CoCalc -- Collaborative Calculation in the Cloud
Sharedwww / Tables / artin.auxOpen in CoCalc
\relax 
\citation{artin:conjecture}
\citation{deligne-serre}
\citation{langlands:basechange}
\citation{tunnell:artin}
\citation{buhler:thesis}
\citation{freyetal}
\citation{bdsbt}
\citation{bdsbt}
\citation{taylor:artin2}
\citation{taylor:artin2}
\citation{taylor:artin2}
\citation{taylor:artin2}
\citation{buzzard-taylor}
\citation{buzzard-taylor}
\citation{freyetal}
\citation{freyetal}
\citation{buzzard-taylor}
\citation{freyetal}
\citation{buzzard-taylor}
\citation{buhler:thesis}
\citation{buhler:thesis}
\citation{buhler:thesis}
\citation{buhler:thesis}
\@writefile{toc}{\contentsline {section}{\numberline {1}Modularity of an icosahedral representation of conductor\nobreakspace  {}$1376=2^5\cdot 43$}{3}}
\newlabel{sec:1376}{{1}{3}}
\newlabel{thm:1376}{{1.1}{3}}
\citation{cohen-oesterle}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Searching for the newform\nobreakspace  {}$f$}{4}}
\citation{shimura:intro}
\@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Eigenvalues of\nobreakspace  {}$f$}}{5}}
\newlabel{table:1376}{{1}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Twisting into $\GL  (2,\@mathbf {F}_5)$}{5}}
\newlabel{prop:1376-g}{{1.3}{5}}
\citation{sturm:cong}
\@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Eigenvalues of\nobreakspace  {}$g=f\otimes \varepsilon _{43}$}}{6}}
\newlabel{table:1376twist}{{2}{6}}
\citation{miyake}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Proof that\nobreakspace  {}$\rho _g$ is unramified at\nobreakspace  {}$5$}{7}}
\newlabel{cor:bound}{{1.7}{9}}
\citation{gross:tameness}
\citation{freyetal}
\citation{buhler:thesis}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}The image of $\proj  \rho _g$}{11}}
\newlabel{prop:image_is_A5}{{1.11}{11}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.5}Bounding the ramification at\nobreakspace  {}$2$ and\nobreakspace  {}$43$}{11}}
\citation{freyetal}
\citation{buzzard-taylor}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6}Obtaining a classical weight one form}{12}}
\@writefile{toc}{\contentsline {section}{\numberline {2}More examples}{12}}
\citation{buhler:thesis}
\citation{freyetal}
\citation{merel:1585}
\citation{stein:phd}
\@writefile{toc}{\contentsline {section}{\numberline {3}Computing mod\nobreakspace  {}$p$ modular forms}{13}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.1}Higher weight modular symbols}{13}}
\newlabel{sec:modsym}{{3.1}{13}}
\@writefile{lot}{\contentsline {table}{\numberline {3}{\ignorespaces Data on icosahedral representations mod\nobreakspace  {}$5$}}{14}}
\newlabel{table:more1}{{3}{14}}
\@writefile{lot}{\contentsline {table}{\numberline {4}{\ignorespaces The newform $f$ and the companion form bound}}{14}}
\newlabel{table:more2}{{4}{14}}
\@writefile{lot}{\contentsline {table}{\numberline {5}{\ignorespaces Verification that the image of $\proj  (\rho _g)$ is $A_5$}}{15}}
\newlabel{table:more3}{{5}{15}}
\citation{cohen-oesterle}
\citation{hijikata:trace}
\citation{magma}
\@writefile{lot}{\contentsline {table}{\numberline {6}{\ignorespaces Bounding the discrimant of the fixed field of $\proj  (\rho _g)$}}{16}}
\newlabel{table:more4}{{6}{16}}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.2}Complexity}{16}}
\bibcite{artin:conjecture}{1}
\bibcite{buhler:thesis}{2}
\bibcite{bdsbt}{3}
\bibcite{buzzard-taylor}{4}
\bibcite{cohen-oesterle}{5}
\bibcite{magma}{6}
\bibcite{deligne-serre}{7}
\bibcite{freyetal}{8}
\bibcite{gross:tameness}{9}
\bibcite{hijikata:trace}{10}
\bibcite{langlands:basechange}{11}
\@writefile{toc}{\contentsline {subsection}{\numberline {3.3}Acknowledgment}{17}}
\bibcite{merel:1585}{12}
\bibcite{miyake}{13}
\bibcite{shimura:intro}{14}
\bibcite{stein:phd}{15}
\bibcite{sturm:cong}{16}
\bibcite{taylor:artin2}{17}
\bibcite{tunnell:artin}{18}