Sharedwww / Tables / charpoly_s4_1-100.gpOpen in CoCalc
\\ charpoly_s4.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_4(Gamma_0(N)) 
\\ of weight 4 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(100,97,m,n,0);
T[5,2]=x + 4;
T[5,3]=x -2;
T[5,5]=x + 5;
T[5,7]=x -6;
T[5,11]=x -32;
T[5,13]=x + 38;
T[5,17]=x -26;
T[5,19]=x -100;
T[5,23]=x + 78;
T[5,29]=x + 50;
T[5,31]=x + 108;
T[5,37]=x -266;
T[5,41]=x -22;
T[5,43]=x -442;
T[5,47]=x + 514;
T[5,53]=x -2;
T[5,59]=x -500;
T[5,61]=x + 518;
T[5,67]=x -126;
T[5,71]=x -412;
T[5,73]=x + 878;
T[5,79]=x -600;
T[5,83]=x -282;
T[5,89]=x + 150;
T[5,97]=x -386;

T[6,2]=x + 2;
T[6,3]=x + 3;
T[6,5]=x -6;
T[6,7]=x + 16;
T[6,11]=x -12;
T[6,13]=x -38;
T[6,17]=x + 126;
T[6,19]=x -20;
T[6,23]=x -168;
T[6,29]=x -30;
T[6,31]=x + 88;
T[6,37]=x -254;
T[6,41]=x -42;
T[6,43]=x + 52;
T[6,47]=x + 96;
T[6,53]=x -198;
T[6,59]=x + 660;
T[6,61]=x + 538;
T[6,67]=x -884;
T[6,71]=x -792;
T[6,73]=x -218;
T[6,79]=x + 520;
T[6,83]=x + 492;
T[6,89]=x -810;
T[6,97]=x -1154;

T[7,2]=x + 1;
T[7,3]=x + 2;
T[7,5]=x -16;
T[7,7]=x + 7;
T[7,11]=x + 8;
T[7,13]=x -28;
T[7,17]=x -54;
T[7,19]=x + 110;
T[7,23]=x -48;
T[7,29]=x + 110;
T[7,31]=x -12;
T[7,37]=x + 246;
T[7,41]=x -182;
T[7,43]=x -128;
T[7,47]=x -324;
T[7,53]=x + 162;
T[7,59]=x -810;
T[7,61]=x + 488;
T[7,67]=x -244;
T[7,71]=x + 768;
T[7,73]=x + 702;
T[7,79]=x -440;
T[7,83]=x + 1302;
T[7,89]=x -730;
T[7,97]=x -294;

T[8,2]=x ;
T[8,3]=x + 4;
T[8,5]=x + 2;
T[8,7]=x -24;
T[8,11]=x + 44;
T[8,13]=x -22;
T[8,17]=x -50;
T[8,19]=x -44;
T[8,23]=x + 56;
T[8,29]=x -198;
T[8,31]=x + 160;
T[8,37]=x + 162;
T[8,41]=x + 198;
T[8,43]=x -52;
T[8,47]=x -528;
T[8,53]=x + 242;
T[8,59]=x + 668;
T[8,61]=x -550;
T[8,67]=x -188;
T[8,71]=x -728;
T[8,73]=x -154;
T[8,79]=x + 656;
T[8,83]=x -236;
T[8,89]=x -714;
T[8,97]=x + 478;

T[9,2]=x ;
T[9,3]=x ;
T[9,5]=x ;
T[9,7]=x -20;
T[9,11]=x ;
T[9,13]=x + 70;
T[9,17]=x ;
T[9,19]=x -56;
T[9,23]=x ;
T[9,29]=x ;
T[9,31]=x -308;
T[9,37]=x -110;
T[9,41]=x ;
T[9,43]=x + 520;
T[9,47]=x ;
T[9,53]=x ;
T[9,59]=x ;
T[9,61]=x -182;
T[9,67]=x + 880;
T[9,71]=x ;
T[9,73]=x -1190;
T[9,79]=x -884;
T[9,83]=x ;
T[9,89]=x ;
T[9,97]=x + 1330;

T[10,2]=(x -2)*(x^2 + 4*x + 8);
T[10,3]=(x + 8)*(x -2)^2;
T[10,5]=(x -5)*(x + 5)^2;
T[10,7]=(x + 4)*(x -6)^2;
T[10,11]=(x -12)*(x -32)^2;
T[10,13]=(x + 58)*(x + 38)^2;
T[10,17]=(x -66)*(x -26)^2;
T[10,19]=(x + 100)*(x -100)^2;
T[10,23]=(x -132)*(x + 78)^2;
T[10,29]=(x + 90)*(x + 50)^2;
T[10,31]=(x -152)*(x + 108)^2;
T[10,37]=(x + 34)*(x -266)^2;
T[10,41]=(x + 438)*(x -22)^2;
T[10,43]=(x -32)*(x -442)^2;
T[10,47]=(x + 204)*(x + 514)^2;
T[10,53]=(x -222)*(x -2)^2;
T[10,59]=(x -420)*(x -500)^2;
T[10,61]=(x -902)*(x + 518)^2;
T[10,67]=(x + 1024)*(x -126)^2;
T[10,71]=(x -432)*(x -412)^2;
T[10,73]=(x -362)*(x + 878)^2;
T[10,79]=(x + 160)*(x -600)^2;
T[10,83]=(x -72)*(x -282)^2;
T[10,89]=(x -810)*(x + 150)^2;
T[10,97]=(x -1106)*(x -386)^2;

T[11,2]=x^2 -2*x -2;
T[11,3]=x^2 + 2*x -47;
T[11,5]=x^2 -2*x -191;
T[11,7]=x^2 -20*x + 52;
T[11,11]=(x + 11)^2;
T[11,13]=x^2 -80*x + 400;
T[11,17]=x^2 + 124*x + 3412;
T[11,19]=x^2 -72*x -9504;
T[11,23]=x^2 + 98*x -1487;
T[11,29]=x^2 -144*x -4224;
T[11,31]=x^2 + 34*x -2063;
T[11,37]=x^2 -54*x + 537;
T[11,41]=x^2 -536*x + 71776;
T[11,43]=x^2 + 60*x + 132;
T[11,47]=x^2 + 272*x -24704;
T[11,53]=x^2 + 492*x + 51108;
T[11,59]=x^2 -634*x + 48217;
T[11,61]=x^2 -840*x + 74832;
T[11,67]=x^2 -754*x + 140929;
T[11,71]=x^2 + 678*x + 97593;
T[11,73]=x^2 + 400*x -617072;
T[11,79]=x^2 -316*x -1266044;
T[11,83]=x^2 -468*x + 11556;
T[11,89]=x^2 + 1842*x + 525489;
T[11,97]=x^2 -2194*x + 1141201;

T[12,2]=(x + 2)*(x )^2;
T[12,3]=(x -3)*(x + 3)^2;
T[12,5]=(x + 18)*(x -6)^2;
T[12,7]=(x -8)*(x + 16)^2;
T[12,11]=(x -36)*(x -12)^2;
T[12,13]=(x + 10)*(x -38)^2;
T[12,17]=(x -18)*(x + 126)^2;
T[12,19]=(x + 100)*(x -20)^2;
T[12,23]=(x -72)*(x -168)^2;
T[12,29]=(x + 234)*(x -30)^2;
T[12,31]=(x + 16)*(x + 88)^2;
T[12,37]=(x + 226)*(x -254)^2;
T[12,41]=(x -90)*(x -42)^2;
T[12,43]=(x -452)*(x + 52)^2;
T[12,47]=(x -432)*(x + 96)^2;
T[12,53]=(x -414)*(x -198)^2;
T[12,59]=(x + 684)*(x + 660)^2;
T[12,61]=(x -422)*(x + 538)^2;
T[12,67]=(x -332)*(x -884)^2;
T[12,71]=(x + 360)*(x -792)^2;
T[12,73]=(x -26)*(x -218)^2;
T[12,79]=(x -512)*(x + 520)^2;
T[12,83]=(x + 1188)*(x + 492)^2;
T[12,89]=(x + 630)*(x -810)^2;
T[12,97]=(x + 1054)*(x -1154)^2;

T[13,2]=(x + 5)*(x^2 -x -4);
T[13,3]=(x + 7)*(x^2 -5*x -32);
T[13,5]=(x + 7)*(x^2 + 3*x -2);
T[13,7]=(x + 13)*(x^2 + 9*x -494);
T[13,11]=(x + 26)*(x^2 -80*x + 988);
T[13,13]=(x -13)*(x + 13)^2;
T[13,17]=(x -77)*(x^2 -19*x -1138);
T[13,19]=(x + 126)*(x^2 + 84*x -2588);
T[13,23]=(x + 96)*(x^2 -196*x + 8992);
T[13,29]=(x + 82)*(x^2 + 44*x -38684);
T[13,31]=(x -196)*(x^2 + 86*x -3064);
T[13,37]=(x + 131)*(x^2 -209*x + 10814);
T[13,41]=(x -336)*(x^2 + 230*x + 11168);
T[13,43]=(x + 201)*(x^2 -287*x -66316);
T[13,47]=(x + 105)*(x^2 -435*x -14918);
T[13,53]=(x + 432)*(x^2 + 118*x -344);
T[13,59]=(x + 294)*(x^2 + 368*x -31492);
T[13,61]=(x + 56)*(x^2 + 1058*x + 126416);
T[13,67]=(x -478)*(x^2 -68*x -227596);
T[13,71]=(x -9)*(x^2 + 131*x -222494);
T[13,73]=(x -98)*(x^2 -456*x -235316);
T[13,79]=(x -1304)*(x^2 + 1008*x + 247216);
T[13,83]=(x + 308)*(x^2 -1958*x + 817664);
T[13,89]=(x + 1190)*(x^2 + 720*x -510212);
T[13,97]=(x -70)*(x^2 + 928*x -881476);

T[14,2]=(x + 2)*(x -2)*(x^2 + x + 8);
T[14,3]=(x -8)*(x + 2)^3;
T[14,5]=(x + 14)*(x + 12)*(x -16)^2;
T[14,7]=(x -7)*(x + 7)^3;
T[14,11]=(x -48)*(x + 28)*(x + 8)^2;
T[14,13]=(x -56)*(x -18)*(x -28)^2;
T[14,17]=(x -74)*(x + 114)*(x -54)^2;
T[14,19]=(x -2)*(x -80)*(x + 110)^2;
T[14,23]=(x + 112)*(x + 120)*(x -48)^2;
T[14,29]=(x + 54)*(x -190)*(x + 110)^2;
T[14,31]=(x -236)*(x -72)*(x -12)^2;
T[14,37]=(x + 346)*(x -146)*(x + 246)^2;
T[14,41]=(x -162)*(x -126)*(x -182)^2;
T[14,43]=(x + 376)*(x + 412)*(x -128)^2;
T[14,47]=(x -24)*(x + 12)*(x -324)^2;
T[14,53]=(x -174)*(x -318)*(x + 162)^2;
T[14,59]=(x + 200)*(x -138)*(x -810)^2;
T[14,61]=(x -380)*(x + 198)*(x + 488)^2;
T[14,67]=(x + 716)*(x + 484)*(x -244)^2;
T[14,71]=(x -576)*(x -392)*(x + 768)^2;
T[14,73]=(x -538)*(x + 1150)*(x + 702)^2;
T[14,79]=(x -240)*(x -776)*(x -440)^2;
T[14,83]=(x -378)*(x + 1072)*(x + 1302)^2;
T[14,89]=(x -810)*(x + 390)*(x -730)^2;
T[14,97]=(x -1354)*(x + 1330)*(x -294)^2;

T[15,2]=(x -1)*(x -3)*(x + 4)^2;
T[15,3]=(x -3)*(x + 3)*(x^2 -2*x + 27);
T[15,5]=(x -5)*(x + 5)^3;
T[15,7]=(x + 24)*(x -20)*(x -6)^2;
T[15,11]=(x + 24)*(x -52)*(x -32)^2;
T[15,13]=(x -22)*(x -74)*(x + 38)^2;
T[15,17]=(x -54)*(x + 14)*(x -26)^2;
T[15,19]=(x + 124)*(x + 20)*(x -100)^2;
T[15,23]=(x + 168)*(x + 120)*(x + 78)^2;
T[15,29]=(x -230)*(x + 78)*(x + 50)^2;
T[15,31]=(x + 288)*(x -200)*(x + 108)^2;
T[15,37]=(x + 34)*(x + 70)*(x -266)^2;
T[15,41]=(x -330)*(x -122)*(x -22)^2;
T[15,43]=(x -92)*(x + 188)*(x -442)^2;
T[15,47]=(x -256)*(x + 24)*(x + 514)^2;
T[15,53]=(x + 338)*(x -450)*(x -2)^2;
T[15,59]=(x -100)*(x -24)*(x -500)^2;
T[15,61]=(x + 322)*(x -742)*(x + 518)^2;
T[15,67]=(x + 84)*(x + 196)*(x -126)^2;
T[15,71]=(x + 328)*(x + 288)*(x -412)^2;
T[15,73]=(x + 430)*(x + 38)*(x + 878)^2;
T[15,79]=(x + 240)*(x + 520)*(x -600)^2;
T[15,83]=(x -1212)*(x -156)*(x -282)^2;
T[15,89]=(x -330)*(x -1026)*(x + 150)^2;
T[15,97]=(x + 286)*(x -866)*(x -386)^2;

T[16,2]=(x )^3;
T[16,3]=(x -4)*(x + 4)^2;
T[16,5]=(x + 2)^3;
T[16,7]=(x + 24)*(x -24)^2;
T[16,11]=(x -44)*(x + 44)^2;
T[16,13]=(x -22)^3;
T[16,17]=(x -50)^3;
T[16,19]=(x + 44)*(x -44)^2;
T[16,23]=(x -56)*(x + 56)^2;
T[16,29]=(x -198)^3;
T[16,31]=(x -160)*(x + 160)^2;
T[16,37]=(x + 162)^3;
T[16,41]=(x + 198)^3;
T[16,43]=(x + 52)*(x -52)^2;
T[16,47]=(x + 528)*(x -528)^2;
T[16,53]=(x + 242)^3;
T[16,59]=(x -668)*(x + 668)^2;
T[16,61]=(x -550)^3;
T[16,67]=(x + 188)*(x -188)^2;
T[16,71]=(x + 728)*(x -728)^2;
T[16,73]=(x -154)^3;
T[16,79]=(x -656)*(x + 656)^2;
T[16,83]=(x + 236)*(x -236)^2;
T[16,89]=(x -714)^3;
T[16,97]=(x + 478)^3;

T[17,2]=(x + 3)*(x^3 -x^2 -24*x + 32);
T[17,3]=(x + 8)*(x^3 -4*x^2 -62*x + 204);
T[17,5]=(x -6)*(x^3 + 8*x^2 -44*x + 32);
T[17,7]=(x + 28)*(x^3 -22*x^2 -138*x + 792);
T[17,11]=(x + 24)*(x^3 + 28*x^2 -1366*x -4692);
T[17,13]=(x + 58)*(x^3 -30*x^2 -1472*x -9392);
T[17,17]=(x -17)*(x + 17)^3;
T[17,19]=(x -116)*(x^3 -80*x^2 -4632*x + 340128);
T[17,23]=(x + 60)*(x^3 -142*x^2 -15770*x + 1600544);
T[17,29]=(x -30)*(x^3 + 456*x^2 + 53908*x + 1518624);
T[17,31]=(x + 172)*(x^3 -230*x^2 -11586*x -81608);
T[17,37]=(x + 58)*(x^3 -356*x^2 -17964*x + 6176752);
T[17,41]=(x + 342)*(x^3 + 294*x^2 -86564*x -1638744);
T[17,43]=(x + 148)*(x^3 -556*x^2 + 51096*x + 7270272);
T[17,47]=(x -288)*(x^3 -640*x^2 + 85328*x -1671168);
T[17,53]=(x -318)*(x^3 -302*x^2 -153460*x + 18162072);
T[17,59]=(x -252)*(x^3 -636*x^2 -101768*x + 49419072);
T[17,61]=(x -110)*(x^3 + 84*x^2 -124412*x -6792784);
T[17,67]=(x + 484)*(x^3 -1008*x^2 + 65040*x -765952);
T[17,71]=(x + 708)*(x^3 + 402*x^2 -589874*x -274866016);
T[17,73]=(x -362)*(x^3 -838*x^2 + 227852*x -19957512);
T[17,79]=(x + 484)*(x^3 + 594*x^2 -1121274*x -742135824);
T[17,83]=(x -756)*(x^3 + 2396*x^2 + 1488888*x + 142080704);
T[17,89]=(x + 774)*(x^3 + 170*x^2 -1072304*x -446571376);
T[17,97]=(x + 382)*(x^3 + 270*x^2 -586100*x -206623000);

T[18,2]=(x -2)*(x^2 + 8)*(x + 2)^2;
T[18,3]=(x + 3)*(x )^4;
T[18,5]=(x + 6)*(x -6)^2*(x )^2;
T[18,7]=(x -20)^2*(x + 16)^3;
T[18,11]=(x + 12)*(x -12)^2*(x )^2;
T[18,13]=(x + 70)^2*(x -38)^3;
T[18,17]=(x -126)*(x + 126)^2*(x )^2;
T[18,19]=(x -56)^2*(x -20)^3;
T[18,23]=(x + 168)*(x -168)^2*(x )^2;
T[18,29]=(x + 30)*(x -30)^2*(x )^2;
T[18,31]=(x -308)^2*(x + 88)^3;
T[18,37]=(x -110)^2*(x -254)^3;
T[18,41]=(x + 42)*(x -42)^2*(x )^2;
T[18,43]=(x + 520)^2*(x + 52)^3;
T[18,47]=(x -96)*(x + 96)^2*(x )^2;
T[18,53]=(x + 198)*(x -198)^2*(x )^2;
T[18,59]=(x -660)*(x + 660)^2*(x )^2;
T[18,61]=(x -182)^2*(x + 538)^3;
T[18,67]=(x + 880)^2*(x -884)^3;
T[18,71]=(x + 792)*(x -792)^2*(x )^2;
T[18,73]=(x -1190)^2*(x -218)^3;
T[18,79]=(x -884)^2*(x + 520)^3;
T[18,83]=(x -492)*(x + 492)^2*(x )^2;
T[18,89]=(x + 810)*(x -810)^2*(x )^2;
T[18,97]=(x + 1330)^2*(x -1154)^3;

T[19,2]=(x + 3)*(x^3 -3*x^2 -18*x + 38);
T[19,3]=(x + 5)*(x^3 -x^2 -64*x + 172);
T[19,5]=(x + 12)*(x^3 -14*x^2 -71*x -72);
T[19,7]=(x -11)*(x^3 + 35*x^2 + 147*x -2319);
T[19,11]=(x + 54)*(x^3 -16*x^2 -51*x + 1182);
T[19,13]=(x -11)*(x^3 -65*x^2 + 744*x + 4848);
T[19,17]=(x + 93)*(x^3 -29*x^2 -9225*x -218619);
T[19,19]=(x -19)*(x + 19)^3;
T[19,23]=(x -183)*(x^3 + 101*x^2 -4624*x -378176);
T[19,29]=(x + 249)*(x^3 -377*x^2 + 8768*x + 4544396);
T[19,31]=(x -56)*(x^3 + 140*x^2 -37616*x -2444352);
T[19,37]=(x + 250)*(x^3 + 290*x^2 -46772*x -10001448);
T[19,41]=(x -240)*(x^3 -956*x^2 + 302116*x -31578144);
T[19,43]=(x + 196)*(x^3 + 570*x^2 -92583*x -65963504);
T[19,47]=(x + 168)*(x^3 -66*x^2 -31311*x + 2940624);
T[19,53]=(x -435)*(x^3 -817*x^2 + 211080*x -16824816);
T[19,59]=(x -195)*(x^3 -265*x^2 -157992*x + 31557612);
T[19,61]=(x + 358)*(x^3 -988*x^2 + 45701*x + 76875874);
T[19,67]=(x + 961)*(x^3 + 207*x^2 -59928*x -7515248);
T[19,71]=(x + 246)*(x^3 -846*x^2 + 172860*x + 1727928);
T[19,73]=(x -353)*(x^3 -627*x^2 -355485*x + 145581839);
T[19,79]=(x + 34)*(x^3 -382*x^2 -669888*x -56023488);
T[19,83]=(x -234)*(x^3 + 766*x^2 -35648*x -78728352);
T[19,89]=(x + 168)*(x^3 + 172*x^2 -844784*x -76923456);
T[19,97]=(x -758)*(x^3 + 2450*x^2 + 1384544*x + 196438912);

T[20,2]=(x -2)*(x^2 + 4*x + 8)*(x )^3;
T[20,3]=(x -4)*(x + 8)^2*(x -2)^3;
T[20,5]=(x + 5)^3*(x -5)^3;
T[20,7]=(x + 16)*(x + 4)^2*(x -6)^3;
T[20,11]=(x + 60)*(x -12)^2*(x -32)^3;
T[20,13]=(x -86)*(x + 58)^2*(x + 38)^3;
T[20,17]=(x -18)*(x -66)^2*(x -26)^3;
T[20,19]=(x -44)*(x + 100)^2*(x -100)^3;
T[20,23]=(x -48)*(x -132)^2*(x + 78)^3;
T[20,29]=(x + 186)*(x + 90)^2*(x + 50)^3;
T[20,31]=(x -176)*(x -152)^2*(x + 108)^3;
T[20,37]=(x -254)*(x + 34)^2*(x -266)^3;
T[20,41]=(x -186)*(x + 438)^2*(x -22)^3;
T[20,43]=(x + 100)*(x -32)^2*(x -442)^3;
T[20,47]=(x -168)*(x + 204)^2*(x + 514)^3;
T[20,53]=(x + 498)*(x -222)^2*(x -2)^3;
T[20,59]=(x + 252)*(x -420)^2*(x -500)^3;
T[20,61]=(x + 58)*(x -902)^2*(x + 518)^3;
T[20,67]=(x + 1036)*(x + 1024)^2*(x -126)^3;
T[20,71]=(x -168)*(x -432)^2*(x -412)^3;
T[20,73]=(x -506)*(x -362)^2*(x + 878)^3;
T[20,79]=(x -272)*(x + 160)^2*(x -600)^3;
T[20,83]=(x -948)*(x -72)^2*(x -282)^3;
T[20,89]=(x + 1014)*(x -810)^2*(x + 150)^3;
T[20,97]=(x + 766)*(x -1106)^2*(x -386)^3;

T[21,2]=(x -4)*(x + 3)*(x^2 + 3*x -12)*(x + 1)^2;
T[21,3]=(x^2 + 2*x + 27)*(x + 3)^2*(x -3)^2;
T[21,5]=(x + 4)*(x + 18)*(x^2 -6*x -48)*(x -16)^2;
T[21,7]=(x + 7)^3*(x -7)^3;
T[21,11]=(x + 36)*(x -62)*(x^2 + 6*x -1416)*(x + 8)^2;
T[21,13]=(x + 34)*(x + 62)*(x^2 -16*x -1988)*(x -28)^2;
T[21,17]=(x -84)*(x -42)*(x^2 + 6*x -48)*(x -54)^2;
T[21,19]=(x -100)*(x + 124)*(x^2 -64*x -7184)*(x + 110)^2;
T[21,23]=(x + 42)*(x^2 -6*x -16464)*(x )*(x -48)^2;
T[21,29]=(x + 10)*(x -102)*(x^2 + 252*x + 7668)*(x + 110)^2;
T[21,31]=(x + 160)*(x + 48)*(x^2 -40*x -73472)*(x -12)^2;
T[21,37]=(x -398)*(x^2 + 248*x -3092)*(x + 246)^3;
T[21,41]=(x + 318)*(x + 248)*(x^2 + 450*x + 37800)*(x -182)^2;
T[21,43]=(x -68)*(x + 268)*(x^2 -376*x + 2512)*(x -128)^2;
T[21,47]=(x -240)*(x^2 + 12*x -65856)*(x -324)^3;
T[21,53]=(x + 498)*(x -258)*(x^2 + 1104*x + 304476)*(x + 162)^2;
T[21,59]=(x + 132)*(x -120)*(x^2 -804*x -30144)*(x -810)^2;
T[21,61]=(x -622)*(x -398)*(x^2 + 428*x -28076)*(x + 488)^2;
T[21,67]=(x -904)*(x -92)*(x^2 -148*x -160736)*(x -244)^2;
T[21,71]=(x + 678)*(x + 720)*(x^2 -954*x + 214704)*(x + 768)^2;
T[21,73]=(x + 642)*(x + 502)*(x^2 -1072*x + 285244)*(x + 702)^2;
T[21,79]=(x + 1024)*(x -740)*(x^2 + 572*x -84416)*(x -440)^2;
T[21,83]=(x + 204)*(x -468)*(x^2 -1944*x + 813456)*(x + 1302)^2;
T[21,89]=(x -200)*(x -354)*(x^2 -366*x -253848)*(x -730)^2;
T[21,97]=(x + 1266)*(x + 286)*(x^2 -808*x -922292)*(x -294)^2;

T[22,2]=(x -2)*(x^4 -2*x^3 + 14*x^2 -16*x + 64)*(x + 2)^2;
T[22,3]=(x + 7)*(x -1)*(x -4)*(x^2 + 2*x -47)^2;
T[22,5]=(x + 3)*(x + 19)*(x -14)*(x^2 -2*x -191)^2;
T[22,7]=(x -14)*(x + 8)*(x + 10)*(x^2 -20*x + 52)^2;
T[22,11]=(x -11)^2*(x + 11)^5;
T[22,13]=(x + 50)*(x + 16)*(x + 72)*(x^2 -80*x + 400)^2;
T[22,17]=(x + 46)*(x -42)*(x -130)*(x^2 + 124*x + 3412)^2;
T[22,19]=(x + 20)*(x -116)*(x + 108)*(x^2 -72*x -9504)^2;
T[22,23]=(x -189)*(x + 107)*(x + 96)*(x^2 + 98*x -1487)^2;
T[22,29]=(x -142)*(x + 120)*(x -120)*(x^2 -144*x -4224)^2;
T[22,31]=(x -117)*(x -40)*(x + 163)*(x^2 + 34*x -2063)^2;
T[22,37]=(x + 409)*(x + 201)*(x -382)*(x^2 -54*x + 537)^2;
T[22,41]=(x + 228)*(x + 118)*(x -468)*(x^2 -536*x + 71776)^2;
T[22,43]=(x + 242)*(x -110)*(x -220)*(x^2 + 60*x + 132)^2;
T[22,47]=(x + 96)*(x -144)*(x -520)*(x^2 + 272*x -24704)^2;
T[22,53]=(x -458)*(x -90)*(x -238)*(x^2 + 492*x + 51108)^2;
T[22,59]=(x + 852)*(x + 453)*(x -435)*(x^2 -634*x + 48217)^2;
T[22,61]=(x -20)*(x -190)*(x + 668)*(x^2 -840*x + 74832)^2;
T[22,67]=(x + 97)*(x -439)*(x + 12)*(x^2 -754*x + 140929)^2;
T[22,71]=(x + 1113)*(x + 465)*(x + 112)*(x^2 + 678*x + 97593)^2;
T[22,73]=(x + 72)*(x + 6)*(x -848)*(x^2 + 400*x -617072)^2;
T[22,79]=(x -304)*(x + 70)*(x + 742)*(x^2 -316*x -1266044)^2;
T[22,83]=(x -358)*(x -820)*(x -438)*(x^2 -468*x + 11556)^2;
T[22,89]=(x -202)*(x + 273)*(x -895)*(x^2 + 1842*x + 525489)^2;
T[22,97]=(x -761)*(x + 1406)*(x -409)*(x^2 -2194*x + 1141201)^2;

T[23,2]=(x + 2)*(x^4 -2*x^3 -24*x^2 + 61*x + 2);
T[23,3]=(x + 5)*(x^4 -7*x^3 -13*x^2 + 131*x -152);
T[23,5]=(x + 6)*(x^4 -14*x^3 -244*x^2 + 4832*x -19904);
T[23,7]=(x + 8)*(x^4 -16*x^3 -1168*x^2 + 11080*x + 301984);
T[23,11]=(x -34)*(x^4 -8*x^3 -2488*x^2 + 56152*x -81440);
T[23,13]=(x + 57)*(x^4 -111*x^3 + 529*x^2 + 125283*x + 1322658);
T[23,17]=(x + 80)*(x^4 -98*x^3 -1008*x^2 + 104248*x -855280);
T[23,19]=(x + 70)*(x^4 -96*x^3 -21208*x^2 + 1311040*x + 66996944);
T[23,23]=(x -23)*(x + 23)^4;
T[23,29]=(x -245)*(x^4 -21*x^3 -54527*x^2 + 2769801*x + 325399050);
T[23,31]=(x -103)*(x^4 + 193*x^3 -685*x^2 -1511421*x -58104720);
T[23,37]=(x + 298)*(x^4 -170*x^3 -135012*x^2 + 10946176*x + 2389345472);
T[23,41]=(x -95)*(x^4 + 125*x^3 -13663*x^2 -543281*x + 29467114);
T[23,43]=(x -88)*(x^4 -2*x^3 -80432*x^2 -6041088*x + 78004224);
T[23,47]=(x + 357)*(x^4 + 677*x^3 + 26651*x^2 -34063993*x -3169103456);
T[23,53]=(x + 414)*(x^4 + 230*x^3 -333612*x^2 -80558392*x + 7631805536);
T[23,59]=(x + 408)*(x^4 + 1140*x^3 + 401280*x^2 + 44165184*x + 1146071296);
T[23,61]=(x -822)*(x^4 -754*x^3 + 135708*x^2 -513304*x -621762112);
T[23,67]=(x -926)*(x^4 -488*x^3 -260568*x^2 + 130952104*x -1826338144);
T[23,71]=(x -335)*(x^4 + 401*x^3 -687701*x^2 -298072101*x -5581505296);
T[23,73]=(x + 899)*(x^4 -1509*x^3 + 425877*x^2 + 92572593*x -14695752674);
T[23,79]=(x + 1322)*(x^4 + 838*x^3 -181084*x^2 -297551352*x -61908677856);
T[23,83]=(x + 36)*(x^4 -142*x^3 -383600*x^2 + 88041768*x + 7015211408);
T[23,89]=(x + 460)*(x^4 -2342*x^3 + 1462056*x^2 + 88039456*x -213195182848);
T[23,97]=(x + 964)*(x^4 -1062*x^3 -1780792*x^2 + 721154456*x + 60054540368);

T[24,2]=(x + 2)*(x )^7;
T[24,3]=(x^2 + 4*x + 27)*(x -3)^3*(x + 3)^3;
T[24,5]=(x -14)*(x + 18)^2*(x + 2)^2*(x -6)^3;
T[24,7]=(x + 24)*(x -24)^2*(x -8)^2*(x + 16)^3;
T[24,11]=(x + 28)*(x + 44)^2*(x -36)^2*(x -12)^3;
T[24,13]=(x + 74)*(x + 10)^2*(x -22)^2*(x -38)^3;
T[24,17]=(x -82)*(x -50)^2*(x -18)^2*(x + 126)^3;
T[24,19]=(x -92)*(x -44)^2*(x + 100)^2*(x -20)^3;
T[24,23]=(x -8)*(x + 56)^2*(x -72)^2*(x -168)^3;
T[24,29]=(x + 138)*(x -198)^2*(x + 234)^2*(x -30)^3;
T[24,31]=(x -80)*(x + 16)^2*(x + 160)^2*(x + 88)^3;
T[24,37]=(x -30)*(x + 162)^2*(x + 226)^2*(x -254)^3;
T[24,41]=(x -282)*(x -90)^2*(x + 198)^2*(x -42)^3;
T[24,43]=(x -4)*(x -452)^2*(x -52)^2*(x + 52)^3;
T[24,47]=(x -240)*(x -528)^2*(x -432)^2*(x + 96)^3;
T[24,53]=(x + 130)*(x + 242)^2*(x -414)^2*(x -198)^3;
T[24,59]=(x -596)*(x + 684)^2*(x + 668)^2*(x + 660)^3;
T[24,61]=(x + 218)*(x -550)^2*(x -422)^2*(x + 538)^3;
T[24,67]=(x + 436)*(x -188)^2*(x -332)^2*(x -884)^3;
T[24,71]=(x -856)*(x + 360)^2*(x -728)^2*(x -792)^3;
T[24,73]=(x + 998)*(x -154)^2*(x -26)^2*(x -218)^3;
T[24,79]=(x + 32)*(x + 656)^2*(x -512)^2*(x + 520)^3;
T[24,83]=(x + 1508)*(x -236)^2*(x + 1188)^2*(x + 492)^3;
T[24,89]=(x + 246)*(x + 630)^2*(x -714)^2*(x -810)^3;
T[24,97]=(x -866)*(x + 1054)^2*(x + 478)^2*(x -1154)^3;

T[25,2]=(x -4)*(x + 1)*(x -1)*(x + 4)^2;
T[25,3]=(x -7)*(x + 7)*(x + 2)*(x -2)^2;
T[25,5]=(x + 5)*(x )^4;
T[25,7]=(x + 6)^2*(x -6)^3;
T[25,11]=(x + 43)^2*(x -32)^3;
T[25,13]=(x + 28)*(x -38)*(x -28)*(x + 38)^2;
T[25,17]=(x -91)*(x + 91)*(x + 26)*(x -26)^2;
T[25,19]=(x + 35)^2*(x -100)^3;
T[25,23]=(x -78)*(x + 162)*(x -162)*(x + 78)^2;
T[25,29]=(x -160)^2*(x + 50)^3;
T[25,31]=(x -42)^2*(x + 108)^3;
T[25,37]=(x + 314)*(x -314)*(x + 266)*(x -266)^2;
T[25,41]=(x + 203)^2*(x -22)^3;
T[25,43]=(x + 442)*(x + 92)*(x -92)*(x -442)^2;
T[25,47]=(x + 196)*(x -196)*(x -514)*(x + 514)^2;
T[25,53]=(x -82)*(x + 82)*(x + 2)*(x -2)^2;
T[25,59]=(x + 280)^2*(x -500)^3;
T[25,61]=(x + 518)^5;
T[25,67]=(x + 126)*(x + 141)*(x -141)*(x -126)^2;
T[25,71]=(x -412)^5;
T[25,73]=(x + 763)*(x -763)*(x -878)*(x + 878)^2;
T[25,79]=(x -510)^2*(x -600)^3;
T[25,83]=(x -777)*(x + 282)*(x + 777)*(x -282)^2;
T[25,89]=(x + 945)^2*(x + 150)^3;
T[25,97]=(x + 386)*(x + 1246)*(x -1246)*(x -386)^2;

T[26,2]=(x + 2)*(x^2 + 5*x + 8)*(x^4 -x^3 + 12*x^2 -8*x + 64)*(x -2)^2;
T[26,3]=(x + 1)*(x -3)*(x -4)*(x + 7)^2*(x^2 -5*x -32)^2;
T[26,5]=(x + 18)*(x -11)*(x -17)*(x + 7)^2*(x^2 + 3*x -2)^2;
T[26,7]=(x + 35)*(x -19)*(x -20)*(x + 13)^2*(x^2 + 9*x -494)^2;
T[26,11]=(x -2)*(x + 38)*(x + 48)*(x + 26)^2*(x^2 -80*x + 988)^2;
T[26,13]=(x -13)^4*(x + 13)^5;
T[26,17]=(x + 51)*(x -66)*(x + 19)*(x -77)^2*(x^2 -19*x -1138)^2;
T[26,19]=(x -90)*(x -94)*(x + 16)*(x + 126)^2*(x^2 + 84*x -2588)^2;
T[26,23]=(x + 52)*(x + 72)*(x -168)*(x + 96)^2*(x^2 -196*x + 8992)^2;
T[26,29]=(x -6)*(x + 190)*(x -246)*(x + 82)^2*(x^2 + 44*x -38684)^2;
T[26,31]=(x + 100)*(x -292)*(x -20)*(x -196)^2*(x^2 + 86*x -3064)^2;
T[26,37]=(x -254)*(x + 11)*(x + 441)*(x + 131)^2*(x^2 -209*x + 10814)^2;
T[26,41]=(x -312)*(x + 390)*(x + 280)*(x -336)^2*(x^2 + 230*x + 11168)^2;
T[26,43]=(x -373)*(x + 124)*(x -241)*(x + 201)^2*(x^2 -287*x -66316)^2;
T[26,47]=(x + 41)*(x -137)*(x + 468)*(x + 105)^2*(x^2 -435*x -14918)^2;
T[26,53]=(x + 232)*(x -558)*(x -468)*(x + 432)^2*(x^2 + 118*x -344)^2;
T[26,59]=(x -530)*(x + 96)*(x + 386)*(x + 294)^2*(x^2 + 368*x -31492)^2;
T[26,61]=(x + 826)*(x -64)*(x -592)*(x + 56)^2*(x^2 + 1058*x + 126416)^2;
T[26,67]=(x + 670)*(x + 160)*(x + 206)*(x -478)^2*(x^2 -68*x -227596)^2;
T[26,71]=(x + 863)*(x + 420)*(x -55)*(x -9)^2*(x^2 + 131*x -222494)^2;
T[26,73]=(x -362)*(x + 838)*(x + 322)*(x -98)^2*(x^2 -456*x -235316)^2;
T[26,79]=(x -1016)*(x -776)*(x + 460)*(x -1304)^2*(x^2 + 1008*x + 247216)^2;
T[26,83]=(x -528)*(x -420)*(x )*(x + 308)^2*(x^2 -1958*x + 817664)^2;
T[26,89]=(x -1626)*(x + 934)*(x -870)*(x + 1190)^2*(x^2 + 720*x -510212)^2;
T[26,97]=(x + 346)*(x + 1154)*(x + 1294)*(x -70)^2*(x^2 + 928*x -881476)^2;

T[27,2]=(x -3)*(x + 3)*(x^2 -18)*(x )^2;
T[27,3]=(x )^6;
T[27,5]=(x + 15)*(x -15)*(x^2 -288)*(x )^2;
T[27,7]=(x + 25)^2*(x -11)^2*(x -20)^2;
T[27,11]=(x -15)*(x + 15)*(x^2 -288)*(x )^2;
T[27,13]=(x -20)^2*(x -29)^2*(x + 70)^2;
T[27,17]=(x + 72)*(x -72)*(x^2 -2592)*(x )^2;
T[27,19]=(x -56)^2*(x -2)^2*(x -29)^2;
T[27,23]=(x + 114)*(x -114)*(x^2 -7200)*(x )^2;
T[27,29]=(x + 30)*(x -30)*(x^2 -73728)*(x )^2;
T[27,31]=(x -101)^2*(x -308)^2*(x + 268)^2;
T[27,37]=(x -110)^2*(x -83)^2*(x + 430)^2;
T[27,41]=(x + 30)*(x -30)*(x^2 -73728)*(x )^2;
T[27,43]=(x -110)^2*(x + 520)^2*(x + 232)^2;
T[27,47]=(x -330)*(x + 330)*(x^2 -152352)*(x )^2;
T[27,53]=(x -621)*(x + 621)*(x^2 -93312)*(x )^2;
T[27,59]=(x -660)*(x + 660)*(x^2 -83232)*(x )^2;
T[27,61]=(x + 376)^2*(x -767)^2*(x -182)^2;
T[27,67]=(x + 880)^2*(x + 511)^2*(x + 250)^2;
T[27,71]=(x -360)*(x + 360)*(x^2 -508032)*(x )^2;
T[27,73]=(x -785)^2*(x -137)^2*(x -1190)^2;
T[27,79]=(x -884)^2*(x -488)^2*(x + 475)^2;
T[27,83]=(x + 489)*(x -489)*(x^2 -332928)*(x )^2;
T[27,89]=(x -450)*(x + 450)*(x^2 -64800)*(x )^2;
T[27,97]=(x + 1105)^2*(x -821)^2*(x + 1330)^2;

T[28,2]=(x + 2)*(x -2)*(x^2 + x + 8)*(x )^5;
T[28,3]=(x -4)*(x + 10)*(x -8)^2*(x + 2)^5;
T[28,5]=(x -6)*(x + 8)*(x + 14)^2*(x + 12)^2*(x -16)^3;
T[28,7]=(x -7)^3*(x + 7)^6;
T[28,11]=(x + 12)*(x + 40)*(x + 28)^2*(x -48)^2*(x + 8)^3;
T[28,13]=(x + 82)*(x + 12)*(x -56)^2*(x -18)^2*(x -28)^3;
T[28,17]=(x + 30)*(x + 58)*(x -74)^2*(x + 114)^2*(x -54)^3;
T[28,19]=(x -26)*(x -68)*(x -80)^2*(x -2)^2*(x + 110)^3;
T[28,23]=(x -216)*(x + 64)*(x + 112)^2*(x + 120)^2*(x -48)^3;
T[28,29]=(x + 62)*(x -246)*(x -190)^2*(x + 54)^2*(x + 110)^3;
T[28,31]=(x + 112)*(x -252)*(x -236)^2*(x -72)^2*(x -12)^3;
T[28,37]=(x -26)*(x -110)*(x + 346)^2*(x -146)^2*(x + 246)^3;
T[28,41]=(x + 246)*(x -6)*(x -162)^2*(x -126)^2*(x -182)^3;
T[28,43]=(x -416)*(x + 172)*(x + 376)^2*(x + 412)^2*(x -128)^3;
T[28,47]=(x + 396)*(x -192)*(x + 12)^2*(x -24)^2*(x -324)^3;
T[28,53]=(x -558)*(x + 450)*(x -318)^2*(x -174)^2*(x + 162)^3;
T[28,59]=(x -274)*(x -540)*(x + 200)^2*(x -138)^2*(x -810)^3;
T[28,61]=(x + 576)*(x -110)*(x -380)^2*(x + 198)^2*(x + 488)^3;
T[28,67]=(x + 476)*(x -140)*(x + 716)^2*(x + 484)^2*(x -244)^3;
T[28,71]=(x + 448)*(x + 840)*(x -392)^2*(x -576)^2*(x + 768)^3;
T[28,73]=(x + 158)*(x + 550)*(x -538)^2*(x + 1150)^2*(x + 702)^3;
T[28,79]=(x + 936)*(x + 208)*(x -776)^2*(x -240)^2*(x -440)^3;
T[28,83]=(x -530)*(x -516)*(x -378)^2*(x + 1072)^2*(x + 1302)^3;
T[28,89]=(x + 1398)*(x -810)^2*(x -730)^3*(x + 390)^3;
T[28,97]=(x -214)*(x -1586)*(x + 1330)^2*(x -1354)^2*(x -294)^3;

T[29,2]=(x^2 + 2*x -1)*(x^5 -33*x^3 + 28*x^2 + 192*x -256);
T[29,3]=(x^2 + 10*x + 7)*(x^5 -8*x^4 -52*x^3 + 322*x^2 + 187*x -1042);
T[29,5]=(x^2 + 10*x -7)*(x^5 -10*x^4 -366*x^3 + 2904*x^2 + 21453*x -55534);
T[29,7]=(x^2 + 16*x -136)*(x^5 -40*x^4 + 84*x^3 + 10768*x^2 -100288*x + 243968);
T[29,11]=(x^2 + 26*x -2569)*(x^5 -12*x^4 -4892*x^3 + 50174*x^2 + 4398787*x + 30997958);
T[29,13]=(x^2 + 26*x -1183)*(x^5 -14*x^4 -7558*x^3 + 133312*x^2 + 1294565*x -13078418);
T[29,17]=(x^2 -60*x + 252)*(x^5 -66*x^4 -2444*x^3 + 205448*x^2 -3694112*x + 19935872);
T[29,19]=(x^2 + 220*x + 10052)*(x^5 -214*x^4 + 15136*x^3 -342272*x^2 -1091328*x + 19441152);
T[29,23]=(x^2 -52*x -3932)*(x^5 -164*x^4 -18812*x^3 + 3316000*x^2 + 24181632*x -7938109184);
T[29,29]=(x -29)^2*(x + 29)^5;
T[29,31]=(x^2 + 294*x + 13671)*(x^5 -420*x^4 + 45552*x^3 -1363354*x^2 -5574361*x -2094346);
T[29,37]=(x^2 -312*x + 18064)*(x^5 -378*x^4 -69792*x^3 + 30918912*x^2 -2452994048*x + 23564115968);
T[29,41]=(x^5 + 1158*x^4 + 462908*x^3 + 74423880*x^2 + 4409752000*x + 59613728000)*(x^2 -40*x -37688);
T[29,43]=(x^2 + 322*x -32561)*(x^5 + 204*x^4 -94388*x^3 -11715386*x^2 + 1855476667*x + 198643410886);
T[29,47]=(x^2 + 130*x -81473)*(x^5 -248*x^4 -332696*x^3 + 76509294*x^2 + 8179300863*x -203435244846);
T[29,53]=(x^2 -1002*x + 221233)*(x^5 + 554*x^4 -38334*x^3 -72740336*x^2 -14144920995*x -786854101018);
T[29,59]=(x^2 + 900*x + 79492)*(x^5 -440*x^4 -95868*x^3 + 42988400*x^2 -4107227200*x + 109032704000);
T[29,61]=(x^2 + 948*x + 161308)*(x^5 -618*x^4 -204156*x^3 + 206442728*x^2 -41066569056*x + 2140697762176);
T[29,67]=(x^2 -320*x -442912)*(x^5 -1164*x^4 -251984*x^3 + 457331392*x^2 + 25268520960*x -39308070146048);
T[29,71]=(x^5 + 692*x^4 -876848*x^3 -572202480*x^2 + 153248941872*x + 98341318953856)*(x^2 + 660*x + 106588);
T[29,73]=(x^5 + 1950*x^4 + 1168032*x^3 + 267870432*x^2 + 19306358272*x + 7201878016)*(x^2 -648*x -714224);
T[29,79]=(x^2 -258*x -215921)*(x^5 -272*x^4 -1497888*x^3 + 545111474*x^2 + 543174633815*x -240961986300538);
T[29,83]=(x^2 -1212*x + 359044)*(x^5 -512*x^4 -520156*x^3 + 118532752*x^2 + 85821473600*x + 6057622580224);
T[29,89]=(x^5 -866*x^4 -852420*x^3 + 69193352*x^2 + 138056266176*x + 21549994365568)*(x^2 -760*x -400568);
T[29,97]=(x^2 -24*x -668024)*(x^5 -1562*x^4 + 412988*x^3 + 290423688*x^2 -81033100480*x -20480102175488);

T[30,2]=(x^2 -3*x + 8)*(x^2 -x + 8)*(x^2 + 4*x + 8)^2*(x + 2)^3*(x -2)^3;
T[30,3]=(x^2 + 8*x + 27)*(x^2 -2*x + 27)^2*(x -3)^4*(x + 3)^4;
T[30,5]=(x^2 -6*x + 125)*(x -5)^5*(x + 5)^7;
T[30,7]=(x -32)*(x -20)^2*(x + 16)^2*(x + 24)^2*(x + 4)^3*(x -6)^4;
T[30,11]=(x + 48)*(x + 60)*(x -52)^2*(x + 24)^2*(x -12)^4*(x -32)^4;
T[30,13]=(x + 34)*(x -2)*(x -22)^2*(x -74)^2*(x + 58)^2*(x -38)^2*(x + 38)^4;
T[30,17]=(x -42)*(x + 114)*(x + 126)^2*(x -66)^2*(x + 14)^2*(x -54)^2*(x -26)^4;
T[30,19]=(x + 76)*(x -140)*(x + 100)^2*(x + 124)^2*(x + 20)^2*(x -20)^2*(x -100)^4;
T[30,23]=(x -72)*(x )*(x + 168)^2*(x -132)^2*(x + 120)^2*(x -168)^2*(x + 78)^4;
T[30,29]=(x -210)*(x -6)*(x -30)^2*(x -230)^2*(x + 90)^2*(x + 78)^2*(x + 50)^4;
T[30,31]=(x + 232)*(x -272)*(x + 88)^2*(x -152)^2*(x + 288)^2*(x -200)^2*(x + 108)^4;
T[30,37]=(x -134)*(x + 334)*(x + 70)^2*(x -254)^2*(x + 34)^4*(x -266)^4;
T[30,41]=(x -234)*(x + 198)*(x + 438)^2*(x -122)^2*(x -42)^2*(x -330)^2*(x -22)^4;
T[30,43]=(x + 412)*(x + 268)*(x + 188)^2*(x -32)^2*(x + 52)^2*(x -92)^2*(x -442)^4;
T[30,47]=(x + 360)*(x -216)*(x + 96)^2*(x + 204)^2*(x + 24)^2*(x -256)^2*(x + 514)^4;
T[30,53]=(x + 78)*(x -198)^2*(x -450)^2*(x + 338)^2*(x -222)^3*(x -2)^4;
T[30,59]=(x -660)*(x -240)*(x -24)^2*(x -420)^2*(x + 660)^2*(x -100)^2*(x -500)^4;
T[30,61]=(x + 490)*(x -302)*(x + 322)^2*(x -742)^2*(x -902)^2*(x + 538)^2*(x + 518)^4;
T[30,67]=(x -812)*(x -596)*(x -884)^2*(x + 84)^2*(x + 196)^2*(x + 1024)^2*(x -126)^4;
T[30,71]=(x -120)*(x + 768)*(x + 288)^2*(x -432)^2*(x + 328)^2*(x -792)^2*(x -412)^4;
T[30,73]=(x -746)*(x + 478)*(x -362)^2*(x + 38)^2*(x -218)^2*(x + 430)^2*(x + 878)^4;
T[30,79]=(x + 640)*(x -152)*(x + 160)^2*(x + 240)^2*(x -600)^4*(x + 520)^4;
T[30,83]=(x + 348)*(x + 804)*(x -72)^2*(x -1212)^2*(x -156)^2*(x + 492)^2*(x -282)^4;
T[30,89]=(x + 678)*(x -210)*(x -1026)^2*(x -330)^2*(x + 150)^4*(x -810)^4;
T[30,97]=(x -194)*(x + 1534)*(x + 286)^2*(x -1106)^2*(x -1154)^2*(x -866)^2*(x -386)^4;

T[31,2]=(x^2 + 5*x + 2)*(x^5 -3*x^4 -30*x^3 + 79*x^2 + 167*x -386);
T[31,3]=(x^2 + 2*x -16)*(x^5 -4*x^4 -74*x^3 + 188*x^2 + 856*x + 32);
T[31,5]=(x^2 + 25*x + 118)*(x^5 -15*x^4 -433*x^3 + 6375*x^2 + 35100*x -520516);
T[31,7]=(x^2 + 19*x -16)*(x^5 -9*x^4 -429*x^3 -871*x^2 + 14520*x + 47236);
T[31,11]=(x^2 + 26*x + 16)*(x^5 -88*x^4 -562*x^3 + 176124*x^2 -1159400*x -76793648);
T[31,13]=(x^2 -64*x -676)*(x^5 + 28*x^4 -3850*x^3 -99836*x^2 + 3363368*x + 85935616);
T[31,17]=(x^2 + 84*x + 1492)*(x^5 -138*x^4 -5744*x^3 + 1416680*x^2 -62408144*x + 845793728);
T[31,19]=(x^2 + 51*x -68)*(x^5 + 43*x^4 -20013*x^3 -513799*x^2 + 84833096*x -885299824);
T[31,23]=(x^2 -10*x -12368)*(x^5 -206*x^4 -4268*x^3 + 1612992*x^2 + 31264256*x -1477525504);
T[31,29]=(x^2 + 314*x + 8312)*(x^5 -474*x^4 + 70238*x^3 -2819688*x^2 -106998096*x + 6492808496);
T[31,31]=(x -31)^2*(x + 31)^5;
T[31,37]=(x^2 -32*x -103172)*(x^5 + 508*x^4 -25650*x^3 -45066092*x^2 -7010150696*x -315180705232);
T[31,41]=(x^2 + 583*x + 48214)*(x^5 -473*x^4 -132137*x^3 + 88408661*x^2 -10289561412*x + 19192433688);
T[31,43]=(x^2 -220*x -138112)*(x^5 + 82*x^4 -232370*x^3 -20709784*x^2 + 4684410240*x -154176970896);
T[31,47]=(x^2 -512*x + 64448)*(x^5 + 644*x^4 + 35236*x^3 -32733376*x^2 -3204167808*x + 197408306432);
T[31,53]=(x^2 + 54*x -47024)*(x^5 -374*x^4 -168138*x^3 + 51574928*x^2 + 4303685312*x + 79406336128);
T[31,59]=(x^2 + 609*x + 82516)*(x^5 + 541*x^4 -489537*x^3 -253089337*x^2 + 35770388652*x + 19804492743336);
T[31,61]=(x^2 -372*x + 33508)*(x^5 -440*x^4 -322674*x^3 -19295188*x^2 + 8535138216*x + 922927740352);
T[31,67]=(x^2 -424*x -199856)*(x^5 + 1884*x^4 + 946944*x^3 -65348608*x^2 -137973989376*x -22262005628928);
T[31,71]=(x^2 + 317*x -197752)*(x^5 -491*x^4 -1083549*x^3 + 466152431*x^2 + 241993512960*x -69573929276736);
T[31,73]=(x^2 + 1840*x + 781052)*(x^5 -302*x^4 -630904*x^3 + 262079248*x^2 -17267778608*x -1852644259168);
T[31,79]=(x^2 + 1132*x + 246304)*(x^5 + 1244*x^4 -778144*x^3 -963316120*x^2 -63376557280*x -59985571648);
T[31,83]=(x^2 -1458*x + 459616)*(x^5 -1544*x^4 + 521158*x^3 + 182720820*x^2 -94455176136*x + 657431598704);
T[31,89]=(x^2 -418*x -165776)*(x^5 -3056*x^4 + 2201156*x^3 + 788987256*x^2 -1002344499360*x + 68090734165536);
T[31,97]=(x^2 -1363*x + 205154)*(x^5 -583*x^4 -2505609*x^3 + 1000257787*x^2 + 1103001039468*x -31148274036888);

T[32,2]=(x )^8;
T[32,3]=(x -8)*(x + 8)*(x )*(x -4)^2*(x + 4)^3;
T[32,5]=(x -22)*(x + 10)^2*(x + 2)^5;
T[32,7]=(x + 16)*(x -16)*(x )*(x + 24)^2*(x -24)^3;
T[32,11]=(x -40)*(x + 40)*(x )*(x -44)^2*(x + 44)^3;
T[32,13]=(x + 18)*(x + 50)^2*(x -22)^5;
T[32,17]=(x + 94)*(x + 30)^2*(x -50)^5;
T[32,19]=(x -40)*(x + 40)*(x )*(x + 44)^2*(x -44)^3;
T[32,23]=(x -48)*(x + 48)*(x )*(x -56)^2*(x + 56)^3;
T[32,29]=(x + 130)*(x + 34)^2*(x -198)^5;
T[32,31]=(x -320)*(x + 320)*(x )*(x -160)^2*(x + 160)^3;
T[32,37]=(x -214)*(x -310)^2*(x + 162)^5;
T[32,41]=(x + 230)*(x -410)^2*(x + 198)^5;
T[32,43]=(x + 152)*(x -152)*(x )*(x + 52)^2*(x -52)^3;
T[32,47]=(x + 416)*(x -416)*(x )*(x + 528)^2*(x -528)^3;
T[32,53]=(x -518)*(x + 410)^2*(x + 242)^5;
T[32,59]=(x + 200)*(x -200)*(x )*(x -668)^2*(x + 668)^3;
T[32,61]=(x -830)*(x -30)^2*(x -550)^5;
T[32,67]=(x + 776)*(x -776)*(x )*(x + 188)^2*(x -188)^3;
T[32,71]=(x + 400)*(x -400)*(x )*(x + 728)^2*(x -728)^3;
T[32,73]=(x -1098)*(x + 630)^2*(x -154)^5;
T[32,79]=(x -1120)*(x + 1120)*(x )*(x -656)^2*(x + 656)^3;
T[32,83]=(x -552)*(x + 552)*(x )*(x + 236)^2*(x -236)^3;
T[32,89]=(x + 1670)*(x + 326)^2*(x -714)^5;
T[32,97]=(x -594)*(x + 110)^2*(x + 478)^5;

T[33,2]=(x + 1)*(x + 5)*(x^2 -x -8)*(x^2 -x -24)*(x^2 -2*x -2)^2;
T[33,3]=(x^4 + 2*x^3 + 7*x^2 + 54*x + 729)*(x + 3)^3*(x -3)^3;
T[33,5]=(x + 4)*(x + 14)*(x^2 -16*x -68)*(x^2 + 14*x -48)*(x^2 -2*x -191)^2;
T[33,7]=(x + 32)*(x + 26)*(x^2 -24*x -244)*(x^2 -2*x -32)*(x^2 -20*x + 52)^2;
T[33,11]=(x -11)^3*(x + 11)^7;
T[33,13]=(x + 32)*(x + 38)*(x^2 -30*x + 128)*(x^2 + 76*x + 916)*(x^2 -80*x + 400)^2;
T[33,17]=(x + 2)*(x -74)*(x^2 -106*x -1944)*(x^2 + 26*x -7256)*(x^2 + 124*x + 3412)^2;
T[33,19]=(x + 60)*(x -72)*(x^2 -50*x + 528)*(x^2 + 54*x -1944)*(x^2 -72*x -9504)^2;
T[33,23]=(x -68)*(x + 182)*(x^2 -134*x + 2064)*(x -112)^2*(x^2 + 98*x -1487)^2;
T[33,29]=(x + 54)*(x + 90)*(x^2 + 198*x + 8928)*(x^2 -222*x -5136)*(x^2 -144*x -4224)^2;
T[33,31]=(x + 8)*(x + 152)*(x^2 -360*x + 30848)*(x^2 + 40*x -88832)*(x^2 + 34*x -2063)^2;
T[33,37]=(x -174)*(x + 66)*(x^2 + 48*x -15396)*(x^2 + 328*x -38676)*(x^2 -54*x + 537)^2;
T[33,41]=(x -94)*(x -422)*(x^2 + 494*x + 60976)*(x^2 + 782*x + 148128)*(x^2 -536*x + 71776)^2;
T[33,43]=(x -408)*(x + 528)*(x^2 -386*x + 20856)*(x^2 + 66*x -59928)*(x^2 + 60*x + 132)^2;
T[33,47]=(x + 506)*(x + 340)*(x^2 -266*x -115104)*(x^2 + 64*x -17984)*(x^2 + 272*x -24704)^2;
T[33,53]=(x -348)*(x + 438)*(x^2 + 84*x -133404)*(x^2 + 522*x -2592)*(x^2 + 492*x + 51108)^2;
T[33,59]=(x + 200)*(x -20)*(x^2 + 172*x -235104)*(x -196)^2*(x^2 -634*x + 48217)^2;
T[33,61]=(x -132)*(x -570)*(x^2 + 1104*x + 282396)*(x^2 + 778*x + 123288)*(x^2 -840*x + 74832)^2;
T[33,67]=(x + 460)*(x + 1036)*(x^2 -928*x + 24688)*(x^2 + 776*x -72944)*(x^2 -754*x + 140929)^2;
T[33,71]=(x -762)*(x + 1092)*(x^2 -630*x + 28512)*(x^2 -456*x -227328)*(x^2 + 678*x + 97593)^2;
T[33,73]=(x + 542)*(x -562)*(x^2 -1296*x + 400892)*(x^2 + 592*x -436292)*(x^2 + 400*x -617072)^2;
T[33,79]=(x + 550)*(x + 16)*(x^2 + 230*x -31952)*(x^2 -652*x -396572)*(x^2 -316*x -1266044)^2;
T[33,83]=(x + 132)*(x -372)*(x^2 -348*x -835776)*(x^2 + 324*x -563904)*(x^2 -468*x + 11556)^2;
T[33,89]=(x + 966)*(x -570)*(x^2 -972*x + 235668)*(x^2 + 756*x + 17172)*(x^2 + 1842*x + 525489)^2;
T[33,97]=(x -14)*(x + 526)*(x^2 + 452*x -842876)*(x^2 + 1184*x -1104836)*(x^2 -2194*x + 1141201)^2;

T[34,2]=(x^2 + 3*x + 8)*(x^6 -x^5 + 16*x^3 -64*x + 512)*(x -2)^2*(x + 2)^2;
T[34,3]=(x^2 -6*x -4)*(x + 2)^2*(x + 8)^2*(x^3 -4*x^2 -62*x + 204)^2;
T[34,5]=(x -16)*(x + 18)*(x^2 + 4*x -204)*(x -6)^2*(x^3 + 8*x^2 -44*x + 32)^2;
T[34,7]=(x -24)*(x + 10)*(x^2 + 6*x -4)*(x + 28)^2*(x^3 -22*x^2 -138*x + 792)^2;
T[34,11]=(x -62)*(x + 6)*(x^2 + 6*x -2916)*(x + 24)^2*(x^3 + 28*x^2 -1366*x -4692)^2;
T[34,13]=(x -74)*(x + 62)*(x^2 + 64*x -1524)*(x + 58)^2*(x^3 -30*x^2 -1472*x -9392)^2;
T[34,17]=(x -17)^5*(x + 17)^7;
T[34,19]=(x + 88)*(x + 20)*(x^2 + 36*x -2224)*(x -116)^2*(x^3 -80*x^2 -4632*x + 340128)^2;
T[34,23]=(x + 12)*(x + 114)*(x^2 -42*x -612)*(x + 60)^2*(x^3 -142*x^2 -15770*x + 1600544)^2;
T[34,29]=(x -80)*(x + 90)*(x^2 -428*x + 40596)*(x -30)^2*(x^3 + 456*x^2 + 53908*x + 1518624)^2;
T[34,31]=(x + 310)*(x + 208)*(x^2 -86*x -5028)*(x + 172)^2*(x^3 -230*x^2 -11586*x -81608)^2;
T[34,37]=(x -86)*(x + 356)*(x^2 -340*x + 21412)*(x + 58)^2*(x^3 -356*x^2 -17964*x + 6176752)^2;
T[34,41]=(x -22)*(x -90)*(x^2 -404*x -59868)*(x + 342)^2*(x^3 + 294*x^2 -86564*x -1638744)^2;
T[34,43]=(x + 312)*(x -368)*(x^2 + 620*x + 91888)*(x + 148)^2*(x^3 -556*x^2 + 51096*x + 7270272)^2;
T[34,47]=(x + 384)*(x -24)*(x^2 + 56*x -283968)*(x -288)^2*(x^3 -640*x^2 + 85328*x -1671168)^2;
T[34,53]=(x + 258)*(x + 462)*(x^2 -28*x -300156)*(x -318)^2*(x^3 -302*x^2 -153460*x + 18162072)^2;
T[34,59]=(x^2 -276*x + 7344)*(x -240)^2*(x -252)^2*(x^3 -636*x^2 -101768*x + 49419072)^2;
T[34,61]=(x -812)*(x -302)*(x^2 + 236*x -16028)*(x -110)^2*(x^3 + 84*x^2 -124412*x -6792784)^2;
T[34,67]=(x + 964)*(x + 216)*(x^2 -536*x -141168)*(x + 484)^2*(x^3 -1008*x^2 + 65040*x -765952)^2;
T[34,71]=(x -732)*(x + 390)*(x^2 -1542*x + 574668)*(x + 708)^2*(x^3 + 402*x^2 -589874*x -274866016)^2;
T[34,73]=(x -722)*(x -178)*(x^2 + 164*x -309644)*(x -362)^2*(x^3 -838*x^2 + 227852*x -19957512)^2;
T[34,79]=(x -700)*(x + 898)*(x^2 + 1854*x + 704876)*(x + 484)^2*(x^3 + 594*x^2 -1121274*x -742135824)^2;
T[34,83]=(x + 992)*(x -912)*(x^2 + 372*x -22032)*(x -756)^2*(x^3 + 2396*x^2 + 1488888*x + 142080704)^2;
T[34,89]=(x -1446)*(x + 390)*(x^2 + 1976*x + 974844)*(x + 774)^2*(x^3 + 170*x^2 -1072304*x -446571376)^2;
T[34,97]=(x + 1438)*(x + 146)*(x^2 + 220*x -71100)*(x + 382)^2*(x^3 + 270*x^2 -586100*x -206623000)^2;

T[35,2]=(x -1)*(x^2 -8*x + 14)*(x^3 + 3*x^2 -14*x -30)*(x + 4)^2*(x + 1)^2;
T[35,3]=(x + 8)*(x^2 -2*x -31)*(x^3 -2*x^2 -79*x + 68)*(x -2)^2*(x + 2)^2;
T[35,5]=(x^2 -16*x + 125)*(x -5)^3*(x + 5)^5;
T[35,7]=(x^2 -6*x + 343)*(x + 7)^4*(x -7)^4;
T[35,11]=(x -12)*(x^2 + 14*x -1999)*(x^3 + 74*x^2 + 1577*x + 7692)*(x + 8)^2*(x -32)^2;
T[35,13]=(x + 78)*(x^2 -50*x + 593)*(x^3 -44*x^2 -3491*x -44870)*(x + 38)^2*(x -28)^2;
T[35,17]=(x + 94)*(x^2 + 50*x -3247)*(x^3 + 52*x^2 -11747*x -56706)*(x -26)^2*(x -54)^2;
T[35,19]=(x -40)*(x^2 -36*x -3548)*(x^3 -168*x^2 + 5620*x -28720)*(x -100)^2*(x + 110)^2;
T[35,23]=(x -32)*(x^2 -244*x + 5636)*(x^3 + 124*x^2 + 1732*x -94368)*(x -48)^2*(x + 78)^2;
T[35,29]=(x^2 + 26*x -983)*(x^3 -332*x^2 + 7405*x + 2565450)*(x + 110)^2*(x + 50)^3;
T[35,31]=(x + 248)*(x^2 + 120*x -61200)*(x^3 -320*x^2 + 23968*x + 50176)*(x + 108)^2*(x -12)^2;
T[35,37]=(x + 434)*(x^2 -564*x + 72324)*(x^3 + 54*x^2 -12116*x + 25736)*(x + 246)^2*(x -266)^2;
T[35,41]=(x -402)*(x^2 + 328*x -3856)*(x^3 -362*x^2 + 41536*x -1536192)*(x -22)^2*(x -182)^2;
T[35,43]=(x + 68)*(x^2 + 260*x + 7652)*(x^3 + 16*x^2 -89516*x -1524560)*(x -442)^2*(x -128)^2;
T[35,47]=(x -536)*(x^2 + 350*x -4223)*(x^3 + 730*x^2 + 116057*x + 4968912)*(x -324)^2*(x + 514)^2;
T[35,53]=(x -22)*(x^2 + 56*x -31984)*(x^3 -110*x^2 -340672*x + 90318336)*(x + 162)^2*(x -2)^2;
T[35,59]=(x + 560)*(x^3 + 180*x^2 -612560*x -202459200)*(x -500)^2*(x + 616)^2*(x -810)^2;
T[35,61]=(x + 278)*(x^2 -336*x + 4896)*(x^3 -1222*x^2 + 422816*x -38393792)*(x + 518)^2*(x + 488)^2;
T[35,67]=(x + 164)*(x^2 + 152*x -2416)*(x^3 -204*x^2 -810240*x + 324944128)*(x -126)^2*(x -244)^2;
T[35,71]=(x -672)*(x^3 + 136*x^2 -173056*x + 15575040)*(x + 952)^2*(x + 768)^2*(x -412)^2;
T[35,73]=(x -82)*(x^2 -676*x -122428)*(x^3 -310*x^2 -716772*x + 48718616)*(x + 702)^2*(x + 878)^2;
T[35,79]=(x + 1000)*(x^2 -1014*x + 134041)*(x^3 + 1034*x^2 -384855*x -343615600)*(x -600)^2*(x -440)^2;
T[35,83]=(x + 448)*(x^2 + 376*x -684656)*(x^3 + 1660*x^2 + 489008*x -42727104)*(x -282)^2*(x + 1302)^2;
T[35,89]=(x + 870)*(x^2 + 216*x + 7792)*(x^3 -242*x^2 -687680*x -6359520)*(x + 150)^2*(x -730)^2;
T[35,97]=(x -1026)*(x^2 -2742*x + 1782841)*(x^3 -100*x^2 -471963*x -1978018)*(x -294)^2*(x -386)^2;

T[36,2]=(x -2)*(x^2 + 8)*(x + 2)^2*(x )^7;
T[36,3]=(x -3)*(x + 3)^2*(x )^9;
T[36,5]=(x -18)*(x + 6)^2*(x + 18)^2*(x )^3*(x -6)^4;
T[36,7]=(x -8)^3*(x -20)^3*(x + 16)^6;
T[36,11]=(x + 36)*(x + 12)^2*(x -36)^2*(x )^3*(x -12)^4;
T[36,13]=(x + 70)^3*(x + 10)^3*(x -38)^6;
T[36,17]=(x + 18)*(x -18)^2*(x -126)^2*(x )^3*(x + 126)^4;
T[36,19]=(x -56)^3*(x + 100)^3*(x -20)^6;
T[36,23]=(x + 72)*(x + 168)^2*(x -72)^2*(x )^3*(x -168)^4;
T[36,29]=(x -234)*(x + 234)^2*(x + 30)^2*(x )^3*(x -30)^4;
T[36,31]=(x + 16)^3*(x -308)^3*(x + 88)^6;
T[36,37]=(x -110)^3*(x + 226)^3*(x -254)^6;
T[36,41]=(x + 90)*(x + 42)^2*(x -90)^2*(x )^3*(x -42)^4;
T[36,43]=(x -452)^3*(x + 520)^3*(x + 52)^6;
T[36,47]=(x + 432)*(x -96)^2*(x -432)^2*(x )^3*(x + 96)^4;
T[36,53]=(x + 414)*(x -414)^2*(x + 198)^2*(x )^3*(x -198)^4;
T[36,59]=(x -684)*(x + 684)^2*(x -660)^2*(x )^3*(x + 660)^4;
T[36,61]=(x -182)^3*(x -422)^3*(x + 538)^6;
T[36,67]=(x + 880)^3*(x -332)^3*(x -884)^6;
T[36,71]=(x -360)*(x + 360)^2*(x + 792)^2*(x )^3*(x -792)^4;
T[36,73]=(x -1190)^3*(x -26)^3*(x -218)^6;
T[36,79]=(x -512)^3*(x -884)^3*(x + 520)^6;
T[36,83]=(x -1188)*(x -492)^2*(x + 1188)^2*(x )^3*(x + 492)^4;
T[36,89]=(x -630)*(x + 630)^2*(x + 810)^2*(x )^3*(x -810)^4;
T[36,97]=(x + 1330)^3*(x + 1054)^3*(x -1154)^6;

T[37,2]=(x^4 + 6*x^3 -x^2 -16*x + 6)*(x^5 -4*x^4 -21*x^3 + 74*x^2 + 102*x -296);
T[37,3]=(x^4 + 11*x^3 + 6*x^2 -89*x + 23)*(x^5 -13*x^4 -6*x^3 + 419*x^2 -125*x -2868);
T[37,5]=(x^4 + 29*x^3 + 125*x^2 -1672*x -8592)*(x^5 -11*x^4 -265*x^3 + 3518*x^2 -6044*x + 2072);
T[37,7]=(x^4 + 32*x^3 -967*x^2 -39618*x -265324)*(x^5 -24*x^4 -95*x^3 + 5358*x^2 -31692*x + 26768);
T[37,11]=(x^4 + 11*x^3 -1432*x^2 -18301*x + 169317)*(x^5 -61*x^4 -1604*x^3 + 68919*x^2 + 1640601*x + 5135996);
T[37,13]=(x^4 + 45*x^3 -4635*x^2 -307600*x -4630592)*(x^5 + 37*x^4 -4705*x^3 -114346*x^2 + 3328324*x -7098184);
T[37,17]=(x^4 + 56*x^3 + 344*x^2 -8224*x -1776)*(x^5 -130*x^4 -7572*x^3 + 1700232*x^2 -78208768*x + 1123875456);
T[37,19]=(x^4 + 144*x^3 -13640*x^2 -2961344*x -115380208)*(x^5 + 22*x^4 -15140*x^3 -1114968*x^2 -21414080*x -69604224);
T[37,23]=(x^4 + 275*x^3 + 12461*x^2 -1528864*x -93600684)*(x^5 -73*x^4 -53485*x^3 + 2380382*x^2 + 545396084*x + 14836947832);
T[37,29]=(x^4 + 29*x^3 -24515*x^2 -1763168*x -20921868)*(x^5 -271*x^4 -31001*x^3 + 8240054*x^2 + 355008724*x -45459799656);
T[37,31]=(x^4 -111*x^3 -40665*x^2 + 2426408*x + 443578864)*(x^5 -363*x^4 + 28525*x^3 + 2259006*x^2 -360398496*x + 11228647136);
T[37,37]=(x -37)^4*(x + 37)^5;
T[37,41]=(x^4 + 9*x^3 -55962*x^2 -2562219*x + 239475447)*(x^5 -381*x^4 -97656*x^3 + 36452569*x^2 + 2709102209*x -762162331986);
T[37,43]=(x^4 + 190*x^3 -41956*x^2 -1558016*x + 118152128)*(x^5 + 408*x^4 -180756*x^3 -29526168*x^2 + 13076853312*x -965840235296);
T[37,47]=(x^4 + 472*x^3 -140511*x^2 -63380002*x -4884453612)*(x^5 -276*x^4 -21719*x^3 + 3688882*x^2 + 92096020*x -11399037456);
T[37,53]=(x^4 -318*x^3 -4891*x^2 + 133348*x + 1515396)*(x^5 -156*x^4 -557343*x^3 + 146651062*x^2 + 45944762364*x -12174094047032);
T[37,59]=(x^4 + 1530*x^3 + 687780*x^2 + 45543168*x -19839940416)*(x^5 -100*x^4 -371968*x^3 + 92816520*x^2 -7523341760*x + 199509626624);
T[37,61]=(x^4 + 31*x^3 -404631*x^2 + 76291616*x -1974966496)*(x^5 + 1711*x^4 + 670783*x^3 -180371922*x^2 -100881205264*x + 5262207537472);
T[37,67]=(x^4 + 5*x^3 -234035*x^2 -31714408*x + 3584880464)*(x^5 -787*x^4 -883479*x^3 + 539987068*x^2 + 224685531712*x -69671300293888);
T[37,71]=(x^4 -390*x^3 -548443*x^2 + 225705452*x -21095220732)*(x^5 -1578*x^4 -2235*x^3 + 763989184*x^2 -74998874428*x -105494295472656);
T[37,73]=(x^4 + 967*x^3 -141322*x^2 -240493869*x -10092864749)*(x^5 + 313*x^4 -724148*x^3 -158432169*x^2 + 100663626345*x + 24654270137062);
T[37,79]=(x^4 -17*x^3 -653187*x^2 + 266725624*x -29390715884)*(x^5 -569*x^4 -207829*x^3 + 34996590*x^2 + 9143394496*x + 429381365248);
T[37,83]=(x^4 + 3138*x^3 + 3026753*x^2 + 725722108*x -146330370096)*(x^5 -2422*x^4 + 1554649*x^3 + 28555740*x^2 -203104302320*x + 8663698210944);
T[37,89]=(x^4 -224*x^3 -1689756*x^2 + 1237975760*x -212866753728)*(x^5 + 2466*x^4 + 1325320*x^3 -103478304*x^2 -92968874496*x -2194912910336);
T[37,97]=(x^4 + 2532*x^3 + 1996596*x^2 + 487325120*x + 3402009472)*(x^5 + 2406*x^4 + 651324*x^3 -1160056152*x^2 -387360172992*x + 108205552171136);

T[38,2]=(x^2 + 3*x + 8)*(x^6 -3*x^5 + 6*x^4 -10*x^3 + 48*x^2 -192*x + 512)*(x -2)^2*(x + 2)^3;
T[38,3]=(x + 2)*(x^2 -x -44)*(x^2 -9*x + 2)*(x + 5)^2*(x^3 -x^2 -64*x + 172)^2;
T[38,5]=(x + 9)*(x^2 + 9*x -144)*(x^2 -10*x -152)*(x + 12)^2*(x^3 -14*x^2 -71*x -72)^2;
T[38,7]=(x + 31)*(x^2 -57*x + 768)*(x^2 + 18*x -211)*(x -11)^2*(x^3 + 35*x^2 + 147*x -2319)^2;
T[38,11]=(x -57)*(x^2 + 17*x + 54)*(x^2 -10*x -152)*(x + 54)^2*(x^3 -16*x^2 -51*x + 1182)^2;
T[38,13]=(x + 52)*(x^2 -17*x -3012)*(x^2 -13*x -2126)*(x -11)^2*(x^3 -65*x^2 + 744*x + 4848)^2;
T[38,17]=(x -69)*(x^2 + 51*x -9306)*(x^2 + 80*x + 1527)*(x + 93)^2*(x^3 -29*x^2 -9225*x -218619)^2;
T[38,19]=(x -19)^5*(x + 19)^8;
T[38,23]=(x + 72)*(x^2 -73*x -1752)*(x^2 + 155*x -1472)*(x -183)^2*(x^3 + 101*x^2 -4624*x -378176)^2;
T[38,29]=(x + 150)*(x^2 + 79*x -35654)*(x^2 -3*x -8046)*(x + 249)^2*(x^3 -377*x^2 + 8768*x + 4544396)^2;
T[38,31]=(x -32)*(x^2 -212*x -24096)*(x^2 + 16*x -11264)*(x -56)^2*(x^3 + 140*x^2 -37616*x -2444352)^2;
T[38,37]=(x + 226)*(x^2 -192*x -5092)*(x^2 -380*x + 24772)*(x + 250)^2*(x^3 + 290*x^2 -46772*x -10001448)^2;
T[38,41]=(x + 258)*(x^2 + 50*x -1200)*(x^2 + 790*x + 154432)*(x -240)^2*(x^3 -956*x^2 + 302116*x -31578144)^2;
T[38,43]=(x + 67)*(x^2 -296*x -80048)*(x^2 -677*x + 113688)*(x + 196)^2*(x^3 + 570*x^2 -92583*x -65963504)^2;
T[38,47]=(x -579)*(x^2 + 200*x -60800)*(x^2 + 389*x -54168)*(x + 168)^2*(x^3 -66*x^2 -31311*x + 2940624)^2;
T[38,53]=(x + 432)*(x^2 + 1219*x + 366216)*(x^2 -397*x + 35818)*(x -435)^2*(x^3 -817*x^2 + 211080*x -16824816)^2;
T[38,59]=(x + 330)*(x^2 + 287*x + 9186)*(x^2 -201*x -212964)*(x -195)^2*(x^3 -265*x^2 -157992*x + 31557612)^2;
T[38,61]=(x + 13)*(x^2 -313*x -200366)*(x^2 + 680*x + 29932)*(x + 358)^2*(x^3 -988*x^2 + 45701*x + 76875874)^2;
T[38,67]=(x + 856)*(x^2 + 939*x + 138612)*(x^2 -1223*x + 265728)*(x + 961)^2*(x^3 + 207*x^2 -59928*x -7515248)^2;
T[38,71]=(x -642)*(x^2 -200*x -235572)*(x^2 -406*x + 19792)*(x + 246)^2*(x^3 -846*x^2 + 172860*x + 1727928)^2;
T[38,73]=(x + 487)*(x^2 -123*x + 3738)*(x^2 -378*x -582151)*(x -353)^2*(x^3 -627*x^2 -355485*x + 145581839)^2;
T[38,79]=(x + 700)*(x^2 -1350*x + 394232)*(x^2 -106*x -146048)*(x + 34)^2*(x^3 -382*x^2 -669888*x -56023488)^2;
T[38,83]=(x + 12)*(x^2 -2226*x + 1237176)*(x^2 + 670*x -574632)*(x -234)^2*(x^3 + 766*x^2 -35648*x -78728352)^2;
T[38,89]=(x + 600)*(x^2 + 236*x -631104)*(x^2 + 870*x + 184800)*(x + 168)^2*(x^3 + 172*x^2 -844784*x -76923456)^2;
T[38,97]=(x -1424)*(x^2 + 1864*x + 613036)*(x^2 -1294*x + 228736)*(x -758)^2*(x^3 + 2450*x^2 + 1384544*x + 196438912)^2;

T[39,2]=(x^2 -2*x -13)*(x^3 -2*x^2 -15*x + 24)*(x )*(x + 5)^2*(x^2 -x -4)^2;
T[39,3]=(x^2 + 7*x + 27)*(x^4 -5*x^3 + 22*x^2 -135*x + 729)*(x -3)^3*(x + 3)^3;
T[39,5]=(x + 12)*(x^2 -24*x + 88)*(x^3 -4*x^2 -252*x -864)*(x + 7)^2*(x^2 + 3*x -2)^2;
T[39,7]=(x -2)*(x^2 -56)*(x^3 -30*x^2 -288*x + 1984)*(x + 13)^2*(x^2 + 9*x -494)^2;
T[39,11]=(x + 36)*(x^2 + 44*x -1532)*(x^3 + 16*x^2 -2256*x + 30336)*(x + 26)^2*(x^2 -80*x + 988)^2;
T[39,13]=(x -13)^6*(x + 13)^6;
T[39,17]=(x + 78)*(x^2 -164*x + 6500)*(x^3 + 146*x^2 + 6060*x + 71256)*(x -77)^2*(x^2 -19*x -1138)^2;
T[39,19]=(x -74)*(x^2 -48*x + 520)*(x^3 -94*x^2 -14432*x + 779616)*(x + 126)^2*(x^2 + 84*x -2588)^2;
T[39,23]=(x^2 -8*x -32240)*(x^3 + 48*x^2 -20928*x + 534528)*(x^2 -196*x + 8992)^2*(x + 96)^3;
T[39,29]=(x -18)*(x^2 -404*x + 32740)*(x^3 + 2*x^2 -10116*x -199176)*(x + 82)^2*(x^2 + 44*x -38684)^2;
T[39,31]=(x + 214)*(x^2 -40*x -9064)*(x^3 -302*x^2 -17536*x + 7197248)*(x -196)^2*(x^2 + 86*x -3064)^2;
T[39,37]=(x + 286)*(x^2 + 100*x -8476)*(x^3 -374*x^2 -36964*x + 7758104)*(x + 131)^2*(x^2 -209*x + 10814)^2;
T[39,41]=(x + 384)*(x^2 -200*x -113704)*(x^3 -480*x^2 + 1716*x + 12919824)*(x -336)^2*(x^2 + 230*x + 11168)^2;
T[39,43]=(x -524)*(x^2 + 616*x + 57008)*(x^3 + 260*x^2 -38096*x -3663168)*(x + 201)^2*(x^2 -287*x -66316)^2;
T[39,47]=(x -300)*(x^2 + 324*x + 11908)*(x^3 + 24*x^2 -168480*x + 18102528)*(x + 105)^2*(x^2 -435*x -14918)^2;
T[39,53]=(x -558)*(x^2 + 164*x -194876)*(x^3 + 678*x^2 -42228*x -1471608)*(x + 432)^2*(x^2 + 118*x -344)^2;
T[39,59]=(x -576)*(x^2 -140*x -17500)*(x^3 + 1788*x^2 + 956112*x + 137423808)*(x + 294)^2*(x^2 + 368*x -31492)^2;
T[39,61]=(x -74)*(x^2 -628*x -160348)*(x^3 -230*x^2 -44452*x + 6279512)*(x + 56)^2*(x^2 + 1058*x + 126416)^2;
T[39,67]=(x -38)*(x^2 + 472*x -348904)*(x^3 -74*x^2 -409216*x + 4260896)*(x -478)^2*(x^2 -68*x -227596)^2;
T[39,71]=(x + 456)*(x^2 -428*x -52988)*(x^3 + 948*x^2 -12576*x -70464384)*(x -9)^2*(x^2 + 131*x -222494)^2;
T[39,73]=(x + 682)*(x^2 + 900*x + 121636)*(x^3 + 222*x^2 -943236*x + 22780552)*(x -98)^2*(x^2 -456*x -235316)^2;
T[39,79]=(x -704)*(x^2 + 432*x -61760)*(x^3 + 24*x^2 -78336*x + 7757824)*(x -1304)^2*(x^2 + 1008*x + 247216)^2;
T[39,83]=(x + 888)*(x^2 + 1388*x + 424292)*(x^3 + 796*x^2 + 189072*x + 13963968)*(x + 308)^2*(x^2 -1958*x + 817664)^2;
T[39,89]=(x + 1020)*(x^2 -960*x -275000)*(x^3 -1436*x^2 + 421284*x -30129888)*(x + 1190)^2*(x^2 + 720*x -510212)^2;
T[39,97]=(x -110)*(x^2 + 532*x -606844)*(x^3 -3242*x^2 + 3465500*x -1218481048)*(x -70)^2*(x^2 + 928*x -881476)^2;

T[40,2]=(x -2)*(x^2 + 4*x + 8)*(x )^11;
T[40,3]=(x + 6)*(x -10)*(x + 4)^2*(x -4)^3*(x + 8)^3*(x -2)^4;
T[40,5]=(x^2 + 2*x + 125)*(x -5)^6*(x + 5)^6;
T[40,7]=(x -16)*(x + 34)*(x + 18)*(x -24)^2*(x + 16)^2*(x + 4)^3*(x -6)^4;
T[40,11]=(x -16)*(x + 16)*(x -36)*(x + 44)^2*(x + 60)^2*(x -12)^3*(x -32)^4;
T[40,13]=(x + 42)*(x -58)*(x + 6)*(x -86)^2*(x -22)^2*(x + 58)^3*(x + 38)^4;
T[40,17]=(x + 70)*(x + 6)*(x + 110)*(x -50)^2*(x -18)^2*(x -66)^3*(x -26)^4;
T[40,19]=(x + 116)*(x + 124)*(x -4)*(x + 100)^3*(x -100)^4*(x -44)^4;
T[40,23]=(x -42)*(x -16)*(x + 134)*(x -48)^2*(x + 56)^2*(x -132)^3*(x + 78)^4;
T[40,29]=(x -142)*(x + 242)*(x + 186)^2*(x + 90)^3*(x -198)^3*(x + 50)^4;
T[40,31]=(x + 188)*(x -240)*(x -100)*(x -176)^2*(x + 160)^2*(x -152)^3*(x + 108)^4;
T[40,37]=(x + 258)*(x + 438)*(x -202)*(x + 162)^2*(x -254)^2*(x + 34)^3*(x -266)^4;
T[40,41]=(x + 138)*(x -442)*(x -54)*(x -186)^2*(x + 198)^2*(x + 438)^3*(x -22)^4;
T[40,43]=(x -66)*(x -178)*(x + 292)*(x + 100)^2*(x -52)^2*(x -32)^3*(x -442)^4;
T[40,47]=(x -38)*(x -392)*(x -22)*(x -168)^2*(x -528)^2*(x + 204)^3*(x + 514)^4;
T[40,53]=(x -162)*(x -738)*(x -142)*(x + 498)^2*(x + 242)^2*(x -222)^3*(x -2)^4;
T[40,59]=(x -564)*(x + 348)*(x + 268)*(x + 252)^2*(x + 668)^2*(x -420)^3*(x -500)^4;
T[40,61]=(x + 262)*(x -250)*(x + 570)*(x + 58)^2*(x -550)^2*(x -902)^3*(x + 518)^4;
T[40,67]=(x + 554)*(x -692)*(x -422)*(x + 1036)^2*(x -188)^2*(x + 1024)^3*(x -126)^4;
T[40,71]=(x -140)*(x + 852)*(x -728)^2*(x -432)^3*(x -168)^3*(x -412)^4;
T[40,73]=(x -306)*(x -882)*(x + 134)*(x -506)^2*(x -154)^2*(x -362)^3*(x + 878)^4;
T[40,79]=(x + 456)*(x + 1160)*(x -784)*(x -272)^2*(x + 656)^2*(x + 160)^3*(x -600)^4;
T[40,83]=(x -564)*(x -434)*(x -642)*(x -948)^2*(x -236)^2*(x -72)^3*(x -282)^4;
T[40,89]=(x -1034)*(x + 726)*(x + 854)*(x -714)^2*(x + 1014)^2*(x -810)^3*(x + 150)^4;
T[40,97]=(x + 382)*(x -1378)*(x + 766)^2*(x + 478)^3*(x -1106)^3*(x -386)^4;

T[41,2]=(x^3 + 3*x^2 -5*x -3)*(x^7 -x^6 -49*x^5 + 33*x^4 + 720*x^3 -320*x^2 -3200*x + 512);
T[41,3]=(x^3 + 8*x^2 -4*x -14)*(x^7 -4*x^6 -136*x^5 + 478*x^4 + 4782*x^3 -7936*x^2 -57348*x -31928);
T[41,5]=(x^3 + 10*x^2 -36*x + 28)*(x^7 -10*x^6 -472*x^5 + 3676*x^4 + 74996*x^3 -362184*x^2 -4145568*x + 5811008);
T[41,7]=(x^3 + 50*x^2 + 456*x -1186)*(x^7 -48*x^6 -388*x^5 + 40070*x^4 -192326*x^3 -6957748*x^2 + 35805564*x + 217277488);
T[41,11]=(x^3 + 38*x^2 -420*x -15406)*(x^7 -34*x^6 -2508*x^5 + 110814*x^4 -209482*x^3 -24094808*x^2 + 22347676*x + 1089373224);
T[41,13]=(x^3 -30*x^2 -3852*x + 60088)*(x^7 + 60*x^6 -9704*x^5 -636240*x^4 + 24746832*x^3 + 1867347392*x^2 -11148462080*x -1344939417600);
T[41,17]=(x^3 -42*x^2 -6068*x + 298312)*(x^7 + 82*x^6 -17372*x^5 -1533560*x^4 + 33244208*x^3 + 4546607456*x^2 + 80768220352*x + 359921618304);
T[41,19]=(x^3 + 148*x^2 + 1200*x -158858)*(x^7 -144*x^6 -26948*x^5 + 4708014*x^4 + 43392270*x^3 -30947952320*x^2 + 1232568437644*x -10579181757624);
T[41,23]=(x^3 -52*x^2 -19616*x + 1456736)*(x^7 -204*x^6 -18856*x^5 + 4237024*x^4 + 117899456*x^3 -20336796672*x^2 -539299833344*x + 5799910821888);
T[41,29]=(x^3 + 54*x^2 -16100*x + 418264)*(x^7 -68*x^6 -127576*x^5 + 14211584*x^4 + 3426728976*x^3 -677360438656*x^2 + 36725787219712*x -503094100381696);
T[41,31]=(x^3 + 464*x^2 + 58560*x + 2155104)*(x^7 -696*x^6 + 164712*x^5 -11748832*x^4 -881889472*x^3 + 126754484480*x^2 + 534052076032*x -298979937161216);
T[41,37]=(x^3 + 126*x^2 -10020*x -53804)*(x^7 -730*x^6 + 139480*x^5 + 24744068*x^4 -14647604428*x^3 + 2491458236808*x^2 -192960213630624*x + 5810127077428416);
T[41,41]=(x -41)^3*(x + 41)^7;
T[41,43]=(x^3 + 204*x^2 -142728*x -32636368)*(x^7 -368*x^6 -301808*x^5 + 141548080*x^4 + 8181501984*x^3 -10582056704640*x^2 + 1380943189365248*x -43272910337652736);
T[41,47]=(x^3 -424*x^2 -22472*x + 17543834)*(x^7 + 26*x^6 -236780*x^5 + 5550018*x^4 + 14894851714*x^3 -1074896050036*x^2 -132550860710356*x + 10122560081916432);
T[41,53]=(x^3 -438*x^2 -346340*x + 85879048)*(x^7 + 892*x^6 -62800*x^5 -238392912*x^4 -46797561808*x^3 + 10458228051520*x^2 + 3876948294875392*x + 299031005866466304);
T[41,59]=(x^3 + 48*x^2 -190800*x + 28298592)*(x^7 + 916*x^6 -123208*x^5 -233985696*x^4 -47491257408*x^3 -531465445888*x^2 + 505521966148096*x + 28479386482163712);
T[41,61]=(x^3 -74*x^2 -593524*x + 33968088)*(x^7 + 450*x^6 -235812*x^5 -183652824*x^4 -40851480640*x^3 -3296787753600*x^2 + 10292052238592*x + 9498640387486464);
T[41,67]=(x^3 + 874*x^2 -185092*x -208397554)*(x^7 + 142*x^6 -642332*x^5 + 65653938*x^4 + 112929359326*x^3 -35666201486416*x^2 + 2884417851730348*x + 5868184351378472);
T[41,71]=(x^3 + 1140*x^2 + 293476*x + 9118614)*(x^7 -390*x^6 -1391616*x^5 + 443320258*x^4 + 559373970554*x^3 -111811019797612*x^2 -62722205428135828*x -2757114227142688416);
T[41,73]=(x^3 -1038*x^2 + 111436*x + 57058708)*(x^7 -882*x^6 -490176*x^5 + 366465940*x^4 + 97669252004*x^3 -38660731216696*x^2 -7871564940677120*x + 327134913183527168);
T[41,79]=(x^3 + 2760*x^2 + 2532568*x + 772481422)*(x^7 -2890*x^6 + 2502740*x^5 -404172954*x^4 -340489735902*x^3 + 141593598053428*x^2 -18014507230596692*x + 709712543616204176);
T[41,83]=(x^3 -136*x^2 -1364672*x -520782976)*(x^7 -1368*x^6 -868528*x^5 + 1619985024*x^4 -61918829696*x^3 -440419564711424*x^2 + 102896348923426816*x + 3618080979671425024);
T[41,89]=(x^3 + 1446*x^2 + 647116*x + 88757928)*(x^7 + 2006*x^6 + 452612*x^5 -968272360*x^4 -391846554768*x^3 + 42966566995104*x^2 + 175172262213056*x -12035202380657024);
T[41,97]=(x^3 -262*x^2 -1523124*x + 869315832)*(x^7 + 1950*x^6 -1232588*x^5 -2262993896*x^4 + 958171398448*x^3 + 101509360477088*x^2 -33390013908232256*x + 1490479386278373504);

T[42,2]=(x^2 + 3*x + 8)*(x^2 -4*x + 8)*(x^4 + 3*x^3 + 4*x^2 + 24*x + 64)*(x^2 + x + 8)^2*(x + 2)^4*(x -2)^4;
T[42,3]=(x^2 -8*x + 27)*(x^2 + 2*x + 27)^3*(x -3)^5*(x + 3)^7;
T[42,5]=(x -18)*(x -2)*(x + 4)^2*(x + 14)^2*(x -6)^2*(x + 12)^2*(x + 18)^2*(x^2 -6*x -48)^2*(x -16)^4;
T[42,7]=(x^2 + 16*x + 343)*(x -7)^9*(x + 7)^9;
T[42,11]=(x + 72)*(x + 36)^2*(x -62)^2*(x -12)^2*(x + 28)^2*(x -48)^2*(x^2 + 6*x -1416)^2*(x + 8)^5;
T[42,13]=(x + 42)*(x + 62)^2*(x -38)^2*(x -18)^2*(x -56)^2*(x^2 -16*x -1988)^2*(x + 34)^3*(x -28)^4;
T[42,17]=(x + 2)*(x -6)*(x -74)^2*(x -84)^2*(x + 114)^2*(x + 126)^2*(x -42)^2*(x^2 + 6*x -48)^2*(x -54)^4;
T[42,19]=(x -92)*(x -2)^2*(x -80)^2*(x -20)^2*(x -100)^2*(x^2 -64*x -7184)^2*(x + 124)^3*(x + 110)^4;
T[42,23]=(x -76)*(x + 180)*(x + 120)^2*(x + 112)^2*(x + 42)^2*(x -168)^2*(x^2 -6*x -16464)^2*(x )^2*(x -48)^4;
T[42,29]=(x + 114)*(x -254)*(x -190)^2*(x + 10)^2*(x -102)^2*(x -30)^2*(x + 54)^2*(x^2 + 252*x + 7668)^2*(x + 110)^4;
T[42,31]=(x -56)*(x + 72)*(x + 48)^2*(x + 88)^2*(x + 160)^2*(x -72)^2*(x -236)^2*(x^2 -40*x -73472)^2*(x -12)^4;
T[42,37]=(x + 34)*(x -146)^2*(x + 346)^2*(x -254)^2*(x^2 + 248*x -3092)^2*(x -398)^3*(x + 246)^6;
T[42,41]=(x -6)*(x -462)*(x -42)^2*(x + 248)^2*(x -126)^2*(x -162)^2*(x + 318)^2*(x^2 + 450*x + 37800)^2*(x -182)^4;
T[42,43]=(x -212)*(x -164)*(x + 412)^2*(x -68)^2*(x + 376)^2*(x + 52)^2*(x + 268)^2*(x^2 -376*x + 2512)^2*(x -128)^4;
T[42,47]=(x -168)*(x + 264)*(x -240)^2*(x + 12)^2*(x + 96)^2*(x -24)^2*(x^2 + 12*x -65856)^2*(x -324)^6;
T[42,53]=(x -654)*(x -258)^2*(x + 498)^2*(x -174)^2*(x -318)^2*(x -198)^2*(x^2 + 1104*x + 304476)^2*(x + 162)^5;
T[42,59]=(x + 492)*(x + 772)*(x + 132)^2*(x + 660)^2*(x -120)^2*(x + 200)^2*(x -138)^2*(x^2 -804*x -30144)^2*(x -810)^4;
T[42,61]=(x + 250)*(x -30)*(x + 198)^2*(x -622)^2*(x + 538)^2*(x -398)^2*(x -380)^2*(x^2 + 428*x -28076)^2*(x + 488)^4;
T[42,67]=(x + 124)*(x + 764)*(x -92)^2*(x -884)^2*(x -904)^2*(x + 484)^2*(x + 716)^2*(x^2 -148*x -160736)^2*(x -244)^4;
T[42,71]=(x -36)*(x + 236)*(x + 720)^2*(x -792)^2*(x -392)^2*(x + 678)^2*(x -576)^2*(x^2 -954*x + 214704)^2*(x + 768)^4;
T[42,73]=(x -1010)*(x -418)*(x + 642)^2*(x + 1150)^2*(x -218)^2*(x + 502)^2*(x -538)^2*(x^2 -1072*x + 285244)^2*(x + 702)^4;
T[42,79]=(x -56)*(x -552)*(x + 1024)^2*(x -776)^2*(x -240)^2*(x -740)^2*(x + 520)^2*(x^2 + 572*x -84416)^2*(x -440)^4;
T[42,83]=(x -1036)*(x -228)*(x + 204)^2*(x -468)^2*(x + 1072)^2*(x + 492)^2*(x -378)^2*(x^2 -1944*x + 813456)^2*(x + 1302)^4;
T[42,89]=(x -30)*(x -390)*(x -200)^2*(x -354)^2*(x + 390)^2*(x^2 -366*x -253848)^2*(x -730)^4*(x -810)^4;
T[42,97]=(x + 1190)*(x + 70)*(x -1154)^2*(x + 286)^2*(x -1354)^2*(x + 1266)^2*(x + 1330)^2*(x^2 -808*x -922292)^2*(x -294)^4;

T[43,2]=(x^6 -6*x^5 -17*x^4 + 124*x^3 + 26*x^2 -608*x + 540)*(x^4 + 4*x^3 -9*x^2 -14*x + 2);
T[43,3]=(x^4 + 11*x^3 + 11*x^2 -52*x + 28)*(x^6 -7*x^5 -97*x^4 + 588*x^3 + 2140*x^2 -11756*x + 11156);
T[43,5]=(x^4 + 27*x^3 + 165*x^2 -276*x -728)*(x^6 -43*x^5 + 497*x^4 + 508*x^3 -30356*x^2 + 106884*x -92116);
T[43,7]=(x^4 + 20*x^3 -604*x^2 -7472*x + 23392)*(x^6 -8*x^5 -1172*x^4 + 9640*x^3 + 285404*x^2 -3729072*x + 10690992);
T[43,11]=(x^4 + 62*x^3 -2247*x^2 -207604*x -3329968)*(x^6 + 28*x^5 -4842*x^4 -145260*x^3 + 3182929*x^2 + 87126072*x -53187648);
T[43,13]=(x^4 + 2*x^3 -515*x^2 + 4056*x -7252)*(x^6 -56*x^5 -4406*x^4 + 84276*x^3 + 3791673*x^2 -3215268*x -458957340);
T[43,17]=(x^4 + 207*x^3 -5394*x^2 -3241005*x -162866753)*(x^6 -19*x^5 -6335*x^4 -76658*x^3 + 3967071*x^2 + 65687277*x + 181639863);
T[43,19]=(x^4 -99*x^3 -5235*x^2 + 375048*x + 12456052)*(x^6 + 75*x^5 -2895*x^4 -206344*x^3 + 3291160*x^2 + 113047600*x -673814000);
T[43,23]=(x^4 + 103*x^3 -14950*x^2 -966381*x + 62171919)*(x^6 -131*x^5 -20807*x^4 + 4291590*x^3 -233173145*x^2 + 4069168837*x -9170218345);
T[43,29]=(x^4 + 99*x^3 -111123*x^2 -7411500*x + 2739631572)*(x^6 -515*x^5 + 58249*x^4 + 4732868*x^3 -704330628*x^2 -16936584300*x + 331483322700);
T[43,31]=(x^6 -237*x^5 -53373*x^4 + 14285746*x^3 + 368947627*x^2 -204439793629*x + 8546933895145)*(x^4 -131*x^3 -54728*x^2 + 8011389*x -113939343);
T[43,37]=(x^4 + 449*x^3 + 64205*x^2 + 3162648*x + 43975584)*(x^6 -269*x^5 -177607*x^4 + 37379592*x^3 + 5676973984*x^2 -80718597120*x -15081152424000);
T[43,41]=(x^4 + 491*x^3 -88254*x^2 -46107433*x -226001461)*(x^6 -471*x^5 -63763*x^4 + 49708910*x^3 -3213994857*x^2 -827086183663*x + 84893308383715);
T[43,43]=(x -43)^4*(x + 43)^6;
T[43,47]=(x^4 -19*x^3 -306715*x^2 -9155736*x + 10139289552)*(x^6 -415*x^5 -201307*x^4 + 98566408*x^3 -675059768*x^2 -2018901432752*x -68794630166960);
T[43,53]=(x^6 -450*x^5 -571558*x^4 + 184990872*x^3 + 85831493161*x^2 -11537303514238*x -2796076662325740)*(x^4 + 1220*x^3 + 406905*x^2 + 7048730*x -7756027948);
T[43,59]=(x^4 -816*x^3 + 166428*x^2 -10363392*x + 125277376)*(x^6 -356*x^5 -78324*x^4 + 17967392*x^3 + 2268932784*x^2 -181544427840*x -18355561214400);
T[43,61]=(x^4 -372*x^3 -64456*x^2 + 26782384*x -912187696)*(x^6 + 1328*x^5 + 434108*x^4 -52724216*x^3 -30113941508*x^2 + 779382380976*x + 51013136843120);
T[43,67]=(x^4 -110*x^3 -347411*x^2 -73127508*x -1865644524)*(x^6 + 632*x