CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / bsd_p5_1-300.gpOpen in CoCalc
\\ bsd_p5_1-300.gp
\\ ---------------------------------------------------------------
\\ N,i      = i-th newform at level N (forms ordered by trace).
\\ bsd[N,i] = odd_part(L(A_f,1)/Omega*(manin constant))
\\ deg[N,i] = odd_part(modular degree)
\\ dsc[N,i] = disc(O_f)
\\ E  [N,i] = [g(x), denom*[a_1(x), a_2(x), ..., a_5(x)]]
\\ 1 <= N <= 300
\\ 
\\ Wed Mar  3 23:36:11 1999
\\ William Stein ([email protected])
\\ ---------------------------------------------------------------


bsd[11,1] = 1/5 ;
deg[11,1] = 1 ;
dsc[11,1] = 1 ;
E  [11,1] = [x, [1,-2,-1]];


bsd[14,1] = 1/3 ;
deg[14,1] = 1 ;
dsc[14,1] = 1 ;
E  [14,1] = [x, [1,-1,-2,1,0]];


bsd[15,1] = 1 ;
deg[15,1] = 1 ;
dsc[15,1] = 1 ;
E  [15,1] = [x, [1,-1,-1,-1,1]];


bsd[17,1] = 1 ;
deg[17,1] = 1 ;
dsc[17,1] = 1 ;
E  [17,1] = [x, [1,-1,0,-1]];


bsd[19,1] = 1/3 ;
deg[19,1] = 1 ;
dsc[19,1] = 1 ;
E  [19,1] = [x, [1,0,-2,-2]];


bsd[20,1] = 1/3 ;
deg[20,1] = 1 ;
dsc[20,1] = 1 ;
E  [20,1] = [x, [1,0,-2,0,-1]];


bsd[21,1] = 1 ;
deg[21,1] = 1 ;
dsc[21,1] = 1 ;
E  [21,1] = [x, [1,-1,1,-1,-2]];


bsd[23,1] = 1/11 ;
deg[23,1] = 1 ;
dsc[23,1] = 5 ;
E  [23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x]];


bsd[24,1] = 1 ;
deg[24,1] = 1 ;
dsc[24,1] = 1 ;
E  [24,1] = [x, [1,0,-1,0,-2]];


bsd[26,1] = 1/3 ;
deg[26,1] = 1 ;
dsc[26,1] = 1 ;
E  [26,1] = [x, [1,-1,1,1,-3]];

bsd[26,2] = 1/7 ;
deg[26,2] = 1 ;
dsc[26,2] = 1 ;
E  [26,2] = [x, [1,1,-3,1,-1]];


bsd[27,1] = 1/3 ;
deg[27,1] = 1 ;
dsc[27,1] = 1 ;
E  [27,1] = [x, [1,0,0,-2,0]];


bsd[29,1] = 1/7 ;
deg[29,1] = 1 ;
dsc[29,1] = 2^3 ;
E  [29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1]];


bsd[30,1] = 1/3 ;
deg[30,1] = 1 ;
dsc[30,1] = 1 ;
E  [30,1] = [x, [1,-1,1,1,-1]];


bsd[31,1] = 1/5 ;
deg[31,1] = 1 ;
dsc[31,1] = 5 ;
E  [31,1] = [x^2-x-1, [1,x,-2*x,x-1,1]];


bsd[32,1] = 1 ;
deg[32,1] = 1 ;
dsc[32,1] = 1 ;
E  [32,1] = [x, [1,0,0,0,-2]];


bsd[33,1] = 1 ;
deg[33,1] = 3 ;
dsc[33,1] = 1 ;
E  [33,1] = [x, [1,1,-1,-1,-2]];


bsd[34,1] = 1/3 ;
deg[34,1] = 1 ;
dsc[34,1] = 1 ;
E  [34,1] = [x, [1,1,-2,1,0]];


bsd[35,1] = 1/3 ;
deg[35,1] = 1 ;
dsc[35,1] = 1 ;
E  [35,1] = [x, [1,0,1,-2,-1]];

bsd[35,2] = 1 ;
deg[35,2] = 1 ;
dsc[35,2] = 17 ;
E  [35,2] = [x^2+x-4, [1,x,-x-1,-x+2,1]];


bsd[36,1] = 1/3 ;
deg[36,1] = 1 ;
dsc[36,1] = 1 ;
E  [36,1] = [x, [1,0,0,0,0]];


bsd[37,1] = 0 ;
deg[37,1] = 1 ;
dsc[37,1] = 1 ;
E  [37,1] = [x, [1,-2,-3,2,-2]];

bsd[37,2] = 1/3 ;
deg[37,2] = 1 ;
dsc[37,2] = 1 ;
E  [37,2] = [x, [1,0,1,-2,0]];


bsd[38,1] = 1/3 ;
deg[38,1] = 3 ;
dsc[38,1] = 1 ;
E  [38,1] = [x, [1,-1,1,1,0]];

bsd[38,2] = 1/5 ;
deg[38,2] = 1 ;
dsc[38,2] = 1 ;
E  [38,2] = [x, [1,1,-1,1,-4]];


bsd[39,1] = 1 ;
deg[39,1] = 1 ;
dsc[39,1] = 1 ;
E  [39,1] = [x, [1,1,-1,-1,2]];

bsd[39,2] = 1/7 ;
deg[39,2] = 1 ;
dsc[39,2] = 2^3 ;
E  [39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2]];


bsd[40,1] = 1 ;
deg[40,1] = 1 ;
dsc[40,1] = 1 ;
E  [40,1] = [x, [1,0,0,0,1]];


bsd[41,1] = 1/5 ;
deg[41,1] = 1 ;
dsc[41,1] = 2^2*37 ;
E  [41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2]];


bsd[42,1] = 1 ;
deg[42,1] = 1 ;
dsc[42,1] = 1 ;
E  [42,1] = [x, [1,1,-1,1,-2]];


bsd[43,1] = 0 ;
deg[43,1] = 1 ;
dsc[43,1] = 1 ;
E  [43,1] = [x, [1,-2,-2,2,-4]];

bsd[43,2] = 1/7 ;
deg[43,2] = 1 ;
dsc[43,2] = 2^3 ;
E  [43,2] = [x^2-2, [1,x,-x,0,-x+2]];


bsd[44,1] = 1/3 ;
deg[44,1] = 1 ;
dsc[44,1] = 1 ;
E  [44,1] = [x, [1,0,1,0,-3]];


bsd[45,1] = 1 ;
deg[45,1] = 1 ;
dsc[45,1] = 1 ;
E  [45,1] = [x, [1,1,0,-1,-1]];


bsd[46,1] = 1 ;
deg[46,1] = 5 ;
dsc[46,1] = 1 ;
E  [46,1] = [x, [1,-1,0,1,4]];


bsd[47,1] = 1/23 ;
deg[47,1] = 1 ;
dsc[47,1] = 19*103 ;
E  [47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10]];


bsd[48,1] = 1 ;
deg[48,1] = 1 ;
dsc[48,1] = 1 ;
E  [48,1] = [x, [1,0,1,0,-2]];


bsd[49,1] = 1 ;
deg[49,1] = 1 ;
dsc[49,1] = 1 ;
E  [49,1] = [x, [1,1,0,-1,0]];


bsd[50,1] = 1/3 ;
deg[50,1] = 1 ;
dsc[50,1] = 1 ;
E  [50,1] = [x, [1,-1,1,1,0]];

bsd[50,2] = 1/5 ;
deg[50,2] = 1 ;
dsc[50,2] = 1 ;
E  [50,2] = [x, [1,1,-1,1,0]];


bsd[51,1] = 1/3 ;
deg[51,1] = 1 ;
dsc[51,1] = 1 ;
E  [51,1] = [x, [1,0,1,-2,3]];

bsd[51,2] = 1 ;
deg[51,2] = 1 ;
dsc[51,2] = 17 ;
E  [51,2] = [x^2+x-4, [1,x,-1,-x+2,-x+1]];


bsd[52,1] = 1 ;
deg[52,1] = 3 ;
dsc[52,1] = 1 ;
E  [52,1] = [x, [1,0,0,0,2]];


bsd[53,1] = 0 ;
deg[53,1] = 1 ;
dsc[53,1] = 1 ;
E  [53,1] = [x, [1,-1,-3,-1,0]];

bsd[53,2] = 1/13 ;
deg[53,2] = 1 ;
dsc[53,2] = 2^2*37 ;
E  [53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3]];


bsd[54,1] = 1/3 ;
deg[54,1] = 3 ;
dsc[54,1] = 1 ;
E  [54,1] = [x, [1,-1,0,1,3]];

bsd[54,2] = 1/3 ;
deg[54,2] = 1 ;
dsc[54,2] = 1 ;
E  [54,2] = [x, [1,1,0,1,-3]];


bsd[55,1] = 1 ;
deg[55,1] = 1 ;
dsc[55,1] = 1 ;
E  [55,1] = [x, [1,1,0,-1,1]];

bsd[55,2] = 1 ;
deg[55,2] = 7 ;
dsc[55,2] = 2^3 ;
E  [55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1]];


bsd[56,1] = 1 ;
deg[56,1] = 1 ;
dsc[56,1] = 1 ;
E  [56,1] = [x, [1,0,0,0,2]];

bsd[56,2] = 1 ;
deg[56,2] = 1 ;
dsc[56,2] = 1 ;
E  [56,2] = [x, [1,0,2,0,-4]];


bsd[57,1] = 0 ;
deg[57,1] = 1 ;
dsc[57,1] = 1 ;
E  [57,1] = [x, [1,-2,-1,2,-3]];

bsd[57,2] = 1/5 ;
deg[57,2] = 3 ;
dsc[57,2] = 1 ;
E  [57,2] = [x, [1,-2,1,2,1]];

bsd[57,3] = 1 ;
deg[57,3] = 3 ;
dsc[57,3] = 1 ;
E  [57,3] = [x, [1,1,1,-1,-2]];


bsd[58,1] = 0 ;
deg[58,1] = 1 ;
dsc[58,1] = 1 ;
E  [58,1] = [x, [1,-1,-3,1,-3]];

bsd[58,2] = 1/5 ;
deg[58,2] = 1 ;
dsc[58,2] = 1 ;
E  [58,2] = [x, [1,1,-1,1,1]];


bsd[59,1] = 1/29 ;
deg[59,1] = 1 ;
dsc[59,1] = 2^3*31*557 ;
E  [59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28]];


bsd[61,1] = 0 ;
deg[61,1] = 1 ;
dsc[61,1] = 1 ;
E  [61,1] = [x, [1,-1,-2,-1,-3]];

bsd[61,2] = 1/5 ;
deg[61,2] = 1 ;
dsc[61,2] = 2^2*37 ;
E  [61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2]];


bsd[62,1] = 1 ;
deg[62,1] = 1 ;
dsc[62,1] = 1 ;
E  [62,1] = [x, [1,1,0,1,-2]];

bsd[62,2] = 1/3 ;
deg[62,2] = 11 ;
dsc[62,2] = 2^2*3 ;
E  [62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2]];


bsd[63,1] = 1 ;
deg[63,1] = 1 ;
dsc[63,1] = 1 ;
E  [63,1] = [x, [1,1,0,-1,2]];

bsd[63,2] = 1/3 ;
deg[63,2] = 1 ;
dsc[63,2] = 2^2*3 ;
E  [63,2] = [x^2-3, [1,x,0,1,-2*x]];


bsd[64,1] = 1 ;
deg[64,1] = 1 ;
dsc[64,1] = 1 ;
E  [64,1] = [x, [1,0,0,0,2]];


bsd[65,1] = 0 ;
deg[65,1] = 1 ;
dsc[65,1] = 1 ;
E  [65,1] = [x, [1,-1,-2,-1,-1]];

bsd[65,2] = 1/7 ;
deg[65,2] = 1 ;
dsc[65,2] = 2^3 ;
E  [65,2] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1]];

bsd[65,3] = 1/3 ;
deg[65,3] = 1 ;
dsc[65,3] = 2^2*3 ;
E  [65,3] = [x^2-3, [1,x,-x+1,1,-1]];


bsd[66,1] = 1/3 ;
deg[66,1] = 1 ;
dsc[66,1] = 1 ;
E  [66,1] = [x, [1,-1,1,1,0]];

bsd[66,2] = 1 ;
deg[66,2] = 1 ;
dsc[66,2] = 1 ;
E  [66,2] = [x, [1,1,-1,1,2]];

bsd[66,3] = 1 ;
deg[66,3] = 5 ;
dsc[66,3] = 1 ;
E  [66,3] = [x, [1,1,1,1,-4]];


bsd[67,1] = 1 ;
deg[67,1] = 5 ;
dsc[67,1] = 1 ;
E  [67,1] = [x, [1,2,-2,2,2]];

bsd[67,2] = 0 ;
deg[67,2] = 1 ;
dsc[67,2] = 5 ;
E  [67,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3]];

bsd[67,3] = 1/11 ;
deg[67,3] = 5 ;
dsc[67,3] = 5 ;
E  [67,3] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1]];


bsd[68,1] = 1/3 ;
deg[68,1] = 3 ;
dsc[68,1] = 2^2*3 ;
E  [68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2]];


bsd[69,1] = 1 ;
deg[69,1] = 1 ;
dsc[69,1] = 1 ;
E  [69,1] = [x, [1,1,1,-1,0]];

bsd[69,2] = 1 ;
deg[69,2] = 11 ;
dsc[69,2] = 2^2*5 ;
E  [69,2] = [x^2-5, [1,x,-1,3,-x-1]];


bsd[70,1] = 1 ;
deg[70,1] = 1 ;
dsc[70,1] = 1 ;
E  [70,1] = [x, [1,1,0,1,-1]];


bsd[71,1] = 1/7 ;
deg[71,1] = 3^2 ;
dsc[71,1] = 257 ;
E  [71,1] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5]];

bsd[71,2] = 1/5 ;
deg[71,2] = 3^2 ;
dsc[71,2] = 257 ;
E  [71,2] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1]];


bsd[72,1] = 1 ;
deg[72,1] = 1 ;
dsc[72,1] = 1 ;
E  [72,1] = [x, [1,0,0,0,2]];


bsd[73,1] = 1 ;
deg[73,1] = 3 ;
dsc[73,1] = 1 ;
E  [73,1] = [x, [1,1,0,-1,2]];

bsd[73,2] = 0 ;
deg[73,2] = 1 ;
dsc[73,2] = 5 ;
E  [73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x]];

bsd[73,3] = 1/3 ;
deg[73,3] = 3 ;
dsc[73,3] = 13 ;
E  [73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x]];


bsd[74,1] = 1/3 ;
deg[74,1] = 3 ;
dsc[74,1] = 13 ;
E  [74,1] = [x^2-3*x-1, [1,-1,x,1,-x+1]];

bsd[74,2] = 5/19 ;
deg[74,2] = 5 ;
dsc[74,2] = 5 ;
E  [74,2] = [x^2+x-1, [1,1,x,1,-3*x-1]];


bsd[75,1] = 1/5 ;
deg[75,1] = 3 ;
dsc[75,1] = 1 ;
E  [75,1] = [x, [1,-2,1,2,0]];

bsd[75,2] = 1 ;
deg[75,2] = 3 ;
dsc[75,2] = 1 ;
E  [75,2] = [x, [1,1,1,-1,0]];

bsd[75,3] = 1 ;
deg[75,3] = 3 ;
dsc[75,3] = 1 ;
E  [75,3] = [x, [1,2,-1,2,0]];


bsd[76,1] = 1 ;
deg[76,1] = 3 ;
dsc[76,1] = 1 ;
E  [76,1] = [x, [1,0,2,0,-1]];


bsd[77,1] = 0 ;
deg[77,1] = 1 ;
dsc[77,1] = 1 ;
E  [77,1] = [x, [1,0,-3,-2,-1]];

bsd[77,2] = 1/3 ;
deg[77,2] = 5 ;
dsc[77,2] = 1 ;
E  [77,2] = [x, [1,0,1,-2,3]];

bsd[77,3] = 1 ;
deg[77,3] = 3 ;
dsc[77,3] = 1 ;
E  [77,3] = [x, [1,1,2,-1,-2]];

bsd[77,4] = 1 ;
deg[77,4] = 5 ;
dsc[77,4] = 2^2*5 ;
E  [77,4] = [x^2-5, [1,x,-x+1,3,-2]];


bsd[78,1] = 1 ;
deg[78,1] = 5 ;
dsc[78,1] = 1 ;
E  [78,1] = [x, [1,-1,-1,1,2]];


bsd[79,1] = 0 ;
deg[79,1] = 1 ;
dsc[79,1] = 1 ;
E  [79,1] = [x, [1,-1,-1,-1,-3]];

bsd[79,2] = 1/13 ;
deg[79,2] = 1 ;
dsc[79,2] = 83*983 ;
E  [79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3]];


bsd[80,1] = 1 ;
deg[80,1] = 1 ;
dsc[80,1] = 1 ;
E  [80,1] = [x, [1,0,0,0,1]];

bsd[80,2] = 1 ;
deg[80,2] = 1 ;
dsc[80,2] = 1 ;
E  [80,2] = [x, [1,0,2,0,-1]];


bsd[81,1] = 1/3 ;
deg[81,1] = 3 ;
dsc[81,1] = 2^2*3 ;
E  [81,1] = [x^2-3, [1,x,0,1,-x]];


bsd[82,1] = 0 ;
deg[82,1] = 1 ;
dsc[82,1] = 1 ;
E  [82,1] = [x, [1,-1,-2,1,-2]];

bsd[82,2] = 1/7 ;
deg[82,2] = 1 ;
dsc[82,2] = 2^3 ;
E  [82,2] = [x^2-2, [1,1,x,1,-2*x]];


bsd[83,1] = 0 ;
deg[83,1] = 1 ;
dsc[83,1] = 1 ;
E  [83,1] = [x, [1,-1,-1,-1,-2]];

bsd[83,2] = 1/41 ;
deg[83,2] = 1 ;
dsc[83,2] = 2^2*197*11497 ;
E  [83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8]];


bsd[84,1] = 1 ;
deg[84,1] = 3 ;
dsc[84,1] = 1 ;
E  [84,1] = [x, [1,0,-1,0,4]];

bsd[84,2] = 1 ;
deg[84,2] = 3 ;
dsc[84,2] = 1 ;
E  [84,2] = [x, [1,0,1,0,0]];


bsd[85,1] = 1 ;
deg[85,1] = 1 ;
dsc[85,1] = 1 ;
E  [85,1] = [x, [1,1,2,-1,-1]];

bsd[85,2] = 0 ;
deg[85,2] = 1 ;
dsc[85,2] = 2^3 ;
E  [85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1]];

bsd[85,3] = 1/3 ;
deg[85,3] = 1 ;
dsc[85,3] = 2^2*3 ;
E  [85,3] = [x^2-3, [1,x,-x+1,1,1]];


bsd[86,1] = 1/3 ;
deg[86,1] = 7 ;
dsc[86,1] = 3*7 ;
E  [86,1] = [x^2+x-5, [1,-1,x,1,-x+1]];

bsd[86,2] = 5/11 ;
deg[86,2] = 5 ;
dsc[86,2] = 5 ;
E  [86,2] = [x^2-x-1, [1,1,x,1,-x-1]];


bsd[87,1] = 1/5 ;
deg[87,1] = 1 ;
dsc[87,1] = 5 ;
E  [87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2]];

bsd[87,2] = 1 ;
deg[87,2] = 23 ;
dsc[87,2] = 229 ;
E  [87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8]];


bsd[88,1] = 0 ;
deg[88,1] = 1 ;
dsc[88,1] = 1 ;
E  [88,1] = [x, [1,0,-3,0,-3]];

bsd[88,2] = 1 ;
deg[88,2] = 1 ;
dsc[88,2] = 17 ;
E  [88,2] = [x^2-x-4, [1,0,x,0,-x+2]];


bsd[89,1] = 0 ;
deg[89,1] = 1 ;
dsc[89,1] = 1 ;
E  [89,1] = [x, [1,-1,-1,-1,-1]];

bsd[89,2] = 1 ;
deg[89,2] = 5 ;
dsc[89,2] = 1 ;
E  [89,2] = [x, [1,1,2,-1,-2]];

bsd[89,3] = 1/11 ;
deg[89,3] = 5 ;
dsc[89,3] = 2^4*5*6689 ;
E  [89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8]];


bsd[90,1] = 1/3 ;
deg[90,1] = 1 ;
dsc[90,1] = 1 ;
E  [90,1] = [x, [1,-1,0,1,1]];

bsd[90,2] = 1/3 ;
deg[90,2] = 1 ;
dsc[90,2] = 1 ;
E  [90,2] = [x, [1,1,0,1,-1]];

bsd[90,3] = 1 ;
deg[90,3] = 1 ;
dsc[90,3] = 1 ;
E  [90,3] = [x, [1,1,0,1,1]];


bsd[91,1] = 0 ;
deg[91,1] = 1 ;
dsc[91,1] = 1 ;
E  [91,1] = [x, [1,-2,0,2,-3]];

bsd[91,2] = 0 ;
deg[91,2] = 1 ;
dsc[91,2] = 1 ;
E  [91,2] = [x, [1,0,-2,-2,-3]];

bsd[91,3] = 1/7 ;
deg[91,3] = 1 ;
dsc[91,3] = 2^3 ;
E  [91,3] = [x^2-2, [1,x,-x,0,x+3]];

bsd[91,4] = 1 ;
deg[91,4] = 1 ;
dsc[91,4] = 2^2*79 ;
E  [91,4] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1]];


bsd[92,1] = 0 ;
deg[92,1] = 3 ;
dsc[92,1] = 1 ;
E  [92,1] = [x, [1,0,-3,0,-2]];

bsd[92,2] = 1/3 ;
deg[92,2] = 1 ;
dsc[92,2] = 1 ;
E  [92,2] = [x, [1,0,1,0,0]];


bsd[93,1] = 0 ;
deg[93,1] = 1 ;
dsc[93,1] = 5 ;
E  [93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5]];

bsd[93,2] = 1 ;
deg[93,2] = 1 ;
dsc[93,2] = 229 ;
E  [93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2]];


bsd[94,1] = 1 ;
deg[94,1] = 1 ;
dsc[94,1] = 1 ;
E  [94,1] = [x, [1,1,0,1,0]];

bsd[94,2] = 1 ;
deg[94,2] = 47 ;
dsc[94,2] = 2^3 ;
E  [94,2] = [x^2-8, [2,-2,2*x,2,-x+4]];


bsd[95,1] = 1/5 ;
deg[95,1] = 1 ;
dsc[95,1] = 2^2*37 ;
E  [95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];

bsd[95,2] = 1/3 ;
deg[95,2] = 3^2 ;
dsc[95,2] = 2^4*709 ;
E  [95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1]];


bsd[96,1] = 1 ;
deg[96,1] = 1 ;
dsc[96,1] = 1 ;
E  [96,1] = [x, [1,0,-1,0,2]];

bsd[96,2] = 1 ;
deg[96,2] = 1 ;
dsc[96,2] = 1 ;
E  [96,2] = [x, [1,0,1,0,2]];


bsd[97,1] = 0 ;
deg[97,1] = 1 ;
dsc[97,1] = 7^2 ;
E  [97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1]];

bsd[97,2] = 1 ;
deg[97,2] = 1 ;
dsc[97,2] = 2777 ;
E  [97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1]];


bsd[98,1] = 1 ;
deg[98,1] = 1 ;
dsc[98,1] = 1 ;
E  [98,1] = [x, [1,-1,2,1,0]];

bsd[98,2] = 1/7 ;
deg[98,2] = 1 ;
dsc[98,2] = 2^3 ;
E  [98,2] = [x^2-2, [1,1,x,1,-2*x]];


bsd[99,1] = 0 ;
deg[99,1] = 1 ;
dsc[99,1] = 1 ;
E  [99,1] = [x, [1,-1,0,-1,-4]];

bsd[99,2] = 1 ;
deg[99,2] = 3 ;
dsc[99,2] = 1 ;
E  [99,2] = [x, [1,-1,0,-1,2]];

bsd[99,3] = 1 ;
deg[99,3] = 3 ;
dsc[99,3] = 1 ;
E  [99,3] = [x, [1,1,0,-1,4]];

bsd[99,4] = 1 ;
deg[99,4] = 3 ;
dsc[99,4] = 1 ;
E  [99,4] = [x, [1,2,0,2,-1]];


bsd[100,1] = 1 ;
deg[100,1] = 3 ;
dsc[100,1] = 1 ;
E  [100,1] = [x, [1,0,2,0,0]];


bsd[101,1] = 0 ;
deg[101,1] = 1 ;
dsc[101,1] = 1 ;
E  [101,1] = [x, [1,0,-2,-2,-1]];

bsd[101,2] = 1/5^2 ;
deg[101,2] = 1 ;
dsc[101,2] = 2^6*17568767 ;
E  [101,2] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30]];


bsd[102,1] = 0 ;
deg[102,1] = 1 ;
dsc[102,1] = 1 ;
E  [102,1] = [x, [1,-1,-1,1,-4]];

bsd[102,2] = 1/3 ;
deg[102,2] = 3 ;
dsc[102,2] = 1 ;
E  [102,2] = [x, [1,-1,1,1,0]];

bsd[102,3] = 1 ;
deg[102,3] = 1 ;
dsc[102,3] = 1 ;
E  [102,3] = [x, [1,1,1,1,-2]];


bsd[103,1] = 0 ;
deg[103,1] = 1 ;
dsc[103,1] = 5 ;
E  [103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3]];

bsd[103,2] = 1/17 ;
deg[103,2] = 1 ;
dsc[103,2] = 17*411721 ;
E  [103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13]];


bsd[104,1] = 1 ;
deg[104,1] = 1 ;
dsc[104,1] = 1 ;
E  [104,1] = [x, [1,0,1,0,-1]];

bsd[104,2] = 1 ;
deg[104,2] = 1 ;
dsc[104,2] = 17 ;
E  [104,2] = [x^2-x-4, [1,0,x,0,-x+2]];


bsd[105,1] = 1 ;
deg[105,1] = 1 ;
dsc[105,1] = 1 ;
E  [105,1] = [x, [1,1,1,-1,1]];

bsd[105,2] = 1 ;
deg[105,2] = 5 ;
dsc[105,2] = 2^2*5 ;
E  [105,2] = [x^2-5, [1,x,-1,3,-1]];


bsd[106,1] = 0 ;
deg[106,1] = 1 ;
dsc[106,1] = 1 ;
E  [106,1] = [x, [1,-1,-1,1,-4]];

bsd[106,2] = 1 ;
deg[106,2] = 5 ;
dsc[106,2] = 1 ;
E  [106,2] = [x, [1,-1,2,1,1]];

bsd[106,3] = 1/3 ;
deg[106,3] = 3 ;
dsc[106,3] = 1 ;
E  [106,3] = [x, [1,1,-2,1,3]];

bsd[106,4] = 1/3 ;
deg[106,4] = 3 ;
dsc[106,4] = 1 ;
E  [106,4] = [x, [1,1,1,1,0]];


bsd[107,1] = 0 ;
deg[107,1] = 1 ;
dsc[107,1] = 5 ;
E  [107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2]];

bsd[107,2] = 1/53 ;
deg[107,2] = 1 ;
dsc[107,2] = 2^2*7*1667*19079 ;
E  [107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x]];


bsd[108,1] = 1/3 ;
deg[108,1] = 3 ;
dsc[108,1] = 1 ;
E  [108,1] = [x, [1,0,0,0,0]];


bsd[109,1] = 1 ;
deg[109,1] = 1 ;
dsc[109,1] = 1 ;
E  [109,1] = [x, [1,1,0,-1,3]];

bsd[109,2] = 0 ;
deg[109,2] = 1 ;
dsc[109,2] = 7^2 ;
E  [109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x]];

bsd[109,3] = 1/3^2 ;
deg[109,3] = 1 ;
dsc[109,3] = 7537 ;
E  [109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x]];


bsd[110,1] = 1/3 ;
deg[110,1] = 7 ;
dsc[110,1] = 1 ;
E  [110,1] = [x, [1,-1,1,1,-1]];

bsd[110,2] = 1 ;
deg[110,2] = 5 ;
dsc[110,2] = 1 ;
E  [110,2] = [x, [1,1,-1,1,1]];

bsd[110,3] = 1/3 ;
deg[110,3] = 1 ;
dsc[110,3] = 1 ;
E  [110,3] = [x, [1,1,1,1,-1]];

bsd[110,4] = 1/3 ;
deg[110,4] = 1 ;
dsc[110,4] = 3*11 ;
E  [110,4] = [x^2+x-8, [1,-1,x,1,1]];


bsd[111,1] = 1 ;
deg[111,1] = 5 ;
dsc[111,1] = 2^2*37 ;
E  [111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5]];

bsd[111,2] = 7/19 ;
deg[111,2] = 7 ;
dsc[111,2] = 2^4*389 ;
E  [111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4]];


bsd[112,1] = 0 ;
deg[112,1] = 1 ;
dsc[112,1] = 1 ;
E  [112,1] = [x, [1,0,-2,0,-4]];

bsd[112,2] = 1 ;
deg[112,2] = 1 ;
dsc[112,2] = 1 ;
E  [112,2] = [x, [1,0,0,0,2]];

bsd[112,3] = 1 ;
deg[112,3] = 1 ;
dsc[112,3] = 1 ;
E  [112,3] = [x, [1,0,2,0,0]];


bsd[113,1] = 1 ;
deg[113,1] = 3 ;
dsc[113,1] = 1 ;
E  [113,1] = [x, [1,-1,2,-1,2]];

bsd[113,2] = 1 ;
deg[113,2] = 11 ;
dsc[113,2] = 2^2*3 ;
E  [113,2] = [x^2-2*x-2, [1,1,x,-1,-2*x+2]];

bsd[113,3] = 0 ;
deg[113,3] = 1 ;
dsc[113,3] = 7^2 ;
E  [113,3] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3]];

bsd[113,4] = 1/7 ;
deg[113,4] = 3*11 ;
dsc[113,4] = 3*107 ;
E  [113,4] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1]];


bsd[114,1] = 1 ;
deg[114,1] = 5 ;
dsc[114,1] = 1 ;
E  [114,1] = [x, [1,-1,-1,1,0]];

bsd[114,2] = 5 ;
deg[114,2] = 3*5 ;
dsc[114,2] = 1 ;
E  [114,2] = [x, [1,1,-1,1,2]];

bsd[114,3] = 1 ;
deg[114,3] = 3 ;
dsc[114,3] = 1 ;
E  [114,3] = [x, [1,1,1,1,0]];


bsd[115,1] = 1 ;
deg[115,1] = 5 ;
dsc[115,1] = 1 ;
E  [115,1] = [x, [1,2,0,2,-1]];

bsd[115,2] = 0 ;
deg[115,2] = 1 ;
dsc[115,2] = 5 ;
E  [115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1]];

bsd[115,3] = 1 ;
deg[115,3] = 1 ;
dsc[115,3] = 17^2*53 ;
E  [115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1]];


bsd[116,1] = 3 ;
deg[116,1] = 3*5 ;
dsc[116,1] = 1 ;
E  [116,1] = [x, [1,0,-3,0,3]];

bsd[116,2] = 1/3 ;
deg[116,2] = 1 ;
dsc[116,2] = 1 ;
E  [116,2] = [x, [1,0,1,0,3]];

bsd[116,3] = 1 ;
deg[116,3] = 3*5 ;
dsc[116,3] = 1 ;
E  [116,3] = [x, [1,0,2,0,-2]];


bsd[117,1] = 0 ;
deg[117,1] = 1 ;
dsc[117,1] = 1 ;
E  [117,1] = [x, [1,-1,0,-1,-2]];

bsd[117,2] = 1/3 ;
deg[117,2] = 1 ;
dsc[117,2] = 2^2*3 ;
E  [117,2] = [x^2-3, [1,x,0,1,0]];

bsd[117,3] = 1 ;
deg[117,3] = 1 ;
dsc[117,3] = 2^3 ;
E  [117,3] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2]];


bsd[118,1] = 0 ;
deg[118,1] = 1 ;
dsc[118,1] = 1 ;
E  [118,1] = [x, [1,-1,-1,1,-3]];

bsd[118,2] = 1 ;
deg[118,2] = 19 ;
dsc[118,2] = 1 ;
E  [118,2] = [x, [1,-1,2,1,2]];

bsd[118,3] = 1/5 ;
deg[118,3] = 3 ;
dsc[118,3] = 1 ;
E  [118,3] = [x, [1,1,-1,1,1]];

bsd[118,4] = 1 ;
deg[118,4] = 3 ;
dsc[118,4] = 1 ;
E  [118,4] = [x, [1,1,2,1,-2]];


bsd[119,1] = 1/3^2 ;
deg[119,1] = 1 ;
dsc[119,1] = 71*131 ;
E  [119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x]];

bsd[119,2] = 1 ;
deg[119,2] = 3 ;
dsc[119,2] = 311*1459 ;
E  [119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18]];


bsd[120,1] = 1 ;
deg[120,1] = 1 ;
dsc[120,1] = 1 ;
E  [120,1] = [x, [1,0,1,0,-1]];

bsd[120,2] = 1 ;
deg[120,2] = 1 ;
dsc[120,2] = 1 ;
E  [120,2] = [x, [1,0,1,0,1]];


bsd[121,1] = 1 ;
deg[121,1] = 3 ;
dsc[121,1] = 1 ;
E  [121,1] = [x, [1,-1,2,-1,1]];

bsd[121,2] = 0 ;
deg[121,2] = 1 ;
dsc[121,2] = 1 ;
E  [121,2] = [x, [1,0,-1,-2,-3]];

bsd[121,3] = 1 ;
deg[121,3] = 3 ;
dsc[121,3] = 1 ;
E  [121,3] = [x, [1,1,2,-1,1]];

bsd[121,4] = 1 ;
deg[121,4] = 3 ;
dsc[121,4] = 1 ;
E  [121,4] = [x, [1,2,-1,2,1]];


bsd[122,1] = 0 ;
deg[122,1] = 1 ;
dsc[122,1] = 1 ;
E  [122,1] = [x, [1,-1,-2,1,1]];

bsd[122,2] = 1/3 ;
deg[122,2] = 13 ;
dsc[122,2] = 13 ;
E  [122,2] = [x^2-x-3, [1,-1,x,1,0]];

bsd[122,3] = 1/31 ;
deg[122,3] = 1 ;
dsc[122,3] = 229 ;
E  [122,3] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3]];


bsd[123,1] = 0 ;
deg[123,1] = 5 ;
dsc[123,1] = 1 ;
E  [123,1] = [x, [1,-2,1,2,-4]];

bsd[123,2] = 0 ;
deg[123,2] = 1 ;
dsc[123,2] = 1 ;
E  [123,2] = [x, [1,0,-1,-2,-2]];

bsd[123,3] = 1/7 ;
deg[123,3] = 1 ;
dsc[123,3] = 2^3 ;
E  [123,3] = [x^2-2, [1,x,1,0,-x+2]];

bsd[123,4] = 1 ;
deg[123,4] = 23 ;
dsc[123,4] = 2^2*79 ;
E  [123,4] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4]];


bsd[124,1] = 0 ;
deg[124,1] = 3 ;
dsc[124,1] = 1 ;
E  [124,1] = [x, [1,0,-2,0,-3]];

bsd[124,2] = 1 ;
deg[124,2] = 3 ;
dsc[124,2] = 1 ;
E  [124,2] = [x, [1,0,0,0,1]];


bsd[125,1] = 0 ;
deg[125,1] = 1 ;
dsc[125,1] = 5 ;
E  [125,1] = [x^2+x-1, [1,x,-x-2,-x-1,0]];

bsd[125,2] = 1/5 ;
deg[125,2] = 5^2 ;
dsc[125,2] = 5 ;
E  [125,2] = [x^2-x-1, [1,x,-x+2,x-1,0]];

bsd[125,3] = 1/5 ;
deg[125,3] = 5^2 ;
dsc[125,3] = 2^4*5^2*11 ;
E  [125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0]];


bsd[126,1] = 1 ;
deg[126,1] = 1 ;
dsc[126,1] = 1 ;
E  [126,1] = [x, [1,-1,0,1,2]];

bsd[126,2] = 1 ;
deg[126,2] = 1 ;
dsc[126,2] = 1 ;
E  [126,2] = [x, [1,1,0,1,0]];


bsd[127,1] = 0 ;
deg[127,1] = 1 ;
dsc[127,1] = 3^4 ;
E  [127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];

bsd[127,2] = 1/3*7 ;
deg[127,2] = 1 ;
dsc[127,2] = 7*86235899 ;
E  [127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9]];


bsd[128,1] = 0 ;
deg[128,1] = 1 ;
dsc[128,1] = 1 ;
E  [128,1] = [x, [1,0,-2,0,-2]];

bsd[128,2] = 1 ;
deg[128,2] = 1 ;
dsc[128,2] = 1 ;
E  [128,2] = [x, [1,0,-2,0,2]];

bsd[128,3] = 1 ;
deg[128,3] = 1 ;
dsc[128,3] = 1 ;
E  [128,3] = [x, [1,0,2,0,-2]];

bsd[128,4] = 1 ;
deg[128,4] = 1 ;
dsc[128,4] = 1 ;
E  [128,4] = [x, [1,0,2,0,2]];


bsd[129,1] = 0 ;
deg[129,1] = 1 ;
dsc[129,1] = 1 ;
E  [129,1] = [x, [1,0,-1,-2,-2]];

bsd[129,2] = 3 ;
deg[129,2] = 3*5 ;
dsc[129,2] = 1 ;
E  [129,2] = [x, [1,1,1,-1,2]];

bsd[129,3] = 1 ;
deg[129,3] = 7 ;
dsc[129,3] = 2^3 ;
E  [129,3] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2]];

bsd[129,4] = 1/11 ;
deg[129,4] = 5 ;
dsc[129,4] = 2^3*71 ;
E  [129,4] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2]];


bsd[130,1] = 0 ;
deg[130,1] = 3 ;
dsc[130,1] = 1 ;
E  [130,1] = [x, [1,-1,-2,1,1]];

bsd[130,2] = 1 ;
deg[130,2] = 1 ;
dsc[130,2] = 1 ;
E  [130,2] = [x, [1,1,0,1,1]];

bsd[130,3] = 1 ;
deg[130,3] = 5 ;
dsc[130,3] = 1 ;
E  [130,3] = [x, [1,1,2,1,-1]];


bsd[131,1] = 0 ;
deg[131,1] = 1 ;
dsc[131,1] = 1 ;
E  [131,1] = [x, [1,0,-1,-2,-2]];

bsd[131,2] = 1/5*13 ;
deg[131,2] = 1 ;
dsc[131,2] = 2^7*5*46141*75619573 ;
E  [131,2] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16]];


bsd[132,1] = 1 ;
deg[132,1] = 3*5 ;
dsc[132,1] = 1 ;
E  [132,1] = [x, [1,0,-1,0,2]];

bsd[132,2] = 1 ;
deg[132,2] = 3 ;
dsc[132,2] = 1 ;
E  [132,2] = [x, [1,0,1,0,2]];


bsd[133,1] = 0 ;
deg[133,1] = 1 ;
dsc[133,1] = 5 ;
E  [133,1] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3]];

bsd[133,2] = 0 ;
deg[133,2] = 3 ;
dsc[133,2] = 13 ;
E  [133,2] = [x^2+x-3, [1,x,-x-2,-x+1,-3]];

bsd[133,3] = 1/5 ;
deg[133,3] = 1 ;
dsc[133,3] = 5 ;
E  [133,3] = [x^2-x-1, [1,x,-x+2,x-1,1]];

bsd[133,4] = 1 ;
deg[133,4] = 7 ;
dsc[133,4] = 229 ;
E  [133,4] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4]];


bsd[134,1] = 1/3 ;
deg[134,1] = 5^2 ;
dsc[134,1] = 11*43 ;
E  [134,1] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5]];

bsd[134,2] = 19/17 ;
deg[134,2] = 19 ;
dsc[134,2] = 3^4 ;
E  [134,2] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1]];


bsd[135,1] = 0 ;
deg[135,1] = 3 ;
dsc[135,1] = 1 ;
E  [135,1] = [x, [1,-2,0,2,-1]];

bsd[135,2] = 1 ;
deg[135,2] = 3^2 ;
dsc[135,2] = 1 ;
E  [135,2] = [x, [1,2,0,2,1]];

bsd[135,3] = 1/3 ;
deg[135,3] = 3^2 ;
dsc[135,3] = 13 ;
E  [135,3] = [x^2+x-3, [1,x,0,-x+1,1]];

bsd[135,4] = 1/3 ;
deg[135,4] = 3^2 ;
dsc[135,4] = 13 ;
E  [135,4] = [x^2-x-3, [1,x,0,x+1,-1]];


bsd[136,1] = 0 ;
deg[136,1] = 1 ;
dsc[136,1] = 1 ;
E  [136,1] = [x, [1,0,-2,0,-2]];

bsd[136,2] = 1 ;
deg[136,2] = 1 ;
dsc[136,2] = 1 ;
E  [136,2] = [x, [1,0,2,0,0]];

bsd[136,3] = 1 ;
deg[136,3] = 1 ;
dsc[136,3] = 2^2*5 ;
E  [136,3] = [x^2+2*x-4, [1,0,x,0,2]];


bsd[137,1] = 0 ;
deg[137,1] = 1 ;
dsc[137,1] = 5^2*29 ;
E  [137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1]];

bsd[137,2] = 1/17 ;
deg[137,2] = 1 ;
dsc[137,2] = 2^2*401*895241 ;
E  [137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26]];


bsd[138,1] = 0 ;
deg[138,1] = 1 ;
dsc[138,1] = 1 ;
E  [138,1] = [x, [1,-1,-1,1,-2]];

bsd[138,2] = 1/3 ;
deg[138,2] = 1 ;
dsc[138,2] = 1 ;
E  [138,2] = [x, [1,-1,1,1,0]];

bsd[138,3] = 1 ;
deg[138,3] = 1 ;
dsc[138,3] = 1 ;
E  [138,3] = [x, [1,1,-1,1,2]];

bsd[138,4] = 1 ;
deg[138,4] = 11 ;
dsc[138,4] = 2^2*5 ;
E  [138,4] = [x^2+2*x-4, [1,1,1,1,x]];


bsd[139,1] = 1 ;
deg[139,1] = 3 ;
dsc[139,1] = 1 ;
E  [139,1] = [x, [1,1,2,-1,-1]];

bsd[139,2] = 0 ;
deg[139,2] = 1 ;
dsc[139,2] = 7^2 ;
E  [139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4]];

bsd[139,3] = 1/23 ;
deg[139,3] = 3 ;
dsc[139,3] = 997*2151701 ;
E  [139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12]];


bsd[140,1] = 1 ;
deg[140,1] = 3 ;
dsc[140,1] = 1 ;
E  [140,1] = [x, [1,0,1,0,1]];

bsd[140,2] = 1 ;
deg[140,2] = 3*5 ;
dsc[140,2] = 1 ;
E  [140,2] = [x, [1,0,3,0,-1]];


bsd[141,1] = 0 ;
deg[141,1] = 7 ;
dsc[141,1] = 1 ;
E  [141,1] = [x, [1,-2,1,2,-3]];

bsd[141,2] = 1 ;
deg[141,2] = 3 ;
dsc[141,2] = 1 ;
E  [141,2] = [x, [1,-1,-1,-1,0]];

bsd[141,3] = 1 ;
deg[141,3] = 3 ;
dsc[141,3] = 1 ;
E  [141,3] = [x, [1,-1,1,-1,2]];

bsd[141,4] = 0 ;
deg[141,4] = 1 ;
dsc[141,4] = 1 ;
E  [141,4] = [x, [1,0,-1,-2,-1]];

bsd[141,5] = 1 ;
deg[141,5] = 3 ;
dsc[141,5] = 1 ;
E  [141,5] = [x, [1,2,1,2,-1]];

bsd[141,6] = 1 ;
deg[141,6] = 43 ;
dsc[141,6] = 17 ;
E  [141,6] = [x^2+x-4, [1,x,-1,-x+2,x+1]];


bsd[142,1] = 0 ;
deg[142,1] = 1 ;
dsc[142,1] = 1 ;
E  [142,1] = [x, [1,-1,-1,1,-2]];

bsd[142,2] = 1 ;
deg[142,2] = 3^2 ;
dsc[142,2] = 1 ;
E  [142,2] = [x, [1,-1,0,1,2]];

bsd[142,3] = 1 ;
deg[142,3] = 3^4 ;
dsc[142,3] = 1 ;
E  [142,3] = [x, [1,-1,3,1,2]];

bsd[142,4] = 0 ;
deg[142,4] = 3^2 ;
dsc[142,4] = 1 ;
E  [142,4] = [x, [1,1,-3,1,-4]];

bsd[142,5] = 1/3 ;
deg[142,5] = 1 ;
dsc[142,5] = 1 ;
E  [142,5] = [x, [1,1,1,1,0]];


bsd[143,1] = 0 ;
deg[143,1] = 1 ;
dsc[143,1] = 1 ;
E  [143,1] = [x, [1,0,-1,-2,-1]];

bsd[143,2] = 1/7 ;
deg[143,2] = 3^2 ;
dsc[143,2] = 19*103 ;
E  [143,2] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4]];

bsd[143,3] = 1/3 ;
deg[143,3] = 1 ;
dsc[143,3] = 5*7*5560463 ;
E  [143,3] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15]];


bsd[144,1] = 1 ;
deg[144,1] = 1 ;
dsc[144,1] = 1 ;
E  [144,1] = [x, [1,0,0,0,0]];

bsd[144,2] = 1 ;
deg[144,2] = 1 ;
dsc[144,2] = 1 ;
E  [144,2] = [x, [1,0,0,0,2]];


bsd[145,1] = 0 ;
deg[145,1] = 1 ;
dsc[145,1] = 1 ;
E  [145,1] = [x, [1,-1,0,-1,-1]];

bsd[145,2] = 0 ;
deg[145,2] = 7 ;
dsc[145,2] = 2^3 ;
E  [145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1]];

bsd[145,3] = 1/5 ;
deg[145,3] = 1 ;
dsc[145,3] = 2^2*37 ;
E  [145,3] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1]];

bsd[145,4] = 1 ;
deg[145,4] = 5^2 ;
dsc[145,4] = 2^2*37 ;
E  [145,4] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1]];


bsd[146,1] = 1/3 ;
deg[146,1] = 3^2 ;
dsc[146,1] = 2^2*101 ;
E  [146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4]];

bsd[146,2] = 19/37 ;
deg[146,2] = 19 ;
dsc[146,2] = 2^4*389 ;
E  [146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2]];


bsd[147,1] = 1 ;
deg[147,1] = 3 ;
dsc[147,1] = 1 ;
E  [147,1] = [x, [1,-1,-1,-1,2]];

bsd[147,2] = 1 ;
deg[147,2] = 3 ;
dsc[147,2] = 1 ;
E  [147,2] = [x, [1,2,-1,2,2]];

bsd[147,3] = 1 ;
deg[147,3] = 3*7 ;
dsc[147,3] = 1 ;
E  [147,3] = [x, [1,2,1,2,-2]];

bsd[147,4] = 0 ;
deg[147,4] = 1 ;
dsc[147,4] = 2^3 ;
E  [147,4] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5]];

bsd[147,5] = 1/7 ;
deg[147,5] = 7 ;
dsc[147,5] = 2^3 ;
E  [147,5] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5]];


bsd[148,1] = 0 ;
deg[148,1] = 3 ;
dsc[148,1] = 1 ;
E  [148,1] = [x, [1,0,-1,0,-4]];

bsd[148,2] = 1 ;
deg[148,2] = 3^2 ;
dsc[148,2] = 17 ;
E  [148,2] = [x^2+x-4, [1,0,x,0,2]];


bsd[149,1] = 0 ;
deg[149,1] = 1 ;
dsc[149,1] = 7^2 ;
E  [149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3]];

bsd[149,2] = 1/37 ;
deg[149,2] = 1 ;
dsc[149,2] = 2^6*234893*1252037 ;
E  [149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26]];


bsd[150,1] = 1 ;
deg[150,1] = 5 ;
dsc[150,1] = 1 ;
E  [150,1] = [x, [1,-1,-1,1,0]];

bsd[150,2] = 1 ;
deg[150,2] = 3 ;
dsc[150,2] = 1 ;
E  [150,2] = [x, [1,1,-1,1,0]];

bsd[150,3] = 1 ;
deg[150,3] = 1 ;
dsc[150,3] = 1 ;
E  [150,3] = [x, [1,1,1,1,0]];


bsd[151,1] = 0 ;
deg[151,1] = 1 ;
dsc[151,1] = 7^2 ;
E  [151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1]];

bsd[151,2] = 1 ;
deg[151,2] = 67 ;
dsc[151,2] = 257 ;
E  [151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5]];

bsd[151,3] = 1/5^2 ;
deg[151,3] = 67 ;
dsc[151,3] = 11*439867 ;
E  [151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2]];


bsd[152,1] = 0 ;
deg[152,1] = 1 ;
dsc[152,1] = 1 ;
E  [152,1] = [x, [1,0,-2,0,-1]];

bsd[152,2] = 1 ;
deg[152,2] = 1 ;
dsc[152,2] = 1 ;
E  [152,2] = [x, [1,0,1,0,0]];

bsd[152,3] = 1 ;
deg[152,3] = 1 ;
dsc[152,3] = 31^2 ;
E  [152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8]];


bsd[153,1] = 0 ;
deg[153,1] = 1 ;
dsc[153,1] = 1 ;
E  [153,1] = [x, [1,-2,0,2,-1]];

bsd[153,2] = 0 ;
deg[153,2] = 1 ;
dsc[153,2] = 1 ;
E  [153,2] = [x, [1,0,0,-2,-3]];

bsd[153,3] = 1 ;
deg[153,3] = 1 ;
dsc[153,3] = 1 ;
E  [153,3] = [x, [1,1,0,-1,2]];

bsd[153,4] = 1 ;
deg[153,4] = 3 ;
dsc[153,4] = 1 ;
E  [153,4] = [x, [1,2,0,2,1]];

bsd[153,5] = 1 ;
deg[153,5] = 1 ;
dsc[153,5] = 17 ;
E  [153,5] = [x^2-x-4, [1,x,0,x+2,-x-1]];


bsd[154,1] = 0 ;
deg[154,1] = 3 ;
dsc[154,1] = 1 ;
E  [154,1] = [x, [1,-1,0,1,-4]];

bsd[154,2] = 1 ;
deg[154,2] = 1 ;
dsc[154,2] = 1 ;
E  [154,2] = [x, [1,-1,2,1,2]];

bsd[154,3] = 3 ;
deg[154,3] = 3 ;
dsc[154,3] = 1 ;
E  [154,3] = [x, [1,1,0,1,2]];

bsd[154,4] = 1 ;
deg[154,4] = 5 ;
dsc[154,4] = 2^2*5 ;
E  [154,4] = [x^2+2*x-4, [1,1,x,1,-x]];


bsd[155,1] = 0 ;
deg[155,1] = 5 ;
dsc[155,1] = 1 ;
E  [155,1] = [x, [1,-2,-1,2,1]];

bsd[155,2] = 1 ;
deg[155,2] = 1 ;
dsc[155,2] = 1 ;
E  [155,2] = [x, [1,-1,2,-1,-1]];

bsd[155,3] = 0 ;
deg[155,3] = 1 ;
dsc[155,3] = 1 ;
E  [155,3] = [x, [1,0,-1,-2,-1]];

bsd[155,4] = 1/3 ;
deg[155,4] = 7^2 ;
dsc[155,4] = 2^2*5077 ;
E  [155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2]];

bsd[155,5] = 1 ;
deg[155,5] = 1 ;
dsc[155,5] = 2^2*29*73 ;
E  [155,5] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2]];


bsd[156,1] = 0 ;
deg[156,1] = 3 ;
dsc[156,1] = 1 ;
E  [156,1] = [x, [1,0,-1,0,-4]];

bsd[156,2] = 1 ;
deg[156,2] = 3 ;
dsc[156,2] = 1 ;
E  [156,2] = [x, [1,0,1,0,0]];


bsd[157,1] = 0 ;
deg[157,1] = 1 ;
dsc[157,1] = 61*397 ;
E  [157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2]];

bsd[157,2] = 1/13 ;
deg[157,2] = 1 ;
dsc[157,2] = 2^3*48795779 ;
E  [157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3]];


bsd[158,1] = 0 ;
deg[158,1] = 1 ;
dsc[158,1] = 1 ;
E  [158,1] = [x, [1,-1,-1,1,-1]];

bsd[158,2] = 1/3 ;
deg[158,2] = 5 ;
dsc[158,2] = 1 ;
E  [158,2] = [x, [1,-1,1,1,3]];

bsd[158,3] = 0 ;
deg[158,3] = 1 ;
dsc[158,3] = 1 ;
E  [158,3] = [x, [1,1,-3,1,-3]];

bsd[158,4] = 1/5 ;
deg[158,4] = 3 ;
dsc[158,4] = 1 ;
E  [158,4] = [x, [1,1,-1,1,1]];

bsd[158,5] = 1 ;
deg[158,5] = 3 ;
dsc[158,5] = 1 ;
E  [158,5] = [x, [1,1,2,1,-2]];

bsd[158,6] = 1 ;
deg[158,6] = 5*53 ;
dsc[158,6] = 2^3*3 ;
E  [158,6] = [x^2-6, [1,-1,x,1,-2]];


bsd[159,1] = 7/3^2 ;
deg[159,1] = 7 ;
dsc[159,1] = 19*103 ;
E  [159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x]];

bsd[159,2] = 1 ;
deg[159,2] = 107 ;
dsc[159,2] = 1054013 ;
E  [159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12]];


bsd[160,1] = 0 ;
deg[160,1] = 1 ;
dsc[160,1] = 1 ;
E  [160,1] = [x, [1,0,-2,0,-1]];

bsd[160,2] = 1 ;
deg[160,2] = 1 ;
dsc[160,2] = 1 ;
E  [160,2] = [x, [1,0,2,0,-1]];

bsd[160,3] = 1 ;
deg[160,3] = 1 ;
dsc[160,3] = 2^5 ;
E  [160,3] = [x^2-8, [1,0,x,0,1]];


bsd[161,1] = 1 ;
deg[161,1] = 5 ;
dsc[161,1] = 1 ;
E  [161,1] = [x, [1,-1,0,-1,2]];

bsd[161,2] = 0 ;
deg[161,2] = 1 ;
dsc[161,2] = 5 ;
E  [161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2]];

bsd[161,3] = 1 ;
deg[161,3] = 19 ;
dsc[161,3] = 2^2*37 ;
E  [161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5]];

bsd[161,4] = 1/3 ;
deg[161,4] = 5 ;
dsc[161,4] = 2^2*536777 ;
E  [161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21]];


bsd[162,1] = 0 ;
deg[162,1] = 3 ;
dsc[162,1] = 1 ;
E  [162,1] = [x, [1,-1,0,1,-3]];

bsd[162,2] = 1/3 ;
deg[162,2] = 3 ;
dsc[162,2] = 1 ;
E  [162,2] = [x, [1,-1,0,1,0]];

bsd[162,3] = 1/3 ;
deg[162,3] = 3 ;
dsc[162,3] = 1 ;
E  [162,3] = [x, [1,1,0,1,0]];

bsd[162,4] = 1/3 ;
deg[162,4] = 3 ;
dsc[162,4] = 1 ;
E  [162,4] = [x, [1,1,0,1,3]];


bsd[163,1] = 0 ;
deg[163,1] = 3 ;
dsc[163,1] = 1 ;
E  [163,1] = [x, [1,0,0,-2,-4]];

bsd[163,2] = 0 ;
deg[163,2] = 3 ;
dsc[163,2] = 65657 ;
E  [163,2] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2]];

bsd[163,3] = 1/3^3 ;
deg[163,3] = 1 ;
dsc[163,3] = 2^3*82536739 ;
E  [163,3] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6]];


bsd[164,1] = 1 ;
deg[164,1] = 3^3 ;
dsc[164,1] = 2^4*1613 ;
E  [164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2]];


bsd[165,1] = 0 ;
deg[165,1] = 1 ;
dsc[165,1] = 2^3 ;
E  [165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1]];

bsd[165,2] = 1/3 ;
deg[165,2] = 1 ;
dsc[165,2] = 2^2*3 ;
E  [165,2] = [x^2-3, [1,x,1,1,-1]];

bsd[165,3] = 1 ;
deg[165,3] = 5 ;
dsc[165,3] = 2^4*37 ;
E  [165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1]];


bsd[166,1] = 0 ;
deg[166,1] = 1 ;
dsc[166,1] = 1 ;
E  [166,1] = [x, [1,-1,-1,1,-2]];

bsd[166,2] = 1 ;
deg[166,2] = 131 ;
dsc[166,2] = 5 ;
E  [166,2] = [x^2+2*x-4, [2,-2,2*x,2,x+4]];

bsd[166,3] = 1/7 ;
deg[166,3] = 1 ;
dsc[166,3] = 229 ;
E  [166,3] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4]];


bsd[167,1] = 0 ;
deg[167,1] = 1 ;
dsc[167,1] = 5 ;
E  [167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1]];

bsd[167,2] = 1/83 ;
deg[167,2] = 1 ;
dsc[167,2] = 8269*5103536431379173 ;
E  [167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612]];


bsd[168,1] = 1 ;
deg[168,1] = 3 ;
dsc[168,1] = 1 ;
E  [168,1] = [x, [1,0,-1,0,2]];

bsd[168,2] = 1 ;
deg[168,2] = 1 ;
dsc[168,2] = 1 ;
E  [168,2] = [x, [1,0,1,0,2]];


bsd[169,1] = 1 ;
deg[169,1] = 13 ;
dsc[169,1] = 2^2*3 ;
E  [169,1] = [x^2-3, [1,x,2,1,-x]];

bsd[169,2] = 0 ;
deg[169,2] = 1 ;
dsc[169,2] = 7^2 ;
E  [169,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+2*x-2]];

bsd[169,3] = 1/7 ;
deg[169,3] = 13 ;
dsc[169,3] = 7^2 ;
E  [169,3] = [x^3-2*x^2-x+1, [1,x,-x^2+2*x,x^2-2,-x^2+2*x+2]];


bsd[170,1] = 1/3 ;
deg[170,1] = 5 ;
dsc[170,1] = 1 ;
E  [170,1] = [x, [1,-1,-2,1,-1]];

bsd[170,2] = 0 ;
deg[170,2] = 1 ;
dsc[170,2] = 1 ;
E  [170,2] = [x, [1,-1,-2,1,1]];

bsd[170,3] = 1/3 ;
deg[170,3] = 3 ;
dsc[170,3] = 1 ;
E  [170,3] = [x, [1,-1,1,1,1]];

bsd[170,4] = 1 ;
deg[170,4] = 5 ;
dsc[170,4] = 1 ;
E  [170,4] = [x, [1,-1,3,1,-1]];

bsd[170,5] = 7/3 ;
deg[170,5] = 3*7 ;
dsc[170,5] = 1 ;
E  [170,5] = [x, [1,1,1,1,-1]];

bsd[170,6] = 1 ;
deg[170,6] = 1 ;
dsc[170,6] = 17 ;
E  [170,6] = [x^2+x-4, [1,1,x,1,1]];


bsd[171,1] = 1 ;
deg[171,1] = 3 ;
dsc[171,1] = 1 ;
E  [171,1] = [x, [1,-1,0,-1,2]];

bsd[171,2] = 0 ;
deg[171,2] = 1 ;
dsc[171,2] = 1 ;
E  [171,2] = [x, [1,0,0,-2,-3]];

bsd[171,3] = 1 ;
deg[171,3] = 3 ;
dsc[171,3] = 1 ;
E  [171,3] = [x, [1,2,0,2,-1]];

bsd[171,4] = 1 ;
deg[171,4] = 1 ;
dsc[171,4] = 1 ;
E  [171,4] = [x, [1,2,0,2,3]];

bsd[171,5] = 1/3 ;
deg[171,5] = 3 ;
dsc[171,5] = 2^4*3^3*11^2 ;
E  [171,5] = [x^4-9*x^2+12, [2,2*x,0,2*x^2-4,-x^3+5*x]];


bsd[172,1] = 0 ;
deg[172,1] = 3 ;
dsc[172,1] = 1 ;
E  [172,1] = [x, [1,0,-2,0,0]];

bsd[172,2] = 1 ;
deg[172,2] = 3^2 ;
dsc[172,2] = 2^3 ;
E  [172,2] = [x^2-4*x+2, [1,0,x,0,-x+2]];


bsd[173,1] = 0 ;
deg[173,1] = 1 ;
dsc[173,1] = 5^2*29 ;
E  [173,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^2-x,x^2-2,x^2-2]];

bsd[173,2] = 1/43 ;
deg[173,2] = 1 ;
dsc[173,2] = 2^6*7*5608385124289 ;
E  [173,2] = [x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [116,116*x,9*x^9-22*x^8-138*x^7+324*x^6+645*x^5-1439*x^4-940*x^3+1860*x^2+392*x-303,116*x^2-232,-14*x^9+60*x^8+176*x^7-852*x^6-462*x^5+3566*x^4-716*x^3-4092*x^2+1504*x+742]];


bsd[174,1] = 1 ;
deg[174,1] = 13 ;
dsc[174,1] = 1 ;
E  [174,1] = [x, [1,-1,-1,1,3]];

bsd[174,2] = 7/3 ;
deg[174,2] = 5*7*11 ;
dsc[174,2] = 1 ;
E  [174,2] = [x, [1,-1,1,1,-3]];

bsd[174,3] = 1 ;
deg[174,3] = 5 ;
dsc[174,3] = 1 ;
E  [174,3] = [x, [1,-1,1,1,2]];

bsd[174,4] = 1 ;
deg[174,4] = 3 ;
dsc[174,4] = 1 ;
E  [174,4] = [x, [1,1,-1,1,1]];

bsd[174,5] = 1 ;
deg[174,5] = 7 ;
dsc[174,5] = 1 ;
E  [174,5] = [x, [1,1,1,1,-1]];


bsd[175,1] = 0 ;
deg[175,1] = 1 ;
dsc[175,1] = 1 ;
E  [175,1] = [x, [1,-2,-1,2,0]];

bsd[175,2] = 0 ;
deg[175,2] = 1 ;
dsc[175,2] = 1 ;
E  [175,2] = [x, [1,0,-1,-2,0]];

bsd[175,3] = 1 ;
deg[175,3] = 5 ;
dsc[175,3] = 1 ;
E  [175,3] = [x, [1,2,1,2,0]];

bsd[175,4] = 1 ;
deg[175,4] = 3^2*5 ;
dsc[175,4] = 5 ;
E  [175,4] = [x^2+x-1, [1,x,2*x+2,-x-1,0]];

bsd[175,5] = 1/5 ;
deg[175,5] = 3^2 ;
dsc[175,5] = 5 ;
E  [175,5] = [x^2-x-1, [1,x,2*x-2,x-1,0]];

bsd[175,6] = 1 ;
deg[175,6] = 3^2 ;
dsc[175,6] = 17 ;
E  [175,6] = [x^2-x-4, [1,x,-x+1,x+2,0]];


bsd[176,1] = 0 ;
deg[176,1] = 1 ;
dsc[176,1] = 1 ;
E  [176,1] = [x, [1,0,-1,0,-3]];

bsd[176,2] = 1 ;
deg[176,2] = 1 ;
dsc[176,2] = 1 ;
E  [176,2] = [x, [1,0,1,0,1]];

bsd[176,3] = 1 ;
deg[176,3] = 1 ;
dsc[176,3] = 1 ;
E  [176,3] = [x, [1,0,3,0,-3]];

bsd[176,4] = 1 ;
deg[176,4] = 1 ;
dsc[176,4] = 17 ;
E  [176,4] = [x^2+x-4, [1,0,x,0,x+2]];


bsd[177,1] = 0 ;
deg[177,1] = 31 ;
dsc[177,1] = 5 ;
E  [177,1] = [x^2+3*x+1, [1,x,1,-3*x-3,-3]];

bsd[177,2] = 0 ;
deg[177,2] = 1 ;
dsc[177,2] = 5 ;
E  [177,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-1]];

bsd[177,3] = 1/5 ;
deg[177,3] = 1 ;
dsc[177,3] = 5 ;
E  [177,3] = [x^2-x-1, [1,x,1,x-1,1]];

bsd[177,4] = 1 ;
deg[177,4] = 229 ;
dsc[177,4] = 229 ;
E  [177,4] = [x^3-4*x-1, [1,x,-1,x^2-2,-x^2+x+2]];


bsd[178,1] = 1 ;
deg[178,1] = 7 ;
dsc[178,1] = 1 ;
E  [178,1] = [x, [1,-1,2,1,2]];

bsd[178,2] = 1/3 ;
deg[178,2] = 1 ;
dsc[178,2] = 1 ;
E  [178,2] = [x, [1,1,1,1,3]];

bsd[178,3] = 0 ;
deg[178,3] = 1 ;
dsc[178,3] = 2^3 ;
E  [178,3] = [x^2+2*x-1, [1,-1,x,1,-2*x-3]];

bsd[178,4] = 1/5 ;
deg[178,4] = 1 ;
dsc[178,4] = 2^3*71 ;
E  [178,4] = [x^3-x^2-8*x+4, [2,2,2*x,2,-2*x]];


bsd[179,1] = 1 ;
deg[179,1] = 3^2 ;
dsc[179,1] = 1 ;
E  [179,1] = [x, [1,2,0,2,3]];

bsd[179,2] = 0 ;
deg[179,2] = 1 ;
dsc[179,2] = 7^2 ;
E  [179,2] = [x^3+x^2-2*x-1, [1,x,-x-1,x^2-2,-x^2-x]];

bsd[179,3] = 1/89 ;
deg[179,3] = 3^2 ;
dsc[179,3] = 2^6*313*137707*536747147 ;
E  [179,3] = [x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [136,136*x,-42*x^10-68*x^9+690*x^8+942*x^7-3876*x^6-4112*x^5+8482*x^4+5986*x^3-5790*x^2-1244*x+360,136*x^2-272,-3*x^10-17*x^9+42*x^8+247*x^7-221*x^6-1151*x^5+618*x^4+1841*x^3-892*x^2-628*x+424]];


bsd[180,1] = 1 ;
deg[180,1] = 3 ;
dsc[180,1] = 1 ;
E  [180,1] = [x, [1,0,0,0,1]];


bsd[181,1] = 0 ;
deg[181,1] = 1 ;
dsc[181,1] = 61*397 ;
E  [181,1] = [x^5+3*x^4-x^3-7*x^2-2*x+1, [1,x,-x^4-2*x^3+2*x^2+3*x-1,x^2-2,2*x^4+5*x^3-4*x^2-11*x-1]];

bsd[181,2] = 1/3*5 ;
deg[181,2] = 1 ;
dsc[181,2] = 2^6*5^2*7*595051637 ;
E  [181,2] = [x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [4,4*x,2*x^8-8*x^7-10*x^6+64*x^5-14*x^4-118*x^3+48*x^2+50*x-14,4*x^2-8,x^7-x^6-10*x^5+8*x^4+25*x^3-18*x^2-10*x+15]];


bsd[182,1] = 1 ;
deg[182,1] = 7*11 ;
dsc[182,1] = 1 ;
E  [182,1] = [x, [1,-1,1,1,4]];

bsd[182,2] = 1 ;
deg[182,2] = 5*7 ;
dsc[182,2] = 1 ;
E  [182,2] = [x, [1,-1,3,1,0]];

bsd[182,3] = 5 ;
deg[182,3] = 3^2*5 ;
dsc[182,3] = 1 ;
E  [182,3] = [x, [1,1,0,1,2]];

bsd[182,4] = 1 ;
deg[182,4] = 3 ;
dsc[182,4] = 1 ;
E  [182,4] = [x, [1,1,1,1,0]];

bsd[182,5] = 1 ;
deg[182,5] = 3^2 ;
dsc[182,5] = 1 ;
E  [182,5] = [x, [1,1,3,1,-4]];


bsd[183,1] = 0 ;
deg[183,1] = 1 ;
dsc[183,1] = 2^3 ;
E  [183,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1]];

bsd[183,2] = 1 ;
deg[183,2] = 19 ;
dsc[183,2] = 2^2*37 ;
E  [183,2] = [x^3-x^2-3*x+1, [1,x,-1,x^2-2,2]];

bsd[183,3] = 3/31 ;
deg[183,3] = 3 ;
dsc[183,3] = 2^7*127*5623 ;
E  [183,3] = [x^6-11*x^4+2*x^3+31*x^2-10*x-17, [2,2*x,2,2*x^2-4,x^5+2*x^4-10*x^3-16*x^2+21*x+20]];


bsd[184,1] = 0 ;
deg[184,1] = 1 ;
dsc[184,1] = 1 ;
E  [184,1] = [x, [1,0,-1,0,-4]];

bsd[184,2] = 0 ;
deg[184,2] = 1 ;
dsc[184,2] = 1 ;
E  [184,2] = [x, [1,0,-1,0,-2]];

bsd[184,3] = 1 ;
deg[184,3] = 3 ;
dsc[184,3] = 1 ;
E  [184,3] = [x, [1,0,0,0,0]];

bsd[184,4] = 1 ;
deg[184,4] = 3 ;
dsc[184,4] = 1 ;
E  [184,4] = [x, [1,0,3,0,0]];

bsd[184,5] = 1 ;
deg[184,5] = 1 ;
dsc[184,5] = 17 ;
E  [184,5] = [x^2+x-4, [1,0,x,0,2]];


bsd[185,1] = 0 ;
deg[185,1] = 3 ;
dsc[185,1] = 1 ;
E  [185,1] = [x, [1,-2,1,2,-1]];

bsd[185,2] = 0 ;
deg[185,2] = 1 ;
dsc[185,2] = 1 ;
E  [185,2] = [x, [1,0,-1,-2,1]];

bsd[185,3] = 0 ;
deg[185,3] = 3 ;
dsc[185,3] = 1 ;
E  [185,3] = [x, [1,1,-2,-1,-1]];

bsd[185,4] = 1/19 ;
deg[185,4] = 1 ;
dsc[185,4] = 2^4*23029 ;
E  [185,4] = [x^5-8*x^3+2*x^2+11*x-2, [2,2*x,-x^4+7*x^2-2*x-6,2*x^2-4,2]];

bsd[185,5] = 1/3 ;
deg[185,5] = 3 ;
dsc[185,5] = 2^4*60869 ;
E  [185,5] = [x^5-2*x^4-8*x^3+14*x^2+11*x-12, [2,2*x,-x^3+5*x+2,2*x^2-4,-2]];


bsd[186,1] = 1 ;
deg[186,1] = 11 ;
dsc[186,1] = 1 ;
E  [186,1] = [x, [1,-1,-1,1,-1]];

bsd[186,2] = 1 ;
deg[186,2] = 7 ;
dsc[186,2] = 1 ;
E  [186,2] = [x, [1,-1,1,1,3]];

bsd[186,3] = 1 ;
deg[186,3] = 5 ;
dsc[186,3] = 1 ;
E  [186,3] = [x, [1,1,1,1,1]];

bsd[186,4] = 19 ;
deg[186,4] = 19 ;
dsc[186,4] = 17 ;
E  [186,4] = [x^2-3*x-2, [1,1,-1,1,x]];


bsd[187,1] = 1/3 ;
deg[187,1] = 1 ;
dsc[187,1] = 1 ;
E  [187,1] = [x, [1,0,1,-2,3]];

bsd[187,2] = 1 ;
deg[187,2] = 3*5 ;
dsc[187,2] = 1 ;
E  [187,2] = [x, [1,2,0,2,4]];

bsd[187,3] = 0 ;
deg[187,3] = 3 ;
dsc[187,3] = 2^2*3 ;
E  [187,3] = [x^2+2*x-2, [1,x,-x-1,-2*x,x-1]];

bsd[187,4] = 1 ;
deg[187,4] = 1 ;
dsc[187,4] = 17 ;
E  [187,4] = [x^2+x-4, [1,2,x,2,-x]];

bsd[187,5] = 0 ;
deg[187,5] = 1 ;
dsc[187,5] = 2^2*37 ;
E  [187,5] = [x^3+2*x^2-2*x-2, [1,x,-x^2-x+1,x^2-2,-x-3]];

bsd[187,6] = 1 ;
deg[187,6] = 5 ;
dsc[187,6] = 2^2*8461 ;
E  [187,6] = [x^4-x^3-6*x^2+2*x+2, [1,x,-x^3+x^2+5*x-1,x^2-2,-x+1]];


bsd[188,1] = 0 ;
deg[188,1] = 3^2 ;
dsc[188,1] = 5 ;
E  [188,1] = [x^2+3*x+1, [1,0,x,0,-2*x-4]];

bsd[188,2] = 1/3 ;
deg[188,2] = 3 ;
dsc[188,2] = 13 ;
E  [188,2] = [x^2-x-3, [1,0,x,0,0]];


bsd[189,1] = 0 ;
deg[189,1] = 3 ;
dsc[189,1] = 1 ;
E  [189,1] = [x, [1,-2,0,2,-1]];

bsd[189,2] = 0 ;
deg[189,2] = 3 ;
dsc[189,2] = 1 ;
E  [189,2] = [x, [1,0,0,-2,-3]];

bsd[189,3] = 1/3 ;
deg[189,3] = 3 ;
dsc[189,3] = 1 ;
E  [189,3] = [x, [1,0,0,-2,3]];

bsd[189,4] = 1 ;
deg[189,4] = 3^2 ;
dsc[189,4] = 1 ;
E  [189,4] = [x, [1,2,0,2,1]];

bsd[189,5] = 1/3 ;
deg[189,5] = 3^2 ;
dsc[189,5] = 2^2*3 ;
E  [189,5] = [x^2-3, [1,x,0,1,x]];

bsd[189,6] = 1 ;
deg[189,6] = 3^3*7 ;
dsc[189,6] = 2^2*7 ;
E  [189,6] = [x^2-7, [1,x,0,5,-x]];


bsd[190,1] = 0 ;
deg[190,1] = 1 ;
dsc[190,1] = 1 ;
E  [190,1] = [x, [1,-1,-1,1,-1]];

bsd[190,2] = 0 ;
deg[190,2] = 11 ;
dsc[190,2] = 1 ;
E  [190,2] = [x, [1,1,-3,1,-1]];

bsd[190,3] = 1 ;
deg[190,3] = 3 ;
dsc[190,3] = 1 ;
E  [190,3] = [x, [1,1,1,1,1]];

bsd[190,4] = 1 ;
deg[190,4] = 13 ;
dsc[190,4] = 17 ;
E  [190,4] = [x^2+x-4, [1,-1,x,1,1]];


bsd[191,1] = 0 ;
deg[191,1] = 1 ;
dsc[191,1] = 5 ;
E  [191,1] = [x^2+x-1, [1,x,-1,-x-1,-x-1]];

bsd[191,2] = 1/5*19 ;
deg[191,2] = 1 ;
dsc[191,2] = 3^3*382146223*319500117632677 ;
E  [191,2] = [x^14-23*x^12+x^11+205*x^10-13*x^9-895*x^8+35*x^7+1993*x^6+103*x^5-2135*x^4-465*x^3+853*x^2+374*x+41, [114035,114035*x,-145153*x^13+32777*x^12+3364061*x^11-874037*x^10-30238352*x^9+8179107*x^8+133274007*x^7-31876833*x^6-300314067*x^5+43961084*x^4+328052329*x^3+4557079*x^2-138909015*x-29013772,114035*x^2-228070,-44318*x^13-468*x^12+996676*x^11-67192*x^10-8645332*x^9+1110732*x^8+36541877*x^7-5434583*x^6-78444822*x^5+7801444*x^4+81404284*x^3+2785164*x^2-33114860*x-6986182]];


bsd[192,1] = 0 ;
deg[192,1] = 1 ;
dsc[192,1] = 1 ;
E  [192,1] = [x, [1,0,-1,0,-2]];

bsd[192,2] = 1 ;
deg[192,2] = 1 ;
dsc[192,2] = 1 ;
E  [192,2] = [x, [1,0,-1,0,2]];

bsd[192,3] = 1 ;
deg[192,3] = 1 ;
dsc[192,3] = 1 ;
E  [192,3] = [x, [1,0,1,0,-2]];

bsd[192,4] = 1 ;
deg[192,4] = 1 ;
dsc[192,4] = 1 ;
E  [192,4] = [x, [1,0,1,0,2]];


bsd[193,1] = 0 ;
deg[193,1] = 11 ;
dsc[193,1] = 5 ;
E  [193,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,2*x+3]];

bsd[193,2] = 0 ;
deg[193,2] = 11 ;
dsc[193,2] = 17*4153 ;
E  [193,2] = [x^5+2*x^4-5*x^3-7*x^2+7*x+1, [1,x,x^4-5*x^2+x+1,x^2-2,-x^4+5*x^2-2*x-4]];

bsd[193,3] = 1 ;
deg[193,3] = 1 ;
dsc[193,3] = 103*401*680059 ;
E  [193,3] = [x^8-2*x^7-9*x^6+18*x^5+21*x^4-44*x^3-11*x^2+27*x+1, [7,7*x,-x^7+4*x^6+8*x^5-34*x^4-16*x^3+69*x^2+6*x-18,7*x^2-14,-8*x^7+4*x^6+78*x^5-27*x^4-212*x^3+41*x^2+160*x+10]];


bsd[194,1] = 1 ;
deg[194,1] = 7 ;
dsc[194,1] = 1 ;
E  [194,1] = [x, [1,1,0,1,4]];

bsd[194,2] = 1/3 ;
deg[194,2] = 67 ;
dsc[194,2] = 2^6*223 ;
E  [194,2] = [x^4-2*x^3-9*x^2+18*x+1, [2,-2,2*x,2,-x^3-x^2+9*x+2]];

bsd[194,3] = 71/7^2 ;
deg[194,3] = 7*71 ;
dsc[194,3] = 2^6*137 ;
E  [194,3] = [x^4-2*x^3-9*x^2+18*x-7, [2,2,2*x,2,x^3-x^2-11*x+8]];


bsd[195,1] = 1 ;
deg[195,1] = 3 ;
dsc[195,1] = 1 ;
E  [195,1] = [x, [1,-1,1,-1,1]];

bsd[195,2] = 1 ;
deg[195,2] = 3*7 ;
dsc[195,2] = 1 ;
E  [195,2] = [x, [1,2,-1,2,1]];

bsd[195,3] = 3 ;
deg[195,3] = 3*7 ;
dsc[195,3] = 1 ;
E  [195,3] = [x, [1,2,1,2,-1]];

bsd[195,4] = 1 ;
deg[195,4] = 3 ;
dsc[195,4] = 1 ;
E  [195,4] = [x, [1,2,1,2,1]];

bsd[195,5] = 1 ;
deg[195,5] = 11 ;
dsc[195,5] = 2^4*79 ;
E  [195,5] = [x^3-7*x-2, [1,x,-1,x^2-2,-1]];


bsd[196,1] = 0 ;
deg[196,1] = 3 ;
dsc[196,1] = 1 ;
E  [196,1] = [x, [1,0,-1,0,-3]];

bsd[196,2] = 1 ;
deg[196,2] = 3*7 ;
dsc[196,2] = 1 ;
E  [196,2] = [x, [1,0,1,0,3]];

bsd[196,3] = 1 ;
deg[196,3] = 3^2*7 ;
dsc[196,3] = 2^3 ;
E  [196,3] = [x^2-8, [2,0,2*x,0,-x]];


bsd[197,1] = 0 ;
deg[197,1] = 5 ;
dsc[197,1] = 1 ;
E  [197,1] = [x, [1,-2,0,2,0]];

bsd[197,2] = 0 ;
deg[197,2] = 5 ;
dsc[197,2] = 61*397 ;
E  [197,2] = [x^5-5*x^3+x^2+3*x-1, [1,x,-x^4+4*x^2-x-2,x^2-2,3*x^4+x^3-14*x^2-3*x+5]];

bsd[197,3] = 1/7^2 ;
deg[197,3] = 1 ;
dsc[197,3] = 2^6*35217676193989 ;
E  [197,3] = [x^10-15*x^8+x^7+78*x^6-7*x^5-165*x^4+15*x^3+123*x^2-9*x-26, [4,4*x,x^8+2*x^7-10*x^6-17*x^5+30*x^4+36*x^3-27*x^2-7*x+10,4*x^2-8,-2*x^8+20*x^6-6*x^5-52*x^4+28*x^3+22*x^2-18*x+4]];


bsd[198,1] = 0 ;
deg[198,1] = 1 ;
dsc[198,1] = 1 ;
E  [198,1] = [x, [1,-1,0,1,-2]];

bsd[198,2] = 1/3 ;
deg[198,2] = 1 ;
dsc[198,2] = 1 ;
E  [198,2] = [x, [1,-1,0,1,0]];

bsd[198,3] = 1 ;
deg[198,3] = 5 ;
dsc[198,3] = 1 ;
E  [198,3] = [x, [1,-1,0,1,4]];

bsd[198,4] = 1/3 ;
deg[198,4] = 1 ;
dsc[198,4] = 1 ;
E  [198,4] = [x, [1,1,0,1,0]];

bsd[198,5] = 1 ;
deg[198,5] = 1 ;
dsc[198,5] = 1 ;
E  [198,5] = [x, [1,1,0,1,0]];


bsd[199,1] = 1 ;
deg[199,1] = 71 ;
dsc[199,1] = 5 ;
E  [199,1] = [x^2+x-1, [1,x,2,-x-1,3]];

bsd[199,2] = 0 ;
deg[199,2] = 1 ;
dsc[199,2] = 5^2*29 ;
E  [199,2] = [x^4+3*x^3-4*x-1, [1,x,-x^3-2*x^2+x+1,x^2-2,x^3+x^2-3*x-2]];

bsd[199,3] = 1/3*11 ;
deg[199,3] = 71 ;
dsc[199,3] = 3*31*347*947*37316093 ;
E  [199,3] = [x^10-5*x^9-4*x^8+51*x^7-32*x^6-154*x^5+151*x^4+168*x^3-168*x^2-54*x+27, [9,9*x,-2*x^9+7*x^8+23*x^7-81*x^6-89*x^5+287*x^4+151*x^3-321*x^2-105*x+27,9*x^2-18,4*x^9-14*x^8-37*x^7+144*x^6+97*x^5-430*x^4-122*x^3+408*x^2+111*x-36]];


bsd[200,1] = 1 ;
deg[200,1] = 3*5 ;
dsc[200,1] = 1 ;
E  [200,1] = [x, [1,0,-3,0,0]];

bsd[200,2] = 0 ;
deg[200,2] = 1 ;
dsc[200,2] = 1 ;
E  [200,2] = [x, [1,0,-2,0,0]];

bsd[200,3] = 1 ;
deg[200,3] = 3 ;
dsc[200,3] = 1 ;
E  [200,3] = [x, [1,0,0,0,0]];

bsd[200,4] = 1 ;
deg[200,4] = 5 ;
dsc[200,4] = 1 ;
E  [200,4] = [x, [1,0,2,0,0]];

bsd[200,5] = 1 ;
deg[200,5] = 3 ;
dsc[200,5] = 1 ;
E  [200,5] = [x, [1,0,3,0,0]];


bsd[201,1] = 0 ;
deg[201,1] = 3 ;
dsc[201,1] = 1 ;
E  [201,1] = [x, [1,-2,-1,2,0]];

bsd[201,2] = 0 ;
deg[201,2] = 3 ;
dsc[201,2] = 1 ;
E  [201,2] = [x, [1,-1,1,-1,-1]];

bsd[201,3] = 0 ;
deg[201,3] = 3*5 ;
dsc[201,3] = 1 ;
E  [201,3] = [x, [1,1,-1,-1,-3]];

bsd[201,4] = 1 ;
deg[201,4] = 19 ;
dsc[201,4] = 2^2*37 ;
E  [201,4] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+x+3]];

bsd[201,5] = 29/17 ;
deg[201,5] = 29 ;
dsc[201,5] = 2^2*269*953 ;
E  [201,5] = [x^5-8*x^3+13*x+2, [2,2*x,2,2*x^2-4,x^4-x^3-7*x^2+5*x+6]];


bsd[202,1] = 1 ;
deg[202,1] = 17 ;
dsc[202,1] = 1 ;
E  [202,1] = [x, [1,-1,0,1,2]];

bsd[202,2] = 0 ;
deg[202,2] = 3 ;
dsc[202,2] = 3^4 ;
E  [202,2] = [x^3+3*x^2-1, [1,-1,x,1,x^2+x-3]];

bsd[202,3] = 3/17 ;
deg[202,3] = 3 ;
dsc[202,3] = 10273 ;
E  [202,3] = [x^4+x^3-8*x^2+x+8, [1,1,x,1,x^3+2*x^2-5*x-2]];


bsd[203,1] = 1/5 ;
deg[203,1] = 3 ;
dsc[203,1] = 1 ;
E  [203,1] = [x, [1,-2,-1,2,-4]];

bsd[203,2] = 0 ;
deg[203,2] = 1 ;
dsc[203,2] = 1 ;
E  [203,2] = [x, [1,-1,-1,-1,1]];

bsd[203,3] = 1 ;
deg[203,3] = 3 ;
dsc[203,3] = 1 ;
E  [203,3] = [x, [1,1,2,-1,2]];

bsd[203,4] = 1 ;
deg[203,4] = 3^2 ;
dsc[203,4] = 17 ;
E  [203,4] = [x^2+x-4, [1,-1,x,-1,x+2]];

bsd[203,5] = 1 ;
deg[203,5] = 3^2*7 ;
dsc[203,5] = 2^3 ;
E  [203,5] = [x^2-2*x-1, [1,2,x,2,-2*x+2]];

bsd[203,6] = 0 ;
deg[203,6] = 1 ;
dsc[203,6] = 2^2*37 ;
E  [203,6] = [x^3+x^2-3*x-1, [1,x,-x^2-x+1,x^2-2,x^2-4]];

bsd[203,7] = 1/3 ;
deg[203,7] = 1 ;
dsc[203,7] = 2^2*3*29*7547 ;
E  [203,7] = [x^5-2*x^4-8*x^3+14*x^2+9*x-6, [2,2*x,-x^4+x^3+7*x^2-7*x-4,2*x^2-4,x^4-x^3-7*x^2+5*x+6]];


bsd[204,1] = 3 ;
deg[204,1] = 3*11 ;
dsc[204,1] = 1 ;
E  [204,1] = [x, [1,0,-1,0,-1]];

bsd[204,2] = 1 ;
deg[204,2] = 3 ;
dsc[204,2] = 1 ;
E  [204,2] = [x, [1,0,1,0,1]];


bsd[205,1] = 0 ;
deg[205,1] = 3 ;
dsc[205,1] = 1 ;
E  [205,1] = [x, [1,-1,0,-1,1]];

bsd[205,2] = 1 ;
deg[205,2] = 1 ;
dsc[205,2] = 1 ;
E  [205,2] = [x, [1,-1,2,-1,-1]];

bsd[205,3] = 1 ;
deg[205,3] = 1 ;
dsc[205,3] = 1 ;
E  [205,3] = [x, [1,1,2,-1,1]];

bsd[205,4] = 0 ;
deg[205,4] = 3*13 ;
dsc[205,4] = 13 ;
E  [205,4] = [x^2+x-3, [1,x,-3,-x+1,1]];

bsd[205,5] = 0 ;
deg[205,5] = 1 ;
dsc[205,5] = 5 ;
E  [205,5] = [x^2+x-1, [1,x,-1,-x-1,-1]];

bsd[205,6] = 1/7 ;
deg[205,6] = 1 ;
dsc[205,6] = 229 ;
E  [205,6] = [x^3-4*x-1, [1,x,x^2-x-2,x^2-2,1]];

bsd[205,7] = 1 ;
deg[205,7] = 31 ;
dsc[205,7] = 229 ;
E  [205,7] = [x^3-2*x^2-4*x+7, [1,x,-x^2+x+4,x^2-2,-1]];


bsd[206,1] = 1 ;
deg[206,1] = 3*5 ;
dsc[206,1] = 1 ;
E  [206,1] = [x, [1,-1,2,1,4]];

bsd[206,2] = 1/3 ;
deg[206,2] = 3*17 ;
dsc[206,2] = 13 ;
E  [206,2] = [x^2+3*x-1, [1,-1,x,1,x-1]];

bsd[206,3] = 1 ;
deg[206,3] = 5*67 ;
dsc[206,3] = 29 ;
E  [206,3] = [x^2-x-7, [1,-1,x,1,-x+1]];

bsd[206,4] = 19/13 ;
deg[206,4] = 19 ;
dsc[206,4] = 2^4*359 ;
E  [206,4] = [x^4-2*x^3-5*x^2+12*x-5, [1,1,x,1,-x^3+5*x-2]];


bsd[207,1] = 0 ;
deg[207,1] = 1 ;
dsc[207,1] = 1 ;
E  [207,1] = [x, [1,-1,0,-1,0]];

bsd[207,2] = 0 ;
deg[207,2] = 1 ;
dsc[207,2] = 2^3 ;
E  [207,2] = [x^2+2*x-1, [1,x,0,-2*x-1,-x-3]];

bsd[207,3] = 1 ;
deg[207,3] = 11 ;
dsc[207,3] = 2^2*5 ;
E  [207,3] = [x^2-5, [1,x,0,3,-x+1]];

bsd[207,4] = 1 ;
deg[207,4] = 11 ;
dsc[207,4] = 5 ;
E  [207,4] = [x^2-x-1, [1,x,0,x-1,2*x]];

bsd[207,5] = 1 ;
deg[207,5] = 3^2 ;
dsc[207,5] = 2^3 ;
E  [207,5] = [x^2-2*x-1, [1,x,0,2*x-1,-x+3]];


bsd[208,1] = 0 ;
deg[208,1] = 1 ;
dsc[208,1] = 1 ;
E  [208,1] = [x, [1,0,-1,0,-3]];

bsd[208,2] = 0 ;
deg[208,2] = 1 ;
dsc[208,2] = 1 ;
E  [208,2] = [x, [1,0,-1,0,-1]];

bsd[208,3] = 1 ;
deg[208,3] = 3 ;
dsc[208,3] = 1 ;
E  [208,3] = [x, [1,0,0,0,2]];

bsd[208,4] = 1 ;
deg[208,4] = 3 ;
dsc[208,4] = 1 ;
E  [208,4] = [x, [1,0,3,0,-1]];

bsd[208,5] = 1 ;
deg[208,5] = 1 ;
dsc[208,5] = 17 ;
E  [208,5] = [x^2+x-4, [1,0,x,0,x+2]];


bsd[209,1] = 0 ;
deg[209,1] = 3 ;
dsc[209,1] = 1 ;
E  [209,1] = [x, [1,0,1,-2,-3]];

bsd[209,2] = 0 ;
deg[209,2] = 1 ;
dsc[209,2] = 2^3 ;
E  [209,2] = [x^2-2, [1,x,-x-1,0,-1]];

bsd[209,3] = 1/5 ;
deg[209,3] = 5 ;
dsc[209,3] = 2^4*15427 ;
E  [209,3] = [x^5-2*x^4-6*x^3+10*x^2+5*x-4, [2,2*x,x^4-2*x^3-5*x^2+8*x+2,2*x^2-4,-x^3+7*x-2]];

bsd[209,4] = 1/3 ;
deg[209,4] = 3*5 ;
dsc[209,4] = 2^7*3^4*2002061 ;
E  [209,4] = [x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30, [4,4*x,-2*x^4+14*x^2-4*x-8,4*x^2-8,2*x^5-18*x^3+28*x+12]];


bsd[210,1] = 0 ;
deg[210,1] = 1 ;
dsc[210,1] = 1 ;
E  [210,1] = [x, [1,-1,-1,1,-1]];

bsd[210,2] = 1 ;
deg[210,2] = 3 ;
dsc[210,2] = 1 ;
E  [210,2] = [x, [1,-1,1,1,1]];

bsd[210,3] = 1 ;
deg[210,3] = 1 ;
dsc[210,3] = 1 ;
E  [210,3] = [x, [1,1,-1,1,1]];

bsd[210,4] = 1 ;
deg[210,4] = 3 ;
dsc[210,4] = 1 ;
E  [210,4] = [x, [1,1,1,1,-1]];

bsd[210,5] = 1 ;
deg[210,5] = 1 ;
dsc[210,5] = 1 ;
E  [210,5] = [x, [1,1,1,1,1]];


bsd[211,1] = 1/5 ;
deg[211,1] = 41 ;
dsc[211,1] = 5 ;
E  [211,1] = [x^2-x-1, [1,x,x+1,x-1,-2*x+2]];

bsd[211,2] = 0 ;
deg[211,2] = 7 ;
dsc[211,2] = 7^2 ;
E  [211,2] = [x^3+2*x^2-x-1, [1,x,-x^2-x+1,x^2-2,x^2+x-4]];

bsd[211,3] = 0 ;
deg[211,3] = 7 ;
dsc[211,3] = 229 ;
E  [211,3] = [x^3-4*x+1, [1,x,-x-1,x^2-2,-x^2-x+1]];

bsd[211,4] = 1/7 ;
deg[211,4] = 41 ;
dsc[211,4] = 2^2*3*43*52184516509 ;
E  [211,4] = [x^9+x^8-14*x^7-11*x^6+66*x^5+36*x^4-123*x^3-38*x^2+72*x+8, [116,116*x,18*x^8+30*x^7-232*x^6-314*x^5+940*x^4+888*x^3-1274*x^2-644*x+248,116*x^2-232,7*x^8+31*x^7-58*x^6-309*x^5+82*x^4+732*x^3+91*x^2-186*x+32]];


bsd[212,1] = 0 ;
deg[212,1] = 3 ;
dsc[212,1] = 1 ;
E  [212,1] = [x, [1,0,-1,0,-2]];

bsd[212,2] = 3 ;
deg[212,2] = 3*7 ;
dsc[212,2] = 1 ;
E  [212,2] = [x, [1,0,2,0,2]];

bsd[212,3] = 1/3 ;
deg[212,3] = 3^2*7 ;
dsc[212,3] = 2^2*3^3*7 ;
E  [212,3] = [x^3+3*x^2-3*x-7, [1,0,x,0,-x^2-2*x+3]];


bsd[213,1] = 1 ;
deg[213,1] = 3 ;
dsc[213,1] = 1 ;
E  [213,1] = [x, [1,1,1,-1,2]];

bsd[213,2] = 0 ;
deg[213,2] = 3^2*5 ;
dsc[213,2] = 5 ;
E  [213,2] = [x^2+3*x+1, [1,x,1,-3*x-3,-x-4]];

bsd[213,3] = 0 ;
deg[213,3] = 1 ;
dsc[213,3] = 5 ;
E  [213,3] = [x^2+x-1, [1,x,-1,-x-1,-x]];

bsd[213,4] = 1/3 ;
deg[213,4] = 3 ;
dsc[213,4] = 13 ;
E  [213,4] = [x^2-x-3, [1,x,1,x+1,-x]];

bsd[213,5] = 1 ;
deg[213,5] = 19*61 ;
dsc[213,5] = 2^2*5^2*89 ;
E  [213,5] = [x^4-3*x^3-2*x^2+7*x+1, [1,x,-1,x^2-2,-x^2+2*x+1]];


bsd[214,1] = 0 ;
deg[214,1] = 3 ;
dsc[214,1] = 1 ;
E  [214,1] = [x, [1,-1,-2,1,-1]];

bsd[214,2] = 0 ;
deg[214,2] = 3*5 ;
dsc[214,2] = 1 ;
E  [214,2] = [x, [1,-1,1,1,-4]];

bsd[214,3] = 0 ;
deg[214,3] = 7 ;
dsc[214,3] = 1 ;
E  [214,3] = [x, [1,1,-2,1,-3]];

bsd[214,4] = 1/3 ;
deg[214,4] = 3 ;
dsc[214,4] = 1 ;
E  [214,4] = [x, [1,1,1,1,0]];

bsd[214,5] = 1 ;
deg[214,5] = 109 ;
dsc[214,5] = 2^2*3 ;
E  [214,5] = [x^2+2*x-2, [1,-1,x,1,x+3]];

bsd[214,6] = 11/3 ;
deg[214,6] = 3*11 ;
dsc[214,6] = 2^2*3 ;
E  [214,6] = [x^2-2*x-2, [1,1,x,1,-x+1]];


bsd[215,1] = 0 ;
deg[215,1] = 1 ;
dsc[215,1] = 1 ;
E  [215,1] = [x, [1,0,0,-2,-1]];

bsd[215,2] = 1/11 ;
deg[215,2] = 7^2 ;
dsc[215,2] = 3*107 ;
E  [215,2] = [x^3+2*x^2-3*x-3, [1,x,x+1,x^2-2,1]];

bsd[215,3] = 5 ;
deg[215,3] = 5*7^2 ;
dsc[215,3] = 1933097 ;
E  [215,3] = [x^5-2*x^4-7*x^3+13*x^2+5*x-4, [1,x,-x^3+5*x,x^2-2,1]];

bsd[215,4] = 1/3 ;
deg[215,4] = 31 ;
dsc[215,4] = 101*321821 ;
E  [215,4] = [x^6-3*x^5-5*x^4+17*x^3+3*x^2-17*x-3, [1,x,x^5-2*x^4-6*x^3+9*x^2+6*x-2,x^2-2,-1]];


bsd[216,1] = 0 ;
deg[216,1] = 3 ;
dsc[216,1] = 1 ;
E  [216,1] = [x, [1,0,0,0,-4]];

bsd[216,2] = 1 ;
deg[216,2] = 3 ;
dsc[216,2] = 1 ;
E  [216,2] = [x, [1,0,0,0,-1]];

bsd[216,3] = 1 ;
deg[216,3] = 3^2 ;
dsc[216,3] = 1 ;
E  [216,3] = [x, [1,0,0,0,1]];

bsd[216,4] = 1 ;
deg[216,4] = 3^2 ;
dsc[216,4] = 1 ;
E  [216,4] = [x, [1,0,0,0,4]];


bsd[217,1] = 0 ;
deg[217,1] = 19 ;
dsc[217,1] = 3^4 ;
E  [217,1] = [x^3+3*x^2-1, [1,-x^2-2*x,x,x^2+x-1,x^2+2*x-3]];

bsd[217,2] = 0 ;
deg[217,2] = 1 ;
dsc[217,2] = 3^4 ;
E  [217,2] = [x^3+3*x^2-3, [1,-x^2-2*x,x,x^2+3*x+1,x^2-3]];

bsd[217,3] = 1 ;
deg[217,3] = 1 ;
dsc[217,3] = 11*619 ;
E  [217,3] = [x^4-5*x^2+x+1, [1,x,-x^3+5*x,x^2-2,-x+1]];

bsd[217,4] = 1 ;
deg[217,4] = 31 ;
dsc[217,4] = 2^5