Sharedwww / Tables / charpoly_s2new_101-200.gpOpen in CoCalc
\\ charpoly_s2new.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2^{new}(Gamma_0(N)) 
\\ of weight 2 cuspidal newforms for Gamma_0(N).
\\ The cases in which S_k = S_k^{new} are omitted, since
\\ they appear in other tables.
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(200,97,m,n,0);
T[102,2]=(x -1)*(x + 1)^2;
T[102,3]=(x + 1)*(x -1)^2;
T[102,5]=(x + 2)*(x + 4)*(x );
T[102,7]=(x + 2)*(x -2)*(x );
T[102,11]=(x + 4)*(x )^2;
T[102,13]=(x + 2)*(x + 6)*(x -2);
T[102,17]=(x -1)*(x + 1)^2;
T[102,19]=(x + 4)*(x -4)^2;
T[102,23]=(x -6)*(x + 6)*(x );
T[102,29]=(x + 4)*(x + 10)*(x );
T[102,31]=(x + 6)*(x -8)*(x + 10);
T[102,37]=(x + 4)*(x -8)*(x + 2);
T[102,41]=(x + 10)*(x -10)*(x -6);
T[102,43]=(x -12)*(x + 4)^2;
T[102,47]=(x -4)*(x -12)*(x );
T[102,53]=(x + 2)*(x -6)^2;
T[102,59]=(x + 12)*(x -12)^2;
T[102,61]=(x + 4)*(x + 10)*(x -8);
T[102,67]=(x + 4)*(x + 12)^2;
T[102,71]=(x -6)*(x + 6)*(x );
T[102,73]=(x -10)*(x -2)^2;
T[102,79]=(x + 8)*(x + 10)*(x -10);
T[102,83]=(x + 12)*(x -12)*(x -4);
T[102,89]=(x + 2)*(x + 18)*(x + 6);
T[102,97]=(x -14)*(x + 14)*(x -6);

T[104,2]=(x )^3;
T[104,3]=(x -1)*(x^2 -x -4);
T[104,5]=(x + 1)*(x^2 -3*x -2);
T[104,7]=(x -5)*(x^2 + x -4);
T[104,11]=(x + 2)*(x^2 + 2*x -16);
T[104,13]=(x + 1)*(x -1)^2;
T[104,17]=(x + 3)*(x^2 + x -38);
T[104,19]=(x + 2)*(x^2 -2*x -16);
T[104,23]=(x -4)*(x + 8)^2;
T[104,29]=(x + 6)*(x + 2)^2;
T[104,31]=(x + 4)*(x -4)^2;
T[104,37]=(x -11)*(x^2 -7*x -26);
T[104,41]=(x -8)*(x^2 -2*x -16);
T[104,43]=(x + 1)*(x^2 -15*x + 52);
T[104,47]=(x -9)*(x^2 + 13*x + 4);
T[104,53]=(x + 12)*(x^2 + 2*x -16);
T[104,59]=(x -6)*(x^2 -2*x -16);
T[104,61]=(x^2 -14*x + 32)*(x );
T[104,67]=(x -6)*(x^2 + 2*x -16);
T[104,71]=(x -7)*(x^2 + 3*x -36);
T[104,73]=(x + 2)*(x + 6)^2;
T[104,79]=(x -12)*(x -8)^2;
T[104,83]=(x + 16)*(x^2 + 12*x -32);
T[104,89]=(x + 10)*(x -10)^2;
T[104,97]=(x + 10)*(x^2 -68);

T[105,2]=(x -1)*(x^2 -5);
T[105,3]=(x -1)*(x + 1)^2;
T[105,5]=(x -1)*(x + 1)^2;
T[105,7]=(x -1)^3;
T[105,11]=(x^2 -4*x -16)*(x );
T[105,13]=(x + 6)*(x^2 -20);
T[105,17]=(x -2)*(x + 2)^2;
T[105,19]=(x + 8)*(x^2 -4*x -16);
T[105,23]=(x -8)*(x -4)^2;
T[105,29]=(x + 2)^3;
T[105,31]=(x -4)*(x^2 -12*x + 16);
T[105,37]=(x + 2)*(x^2 -4*x -76);
T[105,41]=(x + 6)*(x + 2)^2;
T[105,43]=(x -4)*(x^2 -80);
T[105,47]=(x -8)*(x^2 -8*x -64);
T[105,53]=(x -10)*(x^2 + 16*x + 44);
T[105,59]=(x -4)*(x^2 -80);
T[105,61]=(x + 2)^3;
T[105,67]=(x -4)*(x + 4)^2;
T[105,71]=(x + 12)*(x^2 -20*x + 80);
T[105,73]=(x + 2)*(x^2 + 16*x + 44);
T[105,79]=(x -8)*(x^2 -8*x -64);
T[105,83]=(x + 4)*(x^2 + 16*x -16);
T[105,89]=(x + 6)*(x + 2)^2;
T[105,97]=(x + 18)*(x^2 -8*x -4);

T[106,2]=(x -1)^2*(x + 1)^2;
T[106,3]=(x -1)*(x + 1)*(x -2)*(x + 2);
T[106,5]=(x -1)*(x + 4)*(x -3)*(x );
T[106,7]=(x + 2)*(x + 4)*(x -2)*(x );
T[106,11]=(x -5)*(x + 4)*(x + 3)*(x );
T[106,13]=(x -1)*(x -5)*(x + 4)^2;
T[106,17]=(x + 3)*(x -5)*(x -3)^2;
T[106,19]=(x + 1)*(x + 7)*(x + 4)^2;
T[106,23]=(x + 9)*(x + 3)*(x -1)*(x -3);
T[106,29]=(x + 6)*(x -5)*(x -6)*(x -9);
T[106,31]=(x -7)*(x -5)*(x + 4)^2;
T[106,37]=(x + 10)*(x + 6)*(x -1)*(x -5);
T[106,41]=(x + 10)*(x -2)*(x -6)^2;
T[106,43]=(x -7)*(x + 1)*(x + 10)^2;
T[106,47]=(x -6)*(x + 6)*(x -4)*(x );
T[106,53]=(x -1)*(x + 1)^3;
T[106,59]=(x -15)*(x + 6)*(x -6)*(x -7);
T[106,61]=(x -4)*(x + 10)*(x -8)*(x -2);
T[106,67]=(x -16)*(x -4)*(x + 4)^2;
T[106,71]=(x + 3)*(x -15)*(x -12)^2;
T[106,73]=(x + 8)*(x + 12)*(x -8)*(x + 4);
T[106,79]=(x + 13)*(x -1)*(x -11)*(x + 7);
T[106,83]=(x + 3)*(x + 14)*(x + 6)*(x -3);
T[106,89]=(x -2)*(x -9)*(x -17)*(x -18);
T[106,97]=(x -17)*(x + 13)*(x + 7)*(x -3);

T[108,2]=x ;
T[108,3]=x ;
T[108,5]=x ;
T[108,7]=x -5;
T[108,11]=x ;
T[108,13]=x + 7;
T[108,17]=x ;
T[108,19]=x + 1;
T[108,23]=x ;
T[108,29]=x ;
T[108,31]=x + 4;
T[108,37]=x + 1;
T[108,41]=x ;
T[108,43]=x -8;
T[108,47]=x ;
T[108,53]=x ;
T[108,59]=x ;
T[108,61]=x + 13;
T[108,67]=x -11;
T[108,71]=x ;
T[108,73]=x -17;
T[108,79]=x + 13;
T[108,83]=x ;
T[108,89]=x ;
T[108,97]=x -5;

T[110,2]=(x -1)^2*(x + 1)^3;
T[110,3]=(x + 1)*(x^2 + x -8)*(x -1)^2;
T[110,5]=(x + 1)^2*(x -1)^3;
T[110,7]=(x -3)*(x -5)*(x + 1)*(x^2 -x -8);
T[110,11]=(x -1)^2*(x + 1)^3;
T[110,13]=(x + 6)*(x -2)^4;
T[110,17]=(x -3)*(x + 3)*(x + 7)*(x^2 + 3*x -6);
T[110,19]=(x + 1)*(x + 7)*(x -5)*(x^2 -7*x + 4);
T[110,23]=(x -6)*(x^2 + 6*x -24)*(x + 6)^2;
T[110,29]=(x + 9)*(x + 3)*(x -5)*(x^2 + 3*x -6);
T[110,31]=(x + 7)*(x -5)*(x + 3)*(x^2 -x -8);
T[110,37]=(x -3)*(x -5)*(x + 7)*(x^2 -13*x + 34);
T[110,41]=(x -2)*(x -6)*(x + 6)*(x^2 -132);
T[110,43]=(x -4)*(x -8)^2*(x + 4)^2;
T[110,47]=(x + 2)*(x^2 + 6*x -24)*(x -6)^2;
T[110,53]=(x + 3)*(x + 1)*(x -9)*(x^2 -9*x -54);
T[110,59]=(x + 10)*(x + 6)*(x -6)*(x^2 -6*x -24);
T[110,61]=(x -5)*(x -7)*(x + 1)*(x^2 + 5*x -2);
T[110,67]=(x -8)^5;
T[110,71]=(x -3)*(x -7)*(x + 9)*(x^2 -3*x -72);
T[110,73]=(x -14)*(x -2)*(x + 10)*(x^2 + 8*x -116);
T[110,79]=(x -10)*(x -14)*(x + 10)*(x^2 + 14*x + 16);
T[110,83]=(x^2 -6*x -24)*(x + 6)^3;
T[110,89]=(x -9)*(x^2 -3*x -6)*(x + 15)^2;
T[110,97]=(x -8)*(x + 4)*(x + 12)*(x^2 + 14*x + 16);

T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5);
T[111,3]=(x + 1)^3*(x -1)^4;
T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4);
T[111,7]=(x^3 + 4*x^2 -8*x -16)*(x^4 -4*x^3 -16*x^2 + 64*x -16);
T[111,11]=(x^3 -4*x^2 -16*x + 32)*(x^4 -32*x^2 -32*x + 64);
T[111,13]=(x^3 + 2*x^2 -20*x -8)*(x^4 -4*x^3 -32*x^2 + 144*x -80);
T[111,17]=(x^3 -4*x^2 -28*x + 116)*(x^4 + 2*x^3 -24*x^2 -72*x -28);
T[111,19]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -8*x^3 -8*x^2 + 144*x -224);
T[111,23]=(x^3 + 2*x^2 -4*x -4)*(x^4 + 10*x^3 -32*x^2 -296*x + 652);
T[111,29]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 2*x^3 -56*x^2 -40*x + 724);
T[111,31]=(x^3 + 8*x^2 -32*x -272)*(x^4 -4*x^3 -16*x^2 + 16*x + 32);
T[111,37]=(x -1)^3*(x + 1)^4;
T[111,41]=(x^4 -12*x^3 + 304*x -400)*(x -6)^3;
T[111,43]=(x^3 + 12*x^2 + 32*x -16)*(x^4 -4*x^3 -128*x^2 + 176*x + 3424);
T[111,47]=(x^3 + 4*x^2 -48*x -64)*(x^4 + 12*x^3 + 16*x^2 -128*x -128);
T[111,53]=(x^3 + 6*x^2 -100*x -632)*(x^4 -8*x^3 -56*x^2 + 320*x + 464);
T[111,59]=(x^3 -6*x^2 -36*x + 108)*(x^4 + 10*x^3 -176*x^2 -2416*x -7156);
T[111,61]=(x^4 + 8*x^3 -72*x^2 -480*x + 656)*(x + 2)^3;
T[111,67]=(x^3 + 16*x^2 + 24*x -16)*(x^4 + 4*x^3 -16*x^2 -64*x -16);
T[111,71]=(x^3 -12*x^2 -16*x + 320)*(x^4 + 12*x^3 -48*x^2 -512*x + 1664);
T[111,73]=(x^3 + 6*x^2 -4*x -8)*(x^4 -12*x^3 -8*x^2 + 176*x -32);
T[111,79]=(x^3 -12*x^2 -72*x + 400)*(x^4 + 8*x^3 -56*x^2 -656*x -1504);
T[111,83]=(x^3 -112*x -416)*(x^4 + 20*x^3 + 112*x^2 + 192*x + 64);
T[111,89]=(x^3 + 4*x^2 -108*x -52)*(x^4 -26*x^3 + 128*x^2 + 944*x -5452);
T[111,97]=(x^3 + 14*x^2 + 28*x -152)*(x^4 + 4*x^3 -272*x^2 -464*x + 17008);

T[112,2]=(x )^3;
T[112,3]=(x -2)*(x + 2)*(x );
T[112,5]=(x + 4)*(x -2)*(x );
T[112,7]=(x -1)*(x + 1)^2;
T[112,11]=(x -4)*(x )^2;
T[112,13]=(x + 4)*(x -2)*(x );
T[112,17]=(x + 2)*(x + 6)*(x -6);
T[112,19]=(x + 2)*(x + 8)*(x -2);
T[112,23]=(x + 8)*(x )^2;
T[112,29]=(x + 6)*(x -2)*(x -6);
T[112,31]=(x -4)*(x + 8)*(x + 4);
T[112,37]=(x + 2)*(x -2)*(x + 6);
T[112,41]=(x -2)*(x + 2)*(x -6);
T[112,43]=(x -4)*(x + 8)^2;
T[112,47]=(x -4)*(x -8)*(x -12);
T[112,53]=(x + 10)*(x -6)^2;
T[112,59]=(x -6)*(x + 6)*(x );
T[112,61]=(x + 6)*(x -4)*(x -8);
T[112,67]=(x -12)*(x -4)^2;
T[112,71]=(x -8)*(x )^2;
T[112,73]=(x -10)*(x + 14)*(x -2);
T[112,79]=(x -8)*(x + 8)*(x + 16);
T[112,83]=(x + 8)*(x -6)*(x + 6);
T[112,89]=(x -10)*(x + 6)^2;
T[112,97]=(x + 10)*(x + 6)*(x + 2);

T[114,2]=(x + 1)*(x -1)^2;
T[114,3]=(x -1)*(x + 1)^2;
T[114,5]=(x -2)*(x )^2;
T[114,7]=(x -4)*(x + 4)*(x );
T[114,11]=(x -4)*(x + 4)*(x );
T[114,13]=(x -2)*(x + 4)*(x );
T[114,17]=(x + 2)*(x + 6)*(x -6);
T[114,19]=(x + 1)*(x -1)^2;
T[114,23]=(x + 2)*(x + 4)*(x + 6);
T[114,29]=(x + 2)*(x -6)*(x + 6);
T[114,31]=(x -2)*(x -4)*(x -6);
T[114,37]=(x + 4)*(x + 8)*(x -10);
T[114,41]=(x -6)*(x -10)^2;
T[114,43]=(x + 4)*(x -4)*(x + 12);
T[114,47]=(x -6)*(x + 4)*(x -10);
T[114,53]=(x -6)*(x + 10)*(x -2);
T[114,59]=(x -12)*(x + 12)*(x -4);
T[114,61]=(x + 10)*(x -14)^2;
T[114,67]=(x + 12)*(x -8)*(x );
T[114,71]=(x -8)*(x + 16)*(x );
T[114,73]=(x + 2)*(x + 6)*(x -14);
T[114,79]=(x + 4)*(x + 10)*(x -10);
T[114,83]=(x + 16)*(x -12)*(x + 12);
T[114,89]=(x + 2)*(x + 6)^2;
T[114,97]=(x -10)*(x + 10)^2;

T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2);
T[115,3]=(x )*(x + 1)^2*(x^2 + x -4)^2;
T[115,5]=(x + 1)^3*(x -1)^4;
T[115,7]=(x -1)*(x^2 + 2*x -4)*(x^4 + 3*x^3 -14*x^2 -52*x -32);
T[115,11]=(x -2)*(x^2 + 2*x -4)*(x^4 -4*x^3 -16*x^2 + 40*x + 32);
T[115,13]=(x + 2)*(x^2 + 8*x + 11)*(x^4 -41*x^2 + 212);
T[115,17]=(x -3)*(x^2 + 4*x -16)*(x^4 + x^3 -18*x^2 -24*x + 32);
T[115,19]=(x + 2)*(x^2 -2*x -44)*(x^4 + 4*x^3 -16*x^2 -40*x + 32);
T[115,23]=(x -1)*(x + 1)^6;
T[115,29]=(x -7)*(x^2 + 10*x + 5)*(x^4 -19*x^3 + 117*x^2 -269*x + 202);
T[115,31]=(x + 5)*(x^2 -4*x -1)*(x^4 + x^3 -101*x^2 + 11*x + 2144);
T[115,37]=(x -11)*(x^2 + 6*x -36)*(x^4 + 3*x^3 -116*x^2 + 16*x + 2008);
T[115,41]=(x -1)*(x^2 + 6*x -11)*(x^4 -13*x^3 + 45*x^2 -3*x -94);
T[115,43]=(x^2 + 6*x -36)*(x^4 + 6*x^3 -36*x^2 -16*x + 128)*(x );
T[115,47]=(x^2 -10*x + 5)*(x^4 -6*x^3 -83*x^2 + 548*x -128)*(x );
T[115,53]=(x -11)*(x^4 -19*x^3 -34*x^2 + 2092*x -8776)*(x + 6)^2;
T[115,59]=(x + 13)*(x^2 -80)*(x^4 -23*x^3 + 100*x^2 + 560*x -3136);
T[115,61]=(x + 8)*(x^2 -2*x -124)*(x^4 -56*x^2 + 136*x -32);
T[115,67]=(x -5)*(x^2 -6*x -36)*(x^4 + 3*x^3 -98*x^2 -212*x + 2032);
T[115,71]=(x -5)*(x^2 + 8*x + 11)*(x^4 + 3*x^3 -149*x^2 -535*x -8);
T[115,73]=(x -6)*(x^2 -45)*(x^4 + 32*x^3 + 343*x^2 + 1392*x + 1684);
T[115,79]=(x + 12)*(x^2 -22*x + 116)*(x^4 -2*x^3 -140*x^2 -352*x + 512);
T[115,83]=(x -9)*(x^2 + 4*x -16)*(x^4 + 21*x^3 + 96*x^2 -224*x -1216);
T[115,89]=(x -4)*(x^2 -10*x + 20)*(x^4 -216*x^2 -1496*x -2752);
T[115,97]=(x + 14)*(x^2 -10*x -100)*(x^4 + 18*x^3 + 72*x^2 -200*x -1072);

T[116,2]=(x )^3;
T[116,3]=(x -1)*(x -2)*(x + 3);
T[116,5]=(x + 2)*(x -3)^2;
T[116,7]=(x + 4)*(x -4)^2;
T[116,11]=(x + 1)*(x + 6)*(x -3);
T[116,13]=(x -2)*(x + 3)*(x -5);
T[116,17]=(x + 6)*(x -2)^2;
T[116,19]=(x -4)*(x + 4)*(x + 6);
T[116,23]=(x -4)*(x + 6)^2;
T[116,29]=(x + 1)^3;
T[116,31]=(x -5)*(x -9)*(x + 6);
T[116,37]=(x + 8)*(x -8)*(x -2);
T[116,41]=(x -2)*(x + 8)*(x );
T[116,43]=(x -10)*(x + 1)*(x + 5);
T[116,47]=(x + 3)*(x + 7)*(x + 2);
T[116,53]=(x + 5)*(x -10)*(x -3);
T[116,59]=(x -6)*(x + 10)*(x );
T[116,61]=(x -2)*(x -10)^2;
T[116,67]=(x + 12)*(x -8)^2;
T[116,71]=(x + 2)*(x -6)*(x -8);
T[116,73]=(x -10)*(x + 16)*(x );
T[116,79]=(x + 6)*(x + 1)*(x -11);
T[116,83]=(x -16)*(x -6)^2;
T[116,89]=(x + 12)*(x -2)*(x -12);
T[116,97]=(x -10)*(x -8)*(x );

T[117,2]=(x + 1)*(x^2 -3)*(x^2 -2*x -1);
T[117,3]=(x )^5;
T[117,5]=(x + 2)*(x^2 -8)*(x )^2;
T[117,7]=(x + 4)*(x^2 -8)*(x -2)^2;
T[117,11]=(x + 4)*(x^2 -12)*(x -2)^2;
T[117,13]=(x + 1)^2*(x -1)^3;
T[117,17]=(x + 2)*(x^2 -48)*(x^2 + 4*x -28);
T[117,19]=(x^2 -8)*(x )*(x -2)^2;
T[117,23]=(x^2 -48)*(x )*(x -4)^2;
T[117,29]=(x -10)*(x^2 -48)*(x + 2)^2;
T[117,31]=(x -4)*(x^2 + 8*x + 8)*(x -2)^2;
T[117,37]=(x + 2)*(x^2 + 4*x -28)*(x -2)^2;
T[117,41]=(x + 6)*(x^2 + 16*x + 56)*(x^2 -48);
T[117,43]=(x + 12)*(x^2 -8*x -16)*(x -8)^2;
T[117,47]=(x^2 -12*x + 4)*(x^2 -108)*(x );
T[117,53]=(x + 6)*(x -2)^2*(x )^2;
T[117,59]=(x + 12)*(x^2 -12)*(x^2 + 4*x -28);
T[117,61]=(x + 2)*(x^2 -4*x -124)*(x + 10)^2;
T[117,67]=(x + 8)*(x^2 -8*x + 8)*(x -14)^2;
T[117,71]=(x^2 -12)*(x )*(x + 2)^2;
T[117,73]=(x -2)*(x^2 -12*x + 4)*(x + 10)^2;
T[117,79]=(x -8)*(x^2 -128)*(x + 4)^2;
T[117,83]=(x + 4)*(x^2 -4*x -28)*(x^2 -108);
T[117,89]=(x -2)*(x^2 -48)*(x^2 + 24*x + 136);
T[117,97]=(x -10)*(x^2 + 4*x -28)*(x + 10)^2;

T[118,2]=(x + 1)^2*(x -1)^2;
T[118,3]=(x + 1)^2*(x -2)^2;
T[118,5]=(x -1)*(x + 2)*(x -2)*(x + 3);
T[118,7]=(x + 1)*(x -3)*(x + 3)^2;
T[118,11]=(x -1)*(x + 2)*(x -2)*(x + 1);
T[118,13]=(x + 6)*(x + 2)*(x -3)*(x + 3);
T[118,17]=(x + 1)*(x -7)*(x + 2)^2;
T[118,19]=(x -4)*(x + 5)*(x + 8)*(x -3);
T[118,23]=(x -8)*(x )*(x -4)^2;
T[118,29]=(x + 1)*(x -4)*(x + 5)*(x + 4);
T[118,31]=(x -2)*(x -10)*(x + 4)^2;
T[118,37]=(x + 7)*(x -8)*(x + 12)*(x + 1);
T[118,41]=(x -5)*(x + 11)*(x -7)^2;
T[118,43]=(x + 9)*(x -9)*(x + 6)^2;
T[118,47]=(x + 6)*(x -10)*(x + 2)*(x -2);
T[118,53]=(x -9)*(x -12)*(x + 11)*(x );
T[118,59]=(x -1)*(x + 1)^3;
T[118,61]=(x + 8)*(x + 12)*(x -10)*(x + 2);
T[118,67]=(x -10)*(x + 2)*(x -4)^2;
T[118,71]=(x -9)*(x -12)*(x + 15)*(x -4);
T[118,73]=(x -12)*(x -4)*(x + 14)*(x -10);
T[118,79]=(x -5)*(x + 15)*(x -11)^2;
T[118,83]=(x + 14)*(x + 13)*(x -14)*(x + 11);
T[118,89]=(x + 6)*(x -4)*(x -18)*(x );
T[118,97]=(x -2)*(x -8)*(x -14)*(x );

T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17);
T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12);
T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178);
T[119,7]=(x -1)^4*(x + 1)^5;
T[119,11]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 2*x^4 -44*x^3 -40*x^2 + 496*x -192);
T[119,13]=(x^4 -8*x^3 -16*x^2 + 216*x -368)*(x^5 -2*x^4 -40*x^3 + 56*x^2 + 352*x -544);
T[119,17]=(x + 1)^4*(x -1)^5;
T[119,19]=(x^4 -10*x^3 -20*x^2 + 392*x -784)*(x^5 -6*x^4 -12*x^3 + 56*x^2 + 48*x -64);
T[119,23]=(x^4 + 6*x^3 -40*x^2 -224*x -240)*(x^5 + 10*x^4 -8*x^3 -144*x^2 + 272*x -128);
T[119,29]=(x^4 -2*x^3 -20*x^2 + 8*x + 48)*(x^5 + 8*x^4 -72*x^3 -464*x^2 + 1216*x + 2592);
T[119,31]=(x^4 -12*x^3 -13*x^2 + 418*x -917)*(x^5 -33*x^3 -94*x^2 -77*x -16);
T[119,37]=(x^4 -6*x^3 -44*x^2 -8*x + 80)*(x^5 -8*x^4 -104*x^3 + 432*x^2 + 3584*x + 4384);
T[119,41]=(x^4 -12*x^3 + 27*x^2 + 86*x -237)*(x^5 -18*x^4 + 79*x^3 -64*x^2 -137*x + 162);
T[119,43]=(x^4 + 12*x^3 -23*x^2 -212*x -115)*(x^5 -8*x^4 -31*x^3 + 216*x^2 + 157*x -1052);
T[119,47]=(x^4 -2*x^3 -128*x^2 -64*x + 1776)*(x^5 + 10*x^4 -48*x^3 -816*x^2 -2704*x -2304);
T[119,53]=(x^4 + 26*x^3 + 227*x^2 + 758*x + 801)*(x^5 -4*x^4 -33*x^3 + 76*x^2 + 301*x + 138);
T[119,59]=(x^4 + 4*x^3 -192*x^2 -1408*x -768)*(x^5 -8*x^4 -80*x^3 + 640*x^2 + 256*x -3072);
T[119,61]=(x^4 -12*x^3 -157*x^2 + 1330*x + 6451)*(x^5 -22*x^4 + 143*x^3 -40*x^2 -2377*x + 5542);
T[119,67]=(x^4 + 12*x^3 -71*x^2 -548*x + 1949)*(x^5 -16*x^4 + 49*x^3 + 304*x^2 -1747*x + 1868);
T[119,71]=(x^4 + 14*x^3 -44*x^2 -1160*x -3312)*(x^5 + 2*x^4 -236*x^3 -872*x^2 + 7472*x + 13696);
T[119,73]=(x^4 -20*x^3 + 123*x^2 -262*x + 131)*(x^5 -10*x^4 -177*x^3 + 2212*x^2 -4217*x -11118);
T[119,79]=(x^4 + 14*x^3 -56*x^2 -928*x -400)*(x^5 -18*x^4 + 40*x^3 + 544*x^2 -2672*x + 3072);
T[119,83]=(x^4 + 28*x^3 + 264*x^2 + 968*x + 1200)*(x^5 + 12*x^4 -64*x^3 -952*x^2 -1872*x + 1984);
T[119,89]=(x^4 + 10*x^3 -176*x^2 -592*x + 720)*(x^5 -20*x^4 -100*x^3 + 3552*x^2 -14192*x + 7456);
T[119,97]=(x^4 -26*x^3 + 177*x^2 + 4*x -1901)*(x^5 -12*x^4 -239*x^3 + 2766*x^2 + 2163*x + 218);

T[120,2]=(x )^2;
T[120,3]=(x -1)^2;
T[120,5]=(x + 1)*(x -1);
T[120,7]=(x -4)*(x );
T[120,11]=(x + 4)*(x );
T[120,13]=(x + 6)*(x -6);
T[120,17]=(x + 2)*(x + 6);
T[120,19]=(x -4)*(x + 4);
T[120,23]=(x + 8)*(x );
T[120,29]=(x + 6)*(x + 2);
T[120,31]=(x + 8)*(x );
T[120,37]=(x + 2)*(x + 6);
T[120,41]=(x + 6)*(x -10);
T[120,43]=(x -12)*(x + 4);
T[120,47]=(x -8)^2;
T[120,53]=(x -10)*(x -6);
T[120,59]=(x -12)*(x );
T[120,61]=(x -6)*(x -14);
T[120,67]=(x -4)*(x + 4);
T[120,71]=(x -8)*(x );
T[120,73]=(x + 6)*(x + 14);
T[120,79]=(x + 8)*(x -16);
T[120,83]=(x + 12)*(x -12);
T[120,89]=(x -2)*(x -10);
T[120,97]=(x -2)^2;

T[121,2]=(x -1)*(x + 1)*(x -2)*(x );
T[121,3]=(x -2)^2*(x + 1)^2;
T[121,5]=(x + 3)*(x -1)^3;
T[121,7]=(x + 2)*(x )*(x -2)^2;
T[121,11]=(x )^4;
T[121,13]=(x + 1)*(x -1)*(x + 4)*(x );
T[121,17]=(x -5)*(x + 5)*(x -2)*(x );
T[121,19]=(x + 6)*(x -6)*(x )^2;
T[121,23]=(x + 9)*(x + 1)*(x -2)^2;
T[121,29]=(x -9)*(x + 9)*(x )^2;
T[121,31]=(x + 5)*(x -7)*(x + 2)^2;
T[121,37]=(x -7)*(x -3)*(x + 3)^2;
T[121,41]=(x -5)*(x -8)*(x + 5)*(x );
T[121,43]=(x -6)*(x )^3;
T[121,47]=(x -8)*(x + 12)*(x -2)^2;
T[121,53]=(x -6)*(x + 6)*(x -9)^2;
T[121,59]=(x + 15)*(x -5)*(x -8)^2;
T[121,61]=(x + 12)*(x + 6)*(x -6)*(x );
T[121,67]=(x -13)*(x + 7)*(x -2)^2;
T[121,71]=(x + 3)^2*(x -12)^2;
T[121,73]=(x -2)*(x + 4)*(x + 2)*(x );
T[121,79]=(x + 10)*(x )*(x -10)^2;
T[121,83]=(x + 6)*(x )*(x -6)^2;
T[121,89]=(x -15)*(x + 9)^3;
T[121,97]=(x -17)*(x + 7)*(x + 13)^2;

T[122,2]=(x + 1)^3*(x -1)^3;
T[122,3]=(x + 2)*(x^2 -x -3)*(x^3 + x^2 -5*x + 2);
T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x )^2;
T[122,7]=(x + 5)*(x^2 -5*x + 3)*(x^3 -4*x^2 -10*x + 41);
T[122,11]=(x + 3)*(x^2 -2*x -12)*(x^3 + 7*x^2 + 10*x -4);
T[122,13]=(x + 3)*(x^2 -6*x -4)*(x^3 + x^2 -6*x -4);
T[122,17]=(x^2 + 2*x -12)*(x^3 + 6*x^2 -4*x -16)*(x );
T[122,19]=(x^2 -x -29)*(x^3 + 3*x^2 -x -4)*(x );
T[122,23]=(x -5)*(x^2 + 3*x -27)*(x^3 -2*x^2 -38*x + 113);
T[122,29]=(x -6)*(x^2 + 11*x + 27)*(x^3 -x^2 -31*x + 2);
T[122,31]=(x^2 + x -3)*(x^3 + 3*x^2 -43*x + 8)*(x );
T[122,37]=(x + 12)*(x^2 + 3*x -1)*(x^3 -7*x^2 -65*x + 424);
T[122,41]=(x + 3)*(x^2 + 9*x -9)*(x^3 -4*x^2 -70*x -139);
T[122,43]=(x + 8)*(x^3 -12*x^2 -16*x + 256)*(x -8)^2;
T[122,47]=(x -12)*(x^2 -8*x -36)*(x^3 + 8*x^2 -28*x -208);
T[122,53]=(x + 2)*(x^2 + x -81)*(x^3 -11*x^2 -195*x + 2198);
T[122,59]=(x + 9)*(x^3 + 23*x^2 + 164*x + 368)*(x )^2;
T[122,61]=(x -1)^2*(x + 1)^4;
T[122,67]=(x -7)*(x^2 -52)*(x^3 -21*x^2 + 44*x + 772);
T[122,71]=(x + 16)*(x^2 -9*x -9)*(x^3 -27*x^2 + 207*x -432);
T[122,73]=(x + 3)*(x^2 -x -29)*(x^3 -22*x^2 + 80*x + 449);
T[122,79]=(x -1)*(x^2 + 12*x -16)*(x^3 -3*x^2 -108*x + 432);
T[122,83]=(x + 12)*(x^2 -9*x -9)*(x^3 + 11*x^2 -85*x -28);
T[122,89]=(x -12)*(x^2 + 14*x + 36)*(x^3 + 10*x^2 -76*x + 112);
T[122,97]=(x -2)*(x^2 -17*x -9)*(x^3 + 5*x^2 -7*x + 2);

T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x );
T[123,3]=(x -1)^3*(x + 1)^4;
T[123,5]=(x + 2)*(x + 4)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4);
T[123,7]=(x + 4)*(x + 2)*(x^2 + 4*x + 2)*(x^3 -2*x^2 -14*x + 32);
T[123,11]=(x + 3)*(x -5)*(x^2 -2*x -1)*(x^3 + 4*x^2 + x -4);
T[123,13]=(x + 6)*(x + 4)*(x^2 -4*x -14)*(x^3 -8*x^2 + 14*x + 4);
T[123,17]=(x -3)*(x + 5)*(x^2 -2*x -1)*(x^3 -2*x^2 -23*x + 62);
T[123,19]=(x + 2)*(x^2 + 8*x + 14)*(x^3 -2*x^2 -6*x + 8)*(x );
T[123,23]=(x + 6)*(x -4)*(x^2 -2)*(x^3 + 10*x^2 + 26*x + 16);
T[123,29]=(x -5)*(x -1)*(x^2 -2*x -49)*(x^3 + 6*x^2 -27*x -86);
T[123,31]=(x + 5)*(x -7)*(x^3 + 2*x^2 -91*x -256)*(x + 3)^2;
T[123,37]=(x^2 + 2*x -71)*(x^3 -20*x^2 + 117*x -166)*(x + 7)^2;
T[123,41]=(x + 1)^3*(x -1)^4;
T[123,43]=(x + 1)*(x -7)*(x^3 -10*x^2 -119*x + 1156)*(x + 5)^2;
T[123,47]=(x -7)*(x -3)*(x^2 -18*x + 79)*(x^3 -4*x^2 -35*x -8);
T[123,53]=(x + 14)*(x + 6)*(x^2 -8*x + 8)*(x^3 -14*x^2 + 32);
T[123,59]=(x + 12)*(x^2 -72)*(x^3 + 8*x^2 -40*x + 32)*(x );
T[123,61]=(x^2 -2*x -31)*(x^3 + 8*x^2 + 5*x -46)*(x + 3)^2;
T[123,67]=(x^2 -4*x -68)*(x^3 -12*x^2 -124*x + 976)*(x + 2)^2;
T[123,71]=(x^2 -6*x -41)*(x^3 + 32*x^2 + 337*x + 1168)*(x + 3)^2;
T[123,73]=(x -13)*(x + 11)*(x^2 -2*x -127)*(x^3 -4*x^2 -99*x + 454);
T[123,79]=(x + 2)*(x -10)*(x^2 + 4*x -28)*(x^3 + 20*x^2 + 68*x + 32);
T[123,83]=(x + 16)*(x + 2)*(x^2 + 12*x -14)*(x^3 + 14*x^2 + 10*x -296);
T[123,89]=(x + 10)*(x -18)*(x^2 + 12*x + 4)*(x^3 -14*x^2 -4*x + 184);
T[123,97]=(x + 12)*(x + 14)*(x^2 -24*x + 126)*(x^3 + 12*x^2 + 14*x -148);

T[124,2]=(x )^2;
T[124,3]=(x + 2)*(x );
T[124,5]=(x -1)*(x + 3);
T[124,7]=(x + 1)*(x -3);
T[124,11]=(x + 6)*(x -6);
T[124,13]=(x + 4)*(x -2);
T[124,17]=(x -6)*(x );
T[124,19]=(x + 5)*(x + 1);
T[124,23]=(x + 6)*(x + 4);
T[124,29]=(x -2)*(x );
T[124,31]=(x + 1)*(x -1);
T[124,37]=(x + 10)*(x + 2);
T[124,41]=(x + 9)^2;
T[124,43]=(x -8)*(x -2);
T[124,47]=(x -4)*(x );
T[124,53]=(x -12)*(x );
T[124,59]=(x + 3)*(x -9);
T[124,61]=(x + 10)*(x -12);
T[124,67]=(x + 12)*(x + 4);
T[124,71]=(x + 15)*(x -5);
T[124,73]=(x -14)*(x + 14);
T[124,79]=(x -8)*(x -10);
T[124,83]=(x -2)*(x -6);
T[124,89]=(x -12)*(x -6);
T[124,97]=(x + 7)^2;

T[125,2]=(x^2 -x -1)*(x^2 + x -1)*(x^4 -8*x^2 + 11);
T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
T[125,5]=(x )^8;
T[125,7]=(x^4 -13*x^2 + 11)*(x -3)^2*(x + 3)^2;
T[125,11]=(x + 3)^4*(x -2)^4;
T[125,13]=(x^2 -3*x -9)*(x^2 + 3*x -9)*(x^4 -32*x^2 + 176);
T[125,17]=(x^2 + 4*x -1)*(x^2 -4*x -1)*(x^4 -28*x^2 + 176);
T[125,19]=(x^2 + 5*x + 5)^2*(x^2 -10*x + 20)^2;
T[125,23]=(x^2 + 2*x -4)*(x^2 -2*x -4)*(x^4 -17*x^2 + 11);
T[125,29]=(x^2 -45)^2*(x^2 + 5*x -5)^2;
T[125,31]=(x^2 + x -31)^2*(x -2)^4;
T[125,37]=(x^2 + 6*x -36)*(x^2 -6*x -36)*(x^4 -68*x^2 + 176);
T[125,41]=(x^2 + x -31)^2*(x + 3)^4;
T[125,43]=(x^4 -107*x^2 + 1331)*(x -9)^2*(x + 9)^2;
T[125,47]=(x^2 -x -61)*(x^2 + x -61)*(x^4 -43*x^2 + 11);
T[125,53]=(x^2 + 7*x + 11)*(x^2 -7*x + 11)*(x^4 -112*x^2 + 2816);
T[125,59]=(x^2 -15*x + 45)^2*(x^2 -20)^2;
T[125,61]=(x^2 + x -31)^4;
T[125,67]=(x^2 + 21*x + 99)*(x^2 -21*x + 99)*(x^4 -28*x^2 + 176);
T[125,71]=(x^2 + 6*x -116)^2*(x + 3)^4;
T[125,73]=(x^2 + 3*x -9)*(x^2 -3*x -9)*(x^4 -352*x^2 + 21296);
T[125,79]=(x^2 -10*x + 20)^2*(x^2 -10*x + 5)^2;
T[125,83]=(x^2 -8*x -4)*(x^2 + 8*x -4)*(x^4 -77*x^2 + 1331);
T[125,89]=(x^2 + 15*x + 55)^2*(x^2 -180)^2;
T[125,97]=(x^2 + 9*x + 9)*(x^2 -9*x + 9)*(x^4 -128*x^2 + 176);

T[126,2]=(x -1)*(x + 1);
T[126,3]=(x )^2;
T[126,5]=(x -2)*(x );
T[126,7]=(x -1)*(x + 1);
T[126,11]=(x -4)*(x );
T[126,13]=(x + 4)*(x -6);
T[126,17]=(x + 6)*(x + 2);
T[126,19]=(x + 4)*(x -2);
T[126,23]=(x + 8)*(x );
T[126,29]=(x -2)*(x -6);
T[126,31]=(x + 4)*(x );
T[126,37]=(x + 10)*(x -2);
T[126,41]=(x -6)*(x + 6);
T[126,43]=(x -8)*(x + 4);
T[126,47]=(x -12)*(x );
T[126,53]=(x + 6)^2;
T[126,59]=(x -6)*(x + 4);
T[126,61]=(x -8)*(x -6);
T[126,67]=(x + 4)*(x -4);
T[126,71]=(x + 8)*(x );
T[126,73]=(x -10)*(x -2);
T[126,79]=(x -8)*(x );
T[126,83]=(x -6)*(x -4);
T[126,89]=(x -6)^2;
T[126,97]=(x + 14)*(x + 10);

T[128,2]=(x )^4;
T[128,3]=(x + 2)^2*(x -2)^2;
T[128,5]=(x -2)^2*(x + 2)^2;
T[128,7]=(x + 4)^2*(x -4)^2;
T[128,11]=(x -2)^2*(x + 2)^2;
T[128,13]=(x -2)^2*(x + 2)^2;
T[128,17]=(x + 2)^4;
T[128,19]=(x -2)^2*(x + 2)^2;
T[128,23]=(x + 4)^2*(x -4)^2;
T[128,29]=(x + 6)^2*(x -6)^2;
T[128,31]=(x )^4;
T[128,37]=(x + 10)^2*(x -10)^2;
T[128,41]=(x + 6)^4;
T[128,43]=(x -6)^2*(x + 6)^2;
T[128,47]=(x + 8)^2*(x -8)^2;
T[128,53]=(x -6)^2*(x + 6)^2;
T[128,59]=(x + 14)^2*(x -14)^2;
T[128,61]=(x + 2)^2*(x -2)^2;
T[128,67]=(x + 10)^2*(x -10)^2;
T[128,71]=(x -12)^2*(x + 12)^2;
T[128,73]=(x -14)^4;
T[128,79]=(x -8)^2*(x + 8)^2;
T[128,83]=(x -6)^2*(x + 6)^2;
T[128,89]=(x + 2)^4;
T[128,97]=(x + 2)^4;

T[129,2]=(x -1)*(x^2 -2*x -1)*(x^3 + 2*x^2 -5*x -8)*(x );
T[129,3]=(x + 1)^3*(x -1)^4;
T[129,5]=(x -2)*(x + 2)*(x^2 -2*x -1)*(x^3 + 4*x^2 -x -2);
T[129,7]=(x + 2)*(x^2 -2*x -7)*(x^3 -4*x^2 -3*x + 10)*(x );
T[129,11]=(x + 5)*(x^2 -6*x + 7)*(x^3 -x^2 -19*x -25)*(x );
T[129,13]=(x + 2)*(x + 5)^2*(x -3)^4;
T[129,17]=(x + 3)*(x + 6)*(x^2 + 4*x -4)*(x^3 -x^2 -8*x + 4);
T[129,19]=(x -4)*(x -2)*(x^2 + 2*x -31)*(x^3 + 4*x^2 -19*x -2);
T[129,23]=(x + 1)*(x + 4)*(x^3 -11*x^2 -32*x + 452)*(x -6)^2;
T[129,29]=(x + 6)*(x^2 -6*x -9)*(x^3 -2*x^2 -5*x + 8)*(x );
T[129,31]=(x -8)*(x + 5)*(x^3 + 5*x^2 -16*x -64)*(x -4)^2;
T[129,37]=(x -6)*(x -8)*(x^2 + 8*x + 8)*(x^3 -40*x + 64);
T[129,41]=(x + 7)*(x -2)*(x^2 -32)*(x^3 + 15*x^2 + 32*x -32);
T[129,43]=(x -1)^2*(x + 1)^5;
T[129,47]=(x -4)*(x + 8)*(x^2 + 2*x -97)*(x^3 + 2*x^2 -133*x -664);
T[129,53]=(x -3)*(x + 2)*(x^2 -128)*(x^3 + 5*x^2 -16*x -64);
T[129,59]=(x -12)*(x^2 -4*x -124)*(x^3 -8*x^2 -12*x + 80)*(x );
T[129,61]=(x + 8)*(x -14)*(x^2 + 8*x + 8)*(x^3 + 16*x^2 + 8*x -512);
T[129,67]=(x + 15)*(x -12)*(x^2 + 12*x -36)*(x^3 + 11*x^2 -80*x -332);
T[129,71]=(x -8)*(x + 14)*(x^2 -12*x + 28)*(x^3 -22*x^2 + 84*x + 424);
T[129,73]=(x -2)*(x -12)*(x^2 -4*x -28)*(x^3 + 16*x^2 + 52*x -16);
T[129,79]=(x + 16)*(x + 8)*(x^2 -8*x -56)*(x^3 -24*x^2 + 152*x -256);
T[129,83]=(x -15)*(x^2 + 14*x + 47)*(x^3 + 7*x^2 -79*x -485)*(x );
T[129,89]=(x -10)*(x -14)*(x^2 -72)*(x^3 + 38*x^2 + 456*x + 1744);
T[129,97]=(x + 14)*(x -11)*(x^2 + 2*x -7)*(x^3 -x^2 -77*x + 277);

T[130,2]=(x + 1)*(x -1)^2;
T[130,3]=(x + 2)*(x -2)*(x );
T[130,5]=(x + 1)*(x -1)^2;
T[130,7]=(x )*(x + 4)^2;
T[130,11]=(x + 6)*(x + 2)*(x );
T[130,13]=(x + 1)*(x -1)^2;
T[130,17]=(x + 6)*(x -2)^2;
T[130,19]=(x + 8)*(x -2)*(x -6);
T[130,23]=(x + 4)*(x -6)^2;
T[130,29]=(x + 2)*(x -2)*(x + 6);
T[130,31]=(x -2)*(x + 4)*(x + 6);
T[130,37]=(x + 2)*(x -2)*(x -6);
T[130,41]=(x + 6)*(x -10)^2;
T[130,43]=(x + 10)*(x -2)*(x );
T[130,47]=(x -8)*(x + 12)^2;
T[130,53]=(x -2)*(x -6)^2;
T[130,59]=(x -10)*(x -8)*(x -6);
T[130,61]=(x + 2)*(x -2)^2;
T[130,67]=(x + 12)*(x + 4)*(x -4);
T[130,71]=(x + 12)*(x -10)*(x + 6);
T[130,73]=(x + 10)*(x -10)^2;
T[130,79]=(x + 8)*(x + 4)^2;
T[130,83]=(x -12)*(x )^2;
T[130,89]=(x -10)*(x + 6)*(x + 14);
T[130,97]=(x -2)*(x -14)*(x + 14);

T[132,2]=(x )^2;
T[132,3]=(x -1)*(x + 1);
T[132,5]=(x -2)^2;
T[132,7]=(x + 2)*(x -2);
T[132,11]=(x + 1)*(x -1);
T[132,13]=(x -6)*(x + 2);
T[132,17]=(x + 4)*(x -4);
T[132,19]=(x + 6)*(x + 2);
T[132,23]=(x + 8)*(x );
T[132,29]=(x + 8)*(x );
T[132,31]=(x + 8)*(x );
T[132,37]=(x + 6)*(x -10);
T[132,41]=(x -8)*(x );
T[132,43]=(x + 2)*(x -10);
T[132,47]=(x + 8)*(x );
T[132,53]=(x + 2)*(x -14);
T[132,59]=(x -12)*(x + 12);
T[132,61]=(x -10)*(x + 14);
T[132,67]=(x -4)*(x -12);
T[132,71]=(x -8)*(x );
T[132,73]=(x -6)^2;
T[132,79]=(x + 2)*(x -2);
T[132,83]=(x -16)^2;
T[132,89]=(x + 14)^2;
T[132,97]=(x + 2)^2;

T[133,2]=(x^2 -x -1)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3);
T[133,3]=(x^2 + 3*x -1)*(x^2 + 3*x + 1)*(x^2 -3*x + 1)*(x^3 -3*x^2 -x + 4);
T[133,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x -1)^2*(x + 3)^2;
T[133,7]=(x -1)^4*(x + 1)^5;
T[133,11]=(x^2 + x -1)*(x^2 + 9*x + 19)*(x^3 -7*x^2 + 11*x -4)*(x^2 + 5*x + 3);
T[133,13]=(x^2 + 4*x -9)*(x^3 + 2*x^2 -5*x -2)*(x -1)^2*(x + 1)^2;
T[133,17]=(x^2 + 3*x -9)*(x^2 + 7*x + 9)*(x^2 -x -11)*(x^3 -7*x^2 -11*x + 106);
T[133,19]=(x + 1)^4*(x -1)^5;
T[133,23]=(x^2 + 2*x -19)*(x^3 -14*x^2 + 53*x -56)*(x + 3)^4;
T[133,29]=(x^2 -5*x + 5)*(x^2 + 9*x + 19)*(x^3 + 3*x^2 -73*x -278)*(x^2 -9*x -9);
T[133,31]=(x^2 -5*x -5)*(x^2 + x -101)*(x^3 + 11*x^2 + 25*x + 16)*(x^2 + x -3);
T[133,37]=(x^2 + 14*x + 29)*(x^2 + 8*x -29)*(x^3 -43*x + 106)*(x^2 -13);
T[133,41]=(x^2 -3*x + 1)*(x^2 -5*x + 3)*(x^2 -9*x -11)*(x^3 + 7*x^2 -151*x -998);
T[133,43]=(x^2 -8*x -4)*(x^3 + 4*x^2 -20*x -16)*(x + 2)^2*(x + 10)^2;
T[133,47]=(x^2 -125)*(x^2 -6*x -11)*(x^3 -8*x^2 -29*x -16)*(x^2 + 2*x -51);
T[133,53]=(x^2 + 3*x -27)*(x^2 -3*x -9)*(x^2 + 9*x -11)*(x^3 + x^2 -31*x -2);
T[133,59]=(x^2 + 12*x -9)*(x^2 -20*x + 95)*(x^3 + 10*x^2 + x -124)*(x^2 -2*x -51);
T[133,61]=(x^2 + 6*x -71)*(x^2 -45)*(x^2 -6*x -43)*(x^3 + 6*x^2 -49*x -82);
T[133,67]=(x^2 -11*x -31)*(x^2 + 7*x -89)*(x^3 + 3*x^2 -79*x -188)*(x^2 -7*x -17);
T[133,71]=(x^2 -4*x -41)*(x^2 -10*x -27)*(x^2 -6*x -11)*(x^3 -61*x -32);
T[133,73]=(x^2 -15*x + 45)*(x^2 + 7*x -49)*(x^3 -x^2 -101*x -98)*(x^2 + 15*x -25);
T[133,79]=(x^2 -20)*(x^3 + 4*x^2 -44*x + 32)*(x^2 -8*x -36)*(x + 10)^2;
T[133,83]=(x^2 + 15*x + 27)*(x^2 -13*x + 31)*(x^2 + 9*x + 9)*(x^3 -31*x^2 + 289*x -788);
T[133,89]=(x^2 + 14*x + 36)*(x^2 -10*x + 20)*(x^2 -18*x + 36)*(x^3 + 28*x^2 + 104*x -1352);
T[133,97]=(x^2 -12*x + 23)*(x^2 -6*x -11)*(x^2 -2*x -179)*(x^3 + 30*x^2 + 243*x + 482);

T[134,2]=(x + 1)^3*(x -1)^3;
T[134,3]=(x^3 -3*x^2 + 1)*(x^3 -x^2 -8*x + 11);
T[134,5]=(x^3 + 3*x^2 -6*x + 1)*(x^3 -3*x^2 -2*x + 3);
T[134,7]=(x^3 -12*x -8)*(x^3 -20*x + 8);
T[134,11]=(x^3 + x^2 -16*x + 9)*(x^3 + 3*x^2 -24*x -53);
T[134,13]=(x^3 + 3*x^2 -18*x -3)*(x^3 -11*x^2 + 30*x -9);
T[134,17]=(x^3 + 3*x^2 -2*x -3)*(x^3 + 3*x^2 -18*x -3);
T[134,19]=(x^3 -6*x^2 -36*x + 152)*(x -2)^3;
T[134,23]=(x^3 + 11*x^2 + 32*x + 27)*(x^3 + 3*x^2 -36*x + 51);
T[134,29]=(x + 4)^3*(x )^3;
T[134,31]=(x^3 -4*x^2 -84*x + 440)*(x^3 -12*x^2 + 36*x -8);
T[134,37]=(x^3 -84*x -136)*(x^3 -4*x^2 -60*x + 200);
T[134,41]=(x^3 -12*x -8)*(x^3 + 4*x^2 -124*x -600);
T[134,43]=(x^3 -3*x^2 -60*x + 53)*(x^3 -x^2 -60*x + 167);
T[134,47]=(x^3 -x^2 -16*x -9)*(x^3 -21*x^2 + 144*x -321);
T[134,53]=(x^3 + 9*x^2 + 18*x -9)*(x^3 + 3*x^2 -74*x + 45);
T[134,59]=(x^3 -180*x + 216)*(x^3 -12*x + 8);
T[134,61]=(x^3 -15*x^2 + 66*x -89)*(x^3 -21*x^2 + 70*x + 317);
T[134,67]=(x -1)^3*(x + 1)^3;
T[134,71]=(x^3 -9*x^2 -12*x + 179)*(x^3 -5*x^2 -88*x -165);
T[134,73]=(x^3 -9*x^2 -54*x -27)*(x^3 + 23*x^2 + 114*x -211);
T[134,79]=(x^3 + 6*x^2 -24*x + 8)*(x^3 -10*x^2 -96*x + 824);
T[134,83]=(x^3 + 22*x^2 + 32*x -984)*(x^3 -18*x^2 + 648);
T[134,89]=(x^3 -19*x^2 + 98*x -153)*(x^3 -3*x^2 -126*x -321);
T[134,97]=(x^3 -18*x^2 + 24*x + 584)*(x^3 + 2*x^2 -136*x + 520);

T[135,2]=(x + 2)*(x -2)*(x^2 -x -3)*(x^2 + x -3);
T[135,3]=(x )^6;
T[135,5]=(x + 1)^3*(x -1)^3;
T[135,7]=(x + 3)^2*(x^2 -2*x -12)^2;
T[135,11]=(x -2)*(x + 2)*(x^2 -2*x -12)*(x^2 + 2*x -12);
T[135,13]=(x + 5)^2*(x^2 -6*x -4)^2;
T[135,17]=(x + 8)*(x -8)*(x^2 + 4*x -9)*(x^2 -4*x -9);
T[135,19]=(x -1)^2*(x^2 -13)^2;
T[135,23]=(x -6)*(x + 6)*(x -3)^2*(x + 3)^2;
T[135,29]=(x + 2)*(x -2)*(x^2 -10*x + 12)*(x^2 + 10*x + 12);
T[135,31]=(x^2 + 4*x -9)^2*(x )^2;
T[135,37]=(x -5)^2*(x -2)^4;
T[135,41]=(x -10)*(x + 10)*(x^2 -2*x -12)*(x^2 + 2*x -12);
T[135,43]=(x -4)^2*(x^2 + 6*x -4)^2;
T[135,47]=(x + 4)*(x -4)*(x^2 -4*x -48)*(x^2 + 4*x -48);
T[135,53]=(x + 2)*(x -2)*(x^2 + 4*x -9)*(x^2 -4*x -9);
T[135,59]=(x -8)*(x + 8)*(x^2 -10*x + 12)*(x^2 + 10*x + 12);
T[135,61]=(x -7)^2*(x^2 -6*x -43)^2;
T[135,67]=(x + 9)^2*(x^2 + 16*x + 12)^2;
T[135,71]=(x + 2)*(x -2)*(x^2 + 22*x + 108)*(x^2 -22*x + 108);
T[135,73]=(x + 5)^2*(x^2 -18*x + 68)^2;
T[135,79]=(x + 3)^2*(x^2 + 16*x + 51)^2;
T[135,83]=(x + 6)*(x -6)*(x + 3)^2*(x -3)^2;
T[135,89]=(x -12)*(x + 12)*(x^2 -6*x -108)*(x^2 + 6*x -108);
T[135,97]=(x + 13)^2*(x -8)^4;

T[136,2]=(x )^4;
T[136,3]=(x + 2)*(x -2)*(x^2 + 2*x -4);
T[136,5]=(x + 2)*(x )*(x -2)^2;
T[136,7]=(x + 2)*(x^2 -2*x -4)*(x );
T[136,11]=(x + 6)*(x -2)*(x^2 -2*x -4);
T[136,13]=(x -2)*(x + 6)*(x^2 -20);
T[136,17]=(x + 1)*(x -1)^3;
T[136,19]=(x -4)*(x^2 + 4*x -16)*(x );
T[136,23]=(x -4)*(x -6)*(x^2 -2*x -4);
T[136,29]=(x + 10)*(x )*(x -2)^2;
T[136,31]=(x + 8)*(x -2)*(x^2 + 2*x -4);
T[136,37]=(x -6)*(x + 4)*(x^2 + 4*x -76);
T[136,41]=(x + 6)*(x -6)*(x -2)^2;
T[136,43]=(x -8)*(x + 8)*(x^2 + 12*x + 16);
T[136,47]=(x + 8)*(x^2 -8*x -64)*(x );
T[136,53]=(x -10)*(x + 10)*(x + 2)^2;
T[136,59]=(x + 8)*(x^2 -20*x + 80)*(x );
T[136,61]=(x -14)*(x -12)*(x^2 + 4*x -76);
T[136,67]=(x -8)*(x -4)*(x + 12)^2;
T[136,71]=(x -2)*(x -12)*(x^2 -14*x + 44);
T[136,73]=(x -2)*(x + 14)*(x^2 -12*x -44);
T[136,79]=(x + 4)*(x + 10)*(x^2 -10*x -20);
T[136,83]=(x -8)*(x -16)*(x^2 -12*x + 16);
T[136,89]=(x + 10)*(x -10)*(x^2 + 24*x + 124);
T[136,97]=(x + 18)*(x -2)^3;

T[138,2]=(x + 1)^2*(x -1)^3;
T[138,3]=(x + 1)^2*(x -1)^3;
T[138,5]=(x + 2)*(x -2)*(x^2 + 2*x -4)*(x );
T[138,7]=(x + 2)*(x -2)*(x^2 -20)*(x );
T[138,11]=(x + 6)*(x^2 + 6*x + 4)*(x )^2;
T[138,13]=(x -2)*(x^2 -20)*(x + 2)^2;
T[138,17]=(x -2)*(x + 4)^2*(x )^2;
T[138,19]=(x -2)*(x + 8)*(x^2 + 2*x -44)*(x );
T[138,23]=(x -1)^2*(x + 1)^3;
T[138,29]=(x + 6)*(x -6)*(x + 2)*(x^2 -20);
T[138,31]=(x + 4)*(x -8)*(x + 8)*(x^2 -4*x -16);
T[138,37]=(x -2)*(x + 10)*(x^2 -18*x + 76)*(x );
T[138,41]=(x + 6)*(x + 2)^2*(x -10)^2;
T[138,43]=(x + 12)*(x -2)*(x -8)*(x^2 + 14*x + 44);
T[138,47]=(x + 8)*(x -8)*(x )*(x -4)^2;
T[138,53]=(x -12)*(x^2 -6*x + 4)*(x -2)^2;
T[138,59]=(x + 12)*(x -12)*(x + 4)*(x^2 -80);
T[138,61]=(x -2)*(x -4)*(x + 10)*(x^2 -6*x + 4);
T[138,67]=(x + 12)*(x -8)*(x -14)*(x^2 -6*x -36);
T[138,71]=(x^2 -80)*(x )^3;
T[138,73]=(x + 10)*(x -2)*(x + 6)*(x^2 -20);
T[138,79]=(x + 6)*(x + 10)*(x -8)*(x^2 -20);
T[138,83]=(x + 16)*(x -14)*(x^2 -22*x + 116)*(x );
T[138,89]=(x -12)*(x -18)*(x^2 + 12*x + 16)*(x );
T[138,97]=(x + 6)*(x -10)*(x + 10)*(x^2 + 8*x -4);

T[140,2]=(x )^2;
T[140,3]=(x -3)*(x -1);
T[140,5]=(x + 1)*(x -1);
T[140,7]=(x -1)*(x + 1);
T[140,11]=(x + 5)*(x -3);
T[140,13]=(x + 1)*(x + 3);
T[140,17]=(x + 1)*(x + 3);
T[140,19]=(x -6)*(x -2);
T[140,23]=(x + 6)*(x -6);
T[140,29]=(x + 9)^2;
T[140,31]=(x -8)*(x + 4);
T[140,37]=(x + 10)*(x -2);
T[140,41]=(x + 4)*(x );
T[140,43]=(x -10)*(x -2);
T[140,47]=(x + 3)*(x + 1);
T[140,53]=(x -4)*(x );
T[140,59]=(x + 8)*(x -12);
T[140,61]=(x -8)*(x + 8);
T[140,67]=(x -12)*(x -8);
T[140,71]=(x -8)*(x );
T[140,73]=(x -2)*(x -14);
T[140,79]=(x -5)*(x -13);
T[140,83]=(x + 12)*(x + 4);
T[140,89]=(x -4)*(x -12);
T[140,97]=(x + 13)*(x -17);

T[141,2]=(x + 2)*(x -2)*(x^2 + x -4)*(x )*(x + 1)^2;
T[141,3]=(x -1)^3*(x + 1)^4;
T[141,5]=(x + 3)*(x -2)*(x^2 -x -4)*(x )*(x + 1)^2;
T[141,7]=(x -4)*(x^2 -x -4)*(x )*(x + 3)^3;
T[141,11]=(x -4)*(x -1)*(x + 5)*(x + 3)*(x^2 -7*x + 8)*(x );
T[141,13]=(x -2)*(x -6)*(x + 4)*(x^2 + 6*x -8)*(x + 2)^2;
T[141,17]=(x -8)*(x^2 -2*x -16)*(x -2)^2*(x + 6)^2;
T[141,19]=(x -2)*(x )*(x + 6)^2*(x -6)^3;
T[141,23]=(x -4)*(x -9)*(x^2 + 3*x -36)*(x )*(x -3)^2;
T[141,29]=(x -1)*(x -8)*(x -3)*(x + 6)*(x + 1)*(x^2 + 15*x + 52);
T[141,31]=(x + 4)*(x + 2)*(x -6)*(x -2)*(x -4)*(x^2 -6*x -8);
T[141,37]=(x + 7)*(x + 6)*(x + 10)*(x^2 -11*x + 26)*(x -1)^2;
T[141,41]=(x -10)*(x + 2)*(x -6)*(x + 10)*(x + 8)*(x^2 -6*x -8);
T[141,43]=(x + 6)*(x + 10)*(x -8)*(x -2)*(x + 8)*(x^2 -14*x + 32);
T[141,47]=(x + 1)^3*(x -1)^4;
T[141,53]=(x -10)*(x -2)*(x + 2)*(x -4)*(x^2 + 8*x -52)*(x );
T[141,59]=(x -8)*(x + 12)*(x + 10)*(x -12)*(x + 4)*(x^2 -6*x -8);
T[141,61]=(x + 2)*(x -14)*(x + 10)*(x -2)^4;
T[141,67]=(x -4)*(x + 2)*(x -2)*(x + 8)*(x -10)*(x^2 -2*x -16);
T[141,71]=(x + 14)*(x -16)*(x + 2)*(x + 6)*(x^2 + 2*x -16)*(x );
T[141,73]=(x + 8)*(x + 2)*(x -2)*(x^2 -10*x + 8)*(x + 10)^2;
T[141,79]=(x -8)*(x + 4)*(x + 15)*(x + 3)*(x -17)*(x^2 + 15*x + 52);
T[141,83]=(x -4)*(x + 18)*(x -8)*(x^2 -6*x -8)*(x + 4)^2;
T[141,89]=(x -6)*(x -10)*(x + 2)*(x + 10)*(x -18)*(x^2 -68);
T[141,97]=(x + 14)*(x -5)*(x + 18)*(x^2 + 5*x -202)*(x -1)^2;

T[142,2]=(x -1)^2*(x + 1)^3;
T[142,3]=(x + 1)*(x + 3)*(x -1)*(x -3)*(x );
T[142,5]=(x + 2)*(x + 4)*(x )*(x -2)^2;
T[142,7]=(x )*(x + 1)^2*(x + 3)^2;
T[142,11]=(x + 6)*(x -6)*(x + 2)*(x )^2;
T[142,13]=(x -1)*(x + 1)*(x + 3)*(x + 5)*(x -4);
T[142,17]=(x + 6)*(x -6)^2*(x )^2;
T[142,19]=(x + 1)*(x -5)*(x + 8)*(x -1)*(x + 5);
T[142,23]=(x + 1)*(x + 7)*(x -5)*(x + 4)*(x -3);
T[142,29]=(x -6)*(x + 8)*(x )*(x + 2)^2;
T[142,31]=(x + 5)*(x -1)*(x -7)*(x + 8)*(x -5);
T[142,37]=(x + 2)*(x -6)*(x -10)*(x -4)*(x + 4);
T[142,41]=(x + 2)*(x -10)*(x + 6)*(x -4)*(x );
T[142,43]=(x + 1)*(x -1)*(x + 8)*(x -5)*(x + 5);
T[142,47]=(x -9)*(x + 13)*(x + 3)*(x + 4)*(x + 1);
T[142,53]=(x )*(x -6)^2*(x + 6)^2;
T[142,59]=(x + 2)*(x -6)*(x -2)*(x -10)^2;
T[142,61]=(x + 8)*(x -2)*(x + 6)*(x + 2)^2;
T[142,67]=(x + 4)*(x + 14)*(x -8)*(x -2)^2;
T[142,71]=(x + 1)^2*(x -1)^3;
T[142,73]=(x + 2)*(x + 1)*(x + 17)*(x -7)^2;
T[142,79]=(x -8)*(x + 6)*(x -10)*(x )^2;
T[142,83]=(x -4)*(x -12)*(x + 4)^3;
T[142,89]=(x -6)*(x + 3)^2*(x -9)^2;
T[142,97]=(x -2)*(x + 6)*(x + 4)*(x + 16)*(x -14);

T[143,2]=(x^4 -3*x^3 -x^2 + 5*x + 1)*(x^6 -10*x^4 + 2*x^3 + 24*x^2 -7*x -12)*(x );
T[143,3]=(x + 1)*(x^4 -7*x^2 + 4*x + 1)*(x^6 -3*x^5 -11*x^4 + 33*x^3 + 25*x^2 -91*x + 28);
T[143,5]=(x + 1)*(x^4 -16*x^2 + 8*x + 16)*(x^6 -x^5 -26*x^4 + 32*x^3 + 152*x^2 -256*x + 96);
T[143,7]=(x + 2)*(x^4 -6*x^3 + x^2 + 44*x -61)*(x^6 -4*x^5 -23*x^4 + 66*x^3 + 187*x^2 -210*x -448);
T[143,11]=(x -1)^4*(x + 1)^7;
T[143,13]=(x + 1)^5*(x -1)^6;
T[143,17]=(x + 4)*(x^4 -6*x^3 -36*x^2 + 136*x + 496)*(x^6 -40*x^4 -16*x^3 + 384*x^2 + 224*x -768);
T[143,19]=(x -2)*(x^4 -8*x^3 -25*x^2 + 154*x + 387)*(x^6 + 10*x^5 + 3*x^4 -196*x^3 -561*x^2 -454*x -104);
T[143,23]=(x -7)*(x^4 + 4*x^3 -7*x^2 -44*x -43)*(x^6 -11*x^5 -43*x^4 + 701*x^3 -447*x^2 -8635*x + 13176);
T[143,29]=(x + 2)*(x^4 + 10*x^3 + 16*x^2 -64*x -144)*(x^6 -2*x^5 -92*x^4 + 408*x^3 + 208*x^2 -2240*x + 1344);
T[143,31]=(x + 3)*(x^4 -2*x^3 -96*x^2 + 96*x + 688)*(x^6 + 9*x^5 -62*x^4 -880*x^3 -3040*x^2 -3888*x -1664);
T[143,37]=(x + 11)*(x^4 -12*x^3 -16*x^2 + 448*x -768)*(x^6 -15*x^5 -6*x^4 + 968*x^3 -4864*x^2 + 7680*x -2560);
T[143,41]=(x -10)*(x^4 -8*x^3 -57*x^2 + 450*x -413)*(x^6 + 4*x^5 -105*x^4 -222*x^3 + 1655*x^2 -1568*x -252);
T[143,43]=(x + 4)*(x^4 -26*x^3 + 236*x^2 -872*x + 1104)*(x^6 + 2*x^5 -100*x^4 + 120*x^3 + 1584*x^2 -2496*x -1024);
T[143,47]=(x + 4)*(x^4 + 18*x^3 + 88*x^2 + 16*x -496)*(x^6 -6*x^5 -96*x^4 + 240*x^3 + 1712*x^2 -2240*x -7680);
T[143,53]=(x -2)*(x^4 + 6*x^3 -13*x^2 -118*x -159)*(x^6 -2*x^5 -169*x^4 -294*x^3 + 5877*x^2 + 18088*x -10116);
T[143,59]=(x + 1)*(x^4 + 16*x^3 + 44*x^2 -336*x -1424)*(x^6 -11*x^5 -120*x^4 + 844*x^3 + 5968*x^2 -7952*x -57792);
T[143,61]=(x + 2)*(x^4 + 12*x^3 -248*x -48)*(x^6 -16*x^5 -52*x^4 + 1496*x^3 -5232*x^2 -1632*x + 19648);
T[143,67]=(x + 1)*(x^4 -2*x^3 -148*x^2 -792*x -1136)*(x^6 -9*x^5 -62*x^4 + 332*x^3 + 936*x^2 -112*x -832);
T[143,71]=(x + 9)*(x^4 + 14*x^3 -104*x^2 -1136*x -2256)*(x^6 + 15*x^5 -98*x^4 -1936*x^3 -4144*x^2 + 12592*x + 33024);
T[143,73]=(x + 16)*(x^4 -22*x^3 + 69*x^2 + 1112*x -6101)*(x^6 -32*x^5 + 349*x^4 -1222*x^3 -2093*x^2 + 12362*x + 17456);
T[143,79]=(x -8)*(x^4 + 10*x^3 -220*x^2 -1272*x + 6544)*(x^6 -14*x^5 -12*x^4 + 904*x^3 -4048*x^2 + 4416*x + 2048);
T[143,83]=(x^4 + 2*x^3 -35*x^2 -104*x -21)*(x^6 + 26*x^5 + 33*x^4 -3460*x^3 -18629*x^2 + 90560*x + 584400)*(x );
T[143,89]=(x + 7)*(x^4 -10*x^3 -12*x^2 + 40*x + 48)*(x^6 + 23*x^5 -24*x^4 -3576*x^3 -22496*x^2 -21728*x + 61152);
T[143,97]=(x + 13)*(x^4 -22*x^3 -168*x^2 + 6528*x -36848)*(x^6 -27*x^5 + 204*x^4 + 404*x^3 -11824*x^2 + 50384*x -65312);

T[144,2]=(x )^2;
T[144,3]=(x )^2;
T[144,5]=(x -2)*(x );
T[144,7]=(x -4)*(x );
T[144,11]=(x -4)*(x );
T[144,13]=(x -2)*(x + 2);
T[144,17]=(x + 2)*(x );
T[144,19]=(x + 8)*(x -4);
T[144,23]=(x + 8)*(x );
T[144,29]=(x + 6)*(x );
T[144,31]=(x -4)*(x + 8);
T[144,37]=(x + 10)*(x -6);
T[144,41]=(x -6)*(x );
T[144,43]=(x + 4)*(x + 8);
T[144,47]=(x )^2;
T[144,53]=(x -2)*(x );
T[144,59]=(x -4)*(x );
T[144,61]=(x + 2)*(x -14);
T[144,67]=(x -16)*(x -4);
T[144,71]=(x -8)*(x );
T[144,73]=(x -10)*(x + 10);
T[144,79]=(x -8)*(x -4);
T[144,83]=(x + 4)*(x );
T[144,89]=(x -6)*(x );
T[144,97]=(x -2)*(x -14);

T[145,2]=(x + 1)*(x^2 + 2*x -1)*(x^3 -3*x^2 -x + 5)*(x^3 -x^2 -3*x + 1);
T[145,3]=(x^3 + 2*x^2 -4*x -4)*(x^3 -2*x^2 -4*x + 4)*(x )*(x + 2)^2;
T[145,5]=(x + 1)^4*(x -1)^5;
T[145,7]=(x + 2)*(x^2 + 4*x -4)*(x^3 -4*x^2 + 4)*(x^3 + 2*x^2 -8*x + 4);
T[145,11]=(x + 6)*(x^2 + 4*x -4)*(x^3 -8*x^2 + 16*x -4)*(x^3 -2*x^2 -8*x -4);
T[145,13]=(x -2)*(x^3 + 6*x^2 -4*x -8)*(x^3 + 2*x^2 -12*x -8)*(x + 2)^2;
T[145,17]=(x + 2)*(x^2 -8)*(x^3 -40*x + 76)*(x^3 + 4*x^2 -40*x -68);
T[145,19]=(x + 2)*(x^2 + 4*x -4)*(x^3 -28*x + 52)*(x^3 + 10*x^2 + 28*x + 20);
T[145,23]=(x -2)*(x^2 + 12*x + 28)*(x^3 -14*x^2 + 60*x -76)*(x^3 -16*x^2 + 76*x -92);
T[145,29]=(x + 1)^4*(x -1)^5;
T[145,31]=(x -2)*(x^2 + 4*x -68)*(x^3 + 14*x^2 + 60*x + 76)*(x^3 -12*x^2 + 20*x -4);
T[145,37]=(x -10)*(x^2 -72)*(x^3 -4*x^2 -40*x + 68)*(x^3 + 8*x^2 -24*x -92);
T[145,41]=(x -2)*(x^3 + 10*x^2 + 20*x -8)*(x^3 + 2*x^2 -84*x + 232)*(x + 6)^2;
T[145,43]=(x -8)*(x^3 -2*x^2 -132*x -4)*(x^3 + 10*x^2 + 28*x + 20)*(x + 6)^2;
T[145,47]=(x + 12)*(x^2 + 12*x + 4)*(x^3 -18*x^2 + 60*x + 92)*(x^3 -14*x^2 + 60*x -76);
T[145,53]=(x + 6)*(x^2 -4*x -28)*(x^3 -6*x^2 -4*x + 8)*(x^3 -10*x^2 + 20*x + 8);
T[145,59]=(x + 8)*(x^3 -4*x^2 -48*x -80)*(x^3 -8*x^2 -64*x -80)*(x )^2;
T[145,61]=(x + 6)*(x^2 -4*x -28)*(x^3 + 6*x^2 -108*x -216)*(x^3 -6*x^2 -4*x + 40);
T[145,67]=(x -2)*(x^2 + 4*x -68)*(x^3 -28*x^2 + 252*x -716)*(x^3 + 10*x^2 + 28*x + 20);
T[145,71]=(x + 12)*(x^2 + 8*x -112)*(x^3 -28*x^2 + 176*x + 272)*(x^3 -24*x^2 + 176*x -368);
T[145,73]=(x + 6)*(x^2 -72)*(x^3 + 4*x^2 -180*x -1108)*(x^3 + 16*x^2 -100*x -1700);
T[145,79]=(x + 10)*(x^2 -12*x -36)*(x^3 -8*x^2 -56*x + 20)*(x^3 + 6*x^2 -88*x -460);
T[145,83]=(x + 14)*(x^2 -20*x + 92)*(x^3 + 2*x^2 -32*x + 52)*(x^3 -12*x^2 + 148);
T[145,89]=(x -18)*(x^2 + 4*x -28)*(x^3 -22*x^2 + 124*x -200)*(x^3 + 10*x^2 + 12*x -40);
T[145,97]=(x -2)*(x^2 + 8*x -56)*(x^3 -8*x^2 -68*x -76)*(x^3 + 36*x^2 + 348*x + 452);

T[146,2]=(x + 1)^3*(x -1)^4;
T[146,3]=(x^4 -8*x^2 + 4*x + 4)*(x^3 -8*x + 4);
T[146,5]=(x^4 -2*x^3 -14*x^2 + 26*x + 2)*(x^3 + 2*x^2 -4*x -6);
T[146,7]=(x^4 -22*x^2 + 6*x + 2)*(x^3 -8*x^2 + 16*x -2);
T[146,11]=(x^4 -24*x^2 -16*x + 80)*(x^3 -2*x^2 -28*x + 72);
T[146,13]=(x^4 + 4*x^3 -38*x^2 -106*x + 314)*(x^3 -4*x^2 + 2);
T[146,17]=(x^4 + 4*x^3 -16*x^2 -64*x -16)*(x^3 + 2*x^2 -28*x -72);
T[146,19]=(x^4 -32*x^2 -48*x -16)*(x^3 -8*x^2 -8*x + 112);
T[146,23]=(x^3 -4*x^2 -16*x + 48)*(x^4 + 12*x^3 + 8*x^2 -240*x -416);
T[146,29]=(x^4 -2*x^3 -50*x^2 -10*x + 218)*(x^3 + 6*x^2 -104*x -582);
T[146,31]=(x^3 -2*x^2 -24*x -18)*(x^4 + 6*x^3 -42*x^2 -170*x + 362);
T[146,37]=(x^3 + 14*x^2 -4*x -344)*(x^4 -12*x^3 + 16*x^2 + 48*x -16);
T[146,41]=(x^3 + 6*x^2 + 4*x -12)*(x^4 -88*x^2 -396*x -404);
T[146,43]=(x^4 -20*x^3 + 112*x^2 -48*x -656)*(x^3 + 6*x^2 -20*x -88);
T[146,47]=(x^3 -6*x^2 -36*x + 162)*(x^4 + 18*x^3 + 50*x^2 -378*x -790);
T[146,53]=(x^3 + 4*x^2 -20*x -66)*(x^4 -8*x^3 -194*x^2 + 862*x + 8554);
T[146,59]=(x^4 -20*x^3 + 128*x^2 -256*x -16)*(x^3 -2*x^2 -28*x + 72);
T[146,61]=(x^3 -22*x^2 + 132*x -232)*(x^4 -12*x^3 -64*x^2 + 864*x -1168);
T[146,67]=(x^3 + 4*x^2 -80*x -212)*(x^4 + 4*x^3 -96*x^2 + 348*x -364);
T[146,71]=(x^3 -16*x^2 + 16*x + 96)*(x^4 + 24*x^3 + 96*x^2 -1120*x -6592);
T[146,73]=(x -1)^3*(x + 1)^4;
T[146,79]=(x^3 -8*x^2 -176*x + 1552)*(x^4 -40*x^3 + 520*x^2 -2032*x -2144);
T[146,83]=(x^3 -10*x^2 -68*x + 24)*(x^4 + 4*x^3 -56*x^2 -32*x + 208);
T[146,89]=(x^4 + 12*x^3 -96*x^2 -508*x -436)*(x^3 + 6*x^2 + 4*x -12);
T[146,97]=(x^3 + 14*x^2 -132*x -1864)*(x^4 -96*x^2 -16*x + 2144);

T[147,2]=(x + 1)*(x -2)^2*(x^2 + 2*x -1)^2;
T[147,3]=(x -1)^3*(x + 1)^4;
T[147,5]=(x + 2)*(x^2 + 4*x + 2)*(x^2 -4*x + 2)*(x -2)^2;
T[147,7]=(x )^7;
T[147,11]=(x -4)*(x + 2)^6;
T[147,13]=(x -1)*(x + 1)*(x -2)*(x^2 -8*x + 14)*(x^2 + 8*x + 14);
T[147,17]=(x -6)*(x^2 + 4*x -14)*(x^2 -4*x -14)*(x )^2;
T[147,19]=(x + 1)*(x + 4)*(x -1)*(x^2 -8)^2;
T[147,23]=(x^2 + 4*x -28)^2*(x )^3;
T[147,29]=(x + 2)*(x -4)^2*(x^2 + 8*x + 8)^2;
T[147,31]=(x -9)*(x + 9)*(x^2 + 8*x + 8)*(x^2 -8*x + 8)*(x );
T[147,37]=(x -6)*(x -3)^2*(x + 4)^4;
T[147,41]=(x + 10)*(x + 2)*(x -10)*(x^2 + 4*x -14)*(x^2 -4*x -14);
T[147,43]=(x + 4)*(x -5)^2*(x^2 -32)^2;
T[147,47]=(x + 6)*(x -6)*(x )*(x^2 -8)^2;
T[147,53]=(x -6)*(x -12)^2*(x + 2)^4;
T[147,59]=(x -12)*(x^2 -8*x + 8)*(x^2 + 8*x + 8)*(x + 12)^2;
T[147,61]=(x + 10)*(x -2)*(x -10)*(x^2 + 16*x + 46)*(x^2 -16*x + 46);
T[147,67]=(x -4)*(x + 5)^2*(x^2 -32)^2;
T[147,71]=(x )*(x + 6)^2*(x^2 + 4*x -124)^2;
T[147,73]=(x -3)*(x -6)*(x + 3)*(x^2 -8*x -82)*(x^2 + 8*x -82);
T[147,79]=(x + 16)*(x + 1)^2*(x^2 -16*x + 32)^2;
T[147,83]=(x -6)*(x + 6)*(x -12)*(x^2 -8*x -112)*(x^2 + 8*x -112);
T[147,89]=(x + 16)*(x -14)*(x -16)*(x^2 + 20*x + 82)*(x^2 -20*x + 82);
T[147,97]=(x -6)*(x + 18)*(x + 6)*(x^2 -8*x + 14)*(x^2 + 8*x + 14);

T[148,2]=(x )^3;
T[148,3]=(x + 1)*(x^2 + x -4);
T[148,5]=(x + 4)*(x -2)^2;
T[148,7]=(x + 3)*(x^2 -x -4);
T[148,11]=(x -5)*(x^2 -x -4);
T[148,13]=(x )*(x -2)^2;
T[148,17]=(x + 6)*(x^2 -6*x -8);
T[148,19]=(x -2)*(x^2 + 6*x -8);
T[148,23]=(x + 6)*(x + 2)^2;
T[148,29]=(x + 6)*(x^2 -68);
T[148,31]=(x -4)*(x^2 + 10*x + 8);
T[148,37]=(x -1)*(x + 1)^2;
T[148,41]=(x + 9)*(x^2 -5*x + 2);
T[148,43]=(x -4)*(x^2 -68);
T[148,47]=(x + 7)*(x^2 -17*x + 68);
T[148,53]=(x -9)*(x^2 -7*x -94);
T[148,59]=(x + 4)*(x^2 + 2*x -16);
T[148,61]=(x + 8)*(x^2 + 14*x + 32);
T[148,67]=(x + 12)*(x^2 + 12*x -32);
T[148,71]=(x -3)*(x^2 -15*x + 52);
T[148,73]=(x + 5)*(x^2 + 3*x -206);
T[148,79]=(x -6)*(x^2 -6*x -144);
T[148,83]=(x + 1)*(x^2 -7*x + 8);
T[148,89]=(x -2)*(x^2 -18*x + 64);
T[148,97]=(x^2 + 10*x + 8)*(x );

T[150,2]=(x + 1)*(x -1)^2;
T[150,3]=(x -1)*(x + 1)^2;
T[150,5]=(x )^3;
T[150,7]=(x -2)*(x + 2)*(x -4);
T[150,11]=(x )*(x -2)^2;
T[150,13]=(x -6)*(x + 2)*(x + 6);
T[150,17]=(x -2)*(x + 6)*(x + 2);
T[150,19]=(x + 4)*(x )^2;
T[150,23]=(x + 4)*(x -4)*(x );
T[150,29]=(x + 6)*(x )^2;
T[150,31]=(x -8)*(x + 8)^2;
T[150,37]=(x -2)*(x + 2)^2;
T[150,41]=(x + 6)*(x -2)^2;
T[150,43]=(x + 4)*(x -4)^2;
T[150,47]=(x -8)*(x + 8)*(x );
T[150,53]=(x + 6)*(x -6)^2;
T[150,59]=(x )*(x -10)^2;
T[150,61]=(x + 10)*(x -2)^2;
T[150,67]=(x -4)*(x -8)*(x + 8);
T[150,71]=(x )*(x -12)^2;
T[150,73]=(x + 4)*(x -4)*(x + 2);
T[150,79]=(x -8)*(x )^2;
T[150,83]=(x + 4)*(x -4)*(x + 12);
T[150,89]=(x -18)*(x + 10)^2;
T[150,97]=(x -8)*(x + 8)*(x + 2);

T[152,2]=(x )^5;
T[152,3]=(x -1)*(x + 2)*(x^3 -x^2 -10*x + 8);
T[152,5]=(x + 1)*(x^3 -x^2 -10*x + 8)*(x );
T[152,7]=(x + 3)*(x -3)*(x^3 -4*x^2 -5*x + 16);
T[152,11]=(x + 3)*(x -2)*(x^3 + 5*x^2 -2*x -8);
T[152,13]=(x -1)*(x + 4)*(x^3 -5*x^2 -2*x + 8);
T[152,17]=(x -5)*(x + 5)*(x^3 -2*x^2 -9*x + 2);
T[152,19]=(x -1)*(x + 1)^4;
T[152,23]=(x + 1)*(x^3 + 5*x^2 -64*x -256)*(x );
T[152,29]=(x + 3)*(x -2)*(x^3 + 9*x^2 -4*x -4);
T[152,31]=(x -8)*(x -4)*(x )^3;
T[152,37]=(x + 10)*(x -2)*(x + 2)^3;
T[152,41]=(x + 8)*(x -6)*(x^3 -8*x^2 -20*x + 128);
T[152,43]=(x + 8)*(x + 7)*(x^3 -17*x^2 + 24*x + 368);
T[152,47]=(x + 9)*(x + 8)*(x^3 + x^2 -72*x -256);
T[152,53]=(x -9)*(x + 8)*(x^3 -x^2 -134*x + 256);
T[152,59]=(x -14)*(x -1)*(x^3 + 23*x^2 + 166*x + 376);
T[152,61]=(x -14)*(x + 5)*(x^3 -3*x^2 -28*x + 92);
T[152,67]=(x -13)*(x^3 -15*x^2 + 44*x -32)*(x );
T[152,71]=(x -10)*(x + 6)*(x^3 + 12*x^2 -76*x -928);
T[152,73]=(x -9)*(x + 15)*(x^3 -4*x^2 -67*x + 326);
T[152,79]=(x + 10)*(x + 4)*(x^3 -26*x^2 + 184*x -256);
T[152,83]=(x -4)*(x -10)*(x^3 + 6*x^2 -112*x -736);
T[152,89]=(x + 12)*(x^3 -18*x^2 -16*x + 1024)*(x );
T[152,97]=(x -14)*(x -16)*(x^3 + 8*x^2 -20*x -128);

T[153,2]=(x -2)*(x + 2)*(x -1)*(x^2 -x -4)*(x );
T[153,3]=(x )^6;
T[153,5]=(x -2)*(x + 1)*(x -1)*(x + 3)*(x^2 + 3*x -2);
T[153,7]=(x -4)*(x + 4)*(x + 2)^2*(x )^2;
T[153,11]=(x + 3)*(x^2 -x -4)*(x )*(x -3)^2;
T[153,13]=(x + 1)*(x + 2)*(x^2 -5*x + 2)*(x + 5)^2;
T[153,17]=(x -1)^2*(x + 1)^4;
T[153,19]=(x + 4)*(x^2 -3*x -36)*(x + 1)^3;
T[153,23]=(x + 4)*(x + 7)*(x -7)*(x + 9)*(x^2 -9*x + 16);
T[153,29]=(x -6)*(x^2 -68)*(x + 6)^3;
T[153,31]=(x -2)*(x^2 + 2*x -16)*(x -4)^3;
T[153,37]=(x + 2)*(x + 4)*(x^2 + 2*x -16)*(x -10)^2;
T[153,41]=(x -6)*(x -9)*(x + 9)*(x -3)*(x^2 -3*x -2);
T[153,43]=(x + 7)*(x -4)*(x^2 + 3*x -36)*(x -1)^2;
T[153,47]=(x + 12)*(x -6)*(x -12)*(x^2 -14*x + 32)*(x );
T[153,53]=(x -12)*(x + 6)*(x -6)*(x + 12)*(x^2 + 8*x -52);
T[153,59]=(x -6)*(x -12)*(x^2 + 6*x -8)*(x + 6)^2;
T[153,61]=(x -8)*(x + 10)*(x^2 -10*x + 8)*(x -2)^2;
T[153,67]=(x + 4)*(x -4)^5;
T[153,71]=(x -4)*(x + 8)*(x + 12)*(x -8)*(x^2 + 4*x -64);
T[153,73]=(x -2)*(x + 6)*(x^2 + 8*x -52)*(x )^2;
T[153,79]=(x -12)*(x + 10)*(x^2 -6*x -144)*(x + 6)^2;
T[153,83]=(x -6)*(x + 4)*(x^2 -10*x + 8)*(x -4)^2;
T[153,89]=(x + 10)*(x -2)*(x + 2)*(x^2 + 6*x -8)*(x );
T[153,97]=(x -2)*(x + 16)*(x^2 + 14*x + 32)*(x -8)^2;

T[154,2]=(x + 1)^2*(x -1)^3;
T[154,3]=(x -2)*(x^2 + 2*x -4)*(x )^2;
T[154,5]=(x + 4)*(x^2 -2*x -4)*(x -2)^2;
T[154,7]=(x -1)^2*(x + 1)^3;
T[154,11]=(x + 1)^2*(x -1)^3;
T[154,13]=(x + 4)*(x^2 + 2*x -4)*(x -2)^2;
T[154,17]=(x + 4)*(x -2)*(x^2 + 4*x -16)*(x );
T[154,19]=(x + 6)*(x -4)*(x^2 + 10*x + 20)*(x );
T[154,23]=(x + 8)*(x -4)^4;
T[154,29]=(x -2)*(x^2 -20)*(x + 2)^2;
T[154,31]=(x + 10)*(x + 8)*(x + 2)*(x -2)^2;
T[154,37]=(x + 6)*(x + 2)*(x -10)*(x^2 + 4*x -76);
T[154,41]=(x -4)*(x -10)*(x^2 -4*x -16)*(x );
T[154,43]=(x + 4)*(x -4)*(x + 8)*(x^2 + 12*x + 16);
T[154,47]=(x -8)*(x -10)*(x -2)*(x + 2)^2;
T[154,53]=(x + 14)*(x^2 -8*x -4)*(x -6)^2;
T[154,59]=(x + 12)*(x -10)*(x^2 -10*x + 20)*(x );
T[154,61]=(x + 8)*(x -10)*(x + 14)*(x^2 + 6*x + 4);
T[154,67]=(x -8)*(x^2 + 4*x -176)*(x + 12)^2;
T[154,71]=(x + 8)*(x + 4)*(x -16)*(x^2 -4*x -16);
T[154,73]=(x + 14)*(x^2 -8*x -64)*(x -4)^2;
T[154,79]=(x -16)*(x )^4;
T[154,83]=(x + 6)*(x -4)*(x^2 + 2*x -124)*(x );
T[154,89]=(x + 6)^2*(x -10)^3;
T[154,97]=(x -6)*(x + 14)*(x -10)*(x^2 -16*x + 44);

T[155,2]=(x + 2)*(x + 1)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^4 + x^3 -8*x^2 -4*x + 12)*(x );
T[155,3]=(x -2)*(x^4 + x^3 -9*x^2 -9*x -2)*(x^4 -x^3 -5*x^2 + 3*x + 4)*(x + 1)^2;
T[155,5]=(x -1)^5*(x + 1)^6;
T[155,7]=(x -4)*(x + 2)*(x^4 -2*x^3 -20*x^2 + 52*x -32)*(x^4 -12*x^2 -4*x + 16)*(x );
T[155,11]=(x + 4)*(x -2)*(x -4)*(x^4 + 6*x^3 -16*x^2 -124*x -144)*(x^4 + 4*x^3 -8*x^2 -12*x + 16);
T[155,13]=(x^4 -10*x^3 + 20*x^2 + 52*x -136)*(x^4 -16*x^3 + 84*x^2 -156*x + 64)*(x )*(x + 6)^2;
T[155,17]=(x -5)*(x + 8)*(x + 7)*(x^4 -11*x^3 + 35*x^2 -13*x -58)*(x^4 -x^3 -25*x^2 -49*x -24);
T[155,19]=(x + 1)*(x + 5)*(x -4)*(x^4 + 3*x^3 -33*x^2 -107*x + 44)*(x^4 -5*x^3 -21*x^2 + 81*x + 108);
T[155,23]=(x -8)*(x -2)*(x -4)*(x^4 + 2*x^3 -20*x^2 -52*x -32)*(x^4 -64*x^2 + 196*x -24);
T[155,29]=(x + 6)*(x + 10)*(x^4 + 8*x^3 -20*x^2 -292*x -584)*(x^4 -6*x^3 -40*x^2 + 308*x -456)*(x );
T[155,31]=(x + 1)^5*(x -1)^6;
T[155,37]=(x -1)*(x + 4)*(x + 7)*(x^4 -9*x^3 + 7*x^2 + 7*x -4)*(x^4 -3*x^3 -81*x^2 + 143*x + 1538);
T[155,41]=(x + 6)*(x^4 + 11*x^3 -31*x^2 -359*x + 506)*(x^4 -13*x^3 + 17*x^2 + 161*x -294)*(x + 3)^2;
T[155,43]=(x + 6)*(x + 7)*(x -9)*(x^4 -7*x^3 -7*x^2 + 129*x -214)*(x^4 -17*x^3 + 73*x^2 + 21*x -236);
T[155,47]=(x + 2)*(x + 6)*(x -8)*(x^4 + 14*x^3 + 36*x^2 -56*x -192)*(x^4 + 10*x^3 -52*x^2 -376*x + 1408);
T[155,53]=(x -9)*(x + 12)*(x -5)*(x^4 -13*x^3 -71*x^2 + 783*x + 1306)*(x^4 -11*x^3 -75*x^2 + 1103*x -2892);
T[155,59]=(x -11)*(x + 5)*(x + 4)*(x^4 -13*x^3 -65*x^2 + 625*x + 2484)*(x^4 + 3*x^3 -97*x^2 + 129*x -44);
T[155,61]=(x -10)*(x + 8)*(x + 12)*(x^4 -22*x^3 + 144*x^2 -288*x -32)*(x^4 -22*x^3 + 160*x^2 -432*x + 352);
T[155,67]=(x + 2)*(x^4 + 12*x^3 -72*x^2 -324*x + 1296)*(x^4 + 10*x^3 + 8*x^2 -36*x -32)*(x -8)^2;
T[155,71]=(x -9)*(x + 3)*(x^4 -3*x^3 -37*x^2 + 59*x + 384)*(x^4 + 21*x^3 + 159*x^2 + 511*x + 584)*(x );
T[155,73]=(x + 9)*(x + 4)*(x + 1)*(x^4 -9*x^3 -95*x^2 + 649*x + 452)*(x^4 -19*x^3 + 85*x^2 -123*x + 34);
T[155,79]=(x + 10)*(x^4 + 16*x^3 -12*x^2 -500*x + 256)*(x^4 + 2*x^3 -260*x^2 + 404*x + 6592)*(x )^2;
T[155,83]=(x -2)*(x -9)*(x + 11)*(x^4 + 15*x^3 -63*x^2 -1247*x -3364)*(x^4 + 17*x^3 -3*x^2 -455*x + 738);
T[155,89]=(x -14)*(x -10)*(x^4 + 10*x^3 -152*x^2 -420*x + 3688)*(x^4 + 12*x^3 -124*x^2 -1348*x + 1656)*(x );
T[155,97]=(x + 18)*(x -18)*(x + 14)*(x^4 -16*x^3 + 56*x^2 + 48*x -16)*(x^4 -4*x^3 -248*x^2 + 992*x -464);

T[156,2]=(x )^2;
T[156,3]=(x + 1)*(x -1);
T[156,5]=(x + 4)*(x );
T[156,7]=(x -2)*(x + 2);
T[156,11]=(x + 4)*(x );
T[156,13]=(x -1)^2;
T[156,17]=(x + 6)*(x -2);
T[156,19]=(x -2)*(x + 2);
T[156,23]=(x )^2;
T[156,29]=(x + 6)^2;
T[156,31]=(x + 10)*(x -2);
T[156,37]=(x -10)*(x -2);
T[156,41]=(x -8)*(x + 12);
T[156,43]=(x -4)*(x + 4);
T[156,47]=(x + <