Sharedwww / Tables / ap_s2new_301-400.gpOpen in CoCalc
Author: William A. Stein
1
\\ ap_s2new_301-400.gp
2
\\ This is a table of eigenforms for the action of
3
\\ the Hecke operators on S_2^{new}(Gamma_0(N)).
4
\\ William Stein ([email protected]), October, 1998.
5
\\ 301<=N<=400
6
\\ E=matrix(400,?,i,j,0);
7
\\ E[N,ith eigenform]=[[a_2,...,a_97], f(x)]
8
\\ where the a_i are defined over Q[x]/f(x).
9
10
\\ The following are missing: N=343, 384.
11
12
E[301,1]=[[x,-x^3-2*x^2+2*x+1,-x^2-2*x,1,-x^3-3*x^2+x,3*x^3+8*x^2-2*x-7,x^3+3*x^2-3*x-6,x^2+4*x-1,x^3+5*x^2+x-9,-4*x^3-12*x^2+2*x+9,5*x^3+13*x^2-6*x-13,-x^3-6*x^2-4*x+5,-x^3-2*x^2+6*x+6,1,-3*x^3-8*x^2+x+9,3*x^2+5*x-9,-x^3-3*x^2-3*x-3,-2*x^3-9*x^2-x+11,-2*x^3-7*x^2-3*x+5,-x^3+3*x^2+12*x-6,-9*x^3-25*x^2+4*x+26,-3*x^2-5*x-4,7*x^3+19*x^2-7*x-24,-3*x^3-8*x^2+7*x+12,-6*x^3-17*x^2+4*x+23], x^4+4*x^3+2*x^2-5*x-3];
13
E[301,2]=[[x,-x^3+4*x+1,x^4-5*x^2+x+3,-1,x^4-x^3-5*x^2+4*x+5,-x^3-2*x^2+4*x+5,-x^4+x^3+7*x^2-6*x-7,2*x^3+x^2-8*x+1,-2*x^4+x^3+9*x^2-5*x-3,x^4-6*x^2-3*x+6,x^4+x^3-5*x^2-5*x+2,-x^3+2*x^2+4*x-7,-x^4+x^3+8*x^2-3*x-7,1,-x^4-x^3+4*x^2+2*x+2,-3*x^4+13*x^2-8,-2*x^4+x^3+9*x^2-x-1,-3*x^4-2*x^3+13*x^2+8*x-4,x^4+2*x^3-x^2-8*x-10,3*x^3-x^2-12*x+6,-4*x^4+x^3+21*x^2-6*x-12,x^2+3*x-4,-x^4-x^3+3*x^2+6*x+7,-2*x^4+x^3+8*x^2-7*x+8,2*x^4-4*x^3-13*x^2+22*x+11], x^5-x^4-6*x^3+5*x^2+6*x-1];
14
E[301,3]=[[x,x^4+x^3-6*x^2-5*x+4,-2*x^4-2*x^3+11*x^2+8*x-8,-1,3*x^4+x^3-17*x^2-4*x+7,-2*x^4-x^3+12*x^2+2*x-9,5*x^4+3*x^3-27*x^2-10*x+13,3*x^4+2*x^3-15*x^2-7*x+4,-4*x^4-3*x^3+21*x^2+13*x-11,-3*x^4+16*x^2-x-8,4*x^4+3*x^3-25*x^2-12*x+19,7*x^4+3*x^3-38*x^2-9*x+22,-11*x^4-7*x^3+60*x^2+27*x-37,-1,3*x^4+5*x^3-16*x^2-18*x+8,-2*x^3-x^2+7*x+5,3*x^4+x^3-17*x^2-6*x+4,-3*x^4+17*x^2-10,-8*x^4-4*x^3+45*x^2+11*x-25,2*x^4-x^3-11*x^2+6*x+2,-8*x^4-5*x^3+47*x^2+22*x-30,8*x^4+6*x^3-47*x^2-27*x+38,-7*x^4-3*x^3+37*x^2+10*x-25,4*x^4+3*x^3-22*x^2-17*x+10,6*x^4-35*x^2+19], x^5-6*x^3+x^2+5*x-2];
15
E[301,4]=[[x,-x^5+x^4+7*x^3-5*x^2-8*x+2,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,1,-x^6+3*x^5+5*x^4-18*x^3+x^2+13*x+1,x^6-x^5-8*x^4+6*x^3+14*x^2-7*x-3,-x^6+x^5+7*x^4-4*x^3-9*x^2-3*x+3,-x^6+2*x^5+7*x^4-13*x^3-10*x^2+15*x+4,2*x^6-2*x^5-16*x^4+11*x^3+29*x^2-9*x-7,-3*x^6+5*x^5+19*x^4-29*x^3-14*x^2+22*x-2,-x^5+2*x^4+5*x^3-10*x^2-x+5,3*x^5-5*x^4-19*x^3+25*x^2+18*x-8,-2*x^6+4*x^5+13*x^4-23*x^3-14*x^2+13*x+7,-1,2*x^5-3*x^4-13*x^3+16*x^2+14*x-8,-x^6+10*x^4+x^3-26*x^2-3*x+13,-2*x^6+5*x^5+11*x^4-29*x^3-2*x^2+19*x+2,-x^6+x^5+7*x^4-3*x^3-7*x^2-7*x-8,-3*x^6+6*x^5+18*x^4-35*x^3-12*x^2+27*x+3,x^6-3*x^5-4*x^4+18*x^3-5*x^2-15*x,2*x^6-4*x^5-14*x^4+23*x^3+19*x^2-14*x-6,x^6+x^5-10*x^4-11*x^3+27*x^2+24*x-12,-2*x^6+4*x^5+13*x^4-25*x^3-15*x^2+26*x+7,x^6-x^5-8*x^4+6*x^3+14*x^2-2*x-8,2*x^5-14*x^3-x^2+16*x-5], x^7-4*x^6-3*x^5+25*x^4-13*x^3-23*x^2+11*x+2];
16
E[302,1]=[[-1,2,2,4,-4,0,-6,0,0,6,0,-2,6,0,8,-12,-4,8,2,-12,10,-8,-14,-6,2], x-1];
17
E[302,2]=[[1,-3,0,-2,-6,-2,-5,-8,6,8,9,2,0,-6,-3,-9,2,5,3,4,-8,10,-1,8,-15], x-1];
18
E[302,3]=[[1,-1,-4,-2,2,-6,3,0,-6,0,-3,-2,12,-6,-7,9,-10,-13,-7,12,4,10,-11,0,-7], x-1];
19
E[302,4]=[[-1,x,0,-2*x-4,-2*x,2*x-2,-5,2*x+2,4*x+6,-4*x-4,4*x+1,-2*x-8,6*x+2,-4*x-10,-2*x+5,3*x+10,2,-3*x-6,-5*x-2,2*x+10,-4*x-4,4*x-2,7*x+6,-6*x-14,-7], x^2+2*x-1];
20
E[302,5]=[[-1,x,2/3*x^3-x^2-14/3*x+1,-1/3*x^3+7/3*x+2,-x^2+2*x+5,1/3*x^3-7/3*x+2,3,-2/3*x^3+x^2+14/3*x+1,-1/3*x^3+1/3*x+2,2/3*x^3-20/3*x-4,2/3*x^3-3*x^2-8/3*x+12,2/3*x^3-2*x^2-14/3*x+10,-4/3*x^3+2*x^2+22/3*x-6,2/3*x^3-2*x^2-8/3*x+8,-2/3*x^3+2*x^2+8/3*x-9,-2/3*x^3+2*x^2+11/3*x-4,-4/3*x^3+x^2+28/3*x-7,2*x^2-3*x-12,-1/3*x^3+2*x^2+10/3*x-10,x^3-2*x^2-7*x+2,1/3*x^3-13/3*x-2,8/3*x^3-2*x^2-56/3*x-2,1/3*x^3-16/3*x-6,-3*x^3+4*x^2+21*x-4,2/3*x^3-20/3*x+1], x^4-10*x^2-6*x+9];
21
E[302,6]=[[1,x,-x^2+3,x^3-5*x+2,-2*x^3+x^2+8*x-3,-x^3+2*x^2+3*x-4,-1,2*x^3-x^2-10*x+5,x^3-2*x^2-3*x+4,-2*x,-2*x^3+x^2+8*x-2,2*x^2+4*x-10,2*x-4,-2*x^2-2*x+8,-6*x^3+4*x^2+24*x-13,4*x^3-2*x^2-15*x+4,6*x^3-x^2-26*x+5,-2*x^3+2*x^2+13*x-8,x^3-2*x^2-2*x+6,x^3-2*x^2-x+6,-3*x^3+9*x+2,4,-3*x^3+6*x^2+10*x-12,-x^3-4*x^2+5*x+8,-6*x^2+2*x+15], x^4-2*x^3-4*x^2+8*x-1];
22
E[303,1]=[[-2,1,-1,-2,-6,1,-5,7,-3,-6,-1,-10,-2,-12,11,4,4,10,-2,1,2,11,8,14,-10], x-1];
23
E[303,2]=[[x,-1,-x-1,-x-2,2,2*x-3,-x-3,-3,3*x+1,2*x+2,2*x+1,-4,-2*x-6,-2*x-2,-x-3,0,3*x+6,-8*x-2,-4*x-6,-5*x+9,5*x-6,-2*x+3,5*x+6,9*x-4,-10*x-4], x^2-2];
24
E[303,3]=[[x,-1,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,-x^6-2*x^5+8*x^4+12*x^3-14*x^2-5*x+4,-x^3-x^2+6*x+2,-x^6-3*x^5+5*x^4+20*x^3+4*x^2-18*x-3,x^6+3*x^5-6*x^4-20*x^3+2*x^2+17*x+5,-x^5+7*x^3-x^2-8*x+3,x^6+3*x^5-6*x^4-18*x^3+2*x^2+7*x+3,x^3-x^2-6*x+2,-x^6-x^5+7*x^4+8*x^3-8*x^2-14*x+3,-2*x^5-4*x^4+13*x^3+23*x^2-12*x-6,-x^6-2*x^5+5*x^4+12*x^3+6*x^2-4*x-10,x^6+4*x^5-7*x^4-28*x^3+8*x^2+30*x,-x^6-x^5+12*x^4+6*x^3-38*x^2-3*x+13,-x^6-4*x^5+5*x^4+28*x^3+6*x^2-32*x-12,2*x^5+3*x^4-12*x^3-18*x^2+5*x+6,-2*x^6-2*x^5+18*x^4+12*x^3-40*x^2-2*x+14,2*x^6+4*x^5-12*x^4-24*x^3+2*x^2+10*x+10,x^6+x^5-6*x^4-6*x^3+4*x^2+3*x-9,x^6+4*x^5-2*x^4-28*x^3-24*x^2+33*x+20,-2*x^6-5*x^5+12*x^4+33*x^3-3*x^2-26*x-5,2*x^6+2*x^5-19*x^4-12*x^3+46*x^2+5*x-14,-x^6+2*x^5+12*x^4-17*x^3-39*x^2+29*x+20,x^6+2*x^5-9*x^4-12*x^3+20*x^2+6*x+2], x^7-12*x^5+40*x^3+x^2-24*x-4];
25
E[303,4]=[[x,1,x^4-x^3-5*x^2+3*x+5,-x^5+x^4+5*x^3-5*x^2-3*x+4,-2*x^4+x^3+11*x^2-4*x-8,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-x^4+x^3+3*x^2-3*x+3,-x^5+2*x^4+7*x^3-11*x^2-10*x+7,-2*x^5+3*x^4+11*x^3-13*x^2-13*x+7,2*x^5-11*x^3-3*x^2+10*x+8,-2*x^4-x^3+11*x^2+4*x-9,2*x^4+x^3-7*x^2-6*x-2,-3*x^5+4*x^4+17*x^3-17*x^2-18*x+8,x^5-2*x^4-3*x^3+9*x^2-4*x-8,2*x^5-5*x^4-11*x^3+25*x^2+13*x-17,x^5-2*x^4-5*x^3+9*x^2+4*x-2,-x^4+2*x^3+4*x^2-5*x-2,2*x^5-2*x^4-12*x^3+12*x^2+12*x-14,-4*x^4+22*x^2+4*x-22,-x^4-x^3+5*x^2+7*x-5,-x^5-3*x^4+7*x^3+19*x^2-13*x-16,x^5+2*x^4-7*x^3-17*x^2+10*x+21,-3*x^4+2*x^3+20*x^2-7*x-22,x^5+3*x^4-6*x^3-18*x^2+9*x+20,-x^5+4*x^4+5*x^3-19*x^2-4*x+14], x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-6];
26
E[303,5]=[[0,1,-3,0,-2,-3,-7,-5,-5,6,7,10,6,4,-7,-4,-10,-2,10,-9,-8,7,2,-8,-10], x-1];
27
E[304,1]=[[0,1,-4,-3,-2,-1,3,1,1,-5,8,-2,-8,-4,-8,-1,-15,2,-3,-2,9,10,6,0,-2], x-1];
28
E[304,2]=[[0,-2,-1,3,-5,-4,-3,1,-8,-2,-4,10,10,-1,1,-4,-6,-13,12,-2,9,-8,12,12,-8], x-1];
29
E[304,3]=[[0,2,-1,3,3,-4,5,1,0,2,-8,-10,6,7,9,-8,-14,-5,0,6,-15,4,-4,0,16], x-1];
30
E[304,4]=[[0,-1,0,1,6,5,3,-1,-3,9,4,2,0,-8,0,-3,-9,-10,-5,6,-7,10,6,-12,-10], x-1];
31
E[304,5]=[[0,-1,0,-3,-2,1,-5,-1,1,-3,-4,2,-8,8,8,9,-1,14,-13,-10,9,10,-10,-12,14], x-1];
32
E[304,6]=[[0,2,3,1,-3,-4,-3,-1,0,6,4,2,-6,1,3,12,6,-1,4,-6,-7,-8,-12,12,8], x-1];
33
E[304,7]=[[0,-1/2*x^2-9/2*x+1,-1/4*x^2-11/4*x-1/2,1/4*x^2+7/4*x-7/2,1/4*x^2+11/4*x+5/2,-1/2*x^2-9/2*x+3,1/4*x^2+7/4*x-3/2,1,x^2+8*x-4,x,0,-2,x^2+9*x,5/4*x^2+47/4*x-15/2,-1/4*x^2-3/4*x+11/2,1/2*x^2+13/2*x+5,-1/2*x^2-9/2*x+9,3/4*x^2+25/4*x-5/2,x-2,-3/2*x^2-29/2*x+5,5/4*x^2+43/4*x-7/2,-x^2-9*x-6,2*x+8,-3/2*x^2-29/2*x+7,1/2*x^2+11/2*x-1], x^3+9*x^2-4*x-4];
34
E[305,1]=[[x,-x,-1,-2*x^2-x+2,-x^2+x,3*x^2+4*x-7,3*x^2-x-6,-x-5,x^2+2*x+1,-3*x^2-5*x+7,x-5,-2*x^2+x+5,3*x-4,-4*x^2-5*x+9,-7*x^2-4*x+13,2*x^2+x-1,-2*x^2-3*x-4,-1,5*x^2-x-7,8*x^2+4*x-15,x^2-4*x+2,5*x^2+8*x-15,2*x^2-3*x+2,-x^2-5*x+4,-5*x^2-x+2], x^3-3*x+1];
35
E[305,2]=[[x,-x^3-2*x^2+2*x+1,1,x^3+2*x^2-2*x-5,x^2-x-4,-x^2-2*x+1,-2*x^3-x^2+7*x-2,-2*x^2-x+3,2*x^3+x^2-8*x-3,3*x^3+5*x^2-4*x-2,2*x^2+5*x-7,-2*x^2-x+1,-3*x^3-6*x^2+6*x+9,-2*x^3+11*x-1,-3*x^2-6*x+1,6*x^3+10*x^2-15*x-11,-3*x^3-6*x^2+10*x+11,1,x^3+5*x^2+6*x-12,-x^3-6*x^2-x+12,-x^3-5*x^2-5*x+5,-2*x^3+x^2+8*x-11,x^3+4*x^2-6*x-15,-4*x^3-7*x^2+9*x+8,3*x^2+3*x-8], x^4+3*x^3-x^2-6*x-1];
36
E[305,3]=[[x,-1/2*x^6+x^5+4*x^4-15/2*x^3-15/2*x^2+27/2*x,1,x^4-2*x^3-5*x^2+8*x+2,x^6-3/2*x^5-10*x^4+13*x^3+49/2*x^2-55/2*x-1/2,x^6-x^5-10*x^4+9*x^3+25*x^2-22*x-2,-x^5+x^4+7*x^3-5*x^2-10*x+4,x^4-x^3-5*x^2+3*x+2,-x^5+10*x^3-23*x+4,-x^5+3*x^4+2*x^3-13*x^2+11*x-2,-x^6+3/2*x^5+8*x^4-9*x^3-31/2*x^2+23/2*x+7/2,-x^4+x^3+5*x^2-5*x,-x^4+7*x^2+2*x-8,x^6-2*x^5-9*x^4+16*x^3+22*x^2-32*x-4,-1/2*x^6+5*x^4+1/2*x^3-21/2*x^2-3/2*x,x^5-x^4-5*x^3+2*x^2+2*x+3,x^6-3/2*x^5-6*x^4+6*x^3+11/2*x^2+3/2*x-7/2,-1,2*x^6-2*x^5-21*x^4+20*x^3+52*x^2-52*x+7,-3/2*x^5+x^4+10*x^3-9/2*x^2-21/2*x+5/2,-x^5+4*x^4+3*x^3-20*x^2+8*x+6,x^6-5/2*x^5-7*x^4+18*x^3+21/2*x^2-59/2*x+5/2,1/2*x^6-6*x^4+3/2*x^3+33/2*x^2-9/2*x-1,-x^6+2*x^5+7*x^4-8*x^3-15*x^2-6*x+11,x^4+x^3-8*x^2-3*x+9], x^7-2*x^6-9*x^5+17*x^4+19*x^3-36*x^2+5*x+1];
37
E[305,4]=[[x,-1/2*x^5+4*x^3-1/2*x^2-11/2*x-1/2,-1,x^4-7*x^2+2*x+8,1/2*x^6-5*x^4+1/2*x^3+25/2*x^2-3/2*x-6,-x^2+5,x^4+x^3-6*x^2-3*x+3,-x^4-x^3+5*x^2+3*x+2,-x^6+10*x^4-x^3-26*x^2+x+15,x^6-11*x^4+x^3+33*x^2-3*x-21,1/2*x^6+x^5-5*x^4-15/2*x^3+29/2*x^2+19/2*x-4,-x^5-x^4+7*x^3+6*x^2-8*x-7,-x^6+11*x^4-x^3-34*x^2+x+24,-x^6+9*x^4-18*x^2-6*x+8,x^6+1/2*x^5-11*x^4-5*x^3+63/2*x^2+25/2*x-33/2,-x^5-x^4+7*x^3+6*x^2-8*x-9,-1/2*x^6+5*x^4-3/2*x^3-23/2*x^2+17/2*x+3,1,x^6+x^5-11*x^4-7*x^3+34*x^2+10*x-22,-1/2*x^6+x^5+6*x^4-17/2*x^3-35/2*x^2+25/2*x+12,-x^6+10*x^4-24*x^2+11,1/2*x^6-6*x^4+3/2*x^3+39/2*x^2-9/2*x-10,x^6+3/2*x^5-10*x^4-9*x^3+61/2*x^2+7/2*x-45/2,-x^6+9*x^4-4*x^3-19*x^2+16*x+9,-x^6+x^5+13*x^4-6*x^3-42*x^2+x+26], x^7+2*x^6-11*x^5-19*x^4+35*x^3+48*x^2-25*x-27];
38
E[306,1]=[[1,0,0,2,0,2,1,-4,6,0,-10,8,-6,-4,-12,-6,12,8,-4,-6,2,-10,-12,18,14], x-1];
39
E[306,2]=[[1,0,4,-2,0,-6,1,4,-6,4,-6,-4,10,-4,-4,2,-12,-4,-12,6,2,10,12,2,6], x-1];
40
E[306,3]=[[-1,0,2,0,4,-2,-1,4,0,10,8,-2,-10,12,0,-6,-12,-10,-12,0,10,-8,-4,6,-14], x-1];
41
E[306,4]=[[1,0,1/2*x-3,-1/2*x+5,-x+6,x-4,-1,-x+8,1/2*x-9,-1/2*x+3,3/2*x-7,1/2*x-7,-6,-4,x-6,-x+12,-x,-1/2*x-1,-x+8,-3/2*x+3,-10,3/2*x-7,x,2*x-6,x-16], x^2-12*x+12];
42
E[306,5]=[[-1,0,1/2*x+3,1/2*x+5,-x-6,-x-4,1,x+8,1/2*x+9,-1/2*x-3,-3/2*x-7,-1/2*x-7,6,-4,x+6,-x-12,-x,1/2*x-1,x+8,-3/2*x-3,-10,-3/2*x-7,x,2*x+6,-x-16], x^2+12*x+12];
43
E[306,6]=[[-1,0,0,-4,-6,2,1,-4,0,0,-4,-4,-6,8,0,6,0,-4,8,0,2,8,0,6,14], x-1];
44
E[307,1]=[[1,2,0,3,5,0,-5,-1,6,-6,-4,-9,-3,10,-4,5,6,-10,2,13,8,8,-16,6,-2], x-1];
45
E[307,2]=[[2,2,0,-3,1,6,2,-4,-6,0,2,3,9,4,4,1,-12,14,2,8,-10,11,13,9,-5], x-1];
46
E[307,3]=[[2,0,2,3,-4,0,3,1,2,6,-4,-6,2,-4,-10,-3,10,4,-4,-1,8,11,9,-3,11], x-1];
47
E[307,4]=[[0,0,4,0,3,6,-1,-1,-2,0,4,3,5,-10,-6,-10,4,-8,-8,-15,2,-13,5,9,7], x-1];
48
E[307,5]=[[-x+3,x-5,3,x-1,x,-2*x+5,-x+9,-3*x+11,0,3*x-12,3*x-13,-2*x+11,-9,-x+8,-2*x+6,x+6,-9,-1,5,-x+3,-7,-6*x+17,x-3,-3,5*x-10], x^2-7*x+9];
49
E[307,6]=[[-412132236/103978532789*x^8-836069316/103978532789*x^7+20379180601/103978532789*x^6+49166982237/103978532789*x^5-257382898095/103978532789*x^4-706889531781/103978532789*x^3+338717249870/103978532789*x^2+1071842100509/103978532789*x+248630741774/103978532789,-3032460390/103978532789*x^8+1871132541/103978532789*x^7+140840841439/103978532789*x^6-3707356116/103978532789*x^5-1697670680473/103978532789*x^4-964943794220/103978532789*x^3+2893091051168/103978532789*x^2+2139983230941/103978532789*x+105007278048/103978532789,464712817/103978532789*x^8-454904145/103978532789*x^7-20748381606/103978532789*x^6+7627588804/103978532789*x^5+226517897183/103978532789*x^4+72308653413/103978532789*x^3-111893305078/103978532789*x^2-254269969458/103978532789*x-260583398150/103978532789,-2515622115/103978532789*x^8+2281839812/103978532789*x^7+115636799378/103978532789*x^6-36307948065/103978532789*x^5-1371648008134/103978532789*x^4-405945576850/103978532789*x^3+2209960432105/103978532789*x^2+1094474452790/103978532789*x-69226592518/103978532789,x,3940272508/103978532789*x^8-738053338/103978532789*x^7-184483007245/103978532789*x^6-72851824728/103978532789*x^5+2229705473102/103978532789*x^4+2163338531517/103978532789*x^3-3529159438415/103978532789*x^2-4056637515172/103978532789*x-442553803325/103978532789,-1946184114/103978532789*x^8+3024552810/103978532789*x^7+87765090603/103978532789*x^6-86264834610/103978532789*x^5-1016878825080/103978532789*x^4+389160486196/103978532789*x^3+1602472514121/103978532789*x^2-514789669923/103978532789*x-93378349240/103978532789,-4035055650/103978532789*x^8+1301503996/103978532789*x^7+188272863325/103978532789*x^6+48725319837/103978532789*x^5-2267768652897/103978532789*x^4-1900784699944/103978532789*x^3+3624148563144/103978532789*x^2+3729615078307/103978532789*x+237754493221/103978532789,-768832102/103978532789*x^8-1877007518/103978532789*x^7+38323433387/103978532789*x^6+105666136469/103978532789*x^5-487270273817/103978532789*x^4-1492390664193/103978532789*x^3+644347228979/103978532789*x^2+2622413811642/103978532789*x+755210656419/103978532789,1690807440/103978532789*x^8+325713656/103978532789*x^7-80801904698/103978532789*x^6-58782984358/103978532789*x^5+1013050124736/103978532789*x^4+1221166702744/103978532789*x^3-1928044008215/103978532789*x^2-2134063705246/103978532789*x+278406375751/103978532789,-2608997578/103978532789*x^8+559703405/103978532789*x^7+121392616434/103978532789*x^6+45879528011/103978532789*x^5-1445291735746/103978532789*x^4-1412953514878/103978532789*x^3+2015475381149/103978532789*x^2+2534639098662/103978532789*x+599780370749/103978532789,-1889458290/103978532789*x^8+1034224894/103978532789*x^7+87757582401/103978532789*x^6+5130038886/103978532789*x^5-1058777225427/103978532789*x^4-721971860949/103978532789*x^3+1833635494315/103978532789*x^2+1849927583688/103978532789*x+282001376929/103978532789,4080584268/103978532789*x^8-21482307/103978532789*x^7-191971251469/103978532789*x^6-107983898876/103978532789*x^5+2324299092448/103978532789*x^4+2578199306195/103978532789*x^3-3455014300365/103978532789*x^2-4123566763211/103978532789*x-935110504702/103978532789,9203418953/103978532789*x^8-4578260322/103978532789*x^7-429516897582/103978532789*x^6-36550571137/103978532789*x^5+5211480916197/103978532789*x^4+3455796769823/103978532789*x^3-9061798759168/103978532789*x^2-7374262211493/103978532789*x-111060467565/103978532789,-8581874639/103978532789*x^8+4563605548/103978532789*x^7+399487994061/103978532789*x^6+20516369476/103978532789*x^5-4816818469614/103978532789*x^4-3044689866864/103978532789*x^3+8034254770912/103978532789*x^2+6147129690122/103978532789*x+323159066574/103978532789,6957241652/103978532789*x^8-6207952818/103978532789*x^7-321516596686/103978532789*x^6+99229487618/103978532789*x^5+3863204803421/103978532789*x^4+1077635052418/103978532789*x^3-6771352042031/103978532789*x^2-2488456908270/103978532789*x+931400184945/103978532789,-2894543135/103978532789*x^8+2694543639/103978532789*x^7+132407580175/103978532789*x^6-42595452271/103978532789*x^5-1545203007682/103978532789*x^4-520735261467/103978532789*x^3+2057355756623/103978532789*x^2+1885705193606/103978532789*x+990551442854/103978532789,-7608686250/103978532789*x^8+4841563337/103978532789*x^7+351478146695/103978532789*x^6-16632989907/103978532789*x^5-4177398644201/103978532789*x^4-2293270857843/103978532789*x^3+6447072534273/103978532789*x^2+4449685759437/103978532789*x+205360713225/103978532789,5179539505/103978532789*x^8-5758764790/103978532789*x^7-236655405950/103978532789*x^6+123190437166/103978532789*x^5+2795970507440/103978532789*x^4+249491761290/103978532789*x^3-4707019144442/103978532789*x^2-1031126584889/103978532789*x+587335661408/103978532789,-390954698/103978532789*x^8+900607256/103978532789*x^7+16139658036/103978532789*x^6-30192276742/103978532789*x^5-146400608663/103978532789*x^4+231292204117/103978532789*x^3-198243475529/103978532789*x^2-614160502322/103978532789*x+221368892142/103978532789,15270145745/103978532789*x^8-7393631747/103978532789*x^7-711580098524/103978532789*x^6-70503002521/103978532789*x^5+8585893113236/103978532789*x^4+5843959341556/103978532789*x^3-14135234550122/103978532789*x^2-12095455451905/103978532789*x-1375520335498/103978532789,7724852215/103978532789*x^8-7229781871/103978532789*x^7-352435490949/103978532789*x^6+116506203529/103978532789*x^5+4098153594474/103978532789*x^4+1271255882664/103978532789*x^3-5550015996589/103978532789*x^2-3328563457131/103978532789*x-1601320523418/103978532789,5654234513/103978532789*x^8-3617963087/103978532789*x^7-263933472719/103978532789*x^6+14593944162/103978532789*x^5+3221600938288/103978532789*x^4+1694813735146/103978532789*x^3-5935322982788/103978532789*x^2-3995635164284/103978532789*x-11250393979/103978532789,6654052060/103978532789*x^8-5469205199/103978532789*x^7-306565012358/103978532789*x^6+68388048289/103978532789*x^5+3658227334741/103978532789*x^4+1449982260809/103978532789*x^3-6244388660760/103978532789*x^2-3921088900500/103978532789*x+816089803024/103978532789,8377651722/103978532789*x^8-1841704666/103978532789*x^7-392561504428/103978532789*x^6-140932732733/103978532789*x^5+4758093804548/103978532789*x^4+4419309222993/103978532789*x^3-7692346900816/103978532789*x^2-8572227606942/103978532789*x-1393881805608/103978532789], x^9-47*x^7-27*x^6+568*x^5+650*x^4-842*x^3-1219*x^2-269*x+5];
50
E[307,7]=[[1198124/2149375*x^9+11105834/2149375*x^8-425584/113125*x^7-317400731/2149375*x^6-125324859/429875*x^5+362461059/429875*x^4+1416223891/429875*x^3+1345319256/429875*x^2+222604353/429875*x-31726974/113125,-2396484/2149375*x^9-22246784/2149375*x^8+838149/113125*x^7+635476051/2149375*x^6+252175302/429875*x^5-723837951/429875*x^4-2843270158/429875*x^3-2713593888/429875*x^2-91357671/85975*x+63559744/113125,-393018/2149375*x^9-3638188/2149375*x^8+142838/113125*x^7+104153642/2149375*x^6+40737163/429875*x^5-119805998/429875*x^4-462002832/429875*x^3-432449797/429875*x^2-69218436/429875*x+9768093/113125,5906852/2149375*x^9+54860837/2149375*x^8-2058342/113125*x^7-1567166698/2149375*x^6-622434153/429875*x^5+1785281516/429875*x^4+7015015292/429875*x^3+6690729517/429875*x^2+1121677378/429875*x-157018072/113125,x,-474324/429875*x^9-4403691/429875*x^8+165633/22625*x^7+25156603/85975*x^6+249702987/429875*x^5-716277293/429875*x^4-2814907488/429875*x^3-2685973578/429875*x^2-450302528/429875*x+12587842/22625,11867956/2149375*x^9+110204781/2149375*x^8-4142141/113125*x^7-3148179009/2149375*x^6-1249840153/429875*x^5+3586793509/429875*x^4+14089298707/429875*x^3+13434673312/429875*x^2+89918243/17195*x-315472121/113125,-192482/85975*x^9-8940822/429875*x^8+334894/22625*x^7+255431509/429875*x^6+507357647/429875*x^5-1455485143/429875*x^4-5717604728/429875*x^3-5447098318/429875*x^2-906472233/429875*x+25644823/22625,-9829494/2149375*x^9-91310749/2149375*x^8+3416519/113125*x^7+2608069051/2149375*x^6+1036788638/429875*x^5-593876138/85975*x^4-11680805192/429875*x^3-11151939252/429875*x^2-1872862754/429875*x+261457524/113125,-6219438/2149375*x^9-57720298/2149375*x^8+2180938/113125*x^7+1648924602/2149375*x^6+653846046/429875*x^5-375790562/85975*x^4-7375235614/429875*x^3-7033574059/429875*x^2-1178203688/429875*x+164685023/113125,-18376/429875*x^9-177186/429875*x^8+4531/22625*x^7+5074684/429875*x^6+86191/3439*x^5-5801172/85975*x^4-4713788/17195*x^3-4344531/17195*x^2-2527258/85975*x+688831/22625,12232321/2149375*x^9+113564951/2149375*x^8-4275916/113125*x^7-3244116154/2149375*x^6-1287467439/429875*x^5+3695892248/429875*x^4+14516278196/429875*x^3+13846131221/429875*x^2+2317735799/429875*x-325763031/113125,-7436591/2149375*x^9-69123506/2149375*x^8+2568906/113125*x^7+1974005154/2149375*x^6+786222686/429875*x^5-2245562376/429875*x^4-8850824139/429875*x^3-8461665924/429875*x^2-1420942422/429875*x+199537091/113125,13664923/2149375*x^9+126907303/2149375*x^8-4761763/113125*x^7-3625100457/2149375*x^6-288004651/85975*x^5+4128908231/429875*x^4+3246057723/85975*x^3+3096844629/85975*x^2+2587984314/429875*x-364531238/113125,3897881/2149375*x^9+36180661/2149375*x^8-1366551/113125*x^7-1033715644/2149375*x^6-409774764/429875*x^5+1178582908/429875*x^4+4622005476/429875*x^3+4402611591/429875*x^2+736158939/429875*x-104078641/113125,7767437/2149375*x^9+72197392/2149375*x^8-2682967/113125*x^7-2061745953/2149375*x^6-821251642/429875*x^5+2345125797/429875*x^4+9245029568/429875*x^3+8840540968/429875*x^2+1485832409/429875*x-208998612/113125,1351248/2149375*x^9+12630443/2149375*x^8-436743/113125*x^7-359729437/2149375*x^6-146221443/429875*x^5+404245438/429875*x^4+1631213347/429875*x^3+1593539847/429875*x^2+284293336/429875*x-37497198/113125,-11424919/2149375*x^9-106072464/2149375*x^8+3991074/113125*x^7+3029916056/2149375*x^6+1202777641/429875*x^5-3450977077/429875*x^4-13559520799/429875*x^3-12941009974/429875*x^2-2176039016/429875*x+302945634/113125,-4889326/429875*x^9-45393973/429875*x^8+341938/4525*x^7+1296837928/429875*x^6+2572737072/429875*x^5-7389574378/429875*x^4-29010242678/429875*x^3-27651557868/429875*x^2-4617063923/429875*x+130111094/22625,2496414/2149375*x^9+23216349/2149375*x^8-855549/113125*x^7-662672516/2149375*x^6-264730609/429875*x^5+751999324/429875*x^4+2976719386/429875*x^3+2860483836/429875*x^2+486485388/429875*x-67879089/113125,-2587069/2149375*x^9-23974794/2149375*x^8+919709/113125*x^7+685111141/2149375*x^6+270539012/429875*x^5-781958081/429875*x^4-3057212013/429875*x^3-2908556938/429875*x^2-97411956/85975*x+68385704/113125,1083276/429875*x^9+10061816/429875*x^8-376106/22625*x^7-287316349/429875*x^6-114313868/85975*x^5+326765391/85975*x^4+1287634131/85975*x^3+1232171738/85975*x^2+207743383/85975*x-29014591/22625,13776773/2149375*x^9+127985523/2149375*x^8-4789928/113125*x^7-3655970372/2149375*x^6-1453023754/429875*x^5+4164113942/429875*x^4+16372106676/429875*x^3+15616535941/429875*x^2+522017659/85975*x-366962568/113125,4704442/2149375*x^9+43749687/2149375*x^8-1617752/113125*x^7-1249320278/2149375*x^6-99644508/85975*x^5+1420714204/429875*x^4+1121084958/85975*x^3+1072177987/85975*x^2+900477186/429875*x-126940727/113125,-923104/2149375*x^9-8687184/2149375*x^8+278504/113125*x^7+247240116/2149375*x^6+102168983/429875*x^5-55328158/85975*x^4-1131026447/429875*x^3-1109000582/429875*x^2-200970414/429875*x+25441834/113125], x^10+10*x^9-270*x^7-716*x^6+1135*x^5+7015*x^4+9900*x^3+4990*x^2+171*x-361];
51
E[308,1]=[[0,-1,-1,-1,1,-4,-6,-2,1,2,-1,-9,6,8,-8,10,1,-2,11,11,-14,-14,4,13,-9], x-1];
52
E[308,2]=[[0,x,2,-1,-1,-x+2,-x+2,-2*x,-2*x+4,2*x-2,x+4,4,-3*x-2,2*x-2,-x-4,4*x,3*x,3*x-2,-6*x,-2*x-8,x+10,-2*x-6,-2*x-12,6,-2*x+10], x^2-6];
53
E[308,3]=[[0,x,-x^2+4,1,1,x^2+x,-x^2-3*x+4,2*x,x^2+2*x-6,-2*x^2-2*x+10,-3*x-4,x^2-2,x^2+3*x-4,-2*x-2,x^2-x-6,2*x^2-8,-x-8,3*x^2+x-8,-x^2-2*x+2,3*x^2+2*x-14,x^2+3*x-8,-2*x^2+2*x+14,-2*x^2-6*x+8,x^2-4*x-12,x^2-2*x], x^3+x^2-6*x-2];
54
E[309,1]=[[-1,1,-1,-2,-2,-5,0,-8,1,-2,5,2,8,-11,-2,10,-11,-5,11,16,12,6,1,-6,-7], x-1];
55
E[309,2]=[[x,-1,x,-x^2+2*x+1,-x^2+5,-2*x^2+2*x+3,-2*x+2,2*x^2-2*x,x+2,-x^2-2*x+3,-2*x+3,x^2-4*x-3,-3*x^2+2*x+7,x^2-2*x-2,x^2-4*x+3,-x^2+2*x-1,2*x^2+x,3*x^2+2*x-14,-4*x^2+4*x+7,-4*x^2+6*x+10,-x^2+4*x-3,3*x^2-4*x-5,x^2+x+3,5*x^2-2*x-3,2*x^2-8*x-1], x^3-x^2-3*x+1];
56
E[309,3]=[[x,1,-1/2*x^7+11/2*x^5-18*x^3-3/2*x^2+17*x+7/2,x^6-8*x^4+x^3+13*x^2-3*x,-x^6-x^5+8*x^4+6*x^3-14*x^2-5*x+3,1/2*x^7-11/2*x^5-x^4+18*x^3+15/2*x^2-18*x-11/2,-x^5+7*x^3-x^2-8*x+1,x^5+x^4-6*x^3-6*x^2+3*x+7,1/2*x^7-9/2*x^5-x^4+10*x^3+15/2*x^2-6*x-13/2,x^6+2*x^5-6*x^4-13*x^3+3*x^2+13*x+2,-1/2*x^7+13/2*x^5-26*x^3+1/2*x^2+29*x+1/2,x^6-3*x^5-10*x^4+24*x^3+24*x^2-37*x-9,-x^6+9*x^4-18*x^2-2*x+2,-1/2*x^7-x^6+7/2*x^5+6*x^4-4*x^3-7/2*x^2-2*x-1/2,-x^6-3*x^5+6*x^4+24*x^3-2*x^2-41*x-7,x^7+x^6-10*x^5-8*x^4+28*x^3+17*x^2-19*x-12,-1/2*x^7+13/2*x^5+2*x^4-25*x^3-21/2*x^2+25*x+5/2,3/2*x^7-x^6-31/2*x^5+8*x^4+43*x^3-21/2*x^2-24*x-3/2,1/2*x^7-9/2*x^5+2*x^4+10*x^3-25/2*x^2-x+23/2,2*x^5-14*x^3+2*x^2+18*x-4,x^7-x^6-10*x^5+8*x^4+28*x^3-9*x^2-21*x-6,-x^7-x^6+7*x^5+7*x^4-8*x^3-11*x^2+3,1/2*x^7+x^6-11/2*x^5-8*x^4+17*x^3+29/2*x^2-8*x-15/2,x^7-x^6-12*x^5+8*x^4+42*x^3-13*x^2-39*x,1/2*x^7-3/2*x^5+2*x^4-13*x^3-19/2*x^2+35*x+13/2], x^8+x^7-13*x^6-11*x^5+52*x^4+35*x^3-59*x^2-27*x+1];
57
E[309,4]=[[x,-1,x^4+x^3-5*x^2-3*x+3,-2*x^4-3*x^3+7*x^2+6*x-4,2*x^3+2*x^2-6*x-4,2*x^4+3*x^3-5*x^2-6*x-1,-3*x^3-x^2+10*x-4,-x^4-2*x^3+4*x^2+7*x-6,3*x^3+x^2-10*x+1,-2*x^4-3*x^3+7*x^2+8*x-6,-x^4-3*x^3+3*x^2+9*x-5,-2*x^3-2*x^2+10*x+4,-x^4-4*x^3+9*x-2,-x^4-3*x^3-3*x^2+3*x+11,2*x^4+4*x^3-6*x^2-10*x+4,2*x^4+6*x^3-4*x^2-14*x,3*x^4+4*x^3-14*x^2-13*x+7,x^4-2*x^3-8*x^2+7*x+3,3*x^4+7*x^3-7*x^2-17*x+3,-2*x^3+2*x^2+6*x-10,-4*x^4-4*x^3+16*x^2+8*x-4,x^4-2*x^2+9*x-4,3*x^4+4*x^3-10*x^2-13*x-1,2*x^4-4*x^3-10*x^2+20*x+6,3*x^4+10*x^3-4*x^2-23*x+1], x^5+2*x^4-4*x^3-6*x^2+4*x+1];
58
E[310,1]=[[1,-2,-1,-4,0,-4,0,-4,-6,6,1,8,-6,-10,0,0,-12,14,8,0,-4,8,6,-18,-10], x-1];
59
E[310,2]=[[1,2,-1,0,2,0,2,-4,-4,-4,-1,-8,6,2,0,8,8,0,4,0,6,-4,6,-6,-2], x-1];
60
E[310,3]=[[-1,x,-1,-2*x-2,-x-2,x-2,-4,2*x+4,2*x-2,x,-1,-x-6,2*x-4,-x+4,-2*x-2,x-6,2*x+4,7*x+4,6*x+4,-8*x-8,-6*x,2*x+16,-x-4,4*x-2,4], x^2+2*x-2];
61
E[310,4]=[[-1,x,1,-2,x+2,x+2,-2*x,-2*x,2,-x+8,-1,-x+2,0,-x-8,6,-3*x-2,2*x+4,x-4,-2*x-8,4*x,-4,-2*x,-5*x+4,-4*x+6,2*x+4], x^2-6];
62
E[310,5]=[[1,x,1,-x^2+4,x^2-3*x-2,-x-2,-x^2+4,2*x^2-2*x-4,-x^2+2*x+2,-3*x^2+5*x+8,1,2*x^2-x-10,3*x^2-4*x-10,2*x^2+x-12,-x^2+4*x+8,2*x^2-x-14,-2*x+8,-x^2+3*x-4,-4*x^2+6*x+8,-2*x^2+4*x+8,-3*x^2+2*x+4,-6*x+4,2*x^2-x-4,2*x^2-2,-x^2-2*x+2], x^3-2*x^2-4*x+4];
63
E[311,1]=[[x,-x^3-x^2+2*x,x^3+x^2-3*x-1,x^3-3*x,-1,x^2+x-3,-3*x^3-3*x^2+7*x,-x^3-x^2+2*x-1,3*x^2+3*x-4,-x^3-2*x^2+3*x+1,x^3+2*x^2+x-3,-4*x^3-8*x^2+7*x+6,2*x^3+x^2-4*x,4*x^3+7*x^2-4*x-7,-3*x^2-5*x+7,x^3+2*x^2-5*x-2,-x^3+2*x^2+4*x-4,-x^3+6*x-4,x^2-4*x-1,x^3-4*x^2-8*x+6,x^3+6*x^2+3*x-11,-8*x^3-11*x^2+13*x+6,5*x^3+7*x^2-10*x-2,2*x^2-2*x-3,5*x^3+2*x^2-15*x-2], x^4+x^3-3*x^2-x+1];
64
E[311,2]=[[x,-1333218028123436678/106341562018576649119*x^21+1367946423136236257/106341562018576649119*x^20+49328489263264063408/106341562018576649119*x^19-48698618113739814119/106341562018576649119*x^18-780071490285978038489/106341562018576649119*x^17+731764058773877640305/106341562018576649119*x^16+6883435129930837071209/106341562018576649119*x^15-6029718454604453812991/106341562018576649119*x^14-37117408682963362048611/106341562018576649119*x^13+29643589741202443321628/106341562018576649119*x^12+125904278451589035925849/106341562018576649119*x^11-88764078616540344648331/106341562018576649119*x^10-266400248133720180154691/106341562018576649119*x^9+159042733994278329421197/106341562018576649119*x^8+336261615438596631255820/106341562018576649119*x^7-162008001244132052237259/106341562018576649119*x^6-230084343080867524283273/106341562018576649119*x^5+85032171085335940948597/106341562018576649119*x^4+71086649415902837709445/106341562018576649119*x^3-17051195074052769029465/106341562018576649119*x^2-6284781941061791629214/106341562018576649119*x-2035191172956196509/2473059581827363933,-21242974024529590/106341562018576649119*x^21-1434491652110563978/106341562018576649119*x^20+3209217338769634321/106341562018576649119*x^19+48282217898366329351/106341562018576649119*x^18-94578303848943192367/106341562018576649119*x^17-676590780104692901915/106341562018576649119*x^16+1270815302353166006692/106341562018576649119*x^15+5102603103564094427213/106341562018576649119*x^14-9439579417621543494677/106341562018576649119*x^13-22357866355125222974699/106341562018576649119*x^12+41280678241435124160901/106341562018576649119*x^11+57441564627509462184517/106341562018576649119*x^10-106882614769975285857639/106341562018576649119*x^9-83882843771650414225579/106341562018576649119*x^8+158593036380613931304765/106341562018576649119*x^7+66319079553842412941717/106341562018576649119*x^6-126427357236440356717803/106341562018576649119*x^5-28369596568106140688094/106341562018576649119*x^4+47782658911006380501745/106341562018576649119*x^3+8238984211089590694971/106341562018576649119*x^2-6439892278957108980653/106341562018576649119*x-30557112079337671866/2473059581827363933,504418815307781939/106341562018576649119*x^21-1021065885099576655/106341562018576649119*x^20-16604493185137817773/106341562018576649119*x^19+33056103831567470983/106341562018576649119*x^18+226015020692329680027/106341562018576649119*x^17-435479859114799908685/106341562018576649119*x^16-1641199345467818455453/106341562018576649119*x^15+2956466065705411278227/106341562018576649119*x^14+6861291586789371631471/106341562018576649119*x^13-10597470554231302540041/106341562018576649119*x^12-16835996047441621774817/106341562018576649119*x^11+16674122550262725807072/106341562018576649119*x^10+24918511100968457522896/106341562018576649119*x^9+4438859628397342489851/106341562018576649119*x^8-26019738542206463779319/106341562018576649119*x^7-47775179818655449476697/106341562018576649119*x^6+24030985031406062666739/106341562018576649119*x^5+52435121331955185077307/106341562018576649119*x^4-16943596953875463472297/106341562018576649119*x^3-19178717695756638586794/106341562018576649119*x^2+5034806783502259963324/106341562018576649119*x+39595990210148060592/2473059581827363933,-949531404212230610/106341562018576649119*x^21+1404606076267666588/106341562018576649119*x^20+31860596932911204463/106341562018576649119*x^19-46971051976902102427/106341562018576649119*x^18-443194299396015920727/106341562018576649119*x^17+654211796697056201475/106341562018576649119*x^16+3289263238009343513027/106341562018576649119*x^15-4909640949988760976063/106341562018576649119*x^14-13911354804136965503755/106341562018576649119*x^13+21492498277511827879899/106341562018576649119*x^12+32809246067622506014675/106341562018576649119*x^11-55848212667582391995663/106341562018576649119*x^10-37152948138636735453445/106341562018576649119*x^9+85393270687204170694965/106341562018576649119*x^8+5583375858342452495631/106341562018576649119*x^7-76499001320510405514675/106341562018576649119*x^6+25817695878266203276277/106341562018576649119*x^5+39666285577392711382787/106341562018576649119*x^4-19730812320902394420787/106341562018576649119*x^3-10921342107175992074971/106341562018576649119*x^2+3730720089149782086801/106341562018576649119*x+28348484555942980958/2473059581827363933,321226424163746048/106341562018576649119*x^21+3801901583102434231/106341562018576649119*x^20-18552232937067380885/106341562018576649119*x^19-129228358922459727636/106341562018576649119*x^18+415822499184604316188/106341562018576649119*x^17+1838181668057575308290/106341562018576649119*x^16-4909941181790293676126/106341562018576649119*x^15-14192061774488959599914/106341562018576649119*x^14+33996329744624815911691/106341562018576649119*x^13+64611826293534390239510/106341562018576649119*x^12-143009619717835957566812/106341562018576649119*x^11-177164866440755054595842/106341562018576649119*x^10+363135701598845915429974/106341562018576649119*x^9+289742407609106508486970/106341562018576649119*x^8-534122568544790467437490/106341562018576649119*x^7-275603753317877822408499/106341562018576649119*x^6+420748487273236095304854/106341562018576649119*x^5+145078038418898400990846/106341562018576649119*x^4-153245015674186693664582/106341562018576649119*x^3-38930610655526174141722/106341562018576649119*x^2+18299352733124579928085/106341562018576649119*x+96767738356241061887/2473059581827363933,4452381647471694094/106341562018576649119*x^21-9068371874454525600/106341562018576649119*x^20-153992947179709981857/106341562018576649119*x^19+309305459277894660434/106341562018576649119*x^18+2241142934119782305766/106341562018576649119*x^17-4414101082400495089032/106341562018576649119*x^16-17849102933154097864728/106341562018576649119*x^15+34138690020226395806430/106341562018576649119*x^14+84888616078482178708090/106341562018576649119*x^13-154986667317321532177050/106341562018576649119*x^12-247940630886815257914596/106341562018576649119*x^11+419002856056921869273834/106341562018576649119*x^10+444151988255289405124854/106341562018576649119*x^9-657580637032014020631760/106341562018576649119*x^8-476755702015183905849788/106341562018576649119*x^7+565228902091487119925104/106341562018576649119*x^6+285426523932612121998880/106341562018576649119*x^5-239125370165520923828736/106341562018576649119*x^4-80207143469841117045912/106341562018576649119*x^3+39063917958108087392762/106341562018576649119*x^2+6022433751456583734384/106341562018576649119*x-13918998523744547471/2473059581827363933,2060947601905836306/106341562018576649119*x^21-4832671238044683175/106341562018576649119*x^20-68573303399040677761/106341562018576649119*x^19+163608169101819422096/106341562018576649119*x^18+945067357347588828552/106341562018576649119*x^17-2310696191041279916506/106341562018576649119*x^16-6945163366149052550342/106341562018576649119*x^15+17606989366145028973364/106341562018576649119*x^14+29110744005390982374894/106341562018576649119*x^13-78197087165562781870272/106341562018576649119*x^12-68512622918921845946016/106341562018576649119*x^11+204416013113214253913886/106341562018576649119*x^10+80351459485752749582826/106341562018576649119*x^9-304229490665913015656534/106341562018576649119*x^8-24090178091362483895616/106341562018576649119*x^7+240402390067988455671396/106341562018576649119*x^6-34263402855534371727222/106341562018576649119*x^5-89455854323221778141268/106341562018576649119*x^4+26829327840793157634146/106341562018576649119*x^3+12894732713698986951570/106341562018576649119*x^2-4229275899838336784401/106341562018576649119*x-16475863908380734115/2473059581827363933,-183828183402467739/106341562018576649119*x^21+1039361525618415970/106341562018576649119*x^20+6101367191790319672/106341562018576649119*x^19-36335263579768053016/106341562018576649119*x^18-86097238365453050162/106341562018576649119*x^17+535013726770783983898/106341562018576649119*x^16+679936098218707440588/106341562018576649119*x^15-4304659386907177462172/106341562018576649119*x^14-3352483334807843958878/106341562018576649119*x^13+20525485479955595004164/106341562018576649119*x^12+10989624956073174280880/106341562018576649119*x^11-58778429143237160633642/106341562018576649119*x^10-24843801449515718243784/106341562018576649119*x^9+97604340848147573252008/106341562018576649119*x^8+38249882878989736086178/106341562018576649119*x^7-85409928933297878885242/106341562018576649119*x^6-36526711348597203705336/106341562018576649119*x^5+31341260738901659239774/106341562018576649119*x^4+18666517891163488220250/106341562018576649119*x^3-1652994415952016698357/106341562018576649119*x^2-3937341625041663583766/106341562018576649119*x-5194141489789705256/2473059581827363933,-4949554546469626151/106341562018576649119*x^21+5638410761951578121/106341562018576649119*x^20+176207117842749094505/106341562018576649119*x^19-191397314944231603028/106341562018576649119*x^18-2660490697073345263440/106341562018576649119*x^17+2707190973281190920048/106341562018576649119*x^16+22216248394573400487934/106341562018576649119*x^15-20597631528218833688502/106341562018576649119*x^14-112317687824702088138006/106341562018576649119*x^13+90712069956071996243772/106341562018576649119*x^12+354554649317530165235914/106341562018576649119*x^11-231162104592895901963896/106341562018576649119*x^10-697751720167008818836016/106341562018576649119*x^9+319889567020050596788750/106341562018576649119*x^8+831647493859939158411512/106341562018576649119*x^7-199844244260598778871414/106341562018576649119*x^6-560612132770439918559736/106341562018576649119*x^5+15800073124336849081422/106341562018576649119*x^4+188323919933396899399728/106341562018576649119*x^3+26727855000532543053163/106341562018576649119*x^2-23537886238855188251027/106341562018576649119*x-114397190965483473771/2473059581827363933,-132904553112721313/106341562018576649119*x^21-1176708245964174219/106341562018576649119*x^20+9904292068140553639/106341562018576649119*x^19+39065139067194949432/106341562018576649119*x^18-246905618631975767242/106341562018576649119*x^17-538471726425906035698/106341562018576649119*x^16+3080826924353390203226/106341562018576649119*x^15+3987676782018307963186/106341562018576649119*x^14-22005835609083581847834/106341562018576649119*x^13-17217508630054096872000/106341562018576649119*x^12+94182905922897950077050/106341562018576649119*x^11+44530024615877316807794/106341562018576649119*x^10-240788420412776223839324/106341562018576649119*x^9-70388526602452924678018/106341562018576649119*x^8+352048707552451713628708/106341562018576649119*x^7+71335855328798875924316/106341562018576649119*x^6-268841807668535375834654/106341562018576649119*x^5-45754557196087629322204/106341562018576649119*x^4+89914375314152864848222/106341562018576649119*x^3+16149501277969156542849/106341562018576649119*x^2-8829343406548919375683/106341562018576649119*x-46380259482200347787/2473059581827363933,7394664530843307306/106341562018576649119*x^21-7606811372112628985/106341562018576649119*x^20-265748373574771212515/106341562018576649119*x^19+262649542497701585053/106341562018576649119*x^18+4059724885732822776975/106341562018576649119*x^17-3798927284152887127595/106341562018576649119*x^16-34396095662365500835307/106341562018576649119*x^15+29807565684935758419707/106341562018576649119*x^14+176999555379210375255647/106341562018576649119*x^13-137367368061688512257791/106341562018576649119*x^12-570418410750884597129585/106341562018576649119*x^11+376728273526138216865739/106341562018576649119*x^10+1147527903105757245029711/106341562018576649119*x^9-597146212364599738977311/106341562018576649119*x^8-1393620714368475271214341/106341562018576649119*x^7+510797249529005350919693/106341562018576649119*x^6+946073752160513183531115/106341562018576649119*x^5-205880561965320549938131/106341562018576649119*x^4-309538691264250150171849/106341562018576649119*x^3+23820849468389444377459/106341562018576649119*x^2+33753100856119673756800/106341562018576649119*x+68552604153275274946/2473059581827363933,2330198925192321413/106341562018576649119*x^21-3090146595879975727/106341562018576649119*x^20-82530308525790117069/106341562018576649119*x^19+107831472204266184399/106341562018576649119*x^18+1234962920256167687279/106341562018576649119*x^17-1581141102230608848213/106341562018576649119*x^16-10160071052272144450167/106341562018576649119*x^15+12640327980660647116483/106341562018576649119*x^14+50135748115114353511897/106341562018576649119*x^13-59837040316205255203393/106341562018576649119*x^12-152177657649097679243841/106341562018576649119*x^11+170801310729443889903205/106341562018576649119*x^10+281180766342045539290163/106341562018576649119*x^9-287691489337670032976877/106341562018576649119*x^8-303280268575613208481891/106341562018576649119*x^7+269273936002067725022281/106341562018576649119*x^6+174530655583878613015541/106341562018576649119*x^5-123561478045454973427181/106341562018576649119*x^4-44441458604538740115375/106341562018576649119*x^3+21425693416436163745758/106341562018576649119*x^2+3287195290360532440862/106341562018576649119*x-19861941171313052168/2473059581827363933,-1846887930365785853/106341562018576649119*x^21+1520460471718293757/106341562018576649119*x^20+65228337920815452692/106341562018576649119*x^19-53903403124830438332/106341562018576649119*x^18-974995848187826736698/106341562018576649119*x^17+804583313629561954126/106341562018576649119*x^16+8029648120167743713362/106341562018576649119*x^15-6567820853326488395724/106341562018576649119*x^14-39749807100398915734988/106341562018576649119*x^13+31937380360396640454946/106341562018576649119*x^12+121146429673465218266196/106341562018576649119*x^11-94868169680078926942140/106341562018576649119*x^10-223775296201610850482780/106341562018576649119*x^9+171199885701321029964760/106341562018576649119*x^8+236190999739405980566038/106341562018576649119*x^7-183118669100660712214770/106341562018576649119*x^6-123537648119379271536652/106341562018576649119*x^5+109590480708375665563888/106341562018576649119*x^4+21533258937944195916016/106341562018576649119*x^3-30560571877557140837337/106341562018576649119*x^2+611758770632449038147/106341562018576649119*x+48093981727896490140/2473059581827363933,46433189470467441/106341562018576649119*x^21-260910529208913032/106341562018576649119*x^20+1102414192456999097/106341562018576649119*x^19+4848720540267625609/106341562018576649119*x^18-67967816668863141080/106341562018576649119*x^17+8269561906940516219/106341562018576649119*x^16+1095964759322511218505/106341562018576649119*x^15-894759696815022412013/106341562018576649119*x^14-8785323976504499826133/106341562018576649119*x^13+9511233472955728605475/106341562018576649119*x^12+39609030186997763045779/106341562018576649119*x^11-48037600070679816175273/106341562018576649119*x^10-102042145051328087705565/106341562018576649119*x^9+131284907768696687297631/106341562018576649119*x^8+143039524972192757416067/106341562018576649119*x^7-193402437290703085076549/106341562018576649119*x^6-95431283716181665350249/106341562018576649119*x^5+144012450011764084757347/106341562018576649119*x^4+18843115423488915093727/106341562018576649119*x^3-45739654395445164349379/106341562018576649119*x^2+3121181580244386542379/106341562018576649119*x+74470526435618318206/2473059581827363933,-4329495292882069520/106341562018576649119*x^21+3590648999357842600/106341562018576649119*x^20+157834344269401771754/106341562018576649119*x^19-121578407619976126612/106341562018576649119*x^18-2453229843310026810308/106341562018576649119*x^17+1710515726801216197192/106341562018576649119*x^16+21222111958947484846100/106341562018576649119*x^15-12873973887185376166692/106341562018576649119*x^14-111931351259342458686112/106341562018576649119*x^13+55442921615837726993416/106341562018576649119*x^12+370993421497117886286343/106341562018576649119*x^11-134494962220095370602912/106341562018576649119*x^10-768709379680133068426630/106341562018576649119*x^9+163900780714104315301205/106341562018576649119*x^8+958696497623291479603728/106341562018576649119*x^7-60153947228933081329268/106341562018576649119*x^6-662952536783890749549336/106341562018576649119*x^5-42866591282817099793888/106341562018576649119*x^4+219735069544521293825964/106341562018576649119*x^3+34101833190801002709676/106341562018576649119*x^2-24675882841215763025544/106341562018576649119*x-112974575921600657030/2473059581827363933,5621201825032573579/106341562018576649119*x^21-5869770867581617546/106341562018576649119*x^20-202351920148973395193/106341562018576649119*x^19+202124940046268440782/106341562018576649119*x^18+3099951025120276990996/106341562018576649119*x^17-2916766870429402637702/106341562018576649119*x^16-26383161120727253344686/106341562018576649119*x^15+22847192319660510025410/106341562018576649119*x^14+136723741747188899987842/106341562018576649119*x^13-105214964878282080161496/106341562018576649119*x^12-445351075155958324900552/106341562018576649119*x^11+288797256058635698858996/106341562018576649119*x^10+910027379077656309521142/106341562018576649119*x^9-459308662970412530043192/106341562018576649119*x^8-1129124749097739113376530/106341562018576649119*x^7+395384518793226206507186/106341562018576649119*x^6+787018738003471785670762/106341562018576649119*x^5-159512684543623942037332/106341562018576649119*x^4-264077679257747932409868/106341562018576649119*x^3+15835578795075255115283/106341562018576649119*x^2+29230993778949366469350/106341562018576649119*x+82775137608714758055/2473059581827363933,-3583420793017939023/106341562018576649119*x^21+8675354254760796882/106341562018576649119*x^20+119688299254442002703/106341562018576649119*x^19-294123955840994350382/106341562018576649119*x^18-1660248998262814109632/106341562018576649119*x^17+4159718928604024571886/106341562018576649119*x^16+12349384159626636232842/106341562018576649119*x^15-31734818675980894163120/106341562018576649119*x^14-53093368806306371640876/106341562018576649119*x^13+141051895415042979466510/106341562018576649119*x^12+132913509957353983447354/106341562018576649119*x^11-368488364473189425949808/106341562018576649119*x^10-187706333270731286203004/106341562018576649119*x^9+545413760525016522438188/106341562018576649119*x^8+143091001473558586379412/106341562018576649119*x^7-420998049638230728658378/106341562018576649119*x^6-58457047224399135589678/106341562018576649119*x^5+141730916081843913365122/106341562018576649119*x^4+15994914982044283437864/106341562018576649119*x^3-11563599974223539290013/106341562018576649119*x^2-2012326590968649994070/106341562018576649119*x-10567527002741523839/2473059581827363933,-5139989178742198646/106341562018576649119*x^21+9096432451439969938/106341562018576649119*x^20+178457705070845854600/106341562018576649119*x^19-310180784696958907786/106341562018576649119*x^18-2611012691539536760801/106341562018576649119*x^17+4417958393008438338545/106341562018576649119*x^16+20953972198205476085753/106341562018576649119*x^15-34009895747143110966363/106341562018576649119*x^14-100789819551293731589895/106341562018576649119*x^13+153014944617366737382517/106341562018576649119*x^12+299524111019582346001085/106341562018576649119*x^11-407004012587977765984095/106341562018576649119*x^10-551189859953466073292259/106341562018576649119*x^9+620984884257968779456093/106341562018576649119*x^8+617055042025566397030765/106341562018576649119*x^7-509767937695390462370227/106341562018576649119*x^6-396024171620222462096715/106341562018576649119*x^5+202617699320811656098293/106341562018576649119*x^4+127287329737312799119569/106341562018576649119*x^3-32163034780923796223689/106341562018576649119*x^2-13756478961471129781276/106341562018576649119*x+15932647091290718451/2473059581827363933,-1901706762010969543/106341562018576649119*x^21+4951119299593067454/106341562018576649119*x^20+56374537709591765869/106341562018576649119*x^19-163748260250769199528/106341562018576649119*x^18-638285998164339576484/106341562018576649119*x^17+2239333865145155630962/106341562018576649119*x^16+3105011878761310803492/106341562018576649119*x^15-16293237239499247670400/106341562018576649119*x^14-1679666132527592115772/106341562018576649119*x^13+67512737162793830257494/106341562018576649119*x^12-48501000091180529386524/106341562018576649119*x^11-157978727050907009066766/106341562018576649119*x^10+216006380948428053571158/106341562018576649119*x^9+194159596453057846140580/106341562018576649119*x^8-399253374832029919616500/106341562018576649119*x^7-106278903696007819417762/106341562018576649119*x^6+339550454560840591654842/106341562018576649119*x^5+15847595271237072081500/106341562018576649119*x^4-115256075297850952347358/106341562018576649119*x^3-2212576023886727671423/106341562018576649119*x^2+9367489454545716919356/106341562018576649119*x+36475465709339283185/2473059581827363933,-2789916658354649060/106341562018576649119*x^21+1704517612700781238/106341562018576649119*x^20+102262239995605387209/106341562018576649119*x^19-57406009413617968533/106341562018576649119*x^18-1598292922823348440603/106341562018576649119*x^17+801988954017805169318/106341562018576649119*x^16+13905562290019809137749/106341562018576649119*x^15-5977236690084860592107/106341562018576649119*x^14-73795574277336734189179/106341562018576649119*x^13+25372292869987189776749/106341562018576649119*x^12+246415211981593237820521/106341562018576649119*x^11-60115941605201895701091/106341562018576649119*x^10-516116563500689013863647/106341562018576649119*x^9+69707121589242372231853/106341562018576649119*x^8+656178858295618999851513/106341562018576649119*x^7-19071665053752701147843/106341562018576649119*x^6-471185859289182112823403/106341562018576649119*x^5-27369396677342522993039/106341562018576649119*x^4+166159660774939433312568/106341562018576649119*x^3+20072018805045962214097/106341562018576649119*x^2-20260756142588732114615/106341562018576649119*x-73323334338512941078/2473059581827363933,-1726901511470136247/106341562018576649119*x^21+4295273743451919212/106341562018576649119*x^20+57679160459632123303/106341562018576649119*x^19-140180149476046527618/106341562018576649119*x^18-802587987786053498780/106341562018576649119*x^17+1878117117232186395958/106341562018576649119*x^16+6041430759023182130698/106341562018576649119*x^15-13192620978947716099841/106341562018576649119*x^14-26919854486033331430210/106341562018576649119*x^13+50969431627962623499110/106341562018576649119*x^12+74450774975769738174386/106341562018576649119*x^11-100208715162087142743210/106341562018576649119*x^10-136232495444372064585942/106341562018576649119*x^9+59828690756671267076474/106341562018576649119*x^8+182319651120205014153614/106341562018576649119*x^7+94246172500924518580466/106341562018576649119*x^6-177877187983066661916609/106341562018576649119*x^5-154085872495877199164522/106341562018576649119*x^4+103304605577791656307928/106341562018576649119*x^3+65904417252489204177043/106341562018576649119*x^2-22369128980941599052062/106341562018576649119*x-154788936746448302795/2473059581827363933,534565224725554563/106341562018576649119*x^21+408540771200337000/106341562018576649119*x^20-14339266000307448628/106341562018576649119*x^19-16492647855950985018/106341562018576649119*x^18+128509517421139113302/106341562018576649119*x^17+282226651255100281606/106341562018576649119*x^16-150074055035157764802/106341562018576649119*x^15-2655042166488549832546/106341562018576649119*x^14-5123818339527707184078/106341562018576649119*x^13+14856185771657420648190/106341562018576649119*x^12+39224317685562121807331/106341562018576649119*x^11-49903337414297490560750/106341562018576649119*x^10-130443341113187113331564/106341562018576649119*x^9+96893008217644525987295/106341562018576649119*x^8+220554210919635949248934/106341562018576649119*x^7-100663641667863719272202/106341562018576649119*x^6-182573536978149919838338/106341562018576649119*x^5+51779602948767121031314/106341562018576649119*x^4+65005064524126894356962/106341562018576649119*x^3-9678741020968647085591/106341562018576649119*x^2-6247033152391215637522/106341562018576649119*x-17528217003691030028/2473059581827363933,2035238649709749187/106341562018576649119*x^21-4454007344983795609/106341562018576649119*x^20-72515892912051579371/106341562018576649119*x^19+156983849781700369402/106341562018576649119*x^18+1092517918055596859130/106341562018576649119*x^17-2337612390558999574569/106341562018576649119*x^16-9051963794705115145044/106341562018576649119*x^15+19127861820947459149004/106341562018576649119*x^14+44927002885639648894688/106341562018576649119*x^13-93743096900175172768224/106341562018576649119*x^12-136402817864560099496760/106341562018576649119*x^11+281707000074425374284192/106341562018576649119*x^10+247788593349020694259452/106341562018576649119*x^9-512268436551646988287652/106341562018576649119*x^8-249654775260405184509656/106341562018576649119*x^7+538795401014137771247828/106341562018576649119*x^6+113424034383828066256868/106341562018576649119*x^5-299639007774704740304216/106341562018576649119*x^4-7620418457172234087451/106341562018576649119*x^3+72352381471875732512215/106341562018576649119*x^2-3616489619198151607375/106341562018576649119*x-94447707579468172795/2473059581827363933,-5197187447595617615/106341562018576649119*x^21+5939013618558465321/106341562018576649119*x^20+181877619637387851064/106341562018576649119*x^19-199759935883166555137/106341562018576649119*x^18-2683693939142740016415/106341562018576649119*x^17+2794461185712232579141/106341562018576649119*x^16+21720479637311107810857/106341562018576649119*x^15-20976866147431402499441/106341562018576649119*x^14-105198684482171158200617/106341562018576649119*x^13+90865039292985178692927/106341562018576649119*x^12+313099287869482412218263/106341562018576649119*x^11-227029155658101197365127/106341562018576649119*x^10-569613033557758812649477/106341562018576649119*x^9+308072140018246555020371/106341562018576649119*x^8+616197745356728639593275/106341562018576649119*x^7-193108002650671244785289/106341562018576649119*x^6-374886068567764374986255/106341562018576649119*x^5+25019422612978476944661/106341562018576649119*x^4+117013821061364148432057/106341562018576649119*x^3+15049366697910302287080/106341562018576649119*x^2-15275311393231544596762/106341562018576649119*x-38443160508541577779/2473059581827363933], x^22-2*x^21-35*x^20+70*x^19+517*x^18-1033*x^17-4195*x^16+8357*x^15+20417*x^14-40403*x^13-61287*x^12+119701*x^11+113017*x^10-215615*x^9-124399*x^8+228609*x^7+76453*x^6-133295*x^5-23503*x^4+36742*x^3+3587*x^2-3200*x-473];
65
E[312,1]=[[0,1,2,0,0,1,2,-4,0,6,0,-2,6,-12,-4,6,-8,-2,4,-12,-14,0,8,-18,-6], x-1];
66
E[312,2]=[[0,1,-4,-4,-2,-1,-6,4,4,-6,8,-10,-4,-4,-6,6,-6,-6,0,10,-2,0,-10,8,-10], x-1];
67
E[312,3]=[[0,-1,-2,4,0,1,2,8,8,-2,4,-10,2,-4,-12,6,0,-2,8,-12,10,-8,0,-14,2], x-1];
68
E[312,4]=[[0,-1,0,-4,-2,-1,-6,-4,4,10,-8,-2,0,-4,2,-2,10,10,8,2,-10,8,6,-12,-2], x-1];
69
E[312,5]=[[0,1,0,0,6,-1,2,0,4,-6,-4,-2,0,4,10,-10,-6,-6,-12,2,6,-16,6,4,14], x-1];
70
E[312,6]=[[0,-1,4,0,-2,-1,2,8,4,-6,-4,6,-12,4,-6,-2,-14,10,-4,2,-2,-8,14,0,-10], x-1];
71
E[313,1]=[[x,-x+2,x+1,2*x,-2*x+1,-3*x+5,2*x+1,-2*x,x+2,-8,3*x+5,-2*x-7,4*x+4,-x-10,-4*x+1,-10*x+7,-4*x+3,3,10*x,3*x-5,3*x-10,-1,4*x+1,7*x-3,2*x-4], x^2-x-1];
72
E[313,2]=[[x,-29/13*x^10-184/13*x^9-159/13*x^8+1023/13*x^7+1831/13*x^6-1251/13*x^5-3525/13*x^4+133/13*x^3+2052/13*x^2+138/13*x-290/13,3/13*x^10+15/13*x^9-10/13*x^8-126/13*x^7-37/13*x^6+341/13*x^5+132/13*x^4-302/13*x^3-76/13*x^2+31/13*x+4/13,73/13*x^10+482/13*x^9+502/13*x^8-2559/13*x^7-5238/13*x^6+2582/13*x^5+9959/13*x^4+577/13*x^3-5875/13*x^2-602/13*x+834/13,-8/13*x^10-66/13*x^9-125/13*x^8+271/13*x^7+1013/13*x^6+135/13*x^5-1860/13*x^4-850/13*x^3+1117/13*x^2+368/13*x-197/13,73/13*x^10+482/13*x^9+502/13*x^8-2546/13*x^7-5199/13*x^6+2517/13*x^5+9751/13*x^4+655/13*x^3-5641/13*x^2-641/13*x+795/13,-3*x^10-20*x^9-21*x^8+107*x^7+217*x^6-114*x^5-408*x^4-6*x^3+232*x^2+11*x-31,-36/13*x^10-232/13*x^9-218/13*x^8+1252/13*x^7+2368/13*x^6-1349/13*x^5-4405/13*x^4-211/13*x^3+2459/13*x^2+395/13*x-373/13,16/13*x^10+106/13*x^9+107/13*x^8-581/13*x^7-1142/13*x^6+692/13*x^5+2225/13*x^4-120/13*x^3-1389/13*x^2+31/13*x+186/13,18/13*x^10+116/13*x^9+109/13*x^8-639/13*x^7-1236/13*x^6+720/13*x^5+2495/13*x^4+99/13*x^3-1587/13*x^2-152/13*x+245/13,-47/13*x^10-300/13*x^9-268/13*x^8+1662/13*x^7+3054/13*x^6-2010/13*x^5-5981/13*x^4+190/13*x^3+3678/13*x^2+251/13*x-561/13,16/13*x^10+132/13*x^9+237/13*x^8-607/13*x^7-2026/13*x^6+107/13*x^5+4019/13*x^4+1167/13*x^3-2663/13*x^2-567/13*x+433/13,90/13*x^10+580/13*x^9+519/13*x^8-3260/13*x^7-5907/13*x^6+4198/13*x^5+11604/13*x^4-935/13*x^3-7142/13*x^2-175/13*x+1095/13,-63/13*x^10-406/13*x^9-349/13*x^8+2347/13*x^7+4118/13*x^6-3300/13*x^5-8323/13*x^4+1116/13*x^3+5197/13*x^2-40/13*x-734/13,-224/13*x^10-1471/13*x^9-1459/13*x^8+8017/13*x^7+15702/13*x^6-9116/13*x^5-30435/13*x^4+29/13*x^3+18458/13*x^2+1217/13*x-2786/13,116/13*x^10+762/13*x^9+766/13*x^8-4092/13*x^7-8091/13*x^6+4380/13*x^5+15257/13*x^4+430/13*x^3-8793/13*x^2-734/13*x+1225/13,-186/13*x^10-1229/13*x^9-1265/13*x^8+6590/13*x^7+13305/13*x^6-6985/13*x^5-25513/13*x^4-880/13*x^3+15372/13*x^2+1419/13*x-2341/13,12*x^10+78*x^9+75*x^8-428*x^7-828*x^6+493*x^5+1635*x^4+7*x^3-1022*x^2-85*x+162,-19*x^10-125*x^9-126*x^8+675*x^7+1341*x^6-736*x^5-2577*x^4-56*x^3+1541*x^2+122*x-227,124/13*x^10+828/13*x^9+891/13*x^8-4402/13*x^7-9234/13*x^6+4440/13*x^5+17923/13*x^4+1137/13*x^3-11145/13*x^2-1284/13*x+1760/13,-11/13*x^10-81/13*x^9-128/13*x^8+319/13*x^7+985/13*x^6+184/13*x^5-1316/13*x^4-886/13*x^3+257/13*x^2+324/13*x+85/13,48/13*x^10+344/13*x^9+451/13*x^8-1769/13*x^7-4310/13*x^6+1504/13*x^5+8508/13*x^4+927/13*x^3-5519/13*x^2-661/13*x+818/13,-110/13*x^10-719/13*x^9-695/13*x^8+3970/13*x^7+7640/13*x^6-4777/13*x^5-15123/13*x^4+552/13*x^3+9564/13*x^2+367/13*x-1516/13,-215/13*x^10-1400/13*x^9-1372/13*x^8+7587/13*x^7+14889/13*x^6-8340/13*x^5-28934/13*x^4-669/13*x^3+17723/13*x^2+1544/13*x-2774/13,186/13*x^10+1229/13*x^9+1278/13*x^8-6525/13*x^7-13305/13*x^6+6595/13*x^5+25201/13*x^4+1465/13*x^3-14943/13*x^2-1588/13*x+2289/13], x^11+8*x^10+16*x^9-26*x^8-121*x^7-62*x^6+190*x^5+196*x^4-76*x^3-122*x^2+2*x+17];
73
E[313,3]=[[x,x^10-3*x^9-12*x^8+35*x^7+54*x^6-139*x^5-112*x^4+200*x^3+100*x^2-47*x-17,x^11-4*x^10-9*x^9+47*x^8+18*x^7-190*x^6+34*x^5+290*x^4-113*x^3-105*x^2+33*x+8,-3/2*x^11+11/2*x^10+31/2*x^9-67*x^8-47*x^7+283*x^6+27/2*x^5-919/2*x^4+99*x^3+387/2*x^2-69/2*x-33/2,x^11-5*x^10-7*x^9+63*x^8-11*x^7-279*x^6+172*x^5+491*x^4-344*x^3-260*x^2+95*x+32,-x^11+2*x^10+15*x^9-22*x^8-92*x^7+77*x^6+276*x^5-72*x^4-355*x^3-52*x^2+80*x+14,x^11-4*x^10-9*x^9+47*x^8+19*x^7-193*x^6+27*x^5+313*x^4-102*x^3-151*x^2+36*x+18,3*x^11-12*x^10-27*x^9+141*x^8+55*x^7-573*x^6+95*x^5+892*x^4-326*x^3-357*x^2+96*x+33,-7/2*x^11+29/2*x^10+63/2*x^9-176*x^8-57*x^7+743*x^6-333/2*x^5-2431/2*x^4+498*x^3+1075/2*x^2-307/2*x-101/2,-x^11+4*x^10+9*x^9-46*x^8-22*x^7+185*x^6-2*x^5-296*x^4+46*x^3+147*x^2-19*x-15,3/2*x^11-15/2*x^10-17/2*x^9+88*x^8-32*x^7-364*x^6+581/2*x^5+1225/2*x^4-527*x^3-689/2*x^2+285/2*x+77/2,4*x^11-14*x^10-44*x^9+171*x^8+159*x^7-720*x^6-183*x^5+1141*x^4-31*x^3-411*x^2+39*x+31,-3*x^11+10*x^10+34*x^9-121*x^8-131*x^7+501*x^6+182*x^5-764*x^4-35*x^3+228*x^2-17*x-14,5/2*x^11-19/2*x^10-49/2*x^9+115*x^8+62*x^7-482*x^6+93/2*x^5+1553/2*x^4-275*x^3-655/2*x^2+191/2*x+61/2,1/2*x^11-9/2*x^10+7/2*x^9+52*x^8-82*x^7-219*x^6+737/2*x^5+819/2*x^4-547*x^3-637/2*x^2+259/2*x+103/2,3*x^11-9*x^10-37*x^9+106*x^8+176*x^7-425*x^6-403*x^5+614*x^4+410*x^3-134*x^2-67*x-4,-13/2*x^11+45/2*x^10+143/2*x^9-275*x^8-253*x^7+1157*x^6+501/2*x^5-3673/2*x^4+165*x^3+1373/2*x^2-229/2*x-103/2,2*x^11-6*x^10-25*x^9+74*x^8+114*x^7-313*x^6-227*x^5+494*x^4+180*x^3-172*x^2-32*x+13,11/2*x^11-39/2*x^10-121/2*x^9+241*x^8+215*x^7-1030*x^6-447/2*x^5+3347/2*x^4-96*x^3-1323/2*x^2+101/2*x+119/2,-2*x^11+7*x^10+20*x^9-78*x^8-67*x^7+297*x^6+85*x^5-425*x^4-36*x^3+146*x^2+8*x-7,-4*x^11+13*x^10+47*x^9-160*x^8-191*x^7+675*x^6+298*x^5-1060*x^4-120*x^3+361*x^2+4*x-33,3*x^11-11*x^10-30*x^9+128*x^8+95*x^7-517*x^6-83*x^5+810*x^4-50*x^3-352*x^2+47*x+44,4*x^11-14*x^10-44*x^9+172*x^8+156*x^7-729*x^6-159*x^5+1172*x^4-81*x^3-458*x^2+48*x+41,-2*x^11+6*x^10+25*x^9-72*x^8-120*x^7+297*x^6+277*x^5-459*x^4-293*x^3+156*x^2+73*x-6,x^10-3*x^9-15*x^8+44*x^7+78*x^6-212*x^5-167*x^4+356*x^3+128*x^2-84*x-20], x^12-6*x^11-2*x^10+69*x^9-68*x^8-268*x^7+399*x^6+368*x^5-701*x^4-57*x^3+262*x^2-22*x-19];
74
E[314,1]=[[-1,x,-5/13*x^5+8/13*x^4+51/13*x^3-56/13*x^2-103/13*x+24/13,-2/13*x^5-2/13*x^4+23/13*x^3+14/13*x^2-49/13*x-6/13,5/13*x^5+5/13*x^4-64/13*x^3-61/13*x^2+181/13*x+171/13,8/13*x^5-18/13*x^4-66/13*x^3+126/13*x^2+92/13*x-80/13,8/13*x^5-5/13*x^4-92/13*x^3-4/13*x^2+248/13*x+154/13,6/13*x^5-7/13*x^4-56/13*x^3+36/13*x^2+82/13*x+70/13,-6/13*x^5-6/13*x^4+82/13*x^3+81/13*x^2-264/13*x-226/13,7/13*x^5-19/13*x^4-48/13*x^3+133/13*x^2+9/13*x-109/13,2/13*x^5+2/13*x^4-10/13*x^3-40/13*x^2-16/13*x+136/13,-10/13*x^5+16/13*x^4+76/13*x^3-86/13*x^2-76/13*x+22/13,-6/13*x^5-6/13*x^4+82/13*x^3+68/13*x^2-238/13*x-200/13,-10/13*x^5+16/13*x^4+76/13*x^3-86/13*x^2-76/13*x+22/13,10/13*x^5-16/13*x^4-102/13*x^3+86/13*x^2+206/13*x+56/13,-14/13*x^5+12/13*x^4+148/13*x^3-58/13*x^2-317/13*x-146/13,2/13*x^5+2/13*x^4-36/13*x^3-14/13*x^2+166/13*x+6/13,6/13*x^5-20/13*x^4-30/13*x^3+153/13*x^2-100/13*x-190/13,-16/13*x^5+10/13*x^4+184/13*x^3-5/13*x^2-496/13*x-230/13,-2/13*x^5-2/13*x^4+36/13*x^3+40/13*x^2-166/13*x-188/13,18/13*x^5-8/13*x^4-194/13*x^3+4/13*x^2+480/13*x+158/13,-5/13*x^5+8/13*x^4+51/13*x^3-82/13*x^2-77/13*x+128/13,2/13*x^5+2/13*x^4-36/13*x^3-14/13*x^2+140/13*x+32/13,-7/13*x^5+32/13*x^4+9/13*x^3-250/13*x^2+199/13*x+356/13,-22/13*x^5+30/13*x^4+214/13*x^3-132/13*x^2-448/13*x-222/13], x^6-3*x^5-9*x^4+26*x^3+20*x^2-43*x-25];
75
E[314,2]=[[1,x,-1/3*x^5+11/3*x^3-4/3*x^2-19/3*x+4/3,1/15*x^6+7/15*x^5-x^4-71/15*x^3+26/5*x^2+28/5*x+1/15,-1/15*x^6-2/15*x^5+4/3*x^4+2/5*x^3-41/5*x^2+86/15*x+74/15,-1/15*x^6+1/5*x^5+x^4-8/5*x^3-38/15*x^2-29/15*x+49/15,1/15*x^6-1/5*x^5-4/3*x^4+34/15*x^3+88/15*x^2-91/15*x-13/5,2/15*x^6+4/15*x^5-x^4-32/15*x^3-4/15*x^2+68/15*x+4/5,1/5*x^6+1/15*x^5-3*x^4-8/15*x^3+169/15*x^2+7/15*x-97/15,-1/3*x^6-2/3*x^5+14/3*x^4+6*x^3-17*x^2-16/3*x+8/3,2/15*x^6+4/15*x^5-8/3*x^4-14/5*x^3+72/5*x^2+38/15*x-118/15,-7/15*x^6-3/5*x^5+19/3*x^4+62/15*x^3-346/15*x^2+37/15*x+51/5,-8/15*x^6-2/5*x^5+22/3*x^4+38/15*x^3-128/5*x^2-22/15*x+172/15,1/15*x^6+7/15*x^5-5/3*x^4-22/5*x^3+178/15*x^2+3/5*x-33/5,-2/3*x^5+22/3*x^3-2/3*x^2-26/3*x-28/3,2/15*x^6+4/15*x^5-2*x^4-32/15*x^3+146/15*x^2-7/15*x-36/5,-1/5*x^6-1/15*x^5+5/3*x^4+6/5*x^3+46/15*x^2-157/15*x-163/15,2/5*x^6+4/5*x^5-14/3*x^4-106/15*x^3+193/15*x^2+58/5*x-4/15,2/3*x^4-4/3*x^3-23/3*x^2+12*x+14/3,2/5*x^6+4/5*x^5-16/3*x^4-116/15*x^3+308/15*x^2+68/5*x-194/15,2/5*x^6+4/5*x^5-14/3*x^4-106/15*x^3+208/15*x^2+58/5*x-64/15,-4/15*x^6-13/15*x^5+4*x^4+119/15*x^3-94/5*x^2-27/5*x+116/15,4/15*x^6-2/15*x^5-10/3*x^4+56/15*x^3+122/15*x^2-88/5*x-16/15,-7/15*x^6-4/15*x^5+5*x^4+17/15*x^3-42/5*x^2-26/5*x-37/15,-2/3*x^5-2/3*x^4+26/3*x^3+4*x^2-68/3*x+2], x^7+x^6-17*x^5-6*x^4+84*x^3-19*x^2-73*x+4];
76
E[314,3]=[[-1,0,0,-3,-2,-1,3,-4,-1,0,-6,-1,0,1,0,12,-7,0,-2,10,12,-8,0,-3,-2], x-1];
77
E[315,1]=[[-1,0,-1,1,0,-6,-2,-8,-8,2,4,-2,6,4,-8,-10,-4,-2,4,12,-2,8,4,6,-18], x-1];
78
E[315,2]=[[x,0,-1,-1,-2*x-4,2*x,-4*x-6,-2*x-2,4*x+2,-8,6*x+6,-6,4*x+6,4*x,4,2*x-6,4,6,-8*x-12,-6*x-8,-10*x-8,4*x+4,8,8*x+2,2*x-4], x^2+2*x-1];
79
E[315,3]=[[x,0,1,-1,-2*x+4,-2*x,-4*x+6,2*x-2,4*x-2,8,-6*x+6,-6,4*x-6,-4*x,-4,2*x+6,-4,6,8*x-12,-6*x+8,10*x-8,-4*x+4,-8,8*x-2,-2*x-4], x^2-2*x-1];
80
E[315,4]=[[x,0,-1,-1,x-1,-x+3,-x+3,-2*x-2,-2*x+2,-3*x+1,0,6,-2*x,-2*x+6,3*x+1,2*x,4,6*x,4*x,-8,-4*x-2,x-5,-4,2*x-4,5*x-7], x^2-x-4];
81
E[315,5]=[[x,0,1,1,-2*x-2,2*x,2,-2*x+2,-4,2,-2*x+6,-4*x+2,2,4*x,-4*x-4,-2*x+8,4*x,-2,-4,2*x-10,-2*x-8,4*x+4,4*x+8,2,2*x+4], x^2-5];
82
E[315,6]=[[0,0,1,1,3,5,-3,2,6,-3,-4,2,12,-10,-9,-12,0,8,-4,0,2,-1,-12,12,-1], x-1];
83
E[316,1]=[[0,-3,1,1,-6,-1,-4,-6,2,-8,4,4,-6,4,-3,14,-9,6,-10,5,6,1,4,1,-11], x-1];
84
E[316,2]=[[0,-1,1,3,2,-1,4,6,6,8,-4,-8,-10,4,-9,-2,5,-6,-10,-1,6,-1,0,9,-11], x-1];
85
E[316,3]=[[0,2,-x+3,0,x,3*x-4,2*x-6,-3*x+3,3*x-3,-2*x,-3*x+8,-2,-2*x+6,-2,6,-4*x+6,-2*x+6,6*x-12,3*x-7,-2*x+12,-3*x-3,-1,0,3*x-12,-3*x+1], x^2-3*x-1];
86
E[316,4]=[[0,0,-x-5,2*x+4,x,-x-4,-2*x-4,-3*x-9,-x-7,2*x+4,x+4,-2*x-2,2*x+12,6*x+16,-6,-2*x-10,-4*x-12,-6,-x+5,4*x+2,-3*x-3,1,4*x+4,7*x+16,-3*x+1], x^2+5*x+3];
87
E[317,1]=[[x,113/1046*x^10-154/523*x^9-1081/523*x^8+2021/523*x^7+12971/1046*x^6-9125/523*x^5-14011/523*x^4+33587/1046*x^3+8762/523*x^2-10392/523*x+1175/1046,234/523*x^10+834/523*x^9-1950/523*x^8-8588/523*x^7+3603/523*x^6+27458/523*x^5+2/523*x^4-33780/523*x^3-1733/523*x^2+13352/523*x-964/523,-250/523*x^10-596/523*x^9+2432/523*x^8+5322/523*x^7-7041/523*x^6-12072/523*x^5+7673/523*x^4+5045/523*x^3-2109/523*x^2+3374/523*x-1822/523,7/523*x^10+92/523*x^9+116/523*x^8-990/523*x^7-1830/523*x^6+3271/523*x^5+6285/523*x^4-4001/523*x^3-4922/523*x^2+2031/523*x-1723/523,59/523*x^10+103/523*x^9-666/523*x^8-574/523*x^7+2806/523*x^6-1494/523*x^5-5976/523*x^4+9761/523*x^3+4165/523*x^2-9704/523*x+794/523,-677/523*x^10-1501/523*x^9+7385/523*x^8+14981/523*x^7-25638/523*x^6-44243/523*x^5+33797/523*x^4+43567/523*x^3-13575/523*x^2-8595/523*x-273/523,365/1046*x^10+456/523*x^9-1608/523*x^8-3770/523*x^7+7759/1046*x^6+6867/523*x^5-4435/523*x^4+427/1046*x^3+5415/523*x^2-3645/523*x-7507/1046,-77/523*x^10-1012/523*x^9-753/523*x^8+10890/523*x^7+11239/523*x^6-37550/523*x^5-28341/523*x^4+51333/523*x^3+14917/523*x^2-22864/523*x+2740/523,-573/523*x^10-956/523*x^9+6867/523*x^8+9014/523*x^7-28395/523*x^6-24485/523*x^5+50592/523*x^4+24021/523*x^3-33580/523*x^2-8530/523*x+3715/523,182/523*x^10+823/523*x^9-1168/523*x^8-9004/523*x^7-1033/523*x^6+32223/523*x^5+12786/523*x^4-47542/523*x^3-13958/523*x^2+26133/523*x-1912/523,-947/1046*x^10-769/523*x^9+6125/523*x^8+8241/523*x^7-54497/1046*x^6-27563/523*x^5+49786/523*x^4+65647/1046*x^3-33909/523*x^2-9285/523*x+8805/1046,-673/523*x^10-1822/523*x^9+5957/523*x^8+16582/523*x^7-13011/523*x^6-39983/523*x^5+3244/523*x^4+23947/523*x^3+10659/523*x^2+4221/523*x-5591/523,294/523*x^10+203/523*x^9-4542/523*x^8-2355/523*x^7+24079/523*x^6+8201/523*x^5-50353/523*x^4-6958/523*x^3+34902/523*x^2-3608/523*x-2807/523,1925/1046*x^10+1144/523*x^9-12815/523*x^8-11128/523*x^7+117551/1046*x^6+30578/523*x^5-109377/523*x^4-43815/1046*x^3+70069/523*x^2-4988/523*x-6263/1046,769/1046*x^10+197/523*x^9-5209/523*x^8-62/523*x^7+51421/1046*x^6-10738/523*x^5-57073/523*x^4+62691/1046*x^3+49344/523*x^2-21170/523*x-11165/1046,1162/523*x^10+2720/523*x^9-12647/523*x^8-27314/523*x^7+45061/523*x^6+81700/523*x^5-67019/523*x^4-82067/523*x^3+36484/523*x^2+15501/523*x-983/523,3107/1046*x^10+3532/523*x^9-16171/523*x^8-33596/523*x^7+106503/1046*x^6+91492/523*x^5-71783/523*x^4-168021/1046*x^3+36974/523*x^2+20420/523*x-7163/1046,-8/523*x^10+119/523*x^9+241/523*x^8-1633/523*x^7-1719/523*x^6+8216/523*x^5+4099/523*x^4-18813/523*x^3-3490/523*x^2+15685/523*x-2439/523,653/1046*x^10+1452/523*x^9-1239/523*x^8-13601/523*x^7-20313/1046*x^6+36276/523*x^5+46257/523*x^4-70195/1046*x^3-48394/523*x^2+13704/523*x+15445/1046,-1705/1046*x^10-1865/523*x^9+9109/523*x^8+17761/523*x^7-62695/1046*x^6-48362/523*x^5+44517/523*x^4+88119/1046*x^3-24435/523*x^2-11810/523*x+2469/1046,330/523*x^10-71/523*x^9-5365/523*x^8+1071/523*x^7+29461/523*x^6-5236/523*x^5-62784/523*x^4+10495/523*x^3+44854/523*x^2-9600/523*x-3599/523,672/523*x^10+987/523*x^9-8215/523*x^8-8745/523*x^7+34566/523*x^6+19044/523*x^5-60850/523*x^4-2829/523*x^3+34798/523*x^2-15793/523*x+2475/523,-889/1046*x^10-612/523*x^9+5186/523*x^8+4812/523*x^7-41119/1046*x^6-7661/523*x^5+34731/523*x^4-1275/1046*x^3-22173/523*x^2-572/523*x+7529/1046,701/523*x^10+1144/523*x^9-8631/523*x^8-11128/523*x^7+36025/523*x^6+30055/523*x^5-61261/523*x^4-19031/523*x^3+37120/523*x^2-8126/523*x-1824/523], x^11+3*x^10-10*x^9-32*x^8+31*x^7+109*x^6-42*x^5-147*x^4+35*x^3+68*x^2-19*x-1];
88
E[317,2]=[[x,-2929/9028*x^14+3305/4514*x^13+31073/4514*x^12-35302/2257*x^11-248773/4514*x^10+573563/4514*x^9+919473/4514*x^8-4378801/9028*x^7-3005667/9028*x^6+1935368/2257*x^5+1592783/9028*x^4-5224775/9028*x^3-38286/2257*x^2+248643/2257*x-29861/9028,6887/4514*x^14-10787/4514*x^13-144831/4514*x^12+232879/4514*x^11+1153635/4514*x^10-1909601/4514*x^9-4281777/4514*x^8+3670378/2257*x^7+7216765/4514*x^6-12991581/4514*x^5-2205724/2257*x^4+8622515/4514*x^3+846049/4514*x^2-1576987/4514*x+2893/2257,-175/122*x^14+251/122*x^13+3703/122*x^12-5485/122*x^11-29711/122*x^10+45521/122*x^9+111249/122*x^8-88481/61*x^7-189781/122*x^6+316101/122*x^5+59244/61*x^4-210853/122*x^3-22725/122*x^2+38633/122*x-55/61,93/4514*x^14-1741/4514*x^13-2817/4514*x^12+35583/4514*x^11+30911/4514*x^10-277307/4514*x^9-158111/4514*x^8+512581/2257*x^7+392617/4514*x^6-1800053/4514*x^5-224672/2257*x^4+1279815/4514*x^3+214893/4514*x^2-246421/4514*x-3148/2257,-2172/2257*x^14+2583/2257*x^13+45696/2257*x^12-56593/2257*x^11-365097/2257*x^10+469928/2257*x^9+1366782/2257*x^8-1822073/2257*x^7-2356643/2257*x^6+3225372/2257*x^5+1542585/2257*x^4-2096010/2257*x^3-333769/2257*x^2+368683/2257*x+6380/2257,-1331/2257*x^14+3359/4514*x^13+55369/4514*x^12-73415/4514*x^11-434575/4514*x^10+608867/4514*x^9+1576641/4514*x^8-2363585/4514*x^7-1269561/2257*x^6+4210995/4514*x^5+1333379/4514*x^4-1396928/2257*x^3-103501/4514*x^2+509893/4514*x-20707/4514,-5113/9028*x^14+2227/2257*x^13+27379/2257*x^12-96937/4514*x^11-222537/2257*x^10+400941/2257*x^9+845411/2257*x^8-6220667/9028*x^7-5890799/9028*x^6+5556089/4514*x^5+3910273/9028*x^4-7456363/9028*x^3-501477/4514*x^2+676885/4514*x+58729/9028,16115/4514*x^14-24093/4514*x^13-339749/4514*x^12+524035/4514*x^11+2711963/4514*x^10-4328791/4514*x^9-10072577/4514*x^8+8377156/2257*x^7+16914173/4514*x^6-29824007/4514*x^5-5050561/2257*x^4+19893597/4514*x^3+1706727/4514*x^2-3701483/4514*x+27260/2257,1553/2257*x^14-921/2257*x^13-32698/2257*x^12+22740/2257*x^11+261188/2257*x^10-208659/2257*x^9-974375/2257*x^8+875377/2257*x^7+1658616/2257*x^6-1630991/2257*x^5-1029345/2257*x^4+1063558/2257*x^3+161992/2257*x^2-187810/2257*x+11815/2257,6683/4514*x^14-5559/2257*x^13-70600/2257*x^12+120478/2257*x^11+564211/2257*x^10-992156/2257*x^9-2093468/2257*x^8+7663319/4514*x^7+6987355/4514*x^6-6818910/2257*x^5-4089421/4514*x^4+9143453/4514*x^3+354317/2257*x^2-866859/2257*x+10787/4514,20437/9028*x^14-6599/2257*x^13-216293/4514*x^12+292305/4514*x^11+1735175/4514*x^10-1228459/2257*x^9-6487451/4514*x^8+19324327/9028*x^7+22018405/9028*x^6-8716942/2257*x^5-13481329/9028*x^4+23502269/9028*x^3+606540/2257*x^2-2236959/4514*x+8909/9028,3196/2257*x^14-8437/4514*x^13-135589/4514*x^12+185531/4514*x^11+1091693/4514*x^10-1549371/4514*x^9-4109965/4514*x^8+6059917/4514*x^7+3542179/2257*x^6-10891007/4514*x^5-4546235/4514*x^4+3663061/2257*x^3+926941/4514*x^2-1376345/4514*x-9993/4514,-14065/4514*x^14+10999/2257*x^13+148765/2257*x^12-239150/2257*x^11-1191184/2257*x^10+1974724/2257*x^9+4434241/2257*x^8-15276035/4514*x^7-14896263/4514*x^6+13578423/2257*x^5+8869393/4514*x^4-18051225/4514*x^3-778650/2257*x^2+1662008/2257*x-25581/4514,11435/9028*x^14-7811/4514*x^13-119927/4514*x^12+84497/2257*x^11+954521/4514*x^10-1387373/4514*x^9-3555091/4514*x^8+10662339/9028*x^7+12159461/9028*x^6-4697893/2257*x^5-7809617/9028*x^4+12257485/9028*x^3+400337/2257*x^2-526992/2257*x+19623/9028,-36765/9028*x^14+14602/2257*x^13+389175/4514*x^12-633731/4514*x^11-3122259/4514*x^10+2611956/2257*x^9+11674369/4514*x^8-40362223/9028*x^7-39644685/9028*x^6+17934232/2257*x^5+24423025/9028*x^4-47773865/9028*x^3-1181966/2257*x^2+4409499/4514*x-29497/9028,-5147/2257*x^14+6972/2257*x^13+107488/2257*x^12-150021/2257*x^11-851091/2257*x^10+1225302/2257*x^9+3149557/2257*x^8-4689700/2257*x^7-5335443/2257*x^6+8256574/2257*x^5+3356435/2257*x^4-5430777/2257*x^3-659094/2257*x^2+979694/2257*x-7019/2257,-37839/9028*x^14+27171/4514*x^13+199881/2257*x^12-296991/2257*x^11-1601301/2257*x^10+4932751/4514*x^9+5986059/2257*x^8-38401747/9028*x^7-40767359/9028*x^6+34401565/4514*x^5+25377509/9028*x^4-46291615/9028*x^3-2444959/4514*x^2+2164901/2257*x+8847/9028,3292/2257*x^14-12905/4514*x^13-139803/4514*x^12+276175/4514*x^11+1120999/4514*x^10-2244045/4514*x^9-4157539/4514*x^8+8538811/4514*x^7+3432137/2257*x^6-14922643/4514*x^5-3813489/4514*x^4+4856021/2257*x^3+525745/4514*x^2-1730153/4514*x+64959/4514,-43941/9028*x^14+20520/2257*x^13+233821/2257*x^12-883725/4514*x^11-1883624/2257*x^10+3615626/2257*x^9+7051200/2257*x^8-55498171/9028*x^7-47591579/9028*x^6+49063731/4514*x^5+28485117/9028*x^4-65251763/9028*x^3-2678623/4514*x^2+6013003/4514*x-20863/9028,7233/9028*x^14-2053/2257*x^13-73979/4514*x^12+86345/4514*x^11+574047/4514*x^10-344361/2257*x^9-2090865/4514*x^8+5159795/9028*x^7+7054225/9028*x^6-2234494/2257*x^5-4497889/9028*x^4+5806573/9028*x^3+169359/2257*x^2-465737/4514*x+125621/9028,8489/4514*x^14-12237/4514*x^13-176465/4514*x^12+264975/4514*x^11+1387013/4514*x^10-2182485/4514*x^9-5065657/4514*x^8+4227002/2257*x^7+8336827/4514*x^6-15179531/4514*x^5-2390345/2257*x^4+10410839/4514*x^3+651881/4514*x^2-2024931/4514*x+28098/2257,12983/2257*x^14-19483/2257*x^13-275240/2257*x^12+424996/2257*x^11+2211621/2257*x^10-3520466/2257*x^9-8282851/2257*x^8+13658008/2257*x^7+14080307/2257*x^6-24349750/2257*x^5-8633637/2257*x^4+16234388/2257*x^3+1541740/2257*x^2-2992441/2257*x+45003/2257,11793/9028*x^14-6576/2257*x^13-125713/4514*x^12+279127/4514*x^11+1015157/4514*x^10-1126653/2257*x^9-3817597/4514*x^8+17113883/9028*x^7+13028721/9028*x^6-7545876/2257*x^5-8133797/9028*x^4+20446833/9028*x^3+460110/2257*x^2-1931723/4514*x-121055/9028,-7513/2257*x^14+10590/2257*x^13+157677/2257*x^12-230022/2257*x^11-1254216/2257*x^10+1897920/2257*x^9+4655676/2257*x^8-7344475/2257*x^7-7879449/2257*x^6+13099492/2257*x^5+4898420/2257*x^4-8792509/2257*x^3-960175/2257*x^2+1632518/2257*x+4316/2257], x^15-x^14-22*x^13+22*x^12+188*x^11-184*x^10-786*x^9+723*x^8+1666*x^7-1315*x^6-1715*x^5+910*x^4+829*x^3-168*x^2-129*x+1];
89
E[318,1]=[[-1,-1,-1,0,-1,-2,-7,2,-5,-4,-1,-2,-4,-1,6,-1,9,10,-2,0,10,1,6,-1,-13], x-1];
90
E[318,2]=[[1,-1,-3,-4,-5,-2,5,6,-7,-8,1,2,4,-1,-6,1,-3,-2,-10,0,-6,15,-10,-5,19], x-1];
91
E[318,3]=[[-1,1,0,5,-3,-4,6,5,-3,3,8,-4,-3,-4,6,-1,-12,-1,-13,-15,2,-16,0,0,5], x-1];
92
E[318,4]=[[1,-1,0,1,5,0,2,-1,3,-1,-4,0,-9,0,6,-1,-4,-7,1,7,-14,-8,8,-12,13], x-1];
93
E[318,5]=[[-1,-1,4,1,-1,-4,6,-1,9,-3,-8,12,5,-8,-2,1,4,-7,1,-3,6,-4,-8,-4,-3], x-1];
94
E[318,6]=[[1,1,1/2*x+1/2,-1/2*x+1/2,-1,-x-1,-1/2*x-5/2,1/2*x+3/2,x,-1/2*x-7/2,1/2*x+1/2,x+1,-3/2*x-13/2,3/2*x+3/2,2*x,1,-3/2*x-3/2,-1/2*x+5/2,-5/2*x+9/2,-3/2*x-5/2,2*x,-1/2*x+15/2,-x-9,7/2*x-1/2,3*x], x^2-17];
95
E[318,7]=[[-1,1,-x+2,0,x,6,x-6,2*x-4,x,-2*x+2,-3*x+4,6,2*x-2,x+4,2*x-8,-1,-x,-6,-2*x-4,0,2,3*x-12,-2*x+4,3*x-6,3*x-6], x^2-3*x-8];
96
E[319,1]=[[2,-3,1,4,-1,6,4,-2,3,1,-7,-11,4,-4,8,2,-3,2,-15,-7,2,6,-6,9,-17], x-1];
97
E[319,2]=[[x,-x,-2*x^2+x+2,2*x^2-2*x-5,1,x^2+x-4,-x^2+x-2,x-4,-4*x^2+4*x+8,1,3*x^2-2*x-9,4*x^2-x-3,-x^2+2*x-3,-5*x^2+x+13,-2*x^2+x+3,-x^2-5*x,-2*x^2-3*x+4,4*x^2-8*x-11,x^2+4*x+3,-x^2-3*x+10,-2*x^2+5*x+1,-5*x^2+7*x+15,7*x^2-x-18,x^2+x-14,-6*x^2+x+10], x^3-3*x-1];
98
E[319,3]=[[x,-x^3-2*x^2+2*x+1,x^3+2*x^2-2*x-3,x^3+2*x^2-3*x-2,-1,-2*x^3-5*x^2+x+4,3*x^2+5*x-6,x,-x^3-4*x^2-x+5,-1,-x^2+2*x+1,2*x^3+2*x^2-5*x-1,-x^3-x^2+x-10,5*x^3+11*x^2-6*x-8,-x^3+6*x-4,3*x^2+7*x,3*x^3+6*x^2-8*x-11,-3*x^3-4*x^2+13*x+4,2*x^3+9*x^2-2*x-15,x^3+7*x^2+6*x-15,-x^3-2*x^2-4*x-2,-3*x^3-9*x^2+10,-7*x^2-11*x+12,-5*x^3-13*x^2+10*x+9,-x^3-8*x^2-8*x+15], x^4+2*x^3-3*x^2-3*x+2];
99
E[319,4]=[[x,-x^4+x^3+5*x^2-3*x-3,x^5-x^4-6*x^3+4*x^2+7*x-1,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,1,x^5-2*x^4-4*x^3+6*x^2+2*x+1,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3,-3*x^6+8*x^5+13*x^4-38*x^3-6*x^2+28*x+1,x^6-4*x^5-2*x^4+19*x^3-7*x^2-15*x+4,-1,x^6-4*x^5-x^4+17*x^3-13*x^2-6*x+7,-x^6+5*x^5+x^4-25*x^3+9*x^2+20*x,-x^6+x^5+7*x^4-4*x^3-12*x^2+7,-x^6+3*x^5+4*x^4-15*x^3+x^2+15*x-4,-3*x^6+7*x^5+13*x^4-33*x^3-5*x^2+28*x-2,x^6-3*x^5-4*x^4+15*x^3-x^2-15*x+7,x^6-6*x^5-x^4+36*x^3-10*x^2-46*x+1,3*x^6-10*x^5-8*x^4+47*x^3-13*x^2-33*x+5,x^6-3*x^5-5*x^4+16*x^3+4*x^2-14*x-3,-2*x^6+2*x^5+14*x^4-11*x^3-25*x^2+16*x+9,x^6-3*x^5-x^4+11*x^3-15*x^2+2*x+12,2*x^6-6*x^5-8*x^4+29*x^3+3*x^2-24*x,-2*x^6+9*x^5+4*x^4-