CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / congruences.dviOpen in CoCalc
����;� TeX output 1999.06.19:2356������y�����?������>�K�`y

cmr10�Preprin���t�UU(June�19,�1999),�V��*�ersion�0.1��:�/��>���N�G�cmbx12�Congruences�z�b��=et��u�w�een�mo��=dular�forms���ꨍ�>�X�Qcmr12�W.A.��Stein����>�o���		cmr9�Departmen��9t�Tof�Mathematics,�Univ�ersit�y�of�California,�Berk�eley��:�,�CA�94720,�USA��6w���>���N�ffcmbx12�In���tro�s3duction�����>�This��is�an�accoun���t�of�the�pap�Ger�[�Sturm��@]�whic�h�is�of�imp�Gortance�to�the�explicit����>computation��}of�Hec���k�e��}algebras.�[email protected]�Gose��
�b>

cmmi10�f�=�=��������u

cmex10�P��)��a����	0e�rcmmi7�n��q~�q��[ٟ�^��n��
nԲand��g�L��=������P���b����n��q~�q��[ٟ�^��n��
nԲare����>mo�Gdular��(forms�in��S����k��됲().�?Supp�ose�that�the�eld��K��D�generated�b���y�all�of�the��a����n�����>�and��<�b����n��	j��is�a�nite�extension�of���"V

cmbx10�Q�.�]|Let����b�Ge�a�prime�of��K���.�Sturm�deduces�an����>in���teger����B��q�,���dep�Gending�in�a�simple�w�a�y�on��k��H�and�the�index�of��in��SL���N���ٓ�Rcmr7�2���_�(�Z�),���suc�h����>that�UUif��a����n���^�
!",�

cmsy10��8�b����n��8��2�����for��n����B��Ʋthen��a����n���^��8�b����n��8��2����for�all��n�.�� �x���>�1��VL�Notation�ffand�terminology����>�Fix�UUa�p�Gositiv���e�in�teger��N�lp�and�let��>���{��(�N��)��=��f�����b���������?��a���
�b���\q�����c���
]Ud�����1����b������2���SL����S���2��Ʋ(�Z�)�q�:������b���������
���a���!�b���\q����c����d������o���b�����޸�����(��������UO�1����0���؍��UO0����1������ò)������mo�Gd��2x��N��g�:����>�A�y�subgroup�y��of��SL���G����2���r�(�Z�)�is�a�called�a���':

cmti10�c��}'ongruenc�e���sub�gr�oup�yIJof�lev���el��N��߲if�it�con�tains����>(�N��)�UUfor�some��N��.�q�Fix�suc���h�a�subgroup�.�Let�������� �%n�

eufm10�h���=��f�z�7��2��C��:��Im����(�z�p��)��>��0�g����>�b�Ge�q�the�complex�upp�er�half-plane.���F��*�or�an���y�function��f���:����h��!��C�,��(matrix�q��
�/��2�����>�SL���I�;���2��NJ��(�Z�),�UUand�in���teger��k�P��,�dene��f���j�[�
��8�]����k�����:���h��!��C�UU�b�y��>����@(�f���j�[�
��8�]����k��됲)(�z�p��)��=�(�cz��w�+�8�d�)������O!�cmsy7��k��+��f����7���^�������<$��M޵az��+��b��Mޟw�fe�֟	(֍��cz��+��d������'d���^����0l�:��>���>�Let����M����k��됲()�b�Ge�the�space�of�mo�dular�forms�for��of�w���eigh�t����k�P��,��>that�is,�the�complex����>v���ector�c]space�of�function��f��
�:��{�h��!��C�c]�suc�h�that�(1)��f���j�[�
��8�]����k����=��{�f�v�for�all��
�l��2��,�f�(2)��f����>�is��pholomorphic,��kand�(3)��f���j�[�
��8�]����k����is�b�Gounded�on��f�z�7��:���Im����(�z�p��)���>��1�g��p�for�all��
�UP�2����SL����S���2��Ʋ(�Z�).����>If�UU�f�ڧ�2���M����k��됲()�then��f���(�z�p��)�has�a�F��*�ourier�expansion��>������f���(�z�p��)��=�����Z����X����n���T����GF�n��0���:N����n�2�����P��u����Zcmr5�1��33�x�W	�u��P��O
�\cmmi5�N�����R��f$�cmbx7�Z������
�a����n��q~�q��[ٟ����n��������1����*�y�����?������>�where�Z�q�"�=���e���^��2��@Liz��u�and��a����n��8��=��a����n��q~�(�f���)��2��C�.�^tLet��S����k��됲()�b�Ge�the�subspace�of�cusp�forms,����>that���is,��!those��f����2��'�M����k��됲()�suc���h�that��a����0��|s�(�f���j�[�
��8�]����k���)��'=�0���for�all��
�2_�2���'�SL���rb���2���ղ(�Z�).���If��R��is����>a�O�subring�of��C�,�P�denote�b���y��M����k��됲(�;���R�Dz)�the�subset�of��M����k���()�consisting�of�mo�Gdular����>forms�UUwhose��q�[ٲ-expansion�co�Gecien���ts��a����n��q~�(�f���)�lie�in��R�Dz.��!č��>�2��VL�Congruences�����>�Let����k�"���Z�1�b�Ge�an�in���teger,���a�congruence�subgroup,�and�let����Z�=�[�SL����;���2��J��(�Z�)�:�].����>Let��7�K��S�b�Ge�a�n���um�b�er��7eld�(considered�as�a�subeld�of��C�)�with�ring�of�in���tegers����>�O�G�.���Fix�ga�prime�ideal��p��of��O�b��and�let��F�5�=��O��=�p�g�denote�the�residue�class�eld.����>Let�N��O����!X�&eufm7�p��	ϸ�g1�K��denote�the�lo�Gcalization�of��O���at��p�,��ii.e.,�the�N�domain�obtained�b���y����>in���v�erting��Gall�elemen���ts�not�in��p�.�m�The�v��q�aluation�on��F�[[�q�[ٲ]]�induces�a�v�aluation��v����p�����>�on�UU�M����k��됲(�;����O����p�����)�via�the�natural�map��M����k���(�;����O����p�����)���!��F�[[�q�[ٲ]].�q�Th���us�����jK�v����p�����(�f���)��=���min���qƸf�n�q��:��a����n��q~�(�f��)���6��0�UH(�mo�Gd����p�)�g�:��������>�Theorem��T2.1.�������If���f�ڧ�2���M����k��됲(�;����O����p�����)��and��v����p���(�f���)���>�����<$���Kk���K�w�fe�ܟ	(֍���12������Z�;��then��f�ڧ���0����mo�Gd��*��p�.���Ѝ�M�W��*�e�UUrecall�some�notation�and�a�lemma�b�Gefore�giving�the�pro�of.�q�Let������CΗ(�q�[ٲ)�����b��=�����t�Եq�����8�24�q��[ٟ����2��,�+�252�q��[ٟ����3�����1472�q��[ٟ����4���+�4830�q��[ٟ����5���+�����������2���S����12��x�(�SL����;���2��J��(�Z�))����������Gs*�j����(�q�[ٲ)�����b��=���������<$��u�1��u��w�fe�	(֍���q�����~$�+�8�744�+�196884�q����+�21493760�q��[ٟ����2��,�+�864299970�q��[ٟ����3���+�����������2���K���(�X���(1))����MЍ�>Note��that��j����(�q�[ٲ)�is�an�automorphic�function�for��SL����џ��2��:D�(�Z�)�of�w���eigh�t��0�whose�only����>p�Gole��is�at�innit���y�(i.e.,�н�j����j�[�
��8�]����0����=�k��j�J��for�all��
��۸2���SL���9ޟ��2���Q�(�Z�)).���The�F��*�ourier�co�Gecien���ts����>of�UUb�Goth��and��j���lie�in��Z�.����MF��*�or�UUan���y�p�Gositiv�e�in�teger��n�,�let������n��8��=���e���^��2��@Li=n����b�Ge�a�primitiv�e��n�th�ro�Got�of�unit�y��*�.������>�Lemma��T2.2.���}���L��}'et��]�N��x�b�e�a�p�ositive�inte�ger.�0�Then�any��
��{�2���C�SL����~���2��<�(�Z�)��induc�es�a����>line��}'ar���isomorphism������4�[�
��8�]����k�����:���M����k��됲((�N��))��!��M����k���((�N��))����>�which���pr��}'eserves��M����k��됲((�N��)�;����Q�(����))�.������>Pr��}'o�of.���]UI�That�á[�
��8�]����k���1�lea���v�es��M����k��됲((�N��))�in�v��q�arian�t�follo�ws�b�Gecause�(�N��)�is�a�normal����>subgroup���of��SL���N���2���g�(�Z�):�Ȏif����2�h�(�N��)�then�there�is����	z��^��0����2��(�N��)�suc���h�that��
��8��=����	z��^��0��׳�
��,����>so�UUfor�an���y��f�ڧ�2���M����k��됲((�N��)),����kW�(�f���j�[�
��8�]����k��됲)�j�[��	z�]����k�����=���f��j�[�
��	z�]����k�����=���f��j�[��������0��׳�
��8�]����k�����=��(�f��j�[��������0��׳�]����k��됲)�j�[�
��8�]����k�����=���f��j�[�
��]����k��됵:����>�F��*�urthermore,���[�
��8�]����k����is��tan�isomorphism�b�Gecause�[�
����^���1��J��]����k����is�its�in���v�erse.�t#The��tsecond����>part���follo���ws�b�Gecause��X���(�N��)�has�a�mo�del�o���v�er���Q�(�����N�����)�and��SL����(���2��5��(�Z�=��q�N��Z�)�acts�via����>automorphisms�o(of�the�function�eld�of��X���(�N��).��?The�action�of�[�
��8�]����k��Z��is�induced�b���y����>this�UUaction.�q�This�is�discussed�in�Chapter�6�of�[�Shim���ura��$j�].���\��ff����d�ff�Y��ff����ff��������2����
�y�����?��������>�Pr��}'o�of���of�The��}'or�em���2.1.����{��W��*�e��=assume�that��f�W�6�=�C�0,���otherwise�w���e�are�done.�R�In�eac�h����>case���w���e�will�giv�e�the�argumen�t�for��O�2�and�then�note�that�it�w�orks�for��O����p���e�as�w�ell.����M�Case���one:������=��SL����S���2��Ʋ(�Z�)�.�qDzIn�UUthe�ring��O�Gff�q�[ٸgg��of�Lauran���t�series,��c�������<$��g�еf�����^��12���g�Пw�feq̟	(֍��s����r�k������zM�=���f��������12���U����8���^�������<$��
ȇ�1��
ȇ�w�fe�	(֍���q�����4��+�8�24�+�324�q����+�����������/���^�����h*ǟ��۴k��o�o�=����|�����X������n��k���Nеb����n��q~�q��[ٟ����n���o�2�O�Gff�q�[ٸgg�:�� (ύ�>�Since��絍�~���v����p����]F���^�������<$����f�����^��12�����w�feq̟	(֍��s����r�k�����������^����(�x�=��12�v����p�����(�f���)�8���k�P�v����p���()��=�12�v����p���(�f���)�8���k��>���0��qύ�>w���e��see�that��b����n��8��2���p��for��n����0.�Z4By�inductiv���ely�subtracting�o�m�ultiples�of�p�Go�w�ers��
�A��>of�-�j����(�q�[ٲ)��=��������K�1���K��&�fe�s������q�������+��744�+���������[email protected]�from���������a�f������r�12���a�);�fe�`��G���<�����k���������(reducing�the�order�of�the�p�Gole�b���y�at�least�one��
O<��>at�UUeac���h�step)�w�e�nd�a�p�Golynomial��R�Dz(�j����)�in��O��[�j����]�suc���h�that��g�������<$���}�f�����^��12����}�w�feq̟	(֍��s����r�k��������\��8�R�Dz(�j����)���2��q�[ٸO�G�[[�q��]]�:���Ѝ�>�But��this�dierence�is�a�holomorphic�function�on�the�pro��8jectiv���e�plane,��so�it�m�ust����>b�Ge���a�constan���t,���hence�0,�so�that��f�����^��12���~�=�2	�R�Dz(�j����)���^��k��됵:��Eac���h�of�the�co�Gecien�ts�of��R�Dz(�j����)����>m���ust��.lie�in��p�,��dotherwise��v����p�����(�R�Dz(�j����))�|����0��.whic�h�w�ould�b�Ge�a�con�tradiction�b�Gecause������>then�W�v����p�����(���������33�f������r�12���33�);�fe�`��G���<�����k�������ָ�:�R�Dz(�j����))�����0.�w Th���us��f�����^��12��V��=��R�Dz(�j����)���^��k�������0�q�(�mo�Gd����p�)�and�the�same�holds����>for�UU�f�h�since�(�O�G�=�p�)[[�q�[ٲ]]�is�a�domain.����MNote�˜that�the�same�argumen���t�w�orks�with��O�	��replaced�b�y�its�lo�Gcalization�at����>�p�.��Th���us�>w�e�can�allo�w�denominators�in�the��q�[ٲ-expansion�of��f��Ͳas�long�as�they�do����>not�UUlie�in��p�.����M�Case��,two:�F����arbitr��}'ary.�5��F��*�or��/an���y��
�UP�2����SL����S���2��Ʋ(�Z�),��7Lemma�2.2�implies�that��f���j�[�
��8�]����k�����2����>�M����k��됲((�N��)�;���K���(�����n��q~�)).��sLet�9�P�j�p��b�Ge�a�prime�ideal�of�the�ring�of�in���tegers�of��K��(�����n��q~�).����>Let�����ݍ�b�Ge�a�uniformizer�for��P�.���F��*�or�an���y��
��8�,���there�is�a�p�o���w�er������[ٟ�^��n��
O�of���ݍ�so�that����>the���co�Gecien���ts�of�the��q�[ٲ-expansion�of������^��n���W�f���j�[�
��8�]����k����are��P�-in���tegral�and������^��n���W�f���j�[�
��8�]����k��,��6�A�0����>(�mo�Gd����P�).�T��*�o��do�this�c���ho�Gose��n��minimally�(p�ossibly�negativ���e!)�so�that����[ٟ�^��n���W�f���j�[�
��8�]����k�����>�is��?�P�-in���tegral.�T�If����[ٟ�^��n���W�f���j�[�
��8�]����k��������0�q�(�mo�Gd����P�)�then�all�co�Gecien�ts�are�divisible�b�y���Z�so����>�n�UU�w���as�not�c�hosen�minimally��*�.����MW��*�rite���u���Ř�SL����f͟��2����@�(�Z�)��=������ߴ���獍������[����t���i�=1���f��
����i����L��>�with����
����1���=���d(���������T�1�����0���؍���T0�����1�����\Ȳ)���@W,��and�let�the��n����i��زb�Ge�c���hosen�for��
����i���as�in�the�previous�paragraph.����>Then������0�F�*��=���f�Lo������D�����獍�Oy����Y����t��8�i�=2����׵��[ٟ����n���i����O�f���j�[�
����i��TL�]����k�����2��M����k�+B��	�Q�(�SL����;���2��J��(�Z�))���;��>and�������v����P��,��(�F�c��)�����v����P���(�f���)�=��v����p�����(�f��)��>�����<$���	���K�w�fe
�	(֍�12�����-��k�P�:��\	��>�By���case�1,���F�����9m�0�q�(�mo�Gd����P�),�so���since����[ٟ�^��n���i����O�f���j�[�
����i��TL�]����k��$��6��0�q�(�mo�Gd����P�)�for�eac���h��i����2,��it����>follo���ws�UUthat��f�ڧ����0�q�(�mo�Gd����p�)�as�claimed.����t؄�ff����d�ff�Y��ff����ff��������3�����y�����?��������>�R��}'emark���2.3.���xk��F��*�or���cusp�forms�the�pro�Gof�of�Theorem�1�yields�the�follo���wing��slightly����>�impro���v�ed�UUb�Gound:�q�If��f�ڧ�2���S����k��됲(�;����O����p�����)�and���э��Jc�v����p�����(�f���)���>�����<$���	���K�w�fe
�	(֍�12�����-��k��w������<$��l��8���1��l�w�fe?e�	(֍���N������8(��>�then�UU�f�ڧ����0�q�(�mo�Gd����p�).��_9����>�Pr��}'o�of.���]UI�Consider�l�the�pro�Gof�of�case�t���w�o.��nNote�l�that�the��q�[ٲ-expansion�of�an�ele-����>men���t��!of��M����k��됲((�N��))�is�in�p�Go�w�ers�of��q��[ٟ�^��1�=���N�����.�
+Since��f����is�a�cusp�form,��w�e�kno�w�that����>�v����P��,��(�f���j�[�
����i��TL�]����k��됲)������������1���K��&�fe������N��������for�UUeac���h��i�.�q�If�w�e�insure�that�������Jc�v����p�����(�f���)���>�����<$���	���K�w�fe
�	(֍�12�����-��k��w������<$��l��8���1��l�w�fe?e�	(֍���N�������>�then��5����S�v����P��,��(�F�c��)�����v����P���(�f���)�8�+�����<$��l�����1��l�w�fe?e�	(֍���N������ò=���v����p�����(�f��)�+�����<$��l�����1��l�w�fe?e�	(֍���N�������>�����<$���	���K�w�fe
�	(֍�12�����-��k���|��>�and�UUthe�pro�Gof�go�es�through.���ק���ff����d�ff�Y��ff����ff���� �S���>�3��VL�Applications�����>�Let�Wp�b�Ge�a�congruence�subgroup�of�lev���el��N�n��and�index���,���let��k���b�e�a�p�ositiv���e����>in���teger,�UUand�set��r�5�:=����������k���K��&�fe������12�����
&d�:��|捍��>�Prop�Q�osition��T3.1.����?�Supp��}'ose��Mꍒ��t�f�ڧ�=�����Z����X���ݮ���T����N��n>r���u�����n�2�����P��uް1��33�x�W	�u��P��N�����R��Z������
�a����n��q~�q��[ٟ����n���o�2���M����k��됲()��%l̍�>�then����f�ڧ�=��0�.�g&State��}'d�dier�ently,��an�element�of��M����k��됲()��is�determine�d�by�its�F��;�ourier����>c��}'o�ecients���a����n��	e�for��n�����r�G�.������>Pr��}'o�of.���]UI�Let�UU�s���=��q��[ٟ�^��1�=���N�����.�q�W��*�e�m���ust�sho�w�that�the�comp�Gosite�map��������M����k��됲()���,��UX�!��C�[[�s�]]��!��C�[[�s�]]�=�(�sq��[ٟ����r���{�)����>is��jinjectiv���e.�NyLet��K����b�Ge�a�n�um�b�Ger�eld�with�ring�of�in�tegers��O�2��suc�h�that��M����k��됲()��=����>�M����k��됲(�;����O�G�)�,E�
��C�.��Because��n�C��is�
at�o���v�er��n�O��,��it�suces�to�sho���w�that�the�map����>��:��M����k��됲(�N��;����O�G�)��!�O��[[�s�]]�=�(�sq��[ٟ�^��r���{�)���is�injectiv���e.�xG(W��*�e�are�just�using�that�a�linear����>map��)whic���h�is�injectiv�e�o�v�er��O�EF�induces�an�injectiv�e�map�o�v�er��C�.)�	lDSupp�Gose����>�g�g��=�������P��D��b����n��q~�q��[ٟ�^��n��	��2���M����k��됲(�N��;����O�G�)�and�(�g�[ٲ)�=�0�so�that��b����n��	}.�=�0�for��n����r�G�.��Th���us�if��p����>�b�Ge�
�a�prime�of��O��,�;��b����n��	k����"�0�q�(�mo�d����p�)�for�an���y��n��"���r��.��vBy�
�Theorem�2.1,�;�it�follo���ws����>that�E��g��<��Wc�0�q�(�mo�Gd����p�).�BQRep�Geating�this�argumen���t�for�all��p��of��O����sho�ws�that�the����>co�Gecien���ts�UUof��g��.�are�divisible�b�y�all�primes��p�,�i.e.,�they�are�0.���JE���ff����d�ff�Y��ff����ff����_9��MNo���w���supp�Gose���=�����0��|s�(�N��)���or�����1���(�N��)�so�that�w���e�ha�v�e�a�Hec�k�e�algebra��T��whic�h����>acts�UUas�a�comm���utativ�e�UUring�of�linear�endomorphism�on��M����k��됲().������>�Theorem��T3.2.�������The���He��}'cke�algebr�a�is�gener�ate�d�as�a��Z�-mo�dule�by��T����1��|s�;����:�:�:����;���T����r��m��:����M�F��*�or�UUthe�pro�Gof,�see�[�Stein��8�].������4����/��y�����?������>�References�������>�[Shim���ura]���}AG.��Shim���ura,����Intr��}'o�duction���to�the�A���rithmetic�The��}'ory�of�A�utomor-����}Aphic���F��;�unctions�,�UUPrinceton�Univ���ersit�y�UUPress,�1994������>[Stein]���}AW.�UUStein,��Gener��}'ating���the�He�cke�algebr�a�as�a��Z�-mo�dule������>�[Sturm]���}AJ.��Sturm,� ��On�W}the�Congruenc��}'e�of�Mo�dular�F��;�orms�.��Num���b�Ger�theory����}A(New�u�Y��*�ork,�}�1984{1985),�275{280,�Lecture�Notes�in�Math.,�1240,����}ASpringer,�UUBerlin-New�Y��*�ork,�1987.������5����>����;�y��!X�&eufm7� �%n�

eufm10��':

cmti10�f$�cmbx7���N�ffcmbx12�o���		cmr9�X�Qcmr12���N�G�cmbx12��"V

cmbx10�
!",�

cmsy10�O!�cmsy7�
�b>

cmmi10�	0e�rcmmi7�O
�\cmmi5�K�`y

cmr10�ٓ�Rcmr7���Zcmr5���u

cmex10�A"����