CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / charpoly_s2new.gpOpen in CoCalc
\\ charpoly_s2new.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2^{new}(Gamma_0(N)) 
\\ of weight 2 cuspidal newforms for Gamma_0(N).
\\ The cases in which S_2 = S_2^{new} are omitted, since
\\ they appear in other tables.
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(100,97,m,n,0);
T[30,2]=x + 1;
T[30,3]=x -1;
T[30,5]=x + 1;
T[30,7]=x + 4;
T[30,11]=x ;
T[30,13]=x -2;
T[30,17]=x -6;
T[30,19]=x + 4;
T[30,23]=x ;
T[30,29]=x + 6;
T[30,31]=x -8;
T[30,37]=x -2;
T[30,41]=x + 6;
T[30,43]=x + 4;
T[30,47]=x ;
T[30,53]=x + 6;
T[30,59]=x ;
T[30,61]=x + 10;
T[30,67]=x + 4;
T[30,71]=x ;
T[30,73]=x -2;
T[30,79]=x -8;
T[30,83]=x -12;
T[30,89]=x -18;
T[30,97]=x -2;

T[33,2]=x -1;
T[33,3]=x + 1;
T[33,5]=x + 2;
T[33,7]=x -4;
T[33,11]=x -1;
T[33,13]=x + 2;
T[33,17]=x + 2;
T[33,19]=x ;
T[33,23]=x -8;
T[33,29]=x + 6;
T[33,31]=x + 8;
T[33,37]=x -6;
T[33,41]=x + 2;
T[33,43]=x ;
T[33,47]=x -8;
T[33,53]=x -6;
T[33,59]=x + 4;
T[33,61]=x -6;
T[33,67]=x + 4;
T[33,71]=x ;
T[33,73]=x + 14;
T[33,79]=x + 4;
T[33,83]=x -12;
T[33,89]=x + 6;
T[33,97]=x -2;

T[34,2]=x -1;
T[34,3]=x + 2;
T[34,5]=x ;
T[34,7]=x + 4;
T[34,11]=x -6;
T[34,13]=x -2;
T[34,17]=x + 1;
T[34,19]=x + 4;
T[34,23]=x ;
T[34,29]=x ;
T[34,31]=x + 4;
T[34,37]=x + 4;
T[34,41]=x -6;
T[34,43]=x -8;
T[34,47]=x ;
T[34,53]=x + 6;
T[34,59]=x ;
T[34,61]=x + 4;
T[34,67]=x -8;
T[34,71]=x ;
T[34,73]=x -2;
T[34,79]=x -8;
T[34,83]=x ;
T[34,89]=x + 6;
T[34,97]=x -14;

T[38,2]=(x + 1)*(x -1);
T[38,3]=(x -1)*(x + 1);
T[38,5]=(x + 4)*(x );
T[38,7]=(x -3)*(x + 1);
T[38,11]=(x -2)*(x + 6);
T[38,13]=(x + 1)*(x -5);
T[38,17]=(x -3)^2;
T[38,19]=(x -1)*(x + 1);
T[38,23]=(x + 1)*(x -3);
T[38,29]=(x -9)*(x + 5);
T[38,31]=(x + 8)*(x + 4);
T[38,37]=(x -2)*(x + 2);
T[38,41]=(x + 8)*(x );
T[38,43]=(x -4)*(x -8);
T[38,47]=(x -8)*(x );
T[38,53]=(x + 1)*(x + 3);
T[38,59]=(x -15)*(x -9);
T[38,61]=(x -2)*(x + 10);
T[38,67]=(x -5)*(x -3);
T[38,71]=(x -2)*(x + 6);
T[38,73]=(x + 7)*(x -9);
T[38,79]=(x + 10)^2;
T[38,83]=(x + 6)^2;
T[38,89]=(x + 12)*(x );
T[38,97]=(x + 2)*(x + 10);

T[40,2]=x ;
T[40,3]=x ;
T[40,5]=x -1;
T[40,7]=x + 4;
T[40,11]=x -4;
T[40,13]=x + 2;
T[40,17]=x -2;
T[40,19]=x -4;
T[40,23]=x -4;
T[40,29]=x + 2;
T[40,31]=x + 8;
T[40,37]=x -6;
T[40,41]=x + 6;
T[40,43]=x + 8;
T[40,47]=x -4;
T[40,53]=x -6;
T[40,59]=x + 4;
T[40,61]=x + 2;
T[40,67]=x -8;
T[40,71]=x ;
T[40,73]=x + 6;
T[40,79]=x ;
T[40,83]=x + 16;
T[40,89]=x + 6;
T[40,97]=x + 14;

T[42,2]=x -1;
T[42,3]=x + 1;
T[42,5]=x + 2;
T[42,7]=x + 1;
T[42,11]=x + 4;
T[42,13]=x -6;
T[42,17]=x -2;
T[42,19]=x + 4;
T[42,23]=x -8;
T[42,29]=x + 2;
T[42,31]=x ;
T[42,37]=x + 10;
T[42,41]=x + 6;
T[42,43]=x + 4;
T[42,47]=x ;
T[42,53]=x -6;
T[42,59]=x -4;
T[42,61]=x -6;
T[42,67]=x -4;
T[42,71]=x -8;
T[42,73]=x -10;
T[42,79]=x ;
T[42,83]=x + 4;
T[42,89]=x + 6;
T[42,97]=x + 14;

T[44,2]=x ;
T[44,3]=x -1;
T[44,5]=x + 3;
T[44,7]=x -2;
T[44,11]=x + 1;
T[44,13]=x + 4;
T[44,17]=x -6;
T[44,19]=x -8;
T[44,23]=x + 3;
T[44,29]=x ;
T[44,31]=x -5;
T[44,37]=x + 1;
T[44,41]=x ;
T[44,43]=x + 10;
T[44,47]=x ;
T[44,53]=x + 6;
T[44,59]=x -3;
T[44,61]=x + 4;
T[44,67]=x + 1;
T[44,71]=x -15;
T[44,73]=x + 4;
T[44,79]=x -2;
T[44,83]=x -6;
T[44,89]=x + 9;
T[44,97]=x + 7;

T[45,2]=x -1;
T[45,3]=x ;
T[45,5]=x + 1;
T[45,7]=x ;
T[45,11]=x -4;
T[45,13]=x + 2;
T[45,17]=x + 2;
T[45,19]=x -4;
T[45,23]=x ;
T[45,29]=x -2;
T[45,31]=x ;
T[45,37]=x + 10;
T[45,41]=x + 10;
T[45,43]=x -4;
T[45,47]=x + 8;
T[45,53]=x -10;
T[45,59]=x -4;
T[45,61]=x + 2;
T[45,67]=x -12;
T[45,71]=x -8;
T[45,73]=x -10;
T[45,79]=x ;
T[45,83]=x + 12;
T[45,89]=x -6;
T[45,97]=x -2;

T[46,2]=x + 1;
T[46,3]=x ;
T[46,5]=x -4;
T[46,7]=x + 4;
T[46,11]=x -2;
T[46,13]=x + 2;
T[46,17]=x + 2;
T[46,19]=x + 2;
T[46,23]=x -1;
T[46,29]=x -2;
T[46,31]=x ;
T[46,37]=x + 4;
T[46,41]=x -6;
T[46,43]=x -10;
T[46,47]=x ;
T[46,53]=x + 4;
T[46,59]=x -12;
T[46,61]=x + 8;
T[46,67]=x + 10;
T[46,71]=x ;
T[46,73]=x -6;
T[46,79]=x + 12;
T[46,83]=x -14;
T[46,89]=x + 6;
T[46,97]=x -6;

T[48,2]=x ;
T[48,3]=x -1;
T[48,5]=x + 2;
T[48,7]=x ;
T[48,11]=x + 4;
T[48,13]=x + 2;
T[48,17]=x -2;
T[48,19]=x -4;
T[48,23]=x -8;
T[48,29]=x -6;
T[48,31]=x + 8;
T[48,37]=x -6;
T[48,41]=x + 6;
T[48,43]=x + 4;
T[48,47]=x ;
T[48,53]=x + 2;
T[48,59]=x + 4;
T[48,61]=x + 2;
T[48,67]=x -4;
T[48,71]=x + 8;
T[48,73]=x -10;
T[48,79]=x -8;
T[48,83]=x -4;
T[48,89]=x + 6;
T[48,97]=x -2;

T[51,2]=(x^2 + x -4)*(x );
T[51,3]=(x -1)*(x + 1)^2;
T[51,5]=(x -3)*(x^2 -3*x -2);
T[51,7]=(x + 4)*(x )^2;
T[51,11]=(x + 3)*(x^2 + x -4);
T[51,13]=(x + 1)*(x^2 -5*x + 2);
T[51,17]=(x + 1)*(x -1)^2;
T[51,19]=(x + 1)*(x^2 -3*x -36);
T[51,23]=(x -9)*(x^2 + 9*x + 16);
T[51,29]=(x -6)*(x^2 -68);
T[51,31]=(x -2)*(x^2 + 2*x -16);
T[51,37]=(x + 4)*(x^2 + 2*x -16);
T[51,41]=(x + 3)*(x^2 + 3*x -2);
T[51,43]=(x + 7)*(x^2 + 3*x -36);
T[51,47]=(x + 6)*(x^2 + 14*x + 32);
T[51,53]=(x + 6)*(x^2 -8*x -52);
T[51,59]=(x -6)*(x^2 -6*x -8);
T[51,61]=(x -8)*(x^2 -10*x + 8);
T[51,67]=(x + 4)*(x -4)^2;
T[51,71]=(x -12)*(x^2 -4*x -64);
T[51,73]=(x -2)*(x^2 + 8*x -52);
T[51,79]=(x + 10)*(x^2 -6*x -144);
T[51,83]=(x + 6)*(x^2 + 10*x + 8);
T[51,89]=(x^2 -6*x -8)*(x );
T[51,97]=(x + 16)*(x^2 + 14*x + 32);

T[52,2]=x ;
T[52,3]=x ;
T[52,5]=x -2;
T[52,7]=x + 2;
T[52,11]=x + 2;
T[52,13]=x + 1;
T[52,17]=x -6;
T[52,19]=x + 6;
T[52,23]=x -8;
T[52,29]=x -2;
T[52,31]=x -10;
T[52,37]=x + 6;
T[52,41]=x + 6;
T[52,43]=x -4;
T[52,47]=x + 2;
T[52,53]=x -6;
T[52,59]=x + 10;
T[52,61]=x + 2;
T[52,67]=x -10;
T[52,71]=x -10;
T[52,73]=x -2;
T[52,79]=x + 4;
T[52,83]=x + 6;
T[52,89]=x + 6;
T[52,97]=x -2;

T[54,2]=(x + 1)*(x -1);
T[54,3]=(x )^2;
T[54,5]=(x + 3)*(x -3);
T[54,7]=(x + 1)^2;
T[54,11]=(x -3)*(x + 3);
T[54,13]=(x + 4)^2;
T[54,17]=(x )^2;
T[54,19]=(x -2)^2;
T[54,23]=(x -6)*(x + 6);
T[54,29]=(x -6)*(x + 6);
T[54,31]=(x -5)^2;
T[54,37]=(x -2)^2;
T[54,41]=(x -6)*(x + 6);
T[54,43]=(x + 10)^2;
T[54,47]=(x -6)*(x + 6);
T[54,53]=(x -9)*(x + 9);
T[54,59]=(x -12)*(x + 12);
T[54,61]=(x -8)^2;
T[54,67]=(x -14)^2;
T[54,71]=(x )^2;
T[54,73]=(x + 7)^2;
T[54,79]=(x -8)^2;
T[54,83]=(x + 3)*(x -3);
T[54,89]=(x + 18)*(x -18);
T[54,97]=(x + 1)^2;

T[55,2]=(x -1)*(x^2 -2*x -1);
T[55,3]=(x^2 -8)*(x );
T[55,5]=(x -1)*(x + 1)^2;
T[55,7]=(x )*(x + 2)^2;
T[55,11]=(x + 1)*(x -1)^2;
T[55,13]=(x -2)*(x^2 + 8*x + 8);
T[55,17]=(x -6)*(x^2 -8*x + 8);
T[55,19]=(x + 4)*(x )^2;
T[55,23]=(x -4)*(x^2 -8);
T[55,29]=(x -6)*(x^2 -4*x -28);
T[55,31]=(x + 8)*(x )^2;
T[55,37]=(x + 2)*(x^2 + 4*x -28);
T[55,41]=(x -2)*(x -6)^2;
T[55,43]=(x -4)*(x + 6)^2;
T[55,47]=(x + 12)*(x^2 -8);
T[55,53]=(x + 2)*(x^2 -12*x + 4);
T[55,59]=(x -4)*(x^2 + 8*x -16);
T[55,61]=(x + 10)*(x^2 -4*x -124);
T[55,67]=(x + 16)*(x^2 -8*x -56);
T[55,71]=(x -8)*(x^2 -128);
T[55,73]=(x -14)*(x^2 + 8*x + 8);
T[55,79]=(x -8)*(x -4)^2;
T[55,83]=(x + 4)*(x + 6)^2;
T[55,89]=(x -10)*(x^2 + 4*x -124);
T[55,97]=(x -10)*(x^2 + 4*x -28);

T[56,2]=(x )^2;
T[56,3]=(x -2)*(x );
T[56,5]=(x -2)*(x + 4);
T[56,7]=(x -1)*(x + 1);
T[56,11]=(x + 4)*(x );
T[56,13]=(x -2)*(x );
T[56,17]=(x + 6)*(x + 2);
T[56,19]=(x + 2)*(x -8);
T[56,23]=(x -8)*(x );
T[56,29]=(x -6)*(x -2);
T[56,31]=(x -8)*(x -4);
T[56,37]=(x + 2)*(x + 6);
T[56,41]=(x -2)*(x + 2);
T[56,43]=(x -8)*(x + 4);
T[56,47]=(x + 8)*(x + 4);
T[56,53]=(x + 10)*(x -6);
T[56,59]=(x -6)*(x );
T[56,61]=(x + 6)*(x -4);
T[56,67]=(x + 4)*(x + 12);
T[56,71]=(x + 8)*(x );
T[56,73]=(x -10)*(x + 14);
T[56,79]=(x -16)*(x + 8);
T[56,83]=(x -6)*(x -8);
T[56,89]=(x + 6)*(x -10);
T[56,97]=(x + 2)*(x + 6);

T[57,2]=(x -1)*(x + 2)^2;
T[57,3]=(x + 1)*(x -1)^2;
T[57,5]=(x + 2)*(x + 3)*(x -1);
T[57,7]=(x -3)*(x + 5)*(x );
T[57,11]=(x + 3)*(x -1)*(x );
T[57,13]=(x -6)*(x + 6)*(x -2);
T[57,17]=(x + 6)*(x + 1)*(x -3);
T[57,19]=(x + 1)^3;
T[57,23]=(x + 4)*(x -4)^2;
T[57,29]=(x + 2)*(x + 10)*(x -2);
T[57,31]=(x + 6)*(x -2)*(x -8);
T[57,37]=(x + 10)*(x -8)*(x );
T[57,41]=(x + 8)*(x + 2)*(x );
T[57,43]=(x + 4)*(x + 1)^2;
T[57,47]=(x -12)*(x + 9)*(x -3);
T[57,53]=(x -10)*(x + 6)^2;
T[57,59]=(x + 12)*(x + 8)*(x );
T[57,61]=(x + 2)*(x -7)*(x + 1);
T[57,67]=(x + 4)*(x -8)^2;
T[57,71]=(x + 12)*(x -12)*(x );
T[57,73]=(x -10)*(x + 11)^2;
T[57,79]=(x -16)*(x )^2;
T[57,83]=(x -16)*(x -4)*(x -12);
T[57,89]=(x -10)*(x + 2)*(x + 6);
T[57,97]=(x + 2)*(x -10)*(x + 10);

T[58,2]=(x + 1)*(x -1);
T[58,3]=(x + 1)*(x + 3);
T[58,5]=(x -1)*(x + 3);
T[58,7]=(x + 2)^2;
T[58,11]=(x + 3)*(x + 1);
T[58,13]=(x -3)*(x + 1);
T[58,17]=(x + 4)*(x -8);
T[58,19]=(x + 8)*(x );
T[58,23]=(x -4)*(x );
T[58,29]=(x + 1)^2;
T[58,31]=(x -3)*(x + 3);
T[58,37]=(x -8)*(x + 8);
T[58,41]=(x -2)*(x + 2);
T[58,43]=(x -7)*(x + 11);
T[58,47]=(x -13)*(x -11);
T[58,53]=(x -1)*(x + 11);
T[58,59]=(x + 4)*(x );
T[58,61]=(x + 8)*(x -4);
T[58,67]=(x + 12)*(x + 4);
T[58,71]=(x + 2)*(x -2);
T[58,73]=(x -4)*(x + 12);
T[58,79]=(x + 7)*(x -15);
T[58,83]=(x -4)*(x );
T[58,89]=(x + 6)*(x + 10);
T[58,97]=(x + 2)*(x + 6);

T[62,2]=(x -1)*(x + 1)^2;
T[62,3]=(x^2 -2*x -2)*(x );
T[62,5]=(x + 2)*(x^2 -12);
T[62,7]=(x )*(x -2)^2;
T[62,11]=(x^2 + 6*x + 6)*(x );
T[62,13]=(x -2)*(x^2 + 2*x -26);
T[62,17]=(x + 6)*(x^2 -12);
T[62,19]=(x -4)*(x + 4)^2;
T[62,23]=(x -8)*(x )^2;
T[62,29]=(x -2)*(x^2 + 6*x -18);
T[62,31]=(x + 1)*(x -1)^2;
T[62,37]=(x -10)*(x^2 -10*x -2);
T[62,41]=(x + 6)*(x^2 -12*x + 24);
T[62,43]=(x -8)*(x^2 + 2*x -26);
T[62,47]=(x + 8)*(x -6)^2;
T[62,53]=(x + 6)*(x^2 -6*x + 6);
T[62,59]=(x + 12)*(x^2 + 12*x + 24);
T[62,61]=(x + 6)*(x^2 + 2*x -26);
T[62,67]=(x + 12)*(x -8)^2;
T[62,71]=(x -8)*(x^2 -192);
T[62,73]=(x -10)*(x + 10)^2;
T[62,79]=(x + 8)*(x^2 -4*x -104);
T[62,83]=(x -8)*(x^2 -6*x -66);
T[62,89]=(x + 6)*(x -6)^2;
T[62,97]=(x -2)*(x^2 -4*x -104);

T[63,2]=(x -1)*(x^2 -3);
T[63,3]=(x )^3;
T[63,5]=(x -2)*(x^2 -12);
T[63,7]=(x + 1)*(x -1)^2;
T[63,11]=(x + 4)*(x^2 -12);
T[63,13]=(x + 2)*(x -2)^2;
T[63,17]=(x -6)*(x^2 -12);
T[63,19]=(x -4)*(x + 4)^2;
T[63,23]=(x^2 -12)*(x );
T[63,29]=(x -2)*(x )^2;
T[63,31]=(x )*(x + 4)^2;
T[63,37]=(x -6)*(x -2)^2;
T[63,41]=(x + 2)*(x^2 -108);
T[63,43]=(x + 4)^3;
T[63,47]=(x^2 -48)*(x );
T[63,53]=(x + 6)*(x^2 -48);
T[63,59]=(x + 12)*(x^2 -48);
T[63,61]=(x + 2)*(x + 10)^2;
T[63,67]=(x -4)*(x + 4)^2;
T[63,71]=(x^2 -108)*(x );
T[63,73]=(x + 6)*(x -14)^2;
T[63,79]=(x + 16)*(x -8)^2;
T[63,83]=(x -12)*(x )^2;
T[63,89]=(x -14)*(x^2 -12);
T[63,97]=(x -18)*(x -14)^2;

T[64,2]=x ;
T[64,3]=x ;
T[64,5]=x -2;
T[64,7]=x ;
T[64,11]=x ;
T[64,13]=x + 6;
T[64,17]=x -2;
T[64,19]=x ;
T[64,23]=x ;
T[64,29]=x -10;
T[64,31]=x ;
T[64,37]=x -2;
T[64,41]=x -10;
T[64,43]=x ;
T[64,47]=x ;
T[64,53]=x + 14;
T[64,59]=x ;
T[64,61]=x -10;
T[64,67]=x ;
T[64,71]=x ;
T[64,73]=x + 6;
T[64,79]=x ;
T[64,83]=x ;
T[64,89]=x -10;
T[64,97]=x -18;

T[66,2]=(x + 1)*(x -1)^2;
T[66,3]=(x + 1)*(x -1)^2;
T[66,5]=(x -2)*(x + 4)*(x );
T[66,7]=(x + 4)*(x -2)*(x + 2);
T[66,11]=(x -1)*(x + 1)^2;
T[66,13]=(x + 4)*(x -4)*(x + 6);
T[66,17]=(x + 6)*(x + 2)*(x -2);
T[66,19]=(x -4)*(x + 4)*(x );
T[66,23]=(x -6)*(x + 6)*(x -4);
T[66,29]=(x -10)*(x -6)^2;
T[66,31]=(x -8)*(x + 8)*(x );
T[66,37]=(x + 10)*(x + 2)*(x -6);
T[66,41]=(x -2)*(x + 6)*(x -6);
T[66,43]=(x -8)*(x -4)^2;
T[66,47]=(x + 2)*(x + 12)*(x + 6);
T[66,53]=(x -4)*(x -2)*(x );
T[66,59]=(x -12)*(x )^2;
T[66,61]=(x -8)*(x + 14)*(x + 8);
T[66,67]=(x -4)*(x + 4)*(x + 12);
T[66,71]=(x -2)*(x -6)*(x + 12);
T[66,73]=(x -2)*(x + 6)^2;
T[66,79]=(x + 4)*(x -14)*(x -10);
T[66,83]=(x + 12)*(x -4)^2;
T[66,89]=(x + 6)*(x -10)^2;
T[66,97]=(x + 2)*(x -14)*(x + 14);

T[68,2]=(x )^2;
T[68,3]=x^2 -2*x -2;
T[68,5]=x^2 -12;
T[68,7]=x^2 + 2*x -2;
T[68,11]=x^2 + 6*x + 6;
T[68,13]=x^2 -4*x -8;
T[68,17]=(x + 1)^2;
T[68,19]=x^2 -4*x -8;
T[68,23]=x^2 + 6*x + 6;
T[68,29]=x^2 -12;
T[68,31]=x^2 + 2*x -26;
T[68,37]=x^2 -16*x + 52;
T[68,41]=(x + 6)^2;
T[68,43]=x^2 -4*x -104;
T[68,47]=x^2 -48;
T[68,53]=x^2 -12*x -12;
T[68,59]=x^2 -12*x + 24;
T[68,61]=x^2 + 8*x + 4;
T[68,67]=x^2 -16*x + 16;
T[68,71]=x^2 + 6*x -18;
T[68,73]=(x -2)^2;
T[68,79]=x^2 + 14*x + 22;
T[68,83]=x^2 + 12*x + 24;
T[68,89]=x^2 -12*x + 24;
T[68,97]=x^2 -4*x -44;

T[69,2]=(x -1)*(x^2 -5);
T[69,3]=(x -1)*(x + 1)^2;
T[69,5]=(x^2 + 2*x -4)*(x );
T[69,7]=(x + 2)*(x^2 -2*x -4);
T[69,11]=(x -4)^3;
T[69,13]=(x + 6)*(x^2 -20);
T[69,17]=(x -4)*(x^2 + 10*x + 20);
T[69,19]=(x -2)*(x^2 -10*x + 20);
T[69,23]=(x + 1)*(x -1)^2;
T[69,29]=(x -2)*(x^2 -20);
T[69,31]=(x -4)*(x^2 + 4*x -16);
T[69,37]=(x -2)*(x^2 -20);
T[69,41]=(x -2)*(x^2 + 4*x -76);
T[69,43]=(x -10)*(x^2 -2*x -44);
T[69,47]=(x )*(x + 4)^2;
T[69,53]=(x + 12)*(x^2 + 6*x + 4);
T[69,59]=(x + 12)*(x^2 -8*x -64);
T[69,61]=(x + 6)*(x^2 -20);
T[69,67]=(x + 10)*(x^2 -6*x + 4);
T[69,71]=(x -8)*(x + 8)^2;
T[69,73]=(x + 14)*(x^2 + 4*x -76);
T[69,79]=(x -10)*(x^2 -6*x -36);
T[69,83]=(x -12)*(x -4)^2;
T[69,89]=(x + 16)*(x^2 -2*x -4);
T[69,97]=(x + 10)*(x^2 -8*x -4);

T[70,2]=x -1;
T[70,3]=x ;
T[70,5]=x + 1;
T[70,7]=x + 1;
T[70,11]=x -4;
T[70,13]=x + 6;
T[70,17]=x -2;
T[70,19]=x ;
T[70,23]=x ;
T[70,29]=x -6;
T[70,31]=x -8;
T[70,37]=x + 10;
T[70,41]=x -2;
T[70,43]=x -4;
T[70,47]=x -8;
T[70,53]=x + 2;
T[70,59]=x + 8;
T[70,61]=x + 14;
T[70,67]=x + 12;
T[70,71]=x + 16;
T[70,73]=x -2;
T[70,79]=x + 8;
T[70,83]=x -8;
T[70,89]=x -10;
T[70,97]=x -2;

T[72,2]=x ;
T[72,3]=x ;
T[72,5]=x -2;
T[72,7]=x ;
T[72,11]=x + 4;
T[72,13]=x + 2;
T[72,17]=x + 2;
T[72,19]=x + 4;
T[72,23]=x -8;
T[72,29]=x + 6;
T[72,31]=x -8;
T[72,37]=x -6;
T[72,41]=x -6;
T[72,43]=x -4;
T[72,47]=x ;
T[72,53]=x -2;
T[72,59]=x + 4;
T[72,61]=x + 2;
T[72,67]=x + 4;
T[72,71]=x + 8;
T[72,73]=x -10;
T[72,79]=x + 8;
T[72,83]=x -4;
T[72,89]=x -6;
T[72,97]=x -2;

T[74,2]=(x + 1)^2*(x -1)^2;
T[74,3]=(x^2 -3*x -1)*(x^2 + x -1);
T[74,5]=(x^2 + x -3)*(x^2 -x -11);
T[74,7]=(x^2 -2*x -12)*(x^2 + 2*x -4);
T[74,11]=(x^2 + 5*x + 5)*(x^2 + x -3);
T[74,13]=(x^2 + x -3)*(x^2 -x -11);
T[74,17]=(x^2 -20)*(x + 6)^2;
T[74,19]=(x^2 -20)*(x -2)^2;
T[74,23]=(x^2 + 3*x -27)*(x^2 + x -11);
T[74,29]=(x^2 -3*x -27)*(x^2 + 3*x -59);
T[74,31]=(x^2 -17*x + 71)*(x^2 -3*x -1);
T[74,37]=(x -1)^2*(x + 1)^2;
T[74,41]=(x^2 -9*x -9)*(x^2 -17*x + 71);
T[74,43]=(x^2 + 6*x + 4)*(x^2 + 6*x -4);
T[74,47]=(x^2 -2*x -12)*(x^2 -2*x -4);
T[74,53]=(x^2 + 8*x -4)*(x + 6)^2;
T[74,59]=(x^2 + 14*x + 44)*(x^2 -14*x + 36);
T[74,61]=(x^2 -19*x + 89)*(x^2 + 3*x -79);
T[74,67]=(x^2 + 9*x -11)*(x^2 -11*x -51);
T[74,71]=(x^2 + 12*x -44)*(x -6)^2;
T[74,73]=(x^2 + 21*x + 107)*(x^2 -3*x -29);
T[74,79]=(x^2 -3*x -99)*(x^2 + 7*x -147);
T[74,83]=(x^2 -20*x + 48)*(x^2 + 20*x + 80);
T[74,89]=(x^2 + 12*x + 16)*(x^2 + 4*x -48);
T[74,97]=(x^2 -8*x -4)*(x^2 + 4*x -204);

T[75,2]=(x -2)*(x + 2)*(x -1);
T[75,3]=(x + 1)*(x -1)^2;
T[75,5]=(x )^3;
T[75,7]=(x -3)*(x + 3)*(x );
T[75,11]=(x + 4)*(x -2)^2;
T[75,13]=(x + 1)*(x -2)*(x -1);
T[75,17]=(x -2)*(x + 2)^2;
T[75,19]=(x -4)*(x + 5)^2;
T[75,23]=(x + 6)*(x -6)*(x );
T[75,29]=(x + 2)*(x -10)^2;
T[75,31]=(x )*(x + 3)^2;
T[75,37]=(x -2)*(x + 2)*(x -10);
T[75,41]=(x -10)*(x + 8)^2;
T[75,43]=(x + 1)*(x + 4)*(x -1);
T[75,47]=(x + 8)*(x -2)*(x + 2);
T[75,53]=(x -10)*(x -4)*(x + 4);
T[75,59]=(x + 4)*(x + 10)^2;
T[75,61]=(x + 2)*(x -7)^2;
T[75,67]=(x -3)*(x + 3)*(x + 12);
T[75,71]=(x + 8)^3;
T[75,73]=(x + 10)*(x -14)*(x + 14);
T[75,79]=(x )^3;
T[75,83]=(x -6)*(x + 12)*(x + 6);
T[75,89]=(x + 6)*(x )^2;
T[75,97]=(x + 17)*(x + 2)*(x -17);

T[76,2]=x ;
T[76,3]=x -2;
T[76,5]=x + 1;
T[76,7]=x + 3;
T[76,11]=x -5;
T[76,13]=x + 4;
T[76,17]=x + 3;
T[76,19]=x + 1;
T[76,23]=x -8;
T[76,29]=x + 2;
T[76,31]=x -4;
T[76,37]=x -10;
T[76,41]=x -10;
T[76,43]=x -1;
T[76,47]=x + 1;
T[76,53]=x + 4;
T[76,59]=x -6;
T[76,61]=x + 13;
T[76,67]=x + 12;
T[76,71]=x -2;
T[76,73]=x -9;
T[76,79]=x -8;
T[76,83]=x + 12;
T[76,89]=x -12;
T[76,97]=x + 8;

T[77,2]=(x -1)*(x^2 -5)*(x )^2;
T[77,3]=(x -1)*(x -2)*(x + 3)*(x^2 -2*x -4);
T[77,5]=(x -3)*(x + 1)*(x + 2)^3;
T[77,7]=(x + 1)^2*(x -1)^3;
T[77,11]=(x -1)*(x + 1)^4;
T[77,13]=(x -4)*(x^2 -2*x -4)*(x + 4)^2;
T[77,17]=(x -4)*(x -2)*(x + 6)*(x^2 + 2*x -4);
T[77,19]=(x -2)*(x + 6)*(x^2 -4*x -16)*(x );
T[77,23]=(x -3)*(x + 4)*(x + 5)*(x^2 + 4*x -16);
T[77,29]=(x -10)*(x^2 -8*x -4)*(x + 6)^2;
T[77,31]=(x -5)*(x -10)*(x -1)*(x^2 + 10*x + 20);
T[77,37]=(x + 6)*(x -11)*(x + 5)*(x^2 + 8*x -4);
T[77,41]=(x + 2)*(x -4)*(x -6)*(x^2 + 18*x + 76);
T[77,43]=(x -12)*(x + 8)*(x -8)^3;
T[77,47]=(x -8)*(x + 10)*(x^2 -10*x + 20)*(x );
T[77,53]=(x^2 -8*x -4)*(x + 6)^3;
T[77,59]=(x -3)*(x + 9)*(x -2)*(x^2 -2*x -4);
T[77,61]=(x + 10)*(x + 2)*(x^2 + 10*x + 20)*(x );
T[77,67]=(x + 3)*(x -5)*(x -8)*(x^2 -20*x + 80);
T[77,71]=(x + 12)*(x -9)*(x -1)*(x^2 + 12*x + 16);
T[77,73]=(x + 8)*(x -2)*(x -10)*(x^2 + 6*x + 4);
T[77,79]=(x -8)*(x -6)*(x + 10)*(x^2 -80);
T[77,83]=(x^2 -4*x -176)*(x )*(x -12)^2;
T[77,89]=(x + 15)*(x + 3)*(x + 6)*(x -2)^2;
T[77,97]=(x + 1)*(x + 10)*(x + 5)*(x^2 -8*x -164);

T[78,2]=x + 1;
T[78,3]=x + 1;
T[78,5]=x -2;
T[78,7]=x -4;
T[78,11]=x + 4;
T[78,13]=x -1;
T[78,17]=x -2;
T[78,19]=x + 8;
T[78,23]=x ;
T[78,29]=x -6;
T[78,31]=x + 4;
T[78,37]=x + 2;
T[78,41]=x + 10;
T[78,43]=x -4;
T[78,47]=x -8;
T[78,53]=x + 10;
T[78,59]=x -4;
T[78,61]=x + 2;
T[78,67]=x + 16;
T[78,71]=x + 8;
T[78,73]=x -2;
T[78,79]=x -8;
T[78,83]=x -12;
T[78,89]=x -14;
T[78,97]=x -10;

T[80,2]=(x )^2;
T[80,3]=(x -2)*(x );
T[80,5]=(x -1)*(x + 1);
T[80,7]=(x -4)*(x + 2);
T[80,11]=(x + 4)*(x );
T[80,13]=(x -2)*(x + 2);
T[80,17]=(x -2)*(x + 6);
T[80,19]=(x -4)*(x + 4);
T[80,23]=(x + 6)*(x + 4);
T[80,29]=(x + 2)*(x -6);
T[80,31]=(x -8)*(x -4);
T[80,37]=(x -6)*(x -2);
T[80,41]=(x -6)*(x + 6);
T[80,43]=(x -8)*(x -10);
T[80,47]=(x + 4)*(x -6);
T[80,53]=(x -6)*(x + 6);
T[80,59]=(x -4)*(x + 12);
T[80,61]=(x -2)*(x + 2);
T[80,67]=(x + 2)*(x + 8);
T[80,71]=(x -12)*(x );
T[80,73]=(x + 6)*(x -2);
T[80,79]=(x + 8)*(x );
T[80,83]=(x + 6)*(x -16);
T[80,89]=(x + 6)^2;
T[80,97]=(x -2)*(x + 14);

T[81,2]=x^2 -3;
T[81,3]=(x )^2;
T[81,5]=x^2 -3;
T[81,7]=(x -2)^2;
T[81,11]=x^2 -12;
T[81,13]=(x + 1)^2;
T[81,17]=x^2 -27;
T[81,19]=(x -2)^2;
T[81,23]=x^2 -12;
T[81,29]=x^2 -3;
T[81,31]=(x -8)^2;
T[81,37]=(x + 7)^2;
T[81,41]=x^2 -48;
T[81,43]=(x -2)^2;
T[81,47]=x^2 -48;
T[81,53]=(x )^2;
T[81,59]=x^2 -192;
T[81,61]=(x + 7)^2;
T[81,67]=(x + 10)^2;
T[81,71]=x^2 -108;
T[81,73]=(x + 7)^2;
T[81,79]=(x -2)^2;
T[81,83]=x^2 -192;
T[81,89]=x^2 -27;
T[81,97]=(x -2)^2;

T[82,2]=(x + 1)*(x -1)^2;
T[82,3]=(x + 2)*(x^2 -2);
T[82,5]=(x + 2)*(x^2 -8);
T[82,7]=(x + 4)*(x^2 + 4*x + 2);
T[82,11]=(x + 2)*(x^2 -18);
T[82,13]=(x -4)*(x )^2;
T[82,17]=(x + 2)*(x^2 -4*x -28);
T[82,19]=(x -6)*(x^2 + 8*x + 14);
T[82,23]=(x + 8)*(x^2 -8*x + 8);
T[82,29]=(x^2 -8*x -16)*(x );
T[82,31]=(x + 8)*(x^2 + 8*x + 8);
T[82,37]=(x -2)*(x^2 -72);
T[82,41]=(x + 1)^3;
T[82,43]=(x + 12)*(x^2 -8*x -16);
T[82,47]=(x -4)*(x^2 + 4*x -46);
T[82,53]=(x + 4)*(x -12)^2;
T[82,59]=(x -8)*(x^2 + 8*x + 8);
T[82,61]=(x + 14)*(x -6)^2;
T[82,67]=(x + 2)*(x^2 + 8*x -2);
T[82,71]=(x -8)*(x^2 + 4*x + 2);
T[82,73]=(x -10)*(x^2 + 16*x + 32);
T[82,79]=(x -4)*(x^2 + 12*x + 18);
T[82,83]=(x -12)*(x^2 -24*x + 112);
T[82,89]=(x + 14)*(x^2 + 12*x + 4);
T[82,97]=(x -6)*(x^2 + 4*x -28);

T[84,2]=(x )^2;
T[84,3]=(x -1)*(x + 1);
T[84,5]=(x -4)*(x );
T[84,7]=(x -1)*(x + 1);
T[84,11]=(x + 6)*(x -2);
T[84,13]=(x + 6)*(x -2);
T[84,17]=(x + 4)*(x );
T[84,19]=(x + 4)^2;
T[84,23]=(x + 6)*(x -2);
T[84,29]=(x + 2)*(x -6);
T[84,31]=(x -8)*(x );
T[84,37]=(x -2)^2;
T[84,41]=(x -12)*(x );
T[84,43]=(x + 4)^2;
T[84,47]=(x -12)^2;
T[84,53]=(x + 6)^2;
T[84,59]=(x + 8)*(x );
T[84,61]=(x + 10)*(x -6);
T[84,67]=(x -8)*(x + 8);
T[84,71]=(x -6)*(x -14);
T[84,73]=(x + 10)*(x + 2);
T[84,79]=(x + 4)*(x -12);
T[84,83]=(x + 12)*(x + 4);
T[84,89]=(x -12)*(x );
T[84,97]=(x + 2)*(x + 10);

T[85,2]=(x -1)*(x^2 + 2*x -1)*(x^2 -3);
T[85,3]=(x -2)*(x^2 + 4*x + 2)*(x^2 -2*x -2);
T[85,5]=(x -1)^2*(x + 1)^3;
T[85,7]=(x + 2)*(x^2 + 4*x + 2)*(x^2 + 2*x -2);
T[85,11]=(x -2)*(x^2 -6*x + 6)*(x^2 + 8*x + 14);
T[85,13]=(x -2)*(x^2 -8)*(x + 4)^2;
T[85,17]=(x -1)*(x + 1)^4;
T[85,19]=(x^2 -8)*(x^2 -4*x -8)*(x );
T[85,23]=(x -6)*(x^2 + 6*x -18)*(x^2 + 4*x + 2);
T[85,29]=(x + 6)*(x^2 + 4*x -4)*(x^2 -12);
T[85,31]=(x + 10)*(x^2 -10*x + 22)*(x^2 -18);
T[85,37]=(x -2)*(x^2 + 4*x -68)*(x^2 + 8*x + 4);
T[85,41]=(x -10)*(x^2 -12)*(x^2 -4*x -68);
T[85,43]=(x -4)*(x^2 -4*x -28)*(x^2 + 8*x + 4);
T[85,47]=(x -12)*(x^2 + 4*x -4)*(x^2 -12*x -12);
T[85,53]=(x + 10)*(x^2 -12*x + 4)*(x -6)^2;
T[85,59]=(x -8)*(x^2 -12*x + 24)*(x^2 + 24*x + 136);
T[85,61]=(x + 14)*(x^2 -4*x -44)*(x^2 -4*x -28);
T[85,67]=(x -8)*(x^2 + 12*x + 28)*(x + 10)^2;
T[85,71]=(x + 2)*(x^2 -18)*(x^2 -6*x -66);
T[85,73]=(x + 14)*(x^2 + 8*x -92)*(x^2 + 4*x -4);
T[85,79]=(x + 14)*(x^2 + 2*x -242)*(x^2 -8*x + 14);
T[85,83]=(x -4)*(x^2 -24*x + 132)*(x^2 + 4*x -124);
T[85,89]=(x -6)*(x^2 + 12*x -72)*(x^2 + 16*x + 32);
T[85,97]=(x -2)*(x^2 -4*x -44)*(x^2 + 4*x -28);

T[86,2]=(x + 1)^2*(x -1)^2;
T[86,3]=(x^2 + x -5)*(x^2 -x -1);
T[86,5]=(x^2 -3*x -3)*(x^2 + 3*x + 1);
T[86,7]=(x^2 -20)*(x -2)^2;
T[86,11]=(x^2 + 4*x -16)*(x )^2;
T[86,13]=(x^2 -20)*(x -2)^2;
T[86,17]=(x^2 + x -1)*(x^2 + 9*x + 15);
T[86,19]=(x^2 -x -47)*(x^2 -11*x + 29);
T[86,23]=(x^2 + 9*x + 15)*(x^2 -3*x -9);
T[86,29]=(x^2 + 7*x + 1)*(x^2 -3*x -3);
T[86,31]=(x^2 -x -47)*(x^2 -13*x + 41);
T[86,37]=(x^2 -x -47)*(x^2 + 5*x + 5);
T[86,41]=(x^2 + 5*x -5)*(x^2 -3*x -45);
T[86,43]=(x -1)^2*(x + 1)^2;
T[86,47]=(x^2 + 9*x -27)*(x^2 -3*x -59);
T[86,53]=(x^2 -6*x -12)*(x^2 + 10*x + 20);
T[86,59]=(x^2 -16*x + 44)*(x -6)^2;
T[86,61]=(x^2 -4*x -76)*(x -2)^2;
T[86,67]=(x + 10)^2*(x -2)^2;
T[86,71]=(x^2 + 16*x + 44)*(x^2 -84);
T[86,73]=(x^2 -4*x -76)*(x -14)^2;
T[86,79]=(x^2 + x -1)*(x^2 + 5*x -41);
T[86,83]=(x^2 + 10*x -20)*(x^2 + 6*x -12);
T[86,89]=(x^2 -2*x -44)*(x^2 -6*x -12);
T[86,97]=(x^2 + 11*x -1)*(x^2 + 11*x -17);

T[87,2]=(x^2 -x -1)*(x^3 -2*x^2 -4*x + 7);
T[87,3]=(x -1)^2*(x + 1)^3;
T[87,5]=(x^2 -2*x -4)*(x^3 -16*x + 8);
T[87,7]=(x^2 + 4*x -1)*(x^3 -4*x^2 -x + 8);
T[87,11]=(x^2 -4*x -1)*(x^3 + 8*x^2 + 15*x + 4);
T[87,13]=(x^2 + 2*x -19)*(x^3 -4*x^2 -7*x + 26);
T[87,17]=(x^3 -4*x^2 -27*x + 94)*(x -3)^2;
T[87,19]=(x^2 + 10*x + 20)*(x^3 + 2*x^2 -20*x + 16);
T[87,23]=(x^2 + 2*x -44)*(x^3 -6*x^2 -4*x + 32);
T[87,29]=(x + 1)^2*(x -1)^3;
T[87,31]=(x^2 + 6*x -36)*(x^3 -6*x^2 -4*x + 32);
T[87,37]=(x^2 -6*x + 4)*(x^3 -8*x^2 + 8);
T[87,41]=(x^3 + 2*x^2 -100*x + 56)*(x -2)^2;
T[87,43]=(x^3 + 4*x^2 -96*x -256)*(x -4)^2;
T[87,47]=(x^2 + 4*x -41)*(x^3 + 12*x^2 -9*x -216);
T[87,53]=(x^2 -18*x + 76)*(x^3 -8*x^2 -104*x + 248);
T[87,59]=(x^2 -20)*(x^3 + 20*x^2 + 108*x + 112);
T[87,61]=(x^2 + 6*x + 4)*(x^3 -4*x^2 -16*x + 56);
T[87,67]=(x^2 + 4*x -121)*(x^3 -57*x + 52);
T[87,71]=(x^2 + 6*x + 4)*(x^3 + 14*x^2 -60*x -416);
T[87,73]=(x^2 -18*x + 76)*(x^3 + 8*x^2 -8);
T[87,79]=(x^2 + 30*x + 220)*(x^3 + 2*x^2 -60*x -224);
T[87,83]=(x^2 + 12*x -44)*(x^3 + 8*x^2 -28*x -208);
T[87,89]=(x^3 + 8*x^2 -131*x -74)*(x -5)^2;
T[87,97]=(x^2 -6*x -236)*(x^3 -4*x^2 -72*x -104);

T[88,2]=(x )^3;
T[88,3]=(x + 3)*(x^2 -x -4);
T[88,5]=(x + 3)*(x^2 -3*x -2);
T[88,7]=(x + 2)*(x^2 + 2*x -16);
T[88,11]=(x + 1)^3;
T[88,13]=(x^2 + 2*x -16)*(x );
T[88,17]=(x + 6)*(x -2)^2;
T[88,19]=(x -4)*(x + 4)^2;
T[88,23]=(x -1)*(x^2 -9*x + 16);
T[88,29]=(x + 8)*(x^2 + 2*x -16);
T[88,31]=(x + 7)*(x^2 + 7*x + 8);
T[88,37]=(x + 1)*(x^2 + 11*x + 26);
T[88,41]=(x -4)*(x^2 -6*x -8);
T[88,43]=(x -6)*(x^2 + 6*x -8);
T[88,47]=(x + 8)*(x -8)^2;
T[88,53]=(x -2)*(x^2 -8*x -52);
T[88,59]=(x + 1)*(x^2 + 5*x -100);
T[88,61]=(x -4)*(x^2 + 6*x -8);
T[88,67]=(x + 5)*(x^2 -15*x + 52);
T[88,71]=(x -3)*(x^2 + 5*x -32);
T[88,73]=(x -16)*(x^2 -2*x -16);
T[88,79]=(x -2)*(x^2 + 14*x + 32);
T[88,83]=(x + 2)*(x^2 -10*x + 8);
T[88,89]=(x -15)*(x^2 + 7*x -26);
T[88,97]=(x + 7)*(x^2 -27*x + 178);

T[90,2]=(x + 1)*(x -1)^2;
T[90,3]=(x )^3;
T[90,5]=(x + 1)*(x -1)^2;
T[90,7]=(x + 4)*(x -2)^2;
T[90,11]=(x + 6)*(x -6)*(x );
T[90,13]=(x -2)*(x + 4)^2;
T[90,17]=(x -6)*(x + 6)^2;
T[90,19]=(x + 4)^3;
T[90,23]=(x )^3;
T[90,29]=(x + 6)*(x -6)^2;
T[90,31]=(x -8)*(x + 4)^2;
T[90,37]=(x -2)*(x -8)^2;
T[90,41]=(x -6)*(x )^2;
T[90,43]=(x + 4)*(x -8)^2;
T[90,47]=(x )^3;
T[90,53]=(x + 6)*(x -6)^2;
T[90,59]=(x + 6)*(x -6)*(x );
T[90,61]=(x + 10)*(x -2)^2;
T[90,67]=(x + 4)^3;
T[90,71]=(x -12)*(x + 12)*(x );
T[90,73]=(x -2)*(x + 10)^2;
T[90,79]=(x -8)*(x + 4)^2;
T[90,83]=(x -12)*(x + 12)^2;
T[90,89]=(x + 18)*(x -12)*(x + 12);
T[90,97]=(x -2)^3;

T[92,2]=(x )^2;
T[92,3]=(x + 3)*(x -1);
T[92,5]=(x + 2)*(x );
T[92,7]=(x + 4)*(x -2);
T[92,11]=(x -2)*(x );
T[92,13]=(x + 1)*(x + 5);
T[92,17]=(x -4)*(x + 6);
T[92,19]=(x + 2)*(x -2);
T[92,23]=(x -1)*(x + 1);
T[92,29]=(x + 7)*(x + 3);
T[92,31]=(x + 3)*(x -5);
T[92,37]=(x -8)*(x -2);
T[92,41]=(x -3)*(x + 9);
T[92,43]=(x -8)*(x + 8);
T[92,47]=(x -9)^2;
T[92,53]=(x -6)*(x -2);
T[92,59]=(x + 12)*(x );
T[92,61]=(x -14)*(x + 2);
T[92,67]=(x -8)*(x -14);
T[92,71]=(x + 3)*(x + 15);
T[92,73]=(x + 3)*(x + 7);
T[92,79]=(x + 10)*(x + 6);
T[92,83]=(x -8)*(x -6);
T[92,89]=(x -12)*(x );
T[92,97]=(x + 10)*(x );

T[93,2]=(x^2 + 3*x + 1)*(x^3 -4*x + 1);
T[93,3]=(x + 1)^2*(x -1)^3;
T[93,5]=(x^2 + 4*x -1)*(x^3 + 2*x^2 -5*x -2);
T[93,7]=(x^2 + 4*x -1)*(x^3 -4*x^2 -x + 8);
T[93,11]=(x^2 + 6*x + 4)*(x^3 + 2*x^2 -20*x + 16);
T[93,13]=(x^2 + 2*x -4)*(x^3 -4*x^2 -16*x + 56);
T[93,17]=(x^2 + 4*x -16)*(x^3 + 2*x^2 -24*x -32);
T[93,19]=(x^2 + 8*x + 11)*(x^3 -4*x^2 -45*x + 196);
T[93,23]=(x^2 -2*x -4)*(x^3 + 6*x^2 -4*x -32);
T[93,29]=(x^2 -2*x -4)*(x^3 + 8*x^2 -56*x -392);
T[93,31]=(x + 1)^5;
T[93,37]=(x^2 -2*x -44)*(x^3 -16*x + 8);
T[93,41]=(x^2 -45)*(x^3 + 10*x^2 -17*x -262);
T[93,43]=(x^2 + 6*x -36)*(x^3 -14*x^2 + 4*x + 368);
T[93,47]=(x^2 -4*x -16)*(x^3 -12*x^2 -16*x + 256);
T[93,53]=(x^2 -80)*(x^3 + 10*x^2 -16*x -32);
T[93,59]=(x^3 -26*x^2 + 213*x -556)*(x + 3)^2;
T[93,61]=(x^3 + 2*x^2 -128*x -512)*(x -8)^2;
T[93,67]=(x + 12)^2*(x -4)^3;
T[93,71]=(x^3 + 10*x^2 -147*x -712)*(x -9)^2;
T[93,73]=(x^2 -2*x -4)*(x^3 + 12*x^2 -96*x -728);
T[93,79]=(x^2 -8*x -4)*(x^3 -8*x^2 -4*x + 64);
T[93,83]=(x^2 + 24*x + 124)*(x^3 -20*x^2 + 108*x -112);
T[93,89]=(x^2 + 4*x -76)*(x + 6)^3;
T[93,97]=(x^3 -4*x^2 -27*x + 94)*(x -9)^2;

T[94,2]=(x -1)*(x + 1)^2;
T[94,3]=(x^2 -8)*(x );
T[94,5]=(x^2 -4*x + 2)*(x );
T[94,7]=(x^2 + 4*x -4)*(x );
T[94,11]=(x -2)*(x^2 -8*x + 14);
T[94,13]=(x + 4)*(x^2 + 4*x + 2);
T[94,17]=(x + 2)*(x )^2;
T[94,19]=(x + 2)*(x^2 + 8*x -2);
T[94,23]=(x -4)*(x^2 -8);
T[94,29]=(x -4)*(x^2 -12*x + 18);
T[94,31]=(x -4)*(x^2 -72);
T[94,37]=(x -2)*(x^2 -4*x -68);
T[94,41]=(x -6)*(x^2 + 12*x + 28);
T[94,43]=(x -6)*(x^2 + 8*x -2);
T[94,47]=(x + 1)*(x -1)^2;
T[94,53]=(x -2)*(x^2 -4*x -4);
T[94,59]=(x -12)*(x^2 + 8*x -16);
T[94,61]=(x -2)*(x^2 + 4*x -68);
T[94,67]=(x -2)*(x^2 + 8*x -34);
T[94,71]=(x -8)*(x^2 -12*x + 28);
T[94,73]=(x + 14)*(x -6)^2;
T[94,79]=(x + 16)*(x )^2;
T[94,83]=(x + 16)*(x^2 -8);
T[94,89]=(x + 10)*(x )^2;
T[94,97]=(x + 14)*(x -6)^2;

T[95,2]=(x^3 -x^2 -3*x + 1)*(x^4 + 2*x^3 -6*x^2 -8*x + 9);
T[95,3]=(x^3 -2*x^2 -4*x + 4)*(x^4 -2*x^3 -8*x^2 + 16*x -4);
T[95,5]=(x -1)^3*(x + 1)^4;
T[95,7]=(x^3 -16*x + 16)*(x^4 -4*x^3 -16*x^2 + 48*x + 32);
T[95,11]=(x^3 + 8*x^2 + 8*x -16)*(x^4 -4*x^3 -16*x^2 + 32*x + 48);
T[95,13]=(x^3 -8*x^2 + 12*x -4)*(x^4 -2*x^3 -24*x^2 + 32*x + 20);
T[95,17]=(x^3 -2*x^2 -36*x + 104)*(x^4 -4*x^3 -32*x^2 + 16*x + 48);
T[95,19]=(x + 1)^3*(x -1)^4;
T[95,23]=(x^3 + 4*x^2 -8*x -16)*(x^4 + 8*x^3 -24*x^2 -176*x + 288);
T[95,29]=(x^3 + 10*x^2 + 12*x -40)*(x^4 -4*x^3 -32*x^2 + 16*x + 48);
T[95,31]=(x^3 -4*x^2 -48*x + 64)*(x^4 -4*x^3 -80*x^2 + 512*x -640);
T[95,37]=(x^3 -20*x^2 + 124*x -244)*(x^4 + 6*x^3 -24*x^2 -40*x + 4);
T[95,41]=(x^3 + 2*x^2 -36*x -104)*(x^4 -16*x^3 + 56*x^2 + 32*x -240);
T[95,43]=(x^3 + 4*x^2 -144*x -592)*(x^4 -4*x^3 -16*x^2 + 48*x + 32);
T[95,47]=(x^3 -16*x + 16)*(x^4 + 12*x^3 -64*x^2 -656*x + 1056);
T[95,53]=(x^3 -16*x^2 + 76*x -92)*(x^4 + 10*x^3 -184*x -348);
T[95,59]=(x^3 + 20*x^2 + 112*x + 160)*(x^4 -64*x^2 -224*x -192);
T[95,61]=(x^3 + 2*x^2 -84*x + 232)*(x^4 -20*x^3 + 56*x^2 + 688*x -2656);
T[95,67]=(x^3 -2*x^2 -76*x -116)*(x^4 + 18*x^3 + 8*x^2 -488*x -1076);
T[95,71]=(x^3 + 4*x^2 -80*x -64)*(x^4 + 20*x^3 + 32*x^2 -1024*x -4224);
T[95,73]=(x^3 -2*x^2 -20*x + 8)*(x^4 -28*x^3 + 256*x^2 -784*x + 176);
T[95,79]=(x^3 -192*x -160)*(x^4 + 16*x^3 + 32*x^2 -480*x -1856);
T[95,83]=(x^3 + 32*x^2 + 328*x + 1072)*(x^4 -72*x^2 -112*x + 480);
T[95,89]=(x^3 -2*x^2 -132*x + 680)*(x^4 -4*x^3 -144*x^2 -176*x + 240);
T[95,97]=(x^3 -20*x^2 -60*x + 1748)*(x^4 -30*x^3 + 224*x^2 -8*x -1388);

T[96,2]=(x )^2;
T[96,3]=(x + 1)*(x -1);
T[96,5]=(x -2)^2;
T[96,7]=(x + 4)*(x -4);
T[96,11]=(x + 4)*(x -4);
T[96,13]=(x + 2)^2;
T[96,17]=(x + 6)^2;
T[96,19]=(x -4)*(x + 4);
T[96,23]=(x )^2;
T[96,29]=(x -2)^2;
T[96,31]=(x + 4)*(x -4);
T[96,37]=(x + 2)^2;
T[96,41]=(x -2)^2;
T[96,43]=(x + 4)*(x -4);
T[96,47]=(x -8)*(x + 8);
T[96,53]=(x -10)^2;
T[96,59]=(x -4)*(x + 4);
T[96,61]=(x -6)^2;
T[96,67]=(x -4)*(x + 4);
T[96,71]=(x -16)*(x + 16);
T[96,73]=(x + 6)^2;
T[96,79]=(x + 4)*(x -4);
T[96,83]=(x -12)*(x + 12);
T[96,89]=(x -10)^2;
T[96,97]=(x + 14)^2;

T[98,2]=(x + 1)*(x -1)^2;
T[98,3]=(x -2)*(x^2 -2);
T[98,5]=(x^2 -8)*(x );
T[98,7]=(x )^3;
T[98,11]=(x )*(x + 2)^2;
T[98,13]=(x -4)*(x )^2;
T[98,17]=(x + 6)*(x^2 -2);
T[98,19]=(x + 2)*(x^2 -50);
T[98,23]=(x )*(x + 4)^2;
T[98,29]=(x + 6)*(x -2)^2;
T[98,31]=(x -4)*(x^2 -72);
T[98,37]=(x -2)*(x -10)^2;
T[98,41]=(x + 6)*(x^2 -98);
T[98,43]=(x -8)*(x -2)^2;
T[98,47]=(x -12)*(x^2 -8);
T[98,53]=(x -6)*(x + 2)^2;
T[98,59]=(x -6)*(x^2 -2);
T[98,61]=(x + 8)*(x^2 -8);
T[98,67]=(x + 4)*(x -12)^2;
T[98,71]=(x )*(x + 12)^2;
T[98,73]=(x + 2)*(x^2 -2);
T[98,79]=(x -8)*(x + 4)^2;
T[98,83]=(x -6)*(x^2 -98);
T[98,89]=(x -6)*(x^2 -50);
T[98,97]=(x -10)*(x^2 -98);

T[99,2]=(x -2)*(x -1)*(x + 1)^2;
T[99,3]=(x )^4;
T[99,5]=(x + 4)*(x + 1)*(x -4)*(x -2);
T[99,7]=(x -4)*(x + 2)^3;
T[99,11]=(x -1)*(x + 1)^3;
T[99,13]=(x -4)*(x + 2)^3;
T[99,17]=(x + 2)*(x -2)^3;
T[99,19]=(x + 6)^2*(x )^2;
T[99,23]=(x + 4)*(x + 8)*(x -1)*(x -4);
T[99,29]=(x + 6)*(x )*(x -6)^2;
T[99,31]=(x + 8)*(x -7)*(x -4)^2;
T[99,37]=(x -6)*(x -3)*(x + 6)^2;
T[99,41]=(x + 10)*(x -2)*(x -8)*(x -10);
T[99,43]=(x + 6)*(x )*(x -6)^2;
T[99,47]=(x -8)*(x + 8)^3;
T[99,53]=(x + 6)*(x -6)*(x )^2;
T[99,59]=(x + 4)*(x + 5)*(x -4)^2;
T[99,61]=(x -12)*(x -6)*(x + 6)^2;
T[99,67]=(x + 4)*(x + 7)*(x -8)^2;
T[99,71]=(x -3)*(x )^3;
T[99,73]=(x -4)*(x + 14)*(x + 2)^2;
T[99,79]=(x + 4)*(x + 10)^3;
T[99,83]=(x -6)*(x -12)*(x + 12)^2;
T[99,89]=(x + 15)*(x -6)*(x )^2;
T[99,97]=(x + 7)*(x -2)^3;

T[100,2]=x ;
T[100,3]=x -2;
T[100,5]=x ;
T[100,7]=x + 2;
T[100,11]=x ;
T[100,13]=x + 2;
T[100,17]=x -6;
T[100,19]=x + 4;
T[100,23]=x + 6;
T[100,29]=x -6;
T[100,31]=x + 4;
T[100,37]=x + 2;
T[100,41]=x -6;
T[100,43]=x -10;
T[100,47]=x -6;
T[100,53]=x -6;
T[100,59]=x -12;
T[100,61]=x -2;
T[100,67]=x + 2;
T[100,71]=x + 12;
T[100,73]=x + 2;
T[100,79]=x -8;
T[100,83]=x + 6;
T[100,89]=x + 6;
T[100,97]=x + 2;

}