CoCalc
Sharedwww / Tables / ap_s2new_201-300.gpOpen in CoCalc
\\ ap_s2new_201-300.gp
\\ This is a table of eigenforms for the action of 
\\ the Hecke operators on S_2^{new}(Gamma_0(N)).
\\ William Stein ([email protected]), October, 1998.
\\ 201<=N<=300
\\ E=matrix(300,?,i,j,0);
\\ E[N,ith eigenform]=[[a_2,...,a_97],  f(x)]
\\ where the a_i are defined over Q[x]/f(x).

\\ The following are missing: N=225, 243, 256, 288

E[201,1]=[[-1,1,-1,-5,-4,-4,6,-2,-3,4,-7,5,-3,7,8,-5,3,-2,1,-12,-13,-8,1,4,-12], x-1];
E[201,2]=[[-2,-1,0,0,-6,4,-7,-5,-1,1,-4,3,0,-6,9,10,3,2,-1,-16,-7,8,-4,-15,4], x-1];
E[201,3]=[[1,-1,-3,-3,0,4,2,-2,-7,-8,-1,-3,-9,9,0,1,-9,14,-1,-4,11,-16,5,0,16], x-1];
E[201,4]=[[x,-1,-x^2+x+3,-x^2+2*x+2,-x^2+7,-x^2+1,3*x^2-4*x-7,-x^2-2*x+5,3*x^2-5*x-5,-4*x^2+4*x+12,4*x^2-6*x-5,3*x^2-2*x-12,2*x^2+x-8,-1,-3*x^2+6*x+11,2*x^2-7*x+2,5*x,5*x^2-6*x-13,1,-3*x^2+2*x+15,-2*x^2+1,2*x^2-2*x+4,-2*x^2+5*x,-3*x^2-2*x+11,-7*x^2+14*x+9], x^3-3*x^2-x+5];
E[201,5]=[[x,1,1/2*x^4-1/2*x^3-7/2*x^2+5/2*x+3,-1/2*x^4-1/2*x^3+5/2*x^2+3/2*x+1,x^3-5*x,x^3-5*x+2,-x^4-x^3+6*x^2+3*x-5,x^4-x^3-6*x^2+5*x+5,1/2*x^4+1/2*x^3-5/2*x^2-5/2*x,x^3+3*x^2-5*x-9,-1/2*x^4+1/2*x^3+9/2*x^2-7/2*x-5,-1/2*x^4+1/2*x^3+7/2*x^2+1/2*x-2,-1/2*x^4-1/2*x^3+7/2*x^2+1/2*x-5,1/2*x^4-1/2*x^3-9/2*x^2+11/2*x+7,-x^4+x^3+6*x^2-5*x-5,-3/2*x^4-3/2*x^3+13/2*x^2+15/2*x-1,3/2*x^4+1/2*x^3-15/2*x^2-5/2*x,x^4+2*x^3-5*x^2-10*x+2,-1,-2*x^4-x^3+14*x^2+3*x-10,-1/2*x^4-5/2*x^3+11/2*x^2+27/2*x-10,-2*x^2+6*x+12,-1/2*x^4-1/2*x^3-1/2*x^2-3/2*x+11,2*x^3-x^2-8*x+1,2*x^4-x^3-16*x^2+7*x+18], x^5-8*x^3+13*x+2];
E[202,1]=[[-1,x,x^2+x-3,-3*x^2-8*x,x^2+3*x-3,3*x^2+10*x,-2*x^2-5*x-2,-2,2*x^2+6*x-4,-4*x^2-6*x+6,4*x^2+8*x,4*x^2+7*x-4,-4*x^2-10*x+4,-2,-6*x^2-18*x-2,2*x+2,-3*x^2-10*x+2,8*x+8,4*x^2+7*x-12,4*x^2+16*x+2,-2*x^2-10*x-4,2*x^2-2*x-6,-5*x^2-15*x-5,6*x^2+8*x-12,9*x^2+21*x-1], x^3+3*x^2-1];
E[202,2]=[[1,x,x^3+2*x^2-5*x-2,-x^3-2*x^2+4*x+3,-3*x^3-8*x^2+11*x+16,-x^2-2*x+4,3*x^3+9*x^2-11*x-19,3*x^3+7*x^2-12*x-15,-2*x^3-4*x^2+10*x+6,-x^3-x^2+6*x+1,4*x^3+12*x^2-12*x-28,x,2*x,-3*x^3-7*x^2+12*x+11,-4*x^3-10*x^2+18*x+18,3*x^3+7*x^2-14*x-7,-2*x^3-7*x^2+2*x+20,-3*x^3-7*x^2+16*x+13,2*x^3+6*x^2-9*x-18,4*x^3+8*x^2-16*x-10,-2*x^2-2*x+12,-8*x^3-22*x^2+30*x+42,7*x^3+16*x^2-31*x-20,2*x^2+8*x-8,-6*x^3-13*x^2+27*x+21], x^4+x^3-8*x^2+x+8];
E[202,3]=[[-1,0,2,1,4,0,5,1,6,-5,0,-8,-4,-5,6,3,-12,-1,2,-10,-16,-2,16,0,13], x-1];
E[203,1]=[[-1,-1,1,1,-5,-5,-4,-4,6,1,7,-10,0,-9,7,3,0,14,-6,8,-16,-9,16,-6,0], x-1];
E[203,2]=[[1,2,2,1,-4,-2,4,2,0,-1,-2,2,0,0,-10,6,12,-4,12,-8,-4,12,-16,12,12], x-1];
E[203,3]=[[-2,-1,-4,1,2,4,-2,5,9,-1,-8,8,-3,-6,-7,9,0,2,3,7,-1,0,14,15,3], x-1];
E[203,4]=[[2,-1/2*x+1,x,-1,x-2,-x+4,x,-3/2*x+1,-x-1,1,2,-3*x,1/2*x+5,-6,-3/2*x+5,4*x+1,-x-8,3*x,3*x+5,7,7/2*x-3,x-4,-2*x+2,3/2*x+5,3/2*x+11], x^2-8];
E[203,5]=[[-1,x-2,x,-1,x-2,-x+4,-2*x+6,4,2*x-4,1,-3*x+2,6,2*x-10,-3*x+6,-3*x+2,-5*x+4,-4*x+4,6,-6*x+8,-8,2*x+6,x+2,4*x-4,2,-6*x+14], x^2-3*x-2];
E[203,6]=[[-1/2*x^2-2*x-1/2,1/2*x^2+x-5/2,x,-1,1/2*x^2+3*x+7/2,-5,x^2+x-4,-2*x^2-7*x-1,-2*x^2-8*x,-1,-1/2*x^2+3/2,x^2+5*x-2,x^2+2*x-3,3/2*x^2+5*x-7/2,3/2*x^2+3*x-11/2,-x^2-5*x-7,-2*x^2-3*x+5,-2*x-12,5*x^2+15*x-2,3*x^2+9*x-4,-2*x^2-6*x,-5/2*x^2-6*x+27/2,x-1,-2*x^2-x+15,-6*x^2-20*x+2], x^3+5*x^2+3*x-5];
E[203,7]=[[-1/2*x^3+x^2+5/2*x,1/2*x^3-x^2-7/2*x+1,x,1,-1/2*x^4+x^3+9/2*x^2-4*x-6,x^3-3*x^2-3*x+8,x^2-x-6,1/2*x^4-3/2*x^3-5/2*x^2+9/2*x-1,-1/2*x^4+1/2*x^3+11/2*x^2-1/2*x-9,-1,1/2*x^4-11/2*x^2-6*x+8,-2*x^3+5*x^2+9*x-4,1/2*x^4-3/2*x^3-7/2*x^2+15/2*x+3,1/2*x^4-x^3-5/2*x^2+2,-1/2*x^3+3*x^2-1/2*x-9,1/2*x^4-3/2*x^3-7/2*x^2+13/2*x+3,-x^3+x^2+8*x,-x^4+x^3+11*x^2-3*x-10,-1/2*x^4+1/2*x^3+5/2*x^2+9/2*x+5,-1/2*x^4+5/2*x^3-3/2*x^2-15/2*x+9,1/2*x^4-1/2*x^3-11/2*x^2-3/2*x+17,-1/2*x^4+x^3+7/2*x^2-3*x-4,x^4-4*x^3-2*x^2+15*x-6,1/2*x^4+1/2*x^3-17/2*x^2-7/2*x+9,-3/2*x^4+7/2*x^3+21/2*x^2-15/2*x-19], x^5-5*x^4-3*x^3+29*x^2+6*x-24];
E[204,1]=[[0,-1,-1,4,3,3,-1,1,3,-10,6,-4,5,-1,-2,-14,-6,8,-12,12,2,-14,6,16,0], x-1];
E[204,2]=[[0,1,1,0,5,-5,1,1,-3,2,2,-8,-5,-9,6,-6,6,-4,12,-12,-2,10,-2,12,16], x-1];
E[205,1]=[[-1,2,-1,2,6,2,2,-6,-4,10,0,-6,1,-4,-2,-14,12,-10,-2,-2,6,-2,0,10,10], x-1];
E[205,2]=[[-1,0,1,-4,0,-2,-6,0,-8,6,0,6,1,4,-4,6,-4,14,-8,-12,-6,-4,4,-6,-6], x-1];
E[205,3]=[[1,2,1,2,0,-4,4,0,-8,2,0,-6,-1,8,2,8,-12,2,10,8,-6,-8,12,14,-8], x-1];
E[205,4]=[[-1/3*x-2/3,-3,1,1/3*x-4/3,-3,x,-2/3*x-7/3,-x-2,-2/3*x+5/3,-1/3*x-8/3,x-1,-x-2,1,5/3*x-2/3,-1/3*x-29/3,-2/3*x-16/3,x-8,-2/3*x-19/3,-x-4,-2/3*x+29/3,x-1,1/3*x+23/3,-1/3*x-23/3,8/3*x+1/3,-2*x+2], x^2+x-29];
E[205,5]=[[x^2+2*x-11,x^2+x-10,1,-2*x^2-3*x+22,-x^2-x+12,x,-3*x^2-5*x+32,-2*x^2-3*x+20,x^2+x-4,2*x^2+3*x-26,7*x^2+12*x-80,2*x^2+3*x-18,-1,-4*x^2-7*x+44,-3*x^2-2*x+34,-4*x^2-6*x+40,-2*x^2-3*x+32,-x^2-x+6,10*x^2+17*x-114,x^2+3*x-12,9*x^2+14*x-94,-13*x^2-18*x+136,3*x^2+4*x-28,7*x^2+11*x-78,10*x^2+16*x-112], x^3-x^2-15*x+28];
E[205,6]=[[x^2+2*x-1,x^2+3*x,-1,-x-4,-x^2-x+4,x,-x^2-5*x,-x+4,-3*x^2-7*x+6,2*x^2+3*x-4,-x^2+4,2*x^2+5*x-8,1,-x-2,3*x^2+6*x-2,-2*x^2+10,-3*x+2,-3*x^2-9*x+4,-4*x^2-13*x,x^2+3*x-4,-3*x^2-8*x+2,3*x^2+6*x-2,-x^2-2*x+8,-3*x^2-11*x-4,-4*x^2-6*x+6], x^3+3*x^2-x-2];
E[205,7]=[[1/3*x,-1,-1,-x,2/3*x-3,x,2/3*x+1,-x-4,-3,-1/3*x-2,5/3*x-1,-1/3*x,-1,x,-1/3*x-1,2/3*x,1/3*x-8,-2*x-5,1/3*x+4,-4*x-9,x+11,7/3*x-5,-5/3*x-13,-2/3*x-1,-2/3*x+6], x^2+3*x-9];
E[206,1]=[[-1,2,4,0,-6,-2,2,-4,0,-6,8,8,2,2,-8,-12,12,10,-2,0,10,0,-4,2,14], x-1];
E[206,2]=[[-1,x,-x+1,x-2,4,-2*x+2,-x-1,6,-x-3,-6,8,x-4,-x-6,-x-1,2*x-2,-x+5,-2*x-4,2*x-4,-3*x+4,4*x+2,2*x-4,-3*x+6,-4,2*x-2,-x-9], x^2-x-7];
E[206,3]=[[-1,x,x-1,x+4,0,2*x+6,-x+1,2,3*x+3,6,-4,-3*x-4,-x+4,-3*x-7,-2*x-10,-3*x-9,-6*x-12,2*x,-7*x-12,6,2*x+12,x+4,-4*x+4,2*x+10,3*x+5], x^2+3*x-1];
E[206,4]=[[1,x,-x^3+5*x-2,2*x^3-x^2-12*x+9,-2*x^3+2*x^2+10*x-10,2*x^3-10*x+4,2*x^3-3*x^2-12*x+12,-2*x^2-2*x+8,-4*x^3+3*x^2+24*x-20,-4*x^3+2*x^2+22*x-16,-4*x^3+2*x^2+22*x-14,2*x^3+2*x^2-11*x,2*x^3+x^2-8*x-5,5*x^3-4*x^2-27*x+26,2*x^3-2*x^2-8*x+10,3*x^3-4*x^2-17*x+20,2*x^3+2*x^2-12*x,-4*x^3+2*x^2+24*x-18,2*x^3-2*x^2-11*x+16,-2*x^3+12*x-4,-2*x+4,4*x^3-5*x^2-22*x+31,2*x^3-2*x^2-6*x+12,2*x^2-4*x-4,-8*x^3+3*x^2+44*x-30], x^4-2*x^3-5*x^2+12*x-5];
E[207,1]=[[-1,0,0,-2,-4,-6,-4,2,1,-2,4,2,-2,10,0,12,12,-6,-10,-8,-14,10,-12,16,-10], x-1];
E[207,2]=[[x,0,-x+3,-x-1,-2*x+2,0,x+5,-3*x+1,1,6*x-6,6*x-6,-2*x,-4*x+8,3*x-9,4*x-10,-5*x+7,4*x-2,-2*x+4,-x+11,-4*x-4,8*x-6,7*x-9,2*x+2,5*x+1,-10], x^2-2*x-1];
E[207,3]=[[x,0,-x+1,x+1,-4,-2*x,-x+5,x+5,-1,-2*x,-2*x-2,2*x,4*x+2,-3*x+1,4,x+3,4*x-4,2*x,-x+3,8,4*x-2,3*x+3,-4,x-1,2*x+4], x^2-5];
E[207,4]=[[x,0,2*x,-2*x+2,-2*x+4,3,-2*x-2,-2,-1,3,-6*x+3,2*x,-4*x+1,0,-2*x+1,4*x+2,4*x-4,8*x-2,-2*x-4,2*x-11,4*x+9,8*x-6,2*x+10,-4*x+8,-6*x+14], x^2-x-1];
E[207,5]=[[x,0,-x-3,x-1,-2*x-2,0,x-5,3*x+1,-1,6*x+6,-6*x-6,2*x,-4*x-8,-3*x-9,4*x+10,-5*x-7,4*x+2,2*x+4,x+11,-4*x+4,-8*x-6,-7*x-9,2*x-2,5*x-1,-10], x^2+2*x-1];
E[208,1]=[[0,-1,-3,1,-6,1,-3,-2,0,6,4,-7,0,1,-3,0,6,8,-14,3,2,-8,-12,-6,-10], x-1];
E[208,2]=[[0,3,-1,-1,2,-1,-3,-6,4,2,-4,3,0,5,-13,12,10,-8,2,5,-10,4,0,6,14], x-1];
E[208,3]=[[0,0,2,2,2,-1,6,6,-8,2,-10,-6,-6,-4,2,6,10,-2,-10,-10,2,4,6,-6,2], x-1];
E[208,4]=[[0,-1,-1,-5,2,-1,-3,2,-4,-6,4,11,8,1,-9,-12,-6,0,-6,-7,-2,-12,16,-10,-10], x-1];
E[208,5]=[[0,-x,-x+2,x,2*x,1,3*x-2,-2*x,8,-2,-4,3*x+2,-2*x+2,x-8,-3*x+8,2*x-2,-2*x,2*x+6,2*x,3*x,-6,-8,-4*x+8,10,-4*x+2], x^2-x-4];
E[209,1]=[[x,-x-1,-1,-x-2,-1,3*x-2,x+2,-1,-3,-3*x-2,-x-5,5*x+3,-4*x+4,-4*x+6,2*x+6,-6*x+4,x-3,-5*x-4,-x-9,-x-11,-6*x+4,x-16,x+2,7*x-5,x+1], x^2-2];
E[209,2]=[[x,1/2*x^4-x^3-5/2*x^2+4*x+1,-1/2*x^3+7/2*x-1,-1/2*x^3+3/2*x+2,1,-1/2*x^4+7/2*x^2-2,x^4-x^3-5*x^2+3*x,-1,-x^4+x^3+8*x^2-5*x-9,3/2*x^4-x^3-17/2*x^2+2*x+6,-1/2*x^4+2*x^3+5/2*x^2-10*x+1,x^4-8*x^2+9,-5/2*x^4+3*x^3+27/2*x^2-13*x-4,-x^4+5/2*x^3+4*x^2-15/2*x+4,x^4-9*x^2+8,-x^4-x^3+9*x^2+5*x-14,-x^4-x^3+6*x^2+5*x-1,x^4-x^3-5*x^2+5*x-2,-5/2*x^4+3*x^3+25/2*x^2-9*x-1,-1/2*x^4+3*x^3+1/2*x^2-10*x+7,x^4-4*x^3-7*x^2+22*x+8,x^3-5*x+8,x^4-3/2*x^3-4*x^2+17/2*x-6,x^3-x^2-5*x-3,2*x^4-2*x^3-13*x^2+4*x+15], x^5-2*x^4-6*x^3+10*x^2+5*x-4];
E[209,3]=[[x,-1/2*x^4+7/2*x^2-x-2,1/2*x^5-9/2*x^3+7*x+3,-1/4*x^6+3*x^4-37/4*x^2+13/2,-1,-1/4*x^6-1/2*x^5+5/2*x^4+9/2*x^3-27/4*x^2-9*x+7/2,x^4-x^3-9*x^2+7*x+12,1,1/2*x^6-5*x^4+21/2*x^2+2*x,-1/2*x^4+9/2*x^2-x-9,1/4*x^6+1/2*x^5-5/2*x^4-9/2*x^3+23/4*x^2+9*x+7/2,-x^5-x^4+10*x^3+8*x^2-21*x-13,-1/4*x^6-1/2*x^5+5/2*x^4+7/2*x^3-27/4*x^2-2*x+3/2,-1/2*x^6-1/2*x^5+5*x^4+9/2*x^3-21/2*x^2-9*x-1,x^4-2*x^3-9*x^2+14*x+12,-x^5-x^4+9*x^3+9*x^2-16*x-18,2*x^5+x^4-19*x^3-6*x^2+37*x+9,x^4-x^3-9*x^2+9*x+14,1/4*x^6-1/2*x^5-5/2*x^4+9/2*x^3+15/4*x^2-9*x+7/2,-1/2*x^6-x^5+9/2*x^4+9*x^3-6*x^2-17*x-9,1/2*x^6+x^5-5*x^4-7*x^3+27/2*x^2+6*x-7,x^3-9*x+8,-1/2*x^6+1/2*x^5+7*x^4-11/2*x^3-57/2*x^2+12*x+27,-1/2*x^6-x^5+4*x^4+8*x^3-3/2*x^2-13*x-18,x^5+2*x^4-10*x^3-17*x^2+27*x+23], x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30];
E[209,4]=[[0,1,-3,-4,1,2,0,1,3,-6,-7,-7,0,-10,0,6,3,-10,11,15,8,-16,0,9,-1], x-1];
E[210,1]=[[1,1,-1,1,0,2,-6,-4,0,-6,-4,2,6,8,-12,6,-12,2,8,0,14,-16,12,6,14], x-1];
E[210,2]=[[1,-1,1,1,4,-2,2,-4,-8,6,-8,-2,2,-12,-8,6,4,-2,12,8,-14,0,12,2,10], x-1];
E[210,3]=[[-1,-1,-1,-1,-4,-2,-6,0,-8,10,-8,2,-2,8,4,10,4,-6,0,-12,-6,-8,-4,14,2], x-1];
E[210,4]=[[1,1,1,-1,-4,-2,2,4,-8,-2,0,6,-6,-4,0,-10,12,14,-12,-8,10,16,-12,10,2], x-1];
E[210,5]=[[-1,1,1,1,0,2,-6,8,0,6,-4,-10,-6,-4,0,-6,-12,-10,-4,12,-10,8,12,-6,-10], x-1];
E[211,1]=[[x,x+1,-2*x+2,-x+1,-3,-2*x+5,-x+6,-3*x-1,2*x+3,2*x-1,5*x-8,8*x-6,-3,9,-x+1,x+6,6*x-3,-3,-12,-10*x+2,-5*x-1,6*x-8,4*x+2,-3*x+9,3*x-1], x^2-x-1];
E[211,2]=[[x,-x-1,-x^2-x+1,x-1,-3,2*x^2-5,-x^2-3,x^2-2,-x^2+x+8,-x^2+x-4,-3*x^2+9,x^2-x-1,-x^2-5*x+2,-4*x+1,x^2+2*x-4,x^2-3,3*x^2-x-12,-3*x^2-3*x+8,0,5*x^2+5*x-17,-x+1,-7*x^2-3*x+17,2*x^2-2*x+4,4*x^2+7*x-9,-4*x^2-3*x+13], x^3-4*x+1];
E[211,3]=[[x,-x^2-x+1,x^2+x-4,-x^2-4*x,3*x^2+7*x-2,2*x^2+3*x-3,x^2+3*x+2,-2*x^2-x+1,-x-7,-7*x^2-12*x+4,-x^2-5*x-3,-2*x^2+x+4,-4*x^2-6*x-2,x^2+4*x+2,x^2-x+1,5*x^2+5*x-10,-7*x^2-10*x+9,4*x^2+4*x-13,-x^2+x+5,5*x^2+9*x+2,-6*x^2-2*x+10,8*x^2+14*x-4,5*x^2+9*x-11,-2*x^2-x-7,-8*x^2-13*x+5], x^3+2*x^2-x-1];
E[211,4]=[[x,9/58*x^8+15/58*x^7-2*x^6-157/58*x^5+235/29*x^4+222/29*x^3-637/58*x^2-161/29*x+62/29,7/116*x^8+31/116*x^7-1/2*x^6-309/116*x^5+41/58*x^4+183/29*x^3+91/116*x^2-93/58*x+8/29,-13/58*x^8-41/58*x^7+2*x^6+433/58*x^5-101/29*x^4-630/29*x^3-111/58*x^2+500/29*x+78/29,3/29*x^8-19/58*x^7-3/2*x^6+112/29*x^5+381/58*x^4-374/29*x^3-280/29*x^2+665/58*x+167/29,3/116*x^8+5/116*x^7-33/116*x^5-43/29*x^4+8/29*x^3+271/116*x^2+7/29*x+49/29,-5/29*x^8-18/29*x^7+2*x^6+200/29*x^5-216/29*x^4-614/29*x^3+341/29*x^2+456/29*x-172/29,33/116*x^8+55/116*x^7-3*x^6-595/116*x^5+223/29*x^4+465/29*x^3-151/116*x^2-416/29*x-99/29,7/29*x^8+2/29*x^7-3*x^6-19/29*x^5+314/29*x^4+65/29*x^3-286/29*x^2-128/29*x-84/29,-4/29*x^8+3/29*x^7+2*x^6-43/29*x^5-283/29*x^4+170/29*x^3+499/29*x^2-192/29*x-68/29,17/58*x^8+9/58*x^7-3*x^6-13/58*x^5+228/29*x^4-180/29*x^3-301/58*x^2+350/29*x+72/29,25/58*x^8+16/29*x^7-9/2*x^6-275/58*x^5+703/58*x^4+259/29*x^3-313/58*x^2-105/58*x-121/29,-2/29*x^8+16/29*x^7+x^6-210/29*x^5-98/29*x^4+839/29*x^3+3/29*x^2-995/29*x+140/29,-35/116*x^8-39/116*x^7+7/2*x^6+385/116*x^5-669/58*x^4-277/29*x^3+1285/116*x^2+523/58*x-214/29,-83/116*x^8-177/116*x^7+7*x^6+1725/116*x^5-444/29*x^4-1101/29*x^3-383/116*x^2+744/29*x+365/29,-2/29*x^8+16/29*x^7+x^6-210/29*x^5-127/29*x^4+810/29*x^3+177/29*x^2-850/29*x-5/29,-12/29*x^8+9/29*x^7+6*x^6-100/29*x^5-791/29*x^4+307/29*x^3+1178/29*x^2-228/29*x-233/29,-21/58*x^8-35/58*x^7+4*x^6+347/58*x^5-384/29*x^4-431/29*x^3+1003/58*x^2+163/29*x-164/29,-1/58*x^8-21/58*x^7-x^6+185/58*x^5+338/29*x^4-160/29*x^3-1695/58*x^2+34/29*x+238/29,79/116*x^8+151/116*x^7-15/2*x^6-1565/116*x^5+1341/58*x^4+1158/29*x^3-2105/116*x^2-2135/58*x-34/29,-17/29*x^8-9/29*x^7+7*x^6+42/29*x^5-746/29*x^4+157/29*x^3+997/29*x^2-468/29*x-289/29,-16/29*x^8-5/58*x^7+13/2*x^6+2/29*x^5-1249/58*x^4+71/29*x^3+488/29*x^2-231/58*x+163/29,-22/29*x^8-56/29*x^7+8*x^6+590/29*x^5-701/29*x^4-1704/29*x^3+700/29*x^2+1264/29*x-55/29,69/58*x^8+115/58*x^7-13*x^6-1107/58*x^5+1183/29*x^4+1354/29*x^3-2351/58*x^2-722/29*x+282/29,19/58*x^8+51/58*x^7-4*x^6-557/58*x^5+422/29*x^4+836/29*x^3-797/58*x^2-617/29*x-172/29], x^9+x^8-14*x^7-11*x^6+66*x^5+36*x^4-123*x^3-38*x^2+72*x+8];
E[212,1]=[[0,2,2,0,-4,-2,2,2,-2,2,2,10,2,-4,-12,-1,-12,10,-2,6,10,10,-6,-10,14], x-1];
E[212,2]=[[0,-1,-2,-2,2,-7,-3,5,-3,9,-8,-3,2,4,10,1,-2,-10,4,-9,-6,5,-11,-10,-3], x-1];
E[212,3]=[[0,x,-x^2-2*x+3,x^2+2*x-1,-x^2+7,5,-2*x-1,x^2-x-7,-x^2-3*x+1,x^2+2*x-6,x^2+4*x-3,x^2-8,2*x^2+2*x-10,-x^2-4*x+1,2*x^2+4*x,-1,2*x^2+2*x-10,-x^2-4*x+1,x^2-2*x-9,2*x^2+3*x-8,-x^2-2*x+11,-4*x^2-3*x+18,x^2+x-5,-4*x^2-4*x+14,x^2+6*x-2], x^3+3*x^2-3*x-7];
E[213,1]=[[1,1,2,2,0,-2,0,0,0,-2,-10,-6,0,-4,12,-4,12,10,2,-1,-10,4,-4,6,-2], x-1];
E[213,2]=[[x,-1,-x,-3,-2*x-3,3*x-1,2*x+1,-2*x-5,5*x+1,3*x+3,-2,-9*x-3,x+8,9*x+3,-7*x-6,-5*x-4,6*x+3,-6*x-3,-5*x-11,-1,-2*x-6,5*x+2,-3,-6*x+3,9*x], x^2+x-1];
E[213,3]=[[x,1,-x,-1,3,-x-1,3,-2*x-1,-3*x+3,x+3,2,x-1,3*x,3*x+5,3*x-6,5*x,-3,2*x-13,3*x+5,-1,-6*x+2,-x-4,2*x+9,3,5*x+2], x^2-x-3];
E[213,4]=[[x,1,-x-4,2*x+1,-2*x-7,-3*x-5,2*x+1,2*x-1,3*x+3,-7*x-9,4*x+10,5*x+7,-x-10,3*x-3,3*x+12,x+6,-10*x-13,5,-11*x-19,1,-2*x-2,-x-4,2*x-3,4*x-1,-7*x-8], x^2+3*x+1];
E[213,5]=[[x,-1,-x^2+2*x+1,-x^2+x+4,-x^3+x^2+3*x+1,-x^3+2*x^2+x,2*x^3-5*x^2-5*x+6,3*x^3-5*x^2-9*x+7,-x^3+4*x^2+x-8,-x^3+4*x^2-3*x-6,-x^3-2*x^2+8*x+7,-x^3+2*x^2+3*x+2,-x^3+3*x^2+2*x-10,x^3-5*x+4,-2*x^3+7*x^2-9,3*x^3-7*x^2-6*x+8,3*x^3-5*x^2-11*x+9,x^3-x^2+x-3,2*x^2-x+3,1,-2*x^3+6*x^2+4*x-10,-4*x^3+5*x^2+14*x-3,-x^3-x^2+x+13,x^3+x^2-11*x-5,2*x^3-x^2-8*x-3], x^4-3*x^3-2*x^2+7*x+1];
E[214,1]=[[1,-2,-3,-4,-2,4,-2,-2,1,-4,-10,12,-11,1,-1,6,-5,4,-5,-12,-16,7,-16,9,12], x-1];
E[214,2]=[[-1,-2,-1,4,-6,-4,-6,-2,5,0,-2,0,-11,-9,11,10,-3,-8,5,0,8,11,4,-15,-12], x-1];
E[214,3]=[[-1,1,-4,-2,-3,-1,6,1,-7,-6,4,-9,-5,12,8,7,-6,1,-10,6,-4,-7,4,-15,-6], x-1];
E[214,4]=[[1,-x+1,x,x-1,x+3,x-1,-x-3,2,x-6,-3*x+3,2,-4*x-4,-4*x+3,-7,-x+6,6*x,-6*x+3,x-1,-1,5*x+3,7*x-1,-5*x+8,-3*x+9,6*x+3,-x-1], x^2-3];
E[214,5]=[[-1,x-3,x,x-3,-x+3,-x+3,-x+7,2,-x+2,-x+7,-4*x+6,-4,4*x-5,-9,x-2,-2*x+8,-2*x+9,-5*x+11,-4*x+13,-7*x+17,-x-3,9*x-20,-5*x+1,6*x-9,-9*x+21], x^2-4*x+1];
E[214,6]=[[1,1,0,2,-3,-1,6,-7,9,-6,-4,-1,3,8,0,-9,6,-7,14,6,-4,-7,12,9,14], x-1];
E[215,1]=[[x,-x^3+5*x,1,x^4-x^3-6*x^2+6*x+2,x^3-6*x-1,-x^4+5*x^2+x+3,x^4-7*x^2+x+1,-2*x^4+14*x^2-2*x-10,-x^4+5*x^2-x+3,-2*x^4+2*x^3+14*x^2-12*x-8,2*x^4+x^3-13*x^2-5*x+7,-x^4+x^3+7*x^2-5*x-4,x^4-x^3-5*x^2+8*x-3,-1,-2*x^2-2*x+8,-x^4+7*x^2-x-9,-x^3+5*x,-2*x^4+10*x^2+2*x+8,-x^4+2*x^3+7*x^2-15*x+1,-4*x^4+2*x^3+26*x^2-14*x-10,x^3-2*x^2-5*x+8,-x^4+x^3+7*x^2-7*x+4,x^4-5*x^2+3*x-5,2*x^4-2*x^3-14*x^2+10*x+14,x^4-9*x^2+x+19], x^5-2*x^4-7*x^3+13*x^2+5*x-4];
E[215,2]=[[x,x^5-2*x^4-6*x^3+9*x^2+6*x-2,-1,-2*x^5+3*x^4+13*x^3-12*x^2-16*x+2,-3*x^5+3*x^4+23*x^3-9*x^2-38*x-9,-2*x+2,4*x^5-4*x^4-30*x^3+12*x^2+48*x+12,2*x^5-2*x^4-16*x^3+6*x^2+28*x+8,-2*x^5+4*x^4+12*x^3-16*x^2-14*x,2*x^5-2*x^4-16*x^3+8*x^2+26*x,2*x^5-3*x^4-15*x^3+14*x^2+24*x-4,-x^5+x^4+9*x^3-5*x^2-16*x+5,3*x^5-2*x^4-24*x^3+x^2+44*x+18,1,-2*x^5+2*x^4+14*x^3-6*x^2-18*x-6,-4*x^5+6*x^4+26*x^3-26*x^2-30*x+6,-3*x^5+2*x^4+24*x^3-3*x^2-40*x-18,-2*x^5+4*x^4+14*x^3-18*x^2-22*x+2,2*x^3-2*x^2-10*x+8,-4*x^5+6*x^4+28*x^3-26*x^2-40*x+6,-x^5+2*x^4+6*x^3-7*x^2-6*x+2,3*x^5-3*x^4-23*x^3+5*x^2+42*x+17,4*x^5-8*x^4-24*x^3+36*x^2+22*x-12,4*x^5-2*x^4-34*x^3+2*x^2+62*x+18,4*x^5-6*x^4-28*x^3+26*x^2+38*x+2], x^6-3*x^5-5*x^4+17*x^3+3*x^2-17*x-3];
E[215,3]=[[x,x+1,1,-x^2-2*x+1,-x^2+x+7,-2*x-2,-2*x+2,-2*x^2-4*x+6,2*x^2+4*x-6,2*x+2,x^2+1,x^2-x-1,2*x^2+x-1,-1,2*x^2-14,2*x+4,4*x^2+3*x-7,-4*x^2-6*x+6,2*x^2+4*x-6,4*x^2+2*x-14,-2*x^2-x+7,-3*x^2-5*x+1,6*x,-4*x^2-6*x+12,4*x^2+8*x-6], x^3+2*x^2-3*x-3];
E[215,4]=[[0,0,-1,-2,-1,-1,-3,-2,-1,4,3,-8,5,-1,0,-5,12,-4,-3,6,-8,0,-9,-6,-17], x-1];
E[216,1]=[[0,0,-1,3,5,4,-8,2,2,6,-7,-6,-6,-2,6,5,-4,-8,-10,-8,1,16,-11,6,-1], x-1];
E[216,2]=[[0,0,4,-3,4,1,-4,-1,4,0,-4,-9,0,-8,-12,-8,4,-5,11,8,1,-5,8,12,5], x-1];
E[216,3]=[[0,0,-4,-3,-4,1,4,-1,-4,0,-4,-9,0,-8,12,8,-4,-5,11,-8,1,-5,-8,-12,5], x-1];
E[216,4]=[[0,0,1,3,-5,4,8,2,-2,-6,-7,-6,6,-2,-6,-5,4,-8,-10,8,1,16,11,-6,-1], x-1];
E[217,1]=[[-x^2-2*x,x,x^2-3,-1,x^2+3*x-2,-3*x^2-4*x+4,-x^2-2*x-1,x^2+2*x,-2*x^2-3*x-3,-2*x^2-5*x-4,-1,-2*x^2-5*x+1,3*x+8,3*x^2+7*x-3,-2*x^2+2*x+5,x^2+4*x-2,4*x^2+x-12,x^2-x-3,-5*x^2-7*x+2,3*x^2+10*x-2,7*x^2+11*x-13,-2*x^2-2*x+8,9*x^2+13*x-13,10*x^2+17*x-6,-5*x^2-16*x+2], x^3+3*x^2-3];
E[217,2]=[[-x^2-2*x,x,x^2+2*x-3,1,-3*x^2-9*x,3*x^2+6*x-4,-x^2-2*x-3,-3*x^2-6*x+2,2*x^2+7*x-3,-3*x,1,2*x^2+5*x+1,2*x^2+7*x-6,x^2+7*x+3,2*x^2+4*x-9,3*x^2+6*x,2*x^2+13*x+6,x^2+7*x+3,-x^2-x+4,-x^2-2*x-6,-x^2-x+1,2*x^2+2*x-8,-7*x^2-23*x-3,2*x^2+x-6,-x^2-4*x-8], x^3+3*x^2-1];
E[217,3]=[[-1/4*x^4+3/4*x^3+1/2*x^2-7/4*x+2,x,1/2*x^4-1/2*x^3-5*x^2+3/2*x+8,-1,-1/4*x^4-1/4*x^3+7/2*x^2+5/4*x-5,-1/4*x^4-1/4*x^3+7/2*x^2+9/4*x-7,1/4*x^4-3/4*x^3-1/2*x^2-1/4*x-1,1/2*x^4+1/2*x^3-8*x^2-5/2*x+14,3/4*x^4-9/4*x^3-5/2*x^2+25/4*x+3,-x^4+x^3+10*x^2-18,1,-x^4+2*x^3+7*x^2-8*x-10,-x^4+x^3+10*x^2-22,5/4*x^4-15/4*x^3-13/2*x^2+47/4*x+9,-3/2*x^4+7/2*x^3+10*x^2-21/2*x-6,-3/2*x^4+9/2*x^3+4*x^2-21/2*x+8,-2*x^2+x+8,7/4*x^4-21/4*x^3-15/2*x^2+61/4*x+5,-1/2*x^4+3/2*x^3-5/2*x+6,x^4-x^3-9*x^2-3*x+20,-7/4*x^4+21/4*x^3+15/2*x^2-69/4*x-5,-1/4*x^4-1/4*x^3+13/2*x^2-15/4*x-13,3/2*x^4-11/2*x^3-3*x^2+31/2*x-2,-3/4*x^4+13/4*x^3-1/2*x^2-49/4*x+7,3/2*x^4-5/2*x^3-12*x^2+13/2*x+16], x^5-3*x^4-6*x^3+15*x^2+8*x-16];
E[217,4]=[[-x^3+2*x^2+4*x-5,x,x^3-2*x^2-4*x+6,1,2*x^3-3*x^2-9*x+8,x^2-2*x-2,-x^3+6*x+2,-2*x^3+3*x^2+6*x-4,-x^3+x^2+3*x+4,-2*x^3+2*x^2+9*x-6,-1,5*x^3-9*x^2-15*x+18,-4*x^3+8*x^2+15*x-18,-x^3+2*x^2+3*x-8,x^3-x^2-6*x+8,-4*x^3+9*x^2+10*x-18,6*x^3-10*x^2-23*x+24,-3*x^3+8*x^2+11*x-22,4*x^3-11*x^2-13*x+24,-2*x^3+5*x^2+10*x-16,-x^3+4*x^2-x-10,-4*x^3+6*x^2+18*x-16,-3*x^3+4*x^2+9*x,2*x^2+x-2,-2*x^3+5*x^2+4*x-14], x^4-3*x^3-2*x^2+9*x-4];
E[218,1]=[[1,-2,-3,-4,3,-4,-6,5,3,-3,-4,-4,0,-10,-3,12,12,-7,-4,-12,-1,-16,6,-3,-19], x-1];
E[218,2]=[[-1,x,-x-1,-x-4,2*x+3,2*x,x,-2*x-9,-5*x-11,3*x+9,3*x+4,3*x+4,5*x+14,-3*x-8,x+5,2*x+8,-6*x-14,-3*x-5,2*x+6,-x,-2*x-17,8*x+18,-6*x-10,7,-6*x-3], x^2+4*x+2];
E[218,3]=[[1,x,-2*x+4,-2,-2*x,3*x-3,-4*x+4,0,3*x-3,-2*x+8,6*x-12,-x+2,8*x-10,3*x-3,-3*x,5*x-6,-8*x+12,-6*x+16,-4*x+14,-4*x-2,-3*x+6,7*x-8,-3*x-9,11*x-14,-x+17], x^2-3*x+1];
E[218,4]=[[-1,x,-x^2+x+3,2,x^2-x-3,x^2-2*x,0,-x^2-x+7,-3*x+3,-x^2+x+3,-2*x^2+4*x+6,-3*x+2,-6,-x^2+2*x+4,x^2-4*x-3,2*x^2+x-12,4*x^2-4*x-12,3*x^2-3*x-13,-2*x^2-2*x+12,-6,-3*x^2+6*x+11,-3*x+8,-x^2+4*x+6,-x^2-2*x+9,4*x^2-5*x-15], x^3-3*x^2-3*x+8];
E[218,5]=[[1,x,-x-1,x+4,1,-2*x,-x,2*x+1,-x-5,x-7,-3*x,3*x+4,-x+2,x-4,3*x+3,-2*x-4,-6,x+3,-8*x-10,5*x+8,-6*x-1,2*x+6,2*x+10,6*x+11,2*x+13], x^2+2*x-2];
E[219,1]=[[1,-1,-4,2,-4,-2,0,-4,0,8,6,-2,-10,-6,-8,-12,4,-14,8,-8,-1,8,16,-14,-2], x-1];
E[219,2]=[[-2,-1,-1,2,-4,-2,-3,-1,0,-10,-6,1,2,6,7,3,1,-5,-13,10,-1,-1,-11,-2,-11], x-1];
E[219,3]=[[x,-1,-1/2*x^3+1/2*x^2+2*x+1,-x^2+x+2,-x^2-x+4,-x^3+5*x+2,3/2*x^3-1/2*x^2-7*x+3,x^3+x^2-7*x-3,-x^3+3*x+2,x^3-5*x+2,x^3+x^2-6*x-6,2*x^3-2*x^2-11*x+3,-x^3-2*x^2+5*x+8,-x^3+x^2+8*x-6,1/2*x^3+3/2*x^2-4*x-3,3/2*x^3+3/2*x^2-7*x-3,3/2*x^3-1/2*x^2-5*x+3,x^3-2*x^2-2*x+11,-x^3+4*x-5,-2*x^3+3*x^2+13*x-4,1,2*x^3-2*x^2-11*x+5,-1/2*x^3+5/2*x^2+4*x-5,-x^3+x^2+10*x-2,2*x^3-3*x^2-6*x+9], x^4-x^3-6*x^2+4*x+4];
E[219,4]=[[x,1,-1/2*x^5-1/2*x^4+7/2*x^3+3/2*x^2-5*x+1,1/2*x^5+x^4-7/2*x^3-5*x^2+5*x+4,1/2*x^5-11/2*x^3+13*x,x^3-5*x+2,-1/2*x^5-1/2*x^4+9/2*x^3+3/2*x^2-10*x+1,x^3+x^2-5*x-1,x^3+2*x^2-5*x-6,-x^4-x^3+7*x^2+3*x-8,1/2*x^5-x^4-13/2*x^3+5*x^2+16*x,-x^5-x^4+8*x^3+4*x^2-13*x+1,x^3+4*x^2-3*x-12,3/2*x^5+3*x^4-19/2*x^3-15*x^2+14*x+8,x^5+5/2*x^4-6*x^3-27/2*x^2+9*x+7,1/2*x^5-1/2*x^4-13/2*x^3+7/2*x^2+16*x-5,-x^5-1/2*x^4+9*x^3+3/2*x^2-20*x-1,x^4-4*x^2+6*x-1,-x^5-x^4+9*x^3+6*x^2-16*x-5,-x^5-3*x^4+6*x^3+15*x^2-9*x-8,-1,-x^5-3*x^4+6*x^3+16*x^2-9*x-9,3/2*x^4+x^3-13/2*x^2-x-3,x^5+x^4-9*x^3-5*x^2+16*x+6,-x^5-2*x^4+5*x^3+9*x^2-2*x-3], x^6+x^5-9*x^4-5*x^3+20*x^2+4*x-4];
E[219,5]=[[0,1,-3,-4,0,-4,3,-1,6,-6,-10,-7,0,2,-3,9,-9,-1,-13,12,1,11,15,-18,5], x-1];
E[220,1]=[[0,-2,1,-4,-1,-4,0,-4,-6,-6,8,2,6,8,6,-6,-12,2,-10,-12,-16,8,0,6,14], x-1];
E[220,2]=[[0,2,1,0,1,0,-4,-4,6,2,0,-6,-10,4,10,2,-4,-14,2,4,-4,-8,12,6,6], x-1];
E[221,1]=[[-1,0,4,-2,6,-1,1,8,4,-6,-2,-8,0,4,0,-6,0,-10,-8,2,0,0,-4,-2,-4], x-1];
E[221,2]=[[1,2,2,2,-6,-1,1,4,6,-6,-2,2,-6,0,-4,14,4,2,0,-10,10,14,12,-18,2], x-1];
E[221,3]=[[x,x-1,-2*x-1,-x-1,3*x,-1,-1,3*x-2,-2*x+2,2*x-3,-7,4*x+7,-4*x,-11,2*x+2,x-1,-2*x-5,3*x+3,-10*x-6,4*x+10,8*x-1,-4*x-3,-2*x-5,-3*x+6,-9*x-1], x^2+x-1];
E[221,4]=[[x,-x+1,x-1,2,2,-1,1,-2*x+2,-x-3,-6,2*x,-x+5,-x+5,2*x-6,2*x-2,-2*x,2*x-2,2*x+4,4*x,4*x+2,3*x-7,x+7,4*x+4,-2,x-9], x^2-5];
E[221,5]=[[x,-x-1,-x^2-x+2,x-3,x^2-5,1,1,-x^2-3,4*x^2+2*x-10,-x^2+x+4,-3*x^2-x+6,x^2-5*x-4,-2*x^2+2*x+6,-3*x^2-x+10,-4*x^2-2*x+10,4*x^2+3*x-7,3*x^2-3*x-6,x-5,-2*x-6,2*x^2-2*x-12,5*x^2+3*x-12,3*x^2-x-16,-x^2+x+10,-x^2+2*x-3,2*x^2+7*x-5], x^3-4*x+1];
E[221,6]=[[x,-1/2*x^5+1/2*x^4+4*x^3-5/2*x^2-13/2*x+1,1/2*x^4-1/2*x^3-3*x^2+3/2*x+3/2,-x^3+5*x+2,-x^2+3,1,-1,x^5-x^4-8*x^3+6*x^2+13*x-1,1/2*x^5+1/2*x^4-4*x^3-7/2*x^2+13/2*x,-x^3+x^2+5*x-3,x^3+x^2-7*x-1,-x^5+1/2*x^4+17/2*x^3-2*x^2-29/2*x+1/2,-x^5+1/2*x^4+19/2*x^3-3*x^2-39/2*x+3/2,-x^4+5*x^2+2*x+2,-2*x^3+2*x^2+12*x-6,x^5-2*x^4-8*x^3+11*x^2+15*x-9,x^5-2*x^4-8*x^3+10*x^2+17*x,x^5-10*x^3-x^2+19*x+5,x^4+x^3-8*x^2-5*x+11,-x^4+x^3+8*x^2-9*x-9,-x^5+3/2*x^4+19/2*x^3-10*x^2-35/2*x+19/2,1/2*x^5+1/2*x^4-5*x^3-5/2*x^2+15/2*x-1,-x^5-x^4+9*x^3+10*x^2-20*x-9,x^5-x^4-6*x^3+4*x^2+5*x+3,-x^5+1/2*x^4+17/2*x^3-5*x^2-25/2*x+19/2], x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3];
E[221,7]=[[x,x+1,-1,-x-3,x+2,-1,1,-x+2,-2*x+2,9,2*x+5,-2*x-5,0,9,-2*x-2,x-5,-2*x+3,-x+9,-2*x-10,2,-2*x+3,2*x-3,-2*x-1,5*x-2,-5*x+1], x^2+x-5];
E[222,1]=[[1,-1,0,3,1,1,-3,3,-1,-4,-6,-1,-10,12,-6,-1,0,2,2,0,-3,14,9,-3,-10], x-1];
E[222,2]=[[-1,-1,-4,3,5,3,3,-7,9,0,-2,1,6,4,-10,3,-4,-2,6,-12,13,-6,5,11,6], x-1];
E[222,3]=[[-1,1,4,-1,-1,-3,3,-5,5,4,-10,-1,-6,4,2,-11,-12,10,14,0,-11,-10,-9,11,10], x-1];
E[222,4]=[[-1,-1,2,0,-4,6,6,8,0,-6,4,1,-6,-8,8,6,-4,-2,-12,0,10,-12,-4,-10,-6], x-1];
E[222,5]=[[1,1,0,-1,3,-1,-3,-7,3,0,2,1,-6,-4,6,9,0,-10,2,12,5,2,3,-3,2], x-1];
E[223,1]=[[x,x,-x-3,-x-1,-x,x+3,2*x-1,-x-3,3*x,-7,-2*x+2,2*x+3,-2*x-7,-3*x-9,-2*x-10,5,x+12,5*x+3,7*x+2,2*x-2,6*x+7,2,-6*x-2,-13,-9*x-3], x^2+2*x-1];
E[223,2]=[[x,-x-1,-x^3-3*x^2+x+3,2*x^3+5*x^2-2*x-6,-2*x^3-6*x^2+x+4,x^3+4*x^2-8,x^3+x^2-4*x-5,x^3+4*x^2+3*x-1,-2*x^3-2*x^2+8*x+1,x^3+4*x^2+x-3,-4*x^3-12*x^2+3*x+14,-2*x^3-7*x^2-2*x+6,2*x^3+5*x^2-3*x-5,4*x^3+9*x^2-5*x-3,-4*x^3-13*x^2-3*x+15,2*x^3+3*x^2-6*x-9,-x^3-3*x^2-1,7*x^3+19*x^2-7*x-20,4*x^3+9*x^2-8*x-9,-4*x^2-9*x+4,-8*x^3-19*x^2+12*x+19,-x^2-6*x-6,x^3+7*x^2+5*x-13,-x^3+8*x+4,2*x^3+9*x^2+10*x-13], x^4+4*x^3+2*x^2-5*x-3];
E[223,3]=[[x,2*x^11-11*x^10-2*x^9+98*x^8-103*x^7-245*x^6+397*x^5+123*x^4-412*x^3+129*x^2+41*x-18,4*x^11-21*x^10-10*x^9+196*x^8-152*x^7-550*x^6+654*x^5+468*x^4-731*x^3+20*x^2+114*x+4,-9*x^11+45*x^10+34*x^9-435*x^8+235*x^7+1320*x^6-1172*x^5-1412*x^4+1388*x^3+350*x^2-263*x-61,-12*x^11+60*x^10+45*x^9-578*x^8+315*x^7+1739*x^6-1559*x^5-1813*x^4+1827*x^3+390*x^2-327*x-68,x^11-7*x^10+6*x^9+56*x^8-119*x^7-96*x^6+400*x^5-95*x^4-403*x^3+248*x^2+36*x-31,14*x^11-66*x^10-73*x^9+663*x^8-176*x^7-2169*x^6+1282*x^5+2737*x^4-1683*x^3-1153*x^2+418*x+185,10*x^11-50*x^10-37*x^9+481*x^8-268*x^7-1444*x^6+1319*x^5+1500*x^4-1550*x^3-318*x^2+285*x+56,x^11-4*x^10-8*x^9+42*x^8+15*x^7-147*x^6+5*x^5+204*x^4-23*x^3-97*x^2+x+10,3*x^11-14*x^10-17*x^9+144*x^8-26*x^7-492*x^6+245*x^5+674*x^4-335*x^3-336*x^2+86*x+53,13*x^11-63*x^10-59*x^9+620*x^8-244*x^7-1951*x^6+1410*x^5+2273*x^4-1739*x^3-773*x^2+371*x+120,-2*x^11+12*x^10-3*x^9-101*x^8+150*x^7+211*x^6-533*x^5+32*x^4+544*x^3-306*x^2-56*x+43,-23*x^11+114*x^10+92*x^9-1107*x^8+550*x^7+3389*x^6-2839*x^5-3699*x^4+3390*x^3+995*x^2-664*x-165,2*x^11-8*x^10-19*x^9+95*x^8+54*x^7-403*x^6-34*x^5+748*x^4-70*x^3-559*x^2+92*x+90,-3*x^11+17*x^10-147*x^8+182*x^7+338*x^6-671*x^5-81*x^4+681*x^3-287*x^2-55*x+34,-32*x^11+157*x^10+135*x^9-1532*x^8+698*x^7+4741*x^6-3752*x^5-5325*x^4+4530*x^3+1621*x^2-909*x-273,25*x^11-125*x^10-95*x^9+1209*x^8-646*x^7-3673*x^6+3229*x^5+3942*x^4-3822*x^3-998*x^2+730*x+181,16*x^11-74*x^10-91*x^9+754*x^8-130*x^7-2532*x^6+1264*x^5+3360*x^4-1754*x^3-1579*x^2+496*x+244,-5*x^11+24*x^10+23*x^9-234*x^8+88*x^7+721*x^6-507*x^5-796*x^4+591*x^3+224*x^2-93*x-35,-17*x^11+81*x^10+86*x^9-814*x^8+240*x^7+2670*x^6-1640*x^5-3403*x^4+2141*x^3+1476*x^2-542*x-232,-28*x^11+140*x^10+104*x^9-1347*x^8+745*x^7+4046*x^6-3671*x^5-4213*x^4+4309*x^3+911*x^2-783*x-162,-22*x^11+104*x^10+115*x^9-1050*x^8+277*x^7+3474*x^6-2034*x^5-4506*x^4+2710*x^3+2047*x^2-724*x-337,31*x^11-147*x^10-157*x^9+1469*x^8-431*x^7-4759*x^6+2942*x^5+5889*x^4-3781*x^3-2365*x^2+880*x+373,-24*x^11+117*x^10+106*x^9-1150*x^8+481*x^7+3611*x^6-2705*x^5-4194*x^4+3327*x^3+1431*x^2-707*x-236,x^11-5*x^10-2*x^9+43*x^8-42*x^7-94*x^6+168*x^5-7*x^4-159*x^3+130*x^2-15*x-12], x^12-7*x^11+6*x^10+57*x^9-122*x^8-105*x^7+430*x^6-73*x^5-499*x^4+242*x^3+143*x^2-52*x-19];
E[224,1]=[[0,-2,0,-1,-4,-4,-2,-6,8,2,-4,10,-10,4,4,-2,10,-8,-8,0,-6,-16,2,18,-2], x-1];
E[224,2]=[[0,2,0,1,4,-4,-2,6,-8,2,4,10,-10,-4,-4,-2,-10,-8,8,0,-6,16,-2,18,-2], x-1];
E[224,3]=[[0,x,-x+2,-1,-2*x+4,x+2,-2*x+2,-x,-4,2*x-2,-2*x,2*x-2,2*x-6,2*x-4,2*x-8,-10,-x+8,-x+10,-4,-4*x,4*x+2,4*x-8,-x+8,-6,-2*x+10], x^2-2*x-4];
E[224,4]=[[0,x,x+2,1,-2*x-4,-x+2,2*x+2,-x,4,-2*x-2,-2*x,-2*x-2,-2*x-6,2*x+4,2*x+8,-10,-x-8,x+10,4,-4*x,-4*x+2,4*x+8,-x-8,-6,2*x+10], x^2+2*x-4];
E[226,1]=[[1,-2,-4,0,-4,-2,-2,-2,4,-4,8,-8,-6,6,-12,10,-6,-6,2,-8,-14,8,16,-14,-2], x-1];
E[226,2]=[[-1,x,2,0,-2*x+4,-2*x,-2,-3*x+4,-x+8,2,2*x,4*x-6,2*x+4,-x-8,5*x-8,-6*x+4,-5*x+8,-6,3*x-4,5*x-4,4*x-6,-x,8*x-4,-4*x+2,-8*x+6], x^2-2*x-2];
E[226,3]=[[1,x,1/2*x^3-x^2-4*x+6,-x^3+x^2+6*x-6,x^2-4,2*x^3-2*x^2-14*x+12,-2*x^3+2*x^2+12*x-10,-2*x^3+2*x^2+13*x-12,3/2*x^3-3*x^2-9*x+12,-3/2*x^3+x^2+10*x-6,2*x^3-x^2-12*x+6,-1/2*x^3-x^2+2*x+2,-x^3+3*x^2+8*x-12,-x^3+9*x-4,3/2*x^3-x^2-9*x+4,-3*x^3+4*x^2+22*x-20,2*x^3-2*x^2-13*x+16,x^3+2*x^2-8*x-2,-x-4,5/2*x^3-3*x^2-15*x+20,-3*x^3+2*x^2+24*x-14,3/2*x^3-3*x^2-15*x+16,x^2-2*x,14,-x^3+12*x], x^4-2*x^3-6*x^2+12*x-4];
E[226,4]=[[-1,x,-x-2,-2*x-2,-4,2,2*x-2,5*x,4*x,-5*x-2,-2*x-6,-3*x+6,-2,-x,0,-2*x+2,-5*x-8,-2*x+6,-x,-2*x-8,-4*x+6,-2*x-12,6*x-4,4*x+6,0], x^2-2];
E[227,1]=[[2*x-7,-x+5,-2,x,-x+4,-2*x+6,-4,x+3,-x+9,-3*x+9,-4*x+14,4,4*x-22,7*x-23,-9*x+32,11*x-40,8,2*x-14,6*x-20,5*x-13,-3*x+4,9*x-28,4*x-18,9*x-35,-x-1], x^2-7*x+11];
E[227,2]=[[1,-x+1,2,x,-x+4,2*x-2,-4,x-1,-x+5,x+1,-6,8,-2,-x-3,-x,-x+8,-8,-2*x+10,2*x-8,-3*x+7,x+4,x-4,4*x-2,-3*x-3,-5*x+7], x^2-3*x-5];
E[227,3]=[[-x^2-2*x+4,-x^2-3*x+3,2*x^2+5*x-9,x,4*x^2+9*x-17,-3,-x^2-2*x+7,-5*x^2-14*x+12,-8*x^2-18*x+34,4*x^2+10*x-15,4*x^2+12*x-10,-x^2-x+2,-7*x^2-18*x+24,13*x^2+31*x-50,-2*x^2-5*x+4,-10*x^2-29*x+29,5*x^2+11*x-17,15*x^2+39*x-51,-3*x^2-9*x+2,10*x^2+26*x-40,-8*x^2-23*x+19,-5*x^2-15*x+19,14*x^2+37*x-39,-15*x^2-34*x+66,9*x^2+21*x-47], x^3+6*x^2+5*x-13];
E[227,4]=[[1343250235/102393890514*x^9-2079014395/102393890514*x^8-8127855119/17065648419*x^7+25691501669/34131296838*x^6+525019111715/102393890514*x^5-43837255979/5688549473*x^4-182109681999/11377098946*x^3+178315439925/11377098946*x^2+1832276999455/102393890514*x-197752460671/102393890514,-388443334/51196945257*x^9-427990799/51196945257*x^8+4333366537/17065648419*x^7+4495237912/17065648419*x^6-119269114055/51196945257*x^5-14477217030/5688549473*x^4+22492728919/5688549473*x^3+47748932824/5688549473*x^2+95714263142/51196945257*x-164137198478/51196945257,251261279/34131296838*x^9-441196505/34131296838*x^8-1568272873/5688549473*x^7+5405066305/11377098946*x^6+107948150491/34131296838*x^5-27887502977/5688549473*x^4-130580643055/11377098946*x^3+127229928401/11377098946*x^2+426979043825/34131296838*x-67513090979/34131296838,x,946724818/51196945257*x^9+853432445/51196945257*x^8-10937981326/17065648419*x^7-8541932227/17065648419*x^6+327416432831/51196945257*x^5+25020979066/5688549473*x^4-91635960550/5688549473*x^3-67334884814/5688549473*x^2+396770594329/51196945257*x+29858092943/51196945257,-326900137/51196945257*x^9-587606582/51196945257*x^8+4088036131/17065648419*x^7+6341541799/17065648419*x^6-145438888013/51196945257*x^5-19415675998/5688549473*x^4+64807193524/5688549473*x^3+44394101523/5688549473*x^2-556377527341/51196945257*x-114125634014/51196945257,-1074698321/102393890514*x^9-437050321/102393890514*x^8+6297163318/17065648419*x^7+2807495153/34131296838*x^6-386930428561/102393890514*x^5-539664173/5688549473*x^4+117261874307/11377098946*x^3-20182548975/11377098946*x^2-741351822101/102393890514*x+625312258799/102393890514,-210584914/17065648419*x^9+29103334/17065648419*x^8+2602518065/5688549473*x^7-674666132/5688549473*x^6-89476614797/17065648419*x^5+9826492614/5688549473*x^4+112377750546/5688549473*x^3-25707883726/5688549473*x^2-410216588305/17065648419*x-13226754794/17065648419,186819367/17065648419*x^9+56734370/17065648419*x^8-2017748537/5688549473*x^7-410719742/5688549473*x^6+49887674963/17065648419*x^5+3247314451/5688549473*x^4-7107250684/5688549473*x^3-22582896257/5688549473*x^2-194236582568/17065648419*x-97881586900/17065648419,794390242/51196945257*x^9+655844240/51196945257*x^8-9271662769/17065648419*x^7-6383068573/17065648419*x^6+281597347061/51196945257*x^5+18005184915/5688549473*x^4-79669129444/5688549473*x^3-50231216057/5688549473*x^2+185249539000/51196945257*x+143371223222/51196945257,-908708827/34131296838*x^9+466540951/34131296838*x^8+5334369552/5688549473*x^7-6490284731/11377098946*x^6-326954236733/34131296838*x^5+34302371106/5688549473*x^4+292275172463/11377098946*x^3-86806900875/11377098946*x^2-672832876789/34131296838*x-48438215033/34131296838,-1669398127/34131296838*x^9+3265475107/34131296838*x^8+9976948205/5688549473*x^7-39713940839/11377098946*x^6-623560054037/34131296838*x^5+201331242778/5688549473*x^4+576661483131/11377098946*x^3-847591740529/11377098946*x^2-1704569709439/34131296838*x+811969110829/34131296838,37133965/102393890514*x^9-3021965149/102393890514*x^8+7506079/17065648419*x^7+34972155191/34131296838*x^6-46382004151/102393890514*x^5-56899443477/5688549473*x^4+68153302731/11377098946*x^3+242800032291/11377098946*x^2-712837985447/102393890514*x-504137836333/102393890514,86609847/5688549473*x^9+108121981/5688549473*x^8-2961691734/5688549473*x^7-3350868880/5688549473*x^6+28672635266/5688549473*x^5+30423762103/5688549473*x^4-64448893230/5688549473*x^3-83936450561/5688549473*x^2+26290009493/5688549473*x+35721250346/5688549473,101246818/5688549473*x^9-303058990/5688549473*x^8-3774211351/5688549473*x^7+10830417738/5688549473*x^6+42709885530/5688549473*x^5-108264040413/5688549473*x^4-154752085210/5688549473*x^3+230183432247/5688549473*x^2+245306489832/5688549473*x-36570876765/5688549473,-4780213/51196945257*x^9+20049445/51196945257*x^8+90106003/17065648419*x^7-42149249/17065648419*x^6-1140003410/51196945257*x^5-873838422/5688549473*x^4-6585801336/5688549473*x^3+5165445510/5688549473*x^2+398765904764/51196945257*x+203675144641/51196945257,4020712004/51196945257*x^9-4973106023/51196945257*x^8-47504064773/17065648419*x^7+63321932998/17065648419*x^6+1464948313051/51196945257*x^5-222944293954/5688549473*x^4-441979770972/5688549473*x^3+485855905186/5688549473*x^2+3444913375115/51196945257*x-1532255068361/51196945257,2515595804/51196945257*x^9-3395810129/51196945257*x^8-29619755852/17065648419*x^7+42294702898/17065648419*x^6+902288563486/51196945257*x^5-143507024352/5688549473*x^4-258308809999/5688549473*x^3+267832554623/5688549473*x^2+2027291936699/51196945257*x-222816618350/51196945257,-985163543/51196945257*x^9+1603827311/51196945257*x^8+11503082843/17065648419*x^7-20220301423/17065648419*x^6-346444074223/51196945257*x^5+71347877880/5688549473*x^4+98929936943/5688549473*x^3-165767994264/5688549473*x^2-1019851318172/51196945257*x+720599338394/51196945257,-1134104288/17065648419*x^9+501992054/17065648419*x^8+13303444176/5688549473*x^7-7401526375/5688549473*x^6-405506268112/17065648419*x^5+84169713705/5688549473*x^4+352462619259/5688549473*x^3-154778571804/5688549473*x^2-750114070202/17065648419*x+125160411578/17065648419,1165680452/17065648419*x^9-1236107156/17065648419*x^8-13730236540/5688549473*x^7+15614499085/5688549473*x^6+420054967780/17065648419*x^5-159554271358/5688549473*x^4-368952959216/5688549473*x^3+283655988657/5688549473*x^2+911404862555/17065648419*x-33500540234/17065648419,-325091482/51196945257*x^9-643538303/51196945257*x^8+3426908695/17065648419*x^7+6938541805/17065648419*x^6-81390214697/51196945257*x^5-21555056070/5688549473*x^4+1064247554/5688549473*x^3+48483539053/5688549473*x^2+384079921745/51196945257*x+291448728232/51196945257,-8265773599/102393890514*x^9+9234011377/102393890514*x^8+49373881475/17065648419*x^7-117614738549/34131296838*x^6-3119719798319/102393890514*x^5+205095854633/5688549473*x^4+1015689378097/11377098946*x^3-834611125703/11377098946*x^2-8790169888669/102393890514*x+1602677714767/102393890514,1389564434/51196945257*x^9+2321099578/51196945257*x^8-16268613458/17065648419*x^7-24430422782/17065648419*x^6+505229013238/51196945257*x^5+73546754828/5688549473*x^4-158058150614/5688549473*x^3-175788973129/5688549473*x^2+517906197788/51196945257*x+582011868994/51196945257,-1773769075/51196945257*x^9+2257598548/51196945257*x^8+21735698521/17065648419*x^7-28967047337/17065648419*x^6-725053978760/51196945257*x^5+105747625210/5688549473*x^4+275241028400/5688549473*x^3-273533349611/5688549473*x^2-2598126672271/51196945257*x+1035950287669/51196945257], x^10-37*x^8+3*x^7+422*x^6-37*x^5-1575*x^4-216*x^3+2014*x^2+774*x-265];
E[227,5]=[[-1/2*x-1/2,-2,1/2*x+1/2,x,-x,-x-5,-1/2*x-9/2,-x+4,x-2,2*x-1,-3/2*x-7/2,1/2*x-19/2,-3/2*x+9/2,-x-6,6,-x-4,4*x+3,-6,-3*x-5,x+6,3*x+4,4*x+2,-3/2*x-15/2,x+6,x+5], x^2+2*x-7];
E[228,1]=[[0,-1,2,0,2,2,6,-1,2,4,-8,-2,-8,-8,2,-4,0,2,12,-4,6,-16,6,0,-2], x-1];
E[228,2]=[[0,-1,-3,1,-5,-6,-5,1,4,6,6,-8,-8,9,1,2,-8,11,0,-4,-11,-8,-4,10,-10], x-1];
E[228,3]=[[0,1,x,-x+2,-x,2,-x,1,2*x-6,-2*x,2*x-4,-2*x+2,0,-x+2,x-12,2*x,0,-x-4,4*x-4,-12,x-4,8,-2*x+6,-2*x+12,14], x^2-3*x-6];
E[229,1]=[[-1,1,-3,2,-3,-6,-7,3,4,-6,4,2,6,7,6,-10,4,5,-10,-9,-2,6,11,-18,-5], x-1];
E[229,2]=[[x,x^4+2*x^3-3*x^2-4*x+1,-x^5-4*x^4-x^3+8*x^2+3*x-2,x^5+2*x^4-3*x^3-2*x^2+4*x-4,x^4+3*x^3-2*x^2-6*x-1,x^5+5*x^4+4*x^3-11*x^2-12*x+5,-x^4-4*x^3+x^2+10*x-1,x^5+4*x^4+x^3-8*x^2-2*x-1,-3*x^4-9*x^3+4*x^2+17*x-5,3*x^5+9*x^4-6*x^3-25*x^2+3*x+10,-x^5-x^4+7*x^3+5*x^2-8*x-2,-4*x^5-10*x^4+13*x^3+28*x^2-14*x-9,-2*x^5-6*x^4+5*x^3+17*x^2-7*x-9,-x^5-3*x^4-2*x^2-4*x+11,-2*x^5-8*x^4-6*x^3+14*x^2+21*x-7,-x^5-x^4+7*x^3+5*x^2-10*x-2,-2*x^5-8*x^4-x^3+19*x^2+7*x-11,6*x^5+17*x^4-13*x^3-43*x^2+8*x+12,3*x^4+6*x^3-12*x^2-20*x+9,6*x^4+16*x^3-9*x^2-26*x,2*x^5+8*x^4+4*x^3-17*x^2-13*x+12,-3*x^5-9*x^4-x^3+11*x^2+8*x,-7*x^4-14*x^3+22*x^2+25*x-21,2*x^5+9*x^4+6*x^3-14*x^2-12*x-1,-2*x^5-5*x^4+6*x^3+12*x^2-4*x+4], x^6+4*x^5-12*x^3-3*x^2+9*x-1];
E[229,3]=[[x,1/4*x^9-1/4*x^8-13/4*x^7+11/4*x^6+55/4*x^5-10*x^4-83/4*x^3+53/4*x^2+8*x-11/4,-1/4*x^9+1/4*x^8+11/4*x^7-5/4*x^6-43/4*x^5+65/4*x^3+15/4*x^2-6*x-3/4,-1/4*x^10+3/4*x^9+9/4*x^8-31/4*x^7-21/4*x^6+53/2*x^5-3/4*x^4-131/4*x^3+13/2*x^2+41/4*x+3/2,1/2*x^10-7/4*x^9-17/4*x^8+71/4*x^7+39/4*x^6-235/4*x^5-1/2*x^4+265/4*x^3-49/4*x^2-27/2*x+23/4,1/2*x^10-3/2*x^9-9/2*x^8+29/2*x^7+25/2*x^6-46*x^5-19/2*x^4+105/2*x^3-3*x^2-31/2*x+2,-1/2*x^10+5/2*x^9+5/2*x^8-25*x^7+6*x^6+82*x^5-89/2*x^4-93*x^3+54*x^2+39/2*x-15/2,-1/2*x^10+5/4*x^9+19/4*x^8-45/4*x^7-57/4*x^6+121/4*x^5+23/2*x^4-75/4*x^3+27/4*x^2-23/2*x-13/4,1/2*x^8-1/2*x^7-6*x^6+3*x^5+49/2*x^4-2*x^3-34*x^2-11/2*x+7,-1/2*x^9+3/2*x^8+9/2*x^7-29/2*x^6-25/2*x^5+46*x^4+17/2*x^3-99/2*x^2+4*x+17/2,1/2*x^10-2*x^9-7/2*x^8+41/2*x^7+2*x^6-141/2*x^5+26*x^4+88*x^3-85/2*x^2-23*x+15/2,3/4*x^9-3/4*x^8-33/4*x^7+15/4*x^6+125/4*x^5+2*x^4-179/4*x^3-77/4*x^2+19*x+21/4,-1/2*x^10+3/2*x^9+11/2*x^8-33/2*x^7-41/2*x^6+59*x^5+55/2*x^4-141/2*x^3-6*x^2+25/2*x,-1/2*x^10+5/4*x^9+23/4*x^8-53/4*x^7-97/4*x^6+185/4*x^5+95/2*x^4-235/4*x^3-169/4*x^2+45/2*x+19/4,7/4*x^10-21/4*x^9-67/4*x^8+213/4*x^7+207/4*x^6-357/2*x^5-215/4*x^4+857/4*x^3+15/2*x^2-243/4*x+11/2,-1/2*x^10+3/2*x^9+9/2*x^8-16*x^7-10*x^6+58*x^5-11/2*x^4-78*x^3+21*x^2+49/2*x-1/2,-x^10+7/2*x^9+8*x^8-34*x^7-33/2*x^6+217/2*x^5-5/2*x^4-247/2*x^3+39/2*x^2+69/2*x+5/2,1/2*x^10-2*x^9-4*x^8+43/2*x^7+13/2*x^6-157/2*x^5+27/2*x^4+217/2*x^3-65/2*x^2-79/2*x+4,-3/2*x^10+5*x^9+23/2*x^8-95/2*x^7-18*x^6+295/2*x^5-34*x^4-159*x^3+151/2*x^2+31*x-23/2,1/2*x^10-7/4*x^9-17/4*x^8+75/4*x^7+31/4*x^6-275/4*x^5+29/2*x^4+393/4*x^3-153/4*x^2-85/2*x+35/4,x^10-7/2*x^9-17/2*x^8+71/2*x^7+37/2*x^6-231/2*x^5+3*x^4+249/2*x^3-41/2*x^2-23*x-7/2,5/4*x^10-17/4*x^9-47/4*x^8+173/4*x^7+151/4*x^6-144*x^5-201/4*x^4+649/4*x^3+30*x^2-113/4*x-9,x^10-17/4*x^9-31/4*x^8+173/4*x^7+57/4*x^6-563/4*x^5+9*x^4+579/4*x^3-113/4*x^2-9*x+27/4,-1/2*x^9+3/2*x^8+9/2*x^7-25/2*x^6-35/2*x^5+34*x^4+77/2*x^3-69/2*x^2-35*x+15/2,-2*x^10+23/4*x^9+77/4*x^8-233/4*x^7-233/4*x^6+785/4*x^5+50*x^4-971/4*x^3+51/4*x^2+81*x-23/4], x^11-5*x^10-4*x^9+50*x^8-26*x^7-165*x^6+152*x^5+193*x^4-207*x^3-50*x^2+52*x+1];
E[230,1]=[[-1,x,1,-x+3,-x-2,-x+3,-3*x+6,-3*x+5,-1,2*x-2,3*x-7,8,-3*x,4*x-8,2*x-2,4*x-10,-2*x-4,-5*x+10,-4,x-16,6*x-4,8*x-12,-4*x+10,0,-x+6], x^2-3*x-1];
E[230,2]=[[-1,x,-1,x+1,x+2,-x+3,-x-2,-x+3,1,-2*x+2,3*x+5,-4,x-4,-4*x,-2*x-10,6,2*x-8,-3*x+2,-4*x,-3*x,-6*x-4,8,-6,-4*x+4,5*x+6], x^2+x-5];
E[230,3]=[[1,x,-1,-x^2-2*x+8,2*x^2+x-12,-x^2+6,-x-2,-x^2-2*x+8,-1,2*x-2,x^2-8,2*x^2+2*x-14,-2*x^2-3*x+14,8,-2*x^2+8,-6,2*x+4,4*x^2+3*x-26,4*x^2+4*x-24,-x+4,-2*x^2+10,-4*x^2+24,-2*x^2-2*x+16,-2*x^2+2*x+18,-3*x-10], x^3-x^2-9*x+12];
E[230,4]=[[1,x,1,-x+1,-3*x+2,-5*x+1,5*x-2,3*x-3,1,-2*x-6,5*x+1,4*x,7*x-8,0,-6*x+6,4*x-6,6*x-8,-7*x+2,4*x+8,-5*x+4,2*x,-4*x+8,-8*x+6,-4*x-4,-x+14], x^2-x-1];
E[231,1]=[[-1,-1,-2,1,-1,6,2,4,0,-2,8,6,10,-4,-8,6,4,-10,-12,0,2,16,4,18,2], x-1];
E[231,2]=[[x,-1,3,1,-1,1,2*x+4,-2*x-3,-2*x-2,-4*x-1,2*x,1,-4*x-4,2*x-2,-2*x+5,-2*x-6,2*x+1,10,2*x+5,4*x+4,7,4*x,-2*x-8,4*x+2,2*x-6], x^2+x-5];
E[231,3]=[[x,1,-x^2-x+6,-1,-1,-3*x^2+x+10,4*x^2-2*x-12,x^2-x-6,2*x+2,-3*x^2+x+10,2*x^2-4*x-6,-x^2+3*x+2,2*x^2-2*x-2,4*x^2+2*x-22,x^2+3*x-6,-2*x^2+8,-3*x^2+3*x+10,-2,-5*x^2+x+18,4*x^2-20,3*x^2-x-18,-4*x^2+20,-6*x^2+26,4*x+6,2*x^2+4*x-12], x^3-2*x^2-4*x+7];
E[231,4]=[[x,-1,-x^2+x+4,-1,1,-x^2+x+4,-2*x,-x^2-x+8,-2*x-2,x^2-x,2*x^2-10,x^2+3*x-4,2*x^2+2*x-6,-2*x+2,x^2+x-12,-2*x^2+8,-3*x^2+x+4,6,x^2+x,-4*x+4,x^2-x+4,4*x+4,2*x^2-14,4*x^2-10,2*x^2], x^3-6*x-1];
E[231,5]=[[x,1,1,1,1,-4*x+1,-2*x+4,6*x-3,-6*x+2,5,2*x-4,-7,4*x,-6*x+2,-2*x-1,10*x-6,10*x-5,2,-2*x-11,4*x,4*x+7,4*x-12,2*x+8,4*x-2,-6*x+6], x^2-x-1];
E[232,1]=[[0,1,1,2,3,-1,0,0,4,-1,3,-8,-6,-5,3,5,-8,0,-12,6,-4,1,-12,6,14], x-1];
E[232,2]=[[0,-1,-3,2,-3,-5,-4,0,0,-1,9,8,-2,-11,-7,9,4,-12,12,2,-4,3,-16,2,-14], x-1];
E[232,3]=[[0,x,-2*x-3,-4,-x-2,4*x+3,4*x+2,2,-2*x-4,1,-x-8,-4*x,-4*x-8,-x+2,-5*x-10,-7,6*x+8,6,-4*x-4,6*x+4,4,9*x+6,-2*x-8,-4*x-8,-8*x-4], x^2+2*x-1];
E[232,4]=[[0,x,-x^2+6,0,2*x^2-x-8,x^2-2*x-2,2,-2*x^2+8,-2*x,1,-x-4,2*x^2-10,-2*x^2+4*x+10,-2*x^2-x+8,2*x^2+3*x-12,-x^2-2*x+6,-2*x+4,4*x-2,4*x+4,-4*x^2-2*x+24,2*x^2-4*x-6,2*x^2+x-20,-2*x+12,6*x^2-4*x-22,2*x^2-14], x^3-2*x^2-5*x+8];
E[233,1]=[[1,-2,2,4,6,6,-6,-4,0,-2,4,-6,2,-2,2,-6,-10,-6,10,-8,-14,2,2,10,10], x-1];
E[233,2]=[[x,x^5+x^4-5*x^3-4*x^2+3*x,-x^5-2*x^4+4*x^3+8*x^2-x-3,-x^6-3*x^5+5*x^4+16*x^3-6*x^2-16*x+3,-x^6-2*x^5+7*x^4+11*x^3-13*x^2-11*x+5,6*x^6+14*x^5-29*x^4-68*x^3+25*x^2+52*x-16,5*x^6+13*x^5-24*x^4-65*x^3+22*x^2+53*x-17,-5*x^6-10*x^5+24*x^4+46*x^3-18*x^2-28*x+6,-3*x^6-7*x^5+17*x^4+35*x^3-26*x^2-29*x+14,-4*x^6-11*x^5+19*x^4+57*x^3-16*x^2-51*x+13,x^6+x^5-7*x^4-5*x^3+11*x^2+4*x-4,3*x^6+7*x^5-13*x^4-34*x^3+6*x^2+24*x-8,-3*x^6-6*x^5+14*x^4+28*x^3-11*x^2-22*x+10,-3*x^6-9*x^5+13*x^4+41*x^3-9*x^2-22*x+7,2*x^6+8*x^5-10*x^4-41*x^3+16*x^2+34*x-18,-5*x^6-13*x^5+22*x^4+66*x^3-12*x^2-56*x+13,3*x^6+10*x^5-12*x^4-49*x^3+5*x^2+39*x-7,3*x^6+9*x^5-12*x^4-41*x^3+5*x^2+23*x-8,-3*x^6-8*x^5+13*x^4+41*x^3-7*x^2-36*x+4,6*x^6+12*x^5-29*x^4-55*x^3+20*x^2+30*x-5,-4*x^6-10*x^5+18*x^4+49*x^3-8*x^2-36*x+1,-4*x^6-5*x^5+22*x^4+22*x^3-24*x^2-14*x+2,3*x^6+7*x^5-10*x^4-34*x^3-10*x^2+28*x+4,2*x^6+3*x^5-12*x^4-15*x^3+20*x^2+17*x-9,-5*x^6-8*x^5+33*x^4+42*x^3-59*x^2-44*x+25], x^7+2*x^6-6*x^5-10*x^4+10*x^3+8*x^2-7*x+1];
E[233,3]=[[x,7/4*x^10-1/2*x^9-107/4*x^8+8*x^7+139*x^6-65/2*x^5-1147/4*x^4+31/4*x^3+883/4*x^2+203/4*x-16,27/2*x^10-9/2*x^9-409/2*x^8+145/2*x^7+1046*x^6-310*x^5-4193/2*x^4+183*x^3+1550*x^2+294*x-219/2,x^10-1/2*x^9-15*x^8+15/2*x^7+75*x^6-31*x^5-143*x^4+43/2*x^3+195/2*x^2+41/2*x-5/2,9/4*x^10-3/4*x^9-135/4*x^8+49/4*x^7+170*x^6-107/2*x^5-1331/4*x^4+75/2*x^3+242*x^2+37*x-81/4,-x^10+15*x^8-x^7-76*x^6+6*x^5+150*x^4+3*x^3-104*x^2-20*x+7,-21/2*x^10+4*x^9+319/2*x^8-63*x^7-819*x^6+268*x^5+3305/2*x^4-349/2*x^3-2477/2*x^2-455/2*x+92,33/2*x^10-13/2*x^9-499/2*x^8+205/2*x^7+1271*x^6-439*x^5-5055/2*x^4+306*x^3+1855*x^2+332*x-249/2,-9/2*x^10+2*x^9+135/2*x^8-31*x^7-339*x^6+132*x^5+1315/2*x^4-197/2*x^3-941/2*x^2-163/2*x+31,-33*x^10+12*x^9+500*x^8-191*x^7-2556*x^6+819*x^5+5112*x^4-544*x^3-3768*x^2-670*x+264,14*x^10-5*x^9-212*x^8+80*x^7+1083*x^6-345*x^5-2165*x^4+236*x^3+1600*x^2+268*x-118,29*x^10-23/2*x^9-438*x^8+363/2*x^7+2227*x^6-781*x^5-4415*x^4+1137/2*x^3+6467/2*x^2+1091/2*x-455/2,-13*x^10+9/2*x^9+196*x^8-145/2*x^7-995*x^6+312*x^5+1970*x^4-399/2*x^3-2875/2*x^2-529/2*x+193/2,-x^10+1/4*x^9+29/2*x^8-17/4*x^7-69*x^6+18*x^5+243/2*x^4-25/4*x^3-303/4*x^2-79/4*x+25/4,-19*x^10+25/4*x^9+575/2*x^8-401/4*x^7-1468*x^6+423*x^5+5869/2*x^4-881/4*x^3-8663/4*x^2-1747/4*x+613/4,35*x^10-27/2*x^9-529*x^8+427/2*x^7+2693*x^6-917*x^5-5350*x^4+1293/2*x^3+7853/2*x^2+1357/2*x-565/2,20*x^10-29/4*x^9-603/2*x^8+465/4*x^7+1529*x^6-503*x^5-6035/2*x^4+1409/4*x^3+8759/4*x^2+1495/4*x-617/4,-21*x^10+13/2*x^9+317*x^8-213/2*x^7-1613*x^6+459*x^5+3206*x^4-533/2*x^3-4693/2*x^2-865/2*x+341/2,-4*x^10+5/4*x^9+121/2*x^8-81/4*x^7-309*x^6+87*x^5+1237/2*x^4-217/4*x^3-1827/4*x^2-279/4*x+141/4,25/2*x^10-7/2*x^9-377/2*x^8+117/2*x^7+958*x^6-253*x^5-3797/2*x^4+132*x^3+1371*x^2+269*x-175/2,-28*x^10+21/2*x^9+426*x^8-331/2*x^7-2192*x^6+704*x^5+4435*x^4-907/2*x^3-6657/2*x^2-1227/2*x+493/2,-183/4*x^10+33/2*x^9+2771/4*x^8-263*x^7-3539*x^6+2253/2*x^5+28303/4*x^4-2923/4*x^3-20907/4*x^2-3819/4*x+379,-69/4*x^10+13/2*x^9+1049/4*x^8-103*x^7-1348*x^6+887/2*x^5+10885/4*x^4-1253/4*x^3-8109/4*x^2-1377/4*x+141,-30*x^10+11*x^9+453*x^8-175*x^7-2304*x^6+749*x^5+4574*x^4-492*x^3-3358*x^2-607*x+244,18*x^10-13/2*x^9-273*x^8+209/2*x^7+1399*x^6-456*x^5-2812*x^4+673/2*x^3+4169/2*x^2+663/2*x-299/2], x^11+2*x^10-16*x^9-30*x^8+91*x^7+158*x^6-213*x^5-349*x^4+152*x^3+290*x^2+41*x-19];
E[234,1]=[[1,0,3,-1,-6,1,3,2,0,-6,-4,-7,0,-1,-3,0,6,8,14,3,2,8,-12,6,-10], x-1];
E[234,2]=[[-1,0,1,1,2,-1,3,6,4,-2,4,3,0,-5,-13,-12,10,-8,-2,5,-10,-4,0,-6,14], x-1];
E[234,3]=[[1,0,-2,4,4,1,-2,-8,0,-6,-4,-2,10,4,-8,10,-4,-2,-16,8,2,8,-12,-14,10], x-1];
E[234,4]=[[-1,0,-2,-2,-4,-1,0,-6,4,-8,-2,6,6,-8,8,12,4,10,-2,-16,14,-4,-12,-6,-10], x-1];
E[234,5]=[[1,0,2,-2,4,-1,0,-6,-4,8,-2,6,-6,-8,-8,-12,-4,10,-2,16,14,-4,12,6,-10], x-1];
E[235,1]=[[-1,-1,1,1,-3,-3,-6,-7,4,-10,3,12,-8,0,1,-4,6,5,-8,12,5,14,-17,-10,0], x-1];
E[235,2]=[[-1,-1,-1,1,3,3,6,-1,4,2,-3,0,4,0,1,8,-6,5,4,0,-13,-10,7,14,12], x-1];
E[235,3]=[[-1/1516*x^4+7/758*x^3+215/1516*x^2-125/379*x-1249/379,-89/3032*x^4+109/3032*x^3+899/758*x^2-513/758*x-3089/379,-1,155/3032*x^4-275/3032*x^3-802/379*x^2+1183/758*x+4890/379,x,-23/1516*x^4-57/1516*x^3+194/379*x^2+536/379*x-1060/379,-43/3032*x^4+223/3032*x^3+511/758*x^2-1585/758*x-3545/379,-2/379*x^4+28/379*x^3+51/379*x^2-1000/379*x-138/379,81/1516*x^4+3/1516*x^3-848/379*x^2-108/379*x+4524/379,7/758*x^4-49/379*x^3+11/758*x^2+992/379*x-2222/379,-91/1516*x^4+137/1516*x^3+2013/758*x^2-1142/379*x-7160/379,-89/3032*x^4+109/3032*x^3+899/758*x^2+245/758*x-3847/379,-33/1516*x^4+83/1516*x^3+705/758*x^2-714/379*x-4454/379,0,-1,97/3032*x^4-221/3032*x^3-1329/758*x^2+1513/758*x+5432/379,-229/3032*x^4+553/3032*x^3+1981/758*x^2-2095/758*x-3728/379,-303/3032*x^4+831/3032*x^3+1558/379*x^2-5281/758*x-11662/379,5/758*x^4-35/379*x^3-317/758*x^2+871/379*x+2636/379,-223/3032*x^4-289/3032*x^3+1303/379*x^2+2445/758*x-8319/379,-14/379*x^4+13/758*x^3+1093/758*x^2+580/379*x-4756/379,233/3032*x^4-609/3032*x^3-1098/379*x^2+3353/758*x+5089/379,-27/379*x^4-1/379*x^3+1257/379*x^2+902/379*x-7548/379,109/3032*x^4-389/3032*x^3-608/379*x^2+2255/758*x+5346/379,267/3032*x^4-327/3032*x^3-2697/758*x^2+1539/758*x+5856/379], x^5+x^4-46*x^3-72*x^2+368*x+656];
E[235,4]=[[-113/21248*x^6+181/21248*x^5+2333/10624*x^4-505/1328*x^3-151/83*x^2+2677/1328*x+1005/332,-87/10624*x^6+251/10624*x^5+1711/5312*x^4-593/664*x^3-162/83*x^2+2111/664*x+51/166,1,-49/10624*x^6+149/10624*x^5+853/5312*x^4-99/166*x^3-34/83*x^2+2433/664*x-475/166,x,-93/21248*x^6+337/21248*x^5+1497/10624*x^4-777/1328*x^3-63/332*x^2+2497/1328*x-163/332,87/10624*x^6-251/10624*x^5-1711/5312*x^4+593/664*x^3+162/83*x^2-2775/664*x+281/166,35/2656*x^6-59/2656*x^5-633/1328*x^4+293/332*x^3+192/83*x^2-315/166*x+62/83,451/21248*x^6-1263/21248*x^5-8759/10624*x^4+3179/1328*x^3+1837/332*x^2-15679/1328*x-3115/332,113/10624*x^6-181/10624*x^5-2333/5312*x^4+505/664*x^3+302/83*x^2-2677/664*x-341/166,-15/10624*x^6-117/10624*x^5+627/5312*x^4+287/664*x^3-234/83*x^2-1525/664*x+1623/166,-63/5312*x^6+239/5312*x^5+1405/2656*x^4-151/83*x^3-827/166*x^2+3389/332*x+907/83,-15/664*x^6+49/664*x^5+295/332*x^4-941/332*x^3-931/166*x^2+1100/83*x+534/83,519/21248*x^6-1795/21248*x^5-10539/10624*x^4+4379/1328*x^3+2365/332*x^2-22931/1328*x-4895/332,-1,59/10624*x^6-71/10624*x^5-1271/5312*x^4+47/332*x^3+297/166*x^2+2125/664*x+389/166,535/21248*x^6-1139/21248*x^5-11739/10624*x^4+2601/1328*x^3+3329/332*x^2-7803/1328*x-4103/332,241/21248*x^6-245/21248*x^5-5293/10624*x^4+391/1328*x^3+1593/332*x^2+3475/1328*x-1641/332,71/5312*x^6-243/5312*x^5-1507/2656*x^4+545/332*x^3+795/166*x^2-1967/332*x-1175/83,331/21248*x^6-871/21248*x^5-5735/10624*x^4+2155/1328*x^3+417/332*x^2-9951/1328*x+3893/332,309/21248*x^6-777/21248*x^5-5745/10624*x^4+1757/1328*x^3+793/332*x^2-1785/1328*x+1227/332,35/21248*x^6-1055/21248*x^5-799/10624*x^4+2595/1328*x^3+13/332*x^2-17911/1328*x+861/332,-255/10624*x^6+667/10624*x^5+5347/5312*x^4-1595/664*x^3-1399/166*x^2+5947/664*x+3023/166,-379/21248*x^6+231/21248*x^5+7343/10624*x^4-805/1328*x^3-1483/332*x^2+2415/1328*x+371/332,-89/10624*x^6-163/10624*x^5+2525/5312*x^4+60/83*x^3-1233/166*x^2-3847/664*x+2857/166], x^7-x^6-46*x^5+40*x^4+512*x^3-80*x^2-1408*x-256];
E[235,5]=[[2,2,-1,-2,0,3,0,-4,1,8,6,-6,-2,9,1,8,3,-1,-8,3,5,-13,-14,-1,12], x-1];
E[236,1]=[[0,-1,-1,-3,-2,0,2,-5,-4,5,-4,8,-1,0,8,3,1,-2,-14,0,-2,-13,4,-18,2], x-1];
E[236,2]=[[0,1,3,-1,6,-4,-6,5,0,9,-4,-4,-9,8,-12,-9,-1,2,2,0,14,-7,0,-6,2], x-1];
E[236,3]=[[0,x,-1/3*x^2+1/3*x+2/3,-1/3*x^2-2/3*x+14/3,2/3*x^2-2/3*x-10/3,-2/3*x^2+2/3*x+16/3,1,-1/3*x^2-5/3*x+14/3,-4/3*x^2-2/3*x+20/3,1/3*x^2-4/3*x-26/3,2/3*x^2+4/3*x-4/3,4/3*x^2-4/3*x-26/3,2*x^2+x-12,2*x^2-8,-4/3*x^2-8/3*x+32/3,-2/3*x^2-1/3*x+4/3,-1,2/3*x^2-2/3*x-22/3,2*x,4/3*x^2+8/3*x-47/3,-4/3*x^2-2/3*x+20/3,4/3*x^2-1/3*x+4/3,2/3*x^2+10/3*x+2/3,-2/3*x^2-10/3*x+22/3,4/3*x^2+14/3*x-26/3], x^3-9*x+1];
E[237,1]=[[x,-1,0,1,-x+4,-2*x+1,-x+2,-2,-3*x+6,-x+4,-2*x,6*x-6,-2*x+2,-2*x+9,4*x-2,-2*x+6,4*x