*x^5+185678532942179113023089/23868974255242492708*x^4-16450661481828774718942/5967243563810623177*x^3-5867216415490189307507/11934487127621246354*x^2+1374493874366829115433/11934487127621246354*x+67716216372425682539/5967243563810623177,-10450821085409378629/190951794041939941664*x^25+51546083371716099331/190951794041939941664*x^24+80358316838923937385/47737948510484985416*x^23-1882081102939147313405/190951794041939941664*x^22-119499101668682920766/5967243563810623177*x^21+29588169014745214587429/190951794041939941664*x^20+9742093166418804146841/95475897020969970832*x^19-262534067329316075002255/190951794041939941664*x^18+206098542548070256085/95475897020969970832*x^17+724023465376933000434623/95475897020969970832*x^16-535278504452026329876553/190951794041939941664*x^15-2576889338306002994553751/95475897020969970832*x^14+1501817340184028994900809/95475897020969970832*x^13+2973229958420492221625215/47737948510484985416*x^12-4132014147582481451592053/95475897020969970832*x^11-8708526157493571177186629/95475897020969970832*x^10+12646235010616213517715027/190951794041939941664*x^9+7691747122299043636741797/95475897020969970832*x^8-10474464986555744190583759/190951794041939941664*x^7-464754333393672955858523/11934487127621246354*x^6+2100260877317840776849293/95475897020969970832*x^5+50542581301188842514126/5967243563810623177*x^4-83456661945742375006407/23868974255242492708*x^3-9329988066423980549407/11934487127621246354*x^2+909287960292873711490/5967243563810623177*x+167673350986699198124/5967243563810623177,50423454409563560927/190951794041939941664*x^25-58121932663996767785/47737948510484985416*x^24-1602717763062865443289/190951794041939941664*x^23+8500614863796788613097/190951794041939941664*x^22+20335145116972222857597/190951794041939941664*x^21-133842772223097289695153/190951794041939941664*x^20-123459703099394604451251/190951794041939941664*x^19+1189512222199603634336325/190951794041939941664*x^18+256985540528105996271725/190951794041939941664*x^17-3285853668326176175426309/95475897020969970832*x^16+1173197302860000888310377/190951794041939941664*x^15+23424244688079093996944319/190951794041939941664*x^14-4788487807307942646596921/95475897020969970832*x^13-27053452380219276552037521/95475897020969970832*x^12+14445205234997813957531475/95475897020969970832*x^11+2475543159741233195018290/5967243563810623177*x^10-45764955574419155575706211/190951794041939941664*x^9-69744703496696066472519797/190951794041939941664*x^8+38237516414595947781021225/190951794041939941664*x^7+33367001398898525050678787/190951794041939941664*x^6-3795430292742448231658917/47737948510484985416*x^5-3512337920526945404230245/95475897020969970832*x^4+589844430299441684658747/47737948510484985416*x^3+71068738507351819901549/23868974255242492708*x^2-3161524018081672279897/5967243563810623177*x-451370094226384450815/5967243563810623177,20681845227242316083/190951794041939941664*x^25-99128337577210051173/190951794041939941664*x^24-80837673669238342257/23868974255242492708*x^23+3627123704656635058439/190951794041939941664*x^22+993508737963474239679/23868974255242492708*x^21-57166581040142939635407/190951794041939941664*x^20-22214760255841884352347/95475897020969970832*x^19+508781335151036110850277/190951794041939941664*x^18+25087803795950769204277/95475897020969970832*x^17-1408311608656522951453675/95475897020969970832*x^16+784663340626883284821311/190951794041939941664*x^15+5035012678312946513274765/95475897020969970832*x^14-2495836160225934051910493/95475897020969970832*x^13-5841859836729547451644781/47737948510484985416*x^12+7108253940589406470842903/95475897020969970832*x^11+17227886355691419223610131/95475897020969970832*x^10-21987153665797359611355533/190951794041939941664*x^9-15335033541176400239275079/95475897020969970832*x^8+18134303320888432746271773/190951794041939941664*x^7+465841720021175662170932/5967243563810623177*x^6-3560043407338810049011245/95475897020969970832*x^5-398809160242884424017987/23868974255242492708*x^4+34032478221878358294041/5967243563810623177*x^3+7996259427690562291301/5967243563810623177*x^2-1340418705278775105975/5967243563810623177*x-186209599513053607066/5967243563810623177,3511452861567076549/47737948510484985416*x^25-15804018252433729777/47737948510484985416*x^24-56513832184446370171/23868974255242492708*x^23+579064401002403276555/47737948510484985416*x^22+366625452684094420095/11934487127621246354*x^21-9140249203591664913353/47737948510484985416*x^20-4682787385599547726257/23868974255242492708*x^19+81478275284869122358295/47737948510484985416*x^18+12230505260436023201389/23868974255242492708*x^17-225901755174015373850913/23868974255242492708*x^16+47096979445168721642051/47737948510484985416*x^15+404448783982661533528061/11934487127621246354*x^14-275247275634766837294667/23868974255242492708*x^13-1879377370631949195512319/23868974255242492708*x^12+880911201218629837765067/23868974255242492708*x^11+2772819440886208110675213/23868974255242492708*x^10-2855028941782509560689671/47737948510484985416*x^9-1233543494682978391460575/11934487127621246354*x^8+2410908919648596880312003/47737948510484985416*x^7+299564331062332973134026/5967243563810623177*x^6-483268438359971754853285/23868974255242492708*x^5-258582293971309376762651/23868974255242492708*x^4+19634019712268412277509/5967243563810623177*x^3+10750393020321763256073/11934487127621246354*x^2-972043232687989569586/5967243563810623177*x-136565904887242080318/5967243563810623177,-14902137356564986245/190951794041939941664*x^25+68656013161373511961/190951794041939941664*x^24+237123073096773823985/95475897020969970832*x^23-2510387444720408906765/190951794041939941664*x^22-3016234250771970244181/95475897020969970832*x^21+39528059334983992822413/190951794041939941664*x^20+9215815624922139657407/47737948510484985416*x^19-351326072709899080792435/190951794041939941664*x^18-19849635958909341614093/47737948510484985416*x^17+970585686653737312505061/95475897020969970832*x^16-327866701648655589507005/190951794041939941664*x^15-216252890029407838555207/5967243563810623177*x^14+1384575539114640314638567/95475897020969970832*x^13+999229481875768047929113/11934487127621246354*x^12-4216222880472616079515873/95475897020969970832*x^11-11707907274818658546245791/95475897020969970832*x^10+13476038895976466536899759/190951794041939941664*x^9+644907939094442221062533/5967243563810623177*x^8-11421770642928817782444451/190951794041939941664*x^7-4957163170464776777750439/95475897020969970832*x^6+2330894840173182588230833/95475897020969970832*x^5+531641301290226644016245/47737948510484985416*x^4-94601500880844918269361/23868974255242492708*x^3-5503233125956697148110/5967243563810623177*x^2+1013905331770887883393/5967243563810623177*x+151775525334551101400/5967243563810623177,-29757698139759869583/381903588083879883328*x^25+151047968895131327095/381903588083879883328*x^24+454244195517130608833/190951794041939941664*x^23-5527473577880251988775/381903588083879883328*x^22-5327366167894954478497/190951794041939941664*x^21+87155280645165958284263/381903588083879883328*x^20+6512755727837875164021/47737948510484985416*x^19-776419633541793589179505/381903588083879883328*x^18+3420790873562728013725/47737948510484985416*x^17+2152964800501450394933427/190951794041939941664*x^16-1638420495718111630393471/381903588083879883328*x^15-3860448655795760899708941/95475897020969970832*x^14+4400928790293341360409345/190951794041939941664*x^13+4501439840032881589355359/47737948510484985416*x^12-11785742826359570068130723/190951794041939941664*x^11-26753855677255340694387633/190951794041939941664*x^10+34921312054571616320700581/381903588083879883328*x^9+12033750880266855776570987/95475897020969970832*x^8-27441293336558798890201617/381903588083879883328*x^7-11820991413961876793224227/190951794041939941664*x^6+4993408461008380280283331/190951794041939941664*x^5+1259623603764633307073657/95475897020969970832*x^4-172954123182140785085829/47737948510484985416*x^3-6460615315137138419629/5967243563810623177*x^2+1600757486413408408693/11934487127621246354*x+184421035874255527670/5967243563810623177,63358954490993220057/381903588083879883328*x^25-274149035464675532097/381903588083879883328*x^24-1035628874614952070711/190951794041939941664*x^23+10037310811178844792225/381903588083879883328*x^22+13818726434941426010983/190951794041939941664*x^21-158264825436732306853105/381903588083879883328*x^20-23461656323747192354359/47737948510484985416*x^19+1408625955085049214631639/381903588083879883328*x^18+76102342089242989423213/47737948510484985416*x^17-3896456914860298832471773/190951794041939941664*x^16-77673976394985410663143/381903588083879883328*x^15+6951286236215714953603439/95475897020969970832*x^14-3323654072625483512552319/190951794041939941664*x^13-8029251912995274702969867/47737948510484985416*x^12+12179364233807637623388901/190951794041939941664*x^11+46936171336157532443311751/190951794041939941664*x^10-41118673443159390133573843/381903588083879883328*x^9-20538630973206820393418081/95475897020969970832*x^8+35047469993592284789163351/381903588083879883328*x^7+19367120290391974266288037/190951794041939941664*x^6-6877902487243318473775693/190951794041939941664*x^5-1971410761372133942907299/95475897020969970832*x^4+249148020032724063927639/47737948510484985416*x^3+18185023591024666725981/11934487127621246354*x^2-2001208789874568750951/11934487127621246354*x-189456979214967094900/5967243563810623177,14068540368530099379/95475897020969970832*x^25-14526057485190589767/23868974255242492708*x^24-234214102932042632389/47737948510484985416*x^23+1064743434012613191567/47737948510484985416*x^22+6445768119684849102123/95475897020969970832*x^21-16810682100154813046169/47737948510484985416*x^20-46479773240334717850829/95475897020969970832*x^19+149890157549926140407749/47737948510484985416*x^18+176981588449598770216657/95475897020969970832*x^17-1662648400285906317114813/95475897020969970832*x^16-240273049085405603902227/95475897020969970832*x^15+5954466096340681486256977/95475897020969970832*x^14-725618261952456875702971/95475897020969970832*x^13-6918416115387122129378241/47737948510484985416*x^12+239877469597673508329624/5967243563810623177*x^11+2553432132347241437144047/11934487127621246354*x^10-7204233049220347885017753/95475897020969970832*x^9-18233596579346269670045207/95475897020969970832*x^8+1647797826958508579917769/23868974255242492708*x^7+8992243364496922068183335/95475897020969970832*x^6-2827371303492306381083583/95475897020969970832*x^5-129598555001091557887560/5967243563810623177*x^4+238856408749993254712881/47737948510484985416*x^3+47627589037994006692563/23868974255242492708*x^2-1418505688146643991726/5967243563810623177*x-304888865700353570942/5967243563810623177,-57281422371809698885/381903588083879883328*x^25+277254629416998769729/381903588083879883328*x^24+894785379538652472045/190951794041939941664*x^23-10159600285711616759029/381903588083879883328*x^22-10988666899997092669877/190951794041939941664*x^21+160473666867106850704621/381903588083879883328*x^20+30717402709057113145951/95475897020969970832*x^19-1432886848915913899570531/381903588083879883328*x^18-35303599483900479044881/95475897020969970832*x^17+3985767864008211793080981/190951794041939941664*x^16-2136404875829681646874837/381903588083879883328*x^15-3588979068218856641175963/47737948510484985416*x^14+6797479682241977420817743/190951794041939941664*x^13+8422163299933771184989421/47737948510484985416*x^12-19291659349653636371125745/190951794041939941664*x^11-50527016100732354757416975/190951794041939941664*x^10+59310599981045272252919391/381903588083879883328*x^9+11536159505034108436555875/47737948510484985416*x^8-48447455719368951242176435/381903588083879883328*x^7-23305522724294459287671607/190951794041939941664*x^6+9404005121448844940104649/190951794041939941664*x^5+2654785286353663647830095/95475897020969970832*x^4-371941431284348603234715/47737948510484985416*x^3-58641978846218914652137/23868974255242492708*x^2+4350918699192675684497/11934487127621246354*x+387621629725525429243/5967243563810623177,33154323718645272451/190951794041939941664*x^25-73174017860064049623/95475897020969970832*x^24-1075391119108635998641/190951794041939941664*x^23+5357460900402648303375/190951794041939941664*x^22+14160005465023674706179/190951794041939941664*x^21-84482316602531618341511/190951794041939941664*x^20-93582749947118689914073/190951794041939941664*x^19+752307359070876332792879/190951794041939941664*x^18+278605546088096750833195/190951794041939941664*x^17-1041777678438557898274257/47737948510484985416*x^16+173175951776483324835505/190951794041939941664*x^15+14906020084734502590611677/190951794041939941664*x^14-526920846793166892865027/23868974255242492708*x^13-17302388708068103249230959/95475897020969970832*x^12+7198302204328792367101293/95475897020969970832*x^11+12763131128217348924252275/47737948510484985416*x^10-23884064438515678642583951/190951794041939941664*x^9-45526287803485582470644711/190951794041939941664*x^8+20444471460339955310749199/190951794041939941664*x^7+22338512369779566030669025/190951794041939941664*x^6-4147912403332685691377253/95475897020969970832*x^5-2507511922445304088943241/95475897020969970832*x^4+168133273915159142480919/23868974255242492708*x^3+28076405157492157356933/11934487127621246354*x^2-1983161997573596997171/5967243563810623177*x-411305948534825717749/5967243563810623177,-13362185089066119069/95475897020969970832*x^25+63553259554823386135/95475897020969970832*x^24+105085391962597586731/23868974255242492708*x^23-2327951622761169012801/95475897020969970832*x^22-1307201100432310958867/23868974255242492708*x^21+36743905361762581501289/95475897020969970832*x^20+15103515264655963806039/47737948510484985416*x^19-327666543726643249121467/95475897020969970832*x^18-23003142648449011637481/47737948510484985416*x^17+909456976650059540080557/47737948510484985416*x^16-430640539447869574781209/95475897020969970832*x^15-3263909267636132041558693/47737948510484985416*x^14+1474783665862665316812323/47737948510484985416*x^13+3807457992991107311252757/23868974255242492708*x^12-4272888654214690306140049/47737948510484985416*x^11-11315749896729135289149361/47737948510484985416*x^10+13279376405385124321071515/95475897020969970832*x^9+10186123444658486136227135/47737948510484985416*x^8-10933213097922088060058659/95475897020969970832*x^7-2517131830417089875161639/23868974255242492708*x^6+2132176593825790469455919/47737948510484985416*x^5+138950312533099328708601/5967243563810623177*x^4-40879359201435116655209/5967243563810623177*x^3-12015194158442984964735/5967243563810623177*x^2+1592825108180719526683/5967243563810623177*x+341483247835543404360/5967243563810623177,-22055242067440052737/95475897020969970832*x^25+48349250132060642987/47737948510484985416*x^24+713698950913305979707/95475897020969970832*x^23-3529140078025985478525/95475897020969970832*x^22-9359552259200327977641/95475897020969970832*x^21+55429084361461975685089/95475897020969970832*x^20+61332160495417716276475/95475897020969970832*x^19-490952328184394785588249/95475897020969970832*x^18-177374865719901063436105/95475897020969970832*x^17+337441616023438116062361/11934487127621246354*x^16-157861793388884399195167/95475897020969970832*x^15-9556947554160990289211819/95475897020969970832*x^14+737867730724976544776545/23868974255242492708*x^13+10927120152328170275006523/47737948510484985416*x^12-4953172819020165069123823/47737948510484985416*x^11-7877249205838917674184977/23868974255242492708*x^10+16353204689140570324457589/95475897020969970832*x^9+27079918617935417044144073/95475897020969970832*x^8-13982041173458306308017713/95475897020969970832*x^7-12462824414227138718018139/95475897020969970832*x^6+2826239282135477177520021/47737948510484985416*x^5+1225286483978435979901913/47737948510484985416*x^4-54609596061744668213462/5967243563810623177*x^3-21167058116458585877689/11934487127621246354*x^2+2177547263599284926819/5967243563810623177*x+210095416213241796210/5967243563810623177,-12440764920973102859/381903588083879883328*x^25+35055336390530326315/381903588083879883328*x^24+226114797617824786787/190951794041939941664*x^23-1257301961053424834311/381903588083879883328*x^22-3537497231333693742261/190951794041939941664*x^21+19240735257942983106279/381903588083879883328*x^20+7800287948822573194823/47737948510484985416*x^19-163801224135099593982521/381903588083879883328*x^18-5328609515367365470180/5967243563810623177*x^17+423158737259985709184469/190951794041939941664*x^16+1191218795958312732537061/381903588083879883328*x^15-676207383994217721858569/95475897020969970832*x^14-1311023033600380599335545/190951794041939941664*x^13+645255664416302354055227/47737948510484985416*x^12+1667537332961895994862957/190951794041939941664*x^11-2576225640974434275456845/190951794041939941664*x^10-1637541129239061431825199/381903588083879883328*x^9+349086226678842114193083/95475897020969970832*x^8-1223840499222893700667505/381903588083879883328*x^7+679762937397936907241341/190951794041939941664*x^6+916603587716312213579021/190951794041939941664*x^5-174701124850215113311861/95475897020969970832*x^4-15458166913830723500105/11934487127621246354*x^3+4551950651733972116379/23868974255242492708*x^2+1108168638576757042499/11934487127621246354*x-5994109861349769151/5967243563810623177,7853458819193980077/47737948510484985416*x^25-66429160751324385873/95475897020969970832*x^24-517351676361886862325/95475897020969970832*x^23+151913993869731674830/5967243563810623177*x^22+6995071168941251425273/95475897020969970832*x^21-9575368834879552477391/23868974255242492708*x^20-48811233927710967625133/95475897020969970832*x^19+170359070843744599461559/47737948510484985416*x^18+171227715261517205726571/95475897020969970832*x^17-471104445989829309065797/23868974255242492708*x^16-32508784001798029891513/23868974255242492708*x^15+6725678537095268588692993/95475897020969970832*x^14-79193473206251613666658/5967243563810623177*x^13-7781293978718905919419013/47737948510484985416*x^12+1306783107696053172738421/23868974255242492708*x^11+11424703597219040822407791/47737948510484985416*x^10-574426218045430642212843/5967243563810623177*x^9-20241929023255603008587475/95475897020969970832*x^8+4043983311004974834858825/47737948510484985416*x^7+9865466761621430425741687/95475897020969970832*x^6-1668805410035028930009709/47737948510484985416*x^5-1112366678171806263517203/47737948510484985416*x^4+135688664482403672294409/23868974255242492708*x^3+12825188999851006219618/5967243563810623177*x^2-1661440279494769615916/5967243563810623177*x-351919548127402324024/5967243563810623177,-40425483090832307961/190951794041939941664*x^25+192145310012090273909/190951794041939941664*x^24+633179989873424768169/95475897020969970832*x^23-7018265275636138405033/190951794041939941664*x^22-7816344968517397688505/95475897020969970832*x^21+110359767597298894297745/190951794041939941664*x^20+22153258599829141457383/47737948510484985416*x^19-979185850129277720864383/190951794041939941664*x^18-29060691917628777761041/47737948510484985416*x^17+2698985318390754007496513/95475897020969970832*x^16-1418251474688402943840169/190951794041939941664*x^15-2397964872484910099815699/23868974255242492708*x^14+4643475876165043464209467/95475897020969970832*x^13+5515493331969759551314485/23868974255242492708*x^12-13282659667286203508351965/95475897020969970832*x^11-32088117183983317307236219/95475897020969970832*x^10+41006696846512997360560603/190951794041939941664*x^9+6981465857636244685129741/23868974255242492708*x^8-33611143441347374937808767/190951794041939941664*x^7-13035214450359033322204779/95475897020969970832*x^6+6519862115569810185710005/95475897020969970832*x^5+1276729561322360883224811/47737948510484985416*x^4-243103694459806556990989/23868974255242492708*x^3-21708930745195239731805/11934487127621246354*x^2+2349935106913293409135/5967243563810623177*x+230597867935783053118/5967243563810623177,114021031261940684177/381903588083879883328*x^25-510187976080530151541/381903588083879883328*x^24-1839821626921224028645/190951794041939941664*x^23+18683274842417982843409/381903588083879883328*x^22+24001034165081898026445/190951794041939941664*x^21-294725300426013371934009/381903588083879883328*x^20-77693239355435029998521/95475897020969970832*x^19+2625438353335337137937223/381903588083879883328*x^18+214922234511971512469407/95475897020969970832*x^17-7273516711049687568230665/190951794041939941664*x^16+1130872628090999273911777/381903588083879883328*x^15+813190452696326661674958/5967243563810623177*x^14-8158605319356961584969803/190951794041939941664*x^13-15100008796819025968622905/47737948510484985416*x^12+26646211167560636873580141/190951794041939941664*x^11+89014923604945250672900875/190951794041939941664*x^10-86532898978706288472430643/381903588083879883328*x^9-9888444635451431725605143/23868974255242492708*x^8+72469885768075676645943191/381903588083879883328*x^7+38396040540243595121377615/190951794041939941664*x^6-14158017005888193651596181/190951794041939941664*x^5-4151219222789833573445771/95475897020969970832*x^4+531632236229687750112095/47737948510484985416*x^3+85753502577827769690503/23868974255242492708*x^2-5050900751200249702477/11934487127621246354*x-510252974486446677253/5967243563810623177,69668248168633658923/381903588083879883328*x^25-333796457169156124035/381903588083879883328*x^24-1086121117505213922263/190951794041939941664*x^23+12183034958538965194199/381903588083879883328*x^22+13291478123793949370393/190951794041939941664*x^21-191425690725834586250871/381903588083879883328*x^20-4602934101888983146501/11934487127621246354*x^19+1697192964560352846857753/381903588083879883328*x^18+19243233031654198094371/47737948510484985416*x^17-4675181815986335836476005/190951794041939941664*x^16+2692707741629916809510411/381903588083879883328*x^15+8304908286973572367022307/95475897020969970832*x^14-8438634425985916551376631/190951794041939941664*x^13-9554027672943836773264289/47737948510484985416*x^12+23908729298604435009731331/190951794041939941664*x^11+55674350254401908939346357/190951794041939941664*x^10-73781439333782163551619393/381903588083879883328*x^9-24336379960373582698318721/95475897020969970832*x^8+60864309730309111539352657/381903588083879883328*x^7+22999343307819444301093887/190951794041939941664*x^6-11981748712896846226126325/190951794041939941664*x^5-2349168570773703874945487/95475897020969970832*x^4+114128049047395312189499/11934487127621246354*x^3+45907727187774148781637/23868974255242492708*x^2-4658993563476923269509/11934487127621246354*x-318472854829478097831/5967243563810623177,-38653232686104192897/190951794041939941664*x^25+44759020923304234637/47737948510484985416*x^24+1231837895992964114331/190951794041939941664*x^23-6563675851607781715891/190951794041939941664*x^22-15705826887472743054419/190951794041939941664*x^21+103707397806195950038843/190951794041939941664*x^20+96485316579333197329469/190951794041939941664*x^19-925997977406545687651079/190951794041939941664*x^18-213512392195355051788347/190951794041939941664*x^17+2574211270968392764462557/95475897020969970832*x^16-805795687681336104076967/190951794041939941664*x^15-18513252978715309718983681/190951794041939941664*x^14+3494799048944651915882085/95475897020969970832*x^13+21649767464646164476791991/95475897020969970832*x^12-10625456032369498099881593/95475897020969970832*x^11-4034153197515397150062789/11934487127621246354*x^10+33550658986267100607730853/190951794041939941664*x^9+58345504873073754602665995/190951794041939941664*x^8-27638797416584416779943131/190951794041939941664*x^7-29015510789336484762197957/190951794041939941664*x^6+664038617235157463314353/11934487127621246354*x^5+3246989551403891765858375/95475897020969970832*x^4-395250185787745055794679/47737948510484985416*x^3-71758180425679263797165/23868974255242492708*x^2+1992795221567641778403/5967243563810623177*x+499187671207195660573/5967243563810623177]]];

f[468,2]=[
[x-4, [-1,1,1], [0,0,4,4,-4,-1,0,0,-8,-8,4,6,12,-8,-4,0,4,-2,-8,-4,-10,-4,12,-12,14]],
[x+4, [-1,1,1], [0,0,-4,4,4,-1,0,0,8,8,4,6,-12,-8,4,0,-4,-2,-8,4,-10,-4,-12,12,14]],
[x+2, [-1,-1,1], [0,0,-2,-2,2,-1,-6,-6,-8,-2,10,-6,6,4,2,-6,10,-2,10,-10,2,-4,6,6,2]],
[x, [-1,-1,-1], [0,0,0,2,0,1,6,2,0,6,2,2,12,-4,0,-6,-12,2,-10,-12,14,8,-12,0,-10]],
[x+2, [-1,-1,-1], [0,0,4,-2,4,1,-2,-2,0,6,-10,10,-8,4,4,10,8,-14,2,-16,-10,-16,0,4,-2]]];

f[469,2]=[
[x-1, [1,1], [1,1,-3,-1,0,-1,-8,8,3,-3,-1,-3,-9,4,10,6,-14,-6,-1,-9,-14,14,10,0,-14]],
[x+1, [1,1], [-1,-3,1,-1,0,3,0,-4,3,-3,-5,5,-5,0,-6,2,-6,-14,-1,-9,14,14,-10,4,2]],
[x^2-x-4, [-1,1], [x,-x,x-2,1,4,x-4,-x+5,-x+5,-2*x+1,-2*x+7,3*x-2,-2*x-1,-3*x,4,-3*x-3,-4*x-2,-x-1,-2*x-8,-1,3*x-4,-x+11,6,2*x+12,7*x-3,-2*x-8]],
[x^2+x-4, [-1,1], [1,x,x,1,4,-x+4,2*x+2,2*x+2,-3*x,-3*x-2,-x-8,x-6,-x+4,4,-2,-4*x-2,-4*x-2,2*x+8,-1,x+8,-2,-6*x,-4*x-6,2*x+2,2*x-8]],
[x^3+x^2-3*x-1, [-1,-1], [x,-x^2+2,-3,1,-4,-2*x+1,3*x^2+2*x-3,2*x^2-6,x^2+2*x-4,2*x^2+2*x-7,x^2+4*x-2,-2*x^2-2*x+1,-6*x^2-6*x+11,-5*x^2-4*x+11,-4*x+2,-2*x^2-4*x-4,-x^2+4*x+5,2*x^2+6*x-2,1,-x^2-6*x+6,4*x^2+4*x-6,-3*x^2+4*x+11,2*x^2+4*x-12,2*x^2-6,-2*x^2-2*x+2]],
[x^3+3*x^2-3, [-1,-1], [x,-x-2,x^2+2*x,1,-3*x^2-4*x+3,-2*x^2-3*x+2,x^2+3*x-3,-3*x-4,-2*x-6,x^2-2*x-9,-2*x^2+5,3*x^2+3*x-7,x^2+4*x,3*x^2-10,5*x^2+12*x-3,-x^2+x+6,-x^2-2*x-9,-3*x^2-3*x+8,1,x^2+x-15,-x^2-6*x-4,2*x^2+6*x-4,2*x^2+2*x+6,7*x^2+11*x,-3*x+2]],
[x^5-2*x^4-5*x^3+9*x^2+3*x-4, [1,1], [x,-x,-x^2+2,-1,-x^4+6*x^2+x-8,2*x^4-2*x^3-10*x^2+7*x+4,-x^4+x^3+5*x^2-4*x-3,x^3-x^2-5*x+1,-2*x^4+3*x^3+9*x^2-10*x-7,x^4-3*x^3-5*x^2+13*x+3,x^4-3*x^2-3*x-2,-2*x^3+3*x^2+7*x-5,-2*x^4+4*x^3+9*x^2-12*x-4,x^4-3*x^3-5*x^2+15*x,-2*x^4+2*x^3+11*x^2-6*x-11,2*x^3-x^2-7*x+2,4*x^4-4*x^3-23*x^2+14*x+15,-2*x^4+2*x^3+7*x^2-7*x+4,-1,x^4-2*x^3-6*x^2+6*x+8,-2*x^4+3*x^3+8*x^2-12*x+3,2*x^3-10*x-2,2*x^4-4*x^3-8*x^2+12*x-4,3*x^4-4*x^3-16*x^2+16*x+5,-3*x^4+5*x^3+14*x^2-16*x]],
[x^7-x^6-12*x^5+9*x^4+43*x^3-17*x^2-44*x-11, [-1,1], [x,1/4*x^6-3*x^4+1/4*x^3+9*x^2-5/4*x-9/4,-1/4*x^6-1/2*x^5+5/2*x^4+21/4*x^3-5*x^2-51/4*x-9/4,1,1/2*x^6-5*x^4-3/2*x^3+12*x^2+13/2*x-1/2,-1/4*x^6+1/2*x^5+5/2*x^4-15/4*x^3-7*x^2+21/4*x+15/4,-1/2*x^6+x^5+5*x^4-17/2*x^3-14*x^2+31/2*x+19/2,-1/2*x^5+1/2*x^4+9/2*x^3-3*x^2-9*x-1/2,-3/4*x^6+x^5+8*x^4-35/4*x^3-22*x^2+67/4*x+51/4,-1/4*x^6-x^5+3*x^4+39/4*x^3-8*x^2-83/4*x-7/4,-1/4*x^6+2*x^4-1/4*x^3-4*x^2+5/4*x+25/4,1/4*x^6-x^4-7/4*x^3-4*x^2+35/4*x+43/4,-1/4*x^6-1/2*x^5+5/2*x^4+21/4*x^3-5*x^2-43/4*x-25/4,-3/2*x^6+x^5+15*x^4-15/2*x^3-38*x^2+27/2*x+27/2,1/2*x^5+3/2*x^4-11/2*x^3-11*x^2+12*x+33/2,-x^4+8*x^2-5,x^6-1/2*x^5-23/2*x^4+9/2*x^3+35*x^2-13*x-27/2,-1/2*x^6+1/2*x^5+9/2*x^4-4*x^3-8*x^2+13/2*x-1,-1,-3/4*x^6+9*x^4-3/4*x^3-26*x^2+23/4*x+31/4,x^6-x^5-10*x^4+9*x^3+27*x^2-22*x-22,-x^5+9*x^3-x^2-15*x-2,-1/2*x^5+1/2*x^4+11/2*x^3-14*x-19/2,5/2*x^6-27*x^4+1/2*x^3+72*x^2-13/2*x-35/2,3/2*x^5+1/2*x^4-31/2*x^3-5*x^2+37*x+23/2]],
[x^9+x^8-13*x^7-10*x^6+53*x^5+28*x^4-69*x^3-12*x^2+12*x+1, [1,-1], [x,1/2*x^6-5*x^4+3/2*x^3+12*x^2-11/2*x-3/2,-1/4*x^8-1/2*x^7+13/4*x^6+21/4*x^5-14*x^4-31/2*x^3+81/4*x^2+39/4*x-9/4,-1,-1/2*x^7-1/2*x^6+5*x^5+7/2*x^4-27/2*x^3-13/2*x^2+8*x+9/2,1/4*x^8-1/2*x^7-13/4*x^6+19/4*x^5+10*x^4-17/2*x^3-13/4*x^2-19/4*x+5/4,1/2*x^8+x^7-13/2*x^6-21/2*x^5+28*x^4+30*x^3-81/2*x^2-29/2*x+13/2,-1/4*x^8-1/2*x^7+15/4*x^6+25/4*x^5-17*x^4-20*x^3+85/4*x^2+29/4*x+5/4,-1/2*x^8-x^7+7*x^6+21/2*x^5-33*x^4-57/2*x^3+103/2*x^2+9*x-5,-x^8-1/2*x^7+13*x^6+5*x^5-101/2*x^4-14*x^3+115/2*x^2-3/2*x-8,-1/2*x^8+5*x^6-1/2*x^5-10*x^4-5/2*x^3-15/2*x^2+15*x+3,2*x^8+x^7-49/2*x^6-8*x^5+88*x^4+37/2*x^3-88*x^2+1/2*x+13/2,3/4*x^8+1/2*x^7-35/4*x^6-7/4*x^5+33*x^4-13/2*x^3-175/4*x^2+59/4*x+31/4,-1/2*x^8+1/2*x^7+7*x^6-9/2*x^5-55/2*x^4+15/2*x^3+30*x^2+3/2*x-6,3/4*x^8+1/2*x^7-41/4*x^6-23/4*x^5+41*x^4+17*x^3-171/4*x^2-3/4*x+1/4,x^8+x^7-14*x^6-11*x^5+62*x^4+33*x^3-86*x^2-15*x+7,7/4*x^8+3/2*x^7-89/4*x^6-55/4*x^5+87*x^4+33*x^3-411/4*x^2-7/4*x+53/4,-5/4*x^8-1/2*x^7+59/4*x^6+13/4*x^5-50*x^4-7*x^3+181/4*x^2+13/4*x-23/4,1,3/2*x^8+x^7-17*x^6-17/2*x^5+54*x^4+55/2*x^3-85/2*x^2-34*x+8,-1/2*x^8-x^7+13/2*x^6+21/2*x^5-27*x^4-30*x^3+67/2*x^2+37/2*x-1/2,-1/2*x^8+1/2*x^7+5*x^6-17/2*x^5-25/2*x^4+65/2*x^3+7*x^2-47/2*x,3/4*x^8+3/2*x^7-41/4*x^6-67/4*x^5+45*x^4+50*x^3-251/4*x^2-95/4*x+49/4,x^7-8*x^5+8*x^4+12*x^3-39*x^2+3*x+13,-3/4*x^8+3/2*x^7+33/4*x^6-77/4*x^5-22*x^4+61*x^3+35/4*x^2-129/4*x-5/4]]];

f[470,2]=[
[x+1, [1,1,1], [-1,1,-1,-1,-3,-5,2,-7,8,-2,-5,-4,12,8,-1,-4,-10,-11,-8,0,3,10,9,-18,12]],
[x-1, [1,-1,1], [-1,1,1,-1,3,5,6,-1,0,-6,5,8,0,8,-1,0,-6,5,-4,-12,5,2,-15,6,-16]],
[x+1, [1,-1,-1], [-1,-1,1,-1,1,-5,0,5,-6,-6,-11,-8,2,-2,1,-6,8,-5,2,12,-15,0,-1,14,6]],
[x-1, [-1,1,1], [1,1,-1,5,-3,5,0,-7,6,-6,5,8,-6,-10,-1,-6,-12,-1,2,0,-13,-16,9,6,2]],
[x+1, [-1,1,-1], [1,-1,-1,-3,-5,-1,2,-1,0,2,-7,0,-8,-4,1,12,6,-7,0,-16,11,10,-9,6,-16]],
[x+3, [-1,-1,1], [1,-3,1,-3,-1,-1,-8,-5,-2,-2,-5,-4,6,6,-1,2,-12,11,14,-4,-11,-4,5,14,-14]],
[x^2-x-5, [1,-1,1], [-1,x,1,4,x-3,-2*x+2,-4,-x,-x+1,-3*x+2,2*x-2,-3*x+1,-4*x+4,8,-1,x+9,-6,4*x-4,4*x+2,x+7,-3*x+8,x-14,x+9,-5*x-4,6*x-2]],
[x^3-6*x-1, [1,1,-1], [-1,x,-1,-x^2+x+5,-x^2+4,x^2+x-3,0,x+4,x-1,-x^2+7,-x^2-x+7,-3*x+5,2*x^2-2*x-6,-2*x^2-2*x+6,1,2*x^2-x-13,-2*x^2+2*x+12,-x^2-3*x+9,4*x^2-14,2*x^2+3*x-11,-2*x^2+x+6,-x^2+2*x+7,-x^2-2*x-6,x^2+2*x-9,2*x^2-4*x-8]],
[x^3-3*x^2-5*x+12, [-1,1,1], [1,x,-1,0,-x^2+8,-2*x+2,-2*x^2+2*x+10,-x+4,x^2-2*x-8,x-2,2*x^2-4*x-8,x^2+2*x-10,2*x^2-2*x-6,0,-1,x^2-2*x-10,2*x^2-2*x-12,-2*x^2+2*x+14,-2*x^2+6*x+8,-x^2-2*x+8,2*x^2-3*x-2,-2*x^2+x+20,-x^2+4*x-4,2*x^2-x-10,2*x+10]],
[x^3-2*x^2-4*x+7, [-1,-1,-1], [1,x,1,-x^2-x+5,x^2-4,-x^2+x+3,2*x^2-2*x-6,-2*x^2-x+10,4*x^2-x-13,-3*x^2+9,x^2-x-3,-2*x^2-x+5,-4,-4*x^2+16,1,-2*x^2+3*x+5,4*x-2,-x^2+3*x-3,6*x^2-2*x-20,3*x-9,6*x^2-x-18,-3*x^2+13,-x^2+8,5*x^2+2*x-21,2*x-2]]];

f[471,2]=[
[x+1, [1,1], [-1,-1,-2,3,0,1,-3,-2,-9,0,-2,1,-2,1,0,-6,-1,8,2,-12,-14,-8,4,-13,0]],
[x^2+x-1, [-1,-1], [x,1,-1,-3,-3*x-2,-x-2,2*x-1,2*x-2,1,-x-1,7*x+2,-2*x+2,2*x-7,-2*x-10,-3*x+7,4*x+2,10*x+6,2*x-7,5*x+4,-3*x-2,-9*x-10,-10*x-5,7*x+10,-13*x-6,2*x-3]],
[x^3-4*x+1, [1,1], [x,-1,-x^2-x+2,-1,-x^2+1,2*x^2-x-6,-3,2*x^2-4,-2*x+1,2*x^2+3*x-11,x^2-3,-x^2+3*x+1,-x^2+x-4,-x^2-x+9,x-3,4*x+6,x^2+x-9,-3*x^2+x,-3*x^2+2*x+15,-x^2+5,-x^2+3,-5*x^2-5*x+12,-x^2-4*x+1,2*x^2-5*x-8,-3*x^2-7*x+8]],
[x^9-2*x^8-11*x^7+19*x^6+39*x^5-53*x^4-49*x^3+45*x^2+14*x-1, [1,-1], [x,-1,-8/59*x^8+41/59*x^7+41/59*x^6-376/59*x^5+37/59*x^4+950/59*x^3-143/59*x^2-599/59*x-47/59,-31/59*x^8+63/59*x^7+299/59*x^6-513/59*x^5-867/59*x^4+1041/59*x^3+825/59*x^2-411/59*x-160/59,15/59*x^8-40/59*x^7-158/59*x^6+410/59*x^5+528/59*x^4-1324/59*x^3-580/59*x^2+1396/59*x+125/59,17/59*x^8-6/59*x^7-242/59*x^6+32/59*x^5+1094/59*x^4+2/59*x^3-1562/59*x^2+56/59*x+299/59,-45/59*x^8+61/59*x^7+533/59*x^6-581/59*x^5-1997/59*x^4+1671/59*x^3+2389/59*x^2-1533/59*x-198/59,9/59*x^8-24/59*x^7-83/59*x^6+246/59*x^5+246/59*x^4-818/59*x^3-407/59*x^2+932/59*x+311/59,3/59*x^8-8/59*x^7-67/59*x^6+141/59*x^5+377/59*x^4-607/59*x^3-647/59*x^2+586/59*x+320/59,-24/59*x^8+64/59*x^7+241/59*x^6-597/59*x^5-715/59*x^4+1493/59*x^3+515/59*x^2-912/59*x+331/59,-38/59*x^8+62/59*x^7+475/59*x^6-606/59*x^5-1904/59*x^4+1710/59*x^3+2433/59*x^2-1444/59*x-356/59,17/59*x^8-6/59*x^7-183/59*x^6-86/59*x^5+622/59*x^4+828/59*x^3-677/59*x^2-1124/59*x+63/59,2/59*x^8-25/59*x^7-25/59*x^6+330/59*x^5+153/59*x^4-1270/59*x^3-451/59*x^2+1197/59*x+469/59,-50/59*x^8+94/59*x^7+566/59*x^6-934/59*x^5-1996/59*x^4+2722/59*x^3+2248/59*x^2-2372/59*x-574/59,-16/59*x^8+23/59*x^7+141/59*x^6-221/59*x^5-221/59*x^4+661/59*x^3-345/59*x^2-667/59*x+319/59,-1/59*x^8+42/59*x^7-76/59*x^6-401/59*x^5+720/59*x^4+1107/59*x^3-1574/59*x^2-982/59*x+503/59,78/59*x^8-149/59*x^7-798/59*x^6+1306/59*x^5+2486/59*x^4-3156/59*x^3-2544/59*x^2+2197/59*x+532/59,93/59*x^8-189/59*x^7-1015/59*x^6+1775/59*x^5+3545/59*x^4-4775/59*x^3-4127/59*x^2+3475/59*x+598/59,27/59*x^8-72/59*x^7-308/59*x^6+738/59*x^5+1210/59*x^4-2336/59*x^3-1752/59*x^2+2442/59*x+107/59,-9/59*x^8+24/59*x^7+142/59*x^6-364/59*x^5-718/59*x^4+1644/59*x^3+1174/59*x^2-1994/59*x-311/59,31/59*x^8-122/59*x^7-240/59*x^6+1162/59*x^5+454/59*x^4-3106/59*x^3-294/59*x^2+2004/59*x+337/59,-35/59*x^8+113/59*x^7+231/59*x^6-937/59*x^5-111/59*x^4+2047/59*x^3-751/59*x^2-1271/59*x-36/59,-13/59*x^8+15/59*x^7+192/59*x^6-198/59*x^5-906/59*x^4+644/59*x^3+1486/59*x^2-317/59*x-423/59,-27/59*x^8+72/59*x^7+190/59*x^6-502/59*x^5-148/59*x^4+566/59*x^3-726/59*x^2+390/59*x+719/59,45/59*x^8-61/59*x^7-533/59*x^6+581/59*x^5+1997/59*x^4-1789/59*x^3-2153/59*x^2+2123/59*x-274/59]],
[x^12+x^11-20*x^10-17*x^9+149*x^8+106*x^7-500*x^6-294*x^5+711*x^4+349*x^3-290*x^2-173*x-15, [-1,1], [x,1,x^11-21*x^9+x^8+162*x^7-14*x^6-553*x^5+64*x^4+776*x^3-100*x^2-285*x-25,1/2*x^11+1/2*x^10-19/2*x^9-7*x^8+68*x^7+32*x^6-222*x^5-49*x^4+615/2*x^3+19/2*x^2-219/2*x-16,x^10+3*x^9-14*x^8-42*x^7+66*x^6+194*x^5-120*x^4-322*x^3+75*x^2+137*x+18,-x^11-3/2*x^10+35/2*x^9+41/2*x^8-115*x^7-90*x^6+348*x^5+128*x^4-462*x^3-33/2*x^2+317/2*x+37/2,-x^11+1/2*x^10+45/2*x^9-15/2*x^8-183*x^7+40*x^6+650*x^5-94*x^4-938*x^3+195/2*x^2+723/2*x+89/2,x^10+3*x^9-14*x^8-42*x^7+67*x^6+194*x^5-130*x^4-320*x^3+100*x^2+129*x+10,3/2*x^11-1/2*x^10-69/2*x^9+7*x^8+287*x^7-38*x^6-1044*x^5+113*x^4+3077/2*x^3-355/2*x^2-1163/2*x-58,-x^10-4*x^9+13*x^8+57*x^7-56*x^6-270*x^5+96*x^4+462*x^3-75*x^2-195*x-23,x^6-10*x^4+4*x^3+25*x^2-18*x-8,4*x^11+5/2*x^10-157/2*x^9-65/2*x^8+573*x^7+127*x^6-1876*x^5-110*x^4+2567*x^3-271/2*x^2-1843/2*x-205/2,-x^11-2*x^10+17*x^9+29*x^8-108*x^7-140*x^6+315*x^5+244*x^4-400*x^3-102*x^2+117*x+21,-1/2*x^11-1/2*x^10+17/2*x^9+6*x^8-52*x^7-22*x^6+136*x^5+27*x^4-287/2*x^3-35/2*x^2+93/2*x+15,-2*x^11-x^10+40*x^9+13*x^8-296*x^7-50*x^6+976*x^5+36*x^4-1334*x^3+79*x^2+476*x+47,-2*x^11-2*x^10+38*x^9+27*x^8-272*x^7-114*x^6+889*x^5+134*x^4-1239*x^3+54*x^2+446*x+43,1/2*x^11+7/2*x^10-3/2*x^9-49*x^8-43*x^7+228*x^6+286*x^5-391*x^4-1061/2*x^3+393/2*x^2+519/2*x+30,3*x^11+x^10-62*x^9-13*x^8+474*x^7+46*x^6-1616*x^5+4*x^4+2283*x^3-173*x^2-842*x-89,-5*x^11-3*x^10+99*x^9+39*x^8-730*x^7-150*x^6+2416*x^5+104*x^4-3333*x^3+245*x^2+1183*x+109,-4*x^11-x^10+83*x^9+12*x^8-636*x^7-32*x^6+2166*x^5-72*x^4-3036*x^3+297*x^2+1093*x+98,x^10+3*x^9-14*x^8-42*x^7+66*x^6+192*x^5-124*x^4-306*x^3+99*x^2+111*x+4,-5*x^11-4*x^10+97*x^9+54*x^8-704*x^7-226*x^6+2310*x^5+250*x^4-3191*x^3+150*x^2+1135*x+122,x^11-22*x^9+177*x^7-2*x^6-628*x^5+22*x^4+915*x^3-60*x^2-359*x-48,2*x^11+5/2*x^10-73/2*x^9-69/2*x^8+249*x^7+154*x^6-770*x^5-226*x^4+1013*x^3+55/2*x^2-679/2*x-77/2,2*x^11+3*x^10-36*x^9-42*x^8+244*x^7+192*x^6-758*x^5-298*x^4+1012*x^3+67*x^2-334*x-40]]];

f[472,2]=[
[x+3, [1,1], [0,-3,-1,3,-4,6,-6,-7,-6,-3,8,2,3,-12,-2,-5,-1,-4,-8,8,-10,5,6,-4,-14]],
[x-4, [1,-1], [0,-1,-1,1,4,2,2,3,6,5,4,-6,3,8,-2,11,1,0,-8,-8,-6,-1,6,-16,-10]],
[x-2, [1,-1], [0,2,2,1,1,-1,-1,0,0,-4,4,3,-3,-1,10,-4,1,-6,4,13,-6,-1,-3,2,-10]],
[x-3, [-1,1], [0,3,-3,3,6,-6,-2,-1,8,-1,-2,-4,-1,-10,6,5,-1,-8,2,-4,-8,-11,-10,-16,-4]],
[x, [-1,-1], [0,-1,-1,1,0,-2,-6,3,-6,-3,-4,-2,-5,0,2,3,1,12,4,0,-6,15,-14,12,6]],
[x^4+x^3-5*x^2+1, [1,1], [0,x,x^3+x^2-6*x-1,-2*x^3-3*x^2+8*x,2*x^2+2*x-6,2*x^3+2*x^2-8*x-2,-3*x^3-4*x^2+11*x+2,x^3+x^2-4*x-1,2*x^3-12*x+2,2*x^3+3*x^2-6*x-4,2*x^2+4*x-8,-2*x^3-4*x^2+10*x+4,2*x^3+2*x^2-9*x+2,-2*x^2-4*x+4,-2*x^3+10*x-6,2*x^2+5*x-8,-1,-2*x^3-2*x^2+8*x+4,-4*x^3-8*x^2+14*x+8,5*x^3+4*x^2-29*x,-2*x^3+12*x+2,2*x^3+4*x^2-5*x-2,-4*x^3-6*x^2+18*x+6,6*x^3+6*x^2-28*x,-2*x+10]],
[x^6+x^5-15*x^4-16*x^3+51*x^2+30*x-56, [-1,1], [0,x,x^4-12*x^2-4*x+22,1/2*x^5+3/2*x^4-13/2*x^3-20*x^2+15/2*x+30,-1/2*x^5-3/2*x^4+13/2*x^3+19*x^2-15/2*x-26,-1/2*x^5-3/2*x^4+13/2*x^3+19*x^2-15/2*x-24,-1/2*x^5-3/2*x^4+11/2*x^3+21*x^2-1/2*x-32,-2*x^5-3*x^4+24*x^3+46*x^2-28*x-68,-2*x,x^5+3*x^4-13*x^3-39*x^2+15*x+58,2*x^4-24*x^2-10*x+40,-5/2*x^5-7/2*x^4+61/2*x^3+53*x^2-83/2*x-72,1/2*x^5-1/2*x^4-13/2*x^3+3*x^2+33/2*x-4,5/2*x^5+11/2*x^4-61/2*x^3-77*x^2+63/2*x+114,-x^5-x^4+13*x^3+16*x^2-25*x-20,2*x^5+4*x^4-24*x^3-56*x^2+23*x+82,-1,-2*x^4+24*x^2+12*x-42,-2*x^4+26*x^2+8*x-52,-1/2*x^5-3/2*x^4+11/2*x^3+21*x^2-1/2*x-34,-2*x^5-4*x^4+24*x^3+58*x^2-24*x-86,5/2*x^5+7/2*x^4-61/2*x^3-53*x^2+77/2*x+66,-1/2*x^5-7/2*x^4+13/2*x^3+45*x^2+5/2*x-74,-2*x^4+24*x^2+8*x-38,2*x^4-26*x^2-8*x+50]]];

f[473,2]=[
[x+2, [1,1], [-2,1,-1,0,-1,-2,6,-8,-1,6,-1,-3,-4,-1,-8,-14,9,-4,9,-13,-16,16,-6,-7,13]],
[x^2+x-1, [1,1], [x+1,-2,-2*x,2*x+1,-1,-4*x-2,-2*x-4,2*x-1,2*x-5,8*x+3,-2*x-7,4*x+2,10,-1,2*x-5,8*x-1,2*x+9,-13,2*x+3,12,2,-10*x-8,-10*x-10,-8*x+2,-3]],
[x^2+2*x-4, [-1,-1], [-1/2*x,x,-x,x-1,1,-6,-2,x+1,-x-7,-5,x+3,-3*x,3*x,1,x+9,-1,x+11,-2*x-5,3*x+1,-2*x,-4*x-10,-2*x-2,4,3*x+8,2*x+5]],
[x^5-x^4-6*x^3+5*x^2+x-1, [1,1], [x,2*x^4-x^3-13*x^2+4*x+4,-5*x^4+2*x^3+31*x^2-7*x-9,x^3-x^2-6*x,-1,3*x^4-x^3-18*x^2+3*x+3,7*x^4-4*x^3-43*x^2+14*x+11,-9*x^4+2*x^3+57*x^2-5*x-18,-4*x^4+3*x^3+25*x^2-14*x-7,-9*x^4+3*x^3+57*x^2-7*x-17,-12*x^4+4*x^3+75*x^2-8*x-25,10*x^4-4*x^3-63*x^2+13*x+15,7*x^4-5*x^3-42*x^2+22*x+5,-1,10*x^4-3*x^3-63*x^2+5*x+19,11*x^4-3*x^3-70*x^2+5*x+25,13*x^4-5*x^3-80*x^2+17*x+13,-7*x^4+4*x^3+41*x^2-13*x+1,4*x^4-2*x^3-24*x^2+4*x-1,x^4+2*x^3-9*x^2-15*x+10,-10*x^4+5*x^3+59*x^2-20*x-7,-5*x^4+3*x^3+32*x^2-12*x-15,-12*x^4+6*x^3+75*x^2-19*x-19,-3*x^4+x^3+19*x^2-10,-17*x^4+4*x^3+107*x^2-6*x-38]],
[x^5+3*x^4-4*x^3-13*x^2+3*x+9, [-1,-1], [x,-2/3*x^4-x^3+11/3*x^2+8/3*x-4,1/3*x^4-7/3*x^2-1/3*x+1,2/3*x^4+x^3-11/3*x^2-8/3*x+2,1,-1/3*x^4-x^3-2/3*x^2+7/3*x+3,x^4+2*x^3-3*x^2-4*x-3,1/3*x^4+2*x^3+5/3*x^2-13/3*x-6,-2/3*x^4-x^3+11/3*x^2+14/3*x-1,1/3*x^4+x^3-7/3*x^2-19/3*x+5,-x^2-1,-2*x^3-5*x^2+7*x+9,-1/3*x^4-3*x^3-8/3*x^2+22/3*x+7,1,-2/3*x^4-3*x^3-1/3*x^2+29/3*x-3,5/3*x^4+5*x^3-14/3*x^2-47/3*x+3,-5/3*x^4-x^3+32/3*x^2+5/3*x-13,x^4+2*x^3-5*x^2-7*x+3,-2*x^3+8*x-9,-7/3*x^4-2*x^3+43/3*x^2+7/3*x-16,-8/3*x^4-5*x^3+41/3*x^2+38/3*x-15,x^4+x^3-6*x^2+7,2/3*x^4+2*x^3-5/3*x^2-11/3*x-1,5/3*x^4+x^3-23/3*x^2+10/3*x+6,-x^4-4*x^3-x^2+10*x+2]],
[x^9-4*x^8-5*x^7+36*x^6-20*x^5-65*x^4+66*x^3+4*x^2-8*x+1, [-1,1], [x,x^8-3*x^7-7*x^6+27*x^5-2*x^4-49*x^3+33*x^2+4*x-3,-5*x^8+18*x^7+31*x^6-165*x^5+45*x^4+320*x^3-224*x^2-69*x+21,2*x^8-8*x^7-11*x^6+74*x^5-31*x^4-148*x^3+115*x^2+40*x-9,1,4*x^8-14*x^7-26*x^6+128*x^5-25*x^4-245*x^3+158*x^2+43*x-13,-x^8+14*x^6-61*x^4-x^3+81*x^2+7*x-3,-4*x^8+16*x^7+21*x^6-147*x^5+71*x^4+287*x^3-246*x^2-66*x+24,-8*x^8+28*x^7+51*x^6-257*x^5+60*x^4+500*x^3-340*x^2-109*x+35,5*x^8-16*x^7-35*x^6+147*x^5-9*x^4-287*x^3+158*x^2+63*x-11,5*x^8-19*x^7-29*x^6+174*x^5-63*x^4-336*x^3+256*x^2+71*x-21,-x^7+2*x^6+10*x^5-18*x^4-26*x^3+34*x^2+21*x-4,-8*x^8+26*x^7+55*x^6-237*x^5+23*x^4+450*x^3-267*x^2-77*x+25,-1,-6*x^8+24*x^7+32*x^6-220*x^5+102*x^4+425*x^3-361*x^2-85*x+33,-4*x^8+20*x^7+14*x^6-185*x^5+134*x^4+369*x^3-359*x^2-98*x+26,x^8-14*x^6+x^5+62*x^4-8*x^3-87*x^2+9*x+6,-2*x^8+11*x^7+5*x^6-102*x^5+84*x^4+205*x^3-206*x^2-59*x+15,-3*x^8+12*x^7+16*x^6-110*x^5+50*x^4+215*x^3-174*x^2-57*x+15,x^8-12*x^7+11*x^6+110*x^5-164*x^4-214*x^3+327*x^2+54*x-27,7*x^8-31*x^7-31*x^6+284*x^5-175*x^4-549*x^3+520*x^2+115*x-45,x^8-2*x^7-9*x^6+17*x^5+17*x^4-25*x^3-7*x^2-8*x+5,19*x^8-69*x^7-116*x^6+632*x^5-188*x^4-1219*x^3+886*x^2+240*x-80,14*x^8-53*x^7-82*x^6+486*x^5-169*x^4-943*x^3+702*x^2+204*x-61,x^8+2*x^7-16*x^6-20*x^5+79*x^4+49*x^3-115*x^2-25*x+10]],
[x^11+x^10-17*x^9-15*x^8+102*x^7+77*x^6-255*x^5-150*x^4+248*x^3+59*x^2-93*x+18, [1,-1], [x,-19/18*x^10-11/9*x^9+311/18*x^8+56/3*x^7-293/3*x^6-1769/18*x^5+655/3*x^4+601/3*x^3-1465/9*x^2-1829/18*x+136/3,-7/9*x^10-10/9*x^9+116/9*x^8+52/3*x^7-223/3*x^6-836/9*x^5+515/3*x^4+572/3*x^3-1214/9*x^2-878/9*x+125/3,-1/3*x^10-1/3*x^9+17/3*x^8+5*x^7-33*x^6-77/3*x^5+74*x^4+50*x^3-149/3*x^2-59/3*x+10,-1,1/3*x^10+1/3*x^9-17/3*x^8-5*x^7+34*x^6+77/3*x^5-84*x^4-51*x^3+224/3*x^2+80/3*x-18,10/9*x^10+13/9*x^9-167/9*x^8-67/3*x^7+322/3*x^6+1076/9*x^5-740/3*x^4-749/3*x^3+1733/9*x^2+1199/9*x-176/3,2/3*x^10+2/3*x^9-34/3*x^8-10*x^7+67*x^6+157/3*x^5-159*x^4-109*x^3+394/3*x^2+172/3*x-32,8/9*x^10+14/9*x^9-130/9*x^8-74/3*x^7+245/3*x^6+1201/9*x^5-556/3*x^4-820/3*x^3+1300/9*x^2+1285/9*x-157/3,-31/18*x^10-26/9*x^9+515/18*x^8+134/3*x^7-497/3*x^6-4277/18*x^5+1159/3*x^4+1471/3*x^3-2854/9*x^2-4859/18*x+325/3,5/3*x^10+8/3*x^9-82/3*x^8-41*x^7+155*x^6+649/3*x^5-349*x^4-440*x^3+808/3*x^2+688/3*x-89,1/3*x^10+1/3*x^9-17/3*x^8-6*x^7+34*x^6+113/3*x^5-85*x^4-92*x^3+242/3*x^2+182/3*x-27,-1/3*x^10-1/3*x^9+17/3*x^8+5*x^7-33*x^6-80/3*x^5+76*x^4+60*x^3-191/3*x^2-122/3*x+20,1,-1/3*x^10-1/3*x^9+17/3*x^8+5*x^7-34*x^6-77/3*x^5+85*x^4+51*x^3-239/3*x^2-80/3*x+20,-11/18*x^10-13/9*x^9+181/18*x^8+67/3*x^7-172/3*x^6-2125/18*x^5+389/3*x^4+719/3*x^3-905/9*x^2-2353/18*x+131/3,-4/3*x^10-7/3*x^9+65/3*x^8+35*x^7-122*x^6-539/3*x^5+275*x^4+356*x^3-665/3*x^2-551/3*x+83,5/2*x^10+4*x^9-83/2*x^8-61*x^7+239*x^6+637/2*x^5-548*x^4-639*x^3+428*x^2+653/2*x-139,8/3*x^10+8/3*x^9-133/3*x^8-40*x^7+254*x^6+622/3*x^5-572*x^4-419*x^3+1270/3*x^2+607/3*x-101,13/9*x^10+16/9*x^9-218/9*x^8-82/3*x^7+421/3*x^6+1307/9*x^5-968/3*x^4-902/3*x^3+2315/9*x^2+1403/9*x-245/3,-1/6*x^10-2/3*x^9+17/6*x^8+11*x^7-19*x^6-365/6*x^5+63*x^4+127*x^3-280/3*x^2-509/6*x+45,-7/6*x^10-8/3*x^9+119/6*x^8+42*x^7-119*x^6-1361/6*x^5+295*x^4+473*x^3-823/3*x^2-1625/6*x+117,-11/18*x^10-13/9*x^9+199/18*x^8+70/3*x^7-214/3*x^6-2323/18*x^5+575/3*x^4+821/3*x^3-1706/9*x^2-2821/18*x+203/3,8/9*x^10+14/9*x^9-130/9*x^8-77/3*x^7+248/3*x^6+1300/9*x^5-589/3*x^4-925/3*x^3+1588/9*x^2+1618/9*x-229/3,7/2*x^10+4*x^9-115/2*x^8-60*x^7+326*x^6+619/2*x^5-729*x^4-619*x^3+539*x^2+611/2*x-136]]];

f[474,2]=[
[x-2, [1,1,1], [-1,-1,2,-3,-5,-1,5,-6,3,-5,-4,-8,-2,-5,0,2,-2,-12,14,10,-9,-1,9,-12,7]],
[x+2, [1,-1,-1], [-1,1,-2,-1,-5,-1,-1,-2,-5,1,0,4,-6,1,4,-2,-6,0,-10,6,7,1,-15,4,-1]],
[x^2+x-7, [1,1,-1], [-1,-1,x,x+1,0,0,-x-2,-x+5,x+1,0,6,x+4,-x+1,8,2*x,-4*x-2,-x+4,3*x+4,-3*x,6,x-6,1,-2*x-6,-4*x-4,-3*x-9]],
[x^2-3*x+1, [1,-1,1], [-1,1,x,3*x-5,4,-4*x+4,x+2,-5*x+9,-7*x+9,4,-2,3*x-12,x+3,4*x-4,-6*x+16,4*x-14,-3*x+8,x-4,5*x-4,4*x-2,-11*x+18,-1,10*x-14,4*x-16,-7*x-1]],
[x^3-3*x^2-x+2, [-1,-1,-1], [1,1,x,-x+1,-x^2+x+3,x^2-x-3,3*x^2-8*x-3,-3*x^2+8*x+2,-3*x+3,-3*x^2+7*x+5,2*x^2-6*x-4,-2*x^2+5*x+2,-x^2+4*x+2,3*x^2-7*x-9,4*x^2-6*x-8,2,7*x-8,-6*x^2+15*x+6,-x-4,-4*x^2+4*x+10,5*x^2-14*x-9,1,3*x^2-5*x-7,-4*x^2+8*x+4,2*x^2-11*x+1]],
[x^4-x^3-19*x^2+20*x-4, [-1,1,1], [1,-1,x,3/4*x^3-1/4*x^2-59/4*x+15/2,-5/4*x^3+3/4*x^2+93/4*x-25/2,-1/4*x^3-1/4*x^2+17/4*x+7/2,-1/4*x^3-1/4*x^2+21/4*x+3/2,1/2*x^3-1/2*x^2-21/2*x+9,3/4*x^3-1/4*x^2-59/4*x+15/2,1/4*x^3+1/4*x^2-17/4*x+1/2,-x^3+x^2+19*x-14,-1/2*x^3-1/2*x^2+19/2*x+3,2*x^3-x^2-38*x+18,5/4*x^3-3/4*x^2-93/4*x+25/2,-2*x-4,-2,-3/2*x^3+1/2*x^2+57/2*x-21,-5/2*x^3+3/2*x^2+99/2*x-29,-3/2*x^3+1/2*x^2+61/2*x-17,-3/2*x^3+1/2*x^2+55/2*x-11,3/4*x^3+3/4*x^2-55/4*x-1/2,-1,1/4*x^3+1/4*x^2-25/4*x-11/2,3/2*x^3-1/2*x^2-55/2*x+13,7/4*x^3-5/4*x^2-127/4*x+39/2]]];

f[475,2]=[
[x, [1,-1], [0,2,0,1,3,4,3,1,0,6,-4,-2,-6,1,3,-12,-6,-1,4,6,7,8,-12,12,-8]],
[x-1, [-1,-1], [1,0,0,-2,-4,2,-4,1,6,-6,-4,10,-10,-2,6,-10,0,2,-8,4,-4,4,18,-2,-6]],
[x+1, [-1,-1], [-1,0,0,2,-4,-2,4,1,-6,-6,-4,-10,-10,2,-6,10,0,2,8,4,4,4,-18,-2,6]],
[x^3+x^2-3*x-1, [1,1], [x,x^2-3,0,-2*x^2-2*x+4,2*x-2,-x^2-2*x-1,2*x^2+4*x-4,-1,2*x+2,2*x^2-8,-4*x,-x^2-2*x-5,2*x^2+4*x-4,6*x^2+2*x-12,-2*x^2-2*x+4,x^2+2*x-7,-2*x^2-2,-2*x^2-6*x+2,-x^2+4*x+3,-4*x^2+8,-2*x^2+4,6*x^2-14,-2*x+10,6*x^2+4*x-12,5*x^2-2*x-19]],
[x^3+4*x^2+3*x-1, [1,1], [x,x^2+3*x,0,x^2+x-2,-3*x^2-7*x+1,-x^2-2*x-1,-x^2-5*x-4,-1,-x-4,5*x^2+15*x+1,-3*x^2-4*x+3,-x^2-5*x-5,8*x^2+19*x-1,-6*x^2-16*x-3,x^2+4*x+1,4*x^2+14*x-1,-2*x^2+10,x^2+6*x-1,5*x^2+19*x+9,2*x^2-13,-8*x^2-15*x+7,-3*x^2-9*x+4,-5*x-11,-6*x^2-11*x+6,-x^2-2*x-1]],
[x^3-2*x^2-3*x+5, [1,-1], [x,x^2-x-2,0,-x^2+x+4,-x^2+x+3,-3*x^2+11,x^2-x+2,1,-2*x^2-x+10,-x^2+x+1,3*x^2-2*x-9,5*x^2-3*x-13,-2*x^2-3*x+9,2*x^2+4*x-11,x^2+4*x-3,-2*x^2+17,2*x^2-4*x-6,x^2-2*x-1,-x^2-3*x+1,2*x+1,2*x^2+x-7,5*x^2-x-22,6*x^2-9*x-13,-2*x^2-3*x+2,-3*x^2+4*x+3]],
[x^3-4*x^2+3*x+1, [-1,1], [x,-x^2+3*x,0,-x^2+x+2,-3*x^2+7*x+1,x^2-2*x+1,x^2-5*x+4,-1,-x+4,5*x^2-15*x+1,-3*x^2+4*x+3,x^2-5*x+5,8*x^2-19*x-1,6*x^2-16*x+3,-x^2+4*x-1,-4*x^2+14*x+1,-2*x^2+10,x^2-6*x-1,-5*x^2+19*x-9,2*x^2-13,8*x^2-15*x-7,-3*x^2+9*x+4,-5*x+11,-6*x^2+11*x+6,x^2-2*x+1]],
[x^3+2*x^2-3*x-5, [-1,-1], [x,-x^2-x+2,0,x^2+x-4,-x^2-x+3,3*x^2-11,-x^2-x-2,1,2*x^2-x-10,-x^2-x+1,3*x^2+2*x-9,-5*x^2-3*x+13,-2*x^2+3*x+9,-2*x^2+4*x+11,-x^2+4*x+3,2*x^2-17,2*x^2+4*x-6,x^2+2*x-1,x^2-3*x-1,-2*x+1,-2*x^2+x+7,5*x^2+x-22,-6*x^2-9*x+13,-2*x^2+3*x+2,3*x^2+4*x-3]],
[x^4-2*x^3-6*x^2+8*x+9, [1,-1], [x,-x^3+5*x+2,0,2*x^2-2*x-8,2*x^2-2*x-6,x^3-2*x^2-3*x+4,2*x^3-10*x-6,1,-2*x^3+2*x^2+8*x,-2*x^3+10*x+6,-2*x^3-2*x^2+10*x+14,x^3-3*x-2,-2*x^2+12,2*x^2-2*x-8,-2*x^2-2*x+12,-x^3+3*x+6,2*x^2-4*x-6,4*x^2-2*x-10,-3*x^3+2*x^2+15*x+4,-2*x^3-2*x^2+14*x+6,-2*x^3+10*x-2,2*x^2-4*x-10,2*x^3+2*x^2-12*x-12,2*x^3-6*x-6,-x^3-4*x^2+7*x+10]],
[x^6-10*x^4+27*x^2-16, [-1,1], [x,-1/2*x^5+4*x^3-13/2*x,0,-1/4*x^5+5/2*x^3-19/4*x,x^4-6*x^2+5,-x^3+5*x,-1/4*x^5+1/2*x^3+13/4*x,-1,1/2*x^5-3*x^3+3/2*x,6,2*x^4-14*x^2+16,1/2*x^5-4*x^3+9/2*x,-2*x^4+14*x^2-14,1/4*x^5-5/2*x^3+19/4*x,-5/4*x^5+17/2*x^3-47/4*x,-x^3+x,-2*x^2+10,-3*x^4+20*x^2-23,2*x^5-17*x^3+29*x,2*x^2+2,5/4*x^5-21/2*x^3+79/4*x,2*x^4-14*x^2+12,-1/2*x^5+3*x^3+5/2*x,-2*x^4+20*x^2-32,-x^3+5*x]]];

f[476,2]=[
[x^2+x-3, [-1,1,1], [0,x,x+1,-1,4,2*x,-1,-2*x+4,4,-4*x,-x+5,-6*x-4,5*x,x-2,2*x+2,x+3,-8,-5*x+4,x+5,-2*x-8,-5*x-4,2*x+2,-4*x-6,-6*x-6,x-11]],
[x^2+x-1, [-1,1,-1], [0,x,-x-1,-1,-2*x-4,-2*x-2,1,4*x-2,6*x+2,6*x+4,-7*x-5,-4*x-6,5*x+8,5*x-4,4*x-2,-11*x-7,0,7*x+4,5*x-5,-8*x-2,3*x+12,-8*x-10,-12*x-4,2,-5*x+7]],
[x^2+3*x-1, [-1,-1,1], [0,x,-x-3,1,2*x+4,-2*x-6,-1,-6,-2*x-2,-2*x-8,x-7,4*x+6,5*x+8,-x-4,10,-x+1,4*x+4,-x-4,-x+3,-2,-5*x-12,-6,4*x+8,-2,3*x-3]],
[x^2-x-3, [-1,-1,-1], [0,x,x-1,1,0,-2*x+4,1,-2*x+4,0,0,-x+3,2*x,-3*x,-x+6,-2*x+2,-x-5,-4*x+4,3*x-4,-x-3,6*x,3*x-4,-2*x+10,6,2*x-14,x-5]]];

f[477,2]=[
[x-1, [-1,-1], [1,0,0,-4,0,-3,3,-5,-7,7,4,5,-6,-2,2,1,2,-8,-12,-1,-4,-1,1,14,1]],
[x^3-x^2-3*x+1, [-1,1], [x,0,-x^2+3,x^2-1,-x^2+2*x+3,1,2*x+1,-x+4,-2*x^2-x+4,3*x^2-4*x-4,-x^2-4*x+3,x^2-6*x-2,-2*x+4,-3*x^2+6*x+11,2*x^2-4*x,-1,-4*x^2+2*x+8,3*x^2+2*x-11,3*x^2-6*x-3,3*x^2-7*x-3,x^2-4*x+1,5*x^2-3*x-13,3*x-10,4*x^2+4*x-10,5*x^2-12]],
[x^4+3*x^3-x^2-5*x+1, [1,1], [x,0,-x^3-3*x^2+2,x^3+3*x^2-3,2*x^2+2*x-6,x^3-x^2-6*x+2,2*x^3+4*x^2-4*x-6,-2*x^3-4*x^2+2*x+2,-x^3-x^2+2*x-3,-2*x^3-4*x^2+2*x,2*x^3+6*x^2+2*x-4,-3*x^3-5*x^2+6*x+1,3*x^3+3*x^2-8*x+1,x^3+5*x^2+6*x-6,2*x^3+6*x^2+2*x-10,-1,-2*x^3-8*x^2+2*x+12,-2*x^3-4*x^2+8*x+8,-6*x^3-12*x^2+12*x+12,3*x^3+15*x^2+8*x-18,-2*x^3-12*x^2-10*x+14,2*x^3-6*x+4,3*x^3+3*x^2-12*x-10,-2*x^3-6*x^2-2*x+6,-5*x^3-11*x^2+6*x+10]],
[x^4-3*x^3-x^2+5*x+1, [1,-1], [x,0,-x^3+3*x^2-2,-x^3+3*x^2-3,-2*x^2+2*x+6,-x^3-x^2+6*x+2,2*x^3-4*x^2-4*x+6,2*x^3-4*x^2-2*x+2,-x^3+x^2+2*x+3,-2*x^3+4*x^2+2*x,-2*x^3+6*x^2-2*x-4,3*x^3-5*x^2-6*x+1,3*x^3-3*x^2-8*x-1,-x^3+5*x^2-6*x-6,2*x^3-6*x^2+2*x+10,1,-2*x^3+8*x^2+2*x-12,2*x^3-4*x^2-8*x+8,6*x^3-12*x^2-12*x+12,3*x^3-15*x^2+8*x+18,2*x^3-12*x^2+10*x+14,-2*x^3+6*x+4,3*x^3-3*x^2-12*x+10,-2*x^3+6*x^2-2*x-6,5*x^3-11*x^2-6*x+10]],
[x^4+3*x^3-x^2-7*x-3, [-1,-1], [x,0,-x^3-x^2+2*x,-x^3-3*x^2+2*x+5,4*x^3+6*x^2-12*x-12,3*x^3+5*x^2-8*x-10,-4*x^3-8*x^2+10*x+12,2*x^2+4*x-4,-x^3-x^2+6*x+3,4*x^3+6*x^2-12*x-12,2*x^2-2*x-10,-x^3-3*x^2+4*x+5,-x^3+3*x^2+8*x-9,3*x^3+3*x^2-12*x-10,-4*x^3-6*x^2+14*x+12,1,-2*x^3-8*x^2+12,2*x^3+6*x^2-6*x-10,-4*x^2-2*x+8,-x^3+x^2+6*x,-8*x^3-14*x^2+20*x+26,-2*x^2+8,-x^3-3*x^2-2*x,2*x^3+8*x^2-6*x-18,x^3-x^2-8*x+2]],
[x^5-10*x^3+22*x-5, [-1,1], [x,0,-x^3+x^2+6*x-4,1/3*x^4-4/3*x^3-2*x^2+7*x+4/3,2/3*x^4-2/3*x^3-4*x^2+2*x+2/3,2/3*x^4+1/3*x^3-5*x^2-2*x+20/3,-2*x,-2/3*x^4+2/3*x^3+4*x^2-2*x-2/3,-1/3*x^4+4/3*x^3-7*x+26/3,-2*x^2+4,2/3*x^4-2/3*x^3-4*x^2+4*x+8/3,1/3*x^4-4/3*x^3-2*x^2+5*x+4/3,x^4-8*x^2-x+6,-2/3*x^4+5/3*x^3+5*x^2-10*x-8/3,-4/3*x^4+4/3*x^3+10*x^2-6*x-28/3,-1,2/3*x^4+4/3*x^3-6*x^2-10*x+38/3,-2/3*x^4+8/3*x^3-16*x+52/3,-2*x^4+2*x^3+14*x^2-8*x-10,4/3*x^4-7/3*x^3-5*x^2+14*x-32/3,2/3*x^4-2/3*x^3+2*x-40/3,2/3*x^4-2/3*x^3-4*x^2+6*x+2/3,4/3*x^4-7/3*x^3-9*x^2+14*x+40/3,-4/3*x^4+10/3*x^3+8*x^2-18*x-22/3,2*x^4+x^3-15*x^2-6*x+12]]];

f[478,2]=[
[x^4+2*x^3-4*x^2-5*x-1, [1,1], [-1,x,-x^3-2*x^2+4*x+3,2*x^3+3*x^2-10*x-6,-3*x^3-4*x^2+13*x+5,3*x^3+5*x^2-14*x-10,-x^2-x-1,2*x^3+3*x^2-9*x-4,-x^3-2*x^2+4*x+1,x^2+2*x-3,-5*x^3-7*x^2+25*x+14,-4*x^3-5*x^2+21*x+7,3*x^3+6*x^2-11*x-15,-2*x^3-4*x^2+5*x+4,x^3+3*x^2+x-7,4*x^3+7*x^2-16*x-17,6*x^3+7*x^2-31*x-13,x^3-x^2-7*x+4,-2*x^3-x^2+11*x+2,-x^3-5*x^2+13,3*x^3+4*x^2-14*x-8,-7*x^3-8*x^2+34*x+14,4*x^3+6*x^2-23*x-14,-6*x^3-11*x^2+29*x+23,x^3+x^2-x-2]],
[x^4+6*x^3+10*x^2+3*x-1, [-1,-1], [1,x,-x^3-4*x^2-4*x-3,2*x^3+7*x^2+2*x-4,x^3+8*x^2+15*x+1,-3*x^3-15*x^2-16*x,-3*x^2-9*x-5,2*x^3+11*x^2+17*x,-3*x^3-12*x^2-8*x+1,2*x^3+9*x^2+6*x-5,-3*x^3-17*x^2-23*x-2,-6*x^3-27*x^2-25*x+5,x^3+6*x^2+13*x+7,6*x^3+26*x^2+27*x+4,x^3+11*x^2+21*x-3,-3*x^2-14*x-9,-6*x^3-25*x^2-21*x+1,9*x^3+43*x^2+47*x+2,4*x^3+11*x^2-5*x-10,-3*x^3-13*x^2-8*x+7,-3*x^3-16*x^2-26*x-4,x^3-10*x,-4*x^3-18*x^2-19*x-10,-x^2-11*x-15,x^3+3*x^2-3*x-2]],
[x^5-2*x^4-6*x^3+11*x^2+7*x-12, [-1,1], [1,x,-x^4+x^3+6*x^2-3*x-6,-x^2+4,x^4-x^3-6*x^2+2*x+8,2*x^4-x^3-13*x^2+2*x+16,x^4-2*x^3-5*x^2+6*x+6,x^2-x-2,x^4+x^3-8*x^2-5*x+12,x^4-9*x^2+x+14,-2*x^4+x^3+15*x^2-5*x-20,-3*x^4+21*x^2+2*x-28,-x^4+x^3+4*x^2-2*x-2,-4*x^4+2*x^3+28*x^2-5*x-38,-x^4-x^3+9*x^2+4*x-12,x^4-2*x^3-x^2+5*x-8,-x^4+3*x^2+4*x+2,x^3+3*x^2-5*x-10,2*x^4-17*x^2+x+24,-x^4-x^3+9*x^2+5*x-12,-4*x^4+x^3+30*x^2-46,2*x^4+x^3-14*x^2-2*x+16,-2*x^4+18*x^2-x-28,3*x^4-2*x^3-21*x^2+10*x+26,3*x^3-5*x^2-11*x+10]],
[x^6-2*x^5-12*x^4+19*x^3+35*x^2-32*x-32, [1,-1], [-1,x,4/31*x^5-17/31*x^4-33/31*x^3+158/31*x^2+17/31*x-174/31,19/6