Sharedwww / Tables / degphi_r_table.mOpen in CoCalc
Author: William A. Stein
1
///////////////////////////////////////////////////////////////////////
2
//
3
// Table of deg(phi_E) and r(E) = congruence_modulus(E) for each optimal
4
// elliptic curve E/Q of conductor up to 539.
5
//
6
// William A. Stein (April 26, 2000)
7
//
8
// FORMAT OF TABLE:
9
//
10
// For each integer N<=539 for which there is an elliptic curve of
11
// conductor N there are two entries "dat" and "ker". The first
12
// entry "dat" gives an ordered list of triples
13
//
14
// [dimension (always 1), deg(phi_E), congruence_modulus(E)]
15
//
16
// Because this table contains only information about elliptic curves,
17
// the "ker" entry can be completely ignored; it contains the structure
18
// of the kernel of the modular polarization and of the congruence
19
// modulus group, both of which are determined by deg(phi) and
20
// the congruence modulus, respectively. Tables with complete data
21
// for all newform optimal quotients will be forthcoming.
22
//
23
// The construction of this table was inspired by the question
24
//
25
// "Does r = deg(phi)?"
26
//
27
// The answer is a resounding "no"; the first counterexample appears at
28
// level 54.
29
//
30
// The author greatly appreciates the help of Amod Agashe in constructing
31
// this table.
32
//
33
// NOTE: The timings should *not* be taken seriously.
34
//
35
///////////////////////////////////////////////////////////////////////
36
37
dat := [* *];
38
ker := [* *];
39
for i in [1..540] do
40
Append(~dat,[]);
41
Append(~ker,[]);
42
end for;
43
44
// Level 1
45
// Level 2
46
// Level 3
47
// Level 4
48
// Level 5
49
// Level 6
50
// Level 7
51
// Level 8
52
// Level 9
53
// Level 10
54
// Level 11
55
56
dat[11] := [
57
[ 1, 1, 1 ]
58
];
59
ker[11] := [
60
<[], []>
61
];
62
// time = 0.219 second (don't take these seriously, as
63
// parts of the table were computed on diff. machines.)
64
65
// Level 12
66
// Level 13
67
// Level 14
68
69
dat[14] := [
70
[ 1, 1, 1 ]
71
];
72
ker[14] := [
73
<[], []>
74
];
75
// time = 0.821 second
76
77
// Level 15
78
79
dat[15] := [
80
[ 1, 1, 1 ]
81
];
82
ker[15] := [
83
<[], []>
84
];
85
// time = 0.839 second
86
87
// Level 16
88
// Level 17
89
90
dat[17] := [
91
[ 1, 1, 1 ]
92
];
93
ker[17] := [
94
<[], []>
95
];
96
// time = 0.131 second
97
98
// Level 18
99
// Level 19
100
101
dat[19] := [
102
[ 1, 1, 1 ]
103
];
104
ker[19] := [
105
<[], []>
106
];
107
// time = 0.139 second
108
109
// Level 20
110
111
dat[20] := [
112
[ 1, 1, 1 ]
113
];
114
ker[20] := [
115
<[], []>
116
];
117
// time = 1.34 second
118
119
// Level 21
120
121
dat[21] := [
122
[ 1, 1, 1 ]
123
];
124
ker[21] := [
125
<[], []>
126
];
127
// time = 0.941 second
128
129
// Level 22
130
// Level 23
131
// Level 24
132
133
dat[24] := [
134
[ 1, 1, 1 ]
135
];
136
ker[24] := [
137
<[], []>
138
];
139
// time = 1.679 second
140
141
// Level 25
142
// Level 26
143
144
dat[26] := [
145
[ 1, 2, 2 ],
146
[ 1, 2, 2 ]
147
];
148
ker[26] := [
149
<[ 2, 2 ], [ 2 ]>,
150
<[ 2, 2 ], [ 2 ]>
151
];
152
// time = 1.869 second
153
154
// Level 27
155
156
dat[27] := [
157
[ 1, 1, 1 ]
158
];
159
ker[27] := [
160
<[], []>
161
];
162
// time = 0.73 second
163
164
// Level 28
165
// Level 29
166
// Level 30
167
168
dat[30] := [
169
[ 1, 2, 2 ]
170
];
171
ker[30] := [
172
<[ 2, 2 ], [ 2 ]>
173
];
174
// time = 4.441 second
175
176
// Level 31
177
// Level 32
178
179
dat[32] := [
180
[ 1, 1, 1 ]
181
];
182
ker[32] := [
183
<[], []>
184
];
185
// time = 0.94 second
186
187
// Level 33
188
189
dat[33] := [
190
[ 1, 3, 3 ]
191
];
192
ker[33] := [
193
<[ 3, 3 ], [ 3 ]>
194
];
195
// time = 2.089 second
196
197
// Level 34
198
199
dat[34] := [
200
[ 1, 2, 2 ]
201
];
202
ker[34] := [
203
<[ 2, 2 ], [ 2 ]>
204
];
205
// time = 2.149 second
206
207
// Level 35
208
209
dat[35] := [
210
[ 1, 2, 2 ]
211
];
212
ker[35] := [
213
<[ 2, 2 ], [ 2 ]>
214
];
215
// time = 1.629 second
216
217
// Level 36
218
219
dat[36] := [
220
[ 1, 1, 1 ]
221
];
222
ker[36] := [
223
<[], []>
224
];
225
// time = 2.46 second
226
227
// Level 37
228
229
dat[37] := [
230
[ 1, 2, 2 ],
231
[ 1, 2, 2 ]
232
];
233
ker[37] := [
234
<[ 2, 2 ], [ 2 ]>,
235
<[ 2, 2 ], [ 2 ]>
236
];
237
// time = 0.661 second
238
239
// Level 38
240
241
dat[38] := [
242
[ 1, 6, 6 ],
243
[ 1, 2, 2 ]
244
];
245
ker[38] := [
246
<[ 6, 6 ], [ 6 ]>,
247
<[ 2, 2 ], [ 2 ]>
248
];
249
// time = 2.989 second
250
251
// Level 39
252
253
dat[39] := [
254
[ 1, 2, 2 ]
255
];
256
ker[39] := [
257
<[ 2, 2 ], [ 2 ]>
258
];
259
// time = 1.82 second
260
261
// Level 40
262
263
dat[40] := [
264
[ 1, 2, 2 ]
265
];
266
ker[40] := [
267
<[ 2, 2 ], [ 2 ]>
268
];
269
// time = 3.99 second
270
271
// Level 41
272
// Level 42
273
274
dat[42] := [
275
[ 1, 4, 4 ]
276
];
277
ker[42] := [
278
<[ 4, 4 ], [ 4 ]>
279
];
280
// time = 6.75 second
281
282
// Level 43
283
284
dat[43] := [
285
[ 1, 2, 2 ]
286
];
287
ker[43] := [
288
<[ 2, 2 ], [ 2 ]>
289
];
290
// time = 0.539 second
291
292
// Level 44
293
294
dat[44] := [
295
[ 1, 2, 2 ]
296
];
297
ker[44] := [
298
<[ 2, 2 ], [ 2 ]>
299
];
300
// time = 4.729 second
301
302
// Level 45
303
304
dat[45] := [
305
[ 1, 2, 2 ]
306
];
307
ker[45] := [
308
<[ 2, 2 ], [ 2 ]>
309
];
310
// time = 3.521 second
311
312
// Level 46
313
314
dat[46] := [
315
[ 1, 5, 5 ]
316
];
317
ker[46] := [
318
<[ 5, 5 ], [ 5 ]>
319
];
320
// time = 3.301 second
321
322
// Level 47
323
// Level 48
324
325
dat[48] := [
326
[ 1, 2, 2 ]
327
];
328
ker[48] := [
329
<[ 2, 2 ], [ 2 ]>
330
];
331
// time = 5.59 second
332
333
// Level 49
334
335
dat[49] := [
336
[ 1, 1, 1 ]
337
];
338
ker[49] := [
339
<[], []>
340
];
341
// time = 0.87 second
342
343
// Level 50
344
345
dat[50] := [
346
[ 1, 2, 2 ],
347
[ 1, 2, 2 ]
348
];
349
ker[50] := [
350
<[ 2, 2 ], [ 2 ]>,
351
<[ 2, 2 ], [ 2 ]>
352
];
353
// time = 3.421 second
354
355
// Level 51
356
357
dat[51] := [
358
[ 1, 2, 2 ]
359
];
360
ker[51] := [
361
<[ 2, 2 ], [ 2 ]>
362
];
363
// time = 2.9 second
364
365
// Level 52
366
367
dat[52] := [
368
[ 1, 3, 3 ]
369
];
370
ker[52] := [
371
<[ 3, 3 ], [ 3 ]>
372
];
373
// time = 4.799 second
374
375
// Level 53
376
377
dat[53] := [
378
[ 1, 2, 2 ]
379
];
380
ker[53] := [
381
<[ 2, 2 ], [ 2 ]>
382
];
383
// time = 0.659 second
384
385
// Level 54
386
387
dat[54] := [
388
[ 1, 6, 6 ],
389
[ 1, 2, 6 ]
390
];
391
ker[54] := [
392
<[ 6, 6 ], [ 6 ]>,
393
<[ 2, 2 ], [ 6 ]>
394
];
395
// time = 5.719 second
396
397
// Level 55
398
399
dat[55] := [
400
[ 1, 2, 2 ]
401
];
402
ker[55] := [
403
<[ 2, 2 ], [ 2 ]>
404
];
405
// time = 2.861 second
406
407
// Level 56
408
409
dat[56] := [
410
[ 1, 4, 4 ],
411
[ 1, 2, 2 ]
412
];
413
ker[56] := [
414
<[ 4, 4 ], [ 4 ]>,
415
<[ 2, 2 ], [ 2 ]>
416
];
417
// time = 7.631 second
418
419
// Level 57
420
421
dat[57] := [
422
[ 1, 4, 4 ],
423
[ 1, 3, 3 ],
424
[ 1, 12, 12 ]
425
];
426
ker[57] := [
427
<[ 4, 4 ], [ 4 ]>,
428
<[ 3, 3 ], [ 3 ]>,
429
<[ 12, 12 ], [ 12 ]>
430
];
431
// time = 4.921 second
432
433
// Level 58
434
435
dat[58] := [
436
[ 1, 4, 4 ],
437
[ 1, 4, 4 ]
438
];
439
ker[58] := [
440
<[ 4, 4 ], [ 4 ]>,
441
<[ 4, 4 ], [ 4 ]>
442
];
443
// time = 4.459 second
444
445
// Level 59
446
// Level 60
447
// Level 61
448
449
dat[61] := [
450
[ 1, 2, 2 ]
451
];
452
ker[61] := [
453
<[ 2, 2 ], [ 2 ]>
454
];
455
// time = 0.7 second
456
457
// Level 62
458
459
dat[62] := [
460
[ 1, 2, 2 ]
461
];
462
ker[62] := [
463
<[ 2, 2 ], [ 2 ]>
464
];
465
// time = 4.149 second
466
467
// Level 63
468
469
dat[63] := [
470
[ 1, 4, 4 ]
471
];
472
ker[63] := [
473
<[ 4, 4 ], [ 4 ]>
474
];
475
// time = 4.61 second
476
477
// Level 64
478
479
dat[64] := [
480
[ 1, 2, 4 ]
481
];
482
ker[64] := [
483
<[ 2, 2 ], [ 4 ]>
484
];
485
// time = 3.11 second
486
487
// Level 65
488
489
dat[65] := [
490
[ 1, 2, 2 ]
491
];
492
ker[65] := [
493
<[ 2, 2 ], [ 2 ]>
494
];
495
// time = 2.59 second
496
497
// Level 66
498
499
dat[66] := [
500
[ 1, 4, 4 ],
501
[ 1, 4, 4 ],
502
[ 1, 20, 20 ]
503
];
504
ker[66] := [
505
<[ 4, 4 ], [ 4 ]>,
506
<[ 4, 4 ], [ 4 ]>,
507
<[ 20, 20 ], [ 20 ]>
508
];
509
// time = 14.82 second
510
511
// Level 67
512
513
dat[67] := [
514
[ 1, 5, 5 ]
515
];
516
ker[67] := [
517
<[ 5, 5 ], [ 5 ]>
518
];
519
// time = 0.829 second
520
521
// Level 68
522
// Level 69
523
524
dat[69] := [
525
[ 1, 2, 2 ]
526
];
527
ker[69] := [
528
<[ 2, 2 ], [ 2 ]>
529
];
530
// time = 4.1 second
531
532
// Level 70
533
534
dat[70] := [
535
[ 1, 4, 4 ]
536
];
537
ker[70] := [
538
<[ 4, 4 ], [ 4 ]>
539
];
540
// time = 9.739 second
541
542
// Level 71
543
// Level 72
544
545
dat[72] := [
546
[ 1, 4, 8 ]
547
];
548
ker[72] := [
549
<[ 4, 4 ], [ 8 ]>
550
];
551
// time = 10.139 second
552
553
// Level 73
554
555
dat[73] := [
556
[ 1, 3, 3 ]
557
];
558
ker[73] := [
559
<[ 3, 3 ], [ 3 ]>
560
];
561
// time = 0.909 second
562
563
// Level 74
564
// Level 75
565
566
dat[75] := [
567
[ 1, 6, 6 ],
568
[ 1, 6, 6 ],
569
[ 1, 6, 6 ]
570
];
571
ker[75] := [
572
<[ 6, 6 ], [ 6 ]>,
573
<[ 6, 6 ], [ 6 ]>,
574
<[ 6, 6 ], [ 6 ]>
575
];
576
// time = 7.491 second
577
578
// Level 76
579
580
dat[76] := [
581
[ 1, 6, 6 ]
582
];
583
ker[76] := [
584
<[ 6, 6 ], [ 6 ]>
585
];
586
// time = 8.471 second
587
588
// Level 77
589
590
dat[77] := [
591
[ 1, 4, 4 ],
592
[ 1, 6, 6 ],
593
[ 1, 20, 20 ]
594
];
595
ker[77] := [
596
<[ 4, 4 ], [ 4 ]>,
597
<[ 6, 6 ], [ 6 ]>,
598
<[ 20, 20 ], [ 20 ]>
599
];
600
// time = 6.64 second
601
602
// Level 78
603
604
dat[78] := [
605
[ 1, 40, 40 ]
606
];
607
ker[78] := [
608
<[ 40, 40 ], [ 40 ]>
609
];
610
// time = 12.341 second
611
612
// Level 79
613
614
dat[79] := [
615
[ 1, 2, 2 ]
616
];
617
ker[79] := [
618
<[ 2, 2 ], [ 2 ]>
619
];
620
// time = 0.979 second
621
622
// Level 80
623
624
dat[80] := [
625
[ 1, 4, 8 ],
626
[ 1, 4, 4 ]
627
];
628
ker[80] := [
629
<[ 4, 4 ], [ 8 ]>,
630
<[ 4, 4 ], [ 4 ]>
631
];
632
// time = 12.021 second
633
634
// Level 81
635
// Level 82
636
637
dat[82] := [
638
[ 1, 4, 4 ]
639
];
640
ker[82] := [
641
<[ 4, 4 ], [ 4 ]>
642
];
643
// time = 5.81 second
644
645
// Level 83
646
647
dat[83] := [
648
[ 1, 2, 2 ]
649
];
650
ker[83] := [
651
<[ 2, 2 ], [ 2 ]>
652
];
653
// time = 1.091 second
654
655
// Level 84
656
657
dat[84] := [
658
[ 1, 6, 6 ],
659
[ 1, 6, 6 ]
660
];
661
ker[84] := [
662
<[ 6, 6 ], [ 6 ]>,
663
<[ 6, 6 ], [ 6 ]>
664
];
665
// time = 26.101 second
666
667
// Level 85
668
669
dat[85] := [
670
[ 1, 4, 4 ]
671
];
672
ker[85] := [
673
<[ 4, 4 ], [ 4 ]>
674
];
675
// time = 4.07 second
676
677
// Level 86
678
// Level 87
679
// Level 88
680
681
dat[88] := [
682
[ 1, 8, 16 ]
683
];
684
ker[88] := [
685
<[ 8, 8 ], [ 16 ]>
686
];
687
// time = 11.58 second
688
689
// Level 89
690
691
dat[89] := [
692
[ 1, 2, 2 ],
693
[ 1, 5, 5 ]
694
];
695
ker[89] := [
696
<[ 2, 2 ], [ 2 ]>,
697
<[ 5, 5 ], [ 5 ]>
698
];
699
// time = 2.189 second
700
701
// Level 90
702
703
dat[90] := [
704
[ 1, 8, 8 ],
705
[ 1, 8, 8 ],
706
[ 1, 16, 16 ]
707
];
708
ker[90] := [
709
<[ 8, 8 ], [ 8 ]>,
710
<[ 8, 8 ], [ 8 ]>,
711
<[ 16, 16 ], [ 16 ]>
712
];
713
// time = 29.86 second
714
715
// Level 91
716
717
dat[91] := [
718
[ 1, 4, 4 ],
719
[ 1, 4, 4 ]
720
];
721
ker[91] := [
722
<[ 4, 4 ], [ 4 ]>,
723
<[ 4, 4 ], [ 4 ]>
724
];
725
// time = 4.581 second
726
727
// Level 92
728
729
dat[92] := [
730
[ 1, 2, 2 ],
731
[ 1, 6, 12 ]
732
];
733
ker[92] := [
734
<[ 2, 2 ], [ 2 ]>,
735
<[ 6, 6 ], [ 12 ]>
736
];
737
// time = 12.549 second
738
739
// Level 93
740
// Level 94
741
742
dat[94] := [
743
[ 1, 2, 2 ]
744
];
745
ker[94] := [
746
<[ 2, 2 ], [ 2 ]>
747
];
748
// time = 7.18 second
749
750
// Level 95
751
// Level 96
752
753
dat[96] := [
754
[ 1, 4, 8 ],
755
[ 1, 4, 8 ]
756
];
757
ker[96] := [
758
<[ 4, 4 ], [ 8 ]>,
759
<[ 4, 4 ], [ 8 ]>
760
];
761
// time = 18.899 second
762
763
// Level 97
764
// Level 98
765
766
dat[98] := [
767
[ 1, 16, 16 ]
768
];
769
ker[98] := [
770
<[ 16, 16 ], [ 16 ]>
771
];
772
// time = 8.79 second
773
774
// Level 99
775
776
dat[99] := [
777
[ 1, 4, 12 ],
778
[ 1, 12, 12 ],
779
[ 1, 12, 12 ],
780
[ 1, 6, 6 ]
781
];
782
ker[99] := [
783
<[ 4, 4 ], [ 12 ]>,
784
<[ 12, 12 ], [ 12 ]>,
785
<[ 12, 12 ], [ 12 ]>,
786
<[ 6, 6 ], [ 6 ]>
787
];
788
// time = 14.579 second
789
790
// Level 100
791
792
dat[100] := [
793
[ 1, 12, 12 ]
794
];
795
ker[100] := [
796
<[ 12, 12 ], [ 12 ]>
797
];
798
// time = 11.391 second
799
800
// Level 101
801
802
dat[101] := [
803
[ 1, 2, 2 ]
804
];
805
ker[101] := [
806
<[ 2, 2 ], [ 2 ]>
807
];
808
// time = 1.339 second
809
810
// Level 102
811
812
dat[102] := [
813
[ 1, 8, 8 ],
814
[ 1, 24, 24 ],
815
[ 1, 16, 16 ]
816
];
817
ker[102] := [
818
<[ 8, 8 ], [ 8 ]>,
819
<[ 24, 24 ], [ 24 ]>,
820
<[ 16, 16 ], [ 16 ]>
821
];
822
// time = 25.571 second
823
824
// Level 103
825
// Level 104
826
827
dat[104] := [
828
[ 1, 8, 8 ]
829
];
830
ker[104] := [
831
<[ 8, 8 ], [ 8 ]>
832
];
833
// time = 13.61 second
834
835
// Level 105
836
837
dat[105] := [
838
[ 1, 4, 4 ]
839
];
840
ker[105] := [
841
<[ 4, 4 ], [ 4 ]>
842
];
843
// time = 15.099 second
844
845
// Level 106
846
847
dat[106] := [
848
[ 1, 8, 8 ],
849
[ 1, 10, 10 ],
850
[ 1, 48, 48 ],
851
[ 1, 6, 6 ]
852
];
853
ker[106] := [
854
<[ 8, 8 ], [ 8 ]>,
855
<[ 10, 10 ], [ 10 ]>,
856
<[ 48, 48 ], [ 48 ]>,
857
<[ 6, 6 ], [ 6 ]>
858
];
859
// time = 12.859 second
860
861
// Level 107
862
// Level 108
863
864
dat[108] := [
865
[ 1, 6, 18 ]
866
];
867
ker[108] := [
868
<[ 6, 6 ], [ 18 ]>
869
];
870
// time = 19.779 second
871
872
// Level 109
873
874
dat[109] := [
875
[ 1, 4, 4 ]
876
];
877
ker[109] := [
878
<[ 4, 4 ], [ 4 ]>
879
];
880
// time = 1.529 second
881
882
// Level 110
883
884
dat[110] := [
885
[ 1, 28, 28 ],
886
[ 1, 4, 4 ],
887
[ 1, 20, 20 ]
888
];
889
ker[110] := [
890
<[ 28, 28 ], [ 28 ]>,
891
<[ 4, 4 ], [ 4 ]>,
892
<[ 20, 20 ], [ 20 ]>
893
];
894
// time = 27.15 second
895
896
// Level 111
897
// Level 112
898
899
dat[112] := [
900
[ 1, 8, 16 ],
901
[ 1, 4, 8 ],
902
[ 1, 8, 16 ]
903
];
904
ker[112] := [
905
<[ 8, 8 ], [ 16 ]>,
906
<[ 4, 4 ], [ 8 ]>,
907
<[ 8, 8 ], [ 16 ]>
908
];
909
// time = 21.75 second
910
911
// Level 113
912
913
dat[113] := [
914
[ 1, 6, 6 ]
915
];
916
ker[113] := [
917
<[ 6, 6 ], [ 6 ]>
918
];
919
// time = 2.021 second
920
921
// Level 114
922
923
dat[114] := [
924
[ 1, 20, 20 ],
925
[ 1, 60, 60 ],
926
[ 1, 12, 12 ]
927
];
928
ker[114] := [
929
<[ 20, 20 ], [ 20 ]>,
930
<[ 60, 60 ], [ 60 ]>,
931
<[ 12, 12 ], [ 12 ]>
932
];
933
// time = 32.269 second
934
935
// Level 115
936
937
dat[115] := [
938
[ 1, 10, 10 ]
939
];
940
ker[115] := [
941
<[ 10, 10 ], [ 10 ]>
942
];
943
// time = 6.451 second
944
945
// Level 116
946
947
dat[116] := [
948
[ 1, 8, 8 ],
949
[ 1, 15, 15 ],
950
[ 1, 120, 120 ]
951
];
952
ker[116] := [
953
<[ 8, 8 ], [ 8 ]>,
954
<[ 15, 15 ], [ 15 ]>,
955
<[ 120, 120 ], [ 120 ]>
956
];
957
// time = 18.059 second
958
959
// Level 117
960
961
dat[117] := [
962
[ 1, 8, 8 ]
963
];
964
ker[117] := [
965
<[ 8, 8 ], [ 8 ]>
966
];
967
// time = 8.961 second
968
969
// Level 118
970
971
dat[118] := [
972
[ 1, 4, 4 ],
973
[ 1, 38, 38 ],
974
[ 1, 12, 12 ],
975
[ 1, 6, 6 ]
976
];
977
ker[118] := [
978
<[ 4, 4 ], [ 4 ]>,
979
<[ 38, 38 ], [ 38 ]>,
980
<[ 12, 12 ], [ 12 ]>,
981
<[ 6, 6 ], [ 6 ]>
982
];
983
// time = 16.901 second
984
985
// Level 119
986
// Level 120
987
988
dat[120] := [
989
[ 1, 8, 8 ],
990
[ 1, 8, 16 ]
991
];
992
ker[120] := [
993
<[ 8, 8 ], [ 8 ]>,
994
<[ 8, 8 ], [ 16 ]>
995
];
996
// time = 51.451 second
997
998
// Level 121
999
1000
dat[121] := [
1001
[ 1, 4, 4 ],
1002
[ 1, 6, 6 ],
1003
[ 1, 6, 6 ],
1004
[ 1, 24, 24 ]
1005
];
1006
ker[121] := [
1007
<[ 4, 4 ], [ 4 ]>,
1008
<[ 6, 6 ], [ 6 ]>,
1009
<[ 6, 6 ], [ 6 ]>,
1010
<[ 24, 24 ], [ 24 ]>
1011
];
1012
// time = 6.629 second
1013
1014
// Level 122
1015
1016
dat[122] := [
1017
[ 1, 8, 8 ]
1018
];
1019
ker[122] := [
1020
<[ 8, 8 ], [ 8 ]>
1021
];
1022
// time = 9.72 second
1023
1024
// Level 123
1025
1026
dat[123] := [
1027
[ 1, 4, 4 ],
1028
[ 1, 20, 20 ]
1029
];
1030
ker[123] := [
1031
<[ 4, 4 ], [ 4 ]>,
1032
<[ 20, 20 ], [ 20 ]>
1033
];
1034
// time = 9.809 second
1035
1036
// Level 124
1037
1038
dat[124] := [
1039
[ 1, 6, 6 ],
1040
[ 1, 6, 12 ]
1041
];
1042
ker[124] := [
1043
<[ 6, 6 ], [ 6 ]>,
1044
<[ 6, 6 ], [ 12 ]>
1045
];
1046
// time = 17.901 second
1047
1048
// Level 125
1049
1050
dat[126] := [
1051
[ 1, 32, 32 ],
1052
[ 1, 8, 24 ]
1053
];
1054
ker[126] := [
1055
<[ 32, 32 ], [ 32 ]>,
1056
<[ 8, 8 ], [ 24 ]>
1057
];
1058
// time = 29.129 second
1059
1060
// Level 127
1061
// Level 128
1062
1063
dat[128] := [
1064
[ 1, 4, 32 ],
1065
[ 1, 8, 32 ],
1066
[ 1, 4, 32 ],
1067
[ 1, 8, 32 ]
1068
];
1069
ker[128] := [
1070
<[ 4, 4 ], [ 32 ]>,
1071
<[ 8, 8 ], [ 32 ]>,
1072
<[ 4, 4 ], [ 32 ]>,
1073
<[ 8, 8 ], [ 32 ]>
1074
];
1075
// time = 15.15 second
1076
1077
// Level 129
1078
1079
dat[129] := [
1080
[ 1, 8, 8 ],
1081
[ 1, 15, 15 ]
1082
];
1083
ker[129] := [
1084
<[ 8, 8 ], [ 8 ]>,
1085
<[ 15, 15 ], [ 15 ]>
1086
];
1087
// time = 7.079 second
1088
1089
// Level 130
1090
1091
dat[130] := [
1092
[ 1, 24, 24 ],
1093
[ 1, 80, 80 ],
1094
[ 1, 8, 8 ]
1095
];
1096
ker[130] := [
1097
<[ 24, 24 ], [ 24 ]>,
1098
<[ 80, 80 ], [ 80 ]>,
1099
<[ 8, 8 ], [ 8 ]>
1100
];
1101
// time = 19.899 second
1102
1103
// Level 131
1104
1105
dat[131] := [
1106
[ 1, 2, 2 ]
1107
];
1108
ker[131] := [
1109
<[ 2, 2 ], [ 2 ]>
1110
];
1111
// time = 1.699 second
1112
1113
// Level 132
1114
1115
dat[132] := [
1116
[ 1, 30, 30 ],
1117
[ 1, 6, 6 ]
1118
];
1119
ker[132] := [
1120
<[ 30, 30 ], [ 30 ]>,
1121
<[ 6, 6 ], [ 6 ]>
1122
];
1123
// time = 40.401 second
1124
1125
// Level 133
1126
// Level 134
1127
// Level 135
1128
1129
dat[135] := [
1130
[ 1, 12, 36 ],
1131
[ 1, 36, 36 ]
1132
];
1133
ker[135] := [
1134
<[ 12, 12 ], [ 36 ]>,
1135
<[ 36, 36 ], [ 36 ]>
1136
];
1137
// time = 15.471 second
1138
1139
// Level 136
1140
1141
dat[136] := [
1142
[ 1, 8, 8 ],
1143
[ 1, 8, 8 ]
1144
];
1145
ker[136] := [
1146
<[ 8, 8 ], [ 8 ]>,
1147
<[ 8, 8 ], [ 8 ]>
1148
];
1149
// time = 19.819 second
1150
1151
// Level 137
1152
// Level 138
1153
1154
dat[138] := [
1155
[ 1, 8, 8 ],
1156
[ 1, 16, 16 ],
1157
[ 1, 8, 8 ]
1158
];
1159
ker[138] := [
1160
<[ 8, 8 ], [ 8 ]>,
1161
<[ 16, 16 ], [ 16 ]>,
1162
<[ 8, 8 ], [ 8 ]>
1163
];
1164
// time = 31 second
1165
1166
// Level 139
1167
1168
dat[139] := [
1169
[ 1, 6, 6 ]
1170
];
1171
ker[139] := [
1172
<[ 6, 6 ], [ 6 ]>
1173
];
1174
// time = 1.78 second
1175
1176
// Level 140
1177
1178
dat[140] := [
1179
[ 1, 60, 60 ],
1180
[ 1, 12, 12 ]
1181
];
1182
ker[140] := [
1183
<[ 60, 60 ], [ 60 ]>,
1184
<[ 12, 12 ], [ 12 ]>
1185
];
1186
// time = 36.219 second
1187
1188
// Level 141
1189
1190
dat[141] := [
1191
[ 1, 4, 4 ],
1192
[ 1, 12, 12 ],
1193
[ 1, 6, 6 ],
1194
[ 1, 12, 12 ],
1195
[ 1, 28, 28 ]
1196
];
1197
ker[141] := [
1198
<[ 4, 4 ], [ 4 ]>,
1199
<[ 12, 12 ], [ 12 ]>,
1200
<[ 6, 6 ], [ 6 ]>,
1201
<[ 12, 12 ], [ 12 ]>,
1202
<[ 28, 28 ], [ 28 ]>
1203
];
1204
// time = 13.009 second
1205
1206
// Level 142
1207
1208
dat[142] := [
1209
[ 1, 4, 4 ],
1210
[ 1, 9, 9 ],
1211
[ 1, 324, 324 ],
1212
[ 1, 4, 4 ],
1213
[ 1, 36, 36 ]
1214
];
1215
ker[142] := [
1216
<[ 4, 4 ], [ 4 ]>,
1217
<[ 9, 9 ], [ 9 ]>,
1218
<[ 324, 324 ], [ 324 ]>,
1219
<[ 4, 4 ], [ 4 ]>,
1220
<[ 36, 36 ], [ 36 ]>
1221
];
1222
// time = 16.27 second
1223
1224
// Level 143
1225
1226
dat[143] := [
1227
[ 1, 4, 4 ]
1228
];
1229
ker[143] := [
1230
<[ 4, 4 ], [ 4 ]>
1231
];
1232
// time = 5.24 second
1233
1234
// Level 144
1235
1236
dat[144] := [
1237
[ 1, 8, 16 ],
1238
[ 1, 4, 8 ]
1239
];
1240
ker[144] := [
1241
<[ 8, 8 ], [ 16 ]>,
1242
<[ 4, 4 ], [ 8 ]>
1243
];
1244
// time = 39.419 second
1245
1246
// Level 145
1247
1248
dat[145] := [
1249
[ 1, 4, 4 ]
1250
];
1251
ker[145] := [
1252
<[ 4, 4 ], [ 4 ]>
1253
];
1254
// time = 6.549 second
1255
1256
// Level 146
1257
// Level 147
1258
1259
dat[147] := [
1260
[ 1, 24, 24 ],
1261
[ 1, 6, 42 ],
1262
[ 1, 42, 42 ]
1263
];
1264
ker[147] := [
1265
<[ 24, 24 ], [ 24 ]>,
1266
<[ 6, 6 ], [ 42 ]>,
1267
<[ 42, 42 ], [ 42 ]>
1268
];
1269
// time = 14.38 second
1270
1271
// Level 148
1272
1273
dat[148] := [
1274
[ 1, 12, 12 ]
1275
];
1276
ker[148] := [
1277
<[ 12, 12 ], [ 12 ]>
1278
];
1279
// time = 14.6 second
1280
1281
// Level 149
1282
// Level 150
1283
1284
dat[150] := [
1285
[ 1, 40, 40 ],
1286
[ 1, 48, 48 ],
1287
[ 1, 8, 40 ]
1288
];
1289
ker[150] := [
1290
<[ 40, 40 ], [ 40 ]>,
1291
<[ 48, 48 ], [ 48 ]>,
1292
<[ 8, 8 ], [ 40 ]>
1293
];
1294
// time = 49.429 second
1295
1296
// Level 151
1297
// Level 152
1298
1299
dat[152] := [
1300
[ 1, 8, 16 ],
1301
[ 1, 8, 8 ]
1302
];
1303
ker[152] := [
1304
<[ 8, 8 ], [ 16 ]>,
1305
<[ 8, 8 ], [ 8 ]>
1306
];
1307
// time = 25.14 second
1308
1309
// Level 153
1310
1311
dat[153] := [
1312
[ 1, 8, 24 ],
1313
[ 1, 24, 24 ],
1314
[ 1, 8, 24 ],
1315
[ 1, 16, 16 ]
1316
];
1317
ker[153] := [
1318
<[ 8, 8 ], [ 24 ]>,
1319
<[ 24, 24 ], [ 24 ]>,
1320
<[ 8, 8 ], [ 24 ]>,
1321
<[ 16, 16 ], [ 16 ]>
1322
];
1323
// time = 17.831 second
1324
1325
// Level 154
1326
1327
dat[154] := [
1328
[ 1, 24, 24 ],
1329
[ 1, 16, 16 ],
1330
[ 1, 24, 24 ]
1331
];
1332
ker[154] := [
1333
<[ 24, 24 ], [ 24 ]>,
1334
<[ 16, 16 ], [ 16 ]>,
1335
<[ 24, 24 ], [ 24 ]>
1336
];
1337
// time = 35.49 second
1338
1339
// Level 155
1340
1341
dat[155] := [
1342
[ 1, 4, 4 ],
1343
[ 1, 8, 8 ],
1344
[ 1, 20, 20 ]
1345
];
1346
ker[155] := [
1347
<[ 4, 4 ], [ 4 ]>,
1348
<[ 8, 8 ], [ 8 ]>,
1349
<[ 20, 20 ], [ 20 ]>
1350
];
1351
// time = 11.729 second
1352
1353
// Level 156
1354
1355
dat[156] := [
1356
[ 1, 12, 12 ],
1357
[ 1, 12, 12 ]
1358
];
1359
ker[156] := [
1360
<[ 12, 12 ], [ 12 ]>,
1361
<[ 12, 12 ], [ 12 ]>
1362
];
1363
// time = 46.86 second
1364
1365
// Level 157
1366
// Level 158
1367
1368
dat[158] := [
1369
[ 1, 8, 8 ],
1370
[ 1, 40, 40 ],
1371
[ 1, 48, 48 ],
1372
[ 1, 6, 6 ],
1373
[ 1, 32, 32 ]
1374
];
1375
ker[158] := [
1376
<[ 8, 8 ], [ 8 ]>,
1377
<[ 40, 40 ], [ 40 ]>,
1378
<[ 48, 48 ], [ 48 ]>,
1379
<[ 6, 6 ], [ 6 ]>,
1380
<[ 32, 32 ], [ 32 ]>
1381
];
1382
// time = 21.86 second
1383
1384
// Level 159
1385
// Level 160
1386
1387
dat[160] := [
1388
[ 1, 8, 16 ],
1389
[ 1, 8, 16 ]
1390
];
1391
ker[160] := [
1392
<[ 8, 8 ], [ 16 ]>,
1393
<[ 8, 8 ], [ 16 ]>
1394
];
1395
// time = 37.071 second
1396
1397
// Level 161
1398
1399
dat[161] := [
1400
[ 1, 10, 10 ]
1401
];
1402
ker[161] := [
1403
<[ 10, 10 ], [ 10 ]>
1404
];
1405
// time = 6.529 second
1406
1407
// Level 162
1408
1409
dat[162] := [
1410
[ 1, 12, 36 ],
1411
[ 1, 6, 18 ],
1412
[ 1, 6, 18 ],
1413
[ 1, 12, 36 ]
1414
];
1415
ker[162] := [
1416
<[ 12, 12 ], [ 36 ]>,
1417
<[ 6, 6 ], [ 18 ]>,
1418
<[ 6, 6 ], [ 18 ]>,
1419
<[ 12, 12 ], [ 36 ]>
1420
];
1421
// time = 39.21 second
1422
1423
// Level 163
1424
1425
dat[163] := [
1426
[ 1, 6, 6 ]
1427
];
1428
ker[163] := [
1429
<[ 6, 6 ], [ 6 ]>
1430
];
1431
// time = 2.36 second
1432
1433
// Level 164
1434
// Level 165
1435
// Level 166
1436
1437
dat[166] := [
1438
[ 1, 8, 8 ]
1439
];
1440
ker[166] := [
1441
<[ 8, 8 ], [ 8 ]>
1442
];
1443
// time = 11.709 second
1444
1445
// Level 167
1446
// Level 168
1447
1448
dat[168] := [
1449
[ 1, 24, 48 ],
1450
[ 1, 8, 16 ]
1451
];
1452
ker[168] := [
1453
<[ 24, 24 ], [ 48 ]>,
1454
<[ 8, 8 ], [ 16 ]>
1455
];
1456
// time = 81.25 second
1457
1458
// Level 169
1459
// Level 170
1460
1461
dat[170] := [
1462
[ 1, 160, 160 ],
1463
[ 1, 20, 20 ],
1464
[ 1, 12, 12 ],
1465
[ 1, 16, 16 ],
1466
[ 1, 84, 84 ]
1467
];
1468
ker[170] := [
1469
<[ 160, 160 ], [ 160 ]>,
1470
<[ 20, 20 ], [ 20 ]>,
1471
<[ 12, 12 ], [ 12 ]>,
1472
<[ 16, 16 ], [ 16 ]>,
1473
<[ 84, 84 ], [ 84 ]>
1474
];
1475
// time = 50.58 second
1476
1477
// Level 171
1478
1479
dat[171] := [
1480
[ 1, 12, 12 ],
1481
[ 1, 96, 96 ],
1482
[ 1, 32, 32 ],
1483
[ 1, 8, 24 ]
1484
];
1485
ker[171] := [
1486
<[ 12, 12 ], [ 12 ]>,
1487
<[ 96, 96 ], [ 96 ]>,
1488
<[ 32, 32 ], [ 32 ]>,
1489
<[ 8, 8 ], [ 24 ]>
1490
];
1491
// time = 25.199 second
1492
1493
// Level 172
1494
1495
dat[172] := [
1496
[ 1, 12, 12 ]
1497
];
1498
ker[172] := [
1499
<[ 12, 12 ], [ 12 ]>
1500
];
1501
// time = 18.661 second
1502
1503
// Level 173
1504
// Level 174
1505
1506
dat[174] := [
1507
[ 1, 52, 52 ],
1508
[ 1, 10, 10 ],
1509
[ 1, 1540, 1540 ],
1510
[ 1, 12, 12 ],
1511
[ 1, 28, 28 ]
1512
];
1513
ker[174] := [
1514
<[ 52, 52 ], [ 52 ]>,
1515
<[ 10, 10 ], [ 10 ]>,
1516
<[ 1540, 1540 ], [ 1540 ]>,
1517
<[ 12, 12 ], [ 12 ]>,
1518
<[ 28, 28 ], [ 28 ]>
1519
];
1520
// time = 59 second
1521
1522
// Level 175
1523
1524
dat[175] := [
1525
[ 1, 16, 16 ],
1526
[ 1, 40, 40 ],
1527
[ 1, 8, 40 ]
1528
];
1529
ker[175] := [
1530
<[ 16, 16 ], [ 16 ]>,
1531
<[ 40, 40 ], [ 40 ]>,
1532
<[ 8, 8 ], [ 40 ]>
1533
];
1534
// time = 16.12 second
1535
1536
// Level 176
1537
1538
dat[176] := [
1539
[ 1, 16, 64 ],
1540
[ 1, 8, 16 ],
1541
[ 1, 8, 32 ]
1542
];
1543
ker[176] := [
1544
<[ 16, 16 ], [ 64 ]>,
1545
<[ 8, 8 ], [ 16 ]>,
1546
<[ 8, 8 ], [ 32 ]>
1547
];
1548
// time = 42.799 second
1549
1550
// Level 177
1551
// Level 178
1552
1553
dat[178] := [
1554
[ 1, 28, 28 ],
1555
[ 1, 32, 32 ]
1556
];
1557
ker[178] := [
1558
<[ 28, 28 ], [ 28 ]>,
1559
<[ 32, 32 ], [ 32 ]>
1560
];
1561
// time = 16.909 second
1562
1563
// Level 179
1564
1565
dat[179] := [
1566
[ 1, 9, 9 ]
1567
];
1568
ker[179] := [
1569
<[ 9, 9 ], [ 9 ]>
1570
];
1571
// time = 2.911 second
1572
1573
// Level 180
1574
1575
dat[180] := [
1576
[ 1, 12, 12 ]
1577
];
1578
ker[180] := [
1579
<[ 12, 12 ], [ 12 ]>
1580
];
1581
// time = 95.879 second
1582
1583
// Level 181
1584
// Level 182
1585
1586
dat[182] := [
1587
[ 1, 308, 308 ],
1588
[ 1, 140, 140 ],
1589
[ 1, 180, 180 ],
1590
[ 1, 36, 36 ],
1591
[ 1, 12, 12 ]
1592
];
1593
ker[182] := [
1594
<[ 308, 308 ], [ 308 ]>,
1595
<[ 140, 140 ], [ 140 ]>,
1596
<[ 180, 180 ], [ 180 ]>,
1597
<[ 36, 36 ], [ 36 ]>,
1598
<[ 12, 12 ], [ 12 ]>
1599
];
1600
// time = 52.68 second
1601
1602
// Level 183
1603
// Level 184
1604
1605
dat[184] := [
1606
[ 1, 8, 16 ],
1607
[ 1, 12, 12 ],
1608
[ 1, 24, 48 ],
1609
[ 1, 8, 16 ]
1610
];
1611
ker[184] := [
1612
<[ 8, 8 ], [ 16 ]>,
1613
<[ 12, 12 ], [ 12 ]>,
1614
<[ 24, 24 ], [ 48 ]>,
1615
<[ 8, 8 ], [ 16 ]>
1616
];
1617
// time = 47.74 second
1618
1619
// Level 185
1620
1621
dat[185] := [
1622
[ 1, 6, 6 ],
1623
[ 1, 48, 48 ],
1624
[ 1, 8, 8 ]
1625
];
1626
ker[185] := [
1627
<[ 6, 6 ], [ 6 ]>,
1628
<[ 48, 48 ], [ 48 ]>,
1629
<[ 8, 8 ], [ 8 ]>
1630
];
1631
// time = 16.57 second
1632
1633
// Level 186
1634
1635
dat[186] := [
1636
[ 1, 44, 44 ],
1637
[ 1, 28, 28 ],
1638
[ 1, 20, 20 ]
1639
];
1640
ker[186] := [
1641
<[ 44, 44 ], [ 44 ]>,
1642
<[ 28, 28 ], [ 28 ]>,
1643
<[ 20, 20 ], [ 20 ]>
1644
];
1645
// time = 51.671 second
1646
1647
// Level 187
1648
1649
dat[187] := [
1650
[ 1, 30, 30 ],
1651
[ 1, 16, 16 ]
1652
];
1653
ker[187] := [
1654
<[ 30, 30 ], [ 30 ]>,
1655
<[ 16, 16 ], [ 16 ]>
1656
];
1657
// time = 12.941 second
1658
1659
// Level 188
1660
// Level 189
1661
1662
dat[189] := [
1663
[ 1, 12, 36 ],
1664
[ 1, 12, 36 ],
1665
[ 1, 36, 36 ],
1666
[ 1, 12, 36 ]
1667
];
1668
ker[189] := [
1669
<[ 12, 12 ], [ 36 ]>,
1670
<[ 12, 12 ], [ 36 ]>,
1671
<[ 36, 36 ], [ 36 ]>,
1672
<[ 12, 12 ], [ 36 ]>
1673
];
1674
// time = 34.25 second
1675
1676
// Level 190
1677
1678
dat[190] := [
1679
[ 1, 8, 8 ],
1680
[ 1, 88, 88 ],
1681
[ 1, 24, 24 ]
1682
];
1683
ker[190] := [
1684
<[ 8, 8 ], [ 8 ]>,
1685
<[ 88, 88 ], [ 88 ]>,
1686
<[ 24, 24 ], [ 24 ]>
1687
];
1688
// time = 47.009 second
1689
1690
// Level 191
1691
// Level 192
1692
1693
dat[192] := [
1694
[ 1, 8, 32 ],
1695
[ 1, 8, 32 ],
1696
[ 1, 8, 32 ],
1697
[ 1, 8, 32 ]
1698
];
1699
ker[192] := [
1700
<[ 8, 8 ], [ 32 ]>,
1701
<[ 8, 8 ], [ 32 ]>,
1702
<[ 8, 8 ], [ 32 ]>,
1703
<[ 8, 8 ], [ 32 ]>
1704
];
1705
// time = 94.299 second
1706
1707
// Level 193
1708
// Level 194
1709
1710
dat[194] := [
1711
[ 1, 14, 14 ]
1712
];
1713
ker[194] := [
1714
<[ 14, 14 ], [ 14 ]>
1715
];
1716
// time = 13.879 second
1717
1718
// Level 195
1719
1720
dat[195] := [
1721
[ 1, 84, 84 ],
1722
[ 1, 84, 84 ],
1723
[ 1, 24, 24 ],
1724
[ 1, 12, 12 ]
1725
];
1726
ker[195] := [
1727
<[ 84, 84 ], [ 84 ]>,
1728
<[ 84, 84 ], [ 84 ]>,
1729
<[ 24, 24 ], [ 24 ]>,
1730
<[ 12, 12 ], [ 12 ]>
1731
];
1732
// time = 47.48 second
1733
1734
// Level 196
1735
1736
dat[196] := [
1737
[ 1, 42, 42 ],
1738
[ 1, 6, 42 ]
1739
];
1740
ker[196] := [
1741
<[ 42, 42 ], [ 42 ]>,
1742
<[ 6, 6 ], [ 42 ]>
1743
];
1744
// time = 39.421 second
1745
1746
// Level 197
1747
1748
dat[197] := [
1749
[ 1, 10, 10 ]
1750
];
1751
ker[197] := [
1752
<[ 10, 10 ], [ 10 ]>
1753
];
1754
// time = 2.98 second
1755
1756
// Level 198
1757
1758
dat[198] := [
1759
[ 1, 32, 32 ],
1760
[ 1, 160, 160 ],
1761
[ 1, 32, 32 ],
1762
[ 1, 32, 32 ],
1763
[ 1, 32, 32 ]
1764
];
1765
ker[198] := [
1766
<[ 32, 32 ], [ 32 ]>,
1767
<[ 160, 160 ], [ 160 ]>,
1768
<[ 32, 32 ], [ 32 ]>,
1769
<[ 32, 32 ], [ 32 ]>,
1770
<[ 32, 32 ], [ 32 ]>
1771
];
1772
// time = 132.96 second
1773
1774
// Level 199
1775
// Level 200
1776
1777
dat[200] := [
1778
[ 1, 40, 80 ],
1779
[ 1, 120, 120 ],
1780
[ 1, 24, 48 ],
1781
[ 1, 24, 120 ],
1782
[ 1, 8, 80 ]
1783
];
1784
ker[200] := [
1785
<[ 40, 40 ], [ 80 ]>,
1786
<[ 120, 120 ], [ 120 ]>,
1787
<[ 24, 24 ], [ 48 ]>,
1788
<[ 24, 24 ], [ 120 ]>,
1789
<[ 8, 8 ], [ 80 ]>
1790
];
1791
// time = 74.32 second
1792
1793
// Level 201
1794
1795
dat[201] := [
1796
[ 1, 60, 60 ],
1797
[ 1, 12, 12 ],
1798
[ 1, 12, 12 ]
1799
];
1800
ker[201] := [
1801
<[ 60, 60 ], [ 60 ]>,
1802
<[ 12, 12 ], [ 12 ]>,
1803
<[ 12, 12 ], [ 12 ]>
1804
];
1805
// time = 22.301 second
1806
1807
// Level 202
1808
1809
dat[202] := [
1810
[ 1, 34, 34 ]
1811
];
1812
ker[202] := [
1813
<[ 34, 34 ], [ 34 ]>
1814
];
1815
// time = 15.869 second
1816
1817
// Level 203
1818
1819
dat[203] := [
1820
[ 1, 12, 12 ],
1821
[ 1, 48, 48 ],
1822
[ 1, 8, 8 ]
1823
];
1824
ker[203] := [
1825
<[ 12, 12 ], [ 12 ]>,
1826
<[ 48, 48 ], [ 48 ]>,
1827
<[ 8, 8 ], [ 8 ]>
1828
];
1829
// time = 19.76 second
1830
1831
// Level 204
1832
1833
dat[204] := [
1834
[ 1, 132, 132 ],
1835
[ 1, 12, 12 ]
1836
];
1837
ker[204] := [
1838
<[ 132, 132 ], [ 132 ]>,
1839
<[ 12, 12 ], [ 12 ]>
1840
];
1841
// time = 87.381 second
1842
1843
// Level 205
1844
1845
dat[205] := [
1846
[ 1, 16, 16 ],
1847
[ 1, 8, 8 ],
1848
[ 1, 12, 12 ]
1849
];
1850
ker[205] := [
1851
<[ 16, 16 ], [ 16 ]>,
1852
<[ 8, 8 ], [ 8 ]>,
1853
<[ 12, 12 ], [ 12 ]>
1854
];
1855
// time = 18.759 second
1856
1857
// Level 206
1858
1859
dat[206] := [
1860
[ 1, 15, 15 ]
1861
];
1862
ker[206] := [
1863
<[ 15, 15 ], [ 15 ]>
1864
];
1865
// time = 16.039 second
1866
1867
// Level 207
1868
1869
dat[207] := [
1870
[ 1, 16, 16 ]
1871
];
1872
ker[207] := [
1873
<[ 16, 16 ], [ 16 ]>
1874
];
1875
// time = 19.43 second
1876
1877
// Level 208
1878
1879
dat[208] := [
1880
[ 1, 16, 32 ],
1881
[ 1, 12, 12 ],
1882
[ 1, 48, 96 ],
1883
[ 1, 16, 32 ]
1884
];
1885
ker[208] := [
1886
<[ 16, 16 ], [ 32 ]>,
1887
<[ 12, 12 ], [ 12 ]>,
1888
<[ 48, 48 ], [ 96 ]>,
1889
<[ 16, 16 ], [ 32 ]>
1890
];
1891
// time = 63.529 second
1892
1893
// Level 209
1894
1895
dat[209] := [
1896
[ 1, 24, 24 ]
1897
];
1898
ker[209] := [
1899
<[ 24, 24 ], [ 24 ]>
1900
];
1901
// time = 12.18 second
1902
1903
// Level 210
1904
1905
dat[210] := [
1906
[ 1, 16, 16 ],
1907
[ 1, 96, 96 ],
1908
[ 1, 32, 32 ],
1909
[ 1, 48, 48 ],
1910
[ 1, 128, 128 ]
1911
];
1912
ker[210] := [
1913
<[ 16, 16 ], [ 16 ]>,
1914
<[ 96, 96 ], [ 96 ]>,
1915
<[ 32, 32 ], [ 32 ]>,
1916
<[ 48, 48 ], [ 48 ]>,
1917
<[ 128, 128 ], [ 128 ]>
1918
];
1919
// time = 246.809 second
1920
1921
// Level 211
1922
// Level 212
1923
1924
dat[212] := [
1925
[ 1, 21, 21 ],
1926
[ 1, 12, 12 ]
1927
];
1928
ker[212] := [
1929
<[ 21, 21 ], [ 21 ]>,
1930
<[ 12, 12 ], [ 12 ]>
1931
];
1932
// time = 39.101 second
1933
1934
// Level 213
1935
1936
dat[213] := [
1937
[ 1, 6, 6 ]
1938
];
1939
ker[213] := [
1940
<[ 6, 6 ], [ 6 ]>
1941
];
1942
// time = 15.109 second
1943
1944
// Level 214
1945
1946
dat[214] := [
1947
[ 1, 60, 60 ],
1948
[ 1, 12, 12 ],
1949
[ 1, 12, 12 ],
1950
[ 1, 28, 28 ]
1951
];
1952
ker[214] := [
1953
<[ 60, 60 ], [ 60 ]>,
1954
<[ 12, 12 ], [ 12 ]>,
1955
<[ 12, 12 ], [ 12 ]>,
1956
<[ 28, 28 ], [ 28 ]>
1957
];
1958
// time = 33.6 second
1959
1960
// Level 215
1961
1962
dat[215] := [
1963
[ 1, 8, 8 ]
1964
];
1965
ker[215] := [
1966
<[ 8, 8 ], [ 8 ]>
1967
];
1968
// time = 11.579 second
1969
1970
// Level 216
1971
1972
dat[216] := [
1973
[ 1, 24, 144 ],
1974
[ 1, 24, 72 ],
1975
[ 1, 72, 72 ],
1976
[ 1, 72, 144 ]
1977
];
1978
ker[216] := [
1979
<[ 24, 24 ], [ 144 ]>,
1980
<[ 24, 24 ], [ 72 ]>,
1981
<[ 72, 72 ], [ 72 ]>,
1982
<[ 72, 72 ], [ 144 ]>
1983
];
1984
// time = 154.299 second
1985
1986
// Level 217
1987
// Level 218
1988
1989
dat[218] := [
1990
[ 1, 24, 24 ]
1991
];
1992
ker[218] := [
1993
<[ 24, 24 ], [ 24 ]>
1994
];
1995
// time = 21.61 second
1996
1997
// Level 219
1998
1999
dat[219] := [
2000
[ 1, 60, 60 ],
2001
[ 1, 12, 12 ],
2002
[ 1, 12, 12 ]
2003
];
2004
ker[219] := [
2005
<[ 60, 60 ], [ 60 ]>,
2006
<[ 12, 12 ], [ 12 ]>,
2007
<[ 12, 12 ], [ 12 ]>
2008
];
2009
// time = 28.471 second
2010
2011
// Level 220
2012
2013
dat[220] := [
2014
[ 1, 36, 36 ],
2015
[ 1, 12, 12 ]
2016
];
2017
ker[220] := [
2018
<[ 36, 36 ], [ 36 ]>,
2019
<[ 12, 12 ], [ 12 ]>
2020
];
2021
// time = 95.5 second
2022
2023
// Level 221
2024
2025
dat[221] := [
2026
[ 1, 24, 24 ],
2027
[ 1, 120, 120 ]
2028
];
2029
ker[221] := [
2030
<[ 24, 24 ], [ 24 ]>,
2031
<[ 120, 120 ], [ 120 ]>
2032
];
2033
// time = 17.519 second
2034
2035
// Level 222
2036
2037
dat[222] := [
2038
[ 1, 36, 36 ],
2039
[ 1, 2484, 2484 ],
2040
[ 1, 52, 52 ],
2041
[ 1, 44, 44 ],
2042
[ 1, 12, 12 ]
2043
];
2044
ker[222] := [
2045
<[ 36, 36 ], [ 36 ]>,
2046
<[ 2484, 2484 ], [ 2484 ]>,
2047
<[ 52, 52 ], [ 52 ]>,
2048
<[ 44, 44 ], [ 44 ]>,
2049
<[ 12, 12 ], [ 12 ]>
2050
];
2051
// time = 100.441 second
2052
2053
// Level 223
2054
// Level 224
2055
2056
dat[224] := [
2057
[ 1, 8, 32 ],
2058
[ 1, 8, 32 ]
2059
];
2060
ker[224] := [
2061
<[ 8, 8 ], [ 32 ]>,
2062
<[ 8, 8 ], [ 32 ]>
2063
];
2064
// time = 73.27 second
2065
2066
// Level 225
2067
2068
dat[225] := [
2069
[ 1, 8, 40 ],
2070
[ 1, 40, 40 ],
2071
[ 1, 48, 48 ],
2072
[ 1, 48, 48 ],
2073
[ 1, 48, 48 ]
2074
];
2075
ker[225] := [
2076
<[ 8, 8 ], [ 40 ]>,
2077
<[ 40, 40 ], [ 40 ]>,
2078
<[ 48, 48 ], [ 48 ]>,
2079
<[ 48, 48 ], [ 48 ]>,
2080
<[ 48, 48 ], [ 48 ]>
2081
];
2082
// time = 69.469 second
2083
2084
// Level 226
2085
2086
dat[226] := [
2087
[ 1, 24, 24 ]
2088
];
2089
ker[226] := [
2090
<[ 24, 24 ], [ 24 ]>
2091
];
2092
// time = 21.061 second
2093
2094
// Level 227
2095
// Level 228
2096
2097
dat[228] := [
2098
[ 1, 18, 18 ],
2099
[ 1, 24, 24 ]
2100
];
2101
ker[228] := [
2102
<[ 18, 18 ], [ 18 ]>,
2103
<[ 24, 24 ], [ 24 ]>
2104
];
2105
// time = 120.119 second
2106
2107
// Level 229
2108
2109
dat[229] := [
2110
[ 1, 8, 8 ]
2111
];
2112
ker[229] := [
2113
<[ 8, 8 ], [ 8 ]>
2114
];
2115
// time = 4.44 second
2116
2117
// Level 230
2118
// Level 231
2119
2120
dat[231] := [
2121
[ 1, 20, 20 ]
2122
];
2123
ker[231] := [
2124
<[ 20, 20 ], [ 20 ]>
2125
];
2126
// time = 41.98 second
2127
2128
// Level 232
2129
2130
dat[232] := [
2131
[ 1, 16, 16 ],
2132
[ 1, 16, 16 ]
2133
];
2134
ker[232] := [
2135
<[ 16, 16 ], [ 16 ]>,
2136
<[ 16, 16 ], [ 16 ]>
2137
];
2138
// time = 56.79 second
2139
2140
// Level 233
2141
2142
dat[233] := [
2143
[ 1, 27, 27 ]
2144
];
2145
ker[233] := [
2146
<[ 27, 27 ], [ 27 ]>
2147
];
2148
// time = 4.309 second
2149
2150
// Level 234
2151
2152
dat[234] := [
2153
[ 1, 16, 48 ],
2154
[ 1, 28, 84 ],
2155
[ 1, 48, 48 ],
2156
[ 1, 320, 320 ],
2157
[ 1, 20, 60 ]
2158
];
2159
ker[234] := [
2160
<[ 16, 16 ], [ 48 ]>,
2161
<[ 28, 28 ], [ 84 ]>,
2162
<[ 48, 48 ], [ 48 ]>,
2163
<[ 320, 320 ], [ 320 ]>,
2164
<[ 20, 20 ], [ 60 ]>
2165
];
2166
// time = 146.67 second
2167
2168
// Level 235
2169
2170
dat[235] := [
2171
[ 1, 108, 108 ],
2172
[ 1, 18, 18 ],
2173
[ 1, 12, 12 ]
2174
];
2175
ker[235] := [
2176
<[ 108, 108 ], [ 108 ]>,
2177
<[ 18, 18 ], [ 18 ]>,
2178
<[ 12, 12 ], [ 12 ]>
2179
];
2180
// time = 25.71 second
2181
2182
// Level 236
2183
2184
dat[236] := [
2185
[ 1, 14, 14 ],
2186
[ 1, 6, 12 ]
2187
];
2188
ker[236] := [
2189
<[ 14, 14 ], [ 14 ]>,
2190
<[ 6, 6 ], [ 12 ]>
2191
];
2192
// time = 50.489 second
2193
2194
// Level 237
2195
// Level 238
2196
2197
dat[238] := [
2198
[ 1, 8, 8 ],
2199
[ 1, 80, 80 ],
2200
[ 1, 16, 16 ],
2201
[ 1, 112, 112 ],
2202
[ 1, 16, 16 ]
2203
];
2204
ker[238] := [
2205
<[ 8, 8 ], [ 8 ]>,
2206
<[ 80, 80 ], [ 80 ]>,
2207
<[ 16, 16 ], [ 16 ]>,
2208
<[ 112, 112 ], [ 112 ]>,
2209
<[ 16, 16 ], [ 16 ]>
2210
];
2211
// time = 95.089 second
2212
2213
// Level 239
2214
// Level 240
2215
2216
dat[240] := [
2217
[ 1, 16, 32 ],
2218
[ 1, 16, 32 ],
2219
[ 1, 48, 96 ],
2220
[ 1, 16, 32 ]
2221
];
2222
ker[240] := [
2223
<[ 16, 16 ], [ 32 ]>,
2224
<[ 16, 16 ], [ 32 ]>,
2225
<[ 48, 48 ], [ 96 ]>,
2226
<[ 16, 16 ], [ 32 ]>
2227
];
2228
// time = 321.839 second
2229
2230
// Level 241
2231
// Level 242
2232
2233
dat[242] := [
2234
[ 1, 176, 176 ],
2235
[ 1, 16, 176 ]
2236
];
2237
ker[242] := [
2238
<[ 176, 176 ], [ 176 ]>,
2239
<[ 16, 16 ], [ 176 ]>
2240
];
2241
// time = 46.52 second
2242
2243
// Level 243
2244
2245
dat[243] := [
2246
[ 1, 6, 54 ],
2247
[ 1, 9, 27 ]
2248
];
2249
ker[243] := [
2250
<[ 6, 6 ], [ 54 ]>,
2251
<[ 9, 9 ], [ 27 ]>
2252
];
2253
// time = 27.989 second
2254
2255
// Level 244
2256
2257
dat[244] := [
2258
[ 1, 12, 12 ]
2259
];
2260
ker[244] := [
2261
<[ 12, 12 ], [ 12 ]>
2262
];
2263
// time = 37.44 second
2264
2265
// Level 245
2266
2267
dat[245] := [
2268
[ 1, 336, 336 ],
2269
[ 1, 32, 32 ],
2270
[ 1, 48, 336 ]
2271
];
2272
ker[245] := [
2273
<[ 336, 336 ], [ 336 ]>,
2274
<[ 32, 32 ], [ 32 ]>,
2275
<[ 48, 48 ], [ 336 ]>
2276
];
2277
// time = 40.73 second
2278
2279
// Level 246
2280
2281
dat[246] := [
2282
[ 1, 48, 48 ],
2283
[ 1, 44, 44 ],
2284
[ 1, 1680, 1680 ],
2285
[ 1, 20, 20 ],
2286
[ 1, 84, 84 ],
2287
[ 1, 300, 300 ],
2288
[ 1, 24, 24 ]
2289
];
2290
ker[246] := [
2291
<[ 48, 48 ], [ 48 ]>,
2292
<[ 44, 44 ], [ 44 ]>,
2293
<[ 1680, 1680 ], [ 1680 ]>,
2294
<[ 20, 20 ], [ 20 ]>,
2295
<[ 84, 84 ], [ 84 ]>,
2296
<[ 300, 300 ], [ 300 ]>,
2297
<[ 24, 24 ], [ 24 ]>
2298
];
2299
// time = 182.55 second
2300
2301
// Level 247
2302
// Level 248
2303
2304
dat[248] := [
2305
[ 1, 8, 16 ],
2306
[ 1, 16, 16 ],
2307
[ 1, 8, 16 ]
2308
];
2309
ker[248] := [
2310
<[ 8, 8 ], [ 16 ]>,
2311
<[ 16, 16 ], [ 16 ]>,
2312
<[ 8, 8 ], [ 16 ]>
2313
];
2314
// time = 75.489 second
2315
2316
// Level 249
2317
2318
dat[249] := [
2319
[ 1, 8, 8 ],
2320
[ 1, 24, 24 ]
2321
];
2322
ker[249] := [
2323
<[ 8, 8 ], [ 8 ]>,
2324
<[ 24, 24 ], [ 24 ]>
2325
];
2326
// time = 27.969 second
2327
2328
// Level 250
2329
// Level 251
2330
// Level 252
2331
2332
dat[252] := [
2333
[ 1, 48, 48 ],
2334
[ 1, 48, 48 ]
2335
];
2336
ker[252] := [
2337
<[ 48, 48 ], [ 48 ]>,
2338
<[ 48, 48 ], [ 48 ]>
2339
];
2340
// time = 229.109 second
2341
2342
// Level 253
2343
// Level 254
2344
2345
dat[254] := [
2346
[ 1, 12, 12 ],
2347
[ 1, 24, 24 ],
2348
[ 1, 16, 16 ],
2349
[ 1, 36, 36 ]
2350
];
2351
ker[254] := [
2352
<[ 12, 12 ], [ 12 ]>,
2353
<[ 24, 24 ], [ 24 ]>,
2354
<[ 16, 16 ], [ 16 ]>,
2355
<[ 36, 36 ], [ 36 ]>
2356
];
2357
// time = 52.479 second
2358
2359
// Level 255
2360
// Level 256
2361
2362
dat[256] := [
2363
[ 1, 8, 64 ],
2364
[ 1, 8, 32 ],
2365
[ 1, 8, 64 ],
2366
[ 1, 8, 32 ]
2367
];
2368
ker[256] := [
2369
<[ 8, 8 ], [ 64 ]>,
2370
<[ 8, 8 ], [ 32 ]>,
2371
<[ 8, 8 ], [ 64 ]>,
2372
<[ 8, 8 ], [ 32 ]>
2373
];
2374
// time = 81.71 second
2375
2376
// Level 257
2377
// Level 258
2378
2379
dat[258] := [
2380
[ 1, 24, 24 ],
2381
[ 1, 196, 196 ],
2382
[ 1, 40, 40 ],
2383
[ 1, 60, 60 ],
2384
[ 1, 760, 760 ],
2385
[ 1, 168, 168 ],
2386
[ 1, 12, 12 ]
2387
];
2388
ker[258] := [
2389
<[ 24, 24 ], [ 24 ]>,
2390
<[ 196, 196 ], [ 196 ]>,
2391
<[ 40, 40 ], [ 40 ]>,
2392
<[ 60, 60 ], [ 60 ]>,
2393
<[ 760, 760 ], [ 760 ]>,
2394
<[ 168, 168 ], [ 168 ]>,
2395
<[ 12, 12 ], [ 12 ]>
2396
];
2397
// time = 209.781 second
2398
2399
// Level 259
2400
2401
dat[259] := [
2402
[ 1, 36, 36 ]
2403
];
2404
ker[259] := [
2405
<[ 36, 36 ], [ 36 ]>
2406
];
2407
// time = 19.679 second
2408
2409
// Level 260
2410
2411
dat[260] := [
2412
[ 1, 48, 96 ]
2413
];
2414
ker[260] := [
2415
<[ 48, 48 ], [ 96 ]>
2416
];
2417
// time = 94.871 second
2418
2419
// Level 261
2420
// Level 262
2421
2422
dat[262] := [
2423
[ 1, 12, 12 ],
2424
[ 1, 44, 44 ]
2425
];
2426
ker[262] := [
2427
<[ 12, 12 ], [ 12 ]>,
2428
<[ 44, 44 ], [ 44 ]>
2429
];
2430
// time = 40.059 second
2431
2432
// Level 263
2433
// Level 264
2434
2435
dat[264] := [
2436
[ 1, 16, 16 ],
2437
[ 1, 24, 48 ],
2438
[ 1, 336, 336 ],
2439
[ 1, 16, 16 ]
2440
];
2441
ker[264] := [
2442
<[ 16, 16 ], [ 16 ]>,
2443
<[ 24, 24 ], [ 48 ]>,
2444
<[ 336, 336 ], [ 336 ]>,
2445
<[ 16, 16 ], [ 16 ]>
2446
];
2447
// time = 320.929 second
2448
2449
// Level 265
2450
2451
dat[265] := [
2452
[ 1, 30, 30 ]
2453
];
2454
ker[265] := [
2455
<[ 30, 30 ], [ 30 ]>
2456
];
2457
// time = 22.17 second
2458
2459
// Level 266
2460
// Level 267
2461
2462
dat[267] := [
2463
[ 1, 238, 238 ],
2464
[ 1, 10, 10 ]
2465
];
2466
ker[267] := [
2467
<[ 238, 238 ], [ 238 ]>,
2468
<[ 10, 10 ], [ 10 ]>
2469
];
2470
// time = 35.76 second
2471
2472
// Level 268
2473
2474
dat[268] := [
2475
[ 1, 18, 18 ]
2476
];
2477
ker[268] := [
2478
<[ 18, 18 ], [ 18 ]>
2479
];
2480
// time = 45.419 second
2481
2482
// Level 269
2483
2484
dat[269] := [
2485
[ 1, 6, 6 ]
2486
];
2487
ker[269] := [
2488
<[ 6, 6 ], [ 6 ]>
2489
];
2490
// time = 7.061 second
2491
2492
// Level 270
2493
2494
dat[270] := [
2495
[ 1, 60, 180 ],
2496
[ 1, 36, 36 ],
2497
[ 1, 60, 180 ],
2498
[ 1, 12, 36 ]
2499
];
2500
ker[270] := [
2501
<[ 60, 60 ], [ 180 ]>,
2502
<[ 36, 36 ], [ 36 ]>,
2503
<[ 60, 60 ], [ 180 ]>,
2504
<[ 12, 12 ], [ 36 ]>
2505
];
2506
// time = 330.699 second
2507
2508
// Level 271
2509
// Level 272
2510
2511
dat[272] := [
2512
[ 1, 16, 32 ],
2513
[ 1, 16, 32 ],
2514
[ 1, 48, 96 ],
2515
[ 1, 16, 32 ]
2516
];
2517
ker[272] := [
2518
<[ 16, 16 ], [ 32 ]>,
2519
<[ 16, 16 ], [ 32 ]>,
2520
<[ 48, 48 ], [ 96 ]>,
2521
<[ 16, 16 ], [ 32 ]>
2522
];
2523
// time = 132.319 second
2524
2525
// Level 273
2526
2527
dat[273] := [
2528
[ 1, 48, 48 ],
2529
[ 1, 672, 672 ]
2530
];
2531
ker[273] := [
2532
<[ 48, 48 ], [ 48 ]>,
2533
<[ 672, 672 ], [ 672 ]>
2534
];
2535
// time = 63.149 second
2536
2537
// Level 274
2538
2539
dat[274] := [
2540
[ 1, 12, 12 ],
2541
[ 1, 132, 132 ],
2542
[ 1, 28, 28 ]
2543
];
2544
ker[274] := [
2545
<[ 12, 12 ], [ 12 ]>,
2546
<[ 132, 132 ], [ 132 ]>,
2547
<[ 28, 28 ], [ 28 ]>
2548
];
2549
// time = 52.47 second
2550
2551
// Level 275
2552
2553
dat[275] := [
2554
[ 1, 24, 24 ],
2555
[ 1, 28, 140 ]
2556
];
2557
ker[275] := [
2558
<[ 24, 24 ], [ 24 ]>,
2559
<[ 28, 28 ], [ 140 ]>
2560
];
2561
// time = 47.48 second
2562
2563
// Level 276
2564
// Level 277
2565
2566
dat[277] := [
2567
[ 1, 10, 10 ]
2568
];
2569
ker[277] := [
2570
<[ 10, 10 ], [ 10 ]>
2571
];
2572
// time = 6.72 second
2573
2574
// Level 278
2575
2576
dat[278] := [
2577
[ 1, 272, 272 ],
2578
[ 1, 32, 32 ]
2579
];
2580
ker[278] := [
2581
<[ 272, 272 ], [ 272 ]>,
2582
<[ 32, 32 ], [ 32 ]>
2583
];
2584
// time = 45.111 second
2585
2586
// Level 279
2587
// Level 280
2588
2589
dat[280] := [
2590
[ 1, 16, 32 ],
2591
[ 1, 240, 480 ]
2592
];
2593
ker[280] := [
2594
<[ 16, 16 ], [ 32 ]>,
2595
<[ 240, 240 ], [ 480 ]>
2596
];
2597
// time = 219.959 second
2598
2599
// Level 281
2600
// Level 282
2601
2602
dat[282] := [
2603
[ 1, 48, 48 ],
2604
[ 1, 64, 64 ]
2605
];
2606
ker[282] := [
2607
<[ 48, 48 ], [ 48 ]>,
2608
<[ 64, 64 ], [ 64 ]>
2609
];
2610
// time = 138.461 second
2611
2612
// Level 283
2613
// Level 284
2614
// Level 285
2615
2616
dat[285] := [
2617
[ 1, 24, 24 ],
2618
[ 1, 72, 72 ],
2619
[ 1, 40, 40 ]
2620
];
2621
ker[285] := [
2622
<[ 24, 24 ], [ 24 ]>,
2623
<[ 72, 72 ], [ 72 ]>,
2624
<[ 40, 40 ], [ 40 ]>
2625
];
2626
// time = 113.559 second
2627
2628
// Level 286
2629
2630
dat[286] := [
2631
[ 1, 24, 24 ],
2632
[ 1, 60, 60 ],
2633
[ 1, 60, 60 ],
2634
[ 1, 104, 104 ],
2635
[ 1, 120, 120 ],
2636
[ 1, 12, 12 ]
2637
];
2638
ker[286] := [
2639
<[ 24, 24 ], [ 24 ]>,
2640
<[ 60, 60 ], [ 60 ]>,
2641
<[ 60, 60 ], [ 60 ]>,
2642
<[ 104, 104 ], [ 104 ]>,
2643
<[ 120, 120 ], [ 120 ]>,
2644
<[ 12, 12 ], [ 12 ]>
2645
];
2646
// time = 171.361 second
2647
2648
// Level 287
2649
// Level 288
2650
2651
dat[288] := [
2652
[ 1, 16, 96 ],
2653
[ 1, 16, 96 ],
2654
[ 1, 32, 64 ],
2655
[ 1, 48, 96 ],
2656
[ 1, 32, 64 ]
2657
];
2658
ker[288] := [
2659
<[ 16, 16 ], [ 96 ]>,
2660
<[ 16, 16 ], [ 96 ]>,
2661
<[ 32, 32 ], [ 64 ]>,
2662
<[ 48, 48 ], [ 96 ]>,
2663
<[ 32, 32 ], [ 64 ]>
2664
];
2665
// time = 472.5 second
2666
2667
// Level 289
2668
2669
dat[289] := [
2670
[ 1, 72, 72 ]
2671
];
2672
ker[289] := [
2673
<[ 72, 72 ], [ 72 ]>
2674
];
2675
// time = 13.721 second
2676
2677
// Level 290
2678
2679
dat[290] := [
2680
[ 1, 48, 48 ]
2681
];
2682
ker[290] := [
2683
<[ 48, 48 ], [ 48 ]>
2684
];
2685
// time = 89.269 second
2686
2687
// Level 291
2688
2689
dat[291] := [
2690
[ 1, 12, 12 ],
2691
[ 1, 120, 120 ],
2692
[ 1, 12, 12 ],
2693
[ 1, 1012, 1012 ]
2694
];
2695
ker[291] := [
2696
<[ 12, 12 ], [ 12 ]>,
2697
<[ 120, 120 ], [ 120 ]>,
2698
<[ 12, 12 ], [ 12 ]>,
2699
<[ 1012, 1012 ], [ 1012 ]>
2700
];
2701
// time = 72.529 second
2702
2703
// Level 292
2704
// Level 293
2705
// Level 294
2706
2707
dat[294] := [
2708
[ 1, 420, 420 ],
2709
[ 1, 448, 448 ],
2710
[ 1, 60, 420 ],
2711
[ 1, 64, 448 ],
2712
[ 1, 84, 84 ],
2713
[ 1, 12, 84 ],
2714
[ 1, 192, 192 ]
2715
];
2716
ker[294] := [
2717
<[ 420, 420 ], [ 420 ]>,
2718
<[ 448, 448 ], [ 448 ]>,
2719
<[ 60, 60 ], [ 420 ]>,
2720
<[ 64, 64 ], [ 448 ]>,
2721
<[ 84, 84 ], [ 84 ]>,
2722
<[ 12, 12 ], [ 84 ]>,
2723
<[ 192, 192 ], [ 192 ]>
2724
];
2725
// time = 511.261 second
2726
2727
// Level 295
2728
// Level 296
2729
2730
dat[296] := [
2731
[ 1, 16, 32 ],
2732
[ 1, 16, 32 ]
2733
];
2734
ker[296] := [
2735
<[ 16, 16 ], [ 32 ]>,
2736
<[ 16, 16 ], [ 32 ]>
2737
];
2738
// time = 96.42 second
2739
2740
// Level 297
2741
2742
dat[297] := [
2743
[ 1, 12, 36 ],
2744
[ 1, 24, 72 ],
2745
[ 1, 36, 36 ],
2746
[ 1, 72, 72 ]
2747
];
2748
ker[297] := [
2749
<[ 12, 12 ], [ 36 ]>,
2750
<[ 24, 24 ], [ 72 ]>,
2751
<[ 36, 36 ], [ 36 ]>,
2752
<[ 72, 72 ], [ 72 ]>
2753
];
2754
// time = 123.219 second
2755
2756
// Level 298
2757
2758
dat[298] := [
2759
[ 1, 20, 20 ],
2760
[ 1, 36, 36 ]
2761
];
2762
ker[298] := [
2763
<[ 20, 20 ], [ 20 ]>,
2764
<[ 36, 36 ], [ 36 ]>
2765
];
2766
// time = 56.889 second
2767
2768
// Level 299
2769
// Level 300
2770
2771
dat[300] := [
2772
[ 1, 36, 180 ],
2773
[ 1, 24, 120 ],
2774
[ 1, 180, 180 ],
2775
[ 1, 120, 120 ]
2776
];
2777
ker[300] := [
2778
<[ 36, 36 ], [ 180 ]>,
2779
<[ 24, 24 ], [ 120 ]>,
2780
<[ 180, 180 ], [ 180 ]>,
2781
<[ 120, 120 ], [ 120 ]>
2782
];
2783
// time = 555.85 second
2784
2785
// Level 301
2786
// Level 302
2787
2788
dat[302] := [
2789
[ 1, 27, 27 ],
2790
[ 1, 120, 120 ],
2791
[ 1, 40, 40 ]
2792
];
2793
ker[302] := [
2794
<[ 27, 27 ], [ 27 ]>,
2795
<[ 120, 120 ], [ 120 ]>,
2796
<[ 40, 40 ], [ 40 ]>
2797
];
2798
// time = 66.931 second
2799
2800
// Level 303
2801
2802
dat[303] := [
2803
[ 1, 112, 112 ],
2804
[ 1, 32, 32 ]
2805
];
2806
ker[303] := [
2807
<[ 112, 112 ], [ 112 ]>,
2808
<[ 32, 32 ], [ 32 ]>
2809
];
2810
// time = 45.829 second
2811
2812
// Level 304
2813
2814
dat[304] := [
2815
[ 1, 16, 32 ],
2816
[ 1, 16, 64 ],
2817
[ 1, 48, 96 ],
2818
[ 1, 24, 48 ],
2819
[ 1, 48, 96 ],
2820
[ 1, 24, 96 ]
2821
];
2822
ker[304] := [
2823
<[ 16, 16 ], [ 32 ]>,
2824
<[ 16, 16 ], [ 64 ]>,
2825
<[ 48, 48 ], [ 96 ]>,
2826
<[ 24, 24 ], [ 48 ]>,
2827
<[ 48, 48 ], [ 96 ]>,
2828
<[ 24, 24 ], [ 96 ]>
2829
];
2830
// time = 226.369 second
2831
2832
// Level 305
2833
// Level 306
2834
2835
dat[306] := [
2836
[ 1, 128, 128 ],
2837
[ 1, 48, 48 ],
2838
[ 1, 192, 192 ],
2839
[ 1, 64, 64 ]
2840
];
2841
ker[306] := [
2842
<[ 128, 128 ], [ 128 ]>,
2843
<[ 48, 48 ], [ 48 ]>,
2844
<[ 192, 192 ], [ 192 ]>,
2845
<[ 64, 64 ], [ 64 ]>
2846
];
2847
// time = 331.221 second
2848
2849
// Level 307
2850
2851
dat[307] := [
2852
[ 1, 13, 13 ],
2853
[ 1, 10, 10 ],
2854
[ 1, 11, 11 ],
2855
[ 1, 15, 15 ]
2856
];
2857
ker[307] := [
2858
<[ 13, 13 ], [ 13 ]>,
2859
<[ 10, 10 ], [ 10 ]>,
2860
<[ 11, 11 ], [ 11 ]>,
2861
<[ 15, 15 ], [ 15 ]>
2862
];
2863
// time = 36.141 second
2864
2865
// Level 308
2866
2867
dat[308] := [
2868
[ 1, 24, 24 ]
2869
];
2870
ker[308] := [
2871
<[ 24, 24 ], [ 24 ]>
2872
];
2873
// time = 156.75 second
2874
2875
// Level 309
2876
2877
dat[309] := [
2878
[ 1, 20, 20 ]
2879
];
2880
ker[309] := [
2881
<[ 20, 20 ], [ 20 ]>
2882
];
2883
// time = 31.329 second
2884
2885
// Level 310
2886
2887
dat[310] := [
2888
[ 1, 48, 48 ],
2889
[ 1, 96, 96 ]
2890
];
2891
ker[310] := [
2892
<[ 48, 48 ], [ 48 ]>,
2893
<[ 96, 96 ], [ 96 ]>
2894
];
2895
// time = 134.18 second
2896
2897
// Level 311
2898
// Level 312
2899
2900
dat[312] := [
2901
[ 1, 16, 32 ],
2902
[ 1, 32, 64 ],
2903
[ 1, 16, 32 ],
2904
[ 1, 240, 480 ],
2905
[ 1, 48, 96 ],
2906
[ 1, 16, 32 ]
2907
];
2908
ker[312] := [
2909
<[ 16, 16 ], [ 32 ]>,
2910
<[ 32, 32 ], [ 64 ]>,
2911
<[ 16, 16 ], [ 32 ]>,
2912
<[ 240, 240 ], [ 480 ]>,
2913
<[ 48, 48 ], [ 96 ]>,
2914
<[ 16, 16 ], [ 32 ]>
2915
];
2916
// time = 583.989 second
2917
2918
// Level 313
2919
// Level 314
2920
2921
dat[314] := [
2922
[ 1, 20, 20 ]
2923
];
2924
ker[314] := [
2925
<[ 20, 20 ], [ 20 ]>
2926
];
2927
// time = 39.361 second
2928
2929
// Level 315
2930
2931
dat[315] := [
2932
[ 1, 32, 32 ],
2933
[ 1, 20, 60 ]
2934
];
2935
ker[315] := [
2936
<[ 32, 32 ], [ 32 ]>,
2937
<[ 20, 20 ], [ 60 ]>
2938
];
2939
// time = 167.609 second
2940
2941
// Level 316
2942
2943
dat[316] := [
2944
[ 1, 36, 36 ],
2945
[ 1, 36, 36 ]
2946
];
2947
ker[316] := [
2948
<[ 36, 36 ], [ 36 ]>,
2949
<[ 36, 36 ], [ 36 ]>
2950
];
2951
// time = 118.331 second
2952
2953
// Level 317
2954
// Level 318
2955
2956
dat[318] := [
2957
[ 1, 24, 24 ],
2958
[ 1, 204, 204 ],
2959
[ 1, 60, 60 ],
2960
[ 1, 20, 20 ],
2961
[ 1, 88, 88 ]
2962
];
2963
ker[318] := [
2964
<[ 24, 24 ], [ 24 ]>,
2965
<[ 204, 204 ], [ 204 ]>,
2966
<[ 60, 60 ], [ 60 ]>,
2967
<[ 20, 20 ], [ 20 ]>,
2968
<[ 88, 88 ], [ 88 ]>
2969
];
2970
// time = 318.06 second
2971
2972
// Level 319
2973
2974
dat[319] := [
2975
[ 1, 92, 92 ]
2976
];
2977
ker[319] := [
2978
<[ 92, 92 ], [ 92 ]>
2979
];
2980
// time = 34.82 second
2981
2982
// Level 320
2983
2984
dat[320] := [
2985
[ 1, 16, 64 ],
2986
[ 1, 16, 64 ],
2987
[ 1, 16, 64 ],
2988
[ 1, 16, 64 ],
2989
[ 1, 16, 64 ],
2990
[ 1, 16, 64 ]
2991
];
2992
ker[320] := [
2993
<[ 16, 16 ], [ 64 ]>,
2994
<[ 16, 16 ], [ 64 ]>,
2995
<[ 16, 16 ], [ 64 ]>,
2996
<[ 16, 16 ], [ 64 ]>,
2997
<[ 16, 16 ], [ 64 ]>,
2998
<[ 16, 16 ], [ 64 ]>
2999
];
3000
// time = 429.331 second
3001
3002
// Level 321
3003
// Level 322
3004
3005
dat[322] := [
3006
[ 1, 112, 112 ],
3007
[ 1, 48, 48 ],
3008
[ 1, 40, 40 ],
3009
[ 1, 24, 24 ]
3010
];
3011
ker[322] := [
3012
<[ 112, 112 ], [ 112 ]>,
3013
<[ 48, 48 ], [ 48 ]>,
3014
<[ 40, 40 ], [ 40 ]>,
3015
<[ 24, 24 ], [ 24 ]>
3016
];
3017
// time = 196.34 second
3018
3019
// Level 323
3020
3021
dat[323] := [
3022
[ 1, 140, 140 ]
3023
];
3024
ker[323] := [
3025
<[ 140, 140 ], [ 140 ]>
3026
];
3027
// time = 34.951 second
3028
3029
// Level 324
3030
3031
dat[324] := [
3032
[ 1, 18, 54 ],
3033
[ 1, 36, 108 ],
3034
[ 1, 36, 108 ],
3035
[ 1, 18, 54 ]
3036
];
3037
ker[324] := [
3038
<[ 18, 18 ], [ 54 ]>,
3039
<[ 36, 36 ], [ 108 ]>,
3040
<[ 36, 36 ], [ 108 ]>,
3041
<[ 18, 18 ], [ 54 ]>
3042
];
3043
// time = 413.19 second
3044
3045
// Level 325
3046
3047
dat[325] := [
3048
[ 1, 12, 60 ],
3049
[ 1, 48, 48 ],
3050
[ 1, 84, 84 ],
3051
[ 1, 84, 84 ],
3052
[ 1, 60, 60 ]
3053
];
3054
ker[325] := [
3055
<[ 12, 12 ], [ 60 ]>,
3056
<[ 48, 48 ], [ 48 ]>,
3057
<[ 84, 84 ], [ 84 ]>,
3058
<[ 84, 84 ], [ 84 ]>,
3059
<[ 60, 60 ], [ 60 ]>
3060
];
3061
// time = 114.911 second
3062
3063
// Level 326
3064
3065
dat[326] := [
3066
[ 1, 36, 36 ],
3067
[ 1, 204, 204 ],
3068
[ 1, 20, 20 ]
3069
];
3070
ker[326] := [
3071
<[ 36, 36 ], [ 36 ]>,
3072
<[ 204, 204 ], [ 204 ]>,
3073
<[ 20, 20 ], [ 20 ]>
3074
];
3075
// time = 79.81 second
3076
3077
// Level 327
3078
3079
dat[327] := [
3080
[ 1, 16, 16 ]
3081
];
3082
ker[327] := [
3083
<[ 16, 16 ], [ 16 ]>
3084
];
3085
// time = 42.471 second
3086
3087
// Level 328
3088
3089
dat[328] := [
3090
[ 1, 16, 16 ],
3091
[ 1, 24, 24 ]
3092
];
3093
ker[328] := [
3094
<[ 16, 16 ], [ 16 ]>,
3095
<[ 24, 24 ], [ 24 ]>
3096
];
3097
// time = 112.629 second
3098
3099
// Level 329
3100
3101
dat[329] := [
3102
[ 1, 180, 180 ]
3103
];
3104
ker[329] := [
3105
<[ 180, 180 ], [ 180 ]>
3106
];
3107
// time = 42.629 second
3108
3109
// Level 330
3110
3111
dat[330] := [
3112
[ 1, 160, 160 ],
3113
[ 1, 64, 64 ],
3114
[ 1, 2240, 2240 ],
3115
[ 1, 192, 192 ],
3116
[ 1, 32, 32 ]
3117
];
3118
ker[330] := [
3119
<[ 160, 160 ], [ 160 ]>,
3120
<[ 64, 64 ], [ 64 ]>,
3121
<[ 2240, 2240 ], [ 2240 ]>,
3122
<[ 192, 192 ], [ 192 ]>,
3123
<[ 32, 32 ], [ 32 ]>
3124
];
3125
// time = 985.711 second
3126
3127
// Level 331
3128
3129
dat[331] := [
3130
[ 1, 12, 12 ]
3131
];
3132
ker[331] := [
3133
<[ 12, 12 ], [ 12 ]>
3134
];
3135
// time = 14.011 second
3136
3137
// Level 332
3138
// Level 333
3139
3140
dat[333] := [
3141
[ 1, 48, 48 ],
3142
[ 1, 16, 48 ],
3143
[ 1, 28, 84 ],
3144
[ 1, 20, 60 ]
3145
];
3146
ker[333] := [
3147
<[ 48, 48 ], [ 48 ]>,
3148
<[ 16, 16 ], [ 48 ]>,
3149
<[ 28, 28 ], [ 84 ]>,
3150
<[ 20, 20 ], [ 60 ]>
3151
];
3152
// time = 96.969 second
3153
3154
// Level 334
3155
3156
dat[334] := [
3157
[ 1, 8, 8 ]
3158
];
3159
ker[334] := [
3160
<[ 8, 8 ], [ 8 ]>
3161
];
3162
// time = 53.771 second
3163
3164
// Level 335
3165
3166
dat[335] := [
3167
[ 1, 8, 8 ]
3168
];
3169
ker[335] := [
3170
<[ 8, 8 ], [ 8 ]>
3171
];
3172
// time = 39.819 second
3173
3174
// Level 336
3175
3176
dat[336] := [
3177
[ 1, 16, 32 ],
3178
[ 1, 48, 96 ],
3179
[ 1, 24, 48 ],
3180
[ 1, 32, 64 ],
3181
[ 1, 96, 192 ],
3182
[ 1, 24, 48 ]
3183
];
3184
ker[336] := [
3185
<[ 16, 16 ], [ 32 ]>,
3186
<[ 48, 48 ], [ 96 ]>,
3187
<[ 24, 24 ], [ 48 ]>,
3188
<[ 32, 32 ], [ 64 ]>,
3189
<[ 96, 96 ], [ 192 ]>,
3190
<[ 24, 24 ], [ 48 ]>
3191
];
3192
// time = 1117.121 second
3193
3194
// Level 337
3195
// Level 338
3196
3197
dat[338] := [
3198
[ 1, 12, 156 ],
3199
[ 1, 336, 336 ],
3200
[ 1, 312, 312 ],
3201
[ 1, 156, 156 ],
3202
[ 1, 112, 112 ],