Sharedwww / Tables / charpoly_s2.gpOpen in CoCalc
\\ charpoly_s2.gp
\\ This is a table of characteristic polynomials of the
\\ Hecke operators T_p acting on the space S_2(Gamma_0(N)) 
\\ of weight 2 cusp forms for Gamma_0(N).
\\ William Stein ([email protected]), September, 1998.

{
T=matrix(500,97,m,n,0);
T[11,2]=x + 2;
T[11,3]=x + 1;
T[11,5]=x -1;
T[11,7]=x + 2;
T[11,11]=x -1;
T[11,13]=x -4;
T[11,17]=x + 2;
T[11,19]=x ;
T[11,23]=x + 1;
T[11,29]=x ;
T[11,31]=x -7;
T[11,37]=x -3;
T[11,41]=x + 8;
T[11,43]=x + 6;
T[11,47]=x -8;
T[11,53]=x + 6;
T[11,59]=x -5;
T[11,61]=x -12;
T[11,67]=x + 7;
T[11,71]=x + 3;
T[11,73]=x -4;
T[11,79]=x + 10;
T[11,83]=x + 6;
T[11,89]=x -15;
T[11,97]=x + 7;

T[14,2]=x + 1;
T[14,3]=x + 2;
T[14,5]=x ;
T[14,7]=x -1;
T[14,11]=x ;
T[14,13]=x + 4;
T[14,17]=x -6;
T[14,19]=x -2;
T[14,23]=x ;
T[14,29]=x + 6;
T[14,31]=x + 4;
T[14,37]=x -2;
T[14,41]=x -6;
T[14,43]=x -8;
T[14,47]=x + 12;
T[14,53]=x -6;
T[14,59]=x + 6;
T[14,61]=x -8;
T[14,67]=x + 4;
T[14,71]=x ;
T[14,73]=x -2;
T[14,79]=x -8;
T[14,83]=x + 6;
T[14,89]=x + 6;
T[14,97]=x + 10;

T[15,2]=x + 1;
T[15,3]=x + 1;
T[15,5]=x -1;
T[15,7]=x ;
T[15,11]=x + 4;
T[15,13]=x + 2;
T[15,17]=x -2;
T[15,19]=x -4;
T[15,23]=x ;
T[15,29]=x + 2;
T[15,31]=x ;
T[15,37]=x + 10;
T[15,41]=x -10;
T[15,43]=x -4;
T[15,47]=x -8;
T[15,53]=x + 10;
T[15,59]=x + 4;
T[15,61]=x + 2;
T[15,67]=x -12;
T[15,71]=x + 8;
T[15,73]=x -10;
T[15,79]=x ;
T[15,83]=x -12;
T[15,89]=x + 6;
T[15,97]=x -2;

T[17,2]=x + 1;
T[17,3]=x ;
T[17,5]=x + 2;
T[17,7]=x -4;
T[17,11]=x ;
T[17,13]=x + 2;
T[17,17]=x -1;
T[17,19]=x + 4;
T[17,23]=x -4;
T[17,29]=x -6;
T[17,31]=x -4;
T[17,37]=x + 2;
T[17,41]=x + 6;
T[17,43]=x -4;
T[17,47]=x ;
T[17,53]=x -6;
T[17,59]=x + 12;
T[17,61]=x + 10;
T[17,67]=x -4;
T[17,71]=x + 4;
T[17,73]=x + 6;
T[17,79]=x -12;
T[17,83]=x + 4;
T[17,89]=x -10;
T[17,97]=x -2;

T[19,2]=x ;
T[19,3]=x + 2;
T[19,5]=x -3;
T[19,7]=x + 1;
T[19,11]=x -3;
T[19,13]=x + 4;
T[19,17]=x + 3;
T[19,19]=x -1;
T[19,23]=x ;
T[19,29]=x -6;
T[19,31]=x + 4;
T[19,37]=x -2;
T[19,41]=x + 6;
T[19,43]=x + 1;
T[19,47]=x + 3;
T[19,53]=x -12;
T[19,59]=x + 6;
T[19,61]=x + 1;
T[19,67]=x + 4;
T[19,71]=x -6;
T[19,73]=x + 7;
T[19,79]=x -8;
T[19,83]=x -12;
T[19,89]=x -12;
T[19,97]=x -8;

T[20,2]=x ;
T[20,3]=x + 2;
T[20,5]=x + 1;
T[20,7]=x -2;
T[20,11]=x ;
T[20,13]=x -2;
T[20,17]=x + 6;
T[20,19]=x + 4;
T[20,23]=x -6;
T[20,29]=x -6;
T[20,31]=x + 4;
T[20,37]=x -2;
T[20,41]=x -6;
T[20,43]=x + 10;
T[20,47]=x + 6;
T[20,53]=x + 6;
T[20,59]=x -12;
T[20,61]=x -2;
T[20,67]=x -2;
T[20,71]=x + 12;
T[20,73]=x -2;
T[20,79]=x -8;
T[20,83]=x -6;
T[20,89]=x + 6;
T[20,97]=x -2;

T[21,2]=x + 1;
T[21,3]=x -1;
T[21,5]=x + 2;
T[21,7]=x + 1;
T[21,11]=x -4;
T[21,13]=x + 2;
T[21,17]=x + 6;
T[21,19]=x -4;
T[21,23]=x ;
T[21,29]=x + 2;
T[21,31]=x ;
T[21,37]=x -6;
T[21,41]=x -2;
T[21,43]=x + 4;
T[21,47]=x ;
T[21,53]=x -6;
T[21,59]=x -12;
T[21,61]=x + 2;
T[21,67]=x -4;
T[21,71]=x ;
T[21,73]=x + 6;
T[21,79]=x + 16;
T[21,83]=x + 12;
T[21,89]=x + 14;
T[21,97]=x -18;

T[22,2]=x^2 + 2*x + 2;
T[22,3]=(x + 1)^2;
T[22,5]=(x -1)^2;
T[22,7]=(x + 2)^2;
T[22,11]=(x -1)^2;
T[22,13]=(x -4)^2;
T[22,17]=(x + 2)^2;
T[22,19]=(x )^2;
T[22,23]=(x + 1)^2;
T[22,29]=(x )^2;
T[22,31]=(x -7)^2;
T[22,37]=(x -3)^2;
T[22,41]=(x + 8)^2;
T[22,43]=(x + 6)^2;
T[22,47]=(x -8)^2;
T[22,53]=(x + 6)^2;
T[22,59]=(x -5)^2;
T[22,61]=(x -12)^2;
T[22,67]=(x + 7)^2;
T[22,71]=(x + 3)^2;
T[22,73]=(x -4)^2;
T[22,79]=(x + 10)^2;
T[22,83]=(x + 6)^2;
T[22,89]=(x -15)^2;
T[22,97]=(x + 7)^2;

T[23,2]=x^2 + x -1;
T[23,3]=x^2 -5;
T[23,5]=x^2 + 2*x -4;
T[23,7]=x^2 -2*x -4;
T[23,11]=x^2 + 6*x + 4;
T[23,13]=(x -3)^2;
T[23,17]=x^2 -6*x + 4;
T[23,19]=(x + 2)^2;
T[23,23]=(x -1)^2;
T[23,29]=(x + 3)^2;
T[23,31]=x^2 -45;
T[23,37]=x^2 -2*x -4;
T[23,41]=x^2 -2*x -19;
T[23,43]=(x )^2;
T[23,47]=x^2 -5;
T[23,53]=x^2 + 8*x -4;
T[23,59]=x^2 -4*x -16;
T[23,61]=x^2 -4*x -76;
T[23,67]=x^2 + 10*x + 20;
T[23,71]=x^2 -20*x + 95;
T[23,73]=x^2 -22*x + 101;
T[23,79]=x^2 + 4*x -76;
T[23,83]=x^2 + 22*x + 116;
T[23,89]=x^2 + 12*x + 16;
T[23,97]=x^2 -22*x + 76;

T[24,2]=x ;
T[24,3]=x + 1;
T[24,5]=x + 2;
T[24,7]=x ;
T[24,11]=x -4;
T[24,13]=x + 2;
T[24,17]=x -2;
T[24,19]=x + 4;
T[24,23]=x + 8;
T[24,29]=x -6;
T[24,31]=x -8;
T[24,37]=x -6;
T[24,41]=x + 6;
T[24,43]=x -4;
T[24,47]=x ;
T[24,53]=x + 2;
T[24,59]=x -4;
T[24,61]=x + 2;
T[24,67]=x + 4;
T[24,71]=x -8;
T[24,73]=x -10;
T[24,79]=x + 8;
T[24,83]=x + 4;
T[24,89]=x + 6;
T[24,97]=x -2;

T[26,2]=(x -1)*(x + 1);
T[26,3]=(x -1)*(x + 3);
T[26,5]=(x + 3)*(x + 1);
T[26,7]=(x + 1)*(x -1);
T[26,11]=(x -6)*(x + 2);
T[26,13]=(x -1)*(x + 1);
T[26,17]=(x + 3)^2;
T[26,19]=(x -2)*(x -6);
T[26,23]=(x + 4)*(x );
T[26,29]=(x -6)*(x -2);
T[26,31]=(x -4)*(x + 4);
T[26,37]=(x + 7)*(x -3);
T[26,41]=(x )^2;
T[26,43]=(x + 5)*(x + 1);
T[26,47]=(x -13)*(x -3);
T[26,53]=(x -12)*(x );
T[26,59]=(x + 10)*(x + 6);
T[26,61]=(x + 8)*(x -8);
T[26,67]=(x + 2)*(x -14);
T[26,71]=(x + 5)*(x + 3);
T[26,73]=(x + 10)*(x -2);
T[26,79]=(x + 4)*(x -8);
T[26,83]=(x -12)*(x );
T[26,89]=(x -6)*(x + 6);
T[26,97]=(x + 10)*(x -14);

T[27,2]=x ;
T[27,3]=x ;
T[27,5]=x ;
T[27,7]=x + 1;
T[27,11]=x ;
T[27,13]=x -5;
T[27,17]=x ;
T[27,19]=x + 7;
T[27,23]=x ;
T[27,29]=x ;
T[27,31]=x + 4;
T[27,37]=x -11;
T[27,41]=x ;
T[27,43]=x -8;
T[27,47]=x ;
T[27,53]=x ;
T[27,59]=x ;
T[27,61]=x + 1;
T[27,67]=x -5;
T[27,71]=x ;
T[27,73]=x + 7;
T[27,79]=x -17;
T[27,83]=x ;
T[27,89]=x ;
T[27,97]=x + 19;

T[28,2]=(x + 1)*(x );
T[28,3]=(x + 2)^2;
T[28,5]=(x )^2;
T[28,7]=(x -1)^2;
T[28,11]=(x )^2;
T[28,13]=(x + 4)^2;
T[28,17]=(x -6)^2;
T[28,19]=(x -2)^2;
T[28,23]=(x )^2;
T[28,29]=(x + 6)^2;
T[28,31]=(x + 4)^2;
T[28,37]=(x -2)^2;
T[28,41]=(x -6)^2;
T[28,43]=(x -8)^2;
T[28,47]=(x + 12)^2;
T[28,53]=(x -6)^2;
T[28,59]=(x + 6)^2;
T[28,61]=(x -8)^2;
T[28,67]=(x + 4)^2;
T[28,71]=(x )^2;
T[28,73]=(x -2)^2;
T[28,79]=(x -8)^2;
T[28,83]=(x + 6)^2;
T[28,89]=(x + 6)^2;
T[28,97]=(x + 10)^2;

T[29,2]=x^2 + 2*x -1;
T[29,3]=x^2 -2*x -1;
T[29,5]=(x + 1)^2;
T[29,7]=x^2 -8;
T[29,11]=x^2 -2*x -1;
T[29,13]=x^2 + 2*x -7;
T[29,17]=x^2 + 4*x -4;
T[29,19]=(x -6)^2;
T[29,23]=x^2 + 4*x -28;
T[29,29]=(x -1)^2;
T[29,31]=x^2 -6*x -41;
T[29,37]=(x + 4)^2;
T[29,41]=x^2 -8*x -56;
T[29,43]=x^2 -10*x + 23;
T[29,47]=x^2 -2*x -17;
T[29,53]=x^2 -2*x -71;
T[29,59]=x^2 -4*x -28;
T[29,61]=x^2 + 4*x -4;
T[29,67]=x^2 -32;
T[29,71]=x^2 + 12*x + 28;
T[29,73]=(x -4)^2;
T[29,79]=x^2 + 2*x -1;
T[29,83]=x^2 -4*x -28;
T[29,89]=x^2 + 8*x -56;
T[29,97]=x^2 + 8*x -56;

T[30,2]=(x + 1)*(x^2 + x + 2);
T[30,3]=(x -1)*(x + 1)^2;
T[30,5]=(x + 1)*(x -1)^2;
T[30,7]=(x + 4)*(x )^2;
T[30,11]=(x )*(x + 4)^2;
T[30,13]=(x -2)*(x + 2)^2;
T[30,17]=(x -6)*(x -2)^2;
T[30,19]=(x + 4)*(x -4)^2;
T[30,23]=(x )^3;
T[30,29]=(x + 6)*(x + 2)^2;
T[30,31]=(x -8)*(x )^2;
T[30,37]=(x -2)*(x + 10)^2;
T[30,41]=(x + 6)*(x -10)^2;
T[30,43]=(x + 4)*(x -4)^2;
T[30,47]=(x )*(x -8)^2;
T[30,53]=(x + 6)*(x + 10)^2;
T[30,59]=(x )*(x + 4)^2;
T[30,61]=(x + 10)*(x + 2)^2;
T[30,67]=(x + 4)*(x -12)^2;
T[30,71]=(x )*(x + 8)^2;
T[30,73]=(x -2)*(x -10)^2;
T[30,79]=(x -8)*(x )^2;
T[30,83]=(x -12)^3;
T[30,89]=(x -18)*(x + 6)^2;
T[30,97]=(x -2)^3;

T[31,2]=x^2 -x -1;
T[31,3]=x^2 + 2*x -4;
T[31,5]=(x -1)^2;
T[31,7]=x^2 + 4*x -1;
T[31,11]=(x -2)^2;
T[31,13]=x^2 + 2*x -4;
T[31,17]=x^2 -6*x + 4;
T[31,19]=x^2 -5;
T[31,23]=x^2 + 2*x -44;
T[31,29]=x^2 -10*x + 20;
T[31,31]=(x -1)^2;
T[31,37]=(x + 2)^2;
T[31,41]=(x -7)^2;
T[31,43]=x^2 + 2*x -4;
T[31,47]=x^2 + 4*x -16;
T[31,53]=x^2 + 12*x + 16;
T[31,59]=x^2 -5;
T[31,61]=x^2 + 6*x -116;
T[31,67]=(x -8)^2;
T[31,71]=x^2 -4*x -121;
T[31,73]=x^2 -8*x -4;
T[31,79]=x^2 + 10*x -20;
T[31,83]=x^2 + 12*x -44;
T[31,89]=x^2 -10*x -20;
T[31,97]=x^2 + 14*x -31;

T[32,2]=x ;
T[32,3]=x ;
T[32,5]=x + 2;
T[32,7]=x ;
T[32,11]=x ;
T[32,13]=x -6;
T[32,17]=x -2;
T[32,19]=x ;
T[32,23]=x ;
T[32,29]=x + 10;
T[32,31]=x ;
T[32,37]=x + 2;
T[32,41]=x -10;
T[32,43]=x ;
T[32,47]=x ;
T[32,53]=x -14;
T[32,59]=x ;
T[32,61]=x + 10;
T[32,67]=x ;
T[32,71]=x ;
T[32,73]=x + 6;
T[32,79]=x ;
T[32,83]=x ;
T[32,89]=x -10;
T[32,97]=x -18;

T[33,2]=(x -1)*(x + 2)^2;
T[33,3]=(x + 1)*(x^2 + x + 3);
T[33,5]=(x + 2)*(x -1)^2;
T[33,7]=(x -4)*(x + 2)^2;
T[33,11]=(x -1)^3;
T[33,13]=(x + 2)*(x -4)^2;
T[33,17]=(x + 2)^3;
T[33,19]=(x )^3;
T[33,23]=(x -8)*(x + 1)^2;
T[33,29]=(x + 6)*(x )^2;
T[33,31]=(x + 8)*(x -7)^2;
T[33,37]=(x -6)*(x -3)^2;
T[33,41]=(x + 2)*(x + 8)^2;
T[33,43]=(x )*(x + 6)^2;
T[33,47]=(x -8)^3;
T[33,53]=(x -6)*(x + 6)^2;
T[33,59]=(x + 4)*(x -5)^2;
T[33,61]=(x -6)*(x -12)^2;
T[33,67]=(x + 4)*(x + 7)^2;
T[33,71]=(x )*(x + 3)^2;
T[33,73]=(x + 14)*(x -4)^2;
T[33,79]=(x + 4)*(x + 10)^2;
T[33,83]=(x -12)*(x + 6)^2;
T[33,89]=(x + 6)*(x -15)^2;
T[33,97]=(x -2)*(x + 7)^2;

T[34,2]=(x -1)*(x^2 + x + 2);
T[34,3]=(x + 2)*(x )^2;
T[34,5]=(x )*(x + 2)^2;
T[34,7]=(x + 4)*(x -4)^2;
T[34,11]=(x -6)*(x )^2;
T[34,13]=(x -2)*(x + 2)^2;
T[34,17]=(x + 1)*(x -1)^2;
T[34,19]=(x + 4)^3;
T[34,23]=(x )*(x -4)^2;
T[34,29]=(x )*(x -6)^2;
T[34,31]=(x + 4)*(x -4)^2;
T[34,37]=(x + 4)*(x + 2)^2;
T[34,41]=(x -6)*(x + 6)^2;
T[34,43]=(x -8)*(x -4)^2;
T[34,47]=(x )^3;
T[34,53]=(x + 6)*(x -6)^2;
T[34,59]=(x )*(x + 12)^2;
T[34,61]=(x + 4)*(x + 10)^2;
T[34,67]=(x -8)*(x -4)^2;
T[34,71]=(x )*(x + 4)^2;
T[34,73]=(x -2)*(x + 6)^2;
T[34,79]=(x -8)*(x -12)^2;
T[34,83]=(x )*(x + 4)^2;
T[34,89]=(x + 6)*(x -10)^2;
T[34,97]=(x -14)*(x -2)^2;

T[35,2]=(x^2 + x -4)*(x );
T[35,3]=(x -1)*(x^2 + x -4);
T[35,5]=(x + 1)*(x -1)^2;
T[35,7]=(x -1)*(x + 1)^2;
T[35,11]=(x + 3)*(x^2 -x -4);
T[35,13]=(x -5)*(x^2 -5*x + 2);
T[35,17]=(x -3)*(x^2 + 5*x + 2);
T[35,19]=(x -2)*(x^2 + 6*x -8);
T[35,23]=(x + 6)*(x^2 + 2*x -16);
T[35,29]=(x -3)*(x^2 -x -38);
T[35,31]=(x + 4)*(x )^2;
T[35,37]=(x -2)*(x -6)^2;
T[35,41]=(x + 12)*(x^2 -2*x -16);
T[35,43]=(x + 10)*(x^2 -10*x + 8);
T[35,47]=(x -9)*(x^2 + 5*x -32);
T[35,53]=(x -12)*(x^2 + 2*x -16);
T[35,59]=(x )*(x + 4)^2;
T[35,61]=(x -8)*(x^2 -6*x -144);
T[35,67]=(x + 4)*(x^2 -4*x -64);
T[35,71]=(x )*(x -8)^2;
T[35,73]=(x -2)*(x^2 + 8*x -52);
T[35,79]=(x + 1)*(x^2 + 9*x + 16);
T[35,83]=(x -12)*(x -4)^2;
T[35,89]=(x + 12)*(x^2 -6*x -8);
T[35,97]=(x + 1)*(x^2 + 9*x -86);

T[36,2]=x ;
T[36,3]=x ;
T[36,5]=x ;
T[36,7]=x + 4;
T[36,11]=x ;
T[36,13]=x -2;
T[36,17]=x ;
T[36,19]=x -8;
T[36,23]=x ;
T[36,29]=x ;
T[36,31]=x + 4;
T[36,37]=x + 10;
T[36,41]=x ;
T[36,43]=x -8;
T[36,47]=x ;
T[36,53]=x ;
T[36,59]=x ;
T[36,61]=x -14;
T[36,67]=x + 16;
T[36,71]=x ;
T[36,73]=x + 10;
T[36,79]=x + 4;
T[36,83]=x ;
T[36,89]=x ;
T[36,97]=x -14;

T[37,2]=(x + 2)*(x );
T[37,3]=(x -1)*(x + 3);
T[37,5]=(x + 2)*(x );
T[37,7]=(x + 1)^2;
T[37,11]=(x -3)*(x + 5);
T[37,13]=(x + 2)*(x + 4);
T[37,17]=(x -6)*(x );
T[37,19]=(x -2)*(x );
T[37,23]=(x -6)*(x -2);
T[37,29]=(x -6)*(x + 6);
T[37,31]=(x + 4)^2;
T[37,37]=(x + 1)*(x -1);
T[37,41]=(x + 9)^2;
T[37,43]=(x -2)*(x -8);
T[37,47]=(x -3)*(x + 9);
T[37,53]=(x -1)*(x + 3);
T[37,59]=(x -12)*(x -8);
T[37,61]=(x + 8)*(x -8);
T[37,67]=(x -8)*(x + 4);
T[37,71]=(x + 15)*(x -9);
T[37,73]=(x -11)*(x + 1);
T[37,79]=(x + 10)*(x -4);
T[37,83]=(x -9)*(x + 15);
T[37,89]=(x -6)*(x -4);
T[37,97]=(x -4)*(x -8);

T[38,2]=(x + 1)*(x -1)*(x^2 + 2);
T[38,3]=(x + 1)*(x -1)*(x + 2)^2;
T[38,5]=(x + 4)*(x )*(x -3)^2;
T[38,7]=(x -3)*(x + 1)^3;
T[38,11]=(x -2)*(x + 6)*(x -3)^2;
T[38,13]=(x -5)*(x + 1)*(x + 4)^2;
T[38,17]=(x -3)^2*(x + 3)^2;
T[38,19]=(x + 1)*(x -1)^3;
T[38,23]=(x + 1)*(x -3)*(x )^2;
T[38,29]=(x + 5)*(x -9)*(x -6)^2;
T[38,31]=(x + 8)*(x + 4)^3;
T[38,37]=(x + 2)*(x -2)^3;
T[38,41]=(x + 8)*(x )*(x + 6)^2;
T[38,43]=(x -4)*(x -8)*(x + 1)^2;
T[38,47]=(x -8)*(x )*(x + 3)^2;
T[38,53]=(x + 1)*(x + 3)*(x -12)^2;
T[38,59]=(x -9)*(x -15)*(x + 6)^2;
T[38,61]=(x + 10)*(x -2)*(x + 1)^2;
T[38,67]=(x -3)*(x -5)*(x + 4)^2;
T[38,71]=(x -2)*(x + 6)*(x -6)^2;
T[38,73]=(x -9)*(x + 7)^3;
T[38,79]=(x + 10)^2*(x -8)^2;
T[38,83]=(x + 6)^2*(x -12)^2;
T[38,89]=(x + 12)*(x )*(x -12)^2;
T[38,97]=(x + 2)*(x + 10)*(x -8)^2;

T[39,2]=(x -1)*(x^2 + 2*x -1);
T[39,3]=(x + 1)*(x -1)^2;
T[39,5]=(x -2)*(x^2 -8);
T[39,7]=(x + 4)*(x^2 -8);
T[39,11]=(x -4)*(x + 2)^2;
T[39,13]=(x -1)*(x + 1)^2;
T[39,17]=(x -2)*(x^2 -4*x -28);
T[39,19]=(x^2 -8)*(x );
T[39,23]=(x )*(x + 4)^2;
T[39,29]=(x + 10)*(x -2)^2;
T[39,31]=(x -4)*(x^2 + 8*x + 8);
T[39,37]=(x + 2)*(x^2 + 4*x -28);
T[39,41]=(x -6)*(x^2 -16*x + 56);
T[39,43]=(x + 12)*(x^2 -8*x -16);
T[39,47]=(x^2 + 12*x + 4)*(x );
T[39,53]=(x -6)*(x + 2)^2;
T[39,59]=(x -12)*(x^2 -4*x -28);
T[39,61]=(x + 2)*(x^2 -4*x -124);
T[39,67]=(x + 8)*(x^2 -8*x + 8);
T[39,71]=(x )*(x -2)^2;
T[39,73]=(x -2)*(x^2 -12*x + 4);
T[39,79]=(x -8)*(x^2 -128);
T[39,83]=(x -4)*(x^2 + 4*x -28);
T[39,89]=(x + 2)*(x^2 -24*x + 136);
T[39,97]=(x -10)*(x^2 + 4*x -28);

T[40,2]=(x )^3;
T[40,3]=(x )*(x + 2)^2;
T[40,5]=(x -1)*(x + 1)^2;
T[40,7]=(x + 4)*(x -2)^2;
T[40,11]=(x -4)*(x )^2;
T[40,13]=(x + 2)*(x -2)^2;
T[40,17]=(x -2)*(x + 6)^2;
T[40,19]=(x -4)*(x + 4)^2;
T[40,23]=(x -4)*(x -6)^2;
T[40,29]=(x + 2)*(x -6)^2;
T[40,31]=(x + 8)*(x + 4)^2;
T[40,37]=(x -6)*(x -2)^2;
T[40,41]=(x + 6)*(x -6)^2;
T[40,43]=(x + 8)*(x + 10)^2;
T[40,47]=(x -4)*(x + 6)^2;
T[40,53]=(x -6)*(x + 6)^2;
T[40,59]=(x + 4)*(x -12)^2;
T[40,61]=(x + 2)*(x -2)^2;
T[40,67]=(x -8)*(x -2)^2;
T[40,71]=(x )*(x + 12)^2;
T[40,73]=(x + 6)*(x -2)^2;
T[40,79]=(x )*(x -8)^2;
T[40,83]=(x + 16)*(x -6)^2;
T[40,89]=(x + 6)^3;
T[40,97]=(x + 14)*(x -2)^2;

T[41,2]=x^3 + x^2 -5*x -1;
T[41,3]=x^3 -4*x + 2;
T[41,5]=x^3 + 2*x^2 -4*x -4;
T[41,7]=x^3 -6*x^2 + 8*x -2;
T[41,11]=x^3 -2*x^2 -20*x + 50;
T[41,13]=x^3 + 2*x^2 -12*x -8;
T[41,17]=(x + 2)^3;
T[41,19]=x^3 -4*x^2 -16*x -10;
T[41,23]=x^3 -4*x^2 -32*x -32;
T[41,29]=x^3 + 6*x^2 -4*x -40;
T[41,31]=x^3 -16*x^2 + 64*x -32;
T[41,37]=x^3 + 6*x^2 -36*x -108;
T[41,41]=(x -1)^3;
T[41,43]=x^3 + 4*x^2 -8*x -16;
T[41,47]=x^3 -120*x -502;
T[41,53]=x^3 -6*x^2 -4*x + 8;
T[41,59]=x^3 + 8*x^2 -16*x -160;
T[41,61]=x^3 -2*x^2 -52*x + 184;
T[41,67]=x^3 + 2*x^2 -20*x -50;
T[41,71]=x^3 -20*x^2 + 84*x + 134;
T[41,73]=x^3 + 2*x^2 -180*x + 244;
T[41,79]=x^3 -32*x^2 + 328*x -1090;
T[41,83]=x^3 -64*x -128;
T[41,89]=x^3 + 6*x^2 -148*x -920;
T[41,97]=x^3 -6*x^2 -52*x + 248;

T[42,2]=(x -1)*(x^2 + x + 2)*(x + 1)^2;
T[42,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[42,5]=(x )^2*(x + 2)^3;
T[42,7]=(x -1)^2*(x + 1)^3;
T[42,11]=(x + 4)*(x -4)^2*(x )^2;
T[42,13]=(x -6)*(x + 4)^2*(x + 2)^2;
T[42,17]=(x -2)*(x -6)^2*(x + 6)^2;
T[42,19]=(x + 4)*(x -2)^2*(x -4)^2;
T[42,23]=(x -8)*(x )^4;
T[42,29]=(x + 6)^2*(x + 2)^3;
T[42,31]=(x + 4)^2*(x )^3;
T[42,37]=(x + 10)*(x -6)^2*(x -2)^2;
T[42,41]=(x + 6)*(x -2)^2*(x -6)^2;
T[42,43]=(x -8)^2*(x + 4)^3;
T[42,47]=(x + 12)^2*(x )^3;
T[42,53]=(x -6)^5;
T[42,59]=(x -4)*(x + 6)^2*(x -12)^2;
T[42,61]=(x -6)*(x + 2)^2*(x -8)^2;
T[42,67]=(x + 4)^2*(x -4)^3;
T[42,71]=(x -8)*(x )^4;
T[42,73]=(x -10)*(x -2)^2*(x + 6)^2;
T[42,79]=(x )*(x + 16)^2*(x -8)^2;
T[42,83]=(x + 4)*(x + 12)^2*(x + 6)^2;
T[42,89]=(x + 14)^2*(x + 6)^3;
T[42,97]=(x + 14)*(x -18)^2*(x + 10)^2;

T[43,2]=(x + 2)*(x^2 -2);
T[43,3]=(x + 2)*(x^2 -2);
T[43,5]=(x + 4)*(x^2 -4*x + 2);
T[43,7]=(x^2 + 4*x + 2)*(x );
T[43,11]=(x -3)*(x^2 + 2*x -7);
T[43,13]=(x + 5)*(x^2 -2*x -7);
T[43,17]=(x + 3)*(x^2 -10*x + 17);
T[43,19]=(x + 2)*(x^2 + 4*x -4);
T[43,23]=(x + 1)*(x^2 -2*x -31);
T[43,29]=(x + 6)*(x^2 -18);
T[43,31]=(x + 1)*(x + 3)^2;
T[43,37]=(x^2 -72)*(x );
T[43,41]=(x -5)*(x^2 + 2*x -7);
T[43,43]=(x + 1)*(x -1)^2;
T[43,47]=(x -4)*(x -6)^2;
T[43,53]=(x + 5)*(x^2 -22*x + 113);
T[43,59]=(x + 12)*(x^2 + 4*x -4);
T[43,61]=(x -2)*(x^2 -8*x -2);
T[43,67]=(x + 3)*(x^2 -2*x -71);
T[43,71]=(x -2)*(x^2 + 12*x + 28);
T[43,73]=(x -2)*(x^2 + 24*x + 126);
T[43,79]=(x + 8)*(x^2 -4*x -4);
T[43,83]=(x -15)*(x^2 -18*x + 49);
T[43,89]=(x + 4)*(x^2 + 12*x + 18);
T[43,97]=(x -7)*(x^2 + 2*x -7);

T[44,2]=(x^2 + 2*x + 2)*(x )^2;
T[44,3]=(x -1)*(x + 1)^3;
T[44,5]=(x + 3)*(x -1)^3;
T[44,7]=(x -2)*(x + 2)^3;
T[44,11]=(x + 1)*(x -1)^3;
T[44,13]=(x + 4)*(x -4)^3;
T[44,17]=(x -6)*(x + 2)^3;
T[44,19]=(x -8)*(x )^3;
T[44,23]=(x + 3)*(x + 1)^3;
T[44,29]=(x )^4;
T[44,31]=(x -5)*(x -7)^3;
T[44,37]=(x + 1)*(x -3)^3;
T[44,41]=(x )*(x + 8)^3;
T[44,43]=(x + 10)*(x + 6)^3;
T[44,47]=(x )*(x -8)^3;
T[44,53]=(x + 6)^4;
T[44,59]=(x -3)*(x -5)^3;
T[44,61]=(x + 4)*(x -12)^3;
T[44,67]=(x + 1)*(x + 7)^3;
T[44,71]=(x -15)*(x + 3)^3;
T[44,73]=(x + 4)*(x -4)^3;
T[44,79]=(x -2)*(x + 10)^3;
T[44,83]=(x -6)*(x + 6)^3;
T[44,89]=(x + 9)*(x -15)^3;
T[44,97]=(x + 7)^4;

T[45,2]=(x -1)*(x + 1)^2;
T[45,3]=(x + 1)*(x )^2;
T[45,5]=(x + 1)*(x -1)^2;
T[45,7]=(x )^3;
T[45,11]=(x -4)*(x + 4)^2;
T[45,13]=(x + 2)^3;
T[45,17]=(x + 2)*(x -2)^2;
T[45,19]=(x -4)^3;
T[45,23]=(x )^3;
T[45,29]=(x -2)*(x + 2)^2;
T[45,31]=(x )^3;
T[45,37]=(x + 10)^3;
T[45,41]=(x + 10)*(x -10)^2;
T[45,43]=(x -4)^3;
T[45,47]=(x + 8)*(x -8)^2;
T[45,53]=(x -10)*(x + 10)^2;
T[45,59]=(x -4)*(x + 4)^2;
T[45,61]=(x + 2)^3;
T[45,67]=(x -12)^3;
T[45,71]=(x -8)*(x + 8)^2;
T[45,73]=(x -10)^3;
T[45,79]=(x )^3;
T[45,83]=(x + 12)*(x -12)^2;
T[45,89]=(x -6)*(x + 6)^2;
T[45,97]=(x -2)^3;

T[46,2]=(x + 1)*(x^4 + x^3 + 3*x^2 + 2*x + 4);
T[46,3]=(x )*(x^2 -5)^2;
T[46,5]=(x -4)*(x^2 + 2*x -4)^2;
T[46,7]=(x + 4)*(x^2 -2*x -4)^2;
T[46,11]=(x -2)*(x^2 + 6*x + 4)^2;
T[46,13]=(x + 2)*(x -3)^4;
T[46,17]=(x + 2)*(x^2 -6*x + 4)^2;
T[46,19]=(x + 2)^5;
T[46,23]=(x -1)^5;
T[46,29]=(x -2)*(x + 3)^4;
T[46,31]=(x )*(x^2 -45)^2;
T[46,37]=(x + 4)*(x^2 -2*x -4)^2;
T[46,41]=(x -6)*(x^2 -2*x -19)^2;
T[46,43]=(x -10)*(x )^4;
T[46,47]=(x )*(x^2 -5)^2;
T[46,53]=(x + 4)*(x^2 + 8*x -4)^2;
T[46,59]=(x -12)*(x^2 -4*x -16)^2;
T[46,61]=(x + 8)*(x^2 -4*x -76)^2;
T[46,67]=(x + 10)*(x^2 + 10*x + 20)^2;
T[46,71]=(x )*(x^2 -20*x + 95)^2;
T[46,73]=(x -6)*(x^2 -22*x + 101)^2;
T[46,79]=(x + 12)*(x^2 + 4*x -76)^2;
T[46,83]=(x -14)*(x^2 + 22*x + 116)^2;
T[46,89]=(x + 6)*(x^2 + 12*x + 16)^2;
T[46,97]=(x -6)*(x^2 -22*x + 76)^2;

T[47,2]=x^4 -x^3 -5*x^2 + 5*x -1;
T[47,3]=x^4 -7*x^2 + 4*x + 1;
T[47,5]=x^4 + 2*x^3 -16*x^2 -16*x + 48;
T[47,7]=x^4 -4*x^3 -7*x^2 + 44*x -43;
T[47,11]=x^4 + 6*x^3 -4*x^2 -56*x -48;
T[47,13]=x^4 -8*x^3 + 56*x + 48;
T[47,17]=x^4 -6*x^3 -21*x^2 + 74*x + 141;
T[47,19]=x^4 -16*x^2 -8*x + 16;
T[47,23]=x^4 + 6*x^3 -20*x^2 -40*x -16;
T[47,29]=x^4 + 10*x^3 + 20*x^2 -8*x -16;
T[47,31]=x^4 + 8*x^3 -56*x + 48;
T[47,37]=x^4 -10*x^3 + 15*x^2 + 34*x + 9;
T[47,41]=x^4 -6*x^3 -8*x^2 + 32*x -16;
T[47,43]=x^4 -2*x^3 -80*x^2 -112*x + 432;
T[47,47]=(x -1)^4;
T[47,53]=x^4 + 6*x^3 -101*x^2 -314*x + 2429;
T[47,59]=x^4 -4*x^3 -115*x^2 + 704*x -519;
T[47,61]=x^4 + 6*x^3 -73*x^2 + 10*x + 337;
T[47,67]=x^4 -10*x^3 -120*x^2 + 752*x + 3184;
T[47,71]=x^4 + 12*x^3 -19*x^2 -320*x + 657;
T[47,73]=x^4 -22*x^3 + 60*x^2 + 1368*x -7664;
T[47,79]=x^4 -20*x^3 + 77*x^2 + 240*x -47;
T[47,83]=x^4 -20*x^3 + 80*x^2 + 192*x -256;
T[47,89]=x^4 + 6*x^3 -161*x^2 -206*x + 4841;
T[47,97]=x^4 -30*x^3 + 179*x^2 + 1634*x -14307;

T[48,2]=(x )^3;
T[48,3]=(x -1)*(x + 1)^2;
T[48,5]=(x + 2)^3;
T[48,7]=(x )^3;
T[48,11]=(x + 4)*(x -4)^2;
T[48,13]=(x + 2)^3;
T[48,17]=(x -2)^3;
T[48,19]=(x -4)*(x + 4)^2;
T[48,23]=(x -8)*(x + 8)^2;
T[48,29]=(x -6)^3;
T[48,31]=(x + 8)*(x -8)^2;
T[48,37]=(x -6)^3;
T[48,41]=(x + 6)^3;
T[48,43]=(x + 4)*(x -4)^2;
T[48,47]=(x )^3;
T[48,53]=(x + 2)^3;
T[48,59]=(x + 4)*(x -4)^2;
T[48,61]=(x + 2)^3;
T[48,67]=(x -4)*(x + 4)^2;
T[48,71]=(x + 8)*(x -8)^2;
T[48,73]=(x -10)^3;
T[48,79]=(x -8)*(x + 8)^2;
T[48,83]=(x -4)*(x + 4)^2;
T[48,89]=(x + 6)^3;
T[48,97]=(x -2)^3;

T[49,2]=x -1;
T[49,3]=x ;
T[49,5]=x ;
T[49,7]=x ;
T[49,11]=x -4;
T[49,13]=x ;
T[49,17]=x ;
T[49,19]=x ;
T[49,23]=x -8;
T[49,29]=x -2;
T[49,31]=x ;
T[49,37]=x + 6;
T[49,41]=x ;
T[49,43]=x + 12;
T[49,47]=x ;
T[49,53]=x + 10;
T[49,59]=x ;
T[49,61]=x ;
T[49,67]=x -4;
T[49,71]=x -16;
T[49,73]=x ;
T[49,79]=x -8;
T[49,83]=x ;
T[49,89]=x ;
T[49,97]=x ;

T[50,2]=(x -1)*(x + 1);
T[50,3]=(x -1)*(x + 1);
T[50,5]=(x )^2;
T[50,7]=(x -2)*(x + 2);
T[50,11]=(x + 3)^2;
T[50,13]=(x + 4)*(x -4);
T[50,17]=(x -3)*(x + 3);
T[50,19]=(x -5)^2;
T[50,23]=(x -6)*(x + 6);
T[50,29]=(x )^2;
T[50,31]=(x -2)^2;
T[50,37]=(x -2)*(x + 2);
T[50,41]=(x + 3)^2;
T[50,43]=(x + 4)*(x -4);
T[50,47]=(x + 12)*(x -12);
T[50,53]=(x + 6)*(x -6);
T[50,59]=(x )^2;
T[50,61]=(x -2)^2;
T[50,67]=(x + 13)*(x -13);
T[50,71]=(x -12)^2;
T[50,73]=(x -11)*(x + 11);
T[50,79]=(x + 10)^2;
T[50,83]=(x + 9)*(x -9);
T[50,89]=(x -15)^2;
T[50,97]=(x + 2)*(x -2);

T[51,2]=(x^2 + x -4)*(x )*(x + 1)^2;
T[51,3]=(x -1)*(x^2 + 3)*(x + 1)^2;
T[51,5]=(x -3)*(x^2 -3*x -2)*(x + 2)^2;
T[51,7]=(x + 4)*(x -4)^2*(x )^2;
T[51,11]=(x + 3)*(x^2 + x -4)*(x )^2;
T[51,13]=(x + 1)*(x^2 -5*x + 2)*(x + 2)^2;
T[51,17]=(x + 1)*(x -1)^4;
T[51,19]=(x + 1)*(x^2 -3*x -36)*(x + 4)^2;
T[51,23]=(x -9)*(x^2 + 9*x + 16)*(x -4)^2;
T[51,29]=(x^2 -68)*(x -6)^3;
T[51,31]=(x -2)*(x^2 + 2*x -16)*(x -4)^2;
T[51,37]=(x + 4)*(x^2 + 2*x -16)*(x + 2)^2;
T[51,41]=(x + 3)*(x^2 + 3*x -2)*(x + 6)^2;
T[51,43]=(x + 7)*(x^2 + 3*x -36)*(x -4)^2;
T[51,47]=(x + 6)*(x^2 + 14*x + 32)*(x )^2;
T[51,53]=(x + 6)*(x^2 -8*x -52)*(x -6)^2;
T[51,59]=(x -6)*(x^2 -6*x -8)*(x + 12)^2;
T[51,61]=(x -8)*(x^2 -10*x + 8)*(x + 10)^2;
T[51,67]=(x + 4)*(x -4)^4;
T[51,71]=(x -12)*(x^2 -4*x -64)*(x + 4)^2;
T[51,73]=(x -2)*(x^2 + 8*x -52)*(x + 6)^2;
T[51,79]=(x + 10)*(x^2 -6*x -144)*(x -12)^2;
T[51,83]=(x + 6)*(x^2 + 10*x + 8)*(x + 4)^2;
T[51,89]=(x^2 -6*x -8)*(x )*(x -10)^2;
T[51,97]=(x + 16)*(x^2 + 14*x + 32)*(x -2)^2;

T[52,2]=(x + 1)*(x -1)*(x )^3;
T[52,3]=(x )*(x -1)^2*(x + 3)^2;
T[52,5]=(x -2)*(x + 3)^2*(x + 1)^2;
T[52,7]=(x + 2)*(x -1)^2*(x + 1)^2;
T[52,11]=(x -6)^2*(x + 2)^3;
T[52,13]=(x -1)^2*(x + 1)^3;
T[52,17]=(x -6)*(x + 3)^4;
T[52,19]=(x + 6)*(x -2)^2*(x -6)^2;
T[52,23]=(x -8)*(x + 4)^2*(x )^2;
T[52,29]=(x -6)^2*(x -2)^3;
T[52,31]=(x -10)*(x -4)^2*(x + 4)^2;
T[52,37]=(x + 6)*(x -3)^2*(x + 7)^2;
T[52,41]=(x + 6)*(x )^4;
T[52,43]=(x -4)*(x + 5)^2*(x + 1)^2;
T[52,47]=(x + 2)*(x -13)^2*(x -3)^2;
T[52,53]=(x -6)*(x -12)^2*(x )^2;
T[52,59]=(x + 6)^2*(x + 10)^3;
T[52,61]=(x + 2)*(x + 8)^2*(x -8)^2;
T[52,67]=(x -10)*(x + 2)^2*(x -14)^2;
T[52,71]=(x -10)*(x + 3)^2*(x + 5)^2;
T[52,73]=(x + 10)^2*(x -2)^3;
T[52,79]=(x -8)^2*(x + 4)^3;
T[52,83]=(x + 6)*(x -12)^2*(x )^2;
T[52,89]=(x -6)^2*(x + 6)^3;
T[52,97]=(x -2)*(x -14)^2*(x + 10)^2;

T[53,2]=(x + 1)*(x^3 + x^2 -3*x -1);
T[53,3]=(x + 3)*(x^3 -3*x^2 -x + 1);
T[53,5]=(x^3 + 2*x^2 -4*x -4)*(x );
T[53,7]=(x + 4)*(x^3 -4*x^2 + 4);
T[53,11]=(x^3 + 4*x^2 -4*x -20)*(x );
T[53,13]=(x + 3)*(x -1)^3;
T[53,17]=(x + 3)*(x^3 + 5*x^2 -5*x -17);
T[53,19]=(x + 5)*(x^3 -11*x^2 + 37*x -37);
T[53,23]=(x -7)*(x^3 -3*x^2 -31*x -29);
T[53,29]=(x + 7)*(x^3 + 5*x^2 -37*x -61);
T[53,31]=(x -4)*(x^3 + 2*x^2 -76*x + 116);
T[53,37]=(x -5)*(x^3 + 5*x^2 -89*x -353);
T[53,41]=(x -6)*(x^3 + 10*x^2 + 20*x -8);
T[53,43]=(x + 2)*(x^3 -18*x^2 + 24*x + 556);
T[53,47]=(x + 2)*(x^3 + 10*x^2 -4*x -8);
T[53,53]=(x + 1)*(x -1)^3;
T[53,59]=(x + 2)*(x^3 -2*x^2 -60*x + 200);
T[53,61]=(x + 8)*(x^3 + 10*x^2 -56*x -556);
T[53,67]=(x + 12)*(x^3 -6*x^2 -72*x -108);
T[53,71]=(x -1)*(x^3 + 5*x^2 -105*x + 277);
T[53,73]=(x + 4)*(x^3 -6*x^2 -28*x -4);
T[53,79]=(x + 1)*(x^3 + 7*x^2 -77*x + 131);
T[53,83]=(x + 1)*(x^3 -27*x^2 + 213*x -457);
T[53,89]=(x + 14)*(x^3 + 2*x^2 -212*x + 1048);
T[53,97]=(x -1)*(x^3 + x^2 -133*x -137);

T[54,2]=(x + 1)*(x -1)*(x^2 + 2);
T[54,3]=(x )^4;
T[54,5]=(x + 3)*(x -3)*(x )^2;
T[54,7]=(x + 1)^4;
T[54,11]=(x + 3)*(x -3)*(x )^2;
T[54,13]=(x -5)^2*(x + 4)^2;
T[54,17]=(x )^4;
T[54,19]=(x + 7)^2*(x -2)^2;
T[54,23]=(x + 6)*(x -6)*(x )^2;
T[54,29]=(x -6)*(x + 6)*(x )^2;
T[54,31]=(x -5)^2*(x + 4)^2;
T[54,37]=(x -2)^2*(x -11)^2;
T[54,41]=(x + 6)*(x -6)*(x )^2;
T[54,43]=(x + 10)^2*(x -8)^2;
T[54,47]=(x + 6)*(x -6)*(x )^2;
T[54,53]=(x -9)*(x + 9)*(x )^2;
T[54,59]=(x -12)*(x + 12)*(x )^2;
T[54,61]=(x + 1)^2*(x -8)^2;
T[54,67]=(x -5)^2*(x -14)^2;
T[54,71]=(x )^4;
T[54,73]=(x + 7)^4;
T[54,79]=(x -17)^2*(x -8)^2;
T[54,83]=(x -3)*(x + 3)*(x )^2;
T[54,89]=(x -18)*(x + 18)*(x )^2;
T[54,97]=(x + 1)^2*(x + 19)^2;

T[55,2]=(x -1)*(x^2 -2*x -1)*(x + 2)^2;
T[55,3]=(x^2 -8)*(x )*(x + 1)^2;
T[55,5]=(x -1)*(x^2 -x + 5)*(x + 1)^2;
T[55,7]=(x )*(x + 2)^4;
T[55,11]=(x + 1)*(x -1)^4;
T[55,13]=(x -2)*(x^2 + 8*x + 8)*(x -4)^2;
T[55,17]=(x -6)*(x^2 -8*x + 8)*(x + 2)^2;
T[55,19]=(x + 4)*(x )^4;
T[55,23]=(x -4)*(x^2 -8)*(x + 1)^2;
T[55,29]=(x -6)*(x^2 -4*x -28)*(x )^2;
T[55,31]=(x + 8)*(x -7)^2*(x )^2;
T[55,37]=(x + 2)*(x^2 + 4*x -28)*(x -3)^2;
T[55,41]=(x -2)*(x + 8)^2*(x -6)^2;
T[55,43]=(x -4)*(x + 6)^4;
T[55,47]=(x + 12)*(x^2 -8)*(x -8)^2;
T[55,53]=(x + 2)*(x^2 -12*x + 4)*(x + 6)^2;
T[55,59]=(x -4)*(x^2 + 8*x -16)*(x -5)^2;
T[55,61]=(x + 10)*(x^2 -4*x -124)*(x -12)^2;
T[55,67]=(x + 16)*(x^2 -8*x -56)*(x + 7)^2;
T[55,71]=(x -8)*(x^2 -128)*(x + 3)^2;
T[55,73]=(x -14)*(x^2 + 8*x + 8)*(x -4)^2;
T[55,79]=(x -8)*(x -4)^2*(x + 10)^2;
T[55,83]=(x + 4)*(x + 6)^4;
T[55,89]=(x -10)*(x^2 + 4*x -124)*(x -15)^2;
T[55,97]=(x -10)*(x^2 + 4*x -28)*(x + 7)^2;

T[56,2]=(x + 1)*(x )^4;
T[56,3]=(x -2)*(x )*(x + 2)^3;
T[56,5]=(x -2)*(x + 4)*(x )^3;
T[56,7]=(x + 1)*(x -1)^4;
T[56,11]=(x + 4)*(x )^4;
T[56,13]=(x -2)*(x )*(x + 4)^3;
T[56,17]=(x + 6)*(x + 2)*(x -6)^3;
T[56,19]=(x -8)*(x + 2)*(x -2)^3;
T[56,23]=(x -8)*(x )^4;
T[56,29]=(x -2)*(x -6)*(x + 6)^3;
T[56,31]=(x -4)*(x -8)*(x + 4)^3;
T[56,37]=(x + 2)*(x + 6)*(x -2)^3;
T[56,41]=(x -2)*(x + 2)*(x -6)^3;
T[56,43]=(x + 4)*(x -8)^4;
T[56,47]=(x + 4)*(x + 8)*(x + 12)^3;
T[56,53]=(x + 10)*(x -6)^4;
T[56,59]=(x -6)*(x )*(x + 6)^3;
T[56,61]=(x -4)*(x + 6)*(x -8)^3;
T[56,67]=(x + 12)*(x + 4)^4;
T[56,71]=(x + 8)*(x )^4;
T[56,73]=(x -10)*(x + 14)*(x -2)^3;
T[56,79]=(x -16)*(x + 8)*(x -8)^3;
T[56,83]=(x -8)*(x -6)*(x + 6)^3;
T[56,89]=(x -10)*(x + 6)^4;
T[56,97]=(x + 6)*(x + 2)*(x + 10)^3;

T[57,2]=(x -1)*(x + 2)^2*(x )^2;
T[57,3]=(x + 1)*(x^2 + 2*x + 3)*(x -1)^2;
T[57,5]=(x + 2)*(x -1)*(x + 3)*(x -3)^2;
T[57,7]=(x + 5)*(x -3)*(x )*(x + 1)^2;
T[57,11]=(x -1)*(x + 3)*(x )*(x -3)^2;
T[57,13]=(x -2)*(x -6)*(x + 6)*(x + 4)^2;
T[57,17]=(x + 1)*(x + 6)*(x -3)*(x + 3)^2;
T[57,19]=(x -1)^2*(x + 1)^3;
T[57,23]=(x + 4)*(x -4)^2*(x )^2;
T[57,29]=(x + 2)*(x + 10)*(x -2)*(x -6)^2;
T[57,31]=(x -2)*(x + 6)*(x -8)*(x + 4)^2;
T[57,37]=(x + 10)*(x -8)*(x )*(x -2)^2;
T[57,41]=(x + 2)*(x + 8)*(x )*(x + 6)^2;
T[57,43]=(x + 4)*(x + 1)^4;
T[57,47]=(x -12)*(x + 9)*(x -3)*(x + 3)^2;
T[57,53]=(x -10)*(x -12)^2*(x + 6)^2;
T[57,59]=(x + 8)*(x + 12)*(x )*(x + 6)^2;
T[57,61]=(x + 2)*(x -7)*(x + 1)^3;
T[57,67]=(x -8)^2*(x + 4)^3;
T[57,71]=(x -12)*(x + 12)*(x )*(x -6)^2;
T[57,73]=(x -10)*(x + 11)^2*(x + 7)^2;
T[57,79]=(x -16)*(x -8)^2*(x )^2;
T[57,83]=(x -16)*(x -4)*(x -12)^3;
T[57,89]=(x + 6)*(x -10)*(x + 2)*(x -12)^2;
T[57,97]=(x + 10)*(x -10)*(x + 2)*(x -8)^2;

T[58,2]=(x + 1)*(x -1)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4);
T[58,3]=(x + 3)*(x + 1)*(x^2 -2*x -1)^2;
T[58,5]=(x + 3)*(x -1)*(x + 1)^4;
T[58,7]=(x + 2)^2*(x^2 -8)^2;
T[58,11]=(x + 1)*(x + 3)*(x^2 -2*x -1)^2;
T[58,13]=(x -3)*(x + 1)*(x^2 + 2*x -7)^2;
T[58,17]=(x + 4)*(x -8)*(x^2 + 4*x -4)^2;
T[58,19]=(x + 8)*(x )*(x -6)^4;
T[58,23]=(x -4)*(x )*(x^2 + 4*x -28)^2;
T[58,29]=(x + 1)^2*(x -1)^4;
T[58,31]=(x + 3)*(x -3)*(x^2 -6*x -41)^2;
T[58,37]=(x + 8)*(x -8)*(x + 4)^4;
T[58,41]=(x + 2)*(x -2)*(x^2 -8*x -56)^2;
T[58,43]=(x -7)*(x + 11)*(x^2 -10*x + 23)^2;
T[58,47]=(x -13)*(x -11)*(x^2 -2*x -17)^2;
T[58,53]=(x -1)*(x + 11)*(x^2 -2*x -71)^2;
T[58,59]=(x + 4)*(x )*(x^2 -4*x -28)^2;
T[58,61]=(x + 8)*(x -4)*(x^2 + 4*x -4)^2;
T[58,67]=(x + 12)*(x + 4)*(x^2 -32)^2;
T[58,71]=(x -2)*(x + 2)*(x^2 + 12*x + 28)^2;
T[58,73]=(x + 12)*(x -4)^5;
T[58,79]=(x -15)*(x + 7)*(x^2 + 2*x -1)^2;
T[58,83]=(x -4)*(x )*(x^2 -4*x -28)^2;
T[58,89]=(x + 10)*(x + 6)*(x^2 + 8*x -56)^2;
T[58,97]=(x + 2)*(x + 6)*(x^2 + 8*x -56)^2;

T[59,2]=x^5 -9*x^3 + 2*x^2 + 16*x -8;
T[59,3]=x^5 + 2*x^4 -8*x^3 -11*x^2 + 13*x -1;
T[59,5]=x^5 -2*x^4 -14*x^3 + 23*x^2 + 19*x + 1;
T[59,7]=x^5 -2*x^4 -16*x^3 + 43*x^2 + 13*x -71;
T[59,11]=x^5 + 2*x^4 -24*x^3 -24*x^2 + 128*x -64;
T[59,13]=x^5 -8*x^4 + 88*x^2 -48*x -224;
T[59,17]=x^5 + x^4 -45*x^3 -81*x^2 + 224*x + 412;
T[59,19]=x^5 -6*x^4 -28*x^3 + 217*x^2 -167*x -469;
T[59,23]=x^5 + 8*x^4 -88*x^2 -112*x -32;
T[59,29]=x^5 -14*x^4 + 10*x^3 + 389*x^2 -485*x -1757;
T[59,31]=x^5 -116*x^3 + 56*x^2 + 1280*x + 256;
T[59,37]=x^5 -18*x^4 + 80*x^3 + 64*x^2 -592*x + 32;
T[59,41]=x^5 + 10*x^4 -70*x^3 -693*x^2 -93*x + 217;
T[59,43]=x^5 + 4*x^4 -28*x^3 -56*x^2 + 256*x -128;
T[59,47]=x^5 + 20*x^4 + 124*x^3 + 192*x^2 -320*x -256;
T[59,53]=x^5 + 10*x^4 -22*x^3 -77*x^2 + 91*x + 73;
T[59,59]=(x -1)^5;
T[59,61]=x^5 -22*x^4 + 56*x^3 + 1368*x^2 -8448*x + 11072;
T[59,67]=x^5 -188*x^3 -200*x^2 + 5472*x -8896;
T[59,71]=x^5 -3*x^4 -77*x^3 + 15*x^2 + 1696*x + 3424;
T[59,73]=x^5 + 8*x^4 -120*x^3 -1128*x^2 -336*x + 9952;
T[59,79]=x^5 -10*x^4 -60*x^3 + 1005*x^2 -3631*x + 3923;
T[59,83]=x^5 -6*x^4 -260*x^3 + 848*x^2 + 15296*x + 29152;
T[59,89]=x^5 -10*x^4 -80*x^3 + 600*x^2 + 1984*x -1984;
T[59,97]=x^5 + 22*x^4 + 60*x^3 -576*x^2 -352*x + 2656;

T[60,2]=(x + 1)*(x^2 + x + 2)*(x )^4;
T[60,3]=(x^2 + 2*x + 3)*(x -1)^2*(x + 1)^3;
T[60,5]=(x -1)^3*(x + 1)^4;
T[60,7]=(x -2)^2*(x + 4)^2*(x )^3;
T[60,11]=(x + 4)^3*(x )^4;
T[60,13]=(x + 2)^3*(x -2)^4;
T[60,17]=(x -6)^2*(x + 6)^2*(x -2)^3;
T[60,19]=(x -4)^3*(x + 4)^4;
T[60,23]=(x -6)^2*(x )^5;
T[60,29]=(x -6)^2*(x + 6)^2*(x + 2)^3;
T[60,31]=(x -8)^2*(x + 4)^2*(x )^3;
T[60,37]=(x + 10)^3*(x -2)^4;
T[60,41]=(x + 6)^2*(x -6)^2*(x -10)^3;
T[60,43]=(x + 4)^2*(x + 10)^2*(x -4)^3;
T[60,47]=(x + 6)^2*(x )^2*(x -8)^3;
T[60,53]=(x + 10)^3*(x + 6)^4;
T[60,59]=(x -12)^2*(x )^2*(x + 4)^3;
T[60,61]=(x -2)^2*(x + 10)^2*(x + 2)^3;
T[60,67]=(x -2)^2*(x + 4)^2*(x -12)^3;
T[60,71]=(x + 12)^2*(x )^2*(x + 8)^3;
T[60,73]=(x -10)^3*(x -2)^4;
T[60,79]=(x )^3*(x -8)^4;
T[60,83]=(x -6)^2*(x -12)^5;
T[60,89]=(x -18)^2*(x + 6)^5;
T[60,97]=(x -2)^7;

T[61,2]=(x + 1)*(x^3 -x^2 -3*x + 1);
T[61,3]=(x + 2)*(x^3 -2*x^2 -4*x + 4);
T[61,5]=(x + 3)*(x^3 + x^2 -9*x -13);
T[61,7]=(x -1)*(x^3 + 3*x^2 -x -1);
T[61,11]=(x + 5)*(x^3 -13*x^2 + 53*x -67);
T[61,13]=(x -1)*(x^3 + 9*x^2 + 11*x -37);
T[61,17]=(x -4)*(x^3 + 2*x^2 -8*x + 4);
T[61,19]=(x + 4)*(x^3 -48*x -20);
T[61,23]=(x + 9)*(x^3 -5*x^2 + 5*x + 1);
T[61,29]=(x + 6)*(x^3 -4*x^2 -4*x + 20);
T[61,31]=(x^3 + 2*x^2 -76*x + 116)*(x );
T[61,37]=(x -8)*(x^3 + 6*x^2 -36*x -108);
T[61,41]=(x -5)*(x^3 -3*x^2 -61*x + 191);
T[61,43]=(x + 8)*(x^3 + 14*x^2 + 56*x + 68);
T[61,47]=(x -4)*(x^3 + 4*x^2 -88*x + 16);
T[61,53]=(x -6)*(x^3 + 2*x^2 -12*x -8);
T[61,59]=(x -9)*(x^3 -29*x^2 + 231*x -325);
T[61,61]=(x + 1)*(x -1)^3;
T[61,67]=(x + 7)*(x^3 -9*x^2 -85*x + 559);
T[61,71]=(x + 8)*(x^3 -14*x^2 -12*x + 92);
T[61,73]=(x + 11)*(x^3 + x^2 -45*x -25);
T[61,79]=(x -3)*(x^3 -13*x^2 -51*x + 625);
T[61,83]=(x -4)*(x^3 + 8*x^2 -64*x -256);
T[61,89]=(x + 4)*(x^3 + 4*x^2 -56*x + 80);
T[61,97]=(x + 14)*(x^3 -10*x^2 -116*x + 1096);

T[62,2]=(x -1)*(x^4 -x^3 + 3*x^2 -2*x + 4)*(x + 1)^2;
T[62,3]=(x^2 -2*x -2)*(x )*(x^2 + 2*x -4)^2;
T[62,5]=(x + 2)*(x^2 -12)*(x -1)^4;
T[62,7]=(x )*(x -2)^2*(x^2 + 4*x -1)^2;
T[62,11]=(x^2 + 6*x + 6)*(x )*(x -2)^4;
T[62,13]=(x -2)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
T[62,17]=(x + 6)*(x^2 -12)*(x^2 -6*x + 4)^2;
T[62,19]=(x -4)*(x + 4)^2*(x^2 -5)^2;
T[62,23]=(x -8)*(x^2 + 2*x -44)^2*(x )^2;
T[62,29]=(x -2)*(x^2 + 6*x -18)*(x^2 -10*x + 20)^2;
T[62,31]=(x + 1)*(x -1)^6;
T[62,37]=(x -10)*(x^2 -10*x -2)*(x + 2)^4;
T[62,41]=(x + 6)*(x^2 -12*x + 24)*(x -7)^4;
T[62,43]=(x -8)*(x^2 + 2*x -26)*(x^2 + 2*x -4)^2;
T[62,47]=(x + 8)*(x -6)^2*(x^2 + 4*x -16)^2;
T[62,53]=(x + 6)*(x^2 -6*x + 6)*(x^2 + 12*x + 16)^2;
T[62,59]=(x + 12)*(x^2 + 12*x + 24)*(x^2 -5)^2;
T[62,61]=(x + 6)*(x^2 + 2*x -26)*(x^2 + 6*x -116)^2;
T[62,67]=(x + 12)*(x -8)^6;
T[62,71]=(x -8)*(x^2 -192)*(x^2 -4*x -121)^2;
T[62,73]=(x -10)*(x + 10)^2*(x^2 -8*x -4)^2;
T[62,79]=(x + 8)*(x^2 -4*x -104)*(x^2 + 10*x -20)^2;
T[62,83]=(x -8)*(x^2 -6*x -66)*(x^2 + 12*x -44)^2;
T[62,89]=(x + 6)*(x -6)^2*(x^2 -10*x -20)^2;
T[62,97]=(x -2)*(x^2 -4*x -104)*(x^2 + 14*x -31)^2;

T[63,2]=(x -1)*(x^2 -3)*(x + 1)^2;
T[63,3]=(x -1)*(x )^4;
T[63,5]=(x -2)*(x^2 -12)*(x + 2)^2;
T[63,7]=(x -1)^2*(x + 1)^3;
T[63,11]=(x + 4)*(x^2 -12)*(x -4)^2;
T[63,13]=(x -2)^2*(x + 2)^3;
T[63,17]=(x -6)*(x^2 -12)*(x + 6)^2;
T[63,19]=(x + 4)^2*(x -4)^3;
T[63,23]=(x^2 -12)*(x )^3;
T[63,29]=(x -2)*(x + 2)^2*(x )^2;
T[63,31]=(x + 4)^2*(x )^3;
T[63,37]=(x -2)^2*(x -6)^3;
T[63,41]=(x + 2)*(x^2 -108)*(x -2)^2;
T[63,43]=(x + 4)^5;
T[63,47]=(x^2 -48)*(x )^3;
T[63,53]=(x + 6)*(x^2 -48)*(x -6)^2;
T[63,59]=(x + 12)*(x^2 -48)*(x -12)^2;
T[63,61]=(x + 10)^2*(x + 2)^3;
T[63,67]=(x + 4)^2*(x -4)^3;
T[63,71]=(x^2 -108)*(x )^3;
T[63,73]=(x -14)^2*(x + 6)^3;
T[63,79]=(x -8)^2*(x + 16)^3;
T[63,83]=(x -12)*(x + 12)^2*(x )^2;
T[63,89]=(x -14)*(x^2 -12)*(x + 14)^2;
T[63,97]=(x -14)^2*(x -18)^3;

T[64,2]=(x )^3;
T[64,3]=(x )^3;
T[64,5]=(x -2)*(x + 2)^2;
T[64,7]=(x )^3;
T[64,11]=(x )^3;
T[64,13]=(x + 6)*(x -6)^2;
T[64,17]=(x -2)^3;
T[64,19]=(x )^3;
T[64,23]=(x )^3;
T[64,29]=(x -10)*(x + 10)^2;
T[64,31]=(x )^3;
T[64,37]=(x -2)*(x + 2)^2;
T[64,41]=(x -10)^3;
T[64,43]=(x )^3;
T[64,47]=(x )^3;
T[64,53]=(x + 14)*(x -14)^2;
T[64,59]=(x )^3;
T[64,61]=(x -10)*(x + 10)^2;
T[64,67]=(x )^3;
T[64,71]=(x )^3;
T[64,73]=(x + 6)^3;
T[64,79]=(x )^3;
T[64,83]=(x )^3;
T[64,89]=(x -10)^3;
T[64,97]=(x -18)^3;

T[65,2]=(x + 1)*(x^2 + 2*x -1)*(x^2 -3);
T[65,3]=(x + 2)*(x^2 -2*x -2)*(x^2 -2);
T[65,5]=(x -1)^2*(x + 1)^3;
T[65,7]=(x + 4)*(x^2 -4*x -4)*(x -2)^2;
T[65,11]=(x -2)*(x^2 -4*x + 2)*(x^2 + 6*x + 6);
T[65,13]=(x -1)^2*(x + 1)^3;
T[65,17]=(x -2)*(x^2 + 4*x -4)*(x^2 -12);
T[65,19]=(x + 6)*(x^2 -4*x + 2)*(x^2 + 2*x -26);
T[65,23]=(x + 6)*(x^2 -2)*(x^2 -6*x + 6);
T[65,29]=(x -2)*(x^2 + 12*x + 24)*(x^2 -32);
T[65,31]=(x + 10)*(x^2 -10*x -2)*(x^2 -12*x + 18);
T[65,37]=(x + 2)*(x^2 -72)*(x + 4)^2;
T[65,41]=(x + 6)*(x^2 -12)*(x^2 + 12*x + 28);
T[65,43]=(x -10)*(x^2 -10*x -2)*(x^2 + 8*x -34);
T[65,47]=(x -4)*(x^2 + 4*x -4)*(x -6)^2;
T[65,53]=(x -2)*(x^2 + 12*x -36)*(x^2 -108);
T[65,59]=(x -6)*(x^2 -12*x + 18)*(x^2 + 6*x -138);
T[65,61]=(x -2)*(x^2 -4*x -104)*(x + 8)^2;
T[65,67]=(x + 4)*(x^2 + 8*x -92)*(x + 2)^2;
T[65,71]=(x -6)*(x^2 -6*x + 6)*(x^2 -4*x -94);
T[65,73]=(x + 6)*(x^2 -72)*(x + 4)^2;
T[65,79]=(x + 12)*(x^2 -4*x -104)*(x^2 -72);
T[65,83]=(x + 16)*(x^2 + 12*x + 28)*(x + 6)^2;
T[65,89]=(x -2)*(x^2 + 12*x -12)*(x -6)^2;
T[65,97]=(x + 2)*(x^2 + 4*x -28)*(x -2)^2;

T[66,2]=(x + 1)*(x^2 -x + 2)*(x -1)^2*(x^2 + 2*x + 2)^2;
T[66,3]=(x -1)^2*(x^2 + x + 3)^2*(x + 1)^3;
T[66,5]=(x -2)*(x + 4)*(x )*(x + 2)^2*(x -1)^4;
T[66,7]=(x -2)*(x + 4)*(x -4)^2*(x + 2)^5;
T[66,11]=(x + 1)^2*(x -1)^7;
T[66,13]=(x + 4)*(x + 6)*(x + 2)^2*(x -4)^5;
T[66,17]=(x -2)*(x + 6)*(x + 2)^7;
T[66,19]=(x -4)*(x + 4)*(x )^7;
T[66,23]=(x + 6)*(x -4)*(x -6)*(x -8)^2*(x + 1)^4;
T[66,29]=(x -10)*(x -6)^2*(x + 6)^2*(x )^4;
T[66,31]=(x -8)*(x )*(x + 8)^3*(x -7)^4;
T[66,37]=(x + 10)*(x + 2)*(x -6)^3*(x -3)^4;
T[66,41]=(x -2)*(x + 6)*(x -6)*(x + 2)^2*(x + 8)^4;
T[66,43]=(x -8)*(x -4)^2*(x )^2*(x + 6)^4;
T[66,47]=(x + 6)*(x + 12)*(x + 2)*(x -8)^6;
T[66,53]=(x -2)*(x -4)*(x )*(x -6)^2*(x + 6)^4;
T[66,59]=(x -12)*(x + 4)^2*(x )^2*(x -5)^4;
T[66,61]=(x -8)*(x + 14)*(x + 8)*(x -6)^2*(x -12)^4;
T[66,67]=(x + 12)*(x -4)*(x + 4)^3*(x + 7)^4;
T[66,71]=(x -2)*(x + 12)*(x -6)*(x )^2*(x + 3)^4;
T[66,73]=(x -2)*(x + 14)^2*(x + 6)^2*(x -4)^4;
T[66,79]=(x -10)*(x -14)*(x + 4)^3*(x + 10)^4;
T[66,83]=(x + 12)*(x -4)^2*(x -12)^2*(x + 6)^4;
T[66,89]=(x -10)^2*(x + 6)^3*(x -15)^4;
T[66,97]=(x + 14)*(x + 2)*(x -14)*(x -2)^2*(x + 7)^4;

T[67,2]=(x -2)*(x^2 + 3*x + 1)*(x^2 + x -1);
T[67,3]=(x + 2)*(x^2 + 3*x + 1)*(x^2 -x -1);
T[67,5]=(x -2)*(x^2 -4*x -1)*(x + 3)^2;
T[67,7]=(x + 2)*(x^2 -x -1)*(x^2 + x -11);
T[67,11]=(x + 4)*(x^2 -5)*(x -1)^2;
T[67,13]=(x -2)*(x^2 + x -1)*(x^2 + 7*x + 1);
T[67,17]=(x -3)*(x^2 -6*x + 4)*(x^2 + 6*x + 4);
T[67,19]=(x -7)*(x^2 + 11*x + 29)*(x^2 -x -11);
T[67,23]=(x -9)*(x^2 -6*x -11)*(x^2 + 2*x -19);
T[67,29]=(x + 5)*(x^2 -10*x + 5)*(x^2 + 6*x -11);
T[67,31]=(x + 10)*(x^2 -45)*(x + 1)^2;
T[67,37]=(x + 1)*(x^2 -3*x + 1)*(x^2 + x -11);
T[67,41]=(x^2 -5*x -25)*(x^2 + 3*x + 1)*(x );
T[67,43]=(x + 2)*(x^2 -3*x -9)*(x^2 + 9*x -11);
T[67,47]=(x + 1)*(x^2 + 7*x + 11)*(x^2 + 15*x + 55);
T[67,53]=(x -10)*(x^2 -45)*(x + 9)^2;
T[67,59]=(x -9)*(x + 6)^2*(x -6)^2;
T[67,61]=(x + 2)*(x^2 + 9*x + 9)*(x^2 + 7*x -89);
T[67,67]=(x + 1)^2*(x -1)^3;
T[67,71]=(x^2 -245)*(x^2 -12*x + 31)*(x );
T[67,73]=(x + 7)*(x + 4)^2*(x -8)^2;
T[67,79]=(x + 8)*(x^2 + 7*x -89)*(x^2 + 11*x -31);
T[67,83]=(x -4)*(x^2 -13*x + 31)*(x^2 + 15*x -5);
T[67,89]=(x -7)*(x^2 + 16*x + 19)*(x^2 -5);
T[67,97]=(x^2 -45)*(x^2 -2*x -179)*(x );

T[68,2]=(x -1)*(x^2 + x + 2)*(x )^4;
T[68,3]=(x^2 -2*x -2)*(x + 2)^2*(x )^3;
T[68,5]=(x^2 -12)*(x )^2*(x + 2)^3;
T[68,7]=(x^2 + 2*x -2)*(x + 4)^2*(x -4)^3;
T[68,11]=(x^2 + 6*x + 6)*(x -6)^2*(x )^3;
T[68,13]=(x^2 -4*x -8)*(x -2)^2*(x + 2)^3;
T[68,17]=(x -1)^3*(x + 1)^4;
T[68,19]=(x^2 -4*x -8)*(x + 4)^5;
T[68,23]=(x^2 + 6*x + 6)*(x )^2*(x -4)^3;
T[68,29]=(x^2 -12)*(x )^2*(x -6)^3;
T[68,31]=(x^2 + 2*x -26)*(x + 4)^2*(x -4)^3;
T[68,37]=(x^2 -16*x + 52)*(x + 4)^2*(x + 2)^3;
T[68,41]=(x -6)^2*(x + 6)^5;
T[68,43]=(x^2 -4*x -104)*(x -8)^2*(x -4)^3;
T[68,47]=(x^2 -48)*(x )^5;
T[68,53]=(x^2 -12*x -12)*(x + 6)^2*(x -6)^3;
T[68,59]=(x^2 -12*x + 24)*(x )^2*(x + 12)^3;
T[68,61]=(x^2 + 8*x + 4)*(x + 4)^2*(x + 10)^3;
T[68,67]=(x^2 -16*x + 16)*(x -8)^2*(x -4)^3;
T[68,71]=(x^2 + 6*x -18)*(x )^2*(x + 4)^3;
T[68,73]=(x + 6)^3*(x -2)^4;
T[68,79]=(x^2 + 14*x + 22)*(x -8)^2*(x -12)^3;
T[68,83]=(x^2 + 12*x + 24)*(x )^2*(x + 4)^3;
T[68,89]=(x^2 -12*x + 24)*(x + 6)^2*(x -10)^3;
T[68,97]=(x^2 -4*x -44)*(x -14)^2*(x -2)^3;

T[69,2]=(x -1)*(x^2 -5)*(x^2 + x -1)^2;
T[69,3]=(x -1)*(x^4 + x^2 + 9)*(x + 1)^2;
T[69,5]=(x )*(x^2 + 2*x -4)^3;
T[69,7]=(x + 2)*(x^2 -2*x -4)^3;
T[69,11]=(x^2 + 6*x + 4)^2*(x -4)^3;
T[69,13]=(x + 6)*(x^2 -20)*(x -3)^4;
T[69,17]=(x -4)*(x^2 + 10*x + 20)*(x^2 -6*x + 4)^2;
T[69,19]=(x -2)*(x^2 -10*x + 20)*(x + 2)^4;
T[69,23]=(x + 1)*(x -1)^6;
T[69,29]=(x -2)*(x^2 -20)*(x + 3)^4;
T[69,31]=(x -4)*(x^2 + 4*x -16)*(x^2 -45)^2;
T[69,37]=(x -2)*(x^2 -20)*(x^2 -2*x -4)^2;
T[69,41]=(x -2)*(x^2 + 4*x -76)*(x^2 -2*x -19)^2;
T[69,43]=(x -10)*(x^2 -2*x -44)*(x )^4;
T[69,47]=(x )*(x + 4)^2*(x^2 -5)^2;
T[69,53]=(x + 12)*(x^2 + 6*x + 4)*(x^2 + 8*x -4)^2;
T[69,59]=(x + 12)*(x^2 -8*x -64)*(x^2 -4*x -16)^2;
T[69,61]=(x + 6)*(x^2 -20)*(x^2 -4*x -76)^2;
T[69,67]=(x + 10)*(x^2 -6*x + 4)*(x^2 + 10*x + 20)^2;
T[69,71]=(x -8)*(x + 8)^2*(x^2 -20*x + 95)^2;
T[69,73]=(x + 14)*(x^2 + 4*x -76)*(x^2 -22*x + 101)^2;
T[69,79]=(x -10)*(x^2 -6*x -36)*(x^2 + 4*x -76)^2;
T[69,83]=(x -12)*(x -4)^2*(x^2 + 22*x + 116)^2;
T[69,89]=(x + 16)*(x^2 -2*x -4)*(x^2 + 12*x + 16)^2;
T[69,97]=(x + 10)*(x^2 -8*x -4)*(x^2 -22*x + 76)^2;

T[70,2]=(x -1)*(x^2 + 2)*(x^4 + x^3 + 2*x + 4)*(x + 1)^2;
T[70,3]=(x )*(x + 2)^2*(x -1)^2*(x^2 + x -4)^2;
T[70,5]=(x^2 + 5)*(x + 1)^3*(x -1)^4;
T[70,7]=(x -1)^4*(x + 1)^5;
T[70,11]=(x -4)*(x + 3)^2*(x^2 -x -4)^2*(x )^2;
T[70,13]=(x + 6)*(x + 4)^2*(x -5)^2*(x^2 -5*x + 2)^2;
T[70,17]=(x -2)*(x -6)^2*(x -3)^2*(x^2 + 5*x + 2)^2;
T[70,19]=(x )*(x^2 + 6*x -8)^2*(x -2)^4;
T[70,23]=(x + 6)^2*(x^2 + 2*x -16)^2*(x )^3;
T[70,29]=(x -6)*(x + 6)^2*(x -3)^2*(x^2 -x -38)^2;
T[70,31]=(x -8)*(x + 4)^4*(x )^4;
T[70,37]=(x + 10)*(x -6)^4*(x -2)^4;
T[70,41]=(x -2)*(x -6)^2*(x + 12)^2*(x^2 -2*x -16)^2;
T[70,43]=(x -4)*(x + 10)^2*(x -8)^2*(x^2 -10*x + 8)^2;
T[70,47]=(x -8)*(x + 12)^2*(x -9)^2*(x^2 + 5*x -32)^2;
T[70,53]=(x + 2)*(x -6)^2*(x -12)^2*(x^2 + 2*x -16)^2;
T[70,59]=(x + 8)*(x + 6)^2*(x )^2*(x + 4)^4;
T[70,61]=(x + 14)*(x^2 -6*x -144)^2*(x -8)^4;
T[70,67]=(x + 12)*(x^2 -4*x -64)^2*(x + 4)^4;
T[70,71]=(x + 16)*(x -8)^4*(x )^4;
T[70,73]=(x^2 + 8*x -52)^2*(x -2)^5;
T[70,79]=(x + 8)*(x -8)^2*(x + 1)^2*(x^2 + 9*x + 16)^2;
T[70,83]=(x -8)*(x -12)^2*(x + 6)^2*(x -4)^4;
T[70,89]=(x -10)*(x + 6)^2*(x + 12)^2*(x^2 -6*x -8)^2;
T[70,97]=(x -2)*(x + 1)^2*(x + 10)^2*(x^2 + 9*x -86)^2;

T[71,2]=(x^3 + x^2 -4*x -3)*(x^3 -5*x + 3);
T[71,3]=(x^3 + x^2 -8*x -3)*(x^3 -x^2 -4*x + 3);
T[71,5]=(x^3 -5*x^2 -2*x + 25)*(x^3 + 3*x^2 -2*x -7);
T[71,7]=(x^3 -2*x^2 -16*x + 24)^2;
T[71,11]=(x^3 -20*x + 24)*(x^3 + 2*x^2 -16*x -24);
T[71,13]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
T[71,17]=(x^3 -2*x^2 -16*x + 24)*(x^3 + 2*x^2 -32*x -24);
T[71,19]=(x^3 -x^2 -20*x -25)*(x^3 -11*x^2 + 36*x -35);
T[71,23]=(x^3 -8*x^2 -12*x + 72)*(x + 4)^3;
T[71,29]=(x^3 -11*x^2 + 14*x + 71)*(x^3 + 5*x^2 -2*x -25);
T[71,31]=(x^3 + 6*x^2 -8*x -56)*(x -4)^3;
T[71,37]=(x^3 + 15*x^2 + 70*x + 97)*(x^3 -9*x^2 -26*x + 37);
T[71,41]=(x^3 + 2*x^2 -68*x + 56)*(x^3 -14*x^2 + 48*x -8);
T[71,43]=(x^3 -13*x^2 + 48*x -45)*(x^3 + 17*x^2 + 72*x + 81);
T[71,47]=(x^3 + 10*x^2 -72)*(x^3 -4*x^2 -28*x + 40);
T[71,53]=(x^3 -20*x -24)*(x^3 + 18*x^2 + 28*x -456);
T[71,59]=(x^3 + 22*x^2 + 144*x + 280)*(x^3 + 4*x^2 -36*x -152);
T[71,61]=(x^3 -8*x^2 -76*x + 536)*(x^3 -16*x^2 + 16*x + 320);
T[71,67]=(x^3 + 12*x^2 -32*x -64)*(x^3 + 12*x^2 + 28*x -40);
T[71,71]=(x -1)^6;
T[71,73]=(x^3 -27*x^2 + 202*x -461)*(x^3 -3*x^2 -2*x + 7);
T[71,79]=(x^3 + 3*x^2 -44*x + 15)*(x^3 -7*x^2 -136*x + 525);
T[71,83]=(x^3 + 19*x^2 + 96*x + 63)*(x^3 -23*x^2 + 172*x -419);
T[71,89]=(x^3 -13*x^2 -82*x + 45)*(x^3 -x^2 -22*x -27);
T[71,97]=(x^3 -4*x^2 -36*x + 152)*(x^3 -22*x^2 + 144*x -280);

T[72,2]=(x )^5;
T[72,3]=(x + 1)*(x )^4;
T[72,5]=(x -2)*(x + 2)^2*(x )^2;
T[72,7]=(x + 4)^2*(x )^3;
T[72,11]=(x + 4)*(x -4)^2*(x )^2;
T[72,13]=(x -2)^2*(x + 2)^3;
T[72,17]=(x + 2)*(x -2)^2*(x )^2;
T[72,19]=(x -8)^2*(x + 4)^3;
T[72,23]=(x -8)*(x + 8)^2*(x )^2;
T[72,29]=(x + 6)*(x -6)^2*(x )^2;
T[72,31]=(x + 4)^2*(x -8)^3;
T[72,37]=(x + 10)^2*(x -6)^3;
T[72,41]=(x -6)*(x + 6)^2*(x )^2;
T[72,43]=(x -8)^2*(x -4)^3;
T[72,47]=(x )^5;
T[72,53]=(x -2)*(x + 2)^2*(x )^2;
T[72,59]=(x + 4)*(x -4)^2*(x )^2;
T[72,61]=(x -14)^2*(x + 2)^3;
T[72,67]=(x + 16)^2*(x + 4)^3;
T[72,71]=(x + 8)*(x -8)^2*(x )^2;
T[72,73]=(x + 10)^2*(x -10)^3;
T[72,79]=(x + 4)^2*(x + 8)^3;
T[72,83]=(x -4)*(x + 4)^2*(x )^2;
T[72,89]=(x -6)*(x + 6)^2*(x )^2;
T[72,97]=(x -14)^2*(x -2)^3;

T[73,2]=(x -1)*(x^2 + 3*x + 1)*(x^2 -x -3);
T[73,3]=(x^2 + 3*x + 1)*(x^2 -x -3)*(x );
T[73,5]=(x -2)*(x^2 + x -3)*(x^2 + 3*x + 1);
T[73,7]=(x -2)*(x + 1)^2*(x + 3)^2;
T[73,11]=(x + 2)*(x^2 -7*x + 9)*(x^2 + 3*x + 1);
T[73,13]=(x + 6)*(x^2 + x -3)*(x^2 -x -11);
T[73,17]=(x -2)*(x^2 + 4*x -9)*(x^2 -45);
T[73,19]=(x -8)*(x -1)^2*(x + 7)^2;
T[73,23]=(x -4)*(x^2 -13*x + 39)*(x^2 + 15*x + 55);
T[73,29]=(x -2)*(x^2 -6*x -11)*(x^2 -2*x -51);
T[73,31]=(x + 2)*(x^2 -2*x -44)*(x^2 -6*x -4);
T[73,37]=(x + 6)*(x^2 + 4*x -41)*(x^2 -8*x + 3);
T[73,41]=(x -6)*(x^2 -20)*(x + 6)^2;
T[73,43]=(x + 2)*(x^2 -6*x -43)*(x + 1)^2;
T[73,47]=(x -6)*(x^2 + 6*x -11)*(x -9)^2;
T[73,53]=(x -10)*(x^2 + 2*x -51)*(x^2 -6*x -71);
T[73,59]=(x + 6)*(x^2 + 12*x + 16)*(x )^2;
T[73,61]=(x + 14)*(x^2 + 9*x + 17)*(x^2 -7*x + 1);
T[73,67]=(x -8)*(x^2 -4*x -113)*(x^2 -16*x + 19);
T[73,71]=(x^2 -3*x -27)*(x^2 + 21*x + 109)*(x );
T[73,73]=(x + 1)^2*(x -1)^3;
T[73,79]=(x + 4)*(x^2 + 19*x + 79)*(x^2 -x -29);
T[73,83]=(x + 14)*(x^2 + 3*x -9)*(x^2 -7*x -69);
T[73,89]=(x + 6)*(x^2 -12*x -81)*(x^2 -12*x + 31);
T[73,97]=(x + 10)*(x^2 + 5*x -23)*(x^2 + 9*x + 9);

T[74,2]=(x^2 + 2)*(x^2 + 2*x + 2)*(x -1)^2*(x + 1)^2;
T[74,3]=(x^2 -3*x -1)*(x^2 + x -1)*(x -1)^2*(x + 3)^2;
T[74,5]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x )^2;
T[74,7]=(x^2 + 2*x -4)*(x^2 -2*x -12)*(x + 1)^4;
T[74,11]=(x^2 + x -3)*(x^2 + 5*x + 5)*(x + 5)^2*(x -3)^2;
T[74,13]=(x^2 -x -11)*(x^2 + x -3)*(x + 2)^2*(x + 4)^2;
T[74,17]=(x^2 -20)*(x + 6)^2*(x -6)^2*(x )^2;
T[74,19]=(x^2 -20)*(x )^2*(x -2)^4;
T[74,23]=(x^2 + x -11)*(x^2 + 3*x -27)*(x -6)^2*(x -2)^2;
T[74,29]=(x^2 + 3*x -59)*(x^2 -3*x -27)*(x -6)^2*(x + 6)^2;
T[74,31]=(x^2 -3*x -1)*(x^2 -17*x + 71)*(x + 4)^4;
T[74,37]=(x + 1)^4*(x -1)^4;
T[74,41]=(x^2 -17*x + 71)*(x^2 -9*x -9)*(x + 9)^4;
T[74,43]=(x^2 + 6*x -4)*(x^2 + 6*x + 4)*(x -8)^2*(x -2)^2;
T[74,47]=(x^2 -2*x -4)*(x^2 -2*x -12)*(x + 9)^2*(x -3)^2;
T[74,53]=(x^2 + 8*x -4)*(x -1)^2*(x + 6)^2*(x + 3)^2;
T[74,59]=(x^2 -14*x + 36)*(x^2 + 14*x + 44)*(x -12)^2*(x -8)^2;
T[74,61]=(x^2 + 3*x -79)*(x^2 -19*x + 89)*(x + 8)^2*(x -8)^2;
T[74,67]=(x^2 -11*x -51)*(x^2 + 9*x -11)*(x + 4)^2*(x -8)^2;
T[74,71]=(x^2 + 12*x -44)*(x -9)^2*(x + 15)^2*(x -6)^2;
T[74,73]=(x^2 -3*x -29)*(x^2 + 21*x + 107)*(x -11)^2*(x + 1)^2;
T[74,79]=(x^2 + 7*x -147)*(x^2 -3*x -99)*(x + 10)^2*(x -4)^2;
T[74,83]=(x^2 -20*x + 48)*(x^2 + 20*x + 80)*(x + 15)^2*(x -9)^2;
T[74,89]=(x^2 + 12*x + 16)*(x^2 + 4*x -48)*(x -4)^2*(x -6)^2;
T[74,97]=(x^2 -8*x -4)*(x^2 + 4*x -204)*(x -8)^2*(x -4)^2;

T[75,2]=(x + 2)*(x -2)*(x -1)*(x + 1)^2;
T[75,3]=(x -1)^2*(x + 1)^3;
T[75,5]=(x -1)*(x )^4;
T[75,7]=(x -3)*(x + 3)*(x )^3;
T[75,11]=(x -2)^2*(x + 4)^3;
T[75,13]=(x -1)*(x -2)*(x + 1)*(x + 2)^2;
T[75,17]=(x + 2)^2*(x -2)^3;
T[75,19]=(x + 5)^2*(x -4)^3;
T[75,23]=(x -6)*(x + 6)*(x )^3;
T[75,29]=(x -10)^2*(x + 2)^3;
T[75,31]=(x + 3)^2*(x )^3;
T[75,37]=(x -10)*(x -2)*(x + 2)*(x + 10)^2;
T[75,41]=(x + 8)^2*(x -10)^3;
T[75,43]=(x + 4)*(x + 1)*(x -1)*(x -4)^2;
T[75,47]=(x + 2)*(x -2)*(x + 8)*(x -8)^2;
T[75,53]=(x -10)*(x -4)*(x + 4)*(x + 10)^2;
T[75,59]=(x + 10)^2*(x + 4)^3;
T[75,61]=(x -7)^2*(x + 2)^3;
T[75,67]=(x -3)*(x + 12)*(x + 3)*(x -12)^2;
T[75,71]=(x + 8)^5;
T[75,73]=(x + 14)*(x -14)*(x + 10)*(x -10)^2;
T[75,79]=(x )^5;
T[75,83]=(x + 12)*(x -6)*(x + 6)*(x -12)^2;
T[75,89]=(x )^2*(x + 6)^3;
T[75,97]=(x -17)*(x + 2)*(x + 17)*(x -2)^2;

T[76,2]=(x -1)*(x + 1)*(x^2 + 2)*(x )^4;
T[76,3]=(x -2)*(x -1)^2*(x + 1)^2*(x + 2)^3;
T[76,5]=(x + 1)*(x + 4)^2*(x )^2*(x -3)^3;
T[76,7]=(x + 3)*(x -3)^2*(x + 1)^5;
T[76,11]=(x -5)*(x -2)^2*(x + 6)^2*(x -3)^3;
T[76,13]=(x + 1)^2*(x -5)^2*(x + 4)^4;
T[76,17]=(x -3)^4*(x + 3)^4;
T[76,19]=(x + 1)^3*(x -1)^5;
T[76,23]=(x -8)*(x -3)^2*(x + 1)^2*(x )^3;
T[76,29]=(x + 2)*(x -9)^2*(x + 5)^2*(x -6)^3;
T[76,31]=(x -4)*(x + 8)^2*(x + 4)^5;
T[76,37]=(x -10)*(x + 2)^2*(x -2)^5;
T[76,41]=(x -10)*(x + 8)^2*(x )^2*(x + 6)^3;
T[76,43]=(x -1)*(x -4)^2*(x -8)^2*(x + 1)^3;
T[76,47]=(x + 1)*(x -8)^2*(x )^2*(x + 3)^3;
T[76,53]=(x + 4)*(x + 3)^2*(x + 1)^2*(x -12)^3;
T[76,59]=(x -6)*(x -9)^2*(x -15)^2*(x + 6)^3;
T[76,61]=(x + 13)*(x -2)^2*(x + 10)^2*(x + 1)^3;
T[76,67]=(x + 12)*(x -5)^2*(x -3)^2*(x + 4)^3;
T[76,71]=(x + 6)^2*(x -2)^3*(x -6)^3;
T[76,73]=(x -9)^3*(x + 7)^5;
T[76,79]=(x -8)^4*(x + 10)^4;
T[76,83]=(x + 12)*(x -12)^3*(x + 6)^4;
T[76,89]=(x + 12)^2*(x )^2*(x -12)^4;
T[76,97]=(x + 8)*(x + 10)^2*(x + 2)^2*(x -8)^3;

T[77,2]=(x -1)*(x^2 -5)*(x + 2)^2*(x )^2;
T[77,3]=(x -1)*(x + 3)*(x -2)*(x^2 -2*x -4)*(x + 1)^2;
T[77,5]=(x + 1)*(x -3)*(x -1)^2*(x + 2)^3;
T[77,7]=(x^2 + 2*x + 7)*(x + 1)^2*(x -1)^3;
T[77,11]=(x -1)^3*(x + 1)^4;
T[77,13]=(x^2 -2*x -4)*(x + 4)^2*(x -4)^3;
T[77,17]=(x -4)*(x -2)*(x + 6)*(x^2 + 2*x -4)*(x + 2)^2;
T[77,19]=(x -2)*(x + 6)*(x^2 -4*x -16)*(x )^3;
T[77,23]=(x + 5)*(x + 4)*(x -3)*(x^2 + 4*x -16)*(x + 1)^2;
T[77,29]=(x -10)*(x^2 -8*x -4)*(x + 6)^2*(x )^2;
T[77,31]=(x -10)*(x -1)*(x -5)*(x^2 + 10*x + 20)*(x -7)^2;
T[77,37]=(x -11)*(x + 6)*(x + 5)*(x^2 + 8*x -4)*(x -3)^2;
T[77,41]=(x -4)*(x -6)*(x + 2)*(x^2 + 18*x + 76)*(x + 8)^2;
T[77,43]=(x -12)*(x + 8)*(x + 6)^2*(x -8)^3;
T[77,47]=(x + 10)*(x^2 -10*x + 20)*(x )*(x -8)^3;
T[77,53]=(x^2 -8*x -4)*(x + 6)^5;
T[77,59]=(x -3)*(x -2)*(x + 9)*(x^2 -2*x -4)*(x -5)^2;
T[77,61]=(x + 2)*(x + 10)*(x^2 + 10*x + 20)*(x )*(x -12)^2;
T[77,67]=(x -5)*(x + 3)*(x -8)*(x^2 -20*x + 80)*(x + 7)^2;
T[77,71]=(x -9)*(x -1)*(x + 12)*(x^2 + 12*x + 16)*(x + 3)^2;
T[77,73]=(x -2)*(x + 8)*(x -10)*(x^2 + 6*x + 4)*(x -4)^2;
T[77,79]=(x -6)*(x -8)*(x^2 -80)*(x + 10)^3;
T[77,83]=(x^2 -4*x -176)*(x )*(x -12)^2*(x + 6)^2;
T[77,89]=(x + 6)*(x + 3)*(x + 15)*(x -2)^2*(x -15)^2;
T[77,97]=(x + 10)*(x + 1)*(x + 5)*(x^2 -8*x -164)*(x + 7)^2;

T[78,2]=(x^2 -x + 2)*(x^4 + 2*x^3 + 3*x^2 + 4*x + 4)*(x -1)^2*(x + 1)^3;
T[78,3]=(x^2 -x + 3)*(x^2 + 3*x + 3)*(x + 1)^3*(x -1)^4;
T[78,5]=(x + 1)^2*(x + 3)^2*(x^2 -8)^2*(x -2)^3;
T[78,7]=(x -4)*(x -1)^2*(x + 1)^2*(x + 4)^2*(x^2 -8)^2;
T[78,11]=(x + 4)*(x -4)^2*(x -6)^2*(x + 2)^6;
T[78,13]=(x -1)^5*(x + 1)^6;
T[78,17]=(x^2 -4*x -28)^2*(x -2)^3*(x + 3)^4;
T[78,19]=(x + 8)*(x -2)^2*(x -6)^2*(x^2 -8)^2*(x )^2;
T[78,23]=(x )^5*(x + 4)^6;
T[78,29]=(x + 10)^2*(x -6)^3*(x -2)^6;
T[78,31]=(x^2 + 8*x + 8)^2*(x + 4)^3*(x -4)^4;
T[78,37]=(x + 7)^2*(x -3)^2*(x^2 + 4*x -28)^2*(x + 2)^3;
T[78,41]=(x + 10)*(x -6)^2*(x^2 -16*x + 56)^2*(x )^4;
T[78,43]=(x -4)*(x + 12)^2*(x + 1)^2*(x + 5)^2*(x^2 -8*x -16)^2;
T[78,47]=(x -8)*(x -13)^2*(x -3)^2*(x^2 + 12*x + 4)^2*(x )^2;
T[78,53]=(x + 10)*(x -6)^2*(x -12)^2*(x )^2*(x + 2)^4;
T[78,59]=(x -4)*(x + 6)^2*(x + 10)^2*(x -12)^2*(x^2 -4*x -28)^2;
T[78,61]=(x + 8)^2*(x -8)^2*(x^2 -4*x -124)^2*(x + 2)^3;
T[78,67]=(x + 16)*(x -14)^2*(x + 2)^2*(x + 8)^2*(x^2 -8*x + 8)^2;
T[78,71]=(x + 8)*(x + 5)^2*(x + 3)^2*(x )^2*(x -2)^4;
T[78,73]=(x + 10)^2*(x^2 -12*x + 4)^2*(x -2)^5;
T[78,79]=(x + 4)^2*(x^2 -128)^2*(x -8)^5;
T[78,83]=(x -4)^2*(x^2 + 4*x -28)^2*(x )^2*(x -12)^3;
T[78,89]=(x -14)*(x + 2)^2*(x -6)^2*(x + 6)^2*(x^2 -24*x + 136)^2;
T[78,97]=(x + 10)^2*(x -14)^2*(x^2 + 4*x -28)^2*(x -10)^3;

T[79,2]=(x + 1)*(x^5 -6*x^3 + 8*x -1);
T[79,3]=(x + 1)*(x^5 -x^4 -12*x^3 + 8*x^2 + 24*x -16);
T[79,5]=(x + 3)*(x^5 -7*x^4 + 9*x^3 + 27*x^2 -65*x + 31);
T[79,7]=(x + 1)*(x^5 + 5*x^4 -6*x^3 -52*x^2 -56*x -16);
T[79,11]=(x + 2)*(x^5 -2*x^4 -35*x^3 + 34*x^2 + 185*x + 106);
T[79,13]=(x -3)*(x^5 + 3*x^4 -23*x^3 -123*x^2 -197*x -103);
T[79,17]=(x + 6)*(x^5 -10*x^4 + 16*x^3 + 88*x^2 -224*x + 32);
T[79,19]=(x -4)*(x^5 + 4*x^4 -47*x^3 -124*x^2 + 541*x + 488);
T[79,23]=(x -2)*(x^5 -2*x^4 -43*x^3 + 106*x^2 + 177*x -142);
T[79,29]=(x + 6)*(x^5 -6*x^4 -52*x^3 + 392*x^2 -496*x -32);
T[79,31]=(x + 10)*(x^5 -2*x^4 -63*x^3 + 6*x^2 + 397*x + 314);
T[79,37]=(x + 2)*(x^5 -84*x^3 -64*x^2 + 1264*x + 2272);
T[79,41]=(x + 10)*(x^5 -30*x^4 + 336*x^3 -1752*x^2 + 4256*x -3872);
T[79,43]=(x -4)*(x^5 + 14*x^4 + 44*x^3 -120*x^2 -688*x -704);
T[79,47]=(x -7)*(x^5 -5*x^4 -136*x^3 + 536*x^2 + 4176*x -13456);
T[79,53]=(x -8)*(x^5 -2*x^4 -136*x^3 -240*x^2 + 3792*x + 12352);
T[79,59]=(x + 3)*(x^5 -5*x^4 -70*x^3 + 368*x^2 + 864*x -4624);
T[79,61]=(x + 4)*(x^5 + 6*x^4 -196*x^3 -808*x^2 + 9840*x + 17984);
T[79,