CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / charpoly_s2_601-700.gpOpen in CoCalc
\\ charpoly_s2.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N)) 
\\ of weight 2 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(700,97,m,n,0);
T[601,2]=(x^20 + 5*x^19 -13*x^18 -96*x^17 + 29*x^16 + 740*x^15 + 323*x^14 -2975*x^13 -2351*x^12 + 6757*x^11 + 6719*x^10 -8773*x^9 -9894*x^8 + 6329*x^7 + 7721*x^6 -2423*x^5 -3056*x^4 + 471*x^3 + 559*x^2 -35*x -37)*(x^29 -4*x^28 -38*x^27 + 165*x^26 + 615*x^25 -2989*x^24 -5473*x^23 + 31324*x^22 + 28379*x^21 -210530*x^20 -78230*x^19 + 950533*x^18 + 33512*x^17 -2935046*x^16 + 540663*x^15 + 6190754*x^14 -2013983*x^13 -8764243*x^12 + 3559142*x^11 + 8044078*x^10 -3474993*x^9 -4530666*x^8 + 1808832*x^7 + 1438384*x^6 -432489*x^5 -218311*x^4 + 30672*x^3 + 10714*x^2 -498*x -147);
T[601,3]=(x^20 + 7*x^19 -7*x^18 -144*x^17 -131*x^16 + 1146*x^15 + 1923*x^14 -4389*x^13 -10136*x^12 + 7818*x^11 + 26295*x^10 -3340*x^9 -33890*x^8 -7161*x^7 + 18296*x^6 + 7434*x^5 -1911*x^4 -874*x^3 + 74*x^2 + 21*x -1)*(x^29 -5*x^28 -51*x^27 + 284*x^26 + 1085*x^25 -7062*x^24 -12221*x^23 + 101523*x^22 + 72472*x^21 -938578*x^20 -119757*x^19 + 5871900*x^18 -1417134*x^17 -25474549*x^16 + 12290596*x^15 + 77289870*x^14 -49282387*x^13 -163497950*x^12 + 118592650*x^11 + 238163105*x^10 -178385665*x^9 -233882432*x^8 + 163562168*x^7 + 149959232*x^6 -83800800*x^5 -59229056*x^4 + 19162112*x^3 + 12188160*x^2 -650240*x -544768);
T[601,5]=(x^20 + 12*x^19 + 16*x^18 -346*x^17 -1447*x^16 + 2080*x^15 + 22216*x^14 + 22418*x^13 -118195*x^12 -294377*x^11 + 84430*x^10 + 981231*x^9 + 791685*x^8 -984000*x^7 -1756223*x^6 -233275*x^5 + 1053221*x^4 + 634128*x^3 -31086*x^2 -96961*x -13709)*(x^29 -10*x^28 -38*x^27 + 674*x^26 -196*x^25 -18880*x^24 + 34028*x^23 + 286996*x^22 -801603*x^21 -2575635*x^20 + 9789296*x^19 + 13700761*x^18 -73405069*x^17 -38651383*x^16 + 359433117*x^15 + 19159332*x^14 -1180436357*x^13 + 243582597*x^12 + 2618390249*x^11 -871573817*x^10 -3877266641*x^9 + 1427352590*x^8 + 3695251667*x^7 -1256309492*x^6 -2098702574*x^5 + 567126882*x^4 + 603360068*x^3 -105835133*x^2 -55707747*x + 3814802);
T[601,7]=(x^20 + 11*x^19 -9*x^18 -475*x^17 -879*x^16 + 7913*x^15 + 24936*x^14 -60240*x^13 -287862*x^12 + 144914*x^11 + 1693858*x^10 + 758880*x^9 -4917606*x^8 -5467969*x^7 + 4895738*x^6 + 10127889*x^5 + 2882952*x^4 -1952931*x^3 -479309*x^2 + 232704*x -19511)*(x^29 -7*x^28 -83*x^27 + 651*x^26 + 2782*x^25 -26016*x^24 -46367*x^23 + 587245*x^22 + 332408*x^21 -8288536*x^20 + 1169955*x^19 + 76596361*x^18 -45798889*x^17 -472231958*x^16 + 434086498*x^15 + 1942943599*x^14 -2269452854*x^13 -5247241482*x^12 + 7292015081*x^11 + 8958329931*x^10 -14658866285*x^9 -8953767144*x^8 + 18097399045*x^7 + 4258408923*x^6 -13025910091*x^5 + 7647567*x^4 + 4888174475*x^3 -737431960*x^2 -713599107*x + 172174158);
T[601,11]=(x^20 + 34*x^19 + 451*x^18 + 2535*x^17 -1053*x^16 -94315*x^15 -493127*x^14 -684484*x^13 + 2758049*x^12 + 11508175*x^11 + 7286506*x^10 -30841660*x^9 -48108220*x^8 + 19925070*x^7 + 61194745*x^6 -2548512*x^5 -30398579*x^4 + 354695*x^3 + 5753095*x^2 -263600*x -250025)*(x^29 -38*x^28 + 557*x^27 -3127*x^26 -10656*x^25 + 247497*x^24 -1076928*x^23 -2679329*x^22 + 41833137*x^21 -108382748*x^20 -398335180*x^19 + 3025759691*x^18 -3755391114*x^17 -23692183686*x^16 + 96257439324*x^15 -40163565000*x^14 -555233522402*x^13 + 1388267521242*x^12 -181104175102*x^11 -4878226375030*x^10 + 9065326311772*x^9 -3375243394333*x^8 -10663203948670*x^7 + 17816746987674*x^6 -10408944385312*x^5 -552259806913*x^4 + 3988860373897*x^3 -2045795890430*x^2 + 383346086043*x -13866334374);
T[601,13]=(x^20 + 3*x^19 -123*x^18 -284*x^17 + 6121*x^16 + 9471*x^15 -158126*x^14 -121118*x^13 + 2249590*x^12 + 52648*x^11 -17082665*x^10 + 11013153*x^9 + 59534901*x^8 -73702785*x^7 -53293903*x^6 + 108126292*x^5 -3542630*x^4 -52170573*x^3 + 14338404*x^2 + 7670935*x -2905445)*(x^29 + 5*x^28 -175*x^27 -888*x^26 + 13094*x^25 + 67588*x^24 -550587*x^23 -2905276*x^22 + 14374576*x^21 + 78314056*x^20 -242175496*x^19 -1389729295*x^18 + 2628591520*x^17 + 16562331604*x^16 -17401329238*x^15 -132482419785*x^14 + 56454286601*x^13 + 696342274880*x^12 + 39798699172*x^11 -2288702182708*x^10 -1005679854592*x^9 + 4259321930166*x^8 + 3178474282647*x^7 -3652425067859*x^6 -3726815332387*x^5 + 903077275903*x^4 + 1460679070460*x^3 + 31355743439*x^2 -173221564623*x -16235489902);
T[601,17]=(x^20 + 13*x^19 -95*x^18 -1894*x^17 + 120*x^16 + 101879*x^15 + 261391*x^14 -2421727*x^13 -10684115*x^12 + 21742422*x^11 + 165762978*x^10 + 16942880*x^9 -1023377118*x^8 -712191632*x^7 + 2954397622*x^6 + 1883834011*x^5 -4453367005*x^4 -665576974*x^3 + 2819057498*x^2 -1038802225*x + 93151607)*(x^29 -9*x^28 -245*x^27 + 2600*x^26 + 22552*x^25 -312029*x^24 -809483*x^23 + 20047735*x^22 -9609037*x^21 -736176058*x^20 + 1866889372*x^19 + 14954093648*x^18 -68260342022*x^17 -132282440464*x^16 + 1202795145990*x^15 -457143504927*x^14 -10657769840605*x^13 + 18825383440522*x^12 + 40006252842368*x^11 -137478273164353*x^10 -7686504033105*x^9 + 409732652277446*x^8 -310466307059440*x^7 -463168070506000*x^6 + 629802287389072*x^5 + 72389936848288*x^4 -318878122200960*x^3 + 36079911736576*x^2 + 43781233829120*x -8620306625024);
T[601,19]=(x^20 + 14*x^19 -119*x^18 -2188*x^17 + 4612*x^16 + 136520*x^15 -60853*x^14 -4480547*x^13 + 214272*x^12 + 85181468*x^11 -11250607*x^10 -945435473*x^9 + 321969903*x^8 + 5838419973*x^7 -2479672681*x^6 -19433441808*x^5 + 6047402833*x^4 + 33442414273*x^3 -795960437*x^2 -23983332080*x -8955638785)*(x^29 -2*x^28 -257*x^27 + 594*x^26 + 27302*x^25 -73304*x^24 -1547651*x^23 + 4854269*x^22 + 50241068*x^21 -186448784*x^20 -923170645*x^19 + 4203572019*x^18 + 8608874165*x^17 -54091519197*x^16 -25272206845*x^15 + 379727321434*x^14 -123947506149*x^13 -1493819494437*x^12 + 1108894392375*x^11 + 3400685613346*x^10 -3287837307431*x^9 -4508793849238*x^8 + 4793298432728*x^7 + 3364632234980*x^6 -3464798372468*x^5 -1266419437936*x^4 + 1063195721584*x^3 + 171394619296*x^2 -100579945968*x -3356286240);
T[601,23]=(x^20 + 47*x^19 + 806*x^18 + 3786*x^17 -65719*x^16 -1105028*x^15 -5104178*x^14 + 25614172*x^13 + 442206529*x^12 + 2126541173*x^11 + 507544073*x^10 -48762840676*x^9 -304379010986*x^8 -1034923858172*x^7 -2283177674572*x^6 -3384169591581*x^5 -3320449717712*x^4 -2037138743206*x^3 -690749581759*x^2 -98698886354*x -4152883687)*(x^29 -61*x^28 + 1546*x^27 -19886*x^26 + 108085*x^25 + 409204*x^24 -9944506*x^23 + 52385424*x^22 + 32489249*x^21 -1533931367*x^20 + 5421627565*x^19 + 7212809104*x^18 -89905838274*x^17 + 124033380448*x^16 + 533617826784*x^15 -1643837983361*x^14 -947174493500*x^13 + 8201280407966*x^12 -2934981311311*x^11 -21405470365410*x^10 + 16043527836677*x^9 + 32418636785184*x^8 -28856963661776*x^7 -30148247432176*x^6 + 24391421447152*x^5 + 17438153451136*x^4 -8889865302528*x^3 -5499552403712*x^2 + 702500168448*x + 461064274944);
T[601,29]=(x^20 + 29*x^19 + 183*x^18 -2458*x^17 -38619*x^16 -103624*x^15 + 1137511*x^14 + 8489010*x^13 + 7852827*x^12 -107307966*x^11 -383041133*x^10 -56639290*x^9 + 1918632219*x^8 + 3111557637*x^7 -1038252380*x^6 -6650431057*x^5 -5317902134*x^4 -556633301*x^3 + 607594585*x^2 + 54894016*x -19810031)*(x^29 -27*x^28 -101*x^27 + 8640*x^26 -34011*x^25 -1150618*x^24 + 8639001*x^23 + 81162108*x^22 -900619629*x^21 -3055208500*x^20 + 54738087925*x^19 + 38474861880*x^18 -2144588726667*x^17 + 1740547617935*x^16 + 56369974709532*x^15 -99989092173803*x^14 -1007425374096748*x^13 + 2439501015782401*x^12 + 12224308051115771*x^11 -34743812040682150*x^10 -99893867898530433*x^9 + 302061443869261830*x^8 + 546750101211594896*x^7 -1560152235351465312*x^6 -1998968597374678304*x^5 + 4369793663749412544*x^4 + 4605085142691798016*x^3 -5181364500898593792*x^2 -4971819735387634944*x + 559939653424299520);
T[601,31]=(x^20 + 26*x^19 + 79*x^18 -3172*x^17 -25174*x^16 + 116851*x^15 + 1651930*x^14 -329883*x^13 -47830412*x^12 -66172706*x^11 + 695546153*x^10 + 1387001080*x^9 -5431577712*x^8 -10836127448*x^7 + 23869620532*x^6 + 32615025273*x^5 -56763993921*x^4 -18597857666*x^3 + 41536365520*x^2 -7452465187*x -2362448461)*(x^29 -16*x^28 -357*x^27 + 6646*x^26 + 49469*x^25 -1180629*x^24 -3089865*x^23 + 118804489*x^22 + 34357037*x^21 -7561742467*x^20 + 7996422844*x^19 + 321294373065*x^18 -621038224292*x^17 -9344407861953*x^16 + 23942303825845*x^15 + 186830222712594*x^14 -573734693756557*x^13 -2525828084617060*x^12 + 8987162452032051*x^11 + 22038215954445118*x^10 -91733587835591446*x^9 -111060830198272520*x^8 + 585157748018611420*x^7 + 222973638816530956*x^6 -2127498745876753528*x^5 + 348578522936500600*x^4 + 3686906329205107220*x^3 -1704570519641189059*x^2 -2294671921506755655*x + 1460681678396608182);
T[601,37]=(x^20 -x^19 -380*x^18 + 229*x^17 + 58246*x^16 + 5575*x^15 -4811588*x^14 -4266758*x^13 + 236160691*x^12 + 397671686*x^11 -7049515723*x^10 -17495076293*x^9 + 123561932410*x^8 + 417451241650*x^7 -1104739549233*x^6 -5339404009498*x^5 + 2378294710346*x^4 + 31677653751246*x^3 + 23576734154918*x^2 -50437046927450*x -59896632865375)*(x^29 + 5*x^28 -600*x^27 -3217*x^26 + 157935*x^25 + 900480*x^24 -24014810*x^23 -145057595*x^22 + 2336878996*x^21 + 14978028356*x^20 -152118948789*x^19 -1043776609202*x^18 + 6701657351407*x^17 + 50252684155815*x^16 -196054534828934*x^15 -1678304298758787*x^14 + 3542268450484685*x^13 + 38338862061562090*x^12 -30076543338030804*x^11 -577175014558800525*x^10 -135461738670191247*x^9 + 5299927542461181250*x^8 + 5620911295894204599*x^7 -24864001703373028146*x^6 -45881707971448162667*x^5 + 29453798961191141412*x^4 + 112181545212944302584*x^3 + 74708273659502952222*x^2 + 18957872855219522049*x + 1667662880236736818);
T[601,41]=(x^20 + 29*x^19 + 104*x^18 -4177*x^17 -38298*x^16 + 151213*x^15 + 2717989*x^14 + 1348410*x^13 -80568847*x^12 -174385595*x^11 + 1119967016*x^10 + 3568370289*x^9 -6665055627*x^8 -30227350409*x^7 + 5253630476*x^6 + 101015635930*x^5 + 67871050807*x^4 -57356770284*x^3 -38455591622*x^2 + 14669164987*x + 646419443)*(x^29 -13*x^28 -662*x^27 + 9031*x^26 + 187774*x^25 -2726575*x^24 -29842153*x^23 + 470861604*x^22 + 2913263747*x^21 -51538486651*x^20 -179554154450*x^19 + 3746253263867*x^18 + 6842482710439*x^17 -184374952332097*x^16 -144457042306108*x^15 + 6153828102423196*x^14 + 848452597408319*x^13 -137378187025368136*x^12 + 32178568931735366*x^11 + 1987857756855797783*x^10 -813922413794488369*x^9 -17651445765411071586*x^8 + 7574623445096929656*x^7 + 88066360726604232752*x^6 -24624379506195936576*x^5 -213733498244173788032*x^4 -27183124865220326272*x^3 + 205187052148500454912*x^2 + 130524198125552986368*x + 22263777377554334208);
T[601,43]=(x^20 -2*x^19 -414*x^18 + 524*x^17 + 70513*x^16 -37083*x^15 -6361129*x^14 -1174350*x^13 + 325162941*x^12 + 267597201*x^11 -9311923050*x^10 -12399242492*x^9 + 137525566044*x^8 + 222032379964*x^7 -862295103990*x^6 -1224161116743*x^5 + 1863326552683*x^4 + 1004271236425*x^3 -879554844185*x^2 -232926785850*x + 54339334825)*(x^29 -2*x^28 -698*x^27 + 1330*x^26 + 210204*x^25 -384329*x^24 -35906473*x^23 + 63580770*x^22 + 3851716091*x^21 -6668363156*x^20 -271760099441*x^19 + 463244352112*x^18 + 12860310985236*x^17 -21617410177772*x^16 -409110022719999*x^15 + 673688968288081*x^14 + 8637423661722764*x^13 -13715776816595158*x^12 -117364500883000143*x^11 + 175482973686183809*x^10 + 967572408170585884*x^9 -1327538866533895277*x^8 -4302669417380782499*x^7 + 5391336602429714095*x^6 + 7782163875393681036*x^5 -9825235803693037325*x^4 -1922990848485157415*x^3 + 2967021282343710452*x^2 + 309653677504343061*x -65819329489098006);
T[601,47]=(x^20 + 37*x^19 + 84*x^18 -11869*x^17 -115952*x^16 + 1278091*x^15 + 20812301*x^14 -34167263*x^13 -1590103054*x^12 -2846830222*x^11 + 56190023170*x^10 + 201901268298*x^9 -825677694630*x^8 -3978446726690*x^7 + 5316029682972*x^6 + 32017185178472*x^5 -21831932057167*x^4 -119556896118774*x^3 + 78399605395606*x^2 + 176796993467715*x -153011075852725)*(x^29 -43*x^28 + 308*x^27 + 12151*x^26 -212580*x^25 -650729*x^24 + 37703525*x^23 -139742919*x^22 -3108160546*x^21 + 25321046834*x^20 + 116463898978*x^19 -1871604328390*x^18 + 190504351466*x^17 + 76328516071902*x^16 -204659424083724*x^15 -1746418062455196*x^14 + 8888152901248177*x^13 + 18031324518361210*x^12 -187932807152597410*x^11 + 74385568457519887*x^10 + 2089403587439999067*x^9 -3942462360804148176*x^8 -10189574797957041808*x^7 + 36845728889872998512*x^6 + 709010713793536400*x^5 -118629831089699705472*x^4 + 103038402789252053376*x^3 + 101970864643732366336*x^2 -159388612903535340288*x + 40663114853477443584);
T[601,53]=(x^20 + 22*x^19 -289*x^18 -9522*x^17 + 3370*x^16 + 1485772*x^15 + 5733527*x^14 -108383432*x^13 -700818544*x^12 + 3801529331*x^11 + 36372002665*x^10 -50945955827*x^9 -964871796074*x^8 -348880841985*x^7 + 13374013479497*x^6 + 16061007151814*x^5 -91741001090277*x^4 -134341919760128*x^3 + 279417645820357*x^2 + 299575082908232*x -362512342637101)*(x^29 -18*x^28 -685*x^27 + 14026*x^26 + 182534*x^25 -4660040*x^24 -21323443*x^23 + 860128126*x^22 + 204795878*x^21 -96139173961*x^20 + 247026063505*x^19 + 6614398554327*x^18 -32149213003116*x^17 -266442448889195*x^16 + 2015463537570935*x^15 + 4940378552870436*x^14 -70474854593950773*x^13 + 33815650136484682*x^12 + 1311041308138615411*x^11 -3270799208747964196*x^10 -9594630484264834191*x^9 + 50549416557890220494*x^8 -28694356586265618920*x^7 -207828035494241718000*x^6 + 447494382539213078880*x^5 -205585196032170269632*x^4 -261660030023021172736*x^3 + 246580164926071240192*x^2 + 28561793394036240384*x -57993516510362601472);
T[601,59]=(x^20 + 21*x^19 -219*x^18 -6694*x^17 + 11153*x^16 + 884688*x^15 + 953250*x^14 -63105553*x^13 -144955257*x^12 + 2642749387*x^11 + 7642601587*x^10 -66084153189*x^9 -209479777524*x^8 + 958601862793*x^7 + 3148486427212*x^6 -7431608479673*x^5 -25018152451101*x^4 + 25335177756734*x^3 + 92487187201073*x^2 -18491827683947*x -103007055439543)*(x^29 -19*x^28 -933*x^27 + 19914*x^26 + 352202*x^25 -8984945*x^24 -65412587*x^23 + 2283859227*x^22 + 4785798291*x^21 -359233270054*x^20 + 376436009150*x^19 + 36113280503034*x^18 -117393268042946*x^17 -2306737950068592*x^16 + 11709696329124275*x^15 + 89200258226561241*x^14 -630386582545907824*x^13 -1814146529097699822*x^12 + 19345679214337462988*x^11 + 9448603094716840413*x^10 -325582872569660843062*x^9 + 258797355555785035239*x^8 + 2749149696209824910669*x^7 -3908096870850389323232*x^6 -10301747757013993194954*x^5 + 15915104629031304035624*x^4 + 14184493230062335113315*x^3 -13106377063162173379943*x^2 -4777890560239334265909*x + 3275572853096738223090);
T[601,61]=(x^20 + 14*x^19 -509*x^18 -9011*x^17 + 71575*x^16 + 2065023*x^15 + 2382033*x^14 -191392943*x^13 -1218128946*x^12 + 4128037971*x^11 + 70833451369*x^10 + 236572304301*x^9 -189668672205*x^8 -2843900990458*x^7 -4990471283846*x^6 + 3906434716253*x^5 + 20776129554432*x^4 + 20297043427115*x^3 + 2651022244974*x^2 -4625295355635*x -1306638520595)*(x^29 + 24*x^28 -707*x^27 -19465*x^26 + 217062*x^25 + 7035167*x^24 -38957560*x^23 -1503422746*x^22 + 4786223080*x^21 + 212195729898*x^20 -467258597447*x^19 -20867669703497*x^18 + 40794462129710*x^17 + 1463943921237894*x^16 -3157572492255780*x^15 -73350112418990393*x^14 + 195298752872226587*x^13 + 2566056677929155662*x^12 -8780350506468003145*x^11 -59019259896771765263*x^10 + 267949525365028636326*x^9 + 762296508805511570879*x^8 -5147430608809056919980*x^7 -2258465313654723894050*x^6 + 54267377993816513443399*x^5 -64786675407348552830177*x^4 -207492456061302809952970*x^3 + 589604319196803009873877*x^2 -454256170933921994756577*x + 48433468030412908873362);
T[601,67]=(x^20 -18*x^19 -518*x^18 + 9483*x^17 + 114285*x^16 -2047520*x^15 -14339746*x^14 + 234995939*x^13 + 1139384349*x^12 -15548140236*x^11 -58468535156*x^10 + 601025078379*x^9 + 1835229064882*x^8 -13206231547622*x^7 -30733826814570*x^6 + 157605721995753*x^5 + 199899212221315*x^4 -1019992598845856*x^3 -105234217621677*x^2 + 2651599958377725*x -1998919907204365)*(x^29 -14*x^28 -978*x^27 + 14571*x^26 + 395049*x^25 -6459272*x^24 -84297182*x^23 + 1596175047*x^22 + 9869077961*x^21 -241874911352*x^20 -532578220172*x^19 + 23329004612363*x^18 -7893156859810*x^17 -1444103788111710*x^16 + 2996745389398734*x^15 + 56884940657081093*x^14 -191525648208815845*x^13 -1399160189680431728*x^12 + 6290975818195328271*x^11 + 20682845979544910781*x^10 -119938669731106526073*x^9 -167572121076407197720*x^8 + 1349925578836513777464*x^7 + 529102579760778238128*x^6 -8625016287993481545088*x^5 + 1322281803716668378432*x^4 + 27765801118015952834944*x^3 -11232702737035378450944*x^2 -31997690174964343032576*x + 11782950197787549420544);
T[601,71]=(x^20 + 88*x^19 + 3003*x^18 + 42555*x^17 -80507*x^16 -10779357*x^15 -123966087*x^14 -29376217*x^13 + 9740899472*x^12 + 57352591004*x^11 -212839686584*x^10 -2883465911005*x^9 -1473622555441*x^8 + 61484600256637*x^7 + 114619863382215*x^6 -649404265904719*x^5 -1423007561957121*x^4 + 3355350987558955*x^3 + 5135917560398599*x^2 -6863128642852465*x + 1176862584610345)*(x^29 -126*x^28 + 6737*x^27 -188147*x^26 + 2360374*x^25 + 15299045*x^24 -1068055012*x^23 + 16241653482*x^22 -60756346986*x^21 -1570536981445*x^20 + 26828270760842*x^19 -147401402480051*x^18 -565565793554120*x^17 + 13224990078376036*x^16 -67184999678975604*x^15 -96984099279662211*x^14 + 2719593268876059856*x^13 -11062649928827374684*x^12 -9249710141430248474*x^11 + 232173666948556758647*x^10 -719129967677259768533*x^9 -200166865275716419312*x^8 + 6751051212800597258940*x^7 -17045175811054840772864*x^6 + 11850761684896566860086*x^5 + 19550750475777234805701*x^4 -40078450124824136955195*x^3 + 19179205474441832056919*x^2 + 5291478375978974529427*x -4767249282554476327202);
T[601,73]=(x^20 -4*x^19 -821*x^18 + 2239*x^17 + 282798*x^16 -409822*x^15 -52824802*x^14 + 10233180*x^13 + 5770500589*x^12 + 5852311293*x^11 -369938807534*x^10 -799090368215*x^9 + 13142170753859*x^8 + 43035205980652*x^7 -218233069132766*x^6 -1014116438692662*x^5 + 789602677938806*x^4 + 8483854604434280*x^3 + 9354278712661190*x^2 -4127135879765059*x -6894399729603847)*(x^29 + 38*x^28 -39*x^27 -18637*x^26 -173678*x^25 + 3059402*x^24 + 51908790*x^23 -133813010*x^22 -6381080243*x^21 -15226885571*x^20 + 393606499818*x^19 + 2121252509869*x^18 -12232643544795*x^17 -109035857505468*x^16 + 137181986528146*x^15 + 2912446392544746*x^14 + 2119995789811830*x^13 -41668092577768472*x^12 -77500990185606554*x^11 + 292545728785731869*x^10 + 775663918332034137*x^9 -810677483744895414*x^8 -2771858716625830872*x^7 + 1112913646990991296*x^6 + 3969786780380925616*x^5 -887981659959883424*x^4 -1799786832969585024*x^3 -33685668189746688*x^2 + 215145906758601984*x + 32551074803206656);
T[601,79]=(x^20 + 48*x^19 + 392*x^18 -15035*x^17 -273222*x^16 + 1004754*x^15 + 49158104*x^14 + 120864735*x^13 -4071958909*x^12 -21607465145*x^11 + 173706348759*x^10 + 1299531972659*x^9 -3771094660328*x^8 -38141025638091*x^7 + 36834043635394*x^6 + 552943902099212*x^5 -118217232568086*x^4 -3352954315147258*x^3 + 123529857409403*x^2 + 3277831971062599*x + 417009803371169)*(x^29 -38*x^28 + 10*x^27 + 15387*x^26 -114262*x^25 -2681884*x^24 + 29341180*x^23 + 264791771*x^22 -3724193739*x^21 -16403069301*x^20 + 290395907189*x^19 + 668396606523*x^18 -15024921508676*x^17 -18352184863899*x^16 + 531795936823238*x^15 + 345082511544290*x^14 -12945309671962896*x^13 -4524001880743850*x^12 + 213674885009329839*x^11 + 42004405378403551*x^10 -2308176914220840031*x^9 -274707155566351922*x^8 + 15252550737864368524*x^7 + 1350833662834707056*x^6 -53920336299758116076*x^5 -7290732060403138416*x^4 + 72788586409872120624*x^3 + 31492669005470026032*x^2 -4328508465992430576*x -124804989936121120);
T[601,83]=(x^20 + x^19 -1283*x^18 -682*x^17 + 692538*x^16 + 45816*x^15 -204717061*x^14 + 86029288*x^13 + 36076988618*x^12 -34758150813*x^11 -3853489217759*x^10 + 6251111467658*x^9 + 240536903343017*x^8 -601007930437435*x^7 -7764784486949734*x^6 + 29627441376428247*x^5 + 81084260362628809*x^4 -565283285288967288*x^3 + 931706449915617953*x^2 -481190879208640209*x -2574413353443197)*(x^29 -7*x^28 -1207*x^27 + 8602*x^26 + 606183*x^25 -4397899*x^24 -166217974*x^23 + 1227250204*x^22 + 27607173483*x^21 -207582608600*x^20 -2927697819293*x^19 + 22464244899000*x^18 + 203883353966343*x^17 -1596797175106064*x^16 -9460200061890998*x^15 + 75082164639864155*x^14 + 295994736588488622*x^13 -2316639102635135174*x^12 -6406474538751734212*x^11 + 45883382482714970190*x^10 + 100508346319489505013*x^9 -558374776776192918243*x^8 -1162210833915211253281*x^7 + 3716004817191991080176*x^6 + 8948669765033080657322*x^5 -8445337888006397741296*x^4 -33214353308010772296789*x^3 -21983321240440809425901*x^2 + 1623013633358766503073*x + 3485759301116510096538);
T[601,89]=(x^20 + 14*x^19 -857*x^18 -14152*x^17 + 259818*x^16 + 5448843*x^15 -28407229*x^14 -1003037535*x^13 -873278424*x^12 + 89428507018*x^11 + 400957189233*x^10 -3291728114015*x^9 -25879399739345*x^8 + 19428489734128*x^7 + 530681577516278*x^6 + 530700881133046*x^5 -4615487758188962*x^4 -6876792099762504*x^3 + 18490755113516684*x^2 + 21036943607689066*x -34892851885067807)*(x^29 + 8*x^28 -1431*x^27 -7810*x^26 + 914287*x^25 + 2743935*x^24 -340225780*x^23 -258974725*x^22 + 80822706501*x^21 -97415854619*x^20 -12678591730985*x^19 + 36923774259320*x^18 + 1317331269521221*x^17 -5848549715409233*x^16 -88574301667653520*x^15 + 527797061585733618*x^14 + 3618164819238686821*x^13 -28544792517996378662*x^12 -75435427013136875279*x^11 + 903424982147317755463*x^10 + 218343280251694688360*x^9 -15316950720839401390340*x^8 + 17968798869440592638544*x^7 + 116560975422871278618600*x^6 -220309981204930646371087*x^5 -387639452496365220951226*x^4 + 923764861566219063490174*x^3 + 452885138621126615455094*x^2 -1313619537851845609786143*x + 29138201800069958133870);
T[601,97]=(x^20 -5*x^19 -784*x^18 + 4449*x^17 + 232752*x^16 -1545491*x^15 -32760318*x^14 + 265781481*x^13 + 2216333148*x^12 -23899970129*x^11 -54558231090*x^10 + 1112821539682*x^9 -1047239319440*x^8 -24460668040702*x^7 + 75378269625120*x^6 + 176805498956160*x^5 -1138941979340985*x^4 + 914291308588339*x^3 + 3913324592484851*x^2 -8733357977337175*x + 5119066839769045)*(x^29 + 45*x^28 -10*x^27 -29699*x^26 -363522*x^25 + 6300659*x^24 + 148519106*x^23 -142618495*x^22 -24839098120*x^21 -133526838107*x^20 + 1846418763582*x^19 + 20658524562786*x^18 -29729125292810*x^17 -1265046925604416*x^16 -3624345216855268*x^15 + 31796114264783106*x^14 + 202586306487962273*x^13 -128567105483838035*x^12 -3858338900628653691*x^11 -7026861244468377105*x^10 + 25708586030164118213*x^9 + 99496826472809954350*x^8 + 8693462972061555552*x^7 -360082911714646140464*x^6 -323578183741929733264*x^5 + 423502186592090013920*x^4 + 499724896170777838976*x^3 -169210552581650507264*x^2 -161129321975453131008*x -13864211579136751104);

T[602,2]=(x^8 + 4*x^7 + 10*x^6 + 19*x^5 + 29*x^4 + 38*x^3 + 40*x^2 + 32*x + 16)*(x^10 -x^9 + 4*x^8 -3*x^7 + 10*x^6 -5*x^5 + 20*x^4 -12*x^3 + 32*x^2 -16*x + 32)*(x^10 + 4*x^8 + x^7 + 9*x^6 + 2*x^5 + 18*x^4 + 4*x^3 + 32*x^2 + 32)*(x^14 -4*x^13 + 11*x^12 -23*x^11 + 41*x^10 -63*x^9 + 93*x^8 -130*x^7 + 186*x^6 -252*x^5 + 328*x^4 -368*x^3 + 352*x^2 -256*x + 128)*(x^2 + 2*x + 2)^2*(x^4 + 2*x^2 + 4)^2*(x -1)^15*(x + 1)^16;
T[602,3]=(x -3)*(x + 1)*(x^3 -x^2 -6*x + 4)*(x^3 + 3*x^2 -x -2)*(x^4 -5*x^3 + 2*x^2 + 17*x -17)*(x^2 + 3*x + 1)*(x^3 -2*x^2 -5*x + 8)*(x^3 -8*x + 1)*(x )*(x^2 + x -5)^2*(x^2 -x -1)^2*(x^4 + 3*x^3 -2*x^2 -4*x -1)^2*(x^5 -5*x^4 + 2*x^3 + 18*x^2 -15*x -8)^2*(x^5 + 3*x^4 -6*x^3 -18*x^2 + x + 2)^2*(x^7 -x^6 -14*x^5 + 16*x^4 + 43*x^3 -54*x^2 -24*x + 32)^2*(x^2 -2)^4*(x + 2)^6;
T[602,5]=(x^3 -3*x^2 -5*x + 6)*(x^3 -16*x -8)*(x^3 -x^2 -5*x -2)*(x^4 + x^3 -19*x^2 -16*x + 52)*(x^4 + 4*x^3 -7*x + 3)^2*(x^5 + 6*x^4 -49*x^2 -67*x -4)^2*(x^5 -4*x^4 -4*x^3 + 15*x^2 + 17*x + 4)^2*(x^7 -16*x^5 + 9*x^4 + 57*x^3 -54*x^2 -12*x + 16)^2*(x^2 -3*x -3)^2*(x )^2*(x^2 + 3*x + 1)^3*(x^2 -4*x + 2)^4*(x -2)^5*(x + 4)^5;
T[602,7]=(x^4 -6*x^2 + 49)*(x^2 + 7)^2*(x^2 -2*x + 7)^2*(x^4 + 4*x^3 + 16*x^2 + 28*x + 49)^2*(x + 1)^31*(x -1)^34;
T[602,11]=(x -5)*(x + 3)*(x^3 -x^2 -12*x + 16)*(x^3 + 2*x^2 -7*x -4)*(x^3 + 2*x^2 -20*x + 16)*(x^3 + x^2 -26*x -12)*(x^2 -2*x -4)*(x^4 -4*x^3 -15*x^2 + 38*x + 52)*(x^2 + 4*x -16)^2*(x^5 -13*x^4 + 52*x^3 -56*x^2 -23*x + 32)^2*(x^7 -16*x^6 + 83*x^5 -104*x^4 -347*x^3 + 881*x^2 -52*x -688)^2*(x^4 + 15*x^3 + 80*x^2 + 176*x + 129)^2*(x^5 + 16*x^4 + 83*x^3 + 120*x^2 -155*x -283)^2*(x -3)^4*(x^2 + 2*x -7)^4*(x )^7;
T[602,13]=(x^2 + 6*x + 4)*(x^3 -2*x^2 -24*x -16)*(x^3 -4*x^2 -16*x + 56)*(x^3 + 6*x^2 -4*x -32)*(x^3 -32*x + 8)*(x^4 -2*x^3 -28*x^2 + 80*x -32)*(x + 4)^2*(x^2 -20)^2*(x^4 -x^3 -30*x^2 + 12*x + 217)^2*(x^5 + 2*x^4 -35*x^3 -80*x^2 + 81*x + 193)^2*(x^5 + x^4 -36*x^3 -26*x^2 + 147*x -86)^2*(x^7 + 2*x^6 -35*x^5 -102*x^4 + 9*x^3 + 247*x^2 + 220*x + 52)^2*(x + 5)^4*(x^2 -2*x -7)^4*(x -2)^7;
T[602,17]=(x^3 + x^2 -39*x + 74)*(x^3 -13*x^2 + 35*x + 48)*(x^3 -2*x^2 -32*x + 32)*(x^3 + 8*x^2 -4*x -64)*(x^2 + 7*x + 11)*(x^4 + 7*x^3 -x^2 -40*x + 16)*(x^2 + x -1)^2*(x^2 + 9*x + 15)^2*(x^4 + x^3 -28*x^2 -14*x + 177)^2*(x^5 + 8*x^4 -23*x^3 -216*x^2 + 87*x + 1051)^2*(x^5 -x^4 -52*x^3 + 118*x^2 -33*x -34)^2*(x^7 -4*x^6 -29*x^5 + 94*x^4 + 245*x^3 -423*x^2 -844*x -292)^2*(x )^2*(x -6)^3*(x + 3)^4*(x^2 -10*x + 17)^4;
T[602,19]=(x -1)*(x + 3)*(x -4)*(x^2 + 7*x + 11)*(x^3 -2*x^2 -29*x + 80)*(x^3 -2*x^2 -20*x -23)*(x^3 + 13*x^2 + 50*x + 52)*(x^3 + 7*x^2 + x -46)*(x^4 -9*x^3 -28*x^2 + 249*x + 229)*(x -2)^2*(x^2 -11*x + 29)^2*(x^2 -x -47)^2*(x^4 + 8*x^3 -4*x^2 -153*x -289)^2*(x^5 -18*x^4 + 98*x^3 -145*x^2 -7*x + 4)^2*(x^5 + 10*x^4 -6*x^3 -207*x^2 -225*x + 346)^2*(x^7 -48*x^5 -87*x^4 + 185*x^3 + 182*x^2 -32*x -32)^2*(x + 2)^4*(x^2 + 4*x -4)^4;
T[602,23]=(x^3 + 4*x^2 -28*x -32)*(x^3 + 3*x^2 -43*x + 8)*(x^3 -3*x^2 -5*x + 6)*(x^3 -2*x^2 -48*x + 128)*(x^2 + 7*x + 1)*(x^4 -x^3 -19*x^2 + 16*x + 52)*(x -6)^2*(x^2 -3*x -9)^2*(x^2 + 9*x + 15)^2*(x^4 + 5*x^3 -35*x^2 -95*x -57)^2*(x^5 + 5*x^4 -39*x^3 -211*x^2 + 195*x + 1376)^2*(x^5 + 2*x^4 -54*x^3 -230*x^2 -280*x -73)^2*(x^7 -6*x^6 -90*x^5 + 578*x^4 + 1368*x^3 -11989*x^2 + 8264*x + 22336)^2*(x )^3*(x + 1)^4*(x^2 -2*x -31)^4;
T[602,29]=(x -2)*(x + 9)*(x + 1)*(x^2 + x -11)*(x^3 -8*x^2 + 13*x + 2)*(x^3 -12*x^2 + 40*x -33)*(x^3 -15*x^2 + 71*x -106)*(x^3 + 7*x^2 -16*x -116)*(x^4 -3*x^3 -52*x^2 -27*x + 13)*(x^2 + 7*x + 1)^2*(x^2 -3*x -3)^2*(x^4 + 16*x^3 + 42*x^2 -304*x -1083)^2*(x^5 -2*x^4 -102*x^3 + 300*x^2 + 2581*x -9514)^2*(x^5 + 4*x^4 -52*x^3 -294*x^2 -317*x -94)^2*(x^7 -12*x^6 -104*x^5 + 1370*x^4 + 2259*x^3 -36326*x^2 -9692*x + 162968)^2*(x^2 -18)^4*(x + 6)^6;
T[602,31]=(x -9)*(x -2)*(x -5)*(x^3 + 18*x^2 + 100*x + 167)*(x^4 + 11*x^3 -4*x^2 -131*x + 157)*(x^3 + 7*x^2 -3*x -58)*(x^2 + x -101)*(x^3 + 2*x^2 -5*x -8)*(x^3 -19*x^2 + 108*x -164)*(x + 4)^2*(x^2 -x -47)^2*(x^2 -13*x + 41)^2*(x^4 -3*x^3 -68*x^2 -68*x + 197)^2*(x^5 + 3*x^4 -30*x^3 + 44*x^2 -5*x -14)^2*(x^5 + 6*x^4 -91*x^3 -406*x^2 + 1563*x + 3681)^2*(x^7 -8*x^6 -55*x^5 + 264*x^4 + 841*x^3 -1935*x^2 -1694*x + 2708)^2*(x + 1)^4*(x + 3)^8;
T[602,37]=(x + 7)*(x -9)*(x^3 -12*x^2 + 40*x -31)*(x^4 -17*x^3 + 72*x^2 -17*x -251)*(x^3 + 15*x^2 + 71*x + 106)*(x^3 + 5*x^2 -4*x -4)*(x^2 + 7*x -19)*(x^3 -8*x^2 -51*x + 410)*(x^2 -x -47)^2*(x^2 + 5*x + 5)^2*(x^4 + 11*x^3 -18*x^2 -354*x -197)^2*(x^5 -9*x^4 -70*x^3 + 576*x^2 + 829*x -3856)^2*(x^5 + 9*x^4 -24*x^3 -202*x^2 + 343*x -134)^2*(x^7 + 7*x^6 -162*x^5 -752*x^4 + 8965*x^3 + 16856*x^2 -155988*x + 38336)^2*(x -2)^3*(x^2 -72)^4*(x )^4;
T[602,41]=(x + 2)*(x + 8)*(x^2 + 7*x -49)*(x^3 -2*x^2 -24*x -16)*(x^3 + 15*x^2 + 67*x + 84)*(x^3 -20*x^2 + 108*x -112)*(x^3 -3*x^2 -43*x + 98)*(x^4 + 19*x^3 + 59*x^2 -520*x -2168)*(x )*(x -6)^2*(x^2 + 5*x -5)^2*(x^2 -3*x -45)^2*(x^7 -14*x^6 -26*x^5 + 1188*x^4 -4416*x^3 -12549*x^2 + 96344*x -136684)^2*(x^5 -17*x^4 + 5*x^3 + 907*x^2 -3021*x -238)^2*(x^4 -x^3 -65*x^2 -95*x + 399)^2*(x^5 + 16*x^4 -56*x^3 -1980*x^2 -9270*x -9379)^2*(x -5)^4*(x^2 + 2*x -7)^4;
T[602,43]=(x^2 -8*x + 43)*(x -1)^41*(x + 1)^42;
T[602,47]=(x + 6)*(x -12)*(x^2 + 3*x -29)*(x^3 -4*x^2 -28*x + 32)*(x^3 + 11*x^2 -121*x -1284)*(x^3 + 4*x^2 -20*x -16)*(x^3 + x^2 -31*x -2)*(x^4 -17*x^3 + 35*x^2 + 272*x + 268)*(x^2 + 9*x -27)^2*(x^2 -3*x -59)^2*(x^4 -11*x^3 + 2*x^2 + 148*x + 141)^2*(x^5 -7*x^4 -22*x^3 + 306*x^2 -885*x + 818)^2*(x^5 + 11*x^4 -158*x^3 -1482*x^2 + 6021*x + 33388)^2*(x^7 -x^6 -98*x^5 + 280*x^4 + 1527*x^3 -6662*x^2 + 5356*x + 2416)^2*(x + 12)^3*(x -4)^4*(x -6)^8;
T[602,53]=(x -2)*(x^3 + 2*x^2 -104*x -96)*(x^3 + 14*x^2 + 40*x -32)*(x^3 -2*x^2 -76*x -200)*(x^3 -2*x^2 -84*x + 296)*(x^2 -4*x -16)*(x^4 -8*x^3 -36*x^2 + 208*x + 64)*(x + 6)^2*(x -6)^2*(x^2 -6*x -12)^2*(x^2 + 10*x + 20)^2*(x^4 + 20*x^3 + 101*x^2 + 20*x -3)^2*(x^5 + 30*x^4 + 237*x^3 -238*x^2 -6095*x -3002)^2*(x^5 -19*x^4 + 65*x^3 + 509*x^2 -2187*x -3303)^2*(x^7 -15*x^6 -7*x^5 + 505*x^4 -579*x^3 -3727*x^2 + 4692*x + 4748)^2*(x + 5)^4*(x^2 -22*x + 113)^4;
T[602,59]=(x -12)*(x^3 -2*x^2 -124*x + 16)*(x -4)^2*(x + 6)^2*(x^2 + 4*x -64)^2*(x^4 + 11*x^3 -7*x^2 -115*x -129)^2*(x^5 + 31*x^4 + 331*x^3 + 1395*x^2 + 1731*x -412)^2*(x^7 -45*x^6 + 787*x^5 -6611*x^4 + 25555*x^3 -26582*x^2 -47812*x -10832)^2*(x^2 -16*x + 44)^2*(x^5 -9*x^4 -119*x^3 + 1239*x^2 -2057*x -3134)^2*(x )^3*(x + 4)^4*(x^2 + 4*x -4)^4*(x -6)^5*(x + 12)^7;
T[602,61]=(x + 6)*(x -12)*(x^3 + 6*x^2 -52*x -56)*(x^3 -16*x -8)*(x^4 -4*x^3 -88*x^2 + 592*x -944)*(x^2 -180)*(x^3 + 6*x^2 -116*x -184)*(x^3 -6*x^2 -28*x + 8)*(x -8)^2*(x^2 -4*x -76)^2*(x^4 + 10*x^3 -79*x^2 -636*x -989)^2*(x^5 + 2*x^4 -55*x^3 -94*x^2 + 669*x + 846)^2*(x^5 + 10*x^4 -113*x^3 -1518*x^2 -4775*x -4508)^2*(x^7 + 20*x^6 -53*x^5 -2734*x^4 -9793*x^3 + 49068*x^2 + 264040*x + 236648)^2*(x^2 -8*x -2)^4*(x -2)^9;
T[602,67]=(x^3 -27*x^2 + 140*x + 592)*(x^3 + 26*x^2 + 204*x + 496)*(x^4 -12*x^3 -175*x^2 + 2694*x -7676)*(x^2 -10*x + 20)*(x^3 -x^2 -102*x -364)*(x^3 + 18*x^2 + 65*x -100)*(x )*(x + 4)^2*(x -15)^2*(x^4 + 2*x^3 -47*x^2 + 68*x + 23)^2*(x^5 -11*x^4 -137*x^3 + 1439*x^2 + 3699*x -32787)^2*(x^5 + 10*x^4 -115*x^3 -1120*x^2 + 1899*x + 19232)^2*(x^7 -7*x^6 -105*x^5 + 859*x^4 -193*x^3 -8291*x^2 + 7892*x + 15152)^2*(x -2)^4*(x + 10)^4*(x + 3)^4*(x^2 -2*x -71)^4;
T[602,71]=(x + 8)*(x -3)*(x + 5)*(x^2 -10*x + 20)*(x^3 + 23*x^2 + 144*x + 256)*(x^3 -10*x^2 -124*x + 1184)*(x^3 -19*x^2 + 94*x -84)*(x^3 + 2*x^2 -127*x -88)*(x^4 -12*x^3 -103*x^2 + 630*x + 2548)*(x^2 -84)^2*(x^2 + 16*x + 44)^2*(x^4 + 11*x^3 -145*x^2 -1039*x + 6663)^2*(x^5 -17*x^4 + 19*x^3 + 429*x^2 -497*x -2888)^2*(x^5 + 15*x^4 + 13*x^3 -99*x^2 -81*x + 54)^2*(x^7 -13*x^6 -103*x^5 + 1377*x^4 + 3519*x^3 -39338*x^2 -57312*x + 224768)^2*(x )^2*(x -2)^4*(x^2 + 12*x + 28)^4;
T[602,73]=(x -4)*(x + 2)*(x^3 + 6*x^2 -216*x -864)*(x^4 -168*x^2 + 4608)*(x^3 -10*x^2 + 8*x + 80)*(x^3 + 14*x^2 -40*x -416)*(x^2 + 4*x -16)*(x^4 -13*x^3 -225*x^2 + 1701*x + 17539)^2*(x^5 -13*x^4 -87*x^3 + 1259*x^2 -149*x -11282)^2*(x^7 + 19*x^6 -45*x^5 -3229*x^4 -27525*x^3 -101672*x^2 -172968*x -107608)^2*(x^2 -4*x -76)^2*(x^5 + x^4 -145*x^3 + 139*x^2 + 2169*x -316)^2*(x + 8)^3*(x^2 + 24*x + 126)^4*(x -14)^5*(x -2)^6;
T[602,79]=(x + 4)*(x^3 + 8*x^2 -56*x + 64)*(x^3 + 11*x^2 + 25*x + 16)*(x^3 -24*x^2 + 128*x + 64)*(x^3 + 19*x^2 -135*x -2916)*(x^2 + 7*x -139)*(x^4 + 3*x^3 -103*x^2 + 384*x -344)*(x -4)^2*(x -8)^2*(x^2 + x -1)^2*(x^2 + 5*x -41)^2*(x^7 -12*x^6 -301*x^5 + 4110*x^4 + 17991*x^3 -334140*x^2 + 119952*x + 5237888)^2*(x^5 + 4*x^4 -65*x^3 -278*x^2 + 803*x + 3364)^2*(x^4 + 32*x^3 + 335*x^2 + 1254*x + 1427)^2*(x^5 -24*x^4 + 35*x^3 + 1570*x^2 + 39*x -16344)^2*(x + 8)^4*(x^2 -4*x -4)^4;
T[602,83]=(x + 12)*(x -18)*(x + 4)*(x^3 -40*x + 64)*(x^3 -4*x^2 -124*x + 288)*(x^3 -244*x -256)*(x^3 + 26*x^2 + 148*x -224)*(x^4 -8*x^3 -172*x^2 + 1568*x -1568)*(x -6)^2*(x + 6)^2*(x^2 + 10*x -20)^2*(x^2 + 6*x -12)^2*(x^4 + 15*x^3 -54*x^2 -1004*x -1449)^2*(x^5 -23*x^4 + 134*x^3 + 136*x^2 -2483*x + 3958)^2*(x^5 + 36*x^4 + 399*x^3 + 920*x^2 -4849*x + 1187)^2*(x^7 + 6*x^6 -179*x^5 -1296*x^4 + 873*x^3 + 16327*x^2 + 5130*x -40636)^2*(x -15)^4*(x^2 -18*x + 49)^4;
T[602,89]=(x + 7)*(x + 3)*(x + 16)*(x^2 + 4*x -16)*(x^3 -9*x^2 -164*x + 1488)*(x^3 -4*x^2 -25*x -22)*(x^3 -24*x^2 + 128*x -64)*(x^3 + 15*x^2 -28*x -784)*(x^4 -2*x^3 -105*x^2 + 412*x + 208)*(x + 6)^2*(x^2 -6*x -12)^2*(x^2 -2*x -44)^2*(x^4 + x^3 -85*x^2 -17*x + 1587)^2*(x^5 + 15*x^4 -95*x^3 -1477*x^2 + 2481*x + 15788)^2*(x^5 -35*x^4 + 381*x^3 -1221*x^2 -2831*x + 16184)^2*(x^7 + 17*x^6 -95*x^5 -1707*x^4 -791*x^3 + 23682*x^2 + 13340*x -95888)^2*(x + 4)^4*(x^2 + 12*x + 18)^4;
T[602,97]=(x -18)*(x -12)*(x + 4)*(x^2 + 9*x + 19)*(x^3 -5*x^2 -159*x -346)*(x^3 -3*x^2 -5*x + 8)*(x^3 -8*x^2 -180*x + 1568)*(x^3 -10*x^2 + 64)*(x^4 -11*x^3 -105*x^2 + 1528*x -4112)*(x + 10)^2*(x^2 + 11*x -17)^2*(x^2 + 11*x -1)^2*(x^4 -22*x^3 + 74*x^2 + 417*x -427)^2*(x^5 + 13*x^4 -178*x^3 -1691*x^2 + 8052*x -5463)^2*(x^5 + 2*x^4 -284*x^3 -343*x^2 + 17909*x -19726)^2*(x^7 + 15*x^6 -346*x^5 -5549*x^4 + 490*x^3 + 184727*x^2 + 220652*x -636788)^2*(x -7)^4*(x^2 + 2*x -7)^4;

T[603,2]=(x^2 -3*x + 1)*(x^2 -x -1)*(x^6 -12*x^4 + 37*x^2 -12)*(x^5 -8*x^3 + 13*x -2)*(x^3 + 3*x^2 -x -5)*(x^4 -4*x^2 + 1)*(x^3 -3*x^2 -x + 5)^2*(x^5 -8*x^3 + 13*x + 2)^2*(x + 2)^3*(x^2 + 3*x + 1)^3*(x^2 + x -1)^3*(x -1)^4*(x + 1)^4*(x -2)^4;
T[603,3]=(x^2 + 2*x + 3)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^4 -x^3 + 5*x^2 -3*x + 9)*(x + 1)^5*(x -1)^6*(x )^44;
T[603,5]=(x -1)*(x^2 + 4*x -1)*(x^6 -24*x^4 + 181*x^2 -432)*(x^3 + x^2 -3*x -1)*(x^5 -3*x^4 -9*x^3 + 19*x^2 + 10*x -16)*(x^4 -12*x^2 + 9)*(x + 2)^2*(x + 1)^2*(x^3 -x^2 -3*x + 1)^2*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)^2*(x -3)^3*(x^2 -4*x -1)^3*(x )^3*(x -2)^4*(x + 3)^8;
T[603,7]=(x -4)^2*(x^2 + 4*x + 1)^2*(x^3 -11*x + 8)^2*(x + 3)^3*(x + 5)^3*(x^3 -x^2 -5*x + 1)^3*(x^5 -7*x^4 + 3*x^3 + 63*x^2 -128*x + 64)^3*(x )^3*(x + 2)^4*(x^2 -x -1)^4*(x^2 + x -11)^4;
T[603,11]=(x -6)*(x^5 -20*x^3 + 4*x^2 + 56*x + 32)*(x^6 -32*x^4 + 196*x^2 -48)*(x^3 + 10*x^2 + 24*x -4)*(x^4 -28*x^2 + 4)*(x + 6)^2*(x + 1)^2*(x^3 -10*x^2 + 24*x + 4)^2*(x^5 -20*x^3 -4*x^2 + 56*x -32)^2*(x -4)^3*(x )^3*(x^2 -5)^4*(x -1)^6*(x + 4)^6;
T[603,13]=(x^2 + 10*x + 22)^2*(x^3 -10*x^2 + 6*x + 104)^2*(x + 4)^3*(x^3 + 8*x^2 + 12*x + 4)^3*(x^5 -10*x^4 + 20*x^3 + 36*x^2 -88*x -32)^3*(x^2 + x -1)^4*(x^2 + 7*x + 1)^4*(x -2)^6*(x -4)^6;
T[603,17]=(x + 3)*(x -7)*(x + 6)*(x + 2)*(x^6 -43*x^4 + 304*x^2 -588)*(x^5 -5*x^4 -46*x^3 + 96*x^2 + 636*x + 568)*(x^3 -28*x -52)*(x^4 -28*x^2 + 4)*(x -2)^2*(x + 7)^2*(x -6)^2*(x^3 -28*x + 52)^2*(x^5 + 5*x^4 -46*x^3 -96*x^2 + 636*x -568)^2*(x )^2*(x -3)^3*(x^2 -6*x + 4)^4*(x^2 + 6*x + 4)^4;
T[603,19]=(x -4)^2*(x^2 + 2*x -26)^2*(x^3 -3*x^2 -8*x + 2)^2*(x + 5)^3*(x^3 + 2*x^2 -44*x -20)^3*(x^5 -5*x^4 -46*x^3 + 248*x^2 -180*x -16)^3*(x -7)^4*(x^2 -x -11)^4*(x^2 + 11*x + 29)^4*(x + 2)^6;
T[603,23]=(x -7)*(x -6)*(x -1)*(x + 6)*(x -3)*(x + 9)*(x^2 -2*x -19)*(x^2 + 6*x -11)*(x^3 + 3*x^2 -31*x -95)*(x^5 -2*x^4 -14*x^3 -8*x^2 + 11*x + 4)*(x^4 -76*x^2 + 121)*(x^6 -63*x^4 + 877*x^2 -3)*(x + 1)^2*(x + 7)^2*(x + 3)^2*(x^3 -3*x^2 -31*x + 95)^2*(x^5 + 2*x^4 -14*x^3 + 8*x^2 + 11*x -4)^2*(x -9)^3*(x^2 + 2*x -19)^3*(x^2 -6*x -11)^3;
T[603,29]=(x -8)*(x + 1)*(x -5)*(x^2 + 10*x + 5)*(x^2 -6*x -11)*(x^6 -63*x^4 + 832*x^2 -3072)*(x^3 + 4*x^2 -48*x -64)*(x^5 + 3*x^4 -98*x^3 -224*x^2 + 2048*x + 2048)*(x^4 -64*x^2 + 256)*(x + 4)^2*(x -1)^2*(x + 8)^2*(x^3 -4*x^2 -48*x + 64)^2*(x^5 -3*x^4 -98*x^3 + 224*x^2 + 2048*x -2048)^2*(x -4)^3*(x + 5)^3*(x^2 + 6*x -11)^3*(x^2 -10*x + 5)^3;
T[603,31]=(x -8)^2*(x^2 + 2*x -11)^2*(x^3 + 10*x^2 -3*x -36)^2*(x + 4)^3*(x + 7)^3*(x^3 -11*x^2 -13*x + 295)^3*(x^5 -9*x^4 -x^3 + 173*x^2 -332*x -32)^3*(x + 10)^4*(x^2 -45)^4*(x + 1)^11;
T[603,37]=(x -2)^2*(x^2 + 16*x + 61)^2*(x^3 -5*x^2 -59*x + 319)^2*(x + 3)^3*(x -3)^3*(x -5)^3*(x^3 + 9*x^2 -13*x -169)^3*(x^5 -8*x^4 -68*x^3 + 438*x^2 + 655*x -818)^3*(x + 1)^4*(x^2 + x -11)^4*(x^2 -3*x + 1)^4;
T[603,41]=(x -9)*(x -3)*(x + 6)*(x -6)*(x^2 -3*x + 1)*(x^2 + 5*x -25)*(x^3 + x^2 -61*x + 97)*(x^5 -7*x^4 -15*x^3 + 129*x^2 -14*x -32)*(x^4 -172*x^2 + 3721)*(x^6 -168*x^4 + 5437*x^2 -8112)*(x + 9)^2*(x + 3)^2*(x^3 -x^2 -61*x -97)^2*(x^5 + 7*x^4 -15*x^3 -129*x^2 -14*x + 32)^2*(x^2 + 3*x + 1)^3*(x^2 -5*x -25)^3*(x )^7;
T[603,43]=(x -4)^2*(x^2 + 6*x -39)^2*(x^3 + 4*x^2 -35*x -86)^2*(x + 6)^3*(x -7)^3*(x -9)^3*(x^5 -x^4 -91*x^3 + 205*x^2 + 1974*x -6056)^3*(x + 2)^4*(x^2 -3*x -9)^4*(x^2 + 9*x -11)^4*(x + 1)^9;
T[603,47]=(x -1)*(x + 8)*(x + 2)*(x + 9)*(x -2)*(x^2 -15*x + 55)*(x^2 -7*x + 11)*(x^6 -75*x^4 + 1624*x^2 -10092)*(x^5 -5*x^4 -46*x^3 + 248*x^2 -180*x -16)*(x^3 + 18*x^2 + 60*x -52)*(x -9)^2*(x -8)^2*(x^2 -98)^2*(x^3 -18*x^2 + 60*x + 52)^2*(x^5 + 5*x^4 -46*x^3 -248*x^2 -180*x + 16)^2*(x + 1)^3*(x^2 + 15*x + 55)^3*(x^2 + 7*x + 11)^3*(x )^3;
T[603,53]=(x -5)*(x + 1)*(x^5 -15*x^4 -97*x^3 + 1933*x^2 -4176*x + 1588)*(x^6 -108*x^4 + 2997*x^2 -8748)*(x^3 + 7*x^2 -77*x + 131)*(x^4 -84*x^2 + 1521)*(x -9)^2*(x -1)^2*(x + 5)^2*(x^3 -7*x^2 -77*x -131)^2*(x^5 + 15*x^4 -97*x^3 -1933*x^2 -4176*x -1588)^2*(x + 10)^3*(x^2 -45)^4*(x -10)^6*(x + 9)^6;
T[603,59]=(x^5 -6*x^4 -104*x^3 + 284*x^2 + 2465*x + 496)*(x^6 -423*x^4 + 53541*x^2 -1839267)*(x^3 + 15*x^2 -25*x -625)*(x^4 -84*x^2 + 1089)*(x + 3)^2*(x^3 -15*x^2 -25*x + 625)^2*(x^5 + 6*x^4 -104*x^3 -284*x^2 + 2465*x -496)^2*(x + 9)^3*(x -3)^4*(x -9)^4*(x -6)^9*(x + 6)^9;
T[603,61]=(x^2 + 10*x -50)^2*(x^3 -8*x^2 -54*x + 324)^2*(x -2)^3*(x -14)^3*(x^3 + 2*x^2 -76*x + 116)^3*(x^5 -6*x^4 -96*x^3 + 1044*x^2 -3472*x + 3856)^3*(x^2 + 7*x -89)^4*(x^2 + 9*x + 9)^4*(x + 2)^9;
T[603,67]=(x -1)^32*(x + 1)^33;
T[603,71]=(x -12)*(x + 6)*(x -16)*(x -4)*(x -6)*(x^2 + 12*x + 31)*(x^6 -40*x^4 + 388*x^2 -48)*(x^5 + 22*x^4 + 20*x^3 -2148*x^2 -12592*x -10624)*(x^3 + 18*x^2 + 68*x -100)*(x^4 -436*x^2 + 45796)*(x + 12)^2*(x + 4)^2*(x + 16)^2*(x^3 -18*x^2 + 68*x + 100)^2*(x^5 -22*x^4 + 20*x^3 + 2148*x^2 -12592*x + 10624)^2*(x^2 -12*x + 31)^3*(x^2 -245)^4*(x )^4;
T[603,73]=(x + 10)^2*(x^2 + 2*x -47)^2*(x + 13)^3*(x^3 + 19*x^2 + 83*x + 97)^3*(x^5 -284*x^3 + 534*x^2 + 19963*x -78838)^3*(x + 7)^7*(x -8)^8*(x + 4)^8*(x -11)^9;
T[603,79]=(x^2 -8*x -92)^2*(x^3 -44*x -64)^2*(x -8)^3*(x + 16)^3*(x^3 -28*x^2 + 248*x -688)^3*(x^5 -28*x^4 -24*x^3 + 5936*x^2 -39680*x -1024)^3*(x^2 + 11*x -31)^4*(x^2 + 7*x -89)^4*(x + 8)^9;
T[603,83]=(x + 5)*(x + 1)*(x -2)*(x + 2)*(x^2 -15*x -5)*(x^2 + 13*x + 31)*(x^3 -7*x^2 -21*x + 25)*(x^5 + 9*x^4 -229*x^3 -2819*x^2 -6284*x -3904)*(x^4 -52*x^2 + 1)*(x^6 -380*x^4 + 45733*x^2 -1705548)*(x -1)^2*(x -5)^2*(x^3 + 7*x^2 -21*x -25)^2*(x^5 -9*x^4 -229*x^3 + 2819*x^2 -6284*x + 3904)^2*(x + 4)^3*(x^2 + 15*x -5)^3*(x^2 -13*x + 31)^3*(x -4)^4;
T[603,89]=(x + 7)*(x + 4)*(x + 16)*(x -15)*(x -16)*(x^2 -16*x + 19)*(x^6 -107*x^4 + 3112*x^2 -13068)*(x^3 -6*x^2 -148*x -116)*(x^5 -11*x^4 -80*x^3 + 284*x^2 + 1900*x + 2264)*(x + 15)^2*(x -4)^2*(x^2 -50)^2*(x^3 + 6*x^2 -148*x + 116)^2*(x^5 + 11*x^4 -80*x^3 -284*x^2 + 1900*x -2264)^2*(x -7)^3*(x^2 + 16*x + 19)^3*(x )^3*(x^2 -5)^4;
T[603,97]=(x -6)^2*(x^2 -2*x -26)^2*(x^3 + 10*x^2 -42*x -72)^2*(x -4)^3*(x + 12)^3*(x -16)^3*(x^3 + 8*x^2 -240*x -932)^3*(x^5 + 14*x^4 -176*x^3 -3964*x^2 -21880*x -36832)^3*(x^2 -2*x -179)^4*(x^2 -45)^4*(x )^4;

T[604,2]=(x^6 + x^4 + 3*x^3 + 2*x^2 + 8)*(x^6 + 2*x^5 + 5*x^4 + 7*x^3 + 10*x^2 + 8*x + 8)*(x^12 -x^11 + 5*x^10 -7*x^9 + 17*x^8 -19*x^7 + 43*x^6 -38*x^5 + 68*x^4 -56*x^3 + 80*x^2 -32*x + 64)*(x -1)^6*(x + 1)^7*(x )^37;
T[604,3]=(x^3 + 3*x^2 -6*x -17)*(x^6 -3*x^5 -6*x^4 + 17*x^3 + 10*x^2 -16*x -8)*(x + 1)^2*(x + 3)^2*(x^2 + 2*x -1)^2*(x^4 -10*x^2 -6*x + 9)^2*(x^4 -2*x^3 -4*x^2 + 8*x -1)^2*(x^3 + x^2 -2*x -1)^3*(x^6 + 5*x^5 -4*x^4 -51*x^3 -68*x^2 -12*x + 8)^3*(x )^3*(x -2)^11;
T[604,5]=(x^3 + 3*x^2 -6*x -17)*(x^6 -6*x^5 + x^4 + 44*x^3 -80*x^2 + 48*x -9)*(x^3 + 3*x^2 -2*x -3)*(x + 4)^2*(x -2)^2*(x^4 + 4*x^3 -8*x^2 -44*x -36)^2*(x^4 -8*x^2 -4*x + 4)^2*(x^3 -5*x^2 -2*x + 25)^3*(x^3 + 7*x^2 + 14*x + 7)^3*(x^6 -6*x^5 + 5*x^4 + 16*x^3 -8*x^2 -12*x -1)^3*(x )^6;
T[604,7]=(x^3 + 3*x^2 -9*x -19)*(x^6 -5*x^5 -3*x^4 + 37*x^3 -14*x^2 -64*x + 40)*(x^3 -20*x -8)*(x -4)^2*(x^2 + 4*x -4)^2*(x^4 -2*x^3 -8*x^2 + 8*x + 4)^2*(x^4 -6*x^3 + 4*x^2 + 24*x -28)^2*(x^6 -3*x^5 -33*x^4 + 119*x^3 + 200*x^2 -1100*x + 1000)^3*(x + 1)^9*(x + 2)^13;
T[604,11]=(x^3 + 9*x^2 + 15*x -17)*(x^6 -10*x^5 + 30*x^4 -23*x^3 -14*x^2 + 9*x -1)*(x^3 + 5*x^2 -2*x -15)*(x + 4)^2*(x + 6)^2*(x -2)^2*(x^2 -4*x -4)^2*(x^4 -36*x^2 + 4*x + 12)^2*(x^4 -20*x^2 -4*x + 52)^2*(x^3 + x^2 -20*x + 25)^3*(x^3 + 5*x^2 -x -13)^3*(x^6 -8*x^5 + 14*x^4 + 23*x^3 -64*x^2 -7*x + 49)^3;
T[604,13]=(x^3 + 3*x^2 -3)*(x^6 -x^5 -16*x^4 + 7*x^3 + 52*x^2 -12*x -8)*(x^3 + 2*x^2 -32*x -88)*(x + 6)^2*(x + 2)^2*(x^2 + 8*x + 8)^2*(x^4 -14*x^3 + 64*x^2 -104*x + 36)^2*(x^4 -6*x^3 -12*x^2 + 64*x -52)^2*(x )^2*(x^3 + 2*x^2 -32*x -24)^3*(x^3 + x^2 -16*x + 13)^3*(x^6 + x^5 -40*x^4 -x^3 + 236*x^2 -36*x -328)^3;
T[604,17]=(x^3 -12*x^2 + 45*x -51)*(x^6 -x^5 -73*x^4 + 89*x^3 + 1517*x^2 -1429*x -8699)*(x^3 + 11*x^2 + 30*x + 9)*(x + 6)^2*(x^3 -9*x^2 + 22*x -15)^3*(x^3 + 8*x^2 + 5*x -43)^3*(x^6 -9*x^5 -21*x^4 + 245*x^3 + 117*x^2 -869*x + 253)^3*(x + 5)^6*(x + 1)^8*(x -3)^10;
T[604,19]=(x^3 + 9*x^2 + 18*x + 9)*(x^6 -4*x^5 -53*x^4 + 162*x^3 + 556*x^2 -728*x -875)*(x^3 + 7*x^2 -6*x + 1)*(x + 8)^2*(x^2 -8)^2*(x^4 -4*x^3 -24*x^2 + 124*x -116)^2*(x^4 -12*x^3 + 40*x^2 -4*x -108)^2*(x^3 + 3*x^2 -46*x -139)^3*(x^3 -3*x^2 -36*x + 81)^3*(x^6 + 6*x^5 -45*x^4 -150*x^3 + 524*x^2 + 558*x + 115)^3*(x )^4;
T[604,23]=(x^3 + 6*x^2 -9*x -51)*(x^6 -10*x^5 -31*x^4 + 635*x^3 -1872*x^2 -964*x + 7240)*(x^3 + 4*x^2 -28*x + 24)*(x -6)^2*(x + 6)^2*(x^2 -4*x -28)^2*(x^4 + 6*x^3 -12*x^2 -64*x -52)^2*(x^4 -2*x^3 -64*x^2 + 288*x -324)^2*(x )^2*(x^3 -20*x + 24)^3*(x^3 -21*x -7)^3*(x^6 + 4*x^5 -47*x^4 + 27*x^3 + 208*x^2 -208*x -64)^3;
T[604,29]=(x^3 + 21*x^2 + 144*x + 321)*(x^6 -2*x^5 -81*x^4 + 114*x^3 + 1492*x^2 -2158*x -4105)*(x^3 -7*x^2 -6*x -1)*(x -8)^2*(x -6)^2*(x^2 -32)^2*(x^4 + 4*x^3 -40*x^2 + 144)^2*(x^4 + 4*x^3 -16*x^2 -64*x -16)^2*(x )^2*(x^3 -3*x^2 -62*x -129)^3*(x^3 + x^2 -72*x + 41)^3*(x^6 + 2*x^5 -61*x^4 -18*x^3 + 244*x^2 -14*x -5)^3;
T[604,31]=(x^3 -3*x^2 -36*x -51)*(x^6 -16*x^5 -37*x^4 + 1822*x^3 -9880*x^2 + 11852*x + 17473)*(x^3 + 11*x^2 + 8*x -123)*(x + 3)^2*(x -9)^2*(x^2 + 6*x -23)^2*(x^4 -122*x^2 + 44*x + 3033)^2*(x^4 -4*x^3 -14*x^2 + 32*x + 37)^2*(x )^2*(x^3 + x^2 -8*x -3)^3*(x^3 + x^2 -30*x -43)^3*(x^6 + 8*x^5 -39*x^4 -386*x^3 -362*x^2 + 982*x + 271)^3;
T[604,37]=(x^3 + 3*x^2 -108*x -433)*(x^6 -4*x^5 -27*x^4 + 192*x^3 -408*x^2 + 334*x -83)*(x^3 + x^2 -62*x + 163)*(x -2)^2*(x^2 + 12*x + 28)^2*(x^4 -12*x^3 + 192*x + 128)^2*(x^4 + 8*x^3 -112*x^2 -800*x + 1216)^2*(x^3 -3*x^2 -42*x -37)^3*(x^3 -13*x^2 + 40*x -29)^3*(x^6 + 12*x^5 -51*x^4 -1032*x^3 -1344*x^2 + 19774*x + 56789)^3*(x + 2)^4;
T[604,41]=(x^3 -3*x^2 -81*x + 219)*(x^3 + 2*x^2 -64*x + 72)*(x^6 + 5*x^5 -171*x^4 -965*x^3 + 4978*x^2 + 23656*x -15880)*(x -12)^2*(x -6)^2*(x^2 + 8*x -56)^2*(x^4 + 8*x^3 -64*x^2 -528*x -144)^2*(x^4 + 12*x^3 + 32*x^2 -16)^2*(x^3 + 21*x^2 + 119*x + 91)^3*(x^6 -41*x^5 + 687*x^4 -6011*x^3 + 28912*x^2 -72348*x + 73432)^3*(x )^11;
T[604,43]=(x^3 + 6*x^2 -27*x -51)*(x^3 -5*x^2 -52*x -51)*(x^6 + 5*x^5 -97*x^4 -507*x^3 + 2169*x^2 + 12673*x + 7373)*(x^2 + 12*x + 4)^2*(x^4 -4*x^3 -48*x^2 + 272*x -288)^2*(x^4 -4*x^3 -56*x^2 + 208*x + 32)^2*(x )^2*(x^3 -16*x^2 + 41*x + 197)^3*(x^3 + x^2 -8*x -3)^3*(x^6 -x^5 -163*x^4 + 107*x^3 + 4263*x^2 + 2315*x -11425)^3*(x + 6)^4;
T[604,47]=(x^3 + 9*x^2 + 15*x -17)*(x^6 -16*x^5 + 4*x^4 + 691*x^3 -404*x^2 -8595*x -8713)*(x^3 + 19*x^2 + 98*x + 153)*(x -8)^2*(x + 7)^2*(x + 3)^2*(x^2 -14*x + 41)^2*(x^4 + 8*x^3 -30*x^2 -352*x -603)^2*(x^4 + 4*x^3 -170*x^2 -524*x + 5713)^2*(x^3 -3*x^2 -109*x + 559)^3*(x^3 + 13*x^2 + 52*x + 61)^3*(x^6 -28*x^5 + 206*x^4 + 715*x^3 -14856*x^2 + 57597*x -65843)^3;
T[604,53]=(x^3 + 6*x^2 -9*x + 3)*(x^6 + 4*x^5 -191*x^4 -1039*x^3 + 4888*x^2 + 34804*x + 37880)*(x^3 + 6*x^2 -8*x -24)*(x -9)^2*(x + 9)^2*(x + 12)^2*(x^2 -14*x + 31)^2*(x^4 -12*x^3 + 10*x^2 + 138*x + 81)^2*(x^4 + 6*x^3 -84*x^2 -400*x + 1043)^2*(x^3 + 8*x^2 -23*x -197)^3*(x^3 + 6*x^2 -144*x -648)^3*(x^6 -14*x^5 -53*x^4 + 1545*x^3 -6240*x^2 -524*x + 24664)^3;
T[604,59]=(x^3 + 15*x^2 -36*x -863)*(x^6 -26*x^5 + 181*x^4 + 154*x^3 -4030*x^2 + 2220*x + 10741)*(x^3 + 23*x^2 + 144*x + 149)*(x + 4)^2*(x + 10)^2*(x^4 + 32*x^3 + 312*x^2 + 860*x + 276)^2*(x^4 -4*x^3 -208*x^2 + 1036*x -1076)^2*(x^3 -23*x^2 + 168*x -387)^3*(x^3 + x^2 -100*x + 181)^3*(x^6 -12*x^5 -x^4 + 24*x^3 + 6*x^2 -12*x -5)^3*(x -2)^6;
T[604,61]=(x^3 -9*x^2 -192*x + 1549)*(x^6 + x^5 -176*x^4 -185*x^3 + 9166*x^2 + 8232*x -123480)*(x^3 + 4*x^2 -132*x -792)*(x -5)^2*(x -8)^2*(x + 13)^2*(x^2 + 6*x -9)^2*(x^4 + 8*x^3 -86*x^2 -246*x + 9)^2*(x^4 -2*x^3 -140*x^2 + 172*x + 4507)^2*(x^3 + 8*x^2 -112*x -320)^3*(x^3 + x^2 -58*x + 13)^3*(x^6 -5*x^5 -154*x^4 + 251*x^3 + 5490*x^2 + 3168*x -16984)^3;
T[604,67]=(x^3 -9*x^2 -30*x + 37)*(x^6 -x^5 -200*x^4 + 23*x^3 + 8360*x^2 + 15792*x + 1472)*(x^3 + 4*x^2 -28*x + 24)*(x + 7)^2*(x -2)^2*(x -3)^2*(x^2 -6*x -41)^2*(x^4 + 6*x^3 -106*x^2 -784*x -691)^2*(x^4 -4*x^3 -36*x^2 + 186*x -205)^2*(x^3 + x^2 -170*x + 41)^3*(x^3 -2*x^2 -132*x + 72)^3*(x^6 + 15*x^5 -122*x^4 -1709*x^3 + 5026*x^2 + 30272*x + 14696)^3;
T[604,71]=(x^3 + 18*x^2 + 45*x -153)*(x^6 -22*x^5 + 111*x^4 + 547*x^3 -5594*x^2 + 8820*x + 10808)*(x^3 + 4*x^2 -160*x -64)*(x + 12)^2*(x -4)^2*(x -12)^2*(x^2 -16*x + 56)^2*(x^4 + 14*x^3 + 28*x^2 -264*x -828)^2*(x^4 -6*x^3 -56*x^2 + 488*x -908)^2*(x^3 -20*x -24)^3*(x^3 + 14*x^2 -49*x -889)^3*(x^6 + 2*x^5 -151*x^4 + 327*x^3 + 1730*x^2 -1832*x -4024)^3;
T[604,73]=(x^3 -3*x^2 -33*x -37)*(x^6 + 25*x^5 + 121*x^4 -613*x^3 -2114*x^2 + 3268*x + 9208)*(x^3 -8*x^2 -108*x -104)*(x -4)^2*(x + 8)^2*(x -10)^2*(x^2 -32)^2*(x^4 + 2*x^3 -32*x^2 -32*x + 268)^2*(x^4 -2*x^3 -156*x^2 + 1048*x -1796)^2*(x^3 -10*x^2 + 72)^3*(x^3 + x^2 -65*x -169)^3*(x^6 + 7*x^5 -325*x^4 -1647*x^3 + 24708*x^2 + 35552*x -135872)^3;
T[604,79]=(x^3 + 2*x^2 -260*x -1096)*(x^3 -9*x^2 -30*x + 251)*(x^6 -7*x^5 -260*x^4 + 1177*x^3 + 20926*x^2 -38320*x -474296)*(x + 8)^2*(x^2 + 12*x + 4)^2*(x^4 -288*x^2 + 288*x + 17216)^2*(x^3 + 3*x^2 -88*x -293)^3*(x^3 + 26*x^2 + 192*x + 360)^3*(x^6 + 9*x^5 -270*x^4 -1667*x^3 + 18962*x^2 + 74696*x -195080)^3*(x -10)^4*(x -4)^8;
T[604,83]=(x^3 + 27*x^2 + 231*x + 629)*(x^6 -9*x^5 -135*x^4 + 1421*x^3 -1550*x^2 -12856*x + 25864)*(x^3 -16*x^2 -48*x + 1088)*(x + 14)^2*(x + 1)^2*(x + 11)^2*(x^2 + 2*x -97)^2*(x^4 + 18*x^3 + 46*x^2 -308*x + 249)^2*(x^4 -20*x^3 -52*x^2 + 2114*x -7801)^2*(x^3 -28*x^2 + 172*x + 296)^3*(x^3 + 3*x^2 -25*x -83)^3*(x^6 + 11*x^5 -155*x^4 -1371*x^3 + 9914*x^2 + 44944*x -260696)^3;
T[604,89]=(x^3 + 24*x^2 + 144*x + 192)*(x^6 + 6*x^5 -240*x^4 -984*x^3 + 11744*x^2 + 51584*x + 51712)*(x -8)^2*(x + 6)^2*(x^2 + 16*x -8)^2*(x^4 -10*x^3 -236*x^2 + 2592*x -684)^2*(x^4 + 14*x^3 -96*x^2 -1136*x + 2500)^2*(x )^2*(x -14)^3*(x^3 -36*x^2 + 412*x -1464)^3*(x^6 -36*x^5 + 364*x^4 + 424*x^3 -22080*x^2 + 67200*x + 64000)^3*(x + 12)^9;
T[604,97]=(x^3 -24*x^2 + 129*x -179)*(x^6 + 13*x^5 -281*x^4 -2015*x^3 + 29679*x^2 + 14273*x -516673)*(x^3 -3*x^2 -74*x -45)*(x -2)^2*(x + 15)^2*(x^4 -16*x^3 + 50*x^2 + 200*x -731)^2*(x^4 + 8*x^3 -262*x^2 -1904*x + 8381)^2*(x^3 -63*x + 189)^3*(x^3 + 5*x^2 -238*x -965)^3*(x^6 -11*x^5 + 3*x^4 + 105*x^3 + 3*x^2 -291*x -193)^3*(x + 7)^6;

T[605,2]=(x^3 + x^2 -7*x -9)*(x^3 -x^2 -7*x + 9)*(x^4 + x^3 -3*x^2 -x + 1)*(x^4 -x^3 -3*x^2 + x + 1)*(x^6 -9*x^4 + 15*x^2 -3)*(x^2 + 2*x -1)*(x^4 + 3*x^3 -3*x^2 -11*x -1)*(x^4 -3*x^3 -3*x^2 + 11*x -1)*(x -2)^2*(x^2 -2*x -1)^2*(x^2 -3)^2*(x )^2*(x + 2)^4*(x + 1)^4*(x -1)^5;
T[605,3]=(x + 3)^2*(x^3 -x^2 -5*x -1)^2*(x^3 -3*x^2 -3*x + 7)^2*(x^4 -6*x^2 + 5*x -1)^2*(x^4 + 2*x^3 -4*x^2 -5*x + 5)^2*(x^2 -8)^3*(x )^3*(x -2)^6*(x + 1)^10;
T[605,5]=(x^2 + 3*x + 5)*(x^2 -x + 5)^5*(x -1)^21*(x + 1)^22;
T[605,7]=(x + 3)*(x -3)*(x^2 -12)*(x^2 -3)*(x^3 -x^2 -19*x + 37)*(x^3 + x^2 -19*x -37)*(x^4 + 3*x^3 -11*x^2 -23*x + 31)*(x^4 -3*x^3 -11*x^2 + 23*x + 31)*(x^6 -9*x^4 + 15*x^2 -3)*(x^4 -11*x^3 + 39*x^2 -45*x + 5)*(x^4 + 11*x^3 + 39*x^2 + 45*x + 5)*(x )^5*(x -2)^6*(x + 2)^10;
T[605,11]=(x + 1)*(x -1)^4*(x )^50;
T[605,13]=(x + 2)*(x^3 + 6*x^2 + 4*x -4)*(x^3 -6*x^2 + 4*x + 4)*(x^4 -x^3 -25*x^2 + 7*x + 139)*(x^4 + x^3 -25*x^2 -7*x + 139)*(x^2 -12)*(x^2 -8*x + 8)*(x^4 + 7*x^3 + 7*x^2 -9*x -11)*(x^4 -7*x^3 + 7*x^2 + 9*x -11)*(x^6 -72*x^4 + 1296*x^2 -3888)*(x -2)^2*(x -1)^2*(x + 1)^2*(x^2 + 8*x + 8)^2*(x + 4)^3*(x )^4*(x -4)^5;
T[605,17]=(x + 6)*(x^3 + 4*x^2 -16*x -48)*(x^3 -4*x^2 -16*x + 48)*(x^4 -x^3 -20*x^2 + 32*x + 19)*(x^4 + x^3 -20*x^2 -32*x + 19)*(x^6 -48*x^4 + 384*x^2 -768)*(x^2 + 8*x + 8)*(x^4 -3*x^3 -8*x^2 + 26*x -11)*(x^4 + 3*x^3 -8*x^2 -26*x -11)*(x -6)^2*(x + 5)^2*(x -5)^2*(x -2)^2*(x^2 -8*x + 8)^2*(x^2 -48)^2*(x + 2)^4*(x )^4;
T[605,19]=(x^2 -12)*(x^2 -48)*(x^3 + 4*x^2 -12*x -36)*(x^3 -4*x^2 -12*x + 36)*(x^4 -20*x^3 + 130*x^2 -275*x + 25)*(x^4 + 20*x^3 + 130*x^2 + 275*x + 25)*(x^6 -36*x^4 + 96*x^2 -48)*(x^4 + 12*x^3 + 46*x^2 + 65*x + 25)*(x^4 -12*x^3 + 46*x^2 -65*x + 25)*(x -4)^2*(x + 6)^2*(x -6)^2*(x + 4)^3*(x )^14;
T[605,23]=(x + 9)^2*(x + 8)^2*(x -6)^2*(x^3 -6*x^2 -12*x + 84)^2*(x^3 + 6*x^2 + 4*x -12)^2*(x^4 -5*x^3 + 4*x^2 + 10*x -11)^2*(x^4 + 9*x^3 -54*x^2 -706*x -1669)^2*(x )^2*(x -4)^3*(x^2 -8)^3*(x -2)^4*(x + 1)^6;
T[605,29]=(x^3 -2*x^2 -28*x + 72)*(x^3 + 2*x^2 -28*x -72)*(x^4 + 12*x^3 + 20*x^2 -171*x -451)*(x^4 -12*x^3 + 20*x^2 + 171*x -451)*(x^2 + 4*x -28)*(x^4 -8*x^3 -4*x^2 + 95*x -55)*(x^4 + 8*x^3 -4*x^2 -95*x -55)*(x^6 -144*x^4 + 5184*x^2 -6912)*(x + 9)^2*(x + 6)^2*(x -9)^2*(x^2 -4*x -28)^2*(x -6)^3*(x )^12;
T[605,31]=(x -4)^2*(x + 5)^2*(x^3 -14*x^2 + 48*x -36)^2*(x^3 -48*x -124)^2*(x^4 + 5*x^3 -75*x^2 -125*x + 625)^2*(x^4 -3*x^3 -31*x^2 + 3*x + 101)^2*(x + 8)^5*(x + 2)^6*(x -7)^6*(x )^6;
T[605,37]=(x -10)^2*(x -7)^2*(x^3 -4*x^2 -24*x -16)^2*(x^3 -24*x -16)^2*(x^4 -7*x^3 -100*x^2 + 826*x -1151)^2*(x^4 + 3*x^3 -56*x^2 -28*x + 151)^2*(x + 2)^3*(x^2 + 4*x -28)^3*(x + 8)^4*(x + 3)^4*(x -3)^6;
T[605,41]=(x + 2)*(x^2 -48)*(x^2 -147)*(x^3 + 9*x^2 -45*x -297)*(x^3 -9*x^2 -45*x + 297)*(x^4 + 11*x^3 + 6*x^2 -174*x -319)*(x^4 -11*x^3 + 6*x^2 + 174*x -319)*(x^6 -105*x^4 + 2499*x^2 -7203)*(x^4 -7*x^3 -46*x^2 + 382*x -499)*(x^4 + 7*x^3 -46*x^2 -382*x -499)*(x + 6)^2*(x -2)^2*(x -8)^2*(x )^2*(x -5)^3*(x + 5)^3*(x -6)^4*(x + 8)^4;
T[605,43]=(x + 4)*(x + 5)*(x -5)*(x^2 -75)*(x^2 -12)*(x^3 -7*x^2 -3*x + 63)*(x^3 + 7*x^2 -3*x -63)*(x^4 -19*x^3 + 121*x^2 -289*x + 211)*(x^4 + 19*x^3 + 121*x^2 + 289*x + 211)*(x^6 -129*x^4 + 4695*x^2 -43923)*(x^4 + 21*x^3 + 121*x^2 + 191*x -59)*(x^4 -21*x^3 + 121*x^2 -191*x -59)*(x -4)^2*(x -6)^4*(x )^6*(x + 6)^8;
T[605,47]=(x -9)^2*(x + 3)^2*(x + 6)^2*(x^3 -21*x^2 + 141*x -303)^2*(x^3 + 15*x^2 -29*x -801)^2*(x^4 -5*x^3 -21*x^2 + 65*x + 169)^2*(x^4 + 3*x^3 -51*x^2 -133*x + 71)^2*(x^2 -8)^3*(x -2)^4*(x + 12)^5*(x -8)^6;
T[605,53]=(x -4)^2*(x^3 -12*x^2 -84*x + 732)^2*(x^3 + 6*x^2 + 4*x -12)^2*(x^4 + 11*x^3 -43*x^2 -311*x + 941)^2*(x^4 + 11*x^3 + 33*x^2 + 27*x -1)^2*(x + 2)^3*(x^2 -12*x + 4)^3*(x -9)^4*(x -6)^4*(x + 6)^8;
T[605,59]=(x + 15)^2*(x + 12)^2*(x + 2)^2*(x^3 -10*x^2 -52*x + 348)^2*(x^3 -12*x + 12)^2*(x^4 -9*x^3 -73*x^2 + 549*x -829)^2*(x^4 + 7*x^3 -109*x^2 -1195*x -3025)^2*(x )^2*(x -4)^3*(x^2 + 8*x -16)^3*(x -8)^4*(x -5)^6;
T[605,61]=(x -10)*(x + 11)*(x -11)*(x^2 -48)*(x^2 + 4*x -124)*(x^2 -75)*(x^4 + 12*x^3 + 23*x^2 -78*x -169)*(x^4 -12*x^3 + 23*x^2 + 78*x -169)*(x^6 -33*x^4 + 339*x^2 -1083)*(x^4 -4*x^3 -41*x^2 + 90*x + 55)*(x^4 + 4*x^3 -41*x^2 -90*x + 55)*(x^3 -3*x^2 -161*x + 919)*(x^3 + 3*x^2 -161*x -919)*(x + 10)^2*(x + 6)^2*(x -6)^2*(x + 12)^2*(x^2 -4*x -124)^2*(x )^2*(x -12)^4;
T[605,67]=(x -13)^2*(x -10)^2*(x + 13)^2*(x + 5)^2*(x^3 -15*x^2 + 69*x -97)^2*(x^3 -19*x^2 + 95*x -59)^2*(x^4 + 19*x^3 + 22*x^2 -1014*x -4079)^2*(x^4 + x^3 -82*x^2 -238*x -101)^2*(x + 16)^3*(x^2 -8*x -56)^3*(x -2)^4*(x + 7)^6;
T[605,71]=(x -2)^2*(x + 12)^2*(x^3 -6*x^2 + 4*x + 12)^2*(x^3 -12*x -12)^2*(x^4 -5*x^3 -46*x^2 + 170*x -131)^2*(x^4 + 15*x^3 -98*x^2 -2270*x -7799)^2*(x )^2*(x -8)^3*(x^2 -128)^3*(x -12)^4*(x + 3)^8;
T[605,73]=(x + 8)*(x -8)*(x + 14)*(x^3 + 12*x^2 + 16*x -32)*(x^3 -12*x^2 + 16*x + 32)*(x^4 + 11*x^3 + 10*x^2 -12*x -11)*(x^4 -11*x^3 + 10*x^2 + 12*x -11)*(x^2 -8*x + 8)*(x^2 -48)*(x^4 -9*x^3 -74*x^2 + 596*x -389)*(x^4 + 9*x^3 -74*x^2 -596*x -389)*(x^6 -192*x^4 + 6144*x^2 -49152)*(x + 2)^2*(x -2)^2*(x -14)^2*(x + 4)^2*(x^2 + 8*x + 8)^2*(x -4)^4*(x )^4;
T[605,79]=(x + 8)*(x^3 + 2*x^2 -76*x -296)*(x^3 -2*x^2 -76*x + 296)*(x^4 + 34*x^3 + 336*x^2 + 299*x -6779)*(x^4 -34*x^3 + 336*x^2 -299*x -6779)*(x^2 -48)*(x^2 -108)*(x^4 + 6*x^3 -96*x^2 -935*x -2155)*(x^4 -6*x^3 -96*x^2 + 935*x -2155)*(x^6 -276*x^4 + 11184*x^2 -101568)*(x -8)^2*(x + 4)^2*(x )^2*(x -4)^4*(x -10)^5*(x + 10)^7;
T[605,83]=(x^2 -12)*(x^2 -300)*(x^3 + 18*x^2 + 36*x -324)*(x^3 -18*x^2 + 36*x + 324)*(x^4 -11*x^3 -99*x^2 + 1239*x -1699)*(x^4 + 11*x^3 -99*x^2 -1239*x -1699)*(x^6 -312*x^4 + 14640*x^2 -40368)*(x^4 + 15*x^3 + 43*x^2 -25*x -29)*(x^4 -15*x^3 + 43*x^2 + 25*x -29)*(x -4)^2*(x )^2*(x + 4)^3*(x -6)^6*(x + 6)^10;
T[605,89]=(x -3)^2*(x + 6)^2*(x -1)^2*(x^3 + 15*x^2 -21*x -147)^2*(x^3 -11*x^2 -157*x + 1719)^2*(x^4 + 8*x^3 -102*x^2 -472*x + 1861)^2*(x^4 -150*x^2 -400*x + 725)^2*(x -10)^3*(x^2 + 4*x -124)^3*(x -15)^6*(x + 9)^6;
T[605,97]=(x + 8)^2*(x -17)^2*(x^3 -12*x^2 -36*x + 76)^2*(x^3 + 2*x^2 -228*x + 932)^2*(x^4 -32*x^3 + 210*x^2 + 896*x -3011)^2*(x^4 -6*x^3 -56*x^2 -90*x -25)^2*(x -10)^3*(x^2 + 4*x -28)^3*(x + 13)^4*(x + 10)^4*(x + 7)^6;

T[606,2]=(x^2 + 2*x + 2)*(x^14 + 2*x^12 + 4*x^10 + x^9 + 16*x^8 + 32*x^6 + 4*x^5 + 32*x^4 + 64*x^2 + 128)*(x^4 + 2*x^2 + 4)*(x^12 -x^11 + 5*x^10 -5*x^9 + 17*x^8 -14*x^7 + 38*x^6 -28*x^5 + 68*x^4 -40*x^3 + 80*x^2 -32*x + 64)*(x^14 + x^12 + 2*x^11 + x^10 -x^8 -2*x^7 -2*x^6 + 8*x^4 + 32*x^3 + 32*x^2 + 128)^2*(x^2 + 2)^3*(x -1)^16*(x + 1)^17;
T[606,3]=(x^2 + 3)*(x^6 + 3*x^5 + 9*x^4 + 17*x^3 + 27*x^2 + 27*x + 27)*(x^8 + x^7 + 4*x^6 + 10*x^5 + 14*x^4 + 30*x^3 + 36*x^2 + 27*x + 81)*(x^2 + 2*x + 3)^2*(x^14 -4*x^13 + 14*x^12 -34*x^11 + 88*x^10 -180*x^9 + 364*x^8 -616*x^7 + 1092*x^6 -1620*x^5 + 2376*x^4 -2754*x^3 + 3402*x^2 -2916*x + 2187)^2*(x -1)^25*(x + 1)^26;
T[606,5]=(x -3)*(x -1)*(x + 4)*(x^2 -6)*(x^2 -x -4)*(x^3 + x^2 -14*x -6)*(x + 3)^2*(x^2 + 4*x + 2)^2*(x^2 + 2*x -1)^2*(x^3 + 3*x^2 -6*x -17)^2*(x^4 -3*x^3 -4*x^2 + 7*x -2)^2*(x^6 -6*x^5 + x^4 + 34*x^3 -16*x^2 -32*x + 16)^2*(x^7 -6*x^6 -15*x^5 + 132*x^4 -20*x^3 -768*x^2 + 688*x + 544)^2*(x )^2*(x -2)^3*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67)^4*(x + 1)^6;
T[606,7]=(x -4)*(x + 3)*(x -2)*(x + 1)*(x + 5)*(x^2 + 5*x + 2)*(x^2 + 2*x -7)*(x^3 -11*x + 2)*(x -3)^2*(x^2 + 4*x + 2)^2*(x^3 + 3*x^2 -18*x -37)^2*(x^4 -2*x^3 -9*x^2 + 3*x + 13)^2*(x^6 -18*x^4 + 4*x^3 + 80*x^2 -32*x -32)^2*(x^7 -6*x^6 -20*x^5 + 136*x^4 + 112*x^3 -832*x^2 -192*x + 1024)^2*(x )^2*(x -1)^4*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14)^4*(x + 2)^7;
T[606,11]=(x^2 + 4*x -2)*(x^2 + 8*x + 14)*(x^2 -18)*(x^3 + 2*x^2 -10*x -12)*(x + 6)^2*(x^3 + 9*x^2 + 24*x + 17)^2*(x^4 -x^3 -28*x^2 + 39*x -8)^2*(x^7 + 10*x^6 + x^5 -312*x^4 -1293*x^3 -1600*x^2 + 700*x + 2000)^2*(x^6 -10*x^5 + 5*x^4 + 144*x^3 -125*x^2 -388*x -164)^2*(x -4)^3*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878)^4*(x + 2)^8*(x -2)^9;
T[606,13]=(x + 6)*(x -4)*(x + 4)*(x -2)*(x^2 -4*x + 2)*(x^2 + 2*x -16)*(x^2 -6)*(x^2 + 4*x -14)*(x^3 -8*x^2 + 10*x + 16)*(x + 3)^2*(x + 2)^2*(x^2 + 6*x + 1)^2*(x^3 + 3*x^2 -36*x -127)^2*(x^4 -x^3 -16*x^2 -19*x -4)^2*(x^6 -44*x^4 + 14*x^3 + 444*x^2 -492*x + 53)^2*(x^7 -10*x^6 + 210*x^4 -396*x^3 -104*x^2 + 425*x -62)^2*(x )^2*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001)^4*(x -1)^6;
T[606,17]=(x + 1)*(x + 2)*(x^2 + 2*x -5)*(x^2 -5*x + 2)*(x^3 -8*x^2 + 7*x + 18)*(x + 6)^2*(x + 5)^2*(x + 7)^2*(x -5)^2*(x^3 + 9*x^2 + 18*x -9)^2*(x^4 -4*x^3 -59*x^2 + 133*x + 813)^2*(x^6 -12*x^5 + 9*x^4 + 292*x^3 -656*x^2 -1336*x + 3504)^2*(x^7 -20*x^6 + 129*x^5 -162*x^4 -1328*x^3 + 4632*x^2 -2848*x -2848)^2*(x^2 + 6*x + 7)^4*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871)^4*(x -3)^6;
T[606,19]=(x^2 + 2*x -1)*(x^2 + 2*x -17)*(x^2 -3*x -36)*(x^2 -2*x -5)*(x^3 -10*x^2 + 3*x + 128)*(x )*(x -1)^2*(x -4)^2*(x^4 + 13*x^3 + 30*x^2 -84*x -8)^2*(x^6 + 10*x^5 -30*x^4 -518*x^3 -1002*x^2 + 1898*x + 4273)^2*(x^7 -2*x^6 -58*x^5 + 98*x^4 + 962*x^3 -926*x^2 -4875*x -1156)^2*(x -7)^3*(x + 3)^4*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880)^4*(x + 2)^6*(x + 5)^8;
T[606,23]=(x + 4)*(x -8)*(x + 8)*(x^2 + 8*x -2)*(x^2 + 4*x -2)*(x^2 -50)*(x^3 -4*x^2 -34*x + 144)*(x + 3)^2*(x + 5)^2*(x -6)^2*(x^2 -2*x -17)^2*(x^3 + 12*x^2 + 36*x + 8)^2*(x^4 -2*x^3 -28*x^2 + 48*x -16)^2*(x^6 -4*x^5 -83*x^4 + 120*x^3 + 1816*x^2 + 2784*x + 1168)^2*(x^7 -6*x^6 -59*x^5 + 328*x^4 + 952*x^3 -4640*x^2 -5104*x + 17536)^2*(x )^2*(x -4)^3*(x -1)^4*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64)^4;
T[606,29]=(x -3)*(x -2)*(x -8)*(x^2 -15*x + 52)*(x^2 -2*x -71)*(x^2 + 10*x + 17)*(x^3 + 6*x^2 + x -12)*(x^2 + 6*x -15)*(x )*(x + 5)^2*(x + 6)^2*(x -6)^2*(x + 7)^2*(x^2 -4*x -4)^2*(x^3 -84*x + 136)^2*(x^4 -9*x^3 -4*x^2 + 196*x -392)^2*(x^6 -8*x^5 -77*x^4 + 886*x^3 -1817*x^2 -3688*x + 10924)^2*(x^7 + 10*x^6 -9*x^5 -376*x^4 -957*x^3 + 1842*x^2 + 8708*x + 6584)^2*(x + 4)^4*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640)^4;
T[606,31]=(x + 6)*(x^2 + 3*x -2)*(x^2 + 4*x -2)*(x^2 + 8*x + 14)*(x^2 + 16*x + 62)*(x^3 -7*x^2 + 2*x + 22)*(x + 2)^2*(x + 1)^2*(x^2 -2*x -7)^2*(x^3 -12*x^2 + 192)^2*(x^4 + 8*x^3 -80*x^2 -704*x -768)^2*(x^6 + 2*x^5 -70*x^4 -106*x^3 + 958*x^2 -550*x -699)^2*(x^7 -10*x^6 -102*x^5 + 1090*x^4 + 2062*x^3 -30130*x^2 + 20765*x + 103552)^2*(x )^3*(x + 9)^4*(x -7)^4*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616)^4;
T[606,37]=(x -2)*(x + 12)*(x^2 -4*x + 2)*(x^2 -8*x + 10)*(x^2 -2*x -16)*(x^2 -4*x -46)*(x^3 -8*x^2 + 10*x + 16)*(x -10)^2*(x + 8)^2*(x + 10)^2*(x^3 -3*x^2 -60*x + 53)^2*(x^4 + x^3 -8*x^2 + x + 8)^2*(x^7 -8*x^6 -141*x^5 + 1032*x^4 + 3777*x^3 -18242*x^2 -25860*x + 85864)^2*(x^6 + 6*x^5 -173*x^4 -910*x^3 + 6521*x^2 + 27188*x + 20776)^2*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918)^4*(x + 4)^5*(x + 2)^7;
T[606,41]=(x + 12)*(x + 10)*(x -9)*(x + 3)*(x^2 + 16*x + 56)*(x^2 -24)*(x^2 + 8*x + 8)*(x^3 -15*x^2 + 64*x -72)*(x^2 -15*x + 52)*(x )*(x -6)^2*(x + 4)^2*(x + 2)^2*(x^2 + 12*x + 28)^2*(x^3 -6*x^2 -24*x -8)^2*(x^4 + 2*x^3 -32*x^2 + 8*x + 128)^2*(x^6 -6*x^5 -119*x^4 + 880*x^3 + 2507*x^2 -31520*x + 62428)^2*(x^7 -4*x^6 -143*x^5 + 478*x^4 + 4963*x^3 -15522*x^2 -27324*x + 67304)^2*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024)^4*(x -8)^5;
T[606,43]=(x -13)*(x + 11)*(x -1)*(x^2 -14*x + 31)*(x^2 + 2*x -17)*(x^2 + 3*x -36)*(x^2 -2*x -53)*(x^3 -10*x^2 + 3*x + 128)*(x + 5)^2*(x + 12)^2*(x^2 + 4*x -4)^2*(x^4 + 3*x^3 -30*x^2 -44*x + 232)^2*(x^6 + 12*x^5 -27*x^4 -776*x^3 -2443*x^2 -276*x + 452)^2*(x^7 + 4*x^6 -199*x^5 -1096*x^4 + 9945*x^3 + 71828*x^2 + 688*x -468032)^2*(x -4)^4*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264)^4*(x + 8)^5*(x + 2)^6;
T[606,47]=(x + 8)*(x + 12)*(x^2 -4*x -2)*(x^2 -98)*(x^2 -162)*(x^3 -4*x^2 -34*x + 144)*(x + 7)^2*(x -6)^2*(x -11)^2*(x^2 + 6*x + 7)^2*(x^3 + 6*x^2 -96*x + 8)^2*(x^4 + 4*x^3 -76*x^2 -504*x -784)^2*(x^7 -219*x^5 -502*x^4 + 11212*x^3 + 57704*x^2 + 68784*x + 7424)^2*(x^6 -6*x^5 -131*x^4 + 1058*x^3 + 156*x^2 -12312*x + 10448)^2*(x -8)^3*(x -4)^3*(x -7)^4*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096)^4;
T[606,53]=(x + 14)*(x -11)*(x + 6)*(x -10)*(x^2 -13*x + 38)*(x^2 + 2*x -127)*(x^2 + 6*x -119)*(x^3 + 20*x^2 + 61*x -354)*(x + 4)^2*(x -4)^2*(x + 1)^2*(x -3)^2*(x -1)^2*(x^3 -12*x + 8)^2*(x^4 -21*x^3 + 120*x^2 + 28*x -1256)^2*(x^7 -191*x^5 + 322*x^4 + 8999*x^3 -15426*x^2 -116448*x + 97376)^2*(x^6 -18*x^5 + 113*x^4 -300*x^3 + 303*x^2 -40*x -32)^2*(x + 2)^4*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632)^4*(x )^4;
T[606,59]=(x -10)*(x -6)*(x + 6)*(x^2 + 16*x + 62)*(x^2 -2)*(x^2 -4*x -50)*(x^2 -8*x -52)*(x^3 + 2*x^2 -10*x -12)*(x + 12)^2*(x^2 -12*x + 18)^2*(x^3 -9*x^2 -12*x + 179)^2*(x^4 -15*x^3 -60*x^2 + 1165*x -1268)^2*(x^6 -2*x^5 -71*x^4 + 368*x^3 -127*x^2 -2102*x + 3022)^2*(x^7 + 16*x^6 -5*x^5 -702*x^4 -209*x^3 + 7240*x^2 + 2752*x -17984)^2*(x -4)^3*(x + 10)^4*(x + 14)^4*(x^7 -16*x^6