Sharedwww / Tables / charpoly_s2_t2t3t5_1-500.gpOpen in CoCalc
\\ charpoly_s2.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N)) 
\\ of weight 2 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(500,5,m,n,0);
T[11,2]=x + 2;
T[11,3]=x + 1;
T[11,5]=x -1;

T[14,2]=x + 1;
T[14,3]=x + 2;
T[14,5]=x ;

T[15,2]=x + 1;
T[15,3]=x + 1;
T[15,5]=x -1;

T[17,2]=x + 1;
T[17,3]=x ;
T[17,5]=x + 2;

T[19,2]=x ;
T[19,3]=x + 2;
T[19,5]=x -3;

T[20,2]=x ;
T[20,3]=x + 2;
T[20,5]=x + 1;

T[21,2]=x + 1;
T[21,3]=x -1;
T[21,5]=x + 2;

T[22,2]=x^2 + 2*x + 2;
T[22,3]=(x + 1)^2;
T[22,5]=(x -1)^2;

T[23,2]=x^2 + x -1;
T[23,3]=x^2 -5;
T[23,5]=x^2 + 2*x -4;

T[24,2]=x ;
T[24,3]=x + 1;
T[24,5]=x + 2;

T[26,2]=(x -1)*(x + 1);
T[26,3]=(x -1)*(x + 3);
T[26,5]=(x + 3)*(x + 1);

T[27,2]=x ;
T[27,3]=x ;
T[27,5]=x ;

T[28,2]=(x + 1)*(x );
T[28,3]=(x + 2)^2;
T[28,5]=(x )^2;

T[29,2]=x^2 + 2*x -1;
T[29,3]=x^2 -2*x -1;
T[29,5]=(x + 1)^2;

T[30,2]=(x + 1)*(x^2 + x + 2);
T[30,3]=(x -1)*(x + 1)^2;
T[30,5]=(x + 1)*(x -1)^2;

T[31,2]=x^2 -x -1;
T[31,3]=x^2 + 2*x -4;
T[31,5]=(x -1)^2;

T[32,2]=x ;
T[32,3]=x ;
T[32,5]=x + 2;

T[33,2]=(x -1)*(x + 2)^2;
T[33,3]=(x + 1)*(x^2 + x + 3);
T[33,5]=(x + 2)*(x -1)^2;

T[34,2]=(x -1)*(x^2 + x + 2);
T[34,3]=(x + 2)*(x )^2;
T[34,5]=(x )*(x + 2)^2;

T[35,2]=(x^2 + x -4)*(x );
T[35,3]=(x -1)*(x^2 + x -4);
T[35,5]=(x + 1)*(x -1)^2;

T[36,2]=x ;
T[36,3]=x ;
T[36,5]=x ;

T[37,2]=(x + 2)*(x );
T[37,3]=(x + 3)*(x -1);
T[37,5]=(x + 2)*(x );

T[38,2]=(x -1)*(x + 1)*(x^2 + 2);
T[38,3]=(x -1)*(x + 1)*(x + 2)^2;
T[38,5]=(x + 4)*(x )*(x -3)^2;

T[39,2]=(x -1)*(x^2 + 2*x -1);
T[39,3]=(x + 1)*(x -1)^2;
T[39,5]=(x -2)*(x^2 -8);

T[40,2]=(x )^3;
T[40,3]=(x )*(x + 2)^2;
T[40,5]=(x -1)*(x + 1)^2;

T[41,2]=x^3 + x^2 -5*x -1;
T[41,3]=x^3 -4*x + 2;
T[41,5]=x^3 + 2*x^2 -4*x -4;

T[42,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2;
T[42,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[42,5]=(x )^2*(x + 2)^3;

T[43,2]=(x + 2)*(x^2 -2);
T[43,3]=(x + 2)*(x^2 -2);
T[43,5]=(x + 4)*(x^2 -4*x + 2);

T[44,2]=(x^2 + 2*x + 2)*(x )^2;
T[44,3]=(x -1)*(x + 1)^3;
T[44,5]=(x + 3)*(x -1)^3;

T[45,2]=(x -1)*(x + 1)^2;
T[45,3]=(x + 1)*(x )^2;
T[45,5]=(x + 1)*(x -1)^2;

T[46,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4);
T[46,3]=(x )*(x^2 -5)^2;
T[46,5]=(x -4)*(x^2 + 2*x -4)^2;

T[47,2]=x^4 -x^3 -5*x^2 + 5*x -1;
T[47,3]=x^4 -7*x^2 + 4*x + 1;
T[47,5]=x^4 + 2*x^3 -16*x^2 -16*x + 48;

T[48,2]=(x )^3;
T[48,3]=(x -1)*(x + 1)^2;
T[48,5]=(x + 2)^3;

T[49,2]=x -1;
T[49,3]=x ;
T[49,5]=x ;

T[50,2]=(x + 1)*(x -1);
T[50,3]=(x -1)*(x + 1);
T[50,5]=(x )^2;

T[51,2]=(x^2 + x -4)*(x )*(x + 1)^2;
T[51,3]=(x -1)*(x^2 + 3)*(x + 1)^2;
T[51,5]=(x -3)*(x^2 -3*x -2)*(x + 2)^2;

T[52,2]=(x -1)*(x + 1)*(x )^3;
T[52,3]=(x )*(x -1)^2*(x + 3)^2;
T[52,5]=(x -2)*(x + 1)^2*(x + 3)^2;

T[53,2]=(x + 1)*(x^3 + x^2 -3*x -1);
T[53,3]=(x + 3)*(x^3 -3*x^2 -x + 1);
T[53,5]=(x^3 + 2*x^2 -4*x -4)*(x );

T[54,2]=(x + 1)*(x -1)*(x^2 + 2);
T[54,3]=(x )^4;
T[54,5]=(x + 3)*(x -3)*(x )^2;

T[55,2]=(x -1)*(x^2 -2*x -1)*(x + 2)^2;
T[55,3]=(x^2 -8)*(x )*(x + 1)^2;
T[55,5]=(x -1)*(x^2 -x + 5)*(x + 1)^2;

T[56,2]=(x + 1)*(x )^4;
T[56,3]=(x -2)*(x )*(x + 2)^3;
T[56,5]=(x -2)*(x + 4)*(x )^3;

T[57,2]=(x -1)*(x + 2)^2*(x )^2;
T[57,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[57,5]=(x + 3)*(x + 2)*(x -1)*(x -3)^2;

T[58,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4);
T[58,3]=(x + 3)*(x + 1)*(x^2 -2*x -1)^2;
T[58,5]=(x + 3)*(x -1)*(x + 1)^4;

T[59,2]=x^5 -9*x^3 + 2*x^2 + 16*x -8;
T[59,3]=x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1;
T[59,5]=x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1;

T[60,2]=(x + 1)*(x^2 + x + 2)*(x )^4;
T[60,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3;
T[60,5]=(x -1)^3*(x + 1)^4;

T[61,2]=(x + 1)*(x^3 -x^2 -3*x + 1);
T[61,3]=(x + 2)*(x^3 -2*x^2 -4*x + 4);
T[61,5]=(x + 3)*(x^3 + x^2 -9*x -13);

T[62,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2;
T[62,3]=(x^2 -2*x -2)*(x )*(x^2 + 2*x -4)^2;
T[62,5]=(x + 2)*(x^2 -12)*(x -1)^4;

T[63,2]=(x -1)*(x^2 -3)*(x + 1)^2;
T[63,3]=(x -1)*(x )^4;
T[63,5]=(x -2)*(x^2 -12)*(x + 2)^2;

T[64,2]=(x )^3;
T[64,3]=(x )^3;
T[64,5]=(x -2)*(x + 2)^2;

T[65,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -3);
T[65,3]=(x + 2)*(x^2 -2*x -2)*(x^2 -2);
T[65,5]=(x -1)^2*(x + 1)^3;

T[66,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2;
T[66,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3;
T[66,5]=(x + 4)*(x -2)*(x )*(x + 2)^2*(x -1)^4;

T[67,2]=(x -2)*(x^2 + x -1)*(x^2 + 3*x + 1);
T[67,3]=(x + 2)*(x^2 -x -1)*(x^2 + 3*x + 1);
T[67,5]=(x -2)*(x^2 -4*x -1)*(x + 3)^2;

T[68,2]=(x -1)*(x^2 + x + 2)*(x )^4;
T[68,3]=(x^2 -2*x -2)*(x + 2)^2*(x )^3;
T[68,5]=(x^2 -12)*(x )^2*(x + 2)^3;

T[69,2]=(x -1)*(x^2 -5)*(x^2 + x -1)^2;
T[69,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2;
T[69,5]=(x )*(x^2 + 2*x -4)^3;

T[70,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2;
T[70,3]=(x )*(x + 2)^2*(x -1)^2*(x^2 + x -4)^2;
T[70,5]=(x^2 + 5)*(x + 1)^3*(x -1)^4;

T[71,2]=(x^3 + x^2 -4*x -3)*(x^3 -5*x + 3);
T[71,3]=(x^3 + x^2 -8*x -3)*(x^3 -x^2 -4*x + 3);
T[71,5]=(x^3 + 3*x^2 -2*x -7)*(x^3 -5*x^2 -2*x + 25);

T[72,2]=(x )^5;
T[72,3]=(x + 1)*(x )^4;
T[72,5]=(x -2)*(x + 2)^2*(x )^2;

T[73,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 -x -3);
T[73,3]=(x^2 + 3*x + 1)*(x^2 -x -3)*(x );
T[73,5]=(x -2)*(x^2 + 3*x + 1)*(x^2 + x -3);

T[74,2]=(x^2 + 2*x + 2)*(x^2 + 2)*(x -1)^2*(x + 1)^2;
T[74,3]=(x^2 + x -1)*(x^2 -3*x -1)*(x + 3)^2*(x -1)^2;
T[74,5]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x )^2;

T[75,2]=(x + 2)*(x -1)*(x -2)*(x + 1)^2;
T[75,3]=(x -1)^2*(x + 1)^3;
T[75,5]=(x -1)*(x )^4;

T[76,2]=(x + 1)*(x -1)*(x^2 + 2)*(x )^4;
T[76,3]=(x -2)*(x + 1)^2*(x -1)^2*(x + 2)^3;
T[76,5]=(x + 1)*(x + 4)^2*(x )^2*(x -3)^3;

T[77,2]=(x -1)*(x^2 -5)*(x + 2)^2*(x )^2;
T[77,3]=(x -2)*(x -1)*(x + 3)*(x^2 -2*x -4)*(x + 1)^2;
T[77,5]=(x -3)*(x + 1)*(x -1)^2*(x + 2)^3;

T[78,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3;
T[78,3]=(x^2 -x + 3)*(x^2 + 3*x + 3)*(x + 1)^3*(x -1)^4;
T[78,5]=(x + 3)^2*(x + 1)^2*(x^2 -8)^2*(x -2)^3;

T[79,2]=(x + 1)*(x^5 -6*x^3 + 8*x -1);
T[79,3]=(x + 1)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16);
T[79,5]=(x + 3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31);

T[80,2]=(x )^7;
T[80,3]=(x -2)*(x + 2)^3*(x )^3;
T[80,5]=(x -1)^3*(x + 1)^4;

T[81,2]=(x^2 -3)*(x )^2;
T[81,3]=(x )^4;
T[81,5]=(x^2 -3)*(x )^2;

T[82,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2;
T[82,3]=(x + 2)*(x^2 -2)*(x^3 -4*x + 2)^2;
T[82,5]=(x + 2)*(x^2 -8)*(x^3 + 2*x^2 -4*x -4)^2;

T[83,2]=(x + 1)*(x^6 -x^5 -9*x^4 + 7*x^3 + 20*x^2 -12*x -8);
T[83,3]=(x + 1)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25);
T[83,5]=(x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160);

T[84,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^6;
T[84,3]=(x^2 + 2*x + 3)^2*(x + 1)^3*(x -1)^4;
T[84,5]=(x -4)*(x + 2)^5*(x )^5;

T[85,2]=(x -1)*(x^2 -3)*(x^2 + 2*x -1)*(x + 1)^2;
T[85,3]=(x -2)*(x^2 -2*x -2)*(x^2 + 4*x + 2)*(x )^2;
T[85,5]=(x^2 + 2*x + 5)*(x -1)^2*(x + 1)^3;

T[86,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x -1)^2*(x + 1)^2;
T[86,3]=(x^2 -x -1)*(x^2 + x -5)*(x + 2)^2*(x^2 -2)^2;
T[86,5]=(x^2 -3*x -3)*(x^2 + 3*x + 1)*(x + 4)^2*(x^2 -4*x + 2)^2;

T[87,2]=(x^2 -x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + 2*x -1)^2;
T[87,3]=(x^4 -2*x^3 + 5*x^2 -6*x + 9)*(x -1)^2*(x + 1)^3;
T[87,5]=(x^2 -2*x -4)*(x^3 -16*x + 8)*(x + 1)^4;

T[88,2]=(x^2 + 2*x + 2)*(x )^7;
T[88,3]=(x + 3)*(x^2 -x -4)*(x -1)^2*(x + 1)^4;
T[88,5]=(x^2 -3*x -2)*(x + 3)^3*(x -1)^4;

T[89,2]=(x + 1)*(x -1)*(x^5 + x^4 -10*x^3 -10*x^2 + 21*x + 17);
T[89,3]=(x -2)*(x + 1)*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1);
T[89,5]=(x + 2)*(x + 1)*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13);

T[90,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3;
T[90,3]=(x -1)*(x + 1)^2*(x )^8;
T[90,5]=(x + 1)^5*(x -1)^6;

T[91,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x );
T[91,3]=(x + 2)*(x^2 -2)*(x^3 + 2*x^2 -6*x -8)*(x );
T[91,5]=(x^2 -6*x + 7)*(x^3 -2*x^2 -3*x + 2)*(x + 3)^2;

T[92,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^5;
T[92,3]=(x + 3)*(x -1)*(x )^2*(x^2 -5)^3;
T[92,5]=(x + 2)*(x )*(x -4)^2*(x^2 + 2*x -4)^3;

T[93,2]=(x^2 + 3*x + 1)*(x^3 -4*x + 1)*(x^2 -x -1)^2;
T[93,3]=(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)*(x + 1)^2*(x -1)^3;
T[93,5]=(x^2 + 4*x -1)*(x^3 + 2*x^2 -5*x -2)*(x -1)^4;

T[94,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2;
T[94,3]=(x^2 -8)*(x )*(x^4 -7*x^2 + 4*x + 1)^2;
T[94,5]=(x^2 -4*x + 2)*(x )*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;

T[95,2]=(x^3 -x^2 -3*x + 1)*(x^4 + 2*x^3 -6*x^2 -8*x + 9)*(x )^2;
T[95,3]=(x^3 -2*x^2 -4*x + 4)*(x^4 -2*x^3 -8*x^2 + 16*x -4)*(x + 2)^2;
T[95,5]=(x^2 -3*x + 5)*(x -1)^3*(x + 1)^4;

T[96,2]=(x )^9;
T[96,3]=(x^2 + 3)*(x -1)^3*(x + 1)^4;
T[96,5]=(x -2)^2*(x + 2)^7;

T[97,2]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -3*x^3 -x^2 + 6*x -1);
T[97,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -5*x^2 -x + 4);
T[97,5]=(x^3 + 3*x^2 -4*x + 1)*(x^4 -x^3 -4*x^2 + x + 2);

T[98,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3;
T[98,3]=(x -2)*(x^2 -2)*(x + 2)^2*(x )^2;
T[98,5]=(x^2 -8)*(x )^5;

T[99,2]=(x -2)*(x + 1)^2*(x + 2)^3*(x -1)^3;
T[99,3]=(x + 1)*(x^2 + x + 3)*(x )^6;
T[99,5]=(x -2)*(x + 1)*(x -4)*(x + 4)*(x + 2)^2*(x -1)^3;

T[100,2]=(x + 1)*(x -1)*(x )^5;
T[100,3]=(x -2)*(x + 1)^2*(x -1)^2*(x + 2)^2;
T[100,5]=(x + 1)*(x )^6;

T[101,2]=(x^7 -13*x^5 + 2*x^4 + 47*x^3 -16*x^2 -43*x + 14)*(x );
T[101,3]=(x + 2)*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68);
T[101,5]=(x + 1)*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67);

T[102,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3;
T[102,3]=(x^2 + 2*x + 3)*(x^2 + 3)^2*(x -1)^4*(x + 1)^5;
T[102,5]=(x + 4)*(x -3)^2*(x^2 -3*x -2)^2*(x )^3*(x + 2)^5;

T[103,2]=(x^2 + 3*x + 1)*(x^6 -4*x^5 -x^4 + 17*x^3 -9*x^2 -16*x + 11);
T[103,3]=(x^6 -13*x^4 + 40*x^2 -8*x -16)*(x + 1)^2;
T[103,5]=(x^2 + 3*x + 1)*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16);

T[104,2]=(x + 1)*(x -1)*(x )^9;
T[104,3]=(x^2 -x -4)*(x )^2*(x + 3)^3*(x -1)^4;
T[104,5]=(x^2 -3*x -2)*(x -2)^2*(x + 3)^3*(x + 1)^4;

T[105,2]=(x -1)*(x^2 -5)*(x^2 + x -4)^2*(x )^2*(x + 1)^4;
T[105,3]=(x^2 -x + 3)*(x^4 + x^3 + 2*x^2 + 3*x + 9)*(x -1)^3*(x + 1)^4;
T[105,5]=(x^2 + 2*x + 5)*(x + 1)^4*(x -1)^7;

T[106,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x -1)^2*(x + 1)^2;
T[106,3]=(x + 2)*(x -1)*(x -2)*(x + 1)*(x + 3)^2*(x^3 -3*x^2 -x + 1)^2;
T[106,5]=(x -3)*(x + 4)*(x -1)*(x^3 + 2*x^2 -4*x -4)^2*(x )^3;

T[107,2]=(x^2 + x -1)*(x^7 + x^6 -10*x^5 -7*x^4 + 29*x^3 + 12*x^2 -20*x -8);
T[107,3]=(x^2 + 3*x + 1)*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29);
T[107,5]=(x^2 + 3*x + 1)*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64);

T[108,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^6;
T[108,3]=(x )^10;
T[108,5]=(x + 3)^2*(x -3)^2*(x )^6;

T[109,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^4 + x^3 -5*x^2 -4*x + 3);
T[109,3]=(x^3 + 4*x^2 + 3*x -1)*(x^4 -4*x^3 -x^2 + 15*x -8)*(x );
T[109,5]=(x -3)*(x^3 + 6*x^2 + 5*x -13)*(x^4 -x^3 -5*x^2 + 4*x + 3);

T[110,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3;
T[110,3]=(x^2 + x -8)*(x -1)^2*(x^2 -8)^2*(x )^2*(x + 1)^5;
T[110,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;

T[111,2]=(x^3 -3*x^2 -x + 5)*(x^4 -6*x^2 + 2*x + 5)*(x + 2)^2*(x )^2;
T[111,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4;
T[111,5]=(x^3 -4*x^2 -4*x + 20)*(x^4 + 2*x^3 -8*x^2 + 4)*(x + 2)^2*(x )^2;

T[112,2]=(x + 1)*(x )^10;
T[112,3]=(x -2)^3*(x )^3*(x + 2)^5;
T[112,5]=(x + 4)^3*(x -2)^3*(x )^5;

T[113,2]=(x + 1)*(x^3 + 2*x^2 -5*x -9)*(x^3 + 2*x^2 -x -1)*(x -1)^2;
T[113,3]=(x -2)*(x^2 -2*x -2)*(x^3 + 5*x^2 + 6*x + 1)*(x^3 + x^2 -4*x -1);
T[113,5]=(x -2)*(x^2 -12)*(x^3 + x^2 -9*x -1)*(x + 1)^3;

T[114,2]=(x^2 -x + 2)*(x^2 + 2)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x -1)^4;
T[114,3]=(x^2 -x + 3)*(x^2 + x + 3)*(x^2 + 2*x + 3)^2*(x + 1)^4*(x -1)^5;
T[114,5]=(x -2)*(x -1)^2*(x + 4)^2*(x + 2)^2*(x + 3)^2*(x -3)^4*(x )^4;

T[115,2]=(x -2)*(x^2 + 3*x + 1)*(x^4 -2*x^3 -4*x^2 + 5*x + 2)*(x^2 + x -1)^2;
T[115,3]=(x )*(x + 1)^2*(x^2 -5)^2*(x^2 + x -4)^2;
T[115,5]=(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)*(x + 1)^3*(x -1)^4;

T[116,2]=(x -1)*(x + 1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^7;
T[116,3]=(x -1)*(x -2)*(x + 1)^2*(x + 3)^3*(x^2 -2*x -1)^3;
T[116,5]=(x + 2)*(x -3)^2*(x -1)^2*(x + 3)^2*(x + 1)^6;

T[117,2]=(x + 1)*(x^2 -2*x -1)*(x^2 -3)*(x -1)^2*(x^2 + 2*x -1)^2;
T[117,3]=(x + 1)*(x -1)^2*(x )^8;
T[117,5]=(x + 2)*(x -2)^2*(x )^2*(x^2 -8)^3;

T[118,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x -1)^2*(x + 1)^2;
T[118,3]=(x + 1)^2*(x -2)^2*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^2;
T[118,5]=(x + 3)*(x + 2)*(x -2)*(x -1)*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;

T[119,2]=(x^4 + x^3 -5*x^2 -x + 3)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 14*x -17)*(x + 1)^2;
T[119,3]=(x^4 -2*x^3 -7*x^2 + 12*x -1)*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)*(x )^2;
T[119,5]=(x^4 -2*x^3 -7*x^2 + 4*x + 3)*(x^5 -23*x^3 + 18*x^2 + 131*x -178)*(x + 2)^2;

T[120,2]=(x + 1)*(x^2 + x + 2)*(x )^14;
T[120,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x -1)^5*(x + 1)^6;
T[120,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;

T[121,2]=(x -1)*(x + 1)*(x -2)*(x )*(x + 2)^2;
T[121,3]=(x -2)^2*(x + 1)^4;
T[121,5]=(x + 3)*(x -1)^5;

T[122,2]=(x^2 + x + 2)*(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x -1)^3*(x + 1)^3;
T[122,3]=(x^2 -x -3)*(x^3 + x^2 -5*x + 2)*(x^3 -2*x^2 -4*x + 4)^2*(x + 2)^3;
T[122,5]=(x -1)*(x^3 -x^2 -12*x + 16)*(x + 3)^2*(x^3 + x^2 -9*x -13)^2*(x )^2;

T[123,2]=(x + 2)*(x^2 -2)*(x^3 -x^2 -4*x + 2)*(x )*(x^3 + x^2 -5*x -1)^2;
T[123,3]=(x^6 + 5*x^4 + 2*x^3 + 15*x^2 + 27)*(x -1)^3*(x + 1)^4;
T[123,5]=(x + 4)*(x + 2)*(x^2 -4*x + 2)*(x^3 -4*x^2 -2*x + 4)*(x^3 + 2*x^2 -4*x -4)^2;

T[124,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2*(x )^7;
T[124,3]=(x + 2)*(x^2 -2*x -2)^2*(x^2 + 2*x -4)^3*(x )^3;
T[124,5]=(x + 3)*(x + 2)^2*(x^2 -12)^2*(x -1)^7;

T[125,2]=(x^2 + x -1)*(x^2 -x -1)*(x^4 -8*x^2 + 11);
T[125,3]=(x^2 -3*x + 1)*(x^2 + 3*x + 1)*(x^4 -7*x^2 + 11);
T[125,5]=(x )^8;

T[126,2]=(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x -1)^3*(x + 1)^4;
T[126,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
T[126,5]=(x^2 -12)^2*(x -2)^3*(x )^4*(x + 2)^6;

T[127,2]=(x^3 + 3*x^2 -3)*(x^7 -2*x^6 -8*x^5 + 15*x^4 + 17*x^3 -28*x^2 -11*x + 15);
T[127,3]=(x^3 + 3*x^2 -3)*(x^7 -3*x^6 -12*x^5 + 39*x^4 + 26*x^3 -128*x^2 + 64*x + 16);
T[127,5]=(x^3 + 6*x^2 + 9*x + 1)*(x^7 -8*x^6 + 11*x^5 + 53*x^4 -146*x^3 + 32*x^2 + 128*x -48);

T[128,2]=(x )^9;
T[128,3]=(x -2)^2*(x + 2)^2*(x )^5;
T[128,5]=(x -2)^4*(x + 2)^5;

T[129,2]=(x -1)*(x^2 -2*x -1)*(x^3 + 2*x^2 -5*x -8)*(x )*(x + 2)^2*(x^2 -2)^2;
T[129,3]=(x^2 + 2*x + 3)*(x^4 + 4*x^2 + 9)*(x + 1)^3*(x -1)^4;
T[129,5]=(x -2)*(x + 2)*(x^2 -2*x -1)*(x^3 + 4*x^2 -x -2)*(x + 4)^2*(x^2 -4*x + 2)^2;

T[130,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x + 1)^3*(x -1)^4;
T[130,3]=(x -2)*(x )*(x + 3)^2*(x -1)^2*(x^2 -2)^2*(x^2 -2*x -2)^2*(x + 2)^3;
T[130,5]=(x^2 + x + 5)*(x^2 + 3*x + 5)*(x -1)^6*(x + 1)^7;

T[131,2]=(x^10 -18*x^8 + 2*x^7 + 111*x^6 -18*x^5 -270*x^4 + 28*x^3 + 232*x^2 + 16*x -32)*(x );
T[131,3]=(x + 1)*(x^10 -x^9 -22*x^8 + 24*x^7 + 157*x^6 -184*x^5 -403*x^4 + 533*x^3 + 222*x^2 -390*x + 67);
T[131,5]=(x + 2)*(x^10 -4*x^9 -26*x^8 + 116*x^7 + 155*x^6 -988*x^5 + 138*x^4 + 2384*x^3 -763*x^2 -1856*x + 8);

T[132,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2*(x )^10;
T[132,3]=(x^2 -x + 3)*(x^2 + x + 3)^3*(x -1)^5*(x + 1)^6;
T[132,5]=(x + 3)^2*(x + 4)^2*(x )^2*(x + 2)^3*(x -2)^4*(x -1)^6;

T[133,2]=(x^2 -x -1)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x )^2;
T[133,3]=(x^2 + 3*x + 1)*(x^2 -3*x + 1)*(x^2 + 3*x -1)*(x^3 -3*x^2 -x + 4)*(x + 2)^2;
T[133,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x + 3)^2*(x -3)^2*(x -1)^2;

T[134,2]=(x^2 -2*x + 2)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^3*(x + 1)^3;
T[134,3]=(x^3 -x^2 -8*x + 11)*(x^3 -3*x^2 + 1)*(x + 2)^2*(x^2 -x -1)^2*(x^2 + 3*x + 1)^2;
T[134,5]=(x^3 -3*x^2 -2*x + 3)*(x^3 + 3*x^2 -6*x + 1)*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^4;

T[135,2]=(x + 2)*(x -2)*(x^2 -x -3)*(x^2 + x -3)*(x -1)^2*(x )^2*(x + 1)^3;
T[135,3]=(x + 1)*(x )^12;
T[135,5]=(x^2 + 5)*(x + 1)^5*(x -1)^6;

T[136,2]=(x -1)*(x^2 + x + 2)*(x )^12;
T[136,3]=(x -2)*(x^2 + 2*x -4)*(x^2 -2*x -2)^2*(x + 2)^4*(x )^4;
T[136,5]=(x -2)^2*(x^2 -12)^2*(x )^4*(x + 2)^5;

T[137,2]=(x^4 + 3*x^3 -4*x -1)*(x^7 -10*x^5 + 28*x^3 + 3*x^2 -19*x -7);
T[137,3]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^7 -3*x^6 -8*x^5 + 26*x^4 + 11*x^3 -58*x^2 + 16*x + 14);
T[137,5]=(x^4 + 2*x^3 -12*x^2 -23*x + 1)*(x^7 + 2*x^6 -18*x^5 -21*x^4 + 103*x^3 + 26*x^2 -188*x + 88);

T[138,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^4 + x^3 + 3*x^2 + 2*x + 4)^2*(x -1)^3*(x + 1)^4;
T[138,3]=(x^2 + 3)*(x^4 + x^2 + 9)^2*(x -1)^5*(x + 1)^6;
T[138,5]=(x -2)*(x + 2)*(x -4)^2*(x )^3*(x^2 + 2*x -4)^7;

T[139,2]=(x -1)*(x^3 + 2*x^2 -x -1)*(x^7 -x^6 -11*x^5 + 8*x^4 + 35*x^3 -10*x^2 -32*x -8);
T[139,3]=(x -2)*(x^3 + 2*x^2 -x -1)*(x^7 + 2*x^6 -15*x^5 -25*x^4 + 56*x^3 + 52*x^2 -56*x -16);
T[139,5]=(x + 1)*(x^3 + 8*x^2 + 19*x + 13)*(x^7 -11*x^6 + 36*x^5 + 2*x^4 -211*x^3 + 319*x^2 -55*x -83);

T[140,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x )^10;
T[140,3]=(x -3)*(x )^2*(x^2 + x -4)^3*(x -1)^4*(x + 2)^6;
T[140,5]=(x^2 + 5)^2*(x -1)^7*(x + 1)^8;

T[141,2]=(x -2)*(x + 2)*(x^2 + x -4)*(x )*(x + 1)^2*(x^4 -x^3 -5*x^2 + 5*x -1)^2;
T[141,3]=(x^8 + 5*x^6 + 4*x^5 + 13*x^4 + 12*x^3 + 45*x^2 + 81)*(x -1)^3*(x + 1)^4;
T[141,5]=(x + 3)*(x -2)*(x^2 -x -4)*(x )*(x + 1)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^2;

T[142,2]=(x^6 + x^5 + 2*x^4 + x^3 + 4*x^2 + 4*x + 8)*(x^6 + x^4 + 3*x^3 + 2*x^2 + 8)*(x -1)^2*(x + 1)^3;
T[142,3]=(x -1)*(x -3)*(x + 3)*(x + 1)*(x )*(x^3 -x^2 -4*x + 3)^2*(x^3 + x^2 -8*x -3)^2;
T[142,5]=(x + 2)*(x + 4)*(x )*(x -2)^2*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;

T[143,2]=(x^4 -3*x^3 -x^2 + 5*x + 1)*(x^6 -10*x^4 + 2*x^3 + 24*x^2 -7*x -12)*(x )*(x + 2)^2;
T[143,3]=(x^4 -7*x^2 + 4*x + 1)*(x^6 -3*x^5 -11*x^4 + 33*x^3 + 25*x^2 -91*x + 28)*(x + 1)^3;
T[143,5]=(x + 1)*(x^4 -16*x^2 + 8*x + 16)*(x^6 -x^5 -26*x^4 + 32*x^3 + 152*x^2 -256*x + 96)*(x -1)^2;

T[144,2]=(x )^13;
T[144,3]=(x -1)*(x + 1)^2*(x )^10;
T[144,5]=(x -2)^3*(x )^4*(x + 2)^6;

T[145,2]=(x + 1)*(x^3 -3*x^2 -x + 5)*(x^3 -x^2 -3*x + 1)*(x^2 + 2*x -1)^3;
T[145,3]=(x^3 + 2*x^2 -4*x -4)*(x^3 -2*x^2 -4*x + 4)*(x )*(x + 2)^2*(x^2 -2*x -1)^2;
T[145,5]=(x^2 + x + 5)^2*(x + 1)^4*(x -1)^5;

T[146,2]=(x^2 -x + 2)*(x^4 -x^3 + x^2 -2*x + 4)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x + 1)^3*(x -1)^4;
T[146,3]=(x^4 -8*x^2 + 4*x + 4)*(x^3 -8*x + 4)*(x^2 + 3*x + 1)^2*(x^2 -x -3)^2*(x )^2;
T[146,5]=(x^4 -2*x^3 -14*x^2 + 26*x + 2)*(x^3 + 2*x^2 -4*x -6)*(x -2)^2*(x^2 + 3*x + 1)^2*(x^2 + x -3)^2;

T[147,2]=(x -1)^2*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
T[147,3]=(x^2 + 3)*(x + 1)^4*(x -1)^5;
T[147,5]=(x^2 + 4*x + 2)*(x^2 -4*x + 2)*(x -2)^2*(x )^2*(x + 2)^3;

T[148,2]=(x^2 + 2*x + 2)*(x^2 + 2)*(x + 1)^2*(x -1)^2*(x )^9;
T[148,3]=(x + 1)*(x^2 + x -4)*(x^2 + x -1)^2*(x^2 -3*x -1)^2*(x + 3)^3*(x -1)^3;
T[148,5]=(x + 4)*(x -2)^2*(x^2 + x -3)^2*(x^2 -x -11)^2*(x + 2)^3*(x )^3;

T[149,2]=(x^3 + x^2 -2*x -1)*(x^9 + x^8 -15*x^7 -12*x^6 + 75*x^5 + 48*x^4 -137*x^3 -76*x^2 + 68*x + 39);
T[149,3]=(x^3 + 4*x^2 + 3*x -1)*(x^9 -6*x^8 + 55*x^6 -67*x^5 -125*x^4 + 235*x^3 -6*x^2 -117*x + 27);
T[149,5]=(x^3 + 3*x^2 -4*x -13)*(x^9 + x^8 -25*x^7 -4*x^6 + 202*x^5 -83*x^4 -529*x^3 + 305*x^2 + 392*x -221);

T[150,2]=(x^2 -2*x + 2)*(x^2 -x + 2)*(x^2 + 2*x + 2)*(x^2 + x + 2)^2*(x -1)^4*(x + 1)^5;
T[150,3]=(x^2 + x + 3)*(x^2 -x + 3)*(x -1)^7*(x + 1)^8;
T[150,5]=(x + 1)*(x -1)^2*(x )^16;

T[151,2]=(x^3 -5*x + 3)*(x^3 + 2*x^2 -x -1)*(x^6 -x^5 -7*x^4 + 3*x^3 + 13*x^2 + 3*x -1);
T[151,3]=(x^3 + x^2 -2*x -1)*(x^6 + 5*x^5 -4*x^4 -51*x^3 -68*x^2 -12*x + 8)*(x -2)^3;
T[151,5]=(x^3 + 7*x^2 + 14*x + 7)*(x^3 -5*x^2 -2*x + 25)*(x^6 -6*x^5 + 5*x^4 + 16*x^3 -8*x^2 -12*x -1);

T[152,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^13;
T[152,3]=(x^3 -x^2 -10*x + 8)*(x -2)^2*(x + 1)^3*(x -1)^4*(x + 2)^5;
T[152,5]=(x^3 -x^2 -10*x + 8)*(x + 4)^3*(x + 1)^3*(x -3)^4*(x )^4;

T[153,2]=(x -2)*(x + 2)*(x -1)*(x^2 -x -4)*(x^2 + x -4)^2*(x + 1)^3*(x )^3;
T[153,3]=(x -1)*(x^2 + 3)*(x + 1)^2*(x )^10;
T[153,5]=(x -2)*(x + 1)*(x + 3)*(x -1)*(x^2 + 3*x -2)*(x -3)^2*(x^2 -3*x -2)^2*(x + 2)^3;

T[154,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x -1)^3*(x + 1)^4;
T[154,3]=(x^2 + 2*x -4)*(x -1)^2*(x + 3)^2*(x + 2)^2*(x^2 -2*x -4)^2*(x )^2*(x -2)^3*(x + 1)^4;
T[154,5]=(x + 4)*(x^2 -2*x -4)*(x -2)^2*(x + 1)^2*(x -3)^2*(x )^2*(x -1)^4*(x + 2)^6;

T[155,2]=(x + 1)*(x + 2)*(x^4 + x^3 -8*x^2 -4*x + 12)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x )*(x^2 -x -1)^2;
T[155,3]=(x -2)*(x^4 -x^3 -5*x^2 + 3*x + 4)*(x^4 + x^3 -9*x^2 -9*x -2)*(x + 1)^2*(x^2 + 2*x -4)^2;
T[155,5]=(x^2 -x + 5)^2*(x -1)^5*(x + 1)^6;

T[156,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3*(x )^12;
T[156,3]=(x^2 + 3)*(x^2 -x + 3)^2*(x^2 + 3*x + 3)^2*(x + 1)^6*(x -1)^7;
T[156,5]=(x + 4)*(x )*(x^2 -8)^3*(x + 3)^4*(x + 1)^4*(x -2)^7;

T[157,2]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -7*x + 1)*(x^7 -5*x^6 + 2*x^5 + 21*x^4 -22*x^3 -21*x^2 + 27*x -1);
T[157,3]=(x^5 + 7*x^4 + 15*x^3 + 7*x^2 -8*x -5)*(x^7 -5*x^6 -x^5 + 31*x^4 -20*x^3 -45*x^2 + 44*x -4);
T[157,5]=(x^5 + 3*x^4 -12*x^3 -39*x^2 -x + 25)*(x^7 + x^6 -16*x^5 + 3*x^4 + 73*x^3 -87*x^2 + 8*x + 16);

T[158,2]=(x^2 + x + 2)*(x^10 + 4*x^8 + 12*x^6 -x^5 + 24*x^4 + 32*x^2 + 32)*(x -1)^3*(x + 1)^4;
T[158,3]=(x -2)*(x -1)*(x + 3)*(x^2 -6)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16)^2*(x + 1)^4;
T[158,5]=(x -1)*(x + 1)*(x -3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31)^2*(x + 2)^3*(x + 3)^3;

T[159,2]=(x^4 -3*x^3 -x^2 + 7*x -3)*(x^5 -10*x^3 + 22*x + 5)*(x + 1)^2*(x^3 + x^2 -3*x -1)^2;
T[159,3]=(x^2 + 3*x + 3)*(x^6 -3*x^5 + 8*x^4 -17*x^3 + 24*x^2 -27*x + 27)*(x -1)^4*(x + 1)^5;
T[159,5]=(x^4 -2*x^3 -11*x^2 + 32*x -21)*(x^5 -19*x^3 + 6*x^2 + 67*x -2)*(x^3 + 2*x^2 -4*x -4)^2*(x )^2;

T[160,2]=(x )^17;
T[160,3]=(x^2 -8)*(x -2)^3*(x + 2)^5*(x )^7;
T[160,5]=(x^2 + 2*x + 5)*(x -1)^7*(x + 1)^8;

T[161,2]=(x + 1)*(x^3 + x^2 -5*x -1)*(x^5 -2*x^4 -9*x^3 + 17*x^2 + 16*x -27)*(x^2 + x -1)^3;
T[161,3]=(x^3 -2*x^2 -2*x + 2)*(x^5 -13*x^3 + 38*x + 10)*(x )*(x + 1)^2*(x^2 -5)^2;
T[161,5]=(x -2)*(x^3 -2*x^2 -2*x + 2)*(x^5 + 4*x^4 -14*x^3 -54*x^2 + 52*x + 168)*(x^2 + 2*x -4)^3;

T[162,2]=(x^4 + x^2 + 4)*(x^2 + 2)^2*(x -1)^4*(x + 1)^4;
T[162,3]=(x )^16;
T[162,5]=(x^2 -3)^2*(x + 3)^3*(x -3)^3*(x )^6;

T[163,2]=(x^5 + 5*x^4 + 3*x^3 -15*x^2 -16*x + 3)*(x^7 -3*x^6 -5*x^5 + 19*x^4 -23*x^2 + 4*x + 6)*(x );
T[163,3]=(x^5 + 5*x^4 + x^3 -23*x^2 -28*x -9)*(x^7 -x^6 -11*x^5 + 13*x^4 + 26*x^3 -39*x^2 + 16*x -2)*(x );
T[163,5]=(x + 4)*(x^5 + 9*x^4 + 23*x^3 + 12*x^2 -x -1)*(x^7 -11*x^6 + 41*x^5 -44*x^4 -73*x^3 + 199*x^2 -136*x + 24);

T[164,2]=(x + 1)*(x^6 + x^5 + x^4 + 3*x^3 + 2*x^2 + 4*x + 8)*(x -1)^2*(x )^10;
T[164,3]=(x^4 -2*x^3 -10*x^2 + 22*x -2)*(x + 2)^2*(x^2 -2)^2*(x^3 -4*x + 2)^3;
T[164,5]=(x^4 -4*x^3 -8*x^2 + 44*x -36)*(x + 2)^2*(x^2 -8)^2*(x^3 + 2*x^2 -4*x -4)^3;

T[165,2]=(x^2 -3)*(x^2 + 2*x -1)*(x^3 + x^2 -5*x -1)*(x + 1)^2*(x^2 -2*x -1)^2*(x -1)^4*(x + 2)^4;
T[165,3]=(x^2 + 3)*(x^4 -2*x^2 + 9)*(x^2 + x + 3)^2*(x -1)^5*(x + 1)^6;
T[165,5]=(x^2 + 2*x + 5)*(x^2 -x + 5)^2*(x -1)^7*(x + 1)^8;

T[166,2]=(x^2 + x + 2)*(x^12 -x^11 + 3*x^10 -3*x^9 + 8*x^8 -10*x^7 + 16*x^6 -20*x^5 + 32*x^4 -24*x^3 + 48*x^2 -32*x + 64)*(x + 1)^3*(x -1)^3;
T[166,3]=(x^2 + 2*x -4)*(x^3 -x^2 -6*x + 4)*(x^6 -x^5 -10*x^4 + 5*x^3 + 30*x^2 -4*x -25)^2*(x + 1)^3;
T[166,5]=(x^2 -3*x + 1)*(x^3 + x^2 -5*x + 2)*(x^6 -2*x^5 -20*x^4 + 28*x^3 + 104*x^2 -64*x -160)^2*(x + 2)^3;

T[167,2]=(x^2 + x -1)*(x^12 -2*x^11 -17*x^10 + 33*x^9 + 103*x^8 -189*x^7 -277*x^6 + 447*x^5 + 363*x^4 -433*x^3 -205*x^2 + 120*x + 9);
T[167,3]=(x^2 + x -1)*(x^12 -3*x^11 -22*x^10 + 71*x^9 + 145*x^8 -552*x^7 -243*x^6 + 1577*x^5 -122*x^4 -1737*x^3 + 384*x^2 + 599*x -91);
T[167,5]=(x^12 -4*x^11 -41*x^10 + 152*x^9 + 648*x^8 -2136*x^7 -4816*x^6 + 13568*x^5 + 15616*x^4 -37632*x^3 -12544*x^2 + 33792*x -9216)*(x + 1)^2;

T[168,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2*(x )^20;
T[168,3]=(x^2 -2*x + 3)*(x^2 + 3)*(x^2 + 2*x + 3)^3*(x -1)^7*(x + 1)^8;
T[168,5]=(x -4)^2*(x + 4)^2*(x -2)^4*(x )^8*(x + 2)^9;

T[169,2]=(x^2 -3)*(x^3 + 2*x^2 -x -1)*(x^3 -2*x^2 -x + 1);
T[169,3]=(x -2)^2*(x^3 + 2*x^2 -x -1)^2;
T[169,5]=(x^2 -3)*(x^3 + 4*x^2 + 3*x -1)*(x^3 -4*x^2 + 3*x + 1);

T[170,2]=(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x^2 -x + 2)*(x^4 + x^2 + 4)*(x^2 + x + 2)^2*(x + 1)^4*(x -1)^5;
T[170,3]=(x -3)*(x^2 + x -4)*(x -2)^2*(x -1)^2*(x^2 + 4*x + 2)^2*(x^2 -2*x -2)^2*(x + 2)^4*(x )^4;
T[170,5]=(x^2 + 5)*(x^2 + 2*x + 5)^2*(x -1)^8*(x + 1)^9;

T[171,2]=(x + 1)*(x^4 -9*x^2 + 12)*(x -1)^2*(x -2)^2*(x + 2)^4*(x )^4;
T[171,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2*(x )^12;
T[171,5]=(x + 1)*(x -2)*(x^4 -15*x^2 + 48)*(x + 2)^2*(x -1)^2*(x + 3)^3*(x -3)^4;

T[172,2]=(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x + 1)^2*(x -1)^2*(x )^10;
T[172,3]=(x^2 -4*x + 2)*(x^2 -x -1)^2*(x^2 + x -5)^2*(x^2 -2)^3*(x + 2)^4;
T[172,5]=(x^2 -2)*(x )*(x^2 + 3*x + 1)^2*(x^2 -3*x -3)^2*(x + 4)^3*(x^2 -4*x + 2)^3;

T[173,2]=(x^4 + x^3 -3*x^2 -x + 1)*(x^10 -x^9 -16*x^8 + 16*x^7 + 85*x^6 -80*x^5 -175*x^4 + 136*x^3 + 138*x^2 -71*x -25);
T[173,3]=(x^4 + 6*x^3 + 10*x^2 + 3*x -1)*(x^10 -8*x^9 + 11*x^8 + 59*x^7 -165*x^6 -55*x^5 + 484*x^4 -202*x^3 -390*x^2 + 169*x + 113);
T[173,5]=(x^4 + x^3 -5*x^2 -7*x -1)*(x^10 -x^9 -29*x^8 + 41*x^7 + 253*x^6 -452*x^5 -548*x^4 + 1344*x^3 -544*x^2 -128*x + 64);

T[174,2]=(x^4 -x^3 + 3*x^2 -2*x + 4)*(x^6 -2*x^5 + 2*x^4 -x^3 + 4*x^2 -8*x + 8)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)^2*(x -1)^4*(x + 1)^5;
T[174,3]=(x^2 + 3*x + 3)*(x^2 + x + 3)*(x^4 -2*x^3 + 5*x^2 -6*x + 9)^2*(x -1)^7*(x + 1)^8;
T[174,5]=(x -3)*(x -2)*(x^2 -2*x -4)^2*(x^3 -16*x + 8)^2*(x + 3)^3*(x -1)^3*(x + 1)^9;

T[175,2]=(x -2)*(x + 2)*(x^2 -x -1)*(x^2 + x -1)*(x^2 -x -4)*(x^2 + x -4)^2*(x )^3;
T[175,3]=(x^2 + 2*x -4)*(x^2 -2*x -4)*(x^2 -x -4)*(x + 1)^2*(x^2 + x -4)^2*(x -1)^3;
T[175,5]=(x + 1)*(x -1)^2*(x )^12;

T[176,2]=(x^2 + 2*x + 2)*(x )^17;
T[176,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x^2 -x -4)^2*(x -1)^4*(x + 1)^6;
T[176,5]=(x^2 -3*x -2)^3*(x -1)^6*(x + 3)^7;

T[177,2]=(x^2 -x -1)*(x^2 + x -1)*(x^2 + 3*x + 1)*(x^3 -4*x -1)*(x^5 -9*x^3 + 2*x^2 + 16*x -8)^2;
T[177,3]=(x^10 + 2*x^9 + 7*x^8 + 13*x^7 + 31*x^6 + 41*x^5 + 93*x^4 + 117*x^3 + 189*x^2 + 162*x + 243)*(x -1)^4*(x + 1)^5;
T[177,5]=(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x + 3)^2*(x -1)^2*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^2;

T[178,2]=(x^2 + x + 2)*(x^2 -x + 2)*(x^10 + x^9 -2*x^7 + x^6 + x^5 + 2*x^4 -8*x^3 + 16*x + 32)*(x + 1)^3*(x -1)^4;
T[178,3]=(x -1)*(x^2 + 2*x -1)*(x^3 -x^2 -8*x + 4)*(x + 1)^2*(x^5 + 3*x^4 -4*x^3 -16*x^2 -9*x -1)^2*(x -2)^3;
T[178,5]=(x -2)*(x -3)*(x^2 + 2*x -7)*(x^3 + x^2 -8*x -4)*(x + 2)^2*(x + 1)^2*(x^5 + x^4 -14*x^3 -14*x^2 + 29*x + 13)^2;

T[179,2]=(x -2)*(x^3 + x^2 -2*x -1)*(x^11 + 3*x^10 -14*x^9 -45*x^8 + 59*x^7 + 225*x^6 -58*x^5 -427*x^4 -76*x^3 + 240*x^2 + 56*x -16);
T[179,3]=(x^3 + 2*x^2 -x -1)*(x^11 -25*x^9 + 5*x^8 + 219*x^7 -98*x^6 -781*x^5 + 589*x^4 + 901*x^3 -1000*x^2 + 185*x -9)*(x );
T[179,5]=(x -3)*(x^3 + 4*x^2 + 3*x -1)*(x^11 -3*x^10 -28*x^9 + 65*x^8 + 310*x^7 -499*x^6 -1680*x^5 + 1613*x^4 + 4325*x^3 -1977*x^2 -4019*x + 663);

T[180,2]=(x^2 -x + 2)*(x -1)^2*(x^2 + x + 2)^2*(x + 1)^3*(x )^14;
T[180,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3*(x )^18;
T[180,5]=(x^2 + 5)*(x -1)^11*(x + 1)^12;

T[181,2]=(x^5 + 3*x^4 -x^3 -7*x^2 -2*x + 1)*(x^9 -3*x^8 -9*x^7 + 29*x^6 + 23*x^5 -84*x^4 -23*x^3 + 89*x^2 + 8*x -27);
T[181,3]=(x^5 + 5*x^4 + 5*x^3 -6*x^2 -9*x -1)*(x^9 -3*x^8 -15*x^7 + 46*x^6 + 63*x^5 -213*x^4 -32*x^3 + 272*x^2 -144*x + 16);
T[181,5]=(x^5 + 5*x^4 -5*x^3 -55*x^2 -88*x -43)*(x^9 -x^8 -24*x^7 + 28*x^6 + 170*x^5 -181*x^4 -441*x^3 + 340*x^2 + 326*x -3);

T[182,2]=(x^2 + 2)*(x^6 -x^5 + 2*x^4 -2*x^3 + 4*x^2 -4*x + 8)*(x^2 + 2*x + 2)*(x^4 + 2*x^2 + 4)*(x -1)^5*(x + 1)^6;
T[182,3]=(x + 3)^2*(x -3)^2*(x^2 -2)^2*(x^3 + 2*x^2 -6*x -8)^2*(x )^3*(x -1)^4*(x + 2)^4;
T[182,5]=(x -2)*(x + 4)*(x -4)*(x + 1)^2*(x^2 -6*x + 7)^2*(x^3 -2*x^2 -3*x + 2)^2*(x )^4*(x + 3)^6;

T[183,2]=(x^2 + 2*x -1)*(x^6 -11*x^4 + 2*x^3 + 31*x^2 -10*x -17)*(x + 1)^2*(x^3 -x^2 -3*x + 1)^3;
T[183,3]=(x^2 + 2*x + 3)*(x^6 -2*x^5 + 5*x^4 -8*x^3 + 15*x^2 -18*x + 27)*(x + 1)^5*(x -1)^6;
T[183,5]=(x^6 -2*x^5 -23*x^4 + 28*x^3 + 144*x^2 -80*x -144)*(x + 3)^2*(x + 1)^2*(x^3 + x^2 -9*x -13)^2*(x -2)^3;

T[184,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x )^16;
T[184,3]=(x -3)*(x^2 + x -4)*(x + 3)^2*(x -1)^2*(x + 1)^2*(x^2 -5)^4*(x )^4;
T[184,5]=(x + 4)*(x -2)^2*(x + 2)^3*(x -4)^3*(x^2 + 2*x -4)^4*(x )^4;

T[185,2]=(x -1)*(x^5 -8*x^3 + 2*x^2 + 11*x -2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 11*x -12)*(x + 2)^3*(x )^3;
T[185,3]=(x + 1)*(x + 2)*(x^5 -3*x^4 -6*x^3 + 20*x^2 + 4*x -22)*(x^5 + x^4 -8*x^3 -4*x^2 + 4*x + 2)*(x + 3)^2*(x -1)^3;
T[185,5]=(x^2 + 2*x + 5)*(x^2 + 5)*(x -1)^6*(x + 1)^7;

T[186,2]=(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^6 + 2*x^4 + x^3 + 4*x^2 + 8)*(x^4 -x^3 + 3*x^2 -2*x + 4)^2*(x -1)^5*(x + 1)^6;
T[186,3]=(x^2 + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 2*x^3 + 2*x^2 + 6*x + 9)^2*(x + 1)^7*(x -1)^8;
T[186,5]=(x -3)*(x + 1)*(x^2 -3*x -2)*(x + 2)^2*(x^2 -12)^2*(x^2 + 4*x -1)^2*(x^3 + 2*x^2 -5*x -2)^2*(x -1)^9;

T[187,2]=(x^2 + 2*x -2)*(x^3 + 2*x^2 -2*x -2)*(x^4 -x^3 -6*x^2 + 2*x + 2)*(x )*(x + 1)^2*(x + 2)^2*(x -2)^3;
T[187,3]=(x -1)*(x^2 + x -4)*(x^2 -3)*(x^3 + 3*x^2 -x -5)*(x^4 -x^3 -11*x^2 + 9*x + 20)*(x + 1)^2*(x )^3;
T[187,5]=(x -3)*(x -4)*(x^2 + 4*x + 1)*(x^2 -x -4)*(x^3 + 7*x^2 + 13*x + 5)*(x^4 -3*x^3 -3*x^2 + 9*x -2)*(x -1)^2*(x + 2)^2;

T[188,2]=(x -1)*(x^8 -x^7 + 3*x^6 -x^5 + 3*x^4 -2*x^3 + 12*x^2 -8*x + 16)*(x + 1)^2*(x )^11;
T[188,3]=(x^2 -x -3)*(x^2 + 3*x + 1)*(x^2 -8)^2*(x )^2*(x^4 -7*x^2 + 4*x + 1)^3;
T[188,5]=(x^2 + 2*x -4)*(x^2 -4*x + 2)^2*(x^4 + 2*x^3 -16*x^2 -16*x + 48)^3*(x )^4;

T[189,2]=(x -2)*(x + 2)*(x^2 -7)*(x -1)^2*(x + 1)^3*(x^2 -3)^3*(x )^4;
T[189,3]=(x -1)*(x )^18;
T[189,5]=(x -1)*(x + 1)*(x -3)*(x + 3)*(x^2 -7)*(x^2 -3)*(x -2)^2*(x^2 -12)^2*(x )^2*(x + 2)^3;

T[190,2]=(x^6 -x^5 + 3*x^4 -3*x^3 + 6*x^2 -4*x + 8)*(x^8 + 2*x^7 + 2*x^6 + 4*x^5 + 9*x^4 + 8*x^3 + 8*x^2 + 16*x + 16)*(x^2 + 2)^2*(x -1)^4*(x + 1)^5;
T[190,3]=(x + 3)*(x^2 + x -4)*(x^3 -2*x^2 -4*x + 4)^2*(x^4 -2*x^3 -8*x^2 + 16*x -4)^2*(x + 1)^3*(x -1)^3*(x + 2)^4;
T[190,5]=(x^2 + 5)*(x^2 + 4*x + 5)*(x^2 -3*x + 5)^2*(x -1)^9*(x + 1)^10;

T[191,2]=(x^2 + x -1)*(x^14 -23*x^12 + x^11 + 205*x^10 -13*x^9 -895*x^8 + 35*x^7 + 1993*x^6 + 103*x^5 -2135*x^4 -465*x^3 + 853*x^2 + 374*x + 41);
T[191,3]=(x^14 -2*x^13 -30*x^12 + 58*x^11 + 334*x^10 -630*x^9 -1667*x^8 + 3160*x^7 + 3418*x^6 -7088*x^5 -1483*x^4 + 5142*x^3 -940*x^2 -122*x + 5)*(x + 1)^2;
T[191,5]=(x^2 + x -1)*(x^14 -x^13 -48*x^12 + 63*x^11 + 860*x^10 -1339*x^9 -6923*x^8 + 11842*x^7 + 23938*x^6 -41166*x^5 -31785*x^4 + 51275*x^3 + 6610*x^2 -21509*x + 5527);

T[192,2]=(x )^21;
T[192,3]=(x^2 + 3)^3*(x -1)^7*(x + 1)^8;
T[192,5]=(x -2)^8*(x + 2)^13;

T[193,2]=(x^2 + 3*x + 1)*(x^8 -2*x^7 -9*x^6 + 18*x^5 + 21*x^4 -44*x^3 -11*x^2 + 27*x + 1)*(x^5 + 2*x^4 -5*x^3 -7*x^2 + 7*x + 1);
T[193,3]=(x^5 + 5*x^4 -x^3 -27*x^2 -10*x + 23)*(x^8 -5*x^7 -2*x^6 + 40*x^5 -37*x^4 -48*x^3 + 36*x^2 + 31*x + 4)*(x + 1)^2;
T[193,5]=(x^2 -5)*(x^8 -8*x^7 + 16*x^6 + 8*x^5 -35*x^4 + x^3 + 16*x^2 -x -2)*(x^5 + 8*x^4 + 15*x^3 -26*x^2 -106*x -83);

T[194,2]=(x^6 + 4*x^5 + 9*x^4 + 15*x^3 + 18*x^2 + 16*x + 8)*(x^8 -3*x^7 + 7*x^6 -12*x^5 + 19*x^4 -24*x^3 + 28*x^2 -24*x + 16)*(x + 1)^4*(x -1)^5;
T[194,3]=(x^4 -2*x^3 -9*x^2 + 18*x + 1)*(x^4 -2*x^3 -9*x^2 + 18*x -7)*(x )*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -5*x^2 -x + 4)^2;
T[194,5]=(x -4)*(x^4 + 2*x^3 -5*x^2 -6*x + 7)*(x^4 + 2*x^3 -15*x^2 -26*x + 27)*(x^3 + 3*x^2 -4*x + 1)^2*(x^4 -x^3 -4*x^2 + x + 2)^2;

T[195,2]=(x^3 -7*x -2)*(x -1)^2*(x^2 -3)^2*(x -2)^3*(x^2 + 2*x -1)^4*(x + 1)^5;
T[195,3]=(x^2 + 2*x + 3)*(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^4 + 4*x^2 + 9)*(x -1)^7*(x + 1)^8;
T[195,5]=(x^2 -2*x + 5)*(x^4 + 2*x^2 + 25)*(x -1)^9*(x + 1)^10;

T[196,2]=(x^2 -x + 2)*(x -1)^2*(x + 1)^3*(x )^10;
T[196,3]=(x + 1)*(x -1)*(x^2 -8)*(x -2)^2*(x^2 -2)^2*(x )^3*(x + 2)^4;
T[196,5]=(x + 3)*(x -3)*(x^2 -2)*(x^2 -8)^2*(x )^9;

T[197,2]=(x + 2)*(x^5 -5*x^3 + x^2 + 3*x -1)*(x^10 -15*x^8 + x^7 + 78*x^6 -7*x^5 -165*x^4 + 15*x^3 + 123*x^2 -9*x -26);
T[197,3]=(x^5 + 8*x^4 + 18*x^3 -x^2 -38*x -25)*(x^10 -10*x^9 + 29*x^8 + 17*x^7 -227*x^6 + 316*x^5 + 184*x^4 -784*x^3 + 646*x^2 -175*x + 2)*(x );
T[197,5]=(x^5 + 4*x^4 -8*x^3 -37*x^2 + 16*x + 85)*(x^10 -2*x^9 -26*x^8 + 59*x^7 + 180*x^6 -465*x^5 -194*x^4 + 804*x^3 -200*x^2 -176*x + 32)*(x );

T[198,2]=(x^2 -2*x + 2)*(x^2 + x + 2)^2*(x^2 -x + 2)^3*(x^2 + 2*x + 2)^3*(x + 1)^5*(x -1)^6;
T[198,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3*(x )^20;
T[198,5]=(x + 1)^2*(x -4)^3*(x -2)^4*(x + 4)^4*(x + 2)^5*(x )^5*(x -1)^6;

T[199,2]=(x^2 + x -1)*(x^4 + 3*x^3 -4*x -1)*(x^10 -5*x^9 -4*x^8 + 51*x^7 -32*x^6 -154*x^5 + 151*x^4 + 168*x^3 -168*x^2 -54*x + 27);
T[199,3]=(x^10 + 4*x^9 -19*x^8 -88*x^7 + 73*x^6 + 552*x^5 + 200*x^4 -784*x^3 -480*x^2 + 96*x + 64)*(x -2)^2*(x^2 + x -1)^2;
T[199,5]=(x^4 + 5*x^3 + 4*x^2 -10*x -11)*(x^10 + x^9 -26*x^8 -26*x^7 + 216*x^6 + 219*x^5 -607*x^4 -571*x^3 + 317*x^2 + 156*x -63)*(x -3)^2;

T[200,2]=(x -1)*(x + 1)*(x )^17;
T[200,3]=(x -3)*(x + 3)*(x + 1)^3*(x -2)^3*(x -1)^3*(x )^3*(x + 2)^5;
T[200,5]=(x -1)*(x + 1)^2*(x )^16;

T[201,2]=(x -1)*(x + 2)*(x + 1)*(x^3 -3*x^2 -x + 5)*(x^5 -8*x^3 + 13*x + 2)*(x -2)^2*(x^2 + x -1)^2*(x^2 + 3*x + 1)^2;
T[201,3]=(x^2 + 2*x + 3)*(x^4 -x^3 + 5*x^2 -3*x + 9)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x + 1)^5*(x -1)^6;
T[201,5]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)*(x )*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^5;

T[202,2]=(x^2 + 2)*(x^14 + x^12 + 2*x^11 + x^10 -x^8 -2*x^7 -2*x^6 + 8*x^4 + 32*x^3 + 32*x^2 + 128)*(x -1)^4*(x + 1)^4;
T[202,3]=(x^3 + 3*x^2 -1)*(x^4 + x^3 -8*x^2 + x + 8)*(x )*(x + 2)^2*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68)^2;
T[202,5]=(x -2)*(x^3 + 3*x^2 -6*x -17)*(x^4 -3*x^3 -4*x^2 + 7*x -2)*(x + 1)^2*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67)^2;

T[203,2]=(x -1)*(x + 2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 9*x -6)*(x^3 + x^2 -3*x -1)*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
T[203,3]=(x -2)*(x^2 + x -4)*(x^5 + 2*x^4 -10*x^3 -18*x^2 + 11*x + 2)*(x^3 + 3*x^2 -x -5)*(x + 1)^2*(x^2 -2*x -1)^3;
T[203,5]=(x -1)*(x -2)*(x + 4)*(x^2 -3*x -2)*(x^2 -8)*(x^3 + 5*x^2 + 3*x -5)*(x^5 -5*x^4 -3*x^3 + 29*x^2 + 6*x -24)*(x + 1)^4;

T[204,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3*(x )^16;
T[204,3]=(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^2 + 2*x + 3)^2*(x^2 + 3)^3*(x -1)^8*(x + 1)^9;
T[204,5]=(x + 1)*(x -1)*(x + 4)^2*(x^2 -12)^2*(x -3)^3*(x^2 -3*x -2)^3*(x )^6*(x + 2)^8;

T[205,2]=(x -1)*(x^2 + x -1)*(x^3 -4*x -1)*(x^3 -2*x^2 -4*x + 7)*(x^2 + x -3)*(x + 1)^2*(x^3 + x^2 -5*x -1)^2;
T[205,3]=(x )*(x + 1)^2*(x -2)^2*(x + 3)^2*(x^3 -2*x^2 -5*x + 2)^2*(x^3 -4*x + 2)^2;
T[205,5]=(x^6 + 2*x^5 + 11*x^4 + 16*x^3 + 55*x^2 + 50*x + 125)*(x + 1)^6*(x -1)^7;

T[206,2]=(x^12 -4*x^11 + 11*x^10 -23*x^9 + 43*x^8 -74*x^7 + 111*x^6 -148*x^5 + 172*x^4 -184*x^3 + 176*x^2 -128*x + 64)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^4*(x + 1)^5;
T[206,3]=(x -2)*(x^2 + 3*x -1)*(x^2 -x -7)*(x^4 -2*x^3 -5*x^2 + 12*x -5)*(x^6 -13*x^4 + 40*x^2 -8*x -16)^2*(x + 1)^4;
T[206,5]=(x -4)*(x^2 + 5*x + 3)*(x^2 -x -7)*(x^4 -7*x^2 + 6*x -1)*(x^2 + 3*x + 1)^2*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16)^2;

T[207,2]=(x + 1)*(x^2 -x -1)*(x^2 -2*x -1)*(x^2 + 2*x -1)*(x -1)^2*(x^2 -5)^3*(x^2 + x -1)^3;
T[207,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2*(x )^14;
T[207,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x^2 -2*x -4)^2*(x )^3*(x^2 + 2*x -4)^5;

T[208,2]=(x -1)*(x + 1)*(x )^21;
T[208,3]=(x -3)*(x^2 + x -4)*(x + 1)^2*(x^2 -x -4)^2*(x + 3)^4*(x )^4*(x -1)^6;
T[208,5]=(x^2 -3*x -2)^3*(x -2)^4*(x + 3)^5*(x + 1)^8;

T[209,2]=(x^2 -2)*(x^5 -2*x^4 -6*x^3 + 10*x^2 + 5*x -4)*(x^7 + x^6 -14*x^5 -10*x^4 + 59*x^3 + 27*x^2 -66*x -30)*(x + 2)^2*(x )^3;
T[209,3]=(x -1)*(x^2 + 2*x -1)*(x^5 -x^4 -9*x^3 + 11*x^2 + 7*x -1)*(x^7 -2*x^6 -14*x^5 + 28*x^4 + 46*x^3 -100*x^2 -17*x + 64)*(x + 1)^2*(x + 2)^2;
T[209,5]=(x + 3)*(x^5 + 5*x^4 -3*x^3 -33*x^2 -9*x + 19)*(x^7 -2*x^6 -20*x^5 + 34*x^4 + 88*x^3 -156*x^2 + 57*x -6)*(x -3)^2*(x -1)^2*(x + 1)^2;

T[210,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2)^2*(x^4 + x^3 + 2*x + 4)^2*(x^2 + x + 2)^4*(x -1)^7*(x + 1)^8;
T[210,3]=(x^2 + 3)*(x^2 -x + 3)^2*(x^2 + 2*x + 3)^2*(x^4 + x^3 + 2*x^2 + 3*x + 9)^2*(x -1)^11*(x + 1)^12;
T[210,5]=(x^2 + 5)^2*(x^2 + 2*x + 5)^3*(x + 1)^14*(x -1)^17;

T[211,2]=(x^2 -x -1)*(x^3 -4*x + 1)*(x^3 + 2*x^2 -x -1)*(x^9 + x^8 -14*x^7 -11*x^6 + 66*x^5 + 36*x^4 -123*x^3 -38*x^2 + 72*x + 8);
T[211,3]=(x^2 -3*x + 1)*(x^3 + x^2 -2*x -1)*(x^3 + 3*x^2 -x -4)*(x^9 + x^8 -20*x^7 -17*x^6 + 128*x^5 + 80*x^4 -292*x^3 -72*x^2 + 224*x -32);
T[211,5]=(x^2 -2*x -4)*(x^3 + 5*x^2 + 2*x -4)*(x^3 + 8*x^2 + 19*x + 13)*(x^9 -15*x^8 + 83*x^7 -189*x^6 + 63*x^5 + 377*x^4 -410*x^3 + 10*x^2 + 51*x -3);

T[212,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x -1)^2*(x + 1)^2*(x )^13;
T[212,3]=(x^3 + 3*x^2 -3*x -7)*(x + 2)^2*(x -1)^2*(x + 3)^3*(x -2)^3*(x + 1)^3*(x^3 -3*x^2 -x + 1)^3;
T[212,5]=(x -2)*(x + 2)*(x^3 -12*x -12)*(x -3)^2*(x + 4)^2*(x -1)^2*(x^3 + 2*x^2 -4*x -4)^3*(x )^5;

T[213,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 + x -1)*(x^2 -x -3)*(x^4 -3*x^3 -2*x^2 + 7*x + 1)*(x^3 + x^2 -4*x -3)^2*(x^3 -5*x + 3)^2;
T[213,3]=(x^6 -x^5 + 5*x^4 -3*x^3 + 15*x^2 -9*x + 27)*(x^6 + x^5 + x^4 + 3*x^3 + 3*x^2 + 9*x + 27)*(x -1)^5*(x + 1)^6;
T[213,5]=(x -2)*(x^2 + 5*x + 5)*(x^2 -x -1)*(x^2 + x -3)*(x^4 + 3*x^3 -5*x^2 -4*x + 4)*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;

T[214,2]=(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^14 + x^13 + 4*x^12 + 5*x^11 + 13*x^10 + 16*x^9 + 34*x^8 + 32*x^7 + 68*x^6 + 64*x^5 + 104*x^4 + 80*x^3 + 128*x^2 + 64*x + 128)*(x -1)^4*(x + 1)^4;
T[214,3]=(x^2 -2*x -2)*(x^2 + 2*x -2)*(x + 2)^2*(x -1)^2*(x^2 + 3*x + 1)^2*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29)^2;
T[214,5]=(x + 1)*(x + 3)*(x + 4)*(x^2 -3)*(x^2 -4*x + 1)*(x )*(x^2 + 3*x + 1)^2*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64)^2;

T[215,2]=(x^5 -2*x^4 -7*x^3 + 13*x^2 + 5*x -4)*(x^6 -3*x^5 -5*x^4 + 17*x^3 + 3*x^2 -17*x -3)*(x^3 + 2*x^2 -3*x -3)*(x )*(x + 2)^2*(x^2 -2)^2;
T[215,3]=(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 -4*x^5 -5*x^4 + 30*x^3 -20*x^2 + 1)*(x^3 -x^2 -4*x + 1)*(x )*(x + 2)^2*(x^2 -2)^2;
T[215,5]=(x^2 + 4*x + 5)*(x^4 -4*x^3 + 12*x^2 -20*x + 25)*(x + 1)^7*(x -1)^8;

T[216,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^21;
T[216,3]=(x + 1)*(x )^24;
T[216,5]=(x + 1)*(x + 4)*(x -4)*(x -1)*(x -2)^2*(x + 2)^3*(x + 3)^3*(x -3)^3*(x )^10;

T[217,2]=(x^4 -5*x^2 + x + 1)*(x^5 -3*x^4 -5*x^3 + 16*x^2 + 6*x -19)*(x^2 -x -1)^2*(x^3 + 3*x^2 -3)^2;
T[217,3]=(x^3 + 3*x^2 -3)*(x^3 + 3*x^2 -1)*(x^5 -3*x^4 -6*x^3 + 15*x^2 + 8*x -16)*(x^4 -3*x^3 -2*x^2 + 9*x -4)*(x^2 + 2*x -4)^2;
T[217,5]=(x^3 + 6*x^2 + 9*x + 3)*(x^3 -9*x -9)*(x^5 -17*x^3 -5*x^2 + 56*x -4)*(x^4 -4*x^3 + x^2 + 5*x -2)*(x -1)^4;

T[218,2]=(x^2 -x + 2)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^8 + x^7 + 3*x^6 + 2*x^5 + 7*x^4 + 4*x^3 + 12*x^2 + 8*x + 16)*(x + 1)^5*(x -1)^5;
T[218,3]=(x + 2)*(x^2 -3*x + 1)*(x^2 + 4*x + 2)*(x^3 -3*x^2 -3*x + 8)*(x^2 + 2*x -2)*(x^3 + 4*x^2 + 3*x -1)^2*(x^4 -4*x^3 -x^2 + 15*x -8)^2*(x )^2;
T[218,5]=(x + 3)*(x^2 -2*x -4)*(x^2 -2*x -1)*(x^3 + 3*x^2 -6*x -12)*(x^2 -3)*(x -3)^2*(x^3 + 6*x^2 + 5*x -13)^2*(x^4 -x^3 -5*x^2 + 4*x + 3)^2;

T[219,2]=(x + 2)*(x^4 -x^3 -6*x^2 + 4*x + 4)*(x^6 + x^5 -9*x^4 -5*x^3 + 20*x^2 + 4*x -4)*(x )*(x^2 + 3*x + 1)^2*(x^2 -x -3)^2*(x -1)^3;
T[219,3]=(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^4 -x^3 + 3*x^2 -3*x + 9)*(x^2 + 3)*(x + 1)^6*(x -1)^7;
T[219,5]=(x + 4)*(x + 3)*(x + 1)*(x^4 -9*x^3 + 25*x^2 -21*x + 2)*(x^6 -5*x^5 -7*x^4 + 49*x^3 + 20*x^2 -128*x -64)*(x -2)^2*(x^2 + x -3)^2*(x^2 + 3*x + 1)^2;

T[220,2]=(x^2 -x + 2)*(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x -1)^2*(x^2 + 2*x + 2)^2*(x + 1)^3*(x )^16;
T[220,3]=(x -2)*(x^2 + x -8)^2*(x + 2)^3*(x^2 -8)^3*(x )^3*(x -1)^6*(x + 1)^8;
T[220,5]=(x^2 + 3*x + 5)*(x^2 -x + 5)^3*(x -1)^11*(x + 1)^12;

T[221,2]=(x -1)*(x^2 -5)*(x^2 + x -1)*(x^3 -4*x + 1)*(x^6 -x^5 -9*x^4 + 6*x^3 + 19*x^2 -5*x -3)*(x^2 + x -5)*(x + 1)^3;
T[221,3]=(x -2)*(x^2 -2*x -4)*(x^2 + 3*x + 1)*(x^3 + 3*x^2 -x -4)*(x^6 -x^5 -11*x^4 + 12*x^3 + 28*x^2 -36*x + 4)*(x^2 -x -5)*(x )^3;
T[221,5]=(x -2)*(x -4)*(x^2 + 2*x -4)*(x^2 -5)*(x^3 + 2*x^2 -5*x -2)*(x^6 + 2*x^5 -15*x^4 -16*x^3 + 60*x^2 -16*x -12)*(x + 2)^2*(x + 1)^2;

T[222,2]=(x^6 -3*x^5 + 5*x^4 -7*x^3 + 10*x^2 -12*x + 8)*(x^8 + 2*x^6 + 2*x^5 + 5*x^4 + 4*x^3 + 8*x^2 + 16)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x -1)^6*(x + 1)^7;
T[222,3]=(x^4 -3*x^3 + 5*x^2 -9*x + 9)*(x^4 + x^3 + 5*x^2 + 3*x + 9)*(x^2 + 3*x + 3)^2*(x^2 -x + 3)^2*(x + 1)^9*(x -1)^10;
T[222,5]=(x -2)*(x -4)*(x + 4)*(x^2 -x -11)^2*(x^2 + x -3)^2*(x^3 -4*x^2 -4*x + 20)^2*(x^4 + 2*x^3 -8*x^2 + 4)^2*(x + 2)^4*(x )^6;

T[223,2]=(x^2 + 2*x -1)*(x^4 + 4*x^3 + 2*x^2 -5*x -3)*(x^12 -7*x^11 + 6*x^10 + 57*x^9 -122*x^8 -105*x^7 + 430*x^6 -73*x^5 -499*x^4 + 242*x^3 + 143*x^2 -52*x -19);
T[223,3]=(x^2 + 2*x -1)*(x^4 -4*x^2 + x + 1)*(x^12 -27*x^10 + 7*x^9 + 263*x^8 -131*x^7 -1091*x^6 + 816*x^5 + 1600*x^4 -1752*x^3 + 128*x^2 + 288*x -64);
T[223,5]=(x^2 + 4*x + 2)*(x^4 + 3*x^3 -x^2 -7*x -3)*(x^12 -7*x^11 -11*x^10 + 157*x^9 -97*x^8 -1096*x^7 + 1354*x^6 + 2692*x^5 -3952*x^4 -1744*x^3 + 3200*x^2 -512*x -128);

T[224,2]=(x + 1)*(x )^24;
T[224,3]=(x^2 -2*x -4)*(x^2 + 2*x -4)*(x -2)^6*(x )^7*(x + 2)^8;
T[224,5]=(x + 2)^2*(x^2 -2*x -4)^2*(x -2)^5*(x + 4)^5*(x )^9;

T[225,2]=(x^2 -5)*(x )^2*(x -2)^3*(x + 2)^3*(x -1)^4*(x + 1)^5;
T[225,3]=(x -1)^2*(x + 1)^3*(x )^14;
T[225,5]=(x + 1)*(x -1)^2*(x )^16;

T[226,2]=(x^2 + x + 2)*(x^6 + 2*x^5 + x^4 -x^3 + 2*x^2 + 8*x + 8)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^2 -x + 2)^2*(x + 1)^4*(x -1)^5;
T[226,3]=(x + 2)*(x^2 -2)*(x^4 -2*x^3 -6*x^2 + 12*x -4)*(x -2)^2*(x^3 + 5*x^2 + 6*x + 1)^2*(x^3 + x^2 -4*x -1)^2*(x^2 -2*x -2)^3;
T[226,5]=(x + 4)*(x^2 + 4*x + 2)*(x^4 -4*x^3 -4*x^2 + 16*x -4)*(x^2 -12)^2*(x^3 + x^2 -9*x -1)^2*(x -2)^4*(x + 1)^6;

T[227,2]=(x^2 -5)*(x^3 + 2*x^2 -x -1)*(x^10 -17*x^8 -3*x^7 + 98*x^6 + 40*x^5 -218*x^4 -148*x^3 + 136*x^2 + 144*x + 32)*(x^2 -2)*(x -1)^2;
T[227,3]=(x^2 -3*x + 1)*(x^2 + x -7)*(x^3 -x^2 -2*x + 1)*(x^10 -x^9 -17*x^8 + 8*x^7 + 99*x^6 -8*x^5 -210*x^4 + 5*x^3 + 152*x^2 -20*x -4)*(x + 2)^2;
T[227,5]=(x^2 -2)*(x^3 + 5*x^2 + 6*x + 1)*(x^10 -7*x^9 -18*x^8 + 205*x^7 -66*x^6 -1746*x^5 + 1594*x^4 + 5648*x^3 -5408*x^2 -5712*x + 5472)*(x -2)^2*(x + 2)^2;

T[228,2]=(x^2 -x + 2)*(x^2 + 2*x + 2)^2*(x^2 + 2)^2*(x + 1)^3*(x -1)^4*(x )^18;
T[228,3]=(x^2 -2*x + 3)*(x^2 -x + 3)^2*(x^2 + x + 3)^2*(x^2 + 2*x + 3)^3*(x + 1)^9*(x -1)^10;
T[228,5]=(x^2 -3*x -6)*(x + 1)^2*(x + 2)^3*(x -2)^3*(x -1)^3*(x + 4)^4*(x + 3)^4*(x -3)^6*(x )^8;

T[229,2]=(x + 1)*(x^6 + 4*x^5 -12*x^3 -3*x^2 + 9*x -1)*(x^11 -5*x^10 -4*x^9 + 50*x^8 -26*x^7 -165*x^6 + 152*x^5 + 193*x^4 -207*x^3 -50*x^2 + 52*x + 1);
T[229,3]=(x -1)*(x^6 + 6*x^5 + 7*x^4 -17*x^3 -36*x^2 -6*x + 13)*(x^11 -3*x^10 -19*x^9 + 60*x^8 + 109*x^7 -402*x^6 -133*x^5 + 987*x^4 -332*x^3 -572*x^2 + 288*x -16);
T[229,5]=(x + 3)*(x^6 + 3*x^5 -12*x^4 -39*x^3 + 19*x^2 + 121*x + 79)*(x^11 -28*x^9 + 3*x^8 + 204*x^7 -23*x^6 -397*x^5 + 238*x^3 + 21*x^2 -44*x -7);

T[230,2]=(x^2 -2*x + 2)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x^8 -2*x^7 + 4*x^6 -7*x^5 + 10*x^4 -14*x^3 + 16*x^2 -16*x + 16)*(x^4 + x^3 + 3*x^2 + 2*x + 4)^2*(x -1)^5*(x + 1)^6;
T[230,3]=(x^2 + x -5)*(x^2 -3*x -1)*(x^3 -x^2 -9*x + 12)*(x^2 -x -1)*(x + 1)^4*(x^2 -5)^4*(x^2 + x -4)^4*(x )^4;
T[230,5]=(x^2 -4*x + 5)*(x^4 + 2*x^3 + 6*x^2 + 10*x + 25)^2*(x + 1)^11*(x -1)^12;

T[231,2]=(x^2 + x -5)*(x^3 -2*x^2 -4*x + 7)*(x^3 -6*x -1)*(x^2 -x -1)*(x^2 -5)^2*(x + 1)^3*(x + 2)^4*(x -1)^4*(x )^4;
T[231,3]=(x^2 -2*x + 3)*(x^2 -x + 3)*(x^2 + 3*x + 3)*(x^4 -2*x^3 + 2*x^2 -6*x + 9)*(x^2 + x + 3)^2*(x -1)^7*(x + 1)^8;
T[231,5]=(x^3 -4*x^2 -7*x + 26)*(x^3 -15*x + 2)*(x + 1)^2*(x -3)^4*(x -1)^6*(x + 2)^11;

T[232,2]=(x -1)*(x + 1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x )^21;
T[232,3]=(x^2 + 2*x -1)*(x^3 -2*x^2 -5*x + 8)*(x -2)^2*(x -1)^3*(x + 1)^4*(x^2 -2*x -1)^4*(x + 3)^5;
T[232,5]=(x^2 + 2*x -7)*(x^3 -4*x^2 -3*x + 10)*(x + 2)^2*(x -1)^4*(x -3)^4*(x + 3)^4*(x + 1)^8;

T[233,2]=(x -1)*(x^7 + 2*x^6 -6*x^5 -10*x^4 + 10*x^3 + 8*x^2 -7*x + 1)*(x^11 + 2*x^10 -16*x^9 -30*x^8 + 91*x^7 + 158*x^6 -213*x^5 -349*x^4 + 152*x^3 + 290*x^2 + 41*x -19);
T[233,3]=(x + 2)*(x^7 + 8*x^6 + 18*x^5 -3*x^4 -44*x^3 -20*x^2 + 12*x + 1)*(x^11 -10*x^10 + 28*x^9 + 29*x^8 -277*x^7 + 394*x^6 + 162*x^5 -716*x^4 + 250*x^3 + 312*x^2 -138*x -29);
T[233,5]=(x -2)*(x^7 + 3*x^6 -15*x^5 -40*x^4 + 41*x^3 + 79*x^2 -29*x -43)*(x^11 + x^10 -35*x^9 -20*x^8 + 429*x^7 + 109*x^6 -2119*x^5 -265*x^4 + 3880*x^3 + 336*x^2 -1280*x -128);

T[234,2]=(x^4 -2*x^3 + 3*x^2 -4*x + 4)*(x^2 + x + 2)*(x^4 + x^2 + 4)*(x^2 -x + 2)^2*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)^2*(x -1)^6*(x + 1)^7;
T[234,3]=(x^2 + 3*x + 3)*(x^2 -x + 3)*(x + 1)^3*(x -1)^4*(x )^24;
T[234,5]=(x -1)*(x -3)*(x + 1)^3*(x + 3)^3*(x + 2)^4*(x )^4*(x^2 -8)^6*(x -2)^7;

T[235,2]=(x -2)*(x^5 + 4*x^4 -12*x^2 -4*x + 7)*(x^7 -x^6 -10*x^5 + 8*x^4 + 28*x^3 -17*x^2 -19*x + 2)*(x + 1)^2*(x^4 -x^3 -5*x^2 + 5*x -1)^2;
T[235,3]=(x -2)*(x^5 + 5*x^4 + 3*x^3 -13*x^2 -13*x + 1)*(x^7 -x^6 -15*x^5 + 13*x^4 + 57*x^3 -37*x^2 -42*x -8)*(x + 1)^2*(x^4 -7*x^2 + 4*x + 1)^2;
T[235,5]=(x^8 + 2*x^7 + 4*x^6 + 14*x^5 + 38*x^4 + 70*x^3 + 100*x^2 + 250*x + 625)*(x + 1)^7*(x -1)^8;

T[236,2]=(x^10 + x^8 + 2*x^7 + 2*x^6 + 4*x^4 + 8*x^3 + 8*x^2 + 32)*(x + 1)^2*(x -1)^2*(x )^14;
T[236,3]=(x -1)*(x^3 -9*x + 1)*(x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1)^3*(x -2)^4*(x + 1)^5;
T[236,5]=(x + 1)*(x -3)*(x^3 + 4*x^2 + x -3)*(x + 3)^2*(x -1)^2*(x -2)^2*(x + 2)^2*(x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1)^3;

T[237,2]=(x^2 -2*x -1)*(x^7 -2*x^6 -11*x^5 + 22*x^4 + 30*x^3 -65*x^2 -2*x + 23)*(x^4 + 3*x^3 -x^2 -5*x + 1)*(x + 1)^2*(x^5 -6*x^3 + 8*x -1)^2;
T[237,3]=(x^2 + x + 3)*(x^10 -x^9 + 3*x^8 -4*x^7 + 6*x^6 -22*x^5 + 18*x^4 -36*x^3 + 81*x^2 -81*x + 243)*(x + 1)^6*(x -1)^7;
T[237,5]=(x^7 + 2*x^6 -25*x^5 -32*x^4 + 191*x^3 + 102*x^2 -416*x + 32)*(x^4 + 4*x^3 -x^2 -14*x -9)*(x + 3)^2*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31)^2*(x )^2;

T[238,2]=(x^8 + x^7 + 3*x^6 + 5*x^5 + 7*x^4 + 10*x^3 + 12*x^2 + 8*x + 16)*(x^10 -2*x^9 + 2*x^8 -2*x^7 + 6*x^6 -9*x^5 + 12*x^4 -8*x^3 + 16*x^2 -32*x + 32)*(x^2 + x + 2)^2*(x -1)^5*(x + 1)^6;
T[238,3]=(x^2 -2*x -4)*(x -2)^2*(x^4 -2*x^3 -7*x^2 + 12*x -1)^2*(x^5 + 2*x^4 -11*x^3 -12*x^2 + 31*x -12)^2*(x + 2)^5*(x )^6;
T[238,5]=(x + 4)*(x -4)*(x -2)*(x^2 -2*x -4)*(x^4 -2*x^3 -7*x^2 + 4*x + 3)^2*(x^5 -23*x^3 + 18*x^2 + 131*x -178)^2*(x + 2)^5*(x )^5;

T[239,2]=(x^3 + x^2 -2*x -1)*(x^17 -28*x^15 + x^14 + 319*x^13 -17*x^12 -1903*x^11 + 91*x^10 + 6377*x^9 -125*x^8 -11967*x^7 -233*x^6 + 11733*x^5 + 503*x^4 -5015*x^3 -94*x^2 + 609*x + 49);
T[239,3]=(x^3 + x^2 -2*x -1)*(x^17 -3*x^16 -35*x^15 + 110*x^14 + 468*x^13 -1573*x^12 -2977*x^11 + 11197*x^10 + 8880*x^9 -42041*x^8 -8213*x^7 + 80809*x^6 -11957*x^5 -70374*x^4 + 23710*x^3 + 20383*x^2 -9684*x + 592);
T[239,5]=(x^3 + 4*x^2 + 3*x -1)*(x^17 -6*x^16 -44*x^15 + 311*x^14 + 647*x^13 -6439*x^12 -1715*x^11 + 66664*x^10 -47987*x^9 -345487*x^8 + 500506*x^7 + 707930*x^6 -1708498*x^5 + 168922*x^4 + 1466245*x^3 -775724*x^2 -64969*x + 43871);

T[240,2]=(x + 1)*(x^2 + x + 2)*(x )^34;
T[240,3]=(x^2 -2*x + 3)*(x^2 + 3)^3*(x^2 + 2*x + 3)^3*(x -1)^11*(x + 1)^12;
T[240,5]=(x^2 + 2*x + 5)^3*(x -1)^15*(x + 1)^16;

T[241,2]=(x^7 + 4*x^6 -14*x^4 -10*x^3 + 6*x^2 + 3*x -1)*(x^12 -3*x^11 -14*x^10 + 44*x^9 + 65*x^8 -219*x^7 -123*x^6 + 444*x^5 + 105*x^4 -328*x^3 -45*x^2 + 18*x -1);
T[241,3]=(x^7 + 3*x^6 -5*x^5 -19*x^4 -4*x^3 + 14*x^2 + 8*x + 1)*(x^12 -x^11 -25*x^10 + 25*x^9 + 224*x^8 -210*x^7 -888*x^6 +