CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / charpoly_s8.gpOpen in CoCalc
\\ charpoly_s8.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_8(Gamma_0(N)) 
\\ of weight 8 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

\\ INCOMPLETE : only goes up to 70,  some missing at N=60.

{
T=matrix(100,97,m,n,0);
T[2,2]=x + 8;
T[2,3]=x -12;
T[2,5]=x + 210;
T[2,7]=x -1016;
T[2,11]=x -1092;
T[2,13]=x -1382;
T[2,17]=x -14706;
T[2,19]=x + 39940;
T[2,23]=x -68712;
T[2,29]=x + 102570;
T[2,31]=x -227552;
T[2,37]=x -160526;
T[2,41]=x -10842;
T[2,43]=x + 630748;
T[2,47]=x -472656;
T[2,53]=x + 1494018;
T[2,59]=x -2640660;
T[2,61]=x -827702;
T[2,67]=x + 126004;
T[2,71]=x + 1414728;
T[2,73]=x -980282;
T[2,79]=x + 3566800;
T[2,83]=x -5672892;
T[2,89]=x + 11951190;
T[2,97]=x -8682146;

T[3,2]=x -6;
T[3,3]=x + 27;
T[3,5]=x -390;
T[3,7]=x + 64;
T[3,11]=x + 948;
T[3,13]=x + 5098;
T[3,17]=x -28386;
T[3,19]=x + 8620;
T[3,23]=x + 15288;
T[3,29]=x -36510;
T[3,31]=x + 276808;
T[3,37]=x -268526;
T[3,41]=x + 629718;
T[3,43]=x -685772;
T[3,47]=x -583296;
T[3,53]=x + 428058;
T[3,59]=x -1306380;
T[3,61]=x -300662;
T[3,67]=x + 507244;
T[3,71]=x -5560632;
T[3,73]=x -1369082;
T[3,79]=x + 6913720;
T[3,83]=x + 4376748;
T[3,89]=x + 8528310;
T[3,97]=x + 8826814;

T[4,2]=(x + 8)*(x );
T[4,3]=(x -12)^2;
T[4,5]=(x + 210)^2;
T[4,7]=(x -1016)^2;
T[4,11]=(x -1092)^2;
T[4,13]=(x -1382)^2;
T[4,17]=(x -14706)^2;
T[4,19]=(x + 39940)^2;
T[4,23]=(x -68712)^2;
T[4,29]=(x + 102570)^2;
T[4,31]=(x -227552)^2;
T[4,37]=(x -160526)^2;
T[4,41]=(x -10842)^2;
T[4,43]=(x + 630748)^2;
T[4,47]=(x -472656)^2;
T[4,53]=(x + 1494018)^2;
T[4,59]=(x -2640660)^2;
T[4,61]=(x -827702)^2;
T[4,67]=(x + 126004)^2;
T[4,71]=(x + 1414728)^2;
T[4,73]=(x -980282)^2;
T[4,79]=(x + 3566800)^2;
T[4,83]=(x -5672892)^2;
T[4,89]=(x + 11951190)^2;
T[4,97]=(x -8682146)^2;

T[5,2]=(x + 14)*(x^2 -20*x + 24);
T[5,3]=(x + 48)*(x^2 -20*x -4764);
T[5,5]=(x -125)*(x + 125)^2;
T[5,7]=(x + 1644)*(x^2 + 100*x -235836);
T[5,11]=(x -172)*(x^2 -4544*x -6998016);
T[5,13]=(x -3862)*(x^2 -3540*x -24961564);
T[5,17]=(x + 12254)*(x^2 + 27340*x + 80327844);
T[5,19]=(x + 25940)*(x^2 -38760*x + 367802000);
T[5,23]=(x -12972)*(x^2 + 124140*x + 3840033636);
T[5,29]=(x + 81610)*(x^2 + 72260*x -27652933500);
T[5,31]=(x + 156888)*(x^2 -306824*x + 22939401744);
T[5,37]=(x -110126)*(x^2 + 123020*x -45775154396);
T[5,41]=(x -467882)*(x^2 -264364*x -227722158876);
T[5,43]=(x + 499208)*(x^2 -423300*x -96985991164);
T[5,47]=(x + 396884)*(x^2 + 105460*x -154530884316);
T[5,53]=(x + 1280498)*(x^2 + 2391580*x + 1213130224836);
T[5,59]=(x + 1337420)*(x^2 + 1120120*x -3614968086000);
T[5,61]=(x + 923978)*(x^2 -2257044*x -672038095516);
T[5,67]=(x + 797304)*(x^2 -4516460*x + 4620664454244);
T[5,71]=(x -5103392)*(x^2 -621784*x -275746164336);
T[5,73]=(x + 4267478)*(x^2 -4569060*x + 1330152816836);
T[5,79]=(x + 960)*(x^2 -4333040*x -12272229720000);
T[5,83]=(x -6140832)*(x^2 + 9793020*x + 5699002341636);
T[5,89]=(x -2010570)*(x^2 -6025620*x + 1403196358500);
T[5,97]=(x + 4881934)*(x^2 -4609540*x -18666217374716);

T[6,2]=(x -8)*(x^2 -6*x + 128)*(x + 8)^2;
T[6,3]=(x -27)*(x^2 -12*x + 2187)*(x + 27)^2;
T[6,5]=(x + 114)*(x -390)^2*(x + 210)^2;
T[6,7]=(x + 1576)*(x + 64)^2*(x -1016)^2;
T[6,11]=(x -7332)*(x + 948)^2*(x -1092)^2;
T[6,13]=(x + 3802)*(x -1382)^2*(x + 5098)^2;
T[6,17]=(x + 6606)*(x -14706)^2*(x -28386)^2;
T[6,19]=(x -24860)*(x + 39940)^2*(x + 8620)^2;
T[6,23]=(x -41448)*(x -68712)^2*(x + 15288)^2;
T[6,29]=(x + 41610)*(x + 102570)^2*(x -36510)^2;
T[6,31]=(x -33152)*(x -227552)^2*(x + 276808)^2;
T[6,37]=(x + 36466)*(x -160526)^2*(x -268526)^2;
T[6,41]=(x + 639078)*(x -10842)^2*(x + 629718)^2;
T[6,43]=(x + 156412)*(x + 630748)^2*(x -685772)^2;
T[6,47]=(x + 433776)*(x -583296)^2*(x -472656)^2;
T[6,53]=(x -786078)*(x + 428058)^2*(x + 1494018)^2;
T[6,59]=(x -745140)*(x -1306380)^2*(x -2640660)^2;
T[6,61]=(x + 1660618)*(x -300662)^2*(x -827702)^2;
T[6,67]=(x + 3290836)*(x + 126004)^2*(x + 507244)^2;
T[6,71]=(x -5716152)*(x -5560632)^2*(x + 1414728)^2;
T[6,73]=(x -2659898)*(x -980282)^2*(x -1369082)^2;
T[6,79]=(x -3807440)*(x + 6913720)^2*(x + 3566800)^2;
T[6,83]=(x -2229468)*(x -5672892)^2*(x + 4376748)^2;
T[6,89]=(x -5991210)*(x + 8528310)^2*(x + 11951190)^2;
T[6,97]=(x + 4060126)*(x -8682146)^2*(x + 8826814)^2;

T[7,2]=(x + 6)*(x^2 + 3*x -214);
T[7,3]=(x + 42)*(x^2 -94*x + 1344);
T[7,5]=(x + 84)*(x^2 -330*x + 5600);
T[7,7]=(x -343)*(x + 343)^2;
T[7,11]=(x + 5568)*(x^2 -2844*x -887776);
T[7,13]=(x + 5152)*(x^2 -2534*x -166620776);
T[7,17]=(x + 13986)*(x^2 + 1488*x -22147524);
T[7,19]=(x -55370)*(x^2 -32810*x + 109928560);
T[7,23]=(x + 91272)*(x^2 + 6576*x + 10312704);
T[7,29]=(x -41610)*(x^2 -20640*x -18920124100);
T[7,31]=(x -150332)*(x^2 + 391836*x + 37023636384);
T[7,37]=(x + 136366)*(x^2 -367392*x -126010986084);
T[7,41]=(x + 510258)*(x^2 -734664*x + 13303276364);
T[7,43]=(x + 172072)*(x^2 + 480476*x + 50864711104);
T[7,47]=(x + 519036)*(x^2 + 1089108*x + 2090896416);
T[7,53]=(x + 59202)*(x^2 -2858844*x + 2037435782724);
T[7,59]=(x -1979250)*(x^2 -160170*x -615374101440);
T[7,61]=(x + 2988748)*(x^2 + 864646*x -529516501136);
T[7,67]=(x -2409404)*(x^2 + 328648*x -533876854064);
T[7,71]=(x -1504512)*(x^2 + 7500216*x + 10359492378624);
T[7,73]=(x + 1821022)*(x^2 -4301244*x -3340687254156);
T[7,79]=(x + 1669240)*(x^2 + 6408440*x -6335206025600);
T[7,83]=(x -696738)*(x^2 -11659074*x + 30181573873584);
T[7,89]=(x -5558490)*(x^2 -9772260*x -4649674734460);
T[7,97]=(x -9876734)*(x^2 -10762752*x + 27021168617436);

T[8,2]=(x + 8)*(x )^4;
T[8,3]=(x -44)*(x + 84)*(x -12)^3;
T[8,5]=(x -430)*(x + 82)*(x + 210)^3;
T[8,7]=(x + 456)*(x + 1224)*(x -1016)^3;
T[8,11]=(x + 2524)*(x + 3164)*(x -1092)^3;
T[8,13]=(x + 10778)*(x -6118)*(x -1382)^3;
T[8,17]=(x + 11150)*(x + 16270)*(x -14706)^3;
T[8,19]=(x + 5476)*(x -4124)*(x + 39940)^3;
T[8,23]=(x -1576)*(x -81704)*(x -68712)^3;
T[8,29]=(x -99798)*(x -122838)*(x + 102570)^3;
T[8,31]=(x -251360)*(x + 40480)*(x -227552)^3;
T[8,37]=(x + 419442)*(x + 52338)*(x -160526)^3;
T[8,41]=(x + 319398)*(x -141402)*(x -10842)^3;
T[8,43]=(x -710788)*(x + 690428)*(x + 630748)^3;
T[8,47]=(x -284112)*(x + 682032)*(x -472656)^3;
T[8,53]=(x -1813118)*(x -296062)*(x + 1494018)^3;
T[8,59]=(x + 966028)*(x + 897548)*(x -2640660)^3;
T[8,61]=(x -1887670)*(x + 884810)*(x -827702)^3;
T[8,67]=(x -4659692)*(x -2965868)*(x + 126004)^3;
T[8,71]=(x + 2548232)*(x + 2710792)*(x + 1414728)^3;
T[8,73]=(x + 5670854)*(x + 1680326)*(x -980282)^3;
T[8,79]=(x -4038064)*(x + 5124176)*(x + 3566800)^3;
T[8,83]=(x + 5385764)*(x + 1563556)*(x -5672892)^3;
T[8,89]=(x + 6473046)*(x -11605674)*(x + 11951190)^3;
T[8,97]=(x + 6065758)*(x -10931618)*(x -8682146)^3;

T[9,2]=(x + 6)*(x^2 -360)*(x -6)^2;
T[9,3]=(x + 27)*(x )^4;
T[9,5]=(x + 390)*(x^2 -92160)*(x -390)^2;
T[9,7]=(x -260)^2*(x + 64)^3;
T[9,11]=(x -948)*(x^2 -36864000)*(x + 948)^2;
T[9,13]=(x -6890)^2*(x + 5098)^3;
T[9,17]=(x + 28386)*(x^2 -560701440)*(x -28386)^2;
T[9,19]=(x -33176)^2*(x + 8620)^3;
T[9,23]=(x -15288)*(x^2 -996802560)*(x + 15288)^2;
T[9,29]=(x + 36510)*(x^2 -19079424000)*(x -36510)^2;
T[9,31]=(x -1508)^2*(x + 276808)^3;
T[9,37]=(x + 380770)^2*(x -268526)^3;
T[9,41]=(x -629718)*(x^2 -7750656000)*(x + 629718)^2;
T[9,43]=(x -7640)^2*(x -685772)^3;
T[9,47]=(x + 583296)*(x^2 -320209551360)*(x -583296)^2;
T[9,53]=(x -428058)*(x^2 -1060987299840)*(x + 428058)^2;
T[9,59]=(x + 1306380)*(x^2 -7332839424000)*(x -1306380)^2;
T[9,61]=(x + 988858)^2*(x -300662)^3;
T[9,67]=(x -3857360)^2*(x + 507244)^3;
T[9,71]=(x + 5560632)*(x^2 -17857511424000)*(x -5560632)^2;
T[9,73]=(x + 2004730)^2*(x -1369082)^3;
T[9,79]=(x -2699684)^2*(x + 6913720)^3;
T[9,83]=(x -4376748)*(x^2 -7352582307840)*(x + 4376748)^2;
T[9,89]=(x -8528310)*(x^2 -59927040000000)*(x + 8528310)^2;
T[9,97]=(x + 12957490)^2*(x + 8826814)^3;

T[10,2]=(x -8)*(x^2 + 14*x + 128)*(x^4 -20*x^3 + 280*x^2 -2560*x + 16384)*(x + 8)^2;
T[10,3]=(x -28)*(x -12)^2*(x + 48)^2*(x^2 -20*x -4764)^2;
T[10,5]=(x^2 + 210*x + 78125)*(x -125)^3*(x + 125)^4;
T[10,7]=(x -104)*(x + 1644)^2*(x -1016)^2*(x^2 + 100*x -235836)^2;
T[10,11]=(x + 5148)*(x -172)^2*(x -1092)^2*(x^2 -4544*x -6998016)^2;
T[10,13]=(x + 8602)*(x -3862)^2*(x -1382)^2*(x^2 -3540*x -24961564)^2;
T[10,17]=(x -20274)*(x -14706)^2*(x + 12254)^2*(x^2 + 27340*x + 80327844)^2;
T[10,19]=(x -45500)*(x + 25940)^2*(x + 39940)^2*(x^2 -38760*x + 367802000)^2;
T[10,23]=(x + 72072)*(x -68712)^2*(x -12972)^2*(x^2 + 124140*x + 3840033636)^2;
T[10,29]=(x -231510)*(x + 102570)^2*(x + 81610)^2*(x^2 + 72260*x -27652933500)^2;
T[10,31]=(x + 80128)*(x + 156888)^2*(x -227552)^2*(x^2 -306824*x + 22939401744)^2;
T[10,37]=(x -104654)*(x -160526)^2*(x -110126)^2*(x^2 + 123020*x -45775154396)^2;
T[10,41]=(x -584922)*(x -10842)^2*(x -467882)^2*(x^2 -264364*x -227722158876)^2;
T[10,43]=(x + 795532)*(x + 630748)^2*(x + 499208)^2*(x^2 -423300*x -96985991164)^2;
T[10,47]=(x -425664)*(x -472656)^2*(x + 396884)^2*(x^2 + 105460*x -154530884316)^2;
T[10,53]=(x -1500798)*(x + 1494018)^2*(x + 1280498)^2*(x^2 + 2391580*x + 1213130224836)^2;
T[10,59]=(x -246420)*(x -2640660)^2*(x + 1337420)^2*(x^2 + 1120120*x -3614968086000)^2;
T[10,61]=(x -893942)*(x -827702)^2*(x + 923978)^2*(x^2 -2257044*x -672038095516)^2;
T[10,67]=(x + 2336836)*(x + 797304)^2*(x + 126004)^2*(x^2 -4516460*x + 4620664454244)^2;
T[10,71]=(x + 203688)*(x -5103392)^2*(x + 1414728)^2*(x^2 -621784*x -275746164336)^2;
T[10,73]=(x + 3805702)*(x -980282)^2*(x + 4267478)^2*(x^2 -4569060*x + 1330152816836)^2;
T[10,79]=(x -5053040)*(x + 960)^2*(x + 3566800)^2*(x^2 -4333040*x -12272229720000)^2;
T[10,83]=(x + 45492)*(x -5672892)^2*(x -6140832)^2*(x^2 + 9793020*x + 5699002341636)^2;
T[10,89]=(x -980010)*(x + 11951190)^2*(x -2010570)^2*(x^2 -6025620*x + 1403196358500)^2;
T[10,97]=(x + 5247646)*(x -8682146)^2*(x + 4881934)^2*(x^2 -4609540*x -18666217374716)^2;

T[11,2]=(x^2 + 8*x -44)*(x^4 -558*x^2 + 140*x + 51744);
T[11,3]=(x^2 + 6*x -2151)*(x^4 + 35*x^3 -4673*x^2 -85815*x + 1673964);
T[11,5]=(x^2 + 470*x + 31225)*(x^4 -537*x^3 -23331*x^2 + 16608845*x + 953818350);
T[11,7]=(x^2 + 1228*x -26444)*(x^4 -170*x^3 -1702596*x^2 + 805753160*x + 87571440704);
T[11,11]=(x -1331)^2*(x + 1331)^4;
T[11,13]=(x^2 -344*x -16069856)*(x^4 -4250*x^3 -104641800*x^2 + 636477836000*x -518474088880000);
T[11,17]=(x^2 + 8468*x -788446604)*(x^4 -54300*x^3 + 698589408*x^2 -1772971365520*x -5879827097747856);
T[11,19]=(x^2 + 35280*x -222369840)*(x^4 -67844*x^3 + 413172576*x^2 + 30781610741376*x -317889451438377984);
T[11,23]=(x^2 + 61486*x -159113951)*(x^4 + 9015*x^3 -7759317813*x^2 -90969330843035*x + 10761383314658092944);
T[11,29]=(x^2 -179040*x + 122928960)*(x^4 -234078*x^3 -23056317792*x^2 + 7916160291570432*x -419294927566580465664);
T[11,31]=(x^2 + 57166*x -23689658111)*(x^4 -189857*x^3 -963903885*x^2 + 626963624696381*x -6106433255407770136);
T[11,37]=(x^2 + 877698*x + 191745594561)*(x^4 -127895*x^3 -244889000967*x^2 -12335279871678165*x + 4102429081307632130394);
T[11,41]=(x^2 + 283616*x -264475105136)*(x^4 -289842*x^3 -166344642192*x^2 + 71235636464687168*x -6699351297501673181184);
T[11,43]=(x^2 -275484*x + 9203802564)*(x^4 -704930*x^3 -242375464716*x^2 + 106782439941219240*x + 2850351339234962448864);
T[11,47]=(x^2 -1662512*x + 677029127296)*(x^4 + 1729080*x^3 + 916748560128*x^2 + 127380976255544320*x -7421719301300281442304);
T[11,53]=(x^2 -1616484*x + 388813137924)*(x^4 -1098660*x^3 -1013868969408*x^2 + 913369177327758480*x + 186437308687455219423984);
T[11,59]=(x^2 + 2454130*x + 207772229185)*(x^4 + 4665777*x^3 + 3856725321735*x^2 -3804638314615815941*x + 293780567541901066316364);
T[11,61]=(x^2 + 6019176*x + 9007507329744)*(x^4 -310610*x^3 -2169833492856*x^2 -6684801231028320*x + 1029307913215079059584);
T[11,67]=(x^2 + 174698*x -9239984638199)*(x^4 + 3368245*x^3 + 1961932676487*x^2 -2018121250133252705*x -841372895664191080894364);
T[11,71]=(x^2 + 1151466*x -11975092638711)*(x^4 + 3416541*x^3 -17233021481085*x^2 -42381209374681164417*x + 59842846007129168321562144);
T[11,73]=(x^2 -885944*x -2090754692576)*(x^4 -11466230*x^3 + 39060188842536*x^2 -21480056586718678240*x -60018210129095505174760576);
T[11,79]=(x^2 -3801460*x -2681742596060)*(x^4 -566282*x^3 -22128866924052*x^2 + 15662085774697901128*x + 25734353202870401722585216);
T[11,83]=(x^2 + 2282916*x -536001911676)*(x^4 + 4220790*x^3 -55496901827772*x^2 -156150693882894592440*x + 702155789655742391057025696);
T[11,89]=(x^2 + 13481970*x + 42998937114225)*(x^4 -18265191*x^3 + 86017581553797*x^2 -49556488314754857789*x -241905959662481292757205034);
T[11,97]=(x^2 + 68078*x -1834997592239)*(x^4 -11425325*x^3 -118218313347159*x^2 + 945610745170836511345*x + 4638684087239396087570364946);

T[12,2]=(x -8)*(x^2 -6*x + 128)*(x + 8)^2*(x )^6;
T[12,3]=(x^2 -12*x + 2187)^2*(x -27)^3*(x + 27)^4;
T[12,5]=(x -270)*(x + 378)*(x + 114)^2*(x -390)^3*(x + 210)^4;
T[12,7]=(x -1112)*(x + 832)*(x + 1576)^2*(x + 64)^3*(x -1016)^4;
T[12,11]=(x + 5724)*(x + 2484)*(x -7332)^2*(x + 948)^3*(x -1092)^4;
T[12,13]=(x -14870)*(x + 4570)*(x + 3802)^2*(x + 5098)^3*(x -1382)^4;
T[12,17]=(x + 22302)*(x + 36558)*(x + 6606)^2*(x -28386)^3*(x -14706)^4;
T[12,19]=(x + 16300)*(x -51740)*(x -24860)^2*(x + 8620)^3*(x + 39940)^4;
T[12,23]=(x -22248)*(x + 115128)*(x -41448)^2*(x + 15288)^3*(x -68712)^4;
T[12,29]=(x + 157194)*(x -157086)*(x + 41610)^2*(x -36510)^3*(x + 102570)^4;
T[12,31]=(x + 103936)*(x + 16456)*(x -33152)^2*(x + 276808)^3*(x -227552)^4;
T[12,37]=(x + 149266)*(x + 94834)*(x + 36466)^2*(x -268526)^3*(x -160526)^4;
T[12,41]=(x + 241110)*(x -659610)*(x + 639078)^2*(x + 629718)^3*(x -10842)^4;
T[12,43]=(x + 75772)*(x + 443188)*(x + 156412)^2*(x -685772)^3*(x + 630748)^4;
T[12,47]=(x -405648)*(x -922752)*(x + 433776)^2*(x -583296)^3*(x -472656)^4;
T[12,53]=(x + 1346274)*(x + 697626)*(x -786078)^2*(x + 428058)^3*(x + 1494018)^4;
T[12,59]=(x + 1303884)*(x -870156)*(x -745140)^2*(x -1306380)^3*(x -2640660)^4;
T[12,61]=(x -2067062)*(x -1833782)*(x + 1660618)^2*(x -300662)^3*(x -827702)^4;
T[12,67]=(x -1369388)*(x + 1680748)*(x + 3290836)^2*(x + 507244)^3*(x + 126004)^4;
T[12,71]=(x + 1070280)*(x -2714040)*(x -5716152)^2*(x -5560632)^3*(x + 1414728)^4;
T[12,73]=(x -2868794)*(x + 2403334)*(x -2659898)^2*(x -1369082)^3*(x -980282)^4;
T[12,79]=(x + 1129648)*(x -2301512)*(x -3807440)^2*(x + 6913720)^3*(x + 3566800)^4;
T[12,83]=(x -5912028)*(x -4708692)*(x -2229468)^2*(x + 4376748)^3*(x -5672892)^4;
T[12,89]=(x -4143690)*(x + 897750)*(x -5991210)^2*(x + 8528310)^3*(x + 11951190)^4;
T[12,97]=(x + 1622974)*(x -13719074)*(x + 4060126)^2*(x + 8826814)^3*(x -8682146)^4;

T[13,2]=(x -10)*(x^2 + 19*x + 6)*(x^4 -15*x^3 -270*x^2 + 3264*x + 12880);
T[13,3]=(x + 73)*(x^2 -45*x -252)*(x^4 -80*x^3 -2921*x^2 + 229440*x + 1640448);
T[13,5]=(x + 295)*(x^2 + 353*x + 20958)*(x^4 -258*x^3 -232675*x^2 + 87143700*x -6964113500);
T[13,7]=(x -1373)*(x^2 + 2009*x + 1002196)*(x^4 -1692*x^3 + 168035*x^2 + 257728644*x + 1625961532);
T[13,11]=(x + 7646)*(x^2 + 1810*x -31775952)*(x^4 -1836*x^3 -22277744*x^2 + 29807712432*x + 19773464676784);
T[13,13]=(x -2197)^3*(x + 2197)^4;
T[13,17]=(x + 4147)*(x^2 + 25361*x -177216678)*(x^4 -11814*x^3 -955565883*x^2 + 2196543589932*x + 174768583683247684);
T[13,19]=(x + 3186)*(x^2 -22106*x -1646636688)*(x^4 -27660*x^3 -1856808064*x^2 + 41686844893872*x + 436885571235243760);
T[13,23]=(x + 17784)*(x^2 + 26424*x -3712002048)*(x^4 -172920*x^3 + 10345450384*x^2 -249472900932864*x + 2050857366883726336);
T[13,29]=(x + 93322)*(x^2 + 5804*x -1049753004)*(x^4 -133344*x^3 -42339084056*x^2 + 3712250796795072*x -32314495718898017840);
T[13,31]=(x + 124484)*(x^2 -39744*x -634808464)*(x^4 + 231748*x^3 -46857675820*x^2 -14375320738992256*x -838885006381296780608);
T[13,37]=(x -273661)*(x^2 -163299*x -7868862106)*(x^4 -248026*x^3 -189938966107*x^2 -9722817587431964*x + 591854679631517957476);
T[13,41]=(x -585816)*(x^2 + 330870*x -115487893152)*(x^4 -588108*x^3 + 114274129860*x^2 -8224636842319584*x + 192075440852513383936);
T[13,43]=(x + 533559)*(x^2 -229307*x + 11546069484)*(x^4 -309304*x^3 -756373057465*x^2 + 156099159305350552*x + 11042021147139132512752);
T[13,47]=(x + 530055)*(x^2 + 1638525*x + 669689975052)*(x^4 -557916*x^3 -630779629093*x^2 + 300277692344475588*x -13266608970368463213860);
T[13,53]=(x + 615288)*(x^2 -1046382*x -648240166944)*(x^4 -2022348*x^3 + 1284175766452*x^2 -209932118264652288*x -28032456599489173331264);
T[13,59]=(x + 392514)*(x^2 + 370158*x -140057008272)*(x^4 -1162668*x^3 -3000233695440*x^2 + 3890016251618636592*x -440566558481139303699920);
T[13,61]=(x -1878064)*(x^2 -4675422*x + 4947441275696)*(x^4 + 1340572*x^3 -6782366613244*x^2 -4107973812239656672*x + 11698489512880377284128768);
T[13,67]=(x + 3971438)*(x^2 + 1821402*x -5405517426256)*(x^4 + 598484*x^3 -3173466373600*x^2 + 1655538850137785008*x -57652152918405249496208);
T[13,71]=(x + 3746601)*(x^2 + 1135611*x -24787522246284)*(x^4 -697860*x^3 -19945595301317*x^2 -11346486157347185268*x + 25198394623098276504585148);
T[13,73]=(x -2485802)*(x^2 + 6459284*x + 10156859198164)*(x^4 + 13725816*x^3 + 62394173705480*x^2 + 112101299294615962656*x + 69005615349760865423798224);
T[13,79]=(x + 1264456)*(x^2 + 73808*x -22472459585984)*(x^4 -20079576*x^3 + 139609676016704*x^2 -369039251681588824704*x + 229378857747410521003744000);
T[13,83]=(x -434308)*(x^2 + 12100972*x + 34361915476704)*(x^4 + 2024724*x^3 -54205847777724*x^2 -65141013406058526144*x + 709040025062126489586866176);
T[13,89]=(x -5830810)*(x^2 -9815060*x -10393898367132)*(x^4 -17646240*x^3 + 70656400552568*x^2 + 122937551307954545280*x -762427412064772823043503600);
T[13,97]=(x + 2045330)*(x^2 + 17591688*x + 45398949212204)*(x^4 + 6329096*x^3 -183951644606488*x^2 -1842548960279415002144*x -4430455663617486384281251760);

T[14,2]=(x^2 + 6*x + 128)*(x^4 + 3*x^3 + 42*x^2 + 384*x + 16384)*(x -8)^3*(x + 8)^3;
T[14,3]=(x + 66)*(x + 82)*(x^2 -70*x -744)*(x -12)^2*(x + 42)^2*(x^2 -94*x + 1344)^2;
T[14,5]=(x -448)*(x + 400)*(x^2 -126*x -155520)*(x + 210)^2*(x + 84)^2*(x^2 -330*x + 5600)^2;
T[14,7]=(x^2 -1016*x + 823543)*(x -343)^4*(x + 343)^6;
T[14,11]=(x -2408)*(x -40)*(x^2 + 3420*x -28335744)*(x + 5568)^2*(x -1092)^2*(x^2 -2844*x -887776)^2;
T[14,13]=(x + 4452)*(x -7116)*(x^2 + 6398*x -60101048)*(x -1382)^2*(x + 5152)^2*(x^2 -2534*x -166620776)^2;
T[14,17]=(x -2486)*(x -36502)*(x^2 + 38472*x + 354074796)*(x -14706)^2*(x + 13986)^2*(x^2 + 1488*x -22147524)^2;
T[14,19]=(x -36482)*(x + 46222)*(x^2 + 43358*x + 353711560)*(x -55370)^2*(x + 39940)^2*(x^2 -32810*x + 109928560)^2;
T[14,23]=(x + 12880)*(x + 105200)*(x^2 -89928*x + 1896721920)*(x -68712)^2*(x + 91272)^2*(x^2 + 6576*x + 10312704)^2;
T[14,29]=(x + 88094)*(x + 126334)*(x^2 -159576*x -4918678740)*(x + 102570)^2*(x -41610)^2*(x^2 -20640*x -18920124100)^2;
T[14,31]=(x + 170964)*(x -282636)*(x^2 + 143612*x + 4461367552)*(x -227552)^2*(x -150332)^2*(x^2 + 391836*x + 37023636384)^2;
T[14,37]=(x + 214534)*(x -20954)*(x^2 + 271832*x -157363463444)*(x -160526)^2*(x + 136366)^2*(x^2 -367392*x -126010986084)^2;
T[14,41]=(x -318486)*(x + 140874)*(x^2 -64848*x -74003569668)*(x -10842)^2*(x + 510258)^2*(x^2 -734664*x + 13303276364)^2;
T[14,43]=(x -36464)*(x -77744)*(x^2 -1527964*x + 583387157728)*(x + 630748)^2*(x + 172072)^2*(x^2 + 480476*x + 50864711104)^2;
T[14,47]=(x -703716)*(x -716868)*(x^2 -485436*x -540103776192)*(x + 519036)^2*(x -472656)^2*(x^2 + 1089108*x + 2090896416)^2;
T[14,53]=(x + 56946)*(x -1603278)*(x^2 + 145716*x -79218330012)*(x + 59202)^2*(x + 1494018)^2*(x^2 -2858844*x + 2037435782724)^2;
T[14,59]=(x + 1171894)*(x + 2149862)*(x^2 + 4183662*x + 4373344023480)*(x -1979250)^2*(x -2640660)^2*(x^2 -160170*x -615374101440)^2;
T[14,61]=(x -3084360)*(x + 2068872)*(x^2 + 280658*x -1039462897040)*(x + 2988748)^2*(x -827702)^2*(x^2 + 864646*x -529516501136)^2;
T[14,67]=(x + 994268)*(x + 3034364)*(x^2 -5671648*x + 5763055131376)*(x -2409404)^2*(x + 126004)^2*(x^2 + 328648*x -533876854064)^2;
T[14,71]=(x + 106624)*(x -33280)*(x^2 + 619272*x -850548584448)*(x + 1414728)^2*(x -1504512)^2*(x^2 + 7500216*x + 10359492378624)^2;
T[14,73]=(x -988930)*(x + 2971454)*(x^2 -3939628*x + 3486040529620)*(x + 1821022)^2*(x -980282)^2*(x^2 -4301244*x -3340687254156)^2;
T[14,79]=(x + 2376168)*(x -3415896)*(x^2 -4656616*x -16952152365440)*(x + 3566800)^2*(x + 1669240)^2*(x^2 + 6408440*x -6335206025600)^2;
T[14,83]=(x + 15142)*(x + 2122358)*(x^2 -1235850*x -35507978523864)*(x -696738)^2*(x -5672892)^2*(x^2 -11659074*x + 30181573873584)^2;
T[14,89]=(x -6920346)*(x -174810)*(x^2 + 17241420*x + 63487720577700)*(x -5558490)^2*(x + 11951190)^2*(x^2 -9772260*x -4649674734460)^2;
T[14,97]=(x -4952710)*(x -13506790)*(x^2 + 740936*x -2847474625940)*(x -9876734)^2*(x -8682146)^2*(x^2 -10762752*x + 27021168617436)^2;

T[15,2]=(x + 13)*(x + 22)*(x^2 -7*x -138)*(x -6)^2*(x + 14)^2*(x^2 -20*x + 24)^2;
T[15,3]=(x^2 + 48*x + 2187)*(x^4 -20*x^3 -390*x^2 -43740*x + 4782969)*(x -27)^3*(x + 27)^3;
T[15,5]=(x^2 -390*x + 78125)*(x -125)^4*(x + 125)^6;
T[15,7]=(x + 420)*(x -1380)*(x^2 -1304*x -46080)*(x + 64)^2*(x + 1644)^2*(x^2 + 100*x -235836)^2;
T[15,11]=(x + 3304)*(x + 2944)*(x^2 -3448*x -29376048)*(x + 948)^2*(x -172)^2*(x^2 -4544*x -6998016)^2;
T[15,13]=(x -8506)*(x + 11006)*(x^2 + 8988*x -81820108)*(x + 5098)^2*(x -3862)^2*(x^2 -3540*x -24961564)^2;
T[15,17]=(x + 9994)*(x + 16546)*(x^2 + 5492*x -286949484)*(x -28386)^2*(x + 12254)^2*(x^2 + 27340*x + 80327844)^2;
T[15,19]=(x + 25364)*(x -41236)*(x^2 + 49584*x -20483920)*(x + 25940)^2*(x + 8620)^2*(x^2 -38760*x + 367802000)^2;
T[15,23]=(x + 5880)*(x -84120)*(x^2 -91848*x -1966256640)*(x -12972)^2*(x + 15288)^2*(x^2 + 124140*x + 3840033636)^2;
T[15,29]=(x -132802)*(x -163042)*(x^2 -181772*x -2060549340)*(x + 81610)^2*(x -36510)^2*(x^2 + 72260*x -27652933500)^2;
T[15,31]=(x + 55800)*(x + 201600)*(x^2 -304232*x + 22433068800)*(x + 276808)^2*(x + 156888)^2*(x^2 -306824*x + 22939401744)^2;
T[15,37]=(x -228170)*(x -120530)*(x^2 + 502316*x + 31820561620)*(x -110126)^2*(x -268526)^2*(x^2 + 123020*x -45775154396)^2;
T[15,41]=(x + 115910)*(x + 139670)*(x^2 -631172*x + 30837469380)*(x + 629718)^2*(x -467882)^2*(x^2 -264364*x -227722158876)^2;
T[15,43]=(x + 755492)*(x + 19148)*(x^2 -353640*x + 23614207376)*(x + 499208)^2*(x -685772)^2*(x^2 -423300*x -96985991164)^2;
T[15,47]=(x -836984)*(x -841016)*(x^2 + 467480*x + 49382888064)*(x + 396884)^2*(x -583296)^2*(x^2 + 105460*x -154530884316)^2;
T[15,53]=(x -501890)*(x -1641650)*(x^2 + 568052*x + 54364123620)*(x + 428058)^2*(x + 1280498)^2*(x^2 + 2391580*x + 1213130224836)^2;
T[15,59]=(x + 989656)*(x + 1586176)*(x^2 -287224*x -3349911332400)*(x + 1337420)^2*(x -1306380)^2*(x^2 + 1120120*x -3614968086000)^2;
T[15,61]=(x + 372962)*(x + 1658162)*(x^2 + 2514180*x + 1579956747716)*(x -300662)^2*(x + 923978)^2*(x^2 -2257044*x -672038095516)^2;
T[15,67]=(x -4561044)*(x + 4523844)*(x^2 + 5073832*x + 3899842029456)*(x + 797304)^2*(x + 507244)^2*(x^2 -4516460*x + 4620664454244)^2;
T[15,71]=(x -1512832)*(x + 389408)*(x^2 + 3748816*x + 2634564492864)*(x -5560632)^2*(x -5103392)^2*(x^2 -621784*x -275746164336)^2;
T[15,73]=(x -5617330)*(x + 1522910)*(x^2 + 1477212*x -22097955229180)*(x -1369082)^2*(x + 4267478)^2*(x^2 -4569060*x + 1330152816836)^2;
T[15,79]=(x -4231920)*(x -3901080)*(x^2 + 4627720*x + 4381741411200)*(x + 960)^2*(x + 6913720)^2*(x^2 -4333040*x -12272229720000)^2;
T[15,83]=(x + 1854204)*(x + 9394116)*(x^2 + 6072936*x + 7951958141328)*(x + 4376748)^2*(x -6140832)^2*(x^2 + 9793020*x + 5699002341636)^2;
T[15,89]=(x -2803746)*(x + 6888174)*(x^2 -16516356*x + 68134385955780)*(x + 8528310)^2*(x -2010570)^2*(x^2 -6025620*x + 1403196358500)^2;
T[15,97]=(x -3700034)*(x -5099426)*(x^2 -2723428*x -25751505484604)*(x + 8826814)^2*(x + 4881934)^2*(x^2 -4609540*x -18666217374716)^2;

T[16,2]=(x + 8)*(x )^10;
T[16,3]=(x -84)*(x + 44)*(x + 12)*(x -44)^2*(x + 84)^2*(x -12)^4;
T[16,5]=(x + 82)^3*(x -430)^3*(x + 210)^5;
T[16,7]=(x -1224)*(x + 1016)*(x -456)*(x + 1224)^2*(x + 456)^2*(x -1016)^4;
T[16,11]=(x -2524)*(x -3164)*(x + 1092)*(x + 3164)^2*(x + 2524)^2*(x -1092)^4;
T[16,13]=(x + 10778)^3*(x -6118)^3*(x -1382)^5;
T[16,17]=(x + 16270)^3*(x + 11150)^3*(x -14706)^5;
T[16,19]=(x + 4124)*(x -5476)*(x -39940)*(x -4124)^2*(x + 5476)^2*(x + 39940)^4;
T[16,23]=(x + 1576)*(x + 81704)*(x + 68712)*(x -1576)^2*(x -81704)^2*(x -68712)^4;
T[16,29]=(x -99798)^3*(x -122838)^3*(x + 102570)^5;
T[16,31]=(x + 251360)*(x + 227552)*(x -40480)*(x -251360)^2*(x + 40480)^2*(x -227552)^4;
T[16,37]=(x + 419442)^3*(x + 52338)^3*(x -160526)^5;
T[16,41]=(x + 319398)^3*(x -141402)^3*(x -10842)^5;
T[16,43]=(x + 710788)*(x -630748)*(x -690428)*(x + 690428)^2*(x -710788)^2*(x + 630748)^4;
T[16,47]=(x + 284112)*(x -682032)*(x + 472656)*(x + 682032)^2*(x -284112)^2*(x -472656)^4;
T[16,53]=(x -296062)^3*(x -1813118)^3*(x + 1494018)^5;
T[16,59]=(x -897548)*(x + 2640660)*(x -966028)*(x + 897548)^2*(x + 966028)^2*(x -2640660)^4;
T[16,61]=(x -1887670)^3*(x + 884810)^3*(x -827702)^5;
T[16,67]=(x -126004)*(x + 4659692)*(x + 2965868)*(x -2965868)^2*(x -4659692)^2*(x + 126004)^4;
T[16,71]=(x -1414728)*(x -2548232)*(x -2710792)*(x + 2710792)^2*(x + 2548232)^2*(x + 1414728)^4;
T[16,73]=(x + 1680326)^3*(x + 5670854)^3*(x -980282)^5;
T[16,79]=(x -5124176)*(x + 4038064)*(x -3566800)*(x -4038064)^2*(x + 5124176)^2*(x + 3566800)^4;
T[16,83]=(x + 5672892)*(x -1563556)*(x -5385764)*(x + 5385764)^2*(x + 1563556)^2*(x -5672892)^4;
T[16,89]=(x + 6473046)^3*(x -11605674)^3*(x + 11951190)^5;
T[16,97]=(x + 6065758)^3*(x -10931618)^3*(x -8682146)^5;

T[17,2]=(x + 2)*(x^6 -15*x^5 -514*x^4 + 5312*x^3 + 83552*x^2 -422208*x -4272768)*(x^3 -x^2 -304*x + 1692);
T[17,3]=(x -18)*(x^6 -40*x^5 -8684*x^4 + 268200*x^3 + 19057188*x^2 -343988496*x -3047209200)*(x^3 + 86*x^2 -132*x -13536);
T[17,5]=(x + 10)*(x^6 + 184*x^5 -358360*x^4 -24584000*x^3 + 36682906000*x^2 -572082000000*x -668046873600000)*(x^3 + 198*x^2 -56804*x + 325032);
T[17,7]=(x + 902)*(x^6 -2064*x^5 -686864*x^4 + 2460423432*x^3 -14057552348*x^2 -529333432532784*x + 98985242935844352)*(x^3 + 1558*x^2 -123708*x -531836208);
T[17,11]=(x + 8634)*(x^6 -2000*x^5 -83059468*x^4 + 222354481512*x^3 + 1671334707709764*x^2 -5774191216104140784*x + 2588744232237885558480)*(x^3 -5542*x^2 -764356*x + 1398581088);
T[17,13]=(x -10858)*(x^6 -8708*x^5 -24837612*x^4 + 348275191072*x^3 -513215752395456*x^2 -581168723038719488*x -87970771488073499392)*(x^3 + 15050*x^2 -51147252*x -970059396232);
T[17,17]=(x -4913)^4*(x + 4913)^6;
T[17,19]=(x + 784)*(x^6 + 45400*x^5 -950576208*x^4 -37817257099712*x^3 -107380104380854208*x^2 + 1466567573197490184192*x -1592494002758636603274240)*(x^3 + 7480*x^2 -1378893312*x -21199506858432);
T[17,23]=(x -77330)*(x^6 + 27208*x^5 -15199576384*x^4 -327125160104456*x^3 + 50116008020520195076*x^2 + 683619556229641589394384*x -26343472079238160535293536000)*(x^3 + 194838*x^2 + 12281710660*x + 251907998984784);
T[17,29]=(x + 18210)*(x^6 -404808*x^5 + 56016296104*x^4 -2579067487180608*x^3 -37729214744790355056*x^2 + 3495622520624106831638400*x + 51947420136706064707845120000)*(x^3 + 225486*x^2 -38900482052*x -8806860987566136);
T[17,31]=(x + 237002)*(x^6 -532984*x^5 + 72172647360*x^4 + 2071296218832872*x^3 -793114486034572275324*x^2 + 26356638476343132477909296*x + 433145582197225880185319787392)*(x^3 -197310*x^2 -52567463756*x + 7401521590183952);
T[17,37]=(x -230878)*(x^6 -437968*x^5 -337987246248*x^4 + 142532656597571072*x^3 + 21778757781767295553296*x^2 -10997797051306068849881105152*x + 844164041162645847412435430138624)*(x^3 + 859374*x^2 + 220598918236*x + 15864278714438792);
T[17,41]=(x + 304182)*(x^6 + 441660*x^5 -335135688644*x^4 -195658313957818848*x^3 -8735357810632555877904*x^2 + 7142530042494688760389190592*x + 751678633537654269468170693030976)*(x^3 -769806*x^2 + 195928270636*x -16477996898445864);
T[17,43]=(x + 525032)*(x^6 -1152240*x^5 -131987147648*x^4 + 471671257735644096*x^3 -141288896104729933913024*x^2 + 8412100149103623534604159488*x + 713964659662727336445449026830336)*(x^3 -1018856*x^2 + 168419942496*x -1510107494275008);
T[17,47]=(x -802752)*(x^6 + 90296*x^5 -2487495213664*x^4 + 2802270030256896*x^3 + 1584022858932778608552192*x^2 -133592454656379848599376726016*x -75390384701786421963812193144668160)*(x^3 + 1430440*x^2 + 276938752448*x -151265021847963648);
T[17,53]=(x -152862)*(x^6 + 137764*x^5 -3731103055780*x^4 -282684520504927008*x^3 + 2956780678718320465486320*x^2 + 71586637310331992927712863808*x -455677560210106114473099067592508864)*(x^3 -788122*x^2 + 146786168780*x -7469954521534968);
T[17,59]=(x + 1602408)*(x^6 + 2050080*x^5 -3987058659200*x^4 -4697211744259028160*x^3 + 4378146646234742787885120*x^2 + 324379942577365905266580085248*x -395100282750840069475673346161541120)*(x^3 -1371096*x^2 -1024944823328*x + 607726945608532032);
T[17,61]=(x + 2601610)*(x^6 -89808*x^5 -12061304387720*x^4 + 857910353777981760*x^3 + 14027120529172843611354768*x^2 + 3501450736077639456257761753600*x -1171099186346133072571419068326508800)*(x^3 -589626*x^2 + 50673411388*x -954978952597144);
T[17,67]=(x -1074604)*(x^6 -4686632*x^5 + 324044707232*x^4 + 11023544401771843840*x^3 -4739373909423475978710784*x^2 -1205997954980260028706132740096*x + 379036926506445640643668239871934464)*(x^3 + 4851452*x^2 + 5252589567920*x + 1173952976259419968);
T[17,71]=(x + 502298)*(x^6 + 5553232*x^5 + 589076154544*x^4 -26979378358307250984*x^3 -10056908115784942556191900*x^2 + 16619903468682562856783065201008*x + 6333296929471779830503230475434449664)*(x^3 -6699398*x^2 + 11102628823796*x -130037372442673296);
T[17,73]=(x -3648258)*(x^6 + 1436452*x^5 -17670271445924*x^4 -41202471355411267872*x^3 + 41457318678615163124949488*x^2 + 174425595547295384659658916068928*x + 117941325866619889444149415680102095424)*(x^3 -444438*x^2 -28726837770548*x -51243454143138737992);
T[17,79]=(x + 2892174)*(x^6 -12387160*x^5 + 2897445170848*x^4 + 380889582261522658584*x^3 -771262485266411113387483836*x^2 -1977414983889049615441265959095792*x + 4634148183808095259539007341529694194560)*(x^3 -1039946*x^2 -36135104809884*x + 16111177131963064176);
T[17,83]=(x -728104)*(x^6 + 1877808*x^5 -13543578336640*x^4 -11505681513903463744*x^3 + 48586061005832212165049408*x^2 -26393420079578430682485363144192*x + 3946343828185257132824475206775496704)*(x^3 -909784*x^2 -52899632378272*x + 79609947426002794944);
T[17,89]=(x -7931846)*(x^6 + 19324324*x^5 + 82665141736676*x^4 -482600596303553946272*x^3 -4192648813040588397188679104*x^2 -5380622115340890302559691637783040*x + 10872028895265331088405693745376705132800)*(x^3 -6024450*x^2 -37558021672244*x + 13479153414358253544);
T[17,97]=(x + 6551038)*(x^6 + 7630812*x^5 -231230104545956*x^4 -2386234769026864504032*x^3 + 1493182007786669622246017520*x^2 + 41767346035082680984137285972376000*x -49268218772065038328945487362419642136000)*(x^3 + 12851130*x^2 + 8398285074700*x -237684188686048117000);

T[18,2]=(x^2 + 6*x + 128)*(x^4 -104*x^2 + 16384)*(x^2 -6*x + 128)^2*(x -8)^3*(x + 8)^4;
T[18,3]=(x -27)*(x^2 -12*x + 2187)*(x + 27)^2*(x )^12;
T[18,5]=(x -114)*(x -210)*(x + 390)^2*(x + 114)^2*(x^2 -92160)^2*(x + 210)^3*(x -390)^4;
T[18,7]=(x + 1576)^3*(x -1016)^4*(x -260)^4*(x + 64)^6;
T[18,11]=(x + 1092)*(x + 7332)*(x -948)^2*(x -7332)^2*(x^2 -36864000)^2*(x -1092)^3*(x + 948)^4;
T[18,13]=(x + 3802)^3*(x -6890)^4*(x -1382)^4*(x + 5098)^6;
T[18,17]=(x + 14706)*(x -6606)*(x + 28386)^2*(x + 6606)^2*(x^2 -560701440)^2*(x -14706)^3*(x -28386)^4;
T[18,19]=(x -24860)^3*(x + 39940)^4*(x -33176)^4*(x + 8620)^6;
T[18,23]=(x + 68712)*(x + 41448)*(x -41448)^2*(x -15288)^2*(x^2 -996802560)^2*(x -68712)^3*(x + 15288)^4;
T[18,29]=(x -41610)*(x -102570)*(x + 36510)^2*(x + 41610)^2*(x^2 -19079424000)^2*(x + 102570)^3*(x -36510)^4;
T[18,31]=(x -33152)^3*(x -1508)^4*(x -227552)^4*(x + 276808)^6;
T[18,37]=(x + 36466)^3*(x + 380770)^4*(x -160526)^4*(x -268526)^6;
T[18,41]=(x -639078)*(x + 10842)*(x -629718)^2*(x + 639078)^2*(x^2 -7750656000)^2*(x -10842)^3*(x + 629718)^4;
T[18,43]=(x + 156412)^3*(x -7640)^4*(x + 630748)^4*(x -685772)^6;
T[18,47]=(x -433776)*(x + 472656)*(x + 433776)^2*(x + 583296)^2*(x^2 -320209551360)^2*(x -472656)^3*(x -583296)^4;
T[18,53]=(x -1494018)*(x + 786078)*(x -428058)^2*(x -786078)^2*(x^2 -1060987299840)^2*(x + 1494018)^3*(x + 428058)^4;
T[18,59]=(x + 2640660)*(x + 745140)*(x + 1306380)^2*(x -745140)^2*(x^2 -7332839424000)^2*(x -2640660)^3*(x -1306380)^4;
T[18,61]=(x + 1660618)^3*(x -827702)^4*(x + 988858)^4*(x -300662)^6;
T[18,67]=(x + 3290836)^3*(x + 126004)^4*(x -3857360)^4*(x + 507244)^6;
T[18,71]=(x + 5716152)*(x -1414728)*(x + 5560632)^2*(x -5716152)^2*(x^2 -17857511424000)^2*(x + 1414728)^3*(x -5560632)^4;
T[18,73]=(x -2659898)^3*(x -980282)^4*(x + 2004730)^4*(x -1369082)^6;
T[18,79]=(x -3807440)^3*(x + 3566800)^4*(x -2699684)^4*(x + 6913720)^6;
T[18,83]=(x + 5672892)*(x + 2229468)*(x -4376748)^2*(x -2229468)^2*(x^2 -7352582307840)^2*(x -5672892)^3*(x + 4376748)^4;
T[18,89]=(x + 5991210)*(x -11951190)*(x -5991210)^2*(x -8528310)^2*(x^2 -59927040000000)^2*(x + 11951190)^3*(x + 8528310)^4;
T[18,97]=(x + 4060126)^3*(x -8682146)^4*(x + 12957490)^4*(x + 8826814)^6;

T[19,2]=(x^4 + 9*x^3 -234*x^2 -396*x + 3240)*(x^6 -15*x^5 -450*x^4 + 4650*x^3 + 64272*x^2 -289800*x -1974784);
T[19,3]=(x^4 + 14*x^3 -1827*x^2 + 18900*x + 83700)*(x^6 -40*x^5 -8719*x^4 + 245290*x^3 + 22871940*x^2 -322311240*x -15379814304);
T[19,5]=(x^4 + 222*x^3 -119655*x^2 + 3224700*x + 983232000)*(x^6 -219*x^5 -183611*x^4 + 37247463*x^3 + 4116297310*x^2 -212819831400*x -18322855416000);
T[19,7]=(x^4 + 1246*x^3 -837048*x^2 -958460846*x + 30962663047)*(x^6 -2105*x^5 + 14314*x^4 + 2426151150*x^3 -1618533285531*x^2 + 285563386083915*x + 1241529811449264);
T[19,11]=(x^4 + 8718*x^3 + 5399757*x^2 -112537710072*x -235640376975204)*(x^6 -7257*x^5 -58576981*x^4 + 368847603441*x^3 + 1114515371338152*x^2 -3996248090894353044*x -8630238040718909522256);
T[19,13]=(x^4 + 4480*x^3 -115242465*x^2 + 373254914200*x -256119966125456)*(x^6 -6850*x^5 -284994377*x^4 + 1444968886290*x^3 + 24854386900181016*x^2 -69177524830693794720*x -690652649812597748578944);
T[19,17]=(x^4 + 4440*x^3 -861485130*x^2 -10236888310680*x -30693507380216631)*(x^6 -5415*x^5 -998120776*x^4 + 9513309682830*x^3 -7068543469513587*x^2 -114013391989696169895*x + 170160030426523581358074);
T[19,19]=(x -6859)^4*(x + 6859)^6;
T[19,23]=(x^4 + 30528*x^3 -6852928689*x^2 -30515183390592*x + 7978094538928171200)*(x^6 + 720*x^5 -14218296849*x^4 -79930062449640*x^3 + 52258446517371309888*x^2 + 149173131729458706992640*x -52196894086229652217757802496);
T[19,29]=(x^4 + 254244*x^3 -18473070861*x^2 -8998207267267044*x -582178603345234904340)*(x^6 -381624*x^5 + 17099079015*x^4 + 7360423866796320*x^3 -600648549687755360760*x^2 -33971405757528600101492544*x + 2820690004681374239204466078896);
T[19,31]=(x^4 + 303460*x^3 -33188622816*x^2 -11416233406324352*x + 52178733228863736832)*(x^6 -264080*x^5 -87862602432*x^4 + 24420309823899136*x^3 + 1458341173208191618816*x^2 -540097424017099156209156096*x + 18831418878808873791604742160384);
T[19,37]=(x^4 + 270460*x^3 -189544884816*x^2 -43507917730125680*x + 921025727539819428400)*(x^6 -1082300*x^5 + 144427963596*x^4 + 168583699857480160*x^3 -51031310383103635400336*x^2 + 1657515556166388608550634560*x + 47545252879122401726993650871616);
T[19,41]=(x^4 + 828564*x^3 -163207258092*x^2 -220463034427427040*x -25225611910025769907200)*(x^6 -485232*x^5 -477475608872*x^4 + 169022418349336800*x^3 + 16072453268710619470864*x^2 + 95116872135737540390431872*x -5038012649705086333496147226624);
T[19,43]=(x^4 -37454*x^3 -341276991087*x^2 + 89147058869387884*x -4763669949167924278304)*(x^6 -198705*x^5 -796369891581*x^4 + 152390939240532605*x^3 + 112607340202360736435544*x^2 + 2275430363041637301840945360*x -1030456259867689788159393143876096);
T[19,47]=(x^4 -335670*x^3 -1945493085735*x^2 + 593010721459834560*x + 570094233095073100791744)*(x^6 + 247125*x^5 -1134282980133*x^4 -84277929348135225*x^3 + 317625887559244962883464*x^2 + 5127789979838386022241916800*x -22326962577728683069127332555001856);
T[19,53]=(x^4 -76728*x^3 -1247166391833*x^2 -186336043185492360*x + 185918958682688611159200)*(x^6 -3226770*x^5 + 6680580671*x^4 + 6839918476502677530*x^3 -2798062132165543364002344*x^2 -2944876886827148907627861667680*x + 636208232230193799488402557867227264);
T[19,59]=(x^4 + 3191334*x^3 -382531350915*x^2 -5442661402656268500*x -2918255829042824621437500)*(x^6 -2305380*x^5 -3791739419959*x^4 + 6049042205847651774*x^3 + 6092914166844871603656804*x^2 -33997759089326621244804324888*x -165710809413450950084673012482976);
T[19,61]=(x^4 -346550*x^3 -2024831419419*x^2 -233933942729834456*x + 486202470131499435226972)*(x^6 -585731*x^5 -12983898791299*x^4 + 978501154553663707*x^3 + 37870077061975848726590342*x^2 + 11426789022197798787811823912068*x -4949994176054133392438821192246562984);
T[19,67]=(x^4 + 270322*x^3 -15216114092439*x^2 -15063131738013392552*x -3552144795187925156467232)*(x^6 + 3264030*x^5 -17958621512055*x^4 -50264895340223308360*x^3 + 80601193193766723963002016*x^2 + 184324908315816432224590122499200*x -48971289076702013434202564543296834304);
T[19,71]=(x^4 + 2066124*x^3 -18256724434368*x^2 -24907275834032823984*x -8079982254199016783524368)*(x^6 -6833682*x^5 + 9213927385656*x^4 + 12658180453581113136*x^3 -19847080051339622745625776*x^2 -8314341992455818588229063965600*x + 6352966656568664263248617603655085824);
T[19,73]=(x^4 + 416044*x^3 -16768962526026*x^2 -6161580140890980596*x + 61687490519304246536020753)*(x^6 + 4160625*x^5 -18976001363124*x^4 -76609185100069199150*x^3 -55579924661475309306986679*x^2 + 10904960971208911754323479354765*x + 420376232319909317261066396138066074);
T[19,79]=(x^4 -16025864*x^3 + 89120773501980*x^2 -189305091389847250112*x + 96763272229532098807894720)*(x^6 + 8680576*x^5 -10779053820692*x^4 -311729499220233658464*x^3 -1103855551176610759232145024*x^2 -1522481170998457882209201101263872*x -743096392300159732559219500684743376896);
T[19,83]=(x^4 -8524128*x^3 + 10594248858396*x^2 + 41765922989454706848*x -58354473089388296179536192)*(x^6 + 3785040*x^5 -59657687927732*x^4 -92528565619411420320*x^3 + 912997708094146989684145408*x^2 -1224092160937941926014257811023360*x + 370698187579442177457809872088287958016);
T[19,89]=(x^4 -2899092*x^3 -37145859132384*x^2 + 38927393078768258688*x + 245343398528404802668538880)*(x^6 -12473466*x^5 + 14002349517856*x^4 + 184171254348156004992*x^3 -43067397934486103777431808*x^2 -224207154292159756201724985165312*x + 6516011262179829266519037744891396096);
T[19,97]=(x^4 + 4766908*x^3 -212881382777388*x^2 -397963609143821356352*x + 3864169762282210632420998656)*(x^6 -882830*x^5 -275851158253972*x^4 -327382740217212672200*x^3 + 19931596828093873713438261056*x^2 + 20578151862483689046935616602283520*x -440643829592225610917320428354144578514944);

T[20,2]=(x -8)*(x^2 + 14*x + 128)*(x^4 -20*x^3 + 280*x^2 -2560*x + 16384)*(x + 8)^2*(x )^9;
T[20,3]=(x + 6)*(x^2 + 20*x -4416)*(x -28)^2*(x + 48)^3*(x^2 -20*x -4764)^3*(x -12)^4;
T[20,5]=(x^2 + 210*x + 78125)^2*(x -125)^7*(x + 125)^7;
T[20,7]=(x + 706)*(x^2 -1660*x + 323104)*(x -104)^2*(x + 1644)^3*(x^2 + 100*x -235836)^3*(x -1016)^4;
T[20,11]=(x + 3840)*(x^2 -3600*x -33339600)*(x + 5148)^2*(x -172)^3*(x^2 -4544*x -6998016)^3*(x -1092)^4;
T[20,13]=(x + 4054)*(x^2 -13180*x + 37575364)*(x + 8602)^2*(x -3862)^3*(x^2 -3540*x -24961564)^3*(x -1382)^4;
T[20,17]=(x -858)*(x^2 -5460*x -981659484)*(x -20274)^2*(x + 12254)^3*(x^2 + 27340*x + 80327844)^3*(x -14706)^4;
T[20,19]=(x -21044)*(x^2 + 40472*x + 263177296)*(x -45500)^2*(x + 25940)^3*(x^2 -38760*x + 367802000)^3*(x + 39940)^4;
T[20,23]=(x -85338)*(x^2 + 41820*x + 419304096)*(x + 72072)^2*(x -12972)^3*(x^2 + 124140*x + 3840033636)^3*(x -68712)^4;
T[20,29]=(x + 83106)*(x^2 -118668*x + 2935249956)*(x -231510)^2*(x + 81610)^3*(x^2 + 72260*x -27652933500)^3*(x + 102570)^4;
T[20,31]=(x + 145564)*(x^2 + 115928*x -41450184704)*(x + 80128)^2*(x + 156888)^3*(x^2 -306824*x + 22939401744)^3*(x -227552)^4;
T[20,37]=(x + 498886)*(x^2 -306940*x -69364995836)*(x -104654)^2*(x -110126)^3*(x^2 + 123020*x -45775154396)^3*(x -160526)^4;
T[20,41]=(x + 689514)*(x^2 + 353148*x -75487736124)*(x -584922)^2*(x -467882)^3*(x^2 -264364*x -227722158876)^3*(x -10842)^4;
T[20,43]=(x -867890)*(x^2 -1215340*x + 323163388000)*(x + 795532)^2*(x + 499208)^3*(x^2 -423300*x -96985991164)^3*(x + 630748)^4;
T[20,47]=(x -235638)*(x^2 + 2068500*x + 1069567347456)*(x -425664)^2*(x + 396884)^3*(x^2 + 105460*x -154530884316)^3*(x -472656)^4;
T[20,53]=(x -1835442)*(x^2 -1400460*x -323963254044)*(x -1500798)^2*(x + 1280498)^3*(x^2 + 2391580*x + 1213130224836)^3*(x + 1494018)^4;
T[20,59]=(x -629508)*(x^2 + 1992504*x + 500302949904)*(x -246420)^2*(x + 1337420)^3*(x^2 + 1120120*x -3614968086000)^3*(x -2640660)^4;
T[20,61]=(x + 2667958)*(x^2 + 1678676*x -5384698256156)*(x -893942)^2*(x + 923978)^3*(x^2 -2257044*x -672038095516)^3*(x -827702)^4;
T[20,67]=(x + 3373306)*(x^2 -3663940*x + 403671776224)*(x + 2336836)^2*(x + 797304)^3*(x^2 -4516460*x + 4620664454244)^3*(x + 126004)^4;
T[20,71]=(x + 2600052)*(x^2 -1794936*x -761950469376)*(x + 203688)^2*(x -5103392)^3*(x^2 -621784*x -275746164336)^3*(x + 1414728)^4;
T[20,73]=(x + 1628494)*(x^2 -5062180*x -2578241352956)*(x + 3805702)^2*(x + 4267478)^3*(x^2 -4569060*x + 1330152816836)^3*(x -980282)^4;
T[20,79]=(x + 4243528)*(x^2 -10178224*x + 19260741458944)*(x -5053040)^2*(x + 960)^3*(x^2 -4333040*x -12272229720000)^3*(x + 3566800)^4;
T[20,83]=(x -1251378)*(x^2 + 7214100*x + 13004909778816)*(x + 45492)^2*(x -6140832)^3*(x^2 + 9793020*x + 5699002341636)^3*(x -5672892)^4;
T[20,89]=(x -6299466)*(x^2 + 15330828*x + 49903967496996)*(x -980010)^2*(x -2010570)^3*(x^2 -6025620*x + 1403196358500)^3*(x + 11951190)^4;
T[20,97]=(x -3976514)*(x^2 -14024020*x + 49147910866084)*(x + 5247646)^2*(x + 4881934)^3*(x^2 -4609540*x -18666217374716)^3*(x -8682146)^4;

T[21,2]=(x -2)*(x^2 -12*x -232)*(x^3 + 3*x^2 -300*x -792)*(x^2 + 9*x -246)*(x -6)^2*(x + 6)^2*(x^2 + 3*x -214)^2;
T[21,3]=(x^2 + 42*x + 2187)*(x^4 -94*x^3 + 5718*x^2 -205578*x + 4782969)*(x -27)^4*(x + 27)^6;
T[21,5]=(x + 278)*(x^2 + 24*x -17008)*(x^3 + 114*x^2 -180480*x + 11635200)*(x^2 + 360*x -74100)*(x + 84)^2*(x -390)^2*(x^2 -330*x + 5600)^2;
T[21,7]=(x^2 + 64*x + 823543)*(x -343)^7*(x + 343)^7;
T[21,11]=(x + 4496)*(x^2 -2124*x -19883356)*(x^3 -8736*x^2 + 14382132*x + 21104274672)*(x^2 + 4932*x -19176384)*(x + 948)^2*(x + 5568)^2*(x^2 -2844*x -887776)^2;
T[21,13]=(x + 7274)*(x^2 + 1084*x -21935228)*(x^3 -12762*x^2 -86131236*x + 755769903784)*(x^2 -7708*x -7230524)*(x + 5152)^2*(x + 5098)^2*(x^2 -2534*x -166620776)^2;
T[21,17]=(x -11382)*(x^2 + 29256*x -287563248)*(x^2 + 28584*x + 121953804)*(x^3 -5490*x^2 -915671424*x + 12467114860032)*(x -28386)^2*(x + 13986)^2*(x^2 + 1488*x -22147524)^2;
T[21,19]=(x + 15884)*(x^2 + 25816*x -160026224)*(x^3 -8004*x^2 -1403637264*x -5437419408320)*(x^2 + 63728*x + 782053936)*(x -55370)^2*(x + 8620)^2*(x^2 -32810*x + 109928560)^2;
T[21,23]=(x -86100)*(x^2 -68316*x + 1166614596)*(x^3 + 101868*x^2 + 229346628*x -102906745004448)*(x^2 -82260*x + 1392518400)*(x + 15288)^2*(x + 91272)^2*(x^2 + 6576*x + 10312704)^2;
T[21,29]=(x -40702)*(x^2 -211308*x + 1307845988)*(x^3 + 255342*x^2 + 17395802028*x + 208394349111720)*(x^2 + 435996*x + 46362346164)*(x -36510)^2*(x -41610)^2*(x^2 -20640*x -18920124100)^2;
T[21,31]=(x + 44760)*(x^2 -435840*x + 43635483648)*(x^2 + 29240*x -27226807040)*(x^3 -80592*x^2 -40275805632*x + 2474931129739264)*(x + 276808)^2*(x -150332)^2*(x^2 + 391836*x + 37023636384)^2;
T[21,37]=(x + 580962)*(x^2 + 709556*x + 123432685924)*(x^2 + 28428*x -887182812)*(x^3 -800322*x^2 + 125635398780*x + 14464751702355208)*(x + 136366)^2*(x -268526)^2*(x^2 -367392*x -126010986084)^2;
T[21,41]=(x + 171658)*(x^2 -749760*x + 127701459200)*(x^3 -1198002*x^2 + 6543486720*x + 244624083804021600)*(x^2 + 25056*x -416101387716)*(x + 629718)^2*(x + 510258)^2*(x^2 -734664*x + 13303276364)^2;
T[21,43]=(x + 741148)*(x^2 -397096*x -71585337968)*(x^3 -119052*x^2 -253045918416*x -30813937518748736)*(x^2 -496216*x + 23523686224)*(x -685772)^2*(x + 172072)^2*(x^2 + 480476*x + 50864711104)^2;
T[21,47]=(x -1071720)*(x^2 -840168*x -268603868016)*(x^3 -1019256*x^2 -127235171568*x + 224671939171593984)*(x^2 + 1575000*x + 551244428160)*(x -583296)^2*(x + 519036)^2*(x^2 + 1089108*x + 2090896416)^2;
T[21,53]=(x + 1721778)*(x^2 + 246684*x -263627226684)*(x^3 + 1174878*x^2 + 450640041468*x + 56572054849143432)*(x^2 -2057436*x + 800144528964)*(x + 428058)^2*(x + 59202)^2*(x^2 -2858844*x + 2037435782724)^2;
T[21,59]=(x + 1557012)*(x^2 -2199504*x -345691376064)*(x^2 + 1101024*x -455709488016)*(x^3 + 692556*x^2 -2233605586944*x -311308042863513600)*(x -1306380)^2*(x -1979250)^2*(x^2 -160170*x -615374101440)^2;
T[21,61]=(x -2597998)*(x^2 -28996*x -397808236556)*(x^2 + 1951108*x + 504531767044)*(x^3 -4507314*x^2 + 3329954984748*x + 3793356056270637352)*(x -300662)^2*(x + 2988748)^2*(x^2 + 864646*x -529516501136)^2;
T[21,67]=(x + 963548)*(x^2 -1532048*x -11591287019456)*(x^2 + 4480784*x + 4656119933104)*(x^3 + 2951364*x^2 + 1858724925312*x -424115570463163136)*(x + 507244)^2*(x -2409404)^2*(x^2 + 328648*x -533876854064)^2;
T[21,71]=(x + 4063380)*(x^2 -2024004*x -3929864540796)*(x^3 + 2009844*x^2 -23132611417788*x -56763166204015715808)*(x^2 -54540*x -387209643840)*(x -5560632)^2*(x -1504512)^2*(x^2 + 7500216*x + 10359492378624)^2;
T[21,73]=(x + 5370222)*(x^2 + 1709028*x -10787980935996)*(x^3 + 3938874*x^2 -2273939271972*x -2844569079468186152)*(x^2 -666604*x -22405484001836)*(x + 1821022)^2*(x -1369082)^2*(x^2 -4301244*x -3340687254156)^2;
T[21,79]=(x -4094936)*(x^2 -1048168*x -26777501165936)*(x^2 -2322952*x + 578840156416)*(x^3 -6406008*x^2 + 7896903916944*x + 3556944786874159360)*(x + 6913720)^2*(x + 1669240)^2*(x^2 + 6408440*x -6335206025600)^2;
T[21,83]=(x + 1343124)*(x^2 + 4894296*x -7065815171184)*(x^2 + 7384392*x + 6817674434256)*(x^3 -4575444*x^2 -20542408160976*x + 79727349784856703552)*(x + 4376748)^2*(x -696738)^2*(x^2 -11659074*x + 30181573873584)^2;
T[21,89]=(x -9081574)*(x^2 + 60864*x -6900412319488)*(x^3 + 11158974*x^2 + 35698978730112*x + 26947296876861940320)*(x^2 -1784448*x -61835691772164)*(x + 8528310)^2*(x -5558490)^2*(x^2 -9772260*x -4649674734460)^2;
T[21,97]=(x -6487914)*(x^2 -16266412*x + 62174212264276)*(x^2 + 26046852*x + 164115180472068)*(x^3 + 2153394*x^2 -82427376092484*x + 70059288232659996088)*(x + 8826814)^2*(x -9876734)^2*(x^2 -10762752*x + 27021168617436)^2;

T[22,2]=(x^4 + 8*x^3 + 212*x^2 + 1024*x + 16384)*(x^8 -46*x^6 + 140*x^5 + 7200*x^4 + 17920*x^3 -753664*x^2 + 268435456)*(x -8)^3*(x + 8)^4;
T[22,3]=(x -91)*(x + 21)*(x + 19)*(x^2 + 23*x -3588)*(x -12)^2*(x^2 + 6*x -2151)^2*(x^4 + 35*x^3 -4673*x^2 -85815*x + 1673964)^2;
T[22,5]=(x + 551)*(x -317)*(x -185)*(x^2 -331*x + 23670)*(x + 210)^2*(x^2 + 470*x + 31225)^2*(x^4 -537*x^3 -23331*x^2 + 16608845*x + 953818350)^2;
T[22,7]=(x -62)*(x + 722)*(x + 1030)*(x^2 -1794*x + 75440)*(x -1016)^2*(x^2 + 1228*x -26444)^2*(x^4 -170*x^3 -1702596*x^2 + 805753160*x + 87571440704)^2;
T[22,11]=(x^2 -1092*x + 19487171)*(x -1331)^7*(x + 1331)^10;
T[22,13]=(x + 14676)*(x -11020)*(x -1500)*(x^2 + 5406*x -44494552)*(x -1382)^2*(x^2 -344*x -16069856)^2*(x^4 -4250*x^3 -104641800*x^2 + 636477836000*x -518474088880000)^2;
T[22,17]=(x + 17210)*(x + 29930)*(x + 30058)*(x^2 -15032*x -150712788)*(x -14706)^2*(x^2 + 8468*x -788446604)^2*(x^4 -54300*x^3 + 698589408*x^2 -1772971365520*x -5879827097747856)^2;
T[22,19]=(x -38056)*(x -29512)*(x + 9288)*(x^2 -16916*x -799953120)*(x + 39940)^2*(x^2 + 35280*x -222369840)^2*(x^4 -67844*x^3 + 413172576*x^2 + 30781610741376*x -317889451438377984)^2;
T[22,23]=(x + 12911)*(x -31499)*(x -22971)*(x^2 + 51351*x -536788152)*(x -68712)^2*(x^2 + 61486*x -159113951)^2*(x^4 + 9015*x^3 -7759317813*x^2 -90969330843035*x + 10761383314658092944)^2;
T[22,29]=(x -134272)*(x + 75168)*(x + 90480)*(x^2 + 207130*x + 8743188000)*(x + 102570)^2*(x^2 -179040*x + 122928960)^2*(x^4 -234078*x^3 -23056317792*x^2 + 7916160291570432*x -419294927566580465664)^2;
T[22,31]=(x + 287765)*(x + 139023)*(x + 235845)*(x^2 + 19071*x -6148026496)*(x -227552)^2*(x^2 + 57166*x -23689658111)^2*(x^4 -189857*x^3 -963903885*x^2 + 626963624696381*x -6106433255407770136)^2;
T[22,37]=(x -251511)*(x -75507)*(x + 316397)*(x^2 -351333*x -11768742334)*(x -160526)^2*(x^2 + 877698*x + 191745594561)^2*(x^4 -127895*x^3 -244889000967*x^2 -12335279871678165*x + 4102429081307632130394)^2;
T[22,41]=(x + 270288)*(x + 318192)*(x + 335968)*(x^2 -123610*x -234633419904)*(x -10842)^2*(x^2 + 283616*x -264475105136)^2*(x^4 -289842*x^3 -166344642192*x^2 + 71235636464687168*x -6699351297501673181184)^2;
T[22,43]=(x + 1028030)*(x + 858110)*(x -672430)*(x^2 + 159822*x -591953661640)*(x + 630748)^2*(x^2 -275484*x + 9203802564)^2*(x^4 -704930*x^3 -242375464716*x^2 + 106782439941219240*x + 2850351339234962448864)^2;
T[22,47]=(x + 519096)*(x + 771840)*(x -587680)*(x^2 -451160*x -72885726336)*(x -472656)^2*(x^2 -1662512*x + 677029127296)^2*(x^4 + 1729080*x^3 + 916748560128*x^2 + 127380976255544320*x -7421719301300281442304)^2;
T[22,53]=(x -765778)*(x -773570)*(x + 244238)*(x^2 + 1260832*x + 75106099260)*(x + 1494018)^2*(x^2 -1616484*x + 388813137924)^2*(x^4 -1098660*x^3 -1013868969408*x^2 + 913369177327758480*x + 186437308687455219423984)^2;
T[22,59]=(x + 392007)*(x + 163287)*(x -2194167)*(x^2 -887547*x -564563979540)*(x -2640660)^2*(x^2 + 2454130*x + 207772229185)^2*(x^4 + 4665777*x^3 + 3856725321735*x^2 -3804638314615815941*x + 293780567541901066316364)^2;
T[22,61]=(x -2297260)*(x -1248460)*(x -3163180)*(x^2 + 597918*x -456927065080)*(x -827702)^2*(x^2 + 6019176*x + 9007507329744)^2*(x^4 -310610*x^3 -2169833492856*x^2 -6684801231028320*x + 1029307913215079059584)^2;
T[22,67]=(x + 3428283)*(x -3498133)*(x + 1293557)*(x^2 -2864711*x -2490832261212)*(x + 126004)^2*(x^2 + 174698*x -9239984638199)^2*(x^4 + 3368245*x^3 + 1961932676487*x^2 -2018121250133252705*x -841372895664191080894364)^2;
T[22,71]=(x + 1207245)*(x -1542953)*(x -1101753)*(x^2 -1306267*x -5755066505400)*(x + 1414728)^2*(x^2 + 1151466*x -11975092638711)^2*(x^4 + 3416541*x^3 -17233021481085*x^2 -42381209374681164417*x + 59842846007129168321562144)^2;
T[22,73]=(x + 1122996)*(x -2216316)*(x + 4724772)*(x^2 + 4577530*x + 2038977114936)*(x -980282)^2*(x^2 -885944*x -2090754692576)^2*(x^4 -11466230*x^3 + 39060188842536*x^2 -21480056586718678240*x -60018210129095505174760576)^2;
T[22,79]=(x + 4362946)*(x + 2638102)*(x -1526014)*(x^2 + 2946342*x -9189351784480)*(x + 3566800)^2*(x^2 -3801460*x -2681742596060)^2*(x^4 -566282*x^3 -22128866924052*x^2 + 15662085774697901128*x + 25734353202870401722585216)^2;
T[22,83]=(x + 4830962)*(x -1650370)*(x + 4437790)*(x^2 -9965450*x + 22547926115976)*(x -5672892)^2*(x^2 + 2282916*x -536001911676)^2*(x^4 + 4220790*x^3 -55496901827772*x^2 -156150693882894592440*x + 702155789655742391057025696)^2;
T[22,89]=(x + 2448233)*(x -5760847)*(x + 521233)*(x^2 -10185377*x + 8815411816710)*(x + 11951190)^2*(x^2 + 13481970*x + 42998937114225)^2*(x^4 -18265191*x^3 + 86017581553797*x^2 -49556488314754857789*x -241905959662481292757205034)^2;
T[22,97]=(x + 2129831)*(x + 5750759)*(x -3948601)*(x^2 + 27765477*x + 192724568772626)*(x -8682146)^2*(x^2 + 68078*x -1834997592239)^2*(x^4 -11425325*x^3 -118218313347159*x^2 + 945610745170836511345*x + 4638684087239396087570364946)^2;

T[23,2]=(x^8 -832*x^6 -1059*x^5 + 203052*x^4 + 678328*x^3 -13424272*x^2 -73308944*x -37372224)*(x^5 + 16*x^4 -320*x^3 -3136*x^2 + 25680*x + 10816);
T[23,3]=(x^8 -40*x^7 -14887*x^6 + 581660*x^5 + 67535395*x^4 -2468624856*x^3 -93031589565*x^2 + 2428793021700*x + 33056528652000)*(x^5 + 68*x^4 -2058*x^3 -179244*x^2 -1567647*x + 17133120);
T[23,5]=(x^8 -444*x^7 -238680*x^6 + 92622200*x^5 + 13150116000*x^4 -3658233360000*x^3 -228248232400000*x^2 + 36549048168000000*x + 1271152834560000000)*(x^5 + 56*x^4 -221224*x^3 + 9420592*x^2 + 13335355696*x -1659678082560);
T[23,7]=(x^8 -1446*x^7 -2221012*x^6 + 2471573584*x^5 + 1805095371888*x^4 -1301459071782880*x^3 -634845820751981632*x^2 + 209647464074360413440*x + 86865591722882344763392)*(x^5 + 1156*x^4 -388080*x^3 -111092656*x^2 + 12850328064*x + 1671775278848);
T[23,11]=(x^8 -7588*x^7 -84349112*x^6 + 593197854248*x^5 + 2683332830360192*x^4 -15210851552175247616*x^3 -39651279264746423164288*x^2 + 127675490128016967344856064*x + 236688663210042487500794757120)*(x^5 + 1318*x^4 -59705736*x^3 -126675269376*x^2 -52977118987888*x + 1816585020997280);
T[23,13]=(x^8 -19862*x^7 -79833317*x^6 + 2861988104104*x^5 -5184293974355397*x^4 -43725164556024444366*x^3 -23480817228097229569851*x^2 + 51654629118853780659310428*x + 39553779852288165428882708868)*(x^5 + 19662*x^4 + 65111566*x^3 -596833236000*x^2 -3024050525497143*x -1730982704750504406);
T[23,17]=(x^8 -42070*x^7 -788998264*x^6 + 50864652287544*x^5 -209888429136179648*x^4 -12957347971961839806816*x^3 + 137379030215246310780196608*x^2 + 150757362183861169091657832320*x -3842643389040041001611447826604800)*(x^5 + 5002*x^4 -189775808*x^3 + 95688363248*x^2 + 1444134727391520*x -1666024785117680000);
T[23,19]=(x^8 -1050*x^7 -4517223900*x^6 + 36830937785848*x^5 + 5885664895577182832*x^4 -71374626932314160981216*x^3 -2037794051018679725030967104*x^2 + 18368000982261777967145616661120*x + 229023686141271382972553303832243200)*(x^5 + 38314*x^4 -1553793208*x^3 -61523049319920*x^2 -121492241758979376*x + 518862320797657705760);
T[23,23]=(x -12167)^5*(x + 12167)^8;
T[23,29]=(x^8 + 102578*x^7 -22711456757*x^6 -2172603756708676*x^5 + 125020935913282849251*x^4 + 10699982664972780340355634*x^3 -166852331645648500261290411675*x^2 -14802557641140790284251997825201600*x -131388119757838097214449651131553032500)*(x^5 + 150634*x^4 -31548450242*x^3 -1542847655853824*x^2 + 236636707792252709145*x -2000878096289673038515650);
T[23,31]=(x^8 -304172*x^7 -16645215719*x^6 + 7326688596692192*x^5 + 92057521779882631555*x^4 -32324344155132321466224756*x^3 + 825008979282538607819886386115*x^2 -5343279740311261097221573620492000*x + 8050030222989610639340915026419936000)*(x^5 + 179940*x^4 -62807622554*x^3 -9620245762697996*x^2 + 533902954591077801393*x + 18640624197554291359440000);
T[23,37]=(x^8 -286472*x^7 -423187330144*x^6 + 82608864800119928*x^5 + 61776994776099881029536*x^4 -5405454404373545548541399552*x^3 -3171774502095794656432022429239680*x^2 -66721253179730047865788791508452653568*x + 1620018307598062528421176324945796650725376)*(x^5 + 752672*x^4 -63472277672*x^3 -142581110887699568*x^2 -30527959000933135528656*x -1875910090996943667522303616);
T[23,41]=(x^8 -1324414*x^7 -455714553*x^6 + 408418147100677924*x^5 + 5416383887781274032443*x^4 -43058099960195978116979585790*x^3 -7518190356171967017642205705348303*x^2 -350322612683583472761485908893707540168*x -386547258352241393425312014901011674408340)*(x^5 + 1192910*x^4 + 261068035662*x^3 -186918512902576736*x^2 -97420020339919001366391*x -12653843593482446627890311830);
T[23,43]=(x^8 -2052578*x^7 + 1097688628944*x^6 + 362120682417351680*x^5 -531397152963244550821888*x^4 + 152502986023203540857653075968*x^3 -2975656334341116193443319448272896*x^2 -2671977382109715319331143363714005073920*x -109497577525126698700853090306011212388761600)*(x^5 + 932646*x^4 -129085777728*x^3 -98411148720845824*x^2 + 20001038325574276454400*x -975620418765851167671656448);
T[23,47]=(x^8 -675556*x^7 -2231965340943*x^6 + 1120615588444746088*x^5 + 1724363789686878279411795*x^4 -515681562738021227775511662652*x^3 -474757823047599015360122082495607973*x^2 + 42007022640175688634291689983462085472600*x + 8201483226183363264736870521995876814941433600)*(x^5 + 1008460*x^4 -470450059498*x^3 -299606959349325740*x^2 + 46582401850403838778945*x + 1777077483340228041709689912);
T[23,53]=(x^8 -203654*x^7 -4387210624308*x^6 -1051430264252333304*x^5 + 4713346852284995637980688*x^4 + 1465791008366652776339669488352*x^3 -1726878445207517860947449994784134080*x^2 -409346546314388791394791089269856102668928*x + 189825105666630036319236206965747427862792780288)*(x^5 -897104*x^4 -2454017264712*x^3 + 1153793997651485536*x^2 + 1089519036264986958448784*x + 167207191194232572429881970816);
T[23,59]=(x^8 + 748892*x^7 -7335630085984*x^6 -5539977222749306304*x^5 + 16834005948450196780939264*x^4 + 13500351773225728810146515311616*x^3 -11078238237771408788227091583436865536*x^2 -10983186537453548984213038388828864754597888*x -1575271322812646304211948092080942066005700444160)*(x^5 -1020972*x^4 -10424367183360*x^3 + 3210562996639434624*x^2 + 25356800146104843000483328*x + 13849189893492430764247262773248);
T[23,61]=(x^8 -61822*x^7 -10843849361996*x^6 + 5153042650549742664*x^5 + 27764355979588386035308656*x^4 -29568990177363739623053745884320*x^3 + 4908022919653351549780986860056049088*x^2 + 1610326373434823737298230334091535951891840*x + 59320219436733243506109147538129445316619711488)*(x^5 + 2758364*x^4 -3668394011784*x^3 -9019535611129029760*x^2 + 4174133927683296356609936*x + 5463656275671632708568314658624);
T[23,67]=(x^8 -3235604*x^7 -18232734534328*x^6 + 28082066458608038360*x^5 + 125258458590750022721281536*x^4 + 19437350473031242510279453832704*x^3 -131295750623285366479554817556474596224*x^2 -18474411452989809946095447970733076426577920*x + 34896401177070728064950248645995110110527060582400)*(x^5 + 1523138*x^4 -9430273644296*x^3 -17149576203531932864*x^2 + 6583614537181764353517840*x + 14149521855817420555199094907616);
T[23,71]=(x^8 + 4951664*x^7 -23640832234123*x^6 -119261149603936543224*x^5 + 58105157160230627124981851*x^4 + 403980065543748613583042860658392*x^3 -99907300996368519100018996423379890225*x^2 -384822280579877267012057483363866460323553200*x + 130831074140549549834252589818795044725826240128000)*(x^5 -3044884*x^4 -15550010660026*x^3 + 37489258644567623764*x^2 -3421678303590243131957071*x -18987788963015458479752351184520);
T[23,73]=(x^8 -11019370*x^7 + 9282729593455*x^6 + 265108700360831322316*x^5 -863964498028869665716540117*x^4 -581785983131953206683442148179082*x^3 + 5556980161451764311578469864215852199097*x^2 -6307203516431724288940797533038887230646438968*x + 907859938440765620274167432384872921867021906886668)*(x^5 + 8872022*x^4 + 15305655214158*x^3 -36285755440290849240*x^2 -95901343720448763592808471*x -38124021419143500096709959955894);
T[23,79]=(x^8 -4202464*x^7 -102124080470084*x^6 + 357602342777193989072*x^5 + 3512717388663203597432248688*x^4 -9194373113742127170433698207778432*x^3 -46185057338259651700716940261210233030592*x^2 + 72191751553032417934609136340988050178911896832*x + 166623001856245552190814587060266283207351559612610560)*(x^5 + 4437540*x^4 -41171633309288*x^3 -174913598625634444160*x^2 + 216173915294482068828226320*x + 994053563760084456239627996438208);
T[23,83]=(x^8 -518568*x^7 -136665987244504*x^6 -148176074694379110952*x^5 + 4817575439865006719473909168*x^4 + 12177776382715822969356640273510976*x^3 -10672850094425787116531826783590337809024*x^2 -3580002709586132348122974826823018512869201024*x + 2077358997539951089999892889436199292051169014690816)*(x^5 + 4637362*x^4 -80998600993808*x^3 -285120019605238698192*x^2 + 1523185622813799131440647200*x + 2501286289091185982494762595373312);
T[23,89]=(x^8 -4203864*x^7 -138434396656284*x^6 + 713711884038603110512*x^5 + 1755622544051390802284951616*x^4 -14426796297418057897856668534348288*x^3 + 16313283846752498071688797557101783652352*x^2 + 23181180367498620885562539066692917748453908480*x -38058110791843993642232110988158683028118462595072000)*(x^5 -6381402*x^4 -57843260208544*x^3 + 382047447949492488896*x^2 -163485411234419761346743808*x + 12580299519224809515011951321600);
T[23,97]=(x^8 -18621134*x^7 -7921510186096*x^6 + 1217986043365849012280*x^5 -852357220354455990371730592*x^4 -24539276081359026903655658500692704*x^3 -10461292165308312212821234834601151535232*x^2 + 139524066405105419448655825063898520521406501760*x + 174945906300198130760584612890666229489637216502478592)*(x^5 + 6432034*x^4 -356468650028704*x^3 -1176646240774244033936*x^2 + 29279090892372537743871004384*x + 8424735475936061273307821006624768);

T[24,2]=(x -8)*(x^2 -6*x + 128)*(x + 8)^2*(x )^19;
T[24,3]=(x^2 + 84*x + 2187)*(x^2 -44*x + 2187)*(x^2 -12*x + 2187)^3*(x -27)^7*(x + 27)^7;
T[24,5]=(x + 26)*(x -110)*(x + 530)*(x -270)^2*(x -430)^2*(x + 82)^2*(x + 378)^2*(x + 114)^3*(x -390)^4*(x + 210)^6;
T[24,7]=(x -1056)*(x -120)*(x -504)*(x + 456)^2*(x + 1224)^2*(x + 832)^2*(x -1112)^2*(x + 1576)^3*(x + 64)^4*(x -1016)^6;
T[24,11]=(x -6412)*(x + 7196)*(x -3812)*(x + 3164)^2*(x + 2524)^2*(x + 2484)^2*(x + 5724)^2*(x -7332)^3*(x + 948)^4*(x -1092)^6;
T[24,13]=(x + 9626)*(x -5206)*(x -9574)*(x + 4570)^2*(x + 10778)^2*(x -6118)^2*(x -14870)^2*(x + 3802)^3*(x + 5098)^4*(x -1382)^6;
T[24,17]=(x -18674)*(x -26098)*(x + 6238)*(x + 16270)^2*(x + 36558)^2*(x + 22302)^2*(x + 11150)^2*(x + 6606)^3*(x -28386)^4*(x -14706)^6;
T[24,19]=(x -41492)*(x + 38308)*(x -7004)*(x -4124)^2*(x -51740)^2*(x + 16300)^2*(x + 5476)^2*(x -24860)^3*(x + 8620)^4*(x + 39940)^6;
T[24,23]=(x + 63704)*(x + 29432)*(x + 71128)*(x -1576)^2*(x -81704)^2*(x + 115128)^2*(x -22248)^2*(x -41448)^3*(x + 15288)^4*(x -68712)^6;
T[24,29]=(x -29334)*(x -74262)*(x + 210498)*(x + 157194)^2*(x -157086)^2*(x -122838)^2*(x -99798)^2*(x + 41610)^3*(x -36510)^4*(x + 102570)^6;
T[24,31]=(x + 275680)*(x -185240)*(x -87968)*(x + 16456)^2*(x -251360)^2*(x + 40480)^2*(x + 103936)^2*(x -33152)^3*(x + 276808)^4*(x -227552)^6;
T[24,37]=(x -227982)*(x + 266610)*(x -507630)*(x + 52338)^2*(x + 94834)^2*(x + 149266)^2*(x + 419442)^2*(x + 36466)^3*(x -268526)^4*(x -160526)^6;
T[24,41]=(x + 160806)*(x -684762)*(x -360042)*(x -141402)^2*(x + 319398)^2*(x -659610)^2*(x + 241110)^2*(x + 639078)^3*(x + 629718)^4*(x -10842)^6;
T[24,43]=(x -620044)*(x -245956)*(x -136132)*(x + 443188)^2*(x -710788)^2*(x + 75772)^2*(x + 690428)^2*(x + 156412)^3*(x -685772)^4*(x + 630748)^6;
T[24,47]=(x + 847680)*(x + 1206960)*(x -478800)*(x + 682032)^2*(x -405648)^2*(x -284112)^2*(x -922752)^2*(x + 433776)^3*(x -583296)^4*(x -472656)^6;
T[24,53]=(x + 398786)*(x -1423750)*(x + 569410)*(x -1813118)^2*(x + 1346274)^2*(x -296062)^2*(x + 697626)^2*(x -786078)^3*(x + 428058)^4*(x + 1494018)^6;
T[24,59]=(x + 1525324)*(x + 2548724)*(x -1152436)*(x -870156)^2*(x + 1303884)^2*(x + 897548)^2*(x + 966028)^2*(x -745140)^3*(x -1306380)^4*(x -2640660)^6;
T[24,61]=(x + 2640458)*(x + 706058)*(x + 2070602)*(x -1887670)^2*(x -1833782)^2*(x -2067062)^2*(x + 884810)^2*(x + 1660618)^3*(x -300662)^4*(x -827702)^6;
T[24,67]=(x + 2418796)*(x + 4073428)*(x -1416236)*(x -2965868)^2*(x -4659692)^2*(x + 1680748)^2*(x -1369388)^2*(x + 3290836)^3*(x + 507244)^4*(x + 126004)^6;
T[24,71]=(x + 3511304)*(x + 383752)*(x -265976)*(x -2714040)^2*(x + 2710792)^2*(x + 2548232)^2*(x + 1070280)^2*(x -5716152)^3*(x -5560632)^4*(x + 1414728)^6;
T[24,73]=(x -3006010)*(x -4738618)*(x + 5791238)*(x -2868794)^2*(x + 1680326)^2*(x + 5670854)^2*(x + 2403334)^2*(x -2659898)^3*(x -1369082)^4*(x -980282)^6;
T[24,79]=(x -2955688)*(x -4661488)*(x + 4948112)*(x -2301512)^2*(x + 5124176)^2*(x -4038064)^2*(x + 1129648)^2*(x -3807440)^3*(x + 6913720)^4*(x + 3566800)^6;
T[24,83]=(x -3462932)*(x + 9163492)*(x + 5729252)*(x -5912028)^2*(x + 5385764)^2*(x + 1563556)^2*(x -4708692)^2*(x -2229468)^3*(x + 4376748)^4*(x -5672892)^6;
T[24,89]=(x + 2211126)*(x -11993514)*(x -7304106)*(x + 897750)^2*(x + 6473046)^2*(x -4143690)^2*(x -11605674)^2*(x -5991210)^3*(x + 8528310)^4*(x + 11951190)^6;
T[24,97]=(x + 15594814)*(x + 690526)*(x -7150754)*(x -10931618)^2*(x + 6065758)^2*(x -13719074)^2*(x + 1622974)^2*(x + 4060126)^3*(x + 8826814)^4*(x -8682146)^6;

T[25,2]=(x -14)*(x^2 + 20*x + 24)*(x^2 -15*x -106)*(x^2 -116)*(x^2 + 15*x -106)*(x + 14)^2*(x^2 -20*x + 24)^2;
T[25,3]=(x -48)*(x^2 -40*x -249)*(x^2 -1044)*(x^2 + 20*x -4764)*(x^2 + 40*x -249)*(x + 48)^2*(x^2 -20*x -4764)^2;
T[25,5]=(x -125)*(x + 125)^2*(x )^12;
T[25,7]=(x -1644)*(x^2 -176436)*(x^2 -100*x -235836)*(x^2 + 600*x -1054836)*(x^2 -600*x -1054836)*(x + 1644)^2*(x^2 + 100*x -235836)^2;
T[25,11]=(x + 6828)^2*(x^2 -4344*x -5423041)^2*(x -172)^3*(x^2 -4544*x -6998016)^3;
T[25,13]=(x + 3862)*(x^2 -102934224)*(x^2 + 17680*x + 51136816)*(x^2 -17680*x + 51136816)*(x^2 + 3540*x -24961564)*(x -3862)^2*(x^2 -3540*x -24961564)^2;
T[25,17]=(x -12254)*(x^2 -245912576)*(x^2 + 6870*x -68614471)*(x^2 -6870*x -68614471)*(x^2 -27340*x + 80327844)*(x + 12254)^2*(x^2 + 27340*x + 80327844)^2;
T[25,19]=(x + 6860)^2*(x^2 -18200*x -117098225)^2*(x + 25940)^3*(x^2 -38760*x + 367802000)^3;
T[25,23]=(x + 12972)*(x^2 + 21120*x -7241627844)*(x^2 -21120*x -7241627844)*(x^2 -124140*x + 3840033636)*(x^2 -853802804)*(x -12972)^2*(x^2 + 124140*x + 3840033636)^2;
T[25,29]=(x + 25590)^2*(x^2 -55800*x -27320953600)^2*(x + 81610)^3*(x^2 + 72260*x -27652933500)^3;
T[25,31]=(x -82112)^2*(x^2 + 301776*x + 19481626044)^2*(x + 156888)^3*(x^2 -306824*x + 22939401744)^3;
T[25,37]=(x + 110126)*(x^2 + 609860*x + 72425629684)*(x^2 -49964507856)*(x^2 -609860*x + 72425629684)*(x^2 -123020*x -45775154396)*(x -110126)^2*(x^2 + 123020*x -45775154396)^2;
T[25,41]=(x + 533118)^2*(x^2 + 108486*x + 2293303049)^2*(x -467882)^3*(x^2 -264364*x -227722158876)^3;
T[25,43]=(x -499208)*(x^2 -502589410164)*(x^2 -966400*x + 168009863536)*(x^2 + 423300*x -96985991164)*(x^2 + 966400*x + 168009863536)*(x + 499208)^2*(x^2 -423300*x -96985991164)^2;
T[25,47]=(x -396884)*(x^2 -33950996)*(x^2 + 1787880*x + 768835854224)*(x^2 -105460*x -154530884316)*(x^2 -1787880*x + 768835854224)*(x + 396884)^2*(x^2 + 105460*x -154530884316)^2;
T[25,53]=(x -1280498)*(x^2 -2391580*x + 1213130224836)*(x^2 -347361684944)*(x^2 -130740*x -310528480924)*(x^2 + 130740*x -310528480924)*(x + 1280498)^2*(x^2 + 2391580*x + 1213130224836)^2;
T[25,59]=(x + 1438980)^2*(x^2 -2067600*x -174052062400)^2*(x + 1337420)^3*(x^2 + 1120120*x -3614968086000)^3;
T[25,61]=(x -1381022)^2*(x^2 -582044*x -8129212445516)^2*(x + 923978)^3*(x^2 -2257044*x -672038095516)^3;
T[25,67]=(x -797304)*(x^2 + 4516460*x + 4620664454244)*(x^2 + 255720*x -858879415521)*(x^2 -255720*x -858879415521)*(x^2 -7370498568276)*(x + 797304)^2*(x^2 -4516460*x + 4620664454244)^2;
T[25,71]=(x + 481608)^2*(x^2 + 4728216*x + 5183381635664)^2*(x -5103392)^3*(x^2 -621784*x -275746164336)^3;
T[25,73]=(x -4267478)*(x^2 + 1339430*x -708123554519)*(x^2 + 4569060*x + 1330152816836)*(x^2 -2208719824704)*(x^2 -1339430*x -708123554519)*(x + 4267478)^2*(x^2 -4569060*x + 1330152816836)^2;
T[25,79]=(x -1059760)^2*(x^2 + 7186200*x + 11646468081900)^2*(x + 960)^3*(x^2 -4333040*x -12272229720000)^3;
T[25,83]=(x + 6140832)*(x^2 -9793020*x + 5699002341636)*(x^2 -12049560*x + 35517015006471)*(x^2 + 12049560*x + 35517015006471)*(x^2 -6779787857684)*(x -6140832)^2*(x^2 + 9793020*x + 5699002341636)^2;
T[25,89]=(x + 5644170)^2*(x^2 + 5990850*x -22736713427775)^2*(x -2010570)^3*(x^2 -6025620*x + 1403196358500)^3;
T[25,97]=(x -4881934)*(x^2 -17120020*x + 70829616805924)*(x^2 + 17120020*x + 70829616805924)*(x^2 + 4609540*x -18666217374716)*(x^2 -144218238909696)*(x + 4881934)^2*(x^2 -4609540*x -18666217374716)^2;

T[26,2]=(x^2 -10*x + 128)*(x^8 -15*x^7 + 242*x^6 -2496*x^5 + 42064*x^4 -319488*x^3 + 3964928*x^2 -31457280*x + 268435456)*(x^4 + 19*x^3 + 262*x^2 + 2432*x + 16384)*(x -8)^4*(x + 8)^5;
T[26,3]=(x + 27)*(x + 87)*(x + 39)*(x^2 -87*x + 1316)*(x^2 + 12*x -5109)*(x -12)^2*(x + 73)^2*(x^2 -45*x -252)^2*(x^4 -80*x^3 -2921*x^2 + 229440*x + 1640448)^2;
T[26,5]=(x + 245)*(x -385)*(x -321)*(x^2 + 146*x -130751)*(x^2 -215*x -2850)*(x + 295)^2*(x + 210)^2*(x^2 + 353*x + 20958)^2*(x^4 -258*x^3 -232675*x^2 + 87143700*x -6964113500)^2;
T[26,7]=(x + 181)*(x + 293)*(x + 587)*(x^2 -705*x -1259320)*(x^2 + 1780*x + 715555)*(x -1373)^2*(x -1016)^2*(x^2 + 2009*x + 1002196)^2*(x^4 -1692*x^3 + 168035*x^2 + 257728644*x + 1625961532)^2;
T[26,11]=(x + 5402)*(x + 3874)*(x -7782)*(x^2 -614*x -20708376)*(x^2 -10904*x + 28873804)*(x -1092)^2*(x + 7646)^2*(x^2 + 1810*x -31775952)^2*(x^4 -1836*x^3 -22277744*x^2 + 29807712432*x + 19773464676784)^2;
T[26,13]=(x^2 -1382*x + 62748517)*(x -2197)^10*(x + 2197)^11;
T[26,17]=(x + 21011)*(x -9069)*(x -5229)*(x^2 + 14118*x -507554199)*(x^2 -6623*x -760430454)*(x -14706)^2*(x + 4147)^2*(x^2 + 25361*x -177216678)^2*(x^4 -11814*x^3 -955565883*x^2 + 2196543589932*x + 174768583683247684)^2;
T[26,19]=(x + 6522)*(x + 27326)*(x + 37150)*(x^2 -5538*x -1732978744)*(x^2 -54408*x + 538353036)*(x + 3186)^2*(x + 39940)^2*(x^2 -22106*x -1646636688)^2*(x^4 -27660*x^3 -1856808064*x^2 + 41686844893872*x + 436885571235243760)^2;
T[26,23]=(x + 63072)*(x -19008)*(x + 500)*(x^2 + 156464*x + 4786525744)*(x^2 + 40536*x -2101510656)*(x -68712)^2*(x + 17784)^2*(x^2 + 26424*x -3712002048)^2*(x^4 -172920*x^3 + 10345450384*x^2 -249472900932864*x + 2050857366883726336)^2;
T[26,29]=(x -174750)*(x -122238)*(x -226954)*(x^2 + 296268*x + 16922064276)*(x^2 + 145868*x -16891064924)*(x + 102570)^2*(x + 93322)^2*(x^2 + 5804*x -1049753004)^2*(x^4 -133344*x^3 -42339084056*x^2 + 3712250796795072*x -32314495718898017840)^2;
T[26,31]=(x -29012)*(x -130156)*(x + 208396)*(x^2 -45800*x -303500720)*(x^2 + 269900*x + 5395324480)*(x -227552)^2*(x + 124484)^2*(x^2 -39744*x -634808464)^2*(x^4 + 231748*x^3 -46857675820*x^2 -14375320738992256*x -838885006381296780608)^2;
T[26,37]=(x + 377769)*(x -323669)*(x + 442379)*(x^2 -348558*x + 8162736561)*(x^2 + 356733*x + 28476018086)*(x -160526)^2*(x -273661)^2*(x^2 -163299*x -7868862106)^2*(x^4 -248026*x^3 -189938966107*x^2 -9722817587431964*x + 591854679631517957476)^2;
T[26,41]=(x + 539760)*(x -795312)*(x -58000)*(x^2 -209690*x -118698353280)*(x^2 + 156240*x -4113607680)*(x -585816)^2*(x -10842)^2*(x^2 + 330870*x -115487893152)^2*(x^4 -588108*x^3 + 114274129860*x^2 -8224636842319584*x + 192075440852513383936)^2;
T[26,43]=(x + 202025)*(x + 314137)*(x -13987)*(x^2 -737252*x -7014189629)*(x^2 -856353*x + 165309064916)*(x + 533559)^2*(x + 630748)^2*(x^2 -229307*x + 11546069484)^2*(x^4 -309304*x^3 -756373057465*x^2 + 156099159305350552*x + 11042021147139132512752)^2;
T[26,47]=(x + 526879)*(x + 447441)*(x -588511)*(x^2 -1779581*x + 782957876064)*(x^2 + 615196*x -109005494141)*(x + 530055)^2*(x -472656)^2*(x^2 + 1638525*x + 669689975052)^2*(x^4 -557916*x^3 -630779629093*x^2 + 300277692344475588*x -13266608970368463213860)^2;
T[26,53]=(x + 1649940)*(x + 1469232)*(x -1684336)*(x^2 + 1536024*x -18298543536)*(x^2 -1616894*x + 468578767104)*(x + 615288)^2*(x + 1494018)^2*(x^2 -1046382*x -648240166944)^2*(x^4 -2022348*x^3 + 1284175766452*x^2 -209932118264652288*x -28032456599489173331264)^2;
T[26,59]=(x + 81194)*(x -1627770)*(x + 442630)*(x^2 + 1762472*x -3539035961684)*(x^2 + 1926542*x + 278179468536)*(x -2640660)^2*(x + 392514)^2*(x^2 + 370158*x -140057008272)^2*(x^4 -1162668*x^3 -3000233695440*x^2 + 3890016251618636592*x -440566558481139303699920)^2;
T[26,61]=(x + 2399608)*(x + 1083608)*(x + 1126952)*(x^2 + 606882*x -3515051438224)*(x^2 + 4460272*x + 4106598596416)*(x -1878064)^2*(x -827702)^2*(x^2 -4675422*x + 4947441275696)^2*(x^4 + 1340572*x^3 -6782366613244*x^2 -4107973812239656672*x + 11698489512880377284128768)^2;
T[26,67]=(x -478798)*(x + 64066)*(x -3443486)*(x^2 + 3098090*x -3661539701480)*(x^2 -1926680*x + 927005771020)*(x + 126004)^2*(x + 3971438)^2*(x^2 + 1821402*x -5405517426256)^2*(x^4 + 598484*x^3 -3173466373600*x^2 + 1655538850137785008*x -57652152918405249496208)^2;
T[26,71]=(x + 322383)*(x -940007)*(x -2084705)*(x^2 + 220205*x -1041256691400)*(x^2 -2505140*x -14263049562725)*(x + 1414728)^2*(x + 3746601)^2*(x^2 + 1135611*x -24787522246284)^2*(x^4 -697860*x^3 -19945595301317*x^2 -11346486157347185268*x + 25198394623098276504585148)^2;
T[26,73]=(x + 4454782)*(x -5937890)*(x -1671926)*(x^2 -8592556*x + 16222847075284)*(x^2 -3725404*x -1610493427196)*(x -980282)^2*(x -2485802)^2*(x^2 + 6459284*x + 10156859198164)^2*(x^4 + 13725816*x^3 + 62394173705480*x^2 + 112101299294615962656*x + 69005615349760865423798224)^2;
T[26,79]=(x -753560)*(x + 5801188)*(x + 6609256)*(x^2 -3911392*x + 791817441136)*(x^2 + 1544888*x -16883581410944)*(x + 1264456)^2*(x + 3566800)^2*(x^2 + 73808*x -22472459585984)^2*(x^4 -20079576*x^3 + 139609676016704*x^2 -369039251681588824704*x + 229378857747410521003744000)^2;
T[26,83]=(x -7398816)*(x + 142740)*(x + 1219092)*(x^2 + 3576720*x -33249718167120)*(x^2 -8883360*x + 15381431470080)*(x -434308)^2*(x -5672892)^2*(x^2 + 12100972*x + 34361915476704)^2*(x^4 + 2024724*x^3 -54205847777724*x^2 -65141013406058526144*x + 709040025062126489586866176)^2;
T[26,89]=(x -3390330)*(x + 6985286)*(x + 953754)*(x^2 + 16720548*x + 69622103547396)*(x^2 + 3340108*x -18959522390364)*(x + 11951190)^2*(x -5830810)^2*(x^2 -9815060*x -10393898367132)^2*(x^4 -17646240*x^3 + 70656400552568*x^2 + 122937551307954545280*x -762427412064772823043503600)^2;
T[26,97]=(x + 10318690)*(x + 200762)*(x -1628774)*(x^2 -11317132*x -53125913495324)*(x^2 -23438808*x + 107301346958636)*(x + 2045330)^2*(x -8682146)^2*(x^2 + 17591688*x + 45398949212204)^2*(x^4 + 6329096*x^3 -183951644606488*x^2 -1842548960279415002144*x -4430455663617486384281251760)^2;

T[27,2]=(x^2 -9*x -126)*(x^2 + 9*x -126)*(x^2 -378)*(x^2 -108)*(x )*(x + 6)^2*(x^2 -360)^2*(x -6)^3;
T[27,3]=(x + 27)*(x )^17;
T[27,5]=(x^2 -151200)*(x^2 + 180*x + 7515)*(x^2 -180*x + 7515)*(x^2 -124848)*(x )*(x + 390)^2*(x^2 -92160)^2*(x -390)^3;
T[27,7]=(x -1763)*(x + 1261)^2*(x + 559)^2*(x^2 -700*x -1062125)^2*(x -260)^4*(x + 64)^5;
T[27,11]=(x^2 + 10890*x + 29414025)*(x^2 -10890*x + 29414025)*(x^2 -2183328)*(x^2 -22260528)*(x )*(x -948)^2*(x^2 -36864000)^2*(x + 948)^3;
T[27,13]=(x -12605)*(x + 8671)^2*(x -9581)^2*(x^2 + 5480*x -68308400)^2*(x -6890)^4*(x + 5098)^5;
T[27,17]=(x^2 -450751392)*(x^2 -16416*x -741669696)*(x^2 + 16416*x -741669696)*(x^2 -631446192)*(x )*(x + 28386)^2*(x^2 -560701440)^2*(x -28386)^3;
T[27,19]=(x -14357)*(x + 32461)^2*(x + 21931)^2*(x^2 -16024*x -142216916)^2*(x -33176)^4*(x + 8620)^5;
T[27,23]=(x^2 + 24372*x -3904044444)*(x^2 -24372*x -3904044444)*(x^2 -7384759200)*(x^2 -6791569200)*(x )*(x -15288)^2*(x^2 -996802560)^2*(x + 15288)^3;
T[27,29]=(x^2 -24899816448)*(x^2 -143280*x + 5122403100)*(x^2 + 143280*x + 5122403100)*(x^2 -1046642688)*(x )*(x + 36510)^2*(x^2 -19079424000)^2*(x -36510)^3;
T[27,31]=(x -178916)*(x + 50908)^2*(x -229892)^2*(x^2 + 38708*x -28528424669)^2*(x -1508)^4*(x + 276808)^5;
T[27,37]=(x + 615373)*(x + 541177)^2*(x -246467)^2*(x^2 -455620*x -16337003900)^2*(x + 380770)^4*(x -268526)^5;
T[27,41]=(x^2 -124965531648)*(x^2 + 731880*x + 83424185100)*(x^2 -373262819328)*(x^2 -731880*x + 83424185100)*(x )*(x -629718)^2*(x^2 -7750656000)^2*(x + 629718)^3;
T[27,43]=(x -1035224)*(x + 465112)^2*(x -315512)^2*(x^2 + 1088840*x + 207456229900)^2*(x -7640)^4*(x -685772)^5;
T[27,47]=(x^2 + 1561500*x + 410995953540)*(x^2 -1561500*x + 410995953540)*(x^2 -689852817072)*(x^2 -180763162272)*(x )*(x + 583296)^2*(x^2 -320209551360)^2*(x -583296)^3;
T[27,53]=(x^2 -2610468*x + 1583691044571)*(x^2 -1053126090432)*(x^2 + 2610468*x + 1583691044571)*(x^2 -16227050112)*(x )*(x -428058)^2*(x^2 -1060987299840)^2*(x + 428058)^3;
T[27,59]=(x^2 + 1731960*x -647792463600)*(x^2 -1731960*x -647792463600)*(x^2 -616638511152)*(x^2 -929490563232)*(x )*(x + 1306380)^2*(x^2 -7332839424000)^2*(x -1306380)^3;
T[27,61]=(x -1537199)*(x + 497953)^2*(x + 137773)^2*(x^2 + 620192*x + 17550467776)^2*(x + 988858)^4*(x -300662)^5;
T[27,67]=(x + 4058455)*(x + 314041)^2*(x -1336361)^2*(x^2 -346600*x + 15698927500)^2*(x -3857360)^4*(x + 507244)^5;
T[27,71]=(x^2 -813538276992)*(x^2 + 4242240*x -3541802241600)*(x^2 -7894909985472)*(x^2 -4242240*x -3541802241600)*(x )*(x + 5560632)^2*(x^2 -17857511424000)^2*(x -5560632)^3;
T[27,73]=(x -1236809)*(x -2669537)^2*(x -3250793)^2*(x^2 + 3145190*x -3239699519975)^2*(x + 2004730)^4*(x -1369082)^5;
T[27,79]=(x + 4245427)*(x -6075485)^2*(x -1101815)^2*(x^2 -10110616*x + 19219527915904)^2*(x -2699684)^4*(x + 6913720)^5;
T[27,83]=(x^2 -67104081410688)*(x^2 -36954740369088)*(x^2 + 644202*x -1694562670359)*(x^2 -644202*x -1694562670359)*(x )*(x -4376748)^2*(x^2 -7352582307840)^2*(x + 4376748)^3;
T[27,89]=(x^2 + 6021000*x + 6381093451500)*(x^2 -170059231792800)*(x^2 -10800152593200)*(x^2 -6021000*x + 6381093451500)*(x )*(x -8528310)^2*(x^2 -59927040000000)^2*(x + 8528310)^3;
T[27,97]=(x -5276357)*(x + 2979379)^2*(x -6570629)^2*(x^2 -4098670*x -155863647601775)^2*(x + 12957490)^4*(x + 8826814)^5;

T[28,2]=(x^2 + 6*x + 128)*(x^4 + 3*x^3 + 42*x^2 + 384*x + 16384)*(x + 8)^3*(x -8)^3*(x )^13;
T[28,3]=(x^2 + 14*x -3480)*(x^2 -14*x -960)*(x + 66)^2*(x + 82)^2*(x^2 -70*x -744)^2*(x + 42)^3*(x^2 -94*x + 1344)^3*(x -12)^4;
T[28,5]=(x^2 -42*x -31320)*(x^2 + 294*x -100480)*(x + 400)^2*(x -448)^2*(x^2 -126*x -155520)^2*(x + 84)^3*(x^2 -330*x + 5600)^3*(x + 210)^4;
T[28,7]=(x^2 -1016*x + 823543)^2*(x -343)^9*(x + 343)^12;
T[28,11]=(x^2 + 3492*x -30373600)*(x^2 -7428*x + 7568640)*(x -40)^2*(x -2408)^2*(x^2 + 3420*x -28335744)^2*(x + 5568)^3*(x^2 -2844*x -887776)^3*(x -1092)^4;
T[28,13]=(x^2 -11830*x + 34701376)*(x^2 + 16170*x + 24602616)*(x + 4452)^2*(x -7116)^2*(x^2 + 6398*x -60101048)^2*(x + 5152)^3*(x^2 -2534*x -166620776)^3*(x -1382)^4;
T[28,17]=(x^2 + 29232*x + 66390140)*(x^2 -15792*x -294519780)*(x -2486)^2*(x -36502)^2*(x^2 + 38472*x + 354074796)^2*(x + 13986)^3*(x^2 + 1488*x -22147524)^3*(x -14706)^4;
T[28,19]=(x^2 -26614*x + 174503608)*(x^2 + 3206*x -1457664272)*(x -36482)^2*(x + 46222)^2*(x^2 + 43358*x + 353711560)^2*(x -55370)^3*(x^2 -32810*x + 109928560)^3*(x + 39940)^4;
T[28,23]=(x^2 -32640*x -7801459776)*(x^2 + 9360*x -892558336)*(x + 12880)^2*(x + 105200)^2*(x^2 -89928*x + 1896721920)^2*(x + 91272)^3*(x^2 + 6576*x + 10312704)^3*(x -68712)^4;
T[28,29]=(x^2 -184704*x + 5339156348)*(x^2 + 158016*x + 5489020188)*(x + 126334)^2*(x + 88094)^2*(x^2 -159576*x -4918678740)^2*(x -41610)^3*(x^2 -20640*x -18920124100)^3*(x + 102570)^4;
T[28,31]=(x^2 + 180740*x -16540907264)*(x^2 -165060*x -6660680544)*(x -282636)^2*(x + 170964)^2*(x^2 + 143612*x + 4461367552)^2*(x -150332)^3*(x^2 + 391836*x + 37023636384)^3*(x -227552)^4;
T[28,37]=(x^2 -286144*x -45829003940)*(x^2 + 45824*x -207949289540)*(x -20954)^2*(x + 214534)^2*(x^2 + 271832*x -157363463444)^2*(x + 136366)^3*(x^2 -367392*x -126010986084)^3*(x -160526)^4;
T[28,41]=(x^2 + 116760*x -89232832116)*(x^2 + 321720*x -208069107156)*(x -318486)^2*(x + 140874)^2*(x^2 -64848*x -74003569668)^2*(x + 510258)^3*(x^2 -734664*x + 13303276364)^3*(x -10842)^4;
T[28,43]=(x^2 + 294428*x -9812264768)*(x^2 -1023868*x + 127557024352)*(x -77744)^2*(x -36464)^2*(x^2 -1527964*x + 583387157728)^2*(x + 172072)^3*(x^2 + 480476*x + 50864711104)^3*(x + 630748)^4;
T[28,47]=(x^2 -1665972*x + 662231593152)*(x^2 + 1014132*x + 216379252512)*(x -703716)^2*(x -716868)^2*(x^2 -485436*x -540103776192)^2*(x + 519036)^3*(x^2 + 1089108*x + 2090896416)^3*(x -472656)^4;
T[28,53]=(x^2 + 1396452*x + 225066151620)*(x^2 + 410628*x -15217199100)*(x -1603278)^2*(x + 56946)^2*(x^2 + 145716*x -79218330012)^2*(x + 59202)^3*(x^2 -2858844*x + 2037435782724)^3*(x + 1494018)^4;
T[28,59]=(x^2 + 2729286*x + 1833034760000)*(x^2 -1702134*x -951114840120)*(x + 2149862)^2*(x + 1171894)^2*(x^2 + 4183662*x + 4373344023480)^2*(x -1979250)^3*(x^2 -160170*x -615374101440)^3*(x -2640660)^4;
T[28,61]=(x^2 -2466954*x -113258778480)*(x^2 + 547526*x -676162372040)*(x -3084360)^2*(x + 2068872)^2*(x^2 + 280658*x -1039462897040)^2*(x + 2988748)^3*(x^2 + 864646*x -529516501136)^3*(x -827702)^4;
T[28,67]=(x^2 -225176*x -8822599928240)*(x^2 + 2590616*x -7466582740400)*(x + 3034364)^2*(x + 994268)^2*(x^2 -5671648*x + 5763055131376)^2*(x -2409404)^3*(x^2 + 328648*x -533876854064)^3*(x + 126004)^4;
T[28,71]=(x^2 -1530312*x -5444851901440)*(x^2 -4129272*x + 4028431841280)*(x -33280)^2*(x + 106624)^2*(x^2 + 619272*x -850548584448)^2*(x -1504512)^3*(x^2 + 7500216*x + 10359492378624)^3*(x + 1414728)^4;
T[28,73]=(x^2 + 8008868*x + 15928428632500)*(x^2 -1143548*x -19396396395020)*(x + 2971454)^2*(x -988930)^2*(x^2 -3939628*x + 3486040529620)^2*(x + 1821022)^3*(x^2 -4301244*x -3340687254156)^3*(x -980282)^4;
T[28,79]=(x^2 -7951176*x + 11938206077568)*(x^2 -2470456*x -52062570791552)*(x + 2376168)^2*(x -3415896)^2*(x^2 -4656616*x -16952152365440)^2*(x + 1669240)^3*(x^2 + 6408440*x -6335206025600)^3*(x + 3566800)^4;
T[28,83]=(x^2 + 18487854*x + 84534867832880)*(x^2 + 9900786*x + 14563855983960)*(x + 15142)^2*(x + 2122358)^2*(x^2 -1235850*x -35507978523864)^2*(x -696738)^3*(x^2 -11659074*x + 30181573873584)^3*(x -5672892)^4;
T[28,89]=(x^2 + 4652508*x -12060844881660)*(x^2 -15423492*x + 54854655982020)*(x -174810)^2*(x -6920346)^2*(x^2 + 17241420*x + 63487720577700)^2*(x -5558490)^3*(x^2 -9772260*x -4649674734460)^3*(x + 11951190)^4;
T[28,97]=(x^2 + 26702368*x + 174783333299356)*(x^2 + 17377472*x + 2955690377596)*(x -13506790)^2*(x -4952710)^2*(x^2 + 740936*x -2847474625940)^2*(x -9876734)^3*(x^2 -10762752*x + 27021168617436)^3*(x -8682146)^4;

T[29,2]=(x^7 + 8*x^6 -589*x^5 -4894*