CoCalc
Sharedwww / Tables / charpoly_s4g1.gpOpen in CoCalc
Author: William A. Stein
1
\\ charpoly_s4g1.gp
2
\\ This is a table of characteristic polynomials of the
3
\\ Hecke operators T_p acting on the space S_4(Gamma_1(N))
4
\\ of weight 4 cusp forms for Gamma_1(N).
5
\\ William Stein ([email protected]), September, 1998.
6
7
{
8
T=matrix(29,97,m,n,0);
9
T[5,2]=x + 4;
10
T[5,3]=x -2;
11
T[5,5]=x + 5;
12
T[5,7]=x -6;
13
T[5,11]=x -32;
14
T[5,13]=x + 38;
15
T[5,17]=x -26;
16
T[5,19]=x -100;
17
T[5,23]=x + 78;
18
T[5,29]=x + 50;
19
T[5,31]=x + 108;
20
T[5,37]=x -266;
21
T[5,41]=x -22;
22
T[5,43]=x -442;
23
T[5,47]=x + 514;
24
T[5,53]=x -2;
25
T[5,59]=x -500;
26
T[5,61]=x + 518;
27
T[5,67]=x -126;
28
T[5,71]=x -412;
29
T[5,73]=x + 878;
30
T[5,79]=x -600;
31
T[5,83]=x -282;
32
T[5,89]=x + 150;
33
T[5,97]=x -386;
34
35
T[6,2]=x + 2;
36
T[6,3]=x + 3;
37
T[6,5]=x -6;
38
T[6,7]=x + 16;
39
T[6,11]=x -12;
40
T[6,13]=x -38;
41
T[6,17]=x + 126;
42
T[6,19]=x -20;
43
T[6,23]=x -168;
44
T[6,29]=x -30;
45
T[6,31]=x + 88;
46
T[6,37]=x -254;
47
T[6,41]=x -42;
48
T[6,43]=x + 52;
49
T[6,47]=x + 96;
50
T[6,53]=x -198;
51
T[6,59]=x + 660;
52
T[6,61]=x + 538;
53
T[6,67]=x -884;
54
T[6,71]=x -792;
55
T[6,73]=x -218;
56
T[6,79]=x + 520;
57
T[6,83]=x + 492;
58
T[6,89]=x -810;
59
T[6,97]=x -1154;
60
61
T[7,2]=(x + 1)*(x^2 + 2*x + 4);
62
T[7,3]=(x + 2)*(x^2 + 7*x + 49);
63
T[7,5]=(x -16)*(x^2 + 7*x + 49);
64
T[7,7]=(x + 7)*(x^2 -28*x + 343);
65
T[7,11]=(x + 8)*(x^2 -5*x + 25);
66
T[7,13]=(x -28)*(x + 14)^2;
67
T[7,17]=(x -54)*(x^2 -21*x + 441);
68
T[7,19]=(x + 110)*(x^2 + 49*x + 2401);
69
T[7,23]=(x -48)*(x^2 -159*x + 25281);
70
T[7,29]=(x + 110)*(x -58)^2;
71
T[7,31]=(x -12)*(x^2 + 147*x + 21609);
72
T[7,37]=(x + 246)*(x^2 + 219*x + 47961);
73
T[7,41]=(x -182)*(x -350)^2;
74
T[7,43]=(x -128)*(x + 124)^2;
75
T[7,47]=(x -324)*(x^2 + 525*x + 275625);
76
T[7,53]=(x + 162)*(x^2 + 303*x + 91809);
77
T[7,59]=(x -810)*(x^2 -105*x + 11025);
78
T[7,61]=(x + 488)*(x^2 -413*x + 170569);
79
T[7,67]=(x -244)*(x^2 + 415*x + 172225);
80
T[7,71]=(x + 768)*(x + 432)^2;
81
T[7,73]=(x + 702)*(x^2 -1113*x + 1238769);
82
T[7,79]=(x -440)*(x^2 -103*x + 10609);
83
T[7,83]=(x + 1302)*(x -1092)^2;
84
T[7,89]=(x -730)*(x^2 -329*x + 108241);
85
T[7,97]=(x -294)*(x + 882)^2;
86
87
T[8,2]=(x^2 + 2*x + 8)*(x );
88
T[8,3]=(x + 4)*(x^2 + 28);
89
T[8,5]=(x + 2)*(x^2 + 112);
90
T[8,7]=(x -24)*(x + 8)^2;
91
T[8,11]=(x + 44)*(x^2 + 252);
92
T[8,13]=(x -22)*(x^2 + 2800);
93
T[8,17]=(x -50)*(x + 14)^2;
94
T[8,19]=(x -44)*(x^2 + 1372);
95
T[8,23]=(x + 56)*(x + 152)^2;
96
T[8,29]=(x -198)*(x^2 + 25200);
97
T[8,31]=(x + 160)*(x -224)^2;
98
T[8,37]=(x + 162)*(x^2 + 59248);
99
T[8,41]=(x + 198)*(x + 70)^2;
100
T[8,43]=(x -52)*(x^2 + 192892);
101
T[8,47]=(x -528)*(x -336)^2;
102
T[8,53]=(x + 242)*(x^2 + 1008);
103
T[8,59]=(x + 668)*(x^2 + 285628);
104
T[8,61]=(x -550)*(x^2 + 9072);
105
T[8,67]=(x -188)*(x^2 + 30492);
106
T[8,71]=(x -728)*(x + 72)^2;
107
T[8,73]=(x -154)*(x + 294)^2;
108
T[8,79]=(x + 656)*(x + 464)^2;
109
T[8,83]=(x -236)*(x^2 + 297052);
110
T[8,89]=(x -714)*(x -266)^2;
111
T[8,97]=(x + 478)*(x -994)^2;
112
113
T[9,2]=(x^4 + 3*x^3 + 15*x^2 -18*x + 36)*(x );
114
T[9,3]=(x^4 + 3*x^3 -18*x^2 + 81*x + 729)*(x );
115
T[9,5]=(x^4 + 15*x^3 + 177*x^2 + 720*x + 2304)*(x );
116
T[9,7]=(x -20)*(x^4 + 7*x^3 + 111*x^2 -434*x + 3844);
117
T[9,11]=(x^4 + 66*x^3 + 3795*x^2 + 37026*x + 314721)*(x );
118
T[9,13]=(x + 70)*(x^4 -11*x^3 + 1947*x^2 + 20086*x + 3334276);
119
T[9,17]=(x )*(x^2 -99*x + 1782)^2;
120
T[9,19]=(x -56)*(x^2 + 77*x -4532)^2;
121
T[9,23]=(x^4 + 33*x^3 + 3795*x^2 -89298*x + 7322436)*(x );
122
T[9,29]=(x^4 -51*x^3 + 1959*x^2 -32742*x + 412164)*(x );
123
T[9,31]=(x -308)*(x^4 + 43*x^3 + 1461*x^2 + 16684*x + 150544);
124
T[9,37]=(x -110)*(x^2 + 50*x -23432)^2;
125
T[9,41]=(x^4 + 132*x^3 + 92301*x^2 -9883764*x + 5606565129)*(x );
126
T[9,43]=(x + 520)*(x^4 + 88*x^3 + 6105*x^2 + 144232*x + 2686321);
127
T[9,47]=(x^4 + 399*x^3 + 187719*x^2 -11378682*x + 813276324)*(x );
128
T[9,53]=(x )*(x^2 -54*x -215784)^2;
129
T[9,59]=(x^4 + 798*x^3 + 630195*x^2 + 5273982*x + 43678881)*(x );
130
T[9,61]=(x -182)*(x^4 + 439*x^3 + 235497*x^2 -18778664*x + 1829786176);
131
T[9,67]=(x + 880)*(x^4 + 988*x^3 + 768045*x^2 + 205601812*x + 43305193801);
132
T[9,71]=(x )*(x^2 -1368*x + 296784)^2;
133
T[9,73]=(x -1190)*(x^2 + 455*x -435398)^2;
134
T[9,79]=(x -884)*(x^4 -803*x^3 + 1271325*x^2 + 503092348*x + 392522298256);
135
T[9,83]=(x^4 + 813*x^3 + 590181*x^2 + 57550644*x + 5010940944)*(x );
136
T[9,89]=(x )*(x^2 + 396*x -3564)^2;
137
T[9,97]=(x + 1330)*(x^4 + 736*x^3 + 492105*x^2 + 36498976*x + 2459267281);
138
139
T[10,2]=(x -2)*(x^2 + 4*x + 8)*(x^2 + 4);
140
T[10,3]=(x + 8)*(x^2 + 4)*(x -2)^2;
141
T[10,5]=(x -5)*(x^2 + 10*x + 125)*(x + 5)^2;
142
T[10,7]=(x + 4)*(x^2 + 676)*(x -6)^2;
143
T[10,11]=(x -12)*(x + 28)^2*(x -32)^2;
144
T[10,13]=(x + 58)*(x^2 + 144)*(x + 38)^2;
145
T[10,17]=(x -66)*(x^2 + 4096)*(x -26)^2;
146
T[10,19]=(x + 100)*(x -60)^2*(x -100)^2;
147
T[10,23]=(x -132)*(x^2 + 3364)*(x + 78)^2;
148
T[10,29]=(x + 50)^2*(x + 90)^3;
149
T[10,31]=(x -152)*(x + 108)^2*(x + 128)^2;
150
T[10,37]=(x + 34)*(x^2 + 55696)*(x -266)^2;
151
T[10,41]=(x + 438)*(x -22)^2*(x -242)^2;
152
T[10,43]=(x -32)*(x^2 + 131044)*(x -442)^2;
153
T[10,47]=(x + 204)*(x^2 + 51076)*(x + 514)^2;
154
T[10,53]=(x -222)*(x^2 + 11664)*(x -2)^2;
155
T[10,59]=(x -420)*(x -20)^2*(x -500)^2;
156
T[10,61]=(x -902)*(x -542)^2*(x + 518)^2;
157
T[10,67]=(x + 1024)*(x^2 + 188356)*(x -126)^2;
158
T[10,71]=(x -432)*(x -412)^2*(x + 1128)^2;
159
T[10,73]=(x -362)*(x^2 + 399424)*(x + 878)^2;
160
T[10,79]=(x + 160)*(x -720)^2*(x -600)^2;
161
T[10,83]=(x -72)*(x^2 + 228484)*(x -282)^2;
162
T[10,89]=(x -810)*(x -490)^2*(x + 150)^2;
163
T[10,97]=(x -1106)*(x^2 + 2119936)*(x -386)^2;
164
165
T[11,2]=(x^2 -2*x -2)*(x^8 + 7*x^7 + 31*x^6 + 71*x^5 + 319*x^4 + 78*x^3 + 1664*x^2 -2816*x + 1936);
166
T[11,3]=(x^2 + 2*x -47)*(x^8 + 3*x^7 + 16*x^6 + 69*x^5 + 319*x^4 -483*x^3 + 784*x^2 -1029*x + 2401);
167
T[11,5]=(x^2 -2*x -191)*(x^8 + 7*x^7 + 250*x^6 -1018*x^5 + 3109*x^4 + 71358*x^3 + 1156400*x^2 -4275152*x + 64577296);
168
T[11,7]=(x^2 -20*x + 52)*(x^8 + 35*x^7 + 268*x^6 -11560*x^5 + 112489*x^4 -186090*x^3 + 386532*x^2 -201960*x + 156816);
169
T[11,11]=(x^8 -67*x^7 + 1463*x^6 -67639*x^5 + 4205960*x^4 -90027509*x^3 + 2591793743*x^2 -157982495297*x + 3138428376721)*(x + 11)^2;
170
T[11,13]=(x^2 -80*x + 400)*(x^8 + 65*x^7 + 620*x^6 -102150*x^5 + 2712425*x^4 + 15382500*x^3 + 229712000*x^2 + 584815000*x + 2905210000);
171
T[11,17]=(x^2 + 124*x + 3412)*(x^8 + 31*x^7 + 9034*x^6 + 768147*x^5 + 51677179*x^4 + 1540200879*x^3 + 170263805166*x^2 + 2036645067303*x + 9608691844521);
172
T[11,19]=(x^2 -72*x -9504)*(x^8 -148*x^7 + 25293*x^6 -1403636*x^5 + 52489880*x^4 -220038896*x^3 -4736784822*x^2 + 668051130362*x + 90104309844241);
173
T[11,23]=(x^2 + 98*x -1487)*(x^4 + 6*x^3 -21180*x^2 + 538608*x + 49883584)^2;
174
T[11,29]=(x^2 -144*x -4224)*(x^8 + 199*x^7 + 63750*x^6 + 16862426*x^5 + 2923156669*x^4 + 255487249446*x^3 + 16210382310540*x^2 + 565626311519544*x + 9707838512516496);
175
T[11,31]=(x^2 + 34*x -2063)*(x^8 + 361*x^7 + 127874*x^6 + 20604762*x^5 + 2681918509*x^4 + 271760852034*x^3 + 36028983020436*x^2 + 319952936572808*x + 1103714307062416);
176
T[11,37]=(x^2 -54*x + 537)*(x^8 -81*x^7 + 22574*x^6 + 1021518*x^5 + 51116109*x^4 -13895024934*x^3 + 4670696022736*x^2 + 176811059981712*x + 26648657080058896);
177
T[11,41]=(x^2 -536*x + 71776)*(x^8 + 31*x^7 + 96430*x^6 + 12654499*x^5 + 3917760879*x^4 + 30693893139*x^3 + 12127806546450*x^2 -7238136414981549*x + 2752561646911945561);
178
T[11,43]=(x^2 + 60*x + 132)*(x^4 + 325*x^3 -77011*x^2 -29170680*x -1288748736)^2;
179
T[11,47]=(x^2 + 272*x -24704)*(x^8 -857*x^7 + 328738*x^6 -56830384*x^5 + 11713523305*x^4 -1958947057704*x^3 + 200243113739648*x^2 + 1420238903785408*x + 701720407969751296);
180
T[11,53]=(x^2 + 492*x + 51108)*(x^8 + 1493*x^7 + 981796*x^6 + 297882674*x^5 + 50491440609*x^4 + 4585818509412*x^3 + 352524733155744*x^2 -341717136443904*x + 718620002362859776);
181
T[11,59]=(x^2 -634*x + 48217)*(x^8 -676*x^7 + 335249*x^6 -92899212*x^5 + 15250617404*x^4 -1409592264024*x^3 + 82615458669926*x^2 -2985020002237238*x + 66640502972871961);
182
T[11,61]=(x^2 -840*x + 74832)*(x^8 + 525*x^7 + 215208*x^6 -66957030*x^5 + 52122658329*x^4 -3110614685640*x^3 + 37878287603550912*x^2 -5383740670518893760*x + 2293058436574524385536);
183
T[11,67]=(x^2 -754*x + 140929)*(x^4 -43*x^3 -394721*x^2 -116831232*x -8869996224)^2;
184
T[11,71]=(x^2 + 678*x + 97593)*(x^8 -1143*x^7 + 1433596*x^6 -610965314*x^5 + 130254296809*x^4 -13844921046072*x^3 + 627729324911784*x^2 + 1852157295214344*x + 554312704719065616);
185
T[11,73]=(x^2 + 400*x -617072)*(x^8 + 2155*x^7 + 2963582*x^6 + 2542462045*x^5 + 1409086605389*x^4 + 494934399950515*x^3 + 112672831449166198*x^2 + 16070408168515394925*x + 1447812302381491758481);
186
T[11,79]=(x^2 -316*x -1266044)*(x^8 + 861*x^7 + 557830*x^6 + 303861914*x^5 + 197075817029*x^4 + 35316502381934*x^3 + 9120021275987180*x^2 + 32487043876015256*x + 44348975301377296);
187
T[11,83]=(x^2 -468*x + 11556)*(x^8 -52*x^7 + 305673*x^6 + 353583676*x^5 + 815905746580*x^4 -1357844703529104*x^3 + 1106832413083137678*x^2 -152977041853862046282*x + 32854954322056760667081);
188
T[11,89]=(x^2 + 1842*x + 525489)*(x^4 -1891*x^3 + 858267*x^2 -9000124*x -2046678844)^2;
189
T[11,97]=(x^2 -2194*x + 1141201)*(x^8 + 1344*x^7 + 2238235*x^6 + 905506256*x^5 + 236892824674*x^4 -80861240615904*x^3 + 260472443669411400*x^2 + 143781303760850691684*x + 127535645840164247745801);
190
191
T[12,2]=(x + 2)*(x^4 + 4*x^2 + 64)*(x )^2;
192
T[12,3]=(x -3)*(x^4 + 6*x^2 + 729)*(x + 3)^2;
193
T[12,5]=(x + 18)*(x -6)^2*(x^2 + 80)^2;
194
T[12,7]=(x -8)*(x + 16)^2*(x^2 + 60)^2;
195
T[12,11]=(x -36)*(x -12)^2*(x^2 -1200)^2;
196
T[12,13]=(x -38)^2*(x + 10)^5;
197
T[12,17]=(x -18)*(x + 126)^2*(x^2 + 1280)^2;
198
T[12,19]=(x + 100)*(x -20)^2*(x^2 + 4860)^2;
199
T[12,23]=(x -72)*(x -168)^2*(x^2 -9408)^2;
200
T[12,29]=(x + 234)*(x -30)^2*(x^2 + 23120)^2;
201
T[12,31]=(x + 16)*(x + 88)^2*(x^2 + 50460)^2;
202
T[12,37]=(x + 226)*(x -254)^2*(x + 130)^4;
203
T[12,41]=(x -90)*(x -42)^2*(x^2 + 15680)^2;
204
T[12,43]=(x -452)*(x + 52)^2*(x^2 + 50460)^2;
205
T[12,47]=(x -432)*(x + 96)^2*(x^2 -37632)^2;
206
T[12,53]=(x -414)*(x -198)^2*(x^2 + 297680)^2;
207
T[12,59]=(x + 684)*(x + 660)^2*(x^2 -30000)^2;
208
T[12,61]=(x -422)*(x + 538)^2*(x + 442)^4;
209
T[12,67]=(x -332)*(x -884)^2*(x^2 + 541500)^2;
210
T[12,71]=(x + 360)*(x -792)^2*(x^2 -1080000)^2;
211
T[12,73]=(x -26)*(x -218)^2*(x -410)^4;
212
T[12,79]=(x -512)*(x + 520)^2*(x^2 + 7260)^2;
213
T[12,83]=(x + 1188)*(x + 492)^2*(x^2 -1572528)^2;
214
T[12,89]=(x + 630)*(x -810)^2*(x^2 + 706880)^2;
215
T[12,97]=(x + 1054)*(x -1154)^2*(x -770)^4;
216
217
T[13,2]=(x + 5)*(x^2 -x -4)*(x^2 + 6*x + 12)*(x^2 -3*x + 3)*(x^2 + 4*x + 16)*(x^2 + 9)*(x^4 -5*x^3 + 23*x^2 -10*x + 4);
218
T[13,3]=(x + 7)*(x^2 -7*x + 49)*(x^2 -5*x -32)*(x^4 + 5*x^3 + 57*x^2 -160*x + 1024)*(x + 1)^2*(x^2 + 2*x + 4)^2;
219
T[13,5]=(x + 7)*(x^2 + 3)*(x^2 + 3*x -2)*(x^2 + 192)*(x^2 + 81)*(x -17)^2*(x^2 + 15*x -50)^2;
220
T[13,7]=(x + 13)*(x^2 -39*x + 507)*(x^2 + 225)*(x^2 + 20*x + 400)*(x^2 + 9*x -494)*(x^2 + 24*x + 192)*(x^4 + 15*x^3 + 173*x^2 + 780*x + 2704);
221
T[13,11]=(x + 26)*(x^2 + 39*x + 507)*(x^2 + 2304)*(x^2 -80*x + 988)*(x^2 -24*x + 192)*(x^2 -32*x + 1024)*(x^4 + 17*x^3 + 1173*x^2 -15028*x + 781456);
222
T[13,13]=(x -13)*(x^2 + 91*x + 2197)*(x^2 + 26*x + 2197)*(x^2 -91*x + 2197)*(x^2 -52*x + 2197)*(x^4 -125*x^3 + 7956*x^2 -274625*x + 4826809)*(x + 13)^2;
223
T[13,17]=(x -77)*(x^2 + 117*x + 13689)*(x^2 -19*x -1138)*(x^2 -13*x + 169)*(x^2 + 27*x + 729)*(x^4 + 70*x^3 + 4763*x^2 + 9590*x + 18769)*(x + 45)^2;
224
T[13,19]=(x + 126)*(x^2 + 36)*(x^2 + 84*x -2588)*(x^2 + 198*x + 13068)*(x^2 + 153*x + 7803)*(x^2 + 30*x + 900)*(x^4 -141*x^3 + 15017*x^2 -685824*x + 23658496);
225
T[13,23]=(x + 96)*(x^2 + 78*x + 6084)*(x^2 -196*x + 8992)*(x^2 -78*x + 6084)*(x^2 + 57*x + 3249)*(x^4 + 145*x^3 + 20397*x^2 + 91060*x + 394384)*(x -162)^2;
226
T[13,29]=(x + 82)*(x^2 + 197*x + 38809)*(x^2 + 44*x -38684)*(x^2 -69*x + 4761)*(x^2 -141*x + 19881)*(x^4 + 34*x^3 + 16167*x^2 -510374*x + 225330121)*(x + 144)^2;
227
T[13,31]=(x -196)*(x^2 + 69696)*(x^2 + 5292)*(x^2 + 24300)*(x^2 + 86*x -3064)*(x + 74)^2*(x^2 + 140*x -37600)^2;
228
T[13,37]=(x + 131)*(x^2 -209*x + 10814)*(x^2 + 69*x + 1587)*(x^2 -227*x + 51529)*(x^2 + 249*x + 20667)*(x^2 + 91809)*(x^4 -190*x^3 + 35303*x^2 -151430*x + 635209);
229
T[13,41]=(x -336)*(x^2 + 230*x + 11168)*(x^2 + 36864)*(x^2 -165*x + 27225)*(x^2 -471*x + 73947)*(x^2 + 681*x + 154587)*(x^4 + 538*x^3 + 218783*x^2 + 38015618*x + 4992976921);
230
T[13,43]=(x + 201)*(x^2 -287*x -66316)*(x^2 -85*x + 7225)*(x^2 -156*x + 24336)*(x^2 + 104*x + 10816)*(x^4 + 455*x^3 + 195257*x^2 + 5354440*x + 138485824)*(x + 97)^2;
231
T[13,47]=(x + 105)*(x^2 + 117612)*(x^2 + 90828)*(x^2 + 12321)*(x^2 -435*x -14918)*(x + 162)^2*(x^2 -60*x -82400)^2;
232
T[13,53]=(x + 432)*(x^2 + 118*x -344)*(x + 414)^2*(x -426)^2*(x^2 -545*x -41450)^2*(x -93)^4;
233
T[13,59]=(x + 294)*(x^2 + 33*x + 363)*(x^2 + 368*x -31492)*(x^2 + 272484)*(x^2 -864*x + 746496)*(x^2 + 492*x + 80688)*(x^4 -809*x^3 + 503717*x^2 -121968076*x + 22729783696);
234
T[13,61]=(x + 56)*(x^2 -17*x + 289)*(x^2 + 1058*x + 126416)*(x^4 + 502*x^3 + 359003*x^2 -53713498*x + 11448786001)*(x -376)^2*(x^2 + 145*x + 21025)^2;
235
T[13,67]=(x -478)*(x^2 -285*x + 27075)*(x^2 -68*x -227596)*(x^2 + 1296)*(x^2 + 1362*x + 618348)*(x^2 + 862*x + 743044)*(x^4 -475*x^3 + 204413*x^2 -10075700*x + 449948944);
236
T[13,71]=(x -9)*(x^2 -1011*x + 340707)*(x^2 + 654*x + 427716)*(x^2 -1830*x + 1116300)*(x^2 + 127449)*(x^2 + 131*x -222494)*(x^4 + 127*x^3 + 58953*x^2 -5438648*x + 1833894976);
237
T[13,73]=(x -98)*(x^2 + 210675)*(x^2 + 1009200)*(x^2 + 1205604)*(x^2 -456*x -235316)*(x -215)^2*(x^2 -585*x + 54850)^2;
238
T[13,79]=(x -1304)*(x^2 + 1008*x + 247216)*(x + 76)^2*(x + 1244)^2*(x -1276)^2*(x + 830)^2*(x^2 -240*x + 7600)^2;
239
T[13,83]=(x + 308)*(x^2 + 623808)*(x^2 -1958*x + 817664)*(x^2 + 181548)*(x^2 + 191844)*(x -628)^2*(x^2 -260*x -25600)^2;
240
T[13,89]=(x + 1190)*(x^2 + 1692*x + 954288)*(x^2 -531*x + 93987)*(x^2 + 191844)*(x^2 -266*x + 70756)*(x^2 + 720*x -510212)*(x^4 + 921*x^3 + 702587*x^2 + 134147334*x + 21215087716);
241
T[13,97]=(x -70)*(x^2 -2139*x + 1525107)*(x^2 -348*x + 40368)*(x^2 + 928*x -881476)*(x^2 + 238*x + 56644)*(x^2 + 725904)*(x^4 -415*x^3 + 1064003*x^2 + 370087870*x + 795268001284);
242
243
T[14,2]=(x + 2)*(x -2)*(x^2 -2*x + 4)*(x^2 + x + 8)*(x^2 + 2*x + 4)*(x^4 + 2*x^3 -4*x^2 + 16*x + 64);
244
T[14,3]=(x -8)*(x^2 -x + 1)*(x^2 -5*x + 25)*(x^2 + 7*x + 49)^2*(x + 2)^3;
245
T[14,5]=(x + 12)*(x + 14)*(x^2 -9*x + 81)*(x -16)^2*(x^2 + 7*x + 49)^3;
246
T[14,7]=(x -7)*(x^2 + 20*x + 343)*(x^2 + 28*x + 343)*(x^2 -28*x + 343)^2*(x + 7)^3;
247
T[14,11]=(x -48)*(x + 28)*(x^2 + 35*x + 1225)*(x^2 -57*x + 3249)*(x + 8)^2*(x^2 -5*x + 25)^2;
248
T[14,13]=(x -56)*(x -18)*(x -66)^2*(x + 70)^2*(x -28)^2*(x + 14)^4;
249
T[14,17]=(x -74)*(x + 114)*(x^2 + 59*x + 3481)*(x^2 + 51*x + 2601)*(x -54)^2*(x^2 -21*x + 441)^2;
250
T[14,19]=(x -2)*(x -80)*(x^2 + 137*x + 18769)*(x^2 + 5*x + 25)*(x + 110)^2*(x^2 + 49*x + 2401)^2;
251
T[14,23]=(x + 112)*(x + 120)*(x^2 + 69*x + 4761)*(x^2 -7*x + 49)*(x -48)^2*(x^2 -159*x + 25281)^2;
252
T[14,29]=(x -190)*(x + 54)*(x -106)^2*(x -114)^2*(x + 110)^2*(x -58)^4;
253
T[14,31]=(x -72)*(x -236)*(x^2 + 23*x + 529)*(x^2 + 75*x + 5625)*(x -12)^2*(x^2 + 147*x + 21609)^2;
254
T[14,37]=(x + 346)*(x -146)*(x^2 + 11*x + 121)*(x^2 -253*x + 64009)*(x + 246)^2*(x^2 + 219*x + 47961)^2;
255
T[14,41]=(x -162)*(x -126)*(x + 498)^2*(x -182)^2*(x + 42)^2*(x -350)^4;
256
T[14,43]=(x + 376)*(x + 412)*(x -260)^2*(x -128)^2*(x + 124)^6;
257
T[14,47]=(x -24)*(x + 12)*(x^2 -171*x + 29241)*(x^2 + 201*x + 40401)*(x -324)^2*(x^2 + 525*x + 275625)^2;
258
T[14,53]=(x -174)*(x -318)*(x^2 -417*x + 173889)*(x^2 -393*x + 154449)*(x + 162)^2*(x^2 + 303*x + 91809)^2;
259
T[14,59]=(x -138)*(x + 200)*(x^2 -17*x + 289)*(x^2 + 219*x + 47961)*(x -810)^2*(x^2 -105*x + 11025)^2;
260
T[14,61]=(x -380)*(x + 198)*(x^2 + 51*x + 2601)*(x^2 -709*x + 502681)*(x + 488)^2*(x^2 -413*x + 170569)^2;
261
T[14,67]=(x + 484)*(x + 716)*(x^2 + 439*x + 192721)*(x^2 + 419*x + 175561)*(x -244)^2*(x^2 + 415*x + 172225)^2;
262
T[14,71]=(x -392)*(x -576)*(x + 96)^2*(x + 768)^2*(x + 784)^2*(x + 432)^4;
263
T[14,73]=(x -538)*(x + 1150)*(x^2 + 295*x + 87025)*(x^2 -313*x + 97969)*(x + 702)^2*(x^2 -1113*x + 1238769)^2;
264
T[14,79]=(x -776)*(x -240)*(x^2 + 461*x + 212521)*(x^2 -495*x + 245025)*(x -440)^2*(x^2 -103*x + 10609)^2;
265
T[14,83]=(x + 1072)*(x -378)*(x -932)^2*(x + 588)^2*(x + 1302)^2*(x -1092)^4;
266
T[14,89]=(x + 390)*(x -810)*(x^2 -1017*x + 1034289)*(x^2 -873*x + 762129)*(x -730)^2*(x^2 -329*x + 108241)^2;
267
T[14,97]=(x -1354)*(x + 1330)*(x + 1834)^2*(x -294)^2*(x + 290)^2*(x + 882)^4;
268
269
T[15,2]=(x -1)*(x -3)*(x^4 + 25*x^2 + 64)*(x^8 + 209*x^4 + 1600)*(x + 4)^2;
270
T[15,3]=(x + 3)*(x -3)*(x^2 -2*x + 27)*(x^8 + 6*x^7 + 18*x^6 -198*x^5 -1422*x^4 -5346*x^3 + 13122*x^2 + 118098*x + 531441)*(x^2 + 9)^2;
271
T[15,5]=(x -5)*(x^4 -6*x^3 -110*x^2 -750*x + 15625)*(x^8 + 110*x^6 + 5250*x^4 + 1718750*x^2 + 244140625)*(x + 5)^3;
272
T[15,7]=(x -20)*(x + 24)*(x^4 + 756*x^2 + 129600)*(x -6)^2*(x^4 + 8*x^3 + 32*x^2 -2000*x + 62500)^2;
273
T[15,11]=(x + 24)*(x -52)*(x -32)^2*(x^2 + 42*x + 72)^2*(x^4 + 1990*x^2 + 961000)^2;
274
T[15,13]=(x -22)*(x -74)*(x^4 + 3780*x^2 + 1327104)*(x + 38)^2*(x^4 -34*x^3 + 578*x^2 -2720*x + 6400)^2;
275
T[15,17]=(x -54)*(x + 14)*(x^4 + 7252*x^2 + 2483776)*(x^8 + 68589044*x^4 + 32321044225600)*(x -26)^2;
276
T[15,19]=(x + 124)*(x + 20)*(x -100)^2*(x^2 + 56*x -5120)^2*(x^4 + 2772*x^2 + 876096)^2;
277
T[15,23]=(x + 120)*(x + 168)*(x^4 + 2464*x^2 + 6400)*(x^8 + 36067364*x^4 + 227401574425600)*(x + 78)^2;
278
T[15,29]=(x + 78)*(x -230)*(x + 50)^2*(x^2 -318*x + 7200)^2*(x^4 -18390*x^2 + 40401000)^2;
279
T[15,31]=(x -200)*(x + 288)*(x + 108)^2*(x^2 -52*x -800)^2*(x^2 -154*x -23096)^4;
280
T[15,37]=(x + 70)*(x + 34)*(x^4 + 106596*x^2 + 41990400)*(x -266)^2*(x^4 + 578*x^3 + 167042*x^2 + 23802040*x + 1695792400)^2;
281
T[15,41]=(x -122)*(x -330)*(x -22)^2*(x^2 + 408*x + 40140)^2*(x^4 + 160240*x^2 + 1201216000)^2;
282
T[15,43]=(x -92)*(x + 188)*(x^4 + 196128*x^2 + 8256266496)*(x -442)^2*(x^4 -274*x^3 + 37538*x^2 + 3808600*x + 193210000)^2;
283
T[15,47]=(x -256)*(x + 24)*(x^4 + 189712*x^2 + 6186766336)*(x^8 + 971492324*x^4 + 8274187321753600)*(x + 514)^2;
284
T[15,53]=(x -450)*(x + 338)*(x^4 + 218644*x^2 + 813390400)*(x^8 + 59035541924*x^4 + 149446051906983961600)*(x -2)^2;
285
T[15,59]=(x -100)*(x -24)*(x -500)^2*(x^2 -186*x + 8280)^2*(x^4 -709410*x^2 + 94361796000)^2;
286
T[15,61]=(x + 322)*(x -742)*(x + 518)^2*(x^2 -340*x -65564)^2*(x -2)^8;
287
T[15,67]=(x + 196)*(x + 84)*(x^4 + 341712*x^2 + 9419867136)*(x -126)^2*(x^4 -202*x^3 + 20402*x^2 + 57456880*x + 80906113600)^2;
288
T[15,71]=(x + 328)*(x + 288)*(x -412)^2*(x^2 + 36*x -331776)^2*(x^4 + 568060*x^2 + 15888196000)^2;
289
T[15,73]=(x + 38)*(x + 430)*(x^4 + 1126224*x^2 + 104976000000)*(x + 878)^2*(x^4 + 1256*x^3 + 788768*x^2 + 244756720*x + 37974316900)^2;
290
T[15,79]=(x + 520)*(x + 240)*(x -600)^2*(x^2 + 380*x -886400)^2*(x^4 + 348072*x^2 + 797271696)^2;
291
T[15,83]=(x -1212)*(x -156)*(x^4 + 1371040*x^2 + 40558737664)*(x^8 + 10775280164*x^4 + 15732888703346713600)*(x -282)^2;
292
T[15,89]=(x -330)*(x -1026)*(x + 150)^2*(x^2 + 1116*x + 98820)^2*(x^4 -3626460*x^2 + 3249684036000)^2;
293
T[15,97]=(x + 286)*(x -866)*(x^4 + 1475712*x^2 + 196199387136)*(x -386)^2*(x^4 -952*x^3 + 453152*x^2 + 747139120*x + 615926736100)^2;
294
295
T[16,2]=(x^2 + 2*x + 8)*(x^10 + 2*x^9 -2*x^8 + 8*x^7 -40*x^6 -352*x^5 -320*x^4 + 512*x^3 -1024*x^2 + 8192*x + 32768)*(x )^5;
296
T[16,3]=(x -4)*(x^10 + 2*x^9 + 2*x^8 -96*x^7 + 4424*x^6 + 4432*x^5 + 4624*x^4 -166272*x^3 + 976144*x^2 -1272544*x + 829472)*(x + 4)^2*(x^2 + 28)^2;
297
T[16,5]=(x^10 + 2*x^9 + 2*x^8 -1216*x^7 + 70152*x^6 -238960*x^5 + 121104*x^4 + 16403712*x^3 + 303177744*x^2 + 350050848*x + 202085408)*(x^2 + 112)^2*(x + 2)^3;
298
T[16,7]=(x + 24)*(x^10 + 1668*x^8 + 822752*x^6 + 108889984*x^4 + 1007165696*x^2 + 1936000000)*(x -24)^2*(x + 8)^4;
299
T[16,11]=(x -44)*(x^10 -18*x^9 + 162*x^8 -98976*x^7 + 10893448*x^6 -470191184*x^5 + 11596827024*x^4 -161036931712*x^3 + 1239116280336*x^2 -3072960643104*x + 3810412010528)*(x + 44)^2*(x^2 + 252)^2;
300
T[16,13]=(x^10 + 2*x^9 + 2*x^8 -49600*x^7 + 16525704*x^6 -250009712*x^5 + 697009168*x^4 + 381714028800*x^3 + 14003671653904*x^2 + 177772297473568*x + 1128382274666528)*(x^2 + 2800)^2*(x -22)^3;
301
T[16,17]=(x^5 + 2*x^4 -11912*x^3 + 63216*x^2 + 32655888*x -556317664)^2*(x -50)^3*(x + 14)^4;
302
T[16,19]=(x + 44)*(x^10 + 26*x^9 + 338*x^8 -518240*x^7 + 171199496*x^6 -859995248*x^5 + 54061042704*x^4 -29494616138112*x^3 + 3781733909606416*x^2 -121686632109503328*x + 1957784020253121312)*(x -44)^2*(x^2 + 1372)^2;
303
T[16,23]=(x -56)*(x^10 + 45284*x^8 + 659906016*x^6 + 3356415204224*x^4 + 5853829992751360*x^2 + 2515997041083638784)*(x + 56)^2*(x + 152)^4;
304
T[16,29]=(x^10 + 202*x^9 + 20402*x^8 -6104512*x^7 + 805743752*x^6 -5081279536*x^5 + 1167330884496*x^4 -308671955027712*x^3 + 39119271732533776*x^2 -749235198907452768*x + 7174895625869198112)*(x^2 + 25200)^2*(x -198)^3;
305
T[16,31]=(x -160)*(x + 160)^2*(x^5 -184*x^4 -14912*x^3 + 2117120*x^2 + 96370688*x + 678952960)^2*(x -224)^4;
306
T[16,37]=(x^10 + 10*x^9 + 50*x^8 + 1466432*x^7 + 3533346568*x^6 + 113532054224*x^5 + 2033864619152*x^4 + 781155377762560*x^3 + 768345771890009104*x^2 + 32597513787698387616*x + 691484188508881657632)*(x^2 + 59248)^2*(x + 162)^3;
307
T[16,41]=(x^10 + 248192*x^8 + 20256591872*x^6 + 717520447209472*x^4 + 11078490196063289344*x^2 + 58457884687352620646400)*(x + 198)^3*(x + 70)^4;
308
T[16,43]=(x + 52)*(x^10 + 838*x^9 + 351122*x^8 + 65506784*x^7 + 7618050760*x^6 + 980593787632*x^5 + 292441750094224*x^4 + 53245925430785920*x^3 + 5527320337404144400*x^2 + 244960046971056772960*x + 5428075536530540678432)*(x -52)^2*(x^2 + 192892)^2;
309
T[16,47]=(x + 528)*(x -528)^2*(x^5 + 472*x^4 -56896*x^3 -24501760*x^2 + 34766848*x + 154359955456)^2*(x -336)^4;
310
T[16,53]=(x^10 + 378*x^9 + 71442*x^8 -109029056*x^7 + 157841071368*x^6 + 17679454284880*x^5 + 1350019425137552*x^4 -723927781227277056*x^3 + 423327820385245240336*x^2 + 23160738099080854505888*x + 633574931132629058776352)*(x^2 + 1008)^2*(x + 242)^3;
311
T[16,59]=(x -668)*(x^10 -1706*x^9 + 1455218*x^8 -638938784*x^7 + 196471556680*x^6 -86422664782480*x^5 + 65649505199853968*x^4 -28360317550212729472*x^3 + 6734120632813889472784*x^2 -505204797539837414719392*x + 18950647112971160088706848)*(x + 668)^2*(x^2 + 285628)^2;
312
T[16,61]=(x^10 -910*x^9 + 414050*x^8 + 252493120*x^7 + 84699231112*x^6 -6220933337840*x^5 + 2467720519178000*x^4 + 1439598946129982720*x^3 + 419191471593829393936*x^2 + 284043552892632210720*x + 96233756418169927200)*(x^2 + 9072)^2*(x -550)^3;
313
T[16,67]=(x + 188)*(x^10 -1942*x^9 + 1885682*x^8 -946883552*x^7 + 279012575112*x^6 -42102307991536*x^5 + 3927921981284880*x^4 -481113229077495680*x^3 + 151802546431036300816*x^2 -21555616974221911467616*x + 1530424337612976871762208)*(x -188)^2*(x^2 + 30492)^2;
314
T[16,71]=(x + 728)*(x^10 + 1078692*x^8 + 396610003424*x^6 + 64222301440447360*x^4 + 4550304717312899080448*x^2 + 107586737247866277669446656)*(x -728)^2*(x + 72)^4;
315
T[16,73]=(x^10 + 755888*x^8 + 169546275584*x^6 + 15235670414888960*x^4 + 530927871865054035968*x^2 + 4274086953481210874036224)*(x -154)^3*(x + 294)^4;
316
T[16,79]=(x -656)*(x + 656)^2*(x^5 + 2208*x^4 + 1350912*x^3 -33652736*x^2 -183347445760*x -10448447471616)^2*(x + 464)^4;
317
T[16,83]=(x + 236)*(x^10 + 2562*x^9 + 3281922*x^8 + 1426542624*x^7 + 179373287752*x^6 -21397913819056*x^5 + 374001334554361872*x^4 + 104542516635194882176*x^3 + 7795754246940374828304*x^2 -15843886076057777581043424*x + 16100348859099784083392471072)*(x -236)^2*(x^2 + 297052)^2;
318
T[16,89]=(x^10 + 3406512*x^8 + 3353163782912*x^6 + 1101931785064321024*x^4 + 61204888317079786618880*x^2 + 1368303035475100482666496)*(x -714)^3*(x -266)^4;
319
T[16,97]=(x^5 + 2*x^4 -1997576*x^3 -730301968*x^2 + 370826423312*x + 65755091474464)^2*(x + 478)^3*(x -994)^4;
320
321
T[17,2]=(x + 3)*(x^3 -x^2 -24*x + 32)*(x^8 + 50*x^6 + 673*x^4 + 2160*x^2 + 256)*(x^12 + 4*x^11 + 8*x^10 -20*x^9 + 322*x^8 + 924*x^7 + 1320*x^6 -468*x^5 + 18817*x^4 + 54040*x^3 + 76832*x^2 + 21952*x + 3136)*(x^2 + x -8)^2;
322
T[17,3]=(x + 8)*(x^3 -4*x^2 -62*x + 204)*(x^4 + 74*x^2 + 1072)*(x^8 -180*x^5 + 3008*x^4 -10080*x^3 + 16200*x^2 + 11520*x + 4096)*(x^12 + 4*x^11 + 40*x^10 + 432*x^9 + 1952*x^8 + 480*x^7 -30600*x^6 -131424*x^5 + 383140*x^4 + 3668752*x^3 + 13347280*x^2 + 25158912*x + 20428832);
323
T[17,5]=(x -6)*(x^3 + 8*x^2 -44*x + 32)*(x^4 + 480*x^2 + 38592)*(x^8 -14*x^7 + 98*x^6 + 8*x^5 + 32564*x^4 -419512*x^3 + 2681928*x^2 -5799264*x + 6270016)*(x^12 + 20*x^11 + 432*x^10 + 2312*x^9 + 6752*x^8 + 95240*x^7 + 416800*x^6 -3436000*x^5 + 9372484*x^4 -102122720*x^3 + 581033824*x^2 -1268830592*x + 1004236928);
324
T[17,7]=(x + 28)*(x^3 -22*x^2 -138*x + 792)*(x^4 + 530*x^2 + 68608)*(x^8 -2*x^7 + 2*x^6 -9540*x^5 + 842756*x^4 -10216080*x^3 + 64252448*x^2 -206043136*x + 330366976)*(x^12 + 4*x^11 -514*x^10 -3372*x^9 + 126898*x^8 + 1979928*x^7 + 61504232*x^6 + 697080160*x^5 + 13869161232*x^4 + 119371381504*x^3 + 322489811840*x^2 + 28986245632*x + 3993906708992);
325
T[17,11]=(x + 24)*(x^3 + 28*x^2 -1366*x -4692)*(x^4 + 3626*x^2 + 2573872)*(x^8 + 108*x^7 + 5832*x^6 + 142236*x^5 + 1604064*x^4 -4405536*x^3 + 284840712*x^2 + 4807588032*x + 40571627776)*(x^12 -40*x^11 + 4148*x^10 -194168*x^9 + 10372872*x^8 -309386472*x^7 -5794385984*x^6 + 418973180704*x^5 + 1121390283204*x^4 -270652758582192*x^3 + 3865101018139440*x^2 -12833012173219776*x + 44422693146401312);
326
T[17,13]=(x + 58)*(x^3 -30*x^2 -1472*x -9392)*(x^12 + 11916*x^10 + 50891764*x^8 + 92380754528*x^6 + 64749862328128*x^4 + 13757633202189312*x^2 + 345463096566943744)*(x^2 -70*x -392)^2*(x^4 + 44*x^3 -2336*x^2 -104360*x -468640)^2;
327
T[17,17]=(x -17)*(x^4 -112*x^3 + 6494*x^2 -550256*x + 24137569)*(x^8 + 10*x^7 -2720*x^6 -2890*x^5 + 45425598*x^4 -14198570*x^3 -65654187680*x^2 + 1185878764970*x + 582622237229761)*(x^12 -52*x^11 -1224*x^10 + 491300*x^9 -28461009*x^8 -1278873552*x^7 + 118745480624*x^6 -6283105760976*x^5 -686979568547121*x^4 + 58262223722976100*x^3 -713129618369227464*x^2 -148845998678510421236*x + 14063084452067724991009)*(x + 17)^3;
328
T[17,19]=(x -116)*(x^3 -80*x^2 -4632*x + 340128)*(x^8 + 5324*x^6 + 10067856*x^4 + 8026514944*x^2 + 2286918209536)*(x^12 + 12*x^11 + 72*x^10 + 1273912*x^9 + 417472996*x^8 + 32076156992*x^7 + 1166281720064*x^6 -20071374470656*x^5 + 429435620430208*x^4 + 45020367141083136*x^3 + 2488960078923548672*x^2 -82811588202619574272*x + 1377635422663379239936)*(x + 28)^4;
329
T[17,23]=(x + 60)*(x^3 -142*x^2 -15770*x + 1600544)*(x^4 + 28322*x^2 + 10295488)*(x^8 + 22*x^7 + 242*x^6 + 37476*x^5 + 42074244*x^4 + 1303275680*x^3 + 19192323200*x^2 -959475097600*x + 23983351398400)*(x^12 + 276*x^11 + 17214*x^10 + 317348*x^9 + 375151026*x^8 -22576270776*x^7 + 1323536628264*x^6 -351448367301120*x^5 + 19817619826386960*x^4 + 2314409091454867712*x^3 + 67528496942304769536*x^2 + 843549523061425311744*x + 7808689952640054468608);
330
T[17,29]=(x -30)*(x^3 + 456*x^2 + 53908*x + 1518624)*(x^4 + 23520*x^2 + 92659392)*(x^8 -46*x^7 + 1058*x^6 + 771000*x^5 + 2307343796*x^4 -96000100600*x^3 + 2272055391432*x^2 + 1784778960262368*x + 701003142134564416)*(x^12 -632*x^11 + 193012*x^10 -53679624*x^9 + 15343596296*x^8 -3040065085632*x^7 + 345805435622280*x^6 -22490717885494704*x^5 + 1213088710893758212*x^4 -72304015821346530560*x^3 + 2971286036343634678816*x^2 -49224514266504790261632*x + 734271994271489086955648);
331
T[17,31]=(x + 172)*(x^3 -230*x^2 -11586*x -81608)*(x^4 + 4274*x^2 + 4390912)*(x^8 -610*x^7 + 186050*x^6 -27198060*x^5 + 4476648068*x^4 -1522788445360*x^3 + 465887812500000*x^2 -67870841042400000*x + 4943734242675352576)*(x^12 -188*x^11 + 22934*x^10 -8544420*x^9 + 1371055426*x^8 -67151959416*x^7 + 16582678309752*x^6 -2179509548247808*x^5 -20635161439976816*x^4 + 338848975561291776*x^3 + 1208877994082889044352*x^2 + 86971472331948301211136*x + 1869595734266493342884352);
332
T[17,37]=(x + 58)*(x^3 -356*x^2 -17964*x + 6176752)*(x^4 + 86240*x^2 + 1245754048)*(x^8 + 574*x^7 + 164738*x^6 + 7215168*x^5 + 398144484*x^4 + 408307212920*x^3 + 194808138845000*x^2 -768631294384000*x + 1516348521702400)*(x^12 -940*x^11 + 400776*x^10 -126113272*x^9 + 39918743168*x^8 -10395442884984*x^7 + 2113512439672032*x^6 -381828885075054240*x^5 + 62657141793626151620*x^4 -8214948749860750923744*x^3 + 783657910879737465891904*x^2 -49629768849489548360425472*x + 1612673216572339734018810368);
333
T[17,41]=(x + 342)*(x^3 + 294*x^2 -86564*x -1638744)*(x^4 + 116960*x^2 + 2799480832)*(x^8 + 968*x^7 + 468512*x^6 + 131713296*x^5 + 23468168264*x^4 + 2583742588064*x^3 + 180140547134592*x^2 + 7277805307789632*x + 147014236774014736)*(x^12 -176*x^11 -88034*x^10 -13519684*x^9 + 9221276290*x^8 + 4664499204240*x^7 + 853503607822224*x^6 + 73912060759589216*x^5 + 4156395088600030756*x^4 + 157959256112847853856*x^3 + 4354065083413410519448*x^2 + 123828460554041551120880*x + 3642771228397758416753672);
334
T[17,43]=(x + 148)*(x^3 -556*x^2 + 51096*x + 7270272)*(x^8 + 111120*x^6 + 3564126208*x^4 + 42678881268800*x^2 + 164561801037054976)*(x^12 + 1360*x^11 + 924800*x^10 + 336958624*x^9 + 71879841752*x^8 + 7459124184544*x^7 + 440488382716928*x^6 + 60208818923917824*x^5 + 20547690387000454800*x^4 + 1918468400697633077888*x^3 + 51525289256671083667968*x^2 -8203115123018666169048576*x + 652990974842370552446914816)*(x^2 + 260*x -30752)^2;
335
T[17,47]=(x -288)*(x^3 -640*x^2 + 85328*x -1671168)*(x^12 + 665464*x^10 + 162254903504*x^8 + 17965228626884864*x^6 + 939437952536689046528*x^4 + 22171351070236785709711360*x^2 + 181500953621286341276294447104)*(x^2 -476*x + 50176)^2*(x^4 + 184*x^3 -111664*x^2 -11685376*x + 1730640896)^2;
336
T[17,53]=(x -318)*(x^3 -302*x^2 -153460*x + 18162072)*(x^8 + 761540*x^6 + 191945417728*x^4 + 16018102758666240*x^2 + 507988409115099136)*(x^12 + 360*x^11 + 64800*x^10 + 81654144*x^9 + 206319845144*x^8 + 108381210798592*x^7 + 28981409538348288*x^6 + 1517131710564140928*x^5 -246280962425274567536*x^4 -34501284527135574268544*x^3 + 21222134174313935307940352*x^2 -2013216958824275838030864896*x + 95490926831553967914930229504)*(x^2 + 288*x -49092)^2;
337
T[17,59]=(x -252)*(x^3 -636*x^2 -101768*x + 49419072)*(x^8 + 839904*x^6 + 160211448256*x^4 + 2650881162954304*x^2 + 483132069292696576)*(x^12 + 584*x^11 + 170528*x^10 -295491392*x^9 + 141167929112*x^8 -1425179865824*x^7 + 18752191715796480*x^6 -23711262267949241856*x^5 + 12272352862336150863760*x^4 -3121309118054900386483200*x^3 + 444657077775661419235123200*x^2 -25269323845203556179334318080*x + 718012553390557827188738846976)*(x^2 + 588*x -75264)^2;
338
T[17,61]=(x -110)*(x^3 + 84*x^2 -124412*x -6792784)*(x^4 + 482528*x^2 + 7146728128)*(x^8 -1258*x^7 + 791282*x^6 -179697200*x^5 + 4527334436*x^4 + 8020985354200*x^3 + 2472744021149448*x^2 + 106596556531644096*x + 2297614667595479296)*(x^12 + 1052*x^11 + 1006376*x^10 + 577313880*x^9 + 306168619648*x^8 + 193369051287400*x^7 + 72415694871592960*x^6 -12555597941901487872*x^5 + 15874192285405656212356*x^4 -2365762385379359897282496*x^3 + 115635916506446954065655168*x^2 -929453141326428178688046080*x + 2361627026510825199279736832);
339
T[17,67]=(x + 484)*(x^3 -1008*x^2 + 65040*x -765952)*(x^2 + 120*x -30192)^2*(x^4 -382*x^3 -684208*x^2 + 472537984*x -80371889536)^2*(x^6 -540*x^5 -567382*x^4 + 374543152*x^3 + 13145473040*x^2 -40737978159616*x + 6105561983092736)^2;
340
T[17,71]=(x + 708)*(x^3 + 402*x^2 -589874*x -274866016)*(x^4 + 52626*x^2 + 92659392)*(x^8 -1266*x^7 + 801378*x^6 + 46447612*x^5 + 77660518724*x^4 -72504817694208*x^3 + 30634358357116928*x^2 -2938234365955690496*x + 140907491657604468736)*(x^12 -28*x^11 -195882*x^10 -100911156*x^9 + 22164116482*x^8 + 42188987838968*x^7 + 16206849696868664*x^6 + 2518120754035689952*x^5 + 887779457524342658704*x^4 + 139937733765342693420160*x^3 + 17632884223285970662016256*x^2 + 1189736133817586776824057856*x + 32399486809358208712114178048);
341
T[17,73]=(x -362)*(x^3 -838*x^2 + 227852*x -19957512)*(x^4 + 1611264*x^2 + 647466319872)*(x^8 + 1732*x^7 + 1499912*x^6 + 362839144*x^5 -13431060696*x^4 -12344887348464*x^3 + 64590186432445472*x^2 -2414375521948212832*x + 45124572964961508496)*(x^12 -824*x^11 + 588222*x^10 -309731468*x^9 + 144084771746*x^8 -67917404523952*x^7 + 26461140269383248*x^6 + 6641807692121834208*x^5 + 5786689590798380311268*x^4 + 1162014493122700765325568*x^3 + 43465326518812678353705496*x^2 -5082730379961055542985677616*x + 99632275134069147727955435528);
342
T[17,79]=(x + 484)*(x^3 + 594*x^2 -1121274*x -742135824)*(x^4 + 689234*x^2 + 70925616832)*(x^8 -914*x^7 + 417698*x^6 + 810740260*x^5 + 530908122756*x^4 + 106280667127680*x^3 + 9750093778798592*x^2 -572759452137177088*x + 16823088959709577216)*(x^12 + 196*x^11 + 788046*x^10 + 315857092*x^9 + 342511611218*x^8 + 88096666591176*x^7 -23682234587611512*x^6 -8729307734726191488*x^5 + 1566728866434197075344*x^4 -43867490615823336845696*x^3 + 110706531687476840748482304*x^2 -18946381418293535905511659520*x + 930477143491955682050198669312);
343
T[17,83]=(x -756)*(x^3 + 2396*x^2 + 1488888*x + 142080704)*(x^8 + 2153216*x^6 + 1211430736576*x^4 + 238696782637906496*x^2 + 12453630555401828033536)*(x^12 + 1008*x^11 + 508032*x^10 + 32204848*x^9 + 135828787352*x^8 + 126046097512192*x^7 + 58567671913629824*x^6 + 7952426750517646016*x^5 -7594400085481201264*x^4 -162057127935872908600576*x^3 + 85244803004800876287393792*x^2 -1619355516700994811840417792*x + 15381068387959443545060720896)*(x^2 + 1428*x + 451584)^2;
344
T[17,89]=(x + 774)*(x^3 + 170*x^2 -1072304*x -446571376)*(x^12 + 2740280*x^10 + 2698184775320*x^8 + 1165901104701602080*x^6 + 214045429212223013563664*x^4 + 12488711890736446129066658048*x^2 + 223143058171320245886508901549056)*(x^2 -994*x + 232456)^2*(x^4 + 1078*x^3 + 142516*x^2 -124715200*x -22878545920)^2;
345
T[17,97]=(x + 382)*(x^3 + 270*x^2 -586100*x -206623000)*(x^4 + 275552*x^2 + 16878665728)*(x^8 -1836*x^7 + 1685448*x^6 + 627620328*x^5 + 871718167464*x^4 -913166164684080*x^3 + 404291074503520800*x^2 -80994854564164764000*x + 8113172513054170810000)*(x^12 + 904*x^11 + 307166*x^10 + 2511791524*x^9 + 2233774541282*x^8 -1543639933742064*x^7 + 387625952741968784*x^6 + 1329239685033046086304*x^5 -1103761849044734552443676*x^4 -423142654115187422452376320*x^3 + 817971924519130604445248480536*x^2 + 27662421797822789142882309428240*x + 1655569947960983921927334575161352);
346
347
T[18,2]=(x -2)*(x^2 + 8)*(x^2 + 2*x + 4)*(x^8 + 3*x^7 -x^6 -18*x^5 -36*x^4 -144*x^3 -64*x^2 + 1536*x + 4096)*(x + 2)^2*(x^2 -2*x + 4)^2;
348
T[18,3]=(x + 3)*(x^2 + 27)*(x^4 -3*x^3 + 30*x^2 -81*x + 729)*(x^4 + 3*x^3 -18*x^2 + 81*x + 729)^2*(x )^4;
349
T[18,5]=(x + 6)*(x^2 -9*x + 81)*(x^4 -9*x^3 + 297*x^2 + 1944*x + 46656)*(x -6)^2*(x^4 + 15*x^3 + 177*x^2 + 720*x + 2304)^2*(x )^2;
350
T[18,7]=(x^2 -31*x + 961)*(x^4 + 19*x^3 + 507*x^2 -2774*x + 21316)*(x -20)^2*(x^4 + 7*x^3 + 111*x^2 -434*x + 3844)^2*(x + 16)^3;
351
T[18,11]=(x + 12)*(x^2 -15*x + 225)*(x^4 -24*x^3 + 1377*x^2 + 19224*x + 641601)*(x -12)^2*(x^4 + 66*x^3 + 3795*x^2 + 37026*x + 314721)^2*(x )^2;
352
T[18,13]=(x^2 -37*x + 1369)*(x^4 + 61*x^3 + 3027*x^2 + 42334*x + 481636)*(x + 70)^2*(x^4 -11*x^3 + 1947*x^2 + 20086*x + 3334276)^2*(x -38)^3;
353
T[18,17]=(x -126)*(x + 42)^2*(x + 126)^2*(x^2 -3*x -234)^2*(x )^2*(x^2 -99*x + 1782)^4;
354
T[18,19]=(x -56)^2*(x + 28)^2*(x^2 -133*x -1484)^2*(x -20)^3*(x^2 + 77*x -4532)^4;
355
T[18,23]=(x + 168)*(x^2 + 195*x + 38025)*(x^4 + 69*x^3 + 3807*x^2 + 65826*x + 910116)*(x -168)^2*(x^4 + 33*x^3 + 3795*x^2 -89298*x + 7322436)^2*(x )^2;
356
T[18,29]=(x + 30)*(x^2 + 111*x + 12321)*(x^4 + 237*x^3 + 53703*x^2 + 584442*x + 6081156)*(x -30)^2*(x^4 -51*x^3 + 1959*x^2 -32742*x + 412164)^2*(x )^2;
357
T[18,31]=(x^2 -205*x + 42025)*(x^4 + 211*x^3 + 35517*x^2 + 1899844*x + 81072016)*(x -308)^2*(x^4 + 43*x^3 + 1461*x^2 + 16684*x + 150544)^2*(x + 88)^3;
358
T[18,37]=(x -110)^2*(x + 166)^2*(x^2 -262*x -29144)^2*(x -254)^3*(x^2 + 50*x -23432)^4;
359
T[18,41]=(x + 42)*(x^2 -261*x + 68121)*(x^4 + 468*x^3 + 165213*x^2 + 25183548*x + 2895623721)*(x -42)^2*(x^4 + 132*x^3 + 92301*x^2 -9883764*x + 5606565129)^2*(x )^2;
360
T[18,43]=(x^2 -43*x + 1849)*(x^4 -86*x^3 + 141627*x^2 + 11543866*x + 18017961361)*(x + 520)^2*(x^4 + 88*x^3 + 6105*x^2 + 144232*x + 2686321)^2*(x + 52)^3;
361
T[18,47]=(x -96)*(x^2 + 177*x + 31329)*(x^4 + 483*x^3 + 228123*x^2 + 2495178*x + 26687556)*(x + 96)^2*(x^4 + 399*x^3 + 187719*x^2 -11378682*x + 813276324)^2*(x )^2;
362
T[18,53]=(x + 198)*(x -198)^2*(x -114)^2*(x^2 -150*x -40680)^2*(x )^2*(x^2 -54*x -215784)^4;
363
T[18,59]=(x -660)*(x^2 + 159*x + 25281)*(x^4 + 168*x^3 + 22113*x^2 + 1026648*x + 37344321)*(x + 660)^2*(x^4 + 798*x^3 + 630195*x^2 + 5273982*x + 43678881)^2*(x )^2;
364
T[18,61]=(x^2 + 191*x + 36481)*(x^4 -1049*x^3 + 878457*x^2 -232819256*x + 49259139136)*(x -182)^2*(x^4 + 439*x^3 + 235497*x^2 -18778664*x + 1829786176)^2*(x + 538)^3;
365
T[18,67]=(x^2 -421*x + 177241)*(x^4 -1166*x^3 + 1053687*x^2 -356643254*x + 93555845161)*(x + 880)^2*(x^4 + 988*x^3 + 768045*x^2 + 205601812*x + 43305193801)^2*(x -884)^3;
366
T[18,71]=(x + 792)*(x -792)^2*(x -156)^2*(x^2 + 312*x -217584)^2*(x )^2*(x^2 -1368*x + 296784)^4;
367
T[18,73]=(x -1190)^2*(x -182)^2*(x^2 + 311*x -80006)^2*(x -218)^3*(x^2 + 455*x -435398)^4;
368
T[18,79]=(x^2 + 1133*x + 1283689)*(x^4 + 349*x^3 + 131277*x^2 -3307124*x + 89794576)*(x -884)^2*(x^4 -803*x^3 + 1271325*x^2 + 503092348*x + 392522298256)^2*(x + 520)^3;
369
T[18,83]=(x -492)*(x^2 -1083*x + 1172889)*(x^4 + 1221*x^3 + 1222317*x^2 + 327867804*x + 72105138576)*(x + 492)^2*(x^4 + 813*x^3 + 590181*x^2 + 57550644*x + 5010940944)^2*(x )^2;
370
T[18,89]=(x + 810)*(x -810)^2*(x + 1050)^2*(x^2 + 492*x -317484)^2*(x )^2*(x^2 + 396*x -3564)^4;
371
T[18,97]=(x^2 -901*x + 811801)*(x^4 -128*x^3 + 126633*x^2 + 14111872*x + 12154842001)*(x + 1330)^2*(x^4 + 736*x^3 + 492105*x^2 + 36498976*x + 2459267281)^2*(x -1154)^3;
372
373
T[19,2]=(x + 3)*(x^3 -3*x^2 -18*x + 38)*(x^4 + x^3 + 19*x^2 -18*x + 324)*(x^24 + 6*x^23 + 30*x^22 + 165*x^21 + 324*x^20 + 507*x^19 + 8640*x^18 -198*x^17 + 150159*x^16 + 380815*x^15 -457500*x^14 -4236807*x^13 + 8804667*x^12 + 22819878*x^11 + 65014764*x^10 + 394561656*x^9 + 839721312*x^8 -574880448*x^7 -565641152*x^6 + 5700475392*x^5 + 8881634304*x^4 -5766379008*x^3 + 7209556992*x^2 -10998982656*x + 4804153344)*(x^2 + x + 1)^2;
374
T[19,3]=(x + 5)*(x^3 -x^2 -64*x + 172)*(x^4 + 55*x^2 + 3025)*(x^24 + 3*x^23 + 30*x^22 + 695*x^21 + 18*x^20 -9081*x^19 + 388129*x^18 -242295*x^17 + 7131630*x^16 -20485355*x^15 + 90358989*x^14 -2221020588*x^13 + 10465327913*x^12 -31015952907*x^11 + 117617122956*x^10 + 578193065176*x^9 -3478411995357*x^8 -2569670761899*x^7 + 50917687598290*x^6 -168259866994557*x^5 + 404403277836096*x^4 -775756432989934*x^3 + 1012721051442633*x^2 -606918910587294*x + 169955990138089)*(x^2 + x + 1)^2;
375
T[19,5]=(x + 12)*(x^3 -14*x^2 -71*x -72)*(x^4 -14*x^3 + 202*x^2 + 84*x + 36)*(x^4 + 19*x^3 + 289*x^2 + 1368*x + 5184)*(x^24 + 6*x^23 + 267*x^22 + 2093*x^21 -4044*x^20 + 486783*x^19 + 5648619*x^18 -44467002*x^17 + 2102031828*x^16 -2971122814*x^15 -127145471721*x^14 -831897145536*x^13 + 29569702371214*x^12 -134226237608475*x^11 -172734153800175*x^10 + 858296134891230*x^9 + 45658926630631971*x^8 -712789222947213249*x^7 + 4480493659337997297*x^6 + 8138111200207920792*x^5 -131882787017382214152*x^4 -29182124077025175576*x^3 + 1644626487918564461376*x^2 + 309884254875440662464*x + 478330796301165804096);
376
T[19,7]=(x -11)*(x^3 + 35*x^2 + 147*x -2319)*(x^24 -3*x^23 + 2382*x^22 -5247*x^21 + 3562701*x^20 -7351698*x^19 + 3316543915*x^18 -6983219805*x^17 + 2262518786871*x^16 -5515722412092*x^15 + 1069684252672458*x^14 -3285815678642670*x^13 + 373758879378072841*x^12 -1395951100764274431*x^11 + 85534750207264090359*x^10 -398361902786860817034*x^9 + 13984789465563920318745*x^8 -53711238677968473470613*x^7 + 1226513713644502065121875*x^6 -2848298329276258829019678*x^5 + 70498158600854851381065636*x^4 -100145532378857085297289152*x^3 + 1785721938925724301372815952*x^2 + 3313736502875312010772993344*x + 16134509483003622399505091136)*(x^2 -20*x -192)^2*(x^2 + 14*x -6)^2;
377
T[19,11]=(x + 54)*(x^3 -16*x^2 -51*x + 1182)*(x^24 -39*x^23 + 7005*x^22 -125570*x^21 + 26260698*x^20 -347570997*x^19 + 61325854864*x^18 -332153753139*x^17 + 93353458922004*x^16 -446900540073861*x^15 + 89823898326431295*x^14 -225557997733634670*x^13 + 58667940996494726832*x^12 -143713709679339137169*x^11 + 23418487195785937679319*x^10 + 17385584771417611332537*x^9 + 5590117505213198364506769*x^8 + 3829912845902272569706659*x^7 + 743046169516211262659752539*x^6 + 3430864712530713637511322489*x^5 + 35615185964687588463227989701*x^4 + 48548617137372708765460973556*x^3 + 357816591607035468634573857651*x^2 + 171652527082726428378446454942*x + 3215330467906224678337698084081)*(x^2 -28*x -2499)^2*(x^2 + 33*x + 108)^2;
378
T[19,13]=(x -11)*(x^3 -65*x^2 + 744*x + 4848)*(x^4 + 101*x^3 + 8107*x^2 + 211494*x + 4384836)*(x^4 -28*x^3 + 4108*x^2 + 93072*x + 11048976)*(x^24 + 156*x^23 + 12324*x^22 + 965821*x^21 + 51688353*x^20 -578165226*x^19 -152939743491*x^18 -4806540257211*x^17 + 142580934912879*x^16 + 13865284887747016*x^15 + 505348655649770946*x^14 + 8421232238726272050*x^13 -16060421328751285247*x^12 -4963975423508556048300*x^11 -91583830594812574941549*x^10 -19341405295889354307267*x^9 + 50854636830342282711068952*x^8 + 1850090418816896655145857321*x^7 + 40621306003758825067001441229*x^6 + 545593426724301973859125980180*x^5 + 4602513244682415428247184308432*x^4 + 23510699346099303626532172810848*x^3 + 24040938056356578459733611189120*x^2 -841858477798846821502357391718816*x + 8011662521694383616937078521854016);
379
T[19,17]=(x + 93)*(x^3 -29*x^2 -9225*x -218619)*(x^4 -75*x^3 + 12267*x^2 + 498150*x + 44116164)*(x^4 -112*x^3 + 12928*x^2 + 43008*x + 147456)*(x^24 -12*x^23 -4332*x^22 + 693158*x^21 -25452891*x^20 -5212948098*x^19 + 917826015307*x^18 -32748486132210*x^17 + 447376311645237*x^16 -160119253810296210*x^15 + 12989618529993973224*x^14 -309049284687214708881*x^13 + 52263954609683192694918*x^12 -2188002451202892757302741*x^11 + 12950711220820176184140432*x^10 -385730272651329444659990346*x^9 + 59446925778027513391940399922*x^8 -1754940432865288204386492411654*x^7 + 47486579392015670785452682325535*x^6 -459813645547466685584896384934796*x^5 -32635041006918500649143999594208*x^4 + 95561742877062104399722741706030226*x^3 + 513826793341648401344363969619766140*x^2 + 30649856842866881804089434780321981*x + 12975657568313043692612937210459489);
380
T[19,19]=(x -19)*(x^4 + 196*x^3 + 18867*x^2 + 1344364*x + 47045881)*(x^4 -57*x^3 + 7942*x^2 -390963*x + 47045881)*(x^24 -546*x^23 + 142593*x^22 -25505699*x^21 + 3759349443*x^20 -487167820989*x^19 + 55923998253907*x^18 -5881724663430285*x^17 + 589944992010578676*x^16 -56489384620375215160*x^15 + 5156309905277553853224*x^14 -455681260910145844992903*x^13 + 38738642652306424172460248*x^12 -3125517768582690350806321677*x^11 + 242583142202809070549867770344*x^10 -18228429472101328075132179129640*x^9 + 1305734052245380940030479139782836*x^8 -89291209270282750201428425823085215*x^7 + 5823217756244350807751866622197059787*x^6 -347939883746593204295241646266581678391*x^5 + 18416161695896706938990077185075841548003*x^4 -857007170962804213324250926316138416032161*x^3 + 32862926445814757298984338900650246105928793*x^2 -863100710557646641078443787308491866852852614*x + 10842505080063916320800450434338728415281531281)*(x + 19)^3;
381
T[19,23]=(x -183)*(x^3 + 101*x^2 -4624*x -378176)*(x^4 + 114*x^3 + 12442*x^2 + 63156*x + 306916)*(x^4 + x^3 + 5275*x^2 -5274*x + 27815076)*(x^24 -6*x^23 + 18837*x^22 -2625833*x^21 + 365319264*x^20 + 63584664705*x^19 + 28928218498613*x^18 -3111182502553668*x^17 -184488408404642952*x^16 + 44273008039114588648*x^15 + 400425398226361666848*x^14 -204294670325247465912960*x^13 + 9994416679301231695340672*x^12 -305260896146092994589086208*x^11 -15224184256635109054579818240*x^10 + 4675004233068946061872074666496*x^9 + 293152013185865352134103794657280*x^8 + 7984313625067646792366325234032640*x^7 + 201297476887657080907613993037905920*x^6 + 2620192522737742726016865991271964672*x^5 + 32376837884850011122137968866858450944*x^4 + 192281119243221176946085518101982216192*x^3 + 494247149327547884795499404555699552256*x^2 + 433363794029359815471177485292150325248*x + 169972847702222744444889027138510127104);
382
T[19,29]=(x + 249)*(x^3 -377*x^2 + 8768*x + 4544396)*(x^4 + 222*x^3 + 39658*x^2 + 2136972*x + 92659876)*(x^4 -85*x^3 + 36097*x^2 + 2454120*x + 833592384)*(x^24 + 630*x^23 + 150408*x^22 + 20629187*x^21 + 3682119651*x^20 + 479764011756*x^19 + 38201931331232*x^18 + 4715010770926239*x^17 + 1958882325844537941*x^16 + 113982452498220038339*x^15 + 4641640642000514537769*x^14 + 599845776294242504533230*x^13 -77356932135691591675701148*x^12 -3981018712653684815165466627*x^11 + 1238597890621543173138193796484*x^10 + 95683685422845928916313377452697*x^9 + 18893393915661518721593109725507544*x^8 + 1449771818799892652756623498779798045*x^7 + 59182412865899951471019944070866842651*x^6 + 3795141934679474315710329712774955589018*x^5 + 101735400637445373144174202456562400676752*x^4 -5311680448326907558663606598085985289969520*x^3 + 98965512546749133881299335324725032471016592*x^2 -314513805621779122815732020965222629326803488*x + 436990174148122322840311622828026918672904256);
383
T[19,31]=(x -56)*(x^3 + 140*x^2 -37616*x -2444352)*(x^24 + 591*x^23 + 352137*x^22 + 129754920*x^21 + 50330748069*x^20 + 15237927613311*x^19 + 4561613339328459*x^18 + 1131387268961458386*x^17 + 270997464354440990898*x^16 + 56237270771033429701880*x^15 + 11159376640114800739912077*x^14 + 1931749065247838718122707359*x^13 + 313000820281584090059352012663*x^12 + 44073556834815666148430862593316*x^11 + 5812685461423819729775256653159295*x^10 + 671750655165231148560259194927570747*x^9 + 73924799890049821643806354202786856060*x^8 + 7078955538561161734716524555949612636789*x^7 + 647511590581006544330738589103727019033739*x^6 + 49696745754672032123133206467288953344669022*x^5 + 3711239714478245037422357455430045842687010652*x^4 + 221030227720820155160304068296829840709741444720*x^3 + 13374624209623200607552022899683564340829468313168*x^2 + 519773100879113417975159777286503039944730469120000*x + 19837866750599582145249482359985998314098643190461504)*(x^2 -266*x + 14994)^2*(x^2 -22*x -536)^2;
384
T[19,37]=(x + 250)*(x^3 + 290*x^2 -46772*x -10001448)*(x^2 -448*x + 26524)^2*(x^2 -182*x + 5586)^2*(x^12 + 36*x^11 -363930*x^10 -2267262*x^9 + 48318563001*x^8 -1191266293134*x^7 -2813667505810323*x^6 + 162789668571720444*x^5 + 64321349794511433672*x^4 -5752851532958403734408*x^3 -209521827418858202637024*x^2 + 16665853393316086757503200*x + 483712979947130155813907136)^2;
385
T[19,41]=(x -240)*(x^3 -956*x^2 + 302116*x -31578144)*(x^4 + 154*x^3 + 81367*x^2 -8878254*x + 3323637801)*(x^4 + 124*x^3 + 11605*x^2 + 467604*x + 14220441)*(x^24 + 477*x^23 -75894*x^22 -24508603*x^21 + 38290271256*x^20 + 15153173927541*x^19 + 1377880900650234*x^18 -90740929924759608*x^17 -32266260766976252211*x^16 -16477613240463047844757*x^15 -829907222829298999740243*x^14 + 1093202371491222971103890253*x^13 + 307166151192095064965434044832*x^12 + 36288040257132698740581343359873*x^11 + 10440803744959951390584328755246540*x^10 -69690090935699282829109741510252662*x^9 + 199589486163605849030534893450669873419*x^8 + 6397215034575441897553085658415097604855*x^7 + 3096765350959574558536408176110371480681368*x^6 + 185383656337780522319512549075376358551469489*x^5 + 18952036196209839754629271479147032858075165658*x^4 + 813595072552487039958447748370072404703507734680*x^3 + 18908284398933572285878979474725693846805640099939*x^2 + 104475661131826955504964203029909265078894775649137*x + 184421497340147752164923399772120883265479542057129);
386
T[19,43]=(x + 196)*(x^3 + 570*x^2 -92583*x -65963504)*(x^4 + 268*x^3 + 150888*x^2 -21189152*x + 6251116096)*(x^4 -311*x^3 + 80589*x^2 -5017052*x + 260241424)*(x^24 -588*x^23 + 380616*x^22 -79969312*x^21 -165627201*x^20 + 12392214945810*x^19 -1300714540877555*x^18 + 284533376699251098*x^17 + 148337807905374654672*x^16 -72467378135448110592928*x^15 + 26766007133640323563966638*x^14 + 2989693129832866604303200875*x^13 -1178777338368251286412230981167*x^12 + 83335046239254815439625275351249*x^11 + 9056970662174184520185729621971619*x^10 -4592332284169870183854796381315726900*x^9 + 1763526783813159420687892654116770270463*x^8 -275823409801930605526626250269524666007192*x^7 + 12425594085162912321640146350616145627482289*x^6 + 1194900429066217869199294334618898015177374739*x^5 -87226634494155800031979222851699802269373269357*x^4 + 1334877247917747339530108751692936875633785619103*x^3 -64715649753296719512396397143326453245682503797525*x^2 -16618519090272203253454322428221496790233140597173757*x + 9356069670568175545020582106462226055081660686512110841);
387
T[19,47]=(x + 168)*(x^3 -66*x^2 -31311*x + 2940624)*(x^4 + 126*x^3 + 24282*x^2 -1059156*x + 70660836)*(x^4 + 411*x^3 + 154449*x^2 + 5947992*x + 209438784)*(x^24 + 1242*x^23 + 935478*x^22 + 462041037*x^21 + 126839188665*x^20 + 1533738557844*x^19 -11074303377180747*x^18 -4285053896351169753*x^17 + 132697544622806080035*x^16 + 539792263452940456074588*x^15 + 170789801942844158196636216*x^14 + 3942908763813538734622721760*x^13 + 8208825470229660530459436601677*x^12 + 683907145890844418550234764804214*x^11 -507357752293395343554353197691281677*x^10 + 127275779452799570920783796475182218995*x^9 + 34133814094130981143912227195182491826832*x^8 -10637599342070518365315882219192912003730443*x^7 + 2777003802090580278158983482379925919500766699*x^6 -629642127509686752115083719081098911299895560130*x^5 + 71126634085266580896452309258854170278500013924820*x^4 -3038522141978254530724793241474502244053367801299488*x^3 + 45935349512742968975387341217424613686773477604091392*x^2 + 857435998994212143133489433043764521645110290779883424*x + 5914872252911800384120022514133445056431891495321086016);
388
T[19,53]=(x -435)*(x^3 -817*x^2 + 211080*x -16824816)*(x^4 -884*x^3 + 629212*x^2 -134583696*x + 23178235536)*(x^4 + 261*x^3 + 229959*x^2 -42239718*x + 26191538244)*(x^24 + 300*x^23 + 227760*x^22 + 254792425*x^21 + 121497941871*x^20 + 104185983056862*x^19 + 85795007822511925*x^18 + 28117857744735568323*x^17 + 21315797817110792523882*x^16 + 4382651134166035010338884*x^15 + 1805332946945514419516683986*x^14 + 189824820371100090559652876595*x^13 + 56023177457858776759893670341246*x^12 -23608035084258765848617352890320546*x^11 + 2116998820269129127478430163889671200*x^10 -187731325524202432847847052801541779050*x^9 + 32825635534800177514939202232890176207749*x^8 + 5228889784585533193993021799530319499418575*x^7 -1202026874575798454450557324560075796299357699*x^6 -4492956298581706750792817969255727797778898548*x^5 + 17497132670418400841797816753127775671584278654588*x^4 -941877489123839217577605984410312116914954897852072*x^3 -22383203970706056385609912974715874753598367330284768*x^2 + 3069735030397255987159621955494651366240554256013117280*x + 93625616880551589490165008187153182391664774397740080704);
389
T[19,59]=(x -195)*(x^3 -265*x^2 -157992*x + 31557612)*(x^4 + 112*x^3 + 18703*x^2 -689808*x + 37933281)*(x^4 + 204*x^3 + 221085*x^2 -36611676*x + 32209121961)*(x^24 -2097*x^23 + 3016551*x^22 -2954766986*x^21 + 2149581164769*x^20 -1152704388868755*x^19 + 437435200644745624*x^18 -94840786573173533430*x^17 -2026262281438131914472*x^16 + 8933880671403620963459109*x^15 -2637096174201074676427493253*x^14 + 78545467028951722956394131840*x^13 + 190251613729603949784137470825197*x^12 -68754992126182171863812825503878612*x^11 + 9889222480495610488513253292649009986*x^10 + 421799128577058302447245104141631891755*x^9 -419042415086935737202979438945812513112763*x^8 + 72422068778557788789416483344366385275111572*x^7 -2821837671657022478538369651004310024204114850*x^6 -2115198023428032274407294200159062340830176050379*x^5 + 767802576225873347200539304374237733048325858042553*x^4 -132249758376220201228321026216163019701288203423259131*x^3 + 11535241933623281459042429360999725953620732745703631346*x^2 -419313471897204112196387715947981803352044980874465994835*x + 6927798710903407817348679978669798946364384709472123026249);
390
T[19,61]=(x + 358)*(x^3 -988*x^2 + 45701*x + 76875874)*(x^4 + 531*x^3 + 212365*x^2 + 36955476*x + 4843603216)*(x^4 + 546*x^3 + 269842*x^2 + 15437604*x + 799419076)*(x^24 + 2316*x^23 + 3151971*x^22 + 3018957093*x^21 + 2129242612842*x^20 + 1125628902625683*x^19 + 450319693476904328*x^18 + 129811995910495160802*x^17 + 27906868099061398214019*x^16 + 6276438107546517229385385*x^15 + 2539217319518294040889736370*x^14 + 846975319342016666175318950217*x^13 + 275453086926990389791135331412264*x^12 + 65666228077912009474636520350798026*x^11 + 8566146685585031246932311366950958561*x^10 -198654620575457979639471451381641428283*x^9 + 302084092108966676612380121996320467507426*x^8 + 357789645975959513070601423972739965465352373*x^7 + 151025215580998109542152987698184271011783836075*x^6 + 38094570873458940067012513354695317926796281658982*x^5 + 6327689496779716374754772586516388898274301875294900*x^4 + 651664265082318825023468711411824693726656049029512256*x^3 + 35053513949585047595338846990864308440486966412368511648*x^2 + 572051863698054981523623478206640120730671882334953441248*x + 3113460554280366477711727277247393038201748760568611975744);
391
T[19,67]=(x + 961)*(x^3 + 207*x^2 -59928*x -7515248)*(x^4 + 556*x^3 + 710805*x^2 -223327964*x + 161337985561)*(x^4 -740*x^3 + 628995*x^2 + 60232300*x + 6625146025)*(x^24 -57*x^23 -639057*x^22 + 15749432*x^21 + 390972984972*x^20 -73034746093380*x^19 -102532811419801232*x^18 + 50929619423921690139*x^17 + 10028674822574128443876*x^16 -11908936678789753802805634*x^15 + 5518685597165855730048159804*x^14 + 849558893566236320893701633312*x^13 -834452317547942009877027824337623*x^12 + 331717196532272768141675222755092144*x^11 + 63076475418477492260665691278558793652*x^10 -29336682393883288101312810772059615733888*x^9 + 17412145299558885176078578878484239534773712*x^8 -612836020750057148531822605251742637413134336*x^7 -94977922486002768334840852736681973243699769856*x^6 + 113507539386034886798842825385687551955696121245184*x^5 + 2268196326935639197098867182217717219390463280352768*x^4 + 593963210243100295082018331963433672482702675874494464*x^3 + 627176557565792757496833707489088627592968225296700865536*x^2 -21563324968369716841483361513310091995936109384191271673856*x + 5854586057453015742340044925566539512219705760298329463721984);
392
T[19,71]=(x + 246)*(x^3 -846*x^2 + 172860*x + 1727928)*(x^4 + 1563*x^3 + 1832391*x^2 + 954333414*x + 372805494084)*(x^4 + 432*x^3 + 236988*x^2 -21757248*x + 2536532496)*(x^24 + 792*x^23 -1631643*x^22 -1239003261*x^21 + 1366503040458*x^20 + 831114018155439*x^19 -230330133219478089*x^18 + 74756891781301288302*x^17 + 257047682589137201145948*x^16 -11751283495879734933587880*x^15 + 35567666176211327035827372240*x^14 + 89794111276480743566899530612192*x^13 + 14841505545007381989728966619803712*x^12 -9925269625014028052689142773053942528*x^11 + 2457456134760619055092508329021784189184*x^10 + 461472675250900809928028324633544168695808*x^9 -117984713351968354510082708319207397298909184*x^8 + 21391747496060579490865461957416088520405604352*x^7 + 4010035200931961905867629977488177158542569451520*x^6 -1194405464199542859218332844904413169333455400198144*x^5 + 308150357016018175687066725248263229640166138666745856*x^4 -19289418294614455685606297949089707029301249282419720192*x^3 + 2890323471357796067862989586777642379556888528007159152640*x^2 -19838492741513114492081551118645007547683277135037992009728*x + 6998909475027736253794771837229507810768695920519558465847296);
393
T[19,73]=(x -353)*(x^3 -627*x^2 -355485*x + 145581839)*(x^4 + 350*x^3 + 93855*x^2 + 10025750*x + 820536025)*(x^4 -234*x^3 + 182395*x^2 + 29867526*x + 16291714321)*(x^24 -4068*x^23 + 8564802*x^22 -12789050518*x^21 + 15050716853277*x^20 -14632425850481904*x^19 + 12758755158441786475*x^18 -10686240097042888566210*x^17 + 8654689385608902579677664*x^16 -6753745913407383789251509898*x^15 + 5019053929342323921660044203917*x^14 -3286920171689701749566572880001378*x^13 + 1754581012506335082765656919281074841*x^12 -744260285221724532349072152894307281696*x^11 + 242941816132059312901769461725573539740896*x^10 -40618128911303844002556909638150116770638912*x^9 -8716547776010652526404310476254741714161701120*x^8 + 6519595550206256707822883754137884671990770009088*x^7 -429634345790065375865886376127038760041103460552704*x^6 -548913344871401109335662119375630998696852386374205440*x^5 + 268084895839582508232944619107649598533961093881453281280*x^4 -78250554021509134436726547072080285335605883734374001934336*x^3 + 18698178506615201859255908788316070073230100834693717155643392*x^2 -2559599213797574635034817538670625843716050125662982456289001472*x + 142293519510661345174906672300078586761235809678689695664330244096);
394
T[19,79]=(x + 34)*(x^3 -382*x^2 -669888*x -56023488)*(x^4 -152*x^3 + 189808*x^2 + 25339008*x + 27790223616)*(x^4 -331*x^3 + 99709*x^2 -3261012*x + 97061904)*(x^24 -1824*x^23 + 3737424*x^22 -3382214187*x^21 + 3228981075507*x^20 + 182901560796522*x^19 -230489900832829022*x^18 + 2372878480647229623111*x^17 -336990104243614140699261*x^16 -128080395814011878168965911*x^15 + 762501195639907528430738338287*x^14 -501180052749130777170894829636284*x^13 + 53293983040281432167405451529623874*x^12 + 396081646184350337887986698909317043109*x^11 -48752900862766317934236917159161512693762*x^10 -113969703698141563198921799651938695346607679*x^9 + 12553266400806286400536349981498509847327450556*x^8 + 28136816527028689104222070097752172575221467741349*x^7 + 8926728537086024867308428764692117331189267397122067*x^6 + 1440616435603542446952106076388562319963777971842555234*x^5 + 168501949860563241972268485520790296143320487955638150360*x^4 + 15600842563232915567984808477958004541405482539980573419544*x^3 + 1126627451706021755646963426785891061035161196746285914375792*x^2 + 48408832411818314758603795761213400164247197386858081844407040*x + 1047281226150475655883360076612220034773847286539713618527401024);
395
T[19,83]=(x -234)*(x^3 + 766*x^2 -35648*x -78728352)*(x^24 -1071*x^23 + 2850963*x^22 -1248081580*x^21 + 3346069461288*x^20 -812523049022493*x^19 + 2719977691897259412*x^18 -167250798750811441779*x^17 + 1501300188353526501514482*x^16 + 81292298758186112871756131*x^15 + 628740324332846166167957137347*x^14 + 91882951426259595333913281277080*x^13 + 183882920399607952864959622409180992*x^12 + 35349192075438811520485203093611821365*x^11 + 39059765647446655628938321587437161391973*x^10 + 8239023467066991791084052164940042849717747*x^9 + 4804036959154015288732139023008727950622660125*x^8 + 762940953343428170760706227697764286218708622137*x^7 + 342381286292843314776557945122276031232211233919917*x^6 + 46886319945995689682444787036911279861064560013591693*x^5 + 14679662402588044260655084552446967171745150249832227913*x^4 + 871593521219183542059946168840957457035290602603722773366*x^3 + 170782248365328449576939241351180054247593181645144309576587*x^2 -3112196212878363305645090335704977138247563981742550726243764*x + 1490568540250466252707045763575720210165267245290667058321373721)*(x^2 -1459*x + 59112)^2*(x^2 + 1904*x + 838929)^2;
396
T[19,89]=(x + 168)*(x^3 + 172*x^2 -844784*x -76923456)*(x^4 + 601*x^3 + 384799*x^2 -14182398*x + 556865604)*(x^4 + 112*x^3 + 604288*x^2 -66275328*x + 350160961536)*(x^24 + 3006*x^23 + 4895055*x^22 + 8611540844*x^21 + 12244127912610*x^20 + 10684178462113812*x^19 + 11495745942404420271*x^18 + 16038544618260582539760*x^17 + 15391329701081444693661096*x^16 + 14842408179924208064610989396*x^15 + 16316276773474736458739486397693*x^14 + 7521243150131498841359453400376971*x^13 -5727979304172715411361631183756934253*x^12 -7387610880930315523814452927662019803264*x^11 + 237613542291224504101536103872082430279433*x^10 + 4795246804641946620794817649795454706723290550*x^9 + 4233192169199927818402507128871763395643620878009*x^8 + 2158072853442618358228112934094999879721531362686186*x^7 + 728784998153638702734851788186972537150979488116228129*x^6 + 157742577185037780230685785749552915218588138390440992722*x^5 + 20562090369194760601041434206893783534642258340250291061906*x^4 + 1416814221392453321487002466626855187354165847827952209293913*x^3 + 98146279001117268284525479202974684513365839729657032214890263*x^2 -10073315605539258894099489962937884181952455639121982670888676197*x + 427255082045284792308102687709364232986593331358992187437627772609);
397
T[19,97]=(x -758)*(x^3 + 2450*x^2 + 1384544*x + 196438912)*(x^4 -324*x^3 + 1448869*x^2 + 435421332*x + 1806048395449)*(x^4 -546*x^3 + 435007*x^2 + 74742486*x + 18739145881)*(x^24 + 2535*x^23 + 1695291*x^22 -1553492442*x^21 -1983321177828*x^20 + 675765505331082*x^19 + 1476003714365928929*x^18 + 405758835441141135138*x^17 + 94145789375196628134501*x^16 + 184271485898514464040333666*x^15 + 166382542699709320814300868528*x^14 + 190078964292584423634680301949242*x^13 + 184133020538595121573849550791047024*x^12 + 109087450177219824336736294171789811730*x^11 + 43911902159067936290746856624875355923107*x^10 + 12988469995213195845593825245221930723497910*x^9 + 3232268984382016858686221860206229183720779798*x^8 + 953549280744545923171106254213644784156573246644*x^7 + 443941353833141571332583413075133359413418440689365*x^6 + 153071227073903303176337566055425555340579825174501517*x^5 + 28968758729224349119852587655816284112621025688594479340*x^4 + 3326526651734270559971354806562519450140164492185612944962*x^3 + 331001185138346569580667151523197388769777442016264583322722*x^2 -733610910060864744507084223095510677439488858977858112586852*x + 230176387008984434884715957018498455275702027733888342073397601);
398
399
T[20,2]=(x -2)*(x^2 + 4*x + 8)*(x^2 -4*x + 8)*(x^2 + 4)*(x^12 + 6*x^11 + 18*x^10 + 40*x^9 -256*x^7 -736*x^6 -2048*x^5 + 20480*x^3 + 73728*x^2 + 196608*x + 262144)*(x )^7;
400
T[20,3]=(x -4)*(x^2 + 76)*(x^12 + 5064*x^8 + 4945680*x^4 + 757350400)*(x + 8)^2*(x^2 + 4)^2*(x )^2*(x -2)^3;
401
T[20,5]=(x^2 + 4*x + 125)*(x^2 -14*x + 125)*(x^2 + 10*x + 125)^2*(x^6 -85*x^4 -400*x^3 -10625*x^2 + 1953125)^2*(x + 5)^3*(x -5)^3;
402
T[20,7]=(x + 16)*(x^2 + 76)*(x^12 + 573704*x^8 + 69574698000*x^4 + 473344000000)*(x + 4)^2*(x^2 + 676)^2*(x )^2*(x -6)^3;
403
T[20,11]=(x + 60)*(x -12)^2*(x -20)^2*(x^6 + 3000*x^4 + 1778960*x^2 + 88064000)^2*(x )^2*(x -32)^3*(x + 28)^4;
404
T[20,13]=(x -86)*(x^2 + 2736)*(x^2 + 74*x + 2738)*(x + 58)^2*(x^2 + 144)^2*(x^6 -58*x^5 + 1682*x^4 + 54976*x^3 + 777924*x^2 + 3369240*x + 7296200)^2*(x + 38)^3;
405
T[20,17]=(x -18)*(x^2 + 4864)*(x^2 -198*x + 19602)*(x -66)^2*(x^2 + 4096)^2*(x^6 + 166*x^5 + 13778*x^4 + 662912*x^3 + 19909444*x^2 + 347054360*x + 3024864200)^2*(x -26)^3;
406
T[20,19]=(x -44)*(x + 84)^2*(x + 100)^2*(x^6 -24160*x^4 + 113455360*x^2 -148035584000)^2*(x )^2*(x -100)^3*(x -60)^4;
407
T[20,23]=(x -48)*(x^2 + 3724)*(x^12 + 150061064*x^8 + 5332593814462480*x^4 + 43250966670044302950400)*(x -132)^2*(x^2 + 3364)^2*(x )^2*(x + 78)^3;
408
T[20,29]=(x + 186)*(x^2 + 80656)*(x -6)^2*(x^6 + 65648*x^4 + 275492608*x^2 + 234782887936)^2*(x + 50)^3*(x + 90)^6;
409
T[20,31]=(x -176)*(x -152)^2*(x + 224)^2*(x^6 + 75640*x^4 + 1565644560*x^2 + 4998782336000)^2*(x )^2*(x + 108)^3*(x + 128)^4;
410
T[20,37]=(x -254)*(x^2 + 14896)*(x^2 + 182*x + 16562)*(x + 34)^2*(x^2 + 55696)^2*(x^6 -254*x^5 + 32258*x^4 + 17577632*x^3 + 2983125924*x^2 + 202341119880*x + 6862252857800)^2*(x -266)^3;
411
T[20,41]=(x -186)*(x -472)^2*(x + 438)^2*(x -266)^2*(x -22)^3*(x -242)^4*(x^3 + 164*x^2 -18428*x -1791008)^4;
412
T[20,43]=(x + 100)*(x^2 + 93100)*(x^12 + 14590421064*x^8 + 1441726244231498000*x^4 + 22201983063965473024000000)*(x -32)^2*(x^2 + 131044)^2*(x )^2*(x -442)^3;
413
T[20,47]=(x -168)*(x^2 + 140524)*(x^12 + 61550198664*x^8 + 347026558627302628880*x^4 + 284898223210966710626029158400)*(x + 204)^2*(x^2 + 51076)^2*(x )^2*(x + 514)^3;
414
T[20,53]=(x + 498)*(x^2 + 54*x + 1458)*(x^2 + 134064)*(x -222)^2*(x^2 + 11664)^2*(x^6 + 322*x^5 + 51842*x^4 -22961504*x^3 + 20725057444*x^2 + 3367884458120*x + 273645700473800)^2*(x -2)^3;
415
T[20,59]=(x + 252)*(x -420)^2*(x + 28)^2*(x^6 -688480*x^4 + 79578620160*x^2 -742151346176000)^2*(x )^2*(x -500)^3*(x -20)^4;
416
T[20,61]=(x + 58)*(x + 468)^2*(x -902)^2*(x -182)^2*(x + 518)^3*(x -542)^4*(x^3 + 224*x^2 -55468*x -11698768)^4;
417
T[20,67]=(x + 1036)*(x^2 + 182476)*(x^12 + 442279393224*x^8 + 286723553040095774480*x^4 + 1655837717436363600760422400)*(x + 1024)^2*(x^2 + 188356)^2*(x )^2*(x -126)^3;
418
T[20,71]=(x -168)*(x -408)^2*(x -432)^2*(x^6 + 715960*x^4 + 135523321360*x^2 + 2932668189056000)^2*(x )^2*(x -412)^3*(x + 1128)^4;
419
T[20,73]=(x -506)*(x^2 + 1168576)*(x^2 -506*x + 128018)*(x -362)^2*(x^2 + 399424)^2*(x^6 -718*x^5 + 257762*x^4 -40501024*x^3 + 2330765284*x^2 + 281818962760*x + 17037736128200)^2*(x + 878)^3;
420
T[20,79]=(x -272)*(x -48)^2*(x + 160)^2*(x^6 -2383360*x^4 + 1389820968960*x^2 -4285597220864000)^2*(x )^2*(x -600)^3*(x -720)^4;
421
T[20,83]=(x -948)*(x^2 + 40204)*(x^12 + 2795286470344*x^8 + 1414213673419736608056080*x^4 + 137537057075805131278017017581158400)*(x -72)^2*(x^2 + 228484)^2*(x )^2*(x -282)^3;
422
T[20,89]=(x + 1014)*(x^2 + 30976)*(x + 1526)^2*(x -810)^2*(x^6 + 1431168*x^4 + 371033182208*x^2 + 8451804460220416)^2*(x + 150)^3*(x -490)^4;
423
T[20,97]=(x + 766)*(x^2 + 311296)*(x^2 + 1222*x + 746642)*(x -1106)^2*(x^2 + 2119936)^2*(x^6 + 2386*x^5 + 2846498*x^4 + 329474272*x^3 + 105480749284*x^2 + 358683062903240*x + 609843694166688200)^2*(x -386)^3;
424
425
T[21,2]=(x + 3)*(x -4)*(x^2 + 3*x -12)*(x^2 -3*x + 9)*(x^6 + x^5 + 25*x^4 -12*x^3 + 582*x^2 + 144*x + 36)*(x^12 -31*x^10 + 723*x^8 -6370*x^6 + 41020*x^4 -119952*x^2 + 254016)*(x + 1)^2*(x^2 + 2*x + 4)^2*(x^2 + 17)^2*(x )^2;
426
T[21,3]=(x^2 + 3*x + 9)*(x^2 + 27)*(x^2 + 2*x + 27)*(x^4 -48*x^2 + 729)*(x^4 + 7*x^3 + 22*x^2 + 189*x + 729)*(x^12 + 3*x^11 + 6*x^10 + 9*x^9 -198*x^8 -2565*x^7 -36018*x^6 -69255*x^5 -144342*x^4 + 177147*x^3 + 3188646*x^2 + 43046721*x + 387420489)*(x + 3)^2*(x -3)^2*(x^2 -3*x + 9)^3;
427
T[21,5]=(x + 18)*(x + 4)*(x^2 -6*x -48)*(x^2 -3*x + 9)*(x^6 + 11*x^5 + 313*x^4 + 360*x^3 + 50460*x^2 + 237312*x + 1527696)*(x^12 + 396*x^10 + 121221*x^8 + 13986756*x^6 + 1245448953*x^4 + 1937507040*x^2 + 2962842624)*(x -16)^2*(x^2 + 7*x + 49)^2*(x^2 -102)^2*(x )^2;
428
T[21,7]=(x^2 + 7*x + 343)*(x^2 + 20*x + 343)*(x^6 + 13*x^5 + 236*x^4 + 12145*x^3 + 80948*x^2 + 1529437*x + 40353607)*(x^2 -14*x + 343)^2*(x^2 -28*x + 343)^2*(x^6 + 28*x^5 + 476*x^4 + 10780*x^3 + 163268*x^2 + 3294172*x + 40353607)^2*(x -7)^3*(x + 7)^3;
429
T[21,11]=(x + 36)*(x -62)*(x^2 + 6*x -1416)*(x^2 -15*x + 225)*(x^6 + 35*x^5 + 2593*x^4 -67008*x^3 + 1536684*x^2 -13083552*x + 91470096)*(x^12 -3244*x^10 + 7487013*x^8 -8503453924*x^6 + 7035594641593*x^4 -2045138759862912*x^2 + 453620224546062336)*(x + 8)^2*(x^2 -5*x + 25)^2*(x^2 + 1088)^2*(x )^2;
430
T[21,13]=(x + 62)*(x + 34)*(x^2 -16*x -1988)*(x^2 + 3888)*(x + 64)^2*(x -28)^2*(x^2 + 3174)^2*(x^3 -62*x^2 + 425*x + 18452)^2*(x^6 + 4335*x^4 + 1731204*x^2 + 82121472)^2*(x + 14)^4;
431
T[21,17]=(x -84)*(x -42)*(x^2 + 6*x -48)*(x^2 + 84*x + 7056)*(x^6 + 48*x^5 + 4704*x^4 + 110592*x^3 + 11179008*x^2 + 270950400*x + 12745506816)*(x^12 + 12261*x^10 + 135747117*x^8 + 170413288668*x^6 + 161143714802448*x^4 + 61355067231370752*x^2 + 17696515773733945344)*(x -54)^2*(x^2 -3672)^2*(x^2 -21*x + 441)^2*(x )^2;
432
T[21,19]=(x + 124)*(x -100)*(x^2 -16*x + 256)*(x^2 + 24300)*(x^2 -64*x -7184)*(x^6 -202*x^5 + 28523*x^4 -2013154*x^3 + 103594553*x^2 -2871346924*x + 54664310416)*(x + 110)^2*(x^2 + 49*x + 2401)^2*(x^2 + 1350)^2*(x^6 -150*x^5 + 9753*x^4 -337950*x^3 + 6428709*x^2 -60952662*x + 243972972)^2;
433
T[21,23]=(x + 42)*(x^2 -6*x -16464)*(x^2 -84*x + 7056)*(x^6 + 216*x^5 + 47328*x^4 + 3015936*x^3 + 341849088*x^2 + 1062125568*x + 2498119335936)*(x^12 -14311*x^10 + 139414053*x^8 -746172164500*x^6 + 2919015626694160*x^4 -6200136676834232832*x^2 + 8990233645184383205376)*(x -48)^2*(x^2 -159*x + 25281)^2*(x^2 + 8228)^2*(x )^3;
434
T[21,29]=(x -102)*(x + 10)*(x^2 + 252*x + 7668)*(x + 297)^2*(x + 110)^2*(x^2 + 3332)^2*(x^3 -53*x^2 -20472*x -824976)^2*(x^6 + 120001*x^4 + 3697274560*x^2 + 14683734245376)^2*(x )^2*(x -58)^4;
435
T[21,31]=(x + 160)*(x + 48)*(x^2 -253*x + 64009)*(x^2 + 24300)*(x^6 -95*x^5 + 19026*x^4 + 926449*x^3 + 101143186*x^2 -118241823*x + 139783329)*(x^2 -40*x -73472)*(x -12)^2*(x^2 + 147*x + 21609)^2*(x^2 + 64896)^2*(x^6 + 465*x^5 + 87096*x^4 + 6984765*x^3 + 176555736*x^2 -4755813831*x + 33414175107)^2;
436
T[21,37]=(x -398)*(x^2 -316*x + 99856)*(x^2 + 248*x -3092)*(x^6 + 262*x^5 + 54555*x^4 + 3593014*x^3 + 185622097*x^2 + 692502528*x + 2415919104)*(x + 110)^2*(x^2 + 219*x + 47961)^2*(x^6 -382*x^5 + 119177*x^4 -13915390*x^3 + 1421726885*x^2 + 49455684446*x + 3418867564324)^2*(x + 246)^3*(x -230)^4;
437
T[21,41]=(x + 248)*(x + 318)*(x^2 + 450*x + 37800)*(x -182)^2*(x -360)^2*(x^2 -19992)^2*(x^3 -244*x^2 -18780*x -300384)^2*(x^6 -172788*x^4 + 4941510336*x^2 -4591113633792)^2*(x )^2*(x -350)^4;
438
T[21,43]=(x -68)*(x + 268)*(x^2 -376*x + 2512)*(x -520)^2*(x -128)^2*(x -26)^2*(x^3 -360*x^2 -72363*x + 18269746)^2*(x -44)^4*(x + 124)^4*(x^3 + 253*x^2 -23284*x -6662944)^4;
439
T[21,47]=(x -240)*(x^2 + 12*x -65856)*(x^2 -30*x + 900)*(x^6 -210*x^5 + 290616*x^4 + 62006616*x^3 + 59695121376*x^2 + 1261946958048*x + 26205471480384)*(x^12 + 185553*x^10 + 26259713937*x^8 + 1306125205474320*x^6 + 47280242457173456640*x^4 + 857382056708633931718656*x^2 + 11012431144762450295191240704)*(x^2 + 525*x + 275625)^2*(x^2 -117912)^2*(x )^2*(x -324)^3;
440
T[21,53]=(x -258)*(x + 498)*(x^2 + 363*x + 131769)*(x^2 + 1104*x + 304476)*(x^6 + 393*x^5 + 235185*x^4 + 34609536*x^3 + 19553872752*x^2 + 2677964032512*x + 1100208565649664)*(x^12 -531100*x^10 + 198439484133*x^8 -37040421831506548*x^6 + 5035360894067904188089*x^4 -308346438058708264563775392*x^2 + 13594940086339308969484822987776)*(x + 162)^2*(x^2 + 303*x + 91809)^2*(x^2 + 42500)^2*(x )^2;
441
T[21,59]=(x + 132)*(x -120)*(x^2 -804*x -30144)*(x^2 -15*x + 225)*(x^6 + 1143*x^5 + 1173345*x^4 + 353075760*x^3 + 132552677808*x^2 -13372818322176*x + 10094008708475136)*(x^12 + 570420*x^10 + 253702703277*x^8 + 39639172481816796*x^6 + 4782000321877574911689*x^4 + 44668912627669666025735136*x^2 + 388382747621710334640661914624)*(x -810)^2*(x^2 -105*x + 11025)^2*(x^2 -17238)^2*(x )^2;
442
T[21,61]=(x -622)*(x -398)*(x^2 -118*x + 13924)*(x^2 + 874800)*(x^2 + 428*x -28076)*(x^6 -70*x^5 + 345800*x^4 -145399000*x^3 + 122136980000*x^2 -28850707900000*x + 7162406161000000)*(x + 488)^2*(x^2 + 5046)^2*(x^2 -413*x + 170569)^2*(x^6 -1179*x^5 + 261039*x^4 + 238521132*x^3 -13856716944*x^2 -28202272530048*x + 6477700166618112)^2;
443
T[21,67]=(x -904)*(x -92)*(x^2 -370*x + 136900)*(x^2 -148*x -160736)*(x^6 -628*x^5 + 699347*x^4 + 247502768*x^3 + 75422826113*x^2 + 8536829868926*x + 783608160972004)*(x + 880)^2*(x -244)^2*(x^2 + 415*x + 172225)^2*(x^6 -396*x^5 + 693471*x^4 + 409138304*x^3 + 249067250073*x^2 + 52759337639610*x + 9665143560577444)^2*(x + 64)^4;
444
T[21,71]=(x + 678)*(x + 720)*(x^2 -954*x + 214704)*(x + 342)^2*(x + 768)^2*(x^2 + 213248)^2*(x^3 -318*x^2 -330804*x -28535976)^2*(x^6 + 225148*x^4 + 3717765184*x^2 + 6720226523136)^2*(x )^2*(x + 432)^4;
445
T[21,73]=(x + 642)*(x + 502)*(x^2 -1072*x + 285244)*(x^2 + 139968)*(x^2 + 362*x + 131044)*(x^6 + 988*x^5 + 980499*x^4 + 282111496*x^3 + 141507598609*x^2 + 623666998890*x + 20508278645865924)*(x + 702)^2*(x^2 -1113*x + 1238769)^2*(x^2 + 7776)^2*(x^6 + 1452*x^5 + 744837*x^4 + 61084188*x^3 -51563164023*x^2 -4635670445244*x + 4047431204396592)^2;
446
T[21,79]=(x + 1024)*(x -740)*(x^2 + 572*x -84416)*(x^2 + 467*x + 218089)*(x^6 + 861*x^5 + 999222*x^4 + 165859913*x^3 + 233509331958*x^2 + 50021533268637*x + 37619060662457569)*(x -440)^2*(x -884)^2*(x^2 -103*x + 10609)^2*(x^6 -837*x^5 + 960402*x^4 + 179364515*x^3 + 83464610850*x^2 -4951859118549*x + 363201760969609)^2*(x + 442)^4;
447
T[21,83]=(x -468)*(x + 204)*(x^2 -1944*x + 813456)*(x + 1302)^2*(x -477)^2*(x^2 -244902)^2*(x^3 -519*x^2 -131616*x + 47916036)^2*(x^6 -567987*x^4 + 75760581456*x^2 -388952511994368)^2*(x )^2*(x -1092)^4;
448
T[21,89]=(x -200)*(x -354)*(x^2 + 906*x + 820836)*(x^2 -366*x -253848)*(x^6 + 1766*x^5 + 2840836*x^4 + 516815808*x^3 + 100205551104*x^2 -3614222868480*x + 169118164647936)*(x^12 + 2594253*x^10 + 5981516897085*x^8 + 1923321552966019836*x^6 + 536039414538561537769872*x^4 + 7044085902082360697171730432*x^2 + 88534558386898483660836279681024)*(x -730)^2*(x^2 -329*x + 108241)^2*(x^2 -235008)^2*(x )^2;
449
T[21,97]=(x + 1266)*(x + 286)*(x^2 + 1881792)*(x^2 -808*x -922292)*(x -294)^2*(x -503)^2*(x^2 + 1193496)^2*(x^3 -19*x^2 -569600*x + 44776452)^2*(x^6 + 2159691*x^4 + 312291915984*x^2 + 9887068459035648)^2*(x + 882)^4;
450
451
T[22,2]=(x -2)*(x^4 + 2*x^3 + 4*x^2 + 8*x + 16)*(x^4 -2*x^3 + 14*x^2 -16*x + 64)*(x^16 + 7*x^15 + 15*x^14 -17*x^13 -81*x^12 + 366*x^11 + 1624*x^10 -1744*x^9 -17904*x^8 -13952*x^7 + 103936*x^6 + 187392*x^5 -331776*x^4 -557056*x^3 + 3932160*x^2 + 14680064*x + 16777216)*(x + 2)^2*(x^4 -2*x^3 + 4*x^2 -8*x + 16)^2;
452
T[22,3]=(x -1)*(x -4)*(x + 7)*(x^4 + x^3 + 76*x^2 -434*x + 961)*(x^8 -3*x^7 + 42*x^6 + 185*x^5 + 1931*x^4 -11455*x^3 + 224168*x^2 + 368251*x + 4748041)*(x^2 + 2*x -47)^2*(x^8 + 3*x^7 + 16*x^6 + 69*x^5 + 319*x^4 -483*x^3 + 784*x^2 -1029*x + 2401)^2;
453
T[22,5]=(x + 19)*(x -14)*(x + 3)*(x^4 -3*x^3 + 4*x^2 -2*x + 1)*(x^8 -5*x^7 + 146*x^6 + 870*x^5 + 7381*x^4 -260490*x^3 + 3495696*x^2 -15739600*x + 68624656)*(x^2 -2*x -191)^2*(x^8 + 7*x^7 + 250*x^6 -1018*x^5 + 3109*x^4 + 71358*x^3 + 1156400*x^2 -4275152*x + 64577296)^2;
454
T[22,7]=(x -14)*(x + 10)*(x + 8)*(x^4 -25*x^3 + 460*x^2 -4350*x + 21025)*(x^8 + x^7 + 698*x^6 -1790*x^5 + 311021*x^4 + 736690*x^3 + 119944612*x^2 -118591608*x + 87027360016)*(x^2 -20*x + 52)^2*(x^8 + 35*x^7 + 268*x^6 -11560*x^5 + 112489*x^4 -186090*x^3 + 386532*x^2 -201960*x + 156816)^2;
455
T[22,11]=(x^4 -44*x^3 + 726*x^2 -58564*x + 1771561)*(x^8 + 155*x^7 + 13111*x^6 + 755095*x^5 + 31999176*x^4 + 1005031445*x^3 + 23226936271*x^2 + 365481892105*x + 3138428376721)*(x -11)^2*(x^8 -67*x^7 + 1463*x^6 -67639*x^5 + 4205960*x^4 -90027509*x^3 + 2591793743*x^2 -157982495297*x + 3138428376721)^2*(x + 11)^5;
456
T[22,13]=(x + 16)*(x + 50)*(x + 72)*(x^4 -91*x^3 + 3496*x^2 -38286*x + 502681)*(x^8 -7*x^7 + 6324*x^6 + 154082*x^5 + 12652281*x^4 + 151584980*x^3 + 480153440*x^2 -5585975400*x + 16022496400)*(x^2 -80*x + 400)^2*(x^8 + 65*x^7 + 620*x^6 -102150*x^5 + 2712425*x^4 + 15382500*x^3 + 229712000*x^2 + 584815000*x + 2905210000)^2;
457
T[22,17]=(x -130)*(x -42)*(x + 46)*(x^4 -23*x^3 + 10924*x^2 -1150082*x + 52983841)*(x^8 -161*x^7 + 14846*x^6 -835281*x^5 + 33388091*x^4 -766431885*x^3 + 18801687590*x^2 -358241219725*x + 4078198497025)*(x^2 + 124*x + 3412)^2*(x^8 + 31*x^7 + 9034*x^6 + 768147*x^5 + 51677179*x^4 + 1540200879*x^3 + 170263805166*x^2 + 2036645067303*x + 9608691844521)^2;
458
T[22,19]=(x + 20)*(x + 108)*(x -116)*(x^4 -59*x^3 + 1636*x^2 -17234*x + 1515361)*(x^8 + 272*x^7 + 46919*x^6 + 4795488*x^5 + 296722606*x^4 + 8103481680*x^3 + 113555229660*x^2 + 659909576800*x + 3649418019025)*(x^2 -72*x -9504)^2*(x^8 -148*x^7 + 25293*x^6 -1403636*x^5 + 52489880*x^4 -220038896*x^3 -4736784822*x^2 + 668051130362*x + 90104309844241)^2;
459
T[22,23]=(x -189)*(x + 107)*(x + 96)*(x^2 + 98*x -1487)^2*(x^2 + 112*x + 2416)^2*(x^4 -314*x^3 + 13148*x^2 + 3418592*x -257882816)^2*(x^4 + 6*x^3 -21180*x^2 + 538608*x + 49883584)^4;
460
T[22,29]=(x -120)*(x + 120)*(x -142)*(x^4 + 425*x^3 + 95560*x^2 + 11412650*x + 951414025)*(x^8 -33*x^7 + 62954*x^6 -12395922*x^5 + 1734695821*x^4 -141070735410*x^3 + 28792899761660*x^2 -870628334274600*x + 10504778151552400)*(x^2 -144*x -4224)^2*(x^8 + 199*x^7 + 63750*x^6 + 16862426*x^5 + 2923156669*x^4 + 255487249446*x^3 + 16210382310540*x^2 + 565626311519544*x + 9707838512516496)^2;
461
T[22,31]=(x -40)*(x + 163)*(x -117)*(x^4 + 227*x^3 + 93714*x^2 + 4163128*x + 72777961)*(x^8 -323*x^7 + 55484*x^6 + 2105108*x^5 + 920458121*x^4 -72151234330*x^3 + 158959422041460*x^2 -7332152413905000*x + 851731083376128400)*(x^2 + 34*x -2063)^2*(x^8 + 361*x^7 + 127874*x^6 + 20604762*x^5 + 2681918509*x^4 + 271760852034*x^3 + 36028983020436*x^2 + 319952936572808*x + 1103714307062416)^2;
462
T[22,37]=(x + 409)*(x -382)*(x + 201)*(x^4 + 61*x^3 + 42036*x^2 -3617554*x + 117310561)*(x^8 -49*x^7 + 93438*x^6 + 19861870*x^5 + 1569396301*x^4 -655485872790*x^3 + 99706404336192*x^2 + 1746155227792752*x + 1021563173977639056)*(x^2 -54*x + 537)^2*(x^8 -81*x^7 + 22574*x^6 + 1021518*x^5 + 51116109*x^4 -13895024934*x^3 + 4670696022736*x^2 + 176811059981712*x + 26648657080058896)^2;
463
T[22,41]=(x + 118)*(x + 228)*(x -468)*(x^4 -347*x^3 + 63004*x^2 -6019898*x + 408080401)*(x^8 -361*x^7 + 118702*x^6 -14223373*x^5 + 1716329655*x^4 + 91549373403*x^3 + 75132305104722*x^2 + 9333933513254451*x + 604267458241509241)*(x^2 -536*x + 71776)^2*(x^8 + 31*x^7 + 96430*x^6 + 12654499*x^5 + 3917760879*x^4 + 30693893139*x^3 + 12127806546450*x^2 -7238136414981549*x + 2752561646911945561)^2;
464
T[22,43]=(x -110)*(x -220)*(x + 242