CoCalc Public Fileswww / Tables / charpoly_s2_201-300.gp
Author: William A. Stein
1\\ charpoly_s2_201-300.gp
2\\ This is a table of characteristic polynomials of the
3\\ Hecke operators T_p acting on the space S_2(Gamma_0(N))
4\\ of weight 2 cusp forms for Gamma_0(N).
5\\ William Stein ([email protected]), September, 1998.
6
7{
8T=matrix(300,97,m,n,0);
9T[201,2]=(x + 2)*(x -1)*(x + 1)*(x^3 -3*x^2 -x + 5)*(x^5 -8*x^3 + 13*x + 2)*(x -2)^2*(x^2 + 3*x + 1)^2*(x^2 + x -1)^2;
10T[201,3]=(x^2 + 2*x + 3)*(x^4 + 3*x^3 + 7*x^2 + 9*x + 9)*(x^4 -x^3 + 5*x^2 -3*x + 9)*(x + 1)^5*(x -1)^6;
11T[201,5]=(x + 1)*(x^3 -x^2 -3*x + 1)*(x^5 + 3*x^4 -9*x^3 -19*x^2 + 10*x + 16)*(x )*(x -2)^2*(x^2 -4*x -1)^2*(x + 3)^5;
12T[201,7]=(x + 3)*(x + 5)*(x^3 -x^2 -5*x + 1)*(x^5 -7*x^4 + 3*x^3 + 63*x^2 -128*x + 64)*(x )*(x + 2)^2*(x^2 -x -1)^2*(x^2 + x -11)^2;
13T[201,11]=(x + 6)*(x^3 -10*x^2 + 24*x + 4)*(x^5 -20*x^3 -4*x^2 + 56*x -32)*(x )*(x^2 -5)^2*(x + 4)^3*(x -1)^4;
14T[201,13]=(x + 4)*(x^3 + 8*x^2 + 12*x + 4)*(x^5 -10*x^4 + 20*x^3 + 36*x^2 -88*x -32)*(x -2)^2*(x -4)^2*(x^2 + x -1)^2*(x^2 + 7*x + 1)^2;
15T[201,17]=(x -6)*(x + 7)*(x -2)*(x^3 -28*x + 52)*(x^5 + 5*x^4 -46*x^3 -96*x^2 + 636*x -568)*(x -3)^2*(x^2 + 6*x + 4)^2*(x^2 -6*x + 4)^2;
16T[201,19]=(x + 5)*(x^3 + 2*x^2 -44*x -20)*(x^5 -5*x^4 -46*x^3 + 248*x^2 -180*x -16)*(x -7)^2*(x + 2)^2*(x^2 -x -11)^2*(x^2 + 11*x + 29)^2;
17T[201,23]=(x + 1)*(x + 3)*(x + 7)*(x^3 -3*x^2 -31*x + 95)*(x^5 + 2*x^4 -14*x^3 + 8*x^2 + 11*x -4)*(x -9)^2*(x^2 + 2*x -19)^2*(x^2 -6*x -11)^2;
18T[201,29]=(x -4)*(x + 8)*(x -1)*(x^3 -4*x^2 -48*x + 64)*(x^5 -3*x^4 -98*x^3 + 224*x^2 + 2048*x -2048)*(x + 5)^2*(x^2 -10*x + 5)^2*(x^2 + 6*x -11)^2;
19T[201,31]=(x + 4)*(x + 7)*(x^3 -11*x^2 -13*x + 295)*(x^5 -9*x^4 -x^3 + 173*x^2 -332*x -32)*(x + 10)^2*(x^2 -45)^2*(x + 1)^5;
20T[201,37]=(x -5)*(x -3)*(x + 3)*(x^3 + 9*x^2 -13*x -169)*(x^5 -8*x^4 -68*x^3 + 438*x^2 + 655*x -818)*(x + 1)^2*(x^2 + x -11)^2*(x^2 -3*x + 1)^2;
21T[201,41]=(x + 3)*(x + 9)*(x^3 -x^2 -61*x -97)*(x^5 + 7*x^4 -15*x^3 -129*x^2 -14*x + 32)*(x^2 -5*x -25)^2*(x^2 + 3*x + 1)^2*(x )^3;
22T[201,43]=(x -7)*(x + 6)*(x -9)*(x^5 -x^4 -91*x^3 + 205*x^2 + 1974*x -6056)*(x + 2)^2*(x^2 + 9*x -11)^2*(x^2 -3*x -9)^2*(x + 1)^3;
23T[201,47]=(x -9)*(x -8)*(x^3 -18*x^2 + 60*x + 52)*(x^5 + 5*x^4 -46*x^3 -248*x^2 -180*x + 16)*(x )*(x + 1)^2*(x^2 + 7*x + 11)^2*(x^2 + 15*x + 55)^2;
24T[201,53]=(x -1)*(x + 5)*(x^3 -7*x^2 -77*x -131)*(x^5 + 15*x^4 -97*x^3 -1933*x^2 -4176*x -1588)*(x^2 -45)^2*(x -10)^3*(x + 9)^4;
25T[201,59]=(x + 9)*(x^3 -15*x^2 -25*x + 625)*(x^5 + 6*x^4 -104*x^3 -284*x^2 + 2465*x -496)*(x -9)^2*(x -3)^2*(x + 6)^4*(x -6)^4;
26T[201,61]=(x -2)*(x -14)*(x^3 + 2*x^2 -76*x + 116)*(x^5 -6*x^4 -96*x^3 + 1044*x^2 -3472*x + 3856)*(x^2 + 7*x -89)^2*(x^2 + 9*x + 9)^2*(x + 2)^3;
27T[201,67]=(x -1)^10*(x + 1)^11;
28T[201,71]=(x + 4)*(x + 16)*(x + 12)*(x^3 -18*x^2 + 68*x + 100)*(x^5 -22*x^4 + 20*x^3 + 2148*x^2 -12592*x + 10624)*(x^2 -245)^2*(x^2 -12*x + 31)^2*(x )^2;
29T[201,73]=(x -11)*(x + 13)*(x^3 + 19*x^2 + 83*x + 97)*(x^5 -284*x^3 + 534*x^2 + 19963*x -78838)*(x + 7)^3*(x + 4)^4*(x -8)^4;
30T[201,79]=(x + 16)*(x -8)*(x^3 -28*x^2 + 248*x -688)*(x^5 -28*x^4 -24*x^3 + 5936*x^2 -39680*x -1024)*(x^2 + 7*x -89)^2*(x^2 + 11*x -31)^2*(x + 8)^3;
31T[201,83]=(x -5)*(x + 4)*(x -1)*(x^3 + 7*x^2 -21*x -25)*(x^5 -9*x^4 -229*x^3 + 2819*x^2 -6284*x + 3904)*(x -4)^2*(x^2 -13*x + 31)^2*(x^2 + 15*x -5)^2;
32T[201,89]=(x -4)*(x + 15)*(x^3 + 6*x^2 -148*x + 116)*(x^5 + 11*x^4 -80*x^3 -284*x^2 + 1900*x -2264)*(x )*(x -7)^2*(x^2 -5)^2*(x^2 + 16*x + 19)^2;
33T[201,97]=(x -16)*(x -4)*(x + 12)*(x^3 + 8*x^2 -240*x -932)*(x^5 + 14*x^4 -176*x^3 -3964*x^2 -21880*x -36832)*(x^2 -2*x -179)^2*(x^2 -45)^2*(x )^2;
34
35T[202,2]=(x^2 + 2)*(x^14 + x^12 + 2*x^11 + x^10 -x^8 -2*x^7 -2*x^6 + 8*x^4 + 32*x^3 + 32*x^2 + 128)*(x + 1)^4*(x -1)^4;
36T[202,3]=(x^3 + 3*x^2 -1)*(x^4 + x^3 -8*x^2 + x + 8)*(x )*(x + 2)^2*(x^7 -4*x^6 -7*x^5 + 38*x^4 + 4*x^3 -96*x^2 + 13*x + 68)^2;
37T[202,5]=(x -2)*(x^3 + 3*x^2 -6*x -17)*(x^4 -3*x^3 -4*x^2 + 7*x -2)*(x + 1)^2*(x^7 + 3*x^6 -13*x^5 -33*x^4 + 48*x^3 + 94*x^2 -43*x -67)^2;
38T[202,7]=(x -1)*(x^3 + 3*x^2 -18*x -37)*(x^4 -2*x^3 -9*x^2 + 3*x + 13)*(x + 2)^2*(x^7 -2*x^6 -25*x^5 + 66*x^4 + 90*x^3 -326*x^2 + 165*x + 14)^2;
39T[202,11]=(x -4)*(x^3 + 9*x^2 + 24*x + 17)*(x^4 -x^3 -28*x^2 + 39*x -8)*(x + 2)^2*(x^7 -8*x^6 -x^5 + 114*x^4 -72*x^3 -554*x^2 + 213*x + 878)^2;
40T[202,13]=(x^3 + 3*x^2 -36*x -127)*(x^4 -x^3 -16*x^2 -19*x -4)*(x )*(x -1)^2*(x^7 + x^6 -45*x^5 -59*x^4 + 664*x^3 + 1066*x^2 -3203*x -6001)^2;
41T[202,17]=(x -5)*(x^3 + 9*x^2 + 18*x -9)*(x^4 -4*x^3 -59*x^2 + 133*x + 813)*(x -3)^2*(x^7 + 7*x^6 -33*x^5 -221*x^4 + 460*x^3 + 2038*x^2 -2747*x -3871)^2;
42T[202,19]=(x -1)*(x^4 + 13*x^3 + 30*x^2 -84*x -8)*(x + 5)^2*(x^7 -19*x^6 + 108*x^5 + 24*x^4 -2032*x^3 + 4400*x^2 + 5824*x -18880)^2*(x + 2)^3;
43T[202,23]=(x -6)*(x^3 + 12*x^2 + 36*x + 8)*(x^4 -2*x^3 -28*x^2 + 48*x -16)*(x -1)^2*(x^7 + 7*x^6 -48*x^5 -304*x^4 + 432*x^3 + 2160*x^2 -1536*x -64)^2;
44T[202,29]=(x + 5)*(x^3 -84*x + 136)*(x^4 -9*x^3 -4*x^2 + 196*x -392)*(x + 4)^2*(x^7 + 2*x^6 -60*x^5 -88*x^4 + 880*x^3 + 1248*x^2 -2112*x -640)^2;
45T[202,31]=(x^3 -12*x^2 + 192)*(x^4 + 8*x^3 -80*x^2 -704*x -768)*(x )*(x + 9)^2*(x^7 -7*x^6 -92*x^5 + 900*x^4 -1472*x^3 -3872*x^2 + 11712*x -7616)^2;
46T[202,37]=(x + 8)*(x^3 -3*x^2 -60*x + 53)*(x^4 + x^3 -8*x^2 + x + 8)*(x + 2)^2*(x^7 -123*x^5 -100*x^4 + 2990*x^3 + 696*x^2 -5103*x -918)^2;
47T[202,41]=(x + 4)*(x^3 -6*x^2 -24*x -8)*(x^4 + 2*x^3 -32*x^2 + 8*x + 128)*(x -8)^2*(x^7 + 2*x^6 -160*x^5 -256*x^4 + 3840*x^3 + 10112*x^2 + 6144*x + 1024)^2;
48T[202,43]=(x + 5)*(x^4 + 3*x^3 -30*x^2 -44*x + 232)*(x + 8)^2*(x^7 -32*x^6 + 280*x^5 + 896*x^4 -25616*x^3 + 121024*x^2 -120256*x -235264)^2*(x + 2)^3;
49T[202,47]=(x -6)*(x^3 + 6*x^2 -96*x + 8)*(x^4 + 4*x^3 -76*x^2 -504*x -784)*(x -7)^2*(x^7 + 13*x^6 -36*x^5 -1120*x^4 -4832*x^3 -4176*x^2 + 9792*x + 12096)^2;
50T[202,53]=(x -3)*(x^3 -12*x + 8)*(x^4 -21*x^3 + 120*x^2 + 28*x -1256)*(x + 2)^2*(x^7 + 8*x^6 -252*x^5 -2032*x^4 + 17408*x^3 + 146944*x^2 -210624*x -2213632)^2;
51T[202,59]=(x + 12)*(x^3 -9*x^2 -12*x + 179)*(x^4 -15*x^3 -60*x^2 + 1165*x -1268)*(x + 14)^2*(x^7 -16*x^6 -49*x^5 + 1128*x^4 + 1338*x^3 -11046*x^2 -1023*x + 18680)^2;
52T[202,61]=(x + 1)*(x^3 -192*x + 512)*(x^4 -x^3 -124*x^2 -160*x + 1856)*(x -4)^2*(x^7 + 6*x^6 -180*x^5 -472*x^4 + 7152*x^3 + 12448*x^2 -45760*x + 17792)^2;
53T[202,67]=(x^3 + 21*x^2 + 84*x -107)*(x^4 + 17*x^3 + 34*x^2 -469*x -1666)*(x^7 -34*x^6 + 349*x^5 + 68*x^4 -23296*x^3 + 149424*x^2 -337723*x + 183394)^2*(x -2)^3;
54T[202,71]=(x + 10)*(x^3 + 6*x^2 -132*x -856)*(x^4 -168*x^2 + 448*x + 3088)*(x -13)^2*(x^7 -9*x^6 -200*x^5 + 1588*x^4 + 7248*x^3 -39904*x^2 -35840*x + 189632)^2;
55T[202,73]=(x + 16)*(x^3 -84*x + 136)*(x^4 -16*x^3 + 36*x^2 + 168*x -416)*(x -8)^2*(x^7 + 2*x^6 -128*x^5 -320*x^4 + 3968*x^3 + 13184*x^2 -17408*x -68608)^2;
56T[202,79]=(x + 2)*(x^3 -6*x^2 -144*x -408)*(x^4 + 12*x^3 -180*x^2 -1688*x + 2256)*(x + 9)^2*(x^7 -15*x^6 -148*x^5 + 3496*x^4 -15520*x^3 -10832*x^2 + 177152*x -244160)^2;
57T[202,83]=(x -16)*(x^3 + 15*x^2 -125)*(x^4 -27*x^3 + 88*x^2 + 1933*x -9556)*(x + 4)^2*(x^7 + 22*x^6 -149*x^5 -6456*x^4 -28804*x^3 + 332730*x^2 + 3151505*x + 7092412)^2;
58T[202,89]=(x^3 + 6*x^2 -216*x -1304)*(x^4 + 6*x^3 -264*x^2 -904*x + 17344)*(x )*(x -14)^2*(x^7 + 22*x^6 + 96*x^5 -464*x^4 -2128*x^3 + 5472*x^2 + 4672*x -10880)^2;
59T[202,97]=(x -13)*(x^3 -15*x^2 -114*x + 1819)*(x^4 -4*x^3 -159*x^2 + 285*x + 3121)*(x -2)^2*(x^7 + 28*x^6 + 25*x^5 -5628*x^4 -62530*x^3 -249976*x^2 -314503*x + 59842)^2;
60
61T[203,2]=(x -1)*(x + 2)*(x^5 -2*x^4 -8*x^3 + 14*x^2 + 9*x -6)*(x^3 + x^2 -3*x -1)*(x -2)^2*(x^2 + 2*x -1)^2*(x + 1)^3;
62T[203,3]=(x -2)*(x^2 + x -4)*(x^5 + 2*x^4 -10*x^3 -18*x^2 + 11*x + 2)*(x^3 + 3*x^2 -x -5)*(x + 1)^2*(x^2 -2*x -1)^3;
63T[203,5]=(x + 4)*(x -2)*(x -1)*(x^2 -8)*(x^2 -3*x -2)*(x^3 + 5*x^2 + 3*x -5)*(x^5 -5*x^4 -3*x^3 + 29*x^2 + 6*x -24)*(x + 1)^4;
64T[203,7]=(x^4 + 6*x^2 + 49)*(x + 1)^7*(x -1)^8;
65T[203,11]=(x -2)*(x + 5)*(x + 4)*(x^2 + 4*x -4)*(x^2 + x -4)*(x^3 -5*x^2 -5*x -1)*(x^5 -3*x^4 -39*x^3 + 117*x^2 + 270*x -648)*(x^2 -2*x -1)^2;
66T[203,13]=(x + 2)*(x -4)*(x^2 -5*x + 2)*(x^2 -8*x + 8)*(x^5 -15*x^4 + 53*x^3 + 147*x^2 -1082*x + 1432)*(x^2 + 2*x -7)^2*(x + 5)^4;
67T[203,17]=(x + 2)*(x + 4)*(x -4)*(x^2 -8)*(x^2 -6*x -8)*(x^3 -2*x^2 -32*x -52)*(x^5 + 4*x^4 -28*x^3 -68*x^2 + 168*x + 96)*(x^2 + 4*x -4)^2;
68T[203,19]=(x -2)*(x + 4)*(x -5)*(x^2 -2*x -17)*(x^5 + 15*x^4 + 68*x^3 + 84*x^2 + 4*x -8)*(x^3 + 6*x^2 -28*x -148)*(x -4)^2*(x -6)^4;
69T[203,23]=(x -6)*(x -9)*(x^2 + 2*x -7)*(x^2 + 2*x -16)*(x^5 + 5*x^4 -34*x^3 -196*x^2 + 24*x + 768)*(x^3 -2*x^2 -52*x + 40)*(x )*(x^2 + 4*x -28)^2;
70T[203,29]=(x -1)^9*(x + 1)^10;
71T[203,31]=(x + 2)*(x -7)*(x + 8)*(x^2 + 5*x -32)*(x^3 + 5*x^2 -7*x -1)*(x^5 -9*x^4 -73*x^3 + 837*x^2 -1106*x -3824)*(x -2)^2*(x^2 -6*x -41)^2;
72T[203,37]=(x -8)*(x + 10)*(x -2)*(x^2 -72)*(x^3 + 12*x^2 + 20*x -100)*(x^5 -14*x^4 -20*x^3 + 692*x^2 -216*x -8896)*(x -6)^2*(x + 4)^4;
73T[203,41]=(x + 3)*(x^2 -10*x + 23)*(x^2 + 14*x + 32)*(x^3 -16*x -16)*(x^5 + 11*x^4 -16*x^3 -448*x^2 -816*x + 1152)*(x^2 -8*x -56)^2*(x )^2;
74T[203,43]=(x + 9)*(x^2 -3*x -36)*(x^3 + 7*x^2 -5*x -1)*(x^5 -19*x^4 + 93*x^3 -79*x^2 -14*x + 16)*(x )*(x^2 -10*x + 23)^2*(x + 6)^3;
75T[203,47]=(x -7)*(x + 10)*(x + 7)*(x^2 + 5*x -32)*(x^2 -10*x + 7)*(x^3 + 3*x^2 -33*x -89)*(x^5 -4*x^4 -68*x^3 + 304*x^2 + 837*x -3918)*(x^2 -2*x -17)^2;
76T[203,53]=(x -6)*(x -9)*(x -3)*(x^2 + 7*x -94)*(x^2 -2*x -127)*(x^3 + 15*x^2 + 47*x + 37)*(x^5 + 16*x^4 + 52*x^3 -322*x^2 -2193*x -3282)*(x^2 -2*x -71)^2;
77T[203,59]=(x -12)*(x^2 + 16*x + 56)*(x^2 + 4*x -64)*(x^5 + 12*x^4 -16*x^3 -620*x^2 -1968*x -768)*(x^3 + 8*x^2 -72*x + 100)*(x^2 -4*x -28)^2*(x )^2;
78T[203,61]=(x + 4)*(x -2)*(x -14)*(x^2 -72)*(x^5 -20*x^4 -56*x^3 + 2048*x^2 + 144*x -26176)*(x^3 + 26*x^2 + 204*x + 472)*(x -6)^2*(x^2 + 4*x -4)^2;
79T[203,67]=(x + 6)*(x -3)*(x -12)*(x^2 -10*x -47)*(x^2 + 2*x -152)*(x^3 -14*x^2 -168*x + 2228)*(x^5 + 3*x^4 -162*x^3 -108*x^2 + 2068*x -2416)*(x^2 -32)^2;
80T[203,71]=(x -8)*(x^5 + x^4 -108*x^3 -424*x^2 + 684*x + 2592)*(x^3 -84*x + 268)*(x^2 + 12*x + 28)^2*(x -7)^3*(x + 8)^3;
81T[203,73]=(x + 1)*(x + 16)*(x + 4)*(x^2 -18*x + 64)*(x^3 + 8*x^2 -16*x -160)*(x^5 -35*x^4 + 388*x^3 -880*x^2 -8544*x + 35456)*(x^2 + 6*x -89)*(x -4)^4;
82T[203,79]=(x -12)*(x + 9)*(x^2 + 8*x + 8)*(x^2 -7*x + 8)*(x^3 -23*x^2 + 101*x + 151)*(x^5 + 13*x^4 + 17*x^3 -69*x^2 -28*x + 64)*(x )*(x^2 + 2*x -1)^2;
83T[203,83]=(x + 16)*(x -16)*(x -14)*(x^2 -4*x -64)*(x^3 + 8*x^2 + 16*x + 4)*(x^5 + 10*x^4 -152*x^3 -28*x^2 + 1128*x + 1152)*(x^2 -4*x -28)^3;
84T[203,89]=(x -12)*(x -15)*(x + 6)*(x^2 -10*x + 7)*(x^3 -12*x^2 -136*x + 1580)*(x^5 + 25*x^4 + 128*x^3 -356*x^2 -276*x -48)*(x -2)^2*(x^2 + 8*x -56)^2;
85T[203,97]=(x -12)*(x -3)*(x^2 -10*x -128)*(x^2 -22*x + 103)*(x^3 + 8*x^2 -320*x -3200)*(x^5 + 25*x^4 -12*x^3 -4576*x^2 -38784*x -92672)*(x )*(x^2 + 8*x -56)^2;
86
87T[204,2]=(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2*(x^2 + x + 2)^2*(x -1)^3*(x )^16;
88T[204,3]=(x^4 -2*x^3 + 4*x^2 -6*x + 9)*(x^2 + 2*x + 3)^2*(x^2 + 3)^3*(x -1)^8*(x + 1)^9;
89T[204,5]=(x -1)*(x + 1)*(x + 4)^2*(x^2 -12)^2*(x -3)^3*(x^2 -3*x -2)^3*(x )^6*(x + 2)^8;
90T[204,7]=(x -2)^2*(x + 2)^2*(x^2 + 2*x -2)^2*(x + 4)^7*(x -4)^7*(x )^9;
91T[204,11]=(x -3)*(x -5)*(x + 4)^2*(x^2 + 6*x + 6)^2*(x + 3)^3*(x^2 + x -4)^3*(x -6)^4*(x )^10;
92T[204,13]=(x + 5)*(x -3)*(x + 6)^2*(x^2 -4*x -8)^2*(x + 1)^3*(x^2 -5*x + 2)^3*(x -2)^6*(x + 2)^8;
93T[204,17]=(x -1)^15*(x + 1)^16;
94T[204,19]=(x -1)^2*(x^2 -4*x -8)^2*(x + 1)^3*(x^2 -3*x -36)^3*(x -4)^4*(x + 4)^12;
95T[204,23]=(x + 3)*(x -3)*(x + 6)^2*(x -6)^2*(x^2 + 6*x + 6)^2*(x -9)^3*(x^2 + 9*x + 16)^3*(x -4)^6*(x )^6;
96T[204,29]=(x -2)*(x + 4)^2*(x^2 -12)^2*(x + 10)^3*(x^2 -68)^3*(x )^6*(x -6)^9;
97T[204,31]=(x -6)*(x + 10)^2*(x -8)^2*(x + 6)^2*(x^2 + 2*x -26)^2*(x^2 + 2*x -16)^3*(x -2)^4*(x + 4)^4*(x -4)^6;
98T[204,37]=(x + 8)*(x -8)^2*(x^2 -16*x + 52)^2*(x^2 + 2*x -16)^3*(x + 2)^8*(x + 4)^10;
99T[204,41]=(x -5)*(x + 5)*(x -10)^2*(x + 10)^2*(x + 3)^3*(x^2 + 3*x -2)^3*(x -6)^6*(x + 6)^10;
100T[204,43]=(x + 9)*(x + 1)*(x -12)^2*(x^2 -4*x -104)^2*(x + 7)^3*(x^2 + 3*x -36)^3*(x + 4)^4*(x -8)^4*(x -4)^6;
101T[204,47]=(x + 2)*(x -6)*(x -12)^2*(x -4)^2*(x^2 -48)^2*(x + 6)^3*(x^2 + 14*x + 32)^3*(x )^12;
102T[204,53]=(x + 14)*(x + 2)^2*(x^2 -12*x -12)^2*(x^2 -8*x -52)^3*(x + 6)^8*(x -6)^10;
103T[204,59]=(x + 6)*(x^2 -12*x + 24)^2*(x^2 -6*x -8)^3*(x -12)^4*(x -6)^4*(x )^4*(x + 12)^8;
104T[204,61]=(x^2 + 8*x + 4)^2*(x^2 -10*x + 8)^3*(x -8)^6*(x + 4)^7*(x + 10)^8;
105T[204,67]=(x -12)*(x^2 -16*x + 16)^2*(x -8)^4*(x + 12)^5*(x + 4)^5*(x -4)^12;
106T[204,71]=(x + 12)*(x + 6)^2*(x -6)^2*(x^2 + 6*x -18)^2*(x^2 -4*x -64)^3*(x -12)^4*(x + 4)^6*(x )^6;
107T[204,73]=(x + 2)*(x -10)^2*(x^2 + 8*x -52)^3*(x + 6)^6*(x -2)^16;
108T[204,79]=(x + 14)*(x + 8)^2*(x^2 + 14*x + 22)^2*(x -10)^3*(x^2 -6*x -144)^3*(x -8)^4*(x + 10)^5*(x -12)^6;
109T[204,83]=(x -6)*(x + 2)*(x + 12)^2*(x -4)^2*(x -12)^2*(x^2 + 12*x + 24)^2*(x + 6)^3*(x^2 + 10*x + 8)^3*(x )^4*(x + 4)^6;
110T[204,89]=(x -16)*(x -12)*(x + 18)^2*(x + 2)^2*(x^2 -12*x + 24)^2*(x^2 -6*x -8)^3*(x )^3*(x + 6)^6*(x -10)^6;
111T[204,97]=(x -16)*(x )*(x + 14)^2*(x -6)^2*(x^2 -4*x -44)^2*(x + 16)^3*(x^2 + 14*x + 32)^3*(x -14)^6*(x -2)^6;
112
113T[205,2]=(x -1)*(x^2 + x -1)*(x^3 -2*x^2 -4*x + 7)*(x^3 -4*x -1)*(x^2 + x -3)*(x + 1)^2*(x^3 + x^2 -5*x -1)^2;
114T[205,3]=(x )*(x + 3)^2*(x -2)^2*(x + 1)^2*(x^3 -4*x + 2)^2*(x^3 -2*x^2 -5*x + 2)^2;
115T[205,5]=(x^6 + 2*x^5 + 11*x^4 + 16*x^3 + 55*x^2 + 50*x + 125)*(x + 1)^6*(x -1)^7;
116T[205,7]=(x + 4)*(x^2 + 3*x -1)*(x^3 + 9*x^2 + 23*x + 14)*(x^3 -x^2 -5*x -2)*(x^2 -3*x -9)*(x -2)^2*(x^3 -6*x^2 + 8*x -2)^2;
117T[205,11]=(x -6)*(x^2 + 8*x + 11)*(x^3 -4*x^2 -7*x + 26)*(x^3 -4*x^2 -x + 8)*(x + 3)^2*(x^3 -2*x^2 -20*x + 50)^2*(x )^2;
118T[205,13]=(x + 4)*(x + 2)*(x -2)*(x^2 + x -29)*(x^3 -x^2 -15*x + 28)*(x^3 + 3*x^2 -x -2)*(x^2 + 3*x -9)*(x^3 + 2*x^2 -12*x -8)^2;
119T[205,17]=(x -4)*(x + 6)*(x -2)*(x^2 -5)*(x^3 + 2*x^2 -11*x + 4)*(x^3 -4*x^2 -27*x + 94)*(x^2 + 4*x -9)*(x + 2)^6;
120T[205,19]=(x + 6)*(x^2 + 3*x -27)*(x^3 -15*x^2 + 71*x -106)*(x^3 + 5*x^2 + 3*x -8)*(x^2 + 5*x -5)*(x^3 -4*x^2 -16*x -10)^2*(x )^2;
121T[205,23]=(x + 4)*(x^2 -4*x -9)*(x^3 -20*x^2 + 127*x -256)*(x^3 -6*x^2 -31*x -28)*(x + 8)^2*(x + 3)^2*(x^3 -4*x^2 -32*x -32)^2;
122T[205,29]=(x -6)*(x -10)*(x -2)*(x^2 + 5*x + 3)*(x^3 + 13*x^2 + 51*x + 62)*(x^3 -x^2 -31*x + 2)*(x^2 + 3*x + 1)*(x^3 + 6*x^2 -4*x -40)^2;
123T[205,31]=(x^2 + 3*x -27)*(x^3 -x^2 -27*x + 64)*(x^3 + 11*x^2 -35*x -464)*(x^2 + 7*x -19)*(x^3 -16*x^2 + 64*x -32)^2*(x )^3;
124T[205,37]=(x -6)*(x^2 + 3*x -27)*(x^3 + 17*x^2 + 77*x + 98)*(x^3 -11*x^2 + 35*x -26)*(x^2 -x -1)*(x + 6)^2*(x^3 + 6*x^2 -36*x -108)^2;
125T[205,41]=(x + 1)^6*(x -1)^13;
126T[205,43]=(x -4)*(x + 4)*(x -8)*(x^2 + 3*x -79)*(x^3 + 3*x^2 -x -4)*(x^3 -x^2 -27*x + 64)*(x^2 + 3*x -9)*(x^3 + 4*x^2 -8*x -16)^2;
127T[205,47]=(x -2)*(x + 4)*(x + 2)*(x^2 + x -1)*(x^3 -7*x^2 -109*x + 662)*(x^3 -9*x^2 -21*x + 218)*(x^2 + 19*x + 87)*(x^3 -120*x -502)^2;
128T[205,53]=(x -8)*(x + 14)*(x -6)*(x^2 + 2*x -4)*(x^3 + 10*x^2 + 12*x -64)*(x^3 -8*x^2 -88*x + 712)*(x^2 + 10*x + 12)*(x^3 -6*x^2 -4*x + 8)^2;
129T[205,59]=(x + 12)*(x -12)*(x + 4)*(x^2 + 17*x + 71)*(x^3 -31*x^2 + 315*x -1052)*(x^3 -15*x^2 + 39*x + 28)*(x^2 + 17*x + 43)*(x^3 + 8*x^2 -16*x -160)^2;
130T[205,61]=(x + 10)*(x -14)*(x -2)*(x^2 + 12*x + 23)*(x^3 + 14*x^2 + 59*x + 74)*(x^3 -6*x^2 -45*x + 158)*(x^2 + 4*x -41)*(x^3 -2*x^2 -52*x + 184)^2;
131T[205,67]=(x + 2)*(x -10)*(x + 8)*(x^2 + 7*x -17)*(x^3 + 15*x^2 -73*x -1234)*(x^3 + 5*x^2 -117*x + 178)*(x^2 -7*x + 11)*(x^3 + 2*x^2 -20*x -50)^2;
132T[205,71]=(x + 2)*(x + 12)*(x -8)*(x^2 + 6*x -171)*(x^3 + 10*x^2 + 27*x + 14)*(x^3 + 2*x^2 -31*x + 32)*(x^2 -20*x + 87)*(x^3 -20*x^2 + 84*x + 134)^2;
133T[205,73]=(x -6)*(x^2 + 3*x -27)*(x^3 + 3*x^2 -43*x -98)*(x^3 -11*x^2 -61*x + 454)*(x^2 -19*x + 79)*(x + 6)^2*(x^3 + 2*x^2 -180*x + 244)^2;
134T[205,79]=(x + 4)*(x + 8)*(x + 2)*(x^2 -15*x + 53)*(x^3 + 13*x^2 -249*x -3184)*(x^3 -9*x^2 -21*x + 218)*(x^2 + 17*x + 11)*(x^3 -32*x^2 + 328*x -1090)^2;
135T[205,83]=(x -12)*(x -4)*(x^2 + 15*x + 53)*(x^3 -13*x^2 + 37*x + 28)*(x^3 -19*x^2 + 115*x -224)*(x^2 + 21*x + 79)*(x )*(x^3 -64*x -128)^2;
136T[205,89]=(x + 6)*(x -14)*(x -10)*(x^2 + 2*x -207)*(x^3 + 12*x^2 -55*x + 46)*(x^3 + 6*x^2 -49*x -82)*(x^2 -5)*(x^3 + 6*x^2 -148*x -920)^2;
137T[205,97]=(x + 8)*(x + 6)*(x -10)*(x^2 -6*x -108)*(x^3 + 10*x^2 -92*x -448)*(x^3 + 8*x^2 -104*x -248)*(x^2 -14*x + 44)*(x^3 -6*x^2 -52*x + 248)^2;
138
139T[206,2]=(x^12 -4*x^11 + 11*x^10 -23*x^9 + 43*x^8 -74*x^7 + 111*x^6 -148*x^5 + 172*x^4 -184*x^3 + 176*x^2 -128*x + 64)*(x^4 + 3*x^3 + 5*x^2 + 6*x + 4)*(x -1)^4*(x + 1)^5;
140T[206,3]=(x -2)*(x^2 -x -7)*(x^2 + 3*x -1)*(x^4 -2*x^3 -5*x^2 + 12*x -5)*(x^6 -13*x^4 + 40*x^2 -8*x -16)^2*(x + 1)^4;
141T[206,5]=(x -4)*(x^2 -x -7)*(x^2 + 5*x + 3)*(x^4 -7*x^2 + 6*x -1)*(x^2 + 3*x + 1)^2*(x^6 -3*x^5 -11*x^4 + 34*x^3 + 12*x^2 -40*x -16)^2;
142T[206,7]=(x^2 -5*x + 3)*(x^2 + 3*x -5)*(x^4 -2*x^3 -17*x^2 + 50*x -31)*(x )*(x^6 + 2*x^5 -18*x^4 -26*x^3 + 74*x^2 + 66*x + 1)^2*(x + 1)^4;
143T[206,11]=(x + 6)*(x^4 -4*x^3 -24*x^2 + 48*x + 80)*(x -4)^2*(x^2 + 3*x + 1)^2*(x^6 + x^5 -41*x^4 -68*x^3 + 416*x^2 + 968*x + 272)^2*(x )^2;
144T[206,13]=(x + 2)*(x^2 -6*x -4)*(x^2 -2*x -28)*(x^4 -28*x^2 -48*x -16)*(x^2 + 3*x -9)^2*(x^6 + x^5 -28*x^4 + 53*x^3 + 20*x^2 -103*x + 55)^2;
145T[206,17]=(x -2)*(x^2 + 3*x -5)*(x^2 -5*x + 3)*(x^4 + 14*x^3 + 31*x^2 -270*x -1007)*(x^2 + 9*x + 19)^2*(x^6 -21*x^5 + 144*x^4 -253*x^3 -912*x^2 + 3211*x -1745)^2;
146T[206,19]=(x + 4)*(x^4 -48*x^2 + 64*x -16)*(x -6)^2*(x -2)^2*(x^2 -5*x -5)^2*(x^6 + 7*x^5 -8*x^4 -173*x^3 -508*x^2 -589*x -241)^2;
147T[206,23]=(x^2 + 3*x -27)*(x^2 + 7*x + 5)*(x^4 -2*x^3 -65*x^2 -66*x + 265)*(x )*(x^2 -20)^2*(x^6 -12*x^5 -23*x^4 + 640*x^3 -947*x^2 -6592*x + 12268)^2;
148T[206,29]=(x^4 -48*x^2 -128*x -16)*(x -6)^2*(x^2 + 6*x + 4)^2*(x^6 -12*x^5 + 27*x^4 + 28*x^3 -39*x^2 + 2*x + 4)^2*(x + 6)^3;
149T[206,31]=(x^4 -8*x^3 -24*x^2 + 32*x + 64)*(x + 4)^2*(x^2 -45)^2*(x^6 + 16*x^5 + 57*x^4 -150*x^3 -1020*x^2 -1272*x -400)^2*(x -8)^3;
150T[206,37]=(x -8)*(x^2 + 7*x + 5)*(x^2 -x -29)*(x^4 -10*x^3 -81*x^2 + 528*x + 2795)*(x^2 -45)^2*(x^6 -83*x^4 -322*x^3 -336*x^2 + 64*x + 176)^2;
151T[206,41]=(x -2)*(x^2 + 13*x + 35)*(x^2 -11*x + 27)*(x^4 + 18*x^3 + 31*x^2 -914*x -4175)*(x^2 -80)^2*(x^6 -14*x^5 -37*x^4 + 1574*x^3 -9687*x^2 + 22344*x -15152)^2;
152T[206,43]=(x -2)*(x^2 + 3*x -5)*(x^2 + 5*x -23)*(x^4 -4*x^3 -83*x^2 + 110*x + 1231)*(x^2 + 4*x -41)^2*(x^6 + 6*x^5 -171*x^4 -1160*x^3 + 3720*x^2 + 19520*x -23984)^2;
153T[206,47]=(x + 8)*(x^2 + 14*x + 36)*(x^2 + 2*x -28)*(x^4 -92*x^2 + 352*x -80)*(x^2 + 3*x -29)^2*(x^6 -x^5 -143*x^4 -352*x^3 + 3048*x^2 + 5456*x -22384)^2;
154T[206,53]=(x + 12)*(x^2 -9*x + 13)*(x^2 + 9*x -9)*(x^4 + 4*x^3 -67*x^2 -466*x -785)*(x^2 + 9*x -11)^2*(x^6 -19*x^5 + 109*x^4 -194*x^3 -88*x^2 + 384*x -80)^2;
155T[206,59]=(x -12)*(x^2 + 10*x -4)*(x^2 + 6*x -108)*(x^4 -8*x^3 -116*x^2 + 464*x + 3920)*(x^2 -15*x + 55)^2*(x^6 -3*x^5 -164*x^4 + 281*x^3 + 7632*x^2 -2167*x -78173)^2;
156T[206,61]=(x -10)*(x^2 + 6*x -4)*(x^2 + 6*x -20)*(x^4 + 4*x^3 -68*x^2 -400*x -496)*(x^2 -15*x + 45)^2*(x^6 -x^5 -194*x^4 -273*x^3 + 3602*x^2 + 1459*x -2495)^2;
157T[206,67]=(x + 2)*(x^2 -5*x -59)*(x^2 + 3*x -157)*(x^4 -18*x^3 + 103*x^2 -224*x + 163)*(x^2 -2*x -179)^2*(x^6 + 12*x^5 -33*x^4 -752*x^3 -1016*x^2 + 9792*x + 22576)^2;
158T[206,71]=(x^2 -8*x -100)*(x^4 -4*x^3 -32*x^2 + 48*x + 112)*(x )*(x -6)^2*(x^2 -3*x -29)^2*(x^6 + 27*x^5 + 139*x^4 -1346*x^3 -10956*x^2 -872*x + 83632)^2;
159T[206,73]=(x -10)*(x^2 -18*x + 68)*(x^2 + 6*x -20)*(x^4 -12*x^3 + 28*x^2 -16)*(x^2 + 15*x + 45)^2*(x^6 + 7*x^5 -61*x^4 -428*x^3 + 760*x^2 + 4728*x -4624)^2;
160T[206,79]=(x^2 -9*x -45)*(x^2 -5*x + 3)*(x^4 -18*x^3 + 3*x^2 + 146*x -7)*(x )*(x^2 -7*x -89)^2*(x^6 + 21*x^5 -12*x^4 -1983*x^3 -5824*x^2 + 9033*x + 5779)^2;
161T[206,83]=(x^2 -20*x + 48)*(x^4 -12*x^3 -152*x^2 + 2432*x -7616)*(x^2 -3*x -59)^2*(x^6 + 9*x^5 -66*x^4 -819*x^3 -1462*x^2 + 4245*x + 9637)^2*(x + 4)^3;
162T[206,89]=(x -2)*(x^2 -14*x + 36)*(x^2 + 2*x -28)*(x^4 -4*x^3 -180*x^2 -944*x -1328)*(x^2 + 18*x + 36)^2*(x^6 + 14*x^5 -372*x^4 -5720*x^3 + 16224*x^2 + 490560*x + 1667776)^2;
163T[206,97]=(x -14)*(x^2 + 19*x + 83)*(x^2 -x -29)*(x^4 + 6*x^3 -205*x^2 -1878*x -4135)*(x^2 -10*x -20)^2*(x^6 + 8*x^5 -337*x^4 -1292*x^3 + 28941*x^2 + 58914*x -560468)^2;
164
165T[207,2]=(x + 1)*(x^2 -2*x -1)*(x^2 -x -1)*(x^2 + 2*x -1)*(x -1)^2*(x^2 + x -1)^3*(x^2 -5)^3;
166T[207,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2*(x )^14;
167T[207,5]=(x^2 -4*x + 2)*(x^2 + 4*x + 2)*(x^2 -2*x -4)^2*(x )^3*(x^2 + 2*x -4)^5;
168T[207,7]=(x^2 + 4*x + 2)^2*(x + 2)^3*(x^2 -2*x -4)^7;
169T[207,11]=(x^2 -6*x + 4)*(x^2 -8)^2*(x + 4)^3*(x^2 + 6*x + 4)^3*(x -4)^6;
170T[207,13]=(x + 6)^3*(x^2 -20)^3*(x )^4*(x -3)^8;
171T[207,17]=(x + 4)*(x^2 + 12*x + 34)*(x^2 + 6*x + 4)*(x^2 -12*x + 34)*(x^2 -10*x + 20)*(x -4)^2*(x^2 + 10*x + 20)^2*(x^2 -6*x + 4)^3;
172T[207,19]=(x^2 + 4*x -14)^2*(x -2)^3*(x^2 -10*x + 20)^3*(x + 2)^8;
173T[207,23]=(x + 1)^8*(x -1)^13;
174T[207,29]=(x + 2)*(x -2)^2*(x -3)^2*(x^2 -72)^2*(x^2 -20)^3*(x + 3)^6;
175T[207,31]=(x^2 -72)^2*(x -4)^3*(x^2 + 4*x -16)^3*(x^2 -45)^4;
176T[207,37]=(x^2 + 4*x -4)^2*(x -2)^3*(x^2 -20)^3*(x^2 -2*x -4)^4;
177T[207,41]=(x + 2)*(x^2 -4*x -76)*(x^2 + 2*x -19)*(x^2 + 8*x -16)*(x^2 -8*x -16)*(x -2)^2*(x^2 + 4*x -76)^2*(x^2 -2*x -19)^3;
178T[207,43]=(x^2 + 12*x + 18)^2*(x -10)^3*(x^2 -2*x -44)^3*(x )^8;
179T[207,47]=(x^2 + 12*x + 4)*(x^2 -12*x + 4)*(x -4)^2*(x )^3*(x + 4)^4*(x^2 -5)^4;
180T[207,53]=(x -12)*(x^2 -6*x + 4)*(x^2 + 4*x -46)*(x^2 -4*x -46)*(x^2 -8*x -4)*(x + 12)^2*(x^2 + 6*x + 4)^2*(x^2 + 8*x -4)^3;
181T[207,59]=(x -12)*(x^2 + 4*x -16)*(x^2 + 8*x -64)*(x^2 -4*x -28)*(x^2 + 4*x -28)*(x + 12)^2*(x^2 -8*x -64)^2*(x^2 -4*x -16)^3;
182T[207,61]=(x^2 -4*x -4)^2*(x + 6)^3*(x^2 -20)^3*(x^2 -4*x -76)^4;
183T[207,67]=(x^2 -20*x + 98)^2*(x + 10)^3*(x^2 -6*x + 4)^3*(x^2 + 10*x + 20)^4;
184T[207,71]=(x^2 + 16*x + 32)*(x^2 + 20*x + 95)*(x^2 -16*x + 32)*(x^2 -20*x + 95)^3*(x -8)^4*(x + 8)^5;
185T[207,73]=(x^2 -4*x -124)^2*(x + 14)^3*(x^2 + 4*x -76)^3*(x^2 -22*x + 101)^4;
186T[207,79]=(x^2 + 4*x -94)^2*(x -10)^3*(x^2 -6*x -36)^3*(x^2 + 4*x -76)^4;
187T[207,83]=(x + 12)*(x^2 + 8*x + 8)*(x^2 -22*x + 116)*(x^2 -8*x + 8)*(x -12)^2*(x + 4)^2*(x^2 + 22*x + 116)^3*(x -4)^4;
188T[207,89]=(x -16)*(x^2 -12*x -14)*(x^2 + 2*x -4)*(x^2 + 12*x -14)*(x^2 -12*x + 16)*(x + 16)^2*(x^2 -2*x -4)^2*(x^2 + 12*x + 16)^3;
189T[207,97]=(x^2 -8*x -4)^3*(x^2 -22*x + 76)^4*(x + 10)^7;
190
191T[208,2]=(x -1)*(x + 1)*(x )^21;
192T[208,3]=(x -3)*(x^2 + x -4)*(x + 1)^2*(x^2 -x -4)^2*(x + 3)^4*(x )^4*(x -1)^6;
193T[208,5]=(x^2 -3*x -2)^3*(x -2)^4*(x + 3)^5*(x + 1)^8;
194T[208,7]=(x + 5)*(x -2)*(x^2 -x -4)*(x -5)^2*(x^2 + x -4)^2*(x + 2)^3*(x -1)^5*(x + 1)^5;
195T[208,11]=(x + 6)*(x^2 -2*x -16)*(x^2 + 2*x -16)^2*(x -2)^3*(x -6)^4*(x + 2)^9;
196T[208,13]=(x -1)^11*(x + 1)^12;
197T[208,17]=(x^2 + x -38)^3*(x -6)^4*(x + 3)^13;
198T[208,19]=(x^2 + 2*x -16)*(x^2 -2*x -16)^2*(x + 2)^3*(x + 6)^4*(x -2)^5*(x -6)^5;
199T[208,23]=(x -4)^3*(x + 8)^5*(x -8)^5*(x + 4)^5*(x )^5;
200T[208,29]=(x + 6)^3*(x -6)^5*(x + 2)^6*(x -2)^9;
201T[208,31]=(x + 10)*(x -10)^3*(x + 4)^9*(x -4)^10;
202T[208,37]=(x -11)^3*(x^2 -7*x -26)^3*(x + 6)^4*(x -3)^5*(x + 7)^5;
203T[208,41]=(x -8)^3*(x^2 -2*x -16)^3*(x + 6)^4*(x )^10;
204T[208,43]=(x -5)*(x + 4)*(x^2 + 15*x + 52)*(x -1)^2*(x^2 -15*x + 52)^2*(x -4)^3*(x + 5)^4*(x + 1)^6;
205T[208,47]=(x + 13)*(x + 9)*(x -2)*(x + 3)*(x^2 -13*x + 4)*(x -9)^2*(x^2 + 13*x + 4)^2*(x + 2)^3*(x -13)^4*(x -3)^4;
206T[208,53]=(x + 12)^3*(x^2 + 2*x -16)^3*(x -6)^4*(x -12)^5*(x )^5;
207T[208,59]=(x^2 + 2*x -16)*(x -10)^2*(x^2 -2*x -16)^2*(x -6)^3*(x + 6)^5*(x + 10)^7;
208T[208,61]=(x^2 -14*x + 32)^3*(x )^3*(x + 2)^4*(x + 8)^5*(x -8)^5;
209T[208,67]=(x -2)*(x + 6)*(x + 10)*(x + 14)*(x^2 -2*x -16)*(x -6)^2*(x^2 + 2*x -16)^2*(x -10)^3*(x -14)^4*(x + 2)^4;
210T[208,71]=(x -5)*(x + 10)*(x -3)*(x + 7)*(x^2 -3*x -36)*(x -7)^2*(x^2 + 3*x -36)^2*(x -10)^3*(x + 5)^4*(x + 3)^4;
211T[208,73]=(x + 2)^3*(x + 10)^5*(x + 6)^6*(x -2)^9;
212T[208,79]=(x + 12)*(x -4)^2*(x -12)^2*(x + 8)^3*(x + 4)^7*(x -8)^8;
213T[208,83]=(x -6)*(x -16)*(x + 12)*(x^2 -12*x -32)*(x + 16)^2*(x^2 + 12*x -32)^2*(x + 6)^3*(x -12)^4*(x )^5;
214T[208,89]=(x + 10)^3*(x -6)^5*(x -10)^6*(x + 6)^9;
215T[208,97]=(x^2 -68)^3*(x -2)^4*(x -14)^5*(x + 10)^8;
216
217T[209,2]=(x^2 -2)*(x^5 -2*x^4 -6*x^3 + 10*x^2 + 5*x -4)*(x^7 + x^6 -14*x^5 -10*x^4 + 59*x^3 + 27*x^2 -66*x -30)*(x + 2)^2*(x )^3;
218T[209,3]=(x -1)*(x^2 + 2*x -1)*(x^5 -x^4 -9*x^3 + 11*x^2 + 7*x -1)*(x^7 -2*x^6 -14*x^5 + 28*x^4 + 46*x^3 -100*x^2 -17*x + 64)*(x + 2)^2*(x + 1)^2;
219T[209,5]=(x + 3)*(x^5 + 5*x^4 -3*x^3 -33*x^2 -9*x + 19)*(x^7 -2*x^6 -20*x^5 + 34*x^4 + 88*x^3 -156*x^2 + 57*x -6)*(x -3)^2*(x + 1)^2*(x -1)^2;
220T[209,7]=(x + 4)*(x^2 + 4*x + 2)*(x^5 -6*x^4 -x^3 + 62*x^2 -119*x + 64)*(x^7 -10*x^6 + 17*x^5 + 86*x^4 -185*x^3 -316*x^2 + 394*x + 512)*(x + 2)^2*(x + 1)^2;
221T[209,11]=(x^2 -3*x + 11)*(x -1)^8*(x + 1)^9;
222T[209,13]=(x -2)*(x^2 + 4*x -14)*(x^5 -4*x^4 -9*x^3 + 26*x^2 + 37*x + 2)*(x^7 + 4*x^6 -51*x^5 -194*x^4 + 639*x^3 + 2082*x^2 -2550*x -5716)*(x + 4)^2*(x -4)^2;
223T[209,17]=(x^2 -4*x + 2)*(x^5 + 4*x^4 -32*x^3 -64*x^2 + 304*x -64)*(x^7 -2*x^6 -70*x^5 + 44*x^4 + 1552*x^3 + 864*x^2 -11424*x -17088)*(x )*(x + 2)^2*(x + 3)^2;
224T[209,19]=(x^2 + 19)*(x + 1)^7*(x -1)^10;
225T[209,23]=(x -3)*(x^5 -3*x^4 -76*x^3 + 388*x^2 -224*x -784)*(x^7 -10*x^6 -51*x^5 + 648*x^4 -316*x^3 -5136*x^2 + 3312*x + 1920)*(x + 1)^2*(x + 3)^2*(x )^2;
226T[209,29]=(x + 6)*(x^2 + 4*x -14)*(x^5 -10*x^4 -37*x^3 + 656*x^2 -1827*x + 490)*(x^7 + 18*x^6 + 117*x^5 + 340*x^4 + 383*x^3 -114*x^2 -534*x -276)*(x -6)^2*(x )^2;
227T[209,31]=(x + 7)*(x^2 + 10*x + 23)*(x^5 -11*x^4 -3*x^3 + 193*x^2 -31*x -757)*(x^7 -24*x^6 + 214*x^5 -904*x^4 + 1918*x^3 -1934*x^2 + 715*x + 4)*(x -7)^2*(x + 4)^2;
228T[209,37]=(x + 7)*(x^2 -6*x -41)*(x^5 -x^4 -80*x^3 + 104*x^2 + 1520*x -3088)*(x^7 -121*x^5 -194*x^4 + 3512*x^3 + 9296*x^2 -1680*x -8992)*(x -3)^2*(x -2)^2;
229T[209,41]=(x^2 -8*x -16)*(x^5 -2*x^4 -189*x^3 + 252*x^2 + 7253*x -4112)*(x^7 + 12*x^6 -5*x^5 -526*x^4 -1823*x^3 -174*x^2 + 3840*x -1824)*(x )*(x + 8)^2*(x + 6)^2;
230T[209,43]=(x + 10)*(x^2 -12*x + 4)*(x^5 -20*x^4 + 23*x^3 + 1640*x^2 -9843*x + 11266)*(x^7 -2*x^6 -89*x^5 + 150*x^4 + 1677*x^3 -1208*x^2 -6988*x + 4976)*(x + 6)^2*(x + 1)^2;
231T[209,47]=(x^2 -12*x + 28)*(x^5 + 20*x^4 + 28*x^3 -1088*x^2 -2192*x + 13184)*(x^7 -8*x^6 -152*x^5 + 1344*x^4 + 1024*x^3 -22848*x^2 + 12096*x + 79872)*(x )*(x -8)^2*(x + 3)^2;
232T[209,53]=(x -6)*(x^2 -8*x -56)*(x^5 + 14*x^4 -88*x^3 -1392*x^2 + 1808*x + 30304)*(x^7 -2*x^6 -160*x^5 + 32*x^4 + 6032*x^3 + 13920*x^2 + 8832*x + 768)*(x -12)^2*(x + 6)^2;
233T[209,59]=(x -3)*(x^2 + 6*x + 7)*(x^5 -3*x^4 -164*x^3 + 908*x^2 -496*x -2000)*(x^7 + 10*x^6 -345*x^5 -2976*x^4 + 36164*x^3 + 249792*x^2 -1125936*x -6552192)*(x + 6)^2*(x -5)^2;
234T[209,61]=(x + 10)*(x^2 + 8*x -34)*(x^5 + 10*x^4 -24*x^3 -464*x^2 -1264*x -736)*(x^7 -14*x^6 -34*x^5 + 1044*x^4 -1728*x^3 -17920*x^2 + 60512*x -36544)*(x -12)^2*(x + 1)^2;
235T[209,67]=(x -11)*(x^2 + 18*x + 79)*(x^5 -9*x^4 -195*x^3 + 827*x^2 + 10633*x + 17689)*(x^7 -8*x^6 -170*x^5 + 1308*x^4 + 6342*x^3 -33086*x^2 -115621*x + 13544)*(x + 4)^2*(x + 7)^2;
236T[209,71]=(x -15)*(x^2 + 22*x + 119)*(x^5 -23*x^4 -17*x^3 + 2929*x^2 -14485*x + 19081)*(x^7 -10*x^6 -134*x^5 + 944*x^4 + 2278*x^3 -11928*x^2 -9057*x + 39756)*(x + 3)^2*(x -6)^2;
237T[209,73]=(x -8)*(x^2 -8*x -56)*(x^5 -340*x^3 -1168*x^2 + 27728*x + 155392)*(x^7 + 6*x^6 -220*x^5 -1592*x^4 + 3536*x^3 + 44576*x^2 + 100224*x + 67328)*(x + 7)^2*(x -4)^2;
238T[209,79]=(x + 16)*(x^2 + 32*x + 254)*(x^5 -44*x^4 + 748*x^3 -6128*x^2 + 24176*x -36800)*(x^7 -52*x^6 + 970*x^5 -7152*x^4 + 7992*x^3 + 90880*x^2 -26464*x -203264)*(x + 10)^2*(x -8)^2;
239T[209,83]=(x^2 -4*x + 2)*(x^5 + 14*x^4 -69*x^3 -1242*x^2 -4103*x -3908)*(x^7 + 10*x^6 -219*x^5 -3362*x^4 -8273*x^3 + 71352*x^2 + 410346*x + 576936)*(x )*(x + 6)^2*(x -12)^2;
240T[209,89]=(x -9)*(x^2 + 10*x -73)*(x^5 + 27*x^4 + 268*x^3 + 1168*x^2 + 1952*x + 320)*(x^7 -401*x^5 -698*x^4 + 50392*x^3 + 161184*x^2 -1951104*x -8199552)*(x -15)^2*(x -12)^2;
241T[209,97]=(x + 1)*(x^2 -2*x -1)*(x^5 -15*x^4 -124*x^3 + 2116*x^2 + 304*x -37456)*(x^7 + 24*x^6 -189*x^5 -6678*x^4 + 8156*x^3 + 605448*x^2 -49072*x -17393056)*(x -8)^2*(x + 7)^2;
242
243T[210,2]=(x^2 -x + 2)*(x^4 -x^2 + 4)*(x^2 + 2)^2*(x^4 + x^3 + 2*x + 4)^2*(x^2 + x + 2)^4*(x -1)^7*(x + 1)^8;
244T[210,3]=(x^2 + 3)*(x^2 + 2*x + 3)^2*(x^2 -x + 3)^2*(x^4 + x^3 + 2*x^2 + 3*x + 9)^2*(x -1)^11*(x + 1)^12;
245T[210,5]=(x^2 + 5)^2*(x^2 + 2*x + 5)^3*(x + 1)^14*(x -1)^17;
246T[210,7]=(x^2 + 4*x + 7)*(x^2 + 7)^2*(x -1)^17*(x + 1)^18;
247T[210,11]=(x^2 -4*x -16)^2*(x + 3)^4*(x^2 -x -4)^4*(x -4)^7*(x + 4)^8*(x )^10;
248T[210,13]=(x -6)^2*(x^2 -20)^2*(x -2)^4*(x + 6)^4*(x + 4)^4*(x -5)^4*(x^2 -5*x + 2)^4*(x + 2)^11;
249T[210,17]=(x + 2)^4*(x -3)^4*(x^2 + 5*x + 2)^4*(x -6)^6*(x + 6)^7*(x -2)^12;
250T[210,19]=(x -8)*(x + 8)^2*(x^2 -4*x -16)^2*(x )^3*(x^2 + 6*x -8)^4*(x + 4)^6*(x -2)^8*(x -4)^9;
251T[210,23]=(x + 8)^3*(x + 6)^4*(x -4)^4*(x -8)^4*(x^2 + 2*x -16)^4*(x )^18;
252T[210,29]=(x -10)*(x -6)^4*(x -3)^4*(x^2 -x -38)^4*(x + 6)^7*(x + 2)^17;
253T[210,31]=(x -4)^2*(x + 8)^2*(x^2 -12*x + 16)^2*(x -8)^4*(x + 4)^10*(x )^19;
254T[210,37]=(x^2 -4*x -76)^2*(x + 2)^3*(x + 10)^9*(x -2)^12*(x -6)^13;
255T[210,41]=(x -10)^4*(x + 12)^4*(x^2 -2*x -16)^4*(x + 2)^5*(x -6)^5*(x -2)^7*(x + 6)^8;
256T[210,43]=(x + 12)*(x^2 -80)^2*(x + 10)^4*(x^2 -10*x + 8)^4*(x -8)^6*(x -4)^8*(x + 4)^10;
257T[210,47]=(x -4)*(x + 8)*(x^2 -8*x -64)^2*(x -9)^4*(x^2 + 5*x -32)^4*(x + 12)^5*(x -8)^8*(x )^10;
258T[210,53]=(x + 2)^2*(x^2 + 16*x + 44)^2*(x -10)^3*(x + 6)^3*(x -12)^4*(x^2 + 2*x -16)^4*(x + 10)^5*(x -6)^12;
259T[210,59]=(x + 8)^2*(x + 12)^2*(x^2 -80)^2*(x + 6)^4*(x -12)^5*(x -4)^6*(x )^6*(x + 4)^12;
260T[210,61]=(x + 6)*(x -14)*(x -2)*(x -6)^2*(x + 14)^2*(x + 10)^3*(x^2 -6*x -144)^4*(x -8)^8*(x + 2)^15;
261T[210,67]=(x -8)*(x )*(x + 12)^3*(x^2 -4*x -64)^4*(x -12)^5*(x -4)^8*(x + 4)^15;
262T[210,71]=(x -12)*(x + 16)^2*(x^2 -20*x + 80)^2*(x + 12)^3*(x + 8)^5*(x -8)^11*(x )^15;
263T[210,73]=(x -14)*(x + 10)*(x + 14)*(x + 2)^2*(x^2 + 16*x + 44)^2*(x^2 + 8*x -52)^4*(x + 6)^5*(x -10)^7*(x -2)^12;
264T[210,79]=(x -16)*(x^2 -8*x -64)^2*(x + 8)^3*(x + 1)^4*(x^2 + 9*x + 16)^4*(x + 16)^5*(x )^7*(x -8)^9;
265T[210,83]=(x -8)^2*(x^2 + 16*x -16)^2*(x + 6)^4*(x + 12)^5*(x + 4)^5*(x -4)^8*(x -12)^13;
266T[210,89]=(x -2)*(x -14)*(x -6)*(x -18)^2*(x -10)^3*(x + 2)^4*(x + 14)^4*(x + 12)^4*(x^2 -6*x -8)^4*(x + 6)^13;
267T[210,97]=(x -10)*(x -14)*(x + 18)^2*(x + 14)^2*(x^2 -8*x -4)^2*(x + 1)^4*(x -18)^4*(x^2 + 9*x -86)^4*(x + 10)^5*(x -2)^10;
268
269T[211,2]=(x^2 -x -1)*(x^3 -4*x + 1)*(x^3 + 2*x^2 -x -1)*(x^9 + x^8 -14*x^7 -11*x^6 + 66*x^5 + 36*x^4 -123*x^3 -38*x^2 + 72*x + 8);
270T[211,3]=(x^2 -3*x + 1)*(x^3 + x^2 -2*x -1)*(x^3 + 3*x^2 -x -4)*(x^9 + x^8 -20*x^7 -17*x^6 + 128*x^5 + 80*x^4 -292*x^3 -72*x^2 + 224*x -32);
271T[211,5]=(x^2 -2*x -4)*(x^3 + 8*x^2 + 19*x + 13)*(x^3 + 5*x^2 + 2*x -4)*(x^9 -15*x^8 + 83*x^7 -189*x^6 + 63*x^5 + 377*x^4 -410*x^3 + 10*x^2 + 51*x -3);
272T[211,7]=(x^2 -x -1)*(x^3 -2*x^2 -15*x + 29)*(x^3 + 3*x^2 -x -2)*(x^9 + 2*x^8 -35*x^7 -57*x^6 + 322*x^5 + 200*x^4 -984*x^3 + 352*x^2 + 384*x -192);
273T[211,11]=(x^3 + 2*x^2 -29*x -71)*(x^9 -13*x^8 + 31*x^7 + 235*x^6 -1233*x^5 + 671*x^4 + 5452*x^3 -9568*x^2 + 3705*x -333)*(x + 3)^5;
274T[211,13]=(x^2 -8*x + 11)*(x^3 + 3*x^2 -4*x + 1)*(x^3 -x^2 -21*x + 37)*(x^9 + 4*x^8 -37*x^7 -52*x^6 + 480*x^5 -186*x^4 -1768*x^3 + 2169*x^2 + 272*x -931);
275T[211,17]=(x^2 -11*x + 29)*(x^3 -6*x^2 + 5*x -1)*(x^3 + 17*x^2 + 91*x + 148)*(x^9 -4*x^8 -69*x^7 + 345*x^6 + 738*x^5 -5900*x^4 + 7484*x^3 + 1408*x^2 -4032*x -768);
276T[211,19]=(x^2 + 5*x -5)*(x^3 + 7*x^2 -7)*(x^3 -2*x^2 -4*x + 7)*(x^9 + 2*x^8 -77*x^7 -212*x^6 + 1604*x^5 + 4576*x^4 -13004*x^3 -35693*x^2 + 36636*x + 92579);
277T[211,23]=(x^2 -8*x + 11)*(x^3 + 19*x^2 + 118*x + 239)*(x^3 -16*x^2 + 73*x -74)*(x^9 + 3*x^8 -72*x^7 -217*x^6 + 962*x^5 + 4716*x^4 + 6264*x^3 + 2272*x^2 -896*x -512);
278T[211,29]=(x^2 -5)*(x^3 + 6*x^2 -79*x -377)*(x^3 + 20*x^2 + 121*x + 226)*(x^9 -26*x^8 + 221*x^7 -307*x^6 -5526*x^5 + 29420*x^4 -32120*x^3 -84032*x^2 + 125568*x + 102912);
279T[211,31]=(x^2 + 11*x -1)*(x^3 + 5*x^2 -22*x -13)*(x^3 -3*x^2 -45*x -54)*(x^9 -5*x^8 -118*x^7 + 647*x^6 + 1914*x^5 -8640*x^4 -2476*x^3 + 23112*x^2 -18112*x + 4064);
280T[211,37]=(x^2 + 4*x -76)*(x^3 -5*x^2 -4*x + 4)*(x^3 + 2*x^2 -43*x + 83)*(x^9 -5*x^8 -89*x^7 + 335*x^6 + 2747*x^5 -6013*x^4 -33456*x^3 + 29164*x^2 + 107073*x -70173);
281T[211,41]=(x^3 + 18*x^2 + 80*x -8)*(x^3 + 2*x^2 -89*x + 58)*(x^9 -20*x^8 -56*x^7 + 3180*x^6 -11408*x^5 -113040*x^4 + 708480*x^3 -418944*x^2 -1769984*x + 34048)*(x + 3)^2;
282T[211,43]=(x^3 -4*x^2 -11*x + 1)*(x^3 -3*x^2 -61*x -1)*(x^9 + 37*x^8 + 507*x^7 + 2637*x^6 -5007*x^5 -123007*x^4 -557908*x^3 -1001422*x^2 -408357*x + 385587)*(x -9)^2;
283T[211,47]=(x^2 -x -1)*(x^3 -11*x^2 + 24*x -13)*(x^3 + 4*x^2 -10*x -41)*(x^9 -4*x^8 -319*x^7 + 1262*x^6 + 31464*x^5 -105436*x^4 -936858*x^3 + 1034537*x^2 + 6489348*x + 4961361);
284T[211,53]=(x^2 -13*x + 41)*(x^3 + 10*x^2 -25*x -125)*(x^3 + x^2 -5*x + 2)*(x^9 -13*x^8 -54*x^7 + 1223*x^6 -1606*x^5 -29060*x^4 + 93763*x^3 + 29470*x^2 -219804*x -101352);
285T[211,59]=(x^2 -45)*(x^3 -5*x^2 -78*x -169)*(x^3 + 12*x^2 -13*x -148)*(x^9 -14*x^8 -258*x^7 + 4207*x^6 + 10906*x^5 -299365*x^4 + 55011*x^3 + 7249088*x^2 -5458656*x -48901984);
286T[211,61]=(x^3 + 23*x^2 + 139*x + 181)*(x^3 -57*x + 52)*(x^9 -23*x^8 + 97*x^7 + 1143*x^6 -8310*x^5 -13352*x^4 + 149060*x^3 + 111952*x^2 -857808*x -1016544)*(x + 3)^2;
287T[211,67]=(x^3 -7*x^2 + 49)*(x^9 + 3*x^8 -364*x^7 -1591*x^6 + 39210*x^5 + 166680*x^4 -1674108*x^3 -5664160*x^2 + 24857840*x + 45391648)*(x + 12)^2*(x )^3;
288T[211,71]=(x^2 + 6*x -116)*(x^3 + 11*x^2 -118*x -772)*(x^3 -18*x^2 + 59*x + 127)*(x^9 -19*x^8 -105*x^7 + 4069*x^6 -19137*x^5 -86723*x^4 + 766520*x^3 -512588*x^2 -5766975*x + 10015233);
289T[211,73]=(x^2 + 7*x -19)*(x^3 -3*x^2 -x + 2)*(x^3 + 2*x^2 -176*x + 664)*(x^9 -17*x^8 -201*x^7 + 3277*x^6 + 17444*x^5 -198328*x^4 -643640*x^3 + 4504064*x^2 + 7355616*x -35767104);
290T[211,79]=(x^2 + 10*x -20)*(x^3 -8*x^2 -100*x + 568)*(x^3 + 5*x^2 -226*x -1612)*(x^9 -7*x^8 -210*x^7 + 791*x^6 + 14034*x^5 -21748*x^4 -397881*x^3 -92604*x^2 + 4179108*x + 6812632);
291T[211,83]=(x^2 -8*x -4)*(x^3 + 21*x^2 + 98*x + 49)*(x^3 -28*x^2 + 212*x -448)*(x^9 -6*x^8 -322*x^7 + 1613*x^6 + 37418*x^5 -149415*x^4 -1828829*x^3 + 5682692*x^2 + 30256368*x -81789792);
292T[211,89]=(x^2 -15*x + 45)*(x^3 + 31*x^2 + 304*x + 953)*(x^3 -5*x^2 -189*x -736)*(x^9 -33*x^8 + 54*x^7 + 8297*x^6 -77858*x^5 -257132*x^4 + 5068540*x^3 -8855680*x^2 -41815248*x + 45488928);
293T[211,97]=(x^2 -x -11)*(x^3 -7*x^2 -69*x + 112)*(x^3 + 7*x^2 -98*x -637)*(x^9 + 11*x^8 -168*x^7 -1961*x^6 + 6854*x^5 + 101540*x^4 + 27956*x^3 -1372768*x^2 -2813232*x -1454432);
294
295T[212,2]=(x^2 + x + 2)*(x^6 + x^5 + 3*x^4 + 3*x^3 + 6*x^2 + 4*x + 8)*(x + 1)^2*(x -1)^2*(x )^13;
296T[212,3]=(x^3 + 3*x^2 -3*x -7)*(x + 2)^2*(x -1)^2*(x -2)^3*(x + 1)^3*(x + 3)^3*(x^3 -3*x^2 -x + 1)^3;
297T[212,5]=(x -2)*(x + 2)*(x^3 -12*x -12)*(x -1)^2*(x -3)^2*(x + 4)^2*(x^3 + 2*x^2 -4*x -4)^3*(x )^5;
298T[212,7]=(x^3 -6*x^2 + 28)*(x -2)^2*(x + 2)^3*(x^3 -4*x^2 + 4)^3*(x )^3*(x + 4)^5;
299T[212,11]=(x -2)*(x^3 -6*x^2 -12*x + 84)*(x -5)^2*(x + 3)^2*(x + 4)^3*(x^3 + 4*x^2 -4*x -20)^3*(x )^5;
300T[212,13]=(x + 7)*(x + 2)*(x + 3)^3*(x + 4)^4*(x -5)^5*(x -1)^11;
301T[212,17]=(x -2)*(x^3 -3*x^2 -21*x + 39)*(x -5)^2*(x^3 + 5*x^2 -5*x -17)^3*(x -3)^4*(x + 3)^6;
302T[212,19]=(x -2)*(x -5)*(x^3 + 3*x^2 -45*x -161)*(x + 1)^2*(x + 7)^2*(x + 5)^3*(x^3 -11*x^2 + 37*x -37)^3*(x + 4)^4;
303T[212,23]=(x + 2)*(x^3 + 3*x^2 -21*x + 3)*(x -1)^2*(x -3)^2*(x + 9)^2*(x + 3)^3*(x -7)^3*(x^3 -3*x^2 -31*x -29)^3;
304T[212,29]=(x -2)*(x^3 + 9*x^2 + 15*x + 3)*(x -6)^2*(x + 6)^2*(x -5)^2*(x -9)^3*(x + 7)^3*(x^3 + 5*x^2 -37*x -61)^3;
305T[212,31]=(x + 8)*(x -2)*(x^3 + 6*x^2 -36*x -212)*(x -5)^2*(x -7)^2*(x -4)^3*(x^3 + 2*x^2 -76*x + 116)^3*(x + 4)^4;
306T[212,37]=(x -10)*(x + 3)*(x^3 + 9*x^2 + 3*x -89)*(x + 10)^2*(x -1)^2*(x + 6)^2*(x^3 + 5*x^2 -89*x -353)^3*(x -5)^5;
307T[212,41]=(x^3 + 6*x^2 -36*x -72)*(x + 10)^2*(x^3 + 10*x^2 + 20*x -8)^3*(x -2)^4*(x -6)^7;
308T[212,43]=(x + 4)*(x -4)*(x^3 -48*x + 124)*(x -7)^2*(x + 1)^2*(x + 2)^3*(x^3 -18*x^2 + 24*x + 556)^3*(x + 10)^4;
309T[212,47]=(x + 12)*(x -10)*(x^3 -18*x^2 + 60*x + 168)*(x + 6)^2*(x -4)^2*(x -6)^2*(x )^2*(x + 2)^3*(x^3 + 10*x^2 -4*x -8)^3;
310T[212,53]=(x -1)^12*(x + 1)^13;
311T[212,59]=(x + 12)*(x^3 + 6*x^2 -36*x -72)*(x -15)^2*(x -7)^2*(x -6)^2*(x + 6)^2*(x^3 -2*x^2 -60*x + 200)^3*(x + 2)^4;
312T[212,61]=(x -10)*(x^3 -48*x + 124)*(x -4)^2*(x -2)^2*(x -8)^2*(x + 8)^3*(x + 10)^3*(x^3 + 10*x^2 -56*x -556)^3;
313T[212,67]=(x + 2)*(x^3 + 6*x^2 -72*x -356)*(x -16)^2*(x + 12)^3*(x -4)^3*(x^3 -6*x^2 -72*x -108)^3*(x + 4)^4;
314T[212,71]=(x -6)*(x + 9)*(x^3 + 3*x^2 -39*x + 57)*(x + 3)^2*(x -15)^2*(x -1)^3*(x^3 + 5*x^2 -105*x + 277)^3*(x -12)^4;
315T[212,73]=(x -10)*(x + 6)*(x^3 -24*x^2 + 180*x -428)*(x -8)^2*(x + 12)^2*(x + 8)^2*(x^3 -6*x^2 -28*x -4)^3*(x + 4)^5;
316T[212,79]=(x -5)*(x -10)*(x^3 -3*x^2 -219*x + 643)*(x -11)^2*(x + 13)^2*(x -1)^2*(x + 7)^2*(x + 1)^3*(x^3 + 7*x^2 -77*x + 131)^3;
317T[212,83]=(x + 11)*(x^3 + 3*x^2 -9*x -9)*(x + 14)^2*(x -3)^2*(x + 3)^2*(x + 1)^3*(x + 6)^3*(x^3 -27*x^2 + 213*x -457)^3;
318T[212,89]=(x^3 + 6*x^2 -180*x -504)*(x + 10)^2*(x -17)^2*(x -9)^2*(x -2)^2*(x -18)^2*(x + 14)^3*(x^3 + 2*x^2 -212*x + 1048)^3;
319T[212,97]=(x -14)*(x + 3)*(x^3 + 9*x^2 -105*x -917)*(x -3)^2*(x + 13)^2*(x + 7)^2*(x -17)^2*(x -1)^3*(x^3 + x^2 -133*x -137)^3;
320
321T[213,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 + x -1)*(x^2 -x -3)*(x^4 -3*x^3 -2*x^2 + 7*x + 1)*(x^3 -5*x + 3)^2*(x^3 + x^2 -4*x -3)^2;
322T[213,3]=(x^6 -x^5 + 5*x^4 -3*x^3 + 15*x^2 -9*x + 27)*(x^6 + x^5 + x^4 + 3*x^3 + 3*x^2 + 9*x + 27)*(x -1)^5*(x + 1)^6;
323T[213,5]=(x -2)*(x^2 + x -3)*(x^2 + 5*x + 5)*(x^2 -x -1)*(x^4 + 3*x^3 -5*x^2 -4*x + 4)*(x^3 + 3*x^2 -2*x -7)^2*(x^3 -5*x^2 -2*x + 25)^2;
324T[213,7]=(x -2)*(x^2 + 4*x -1)*(x^4 -6*x^3 + 7*x^2 + 6*x -4)*(x + 3)^2*(x + 1)^2*(x^3 -2*x^2 -16*x + 24)^4;
325T[213,11]=(x^2 + 8*x + 11)*(x^2 + 4*x -1)*(x^4 -2*x^3 -15*x^2 + 36*x -16)*(x )*(x -3)^2*(x^3 -20*x + 24)^2*(x^3 + 2*x^2 -16*x -24)^2;
326T[213,13]=(x + 2)*(x^2 + 3*x -1)*(x^2 + x -11)*(x^2 + 5*x -5)*(x^4 -5*x^3 -11*x^2 + 40*x + 4)*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^6;
327T[213,17]=(x^2 -5)*(x^2 + 4*x -1)*(x^4 + 8*x^3 -31*x^2 -338*x -604)*(x )*(x -3)^2*(x^3 + 2*x^2 -32*x -24)^2*(x^3 -2*x^2 -16*x + 24)^2;
328T[213,19]=(x^2 + 4*x -9)*(x^4 -8*x^3 -57*x^2 + 492*x -304)*(x )*(x^2 + 8*x + 11)^2*(x^3 -x^2 -20*x -25)^2*(x^3 -11*x^2 + 36*x -35)^2;
329T[213,23]=(x^2 + 3*x -9)*(x^2 -3*x -27)*(x^2 + 3*x -29)*(x^4 + x^3 -43*x^2 + 104*x -64)*(x )*(x^3 -8*x^2 -12*x + 72)^2*(x + 4)^6;
330T[213,29]=(x + 2)*(x^2 -3*x -9)*(x^2 -3*x -59)*(x^2 -7*x + 9)*(x^4 + 5*x^3 -69*x^2 -560*x -1076)*(x^3 + 5*x^2 -2*x -25)^2*(x^3 -11*x^2 + 14*x + 71)^2;
331T[213,31]=(x + 10)*(x^2 -8*x -4)*(x^4 -2*x^3 -96*x^2 + 72*x + 2096)*(x -2)^2*(x + 2)^2*(x^3 + 6*x^2 -8*x -56)^2*(x -4)^6;
332T[213,37]=(x + 6)*(x^2 + x -3)*(x^2 -3*x -99)*(x^2 + x -31)*(x^4 -19*x^3 + 125*x^2 -332*x + 284)*(x^3 -9*x^2 -26*x + 37)^2*(x^3 + 15*x^2 + 70*x + 97)^2;
333T[213,41]=(x^2 -3*x -27)*(x^2 + 17*x + 71)*(x^2 -15*x + 55)*(x^4 + 19*x^3 + 115*x^2 + 282*x + 244)*(x )*(x^3 -14*x^2 + 48*x -8)^2*(x^3 + 2*x^2 -68*x + 56)^2;
334T[213,43]=(x + 4)*(x^2 -13*x + 13)*(x^2 + 3*x -99)*(x^2 + 15*x + 45)*(x^4 -25*x^3 + 205*x^2 -600*x + 400)*(x^3 + 17*x^2 + 72*x + 81)^2*(x^3 -13*x^2 + 48*x -45)^2;
335T[213,47]=(x -12)*(x^2 + 5*x -55)*(x^2 -15*x + 45)*(x^2 + 9*x -9)*(x^4 -7*x^3 -85*x^2 + 436*x -496)*(x^3 -4*x^2 -28*x + 40)^2*(x^3 + 10*x^2 -72)^2;
336T[213,53]=(x + 4)*(x^2 + 3*x -29)*(x^2 -9*x + 19)*(x^2 -5*x -75)*(x^4 + 5*x^3 -81*x^2 -390*x + 524)*(x^3 + 18*x^2 + 28*x -456)^2*(x^3 -20*x -24)^2;
337T[213,59]=(x -12)*(x^2 -45)*(x^2 -4*x -121)*(x^4 -10*x^3 -71*x^2 + 880*x -1936)*(x + 3)^2*(x^3 + 4*x^2 -36*x -152)^2*(x^3 + 22*x^2 + 144*x + 280)^2;
338T[213,61]=(x -10)*(x^2 -45)*(x^2 + 24*x + 131)*(x^4 -2*x^3 -135*x^2 -184*x + 604)*(x -5)^2*(x^3 -8*x^2 -76*x + 536)^2*(x^3 -16*x^2 + 16*x + 320)^2;
339T[213,67]=(x -2)*(x^2 -13*x + 13)*(x^2 + 5*x -145)*(x^2 + 17*x + 41)*(x^4 -35*x^3 + 421*x^2 -2050*x + 3284)*(x^3 + 12*x^2 + 28*x -40)^2*(x^3 + 12*x^2 -32*x -64)^2;
340T[213,71]=(x + 1)^5*(x -1)^18;
341T[213,73]=(x + 10)*(x^2 + 2*x -116)*(x^2 + 10*x + 20)*(x^2 -2*x -4)*(x^4 -2*x^3 -80*x^2 + 456*x -656)*(x^3 -3*x^2 -2*x + 7)^2*(x^3 -27*x^2 + 202*x -461)^2;
342T[213,79]=(x -4)*(x^2 + 9*x + 17)*(x^2 + 5*x + 5)*(x^2 + x -31)*(x^4 + x^3 -175*x^2 -892*x -656)*(x^3 -7*x^2 -136*x + 525)^2*(x^3 + 3*x^2 -44*x + 15)^2;
343T[213,83]=(x + 4)*(x^2 + 12*x + 31)*(x^2 -20*x + 87)*(x^4 -18*x^3 -95*x^2 + 2944*x -11216)*(x + 3)^2*(x^3 -23*x^2 + 172*x -419)^2*(x^3 + 19*x^2 + 96*x + 63)^2;
344T[213,89]=(x -6)*(x^2 + 14*x + 29)*(x^2 -12*x -9)*(x^4 + 16*x^3 -73*x^2 -1456*x -3644)*(x -3)^2*(x^3 -13*x^2 -82*x + 45)^2*(x^3 -x^2 -22*x -27)^2;
345T[213,97]=(x + 2)*(x^2 -9*x -61)*(x^2 -5*x -55)*(x^2 + 9*x -81)*(x^4 + x^3 -83*x^2 -116*x + 76)*(x^3 -22*x^2 + 144*x -280)^2*(x^3 -4*x^2 -36*x + 152)^2;
346
347T[214,2]=(x^4 + x^3 + 3*x^2 + 2*x + 4)*(x^14 + x^13 + 4*x^12 + 5*x^11 + 13*x^10 + 16*x^9 + 34*x^8 + 32*x^7 + 68*x^6 + 64*x^5 + 104*x^4 + 80*x^3 + 128*x^2 + 64*x + 128)*(x -1)^4*(x + 1)^4;
348T[214,3]=(x^2 + 2*x -2)*(x^2 -2*x -2)*(x + 2)^2*(x -1)^2*(x^2 + 3*x + 1)^2*(x^7 -3*x^6 -9*x^5 + 29*x^4 + 14*x^3 -69*x^2 + 12*x + 29)^2;
349T[214,5]=(x + 3)*(x + 4)*(x + 1)*(x^2 -4*x + 1)*(x^2 -3)*(x )*(x^2 + 3*x + 1)^2*(x^7 -5*x^6 -9*x^5 + 64*x^4 -28*x^3 -152*x^2 + 192*x -64)^2;
350T[214,7]=(x + 2)*(x -2)*(x -4)*(x + 4)*(x^2 + 2*x -2)^2*(x^2 + 4*x -1)^2*(x^7 -4*x^6 -23*x^5 + 114*x^4 -32*x^3 -360*x^2 + 448*x -128)^2;
351T[214,11]=(x + 6)*(x + 2)*(x^2 -2*x -2)*(x^2 -6*x + 6)*(x + 3)^2*(x^2 -4*x -1)^2*(x^7 + 2*x^6 -41*x^5 -95*x^4 + 361*x^3 + 950*x^2 + 519*x + 47)^2;
352T[214,13]=(x -4)*(x + 4)*(x^2 + 2*x -2)*(x^2 -2*x -2)*(x + 1)^2*(x^7 -18*x^6 + 98*x^5 + x^4 -1649*x^3 + 4855*x^2 -3548*x -1244)^2*(x + 6)^4;
353T[214,17]=(x + 2)*(x + 6)*(x^2 + 6*x + 6)*(x^2 -10*x + 22)*(x -6)^2*(x^2 + 3*x + 1)^2*(x^7 + x^6 -41*x^5 -16*x^4 + 488*x^3 + 32*x^2 -1536*x -512)^2;
354T[214,19]=(x + 7)*(x -1)*(x + 2)^2*(x^2 -2*x -44)^2*(x^7 + 4*x^6 -52*x^5 -137*x^4 + 391*x^3 + 951*x^2 -694*x -1636)^2*(x -2)^4;
355T[214,23]=(x -5)*(x -9)*(x -1)*(x + 7)*(x^2 + 12*x + 33)*(x^2 -3)*(x^2 -6*x -11)^2*(x^7 -123*x^5 -41*x^4 + 4295*x^3 + 1802*x^2 -34533*x + 21431)^2;
356T[214,29]=(x + 4)*(x^2 -6*x -18)*(x^2 -10*x + 22)*(x )*(x + 6)^2*(x^2 + 2*x -19)^2*(x^7 + 3*x^6 -94*x^5 -382*x^4 + 1077*x^3 + 4927*x^2 -1896*x -11828)^2;
357T[214,31]=(x + 2)*(x + 10)*(x + 4)*(x -4)*(x^2 + 4*x -44)*(x -2)^2*(x^2 + 2*x -19)^2*(x^7 -4*x^6 -45*x^5 + 224*x^4 -84*x^3 -576*x^2 + 320*x + 256)^2;
358T[214,37]=(x -12)*(x + 9)*(x + 1)*(x^2 + 8*x -32)*(x )*(x + 4)^2*(x^2 + 13*x + 31)^2*(x^7 -25*x^6 + 219*x^5 -659*x^4 -1042*x^3 + 10321*x^2 -20000*x + 12113)^2;
359T[214,41]=(x -3)*(x + 5)*(x + 11)^2*(x^2 -10*x + 20)^2*(x^2 -6*x -39)^2*(x^7 -82*x^5 + 155*x^4 + 893*x^3 -1965*x^2 -394*x + 724)^2;
360T[214,43]=(x -12)*(x -8)*(x -1)*(x + 7)^2*(x^2 -9*x + 9)^2*(x^7 -11*x^6 -79*x^5 + 1026*x^4 + 140*x^3 -23568*x^2 + 59040*x -21856)^2*(x + 9)^3;
361T[214,47]=(x -11)*(x -8)*(x + 1)*(x^2 -12*x + 33)*(x^2 -3)*(x )*(x^2 + 14*x + 44)^2*(x^7 + 9*x^6 -107*x^5 -1361*x^4 -2306*x^3 + 14076*x^2 + 30432*x -30848)^2;
362T[214,53]=(x -7)*(x + 9)*(x -10)*(x -6)*(x^2 -108)*(x^2 -8*x + 4)*(x^2 + 6*x -71)^2*(x^7 -8*x^6 -125*x^5 + 435*x^4 + 5683*x^3 -150*x^2 -79775*x -143149)^2;
363T[214,59]=(x + 5)*(x -6)*(x + 3)*(x + 6)*(x^2 -6*x -99)*(x^2 -10*x + 13)*(x^2 -3*x -99)^2*(x^7 + 19*x^6 + 81*x^5 -538*x^4 -6064*x^3 -21232*x^2 -31888*x -16736)^2;
364T[214,61]=(x + 7)*(x -4)*(x -1)*(x + 8)*(x^2 -2*x -74)*(x^2 + 2*x -2)*(x^2 + 13*x + 31)^2*(x^7 -25*x^6 + 111*x^5 + 1195*x^4 -9280*x^3 + 2653*x^2 + 86150*x -123049)^2;
365T[214,67]=(x -5)*(x -14)*(x + 10)*(x + 5)*(x^2 -10*x -23)*(x + 1)^2*(x^2 + 10*x + 20)^2*(x^7 + 24*x^6 + 44*x^5 -3400*x^4 -36896*x^3 -136864*x^2 -88704*x + 333056)^2;
366T[214,71]=(x + 12)*(x^2 -6*x -66)*(x^2 -6*x -138)*(x )*(x -6)^2*(x^2 + 3*x -99)^2*(x^7 + 19*x^6 -165*x^5 -4948*x^4 -15804*x^3 + 174696*x^2 + 1073984*x + 1370816)^2;
367T[214,73]=(x + 16)*(x -8)*(x^2 + 2*x -146)*(x^2 + 10*x + 22)*(x + 4)^2*(x^2 + 8*x -29)^2*(x^7 -30*x^6 + 101*x^5 + 3540*x^4 -21896*x^3 -74968*x^2 + 357776*x + 79712)^2;
368T[214,79]=(x -11)*(x -7)*(x^2 -16*x -11)*(x^2 + 4*x -239)*(x + 7)^2*(x^2 -x -11)^2*(x^7 + 21*x^6 + 131*x^5 -13*x^4 -2664*x^3 -6337*x^2 + 5306*x + 19859)^2;
369T[214,83]=(x + 16)*(x -12)*(x^2 -18*x + 54)*(x^2 + 18*x + 6)*(x -4)^2*(x^2 -3*x -9)^2*(x^7 -12*x^6 -395*x^5 + 5505*x^4 + 25518*x^3 -554561*x^2 + 1427088*x + 2420672)^2;
370T[214,89]=(x + 15)^2*(x -9)^2*(x^2 -20*x + 95)^2*(x^2 -6*x -99)^2*(x^7 + 22*x^6 -87*x^5 -3053*x^4 -1107*x^3 + 33866*x^2 -27103*x -14123)^2;
371T[214,97]=(x + 6)*(x + 12)*(x -12)*(x -14)*(x^2 -6*x -234)*(x^2 + 2*x -2)*(x^2 + 12*x -9)^2*(x^7 + 4*x^6 -207*x^5 -414*x^4 + 10036*x^3 + 8368*x^2 -124544*x + 139424)^2;
372
373T[215,2]=(x^5 -2*x^4 -7*x^3 + 13*x^2 + 5*x -4)*(x^6 -3*x^5 -5*x^4 + 17*x^3 + 3*x^2 -17*x -3)*(x^3 + 2*x^2 -3*x -3)*(x )*(x + 2)^2*(x^2 -2)^2;
374T[215,3]=(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 -4*x^5 -5*x^4 + 30*x^3 -20*x^2 + 1)*(x^3 -x^2 -4*x + 1)*(x )*(x + 2)^2*(x^2 -2)^2;
375T[215,5]=(x^2 + 4*x + 5)*(x^4 -4*x^3 + 12*x^2 -20*x + 25)*(x + 1)^7*(x -1)^8;
376T[215,7]=(x + 2)*(x^5 -5*x^4 -14*x^3 + 97*x^2 -58*x -160)*(x^6 -8*x^5 + x^4 + 92*x^3 -72*x^2 -194*x -31)*(x^3 + 3*x^2 -6*x -7)*(x^2 + 4*x + 2)^2*(x )^2;
377T[215,11]=(x + 1)*(x^5 + 6*x^4 + x^3 -43*x^2 -59*x -12)*(x^6 -41*x^4 + 12*x^3 + 322*x^2 + 88*x -93)*(x^3 -9*x^2 + 107)*(x -3)^2*(x^2 + 2*x -7)^2;
378T[215,13]=(x + 1)*(x^5 -5*x^4 -50*x^3 + 284*x^2 + 224*x -2000)*(x^6 -6*x^5 -20*x^4 + 104*x^3 + 144*x^2 -352*x -448)*(x^3 + 2*x^2 -16*x -8)*(x + 5)^2*(x^2 -2*x -7)^2;
379T[215,17]=(x^5 + 17*x^4 + 94*x^3 + 180*x^2 + 80*x -16)*(x^6 -6*x^5 -60*x^4 + 408*x^3 + 272*x^2 -3616*x + 1344)*(x^3 -10*x^2 + 16*x + 24)*(x^2 -10*x + 17)^2*(x + 3)^3;
380T[215,19]=(x^5 + 6*x^4 -72*x^3 -352*x^2 + 1280*x + 4608)*(x^6 -6*x^5 -32*x^4 + 152*x^3 + 224*x^2 -768*x -512)*(x^3 -6*x^2 -24*x + 72)*(x^2 + 4*x -4)^2*(x + 2)^3;
381T[215,23]=(x^5 -x^4 -54*x^3 + 132*x^2 + 200*x -384)*(x^6 -96*x^4 + 8*x^3 + 2368*x^2 -800*x -5952)*(x^3 + 6*x^2 -24*x -72)*(x^2 -2*x -31)^2*(x + 1)^3;
382T[215,29]=(x -4)*(x^5 -6*x^4 -84*x^3 + 752*x^2 -1744*x + 1152)*(x^6 + 10*x^5 -36*x^4 -680*x^3 -2000*x^2 + 544*x + 5952)*(x^3 -2*x^2 -16*x + 8)*(x + 6)^2*(x^2 -18)^2;
383T[215,31]=(x -3)*(x^5 -6*x^4 -67*x^3 + 529*x^2 -903*x + 128)*(x^6 -97*x^4 -28*x^3 + 2386*x^2 + 1584*x -10133)*(x^3 -13*x^2 + 44*x -41)*(x + 1)^2*(x + 3)^4;
384T[215,37]=(x + 8)*(x^5 -5*x^4 -28*x^3 + 127*x^2 + 86*x -400)*(x^6 -28*x^5 + 221*x^4 + 278*x^3 -10350*x^2 + 37566*x -29813)*(x^3 -9*x^2 + 1)*(x^2 -72)^2*(x )^2;
385T[215,41]=(x^5 -2*x^4 -99*x^3 + 247*x^2 + 211*x + 30)*(x^6 + 6*x^5 -139*x^4 -874*x^3 + 3702*x^2 + 21968*x -10911)*(x^3 -15*x^2 + 42*x + 31)*(x^2 + 2*x -7)^2*(x -5)^3;
386T[215,43]=(x -1)^10*(x + 1)^11;
387T[215,47]=(x^5 -124*x^3 + 72*x^2 + 3392*x -2048)*(x^6 + 6*x^5 -60*x^4 -504*x^3 -688*x^2 + 2080*x + 4416)*(x^3 + 22*x^2 + 112*x -72)*(x )*(x -4)^2*(x -6)^4;
388T[215,53]=(x^5 + 23*x^4 + 190*x^3 + 668*x^2 + 912*x + 400)*(x^6 + 4*x^5 -200*x^4 -592*x^3 + 8240*x^2 + 33536*x + 17088)*(x^3 -8*x^2 + 4*x + 24)*(x^2 -22*x + 113)^2*(x + 5)^3;
389T[215,59]=(x -12)*(x^5 + x^4 -16*x^3 -7*x^2 + 64*x -16)*(x^6 + 20*x^5 + 59*x^4 -940*x^3 -6450*x^2 -9416*x + 6987)*(x^3 -13*x^2 -56*x + 579)*(x + 12)^2*(x^2 + 4*x -4)^2;
390T[215,61]=(x + 4)*(x^3 + 10*x^2 -72*x -648)*(x^6 + 8*x^5 -192*x^4 -1064*x^3 + 6080*x^2 + 13856*x + 6848)*(x^5 -20*x^4 -80*x^3 + 3152*x^2 -7504*x -60672)*(x -2)^2*(x^2 -8*x -2)^2;
391T[215,67]=(x^5 -21*x^4 + 44*x^3 + 732*x^2 + 584*x + 96)*(x^6 -22*x^5 + 52*x^4 + 1176*x^3 -3600*x^2 -17632*x + 32192)*(x^3 + 6*x^2 -24*x -72)*(x^2 -2*x -71)^2*(x + 3)^3;
392T[215,71]=(x -6)*(x^3 + 6*x^2 -120*x -328)*(x^6 -8*x^5 -92*x^4 + 464*x