Sharedwww / Tables / an_s2g0new_401-500.gpOpen in CoCalc
Author: William A. Stein
(File too big to render nicely. Download...)

\\ an_s2g0new_401-500.gp
\\ This is a PARI readable nonnormalized basis for S_k(Gamma_0(N)) for N 
\\ in the range:  401 <= N <= 500.
\\ The number of a_n computed is sufficient to satisfy Sturm's bound.
\\ William Stein ([email protected])

E[401,1] = [x^12+3*x^11-10*x^10-34*x^9+29*x^8+129*x^7-24*x^6-203*x^5+x^4+130*x^3-5*x^2-22*x+4, [2,2*x,-4*x^11-8*x^10+42*x^9+86*x^8-132*x^7-302*x^6+126*x^5+422*x^4+10*x^3-228*x^2-34*x+26,2*x^2-4,11*x^11+23*x^10-120*x^9-248*x^8+417*x^7+863*x^6-548*x^5-1151*x^4+231*x^3+530*x^2+25*x-46,4*x^11+2*x^10-50*x^9-16*x^8+214*x^7+30*x^6-390*x^5+14*x^4+292*x^3-54*x^2-62*x+16,-4*x^11-8*x^10+46*x^9+86*x^8-178*x^7-294*x^6+290*x^5+366*x^4-188*x^3-128*x^2+10*x+2,2*x^3-8*x,-8*x^11-16*x^10+90*x^9+172*x^8-334*x^7-594*x^6+508*x^5+776*x^4-306*x^3-332*x^2+24*x+20,-10*x^11-10*x^10+126*x^9+98*x^8-556*x^7-284*x^6+1082*x^5+220*x^4-900*x^3+80*x^2+196*x-44,-11*x^11-11*x^10+140*x^9+106*x^8-629*x^7-289*x^6+1260*x^5+151*x^4-1093*x^3+202*x^2+253*x-72,-2*x^11+6*x^10+36*x^9-74*x^8-222*x^7+310*x^6+574*x^5-556*x^4-594*x^3+414*x^2+172*x-68,11*x^11+15*x^10-130*x^9-152*x^8+521*x^7+473*x^6-892*x^5-487*x^4+643*x^3+82*x^2-111*x+14,4*x^11+6*x^10-50*x^9-62*x^8+222*x^7+194*x^6-446*x^5-184*x^4+392*x^3-10*x^2-86*x+16,9*x^11+15*x^10-102*x^9-158*x^8+379*x^7+533*x^6-566*x^5-681*x^4+323*x^3+298*x^2-31*x-26,2*x^4-12*x^2+8,x^11-9*x^10-24*x^9+108*x^8+171*x^7-435*x^6-478*x^5+733*x^4+521*x^3-502*x^2-167*x+78,8*x^11+10*x^10-100*x^9-102*x^8+438*x^7+316*x^6-848*x^5-298*x^4+708*x^3-16*x^2-156*x+32,13*x^11+13*x^10-168*x^9-132*x^8+767*x^7+409*x^6-1546*x^5-379*x^4+1313*x^3-54*x^2-283*x+52,-2*x^11-20*x^10-2*x^9+230*x^8+172*x^7-884*x^6-714*x^5+1412*x^4+918*x^3-914*x^2-314*x+132,18*x^11+34*x^10-200*x^9-364*x^8+718*x^7+1256*x^6-1006*x^5-1654*x^4+498*x^3+744*x^2+4*x-62,22*x^11+30*x^10-268*x^9-310*x^8+1130*x^7+996*x^6-2082*x^5-1082*x^4+1632*x^3+198*x^2-314*x+44,-10*x^11-20*x^10+108*x^9+214*x^8-366*x^7-738*x^6+452*x^5+974*x^4-160*x^3-440*x^2-26*x+26,4*x^11+12*x^10-42*x^9-132*x^8+140*x^7+466*x^6-182*x^5-620*x^4+90*x^3+270*x^2+12*x-24,-11*x^11-9*x^10+140*x^9+84*x^8-625*x^7-219*x^6+1234*x^5+99*x^4-1055*x^3+158*x^2+259*x-54,-18*x^11-20*x^10+222*x^9+202*x^8-946*x^7-628*x^6+1746*x^5+632*x^4-1348*x^3-56*x^2+256*x-44,-4*x^11+6*x^10+68*x^9-76*x^8-406*x^7+334*x^6+1032*x^5-656*x^4-1052*x^3+558*x^2+286*x-98,2*x^11+6*x^10-18*x^9-66*x^8+34*x^7+238*x^6+48*x^5-344*x^4-154*x^3+190*x^2+84*x-20,-6*x^11-26*x^10+48*x^9+298*x^8-46*x^7-1142*x^6-300*x^5+1798*x^4+594*x^3-1102*x^2-258*x+142,-12*x^11-12*x^10+148*x^9+118*x^8-628*x^7-350*x^6+1146*x^5+314*x^4-872*x^3+14*x^2+172*x-36,6*x^11+20*x^10-56*x^9-220*x^8+134*x^7+786*x^6-14*x^5-1104*x^4-180*x^3+578*x^2+116*x-74,2*x^5-16*x^3+24*x,5*x^11+23*x^10-38*x^9-262*x^8+19*x^7+991*x^6+304*x^5-1525*x^4-537*x^3+914*x^2+223*x-124,-12*x^11-14*x^10+142*x^9+142*x^8-564*x^7-454*x^6+936*x^5+520*x^4-632*x^3-162*x^2+100*x-4,-29*x^11-67*x^10+304*x^9+728*x^8-967*x^7-2571*x^6+996*x^5+3551*x^4-61*x^3-1790*x^2-243*x+182,2*x^11+12*x^10-10*x^9-138*x^8-48*x^7+532*x^6+310*x^5-852*x^4-444*x^3+548*x^2+160*x-72,-13*x^11-13*x^10+168*x^9+124*x^8-777*x^7-325*x^6+1634*x^5+115*x^4-1521*x^3+320*x^2+399*x-100,-26*x^11-38*x^10+310*x^9+390*x^8-1268*x^7-1234*x^6+2260*x^5+1300*x^4-1744*x^3-218*x^2+338*x-52,3*x^11+7*x^10-34*x^9-76*x^8+129*x^7+263*x^6-206*x^5-337*x^4+141*x^3+132*x^2-23*x-6,6*x^11-2*x^10-90*x^9+34*x^8+486*x^7-194*x^6-1158*x^5+480*x^4+1146*x^3-484*x^2-304*x+96,9*x^11-3*x^10-136*x^9+54*x^8+745*x^7-325*x^6-1820*x^5+839*x^4+1879*x^3-864*x^2-543*x+170,-20*x^11-20*x^10+248*x^9+196*x^8-1066*x^7-574*x^6+2000*x^5+480*x^4-1596*x^3+94*x^2+334*x-72,-15*x^11-37*x^10+156*x^9+404*x^8-489*x^7-1435*x^6+480*x^5+1999*x^4+21*x^3-1022*x^2-157*x+106,-14*x^11-26*x^10+158*x^9+280*x^8-584*x^7-976*x^6+864*x^5+1308*x^4-476*x^3-608*x^2+22*x+56,16*x^11+12*x^10-206*x^9-112*x^8+932*x^7+294*x^6-1858*x^5-134*x^4+1578*x^3-226*x^2-362*x+76,10*x^11+8*x^10-126*x^9-76*x^8+552*x^7+212*x^6-1056*x^5-150*x^4+860*x^3-76*x^2-194*x+40,-2*x^11+8*x^10+42*x^9-102*x^8-294*x^7+454*x^6+856*x^5-882*x^4-1004*x^3+704*x^2+332*x-110,4*x^11-14*x^10-68*x^9+172*x^8+394*x^7-706*x^6-956*x^5+1198*x^4+938*x^3-796*x^2-280*x+120,10*x^11+30*x^10-98*x^9-332*x^8+266*x^7+1200*x^6-132*x^5-1708*x^4-224*x^3+886*x^2+172*x-92,24*x^11+30*x^10-290*x^9-306*x^8+1200*x^7+970*x^6-2134*x^5-1044*x^4+1588*x^3+204*x^2-296*x+44,-23*x^11-49*x^10+254*x^9+532*x^8-909*x^7-1869*x^6+1284*x^5+2521*x^4-657*x^3-1168*x^2-7*x+106,12*x^11+12*x^10-150*x^9-120*x^8+652*x^7+368*x^6-1238*x^5-356*x^4+998*x^3+2*x^2-218*x+44,2*x^11+18*x^10-8*x^9-206*x^8-58*x^7+774*x^6+298*x^5-1166*x^4-360*x^3+676*x^2+114*x-90,18*x^11+28*x^10-212*x^9-290*x^8+850*x^7+936*x^6-1468*x^5-1048*x^4+1078*x^3+266*x^2-186*x+16,-2*x^11-28*x^10-12*x^9+328*x^8+278*x^7-1296*x^6-1076*x^5+2152*x^4+1376*x^3-1458*x^2-478*x+218,-8*x^11-10*x^10+102*x^9+100*x^8-464*x^7-292*x^6+954*x^5+212*x^4-854*x^3+114*x^2+196*x-40,17*x^11+29*x^10-186*x^9-306*x^8+639*x^7+1045*x^6-788*x^5-1399*x^4+241*x^3+712*x^2+63*x-72,-8*x^11-12*x^10+94*x^9+128*x^8-368*x^7-444*x^6+580*x^5+600*x^4-322*x^3-288*x^2+10*x+24,3*x^11+29*x^10+8*x^9-330*x^8-313*x^7+1257*x^6+1252*x^5-2011*x^4-1577*x^3+1342*x^2+523*x-206,6*x^11-2*x^10-86*x^9+36*x^8+440*x^7-208*x^6-990*x^5+502*x^4+928*x^3-484*x^2-238*x+100,-9*x^11-3*x^10+122*x^9+24*x^8-583*x^7-43*x^6+1208*x^5-57*x^4-1015*x^3+172*x^2+207*x-46,2*x^11+4*x^10-16*x^9-40*x^8+12*x^7+130*x^6+114*x^5-186*x^4-202*x^3+146*x^2+58*x-24,18*x^11+40*x^10-192*x^9-434*x^8+634*x^7+1530*x^6-720*x^5-2108*x^4+128*x^3+1056*x^2+148*x-108,2*x^6-20*x^4+48*x^2-16,-9*x^11-15*x^10+100*x^9+154*x^8-359*x^7-493*x^6+510*x^5+561*x^4-285*x^3-184*x^2+37*x+8,8*x^11+12*x^10-92*x^9-126*x^8+346*x^7+424*x^6-510*x^5-542*x^4+264*x^3+248*x^2-14*x-20,10*x^11+26*x^10-110*x^9-290*x^8+394*x^7+1054*x^6-560*x^5-1478*x^4+290*x^3+698*x^2+4*x-54]];
E[401,2] = [x^21-35*x^19+521*x^17+2*x^16-4305*x^15-51*x^14+21617*x^13+519*x^12-67876*x^11-2749*x^10+132085*x^9+8292*x^8-152221*x^7-14353*x^6+93934*x^5+12831*x^4-24699*x^3-4111*x^2+1058*x-44, [2056085485264,2056085485264*x,-18286877149*x^20-11127199047*x^19+671572664904*x^18+329074794244*x^17-10577086239965*x^16-4006759400165*x^15+93133967532384*x^14+26143714096043*x^13-500633401464048*x^12-100786701349185*x^11+1682873453689943*x^10+245328747827630*x^9-3480210083621745*x^8-413112998448921*x^7+4180416582284798*x^6+521232062879477*x^5-2588114268141401*x^4-432724747315370*x^3+634884906799859*x^2+141291794379294*x-13174803927996,2056085485264*x^2-4112170970528,-11558616560*x^20+77610706560*x^19+283666114112*x^18-2464706175388*x^17-2180532836116*x^16+32493081708008*x^15-655542769400*x^14-230516536198200*x^13+103391507300528*x^12+955484402213296*x^11-643750072751116*x^10-2359122820599800*x^9+1839908471122876*x^8+3413196282552900*x^7-2694039963675884*x^6-2782917599515820*x^5+1916660988176096*x^4+1210103936451908*x^3-545729026560984*x^2-225557627625912*x+19165879147664,-11127199047*x^20+31531964689*x^19+329074794244*x^18-1049623245336*x^17-3970185645867*x^16+14408961405939*x^15+25211083361444*x^14-105325978134115*x^13-91295812108854*x^12+441633380324419*x^11+195058122545029*x^10-1064787915396080*x^9-261478213129413*x^8+1396769855786869*x^7+258760515159880*x^6-870354750027235*x^5-198085826616551*x^4+183217328096708*x^3+66114442419755*x^2+6172712095646*x-804622594556,23576454762*x^20-35112211870*x^19-703668017428*x^18+1111062583356*x^17+8442221219790*x^16-14481346633350*x^15-51183010312864*x^14+100445979825570*x^13+156320096184948*x^12-400865755519414*x^11-161684963736438*x^10+933918765555928*x^9-316460839664574*x^8-1247646999012534*x^7+1017608063013536*x^6+942727211455542*x^5-929985654087206*x^4-429175032382256*x^3+278858459257082*x^2+105922794706644*x-2288060752952,2056085485264*x^3-8224341941056*x,-47033871267*x^20+1902648503*x^19+1598556316866*x^18-21946617698*x^17-23007342201413*x^16-498995858173*x^15+183027927604228*x^14+12003773477549*x^13-881757667429068*x^12-102088799997141*x^11+2652675799389601*x^10+444891306658078*x^9-4958878738984533*x^8-1066244018822523*x^7+5537341302072654*x^6+1391522485441553*x^5-3351986725303963*x^4-913889733937538*x^3+857595315935787*x^2+236798542587198*x-21214116945164,77610706560*x^20-120885465488*x^19-2464706175388*x^18+3841506391644*x^17+32516198941128*x^16-50415387060200*x^15-231106025642760*x^14+353254121478048*x^13+961483324207936*x^12-1428302730377676*x^11-2390897457523240*x^10+3366628339450476*x^9+3509040331068420*x^8-4453504135055644*x^7-2948818423001500*x^6+3002408076123136*x^5+1358412545533268*x^4-831215296976424*x^3-273075100304072*x^2+31394895468144*x-508579128640,-131745636950*x^20+49009784442*x^19+4407126988000*x^18-1506056851360*x^17-62039189651382*x^16+18848500024390*x^15+478428220552992*x^14-123327414514462*x^13-2206188018699356*x^12+450464521411446*x^11+6240122773073962*x^10-901244576806296*x^9-10701636511022362*x^8+845991977164818*x^7+10628896926857992*x^6-51662554561934*x^5-5535140273553462*x^4-464385073762248*x^3+1186574651062142*x^2+213412469242820*x-22307849634392,68105718987*x^20-38122774307*x^19-2392768575144*x^18+1168935469132*x^17+35585388283963*x^16-14677989735561*x^15-292161400350280*x^14+96953421498059*x^13+1448675199557908*x^12-358638237270773*x^11-4461123492956169*x^10+717600377338322*x^9+8449456757528083*x^8-608806854075665*x^7-9390896602518422*x^6-195327637094607*x^5+5502218955351567*x^4+656733247788642*x^3-1309341016786289*x^2-271615634761418*x+25860011097924,23688569844*x^20-35104829496*x^19-763419030372*x^18+1131088216252*x^17+10351054074216*x^16-14983810289028*x^15-77341142549048*x^14+105068136569756*x^13+352115309086892*x^12-417668563488300*x^11-1025939301436156*x^10+929947657191100*x^9+1957031666952172*x^8-1044896736645924*x^7-2407243006919388*x^6+387850273086732*x^5+1720086010506284*x^4+149990069865452*x^3-519644437146444*x^2-94690355292768*x+18636115727136,-35112211870*x^20+121507899242*x^19+1111062583356*x^18-3841111711212*x^17-14528499542874*x^16+50313627437546*x^15+101648379018432*x^14-353332126405206*x^13-413101935540892*x^12+1438590479689074*x^11+998730439696666*x^10-3430556866903344*x^9-1443142961899038*x^8+4606439583339938*x^7+1281120066654528*x^6-3144616355700914*x^5-731684523433478*x^4+861173315423720*x^3+202845600233226*x^2-27231949891148*x+1037364009528,100050176293*x^20+1580618343*x^19-3346587951888*x^18-97960082812*x^17+47117199939497*x^16+2303483764521*x^15-363374104058688*x^14-27131329046091*x^13+1674369776375752*x^12+176505028889377*x^11-4722346994917575*x^10-656669383305698*x^9+8040424697669873*x^8+1402471263189629*x^7-7860847279491498*x^6-1687972928128345*x^5+3957362824777805*x^4+1058265130873234*x^3-786376579593279*x^2-256321507556446*x+14486492619916,2056085485264*x^4-12336512911584*x^2+8224341941056,37417326900*x^20-117045060632*x^19-1241889733004*x^18+3697349401884*x^17+17394718616552*x^16-48285152349372*x^15-134639956831240*x^14+336554856648780*x^13+635408574175948*x^12-1347613193077332*x^11-1907118748044404*x^10+3098004673239660*x^9+3673094243193628*x^8-3820688059200972*x^7-4401625084299604*x^6+2057742973632268*x^5+2945933898810556*x^4-103378605345340*x^3-798682879282212*x^2-169257320644432*x+11726507765440,1902648503*x^20-47629177479*x^19-21946617698*x^18+1497304728694*x^17-404928115639*x^16-19452888200207*x^15+9605046042932*x^14+134973527749671*x^13-77678220809568*x^12-539795246729291*x^11+315595194545095*x^10+1253590147317162*x^9-676239158276559*x^8-1622201616061353*x^7+716445331146302*x^6+1066092938290415*x^5-310398131710661*x^4-304094270487846*x^3+43442297808561*x^2+28547718855322*x-2069490335748,19560055923*x^20+83428578419*x^19-707764252304*x^18-2664089090508*x^17+10907735035495*x^16+35393334158353*x^15-93022901103580*x^14-253344758111913*x^13+477204151887438*x^12+1057357625768757*x^11-1500286864381305*x^10-2602130874708780*x^9+2826906311914709*x^8+3646499843568451*x^7-2995297319256884*x^6-2681091340987393*x^5+1576536932169655*x^4+888677732025332*x^3-335443937810391*x^2-89213122332510*x+18583527489324,-97768232368*x^20+96447141092*x^19+3274174163420*x^18-2989566825856*x^17-46209542801088*x^16+38021902682024*x^15+358523353051408*x^14-255194247103184*x^13-1675365701683372*x^12+966038056516728*x^11+4867480317286148*x^10-2023924203709580*x^9-8776869056096916*x^8+2038768375162460*x^7+9504434474730584*x^6-366036365442132*x^5-5660360249199976*x^4-776376131882448*x^3+1441910563258272*x^2+368494548582704*x-34916887206688,-71477022020*x^20+45437187172*x^19+2542241203976*x^18-1405012368944*x^17-38613486924788*x^16+17688264946916*x^15+327286179898992*x^14-115278167186836*x^13-1697075051888352*x^12+402293870964804*x^11+5545644440537700*x^10-646339518630856*x^9-11318040404012820*x^8-39365474173100*x^7+13744045509882848*x^6+1592287086087780*x^5-8884547162247780*x^4-1879675997256944*x^3+2330891459325044*x^2+624401149905304*x-52173504649792,49009784442*x^20-203970305250*x^19-1506056851360*x^18+6600287199568*x^17+19111991298290*x^16-88736746516758*x^15-130046441998912*x^14+641757415248794*x^13+518840506988496*x^12-2702244080544238*x^11-1263413332781846*x^10+6699985945518388*x^9+1938426798754218*x^8-9425555675307958*x^7-1942607681705284*x^6+6840254387707838*x^5+1226043193943202*x^4-2067410835965908*x^3-328193844258630*x^2+117079034258708*x-5796808025800,41890165043*x^20-117493570401*x^19-1519283492156*x^18+3758626084000*x^17+23531499422459*x^16-49972006570527*x^15-203637844251812*x^14+357104005194783*x^13+1080987154782330*x^12-1479551537157843*x^11-3629795412271505*x^10+3561147354554536*x^9+7638436761590461*x^8-4659598358491357*x^7-9579453990845760*x^6+2656081010713183*x^5+6397840212256703*x^4-2267421419120*x^3-1742131333927103*x^2-344788938929078*x+43670814837628,-15868376213*x^20-72132339977*x^19+510785880644*x^18+2201555182408*x^17-6873829881801*x^16-27784202923123*x^15+50004646443508*x^14+187085828484159*x^13-211393481207318*x^12-721646471643395*x^11+514706753743527*x^10+1583288695922348*x^9-650583049657043*x^8-1817315664172033*x^7+264672717206044*x^6+845485848081179*x^5+179040420699547*x^4+6367480280208*x^3-123861908845371*x^2-58541263781614*x+4605896824540,1790533421*x^20-47636559853*x^19+37804395246*x^18+1477279095798*x^17-2313760970065*x^16-18950424544529*x^15+35763178279116*x^14+130351371005485*x^13-273473433711512*x^12-522992438760405*x^11+1179849532244813*x^10+1257561255681990*x^9-2949731664893305*x^8-1824951878427963*x^7+4141296401079226*x^6+1620969876659225*x^5-2960469796304151*x^4-883259372735554*x^3+841945194212087*x^2+227104783369470*x-20937581330572,-35104829496*x^20+65680914168*x^19+1131088216252*x^18-1990690814508*x^17-15031187428716*x^16+24638150629372*x^15+106276253631800*x^14-159960505230856*x^13-429962931237336*x^12+581946065295188*x^11+995067535692256*x^10-1171873080892568*x^9-1241322357792372*x^8+1198654783304136*x^7+727852316057664*x^6-505076109220012*x^5-153957969802912*x^4+65439549430512*x^3+2693355335916*x^2-6426391167816*x+1042297073136,-29071478242*x^20+7354291754*x^19+871894059200*x^18-139466117228*x^17-10438725075302*x^16+277990194718*x^15+61915086279704*x^14+11808404945790*x^13-171649878848248*x^12-117628855749346*x^11+54764517592762*x^10+477584268178100*x^9+890764222218114*x^8-923113739211614*x^7-2158207140165744*x^6+751660023330318*x^5+1952355582051990*x^4-89475610093000*x^3-631071043494258*x^2-85583920617332*x+18423769678104,74354989718*x^20-47640408354*x^19-2433775676356*x^18+1542837674684*x^17+33499409421706*x^16-20546999815218*x^15-252756828584848*x^14+145026788801758*x^13+1144173525279708*x^12-582814542152626*x^11-3203710409861098*x^10+1326816011838056*x^9+5530511723495126*x^8-1568401938383674*x^7-5683798058698096*x^6+681091563452018*x^5+3171669414102102*x^4+193959144020608*x^3-729295171402882*x^2-173659505245300*x+3031184183624,33237272127*x^20+12515858277*x^19-1046143476970*x^18-494010734154*x^17+13502207952929*x^16+8119184198997*x^15-91375037063012*x^14-71738574102713*x^13+340581136378892*x^12+366951354705153*x^11-646173453920921*x^10-1090131963417026*x^9+357080894122149*x^8+1786004506344087*x^7+636577899169914*x^6-1404655951930429*x^5-948906923145845*x^4+332558930404910*x^3+308014940862725*x^2+42785215498898*x+7091360695868,1580618343*x^20+155168218367*x^19-97960082812*x^18-5008941909156*x^17+2103383411935*x^16+67341904882677*x^15-22028770055148*x^14-488414884550029*x^13+124578987393310*x^12+2068658771146093*x^11-381631448676241*x^10-5174702837991032*x^9+572855201368073*x^8+7368890606005255*x^7-251952747794916*x^6-5440750435128857*x^5-225478681142249*x^4+1684762724667528*x^3+154984767184077*x^2-91366593898078*x+4402207756892,-18559545486*x^20+69117092090*x^19+644933679676*x^18-2223998370072*x^17-9615266598602*x^16+29636977442718*x^15+80931871112784*x^14-211125191766094*x^13-425462101768052*x^12+864213120484466*x^11+1451551502615870*x^10-2020997373036788*x^9-3197351406429674*x^8+2471385601926866*x^7+4317621597962528*x^6-1129317444709474*x^5-3175007388010674*x^4-278105461446828*x^3+961149718314598*x^2+246343910452236*x-22551048138536,2056085485264*x^5-16448683882112*x^3+24673025823168*x,-10780824808*x^20-65461485836*x^19+473477630236*x^18+2099694220804*x^17-8701424173764*x^16-28130670037608*x^15+87361590377736*x^14+204747140577088*x^13-523974188055076*x^12-883564897284744*x^11+1927654045531872*x^10+2322704158802668*x^9-4298889587860520*x^8-3694808652288000*x^7+5533746775286220*x^6+3430056064582824*x^5-3700440330422440*x^4-1697034302147412*x^3+994467976258992*x^2+332063236985592*x-18294332516192,-117045060632*x^20+67716708496*x^19+3697349401884*x^18-2099708698348*x^17-48359987003172*x^16+26441635473260*x^15+338463140320680*x^14-173441781421352*x^13-1367032785738432*x^12+632619732619996*x^11+3200864904887760*x^10-1269173380392872*x^9-4130952533855772*x^8+1294077833745296*x^7+2594793866627968*x^6-568825286214044*x^5-583480326799240*x^4+125487677820888*x^3-15434689758532*x^2-27861024094760*x+1646362383600,93985656814*x^20+144194453502*x^19-3434376936900*x^18-4601259475612*x^17+53475433947074*x^16+61206514325614*x^15-462112735171368*x^14-440696812165706*x^13+2418948018114836*x^12+1868872993409966*x^11-7860620361955674*x^10-4777045687346712*x^9+15639882404010918*x^8+7304851188611662*x^7-18097944793266496*x^6-6560415748272598*x^5+10927006329119134*x^4+3360873877685752*x^3-2698468957583450*x^2-783466073674092*x+66269335312376,46438565055*x^20+40840782901*x^19-1699807905038*x^18-1352314750306*x^17+26557990905613*x^16+18793939564693*x^15-230985292385132*x^14-142815320454017*x^13+1222732613555788*x^12+648916964329005*x^11-4046531070727293*x^10-1817333099111470*x^9+8279779100520837*x^8+3138556426566511*x^7-9981280951891334*x^6-3272166487074569*x^5+6375466297178087*x^4+1918215281059234*x^3-1678821125020419*x^2-477679577626318*x+42511950424460,97945346638*x^20+129532625538*x^19-3430012957012*x^18-4248252186228*x^17+50962763662202*x^16+58445154003202*x^15-418626034418624*x^14-438109605733858*x^13+2076528654981728*x^12+1945569909087898*x^11-6381393657034050*x^10-5219481500054548*x^9+12001409694508186*x^8+8304194087354454*x^7-13153096122953300*x^6-7453611594114018*x^5+7553180498901702*x^4+3422101169383868*x^3-1781841324657558*x^2-616069687201188*x+50306775092312,83428578419*x^20-23162294999*x^19-2664089090508*x^18+716945899612*x^17+35354214046507*x^16-8816860355065*x^15-252347195259840*x^14+54374422999947*x^13+1047205956744720*x^12-172628508551757*x^11-2548360280976453*x^10+243316325325254*x^9+3484307859854935*x^8-17846046601901*x^7-2400345858324574*x^6-260817360901427*x^5+637702654477319*x^4+147669883431786*x^3-8801732433057*x^2-2111011677210*x+860642460612,-164359792582*x^20-51925491986*x^19+5485366147860*x^18+1785628872484*x^17-77134355931234*x^16-26371076853426*x^15+595096456286480*x^14+217156991913450*x^13-2750245430491720*x^12-1079953514088330*x^11+7813402747690266*x^10+3288394270028156*x^9-13504157537340058*x^8-5978178829409406*x^7+13601633849423004*x^6+6102424802615986*x^5-7279037114536078*x^4-3085309012890404*x^3+1659534156878054*x^2+575357117042004*x-52699913349256,-58774272028*x^20+94056961516*x^19+1939845524920*x^18-2955306520648*x^17-26814958735496*x^16+38461886827568*x^15+202031624331568*x^14-268418065540412*x^13-906186879300152*x^12+1087969237831132*x^11+2489105840557268*x^10-2596408762670588*x^9-4168618104178924*x^8+3529064645552544*x^7+4128333041382964*x^6-2481415262190536*x^5-2238737033435176*x^4+689563585953888*x^3+512719545926000*x^2+5732111702368*x-3284643966912,74650945274*x^20+25650749114*x^19-2432640170900*x^18-972660505884*x^17+33056135390578*x^16+15614452917278*x^15-242810351820600*x^14-137129521565582*x^13+1045180225960740*x^12+711563250874578*x^11-2674192946156126*x^10-2207101713746996*x^9+3945665514028626*x^8+3974564394584910*x^7-3108307577294700*x^6-3868586971181150*x^5+1116281760186278*x^4+1747207203218304*x^3-124577707711610*x^2-249940451842892*x+188319442840,45437187172*x^20+40545433276*x^19-1405012368944*x^18-1373958452368*x^17+17831218990956*x^16+19577600102892*x^15-118923495309856*x^14-151956266882012*x^13+439390445393184*x^12+694070093908180*x^11-842829852163836*x^10-1876997950501120*x^9+553321992416740*x^8+2863741740976428*x^7+566377389034720*x^6-2170424575821100*x^5-962554327718324*x^4+565480492453064*x^3+330559112381084*x^2+23449184647368*x-3144988968880,67635919828*x^20+72247171700*x^19-2469987533632*x^18-2364261162272*x^17+38463382542716*x^16+32413142656204*x^15-333073304401880*x^14-242138372943564*x^13+1753689287543112*x^12+1075439263537676*x^11-5767919535434492*x^10-2919622980283944*x^9+11725243355046884*x^8+4841267417718572*x^7-14048693346040272*x^6-4822692698655788*x^5+8929888502605524*x^4+2718938592793240*x^3-2347895166470924*x^2-650332436977328*x+67877916224256,59520968650*x^20+111266035226*x^19-2213966776432*x^18-3409992693272*x^17+35243613217122*x^16+43243679975118*x^15-312599526850648*x^14-293949174265294*x^13+1684695878729076*x^12+1162245753180454*x^11-5645531703198478*x^10-2732541425654760*x^9+11571328214143702*x^8+3825726761510762*x^7-13714102029912120*x^6-3274316788707758*x^5+8374025166965714*x^4+1811068969198824*x^3-2054591044024514*x^2-484474098451076*x+46772129784232,78824704373*x^20-118795951989*x^19-2547252565086*x^18+3763555009818*x^17+34552367014331*x^16-49083830014349*x^15-256885264151060*x^14+339615591412309*x^13+1150811338948048*x^12-1337970058647753*x^11-3233627634636219*x^10+2979403300194950*x^9+5779179259333595*x^8-3422323106474899*x^7-6493139292422382*x^6+1423098981336973*x^5+4242807651738169*x^4+389389822867454*x^3-1200563067662157*x^2-328173568769154*x+18066272005716,-117493570401*x^20-53127715651*x^19+3758626084000*x^18+1706723435056*x^17-50055786900613*x^16-23300683741697*x^15+359240403611976*x^14+175447457047799*x^13-1501292532815160*x^12-786458569812837*x^11+3676303418257743*x^10+2105374311885806*x^9-5006951607027913*x^8-3202891177835257*x^7+3257330549575362*x^6+2462929449107541*x^5-539760129085853*x^4-707486147530046*x^3-172578470437305*x^2-648979777866*x+1843167261892,50472008426*x^20-18995541726*x^19-1875584220876*x^18+593008670532*x^17+29735587273326*x^16-7568945328230*x^15-262366942494464*x^14+50037254674226*x^13+1409125080902740*x^12-174274575472030*x^11-4732563878462054*x^10+246323443601664*x^9+9822857176538410*x^8+254079099045218*x^7-11978934887513912*x^6-1330746156069946*x^5+7679219863331858*x^4+1526161862926752*x^3-1986032786061414*x^2-509258476513212*x+43217835489032,-208343777951*x^20+31638261803*x^19+6987092332696*x^18-944276813092*x^17-98923242738623*x^16+11047266317665*x^15+770599341997856*x^14-62273635607015*x^13-3610761183504664*x^12+154901324451485*x^11+10461913515625149*x^10+10190667760418*x^9-18584648603670003*x^8-933213670161699*x^7+19399520249332834*x^6+2060275746080703*x^5-10794463295233923*x^4-1829261428507542*x^3+2494905875179321*x^2+564625908380730*x-52418230749220,-14822761488*x^20-87113904640*x^19+758032977520*x^18+2713696883984*x^17-15405663804688*x^16-35093850587264*x^15+166182437302704*x^14+244958825282512*x^13-1052607463362464*x^12-1009764842822752*x^11+4045447493763600*x^10+2553754817763984*x^9-9351523444584512*x^8-4060125532637696*x^7+12380284402631232*x^6+4154774364196144*x^5-8422462831316528*x^4-2630411353421344*x^3+2287105027368496*x^2+727563826449440*x-54028570595680,-47636559853*x^20+100473064981*x^19+1477279095798*x^18-3246628882406*x^17-18954005611371*x^16+43471424656521*x^15+130442688209956*x^14-312179394673269*x^13-523921725605904*x^12+1301383778728609*x^11+1262483432056319*x^10-3186234271806090*x^9-1839798981554895*x^8+4413853188957267*x^7+1646669402850838*x^6-3128661762672365*x^5-906233707060405*x^4+886169579177366*x^3+234465666263201*x^2-22831965689990*x+78783470524,104665065316*x^20+143068140020*x^19-3644785815196*x^18-4521746270580*x^17+54051143246560*x^16+59678253976424*x^15-445102245336768*x^14-427197998179132*x^13+2224281609825840*x^12+1804355973716496*x^11-6922824623087476*x^10-4597128330976384*x^9+13257775158886528*x^8+6995007700587884*x^7-14873778050625616*x^6-6200533850201480*x^5+8795466319557708*x^4+3065508036877512*x^3-2153159731507344*x^2-678701675414216*x+50738168740240,18303774480*x^20-27371157116*x^19-463852753764*x^18+996252306196*x^17+4006252139932*x^16-14882416770424*x^15-7068566437056*x^14+118761894838184*x^13-104065146370172*x^12-552370744201640*x^11+783502345695240*x^10+1535603731804588*x^9-2424319304419376*x^8-2526046461361104*x^7+3805550286862676*x^6+2367878537900888*x^5-2924302404318880*x^4-1164340968116692*x^3+888546529067016*x^2+227563917265440*x-38816843952096,-116243067468*x^20-48610466588*x^19+3993509970008*x^18+1502550279184*x^17-58168415949220*x^16-19526994379828*x^15+468280627288528*x^14+139227086991460*x^13-2276678879019512*x^12-596188835025692*x^11+6857629579955452*x^10+1584178830099144*x^9-12621670655248100*x^8-2641713751758476*x^7+13452288942741552*x^6+2784183857949196*x^5-7400173963045620*x^4-1762451136953320*x^3+1642198396025388*x^2+463999131059000*x-46394597801920,7354291754*x^20-145607679270*x^19-139466117228*x^18+4707515088780*x^17+336133151202*x^16-63237627552106*x^15+10325759555448*x^14+456788266309066*x^13-102540758541748*x^12-1918491139561230*x^11+397666774490842*x^10+4730670425812684*x^9-682053041628950*x^8-6583496629641226*x^7+334397096122892*x^6+4683155819236018*x^5+283540527230102*x^4-1349107484593416*x^3-205096767670194*x^2+49181393658140*x-1279145042648,-37319009036*x^20-202235695748*x^19+1117675375188*x^18+6597960877884*x^17-13269575235672*x^16-89921646165408*x^15+75823700625080*x^14+663063280726276*x^13-173415615651960*x^12-2860249679063480*x^11-240437384410036*x^10+7272390282265888*x^9+2238576820324304*x^8-10388649046970828*x^7-4762941297001944*x^6+7295856826652640*x^5+4185155272324892*x^4-1616637064384520*x^3-1276796759051456*x^2-204093086774960*x+9081724129936,22584015386*x^20-74366834710*x^19-679287492028*x^18+2442683201052*x^17+8361289291094*x^16-33285852723950*x^15-54477864759488*x^14+243505965356114*x^13+204799089265516*x^12-1033972087140278*x^11-466243000820494*x^10+2570446640399784*x^9+701332410672746*x^8-3578286335514294*x^7-813931402434584*x^6+2476440521333318*x^5+703279317815906*x^4-615147911205440*x^3-273677342981054*x^2-21172495155724*x+1196891528536,-30785913453*x^20-145130806603*x^19+1303222682058*x^18+4547966162410*x^17-23403236057579*x^16-59124033033923*x^15+231704105427604*x^14+413709267048499*x^13-1378036194240776*x^12-1695836775226395*x^11+5038825064364379*x^10+4180017898135062*x^9-11151703963552375*x^8-6207338142447177*x^7+14137525903187754*x^6+5563762829740491*x^5-9157293187544349*x^4-2976451834344438*x^3+2365534958303749*x^2+716794579183242*x-65287396778964,12515858277*x^20+117161047475*x^19-494010734154*x^18-3814410825238*x^17+8052709654743*x^16+51711419443723*x^15-70043473224236*x^14-377908975190467*x^13+349701210471240*x^12+1609839628971331*x^11-998762702339903*x^10-4033064194772646*x^9+1510401045867003*x^8+5695988699613981*x^7-927601385091598*x^6-4071016843123463*x^5-93908508256627*x^4+1128942325127498*x^3+179423641212995*x^2-28073673214498*x+1462439973588,46906571606*x^20-37259830258*x^19-1502521446084*x^18+1193376926296*x^17+19994627038354*x^16-15803567946486*x^15-142988928171608*x^14+112343367648662*x^13+593100080490580*x^12-467849517736402*x^11-1431310648402062*x^10+1175880046329876*x^9+1884860735448682*x^8-1777230655290738*x^7-1092821872699600*x^6+1541148052418562*x^5+13120835341410*x^4-659927707448836*x^3+144045038546026*x^2+86498640988268*x-7710601309752,-44932134219*x^20-45799677493*x^19+1684233994620*x^18+1475801420856*x^17-26895656233003*x^16-19831175617575*x^15+238413935102840*x^14+144673418764861*x^13-1280901122525428*x^12-627355455805527*x^11+4274336271669025*x^10+1677417994144314*x^9-8725065276634647*x^8-2816291969384371*x^7+10303630738931218*x^6+3001993371683079*x^5-6250243838847115*x^4-1922505802108634*x^3+1487884487296553*x^2+515372928662890*x-28903438032740,-252543744786*x^20+155889454074*x^19+8503649384648*x^18-4898316945728*x^17-120977029954242*x^16+63070599847014*x^15+948673838483400*x^14-427684263004018*x^13-4490669269495888*x^12+1629953975000526*x^11+13225196023739062*x^10-3408432069396220*x^9-24102691944234778*x^8+3298688163150254*x^7+26132928086716252*x^6-131122985502262*x^5-15325596449837626*x^4-1938096797255116*x^3+3802212276547518*x^2+867047112560788*x-93313412738376,69117092090*x^20-4650412334*x^19-2223998370072*x^18+54256599604*x^17+29674096533690*x^16+1033027795554*x^15-212071728585880*x^14-24260406997190*x^13+873845524591700*x^12+191803793208134*x^11-2072017563577802*x^10-745913840911364*x^9+2625281353096778*x^8+1492469024538122*x^7-1395702601070032*x^6-1431635042328750*x^5-39967933315962*x^4+502747504355884*x^3+170045618959290*x^2-2915049014348*x-816620001384,-227829204138*x^20+87053912574*x^19+7776602844716*x^18-2770886295740*x^17-112378363271870*x^16+36069409324014*x^15+897070185760736*x^14-246598067965890*x^13-4331054506518420*x^12+942903532824238*x^11+13023289382586574*x^10-1948437439349032*x^9-24208746344704578*x^8+1703101880360174*x^7+26633585288530280*x^6+585776688545482*x^5-15664905674222746*x^4-2015382862747416*x^3+3829877983873838*x^2+881687085197580*x-77140052731896,2056085485264*x^6-20560854852640*x^4+49346051646336*x^2-16448683882112,170617198634*x^20-143911226266*x^19-5820482882384*x^18+4737129609880*x^17+84214169761098*x^16-64691311024134*x^15-674889908527688*x^14+474012510593178*x^13+3284008512991672*x^12-2012083421232086*x^11-10005501454215774*x^10+4966648118438828*x^9+18964375597970754*x^8-6683674944850670*x^7-21396676410780908*x^6+3920629379154918*x^5+12932841920553434*x^4+19418175459556*x^3-3221545931894782*x^2-543147448934596*x+64261387314264,-65461485836*x^20+96148761956*x^19+2099694220804*x^18-3084614448796*x^17-28109108387992*x^16+40950139579296*x^15+204197318511880*x^14-290925098180540*x^13-877969649209392*x^12+1195894780864064*x^11+2293067671405476*x^10-2874904343095840*x^9-3605414052980064*x^8+3892678842187652*x^7+3275318886113600*x^6-2687754332907768*x^5-1558705539035964*x^4+728192384326200*x^3+287743266199904*x^2-6888219869328*x-474356291552,58042421709*x^20+51202479553*x^19-1927463654292*x^18-1670048476096*x^17+26991256337433*x^16+23054963751403*x^15-207744323121892*x^14-175403651510135*x^13+961278668571222*x^12+800842036601787*x^11-2754372018665447*x^10-2236844759360860*x^9+4869077319472131*x^8+3734773805864865*x^7-5131404133772196*x^6-3489223345318091*x^5+2931544896645533*x^4+1593650983484120*x^3-679567337547933*x^2-268164840033458*x+9988856469268]];

E[402,1] = [x, [1,-1,1,1,-3,-1,-1,-1,1,3,0,1,-4,1,-3,1,-6,-1,2,-3,-1,0,-9,-1,4,4,1,-1,0,3,5,-1,0,6,3,1,-7,-2,-4,3,3,1,-1,0,-3,9,0,1,-6,-4,-6,-4,9,-1,0,1,2,0,-3,-3,-10,-5,-1,1,12,0,1,-6,-9,-3,-12,-1,11,7,4,2,0,4,8,-3,1,-3,15,-1,18,1,0,0,0,3,4,-9,5,0,-6,-1,8,6,0,4,18,6,-4,4,3,-9,0,1,2,0,-7,-1,-6,-2,27,0,-4,3,6,3,-11,10,3,5,3,1,-16,-1,-1,-12,-3,0,-2,-1,-3,6]];
E[402,2] = [x, [1,-1,1,1,2,-1,0,-1,1,-2,4,1,-2,0,2,1,2,-1,-4,2,0,-4,4,-1,-1,2,1,0,-2,-2,0,-1,4,-2,0,1,6,4,-2,-2,-2,0,4,4,2,-4,12,1,-7,1,2,-2,2,-1,8,0,-4,2,0,2,-10,0,0,1,-4,-4,-1,2,4,0,-4,-1,-6,-6,-1,-4,0,2,0,2,1,2,-16,0,4,-4,-2,-4,-6,-2,0,4,0,-12,-8,-1,-6,7,4,-1,-6,-2,-16,2,0,-2,8,1,-2,-8,6,0,-2,4,8,-2,-2,0,0,-2,5,10,-2,0,-12,0,8,-1,4,4,0,4,0,1,2,-2]];
E[402,3] = [x, [1,-1,-1,1,1,1,-3,-1,1,-1,0,-1,-4,3,-1,1,2,-1,-2,1,3,0,-3,1,-4,4,-1,-3,0,1,-9,-1,0,-2,-3,1,-3,2,4,-1,3,-3,-7,0,1,3,-8,-1,2,4,-2,-4,-3,1,0,3,2,0,3,-1,6,9,-3,1,-4,0,-1,2,3,3,4,-1,11,3,4,-2,0,-4,0,1,1,-3,9,3,2,7,0,0,16,-1,12,-3,9,8,-2,1,0,-2,0,-4,-14,2,-4,4,3,3,0,-1,18,0,3,-3,-6,-2,-3,0,-4,-3,-6,1,-11,-6,-3,-9,-9,3,8,-1,7,4,11,0,6,1,-1,-2]];
E[402,4] = [x^2-12, [2,-2,-2,2,2*x,2,x+6,-2,2,-2*x,-4,-2,-x-2,-x-6,-2*x,2,-2*x,-2,4,2*x,-x-6,4,x+14,2,14,x+2,-2,x+6,-5*x-2,2*x,3*x+10,-2,4,2*x,6*x+12,2,-4,-4,x+2,-2*x,-2*x-4,x+6,-4*x+8,-4,2*x,-x-14,-5*x+2,-2,6*x+10,-14,2*x,-x-2,2*x+8,2,-4*x,-x-6,-4,5*x+2,2*x-12,-2*x,x-6,-3*x-10,x+6,2,-2*x-12,-4,2,-2*x,-x-14,-6*x-12,-3*x+6,-2,12,4,-14,4,-2*x-12,-x-2,-3*x+6,2*x,2,2*x+4,4*x+16,-x-6,-24,4*x-8,5*x+2,4,-20,-2*x,-4*x-12,x+14,-3*x-10,5*x-2,4*x,2,6*x,-6*x-10,-4,14,-20,-2*x,-2*x-20,x+2,-6*x-12,-2*x-8,6*x-4,-2,-x-18,4*x,4,x+6,2*x+20,4,14*x+12,-5*x-2,-x-2,-2*x+12,-6*x-12,2*x,-14,-x+6,2*x+4,3*x+10,4*x,-x-6,-10*x-4,-2,4*x-8,2*x+12,-8*x+8,4,2*x+12,-2,-2*x,2*x]];
E[402,5] = [x^3-3*x^2-4*x+4, [2,2,2,2,2*x,2,x^2-3*x-2,2,2,2*x,-4*x+4,2,-3*x^2+7*x+6,x^2-3*x-2,2*x,2,-2*x^2+2*x+8,2,-4,2*x,x^2-3*x-2,-4*x+4,3*x^2-9*x-6,2,2*x^2-10,-3*x^2+7*x+6,2,x^2-3*x-2,3*x^2-7*x-6,2*x,-x^2+3*x-6,2,-4*x+4,-2*x^2+2*x+8,2*x-4,2,2*x^2+4*x-20,-4,-3*x^2+7*x+6,2*x,-4*x^2+14*x+12,x^2-3*x-2,2*x^2-12*x,-4*x+4,2*x,3*x^2-9*x-6,-x^2+9*x-10,2,-2*x-6,2*x^2-10,-2*x^2+2*x+8,-3*x^2+7*x+6,2*x+8,2,-4*x^2+4*x,x^2-3*x-2,-4,3*x^2-7*x-6,6*x-4,2*x,3*x^2-11*x-6,-x^2+3*x-6,x^2-3*x-2,2,-2*x^2-6*x+12,-4*x+4,2,-2*x^2+2*x+8,3*x^2-9*x-6,2*x-4,-3*x^2+11*x+10,2,2*x^2-12,2*x^2+4*x-20,2*x^2-10,-4,2*x^2-10*x+4,-3*x^2+7*x+6,-5*x^2+13*x-2,2*x,2,-4*x^2+14*x+12,6*x^2-20*x-16,x^2-3*x-2,-4*x^2+8,2*x^2-12*x,3*x^2-7*x-6,-4*x+4,4*x^2-8*x-4,2*x,4*x-20,3*x^2-9*x-6,-x^2+3*x-6,-x^2+9*x-10,-4*x,2,-2*x^2-2*x+16,-2*x-6,-4*x+4,2*x^2-10,-4*x^2+12*x+12,-2*x^2+2*x+8,6*x^2-14*x-12,-3*x^2+7*x+6,2*x-4,2*x+8,-2*x^2+2*x+12,2,-3*x^2+11*x-2,-4*x^2+4*x,2*x^2+4*x-20,x^2-3*x-2,-6*x^2+18*x+28,-4,6*x-12,3*x^2-7*x-6,-3*x^2+7*x+6,6*x-4,2*x^2-6*x-12,2*x,8*x^2-16*x-14,3*x^2-11*x-6,-4*x^2+14*x+12,-x^2+3*x-6,6*x^2-12*x-8,x^2-3*x-2,-2*x^2+10*x+4,2,2*x^2-12*x,-2*x^2-6*x+12,-2*x^2+8*x+24,-4*x+4,-2*x^2+6*x+4,2,2*x,-2*x^2+2*x+8]];
E[402,6] = [x, [1,1,-1,1,2,-1,2,1,1,2,-4,-1,0,2,-2,1,6,1,4,2,-2,-4,-6,-1,-1,0,-1,2,8,-2,2,1,4,6,4,1,-2,4,0,2,-10,-2,4,-4,2,-6,-6,-1,-3,-1,-6,0,-6,-1,-8,2,-4,8,-8,-2,8,2,2,1,0,4,-1,6,6,4,-14,1,-6,-2,1,4,-8,0,-2,2,1,-10,-12,-2,12,4,-8,-4,-6,2,0,-6,-2,-6,8,-1,-2,-3,-4,-1,6,-6,4,0,-4,-6,16,-1,20,-8,2,2,6,-4,-12,8,0,-8,12,-2,5,8,10,2,-12,2,-4,1,-4,0,-12,4,8,-1,-2,6]];
E[402,7] = [x^2-x-10, [1,1,-1,1,x,-1,-x,1,1,x,4,-1,4,-x,-x,1,-2,1,-2*x,x,x,4,x+4,-1,x+5,4,-1,-x,-4,-x,x-4,1,-4,-2,-x-10,1,-x+8,-2*x,-4,x,-x,x,x-6,4,x,x+4,2*x-6,-1,x+3,x+5,2,4,-3*x,-1,4*x,-x,2*x,-4,-3*x-2,-x,2*x-8,x-4,-x,1,4*x,-4,-1,-2,-x-4,-x-10,-2*x-6,1,-3*x+8,-x+8,-x-5,-2*x,-4*x,-4,-2*x-2,x,1,-x,3*x+6,x,-2*x,x-6,4,4,2*x-10,x,-4*x,x+4,-x+4,2*x-6,-2*x-20,-1,-2*x-6,x+3,4,x+5,-10,2,4*x+4,4,x+10,-3*x,-8,-1,-2*x+4,4*x,x-8,-x,6,2*x,5*x+10,-4,4,-3*x-2,2*x,-x,5,2*x-8,x,x-4,x+10,-x,4*x-4,1,-x+6,4*x,x-6,-4,2*x+20,-1,-x,-2]];

E[403,1] = [x^2-3*x+1, [1,x,-2,3*x-3,2*x-3,-2*x,1,4*x-3,1,3*x-2,-4*x+6,-6*x+6,1,x,-4*x+6,3*x+2,-2*x+6,x,1,3*x+3,-2,-6*x+4,2*x-6,-8*x+6,0,x,4,3*x-3,2*x,-6*x+4,-1,3*x+3,8*x-12,2,2*x-3,3*x-3,-6*x+6,x,-2,6*x+1,-2*x+3,-2*x,-6*x+4,-6*x-6,2*x-3,-2,-8*x+12,-6*x-4,-6,0,4*x-12,3*x-3,-2*x+12,4*x,-10,4*x-3,-2,6*x-2,-4*x+3,-6*x-6,6*x-2,-x,1,6*x-7,2*x-3,12*x-8,-8,6*x-12,-4*x+12,3*x-2,3,4*x-3,14,-12*x+6]];
E[403,2] = [x^7-2*x^6-9*x^5+17*x^4+20*x^3-37*x^2+x+4, [1,x,x^5-3*x^4-3*x^3+13*x^2-6*x,x^2-2,-x^5+2*x^4+5*x^3-9*x^2-2*x+4,x^6-3*x^5-3*x^4+13*x^3-6*x^2,x^4-2*x^3-5*x^2+8*x+2,x^3-4*x,x^6-2*x^5-7*x^4+12*x^3+11*x^2-15*x+1,-x^6+2*x^5+5*x^4-9*x^3-2*x^2+4*x,-x^6+3*x^5+3*x^4-14*x^3+7*x^2+5*x-1,-x^6+4*x^5+2*x^4-20*x^3+11*x^2+11*x-4,-1,x^5-2*x^4-5*x^3+8*x^2+2*x,x^5-4*x^4+16*x^2-19*x+4,x^4-6*x^2+4,-x^5+4*x^4+x^3-17*x^2+14*x,2*x^5-5*x^4-9*x^3+22*x^2-4,-x^6+4*x^5+2*x^4-20*x^3+10*x^2+10*x,-2*x^5+4*x^4+8*x^3-15*x^2+5*x-4,x^5-3*x^4-4*x^3+14*x^2-x-4,x^6-6*x^5+3*x^4+27*x^3-32*x^2+4,-x^6+4*x^5+2*x^4-19*x^3+9*x^2+4*x+4,-x^5+3*x^4+5*x^3-14*x^2-3*x+4,-3*x^5+5*x^4+17*x^3-22*x^2-13*x+7,-x,x^6-4*x^5-2*x^4+20*x^3-12*x^2-10*x+8,x^6-2*x^5-7*x^4+12*x^3+12*x^2-16*x-4,x^6-4*x^5+x^4+13*x^3-23*x^2+19*x-2,x^6-4*x^5+16*x^3-19*x^2+4*x,1,x^5-8*x^3+12*x,x^5-2*x^4-6*x^3+10*x^2+5*x-4,-x^6+4*x^5+x^4-17*x^3+14*x^2,3*x^4-5*x^3-15*x^2+19*x+4,-x^5+5*x^4-2*x^3-22*x^2+26*x-2,-2*x^5+5*x^4+9*x^3-22*x^2-x+7,2*x^6-7*x^5-3*x^4+30*x^3-27*x^2+x+4,-x^5+3*x^4+3*x^3-13*x^2+6*x,-2*x^4+3*x^3+9*x^2-12*x,-x^6+4*x^5+x^4-16*x^3+14*x^2-9*x+2,x^6-3*x^5-4*x^4+14*x^3-x^2-4*x,x^5-4*x^4-x^3+20*x^2-16*x-8,-2*x^6+6*x^5+4*x^4-24*x^3+23*x^2-7*x-2,2*x^6-4*x^5-14*x^4+27*x^3+20*x^2-45*x+8,2*x^6-7*x^5-2*x^4+29*x^3-33*x^2+5*x+4,3*x^5-8*x^4-13*x^3+39*x^2-x-16,x^6-5*x^5+x^4+26*x^3-25*x^2-18*x+8,-x^6+x^5+11*x^4-11*x^3-31*x^2+30*x+5,-3*x^6+5*x^5+17*x^4-22*x^3-13*x^2+7*x,-2*x^6+7*x^5+6*x^4-36*x^3+14*x^2+25*x-12,-x^2+2,-3*x^4+5*x^3+14*x^2-22*x+4,-2*x^6+7*x^5+3*x^4-32*x^3+27*x^2+7*x-4,-2*x^6+3*x^5+13*x^4-15*x^3-16*x^2+15*x,-x^4+2*x^3+5*x^2-9*x-4,-x^3+2*x^2+3*x-4,-2*x^6+10*x^5-4*x^4-43*x^3+56*x^2-3*x-4,3*x^6-8*x^5-14*x^4+42*x^3+4*x^2-35*x-2,-2*x^6+7*x^5+7*x^4-39*x^3+9*x^2+37*x-12,-2*x^6+6*x^5+9*x^4-31*x^3-x^2+20*x,x,x^6-2*x^5-8*x^4+12*x^3+19*x^2-13*x-10,x^6-10*x^4+24*x^2-8,x^5-2*x^4-5*x^3+9*x^2+2*x-4,x^6-2*x^5-6*x^4+10*x^3+5*x^2-4*x,x^6-3*x^5-3*x^4+13*x^3-7*x^2-x-2,2*x^6-6*x^5-8*x^4+32*x^3-3*x^2-27*x+4,-x^6+3*x^5+x^4-8*x^3+15*x^2-23*x+4,3*x^5-5*x^4-15*x^3+19*x^2+4*x,x^6+x^5-15*x^4-2*x^3+50*x^2-13*x-14,-x^6+x^5+8*x^4-4*x^3-18*x^2-2*x+8,4*x^6-12*x^5-17*x^4+62*x^3-2*x^2-40*x-1,-2*x^6+5*x^5+9*x^4-22*x^3-x^2+7*x]];
E[403,3] = [x^8+x^7-11*x^6-10*x^5+37*x^4+33*x^3-36*x^2-33*x-4, [1,x,-x^5-x^4+7*x^3+5*x^2-10*x-4,x^2-2,-x^7+10*x^5-x^4-29*x^3+25*x+8,-x^6-x^5+7*x^4+5*x^3-10*x^2-4*x,2*x^6+2*x^5-15*x^4-10*x^3+25*x^2+10*x-2,x^3-4*x,-x^6-2*x^5+7*x^4+12*x^3-11*x^2-15*x+1,x^7-x^6-11*x^5+8*x^4+33*x^3-11*x^2-25*x-4,x^6+x^5-7*x^4-4*x^3+11*x^2+x-3,-x^7-x^6+9*x^5+7*x^4-24*x^3-14*x^2+20*x+8,1,2*x^7+2*x^6-15*x^5-10*x^4+25*x^3+10*x^2-2*x,-x^5-2*x^4+6*x^3+12*x^2-7*x-12,x^4-6*x^2+4,x^7-10*x^5+x^4+27*x^3-2*x^2-17*x,-x^7-2*x^6+7*x^5+12*x^4-11*x^3-15*x^2+x,-x^7-x^6+9*x^5+7*x^4-22*x^3-15*x^2+13*x+8,-2*x^5-2*x^4+14*x^3+11*x^2-21*x-12,x^7+2*x^6-6*x^5-12*x^4+4*x^3+13*x^2+8*x+8,x^7+x^6-7*x^5-4*x^4+11*x^3+x^2-3*x,x^7-x^6-11*x^5+9*x^4+35*x^3-16*x^2-33*x,-x^5-x^4+9*x^3+4*x^2-17*x-4,-2*x^7+21*x^5-x^4-65*x^3-6*x^2+59*x+23,x,x^7-x^6-11*x^5+9*x^4+34*x^3-15*x^2-31*x-4,3*x^6+6*x^5-19*x^4-36*x^3+20*x^2+46*x+12,-x^7-x^6+7*x^5+4*x^4-9*x^3-6*x-2,-x^6-2*x^5+6*x^4+12*x^3-7*x^2-12*x,-1,x^5-8*x^3+12*x,x^5+2*x^4-6*x^3-10*x^2+5*x+8,-x^7+x^6+11*x^5-10*x^4-35*x^3+19*x^2+33*x+4,2*x^6+2*x^5-17*x^4-11*x^3+37*x^2+11*x-12,-x^7-2*x^6+6*x^5+12*x^4-6*x^3-13*x^2-3*x-6,-2*x^6-2*x^5+15*x^4+9*x^3-26*x^2-5*x+5,-2*x^6-3*x^5+15*x^4+18*x^3-23*x^2-25*x-4,-x^5-x^4+7*x^3+5*x^2-10*x-4,-2*x^7+20*x^5-2*x^4-55*x^3+x^2+38*x+8,x^7+x^6-7*x^5-6*x^4+8*x^3+11*x^2+8*x-2,x^7+5*x^6-2*x^5-33*x^4-20*x^3+44*x^2+41*x+4,x^5-9*x^3-2*x^2+18*x+8,2*x^6+4*x^5-12*x^4-24*x^3+11*x^2+31*x+10,-2*x^6+18*x^4-5*x^3-40*x^2+15*x+16,-2*x^7+19*x^5-2*x^4-49*x^3+3*x^2+33*x+4,-2*x^7+21*x^5-63*x^3-9*x^2+51*x+20,2*x^7+x^6-19*x^5-5*x^4+52*x^3+11*x^2-44*x-16,-x^7-3*x^6+6*x^5+20*x^4-5*x^3-28*x^2-7*x+1,2*x^7-x^6-21*x^5+9*x^4+60*x^3-13*x^2-43*x-8,2*x^7+2*x^6-19*x^5-14*x^4+52*x^3+28*x^2-39*x-12,x^2-2,-2*x^6-2*x^5+15*x^4+11*x^3-22*x^2-16*x-4,-2*x^7+19*x^5-3*x^4-48*x^3+5*x^2+29*x+4,-x^5-x^4+9*x^3+8*x^2-21*x-16,-x^7+2*x^6+11*x^5-16*x^4-30*x^3+26*x^2+16*x,-2*x^6-4*x^5+12*x^4+27*x^3-8*x^2-41*x-20,-4*x^6-6*x^5+28*x^4+33*x^3-42*x^2-35*x-4,3*x^6+2*x^5-24*x^4-8*x^3+44*x^2+7*x-6,-x^7-2*x^6+8*x^5+16*x^4-19*x^3-36*x^2+14*x+24,x^7-4*x^6-17*x^5+28*x^4+69*x^3-36*x^2-71*x-16,-x,3*x^7+x^6-29*x^5-5*x^4+80*x^3+12*x^2-64*x-18,x^6-10*x^4+24*x^2-8,-x^7+10*x^5-x^4-29*x^3+25*x+8,x^6+2*x^5-6*x^4-10*x^3+5*x^2+8*x,-x^6+x^5+11*x^4-9*x^3-29*x^2+19*x+14,-2*x^3+x^2+5*x-4,x^7-x^6-16*x^5+4*x^4+72*x^3+8*x^2-90*x-24,2*x^7+2*x^6-17*x^5-11*x^4+37*x^3+11*x^2-12*x,3*x^6+5*x^5-19*x^4-30*x^3+18*x^2+41*x+14,x^7-x^6-12*x^5+7*x^4+42*x^3-9*x^2-41*x-4,-2*x^7+18*x^5-5*x^4-42*x^3+18*x^2+18*x-11,-2*x^7-2*x^6+15*x^5+9*x^4-26*x^3-5*x^2+5*x]];
E[403,4] = [x^6+2*x^5-7*x^4-13*x^3+6*x^2+7*x-3, [1,x,-x^5-3*x^4+5*x^3+19*x^2+6*x-8,x^2-2,3*x^5+8*x^4-17*x^3-51*x^2-8*x+18,-x^5-2*x^4+6*x^3+12*x^2-x-3,-2*x^5-5*x^4+12*x^3+31*x^2-10,x^3-4*x,-2*x^5-4*x^4+13*x^3+25*x^2-4*x-8,2*x^5+4*x^4-12*x^3-26*x^2-3*x+9,5*x^5+12*x^4-29*x^3-75*x^2-8*x+24,2*x^5+5*x^4-11*x^3-33*x^2-8*x+13,1,-x^5-2*x^4+5*x^3+12*x^2+4*x-6,3*x^5+8*x^4-16*x^3-50*x^2-11*x+18,x^4-6*x^2+4,-3*x^5-8*x^4+17*x^3+51*x^2+6*x-24,-x^4-x^3+8*x^2+6*x-6,-12*x^5-29*x^4+69*x^3+184*x^2+23*x-67,-6*x^5-14*x^4+34*x^3+87*x^2+11*x-30,x^5+x^4-8*x^3-4*x^2+13*x-4,2*x^5+6*x^4-10*x^3-38*x^2-11*x+15,4*x^5+11*x^4-22*x^3-71*x^2-13*x+27,3*x^5+7*x^4-19*x^3-44*x^2+x+12,-7*x^5-19*x^4+39*x^3+122*x^2+23*x-47,x,6*x^5+15*x^4-35*x^3-94*x^2-9*x+31,4*x^5+8*x^4-25*x^3-52*x^2+x+17,8*x^5+20*x^4-46*x^3-127*x^2-14*x+45,2*x^5+5*x^4-11*x^3-29*x^2-3*x+9,1,x^5-8*x^3+12*x,5*x^5+14*x^4-26*x^3-90*x^2-27*x+36,-2*x^5-4*x^4+12*x^3+24*x^2-3*x-9,x^4+x^3-5*x^2-x,3*x^5+7*x^4-18*x^3-44*x^2+2*x+16,-3*x^4-3*x^3+20*x^2+17*x-13,-5*x^5-15*x^4+28*x^3+95*x^2+17*x-36,-x^5-3*x^4+5*x^3+19*x^2+6*x-8,-6*x^5-16*x^4+33*x^3+99*x^2+18*x-36,-14*x^5-34*x^4+81*x^3+214*x^2+26*x-75,-x^5-x^4+9*x^3+7*x^2-11*x+3,7*x^5+20*x^4-37*x^3-128*x^2-32*x+50,-8*x^5-20*x^4+46*x^3+127*x^2+17*x-42,-4*x^5-12*x^4+21*x^3+76*x^2+17*x-30,3*x^5+6*x^4-19*x^3-37*x^2-x+12,-x^5-2*x^4+5*x^3+13*x^2+9*x-6,-3*x^5-8*x^4+17*x^3+49*x^2+7*x-17,x^5+4*x^4-2*x^3-25*x^2-21*x+12,-5*x^5-10*x^4+31*x^3+65*x^2+2*x-21,5*x^5+14*x^4-26*x^3-88*x^2-23*x+36,x^2-2,-2*x^5-5*x^4+11*x^3+30*x^2+6*x-12,3*x^5+7*x^4-16*x^3-45*x^2-11*x+18,-15*x^5-37*x^4+85*x^3+232*x^2+35*x-78,2*x^5+7*x^4-10*x^3-47*x^2-19*x+24,-6*x^5-16*x^4+33*x^3+100*x^2+21*x-34,4*x^5+10*x^4-23*x^3-62*x^2-11*x+24,16*x^5+39*x^4-93*x^3-246*x^2-26*x+87,-5*x^5-13*x^4+29*x^3+85*x^2+17*x-30,12*x^5+29*x^4-71*x^3-185*x^2-14*x+68,x,2*x^5+9*x^4-7*x^3-61*x^2-32*x+35,-2*x^5-3*x^4+13*x^3+18*x^2-7*x-5,3*x^5+8*x^4-17*x^3-51*x^2-8*x+18,4*x^5+9*x^4-25*x^3-57*x^2+x+15,-9*x^5-22*x^4+50*x^3+139*x^2+26*x-55,6*x^5+14*x^4-36*x^3-93*x^2-7*x+42,3*x^5+8*x^4-17*x^3-49*x^2-6*x+15,x^5+x^4-5*x^3-x^2,7*x^5+16*x^4-39*x^3-102*x^2-20*x+39,x^5+5*x^4-3*x^3-32*x^2-17*x+21,-8*x^5-21*x^4+44*x^3+134*x^2+28*x-55,-3*x^5-3*x^4+20*x^3+17*x^2-13*x]];
E[403,5] = [x^8+5*x^7-30*x^5-24*x^4+54*x^3+54*x^2-28*x-29, [1,x,-x^7-3*x^6+6*x^5+19*x^4-12*x^3-36*x^2+8*x+19,x^2-2,-x^5-2*x^4+5*x^3+7*x^2-6*x-6,2*x^7+6*x^6-11*x^5-36*x^4+18*x^3+62*x^2-9*x-29,x^4+2*x^3-3*x^2-4*x,x^3-4*x,x^7+3*x^6-5*x^5-18*x^4+6*x^3+34*x^2-2*x-19,-x^6-2*x^5+5*x^4+7*x^3-6*x^2-6*x,2*x^7+7*x^6-9*x^5-43*x^4+8*x^3+77*x^2+x-37,-2*x^7-5*x^6+12*x^5+28*x^4-22*x^3-45*x^2+11*x+20,-1,x^5+2*x^4-3*x^3-4*x^2,2*x^7+5*x^6-13*x^5-29*x^4+29*x^3+50*x^2-20*x-27,x^4-6*x^2+4,-x^6-x^5+9*x^4+4*x^3-25*x^2-x+17,-2*x^7-5*x^6+12*x^5+30*x^4-20*x^3-56*x^2+9*x+29,-x^6-4*x^5+16*x^3+14*x^2-14*x-16,-x^7-2*x^6+7*x^5+11*x^4-16*x^3-20*x^2+12*x+12,x^7+3*x^6-8*x^5-23*x^4+21*x^3+49*x^2-17*x-29,-3*x^7-9*x^6+17*x^5+56*x^4-31*x^3-107*x^2+19*x+58,x^7+4*x^6-3*x^5-22*x^4-2*x^3+32*x^2+8*x-11,x^7-10*x^5+2*x^4+27*x^3-5*x^2-18*x,x^7+3*x^6-2*x^5-11*x^4-8*x^3+7*x^2+15*x+2,-x,-2*x^7-6*x^6+10*x^5+33*x^4-13*x^3-48*x^2+3*x+17,x^6+2*x^5-5*x^4-8*x^3+6*x^2+8*x,-x^7-2*x^6+7*x^5+11*x^4-14*x^3-12*x^2+7*x-5,-5*x^7-13*x^6+31*x^5+77*x^4-58*x^3-128*x^2+29*x+58,-1,x^5-8*x^3+12*x,-2*x^7-7*x^6+11*x^5+47*x^4-19*x^3-94*x^2+16*x+51,-x^7-x^6+9*x^5+4*x^4-25*x^3-x^2+17*x,-x^7-3*x^6+7*x^5+19*x^4-22*x^3-40*x^2+23*x+29,3*x^7+6*x^6-20*x^5-32*x^4+40*x^3+49*x^2-23*x-20,2*x^7+8*x^6-6*x^5-45*x^4-x^3+74*x^2+5*x-33,-x^7-4*x^6+16*x^4+14*x^3-14*x^2-16*x,x^7+3*x^6-6*x^5-19*x^4+12*x^3+36*x^2-8*x-19,3*x^7+9*x^6-15*x^5-50*x^4+20*x^3+78*x^2-4*x-29,x^6-11*x^4-2*x^3+28*x^2+5*x-20,-2*x^7-8*x^6+7*x^5+45*x^4-5*x^3-71*x^2-x+29,-x^7-6*x^6+35*x^4+11*x^3-59*x^2-7*x+28,2*x^7+3*x^6-16*x^5-17*x^4+39*x^3+27*x^2-28*x-13,-x^7+9*x^5-3*x^4-21*x^3+7*x^2+14*x-2,-x^7-3*x^6+8*x^5+22*x^4-22*x^3-46*x^2+17*x+29,-x^7-5*x^6+4*x^5+38*x^4+2*x^3-84*x^2-13*x+47,-x^7+8*x^5-5*x^4-15*x^3+18*x^2+6*x-11,-x^7-2*x^6+10*x^5+17*x^4-30*x^3-38*x^2+28*x+22,-2*x^7-2*x^6+19*x^5+16*x^4-47*x^3-39*x^2+30*x+29,4*x^7+15*x^6-19*x^5-95*x^4+27*x^3+174*x^2-14*x-83,-x^2+2,-x^7-5*x^6+x^5+29*x^4+10*x^3-49*x^2-10*x+19,4*x^7+10*x^6-27*x^5-61*x^4+60*x^3+111*x^2-39*x-58,-x^7-2*x^6+6*x^5+10*x^4-5*x^3-5*x^2-8*x-10,x^7+2*x^6-7*x^5-12*x^4+12*x^3+16*x^2,-x^7-3*x^6+7*x^5+22*x^4-12*x^3-41*x^2+x+15,3*x^7+7*x^6-19*x^5-38*x^4+42*x^3+61*x^2-33*x-29,-3*x^7-11*x^6+11*x^5+61*x^4-6*x^3-95*x^2-2*x+36,8*x^7+21*x^6-47*x^5-120*x^4+84*x^3+199*x^2-42*x-91,-2*x^7-8*x^6+10*x^5+55*x^4-13*x^3-111*x^2+62,-x,2*x^7+6*x^6-12*x^5-37*x^4+23*x^3+63*x^2-10*x-29,x^6-10*x^4+24*x^2-8,x^5+2*x^4-5*x^3-7*x^2+6*x+6,3*x^7+11*x^6-13*x^5-67*x^4+14*x^3+124*x^2-5*x-58,2*x^7+7*x^6-9*x^5-41*x^4+11*x^3+69*x^2-5*x-30,4*x^7+11*x^6-24*x^5-67*x^4+45*x^3+121*x^2-26*x-63,2*x^7+8*x^6-9*x^5-50*x^4+11*x^3+85*x^2-35,2*x^7+7*x^6-11*x^5-46*x^4+14*x^3+77*x^2+x-29,3*x^7+10*x^6-18*x^5-69*x^4+35*x^3+145*x^2-23*x-87,-5*x^7-10*x^6+34*x^5+52*x^4-73*x^3-73*x^2+46*x+29,-x^7-3*x^6+5*x^5+17*x^4-7*x^3-31*x^2-2*x+22,-2*x^7-6*x^6+15*x^5+47*x^4-34*x^3-103*x^2+23*x+58]];

E[404,1] = [x, [1,0,-2,0,3,0,2,0,1,0,-6,0,5,0,-6,0,3,0,5,0,-4,0,3,0,4,0,4,0,0,0,5,0,12,0,6,0,-10,0,-10,0,12,0,8,0,3,0,-3,0,-3,0,-6,0,-6,0,-18,0,-10,0,-6,0,8,0,2,0,15,0,-10,0,-6,0,-9,0,-4,0,-8,0,-12,0,5,0,-11,0,-12,0,9,0,0,0,6,0,10,0,-10,0,15,0,2,0,-6,0,-1,0]];
E[404,2] = [x^7-2*x^6-17*x^5+36*x^4+64*x^3-148*x^2+11*x+58, [1,0,x,0,8*x^6+8*x^5-113*x^4-52*x^3+368*x^2-72*x-154,0,-18*x^6-17*x^5+256*x^4+105*x^3-844*x^2+189*x+360,0,x^2-3,0,-2*x^6-2*x^5+28*x^4+13*x^3-90*x^2+17*x+40,0,20*x^6+18*x^5-286*x^4-106*x^3+951*x^2-232*x-406,0,24*x^6+23*x^5-340*x^4-144*x^3+1112*x^2-242*x-464,0,21*x^6+20*x^5-298*x^4-124*x^3+977*x^2-220*x-406,0,-22*x^6-22*x^5+310*x^4+142*x^3-1004*x^2+206*x+412,0,-53*x^6-50*x^5+753*x^4+308*x^3-2475*x^2+558*x+1044,0,2*x^6+2*x^5-28*x^4-12*x^3+90*x^2-26*x-36,0,5*x^6+6*x^5-68*x^4-44*x^3+205*x^2-24*x-69,0,x^3-6*x,0,-6*x^6-6*x^5+84*x^4+38*x^3-268*x^2+60*x+106,0,-40*x^6-38*x^5+568*x^4+236*x^3-1866*x^2+412*x+788,0,-6*x^6-6*x^5+85*x^4+38*x^3-279*x^2+62*x+116,0,x^5+2*x^4-13*x^3-18*x^2+34*x+8,0,21*x^6+20*x^5-298*x^4-124*x^3+977*x^2-220*x-402,0,58*x^6+54*x^5-826*x^4-329*x^3+2728*x^2-626*x-1160,0,-20*x^6-18*x^5+286*x^4+106*x^3-952*x^2+232*x+410,0,22*x^6+22*x^5-310*x^4-142*x^3+1004*x^2-206*x-416,0,47*x^6+44*x^5-669*x^4-268*x^3+2206*x^2-512*x-930,0,14*x^6+12*x^5-202*x^4-68*x^3+684*x^2-170*x-308,0,-30*x^6-28*x^5+427*x^4+172*x^3-1408*x^2+314*x+601,0,62*x^6+59*x^5-880*x^4-367*x^3+2888*x^2-637*x-1218,0,-16*x^6-14*x^5+230*x^4+80*x^3-772*x^2+198*x+334,0,-26*x^6-24*x^5+370*x^4+144*x^3-1218*x^2+291*x+510,0,-66*x^6-64*x^5+934*x^4+404*x^3-3050*x^2+654*x+1276,0,18*x^6+17*x^5-256*x^4-105*x^3+844*x^2-189*x-364,0,24*x^6+22*x^5-342*x^4-132*x^3+1130*x^2-268*x-478,0,-102*x^6-97*x^5+1448*x^4+602*x^3-4754*x^2+1060*x+1994,0,15*x^6+12*x^5-218*x^4-62*x^3+748*x^2-208*x-348,0,20*x^6+20*x^5-282*x^4-130*x^3+914*x^2-179*x-376,0,6*x^6+6*x^5-84*x^4-38*x^3+270*x^2-58*x-116,0,-18*x^6-16*x^5+258*x^4+94*x^3-862*x^2+202*x+376,0,2*x^6-32*x^4+10*x^3+124*x^2-62*x-58,0,16*x^6+17*x^5-224*x^4-115*x^3+716*x^2-124*x-290,0,53*x^6+50*x^5-752*x^4-308*x^3+2464*x^2-556*x-1028,0,10*x^6+10*x^5-140*x^4-64*x^3+448*x^2-96*x-180,0,x^4-9*x^2+9,0,4*x^6+4*x^5-56*x^4-25*x^3+180*x^2-43*x-80,0,-18*x^6-16*x^5+257*x^4+92*x^3-849*x^2+222*x+348,0,-18*x^6-18*x^5+254*x^4+116*x^3-828*x^2+172*x+348,0,22*x^6+22*x^5-310*x^4-142*x^3+1004*x^2-204*x-414,0,2*x^6-32*x^4+11*x^3+124*x^2-73*x-58,0,-118*x^6-112*x^5+1676*x^4+694*x^3-5508*x^2+1228*x+2320,0,-20*x^6-22*x^5+278*x^4+154*x^3-880*x^2+128*x+352,0,-20*x^6-20*x^5+281*x^4+128*x^3-904*x^2+196*x+362,0,-12*x^6-11*x^5+170*x^4+66*x^3-556*x^2+131*x+228,0,-1,0]];
E[404,3] = [x, [1,0,0,0,-1,0,-2,0,-3,0,-2,0,-3,0,0,0,-1,0,1,0,0,0,3,0,-4,0,0,0,-2,0,-3,0,0,0,2,0,-2,0,0,0,2,0,4,0,3,0,-3,0,-3,0,0,0,0,0,2,0,0,0,12,0,-10,0,6,0,3,0,2,0,0,0,-1,0,2,0,0,0,4,0,1,0,9,0,4,0,1,0,0,0,-6,0,6,0,0,0,-1,0,-2,0,6,0,1,0]];

E[405,1] = [x, [1,-1,0,-1,1,0,-3,3,0,-1,2,0,-2,3,0,-1,-4,0,-8,-1,0,-2,-3,0,1,2,0,3,1,0,0,-5,0,4,-3,0,-4,8,0,3,-5,0,-8,-2,0,3,-7,0,2,-1,0,2,2,0,2,-9,0,-1,14,0,7,0,0,7,-2,0,-3,4,0,3,-2,0,4,4,0,8,-6,0,-6,-1,0,5,-9,0,-4,8,0,6,15,0,6,3,0,7,-8,0,2,-2,0,-1,18,0,8,-6,0,-2,-3,0]];
E[405,2] = [x, [1,2,0,2,1,0,0,0,0,2,5,0,4,0,0,-4,-4,0,-5,2,0,10,6,0,1,8,0,0,-5,0,-9,-8,0,-8,0,0,-10,-10,0,0,7,0,-2,10,0,12,2,0,-7,2,0,8,8,0,5,0,0,-10,-1,0,-2,-18,0,-8,4,0,6,-8,0,0,1,0,-8,-20,0,-10,0,0,12,-4,0,14,6,0,-4,-4,0,0,-9,0,0,12,0,4,-5,0,14,-14,0,2,-3,0,2,0,0,16,-6,0]];
E[405,3] = [x, [1,-2,0,2,-1,0,0,0,0,2,-5,0,4,0,0,-4,4,0,-5,-2,0,10,-6,0,1,-8,0,0,5,0,-9,8,0,-8,0,0,-10,10,0,0,-7,0,-2,-10,0,12,-2,0,-7,-2,0,8,-8,0,5,0,0,-10,1,0,-2,18,0,-8,-4,0,6,8,0,0,-1,0,-8,20,0,-10,0,0,12,4,0,14,-6,0,-4,4,0,0,9,0,0,-12,0,4,5,0,14,14,0,2,3,0,2,0,0,16,6,0]];
E[405,4] = [x, [1,1,0,-1,-1,0,-3,-3,0,-1,-2,0,-2,-3,0,-1,4,0,-8,1,0,-2,3,0,1,-2,0,3,-1,0,0,5,0,4,3,0,-4,-8,0,3,5,0,-8,2,0,3,7,0,2,1,0,2,-2,0,2,9,0,-1,-14,0,7,0,0,7,2,0,-3,-4,0,3,2,0,4,-4,0,8,6,0,-6,1,0,5,9,0,-4,-8,0,6,-15,0,6,-3,0,7,8,0,2,2,0,-1,-18,0,8,6,0,-2,3,0]];
E[405,5] = [x^2-2*x-2, [1,x,0,2*x,-1,0,x-4,2*x+4,0,-x,-x+5,0,-2*x,-2*x+2,0,4*x+4,-x+2,0,-2*x+3,-2*x,0,3*x-2,-2*x+2,0,1,-4*x-4,0,-4*x+4,3*x-1,0,-3,8*x,0,-2,-x+4,0,x-2,-x-4,0,-2*x-4,-3*x+5,0,-3*x-2,6*x-4,0,-2*x-4,-x+8,0,-6*x+11,x,0,-8*x-8,x-6,0,x-5,-12,0,5*x+6,x+9,0,4,-3*x,0,8*x+8,2*x,0,-2*x+2,-4,0,2*x-2,-x+3,0,5*x-4,2,0,-2*x-8,7*x-22,0,-2*x+14,-4*x-4,0,-x-6,3*x,0,x-2,-8*x-6,0,2*x+16,3*x-3,0,4*x-4,-4*x-8,0,6*x-2,2*x-3,0,5*x-6,-x-12,0,2*x,-5*x-1,0,-2*x-2,-16*x-8,0,-4*x+2,2*x+10,0]];
E[405,6] = [x^2+2*x-2, [1,x,0,-2*x,1,0,-x-4,2*x-4,0,x,-x-5,0,2*x,-2*x-2,0,-4*x+4,-x-2,0,2*x+3,-2*x,0,-3*x-2,-2*x-2,0,1,-4*x+4,0,4*x+4,3*x+1,0,-3,8*x,0,-2,-x-4,0,-x-2,-x+4,0,2*x-4,-3*x-5,0,3*x-2,6*x+4,0,2*x-4,-x-8,0,6*x+11,x,0,8*x-8,x+6,0,-x-5,12,0,-5*x+6,x-9,0,4,-3*x,0,-8*x+8,2*x,0,2*x+2,4,0,-2*x-2,-x-3,0,-5*x-4,-2,0,2*x-8,7*x+22,0,2*x+14,-4*x+4,0,x-6,3*x,0,-x-2,-8*x+6,0,-2*x+16,3*x+3,0,-4*x-4,-4*x+8,0,-6*x-2,2*x+3,0,-5*x-6,-x+12,0,-2*x,-5*x+1,0,2*x-2,-16*x+8,0,4*x+2,2*x-10,0]];
E[405,7] = [x^3-x^2-5*x+3, [1,x,0,x^2-2,1,0,-x+2,x^2+x-3,0,x,-x^2+3,0,-x^2+5,-x^2+2*x,0,2*x+1,-x^2+3,0,-x^2+5,x^2-2,0,-x^2-2*x+3,2*x^2-x-6,0,1,-x^2+3,0,x^2-3*x-1,2*x^2-2*x-9,0,-x^2+4*x+5,-x+6,0,-x^2-2*x+3,-x+2,0,x^2-2*x-1,-x^2+3,0,x^2+x-3,-x^2-2*x,0,x^2+2*x-1,-x^2-2*x-3,0,x^2+4*x-6,-x^2-3*x+9,0,x^2-4*x-3,x,0,x^2-2*x-7,-2*x,0,-x^2+3,-3,0,x-6,-2*x,0,x^2+2*x-4,3*x^2+3,0,-x^2+2*x-2,-x^2+5,0,3*x^2-x-7,-x^2-2*x-3,0,-x^2+2*x,3*x^2+2*x-15,0,4*x-4,-x^2+4*x-3,0,x^2-2*x-7,-x^2+2*x+3,0,-4*x+2,2*x+1,0,-3*x^2-5*x+3,3*x-6,0,-x^2+3,3*x^2+4*x-3,0,-x^2-4*x-3,-3,0,-x^2+7,x^2+x+9,0,-4*x^2+4*x+3,-x^2+5,0,-4*x^2+2*x+8,-3*x^2+2*x-3,0,x^2-2,2*x^2+2*x-6,0,x^2-2*x-1,x^2-2*x-9,0,-2*x^2,-2*x^2+x+12,0]];
E[405,8] = [x^3+x^2-5*x-3, [1,x,0,x^2-2,-1,0,x+2,-x^2+x+3,0,-x,x^2-3,0,-x^2+5,x^2+2*x,0,-2*x+1,x^2-3,0,-x^2+5,-x^2+2,0,-x^2+2*x+3,-2*x^2-x+6,0,1,x^2-3,0,x^2+3*x-1,-2*x^2-2*x+9,0,-x^2-4*x+5,-x-6,0,-x^2+2*x+3,-x-2,0,x^2+2*x-1,x^2-3,0,x^2-x-3,x^2-2*x,0,x^2-2*x-1,x^2-2*x+3,0,x^2-4*x-6,x^2-3*x-9,0,x^2+4*x-3,x,0,x^2+2*x-7,-2*x,0,-x^2+3,3,0,-x-6,-2*x,0,x^2-2*x-4,-3*x^2-3,0,-x^2-2*x-2,x^2-5,0,3*x^2+x-7,x^2-2*x+3,0,-x^2-2*x,-3*x^2+2*x+15,0,-4*x-4,x^2+4*x+3,0,x^2+2*x-7,x^2+2*x-3,0,4*x+2,2*x-1,0,-3*x^2+5*x+3,3*x+6,0,-x^2+3,-3*x^2+4*x+3,0,-x^2+4*x-3,3,0,-x^2+7,-x^2+x-9,0,-4*x^2-4*x+3,x^2-5,0,-4*x^2-2*x+8,3*x^2+2*x+3,0,x^2-2,-2*x^2+2*x+6,0,x^2+2*x-1,-x^2-2*x+9,0,-2*x^2,2*x^2+x-12,0]];
E[405,9] = [x, [1,0,0,-2,1,0,2,0,0,0,3,0,-4,0,0,4,6,0,-1,-2,0,0,6,0,1,0,0,-4,9,0,-1,0,0,0,2,0,8,0,0,0,-3,0,-4,-6,0,0,-12,0,-3,0,0,8,-6,0,3,0,0,0,-3,0,-10,0,0,-8,-4,0,14,-12,0,0,3,0,2,0,0,2,6,0,-16,4,0,0,12,0,6,0,0,0,-15,0,-8,-12,0,0,-1,0,-4,0,0,-2,-9,0,14,0,0,0,18,0]];
E[405,10] = [x, [1,0,0,-2,-1,0,2,0,0,0,-3,0,-4,0,0,4,-6,0,-1,2,0,0,-6,0,1,0,0,-4,-9,0,-1,0,0,0,-2,0,8,0,0,0,3,0,-4,6,0,0,12,0,-3,0,0,8,6,0,3,0,0,0,3,0,-10,0,0,-8,4,0,14,12,0,0,-3,0,2,0,0,2,-6,0,-16,-4,0,0,-12,0,6,0,0,0,15,0,-8,12,0,0,1,0,-4,0,0,-2,9,0,14,0,0,0,-18,0]];

E[406,1] = [x, [1,-1,1,1,-3,-1,1,-1,-2,3,-3,1,-1,-1,-3,1,0,2,-4,-3,1,3,-6,-1,4,1,-5,1,1,3,5,-1,-3,0,-3,-2,2,4,-1,3,0,-1,-7,-3,6,6,-3,1,1,-4,0,-1,-9,5,9,-1,-4,-1,12,-3,-10,-5,-2,1,3,3,2,0,-6,3,-12,2,8,-2,4,-4,-3,1,5,-3,1,0,12,1,0,7,1,3,6,-6,-1,-6,5,3,12,-1,8,-1,6,4,-12,0,8,1,-3,9,18,-5,-13,-9,2,1,12,4,18,1,2,-12,0,3]];
E[406,2] = [x, [1,-1,2,1,2,-2,1,-1,1,-2,4,2,-2,-1,4,1,-4,-1,2,2,2,-4,0,-2,-1,2,-4,1,-1,-4,-2,-1,8,4,2,1,2,-2,-4,-2,8,-2,-8,4,2,0,6,2,1,1,-8,-2,6,4,8,-1,4,1,-4,4,4,2,1,1,-4,-8,-4,-4,0,-2,8,-1,-12,-2,-2,2,4,4,-12,2,-11,-8,0,2,-8,8,-2,-4,4,-2,-2,0,-4,-6,4,-2,4,-1,4,-1,-12,8,-16,2,4,-6,-12,-4,-14,-8,4,1,18,-4,0,-1,-2,4,-4,-4]];
E[406,3] = [x^3-x^2-8*x+4, [2,-2,2*x,2,x^2-x-2,-2*x,-2,-2,2*x^2-6,-x^2+x+2,-2*x^2+12,2*x,-x^2+x+10,2,6*x-4,2,-x^2+3*x+10,-2*x^2+6,-4*x-4,x^2-x-2,-2*x,2*x^2-12,-2*x^2-2*x+16,-2*x,2*x^2-4*x-6,x^2-x-10,2*x^2+4*x-8,-2,2,-6*x+4,-x^2-3*x+10,-2,-2*x^2-4*x+8,x^2-3*x-10,-x^2+x+2,2*x^2-6,2*x^2-2*x-4,4*x+4,2*x+4,-x^2+x+2,-x^2-5*x+18,2*x,-2*x^2+4*x,-2*x^2+12,3*x^2-x+6,2*x^2+2*x-16,x^2-x-2,2*x,2,-2*x^2+4*x+6,2*x^2+2*x+4,-x^2+x+10,2*x^2-4,-2*x^2-4*x+8,-2*x-12,2,-4*x^2-4*x,-2,x^2-3*x+14,6*x-4,-2*x^2+2*x+4,x^2+3*x-10,-2*x^2+6,2,2*x^2-12,2*x^2+4*x-8,4*x^2-32,-x^2+3*x+10,-4*x^2+8,x^2-x-2,2*x^2+6*x-8,-2*x^2+6,-x^2+3*x-6,-2*x^2+2*x+4,-2*x^2+10*x-8,-4*x-4,2*x^2-12,-2*x-4,6*x-4,x^2-x-2,8*x+10,x^2+5*x-18,5*x^2-7*x-34,-2*x,2*x^2+6*x-16,2*x^2-4*x,2*x,2*x^2-12,-x^2-9*x+2,-3*x^2+x-6,x^2-x-10,-2*x^2-2*x+16,-4*x^2+2*x+4,-x^2+x+2,-2*x^2-10*x+12,-2*x,-5*x^2-x+18,-2,-8*x-28,2*x^2-4*x-6,-2*x^2+6*x+28,-2*x^2-2*x-4,2*x^2-6*x-4,x^2-x-10,-6*x+4,-2*x^2+4,-4*x^2+8,2*x^2+4*x-8,-2*x^2-12*x+20,2*x+12,12*x-8,-2,6*x^2+2*x-40,4*x^2+4*x,2*x^2-10*x-12,2,5*x^2+x-30,-x^2+3*x-14,x^2-3*x-10,-6*x+4]];
E[406,4] = [x, [1,-1,0,1,0,0,-1,-1,-3,0,-4,0,0,1,0,1,-4,3,4,0,0,4,0,0,-5,0,0,-1,-1,0,-6,-1,0,4,0,-3,-2,-4,0,0,-8,0,4,-4,0,0,2,0,1,5,0,0,-2,0,0,1,0,1,-10,0,-2,6,3,1,0,0,8,-4,0,0,16,3,0,2,0,4,4,0,-4,0,9,8,-6,0,0,-4,0,4,0,0,0,0,0,-2,0,0,12,-1,12,-5,-10,0,12,0,0,2,4,0,10,0,0,-1,-6,0,0,-1,0,10,4,0]];
E[406,5] = [x, [1,1,-1,1,-3,-1,-1,1,-2,-3,-1,-1,-1,-1,3,1,-4,-2,-4,-3,1,-1,-2,-1,4,-1,5,-1,1,3,-1,1,1,-4,3,-2,6,-4,1,-3,0,1,3,-1,6,-2,-9,-1,1,4,4,-1,3,5,3,-1,4,1,0,3,6,-1,2,1,3,1,2,-4,2,3,-8,-2,0,6,-4,-4,1,1,-13,-3,1,0,0,1,12,3,-1,-1,-14,6,1,-2,1,-9,12,-1,16,1,2,4,-4,4,4,-1,-3,3,-14,5,15,3,-6,-1,0,4,6,1,2,0,4,3]];
E[406,6] = [x^4-x^3-10*x^2+4*x+8, [4,4,4*x,4,x^3-3*x^2-8*x+12,4*x,4,4,4*x^2-12,x^3-3*x^2-8*x+12,-4*x+8,4*x,-3*x^3+x^2+24*x-4,4,-2*x^3+2*x^2+8*x-8,4,-x^3+3*x^2+4*x-12,4*x^2-12,2*x^3-2*x^2-20*x+8,x^3-3*x^2-8*x+12,4*x,-4*x+8,-2*x^3+2*x^2+20*x,4*x,4*x^3-4*x^2-36*x+20,-3*x^3+x^2+24*x-4,4*x^3-24*x,4,4,-2*x^3+2*x^2+8*x-8,x^3+x^2-20*x-12,4,-4*x^2+8*x,-x^3+3*x^2+4*x-12,x^3-3*x^2-8*x+12,4*x^2-12,2*x^3-2*x^2-12*x-8,2*x^3-2*x^2-20*x+8,-2*x^3-6*x^2+8*x+24,x^3-3*x^2-8*x+12,-3*x^3+9*x^2+28*x-36,4*x,-4*x^2+16,-4*x+8,-3*x^3-3*x^2+24*x-20,-2*x^3+2*x^2+20*x,-3*x^3+5*x^2+20*x-28,4*x,4,4*x^3-4*x^2-36*x+20,2*x^3-6*x^2-8*x+8,-3*x^3+x^2+24*x-4,-4*x^2+8*x+24,4*x^3-24*x,4*x^3-8*x^2-24*x+32,4,-16,4,5*x^3-3*x^2-48*x+20,-2*x^3+2*x^2+8*x-8,4*x^2+4*x-56,x^3+x^2-20*x-12,4*x^2-12,4,-4*x^3+12*x^2+44*x-56,-4*x^2+8*x,-8*x^3+8*x^2+56*x-16,-x^3+3*x^2+4*x-12,8*x+16,x^3-3*x^2-8*x+12,6*x^3+2*x^2-60*x,4*x^2-12,x^3+5*x^2-12*x-52,2*x^3-2*x^2-12*x-8,4*x^2+4*x-32,2*x^3-2*x^2-20*x+8,-4*x+8,-2*x^3-6*x^2+8*x+24,-2*x^3-6*x^2+32*x+24,x^3-3*x^2-8*x+12,4*x^3+4*x^2-16*x+4,-3*x^3+9*x^2+28*x-36,-9*x^3+7*x^2+72*x-20,4*x,-2*x^3+2*x^2+28*x-32,-4*x^2+16,4*x,-4*x+8,-3*x^3+9*x^2+20*x-36,-3*x^3-3*x^2+24*x-20,-3*x^3+x^2+24*x-4,-2*x^3+2*x^2+20*x,2*x^3-10*x^2-16*x-8,-3*x^3+5*x^2+20*x-28,6*x^3-10*x^2-48*x+56,4*x,3*x^3-9*x^2-28*x+36,4,-4*x^3+8*x^2+12*x-24,4*x^3-4*x^2-36*x+20,-4*x^2+4*x+8,2*x^3-6*x^2-8*x+8,2*x^3+2*x^2-24,-3*x^3+x^2+24*x-4,-2*x^3+2*x^2+8*x-8,-4*x^2+8*x+24,4*x^3-4*x^2-32*x+32,4*x^3-24*x,4*x^3-40*x+8,4*x^3-8*x^2-24*x+32,8*x^2-16*x-16,4,2*x^3-6*x^2+32,-16,-4*x^3+4*x^2+32*x-32,4,x^3-15*x^2-40*x+28,5*x^3-3*x^2-48*x+20,-x^3+3*x^2+4*x-12,-2*x^3+2*x^2+8*x-8]];
E[406,7] = [x^2-2*x-2, [1,1,2,1,x,2,-1,1,1,x,-2*x+2,2,-x,-1,2*x,1,-3*x+2,1,-2*x+2,x,-2,-2*x+2,4*x-6,2,2*x-3,-x,-4,-1,-1,2*x,3*x,1,-4*x+4,-3*x+2,-x,1,-4,-2*x+2,-2*x,x,5*x-6,-2,4*x,-2*x+2,x,4*x-6,5*x-4,2,1,2*x-3,-6*x+4,-x,-4*x+2,-4,-2*x-4,-1,-4*x+4,-1,-x+10,2*x,4,3*x,-1,1,-2*x-2,-4*x+4,4*x-4,-3*x+2,8*x-12,-x,-4*x+6,1,x+6,-4,4*x-6,-2*x+2,2*x-2,-2*x,-2*x-4,x,-11,5*x-6,-9*x+10,-2,-4*x-6,4*x,-2,-2*x+2,-3*x+14,x,x,4*x-6,6*x,5*x-4,-2*x-4,2,x-6,1,-2*x+2,2*x-3,4,-6*x+4,-2*x+4,-x,-2*x,-4*x+2,4,-4,-10,-2*x-4,-8,-1,2*x-2,-4*x+4,2*x+8,-1,-x,-x+10,3*x-2,2*x]];

E[407,1] = [x^4+x^3-4*x^2+1, [1,x,x^3+x^2-4*x,x^2-2,-x^3-x^2+3*x,-1,-2*x^3-3*x^2+6*x,x^3-4*x,-x^2-x+1,-x^2+1,-1,-2*x^3-2*x^2+7*x,x^3+x^2-2*x-2,-x^3-2*x^2+2,x^2+x-3,-x^3-2*x^2+3,x^3+3*x^2-x-6,-x^3-x^2+x,3*x^3+6*x^2-7*x-7,x^3+2*x^2-5*x,2*x^2+3*x-6,-x,-x^3+5*x-3,-x^2+4,-x-3,2*x^2-2*x-1,-2*x^3-2*x^2+9*x+1,3*x^3+2*x^2-10*x+1,x^3-6*x+2,x^3+x^2-3*x,3*x^3+2*x^2-11*x+4,-3*x^3-4*x^2+11*x+1,-x^3-x^2+4*x,2*x^3+3*x^2-6*x-1,x^3-3*x+4,-x^2+2*x-1,-1,3*x^3+5*x^2-7*x-3,-2*x^3-3*x^2+7*x+2,x^3+x^2-3,-x^3-x^2+2*x-2,2*x^3+3*x^2-6*x,-3*x^3-6*x^2+8*x+4,-x^2+2,2*x-1,x^3+x^2-3*x+1,2*x^3+2*x^2-6*x+1,3*x^3+4*x^2-10*x,3*x^3+4*x^2-8*x,-x^2-3*x,-6*x^3-7*x^2+21*x+1,-4*x^2+3*x+4,4*x^3+2*x^2-18*x+3,x^2+x+2,x^3+x^2-3*x,x^3+6*x^2+x-7,-7*x^3-10*x^2+22*x+7,-x^3-2*x^2+2*x-1,-3*x^3-7*x^2+2*x+9,-x^2-2*x+5,-8*x^3-10*x^2+24*x+2,-x^3+x^2+4*x-3,3*x^2+4*x-3,x^3+3*x^2+x-3,2*x^3+x^2-5*x-1,1,-6*x^3-6*x^2+25*x-1,-x^3-4*x^2+x+10,-3*x^3-2*x^2+12*x-5,-x^3+x^2+4*x-1,4*x^3+6*x^2-11*x+2,x^3+4*x^2-3*x,3*x^3+2*x^2-10*x-5,-x,-3*x^3-3*x^2+12*x+1,-4*x^3-7*x^2+11*x+11]];
E[407,2] = [x^4-x^3-4*x^2+2*x+3, [1,x,-x^3+x^2+2*x-2,x^2-2,x^3-x^2-3*x,-2*x^2+3,-x^2+2,x^3-4*x,2*x^3-x^2-5*x+1,x^2-2*x-3,1,-2*x^2-x+4,-x^3+x^2+2*x-4,-x^3+2*x,x^2+x-3,x^3-2*x^2-2*x+1,-x^3-x^2+3*x,x^3+3*x^2-3*x-6,3*x^3-4*x^2-7*x+5,-x^3+3*x,2*x^2+x-4,x,-x^3+4*x^2+x-9,-2*x^3+3*x^2+4*x-6,-2*x^3+7*x+1,-2*x^2-2*x+3,-2*x^2+x+1,-x^3+2*x-1,-3*x^3+4*x^2+10*x-6,x^3+x^2-3*x,x^3+x-4,-3*x^3+2*x^2+7*x-3,-x^3+x^2+2*x-2,-2*x^3-x^2+2*x+3,x^3-3*x,3*x^2+2*x-5,1,-x^3+5*x^2-x-9,4*x^3-3*x^2-9*x+8,-x^3-3*x^2+6*x+9,-x^3+3*x^2,2*x^3+x^2-4*x,x^3+6*x^2-4*x-16,x^2-2,-2*x^3-2*x^2+6*x+9,3*x^3-3*x^2-7*x+3,2*x^3-6*x^2-2*x+9,x^3-2,x^3-2*x-6,-2*x^3-x^2+5*x+6,4*x^3-x^2-7*x+3,-4*x^2-x+8,-6*x^2+2*x+15,-2*x^3+x^2+x,x^3-x^2-3*x,x^3-2*x^2-3*x+3,-3*x^3+4*x^2+10*x-13,x^3-2*x^2+9,-x^3-5*x^2+10*x+9,2*x^3-x^2-4*x+3,2*x^2-10,x^3+5*x^2-6*x-3,-3*x^2-2*x+5,-3*x^3-x^2+7*x+7,-2*x^3+3*x^2+7*x-3,-2*x^2+3,-4*x^3+2*x^2+9*x-1,-x^3-4*x^2+x+6,3*x^3-6*x^2-10*x+15,x^3+x^2-2*x-3,2*x^3-2*x^2-11*x+6,x^3-4*x^2+x+12,-x^3+2*x-7,x,3*x^3-3*x^2-6*x+7,-2*x^3+3*x^2+7*x-7]];
E[407,3] = [x^12-x^11-18*x^10+18*x^9+111*x^8-104*x^7-274*x^6+212*x^5+255*x^4-129*x^3-78*x^2+4*x+1, [249,249*x,-370*x^11+52*x^10+6619*x^9-934*x^8-40324*x^7+3261*x^6+94670*x^5+5092*x^4-67508*x^3-10735*x^2+3599*x-198,249*x^2-498,142*x^11+11*x^10-2512*x^9-188*x^8+15010*x^7+2112*x^6-33614*x^5-10396*x^4+19526*x^3+11563*x^2+2806*x-492,-318*x^11-41*x^10+5726*x^9+746*x^8-35219*x^7-6710*x^6+83532*x^5+26842*x^4-58465*x^3-25261*x^2+1282*x+370,-239*x^11+113*x^10+4256*x^9-2135*x^8-25856*x^7+12234*x^6+61468*x^5-22588*x^4-49207*x^3+12121*x^2+8362*x-459,249*x^3-996*x,30*x^11+7*x^10-595*x^9-97*x^8+4270*x^7+514*x^6-13302*x^5-1364*x^4+16802*x^3+1337*x^2-6371*x+34,153*x^11+44*x^10-2744*x^9-752*x^8+16880*x^7+5294*x^6-40500*x^5-16684*x^4+29881*x^3+13882*x^2-1060*x-142,249,381*x^11-102*x^10-6768*x^9+1947*x^8+40866*x^7-10122*x^6-95082*x^5+12441*x^4+68733*x^3-2052*x^2-5556*x+714,350*x^11+54*x^10-6250*x^9-855*x^8+38086*x^7+6716*x^6-89371*x^5-25320*x^4+61757*x^3+21768*x^2-320*x+1199,-126*x^11-46*x^10+2167*x^9+673*x^8-12622*x^7-4018*x^6+28080*x^5+11738*x^4-18710*x^3-10280*x^2+497*x+239,-614*x^11-348*x^10+11071*x^9+6174*x^8-68524*x^7-41252*x^6+164248*x^5+116472*x^4-113816*x^3-92364*x^2-2761*x+2104,249*x^4-1494*x^2+996,471*x^11+85*x^10-8470*x^9-1498*x^8+52099*x^7+12004*x^6-124032*x^5-43526*x^4+88595*x^3+39143*x^2-3587*x-512,37*x^11-55*x^10-637*x^9+940*x^8+3634*x^7-5082*x^6-7724*x^5+9152*x^4+5207*x^3-4031*x^2-86*x-30,-276*x^11+168*x^10+4893*x^9-3075*x^8-29490*x^7+17316*x^6+69441*x^5-31740*x^4-56655*x^3+16152*x^2+12681*x-429,-87*x^11-12*x^10+1518*x^9+273*x^8-8814*x^7-2802*x^6+18108*x^5+11658*x^4-5433*x^3-12252*x^2-6366*x+831,159*x^11-104*x^10-2863*x^9+1868*x^8+17734*x^7-10340*x^6-44256*x^5+18700*x^4+41807*x^3-10402*x^2-12593*x+1558,249*x,295*x^11+55*x^10-5256*x^9-940*x^8+31890*x^7+7406*x^6-74114*x^5-27080*x^4+49407*x^3+25445*x^2+1746*x-634,915*x^11+172*x^10-16363*x^9-2917*x^8+99940*x^7+22732*x^6-235395*x^5-82106*x^4+164027*x^3+74684*x^2-3374*x-1121,829*x^11+80*x^10-14851*x^9-1322*x^8+90964*x^7+12870*x^6-216170*x^5-57634*x^4+158147*x^3+58108*x^2-11759*x-975,404*x^11+50*x^10-7155*x^9-764*x^8+43116*x^7+6529*x^6-99520*x^5-27493*x^4+66918*x^3+26980*x^2-201*x-350,-855*x^11+91*x^10+15173*x^9-1759*x^8-91400*x^7+5686*x^6+210534*x^5+15634*x^4-143371*x^3-29431*x^2+3331*x+691,306*x^11-327*x^10-5571*x^9+5634*x^8+34590*x^7-30912*x^6-84486*x^5+58596*x^4+71880*x^3-33573*x^2-15981*x+1044,395*x^11+189*x^10-7018*x^9-3366*x^8+42250*x^7+23174*x^6-95131*x^5-68700*x^4+51602*x^3+57015*x^2+13654*x-1240,-962*x^11+19*x^10+17226*x^9-370*x^8-105108*x^7-3988*x^6+246640*x^5+42754*x^4-171570*x^3-50653*x^2+4560*x+614,-733*x^11+42*x^10+13196*x^9-831*x^8-81284*x^7+926*x^6+194918*x^5+20700*x^4-146611*x^3-26838*x^2+13234*x-211,249*x^5-1992*x^3+2988*x,-370*x^11+52*x^10+6619*x^9-934*x^8-40324*x^7+3261*x^6+94670*x^5+5092*x^4-67508*x^3-10735*x^2+3599*x-198,556*x^11+8*x^10-9976*x^9-182*x^8+60988*x^7+5022*x^6-143378*x^5-31510*x^4+99902*x^3+33151*x^2-2396*x-471,35*x^11-476*x^10-542*x^9+8339*x^8+2132*x^7-49062*x^6-994*x^5+108688*x^4+3445*x^3-71494*x^2-9826*x+2751,-78*x^11+15*x^10+1464*x^9-279*x^8-9774*x^7+1386*x^6+27912*x^5-1500*x^4-32862*x^3+126*x^2+12564*x-105,-249,-108*x^11-75*x^10+1893*x^9+1146*x^8-11388*x^7-6183*x^6+26772*x^5+13725*x^4-19452*x^3-8847*x^2+675*x+276,-158*x^11+356*x^10+2774*x^9-6356*x^8-16319*x^7+37476*x^6+37405*x^5-81250*x^4-33871*x^3+52060*x^2+11653*x-2658,-405*x^11-136*x^10+7327*x^9+2347*x^8-45610*x^7-16318*x^6+111102*x^5+50120*x^4-83237*x^3-40916*x^2+3299*x+371,-603*x^11-315*x^10+10839*x^9+5610*x^8-66654*x^7-38070*x^6+157362*x^5+110184*x^4-103461*x^3-90045*x^2-6129*x+2454,55*x^11-x^10-994*x^9+85*x^8+6196*x^7-690*x^6-15008*x^5+1262*x^4+10109*x^3-191*x^2+922*x-159,-85*x^11-6*x^10+1589*x^9+261*x^8-10217*x^7-3310*x^6+25820*x^5+14544*x^4-20935*x^3-16584*x^2+2710*x+2117,249*x^2-498,926*x^11-127*x^10-16512*x^9+2329*x^8+99984*x^7-8282*x^6-231076*x^5-13030*x^4+153798*x^3+31021*x^2+3384*x-1601,350*x^11+54*x^10-6250*x^9-855*x^8+38086*x^7+6716*x^6-89620*x^5-25818*x^4+63500*x^3+24756*x^2-1814*x-295,810*x^11-143*x^10-14488*x^9+2693*x^8+88564*x^7-11852*x^6-211248*x^5+1186*x^4+163154*x^3+17009*x^2-22202*x-1157,325*x^11+311*x^10-5851*x^9-5519*x^8+36160*x^7+35559*x^6-85922*x^5-94180*x^4+55253*x^3+72100*x^2+6331*x-2343,186*x^11-189*x^10-3357*x^9+3366*x^8+20664*x^7-19356*x^6-50202*x^5+39816*x^4+43848*x^3-25641*x^2-12741*x+2319,909*x^11+71*x^10-16244*x^9-1055*x^8+99086*x^7+10976*x^6-233382*x^5-53248*x^4+165049*x^3+52903*x^2-4291*x-829,234*x^11+287*x^10-4226*x^9-4973*x^8+26417*x^7+30536*x^6-64563*x^5-75346*x^4+45715*x^3+53323*x^2-757*x-847,-246*x^11+9*x^10+4464*x^9-18*x^8-27627*x^7-2256*x^6+65601*x^5+14538*x^4-44418*x^3-12225*x^2-1326*x-2802,-631*x^11+16*x^10+11422*x^9-115*x^8-70750*x^7-4647*x^6+170408*x^5+36082*x^4-127631*x^3-41017*x^2+11642*x+1797,-764*x^11-217*x^10+13631*x^9+3505*x^8-83234*x^7-23736*x^6+196894*x^5+74654*x^4-139726*x^3-63359*x^2+4111*x+855,142*x^11+11*x^10-2512*x^9-188*x^8+15010*x^7+2112*x^6-33614*x^5-10396*x^4+19526*x^3+11563*x^2+2806*x-492,231*x^11+29*x^10-4208*x^9-722*x^8+26156*x^7+7394*x^6-62436*x^5-29626*x^4+43321*x^3+28447*x^2-1174*x-784,-550*x^11-322*x^10+9774*x^9+5707*x^8-59055*x^7-38252*x^6+134891*x^5+109058*x^4-79593*x^3-88892*x^2-12789*x+3001,584*x^11+92*x^10-10476*x^9-1595*x^8+64254*x^7+13099*x^6-152440*x^5-49123*x^4+107970*x^3+44464*x^2-2820*x-395,693*x^11-162*x^10-12375*x^9+3063*x^8+75480*x^7-15168*x^6-179838*x^5+14208*x^4+140421*x^3+3420*x^2-19209*x-111,285*x^11+606*x^10-5196*x^9-10674*x^8+33012*x^7+65556*x^6-81798*x^5-159204*x^4+52881*x^3+114252*x^2+9984*x-3246,-57*x^11-88*x^10+1006*x^9+1504*x^8-6121*x^7-9094*x^6+14268*x^5+22412*x^4-7721*x^3-17306*x^2-4105*x+284,-691*x^11+2*x^10+12363*x^9+79*x^8-75306*x^7-5924*x^6+176096*x^5+40304*x^4-121395*x^3-43940*x^2+2721*x+733,-787*x^11+378*x^10+14018*x^9-6732*x^8-84488*x^7+35558*x^6+193862*x^5-55230*x^4-131437*x^3+21900*x^2+4732*x-2812,249*x^6-2490*x^4+5976*x^2-1992,664*x^11+332*x^10-11869*x^9-5810*x^8+72376*x^7+38844*x^6-168158*x^5-111220*x^4+103916*x^3+89308*x^2+15355*x-2988,-318*x^11-41*x^10+5726*x^9+746*x^8-35219*x^7-6710*x^6+83532*x^5+26842*x^4-58465*x^3-25261*x^2+1282*x+370,-437*x^11+17*x^10+7685*x^9-449*x^8-45572*x^7+774*x^6+101254*x^5+10916*x^4-59803*x^3-14183*x^2-5465*x-1779,-378*x^11-138*x^10+6750*x^9+2268*x^8-41352*x^7-15042*x^6+98682*x^5+45174*x^4-72315*x^3-37314*x^2+4479*x+468,-1576*x^11-329*x^10+28297*x^9+5804*x^8-173632*x^7-45240*x^6+410888*x^5+159226*x^4-285386*x^3-143017*x^2+1799*x+2718,-441*x^11+88*x^10+7709*x^9-1753*x^8-45422*x^7+8596*x^6+101268*x^5-5480*x^4-66979*x^3-7096*x^2+2611*x-35,28*x^11+499*x^10-417*x^9-8800*x^8+1938*x^7+53063*x^6+400*x^5-123770*x^4-23472*x^3+86594*x^2+25887*x-2248,-137*x^11+170*x^10+2399*x^9-2996*x^8-13994*x^7+16704*x^6+30484*x^5-31276*x^4-20350*x^3+14542*x^2+379*x+138,448*x^11-565*x^10-8083*x^9+9928*x^8+49600*x^7-56190*x^6-119594*x^5+111944*x^4+102860*x^3-64589*x^2-25625*x+1548,-249*x,-1664*x^11+403*x^10+29655*x^9-7363*x^8-179628*x^7+34631*x^6+418168*x^5-24530*x^4-295020*x^3-17896*x^2+11811*x-331,369*x^11-387*x^10-6696*x^9+6750*x^8+41565*x^7-37452*x^6-102261*x^5+71568*x^4+90531*x^3-40053*x^2-24654*x+966]];
E[407,4] = [x^11-2*x^10-16*x^9+32*x^8+89*x^7-179*x^6-201*x^5+407*x^4+168*x^3-333*x^2-51*x+75, [59,59*x,10*x^10-x^9-156*x^8+831*x^6+78*x^5-1732*x^4-330*x^3+1171*x^2+305*x-196,59*x^2-118,-83*x^10+26*x^9+1342*x^8-354*x^7-7564*x^6+1630*x^5+17420*x^4-2512*x^3-14457*x^2+448*x+3090,19*x^10+4*x^9-320*x^8-59*x^7+1868*x^6+278*x^5-4400*x^4-509*x^3+3635*x^2+314*x-750,61*x^10-12*x^9-987*x^8+177*x^7+5547*x^6-893*x^5-12701*x^4+1409*x^3+10512*x^2-57*x-2234,59*x^3-236*x,31*x^10-9*x^9-519*x^8+118*x^7+3054*x^6-478*x^5-7446*x^4+452*x^3+6763*x^2+385*x-1528,-140*x^10+14*x^9+2302*x^8-177*x^7-13227*x^6+737*x^5+31269*x^4-513*x^3-27191*x^2-1143*x+6225,-59,22*x^10-14*x^9-355*x^8+177*x^7+2017*x^6-737*x^5-4778*x^4+1103*x^3+4299*x^2-391*x-1033,100*x^10-10*x^9-1619*x^8+118*x^7+9136*x^6-459*x^5-21096*x^4+181*x^3+17610*x^2+1044*x-3671,110*x^10-11*x^9-1775*x^8+118*x^7+10026*x^6-440*x^5-23418*x^4+264*x^3+20256*x^2+877*x-4575,-48*x^10-7*x^9+796*x^8+118*x^7-4626*x^6-634*x^5+11122*x^4+1348*x^3-10034*x^2-815*x+2640,59*x^4-354*x^2+236,-x^10+6*x^9-8*x^8-118*x^7+265*x^6+771*x^5-1467*x^4-1855*x^3+2532*x^2+1238*x-771,53*x^10-23*x^9-874*x^8+295*x^7+5071*x^6-1215*x^5-12165*x^4+1555*x^3+10708*x^2+53*x-2325,-148*x^10+3*x^9+2415*x^8-13762*x^6-175*x^5+32218*x^4+1167*x^3-27526*x^2-1977*x+6193,-100*x^10+10*x^9+1619*x^8-59*x^7-9195*x^6-131*x^5+21627*x^4+1353*x^3-18849*x^2-1811*x+4320,108*x^10+x^9-1732*x^8-59*x^7+9671*x^6+453*x^5-22163*x^4-1381*x^3+18653*x^2+1288*x-4229,-59*x,161*x^10-22*x^9-2606*x^8+295*x^7+14683*x^6-1411*x^5-33797*x^4+2121*x^3+28122*x^2-75*x-6141,-8*x^10-11*x^9+113*x^8+177*x^7-535*x^6-912*x^5+949*x^4+1621*x^3-335*x^2-539*x-150,-170*x^10+17*x^9+2770*x^8-177*x^7-15779*x^6+503*x^5+37055*x^4+477*x^3-32179*x^2-2058*x+7580,190*x^10-19*x^9-3082*x^8+236*x^7+17441*x^6-996*x^5-40519*x^4+810*x^3+34344*x^2+1429*x-7500,-71*x^10+13*x^9+1143*x^8-177*x^7-6437*x^6+815*x^5+15023*x^4-961*x^3-13158*x^2-720*x+3020,87*x^10+9*x^9-1428*x^8-118*x^7+8156*x^6+478*x^5-19104*x^4-1042*x^3+16483*x^2+1149*x-3782,-161*x^10+22*x^9+2606*x^8-295*x^7-14683*x^6+1352*x^5+33797*x^4-1590*x^3-28122*x^2-987*x+6141,-103*x^10+28*x^9+1654*x^8-354*x^7-9226*x^6+1474*x^5+20884*x^4-1970*x^3-16799*x^2+192*x+3600,202*x^10-32*x^9-3281*x^8+413*x^7+18627*x^6-1811*x^5-43565*x^4+2243*x^3+37531*x^2+615*x-8396,59*x^5-472*x^3+708*x,-10*x^10+x^9+156*x^8-831*x^6-78*x^5+1732*x^4+330*x^3-1171*x^2-305*x+196,4*x^10-24*x^9-86*x^8+354*x^7+592*x^6-1668*x^5-1448*x^4+2700*x^3+905*x^2-822*x+75,-202*x^10+32*x^9+3281*x^8-413*x^7-18627*x^6+1811*x^5+43565*x^4-2243*x^3-37413*x^2-733*x+8160,21*x^10-8*x^9-363*x^8+118*x^7+2164*x^6-556*x^5-5124*x^4+900*x^3+4176*x^2-392*x-919,59,-293*x^10+47*x^9+4736*x^8-590*x^7-26667*x^6+2470*x^5+61403*x^4-2662*x^3-51261*x^2-1355*x+11100,118*x^10-1888*x^8-59*x^7+10502*x^6+531*x^5-23836*x^4-1829*x^3+19352*x^2+2065*x-3776,90*x^10-9*x^9-1463*x^8+59*x^7+8423*x^6+53*x^5-20485*x^4-1023*x^3+19271*x^2+1506*x-4950,-113*x^10+29*x^9+1810*x^8-413*x^7-10057*x^6+2045*x^5+22675*x^4-3469*x^3-18324*x^2+772*x+4209,217*x^10-4*x^9-3515*x^8+59*x^7+19785*x^6-455*x^5-45337*x^4+509*x^3+37252*x^2+1279*x-8100,-52*x^10+17*x^9+823*x^8-236*x^7-4451*x^6+1093*x^5+9325*x^4-1647*x^3-5747*x^2+243*x+382,-59*x^2+118,159*x^10-10*x^9-2563*x^8+118*x^7+14328*x^6-518*x^5-32424*x^4+358*x^3+25811*x^2+808*x-5205,300*x^10-30*x^9-4857*x^8+354*x^7+27408*x^6-1436*x^5-63406*x^4+1074*x^3+53538*x^2+2070*x-12075,-79*x^10+2*x^9+1315*x^8-7680*x^6-156*x^5+18568*x^4+896*x^3-16797*x^2-1200*x+4227,-71*x^10+13*x^9+1143*x^8-177*x^7-6378*x^6+815*x^5+14433*x^4-1197*x^3-11801*x^2+224*x+2666,311*x^10-37*x^9-5064*x^8+472*x^7+28800*x^6-2070*x^5-67388*x^4+2186*x^3+58077*x^2+1845*x-13329,-323*x^10+50*x^9+5263*x^8-649*x^7-29927*x^6+2885*x^5+69667*x^4-3619*x^3-58668*x^2-1090*x+12750,-99*x^10+4*x^9+1627*x^8-59*x^7-9460*x^6+337*x^5+23330*x^4-273*x^3-22561*x^2-925*x+5799,161*x^10-22*x^9-2606*x^8+295*x^7+14742*x^6-1411*x^5-34328*x^4+2062*x^3+29479*x^2+102*x-6908,-344*x^10+58*x^9+5567*x^8-767*x^7-31324*x^6+3441*x^5+71723*x^4-4401*x^3-58596*x^2-1111*x+11958,-129*x^10+7*x^9+2095*x^8-118*x^7-11894*x^6+752*x^5+27936*x^4-1230*x^3-24363*x^2-601*x+5325,83*x^10-26*x^9-1342*x^8+354*x^7+7564*x^6-1630*x^5-17420*x^4+2512*x^3+14457*x^2-448*x-3090,-37*x^10-14*x^9+648*x^8+177*x^7-4001*x^6-737*x^5+10385*x^4+1339*x^3-10392*x^2-1099*x+2625,-182*x^10+30*x^9+2969*x^8-413*x^7-16906*x^6+1967*x^5+39452*x^4-2785*x^3-33242*x^2-713*x+6883,-300*x^10+30*x^9+4857*x^8-354*x^7-27467*x^6+1436*x^5+63937*x^4-1074*x^3-54600*x^2-2070*x+12075,174*x^10-41*x^9-2797*x^8+531*x^7+15663*x^6-2289*x^5-35907*x^4+2931*x^3+30075*x^2+410*x-7092,-82*x^10+20*x^9+1350*x^8-295*x^7-7711*x^6+1449*x^5+17707*x^4-2191*x^3-14039*x^2-23*x+2445,-258*x^10+14*x^9+4190*x^8-118*x^7-23847*x^6+265*x^5+56285*x^4+903*x^3-49729*x^2-2736*x+12007,372*x^10-49*x^9-6051*x^8+649*x^7+34347*x^6-2963*x^5-79971*x^4+3595*x^3+67881*x^2+1906*x-15150,82*x^10-20*x^9-1350*x^8+295*x^7+7829*x^6-1449*x^5-19005*x^4+2073*x^3+17579*x^2+377*x-4097,59*x^6-590*x^4+1416*x^2-472,28*x^10+9*x^9-484*x^8-118*x^7+2846*x^6+596*x^5-6478*x^4-1514*x^3+4506*x^2+1385*x-360,-19*x^10-4*x^9+320*x^8+59*x^7-1868*x^6-278*x^5+4400*x^4+509*x^3-3635*x^2-314*x+750,31*x^10-9*x^9-519*x^8+59*x^7+3113*x^6+171*x^5-7977*x^4-1495*x^3+7884*x^2+1506*x-1646,-14*x^10-34*x^9+242*x^8+472*x^7-1482*x^6-2186*x^5+4006*x^4+3943*x^3-4554*x^2-2197*x+1242,253*x^10-43*x^9-4112*x^8+590*x^7+23402*x^6-2782*x^5-55124*x^4+3864*x^3+48465*x^2+843*x-11496,-372*x^10+49*x^9+6051*x^8-649*x^7-34347*x^6+2963*x^5+79971*x^4-3477*x^3-67999*x^2-2142*x+15150,311*x^10-37*x^9-5064*x^8+472*x^7+28741*x^6-2070*x^5-66680*x^4+2186*x^3+55776*x^2+1963*x-12090,-72*x^10+19*x^9+1194*x^8-295*x^7-6939*x^6+1527*x^5+16683*x^4-2462*x^3-14815*x^2+46*x+3075,53*x^10-23*x^9-874*x^8+354*x^7+5012*x^6-1864*x^5-11634*x^4+3502*x^3+9469*x^2-1245*x-1676,59*x,-133*x^10+31*x^9+2181*x^8-472*x^7-12427*x^6+2420*x^5+28794*x^4-4048*x^3-23970*x^2+929*x+4955,-243*x^10+42*x^9+3956*x^8-590*x^7-22453*x^6+2860*x^5+52153*x^4-4371*x^3-43872*x^2+111*x+9589]];

E[408,1] = [x, [1,0,-1,0,3,0,0,0,1,0,-1,0,3,0,-3,0,-1,0,1,0,0,0,7,0,4,0,-1,0,6,0,-2,0,1,0,0,0,-4,0,-3,0,9,0,-1,0,3,0,10,0,-7,0,1,0,-2,0,-3,0,-1,0,-6,0,-12,0,0,0,9,0,-4,0,-7,0,-12,0,-10,0,-4,0,0,0,2,0,1,0,-14,0,-3,0,-6,0,4,0,0,0,2,0,3,0,12,0,-1,0,-8,0,-9,0,0,0,3,0,-12,0,4,0,3,0,21,0,3,0,0,0,-10,0,-9,0,-3,0,17,0,1,0,1,0,0,0,-3,0,14,0,18,0,-10,0,-3,0]];
E[408,2] = [x^2+x-4, [1,0,-1,0,x,0,-2*x-2,0,1,0,x-4,0,-x-2,0,-x,0,-1,0,3*x,0,2*x+2,0,-x-6,0,-x-1,0,-1,0,-2*x-4,0,4*x+2,0,-x+4,0,-8,0,-4,0,x+2,0,-3*x+2,0,-3*x,0,x,0,2*x-4,0,4*x+13,0,1,0,6,0,-5*x+4,0,-3*x,0,-6*x-4,0,-4,0,-2*x-2,0,-x-4,0,12,0,x+6,0,6*x+2,0,4*x+2,0,x+1,0,8*x,0,2,0,1,0,2*x+4,0,-x,0,2*x+4,0,2*x+6,0,4*x+12,0,-4*x-2,0,-3*x+12,0,2*x-2,0,x-4,0,-2*x-2,0,-3*x-8,0,8,0,-3*x-4,0,-4*x,0,4,0,-x+6,0,-5*x-4,0,-x-2,0,2*x+2,0,-9*x+9,0,3*x-2,0,-5*x-4,0,7*x+4,0,3*x,0,-x-12,0,-24,0,-x,0,4*x-6,0,-2*x,0,-2*x+4,0,3*x+4,0]];
E[408,3] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,6,0,2,0,1,0,4,0,-4,0,-4,0,-1,0,1,0,-6,0,-4,0,4,0,-8,0,10,0,6,0,-6,0,4,0,2,0,-8,0,9,0,1,0,6,0,8,0,4,0,-4,0,-14,0,-4,0,12,0,-12,0,-4,0,-12,0,10,0,-1,0,-16,0,-4,0,1,0,4,0,2,0,-6,0,-6,0,-24,0,-4,0,8,0,-6,0,4,0,-10,0,8,0,-8,0,20,0,10,0,10,0,-6,0,-8,0,6,0,-4,0,5,0,-6,0,-12,0,8,0,4,0,12,0,-16,0,2,0,-6,0,4,0,-8,0,24,0]];
E[408,4] = [x, [1,0,1,0,-3,0,-4,0,1,0,1,0,-5,0,-3,0,1,0,-7,0,-4,0,1,0,4,0,1,0,2,0,-6,0,1,0,12,0,8,0,-5,0,7,0,-1,0,-3,0,-6,0,9,0,1,0,-2,0,-3,0,-7,0,-10,0,8,0,-4,0,15,0,-12,0,1,0,12,0,-14,0,4,0,-4,0,10,0,1,0,-14,0,-3,0,2,0,8,0,20,0,-6,0,21,0,12,0,1,0,0,0,7,0,12,0,13,0,-20,0,8,0,-19,0,-3,0,-5,0,-4,0,-10,0,7,0,3,0,-7,0,-1,0,-1,0,28,0,-3,0,18,0,-14,0,-6,0,-5,0]];
E[408,5] = [x^2+x-14, [1,0,1,0,x,0,4,0,1,0,-x-2,0,-x,0,x,0,1,0,-x-2,0,4,0,-x-2,0,-x+9,0,1,0,2,0,2*x,0,-x-2,0,4*x,0,2*x-2,0,-x,0,-x+4,0,x-6,0,x,0,-2*x-4,0,9,0,1,0,-10,0,-x-14,0,-x-2,0,-2*x,0,2*x+6,0,4,0,x-14,0,4,0,-x-2,0,-4,0,10,0,-x+9,0,-4*x-8,0,2*x,0,1,0,2*x,0,x,0,2,0,2*x+6,0,-4*x,0,2*x,0,-x-14,0,-2*x-2,0,-x-2,0,-2*x-6,0,-3*x-10,0,4*x,0,3*x+6,0,-2*x-10,0,2*x-2,0,x,0,-x-14,0,-x,0,4,0,3*x+7,0,-x+4,0,5*x-14,0,3*x+10,0,x-6,0,x-14,0,-4*x-8,0,x,0,-6,0,2*x,0,-2*x-4,0,x+14,0]];
E[408,6] = [x, [1,0,1,0,0,0,2,0,1,0,0,0,2,0,0,0,-1,0,4,0,2,0,2,0,-5,0,1,0,0,0,6,0,0,0,0,0,0,0,2,0,-10,0,4,0,0,0,-4,0,-3,0,-1,0,-2,0,0,0,4,0,-4,0,0,0,2,0,0,0,4,0,2,0,-2,0,-14,0,-5,0,0,0,6,0,1,0,-12,0,0,0,0,0,-2,0,4,0,6,0,0,0,-2,0,0,0,-2,0,4,0,0,0,-16,0,-4,0,0,0,-6,0,0,0,2,0,-2,0,-11,0,-10,0,0,0,-16,0,4,0,0,0,8,0,0,0,10,0,8,0,-4,0,0,0]];

E[409,1] = [x^13+6*x^12+2*x^11-47*x^10-64*x^9+117*x^8+226*x^7-94*x^6-278*x^5+9*x^4+134*x^3+15*x^2-22*x-4, [2,2*x,x^12+4*x^11-10*x^10-51*x^9+28*x^8+237*x^7+2*x^6-482*x^5-90*x^4+397*x^3+68*x^2-97*x-14,2*x^2-4,6*x^12+38*x^11+28*x^10-256*x^9-474*x^8+416*x^7+1392*x^6+204*x^5-1234*x^4-568*x^3+268*x^2+182*x+18,-2*x^12-12*x^11-4*x^10+92*x^9+120*x^8-224*x^7-388*x^6+188*x^5+388*x^4-66*x^3-112*x^2+8*x+4,-11*x^12-66*x^11-28*x^10+483*x^9+698*x^8-1029*x^7-2176*x^6+438*x^5+2042*x^4+277*x^3-490*x^2-141*x-18,2*x^3-8*x,-5*x^12-28*x^11+229*x^9+230*x^8-629*x^7-834*x^6+684*x^5+940*x^4-331*x^3-336*x^2+55*x+26,2*x^12+16*x^11+26*x^10-90*x^9-286*x^8+36*x^7+768*x^6+434*x^5-622*x^4-536*x^3+92*x^2+150*x+24,2*x^12+12*x^11+4*x^10-92*x^9-120*x^8+222*x^7+382*x^6-180*x^5-360*x^4+62*x^3+84*x^2-14*x-2,-2*x^12-8*x^11+18*x^10+94*x^9-46*x^8-410*x^7-4*x^6+796*x^5+132*x^4-638*x^3-98*x^2+154*x+20,5*x^12+34*x^11+36*x^10-213*x^9-492*x^8+243*x^7+1394*x^6+530*x^5-1204*x^4-855*x^3+236*x^2+263*x+28,-6*x^11-34*x^10-6*x^9+258*x^8+310*x^7-596*x^6-1016*x^5+376*x^4+984*x^3+24*x^2-260*x-44,3*x^12+20*x^11+20*x^10-127*x^9-286*x^8+155*x^7+830*x^6+282*x^5-754*x^4-469*x^3+178*x^2+139*x+6,2*x^4-12*x^2+8,-x^12-6*x^11+55*x^9+52*x^8-189*x^7-222*x^6+304*x^5+340*x^4-229*x^3-192*x^2+65*x+28,2*x^12+10*x^11-6*x^10-90*x^9-44*x^8+296*x^7+214*x^6-450*x^5-286*x^4+334*x^3+130*x^2-84*x-20,-14*x^12-88*x^11-58*x^10+610*x^9+1050*x^8-1110*x^7-3114*x^6-66*x^5+2766*x^4+924*x^3-570*x^2-320*x-54,-8*x^12-54*x^11-52*x^10+354*x^9+750*x^8-516*x^7-2162*x^6-474*x^5+1914*x^4+960*x^3-416*x^2-296*x-28,9*x^12+46*x^11-26*x^10-419*x^9-214*x^8+1379*x^7+1022*x^6-2028*x^5-1352*x^4+1365*x^3+612*x^2-299*x-92,2*x^10+8*x^9-12*x^8-70*x^7+8*x^6+196*x^5+44*x^4-184*x^3-44*x^2+42*x+8,16*x^12+90*x^11+2*x^10-730*x^9-742*x^8+1974*x^7+2634*x^6-2076*x^5-2874*x^4+956*x^3+982*x^2-156*x-74,8*x^12+46*x^11+8*x^10-358*x^9-416*x^8+896*x^7+1384*x^6-800*x^5-1396*x^4+302*x^3+408*x^2-40*x-16,-8*x^12-52*x^11-44*x^10+344*x^9+686*x^8-518*x^7-1998*x^6-414*x^5+1774*x^4+898*x^3-384*x^2-272*x-32,4*x^12+26*x^11+22*x^10-172*x^9-342*x^8+264*x^7+1000*x^6+186*x^5-900*x^4-434*x^3+188*x^2+138*x+20,-2*x^12-4*x^11+42*x^10+104*x^9-222*x^8-662*x^7+374*x^6+1584*x^5-36*x^4-1386*x^3-196*x^2+350*x+66,16*x^12+98*x^11+50*x^10-708*x^9-1086*x^8+1462*x^7+3336*x^6-500*x^5-3100*x^4-530*x^3+720*x^2+238*x+36,-2*x^12+4*x^11+90*x^10+124*x^9-576*x^8-1170*x^7+1150*x^6+3194*x^5-438*x^4-2966*x^3-322*x^2+782*x+150,2*x^12+14*x^11+14*x^10-94*x^9-196*x^8+152*x^7+564*x^6+80*x^5-496*x^4-224*x^3+94*x^2+72*x+12,5*x^12+32*x^11+24*x^10-217*x^9-398*x^8+369*x^7+1160*x^6+112*x^5-998*x^4-435*x^3+152*x^2+155*x+34,2*x^5-16*x^3+24*x,x^12+12*x^11+40*x^10-23*x^9-334*x^8-329*x^7+764*x^6+1250*x^5-420*x^4-1237*x^3-88*x^2+321*x+66,2*x^11+8*x^10-12*x^9-72*x^8+4*x^7+210*x^6+62*x^5-220*x^4-58*x^3+80*x^2+6*x-4,-3*x^12-20*x^11-20*x^10+127*x^9+286*x^8-157*x^7-838*x^6-278*x^5+796*x^4+485*x^3-232*x^2-157*x+2,8*x^12+46*x^11+4*x^10-374*x^9-398*x^8+1020*x^7+1406*x^6-1098*x^5-1564*x^4+524*x^3+558*x^2-86*x-44,-2*x^12-24*x^11-74*x^10+72*x^9+648*x^8+466*x^7-1592*x^6-2052*x^5+1112*x^4+2138*x^3-28*x^2-586*x-94,-4*x^12-30*x^11-48*x^10+154*x^9+528*x^8+50*x^7-1382*x^6-1126*x^5+1050*x^4+1306*x^3-110*x^2-362*x-56,4*x^11+22*x^10-172*x^8-172*x^7+426*x^6+568*x^5-354*x^4-516*x^3+100*x^2+130*x-6,-10*x^12-68*x^11-74*x^10+418*x^9+992*x^8-426*x^7-2762*x^6-1178*x^5+2276*x^4+1728*x^3-360*x^2-504*x-80,24*x^12+136*x^11+10*x^10-1086*x^9-1150*x^8+2866*x^7+3972*x^6-2906*x^5-4202*x^4+1346*x^3+1380*x^2-248*x-96,-8*x^12-44*x^11+4*x^10+362*x^9+326*x^8-1012*x^7-1182*x^6+1150*x^5+1284*x^4-594*x^3-434*x^2+106*x+36,-17*x^12-118*x^11-136*x^10+723*x^9+1780*x^8-707*x^7-4990*x^6-2180*x^5+4236*x^4+3197*x^3-776*x^2-937*x-116,-4*x^12-22*x^11+172*x^9+170*x^8-436*x^7-568*x^6+404*x^5+536*x^4-168*x^3-126*x^2+36*x+4,-9*x^12-62*x^11-70*x^10+379*x^9+920*x^8-369*x^7-2556*x^6-1140*x^5+2100*x^4+1665*x^3-296*x^2-489*x-90,-6*x^12-30*x^11+22*x^10+282*x^9+102*x^8-982*x^7-572*x^6+1574*x^5+812*x^4-1162*x^3-396*x^2+278*x+64,-7*x^12-44*x^11-28*x^10+311*x^9+528*x^8-595*x^7-1612*x^6+50*x^5+1530*x^4+407*x^3-402*x^2-155*x-8,2*x^12+8*x^11-18*x^10-92*x^9+52*x^8+396*x^7-40*x^6-764*x^5-34*x^4+612*x^3+36*x^2-148*x-8,-3*x^12+8*x^11+150*x^10+201*x^9-976*x^8-1975*x^7+1962*x^6+5464*x^5-734*x^4-5103*x^3-580*x^2+1339*x+274,-4*x^12-28*x^11-32*x^10+174*x^9+418*x^8-190*x^7-1166*x^6-450*x^5+970*x^4+688*x^3-152*x^2-208*x-32,-18*x^12-96*x^11+30*x^10+836*x^9+594*x^8-2570*x^7-2420*x^6+3444*x^5+2918*x^4-2170*x^3-1176*x^2+466*x+142,-8*x^12-54*x^11-56*x^10+340*x^9+780*x^8-390*x^7-2226*x^6-848*x^5+1938*x^4+1362*x^3-394*x^2-418*x-40,-8*x^12-30*x^11+88*x^10+396*x^9-296*x^8-1894*x^7+188*x^6+3938*x^5+560*x^4-3292*x^3-622*x^2+824*x+166,8*x^12+46*x^11+10*x^10-350*x^9-428*x^8+826*x^7+1396*x^6-592*x^5-1368*x^4+72*x^3+380*x^2+22*x-8,-26*x^12-170*x^11-152*x^10+1102*x^9+2284*x^8-1510*x^7-6538*x^6-1830*x^5+5572*x^4+3366*x^3-1004*x^2-1024*x-154,2*x^12+30*x^11+112*x^10-50*x^9-926*x^8-900*x^7+2196*x^6+3380*x^5-1426*x^4-3392*x^3-50*x^2+908*x+152,5*x^12+20*x^11-46*x^10-239*x^9+120*x^8+1063*x^7+30*x^6-2104*x^5-478*x^4+1709*x^3+478*x^2-413*x-126,16*x^12+94*x^11+30*x^10-704*x^9-936*x^8+1602*x^7+3006*x^6-994*x^5-2948*x^4-54*x^3+812*x^2+106*x-8,-10*x^11-62*x^10-32*x^9+456*x^8+696*x^7-982*x^6-2170*x^5+450*x^4+2078*x^3+208*x^2-526*x-110,-4*x^12-30*x^11-40*x^10+186*x^9+490*x^8-198*x^7-1392*x^6-504*x^5+1266*x^4+764*x^3-314*x^2-222*x-4,15*x^12+92*x^11+50*x^10-657*x^9-1048*x^8+1301*x^7+3230*x^6-256*x^5-3066*x^4-709*x^3+794*x^2+265*x+12,2*x^12+14*x^11+18*x^10-78*x^9-216*x^8+30*x^7+582*x^6+392*x^5-480*x^4-518*x^3+80*x^2+144*x+20,13*x^12+92*x^11+116*x^10-545*x^9-1454*x^8+397*x^7+4044*x^6+2112*x^5-3428*x^4-2877*x^3+638*x^2+837*x+100,2*x^6-20*x^4+48*x^2-16,x^12+8*x^11+14*x^10-41*x^9-152*x^8-31*x^7+392*x^6+400*x^5-244*x^4-507*x^3-72*x^2+157*x+56,6*x^12+38*x^11+24*x^10-270*x^9-446*x^8+538*x^7+1344*x^6-142*x^5-1246*x^4-222*x^3+306*x^2+88*x+4,28*x^12+158*x^11+6*x^10-1274*x^9-1300*x^8+3424*x^7+4528*x^6-3608*x^5-4784*x^4+1752*x^3+1558*x^2-328*x-114,4*x^12+20*x^11-12*x^10-182*x^9-100*x^8+588*x^7+506*x^6-828*x^5-738*x^4+538*x^3+390*x^2-134*x-56]];
E[409,2] = [x^20-5*x^19-19*x^18+126*x^17+100*x^16-1283*x^15+247*x^14+6767*x^13-4554*x^12-19689*x^11+18771*x^10+31011*x^9-35515*x^8-23548*x^7+31466*x^6+5354*x^5-10552*x^4+1129*x^3+523*x^2-54*x-4, [325701783112,325701783112*x,11812328750*x^19-63096638684*x^18-215373165502*x^17+1597444230542*x^16+963041912526*x^15-16403787944064*x^14+4996875974310*x^13+87889886949412*x^12-63677701703656*x^11-263662135334682*x^10+245697889289408*x^9+442423956371606*x^8-444892572187184*x^7-388864831608768*x^6+373223863936896*x^5+143835668304216*x^4-112155750438332*x^3-4652447369642*x^2+3548691409488*x-352521223808,325701783112*x^2-651403566224,-5121572214*x^19+18153465318*x^18+120597791866*x^17-458758295362*x^16-1103708506020*x^15+4694022447154*x^14+4783694846104*x^13-24961450776400*x^12-8497952428330*x^11+73709427228846*x^10-4905578894040*x^9-119950803496510*x^8+43634043310246*x^7+100969563351864*x^6-65739948763678*x^5-39764792698316*x^4+39383915369886*x^3+8221074565878*x^2-7583998094308*x-271903185440,-4034994934*x^19+9061080748*x^18+109090808042*x^17-218190962474*x^16-1248570157814*x^15+2079230773060*x^14+7955858298162*x^13-9884356576156*x^12-31089194575932*x^11+23968666323158*x^10+76111829505356*x^9-25377716630934*x^8-110708114203768*x^7+1537127489396*x^6+80592460176716*x^5+12487942531668*x^4-17988566528392*x^3-2629156526762*x^2+285344528692*x+47249315000,51934969206*x^19-229150310572*x^18-1093095993136*x^17+5816561741690*x^16+7886811254274*x^15-59804709613002*x^14-14821293031496*x^13+319789029900358*x^12-88758138375552*x^11-950111179520540*x^10+535437552685180*x^9+1550902221863446*x^8-1123470735395472*x^7-1270779290661282*x^6+1030886650558296*x^5+389464198137794*x^4-340469892402536*x^3+6112349490516*x^2+12237282329188*x-113122401560,325701783112*x^3-1302807132448*x,-56865811412*x^19+261738126916*x^18+1169562051124*x^17-6657754726184*x^16-7960620768464*x^15+68721752281924*x^14+9512172932548*x^13-370067855031436*x^12+131546560604048*x^11+1113674744578268*x^10-681618112465596*x^9-1862864266291052*x^8+1367703214925748*x^7+1608045616854536*x^6-1215317001228480*x^5-573495443963456*x^4+384122469035664*x^3+30617506610420*x^2-12477974478668*x-779296981752,-7454395752*x^19+23287919800*x^18+186559803602*x^17-591551284620*x^16-1876954703408*x^15+6048723182962*x^14+9696228395738*x^13-31821592290886*x^12-27129208092600*x^11+91231453134954*x^10+38874272431844*x^9-138258593869964*x^8-19633219143408*x^7+95415442522046*x^6-12343895064560*x^5-14658914632242*x^4+14003329595484*x^3-4905415826386*x^2-548468084996*x-20486288856,10914238563*x^19-59346754394*x^18-205434567225*x^17+1520932471077*x^16+1066479838551*x^15-15892046171990*x^14+2622590359827*x^13+87379047739510*x^12-46938867796610*x^11-272921271717275*x^10+187096082407446*x^9+489467605119575*x^8-337688518356184*x^7-484968445142494*x^6+280543300583650*x^5+235089950690766*x^4-88275976805160*x^3-39745436607747*x^2+7799354812062*x+1741481490484,-34738551422*x^19+158619181664*x^18+720964730214*x^17-4039959125498*x^16-5023751552314*x^15+41760077934988*x^14+7426702193602*x^13-225244335404192*x^12+71879054474944*x^11+679176990080834*x^10-391644267311476*x^9-1138858872027990*x^8+796306211157932*x^7+985287273987496*x^6-712356422465488*x^5-348237169680392*x^4+226237853630388*x^3+11700541618458*x^2-7268023230412*x+688902467880,64098806850*x^19-271279045136*x^18-1384328601342*x^17+6879531046354*x^16+10679781065742*x^15-70714857632048*x^14-28635905414990*x^13+378626502416784*x^12-50408214080212*x^11-1130773786894706*x^10+472319344601784*x^9+1874146684813890*x^8-1057581767561876*x^7-1605939301658212*x^6+990525470300772*x^5+580288080854548*x^4-335063952468752*x^3-41288723692506*x^2+15458037449288*x+1259787998296,30524535458*x^19-106331578222*x^18-727244378266*x^17+2693314333674*x^16+6827855878296*x^15-27649230425378*x^14-31654906716644*x^13+147753711388572*x^12+72436429176394*x^11-439433754280646*x^10-59653108183820*x^9+720999695955618*x^8-47814635798394*x^7-603299090477700*x^6+111404373008870*x^5+207547902659176*x^4-52522230743058*x^3-14924706565550*x^2+2691365935564*x+207739876824,-48646359750*x^19+203181645776*x^18+1064907909958*x^17-5169628402534*x^16-8461722904338*x^15+53345881798388*x^14+25390368856910*x^13-286989374713356*x^12+18202798965716*x^11+862370288559306*x^10-294605698077176*x^9-1441632041943078*x^8+682694728835036*x^7+1252789142929704*x^6-624039675088636*x^5-467949452555128*x^4+187633381571264*x^3+40390283241962*x^2-1576681834728*x-391947704064,325701783112*x^4-1954210698672*x^2+1302807132448,60257895318*x^19-269724511986*x^18-1262793377008*x^17+6862825177466*x^16+9015462223216*x^15-70828699491140*x^14-15865506069630*x^13+381119841835838*x^12-109555888114518*x^11-1145023150355684*x^10+637786390086048*x^9+1909978941936554*x^8-1321001939331162*x^7-1642775814733378*x^6+1194970343507006*x^5+585353183047866*x^4-385256665848770*x^3-33267879899576*x^2+14124483790932*x+1417623150448,-22590930144*x^19+89111634296*x^18+507337511728*x^17-2274039627264*x^16-4237083759672*x^15+23558028351312*x^14+14743090793568*x^13-127420344566200*x^12-5956216312600*x^11+385810033549056*x^10-99398588593520*x^9-651886077371432*x^8+268969489724760*x^7+574022620661512*x^6-269035889663608*x^5-215925572983760*x^4+94819007694568*x^3+17262844889808*x^2-3850050798000*x-227463245648,-69407407613*x^19+337650869984*x^18+1355988548009*x^17-8541171808379*x^16-7859892462299*x^15+87431931200806*x^14-8069814523501*x^13-464671965203824*x^12+270327403755080*x^11+1367616837473615*x^10-1177790777699982*x^9-2195022474299657*x^8+2282290444930146*x^7+1731339717957688*x^6-2050136385292496*x^5-459300812313116*x^4+688984467028278*x^3-46515508608545*x^2-31718903093166*x+1314308216044,-3740914532*x^19+8619353678*x^18+106506996400*x^17-213998537484*x^16-1307849554814*x^15+2149419252174*x^14+9054914070690*x^13-11153624794408*x^12-38542239969514*x^11+31381880634944*x^10+102720830583388*x^9-44474477282668*x^8-167388755266542*x^7+20276994964144*x^6+156731817751322*x^5+14874131017012*x^4-75257233762150*x^3-13091968238456*x^2+14744972529152*x+513988787872,-36070534520*x^19+204109920252*x^18+624237839060*x^17-5172030051764*x^16-2051272839108*x^15+53086826652624*x^14-24852855628404*x^13-283555384826032*x^12+248328766899368*x^11+843422152600620*x^10-918867852871108*x^9-1387258718891880*x^8+1650728724638628*x^7+1165241519133852*x^6-1400448631129184*x^5-384692914311004*x^4+439365145632144*x^3-49743473996*x^2-16188367370748*x+340709591968,-4775561579*x^19+1935965472*x^18+145738412139*x^17-24944017749*x^16-1889078095661*x^15-73226565234*x^14+13522395383689*x^13+2764574619292*x^12-58030828650368*x^11-17775089658627*x^10+151006153042382*x^9+49930664208761*x^8-227959955460970*x^7-62884130039708*x^6+176655117424464*x^5+26891068511616*x^4-52067611945374*x^3+2091208043613*x^2+2330850372886*x+43656954252,10809796596*x^19-65674711468*x^18-144802584244*x^17+1578597560340*x^16-445674447512*x^15-14936948228612*x^14+18229162137368*x^13+69533225435680*x^12-131597518886980*x^11-157740247653036*x^10+445333802220400*x^9+119142532842764*x^8-778390994255772*x^7+132075103056584*x^6+669588074947228*x^5-253941454340784*x^4-224249751804580*x^3+96999907114028*x^2+6420580964136*x-1560831387192,-7003585578*x^19+42810091700*x^18+118916737590*x^17-1113514485166*x^16-312343223810*x^15+11848662848716*x^14-6080274527842*x^13-66551595548532*x^12+57388040284940*x^11+212495748784570*x^10-213805312891060*x^9-386678009332530*x^8+388680093509776*x^7+377652581600372*x^6-323431885720436*x^5-165299226037892*x^4+86897499230680*x^3+16158552216818*x^2-1757668366292*x-233452835688,10350083138*x^19-118185522094*x^18+17945467668*x^17+2939511352226*x^16-4439239459720*x^15-29361618542048*x^14+59125938421654*x^13+150260394751026*x^12-351047721334334*x^11-414881903980976*x^10+1100369614411396*x^9+586421047946334*x^8-1847726962238998*x^7-319126347914026*x^6+1535866675656086*x^5-75400173686358*x^4-489318509873338*x^3+96844657719244*x^2+17711982582856*x-976055871904,49214989114*x^19-166451271192*x^18-1196918616746*x^17+4269900380742*x^16+11523911556502*x^15-44468310706940*x^14-55130123537166*x^13+241497752314688*x^12+131267621174944*x^11-730879358779566*x^10-113621414411460*x^9+1218887357715874*x^8-96540597954412*x^7-1026407586041328*x^6+237103068979648*x^5+341306657412448*x^4-113656276626156*x^3-18065638533262*x^2+4721123568196*x+256395227400,79645115932*x^19-365372594584*x^18-1657966643252*x^17+9356562986460*x^16+11608360526844*x^15-97489886920504*x^14-17418744903220*x^13+532154050536848*x^12-166713658298976*x^11-1634511691870508*x^10+919531912551624*x^9+2824499017403116*x^8-1892566870361056*x^7-2581313827741136*x^6+1713505070647088*x^5+1043652232223600*x^4-547823216983176*x^3-101832506293780*x^2+18029691323424*x+2902457135320,-57578839344*x^19+311022416580*x^18+1033414852238*x^17-7857721150884*x^16-4259873941312*x^15+80414952251234*x^14-29163233992722*x^13-428132896148590*x^12+339080101103020*x^11+1267593195775142*x^10-1296471778502780*x^9-2065540202734416*x^8+2362434141278228*x^7+1692477921610006*x^6-2017653761299548*x^5-509355728865830*x^4+631552877707440*x^3-25497665090002*x^2-22618499866820*x+348342944952,29024392854*x^19-147280601104*x^18-562071072018*x^17+3757869767818*x^16+3179966542530*x^15-38973924951016*x^14+4232298632066*x^13+211376024928836*x^12-115971894654984*x^11-642694601961102*x^10+494408245593300*x^9+1090220694127198*x^8-941142343794900*x^7-956695041356828*x^6+826680636994416*x^5+342726738642900*x^4-271419790106172*x^3-10660056366830*x^2+15585303606460*x-543583444784,-40050152974*x^19+140627074708*x^18+959812925966*x^17-3597086929338*x^16-9067397760862*x^15+37406019715160*x^14+42200541714894*x^13-203332723335784*x^12-95427888558444*x^11+618535120790074*x^10+66940220264172*x^9-1044980737686214*x^8+107264663536704*x^7+906666680804864*x^6-207496842453628*x^5-325683006510736*x^4+95312023399712*x^3+23865364314522*x^2-3018851130564*x-194585439000,-105835633268*x^19+508972177270*x^18+2093502024224*x^17-12879665410364*x^16-12742590948014*x^15+132042098824946*x^14-3157068414942*x^13-704581818974612*x^12+353771408760898*x^11+2094052459580712*x^10-1585490104727572*x^9-3442332429234612*x^8+3060633969539590*x^7+2895002902603256*x^6-2708428391110602*x^5-975541960764652*x^4+894314826900362*x^3+23217893855984*x^2-45855704004724*x+849114943480,325701783112*x^5-2605614264896*x^3+3908421397344*x,-7811784864*x^19+4275730428*x^18+264395520820*x^17-135250383612*x^16-3725862063276*x^15+1750269052952*x^14+28319788615844*x^13-12008887823008*x^12-125571703047648*x^11+47408704478348*x^10+327319051493412*x^9-109967613816088*x^8-477685503353412*x^7+148870108815580*x^6+340466899036568*x^5-114883061205740*x^4-80375470147968*x^3+43889453544924*x^2-319739549812*x-2178559481000,31564964604*x^19-117893365966*x^18-729669632602*x^17+2989672691416*x^16+6482180201854*x^15-30749206213176*x^14-26645335781068*x^13+164858567163654*x^12+41394550560418*x^11-493314562928130*x^10+41321350230056*x^9+819057212887608*x^8-223822895785114*x^7-701104590569182*x^6+262732411515294*x^5+250584645546766*x^4-101299043713598*x^3-17390395460382*x^2+4671549497620*x+241031581272,-20023311847*x^19+157796784626*x^18+238463189591*x^17-4071177284193*x^16+1621776230769*x^15+42937598402880*x^14-42414561863389*x^13-239149056040868*x^12+292411267335718*x^11+760040303769465*x^10-974046680839262*x^9-1392572613791075*x^8+1679390056022160*x^7+1407868555245136*x^6-1405361748839990*x^5-680134723586376*x^4+452006394588848*x^3+98291765533033*x^2-31905884469470*x-2157551103852,89888606400*x^19-445366414840*x^18-1766706531368*x^17+11337518707096*x^16+10495106513488*x^15-117120454024712*x^14+6428133853152*x^13+631300397874496*x^12-322075911264256*x^11-1902693728017032*x^10+1411917482255344*x^9+3192381138242704*x^8-2693355032220896*x^7-2774280915461576*x^6+2335660269464176*x^5+1003430400741992*x^4-725476933048944*x^3-53270007553528*x^2+23508575483912*x+1468230242928,-43178496264*x^19+125599210452*x^18+1099921435444*x^17-3192784901512*x^16-11367461272700*x^15+32740639858944*x^14+61201626064344*x^13-173136123592372*x^12-182974345824028*x^11+499494932899524*x^10+295740992465056*x^9-757937648640336*x^8-213186297211532*x^7+507013427252644*x^6-10934937187236*x^5-48474906176548*x^4+79342355815132*x^3-40919434332180*x^2-9923414531864*x+2118824535256,-9386168081*x^19+37247803362*x^18+204161550859*x^17-919151700999*x^16-1617772766673*x^15+9073815156910*x^14+5007962113347*x^13-45753930514522*x^12+1054388981258*x^11+125055670603641*x^10-42629356812914*x^9-182713636445549*x^8+96934083486764*x^7+133837102658162*x^6-87693551953114*x^5-43402498104098*x^4+31845454586532*x^3+4581171088433*x^2-2433691795058*x-277629630452,-58516917396*x^19+304402232488*x^18+1119363726812*x^17-7789010680980*x^16-6057655770228*x^15+81111189374312*x^14-12126106400036*x^13-442701601120320*x^12+252259829412832*x^11+1360646037877540*x^10-1046649143007552*x^9-2354998281724988*x^8+1962612814503408*x^7+2155060853837648*x^6-1690084039518240*x^5-864395491022312*x^4+524103665083192*x^3+76700553930652*x^2-19971967882232*x-1813343046664,4823572522*x^19-11146219308*x^18-115762913656*x^17+249344467626*x^16+1103735314434*x^15-2118526405830*x^14-5231312947840*x^13+8064819833530*x^12+11985430599596*x^11-9521369006348*x^10-6213521594504*x^9-23730147130594*x^8-28547622148576*x^7+83612549371142*x^6+59590777550460*x^5-85413534639330*x^4-36875134922796*x^3+26512302482160*x^2+1408915573136*x+26008919584,58206948770*x^19-239201969364*x^18-1315610593472*x^17+6204500129642*x^16+11072636679186*x^15-65706557283398*x^14-38768736204848*x^13+366364967440722*x^12+13702611459204*x^11-1158093204819052*x^10+283058770787840*x^9+2083998542941942*x^8-778625434328304*x^7-2026386970098898*x^6+796133715216420*x^5+923149241914926*x^4-288671508532596*x^3-136836847704256*x^2+23319217809696*x+3148204497152,23757247652*x^19-61102316820*x^18-627142702244*x^17+1555780612892*x^16+6808330863464*x^15-15943433601964*x^14-39466077729192*x^13+84063552695288*x^12+133229398436340*x^11-241787849396188*x^10-268675372892160*x^9+369683691160828*x^8+315852572256892*x^7-265453191922864*x^6-191571272490924*x^5+58748865377104*x^4+40673889999084*x^3+2676522183212*x^2-1607099272112*x-144282138080,41382608307*x^19-182074419366*x^18-882199971737*x^17+4643610164881*x^16+6577082433547*x^15-48097525685602*x^14-14843054908181*x^13+260142170944074*x^12-54897374022714*x^11-786868964930475*x^10+383118041347490*x^9+1322352335130095*x^8-835778491592532*x^7-1142167326460470*x^6+790923580923170*x^5+402313202331070*x^4-273676220208528*x^3-19906870454595*x^2+9665557872562*x-36485313844,-43770319549*x^19+173696250926*x^18+987645875655*x^17-4453386879915*x^16-8333231748193*x^15+46486051437682*x^14+29835619104731*x^13-254536831560154*x^12-17923385994338*x^11+786490762876341*x^10-176166560479762*x^9-1376499235178305*x^8+500037982610368*x^7+1296859828354266*x^6-508627175961718*x^5-572639239108514*x^4+184034770676624*x^3+84319342294197*x^2-15812932995138*x-3502065227284,153297374702*x^19-711365392934*x^18-3171796625042*x^17+18203709919678*x^16+21889195743332*x^15-189459515181218*x^14-29453082419908*x^13+1032522077231252*x^12-338100004495882*x^11-3164792571947454*x^10+1803141345694420*x^9+5455725631531614*x^8-3665155739978022*x^7-4972923093371968*x^6+3304679929740098*x^5+2000136714295572*x^4-1079921349267490*x^3-187144326222806*x^2+49731639945080*x+2892091873296,-11625728488*x^19+60583551080*x^18+216563189244*x^17-1526654107112*x^16-1067979195944*x^15+15559142378156*x^14-3616668129452*x^13-82369705188796*x^12+55093837525608*x^11+242423110316884*x^10-216080069395792*x^9-394481068148832*x^8+386624193299192*x^7+329447015257492*x^6-311817105315768*x^5-110184778123588*x^4+84795646757144*x^3+767057344428*x^2-977102371008*x+43239186384,36533849203*x^19-221123171068*x^18-563902775927*x^17+5520835842377*x^16+396434194201*x^15-55576366294558*x^14+41866967638067*x^13+289058722895900*x^12-337418459880312*x^11-827477981030121*x^10+1175179380300750*x^9+1283177643491159*x^8-2052611625627106*x^7-972131447202056*x^6+1715427402967872*x^5+240801838827076*x^4-532109535899178*x^3+34131358228239*x^2+15090998394982*x+1262067956548,77269266654*x^19-331389751720*x^18-1672992162766*x^17+8467933584986*x^16+12910565656770*x^15-87870544760052*x^14-34011736329410*x^13+475982382371112*x^12-69155956610560*x^11-1440694988168090*x^10+613798717649780*x^9+2417665495763086*x^8-1379880273906236*x^7-2073631609898080*x^6+1296910816077696*x^5+709470003572408*x^4-428410106926396*x^3-21495876345914*x^2+13924400003924*x-1405819278072,7949376764*x^19-80766106508*x^18-22043201162*x^17+2005662527588*x^16-2427234206416*x^15-20102398173354*x^14+34459030435078*x^13+104318758852390*x^12-205740048090336*x^11-299089661126330*x^10+636185095038656*x^9+467179569650896*x^8-1037919972774156*x^7-357322094748210*x^6+820413745862496*x^5+82427850630470*x^4-237124612701516*x^3+22048243090066*x^2+7089700274904*x-567450441360,-66435106404*x^19+214597047290*x^18+1635400876838*x^17-5474247773520*x^16-16082461875994*x^15+56569467886568*x^14+80221382156180*x^13-303913442723882*x^12-211099117076894*x^11+906088203827998*x^10+265454619753816*x^9-1480143759592928*x^8-75402590180402*x^7+1210190959635778*x^6-130814518807210*x^5-380104432601162*x^4+85159413856442*x^3+12298889101682*x^2-417151382452*x+41400332552,-57819254876*x^19+313094390268*x^18+1079853275712*x^17-8058292284948*x^16-5230920457920*x^15+84512747631968*x^14-20806130758412*x^13-465406216727604*x^12+302951215463892*x^11+1447329727039240*x^10-1215186175315336*x^9-2545890280555900*x^8+2270195324530892*x^7+2384788026610428*x^6-1963451637327028*x^5-990805256466228*x^4+609528771659900*x^3+91592329025216*x^2-20936311710072*x-2311000799400,-48573939322*x^19+280724266692*x^18+837468955062*x^17-7156649447606*x^16-2685041805162*x^15+74143489415772*x^14-34268268189770*x^13-401860323233468*x^12+338930990046404*x^11+1224111598719058*x^10-1251957358901948*x^9-2096963629198482*x^8+2247670512738896*x^7+1900382824834948*x^6-1903241334905452*x^5-754915873204324*x^4+596498543694536*x^3+61559131646586*x^2-28002070259020*x-2322716040136,7307289904*x^19+40863669680*x^18-377406141174*x^17-1008689947476*x^16+6791166890728*x^15+9981429273130*x^14-60497636784750*x^13-50308104054854*x^12+299011682273032*x^11+134051820720394*x^10-841927063958804*x^9-167835198231524*x^8+1304834918385616*x^7+29479563584694*x^6-988584854485048*x^5+127647357233990*x^4+257344807557828*x^3-86217584875194*x^2+1450352205316*x+2698588331680,32852985076*x^19-144709440544*x^18-678721620972*x^17+3643848933644*x^16+4694796820252*x^15-37091088538424*x^14-6804448974996*x^13+195990199655352*x^12-66379004285360*x^11-575486558607948*x^10+354624327235864*x^9+936029421963924*x^8-705830637774400*x^7-792608147269224*x^6+617232281523672*x^5+292592046331288*x^4-191751842181008*x^3-23624704309012*x^2+7203293395648*x+318580463728,-128676910007*x^19+593342735332*x^18+2611780391837*x^17-14997436889237*x^16-17145586659025*x^15+153449962319136*x^14+12653752408931*x^13-815940635666362*x^12+345834161547748*x^11+2409156664368647*x^10-1694189058315990*x^9-3909018585209523*x^8+3380385410275642*x^7+3194728899084714*x^6-3060568507979868*x^5-992938785418726*x^4+1032497878723410*x^3-4421934892353*x^2-47767884385102*x-1792921193860,-37920851056*x^19+152080061146*x^18+851701362992*x^17-3888618674260*x^16-7114410383710*x^15+40357200176002*x^14+24812923125546*x^13-218641356046700*x^12-10949430421662*x^11+663208123384736*x^10-160656599469992*x^9-1124477729935168*x^8+432240684334282*x^7+1000720178454156*x^6-423887369035794*x^5-391114840368800*x^4+144553306015490*x^3+37344646241192*x^2-8143646250752*x-645795111024,58502229216*x^19-319406729200*x^18-1016296887176*x^17+7993523733292*x^16+3496636228592*x^15-80679087292832*x^14+37831642190196*x^13+420638961818580*x^12-385884010208116*x^11-1204866703906992*x^10+1431677140796060*x^9+1855632446676776*x^8-2577263063196456*x^7-1355237426810176*x^6+2206525549313012*x^5+260092809060080*x^4-718889529149164*x^3+92262376024304*x^2+33431858610348*x-3101110689784,-2158636834*x^19-10607607792*x^18+100796268214*x^17+277527257130*x^16-1735628919334*x^15-2936726402872*x^14+14967958485818*x^13+16205190402132*x^12-71233331058696*x^11-50408632669134*x^10+190145247331804*x^9+89658968414910*x^8-273228638430836*x^7-86600908549548*x^6+187330139302584*x^5+34845603289236*x^4-43428595898996*x^3+405546143818*x^2+1023733769332*x+116097571416,-115990831360*x^19+519649895668*x^18+2400082131578*x^17-13115104173500*x^16-16637855580640*x^15+133798236960118*x^14+23922224309354*x^13-707464907897658*x^12+241694031937780*x^11+2065919867065314*x^10-1304147021362900*x^9-3274637013660128*x^8+2643269052546020*x^7+2525668022198322*x^6-2368113656276428*x^5-625165820950474*x^4+758212940939224*x^3-87087414568606*x^2-19063679800052*x+4218856074016,37669029338*x^19-207503272092*x^18-680583474530*x^17+5276874341606*x^16+2945119258194*x^15-54598834097304*x^14+16905924125454*x^13+296162464224672*x^12-206417939046444*x^11-906018935379486*x^10+786225952344852*x^9+1568147564551250*x^8-1401823779096960*x^7-1452857014833152*x^6+1136824862689332*x^5+608601714328320*x^4-306184776120360*x^3-62853187609086*x^2+796069969860*x+623694796232,-47888615608*x^19+139148167900*x^18+1230959187732*x^17-3575385295444*x^16-12928243234284*x^15+37401107119760*x^14+71532083992532*x^13-204959365701360*x^12-224080507750224*x^11+630909867381868*x^10+395851273034212*x^9-1086779617287160*x^8-363116516551348*x^7+981129681287540*x^6+130557672384928*x^5-398230196888996*x^4-773499043496*x^3+58971835754500*x^2+5538233413860*x-3578514098848,-20205989070*x^19+82624992132*x^18+455624381404*x^17-2159027621214*x^16-3745018657898*x^15+22984333002254*x^14+11607911349944*x^13-128204065141574*x^12+10254676167060*x^11+401150567346056*x^10-160263605960664*x^9-698118545973430*x^8+402785410408392*x^7+621795645300286*x^6-408897980247780*x^5-222462775343574*x^4+142706323815556*x^3+9496332194440*x^2-4866009252992*x-423342533072,14827036058*x^19-76440133964*x^18-314386814244*x^17+2028530132654*x^16+2315263457254*x^15-22166778985858*x^14-5014939969228*x^13+129193385891638*x^12-19701895032736*x^11-435391879742816*x^10+127674441212540*x^9+860574361452666*x^8-252819893357376*x^7-960178940290170*x^6+194451002369736*x^5+533941202497186*x^4-35543819424192*x^3-102241498676936*x^2+168423304364*x+495178145264,325701783112*x^6-3257017831120*x^4+7816842794688*x^2-2605614264896,-104630161050*x^19+600365997696*x^18+1789237887118*x^17-15231638269378*x^16-5441727043374*x^15+156765263729480*x^14-76915756475298*x^13-841868177689128*x^12+743784510246820*x^11+2530447775206698*x^10-2726791051672000*x^9-4248921172190434*x^8+4870199673230508*x^7+3727898352093212*x^6-4106985477086628*x^5-1383423840186620*x^4+1282850913108968*x^3+72745783309570*x^2-57597426860184*x-2842685920776,-34783193892*x^19+115971608404*x^18+849034509252*x^17-2944683576876*x^16-8272250927560*x^15+30249299477252*x^14+40853460351680*x^13-161146571318304*x^12-106397527708948*x^11+473954065175556*x^10+132283646601416*x^9-755121042798372*x^8-35081801161892*x^7+586272521567192*x^6-73058765043884*x^5-162805424032896*x^4+52708958656380*x^3+3765823934060*x^2-2600395863656*x-31247139456,38258122708*x^19-173318098114*x^18-785204857568*x^17+4412552064472*x^16+5232171695946*x^15-45524829518430*x^14-4136442129842*x^13+244395034130744*x^12-107044857627338*x^11-729362083740384*x^10+537673235455104*x^9+1195742324495804*x^8-1100379025865794*x^7-979409831266088*x^6+1024432300173994*x^5+286057277405812*x^4-359498703192962*x^3+21806478218336*x^2+23617766727192*x-998329646200,-80584333582*x^19+409513718846*x^18+1538073905328*x^17-10399966613478*x^16-8282281072676*x^15+107215516944024*x^14-17010536172354*x^13-577098284304642*x^12+347279801389062*x^11+1738861700359740*x^10-1435376684619132*x^9-2922751061747162*x^8+2684191074588134*x^7+2555060864752586*x^6-2308354861957062*x^5-938931903307922*x^4+717486091199242*x^3+54698832808880*x^2-26303427911976*x-2708986442480]];

E[410,1] = [x, [1,1,-2,1,-1,-2,-2,1,1,-1,2,-2,-6,-2,2,1,-6,1,-2,-1,4,2,-4,-2,1,-6,4,-2,-6,2,0,1,-4,-6,2,1,10,-2,12,-1,1,4,4,2,-1,-4,2,-2,-3,1,12,-6,-6,4,-2,-2,4,-6,12,2,-10,0,-2,1,6,-4,2,-6,8,2,10,1,-10,10,-2,-2,-4,12,-6,-1,-11,1,0,4,6,4,12,2,10,-1,12,-4,0,2,2,-2,2,-3,2,1,10,12,-16,-6,-4,-6,8,4,2,-2,-20,-2,6,4,4,-6,-6,12,12,2,-7,-10,-2,0,-1,-2]];
E[410,2] = [x^2-6, [1,1,x,1,1,x,-2,1,3,1,-2*x,x,4,-2,x,1,-x+2,3,0,1,-2*x,-2*x,-6,x,1,4,0,-2,-x+4,x,-2*x,1,-12,-x+2,-2,3,2*x,0,4*x,1,1,-2*x,2*x-4,-2*x,3,-6,-2*x+6,x,-3,1,2*x-6,4,2*x-4,0,-2*x,-2,0,-x+4,2*x+2,x,-4*x-2,-2*x,-6,1,4,-12,x+4,-x+2,-6*x,-2,5*x+2,3,2*x+6,2*x,x,0,4*x,4*x,3*x-2,1,-9,1,-16,-2*x,-x+2,2*x-4,4*x-6,-2*x,-2*x-2,3,-8,-6,-12,-2*x+6,0,x,x-6,-3,-6*x,1,x+8,2*x-6,-4*x+10,4,-2*x,2*x-4,2*x,0,3*x+8,-2*x,12,-2,-4*x-10,0,-6,-x+4,12,2*x+2,2*x-4,x,13,-4*x-2,x,-2*x,1,-6]];
E[410,3] = [x^3-8*x+4, [1,1,x,1,-1,x,2,1,x^2-3,-1,-x^2+4,x,-x^2-2*x+8,2,-x,1,x^2-x-6,x^2-3,-x^2-2*x+8,-1,2*x,-x^2+4,x^2-4,x,1,-x^2-2*x+8,2*x-4,2,x-4,-x,2*x^2+2*x-8,1,-4*x+4,x^2-x-6,-2,x^2-3,x^2-2*x-6,-x^2-2*x+8,-2*x^2+4,-1,-1,2*x,2*x,-x^2+4,-x^2+3,x^2-4,2*x-2,x,-3,1,-x^2+2*x-4,-x^2-2*x+8,-3*x^2-4*x+16,2*x-4,x^2-4,2,-2*x^2+4,x-4,x^2-2*x-8,-x,2*x^2+4*x-10,2*x^2+2*x-8,2*x^2-6,1,x^2+2*x-8,-4*x+4,-2*x^2-x+8,x^2-x-6,4*x-4,-2,x^2+3*x-10,x^2-3,2*x^2+2*x-2,x^2-2*x-6,x,-x^2-2*x+8,-2*x^2+8,-2*x^2+4,x^2+x-6,-1,-x^2-4*x+9,-1,2*x^2-8,2*x,-x^2+x+6,2*x,x^2-4*x,-x^2+4,-2*x+2,-x^2+3,-2*x^2-4*x+16,x^2-4,2*x^2+8*x-8,2*x-2,x^2+2*x-8,x,-x^2+x+2,-3,-x^2+4*x-12,1,-2*x^2-3*x+20,-x^2+2*x-4,-3*x^2+20,-x^2-2*x+8,-2*x,-3*x^2-4*x+16,2*x^2-2*x-12,2*x-4,2*x^2+x-16,x^2-4,-2*x^2+2*x-4,2,6,-2*x^2+4,-x^2+4,x-4,3*x^2-6*x-16,x^2-2*x-8,2*x^2-2*x-12,-x,-4*x+5,2*x^2+4*x-10,-x,2*x^2+2*x-8,-1,2*x^2-6]];
E[410,4] = [x, [1,1,0,1,1,0,4,1,-3,1,0,0,-2,4,0,1,2,-3,0,1,0,0,0,0,1,-2,0,4,-2,0,0,1,0,2,4,-3,6,0,0,1,1,0,-4,0,-3,0,-12,0,9,1,0,-2,-10,0,0,4,0,-2,-4,0,-2,0,-12,1,-2,0,-8,2,0,4,-4,-3,-6,6,0,0,0,0,4,1,9,1,-4,0,2,-4,0,0,10,-3,-8,0,0,-12,0,0,18,9,0,1,-10,0,-8,-2,0,-10,-12,0,14,0,0,4,2,0,0,-2,6,-4,8,0,-11,-2,0,0,1,-12]];
E[410,5] = [x, [1,-1,-2,1,1,2,2,-1,1,-1,0,-2,-4,-2,-2,1,0,-1,8,1,-4,0,0,2,1,4,4,2,6,2,8,-1,0,0,2,1,2,-8,8,-1,-1,4,8,0,1,0,-6,-2,-3,-1,0,-4,0,-4,0,-2,-16,-6,12,-2,2,-8,2,1,-4,0,14,0,0,-2,-12,-1,2,-2,-2,8,0,-8,-4,1,-11,1,-12,-4,0,-8,-12,0,6,-1,-8,0,-16,6,8,2,-4,3,0,1,-6,0,8,4,-4,0,0,4,2,0,-4,2,6,16,0,6,-4,-12,0,2,-11,-2,2,8,1,-2]];
E[410,6] = [x^2-2*x-2, [1,-1,x,1,-1,-x,2,-1,2*x-1,1,0,x,-2*x+4,-2,-x,1,x+2,-2*x+1,2*x,-1,2*x,0,-2*x+2,-x,1,2*x-4,4,2,-3*x,x,-2*x+4,-1,0,-x-2,-2,2*x-1,8,-2*x,-4,1,1,-2*x,-6*x+8,0,-2*x+1,2*x-2,-2*x+2,x,-3,-1,4*x+2,-2*x+4,4*x-4,-4,0,-2,4*x+4,3*x,-6,-x,2,2*x-4,4*x-2,1,2*x-4,0,5*x,x+2,-2*x-4,2,-7*x+10,-2*x+1,6*x-10,-8,x,2*x,0,4,3*x-10,-1,-2*x+3,-1,-4*x+4,2*x,-x-2,6*x-8,-6*x-6,0,-2*x-10,2*x-1,-4*x+8,-2*x+2,-4,2*x-2,-2*x,-x,-x-6,3,0,1,-x-8,-4*x-2,-6*x+2,2*x-4,-2*x,-4*x+4,6*x,4,-3*x-4,0,8*x,2,4*x-10,-4*x-4,2*x-2,-3*x,2*x-12,6,2*x+4,x,-11,-2,x,-2*x+4,-1,-4*x+2]];
E[410,7] = [x^2+2*x-4, [1,-1,x,1,-1,-x,-x-2,-1,-2*x+1,1,-x,x,-4,x+2,-x,1,-2*x-2,2*x-1,x-4,-1,-4,x,2*x+4,-x,1,4,2*x-8,-x-2,2*x+8,x,2*x-4,-1,2*x-4,2*x+2,x+2,-2*x+1,-2,-x+4,-4*x,1,-1,4,-4,-x,2*x-1,-2*x-4,-3*x-6,x,2*x+1,-1,2*x-8,-4,4,-2*x+8,x,x+2,-6*x+4,-2*x-8,2*x-4,-x,-4*x-6,-2*x+4,-x+6,1,4,-2*x+4,3*x+4,-2*x-2,8,-x-2,5*x+2,2*x-1,2*x-6,2,x,x-4,4,4*x,-3*x+6,-1,-6*x+5,1,-4*x-12,-4,2*x+2,4,4*x+8,x,10,-2*x+1,4*x+8,2*x+4,-8*x+8,3*x+6,-x+4,-x,-2*x-10,-2*x-1,-5*x+8,1,6*x+12,-2*x+8,-2*x+4,4,4,-4,4*x-4,2*x-8,2*x+4,-x,-2*x,-x-2,2*x+2,6*x-4,-2*x-4,2*x+8,8*x-4,-2*x+4,2*x+12,x,-2*x-7,4*x+6,-x,2*x-4,-1,x-6]];
E[410,8] = [x, [1,-1,0,1,1,0,-2,-1,-3,-1,-6,0,-2,2,0,1,8,3,-6,1,0,6,0,0,1,2,0,-2,-8,0,0,-1,0,-8,-2,-3,-6,6,0,-1,1,0,-4,-6,-3,0,6,0,-3,-1,0,-2,2,0,-6,2,0,8,8,0,10,0,6,1,-2,0,-8,8,0,2,-4,3,-6,6,0,-6,12,0,-8,1,9,-1,-4,0,8,4,0,6,-2,3,4,0,0,-6,-6,0,12,3,18,1,8,0,4,2,0,-2,12,0,-16,6,0,-2,14,0,0,-8,6,-8,-16,0,25,-10,0,0,1,-6]];
E[410,9] = [x^2-2*x-16, [1,-1,2,1,1,-2,x,-1,1,-1,-x+2,2,4,-x,2,1,-x-2,-1,-x+2,1,2*x,x-2,0,-2,1,-4,-4,x,x,-2,0,-1,-2*x+4,x+2,x,1,-6,x-2,8,-1,-1,-2*x,-2*x+4,-x+2,1,0,x,2,2*x+9,-1,-2*x-4,4,2*x-4,4,-x+2,-x,-2*x+4,-x,2*x,2,2,0,x,1,4,2*x-4,-6,-x-2,0,-x,-2*x-4,-1,-6,6,2,-x+2,-16,-8,8,1,-11,1,4*x-4,2*x,-x-2,2*x-4,2*x,x-2,-2*x+2,-1,4*x,0,0,-x,-x+2,-2,-3*x+6,-2*x-9,-x+2,1,x-12,2*x+4,-8,-4,2*x,-2*x+4,-2*x-4,-4,-3*x+4,x-2,-12,x,2*x-14,2*x-4,0,x,4,-2*x,-4*x-16,-2,-2*x+9,-2,-2,0,1,-x]];

E[411,1] = [x^3+3*x^2-3, [1,x,1,x^2-2,-x^2-2*x-1,x,x^2+x-3,-3*x^2-4*x+3,1,x^2-x-3,x^2+2*x-4,x^2-2,-2*x^2-3*x+2,-2*x^2-3*x+3,-x^2-2*x-1,3*x^2+3*x-5,3*x^2+4*x-7,x,-2*x^2-x+4,-2*x^2+x+5,x^2+x-3,-x^2-4*x+3,x^2-x-5,-3*x^2-4*x+3,3*x^2+7*x-1,3*x^2+2*x-6,1,x^2+x,x^2+x-6,x^2-x-3,-x^2-3*x+1,3*x+3,x^2+2*x-4,-5*x^2-7*x+9,2*x+3,x^2-2,-x^2-x-1,5*x^2+4*x-6,-2*x^2-3*x+2,5*x^2+7*x,5*x+3,-2*x^2-3*x+3,-2*x^2+2*x+11,-3*x^2-x+5,-x^2-2*x-1,-4*x^2-5*x+3,x^2+5*x-3,3*x^2+3*x-5,-2*x^2-3*x-1,-2*x^2-x+9,3*x^2+4*x-7,-3*x^2+5,3*x^2+4*x-5,x,2*x^2+3*x+1,2*x^2+6*x-3,-2*x^2-x+4,-2*x^2-6*x+3,-4*x^2-9*x+1,-2*x^2+x+5,4*x^2+8*x-7,x-3,x^2+x-3,-3*x^2-3*x+10,3*x^2+5*x+1,-x^2-4*x+3,-3*x^2-6*x+4,2*x^2+x-1,x^2-x-5,2*x^2+3*x,-5*x^2-10*x-4,-3*x^2-4*x+3,8*x^2+9*x-12,2*x^2-x-3,3*x^2+7*x-1,-7*x^2-4*x+7,-5*x^2-7*x+12,3*x^2+2*x-6,-5*x^2-7*x+10,-4*x^2-2*x+5,1,5*x^2+3*x,-10*x^2-18*x+8,x^2+x,-x^2+x+4,8*x^2+11*x-6,x^2+x-6,10*x^2+13*x-15,5*x^2+4*x-7,x^2-x-3,2*x^2+5*x-3,5*x^2+5*x-2]];
E[411,2] = [x^3-x^2-2*x+1, [1,x,-1,x^2-2,-x^2+1,-x,-x^2-x+1,x^2-2*x-1,1,-x^2-x+1,x^2-2*x-2,-x^2+2,x-4,-2*x^2-x+1,x^2-1,-3*x^2+x+3,3*x^2-2*x-3,x,4*x^2+x-8,-x-1,x^2+x-1,-x^2-1,x^2+3*x-1,-x^2+2*x+1,x^2+x-5,x^2-4*x,-1,-x^2-x,-x^2+x-6,x^2+x-1,-7*x^2+5*x+9,-4*x^2+x+5,-x^2+2*x+2,x^2+3*x-3,2*x^2+2*x-1,x^2-2,5*x^2-7*x-9,5*x^2-4,-x+4,x^2+x-2,2*x^2-5*x-3,2*x^2+x-1,-4*x^2+5,-3*x^2+x+5,-x^2+1,4*x^2+x-1,-3*x^2+5*x+9,3*x^2-x-3,4*x^2+3*x-9,2*x^2-3*x-1,-3*x^2+2*x+3,-3*x^2+7,-9*x^2+6*x+13,-x,2*x^2+x-3,2*x^2-1,-4*x^2-x+8,-8*x+1,-3*x+3,x+1,-4*x^2+4*x-3,-2*x^2-5*x+7,-x^2-x+1,3*x^2-5*x-2,3*x^2-x-3,x^2+1,3*x^2+4*x-8,-2*x^2+3*x+5,-x^2-3*x+1,4*x^2+3*x-2,-7*x^2+8*x+14,x^2-2*x-1,-2*x^2+3*x+4,-2*x^2+x-5,-x^2-x+5,-3*x^2+4*x+11,3*x^2+x-2,-x^2+4*x,3*x^2-9*x-8,2*x^2+2*x+1,1,-3*x^2+x-2,6*x^2-6*x-4,x^2+x,-x^2-x-2,-4*x^2-3*x+4,x^2-x+6,-x+5,-7*x^2-2*x+15,-x^2-x+1,2*x^2+3*x-3,3*x^2+x-2]];
E[411,3] = [x^5+x^4-7*x^3-10*x^2+1, [1,x,1,x^2-2,-x^4-x^3+7*x^2+9*x+1,x,-x^4+6*x^2+4*x,x^3-4*x,1,-x^2+x+1,x^4+x^3-7*x^2-11*x,x^2-2,2*x^4-x^3-13*x^2-3*x+5,x^4-x^3-6*x^2+1,-x^4-x^3+7*x^2+9*x+1,x^4-6*x^2+4,2*x^4-13*x^2-10*x+3,x,-x^4+2*x^3+5*x^2-6*x-3,2*x^4+x^3-13*x^2-17*x-2,-x^4+6*x^2+4*x,-x^2-1,-x^4+2*x^3+4*x^2-4*x+4,x^3-4*x,-2*x^4-3*x^3+14*x^2+25*x+4,-3*x^4+x^3+17*x^2+5*x-2,1,x^3-2*x^2-7*x-1,-x^3+2*x^2+5*x+1,-x^2+x+1,2*x^4+x^3-12*x^2-15*x-4,-x^4-x^3+10*x^2+12*x-1,x^4+x^3-7*x^2-11*x,-2*x^4+x^3+10*x^2+3*x-2,-2*x^4+12*x^2+10*x+3,x^2-2,x^4-6*x^2-4*x,3*x^4-2*x^3-16*x^2-3*x+1,2*x^4-x^3-13*x^2-3*x+5,-x^4+x^3+5*x^2-4*x-4,-x^4+7*x^2+4*x+2,x^4-x^3-6*x^2+1,-3*x^4-3*x^3+22*x^2+27*x-3,-2*x^4-3*x^3+14*x^2+21*x,-x^4-x^3+7*x^2+9*x+1,3*x^4-3*x^3-14*x^2+4*x+1,-x^4+6*x^2+2*x,x^4-6*x^2+4,-x^4+7*x^2+4*x-6,-x^4+5*x^2+4*x+2,2*x^4-13*x^2-10*x+3,-2*x^3+x^2+4*x-7,4*x^3-5*x^2-20*x+5,x,x^4+2*x^3-5*x^2-18*x-10,-x^4+5*x^2-x-2,-x^4+2*x^3+5*x^2-6*x-3,-x^4+2*x^3+5*x^2+x,5*x^4-31*x^2-22*x,2*x^4+x^3-13*x^2-17*x-2,2*x^4+2*x^3-12*x^2-22*x-3,-x^4+2*x^3+5*x^2-4*x-2,-x^4+6*x^2+4*x,-2*x^4+3*x^3+14*x^2-x-7,-5*x^3+4*x^2+29*x+4,-x^2-1,-x^4+x^3+5*x^2-3*x-6,-x^4-4*x^3+9*x^2+18*x-4,-x^4+2*x^3+4*x^2-4*x+4,2*x^4-2*x^3-10*x^2+3*x+2,5*x^4+x^3-31*x^2-27*x,x^3-4*x,3*x^4+4*x^3-23*x^2-32*x+3,-x^4+x^3+6*x^2-1,-2*x^4-3*x^3+14*x^2+25*x+4,-3*x^4+x^3+17*x^2+13*x+3,-x^4+2*x^3+6*x^2-6*x-5,-3*x^4+x^3+17*x^2+5*x-2,3*x^4+2*x^3-20*x^2-26*x-5,-2*x^4-4*x^3+12*x^2+30*x+5,1,x^4-6*x^2+2*x+1,x^4-3*x^3-6*x^2+19*x+12,x^3-2*x^2-7*x-1,x^4-2*x^3-2*x^2+4*x-5,x^3-3*x^2-3*x+3,-x^3+2*x^2+5*x+1,-x^4+3*x^2+4,-x^4-3*x^3+7*x^2+23*x+5,-x^2+x+1,x^4-2*x^3-5*x^2+12*x+2,-4*x^4+3*x^3+26*x^2+9*x-11]];
E[411,4] = [x^9-16*x^7+x^6+82*x^5-9*x^4-141*x^3+18*x^2+52*x+8, [16,16*x,-16,16*x^2-32,-2*x^8+32*x^6-10*x^5-172*x^4+90*x^3+330*x^2-164*x-96,-16*x,3*x^8-2*x^7-44*x^6+35*x^5+204*x^4-179*x^3-309*x^2+252*x+84,16*x^3-64*x,16,-8*x^6-8*x^5+72*x^4+48*x^3-128*x^2+8*x+16,2*x^8+4*x^7-24*x^6-46*x^5+88*x^4+142*x^3-110*x^2-72*x+24,-16*x^2+32,-6*x^8-4*x^7+88*x^6+42*x^5-400*x^4-106*x^3+546*x^2-56,-2*x^8+4*x^7+32*x^6-42*x^5-152*x^4+114*x^3+198*x^2-72*x-24,2*x^8-32*x^6+10*x^5+172*x^4-90*x^3-330*x^2+164*x+96,16*x^4-96*x^2+64,-4*x^8+64*x^6-4*x^5-328*x^4+36*x^3+548*x^2-72*x-128,16*x,3*x^8+2*x^7-44*x^6-13*x^5+208*x^4-11*x^3-345*x^2+72*x+156,4*x^8-8*x^7-72*x^6+92*x^5+392*x^4-308*x^3-652*x^2+344*x+192,-3*x^8+2*x^7+44*x^6-35*x^5-204*x^4+179*x^3+309*x^2-252*x-84,4*x^8+8*x^7-48*x^6-76*x^5+160*x^4+172*x^3-108*x^2-80*x-16,x^8-2*x^7-20*x^6+17*x^5+120*x^4-25*x^3-235*x^2+100,-16*x^3+64*x,7*x^8+2*x^7-108*x^6-25*x^5+504*x^4+81*x^3-669*x^2+140,-4*x^8-8*x^7+48*x^6+92*x^5-160*x^4-300*x^3+108*x^2+256*x+48,-16,-2*x^8+4*x^7+48*x^6-58*x^5-312*x^4+274*x^3+582*x^2-424*x-152,5*x^8-2*x^7-84*x^6+21*x^5+432*x^4-77*x^3-671*x^2+152*x+196,8*x^6+8*x^5-72*x^4-48*x^3+128*x^2-8*x-16,16*x^3-112*x+32,16*x^5-128*x^3+192*x,-2*x^8-4*x^7+24*x^6+46*x^5-88*x^4-142*x^3+110*x^2+72*x-24,-16*x^3+80*x+32,3*x^8-2*x^7-44*x^6+35*x^5+188*x^4-179*x^3-181*x^2+220*x-60,16*x^2-32,-2*x^8+32*x^6+6*x^5-156*x^4-38*x^3+218*x^2-20*x+32,2*x^8+4*x^7-16*x^6-38*x^5+16*x^4+78*x^3+18*x^2-24,6*x^8+4*x^7-88*x^6-42*x^5+400*x^4+106*x^3-546*x^2+56,-8*x^8-8*x^7+104*x^6+80*x^5-416*x^4-184*x^3+528*x^2-32*x-64,-10*x^8+4*x^7+152*x^6-74*x^5-720*x^4+394*x^3+1070*x^2-608*x-248,2*x^8-4*x^7-32*x^6+42*x^5+152*x^4-114*x^3-198*x^2+72*x+24,-6*x^8-4*x^7+88*x^6+42*x^5-384*x^4-106*x^3+434*x^2+8,4*x^8+8*x^7-32*x^6-76*x^5+32*x^4+172*x^3+68*x^2-80*x-80,-2*x^8+32*x^6-10*x^5-172*x^4+90*x^3+330*x^2-164*x-96,-2*x^8-4*x^7+16*x^6+38*x^5-16*x^4-94*x^3-18*x^2+48*x-8,-7*x^8+2*x^7+108*x^6-23*x^5-516*x^4+71*x^3+745*x^2-100*x-180,-16*x^4+96*x^2-64,-10*x^8+160*x^6-18*x^5-796*x^4+178*x^3+1202*x^2-452*x-176,2*x^8+4*x^7-32*x^6-70*x^5+144*x^4+318*x^3-126*x^2-224*x-56,4*x^8-64*x^6+4*x^5+328*x^4-36*x^3-548*x^2+72*x+128,4*x^8-8*x^7-80*x^6+84*x^5+464*x^4-244*x^3-764*x^2+256*x+144,6*x^8+4*x^7-88*x^6-26*x^5+416*x^4-22*x^3-642*x^2+144*x+104,-16*x,-2*x^8+12*x^7+40*x^6-162*x^5-248*x^4+610*x^3+510*x^2-488*x-216,8*x^8+8*x^7-120*x^6-64*x^5+560*x^4+72*x^3-784*x^2+96*x+64,-3*x^8-2*x^7+44*x^6+13*x^5-208*x^4+11*x^3+345*x^2-72*x-156,-2*x^8-4*x^7+16*x^6+22*x^5-32*x^4+34*x^3+62*x^2-64*x-40,4*x^8-8*x^7-80*x^6+100*x^5+464*x^4-388*x^3-764*x^2+480*x+144,-4*x^8+8*x^7+72*x^6-92*x^5-392*x^4+308*x^3+652*x^2-344*x-192,3*x^8+6*x^7-28*x^6-61*x^5+36*x^4+173*x^3+131*x^2-156*x-60,16*x^4-112*x^2+32*x,3*x^8-2*x^7-44*x^6+35*x^5+204*x^4-179*x^3-309*x^2+252*x+84,16*x^6-160*x^4+384*x^2-128,-4*x^8-8*x^7+48*x^6+92*x^5-144*x^4-268*x^3-4*x^2+64*x+144,-4*x^8-8*x^7+48*x^6+76*x^5-160*x^4-172*x^3+108*x^2+80*x+16,6*x^8-4*x^7-104*x^6+54*x^5+568*x^4-214*x^3-986*x^2+280*x+232,8*x^8-128*x^6+8*x^5+640*x^4-72*x^3-1016*x^2+176*x+256,-x^8+2*x^7+20*x^6-17*x^5-120*x^4+25*x^3+235*x^2-100,-2*x^8+4*x^7+32*x^6-58*x^5-152*x^4+242*x^3+166*x^2-216*x-24,-2*x^8+4*x^7+40*x^6-50*x^5-240*x^4+210*x^3+486*x^2-336*x-280,16*x^3-64*x,5*x^8-6*x^7-84*x^6+85*x^5+428*x^4-373*x^3-635*x^2+476*x+156,8*x^6+8*x^5-56*x^4-64*x^3+16*x^2+136*x+16,-7*x^8-2*x^7+108*x^6+25*x^5-504*x^4-81*x^3+669*x^2-140,-2*x^8+12*x^7+48*x^6-122*x^5-320*x^4+322*x^3+654*x^2-272*x-328,4*x^8-64*x^6+4*x^5+344*x^4-68*x^3-628*x^2+264*x+128,4*x^8+8*x^7-48*x^6-92*x^5+160*x^4+300*x^3-108*x^2-256*x-48,6*x^8-4*x^7-104*x^6+70*x^5+584*x^4-374*x^3-1098*x^2+616*x+328,-16*x^8-8*x^7+232*x^6+56*x^5-1040*x^4+16*x^3+1416*x^2-336*x-320,16,4*x^8-8*x^7-64*x^6+100*x^5+304*x^4-340*x^3-428*x^2+272*x+80,8*x^8-4*x^7-120*x^6+64*x^5+564*x^4-304*x^3-868*x^2+380*x+200,2*x^8-4*x^7-48*x^6+58*x^5+312*x^4-274*x^3-582*x^2+424*x+152,14*x^8+4*x^7-216*x^6-34*x^5+1040*x^4+18*x^3-1562*x^2+256*x+440,-4*x^8-8*x^7+48*x^6+108*x^5-160*x^4-412*x^3+108*x^2+320*x+48,-5*x^8+2*x^7+84*x^6-21*x^5-432*x^4+77*x^3+671*x^2-152*x-196,16*x^7+16*x^6-144*x^5-112*x^4+288*x^3+64*x^2-128*x,7*x^8+6*x^7-92*x^6-73*x^5+364*x^4+297*x^3-449*x^2-420*x+132,-8*x^6-8*x^5+72*x^4+48*x^3-128*x^2+8*x+16,-8*x^7+128*x^5+8*x^4-624*x^3-72*x^2+840*x+80,-6*x^8-12*x^7+80*x^6+114*x^5-352*x^4-250*x^3+554*x^2+96*x-184]];
E[411,5] = [x^3-2*x^2-3*x+5, [1,2,1,2,x,2,-x^2-x+4,0,1,2*x,2*x^2-2*x-4,2,2*x^2-6,-2*x^2-2*x+8,x,-4,-4*x^2+2*x+12,2,x^2+2*x-6,2*x,-x^2-x+4,4*x^2-4*x-8,x^2-4*x-2,0,x^2-5,4*x^2-12,1,-2*x^2-2*x+8,x^2-2*x-2,2*x,-4*x^2+4*x+8,-8,2*x^2-2*x-4,-8*x^2+4*x+24,-3*x^2+x+5,2,-4*x^2+3*x+10,2*x^2+4*x-12,2*x^2-6,0,-2*x^2+4*x+1,-2*x^2-2*x+8,2*x^2-4*x-6,4*x^2-4*x-8,x,2*x^2-8*x-4,3*x^2-3*x-2,-4,4*x^2-x-11,2*x^2-10,-4*x^2+2*x+12,4*x^2-12,-2*x^2+8*x+5,2,2*x^2+2*x-10,0,x^2+2*x-6,2*x^2-4*x-4,-4*x+4,2*x,3*x^2+x-12,-8*x^2+8*x+16,-x^2-x+4,-8,4*x^2-10,4*x^2-4*x-8,-6*x^2-2*x+24,-8*x^2+4*x+24,x^2-4*x-2,-6*x^2+2*x+10,6*x^2-21,0,5*x^2-x-16,-8*x^2+6*x+20,x^2-5,2*x^2+4*x-12,-6*x+4,4*x^2-12,2*x^2-2*x-4,-4*x,1,-4*x^2+8*x+2,-6*x^2+x+20,-2*x^2-2*x+8,-6*x^2+20,4*x^2-8*x-12,x^2-2*x-2,0,x^2-3*x+2,2*x,-4*x^2-2*x+6,2*x^2-8*x-4]];

E[412,1] = [x^2+2*x-4, [2,0,2*x,0,-2*x-4,0,-x-4,0,-4*x+2,0,-4,0,-x-2,0,-8,0,x-8,0,3*x+6,0,-2*x-4,0,x-6,0,4*x+6,0,4*x-16,0,3*x,0,4,0,-4*x,0,4*x+12,0,2*x-8,0,-4,0,x+18,0,4*x+4,0,-2*x+12,0,-8*x-4,0,3*x-4,0,-10*x+4,0,4*x-8,0,4*x+8,0,12,0,-x-20,0,-5*x-8,0,3*x+4,0,2*x+8,0,-4,0,-8*x+4,0,-4*x-20,0,-2*x+16,0,-2*x+16,0,2*x+8,0,-9*x+6,0,-12*x+10,0,3*x-20,0,8*x+12,0,-6*x+12,0,10*x+20,0,2*x+6,0,4*x,0,-6*x-24,0,x+24,0,8*x-4,0,-10*x-20,0,2,0]];
E[412,2] = [x^4-2*x^3-5*x^2+6*x+4, [2,0,2*x,0,x^3-3*x^2-2*x+8,0,x^3-2*x^2-3*x+6,0,2*x^2-6,0,-x^3+x^2+2*x+4,0,-2*x^3+3*x^2+7*x-4,0,-x^3+3*x^2+2*x-4,0,-2*x^3+3*x^2+9*x-6,0,-x^2-x+4,0,2*x^2-4,0,x^3-9*x+8,0,3*x^3-7*x^2-14*x+18,0,2*x^3-12*x,0,x^3+4*x^2-7*x-14,0,-2*x^3-2*x^2+14*x+8,0,-x^3-3*x^2+10*x+4,0,3*x^3-7*x^2-12*x+24,0,-2*x^3+4*x^2+8*x-12,0,-x^3-3*x^2+8*x+8,0,x^3-4*x^2-x+8,0,4*x^3-2*x^2-24*x+4,0,-2*x^3+6*x^2+8*x-20,0,-5*x^3+11*x^2+14*x-16,0,3*x^3-6*x^2-11*x+6,0,-x^3-x^2+6*x+8,0,3*x^3-5*x^2-16*x+16,0,2*x^3-8*x^2+16,0,-x^3-x^2+4*x,0,-2*x^3+x^2+15*x-6,0,-2*x^3+7*x^2+3*x-18,0,-x^3+6*x^2+5*x-18,0,-3*x^3+5*x^2+16*x-20,0,-2*x^3+8*x^2+8*x-28,0,2*x^3-4*x^2+2*x-4,0,-x^3+9*x^2-20,0,3*x^3-3*x^2-16*x-4,0,-x^3+x^2-12,0,x^3-5*x^2-2*x+12,0,2*x^3-x^2-5*x-4,0,4*x^3-8*x^2-12*x+10,0,-2*x^3-x^2+3*x+18,0,-5*x^3+11*x^2+20*x-32,0,6*x^3-2*x^2-20*x-4,0,-2*x^2-2*x+4,0,-3*x^3+5*x^2+12*x-18,0,-6*x^3+4*x^2+20*x+8,0,2*x^3-6*x^2-6*x+16,0,-x^3+7*x-18,0,-2*x^3+2*x^2+4*x-8,0,7*x^3-13*x^2-26*x+28,0,-2,0]];
E[412,3] = [x^2+x-5, [1,0,-1,0,x,0,-2*x-1,0,-2,0,x-1,0,-x-4,0,-x,0,x+4,0,x-5,0,2*x+1,0,-6,0,-x,0,5,0,2*x-2,0,-2*x-5,0,-x+1,0,x-10,0,5,0,x+4,0,-4,0,2*x-3,0,-2*x,0,-x-4,0,14,0,-x-4,0,-5*x-1,0,-2*x+5,0,-x+5,0,3*x+6,0,-x+5,0,4*x+2,0,-3*x-5,0,-4*x-1,0,6,0,x+8,0,x,0,x,0,3*x-9,0,7*x+2,0,1,0,3*x-1,0,3*x+5,0,-2*x+2,0,2*x+12,0,7*x+14,0,2*x+5,0,-6*x+5,0,-2*x-8,0,-2*x+2,0,-x+4,0,1,0]];

E[413,1] = [x^2-5, [2,2*x,x-1,6,2*x+2,-x+5,-2,2*x,-x-3,2*x+10,x-5,3*x-3,-3*x+1,-2*x,4,-2,-12,-3*x-5,x-3,6*x+6,-x+1,-5*x+5,-x+15,-x+5,4*x+2,x-15,-4*x+2,-6,7*x+1,4*x,-2*x+10,-6*x,-3*x+5,-12*x,-2*x-2,-3*x-9,16,-3*x+5,2*x-8,2*x+10,-4*x,x-5,-7*x+9,3*x-15,-4*x-8,15*x-5,6*x+6,-x+1,2,2*x+20,-6*x+6,-9*x+3,-3*x+13,2*x-20,-4*x,-2*x,-2*x+4,x+35,2,12,-12,10*x-10,x+3,-26,-2*x-14,5*x-15,3*x+17,-36,8*x-10,-2*x-10,8,-3*x-5,-x-27,16*x,-x+9,3*x-9,-x+5,-8*x+10,-10*x+6,-2*x-2]];
E[413,2] = [x^5-4*x^4-3*x^3+29*x^2-35*x+11, [1,x,-x^3+x^2+7*x-6,x^2-2,x^4-2*x^3-7*x^2+15*x-5,-x^4+x^3+7*x^2-6*x,-1,x^3-4*x,-2*x^4+3*x^3+14*x^2-25*x+11,2*x^4-4*x^3-14*x^2+30*x-11,x^4-x^3-8*x^2+9*x+4,-3*x^4+6*x^3+21*x^2-49*x+23,x^4-3*x^3-6*x^2+22*x-12,-x,4*x^4-8*x^3-27*x^2+61*x-25,x^4-6*x^2+4,x^4-8*x^2+9,-5*x^4+8*x^3+33*x^2-59*x+22,x^4-4*x^3-6*x^2+29*x-14,2*x^4-4*x^3-14*x^2+29*x-12,x^3-x^2-7*x+6,3*x^4-5*x^3-20*x^2+39*x-11,-4*x^4+10*x^3+25*x^2-77*x+39,-4*x^4+10*x^3+24*x^2-70*x+33,-3*x^4+5*x^3+21*x^2-38*x+9,x^4-3*x^3-7*x^2+23*x-11,-5*x^4+9*x^3+35*x^2-72*x+29,-x^2+2,-2*x^4+4*x^3+13*x^2-30*x+12,8*x^4-15*x^3-55*x^2+115*x-44,-4*x^4+9*x^3+26*x^2-71*x+31,4*x^4-5*x^3-29*x^2+47*x-11,5*x^4-13*x^3-31*x^2+101*x-57,4*x^4-5*x^3-29*x^2+44*x-11,-x^4+2*x^3+7*x^2-15*x+5,-8*x^4+12*x^3+58*x^2-103*x+33,x^3-x^2-9*x+7,-3*x^3+21*x-11,2*x^4-4*x^3-14*x^2+29*x-5,-x^2-2*x,x^4-3*x^3-4*x^2+26*x-24,x^4-x^3-7*x^2+6*x,-4*x^4+10*x^3+26*x^2-76*x+37,5*x^4-9*x^3-32*x^2+76*x-41,9*x^4-16*x^3-62*x^2+123*x-44,-6*x^4+13*x^3+39*x^2-101*x+44,3*x^4-6*x^3-21*x^2+44*x-11,4*x^2-9*x-2,1,-7*x^4+12*x^3+49*x^2-96*x+33,6*x^4-13*x^3-37*x^2+96*x-54,-x^4+2*x^3+6*x^2-20*x+13,-x^4+2*x^3+5*x^2-15*x+15,-11*x^4+20*x^3+73*x^2-146*x+55,-2*x^4+3*x^3+13*x^2-24*x+13,-x^3+4*x,3*x^4-9*x^3-19*x^2+67*x-26,-4*x^4+7*x^3+28*x^2-58*x+22,1,9*x^4-15*x^3-63*x^2+114*x-38,-x^4+3*x^3+8*x^2-19*x-5,-7*x^4+14*x^3+45*x^2-109*x+44,2*x^4-3*x^3-14*x^2+25*x-11,9*x^4-17*x^3-57*x^2+129*x-52,-x^3+x^2+8*x-6,7*x^4-16*x^3-44*x^2+118*x-55,3*x^4-5*x^3-21*x^2+42*x-7,9*x^4-17*x^3-56*x^2+129*x-62,-6*x^4+12*x^3+43*x^2-92*x+19,-2*x^4+4*x^3+14*x^2-30*x+11,3*x^4-5*x^3-22*x^2+40*x-10,-10*x^4+18*x^3+63*x^2-129*x+44,2*x^4-4*x^3-13*x^2+32*x-10,x^4-x^3-9*x^2+7*x,-11*x^4+23*x^3+72*x^2-173*x+78,-5*x^4+8*x^3+33*x^2-69*x+28,-x^4+x^3+8*x^2-9*x-4,4*x^4-8*x^3-29*x^2+65*x-22,5*x^4-14*x^3-31*x^2+110*x-59,-4*x^4+7*x^3+26*x^2-58*x+24]];
E[413,3] = [x^5-5*x^3-x^2+5*x+1, [1,x,x^3-x^2-3*x,x^2-2,-x^4+3*x^2+x-1,x^4-x^3-3*x^2,1,x^3-4*x,-3*x^3+2*x^2+9*x-1,-2*x^3+4*x+1,3*x^4-3*x^3-10*x^2+5*x+4,-x^4+3*x^2+x-1,-x^4+x^3+4*x^2-4*x-6,x,2*x^4-5*x^2-3*x-1,x^4-6*x^2+4,-3*x^4+4*x^3+12*x^2-10*x-9,-3*x^4+2*x^3+9*x^2-x,x^4-4*x^2+x-2,-2*x^2-x+2,x^3-x^2-3*x,-3*x^4+5*x^3+8*x^2-11*x-3,3*x^2-x-7,-2*x^4+6*x^2+4*x+1,x^4-x^3-x^2+4*x-3,x^4-x^3-5*x^2-x+1,x^4+3*x^3-3*x^2-10*x-5,x^2-2,2*x^4-4*x^3-7*x^2+10*x+4,5*x^3-x^2-11*x-2,4*x^4-3*x^3-16*x^2+5*x+9,-3*x^3+x^2+7*x-1,-3*x^4+3*x^3+7*x^2-x+1,4*x^4-3*x^3-13*x^2+6*x+3,-x^4+3*x^2+x-1,2*x^4-8*x^2-3*x+5,-4*x^4-x^3+17*x^2+7*x-11,x^3+2*x^2-7*x-1,-2*x^4-2*x^3+10*x^2+11*x-1,2*x^3-x^2-6*x-2,x^4-3*x^3-2*x^2+6*x+2,x^4-x^3-3*x^2,-6*x^2+2*x+9,-x^4-x^3+6*x^2+2*x-5,-3*x^4+8*x^2+7*x+4,3*x^3-x^2-7*x,x^4+4*x^3-7*x^2-8*x+5,2*x^4-4*x^3-4*x^2+9*x+4,1,-x^4+4*x^3+5*x^2-8*x-1,-2*x^4-3*x^3+9*x^2+10*x-2,x^4-2*x^3-8*x^2+4*x+11,5*x^4+2*x^3-21*x^2-7*x+11,3*x^4+2*x^3-9*x^2-10*x-1,-2*x^4+5*x^3+5*x^2-10*x-5,x^3-4*x,x^4-7*x^3+x^2+17*x+2,-4*x^4+3*x^3+12*x^2-6*x-2,1,x^4-x^3-x^2+4*x+2,3*x^4-3*x^3-6*x^2+3*x-9,-3*x^4+4*x^3+9*x^2-11*x-4,-3*x^3+2*x^2+9*x-1,-5*x^4+x^3+19*x^2-x-8,4*x^4+3*x^3-13*x^2-10*x+4,3*x^4-8*x^3-4*x^2+16*x+3,-3*x^4+7*x^3+7*x^2-18*x-5,3*x^4-x^3-14*x^2+3*x+14,-4*x^4+13*x^2+6*x-3,-2*x^3+4*x+1,-5*x^4+5*x^3+16*x^2-10*x-2,6*x^4-2*x^3-19*x^2-3*x-2,2*x^4-6*x^3-5*x^2+12*x,-x^4-3*x^3+3*x^2+9*x+4,-x^4-x^3+2*x^2+x-2,-x^4+2*x^3+x^2-3*x+4,3*x^4-3*x^3-10*x^2+5*x+4,-2*x^4+9*x^2+9*x+2,x^4-2*x^3-7*x^2+10*x+9,2*x^4-x^3-2*x^2-4]];
E[413,4] = [x^9-13*x^7+x^6+54*x^5-7*x^4-75*x^3+9*x^2+17*x-3, [8,8*x,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+229*x^2+6*x-25,8*x^2-16,-2*x^8-2*x^7+24*x^6+22*x^5-94*x^4-72*x^3+134*x^2+68*x-30,x^8+x^7-8*x^6-7*x^5+7*x^4+4*x^3+33*x^2+26*x-9,8,8*x^3-32*x,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+221*x^2+6*x-1,-2*x^8-2*x^7+24*x^6+14*x^5-86*x^4-16*x^3+86*x^2+4*x-6,x^8+x^7-16*x^6-15*x^5+79*x^4+68*x^3-119*x^2-94*x+15,7*x^8+3*x^7-88*x^6-25*x^5+349*x^4+52*x^3-441*x^2-38*x+53,-3*x^8-3*x^7+32*x^6+29*x^5-93*x^4-76*x^3+53*x^2+50*x+19,8*x,8*x^5-72*x^3+144*x,8*x^4-48*x^2+32,4*x^8+4*x^7-48*x^6-44*x^5+180*x^4+144*x^3-220*x^2-136*x+36,x^8+x^7-8*x^6-7*x^5+7*x^4-4*x^3+33*x^2+50*x-9,5*x^8+x^7-64*x^6-11*x^5+263*x^4+52*x^3-363*x^2-114*x+79,2*x^8+2*x^7-32*x^6-22*x^5+158*x^4+80*x^3-246*x^2-108*x+54,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+229*x^2+6*x-25,x^8-3*x^7-16*x^6+25*x^5+75*x^4-44*x^3-103*x^2-2*x+3,-3*x^8-3*x^7+40*x^6+29*x^5-173*x^4-76*x^3+245*x^2+50*x-21,x^8+x^7-16*x^6-15*x^5+87*x^4+76*x^3-167*x^2-118*x+39,-4*x^8-4*x^7+48*x^6+36*x^5-180*x^4-80*x^3+220*x^2+16*x-28,-3*x^8-7*x^7+32*x^6+69*x^5-97*x^4-172*x^3+77*x^2+70*x-9,-4*x^8-4*x^7+48*x^6+36*x^5-180*x^4-80*x^3+204*x^2+32*x+20,8*x^2-16,5*x^8+x^7-56*x^6-3*x^5+183*x^4-28*x^3-163*x^2+70*x-9,8*x^6-72*x^4+144*x^2,2*x^8+2*x^7-24*x^6-14*x^5+86*x^4+8*x^3-86*x^2+36*x+22,8*x^5-64*x^3+96*x,9*x^8+9*x^7-112*x^6-95*x^5+439*x^4+300*x^3-559*x^2-310*x+87,4*x^8+4*x^7-48*x^6-36*x^5+172*x^4+80*x^3-172*x^2-32*x+12,-2*x^8-2*x^7+24*x^6+22*x^5-94*x^4-72*x^3+134*x^2+68*x-30,7*x^8+3*x^7-88*x^6-25*x^5+341*x^4+52*x^3-401*x^2-38*x+5,8*x^8+8*x^7-96*x^6-72*x^5+360*x^4+168*x^3-432*x^2-104*x+64,x^8+x^7-16*x^6-7*x^5+87*x^4+12*x^3-159*x^2-6*x+15,-16*x^8-8*x^7+200*x^6+80*x^5-784*x^4-232*x^3+984*x^2+200*x-128,6*x^8-2*x^7-72*x^6+22*x^5+266*x^4-64*x^3-298*x^2+12*x+18,8*x^8-104*x^6+432*x^4+8*x^3-584*x^2-40*x+72,x^8+x^7-8*x^6-7*x^5+7*x^4+4*x^3+33*x^2+26*x-9,-5*x^8-5*x^7+64*x^6+51*x^5-259*x^4-148*x^3+347*x^2+118*x-59,-5*x^8-5*x^7+56*x^6+51*x^5-195*x^4-164*x^3+227*x^2+174*x-27,-4*x^8-4*x^7+56*x^6+52*x^5-252*x^4-224*x^3+380*x^2+320*x-84,-3*x^8+x^7+32*x^6-11*x^5-97*x^4+20*x^3+77*x^2+30*x-9,2*x^8-6*x^7-24*x^6+66*x^5+86*x^4-208*x^3-78*x^2+164*x-18,-13*x^8-9*x^7+160*x^6+83*x^5-615*x^4-196*x^3+755*x^2+98*x-103,8,-4*x^8-4*x^7+40*x^6+36*x^5-108*x^4-80*x^3+52*x^2+40*x-12,10*x^8+10*x^7-120*x^6-110*x^5+446*x^4+368*x^3-526*x^2-380*x+78,-x^8-x^7+8*x^6+7*x^5-7*x^4+4*x^3-9*x^2-58*x-47,-x^8+3*x^7+16*x^6-33*x^5-75*x^4+108*x^3+103*x^2-118*x-27,-4*x^8-4*x^7+40*x^6+36*x^5-108*x^4-96*x^3+68*x^2+88*x-12,8*x^8-112*x^6+496*x^4+16*x^3-680*x^2-80*x+48,8*x^3-32*x,-6*x^8+2*x^7+72*x^6-38*x^5-258*x^4+200*x^3+266*x^2-276*x-50,x^8+9*x^7-8*x^6-87*x^5+7*x^4+212*x^3+25*x^2-94*x+15,-8,8*x^7-88*x^5+288*x^3-288*x,4*x^8+4*x^7-48*x^6-44*x^5+180*x^4+136*x^3-220*x^2-112*x+52,2*x^8+2*x^7-16*x^6-22*x^5+22*x^4+64*x^3+18*x^2-12*x+6,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+221*x^2+6*x-1,8*x^6-80*x^4+192*x^2-64,-14*x^8-6*x^7+168*x^6+58*x^5-626*x^4-176*x^3+746*x^2+220*x-114,9*x^8+5*x^7-104*x^6-47*x^5+363*x^4+116*x^3-391*x^2-66*x+27,3*x^8+3*x^7-32*x^6-21*x^5+93*x^4+4*x^3-69*x^2+70*x+61,-4*x^8-4*x^7+56*x^6+44*x^5-252*x^4-160*x^3+372*x^2+216*x-60,-10*x^8-2*x^7+128*x^6+14*x^5-510*x^4-32*x^3+614*x^2+92*x-30,-2*x^8-2*x^7+24*x^6+14*x^5-86*x^4-16*x^3+86*x^2+4*x-6,-8*x^6+8*x^5+80*x^4-56*x^3-192*x^2+80*x+24,x^8+x^7-16*x^6-23*x^5+87*x^4+132*x^3-167*x^2-214*x+39,x^8+9*x^7-95*x^5-65*x^4+300*x^3+193*x^2-286*x-41,8*x^8+8*x^7-80*x^6-72*x^5+224*x^4+168*x^3-176*x^2-72*x+24,-5*x^8-x^7+56*x^6+3*x^5-175*x^4+20*x^3+107*x^2-46*x+41,-9*x^8-5*x^7+120*x^6+55*x^5-507*x^4-188*x^3+711*x^2+226*x-155,x^8+x^7-16*x^6-15*x^5+79*x^4+68*x^3-119*x^2-94*x+15,-8*x^8-8*x^7+96*x^6+80*x^5-344*x^4-216*x^3+344*x^2+144*x-48,-6*x^8-6*x^7+72*x^6+58*x^5-266*x^4-128*x^3+298*x^2-4*x-2,-6*x^8+2*x^7+80*x^6-14*x^5-338*x^4-8*x^3+450*x^2+132*x-90]];
E[413,5] = [x^5+2*x^4-3*x^3-5*x^2+x+1, [1,x,-x^3-x^2+3*x,x^2-2,x^4+2*x^3-3*x^2-5*x+1,-x^4-x^3+3*x^2,-1,x^3-4*x,-2*x^4-x^3+8*x^2-x-3,-1,x^4+x^3-4*x^2-3*x,x^4+2*x^3-3*x^2-5*x+1,x^4+3*x^3-2*x^2-6*x,-x,x^2+x-3,x^4-6*x^2+4,-3*x^4-4*x^3+12*x^2+8*x-7,3*x^4+2*x^3-11*x^2-x+2,-3*x^4-4*x^3+10*x^2+5*x-4,-2*x^4-4*x^3+6*x^2+9*x-2,x^3+x^2-3*x,-x^4-x^3+2*x^2-x-1,-2*x^4-6*x^3+3*x^2+15*x+1,2*x^4+2*x^3-6*x^2-1,x^4+x^3-5*x^2-2*x+1,x^4+x^3-x^2-x-1,7*x^4+9*x^3-23*x^2-12*x+5,-x^2+2,2*x^4+4*x^3-3*x^2-6*x-4,x^3+x^2-3*x,-2*x^4-3*x^3+8*x^2+7*x-7,-2*x^4-5*x^3+5*x^2+11*x-1,-x^4+x^3+7*x^2-3*x-3,2*x^4+3*x^3-7*x^2-4*x+3,-x^4-2*x^3+3*x^2+5*x-1,-2*x^2+x+3,2*x^4+x^3-11*x^2-x+5,2*x^4+x^3-10*x^2-x+3,-x-3,-x^2+4,-3*x^4-3*x^3+10*x^2+6*x,x^4+x^3-3*x^2,-2*x^4-2*x^3+8*x^2+6*x-9,-x^4-3*x^3+2*x^2+6*x+1,-3*x^4-4*x^3+10*x^2+7*x-2,-2*x^4-3*x^3+5*x^2+3*x+2,-3*x^4-4*x^3+9*x^2+8*x-1,-4*x^4-4*x^3+16*x^2+7*x-4,1,-x^4-2*x^3+3*x^2-1,6*x^4+7*x^3-23*x^2-12*x+10,-3*x^4-4*x^3+8*x^2+10*x-1,-x^4+2*x^3+9*x^2-7*x-7,-5*x^4-2*x^3+23*x^2-2*x-7,-x^3-x^2+4*x+3,-x^3+4*x,7*x^4+7*x^3-25*x^2-5*x+8,3*x^3+4*x^2-6*x-2,-1,x^4+x^3-5*x^2-2*x+6,5*x^4+5*x^3-22*x^2-13*x+13,x^4+2*x^3-3*x^2-5*x+2,2*x^4+x^3-8*x^2+x+3,-3*x^4-x^3+13*x^2+x-6,-x^3-3*x^2+2*x+6,3*x^4+4*x^3-8*x^2-2*x+1,5*x^4+9*x^3-15*x^2-18*x-1,5*x^4+7*x^3-18*x^2-15*x+12,-4*x^4-4*x^3+13*x^2+4*x+5,1,-x^4-x^3-4*x+2,-6*x^4-6*x^3+23*x^2+5*x-4,6*x^4+8*x^3-21*x^2-10*x+10,-3*x^4-5*x^3+9*x^2+3*x-2,-3*x^4-x^3+14*x^2-x-4,3*x^4+4*x^3-11*x^2-9*x+6,-x^4-x^3+4*x^2+3*x,-x^2-3*x,-3*x^4-6*x^3+13*x^2+18*x-11,4*x^4+7*x^3-12*x^2-14*x+4]];
E[413,6] = [x^3-3*x^2-x+4, [1,-1,x,-1,2*x-2,-x,-1,3,x^2-3,-2*x+2,x,-x,-3*x^2+4*x+6,1,2*x^2-2*x,-1,2,-x^2+3,-x^2+4,-2*x+2,-x,-x,-x^2+4*x,3*x,4*x^2-8*x-1,3*x^2-4*x-6,3*x^2-5*x-4,1,-2*x^2+x+10,-2*x^2+2*x,-4*x^2+6*x+8,-5,x^2,-2,-2*x+2,-x^2+3,2*x^2-6*x-2,x^2-4,-5*x^2+3*x+12,6*x-6,4*x-6,x,x^2+4,-x,4*x^2-4*x-2,x^2-4*x,-2*x^2+4*x,-x,1,-4*x^2+8*x+1,2*x,3*x^2-4*x-6,3*x^2-4*x-10,-3*x^2+5*x+4,2*x^2-2*x,-3,-3*x^2+3*x+4,2*x^2-x-10,1,-2*x^2+2*x,-4*x^2+8*x+6,4*x^2-6*x-8,-x^2+3,7,-4*x^2-2*x+12,-x^2,-x,-2,x^2-x+4,2*x-2,4*x^2-4*x-8,3*x^2-9,-2*x^2-3*x+14,-2*x^2+6*x+2,4*x^2+3*x-16,x^2-4,-x,5*x^2-3*x-12,2*x^2-8*x,-2*x+2]];

E[414,1] = [x, [1,1,0,1,-4,0,-4,1,0,-4,-2,0,-2,-4,0,1,2,0,-2,-4,0,-2,-1,0,11,-2,0,-4,-2,0,0,1,0,2,16,0,-4,-2,0,-4,-6,0,10,-2,0,-1,0,0,9,11,0,-2,4,0,8,-4,0,-2,-12,0,-8,0,0,1,8,0,-10,2,0,16,0,0,6,-4,0,-2,8,0,-12,-4,0,-6,-14,0,-8,10,0,-2,6,0,8,-1,0,0,8,0,6,9,0,11,10,0,-8,-2,0,4,10,0,0,8,0,-4,14,0,4,-2,0,-12,-8,0,-7,-8,0,0,-24,0,16,1,0,8,-12,0,8,-10,0,2,-6,0,-4,16,0,0,4,0]];
E[414,2] = [x, [1,1,0,1,2,0,-2,1,0,2,6,0,-2,-2,0,1,0,0,0,2,0,6,1,0,-1,-2,0,-2,-6,0,8,1,0,0,-4,0,0,0,0,2,-10,0,-12,6,0,1,8,0,-3,-1,0,-2,-2,0,12,-2,0,-6,12,0,4,8,0,1,-4,0,-12,0,0,-4,0,0,-10,0,0,0,-12,0,-6,2,0,-10,-14,0,0,-12,0,6,0,0,4,1,0,8,0,0,-6,-3,0,-1,6,0,14,-2,0,-2,-14,0,-16,12,0,-2,8,0,2,-6,0,12,0,0,25,4,0,8,-12,0,12,1,0,-4,8,0,0,-12,0,0,12,0,12,-4,0,0,-12,0]];
E[414,3] = [x^2-2*x-6, [1,1,0,1,x,0,2,1,0,x,-x,0,-2*x+2,2,0,1,-2*x,0,x+2,x,0,-x,-1,0,2*x+1,-2*x+2,0,2,2*x-6,0,2*x+2,1,0,-2*x,2*x,0,-3*x+2,x+2,0,x,-6,0,x+2,-x,0,-1,-6,0,-3,2*x+1,0,-2*x+2,-x,0,-2*x-6,2,0,2*x-6,0,0,x+2,2*x+2,0,1,-2*x-12,0,3*x-10,-2*x,0,2*x,6,0,2*x-4,-3*x+2,0,x+2,-2*x,0,-4*x+2,x,0,-6,-x+12,0,-4*x-12,x+2,0,-x,0,0,-4*x+4,-1,0,-6,4*x+6,0,2*x+2,-3,0,2*x+1,2*x-6,0,-2*x-10,-2*x+2,0,-x,-x+12,0,5*x-10,-2*x-6,0,2,4*x,0,-x,2*x-6,0,0,-4*x,0,2*x-5,x+2,0,2*x+2,12,0,4*x-4,1,0,-2*x-12,-6*x+12,0,2*x+4,3*x-10,0,-2*x,6*x-12,0,-4,2*x,0,6,2*x+12,0]];
E[414,4] = [x, [1,1,0,1,0,0,2,1,0,0,0,0,2,2,0,1,0,0,2,0,0,0,1,0,-5,2,0,2,6,0,-4,1,0,0,0,0,-10,2,0,0,6,0,2,0,0,1,0,0,-3,-5,0,2,-12,0,0,2,0,6,-12,0,-10,-4,0,1,0,0,14,0,0,0,0,0,2,-10,0,2,0,0,-10,0,0,6,0,0,0,2,0,0,-12,0,4,1,0,0,0,0,-10,-3,0,-5,18,0,14,2,0,-12,0,0,2,0,0,2,-12,0,0,6,0,-12,0,0,-11,-10,0,-4,0,0,-4,1,0,0,12,0,4,14,0,0,-12,0,20,0,0,0,0,0]];
E[414,5] = [x, [1,-1,0,1,-2,0,0,-1,0,2,0,0,-2,0,0,1,-2,0,-8,-2,0,0,1,0,-1,2,0,0,2,0,-8,-1,0,2,0,0,2,8,0,2,-10,0,8,0,0,-1,-8,0,-7,1,0,-2,-2,0,0,0,0,-2,4,0,2,8,0,1,4,0,8,-2,0,0,0,0,-6,-2,0,-8,0,0,8,-2,0,10,16,0,4,-8,0,0,-18,0,0,1,0,8,16,0,10,7,0,-1,18,0,8,2,0,2,-8,0,2,0,0,0,6,0,-2,2,0,-4,0,0,-11,-2,0,-8,12,0,16,-1,0,-4,12,0,0,-8,0,2,-10,0,-20,0,0,0,0,0]];
E[414,6] = [x^2-2*x-4, [1,-1,0,1,x,0,2*x-2,-1,0,-x,-x+4,0,-2*x+2,-2*x+2,0,1,4,0,-3*x+2,x,0,x-4,-1,0,2*x-1,2*x-2,0,2*x-2,-2*x+2,0,2*x,-1,0,-4,2*x+8,0,-x+10,3*x-2,0,-x,2,0,-x-6,-x+4,0,1,-4,0,13,-2*x+1,0,-2*x+2,x-4,0,2*x-4,-2*x+2,0,2*x-2,-4*x+4,0,x+2,-2*x,0,1,-2*x-8,0,-3*x+6,4,0,-2*x-8,4*x-4,0,2*x-2,x-10,0,-3*x+2,6*x-16,0,-2*x+2,x,0,-2,x-12,0,4*x,x+6,0,x-4,-2*x+8,0,-20,-1,0,4,-4*x-12,0,-2*x-2,-13,0,2*x-1,2*x-2,0,-6,2*x-2,0,-x+4,-7*x+4,0,x+6,-2*x+4,0,2*x-2,2*x+8,0,-x,-2*x+2,0,4*x-4,8*x-8,0,-6*x+9,-x-2,0,2*x,-2*x+8,0,-4,-1,0,2*x+8,2*x+12,0,-2*x-28,3*x-6,0,-4,-4*x-8,0,4*x-12,2*x+8,0,-4*x+4,-6*x+16,0]];
E[414,7] = [x^2+2*x-6, [1,-1,0,1,x,0,2,-1,0,-x,-x,0,2*x+2,-2,0,1,-2*x,0,-x+2,x,0,x,1,0,-2*x+1,-2*x-2,0,2,2*x+6,0,-2*x+2,-1,0,2*x,2*x,0,3*x+2,x-2,0,-x,6,0,-x+2,-x,0,-1,6,0,-3,2*x-1,0,2*x+2,-x,0,2*x-6,-2,0,-2*x-6,0,0,-x+2,2*x-2,0,1,-2*x+12,0,-3*x-10,-2*x,0,-2*x,-6,0,-2*x-4,-3*x-2,0,-x+2,-2*x,0,4*x+2,x,0,-6,-x-12,0,4*x-12,x-2,0,x,0,0,4*x+4,1,0,-6,4*x-6,0,-2*x+2,3,0,-2*x+1,2*x+6,0,2*x-10,-2*x-2,0,x,-x-12,0,-5*x-10,-2*x+6,0,2,4*x,0,x,2*x+6,0,0,-4*x,0,-2*x-5,x-2,0,-2*x+2,-12,0,-4*x-4,-1,0,2*x-12,-6*x-12,0,-2*x+4,3*x+10,0,2*x,6*x+12,0,-4,2*x,0,6,2*x-12,0]];

E[415,1] = [x, [1,1,3,-1,1,3,1,-3,6,1,3,-3,-6,1,3,-1,-7,6,2,-1,3,3,4,-9,1,-6,9,-1,-7,3,5,5,9,-7,1,-6,-7,2,-18,-3,6,3,4,-3,6,4,-4,-3,-6,1,-21,6,-10,9,3,-3,6,-7,-3,-3,5,5,6,7,-6,9,2,7,12,1,14,-18,-4,-7,3,-2,3,-18,-14,-1,9,6,-1,-3]];
E[415,2] = [x^2+x-1, [1,x,-x-1,-x-1,1,-1,2*x+1,-2*x-1,x-1,x,-2,x+2,-x-2,-x+2,-x-1,3*x,-x-4,-2*x+1,-2*x-3,-x-1,-x-3,-2*x,-4*x-5,x+3,1,-x-1,4*x+3,-x-3,2*x-3,-1,3*x-1,x+5,2*x+2,-3*x-1,2*x+1,x,-3*x-4,-x-2,2*x+3,-2*x-1,-12,-2*x-1,-3*x+5,2*x+2,x-1,-x-4,6*x+8,-3,-2,x,4*x+5,2*x+3,9*x+5,-x+4,-2,-5,3*x+5,-5*x+2,6*x-1,x+2,x-1,-4*x+3,-3*x+1,-2*x+1,-x-2,2,4*x+3,4*x+5,5*x+9,-x+2,-7*x-1,3*x-1,x+12,-x-3,-x-1,3*x+5,-4*x-2,x+2,1,3*x,-6*x-4,-12*x,1,3*x+4]];
E[415,3] = [x^6-2*x^5-5*x^4+9*x^3+5*x^2-6*x-1, [1,x,-x^4+x^3+5*x^2-3*x-3,x^2-2,-1,-x^5+x^4+5*x^3-3*x^2-3*x,x^5-x^4-5*x^3+3*x^2+5*x,x^3-4*x,-x^5+6*x^3-6*x+2,-x,2*x^5-3*x^4-10*x^3+12*x^2+9*x-4,-x^5+2*x^4+4*x^3-8*x^2+5,-x^3+x^2+2*x,x^5-6*x^3+6*x+1,x^4-x^3-5*x^2+3*x+3,x^4-6*x^2+4,-x^5+2*x^4+4*x^3-8*x^2-2*x+7,-2*x^5+x^4+9*x^3-x^2-4*x-1,x^5-3*x^4-3*x^3+11*x^2-x-2,-x^2+2,x^4+x^3-5*x^2-5*x+1,x^5-6*x^3-x^2+8*x+2,x^5-x^4-5*x^3+3*x^2+3*x+2,2*x^5-3*x^4-9*x^3+11*x^2+5*x-1,1,-x^4+x^3+2*x^2,-x^5-x^4+5*x^3+5*x^2-x,x^4+x^3-5*x^2-3*x+1,-2*x^5+3*x^4+10*x^3-12*x^2-11*x+7,x^5-x^4-5*x^3+3*x^2+3*x,x^5+x^4-6*x^3-4*x^2+5*x-2,x^5-8*x^3+12*x,-2*x^5+4*x^4+12*x^3-18*x^2-18*x+10,-x^4+x^3+3*x^2+x-1,-x^5+x^4+5*x^3-3*x^2-5*x,-x^5-x^4+5*x^3+6*x^2-x-6,-3*x^5+4*x^4+14*x^3-16*x^2-8*x+7,-x^5+2*x^4+2*x^3-6*x^2+4*x+1,-x^5+x^4+5*x^3-3*x^2-5*x,-x^3+4*x,2*x^5-3*x^4-12*x^3+14*x^2+15*x-6,x^5+x^4-5*x^3-5*x^2+x,x^5-x^4-4*x^3+4*x^2-3*x-2,-2*x^5+5*x^4+10*x^3-21*x^2-10*x+9,x^5-6*x^3+6*x-2,x^5-6*x^3-2*x^2+8*x+1,x^5+2*x^4-5*x^3-11*x^2+2*x+9,3*x^5-3*x^4-15*x^3+11*x^2+11*x-8,x^5-x^4-7*x^3+5*x^2+11*x-5,x,x^5-5*x^4-3*x^3+25*x^2-x-18,-x^5+x^4+4*x^3-2*x^2-4*x,2*x^5-6*x^4-11*x^3+27*x^2+14*x-11,-3*x^5+14*x^3+4*x^2-6*x-1,-2*x^5+3*x^4+10*x^3-12*x^2-9*x+4,-x^5+x^4+7*x^3-3*x^2-11*x-2,-3*x^4+5*x^3+11*x^2-17*x+1,-x^5+6*x^3-x^2-5*x-2,-x^4+2*x^3+6*x^2-7*x-3,x^5-2*x^4-4*x^3+8*x^2-5,-2*x^5+2*x^4+7*x^3-5*x^2+2*x-3,3*x^5-x^4-13*x^3+4*x+1,2*x^5-x^4-11*x^3+3*x^2+7*x-1,2*x^5-5*x^4-9*x^3+19*x^2+6*x-7,x^3-x^2-2*x,2*x^4-8*x^2-2*x-2,-3*x^5+4*x^4+15*x^3-13*x^2-12*x+2,x^5-3*x^4-5*x^3+17*x^2+3*x-14,2*x^5-3*x^4-7*x^3+11*x^2-5*x-5,-x^5+6*x^3-6*x-1,-4*x^5+5*x^4+23*x^3-21*x^2-25*x+9,x^5-2*x^4-3*x^3+6*x^2-4*x+1,x^5-x^4-4*x^3-2*x^2+3*x+11,-2*x^5-x^4+11*x^3+7*x^2-11*x-3,-x^4+x^3+5*x^2-3*x-3,-2*x^5+3*x^4+9*x^3-13*x^2-3*x+3,2*x^5-2*x^4-12*x^3+6*x^2+18*x+6,-x^5+6*x^3-6*x-1,-3*x^5+5*x^4+13*x^3-17*x^2-7*x+2,-x^4+6*x^2-4,-3*x^5+x^4+15*x^3+3*x^2-11*x-11,x^5-2*x^4-4*x^3+5*x^2+6*x+2,1,3*x^5-2*x^4-16*x^3+6*x^2+16*x-1]];
E[415,4] = [x^7+3*x^6-6*x^5-19*x^4+9*x^3+28*x^2-4*x-8, [4,4*x,-x^6-x^5+8*x^4+3*x^3-19*x^2+2*x+8,4*x^2-8,-4,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x-8,-x^6-3*x^5+6*x^4+19*x^3-9*x^2-28*x,4*x^3-16*x,2*x^6+4*x^5-14*x^4-18*x^3+32*x^2+6*x-20,-4*x,4*x^6+10*x^5-22*x^4-52*x^3+22*x^2+42*x,-2*x^6-2*x^5+12*x^4+6*x^3-14*x^2-4*x,-4*x^5-8*x^4+20*x^3+32*x^2-16*x-16,-4*x-8,x^6+x^5-8*x^4-3*x^3+19*x^2-2*x-8,4*x^4-24*x^2+16,-x^6-3*x^5+6*x^4+15*x^3-9*x^2-8*x-16,-2*x^6-2*x^5+20*x^4+14*x^3-50*x^2-12*x+16,-2*x^6-6*x^5+8*x^4+30*x^3+10*x^2-16*x-24,-4*x^2+8,-x^6-3*x^5+6*x^4+19*x^3-5*x^2-20*x-4,-2*x^6+2*x^5+24*x^4-14*x^3-70*x^2+16*x+32,2*x^6+2*x^5-16*x^4-10*x^3+34*x^2+16*x-20,-4*x^5+24*x^3-8*x^2-16*x,4,-4*x^6-8*x^5+20*x^4+32*x^3-16*x^2-16*x,-x^6-5*x^5+4*x^4+27*x^3-3*x^2-18*x-12,2*x^6+6*x^5-12*x^4-38*x^3+14*x^2+48*x,3*x^6+15*x^5-8*x^4-85*x^3-15*x^2+82*x+16,-2*x^6-2*x^5+16*x^4+10*x^3-30*x^2-4*x+8,-2*x^5-14*x^4+4*x^3+74*x^2-2*x-48,4*x^5-32*x^3+48*x,-x^6-x^5+12*x^4+3*x^3-43*x^2+18*x+20,-4*x^4+20*x^2-20*x-8,x^6+3*x^5-6*x^4-19*x^3+9*x^2+28*x,4*x^4+4*x^3-20*x^2-4*x+24,2*x^6+8*x^5-2*x^4-42*x^3-36*x^2+34*x+24,-4*x^5-8*x^4+28*x^3+40*x^2-32*x-16,4*x^4+8*x^3-12*x^2-8*x,-4*x^3+16*x,-4*x^6-8*x^5+32*x^4+48*x^3-80*x^2-56*x+44,4*x^3+8*x^2-8*x-8,2*x^6+2*x^5-16*x^4-2*x^3+38*x^2-16*x-16,-8*x^5-8*x^4+52*x^3+28*x^2-60*x-16,-2*x^6-4*x^5+14*x^4+18*x^3-32*x^2-6*x+20,-4*x^6-4*x^5+28*x^4+16*x^3-40*x^2-12*x+16,2*x^6+10*x^5-54*x^3-34*x^2+60*x+8,4*x^5-20*x^3+12*x^2+8*x,x^6+5*x^5-31*x^3-29*x^2+46*x+28,4*x,5*x^6+7*x^5-42*x^4-27*x^3+109*x^2-8*x-44,4*x^6+4*x^5-28*x^4-20*x^3+32*x^2+16*x,-2*x^6-2*x^5+16*x^4+10*x^3-30*x^2-8,-2*x^6-2*x^5+8*x^4+6*x^3+10*x^2-16*x-8,-4*x^6-10*x^5+22*x^4+52*x^3-22*x^2-42*x,-4*x^3-8*x^2+16*x+32,-8*x^4-4*x^3+40*x^2-12*x-24,6*x^6+10*x^5-28*x^4-42*x^3-2*x^2+28*x+24,-5*x^6-19*x^5+18*x^4+103*x^3+7*x^2-88*x-16,2*x^6+2*x^5-12*x^4-6*x^3+14*x^2+4*x,-5*x^6-13*x^5+40*x^4+87*x^3-87*x^2-110*x+32,-2*x^6-14*x^5+4*x^4+74*x^3-2*x^2-48*x,3*x^6+7*x^5-24*x^4-49*x^3+49*x^2+70*x-12,4*x^6-40*x^4+96*x^2-32,4*x^5+8*x^4-20*x^3-32*x^2+16*x+16,2*x^6+6*x^5-16*x^4-34*x^3+46*x^2+16*x-8,-4*x^6-8*x^5+24*x^4+52*x^3-20*x^2-84*x,2*x^6+2*x^5-12*x^4-10*x^3-2*x^2+8*x+32,3*x^6+3*x^5-24*x^4-13*x^3+45*x^2+6*x-16,4*x+8,4*x^6+8*x^5-20*x^4-48*x^3-8*x^2+64*x+40,4*x^6+8*x^5-36*x^4-48*x^3+96*x^2+48*x-32,2*x^6+6*x^5-24*x^4-50*x^3+78*x^2+76*x-48,2*x^6+10*x^5-4*x^4-54*x^3-22*x^2+32*x+16,-x^6-x^5+8*x^4+3*x^3-19*x^2+2*x+8,4*x^5+12*x^4-20*x^3-52*x^2+16*x+48,-4*x^6-18*x^5+2*x^4+96*x^3+82*x^2-86*x-84,4*x^5+8*x^4-12*x^3-8*x^2,8*x^5+20*x^4-48*x^3-100*x^2+64*x+64,-4*x^4+24*x^2-16,-x^6-5*x^5+27*x^3+9*x^2-26*x+20,4*x^6+8*x^5-28*x^4-44*x^3+56*x^2+28*x-32,-4,2*x^6+6*x^5-8*x^4-30*x^3+2*x^2+32*x+8]];
E[415,5] = [x^11-20*x^9-x^8+146*x^7+15*x^6-464*x^5-76*x^4+567*x^3+136*x^2-100*x-8, [4,4*x,-4*x^10-7*x^9+65*x^8+119*x^7-332*x^6-656*x^5+483*x^4+1195*x^3+213*x^2-186*x-24,4*x^2-8,4,-7*x^10-15*x^9+115*x^8+252*x^7-596*x^6-1373*x^5+891*x^4+2481*x^3+358*x^2-424*x-32,x^9-x^8-15*x^7+14*x^6+72*x^5-61*x^4-115*x^3+83*x^2+28*x-16,4*x^3-16*x,7*x^10+11*x^9-113*x^8-190*x^7+574*x^6+1065*x^5-839*x^4-1979*x^3-324*x^2+334*x+36,4*x,3*x^10+9*x^9-51*x^8-148*x^7+274*x^6+789*x^5-425*x^4-1401*x^3-182*x^2+266*x+24,-7*x^10-11*x^9+115*x^8+188*x^7-604*x^6-1045*x^5+983*x^4+1937*x^3+102*x^2-360*x-8,-4*x^3-4*x^2+24*x+16,x^10-x^9-15*x^8+14*x^7+72*x^6-61*x^5-115*x^4+83*x^3+28*x^2-16*x,-4*x^10-7*x^9+65*x^8+119*x^7-332*x^6-656*x^5+483*x^4+1195*x^3+213*x^2-186*x-24,4*x^4-24*x^2+16,6*x^10+11*x^9-99*x^8-187*x^7+522*x^6+1034*x^5-847*x^4-1913*x^3-117*x^2+384*x+16,11*x^10+27*x^9-183*x^8-448*x^7+960*x^6+2409*x^5-1447*x^4-4293*x^3-618*x^2+736*x+56,4*x^10+10*x^9-66*x^8-166*x^7+340*x^6+892*x^5-474*x^4-1582*x^3-330*x^2+248*x+40,4*x^2-8,-6*x^10-13*x^9+101*x^8+217*x^7-546*x^6-1174*x^5+921*x^4+2111*x^3+87*x^2-396*x+12,9*x^10+9*x^9-145*x^8-164*x^7+744*x^6+967*x^5-1173*x^4-1883*x^3-142*x^2+324*x+24,-6*x^10-16*x^9+100*x^8+266*x^7-524*x^6-1438*x^5+776*x^4+2604*x^3+386*x^2-528*x-36,3*x^10+5*x^9-49*x^8-86*x^7+252*x^6+481*x^5-377*x^4-891*x^3-124*x^2+140*x+8,4,-4*x^4-4*x^3+24*x^2+16*x,-10*x^10-13*x^9+163*x^8+227*x^7-848*x^6-1286*x^5+1361*x^4+2417*x^3+157*x^2-438*x-28,-x^10+3*x^9+17*x^8-44*x^7-104*x^6+205*x^5+281*x^4-309*x^3-318*x^2+44*x+40,4*x^10+13*x^9-67*x^8-213*x^7+348*x^6+1128*x^5-473*x^4-1965*x^3-395*x^2+286*x+32,-7*x^10-15*x^9+115*x^8+252*x^7-596*x^6-1373*x^5+891*x^4+2481*x^3+358*x^2-424*x-32,13*x^10+19*x^9-213*x^8-328*x^7+1114*x^6+1835*x^5-1791*x^4-3387*x^3-242*x^2+526*x+24,4*x^5-32*x^3+48*x,6*x^10+3*x^9-97*x^8-61*x^7+508*x^6+394*x^5-879*x^4-835*x^3+125*x^2+182*x+4,11*x^10+21*x^9-181*x^8-354*x^7+944*x^6+1937*x^5-1457*x^4-3519*x^3-432*x^2+616*x+48,x^9-x^8-15*x^7+14*x^6+72*x^5-61*x^4-115*x^3+83*x^2+28*x-16,13*x^10+15*x^9-211*x^8-266*x^7+1096*x^6+1527*x^5-1779*x^4-2897*x^3-112*x^2+488*x+16,-7*x^10-11*x^9+113*x^8+190*x^7-574*x^6-1065*x^5+839*x^4+1979*x^3+324*x^2-342*x-32,10*x^10+14*x^9-162*x^8-244*x^7+832*x^6+1382*x^5-1278*x^4-2598*x^3-296*x^2+440*x+32,-18*x^10-38*x^9+294*x^8+640*x^7-1504*x^6-3494*x^5+2142*x^4+6306*x^3+1164*x^2-1000*x-112,4*x^3-16*x,-8*x^10-12*x^9+132*x^8+208*x^7-700*x^6-1172*x^5+1176*x^4+2204*x^3+24*x^2-440*x+12,-13*x^10-19*x^9+211*x^8+330*x^7-1084*x^6-1863*x^5+1655*x^4+3489*x^3+420*x^2-588*x-48,-10*x^10-12*x^9+164*x^8+210*x^7-868*x^6-1190*x^5+1484*x^4+2224*x^3-82*x^2-352*x+16,3*x^10+17*x^9-53*x^8-274*x^7+284*x^6+1425*x^5-349*x^4-2443*x^3-536*x^2+392*x+24,7*x^10+11*x^9-113*x^8-190*x^7+574*x^6+1065*x^5-839*x^4-1979*x^3-324*x^2+334*x+36,-16*x^10-20*x^9+260*x^8+352*x^7-1348*x^6-2008*x^5+2148*x^4+3788*x^3+288*x^2-636*x-48,-10*x^10-20*x^9+164*x^8+338*x^7-848*x^6-1854*x^5+1260*x^4+3376*x^3+534*x^2-588*x-72,19*x^10+33*x^9-313*x^8-562*x^7+1644*x^6+3105*x^5-2629*x^4-5699*x^3-472*x^2+1028*x+40,-x^9+3*x^8+13*x^7-44*x^6-52*x^5+205*x^4+81*x^3-305*x^2-94*x+44,4*x,-12*x^10-21*x^9+197*x^8+355*x^7-1026*x^6-1944*x^5+1593*x^4+3511*x^3+409*x^2-544*x-12,-4*x^5-4*x^4+32*x^3+24*x^2-48*x-32,-14*x^10-32*x^9+232*x^8+534*x^7-1216*x^6-2890*x^5+1860*x^4+5192*x^3+670*x^2-904*x-56,-13*x^10-37*x^9+217*x^8+612*x^7-1136*x^6-3279*x^5+1657*x^4+5827*x^3+922*x^2-1028*x-80,3*x^10+9*x^9-51*x^8-148*x^7+274*x^6+789*x^5-425*x^4-1401*x^3-182*x^2+266*x+24,x^10-x^9-15*x^8+14*x^7+76*x^6-61*x^5-155*x^4+83*x^3+124*x^2-28*x-8,6*x^10+2*x^9-98*x^8-44*x^7+524*x^6+298*x^5-962*x^4-646*x^3+272*x^2+124*x-40,13*x^10+13*x^9-209*x^8-236*x^7+1068*x^6+1383*x^5-1661*x^4-2663*x^3-258*x^2+432*x+32,16*x^10+33*x^9-265*x^8-555*x^7+1394*x^6+3032*x^5-2189*x^4-5519*x^3-573*x^2+1024*x+48,-7*x^10-11*x^9+115*x^8+188*x^7-604*x^6-1045*x^5+983*x^4+1937*x^3+102*x^2-360*x-8,4*x^10+5*x^9-63*x^8-89*x^7+304*x^6+512*x^5-365*x^4-957*x^3-355*x^2+94*x+48,19*x^10+47*x^9-315*x^8-784*x^7+1640*x^6+4241*x^5-2399*x^4-7613*x^3-1242*x^2+1324*x+104,9*x^10+24*x^9-150*x^8-399*x^7+788*x^6+2155*x^5-1192*x^4-3882*x^3-483*x^2+734*x+12,4*x^6-40*x^4+96*x^2-32,-4*x^3-4*x^2+24*x+16,3*x^10+23*x^9-55*x^8-368*x^7+304*x^6+1905*x^5-379*x^4-3277*x^3-634*x^2+604*x+48,2*x^10+2*x^9-34*x^8-36*x^7+192*x^6+214*x^5-390*x^4-446*x^3+176*x^2+164*x-32,9*x^10+17*x^9-145*x^8-288*x^7+728*x^6+1579*x^5-989*x^4-2843*x^3-646*x^2+380*x+56,-5*x^10-2*x^9+80*x^8+45*x^7-412*x^6-315*x^5+690*x^4+720*x^3-67*x^2-186*x-24,x^10-x^9-15*x^8+14*x^7+72*x^6-61*x^5-115*x^4+83*x^3+28*x^2-16*x,14*x^10+26*x^9-230*x^8-440*x^7+1200*x^6+2418*x^5-1874*x^4-4418*x^3-460*x^2+784*x+40,-7*x^10-5*x^9+113*x^8+94*x^7-588*x^6-565*x^5+985*x^4+1103*x^3-44*x^2-156*x-8,-4*x^10-2*x^9+62*x^8+42*x^7-300*x^6-276*x^5+414*x^4+578*x^3+150*x^2-60*x-32,-11*x^10-27*x^9+183*x^8+448*x^7-960*x^6-2409*x^5+1447*x^4+4293*x^3+610*x^2-732*x-56,-4*x^10-7*x^9+65*x^8+119*x^7-332*x^6-656*x^5+483*x^4+1195*x^3+213*x^2-186*x-24,6*x^10+18*x^9-102*x^8-296*x^7+552*x^6+1578*x^5-890*x^4-2802*x^3-260*x^2+536*x,7*x^10+9*x^9-115*x^8-156*x^7+606*x^6+877*x^5-1005*x^4-1633*x^3-46*x^2+274*x+4,-38*x^10-66*x^9+622*x^8+1124*x^7-3224*x^6-6210*x^5+4938*x^4+11370*x^3+1448*x^2-1912*x-144,-10*x^10-22*x^9+166*x^8+368*x^7-872*x^6-1998*x^5+1342*x^4+3602*x^3+452*x^2-616*x-32,4*x^4-24*x^2+16,31*x^10+54*x^9-508*x^8-919*x^7+2644*x^6+5073*x^5-4126*x^4-9276*x^3-967*x^2+1542*x+76,-12*x^10-28*x^9+200*x^8+468*x^7-1052*x^6-2536*x^5+1596*x^4+4560*x^3+648*x^2-788*x-64,-4,-7*x^10-23*x^9+115*x^8+380*x^7-576*x^6-2029*x^5+659*x^4+3569*x^3+1006*x^2-556*x-128]];

E[416,1] = [x, [1,0,1,0,1,0,3,0,-2,0,2,0,1,0,1,0,-3,0,2,0,3,0,4,0,-4,0,-5,0,2,0,4,0,2,0,3,0,5,0,1,0,-12,0,7,0,-2,0,-9,0,2,0,-3,0,4,0,2,0,2,0,6,0,-4,0,-6,0,1,0,-10,0,4,0,-15,0,-2,0,-4,0,6,0,-8,0,1,0,-4,0,-3,0,2,0,2,0,3,0,4,0,2,0,10,0,-4,0,4,0,4,0,3,0,-12,0,-19,0,5,0]];
E[416,2] = [x, [1,0,-1,0,1,0,-3,0,-2,0,-2,0,1,0,-1,0,-3,0,-2,0,3,0,-4,0,-4,0,5,0,2,0,-4,0,2,0,-3,0,5,0,-1,0,-12,0,-7,0,-2,0,9,0,2,0,3,0,4,0,-2,0,2,0,-6,0,-4,0,6,0,1,0,10,0,4,0,15,0,-2,0,4,0,6,0,8,0,1,0,4,0,-3,0,-2,0,2,0,-3,0,4,0,-2,0,10,0,4,0,4,0,-4,0,3,0,12,0,-19,0,-5,0]];
E[416,3] = [x^2+x-4, [1,0,x,0,-x-2,0,-x-2,0,-x+1,0,-2,0,-1,0,-x-4,0,x+2,0,-6,0,-x-4,0,0,0,3*x+3,0,-x-4,0,4*x+2,0,2*x-2,0,-2*x,0,3*x+8,0,3*x-2,0,-x,0,-2*x+2,0,-5*x-4,0,2,0,3*x+6,0,3*x+1,0,x+4,0,-2*x-10,0,2*x+4,0,-6*x,0,6,0,-6*x-2,0,2,0,x+2,0,-6,0,0,0,-3*x-6,0,10,0,12,0,2*x+4,0,-12,0,-7,0,-6*x+2,0,-3*x-8,0,-2*x+16,0,4*x+2,0,x+2,0,-4*x+8,0,6*x+12,0,-6,0,2*x-2,0,2*x-2,0,0,0,5*x+12,0,12,0,3*x+6,0,-5*x+12,0]];
E[416,4] = [x^2-5, [1,0,x,0,3,0,x,0,2,0,-2*x,0,-1,0,3*x,0,-3,0,-2*x,0,5,0,-4*x,0,4,0,-x,0,10,0,0,0,-10,0,3*x,0,3,0,-x,0,0,0,3*x,0,6,0,x,0,-2,0,-3*x,0,4,0,-6*x,0,-10,0,-2*x,0,0,0,2*x,0,-3,0,6*x,0,-20,0,3*x,0,14,0,4*x,0,-10,0,-4*x,0,-11,0,8*x,0,-9,0,10*x,0,-10,0,-x,0,0,0,-6*x,0,-2,0,-4*x,0,-12,0,0,0,15,0,-8*x,0,11,0,3*x,0]];
E[416,5] = [x^2-x-4, [1,0,x,0,x-2,0,-x+2,0,x+1,0,2,0,-1,0,-x+4,0,-x+2,0,6,0,x-4,0,0,0,-3*x+3,0,-x+4,0,-4*x+2,0,2*x+2,0,2*x,0,3*x-8,0,-3*x-2,0,-x,0,2*x+2,0,-5*x+4,0,2,0,3*x-6,0,-3*x+1,0,x-4,0,2*x-10,0,2*x-4,0,6*x,0,-6,0,6*x-2,0,-2,0,-x+2,0,6,0,0,0,-3*x+6,0,10,0,-12,0,-2*x+4,0,12,0,-7,0,-6*x-2,0,3*x-8,0,-2*x-16,0,-4*x+2,0,x-2,0,4*x+8,0,6*x-12,0,-6,0,2*x+2,0,-2*x-2,0,0,0,-5*x+12,0,-12,0,-3*x+6,0,-5*x-12,0]];
E[416,6] = [x^4-13*x^2+32, [2,0,2*x,0,-2*x^2+12,0,x^3-7*x,0,2*x^2-6,0,-x^3+9*x,0,2,0,-2*x^3+12*x,0,-2*x^2+20,0,x^3-9*x,0,6*x^2-32,0,0,0,2*x^2-2,0,2*x^3-12*x,0,-4,0,x^3-13*x,0,-4*x^2+32,0,-10*x,0,-2*x^2+12,0,2*x,0,-4*x^2+20,0,-2*x^3+16*x,0,-8*x^2+28,0,x^3-7*x,0,2*x^2+2,0,-2*x^3+20*x,0,4*x^2-36,0,-2*x^3+22*x,0,4*x^2-32,0,-x^3+x,0,4*x^2-20,0,3*x^3-11*x,0,-2*x^2+12,0,x^3-17*x,0,0,0,-x^3+15*x,0,-12,0,2*x^3-2*x,0,4*x^2-48,0,-2*x^3+10*x,0,8*x^2-46,0,x^3-5*x,0,-6*x^2+56,0,-4*x,0,-12,0,x^3-7*x,0,-32,0,2*x^3-22*x,0,8*x^2-60,0,-x^3+5*x,0,-4*x^2+28,0,8*x,0,-10*x^2,0,2*x^3-10*x,0,-2*x^2+28,0,-2*x^3+12*x,0]];

E[417,1] = [x, [1,1,-1,-1,2,-1,0,-3,1,2,5,1,5,0,-2,-1,-3,1,7,-2,0,5,2,3,-1,5,-1,0,0,-2,-6,5,-5,-3,0,-1,-7,7,-5,-6,-6,0,11,-5,2,2,11,1,-7,-1,3,-5,9,-1,10,0,-7,0,-6,2,-8,-6,0,7,10,-5,-4,3,-2,0,-16,-3,-12,-7,1,-7,0,-5,-8,-2,1,-6,4,0,-6,11,0,-15,4,2,0,-2,6]];
E[417,2] = [x^2+x-1, [1,x,1,-x-1,-1,x,-x-4,-2*x-1,1,-x,-2*x-1,-x-1,2*x-2,-3*x-1,-1,3*x,-3*x-4,x,4*x+3,x+1,-x-4,x-2,2*x-1,-2*x-1,-4,-4*x+2,1,4*x+5,4*x+4,-x,-3*x-3,x+5,-2*x-1,-x-3,x+4,-x-1,-x-5,-x+4,2*x-2,2*x+1,6*x+9,-3*x-1,-3*x-6,x+3,-1,-3*x+2,3*x-6,3*x,7*x+10,-4*x,-3*x-4,2*x,-2,x,2*x+1,7*x+6,4*x+3,4,-5*x-3,x+1,-5*x-9,-3,-x-4,-2*x+1,-2*x+2,x-2,5*x-4,4*x+7,2*x-1,3*x+1,4*x+2,-2*x-1,-8*x-1,-4*x-1,-4,-3*x-7,7*x+6,-4*x+2,2*x+1,-3*x,1,3*x+6,-8*x-1,4*x+5,3*x+4,-3*x-3,4*x+4,5,3*x+14,-x,-4*x+6,x-1,-3*x-3]];
E[417,3] = [x^7-14*x^5+2*x^4+57*x^3-14*x^2-56*x+8, [4,4*x,4,4*x^2-8,-2*x^3+14*x-4,4*x,x^6-10*x^4+21*x^2+4,4*x^3-16*x,4,-2*x^4+14*x^2-4*x,-x^6-2*x^5+12*x^4+16*x^3-39*x^2-22*x+16,4*x^2-8,-x^6+10*x^4-2*x^3-25*x^2+6*x+16,4*x^5-2*x^4-36*x^3+14*x^2+60*x-8,-2*x^3+14*x-4,4*x^4-24*x^2+16,2*x^4-14*x^2+16,4*x,2*x^5-14*x^3+8*x+8,-2*x^5+18*x^3-4*x^2-28*x+8,x^6-10*x^4+21*x^2+4,-2*x^6-2*x^5+18*x^4+18*x^3-36*x^2-40*x+8,-4*x^4+28*x^2-8*x-8,4*x^3-16*x,x^6-14*x^4+4*x^3+49*x^2-28*x-16,-4*x^5+32*x^3-8*x^2-40*x+8,4,2*x^6-2*x^5-16*x^4+14*x^3+18*x^2-8*x-8,x^6-10*x^4+4*x^3+21*x^2-20*x+4,-2*x^4+14*x^2-4*x,2*x^3-6*x+12,4*x^5-32*x^3+48*x,-x^6-2*x^5+12*x^4+16*x^3-39*x^2-22*x+16,2*x^5-14*x^3+16*x,4*x^5-42*x^3+4*x^2+98*x-16,4*x^2-8,2*x^5+4*x^4-14*x^3-24*x^2+8*x+12,2*x^6-14*x^4+8*x^2+8*x,-x^6+10*x^4-2*x^3-25*x^2+6*x+16,-2*x^6+22*x^4-4*x^3-56*x^2+16*x,2*x^6-24*x^4+4*x^3+74*x^2-28*x-36,4*x^5-2*x^4-36*x^3+14*x^2+60*x-8,2*x^5-22*x^3+56*x+16,-6*x^5-2*x^4+46*x^3+10*x^2-60*x-16,-2*x^3+14*x-4,-4*x^5+28*x^3-8*x^2-8*x,-2*x^4+4*x^3+26*x^2-28*x-44,4*x^4-24*x^2+16,x^6-2*x^5-14*x^4+16*x^3+53*x^2-30*x-20,2*x^4-8*x^3-14*x^2+40*x-8,2*x^4-14*x^2+16,-2*x^6+12*x^4-4*x^3+10*x^2-4*x-32,-2*x^6+22*x^4-56*x^2-8*x,4*x,-x^6-2*x^5+10*x^4+24*x^3-21*x^2-70*x+4,-2*x^6+4*x^5+14*x^4-24*x^3-8*x^2-16*x,2*x^5-14*x^3+8*x+8,4*x^5+2*x^4-36*x^3-6*x^2+60*x-8,-2*x^6+20*x^4-4*x^3-42*x^2+20*x-16,-2*x^5+18*x^3-4*x^2-28*x+8,-2*x^6-4*x^5+24*x^4+36*x^3-78*x^2-64*x+56,2*x^4-6*x^2+12*x,x^6-10*x^4+21*x^2+4,4*x^6-40*x^4+96*x^2-32,x^6-2*x^5-10*x^4+20*x^3+21*x^2-34*x-4,-2*x^6-2*x^5+18*x^4+18*x^3-36*x^2-40*x+8,-4*x^5+30*x^3-22*x-20,2*x^6-18*x^4+44*x^2-32,-4*x^4+28*x^2-8*x-8,4*x^6-42*x^4+4*x^3+98*x^2-16*x,-3*x^6-2*x^5+34*x^4+16*x^3-103*x^2-22*x+48,4*x^3-16*x,4*x^4-4*x^3-36*x^2+28*x+40,2*x^6+4*x^5-14*x^4-24*x^3+8*x^2+12*x,x^6-14*x^4+4*x^3+49*x^2-28*x-16,10*x^5-4*x^4-78*x^3+36*x^2+96*x-32,-x^6+18*x^4-73*x^2-8*x+16,-4*x^5+32*x^3-8*x^2-40*x+8,4*x^5-38*x^3+78*x+20,-2*x^5+22*x^3-4*x^2-56*x,4,4*x^5-40*x^3+76*x-16,-x^6-4*x^5+6*x^4+44*x^3+7*x^2-104*x-28,2*x^6-2*x^5-16*x^4+14*x^3+18*x^2-8*x-8,-8,2*x^6-22*x^4+56*x^2+16*x,x^6-10*x^4+4*x^3+21*x^2-20*x+4,-2*x^6+2*x^5+10*x^4-26*x^3+12*x^2+64*x-16,3*x^6+4*x^5-34*x^4-40*x^3+107*x^2+92*x-84,-2*x^4+14*x^2-4*x,x^6-6*x^4-11*x^2+16*x+16,-4*x^6+36*x^4-8*x^3-64*x^2+16*x+16,2*x^3-6*x+12]];
E[417,4] = [x^7+3*x^6-6*x^5-19*x^4+9*x^3+30*x^2-8, [4,4*x,-4,4*x^2-8,2*x^6+4*x^5-14*x^4-22*x^3+24*x^2+22*x-4,-4*x,-3*x^6-7*x^5+20*x^4+37*x^3-41*x^2-40*x+12,4*x^3-16*x,4,-2*x^6-2*x^5+16*x^4+6*x^3-38*x^2-4*x+16,-x^6+x^5+14*x^4-x^3-37*x^2-6*x+8,-4*x^2+8,x^6-x^5-18*x^4+x^3+65*x^2-2*x-40,2*x^6+2*x^5-20*x^4-14*x^3+50*x^2+12*x-24,-2*x^6-4*x^5+14*x^4+22*x^3-24*x^2-22*x+4,4*x^4-24*x^2+16,2*x^6+6*x^5-8*x^4-34*x^3-2*x^2+48*x,4*x,4*x^4+8*x^3-12*x^2-24*x-8,-4*x^5-4*x^4+24*x^3+8*x^2-28*x-8,3*x^6+7*x^5-20*x^4-37*x^3+41*x^2+40*x-12,4*x^6+8*x^5-20*x^4-28*x^3+24*x^2+8*x-8,-4*x^4+28*x^2-8*x-40,-4*x^3+16*x,x^6+5*x^5-4*x^4-27*x^3+11*x^2+28*x-8,-4*x^6-12*x^5+20*x^4+56*x^3-32*x^2-40*x+8,-4,2*x^6+6*x^5-16*x^4-42*x^3+34*x^2+56*x-8,-3*x^6-7*x^5+16*x^4+25*x^3-29*x^2+4*x+12,2*x^6+2*x^5-16*x^4-6*x^3+38*x^2+4*x-16,2*x^6+4*x^5-18*x^4-26*x^3+52*x^2+42*x-36,4*x^5-32*x^3+48*x,x^6-x^5-14*x^4+x^3+37*x^2+6*x-8,4*x^5+4*x^4-20*x^3-12*x^2+16,-2*x^6-4*x^5+18*x^4+30*x^3-32*x^2-30*x-16,4*x^2-8,-4*x^6-12*x^5+28*x^4+76*x^3-60*x^2-88*x+28,4*x^5+8*x^4-12*x^3-24*x^2-8*x,-x^6+x^5+18*x^4-x^3-65*x^2+2*x+40,-8*x^4-4*x^3+48*x^2-32,2*x^6+2*x^5-16*x^4-10*x^3+34*x^2+12*x-20,-2*x^6-2*x^5+20*x^4+14*x^3-50*x^2-12*x+24,-4*x^6-8*x^5+32*x^4+40*x^3-92*x^2-24*x+64,-2*x^6+2*x^5+20*x^4-10*x^3-38*x^2+4*x+16,2*x^6+4*x^5-14*x^4-22*x^3+24*x^2+22*x-4,-4*x^5+28*x^3-8*x^2-40*x,-2*x^6-6*x^5+12*x^4+30*x^3-30*x^2-20*x+4,-4*x^4+24*x^2-16,3*x^6+9*x^5-10*x^4-33*x^3-x^2+10*x+20,2*x^6+2*x^5-8*x^4+2*x^3-2*x^2-8*x+8,-2*x^6-6*x^5+8*x^4+34*x^3+2*x^2-48*x,-2*x^6-2*x^5+16*x^4+2*x^3-50*x^2+12*x+48,8*x^2+8*x-32,-4*x,-3*x^6-13*x^5+6*x^4+57*x^3+x^2-30*x-4,-4*x^6-8*x^5+36*x^4+44*x^3-104*x^2-32*x+64,-4*x^4-8*x^3+12*x^2+24*x+8,2*x^6-2*x^5-32*x^4-2*x^3+94*x^2+12*x-24,-2*x^6-2*x^5+16*x^4+2*x^3-46*x^2+4*x+32,4*x^5+4*x^4-24*x^3-8*x^2+28*x+8,6*x^6+18*x^5-44*x^4-110*x^3+102*x^2+128*x-24,-2*x^6-6*x^5+12*x^4+34*x^3-18*x^2-36*x+16,-3*x^6-7*x^5+20*x^4+37*x^3-41*x^2-40*x+12,4*x^6-40*x^4+96*x^2-32,3*x^6+5*x^5-18*x^4-x^3+51*x^2-58*x-44,-4*x^6-8*x^5+20*x^4+28*x^3-24*x^2-8*x+8,-2*x^6+18*x^4-14*x^3-52*x^2+42*x+28,-8*x^5-4*x^4+56*x^3+4*x^2-80*x,4*x^4-28*x^2+8*x+40,2*x^6+6*x^5-8*x^4-14*x^3+30*x^2-16*x-16,3*x^6+5*x^5-30*x^4-29*x^3+91*x^2+26*x-56,4*x^3-16*x,4*x^6+8*x^5-24*x^4-28*x^3+44*x^2-4*x-24,4*x^5-24*x^3+32*x^2+28*x-32,-x^6-5*x^5+4*x^4+27*x^3-11*x^2-28*x+8,4*x^6+8*x^5-20*x^4-40*x^3+16*x^2+48*x+16,3*x^6+3*x^5-36*x^4-33*x^3+93*x^2+40*x-24,4*x^6+12*x^5-20*x^4-56*x^3+32*x^2+40*x-8,6*x^6+16*x^5-30*x^4-74*x^3+20*x^2+46*x+36,4*x^4-16*x^2+24*x+16,4,-4*x^6-4*x^5+28*x^4+16*x^3-48*x^2-20*x+16,7*x^6+15*x^5-56*x^4-93*x^3+129*x^2+112*x-68,-2*x^6-6*x^5+16*x^4+42*x^3-34*x^2-56*x+8,-8*x^6-12*x^5+64*x^4+52*x^3-152*x^2-16*x+88,4*x^6+8*x^5-36*x^4-56*x^3+96*x^2+64*x-32,3*x^6+7*x^5-16*x^4-25*x^3+29*x^2-4*x-12,-8*x^5-8*x^4+36*x^3+16*x^2,3*x^6+11*x^5-8*x^4-61*x^3-27*x^2+68*x+36,-2*x^6-2*x^5+16*x^4+6*x^3-38*x^2-4*x+16,x^6+13*x^5+20*x^4-71*x^3-97*x^2+120*x+56,-4*x^6+36*x^4-8*x^3-96*x^2+16*x+80,-2*x^6-4*x^5+18*x^4+26*x^3-52*x^2-42*x+36]];
E[417,5] = [x^3-2*x^2-4*x+7, [1,x^2-4,-1,x,-x^2+x+4,-x^2+4,x+1,1,1,2*x^2-x-9,1,-x,x^2-x-5,3*x^2-11,x^2-x-4,x^2-2*x-4,x^2,x^2-4,-1,-x^2+7,-x-1,x^2-4,-x^2-x+10,-1,-3*x^2+x+11,-3*x^2+x+13,-1,x^2+x,0,-2*x^2+x+9,-x^2-2*x+9,-4*x^2+x+14,-1,4*x^2+x-14,-2*x^2+x+11,x,2*x^2-x-10,-x^2+4,-x^2+x+5,-x^2+x+4,x^2-3*x-2,-3*x^2+11,-5*x^2+2*x+18,x,-x^2+x+4,4*x^2-x-19,-3*x^2+2*x+12,-x^2+2*x+4,x^2+2*x-6,x^2-3*x-9,-x^2,x^2-x-7,-3*x^2-3*x+13,-x^2+4,-x^2+x+4,x+1,1,0,3*x^2-2*x-3,x^2-7,-x^2+4*x-3,x^2-x-8,x+1,-2*x^2+1,4*x^2-2*x-20,-x^2+4,-5*x-1,2*x^2+4*x-7,x^2+x-10,5*x^2-2*x-23,-2*x^2+2*x+12,1,-5*x^2-x+24,-4*x^2+2*x+19,3*x^2-x-11,-x,x+1,3*x^2-x-13,5*x^2-x-22,4*x^2-x-23,1,-4*x^2+x+15,5*x^2-x-18,-x^2-x,-2*x^2+3*x+7,2*x^2-5*x-16,0,1,-3*x+1,2*x^2-x-9,2*x^2-2*x-12,-3*x^2+6*x+7,x^2+2*x-9]];
E[417,6] = [x^3-2*x^2-4*x+7, [1,x^2-4,1,x,-x^2-x+6,x^2-4,x+1,1,1,-x-3,x^2-x-2,x,2*x,3*x^2-11,-x^2-x+6,x^2-2*x-4,-x-3,x^2-4,-x^2+x+6,-3*x^2+2*x+7,x+1,x+1,x^2-3*x-4,1,x^2-3*x+3,4*x^2-14,1,x^2+x,-2*x^2+2*x+2,-x-3,-3*x^2+11,-4*x^2+x+14,x^2-x-2,-5*x^2+19,-4*x^2+x+13,x,x^2-2*x+3,4*x^2-x-17,2*x,-x^2-x+6,x^2-x,3*x^2-11,-4*x^2+x+9,x^2+2*x-7,-x^2-x+6,-6*x^2+x+23,2*x^2-3*x-1,x^2-2*x-4,x^2+2*x-6,x^2+x-5,-x-3,2*x^2,4*x-2,x^2-4,x^2-5*x+2,x+1,-x^2+x+6,-2*x^2-2*x+6,-3*x^2+4*x+11,-3*x^2+2*x+7,-x^2-1,-x^2-3*x-2,x+1,-2*x^2+1,-6*x^2+4*x+14,x+1,-4*x^2+3*x+19,-x^2-3*x,x^2-3*x-4,-x^2-4*x-3,2*x^2+2*x-12,1,5*x^2+3*x-24,3*x^2+x-12,x^2-3*x+3,-x^2+2*x+7,2*x^2+x-9,4*x^2-14,5*x^2-5*x-18,6*x^2-5*x-17,1,2*x^2+x-7,x^2+x,x^2+x,6*x^2+x-25,-5*x^2-4*x+13,-2*x^2+2*x+2,x^2-x-2,4*x^2+3*x-15,-x-3,2*x^2+2*x,-x^2-7,-3*x^2+11]];

E[418,1] = [x^2-x-4, [1,-1,x,1,2,-x,-x+2,-1,x+1,-2,1,x,x-2,x-2,2*x,1,-x+2,-x-1,-1,2,x-4,-1,-x+4,-x,-1,-x+2,-x+4,-x+2,-3*x+2,-2*x,2,-1,x,x-2,-2*x+4,x+1,-2*x,1,-x+4,-2,2,-x+4,0,1,2*x+2,x-4,8,x,-3*x+1,1,x-4,x-2,5*x,x-4,2,x-2,-x,3*x-2,-3*x,2*x,4*x-4,-2,-2,1,2*x-4,-x,-3*x,-x+2,3*x-4,2*x-4,6,-x-1,-3*x-2,2*x,-x,-1,-x+2,x-4,-4,2,-7,-2,4*x+4,x-4,-2*x+4,0,-x-12,-1,2*x-6,-2*x-2,3*x-8,-x+4,2*x,-8,-2,-x,-2*x-2,3*x-1,x+1,-1,2*x-12,-x+4,-6*x+2,-x+2,2*x-8,-5*x,-7*x+8,-x+4,3*x-14,-2,-2*x-8,-x+2,-2*x+2,x,-2*x+8,-3*x+2,2,3*x,-3*x+8,-2*x]];
E[418,2] = [x^2+3*x-1, [1,-1,x,1,-x-2,-x,x+1,-1,-3*x-2,x+2,1,x,-x-3,-x-1,x-1,1,-2*x-4,3*x+2,1,-x-2,-2*x+1,-1,2*x-2,-x,x,x+3,4*x-3,x+1,-x-8,-x+1,-x-3,-1,x,2*x+4,-3,-3*x-2,4*x+4,-1,-1,x+2,3*x+3,2*x-1,-3*x+2,1,-x+7,-2*x+2,-6,x,-x-5,-x,2*x-2,-x-3,-2*x-10,-4*x+3,-x-2,-x-1,x,x+8,0,x-1,4*x+10,x+3,4*x-5,1,2*x+7,-x,-5*x-5,-2*x-4,-8*x+2,3,x-10,3*x+2,-2*x-2,-4*x-4,-3*x+1,1,x+1,1,6*x+14,-x-2,-6*x+10,-3*x-3,x+14,-2*x+1,2*x+10,3*x-2,-5*x-1,-1,2*x+4,x-7,-x-4,2*x-2,-1,6,-x-2,-x,8,x+5,-3*x-2,x,6*x+6,-2*x+2,x-2,x+3,-3*x,2*x+10,4*x+2,4*x-3,2,x+2,-8*x+4,x+1,0,-x,4*x+2,-x-8,2*x+9,0,-6,-x+1]];
E[418,3] = [x^3-6*x-3, [1,-1,x,1,-x^2+3,-x,x^2-2*x-6,-1,x^2-3,x^2-3,-1,x,x^2-2*x-4,-x^2+2*x+6,-3*x-3,1,-x^2+x+1,-x^2+3,-1,-x^2+3,-2*x^2+3,1,-x^2+x-1,-x,3*x+4,-x^2+2*x+4,3,x^2-2*x-6,2*x^2-x-6,3*x+3,3*x-1,-1,-x,x^2-x-1,3*x^2+3*x-12,x^2-3,-2*x^2+2*x+6,1,-2*x^2+2*x+3,x^2-3,-2*x^2-x+5,2*x^2-3,x^2+2*x-11,-1,-3*x-9,x^2-x+1,2*x^2+2*x-12,x,-2*x^2+3*x+17,-3*x-4,x^2-5*x-3,x^2-2*x-4,x^2-5*x-7,-3,x^2-3,-x^2+2*x+6,-x,-2*x^2+x+6,x^2+x-5,-3*x-3,2*x^2-2*x,-3*x+1,-3*x^2-3*x+12,1,x^2+3*x-6,x,-3*x^2+4*x+12,-x^2+x+1,x^2-7*x-3,-3*x^2-3*x+12,-x^2-4*x+11,-x^2+3,-x^2+x+3,2*x^2-2*x-6,3*x^2+4*x,-1,-x^2+2*x+6,2*x^2-2*x-3,-4*x^2+2*x+14,-x^2+3,-3*x^2+3*x+9,2*x^2+x-5,x^2-2*x-15,-2*x^2+3,2*x^2,-x^2-2*x+11,-x^2+6*x+6,1,2*x^2-6,3*x+9,-x+12,-x^2+x-1,3*x^2-x,-2*x^2-2*x+12,x^2-3,-x,-4*x^2+4*x+20,2*x^2-3*x-17,-x^2+3,3*x+4,-2*x^2+8,-x^2+5*x+3,5*x^2-6*x-19,-x^2+2*x+4,3*x^2+6*x+9,-x^2+5*x+7,-x^2+3*x+3,3,3*x^2-5*x-13,-x^2+3,2*x^2-6*x-6,x^2-2*x-6,-8,x,4*x^2-6,2*x^2-x-6,-x^2-3*x+6,-x^2-x+5,-x^2+7*x+3,3*x+3]];
E[418,4] = [x, [1,1,3,1,-2,3,1,1,6,-2,1,3,-7,1,-6,1,-3,6,1,-2,3,1,3,3,-1,-7,9,1,1,-6,2,1,3,-3,-2,6,-6,1,-21,-2,-2,3,4,1,-12,3,0,3,-6,-1,-9,-7,3,9,-2,1,3,1,7,-6,-12,2,6,1,14,3,15,-3,9,-2,6,6,-9,-6,-3,1,1,-21,-8,-2,9,-2,16,3,6,4,3,1,-16,-12,-7,3,6,0,-2,3,8,-6,6,-1,-2,-9,-12,-7,-6,3,11,9,11,-2,-18,1,20,3,-6,1,-42,7,-3,-6]];
E[418,5] = [x, [1,1,-1,1,-2,-1,-3,1,-2,-2,-1,-1,1,-3,2,1,-7,-2,1,-2,3,-1,-5,-1,-1,1,5,-3,1,2,10,1,1,-7,6,-2,-6,1,-1,-2,6,3,-4,-1,4,-5,0,-1,2,-1,7,1,-1,5,2,-3,-1,1,3,2,-12,10,6,1,-2,1,3,-7,5,6,-10,-2,3,-6,1,1,3,-1,8,-2,1,6,8,3,14,-4,-1,-1,-8,4,-3,-5,-10,0,-2,-1,8,2,2,-1,6,7,12,1,-6,-1,-13,5,-13,2,6,-3,-12,-1,10,1,-2,3,21,2]];
E[418,6] = [x^2+x-5, [1,1,x,1,x+2,x,-x-3,1,-x+2,x+2,1,x,-x+3,-x-3,x+5,1,-2*x-4,-x+2,1,x+2,-2*x-5,1,-2*x+2,x,3*x+4,-x+3,-5,-x-3,-x+4,x+5,-x-9,1,x,-2*x-4,-4*x-11,-x+2,8,1,4*x-5,x+2,-x+1,-2*x-5,3*x+2,1,x-1,-2*x+2,4*x+2,x,5*x+7,3*x+4,-2*x-10,-x+3,-2*x+2,-5,x+2,-x-3,x,-x+4,0,x+5,2,-x-9,-1,1,2*x+1,x,-x-3,-2*x-4,4*x-10,-4*x-11,-3*x-6,-x+2,2*x+6,8,x+15,1,-x-3,4*x-5,-2*x-2,x+2,-2*x-6,-x+1,-x-2,-2*x-5,-6*x-18,3*x+2,5*x-5,1,2*x-8,x-1,-x-4,-2*x+2,-8*x-5,4*x+2,x+2,x,8,5*x+7,-x+2,3*x+4,-2*x-10,-2*x-10,5*x-6,-x+3,-7*x-20,-2*x+2,18,-5,-10,x+2,8*x,-x-3,4*x+8,x,-6,-x+4,-6*x+11,0,8*x+22,x+5]];
E[418,7] = [x^3-x^2-5*x+4, [1,1,x,1,-x+2,x,-x^2+4,1,x^2-3,-x+2,-1,x,x^2-2,-x^2+4,-x^2+2*x,1,2*x^2-6,x^2-3,-1,-x+2,-x^2-x+4,-1,-2*x^2+8,x,x^2-4*x-1,x^2-2,x^2-x-4,-x^2+4,-2*x^2-x+10,-x^2+2*x,x^2-2*x-4,1,-x,2*x^2-6,-x^2+x+4,x^2-3,-2*x^2+2*x+2,-1,x^2+3*x-4,-x+2,-x^2+2*x+2,-x^2-x+4,2*x^2-3*x-8,-1,x^2-2*x-2,-2*x^2+8,-2*x^2-2*x+8,x,-2*x^2+x+5,x^2-4*x-1,2*x^2+4*x-8,x^2-2,2*x-6,x^2-x-4,x-2,-x^2+4,-x,-2*x^2-x+10,4*x^2+4*x-20,-x^2+2*x,2,x^2-2*x-4,x^2-x-8,1,x^2-3*x,-x,-x^2+4,2*x^2-6,-2*x^2-2*x+8,-x^2+x+4,2*x^2-x-8,x^2-3,4*x^2+2*x-14,-2*x^2+2*x+2,-3*x^2+4*x-4,-1,x^2-4,x^2+3*x-4,2*x^2+4*x-8,-x+2,-3*x^2+x+5,-x^2+2*x+2,-2*x^2+5*x+8,-x^2-x+4,2*x^2-4*x-4,2*x^2-3*x-8,-3*x^2+8,-1,-2*x^2+8*x+10,x^2-2*x-2,-x-4,-2*x^2+8,-x^2+x-4,-2*x^2-2*x+8,x-2,x,-2*x^2+2*x+2,-2*x^2+x+5,-x^2+3,x^2-4*x-1,-4*x^2-2*x+18,2*x^2+4*x-8,2*x^2-x-16,x^2-2,-x+4,2*x-6,2*x^2-2*x-4,x^2-x-4,6,x-2,-8*x+8,-x^2+4,6*x^2-2*x-22,-x,-2*x^2+2*x+8,-2*x^2-x+10,x^2+x+2,4*x^2+4*x-20,2*x^2-2*x-16,-x^2+2*x]];
E[418,8] = [x, [1,1,0,1,2,0,2,1,-3,2,1,0,-2,2,0,1,6,-3,1,2,0,1,-8,0,-1,-2,0,2,-6,0,6,1,0,6,4,-3,8,1,0,2,6,0,-8,1,-6,-8,-8,0,-3,-1,0,-2,12,0,2,2,0,-6,0,0,-8,6,-6,1,-4,0,-8,6,0,4,-6,-3,-14,8,0,1,2,0,-12,2,9,6,-12,0,12,-8,0,1,2,-6,-4,-8,0,-8,2,0,-2,-3,-3,-1,0,0,14,-2,0,12,-12,0,10,2,0,2,18,0,-16,-6,6,0,12,0]];

E[419,1] = [x^9+2*x^8-7*x^7-13*x^6+15*x^5+25*x^4-9*x^3-15*x^2-x+1, [1,x,x^8+x^7-8*x^6-5*x^5+21*x^4+5*x^3-19*x^2+3,x^2-2,x^8+2*x^7-7*x^6-13*x^5+15*x^4+24*x^3-10*x^2-12*x,-x^8-x^7+8*x^6+6*x^5-20*x^4-10*x^3+15*x^2+4*x-1,-2*x^8-3*x^7+15*x^6+17*x^5-37*x^4-24*x^3+32*x^2+6*x-6,x^3-4*x,-4*x^8-6*x^7+30*x^6+35*x^5-72*x^4-54*x^3+55*x^2+21*x-5,-x^4-x^3+3*x^2+x-1,x^5-5*x^3+x^2+4*x-1,-x^8-x^7+9*x^6+5*x^5-27*x^4-4*x^3+27*x^2-2*x-5,2*x^8+3*x^7-16*x^6-18*x^5+42*x^4+29*x^3-36*x^2-13*x+2,x^8+x^7-9*x^6-7*x^5+26*x^4+14*x^3-24*x^2-8*x+2,x^8+2*x^7-7*x^6-13*x^5+15*x^4+25*x^3-8*x^2-14*x-3,x^4-6*x^2+4,-3*x^8-4*x^7+24*x^6+25*x^5-61*x^4-43*x^3+50*x^2+20*x-7,2*x^8+2*x^7-17*x^6-12*x^5+46*x^4+19*x^3-39*x^2-9*x+4,-x^8+11*x^6+x^5-36*x^4-5*x^3+34*x^2+8*x-4,-2*x^8-4*x^7+14*x^6+25*x^5-31*x^4-45*x^3+21*x^2+23*x,5*x^8+8*x^7-37*x^6-47*x^5+87*x^4+73*x^3-63*x^2-28*x+1,x^6-5*x^4+x^3+4*x^2-x,-x^8-x^7+7*x^6+4*x^5-14*x^4-x^3+6*x^2-3*x-1,3*x^8+4*x^7-24*x^6-24*x^5+61*x^4+38*x^3-47*x^2-14*x+3,x^8+x^7-8*x^6-4*x^5+23*x^4+2*x^3-25*x^2+2*x+4,-x^8-2*x^7+8*x^6+12*x^5-21*x^4-18*x^3+17*x^2+4*x-2,3*x^8+5*x^7-23*x^6-30*x^5+57*x^4+47*x^3-44*x^2-15*x+2,3*x^8+4*x^7-24*x^6-23*x^5+63*x^4+33*x^3-57*x^2-9*x+11,x^8+x^7-6*x^6-4*x^5+7*x^4+x^3+7*x^2+3*x-7,x^3+x^2-2*x-1,3*x^8+3*x^7-27*x^6-21*x^5+79*x^4+44*x^3-77*x^2-27*x+10,x^5-8*x^3+12*x,-2*x^8-3*x^7+15*x^6+17*x^5-37*x^4-24*x^3+31*x^2+7*x-3,2*x^8+3*x^7-14*x^6-16*x^5+32*x^4+23*x^3-25*x^2-10*x+3,-4*x^8-7*x^7+29*x^6+44*x^5-65*x^4-78*x^3+43*x^2+39*x,6*x^8+9*x^7-46*x^6-54*x^5+113*x^4+87*x^3-89*x^2-36*x+8,x^8-9*x^6+x^5+24*x^4-7*x^3-18*x^2+12*x-1,2*x^8+4*x^7-12*x^6-21*x^5+20*x^4+25*x^3-7*x^2-5*x+1,-5*x^8-6*x^7+40*x^6+33*x^5-105*x^4-43*x^3+92*x^2+10*x-11,-x^6-x^5+7*x^4+5*x^3-13*x^2-4*x+4,-4*x^8-10*x^7+23*x^6+61*x^5-35*x^4-104*x^3+11*x^2+47*x+1,-2*x^8-2*x^7+18*x^6+12*x^5-52*x^4-18*x^3+47*x^2+6*x-5,-3*x^8-3*x^7+27*x^6+21*x^5-78*x^4-45*x^3+69*x^2+30*x-3,x^7-7*x^5+x^4+14*x^3-3*x^2-8*x+2,-2*x^8-3*x^7+16*x^6+19*x^5-42*x^4-32*x^3+40*x^2+12*x-9,x^8-9*x^6+x^5+24*x^4-3*x^3-18*x^2-2*x+1,-2*x^8-3*x^7+15*x^6+15*x^5-38*x^4-16*x^3+32*x^2+4*x-1,-x^7-3*x^6+6*x^5+17*x^4-12*x^3-23*x^2+10*x+7,-3*x^8-4*x^7+24*x^6+24*x^5-61*x^4-39*x^3+45*x^2+18*x-1,-x^8-x^7+9*x^6+8*x^5-23*x^4-16*x^3+17*x^2+5*x-1,2*x^8+2*x^7-17*x^6-13*x^5+45*x^4+23*x^3-36*x^2-9*x+2,-4*x^8-5*x^7+31*x^6+30*x^5-77*x^4-50*x^3+61*x^2+23*x-3,4*x^8+6*x^7-31*x^6-36*x^5+79*x^4+60*x^3-70*x^2-29*x+12,-x^8-2*x^7+9*x^6+12*x^5-28*x^4-17*x^3+30*x^2+5*x-3,-2*x^8-3*x^7+15*x^6+18*x^5-36*x^4-30*x^3+28*x^2+15*x-4,-4*x^8-5*x^7+34*x^6+32*x^5-94*x^4-58*x^3+84*x^2+30*x-7,-x^7-4*x^6+3*x^5+21*x^4+3*x^3-24*x^2-6*x+1,-x^8+x^7+9*x^6-8*x^5-24*x^4+16*x^3+18*x^2-6*x-1,3*x^8+5*x^7-23*x^6-34*x^5+57*x^4+74*x^3-45*x^2-54*x+2,-2*x^8-4*x^7+14*x^6+26*x^5-29*x^4-49*x^3+14*x^2+27*x+6,4*x^8+7*x^7-29*x^6-43*x^5+65*x^4+74*x^3-42*x^2-37*x-4,-3*x^8-6*x^7+18*x^6+34*x^5-31*x^4-50*x^3+18*x^2+13*x-3,-4*x^8-3*x^7+35*x^6+14*x^5-99*x^4-8*x^3+89*x^2-8*x-8,x^6-10*x^4+24*x^2-8,-x^7-2*x^6+7*x^5+12*x^4-14*x^3-18*x^2+7*x+6,x^8+x^7-9*x^6-7*x^5+26*x^4+13*x^3-23*x^2-5*x+2,6*x^8+11*x^7-45*x^6-69*x^5+111*x^4+119*x^3-94*x^2-51*x+10,5*x^8+8*x^7-38*x^6-48*x^5+95*x^4+79*x^3-80*x^2-35*x+12,2*x^8+3*x^7-14*x^6-18*x^5+30*x^4+30*x^3-20*x^2-11*x,x^8+x^7-8*x^6-5*x^5+22*x^4+7*x^3-21*x^2-4*x+4]];
E[419,2] = [x^26-2*x^25-43*x^24+85*x^23+807*x^22-1571*x^21-8689*x^20+16575*x^19+59362*x^18-110217*x^17-268789*x^16+481513*x^15+817911*x^14-1398615*x^13-1658267*x^12+2674771*x^11+2166607*x^10-3262315*x^9-1701132*x^8+2384864*x^7+697992*x^6-932912*x^5-104448*x^4+158080*x^3-4736*x^2-6656*x+512, [618506107859120384,618506107859120384*x,11600552657805477*x^25-2891839316330590*x^24-489898657622267755*x^23+107914954606597717*x^22+8985089110311196755*x^21-1677761853489598063*x^20-93908850339439447893*x^19+13918818822044869947*x^18+617042949329544908962*x^17-64913077960712591713*x^16-2653463884228242370997*x^15+158054791007502082829*x^14+7542124894930787266803*x^13-114826826055616751971*x^12-13997662661670064334423*x^11-303774076907980503369*x^10+16402726266989189697963*x^9+721388016885671188593*x^8-11432624304846526332780*x^7-525686749144280326660*x^6+4272834868233016475744*x^5+99655118161125418016*x^4-701435265347009788032*x^3+22235921273339580352*x^2+29490143079012905216*x-2407322228952341760,618506107859120384*x^2-1237012215718240768,-15339110851698681*x^25+6639531907836972*x^24+647804819296844439*x^23-261094882733415019*x^22-11883707853507702469*x^21+4379051822405265577*x^20+124269331201630752739*x^19-40851748330058436361*x^18-817414218000152567460*x^17+232298733292163357085*x^16+3522271328534996747539*x^15-833773198676597351211*x^14-10047619638821988328637*x^13+1911697358637588946733*x^12+18759839398286226300949*x^11-2833518240599129473281*x^10-22190495513779505976209*x^9+2802903817103605614913*x^8+15677495473237869454006*x^7-1900167214487228029696*x^6-5965979606213229963592*x^5+817510334469492688304*x^4+1004933506667967447328*x^3-167822538010875269056*x^2-45942578295517062784*x+5926487262909015296,20309265999280364*x^25+8925106663367756*x^24-878132021306867828*x^23-376556884537823184*x^22+16546706371922806304*x^21+6888351704232341760*x^20-178360341481080911328*x^19-71589057543103816712*x^18+1213665034324633666796*x^17+464637064110633986356*x^16-5427762120910386563872*x^15-1946094729967548231744*x^14+16109880129440990462384*x^13+5239150992531050593936*x^12-31332595909978994024136*x^11-8731112325280761408576*x^10+38566044960734345887848*x^9+8301447039031420367184*x^8-28191427162848881426788*x^7-3824258082493944026440*x^6+10921949899259748577040*x^5+510219258655456673664*x^4-1811579442872550223808*x^3+84430360466379644288*x^2+74805956261400913152*x-5939482960796404224,-17727678992674814*x^25-14259644555576112*x^24+770335035062133510*x^23+592023319249849670*x^22-14592715455178710410*x^21-10633938140316177350*x^20+158159259974228054990*x^19+108275595940779084238*x^18-1081901590680449845828*x^17-687424061028519424030*x^16+4860423654465312402778*x^15+2817036901074656089498*x^14-14467208844675297686482*x^13-7447266442784377800782*x^12+28130760180610370635178*x^11+12308575035040808416734*x^10-34428882337197772341026*x^9-11865292281889236531790*x^8+24783269436305599926200*x^7+5852320396775314221492*x^6-9284019269468865104048*x^5-1083835583291007281648*x^4+1442792435086610272608*x^3-26927368905834914496*x^2-54131742720255498112*x+5161698889933190656,618506107859120384*x^3-2474024431436481536*x,40202336893944748*x^25+10262831133417156*x^24-1723847966251088300*x^23-448137176653977832*x^22+32176229694900216528*x^21+8519430768921241120*x^20-343120486025987877664*x^19-92406193941480265928*x^18+2306486987495479558460*x^17+628190050671051832460*x^16-10173979389266362252776*x^15-2762288149001290024432*x^14+29731051798444807865616*x^13+7813937787949324253040*x^12-56814688548640041767272*x^11-13686564326348936391536*x^10+68536364062546689149128*x^9+13710709477160915311616*x^8-48961631400926581794916*x^7-6731207189774809424080*x^6+18495503143659237902800*x^5+1004691700187521521472*x^4-2991603841715846122272*x^3+153993930064240297472*x^2+123249211185488861312*x-11699082669028956160,-24038689795560390*x^25-11776947326198844*x^24+1042729539660972866*x^23+494954603813133098*x^22-19718691325613362274*x^21-9012202988779086470*x^20+213394014036847201214*x^19+93146080378384534062*x^18-1458332047449510166692*x^17-600712938182240019770*x^16+6552208084857389633142*x^15+2498407857001731546754*x^14-19541813165210961780082*x^13-6676501936427590344878*x^12+38195090631309803203770*x^11+11043329431286818169158*x^10-47238107601055776891602*x^9-10416356848134011152886*x^8+34681526047738295134688*x^7+4740597055385635784960*x^6-13492530248410427200768*x^5-597205943570256385760*x^4+2256984105425652223424*x^3-118588607289162016000*x^2-96170634565997405440*x+7853624756069724672,5249902847679014*x^25+6917718088872328*x^24-230380773360000282*x^23-283862362388010622*x^22+4413852175563515006*x^21+5031840124852382250*x^20-48463187025905528690*x^19-50490118550430917450*x^18+336458731664342574856*x^17+315647847658478612770*x^16-1537192827915222088306*x^15-1274873574684252159902*x^14+4664506684904028843662*x^13+3336615517159105505106*x^12-9276772430138878447294*x^11-5522197277259583650522*x^10+11672088285548826378726*x^9+5467579222671958927322*x^8-8716559235904037622164*x^7-2934998705974986714880*x^6+3459604942913529381680*x^5+709610706918514645280*x^4-610372869305135855104*x^3-43162625676360346112*x^2+37117178825641774848*x+648509827150374400,26342533346317530*x^25+950095294849004*x^24-1123047179232118614*x^23-58701198709642878*x^22+20824030368479400094*x^21+1462394493645367594*x^20-220397440802296954226*x^19-19771251568737040866*x^18+1468977536094228047420*x^17+160971333691608378750*x^16-6418342560622549400482*x^15-817401515311415502878*x^14+18559745268252982356190*x^13+2575243342960890848994*x^12-35058422728101771236374*x^11-4828604764352524710362*x^10+41751217613495361653918*x^9+4914539091267580368074*x^8-29393846820908657371376*x^7-2202381795821390598728*x^6+10911307484110066662144*x^5+110372535898034399232*x^4-1723187878005840720768*x^3+126518797487313556352*x^2+70258705372387888128*x-5583699733726862848,18286899019576087*x^25-11788688795972058*x^24-766111264106621881*x^23+471168870486082791*x^22+13922639055892491201*x^21-8069778480182433605*x^20-144001763638989605479*x^19+77397866044694049257*x^18+935158897724266202646*x^17-456656313606355035067*x^16-3970050046577309300871*x^15+1719687671324427722719*x^14+11130371603133618637169*x^13-4174582169576353238401*x^12-20361915844234980816541*x^11+6503610407720369451005*x^10+23492863605680564906457*x^9-6410159455082569400069*x^8-16063927449310590557540*x^7+3863882041663703356292*x^6+5827932526690339834448*x^5-1314269616726142142368*x^4-898562678453915239744*x^3+206067029758566883968*x^2+30927202682115827200*x-5315451360460872960,-49715002540925740*x^25+8044838377116508*x^24+2098876033627208860*x^23-286478508090135512*x^22-38484121837808310144*x^21+4123457206876596144*x^20+402111875244364126288*x^19-29551110317287537160*x^18-2641315656564159398668*x^17+95418545703241822532*x^16+11353144795874483803080*x^15+32454807902352107072*x^14-32241464197124262783392*x^13-1266464879535515152160*x^12+59726056701956613334328*x^11+3980031062084428395072*x^10-69698565374877172366200*x^9-5373852583861291763248*x^8+48130423829961741836788*x^7+3089758845986213669440*x^6-17622200047705253360016*x^5-408828180340288700064*x^4+2775464126256199682624*x^3-138090030429563417216*x^2-112833732485310371328*x+9076571644249504768,-56110868636157519*x^25-14167050658728546*x^24+2407770031756704689*x^23+618221407508875301*x^22-44982109639487794205*x^21-11749028630797762783*x^20+480205810005185838667*x^19+127457838917084090611*x^18-3232372836488555689970*x^17-867274255430576753949*x^16+14282381679608955347771*x^15+3821479708161349032477*x^14-41827237966022560798509*x^13-10852780589386765537107*x^12+80152307457955451848481*x^11+19150351687869219672983*x^10-97035244065625835334989*x^9-19476787402060323353439*x^8+69632512720701113191952*x^7+9935997843508556577444*x^6-26437729258757557281008*x^5-1774851444980065756688*x^4+4284540355658002950400*x^3-108172364952047016576*x^2-172098305506650080512*x+12633914603585896704,618506107859120384*x^4-3711036647154722304*x^2+2474024431436481536,-18904130629746402*x^25+2279233293432972*x^24+806669579577781574*x^23-83053748156933762*x^22-14983133123929132742*x^21+1247601037128211870*x^20+159048780086388019786*x^19-9817957271781678662*x^18-1065366632901847193388*x^17+42112591244009138786*x^16+4693204859976506413634*x^15-90338943647614407130*x^14-13754234639710549337286*x^13+71648045394752226918*x^12+26553261083954394397758*x^11-84354359911168543742*x^10-32764561573389843092038*x^9+605821687463066963214*x^8+24453505219636649741408*x^7-1267776446190032801024*x^6-10020235007700979701584*x^5+962414379233324717312*x^4+1878915913399942568448*x^3-254493993656384578688*x^2-99559743680226512384*x+11658337048862910464,90667504921306652*x^25+4852520188535864*x^24-3865335812639281412*x^23-267056178513195108*x^22+71677302029308440228*x^21+6197619245498037708*x^20-758759927958614464028*x^19-80004135202868572316*x^18+5059171016110960122776*x^17+631966542120152617396*x^16-22120235993815307468156*x^15-3150881772818434915812*x^14+64041529202873857977060*x^13+9851520045471033664444*x^12-121218609182502423944244*x^11-18566300468232259480908*x^10+144863396161330275883236*x^9+19427850364143435259820*x^8-102608313164015456918352*x^7-9565406389619044643216*x^6+38509934216591304267648*x^5+1207449842182894916832*x^4-6201191486130545466368*x^3+313647478715211187840*x^2+255887671697067286528*x-20583596489699710976,-50786509621783518*x^25-12165599889557980*x^24+2170781289457046554*x^23+533517912305490450*x^22-40372105847589469482*x^21-10192684498244830382*x^20+428746513462195768038*x^19+111166526831802254102*x^18-2868484977292665871236*x^17-760221832902649306050*x^16+12584199434544705400142*x^15+3363394477704323209162*x^14-36540634287971559192618*x^13-9573871188087994501718*x^12+69294087362521086467442*x^11+16885516966588235076910*x^10-82786004075472455870570*x^9-17090372749193922669438*x^8+58372537922812521509200*x^7+8604317494630755060352*x^6-21620367588444428836272*x^5-1462942094192209465696*x^4+3382184035395400354176*x^3-121046901840173530112*x^2-133639927108404302336*x+11668539248586688512,-29176105213922262*x^25-4213185363797848*x^24+1242633597842077370*x^23+202721104870702494*x^22-23009568950589054222*x^21-4236265241587558650*x^20+243048701336536492834*x^19+50356152854662577210*x^18-1615356775379214389480*x^17-373724773185818748738*x^16+7028806839461408121746*x^15+1787242041518827067630*x^14-20202134787201308547454*x^13-5490870097179915933826*x^12+37821640977875225487950*x^11+10511322462032191951690*x^10-44457144120978592903318*x^9-11817266035770153456618*x^8+30714612009509230813908*x^7+7086617348346816595504*x^6-11091228905699631014256*x^5-1888829635280024767904*x^4+1671580462257089540544*x^3+125627206583979125632*x^2-60262737932146105600*x+454834649508889088,10955112928377314*x^25+17736018730441678*x^24-480921163378770478*x^23-738927186153112436*x^22+9206308664245294996*x^21+13327331719614976948*x^20-100821703936650342900*x^19-136382647665497942344*x^18+696353160351698402326*x^17+871750029064354277590*x^16-3153167322867376143812*x^15-3609647012020343939140*x^14+9430785416074654592532*x^13+9712570650792366861580*x^12-18336966128304360790928*x^11-16573049757564195938404*x^10+22283205701941973174048*x^9+16957693015238132679692*x^8-15759077404723387748922*x^7-9389007114290097630572*x^6+5678202648267573084208*x^5+2276236855211884114624*x^4-796029845775785569376*x^3-109028980540348949568*x^2+23862922414127792640*x-1168802704351147008,17417523784230356*x^25-4634950909802680*x^24-730104104440726812*x^23+177180577486550708*x^22+13279437498556113244*x^21-2846781182422576044*x^20-137507258250710574500*x^19+24813998820420945788*x^18+894276389821116498808*x^17-126076691390427594260*x^16-3802770044578717228084*x^15+370553396856038823908*x^14+10679208388465689670716*x^13-571031784626742938556*x^12-19564485167048827606316*x^11+297612026447540893228*x^10+22594416031197921484732*x^9+214218495173858821684*x^8-15455303010902150758976*x^7-204785245543640958208*x^6+5607308072352438954048*x^5-62031016670758200832*x^4-873067267837458879232*x^3+61980718712249585152*x^2+35591863181301891584*x-2687950258011655168,-10235367368433044*x^25-17638273501224508*x^24+462597157613653168*x^23+718326361317332224*x^22-9141024914763731908*x^21-12598802929174681716*x^20+103637294636375039044*x^19+124535703819855900324*x^18-743576896280443963360*x^17-762183018582475489776*x^16+3512464785998381300976*x^15+2986195491672489141812*x^14-11020732759586663805852*x^13-7474224976846744199476*x^12+22654977861870320044188*x^11+11540708576427047430924*x^10-29425337398470490389388*x^9-10134561303870141006220*x^8+22582376964489774708352*x^7+4236928252607733983868*x^6-9055443557850928605152*x^5-434129259589707780288*x^4+1497408711453913611264*x^3-117939809958000806208*x^2-50879441196987928064*x+7750090461567161088,13016629988923336*x^25-8168458667200336*x^24-541552490532897272*x^23+318719727076799752*x^22+9753101636864594616*x^21-5283871964608619576*x^20-99678058821788277960*x^19+48410186676334464984*x^18+637036262873420249168*x^17-267033493220474802024*x^16-2646149532676035198024*x^15+906086936368161539848*x^14+7198545360238802145176*x^13-1853770968565940903736*x^12-12623657205657622697720*x^11+2139525118191899750360*x^10+13720090843490761474328*x^9-1184614462483665661784*x^8-8642886916555837611072*x^7+172946113635089315264*x^6+2841738206558316792512*x^5+7798527639419305344*x^4-414549988153461138432*x^3+26156222367788421632*x^2+20140289696560790528*x-1608411151721766912,89016801292067499*x^25+15345678118860994*x^24-3816889012676429921*x^23-676725089812830033*x^22+71255213428767419757*x^21+12998794815051625615*x^20-760208569090299776523*x^19-142462726875521986459*x^18+5115172486046926770422*x^17+977171097752255461125*x^16-22603566244744529542383*x^15-4316799661964457695325*x^14+66258327123137963130829*x^13+12154708187476965413139*x^12-127273720094467909944953*x^11-20795661293272369491631*x^10+154841353879642543624661*x^9+19516283614930766207175*x^8-112164203756997432568020*x^7-7916807621085967413368*x^6+43381026118870665649496*x^5+108327047286624585392*x^4-7325007723372058461056*x^3+518130812301290923968*x^2+327660729536833640832*x-27000991526676229888,24785109243180116*x^25+20225393735149860*x^24-1083217546177884604*x^23-834888452905411008*x^22+20658939879571599072*x^21+14893101942107014464*x^20-225707485204779592768*x^19-150388001875809473848*x^18+1558870835634262545812*x^17+945267253995527547772*x^16-7085691936288712656912*x^15-3826684260866878257088*x^14+21401749102688055681104*x^13+9962645332260398244688*x^12-42409656769770180350072*x^11-16127659818426122220352*x^10+53247465519965792861336*x^9+15044501653658917472944*x^8-39747885101758601790876*x^7-6936176693781612282856*x^6+15745797921424624332976*x^5+1011467350342767895232*x^4-2684725967256020948992*x^3+117533956438828175232*x^2+116402148513837562112*x-9362892298022956544,74161165787785556*x^25+11570210933379904*x^24-3180837297897873608*x^23-515420622215028308*x^22+59405931396386502536*x^21+10001466174570809528*x^20-634169155537090998776*x^19-110714988839360036736*x^18+4270768897554430932116*x^17+766643007483547229632*x^16-18895769272483093369628*x^15-3415682619497331697656*x^14+55490381224909882943224*x^13+9685610907960992995320*x^12-106872569443299440002144*x^11-16656011314424451251728*x^10+130519285127066526463632*x^9+15663669201160643232800*x^8-95054472486261383033476*x^7-6310813987476695903204*x^6+37019768672560149693576*x^5+16882805997560344304*x^4-6281204495529242193728*x^3+443657856111594564480*x^2+265427751110421500800*x-21183260440612845824,-55929808719385344*x^25-10349786521445736*x^24+2398626637764285368*x^23+451838574219062696*x^22-44793380874560320576*x^21-8593905553107273872*x^20+478156536850100493360*x^19+93315132388716210736*x^18-3220216707989070771392*x^17-634852900041366077720*x^16+14250027517460503146136*x^15+2786909443977537966752*x^14-41864195468961773629296*x^13-7820158531007935156688*x^12+80694757762258169630256*x^11+13397157065228705564512*x^10-98702086423765902569296*x^9-12710773308709871037312*x^8+72086739793137337816400*x^7+5373833212289957311080*x^6-28220512091862672446848*x^5-249497292556397445600*x^4+4835272701066757016768*x^3-294429246707464846976*x^2-213562999827641224448*x+15130683521087597568,65656112147742251*x^25+20751346675421634*x^24-2822201815919056525*x^23-889738846283759921*x^22+52829778649655403793*x^21+16580584390992559387*x^20-565290592996993899079*x^19-176003797134111449551*x^18+3815303197224765823450*x^17+1169513158714447418457*x^16-16910200049446342903263*x^15-5023204878143048616145*x^14+49699208942178544544289*x^13+13876135324370740718991*x^12-95628933217123903268853*x^11-23721691283881082684499*x^10+116330913436966558970129*x^9+23130896872620346280571*x^8-83964535170288465762944*x^7-10945157627956037528908*x^6+32120198902193446518496*x^5+1500315435209021857056*x^4-5276151800421412739872*x^3+258669352771725068416*x^2+215679057330550662016*x-16800172552599372288,-126388787931043584*x^25-4997319598068628*x^24+5387645241582264416*x^23+299361349891323628*x^22-99899203258201225132*x^21-7341527574386843924*x^20+1057495486561394968036*x^19+98480547491026952908*x^18-7051645863901950025572*x^17-799602590235188026720*x^16+30839592397763464478724*x^15+4066458711045671724300*x^14-89330283126946213973292*x^13-12894494342719568711092*x^12+169234075900672902926132*x^11+24534956697553498433044*x^10-202528115816826539949924*x^9-25819481464062799419556*x^8+143752788462609721969860*x^7+12727208162331301720840*x^6-54121354126075049122016*x^5-1576127651651377594112*x^4+8761833749051733586944*x^3-437839379367492090496*x^2-360840027038678549760*x+28728764741712649728,-53710781260261862*x^25-4267642414338040*x^24+2289466606814416834*x^23+210899118437274270*x^22-42450802754448701830*x^21-4510610833999250546*x^20+449359246773657044058*x^19+54661917981703845634*x^18-2996336697336470909760*x^17-411035008239309784874*x^16+13102993128021254796754*x^15+1971234279799021912646*x^14-37946598600154196928966*x^13-5970059156501494339834*x^12+71860458044892633370918*x^11+10933641566006133416530*x^10-85940131123256588222446*x^9-11092504503522953670322*x^8+60941634289614716851836*x^7+5221445422629454606344*x^6-22929938478983773540016*x^5-565699811803230993376*x^4+3734049737629116019328*x^3-193619435960710659200*x^2-162275020672592482816*x+13347612959122603008,618506107859120384*x^5-4948048862872963072*x^3+7422073294309444608*x,-40781105495334302*x^25-10754911466888756*x^24+1744960371346565666*x^23+471363597584679930*x^22-32487562751851306058*x^21-8994947887828768590*x^20+345374165309175488998*x^19+97936723914347684886*x^18-2312882044377540961844*x^17-668355104265980449114*x^16+10154545375082792925894*x^15+2950789562143004697546*x^14-29501237548865115067338*x^13-8386357422468680619702*x^12+55965507142171769469970*x^11+14784604210888118471998*x^10-66916249407502400422442*x^9-14977926638253024813262*x^8+47343358324401240078320*x^7+7544095845605041336520*x^6-17758761333480819725440*x^5-1257896061352080153952*x^4+2902565728310692840192*x^3-117876978108427452032*x^2-136832876931968441088*x+10079602643464263680,-35529027966059832*x^25-6208037501313712*x^24+1523797355371510408*x^23+272500294276213672*x^22-28450788182203385672*x^21-5209210955478467192*x^20+303518007916264934488*x^19+56820369541158722136*x^18-2041443974374750050448*x^17-388017507862399233544*x^16+9012245708273464859096*x^15+1707661747795960068936*x^14-26367952615328011806312*x^13-4794834903043282407576*x^12+50479866028746244880200*x^11+8193260177933119705976*x^10-61065407227918066477416*x^9-7704916326805106585656*x^8+43816004143989490458304*x^7+3174696938816970923200*x^6-16673475934824650665312*x^5-95582722615809627648*x^4+2733870976293926649472*x^3-189089706342705472256*x^2-114167556422729141248*x+9678914882430157824,-45553220834854219*x^25-21132056124182982*x^24+1984957473996816053*x^23+865543008306795213*x^22-37735225417083478549*x^21-15291526292392860167*x^20+410887117715180636083*x^19+152530766246439715251*x^18-2828381712579056193590*x^17-942920182623387950337*x^16+12817753615876076808995*x^15+3722869182733515367829*x^14-38631711953568940551285*x^13-9289927298023332662603*x^12+76506964597837651500145*x^11+13854423591910915774463*x^10-96254093493747348156349*x^9-10676437472896530569239*x^8+72322516954127132710956*x^7+2398065493426153984060*x^6-29095612256223901559328*x^5+1237086763381140141424*x^4+5133746468860128999968*x^3-546574500957008706944*x^2-235575671033972079360*x+23577779708681638912,105782856243259672*x^25+12841236710070312*x^24-4526098164322083928*x^23-595100088878072272*x^22+84283810087070354944*x^21+12011160764776552960*x^20-896577057221550573888*x^19-138221023144684821392*x^18+6012092957040848763960*x^17+993811885135682551352*x^16-26460505291458840334736*x^15-4591844116814407018048*x^14+77198348844094721020192*x^13+13504446624939345441760*x^12-147451736176820490823056*x^11-24204326021009292703456*x^10+178141083556402567380944*x^9+24207661863454939988480*x^8-127871812044412948368712*x^7-11312844498891749526976*x^6+48801246906010450441856*x^5+1259464667515048678784*x^4-8035864015813252115776*x^3+377301114875894995456*x^2+336400893895539642112*x-23023597181651093504,60166597258267563*x^25+790405173375182*x^24-2553718586362508837*x^23-86806555389895861*x^22+47105944308862011325*x^21+2716344467727527855*x^20-495496902460019074459*x^19-41692333847033391467*x^18+3278474939779875486910*x^17+368855559684931024225*x^16-14199923132204739221211*x^15-1994140228784523803197*x^14+40632030070040651491213*x^13+6650769065691434446803*x^12-75774357815327124704825*x^11-13338659558194553388999*x^10+88818415847738160513733*x^9+15135974931914865805055*x^8-61292796769171170616916*x^7-8705246222595094565292*x^6+22159606636620829838576*x^5+1974500415114908978640*x^4-3352967393052605186848*x^3-23476181325193355200*x^2+121515669345164846848*x-3763391122187046912,-113738619133125016*x^25-13038624279644720*x^24+4850371230157089480*x^23+612607417189829544*x^22-89978291114066737160*x^21-12537468641481219864*x^20+952952923812864064952*x^19+146303806875647324280*x^18-6357758563886763309456*x^17-1066655700184864619560*x^16+27817759085218170311896*x^15+4998210583291019798280*x^14-80604645342758749529288*x^13-14923505588465002575864*x^12+152727800094155757301288*x^11+27248403176651066712856*x^10-182771964885982620193608*x^9-28022018763111318033176*x^8+129723235977275882931904*x^7+13828209835483492459584*x^6-48842286358469514810112*x^5-1922365321580644533888*x^4+7907284539171364995328*x^3-374164836677171043584*x^2-326366468794004407296*x+26002692926353161216,35276323898760063*x^25+13926021940933864*x^24-1520342292085717093*x^23-593254848821177655*x^22+28539304424411915843*x^21+10976649399780073873*x^20-306251005715997041045*x^19-115630072696374207009*x^18+2072715596982423776772*x^17+762684275013849417041*x^16-9209108039710508652241*x^15-3257510637812313742595*x^14+27111601761391042694427*x^13+8989286192191832468565*x^12-52184510095025541740355*x^11-15505947457627740070113*x^10+63354672764915199101495*x^9+15608895542981845648609*x^8-45452189405317226974490*x^7-8132809590832401265476*x^6+17160055083970062872080*x^5+1699904731796462717232*x^4-2765346693640358678336*x^3-5935553293259461696*x^2+122999076918924267264*x-8443218477457884416,-14488016200521592*x^25+11614968295817792*x^24+597230968732149032*x^23-454361250580054984*x^22-10634543881432707704*x^21+7561929110324131256*x^20+107162068701729667432*x^19-69696978427130140760*x^18-672763466649668366208*x^17+388016571480937280568*x^16+2731499821675397943752*x^15-1335493109580400406280*x^14-7213382160527876840792*x^13+2792872385955178537752*x^12+12160541318560648196152*x^11-3330649194331758936600*x^10-12522696514615403829944*x^9+1914919491007247719096*x^8+7304608237765727768496*x^7-207734985994875086272*x^6-2122507805789815653312*x^5-181393487986150109312*x^4+223817707949505855744*x^3+38736442353042093568*x^2-1400052522362875904*x-769083642611251200,-26651172804751966*x^25+23114361782771164*x^24+1105518599308484050*x^23-917089488750864310*x^22-19846378701861530618*x^21+15557043567939274386*x^20+202167303725399855830*x^19-147262896904758299386*x^18-1288061788898492380932*x^17+852383305110932662470*x^16+5338217350615889109254*x^15-3114522021405331831014*x^14-14516466036957053469226*x^13+7184227944494944894426*x^12+25542325904111570015842*x^11-10222821348754634652402*x^10-28034788565167618348154*x^9+8579463780266078290978*x^8+18001802503178620443744*x^7-3981384002787711877912*x^6-6077062707185941987856*x^5+1002718313865849793424*x^4+890629238936342070112*x^3-158873753338142796416*x^2-44617170234158429056*x+9314608067182277376,39646244587196306*x^25-9851307458545976*x^24-1670111785065184126*x^23+365532531044802598*x^22+30537814130095737242*x^21-5632727701979861554*x^20-317963644453351921894*x^19+46035746697364288658*x^18+2079189710691316694728*x^17-208553473961766291066*x^16-8884676303502089535222*x^15+470478045712637321478*x^14+25034555919114803881690*x^13-170463877902897436090*x^12-45875468120112912483498*x^11-1452218654470813979550*x^10+52696722248177369801602*x^9+2877015761352969170526*x^8-35515461553111732205868*x^7-1968378534836365069280*x^6+12496393167450220872992*x^5+348209789367368123296*x^4-1840813232258234746688*x^3+75746337242922751744*x^2+71748428946928254976*x-5609017819329184768,-74888921284466448*x^25-2457799365801446*x^24+3181600738076056316*x^23+166969969854180290*x^22-58765415701952762398*x^21-4395849051750052138*x^20+619283768228838822562*x^19+61773370770881472086*x^18-4108162629114588594138*x^17-519149669396811590716*x^16+17858741384174598650438*x^15+2720154081769913966942*x^14-51367014558450330525622*x^13-8905440540946235813402*x^12+96502367296502393456922*x^11+17700306182778406048562*x^10-114306348535882253393570*x^9-20077028790429496883498*x^8+80066584131513618476066*x^7+11648052727941606112936*x^6-29593459913424056806592*x^5-2698037945838889746432*x^4+4654789914979690451360*x^3+29970308862720065664*x^2-188369780565404250624*x+9726354179384211712,19700290963300004*x^25+5013982103433840*x^24-842547397453028988*x^23-208779470541762804*x^22+15688444331476283220*x^21+3769925660762224284*x^20-166955083851386147532*x^19-38682419957504059164*x^18+1120713064207404403280*x^17+247573060543818705260*x^16-4941825077229628408108*x^15-1017028758049440715796*x^14+14460364873046538731060*x^13+2645188711737281136524*x^12-27736730623144315760660*x^11-4098118367862890136316*x^10+33691491028227659898372*x^9+3239045613869285349372*x^8-24310092215890309445464*x^7-679986776900102261344*x^6+9267776046096092912480*x^5-473063157459195946304*x^4-1470635702488613381120*x^3+204406507176137549824*x^2+39008730398542044672*x-10214791831826691072,-143060976266676647*x^25-8338480764539684*x^24+6088150403041241817*x^23+458754001587388371*x^22-112662176614840775187*x^21-10651334576081969265*x^20+1189711487659940507941*x^19+137660787811930033057*x^18-7909797591155300385924*x^17-1089955045517747835405*x^16+34465743688499912755045*x^15+5458305398340009418755*x^14-99374307170280892284219*x^13-17206810729619296428245*x^12+187160763928370673264083*x^11+32943221474955908531817*x^10-222301502123260744150167*x^9-35607318414766235333161*x^8+156268192000195619276210*x^7+18960087941091497619840*x^6-58084603382992925730296*x^5-3412486262312020482224*x^4+9227865941585891690912*x^3-265606517967828312640*x^2-376559195280438753280*x+24426120883763796736,-38109008238090596*x^25+22476360771032276*x^24+1588332587634140964*x^23-881083448438265400*x^22-28678565064982993840*x^21+14702187572060319728*x^20+294186917951633604624*x^19-135985018555521605432*x^18-1890294503829060300324*x^17+761310626404631837260*x^16+7914657939348789457384*x^15-2649113199904224354768*x^14-21789563308847726033536*x^13+5682005921920961469440*x^12+38917972387858068963848*x^11-7249318810451878227680*x^10-43525553800419786943080*x^9+5170666002292533702544*x^8+28646887416358437029884*x^7-1911239017623611357504*x^6-9982826302009315724416*x^5+428345060555819031552*x^4+1500067063643894789312*x^3-99354141053886824448*x^2-60376514742723179776*x+5240508092637718528,107194110626786394*x^25+16375202469525472*x^24-4592531532944682014*x^23-726704165825148330*x^22+85656969795127733698*x^21+14053648367971966342*x^20-912936088004643135454*x^19-155123282637577382790*x^18+6136030659362729879960*x^17+1071531492200453154934*x^16-27082121874968072623334*x^15-4763462849607082061666*x^14+79283091665718442095234*x^13+13473211007237021388190*x^12-152071284137792855562002*x^11-23078686603402377532006*x^10+184677137894446597500330*x^9+21527395739559956062438*x^8-133405897689441527014940*x^7-8450327273276534077960*x^6+51299196580486814955152*x^5-173090872274015851968*x^4-8521817953758275251552*x^3+671864315703029341184*x^2+358268541206124436352*x-35790018628746015488,-34820265381988724*x^25+16262408401108168*x^24+1458400536482553420*x^23-633916366777251780*x^22-26482806988968858908*x^21+10498650164675853356*x^20+273454426214524079236*x^19-96114423391572740732*x^18-1770334657919767572952*x^17+530634758033462604580*x^16+7475095501756818053444*x^15-1813096460008641520164*x^14-20768007553113894036476*x^13+3810904070262529223004*x^12+37439866162292981867052*x^11-4824621278215411345900*x^10-42222702427159956086780*x^9+3671040707226134069132*x^8+27917747493548741271712*x^7-1839001801027479151344*x^6-9671446124354266784512*x^5+724265909133534661632*x^4+1414863109730468908288*x^3-171250545650525402880*x^2-55487132690223818752*x+4502884913124977664,-76181931341327058*x^25-11067601824844436*x^24+3262105261651529326*x^23+495831796763771182*x^22-60801946537897588846*x^21-9689537166670949482*x^20+647491579434940039330*x^19+108194573597888716674*x^18-4347437080372322552676*x^17-757029483649055240294*x^16+19163466840324916992770*x^15+3415454337657938220046*x^14-56013243835676685264126*x^13-9840619013195328216434*x^12+107234087453778964507606*x^11+17317624130646705217866*x^10-129936457298734579137086*x^9-16990670542085482660730*x^8+93629928965534883863080*x^7+7701914100620937093976*x^6-35901641867499550842768*x^5-733619053424057164848*x^4+5921587716156188454816*x^3-291884433671912462976*x^2-235474665951064407040*x+16513309307668877824,193379280702995992*x^25+10833442882472536*x^24-8243153199638567448*x^23-581345213931051936*x^22+152844189644889666544*x^21+13258417336474722288*x^20-1617916208291540782384*x^19-169042872252784105216*x^18+10788335885760058998408*x^17+1323170757749001446328*x^16-47179546702511755341312*x^15-6549493838458257043760*x^14+136654941726581950527024*x^13+20339903933724985419280*x^12-258895219902057045859360*x^11-38023070917359944181232*x^10+309917129722061949207360*x^9+39265125458579936140848*x^8-220209772417691231348504*x^7-18751989048582112112512*x^6+83153169174271899212480*x^5+1972619137981807674496*x^4-13553645135948739317952*x^3+749244300456065316096*x^2+565494837873325043456*x-45576602261538559488,-52647482184846722*x^25-34258721427919756*x^24+2276062747083874670*x^23+1444313073625554934*x^22-42872376238233356806*x^21-26407612435030789938*x^20+461780728869711353978*x^19+274462394829067778058*x^18-3137782187165889646348*x^17-1784024954106957286502*x^16+13998055903490872265610*x^15+7508683923667327182150*x^14-41374678978417005512566*x^13-20457525620488417453738*x^12+79934873664319129169934*x^11+35001635664995583076258*x^10-97377020109449756138390*x^9-35202791105456800962514*x^8+70086039059205210288944*x^7+18423823558025283862712*x^6-26503020436167618484816*x^5-3806508359743560333600*x^4+4189127501319295395072*x^3+8978876459944501888*x^2-144678104911985782528*x+9362571484796476416,33221814182357918*x^25+6119528870804500*x^24-1409400210362477106*x^23-284981020646920122*x^22+25985230451357994298*x^21+5789885969577302366*x^20-273197660303540685590*x^19-67218551348783598694*x^18+1806689844002577987652*x^17+489585419289137612746*x^16-7820936474723646850854*x^15-2309639726159491622010*x^14+22366727690143518909690*x^13+7039836318743087545702*x^12-41698319565446282640706*x^11-13459346477513687627086*x^10+48915608102962927788570*x^9+15235176265476014100574*x^8-33917436565287935332000*x^7-9281774132768557906680*x^6+12477928131235736604128*x^5+2532568356427940091712*x^4-2003370755815254082560*x^3-178349633627595176448*x^2+93752389460352241152*x-2059073211586473472,-39653987253850768*x^25-9362493396150928*x^24+1707412675161804328*x^23+400389295765263104*x^22-32033025869095544808*x^21-7435816639221224504*x^20+343781241050147044568*x^19+78552701874084043816*x^18-2329659733779868488760*x^17-517987213764854093816*x^16+10383375356267240257184*x^15+2194703264888272542536*x^14-30758302698160210155080*x^13-5906618529862625595032*x^12+59857078970435472164600*x^11+9573129967456265446184*x^10-74022488994580411355768*x^9-8249601597419358441736*x^8+54724882879890696662952*x^7+2599533889110301825000*x^6-21672864417308650484560*x^5+537274085092515164384*x^4+3720520248761468631424*x^3-368469145465485965184*x^2-151044372665869200384*x+16894244917450768384,159892542508951016*x^25+8092830976905300*x^24-6819119714176800568*x^23-442129394356441156*x^22+126508657627181918004*x^21+10217213992977697308*x^20-1339936311771905627436*x^19-131586225940095243156*x^18+8940464217115907855284*x^17+1037936318449998442056*x^16-39125248041471318123884*x^15-5166852045743588950292*x^14+113408529796244688400260*x^13+16106444464114350589308*x^12-215020146889785410659404*x^11-30158815796910173664860*x^10+257600752768140279354940*x^9+31103459792645835415916*x^8-183175108472798108127588*x^7-14744131757987866109976*x^6+69202724303412158963376*x^5+1464780948673383559360*x^4-11279739231621546128000*x^3+616655032281373894016*x^2+472433459042887814912*x-37970516883346204672,84227812301757678*x^25+31036653216658456*x^24-3612764485390978826*x^23-1333031244837703030*x^22+67457435203089454302*x^21+24907177111382343242*x^20-719616490368497835282*x^19-265447917292654428314*x^18+4838865610380927824256*x^17+1774882486534380013698*x^16-21347510946221867148378*x^15-7701501599950394965470*x^14+62368278378480540729934*x^13+21650409881864298697522*x^12-119064690042013304607662*x^11-38206462278918970481258*x^10+143277675750347583217654*x^9+39658174080185616908490*x^8-101795085078785223068460*x^7-21642675066042561223400*x^6+37961273682504570085056*x^5+4948493942416111906368*x^4-5936708045434478477824*x^3-164856848426669896960*x^2+217233091447477261056*x-6647436479181875712,-22779398878364944*x^25-22444813923517440*x^24+1008120248112399216*x^23+914931778163923056*x^22-19491391375645029008*x^21-16064485526391952944*x^20+216127961423800034960*x^19+158990817845657093456*x^18-1516637314537541740032*x^17-974126929820847727344*x^16+7011549838125965506064*x^15+3816500694714708252944*x^14-21561499558822542488464*x^13-9518868594339776304272*x^12+43544474059474534852080*x^11+14515766532146562648368*x^10-55774296491337124816272*x^9-12309542405565507666512*x^8+42497972894114682670720*x^7+4638529263826115243520*x^6-17182686909165110767296*x^5-188827599375025993216*x^4+2996026663140570967296*x^3-202266513063523379200*x^2-131470658344520509440*x+10482918775826286592,-74002503314859870*x^25-8199683968861940*x^24+3177078303953631634*x^23+369783190838195786*x^22-59404213421052648954*x^21-7261816567964297070*x^20+635038265745768060134*x^19+81282535553879468502*x^18-4283943345111607650036*x^17-567602960261051764538*x^16+18994047421178121884918*x^15+2535336617968970548474*x^14-55924197128551053018730*x^13-7123588383855769476790*x^12+108049388309123087442066*x^11+11846258578353029768062*x^10-132442461875695934547786*x^9-10123078393214798765134*x^8+96824640399317130285072*x^7+2773291894759315664840*x^6-37837609144936961303824*x^5+969994141569426979680*x^4+6447262374534679392576*x^3-497232793676111076480*x^2-279417427007623582464*x+23166751591367859712,152063570970906136*x^25+1011006433860268*x^24-6470508378841851256*x^23-154703853572592764*x^22+119726336575095635708*x^21+5195365454738519860*x^20-1264253855982939259876*x^19-82174932089509680412*x^18+8405932871302155096924*x^17+737440678633149000776*x^16-36637476406738863121908*x^15-4001647400693467713372*x^14+105703758615885269101356*x^13+13246430905776196070164*x^12-199336756029409771134020*x^11-25920078735116836242228*x^10+237321816373882107851636*x^9+27725178199824605165188*x^8-167526055869069213217772*x^7-13707242128033462741496*x^6+62751690331183540721968*x^5+1581497801185969892576*x^4-10120248855543369969664*x^3+526626404462257962752*x^2+420206909902773050368*x-33615929419644032512,25589397372339839*x^25+11377048175658342*x^24-1091877423555447329*x^23-491574128575847825*x^22+20254131463232121033*x^21+9246333574087554579*x^20-214266688718507290863*x^19-99283447745763487999*x^18+1425270397146259270758*x^17+669666528482852178413*x^16-6198726070581174982431*x^15-2937688487216090403401*x^14+17765395844383561332281*x^13+8382895415052845524999*x^12-33030550499676000108245*x^11-15129683209859408545675*x^10+38297382844878283658993*x^9+16287192773961047948515*x^8-25784910576696560607940*x^7-9454093526173722826668*x^6+8835943176433357880176*x^5+2415719536373198085296*x^4-1170625639880487645408*x^3-133369464199431514816*x^2+32536588747007423232*x-2069617396967983616,-145553158187840758*x^25-18738538135152604*x^24+6226868260516618890*x^23+860105787133196554*x^22-115934094135080725978*x^21-17198634509847207774*x^20+1232963087437702680374*x^19+196129687426491026614*x^18-8265049956653907344508*x^17-1397775010572655913154*x^16+36359539794868350291350*x^15+6401537382198876794778*x^14-106009273042850969350234*x^13-18646719116601416908582*x^12+202291406464747972955346*x^11+33006013460349567103598*x^10-244069032032073578486538*x^9-32297648323981665460350*x^8+174882253061309401249512*x^7+14225013052472811006424*x^6-66610286060461995068704*x^5-889519482809775161312*x^4+10972619505455871767424*x^3-743072596776006930432*x^2-468318396714013284352*x+39443230213522521600,46215184322383042*x^25-1208767574446288*x^24-1972426220675037838*x^23+19747496007192398*x^22+36627277445981905538*x^21+287117488928068118*x^20-388432872387074833390*x^19-10534019003409570694*x^18+2596166558245281898656*x^17+121079322748418331750*x^16-11387871264347198967134*x^15-727133587838655832482*x^14+33114079458558683357010*x^13+2467398762195662651886*x^12-63049900981431399276818*x^11-4591491487760786232358*x^10+75937346158780802424490*x^9+4022323587595347735174*x^8-54318721437140412366276*x^7-689971433655167619968*x^6+20648518873104433393168*x^5-930210523228087318400*x^4-3417546152633350072000*x^3+402004513389694740096*x^2+163875636915251146240*x-19685974946113056768,-111689204934861764*x^25-20096987376843232*x^24+4776315525559532540*x^23+893797722582620804*x^22-88890248193870635748*x^21-17333731596758274860*x^20+944918117370544208284*x^19+192042699835193742284*x^18-6330876186401591428928*x^17-1333874056143270828364*x^16+27833673696771491869852*x^15+5984040211207842881316*x^14-81090763488822638460964*x^13-17206358063218023742236*x^12+154597681668298014300132*x^11+30430023530695583819788*x^10-186313991870594130000852*x^9-30427494457217064975948*x^8+133314354062102599863112*x^7+14559757154428924041088*x^6-50673132178876645195520*x^5-1875933943442714942848*x^4+8296980865661484485760*x^3-416649280721192661248*x^2-344151347109180350464*x+27499920005254073344,145668557142955362*x^25+14216788724116032*x^24-6230574530517218430*x^23-668935617908134442*x^22+115996677830942043474*x^21+13703450967637525774*x^20-1233861274107473165334*x^19-159961592418392823998*x^18+8276018303977777500824*x^17+1165013027203323614398*x^16-36454286247696315501734*x^15-5437903820469166883730*x^14+106539925315032809892090*x^13+16082070448436595061270*x^12-204162490577731429656026*x^11-28747942232716867768478*x^10+248102720539860708060130*x^9+28159883258148808380190*x^8-179918751334304218183100*x^7-12114846354724787428904*x^6+69888170148993084425544*x^5+426344200859746434336*x^4-11830386065866404502944*x^3+765369480360076798336*x^2+496459779577381026048*x-44181145559505793792,618506107859120384*x^6-6185061078591203840*x^4+14844146588618889216*x^2-4948048862872963072,-21473216936223719*x^25-19779116002848498*x^24+953896683644558805*x^23+810097614659394245*x^22-18505456282554763433*x^21-14302692706034149531*x^20+205774650613632634311*x^19+142475053365194261687*x^18-1446959350098878944542*x^17-879613573109197468001*x^16+6696797061998637629867*x^15+3477217154298915931033*x^14-20593964075865068076497*x^13-8763972168956424433231*x^12+41550718139260361127981*x^11+13526732715625994903787*x^10-53157340483307669372073*x^9-11621998912091529460099*x^8+40531686877125423474964*x^7+4412426606352776318064*x^6-16493988361167729894144*x^5-118135899518027752864*x^4+2917818660884664629824*x^3-216213845808651786496*x^2-131039726421033848448*x+6795968092083975168,-92317122457557360*x^25-8627164952809320*x^24+3937757564688095600*x^23+422789382883475656*x^22-73062064620998957032*x^21-8972860339784261080*x^20+773883547499513740536*x^19+107965940036493873480*x^18-5163126208645241212648*x^17-806967189902618774384*x^16+22587422012517910456472*x^15+3854077227929259215784*x^14-65423423284825665411432*x^13-11660454324259757504664*x^12+123864722537748944766840*x^11+21440379226427365630872*x^10-148018738812264548242392*x^9-22030685229087791751544*x^8+104801486221629986141448*x^7+10706124053418560396144*x^6-39303078751215394501376*x^5-1356939178465984335104*x^4+6328800178594019008128*x^3-329972192557871695360*x^2-261359435533480850432*x+20879926013611162624,6783015474592996*x^25-24859159421275516*x^24-266913376518740708*x^23+1018078249261251312*x^22+4490119477079608984*x^21-17985302479975186264*x^20-42210160034674283048*x^19+179502817496810223216*x^18+243765659761056735964*x^17-1114138180779219338380*x^16-899448828398891326080*x^15+4465258184394366133608*x^14+2158831315608411254376*x^13-11633072420707590984968*x^12-3438883423717177414336*x^11+19377106009098534980488*x^10+3809912932284557056544*x^9-19821557755201359155128*x^8-3121940506357125834388*x^7+11623913792647991435856*x^6+1795121780942095357376*x^5-3498245327776096815168*x^4-515528539201602739840*x^3+428131716961890689408*x^2+31283704893573901312*x-11258069883989920768,-39457832173940572*x^25-8509313755928312*x^24+1679128512235736244*x^23+387244882720766276*x^22-31059047642300197780*x^21-7688918155085369500*x^20+327616447905824397964*x^19+87266098290057054060*x^18-2173187117393921350312*x^17-621791372183809601924*x^16+9428940870864315127484*x^15+2872308064715180258900*x^14-26977797072372955665684*x^13-8580044680237399004780*x^12+50118751671830153808932*x^11+16080742186365265040092*x^10-58082674049121901232660*x^9-17835205632895937597948*x^8+38999586250792986623232*x^7+10661054245641449194080*x^6-13200569245086660215264*x^5-2901893695171740117888*x^4+1669507207732147633408*x^3+226554954442780651776*x^2-27682807899211059200*x-5125811779103186944,-13979703979085379*x^25+8619992911285282*x^24+586219742386149421*x^23-337398990586635771*x^22-10667518270142859717*x^21+5624307356211589537*x^20+110545420627635064971*x^19-52020773308296101653*x^18-719947868557430462134*x^17+291816279591577054879*x^16+3069797155372085380763*x^15-1021603316945681435963*x^14-8664797017939969484445*x^13+2224637590616959977405*x^12+16019106791429905762841*x^11-2946198209040655867161*x^10-18790761193204963279573*x^9+2312651634318052475873*x^8+13196414090259637976380*x^7-1089629164452516318156*x^6-5013174809107076461304*x^5+354108888792997887552*x^4+856610523009992145376*x^3-81152731465179240064*x^2-53258731622035183616*x+3768614035642992640,-112238497793891420*x^25+26168978098084636*x^24+4737566779269403828*x^23-973776203356123816*x^22-86855636223948838216*x^21+15075181881132327192*x^20+907575401584148395176*x^19-124251417380440045312*x^18-5963659523378515405860*x^17+573548940896446138204*x^16+25657337206586674921176*x^15-1373231547312491434776*x^14-73001345255962966169288*x^13+967561743686450321672*x^12+135698857637574769983312*x^11+2441833639593646708584*x^10-159285393100753972026224*x^9-5169524711110094564952*x^8+111036301946519926125276*x^7+2700171460737664468920*x^6-41260059592104379014304*x^5+375803659101275533856*x^4+6654478648616746232576*x^3-451315724907841660544*x^2-279624458168108042752*x+23323249067445360128]];

E[420,1] = [x, [1,0,-1,0,-1,0,-1,0,1,0,2,0,4,0,1,0,6,0,6,0,1,0,-8,0,1,0,-1,0,-2,0,10,0,-2,0,1,0,2,0,-4,0,10,0,-4,0,-1,0,-8,0,1,0,-6,0,4,0,-2,0,-6,0,-8,0,6,0,-1,0,-4,0,12,0,8,0,-6,0,-12,0,-1,0,-2,0,-8,0,1,0,-4,0,-6,0,2,0,-10,0,-4,0,-10,0,-6,0,8,0,2,0,6,0,-16,0,-1,0,8,0,18,0,-2,0,0,0,8,0,4,0,-6,0,-7,0,-10,0,-1,0,-8,0,4,0,4,0,-6,0,1,0,-12,0,14,0,8,0,8,0,2,0,-1,0,-6,0,12,0,6,0,-10,0,-16,0,-4,0,8,0,4,0,2,0,24,0,3,0,6,0,6,0,-1,0,8,0,2,0,-6,0,-6,0,-2,0,12,0,1,0,-18,0]];
E[420,2] = [x, [1,0,-1,0,1,0,1,0,1,0,-2,0,4,0,-1,0,2,0,2,0,-1,0,4,0,1,0,-1,0,6,0,-2,0,2,0,1,0,10,0,-4,0,-10,0,12,0,1,0,-8,0,1,0,-2,0,0,0,-2,0,-2,0,-8,0,-2,0,1,0,4,0,-12,0,-4,0,-10,0,4,0,-1,0,-2,0,0,0,1,0,-12,0,2,0,-6,0,2,0,4,0,2,0,2,0,-8,0,-2,0,-6,0,8,0,-1,0,4,0,-14,0,-10,0,4,0,4,0,4,0,2,0,-7,0,10,0,1,0,0,0,-12,0,12,0,2,0,-1,0,-8,0,2,0,8,0,-8,0,6,0,-1,0,18,0,-4,0,2,0,-2,0,8,0,0,0,4,0,12,0,2,0,-16,0,3,0,2,0,2,0,1,0,8,0,22,0,-22,0,2,0,10,0,-4,0,-1,0,-22,0]];
E[420,3] = [x, [1,0,1,0,1,0,-1,0,1,0,2,0,4,0,1,0,2,0,-2,0,-1,0,4,0,1,0,1,0,-2,0,-6,0,2,0,-1,0,-6,0,4,0,6,0,-4,0,1,0,0,0,1,0,2,0,8,0,2,0,-2,0,0,0,-10,0,-1,0,4,0,-12,0,4,0,-14,0,4,0,1,0,-2,0,-8,0,1,0,12,0,2,0,-2,0,-14,0,-4,0,-6,0,-2,0,8,0,2,0,-6,0,-8,0,-1,0,-12,0,2,0,-6,0,12,0,4,0,4,0,-2,0,-7,0,6,0,1,0,-16,0,-4,0,-4,0,2,0,1,0,16,0,14,0,0,0,8,0,-2,0,1,0,-22,0,-20,0,2,0,-6,0,24,0,8,0,-4,0,-4,0,2,0,-8,0,3,0,-2,0,18,0,-1,0,0,0,10,0,18,0,-10,0,-6,0,4,0,-1,0,14,0]];
E[420,4] = [x, [1,0,1,0,-1,0,1,0,1,0,6,0,-4,0,-1,0,6,0,2,0,1,0,0,0,1,0,1,0,6,0,-10,0,6,0,-1,0,2,0,-4,0,-6,0,-4,0,-1,0,0,0,1,0,6,0,-12,0,-6,0,2,0,0,0,14,0,1,0,4,0,-4,0,0,0,6,0,-4,0,1,0,6,0,-16,0,1,0,-12,0,-6,0,6,0,6,0,-4,0,-10,0,-2,0,-16,0,6,0,6,0,-16,0,-1,0,0,0,2,0,2,0,0,0,0,0,-4,0,6,0,25,0,-6,0,-1,0,8,0,-4,0,-12,0,2,0,-1,0,-12,0,-22,0,0,0,-24,0,-6,0,1,0,18,0,-4,0,6,0,10,0,8,0,-12,0,0,0,20,0,-6,0,0,0,3,0,2,0,6,0,1,0,0,0,6,0,2,0,14,0,-2,0,36,0,1,0,18,0]];

E[421,1] = [x^19-4*x^18-20*x^17+93*x^16+145*x^15-874*x^14-402*x^13+4263*x^12-159*x^11-11551*x^10+3133*x^9+17375*x^8-5935*x^7-14018*x^6+4016*x^5+5896*x^4-1088*x^3-1185*x^2+101*x+89, [18235058,18235058*x,2861102*x^18-4909510*x^17-77100930*x^16+123043292*x^15+866376364*x^14-1268952028*x^13-5250245152*x^12+6943683190*x^11+18512299508*x^10-21631533850*x^9-38164461826*x^8+38069710030*x^7+43922664732*x^6-34928343146*x^5-25767235658*x^4+13753078464*x^3+7205220666*x^2-1747943046*x-730080762,18235058*x^2-36470116,1756218*x^18-3976489*x^17-42864974*x^16+93225979*x^15+430254627*x^14-886208792*x^13-2297447469*x^12+4392300162*x^11+7059201980*x^10-12170815053*x^9-12628043807*x^8+18853961126*x^7+12727252072*x^6-15616138215*x^5-6676576296*x^4+6319228471*x^3+1617841080*x^2-881163033*x-131854079,6534898*x^18-19878890*x^17-143039194*x^16+451516574*x^15+1231651120*x^14-4100082148*x^13-5253194636*x^12+18967214726*x^11+11417055352*x^10-47128294392*x^9-11641937220*x^8+60903305102*x^7+5178584690*x^6-37257421290*x^5-3115978928*x^4+10318099642*x^3+1642462824*x^2-1019052064*x-254638078,-6246956*x^18+21827722*x^17+125839974*x^16-487308416*x^15-931167526*x^14+4314403664*x^13+2803818188*x^12-19181059750*x^11-784994748*x^10+44509257454*x^9-13492403466*x^8-50261891802*x^7+25597957088*x^6+22356038990*x^5-14311648076*x^4-3164102160*x^3+2886706532*x^2+51137386*x-186916038,18235058*x^3-72940232*x,2718294*x^18-15017332*x^17-42743478*x^16+344113184*x^15+132800058*x^14-3167203988*x^13+1248289136*x^12+14966520700*x^11-11046680250*x^10-38506963834*x^9+34041552738*x^8+52803900224*x^7-47160710850*x^6-35563221560*x^5+27565460644*x^4+10453199092*x^3-6687016332*x^2-919809446*x+589457394,3048383*x^18-7740614*x^17-70102295*x^16+175603017*x^15+648725740*x^14-1591447833*x^13-3094457172*x^12+7338440642*x^11+8115259065*x^10-18130274801*x^9-11660326624*x^8+23150405902*x^7+9002525709*x^6-13729547784*x^5-4035432857*x^4+3528606264*x^3+1199955297*x^2-309232097*x-156303402,-5022772*x^18+23036924*x^17+87662730*x^16-518385508*x^15-444085022*x^14+4646048398*x^13-481362340*x^12-21078461512*x^11+11819149282*x^10+50768480936*x^9-40974685058*x^8-62140671722*x^7+57658390954*x^6+34463965750*x^5-31929773698*x^4-8667117950*x^3+6950162522*x^2+782356424*x-466472406,538498*x^18-2522214*x^17-2027080*x^16+38004326*x^15-121334024*x^14-88261584*x^13+1609434856*x^12-1431262246*x^11-8668286610*x^10+11147295046*x^9+23688376004*x^8-32176215740*x^7-33496550590*x^6+40496556996*x^5+23322812350*x^4-18753725080*x^3-7685639266*x^2+2581223316*x+878555602,-6138980*x^18+23834470*x^17+116729826*x^16-535672826*x^15-747008406*x^14+4789156366*x^13+1088482778*x^12-21616317754*x^11+7947824214*x^10+51456700478*x^9-39069107686*x^8-61035507408*x^7+68092742696*x^6+30423694524*x^5-51163203172*x^4-5193989718*x^3+16468789200*x^2+64622708*x-1758528026,-3160102*x^18+900854*x^17+93658492*x^16-25358906*x^15-1145435880*x^14+292541876*x^13+7449713678*x^12-1778260752*x^11-27649331302*x^10+6079309682*x^9+58278968698*x^8-11477726772*x^7-65213790218*x^6+10776127220*x^5+33667950416*x^4-3909981596*x^3-7351505474*x^2+444026518*x+555979084,14107310*x^18-60052292*x^17-256141428*x^16+1348726150*x^15+1463077474*x^14-12051233754*x^13-486613238*x^12+54391400978*x^11-25506135088*x^10-129715997348*x^9+99168248134*x^8+155297942932*x^7-148585645292*x^6-81043493514*x^5+89986837374*x^4+17574530090*x^3-23098467786*x^2-1268787226*x+2137785300,18235058*x^4-109410348*x^2+72940232,-13264226*x^18+57597521*x^17+241452738*x^16-1301780639*x^15-1391464565*x^14+11741852682*x^13+623168701*x^12-53793610836*x^11+23063410922*x^10+131654576719*x^9-90325301861*x^8-165800017930*x^7+134350195484*x^6+96861536419*x^5-79148494462*x^4-25464584337*x^3+19004714496*x^2+2463637405*x-1542912925,-4144156*x^18+11622402*x^17+91311842*x^16-261352572*x^15-791415032*x^14+2341043324*x^13+3378433378*x^12-10614471504*x^11-7107949840*x^10+25525137636*x^9+5573541974*x^8-31027635960*x^7+2541823732*x^6+16648791940*x^5-5573862332*x^4-3729512460*x^3+2301368944*x^2+314909700*x-241928166,-5516639*x^18+26353146*x^17+99047245*x^16-606829545*x^15-553314900*x^14+5622237595*x^13+111496126*x^12-26822421822*x^11+9644208749*x^10+70066834279*x^9-34952419966*x^8-98769438030*x^7+45770343899*x^6+70498051266*x^5-18479183815*x^4-23542952104*x^3+704326133*x^2+2724439229*x+408245344,940482*x^18-1181657*x^17-22166654*x^16+20258247*x^15+212329655*x^14-96589622*x^13-1061921149*x^12-184648362*x^11+2963193272*x^10+3130719543*x^9-4559161109*x^8-10613243438*x^7+3548180966*x^6+14954537445*x^5-1091507312*x^4-8121860941*x^3+67419598*x^2+1298135981*x-7597929,7967840*x^18-37951538*x^17-135274566*x^16+856006028*x^15+614372412*x^14-7695125096*x^13+1630477608*x^12+35046562296*x^11-23075114466*x^10-84807321330*x^9+76930973732*x^8+104212560902*x^7-109407745596*x^6-57247844440*x^5+64309799748*x^4+13132261242*x^3-15628447402*x^2-1015361408*x+1324608522,2945836*x^18-12792710*x^17-51267712*x^16+284216918*x^15+256145670*x^14-2500516684*x^13+333615524*x^12+11020528534*x^11-7249558436*x^10-25238340382*x^9+25129991778*x^8+27848239134*x^7-35945252146*x^6-11758321346*x^5+20947145762*x^4+1485386586*x^3-5169628396*x^2+40827566*x+447026708,-2207865*x^18+4654502*x^17+48348645*x^16-95491415*x^15-408291364*x^14+730118119*x^13+1590699198*x^12-2387165082*x^11-2176156879*x^10+1780222845*x^9-3769148844*x^8+7685846912*x^7+16775418293*x^6-17018047940*x^5-20936566169*x^4+9849952734*x^3+10020156005*x^2-1568599917*x-1418167548,-13438018*x^18+48500660*x^17+274002400*x^16-1102449382*x^15-2080916572*x^14+10026075348*x^13+6779510052*x^12-46517094880*x^11-5466625260*x^10+116257850554*x^9-18248744050*x^8-152107175164*x^7+37688052580*x^6+95675046962*x^5-15696751432*x^4-27735952726*x^3-65582202*x^2+2862271432*x+461349834,9170956*x^18-36446881*x^17-175545006*x^16+827783383*x^15+1143695767*x^14-7518539964*x^13-1899706773*x^12+34805462344*x^11-10419058988*x^10-86610234227*x^9+53820850535*x^8+112228897872*x^7-93251007968*x^6-68899193997*x^5+67553365822*x^4+18956598911*x^3-20344375544*x^2-1904458453*x+2054868099,-721450*x^18-6049774*x^17+35252314*x^16+143143694*x^15-576312154*x^14-1379387182*x^13+4554153986*x^12+6971726394*x^11-19454657502*x^10-19835683346*x^9+45629270092*x^8+31657896396*x^7-55632527116*x^6-26509059492*x^5+31001436362*x^4+9789578960*x^3-7210068592*x^2-1138491046*x+546369220,10265866*x^18-46322070*x^17-186900510*x^16+1056763650*x^15+1086099422*x^14-9665595774*x^13-678087304*x^12+45265323472*x^11-16147892132*x^10-114976699552*x^9+62406262330*x^8+155035225424*x^7-86526098718*x^6-103285883506*x^5+41074846938*x^4+32199898014*x^3-5217974214*x^2-3465684186*x-105498926,754358*x^18-13198992*x^17+16850632*x^16+287395742*x^15-607052220*x^14-2449454654*x^13+6085617698*x^12+10210331980*x^11-28853039024*x^10-20838946644*x^9+70413852410*x^8+16554788016*x^7-84718096792*x^6+1646842068*x^5+43345275948*x^4-4461492130*x^3-9074107416*x^2+772874614*x+655081154,-7479072*x^18+32893964*x^17+139662396*x^16-754027058*x^15-872413334*x^14+6945479120*x^13+1259253608*x^12-32882290334*x^11+7976176878*x^10+85013252782*x^9-34836517696*x^8-118169454546*x^7+46008719448*x^6+82951332478*x^5-15125508682*x^4-27603116248*x^3-2136023278*x^2+3240707462*x+869409900,-3623052*x^18+26004772*x^17+36746320*x^16-582482476*x^15+278555186*x^14+5184525382*x^13-5748061552*x^12-23263072798*x^11+33237540462*x^10+54970045904*x^9-89816568318*x^8-64858760442*x^7+116712778066*x^6+33331880414*x^5-65602169670*x^4-7749714506*x^3+15448375124*x^2+712946990*x-1255550590,-17286334*x^18+62998908*x^17+350502690*x^16-1435310312*x^15-2619071886*x^14+13096278232*x^13+8022488590*x^12-61056616434*x^11-2572719742*x^10+153723406932*x^9-39484521158*x^8-203427037230*x^7+80195660466*x^6+129935957998*x^5-51468597882*x^4-37658661172*x^3+11801046790*x^2+3790702566*x-744405902,18235058*x^5-145880464*x^3+218820696*x,10856416*x^18-13680584*x^17-294436952*x^16+329544670*x^15+3321898020*x^14-3234886560*x^13-20126469504*x^12+16647362392*x^11+70420542590*x^10-48084255578*x^9-142074575548*x^8+77254410136*x^7+155620052656*x^6-63916345060*x^5-82102171566*x^4+22954143034*x^3+19854175150*x^2-2809887858*x-1778531598,4540617*x^18-23831782*x^17-68207621*x^16+531848205*x^15+148919158*x^14-4709050151*x^13+2751784602*x^12+20954398988*x^11-21560497807*x^10-48768481803*x^9+64665908820*x^8+55627014174*x^7-89076383649*x^6-25879362846*x^5+52741292159*x^4+4573236608*x^3-13254470405*x^2-203226099*x+1180516114,14061200*x^18-79178762*x^17-199906814*x^16+1771190314*x^15+206540328*x^14-15733383230*x^13+10794758886*x^12+70357707520*x^11-76973707208*x^10-165155405902*x^9+224268260822*x^8+191760288764*x^7-303606407216*x^6-93586543758*x^5+176233508204*x^4+18589207026*x^3-42814196788*x^2-1203432708*x+3614018054,-10390810*x^18+38463386*x^17+209540892*x^16-878738780*x^15-1546549136*x^14+8046890642*x^13+4555487252*x^12-37699912044*x^11-250647820*x^10+95571110390*x^9-27106030936*x^8-127661542576*x^7+52877434832*x^6+82195511284*x^5-34426489972*x^4-23113870968*x^3+8778117504*x^2+2016250482*x-810084904,-7302468*x^18+30765236*x^17+131526652*x^16-685513962*x^15-732860582*x^14+6053182264*x^13+17332802*x^12-26797840230*x^11+14416476734*x^10+61671484692*x^9-54994884278*x^8-68175478822*x^7+83277904256*x^6+27881387998*x^5-52252825890*x^4-2108348662*x^3+13837743846*x^2-475964122*x-1337825768,4286590*x^18-11285535*x^17-93782118*x^16+246597755*x^15+800695109*x^14-2106192752*x^13-3304989765*x^12+8767063148*x^11+6344137190*x^10-17668789979*x^9-2917835405*x^8+13029091434*x^7-6834194236*x^6+3675638409*x^5+8983151440*x^4-5297777099*x^3-3812777986*x^2+965425883*x+490980871,1734290*x^18+15976904*x^17-95379576*x^16-361443462*x^15+1629632432*x^14+3268779102*x^13-13203964570*x^12-15064719594*x^11+57504889126*x^10+37358672924*x^9-137700561150*x^8-48541518388*x^7+173203495442*x^6+30720475040*x^5-102613556498*x^4-9435732288*x^3+26569256242*x^2+1206352490*x-2319329962,-3516495*x^18+12124214*x^17+72998011*x^16-275246269*x^15-572059834*x^14+2499048281*x^13+1994991216*x^12-11564151374*x^11-2236291005*x^10+28754858387*x^9-3633464940*x^8-37170870168*x^7+10133162703*x^6+22590612544*x^5-5596077099*x^4-5966548514*x^3+12696557*x^2+515877583*x+228903906,-776836*x^18-16614132*x^17+64412360*x^16+384062250*x^15-1218443898*x^14-3583054410*x^13+10299403768*x^12+17298031046*x^11-45709148736*x^10-46095696168*x^9+109976953332*x^8+67105324770*x^7-137151667322*x^6-50049839696*x^5+79034764912*x^4+16971547270*x^3-19665112086*x^2-2058114706*x+1677072150,-6080178*x^18+24082234*x^17+114996908*x^16-540964388*x^15-731232936*x^14+4833549288*x^13+1079660376*x^12-21808227906*x^11+7229198510*x^10+51967731012*x^9-34228659098*x^8-62118615196*x^7+54445336680*x^6+32310954308*x^5-33846123398*x^4-6959437482*x^3+8426528992*x^2+519856682*x-709137760,442797*x^18+12480166*x^17-39429795*x^16-301359925*x^15+756884994*x^14+2974689075*x^13-6437368386*x^12-15459096348*x^11+28622049537*x^10+45352025909*x^9-68645552766*x^8-74563022094*x^7+84464658407*x^6+63563569564*x^5-46676417051*x^4-23067733016*x^3+10404382689*x^2+2658781337*x-676097578,9036178*x^18-38424840*x^17-165071290*x^16+865770466*x^15+962314024*x^14-7774255200*x^13-574845654*x^12+35375752512*x^11-14849287310*x^10-85636274282*x^9+58613708750*x^8+105819627958*x^7-85780374206*x^6-59811263114*x^5+47976284926*x^4+15369677072*x^3-10368681818*x^2-1415215576*x+670765408,15397368*x^18-60330361*x^17-303883116*x^16+1380567567*x^15+2148711843*x^14-12680191274*x^13-5536848845*x^12+59734291024*x^11-4705425694*x^10-153027690409*x^9+50768307207*x^8+208884372022*x^7-87610467798*x^6-141219122767*x^5+51531267372*x^4+44101558093*x^3-11132838514*x^2-4826703635*x+693240897,-4176958*x^18+4191345*x^17+109840030*x^16-88150939*x^15-1199555891*x^14+703137468*x^13+7024963413*x^12-2527207414*x^11-23722825770*x^10+3148092201*x^9+46047501287*x^8+3671739518*x^7-47967899510*x^6-12069780329*x^5+22867524774*x^4+7617998885*x^3-4184919942*x^2-1195173183*x+196499985,-20185313*x^18+72478612*x^17+417341953*x^16-1664476983*x^15-3239292972*x^14+15360372569*x^13+10985314222*x^12-72836278222*x^11-10299186705*x^10+188372103871*x^9-28778261208*x^8-260786728804*x^7+73198270989*x^6+179682797110*x^5-49927059781*x^4-56497309884*x^3+11808425589*x^2+6019191123*x-787011558,-6328408*x^18+10286468*x^17+151340452*x^16-208412614*x^15-1476084336*x^14+1553949984*x^13+7550306142*x^12-4740745630*x^11-21628122144*x^10+1557976252*x^9+34001635578*x^8+22285847230*x^7-25705988182*x^6-42722785136*x^5+4848976702*x^4+22821304374*x^3+2309498634*x^2-3343856980*x-561127602,26856014*x^18-103313302*x^17-516802596*x^16+2317131762*x^15+3444398760*x^14-20655476516*x^13-6866218894*x^12+92835626768*x^11-21366023966*x^10-219632342958*x^9+122236887624*x^8+258438197458*x^7-198689719610*x^6-129125744072*x^5+120850039374*x^4+25878105276*x^3-28955908866*x^2-1712277664*x+2225222618,236943*x^18+7874114*x^17-25115525*x^16-186092853*x^15+496875580*x^14+1787017539*x^13-4290323084*x^12-8960876984*x^11+19323478529*x^10+25088245387*x^9-47116462628*x^8-38821384108*x^7+59659267211*x^6+30722806526*x^5-35115357665*x^4-10366375416*x^3+8963124407*x^2+1128601543*x-816215084,4378540*x^18-11388384*x^17-106097872*x^16+268801712*x^15+1068595148*x^14-2577088230*x^13-5866657804*x^12+12902389272*x^11+19486307700*x^10-36106375950*x^9-41281640350*x^8+56063662594*x^7+56453808280*x^6-45075513006*x^5-46344562736*x^4+16121496192*x^3+18095847646*x^2-1994674188*x-2355703484,3342386*x^18-26845626*x^17-23221108*x^16+599643748*x^15-515917670*x^14-5314181646*x^13+7870302188*x^12+23663267456*x^11-44064800724*x^10-55023828014*x^9+122331305518*x^8+62156681950*x^7-172807830984*x^6-26948609486*x^5+116369654504*x^4+2392973244*x^3-34930987696*x^2+489990254*x+3581265102,-16639078*x^18+87057952*x^17+261088148*x^16-1962429688*x^15-803924600*x^14+17635487580*x^13-7659101364*x^12-80356808844*x^11+67161901672*x^10+195000421576*x^9-204782321582*x^8-242076127094*x^7+278114174352*x^6+137953585962*x^5-155575919496*x^4-35356955282*x^3+35091615704*x^2+3139693202*x-2659168224,-5258606*x^18+18416810*x^17+102038112*x^16-402451148*x^15-693228890*x^14+3448790828*x^13+1501936714*x^12-14515619438*x^11+3604318614*x^10+30243304152*x^9-23334196326*x^8-25598184008*x^7+40621026082*x^6-152870918*x^5-28327647922*x^4+5951287994*x^3+8699367024*x^2-1142351392*x-913662074,20242282*x^18-72166626*x^17-407357634*x^16+1621175894*x^15+3008835072*x^14-14491950024*x^13-9016996434*x^12+65467516928*x^11+2285952850*x^10-156488464232*x^9+44115513666*x^8+188665050068*x^7-82915612596*x^6-101236222370*x^5+45899449310*x^4+24616048876*x^3-9273650604*x^2-2317424170*x+598625736,-3861356*x^18+30136084*x^17+29923464*x^16-665716318*x^15+500725998*x^14+5803785862*x^13-7904923530*x^12-25176574598*x^11+43173305218*x^10+55891829432*x^9-113110119630*x^8-57285528518*x^7+142649012948*x^6+18763519780*x^5-76245087730*x^4-433402720*x^3+16369799792*x^2-309162040*x-1179096030,6059732*x^18-14850214*x^17-147498544*x^16+353499838*x^15+1474588882*x^14-3427862502*x^13-7822632016*x^12+17433473270*x^11+23752007110*x^10-49881912696*x^9-41525695972*x^8+79957339974*x^7+40144207284*x^6-67291176556*x^5-20140851258*x^4+25781165760*x^3+5573584658*x^2-3592840622*x-751302848,2977676*x^18-9919044*x^17-58473362*x^16+212052106*x^15+408770192*x^14-1747333336*x^13-999006398*x^12+6787004430*x^11-1377507890*x^10-11404585120*x^9+11779421454*x^8+1620427128*x^7-21890298818*x^6+14910444470*x^5+16493492264*x^4-10273253614*x^3-5621992858*x^2+1624796172*x+665637408,11018361*x^18-60679418*x^17-157335065*x^16+1350831899*x^15+170765900*x^14-11910359387*x^13+8467321260*x^12+52602166274*x^11-60992030093*x^10-120592328067*x^9+179986557372*x^8+132509675696*x^7-249225646801*x^6-53868206888*x^5+151485669937*x^4+4518299582*x^3-39171986063*x^2+710418957*x+3492296472,-16702056*x^18+84389864*x^17+266744216*x^16-1893554574*x^15-908177014*x^14+16897939052*x^13-6844775646*x^12-76121326762*x^11+64132442428*x^10+180966448294*x^9-200244728210*x^8-215385921418*x^7+279715228062*x^6+111034994190*x^5-166361874662*x^4-23642565632*x^3+42616565942*x^2+1647952114*x-3953118972,16269664*x^18-64892974*x^17-314977042*x^16+1480249392*x^15+2123600926*x^14-13528546326*x^13-4421047390*x^12+63215030706*x^11-12220061890*x^10-159646449846*x^9+74070860970*x^8+211987447922*x^7-124196297540*x^6-135124675084*x^5+79463806874*x^4+37438327730*x^3-20539846664*x^2-3292337288*x+1805709204,-6146428*x^18+4776010*x^17+172318750*x^16-112553456*x^15-2011977684*x^14+1073382322*x^13+12635025408*x^12-5321246848*x^11-45951037102*x^10+14673563264*x^9+96923016020*x^8-22398731824*x^7-112383872014*x^6+17953319462*x^5+64261564092*x^4-7006484602*x^3-16693603224*x^2+1001513832*x+1538483726,-7930358*x^18+26401596*x^17+161710160*x^16-587053888*x^15-1221615678*x^14+5164684178*x^13+3849240626*x^12-22711367540*x^11-1830519138*x^10+51583276602*x^9-17174243614*x^8-55341953132*x^7+37503315242*x^6+20621005230*x^5-26833527350*x^4-900466480*x^3+7696773810*x^2-410810598*x-730633376,18235058*x^6-182350580*x^4+437641392*x^2-145880464,-26142172*x^18+120254316*x^17+457362674*x^16-2722761510*x^15-2312241344*x^14+24625826116*x^13-2802455216*x^12-113315041242*x^11+64958336694*x^10+279430875274*x^9-229857727388*x^8-356942227152*x^7+339167671708*x^6+214494523240*x^5-209083180154*x^4-58331937062*x^3+53757781608*x^2+5626297624*x-4689255818,29745080*x^18-77308632*x^17-680102018*x^16+1747717700*x^15+6253621024*x^14-15762190272*x^13-29633539016*x^12+72146712734*x^11+77318205638*x^10-176087726876*x^9-111375817864*x^8+220052881616*x^7+88268894428*x^6-125701538222*x^5-41055285702*x^4+31665955758*x^3+10054965102*x^2-2875029614*x-966221024,-12213750*x^18+56780092*x^17+207502862*x^16-1269577204*x^15-949635362*x^14+11267643490*x^13-2370820382*x^12-50299688812*x^11+34394361216*x^10+117650678466*x^9-114011047776*x^8-135535593946*x^7+159420186126*x^6+65001375396*x^5-90259774232*x^4-13046165314*x^3+21044487184*x^2+1130651492*x-1691236190,20859138*x^18-92590323*x^17-373334652*x^16+2094090971*x^15+2042378237*x^14-18906592728*x^13+351411315*x^12+86748681968*x^11-42446636680*x^10-212868997679*x^9+157384397521*x^8+269472214106*x^7-230929384708*x^6-159216898551*x^5+136098747700*x^4+42614889565*x^3-32832023946*x^2-4205361013*x+2681710937,-25762386*x^18+112310006*x^17+466626914*x^16-2537747912*x^15-2650555424*x^14+22888442748*x^13+748726252*x^12-104903267950*x^11+46870640616*x^10+257202053514*x^9-180377032652*x^8-325911435892*x^7+266703661410*x^6+194630553072*x^5-155886053198*x^4-54822391144*x^3+36043378630*x^2+6017479962*x-2615110542,-22933962*x^18+81317186*x^17+463498714*x^16-1832333672*x^15-3443894430*x^14+16447361286*x^13+10414811920*x^12-74737976408*x^11-2734484702*x^10+180214521222*x^9-52553061236*x^8-220153185216*x^7+103523357842*x^6+119763729004*x^5-64315628174*x^4-27515611188*x^3+15459089292*x^2+2193836854*x-1251446800]];
E[421,2] = [x^15+6*x^14-2*x^13-71*x^12-74*x^11+296*x^10+488*x^9-494*x^8-1157*x^7+205*x^6+1137*x^5+203*x^4-374*x^3-127*x^2+3*x+3, [24617,24617*x,-25193*x^14-139169*x^13+111469*x^12+1714563*x^11+1101947*x^10-7699217*x^9-8792218*x^8+15213141*x^7+21912927*x^6-12318890*x^5-22124776*x^4+1991679*x^3+7618866*x^2+844015*x-229186,24617*x^2-49234,22400*x^14+122208*x^13-106252*x^12-1516251*x^11-900656*x^10+6884713*x^9+7511320*x^8-13885777*x^7-18990607*x^6+11807197*x^5+19349004*x^4-2528241*x^3-6727668*x^2-555389*x+212047,11989*x^14+61083*x^13-74140*x^12-762335*x^11-242089*x^10+3501966*x^9+2767799*x^8-7235374*x^7-7154325*x^6+6519665*x^5+7105858*x^4-1803316*x^3-2355496*x^2-153607*x+75579,-9732*x^14-52251*x^13+49908*x^12+654805*x^11+351986*x^10-3026606*x^9-3132051*x^8+6356091*x^7+8147248*x^6-6082602*x^5-8594613*x^4+2265940*x^3+3152696*x^2-229332*x-135633,24617*x^3-98468*x,58149*x^14+329799*x^13-218189*x^12-4033630*x^11-3056740*x^10+17897494*x^9+22842829*x^8-34610615*x^7-56549697*x^6+26768283*x^5+57714804*x^4-3338244*x^3-20461510*x^2-2100883*x+670184,-12192*x^14-61452*x^13+74149*x^12+756944*x^11+254313*x^10-3419880*x^9-2820177*x^8+6926193*x^7+7215197*x^6-6119796*x^5-7075441*x^4+1649932*x^3+2289411*x^2+144847*x-67200,15431*x^14+87106*x^13-62166*x^12-1066618*x^11-729237*x^10+4759078*x^9+5469436*x^8-9377862*x^7-13019022*x^6+7761488*x^5+12265003*x^4-1665986*x^3-3686252*x^2-271133*x-1979,39535*x^14+228176*x^13-134054*x^12-2784029*x^11-2250672*x^10+12315601*x^9+16271628*x^8-23709334*x^7-39763934*x^6+18112145*x^5+40012469*x^4-1854968*x^3-13868736*x^2-1648418*x+422405,20552*x^14+123942*x^13-45052*x^12-1495721*x^11-1499873*x^10+6485166*x^9+10133695*x^8-11956949*x^7-24682389*x^6+8005410*x^5+25309884*x^4+535357*x^3-9036331*x^2-1313376*x+200892,6141*x^14+30444*x^13-36167*x^12-368182*x^11-145934*x^10+1617165*x^9+1548483*x^8-3112676*x^7-4087542*x^6+2470671*x^5+4241536*x^4-487072*x^3-1465296*x^2-106437*x+29196,-23241*x^14-144837*x^13+35955*x^12+1750637*x^11+1890261*x^10-7620757*x^9-12363344*x^8+14233123*x^7+29705016*x^6-10087296*x^5-30001720*x^4+194220*x^3+10568443*x^2+1264641*x-374270,24617*x^4-147702*x^2+98468,-22369*x^14-143737*x^13+12512*x^12+1712070*x^11+2095321*x^10-7260440*x^9-13200156*x^8+12769687*x^7+31439211*x^6-7278221*x^5-31704107*x^4-2007574*x^3+11119222*x^2+1615379*x-339807,-19095*x^14-101891*x^13+94949*x^12+1246286*x^11+685390*x^10-5533883*x^9-5885009*x^8+10728696*x^7+14847738*x^6-8400609*x^5-15142491*x^4+1286216*x^3+5284040*x^2+495737*x-174447,-44034*x^14-245934*x^13+170512*x^12+2977902*x^11+2217452*x^10-12977225*x^9-16641683*x^8+24202052*x^7+40814214*x^6-17016384*x^5-40931907*x^4+361281*x^3+14001439*x^2+2037806*x-402233,-33100*x^14-194651*x^13+103816*x^12+2384607*x^11+1990264*x^10-10639907*x^9-14119295*x^8+20880607*x^7+34360778*x^6-16827531*x^5-34573100*x^4+2786085*x^3+12051799*x^2+1080154*x-387518,-32887*x^14-186139*x^13+120420*x^12+2260994*x^11+1749579*x^10-9946660*x^9-12969426*x^8+19024777*x^7+32139100*x^6-14560207*x^5-33147883*x^4+2035347*x^3+12112287*x^2+878949*x-511755,-5480*x^14-31304*x^13+28983*x^12+412657*x^11+191502*x^10-2060892*x^9-1754948*x^8+4834645*x^7+4598133*x^6-5280044*x^5-4798479*x^4+2084942*x^3+1688604*x^2-48272*x-46293,38328*x^14+212764*x^13-162498*x^12-2608718*x^11-1756591*x^10+11644851*x^9+13710835*x^8-22892062*x^7-34026157*x^6+18745886*x^5+34553847*x^4-3878121*x^3-12348815*x^2-590313*x+478167,-33012*x^14-177150*x^13+171236*x^12+2199588*x^11+1097419*x^10-10025384*x^9-9714642*x^8+20448809*x^7+24316120*x^6-17978156*x^5-24092289*x^4+4523986*x^3+8083519*x^2+611014*x-269763,20274*x^14+99426*x^13-132715*x^12-1222858*x^11-303457*x^10+5491027*x^9+4151824*x^8-10909524*x^7-11024874*x^6+9091920*x^5+11247453*x^4-1896168*x^3-3804709*x^2-473600*x+19675,630*x^14-3948*x^13-36529*x^12+20975*x^11+401774*x^10+104319*x^9-1804261*x^8-903725*x^7+3792250*x^6+1942260*x^5-3636699*x^4-1349883*x^3+1296728*x^2+139236*x-61656,-75638*x^14-438472*x^13+238852*x^12+5318928*x^11+4538061*x^10-23287828*x^9-32317662*x^8+43945577*x^7+79122655*x^6-32061601*x^5-80703253*x^4+2141986*x^3+29021715*x^2+3118488*x-1126531,13062*x^14+80617*x^13-31987*x^12-1001110*x^11-904543*x^10+4604887*x^9+6185080*x^8-9694587*x^7-15082730*x^6+9424423*x^5+15455531*x^4-3700442*x^3-5631922*x^2+469437*x+252843,50847*x^14+311554*x^13-94659*x^12-3758611*x^11-3915675*x^10+16335309*x^9+25977848*x^8-30527054*x^7-62823259*x^6+22075756*x^5+64133950*x^4-1731884*x^3-23124562*x^2-1803712*x+789075,-5391*x^14-10527*x^13+100526*x^12+170427*x^11-741421*x^10-1021736*x^9+2752069*x^8+2815179*x^7-5322891*x^6-3576703*x^5+4912143*x^4+1876309*x^3-1686966*x^2-304547*x+69723,-33461*x^14-195671*x^13+117050*x^12+2433349*x^11+1885158*x^10-11134701*x^9-13802561*x^8+22938972*x^7+33916419*x^6-20752676*x^5-34066929*x^4+5992804*x^3+11660581*x^2+253185*x-375164,24617*x^5-196936*x^3+295404*x,74388*x^14+429894*x^13-247649*x^12-5243712*x^11-4314603*x^10+23165247*x^9+31140212*x^8-44376989*x^7-76411759*x^6+33232123*x^5+77493040*x^4-2488021*x^3-27189708*x^2-3336138*x+813964,-9523*x^14-32226*x^13+123871*x^12+440015*x^11-639216*x^10-2284084*x^9+1719401*x^8+5558278*x^7-2692576*x^6-6270554*x^5+2533333*x^4+2753216*x^3-1225484*x^2-272700*x+67107,28357*x^14+189910*x^13+9778*x^12-2262940*x^11-2977464*x^10+9636146*x^9+18189739*x^8-17317501*x^7-42823531*x^6+11250077*x^5+43057294*x^4+563675*x^3-15312607*x^2-1475700*x+487368,-103619*x^14-602839*x^13+326919*x^12+7339620*x^11+6231717*x^10-32361637*x^9-44389892*x^8+61976053*x^7+108613260*x^6-46968042*x^5-110267107*x^4+4818998*x^3+38993692*x^2+4084604*x-1283083,29281*x^14+164426*x^13-119290*x^12-2027035*x^11-1434697*x^10+9109718*x^9+11105865*x^8-18060362*x^7-27890693*x^6+15009554*x^5+28753034*x^4-3503675*x^3-10182630*x^2-198186*x+382169,18270*x^14+82444*x^13-148512*x^12-1041064*x^11+56839*x^10+4846909*x^9+2449256*x^8-10133124*x^7-7989414*x^6+9134751*x^5+9300183*x^4-2467277*x^3-3554512*x^2-270131*x+132102,-35868*x^14-203563*x^13+138257*x^12+2506579*x^11+1854264*x^10-11251577*x^9-14047326*x^8+22248109*x^7+35130527*x^6-18142501*x^5-36393040*x^4+3263279*x^3+13384419*x^2+930027*x-620451,28333*x^14+160520*x^13-113791*x^12-1973024*x^11-1350933*x^10+8873265*x^9+10169561*x^8-17788308*x^7-24472425*x^6+15301192*x^5+23656267*x^4-3627465*x^3-7702368*x^2-577912*x+233700,-26309*x^14-151869*x^13+88963*x^12+1853243*x^11+1493778*x^10-8229352*x^9-10776922*x^8+16128266*x^7+26346728*x^6-13357549*x^5-26773637*x^4+3054989*x^3+9631890*x^2+422236*x-405524,11183*x^14+54646*x^13-73983*x^12-684059*x^11-212108*x^10+3079430*x^9+2778599*x^8-5911159*x^7-7818372*x^6+4244636*x^5+8711408*x^4-187451*x^3-3297700*x^2-413094*x+98661,11459*x^14+72610*x^13+5434*x^12-817883*x^11-1229900*x^10+3051984*x^9+7546445*x^8-3586312*x^7-18005988*x^6-1885147*x^5+18504605*x^4+4980143*x^3-6539149*x^2-1383196*x+37186,-29286*x^14-156189*x^13+147909*x^12+1919218*x^11+1019662*x^10-8598864*x^9-8811347*x^8+17013497*x^7+21881400*x^6-14090695*x^5-21332624*x^4+2971056*x^3+6628272*x^2+512413*x+20398,48486*x^14+306656*x^13-56113*x^12-3683068*x^11-4140818*x^10+15885632*x^9+26453873*x^8-29193412*x^7-62642428*x^6+19811740*x^5+62443050*x^4+699626*x^3-21879423*x^2-2855836*x+808432,-17204*x^14-85842*x^13+112570*x^12+1079681*x^11+299763*x^10-4993229*x^9-3958030*x^8+10319339*x^7+10888646*x^6-9025089*x^5-11658705*x^4+1985857*x^3+4277343*x^2+363183*x-114984,-20361*x^14-113651*x^13+69418*x^12+1350666*x^11+1156224*x^10-5680917*x^9-8429496*x^8+9778271*x^7+20946996*x^6-5235031*x^5-21735326*x^4-1591331*x^3+7651806*x^2+1106371*x-114552,-58148*x^14-351140*x^13+123844*x^12+4222589*x^11+4247512*x^10-18235988*x^9-28402375*x^8+33539904*x^7+68317172*x^6-22781935*x^5-68799516*x^4-553033*x^3+24155962*x^2+3126109*x-745774,-66595*x^14-403238*x^13+154535*x^12+4892238*x^11+4696500*x^10-21466547*x^9-31648402*x^8+40787319*x^7+75914418*x^6-30337439*x^5-75588085*x^4+2463980*x^3+25715540*x^2+2834964*x-629705,-22218*x^14-92167*x^13+216596*x^12+1196819*x^11-510077*x^10-5741888*x^9-894168*x^8+12432144*x^7+4935750*x^6-11804085*x^5-6011790*x^4+3777767*x^3+2101198*x^2-41147*x-60822,97296*x^14+566971*x^13-302628*x^12-6898176*x^11-5905900*x^10+30389391*x^9+41984635*x^8-58074403*x^7-102902446*x^6+43608047*x^5+104923006*x^4-3907496*x^3-37505305*x^2-3898588*x+1398066,-48832*x^14-283153*x^13+155809*x^12+3439836*x^11+2917585*x^10-15082033*x^9-20859895*x^8+28435058*x^7+51177888*x^6-20363829*x^5-52097541*x^4+461634*x^3+18291908*x^2+2563206*x-403674,-23254*x^14-162808*x^13-42261*x^12+1903572*x^11+2854381*x^10-7848331*x^9-16746584*x^8+13160613*x^7+38806169*x^6-6644655*x^5-38821268*x^4-2711920*x^3+14137799*x^2+1796074*x-597833,15356*x^14+87576*x^13-51370*x^12-1059151*x^11-898980*x^10+4593682*x^9+6580405*x^8-8390511*x^7-16555811*x^6+5297153*x^5+17496500*x^4+733103*x^3-6487538*x^2-899617*x+226914,-85695*x^14-472275*x^13+376571*x^12+5809154*x^11+3809856*x^10-25997236*x^9-30389344*x^8+51035341*x^7+76210764*x^6-40871697*x^5-77869809*x^4+6663957*x^3+27395988*x^2+2364844*x-869308,-10037*x^14-66751*x^13-1374*x^12+798409*x^11+1030403*x^10-3423506*x^9-6338925*x^8+6255356*x^7+14921797*x^6-4337305*x^5-14835100*x^4+227410*x^3+5058903*x^2+426531*x-97578,168392*x^14+945285*x^13-682311*x^12-11606369*x^11-8163019*x^10+51865191*x^9+62514745*x^8-101815883*x^7-154559770*x^6+81954803*x^5+156208597*x^4-13645023*x^3-54758411*x^2-5121722*x+2004121,6472*x^14+7035*x^13-148474*x^12-152997*x^11+1284597*x^10+1164512*x^9-5408636*x^8-3993280*x^7+11652121*x^6+6320911*x^5-12053825*x^4-4107784*x^3+4653857*x^2+636534*x-152541,-126216*x^14-705760*x^13+531769*x^12+8704150*x^11+5870215*x^10-39225868*x^9-45800581*x^8+78359758*x^7+114030215*x^6-65917808*x^5-116014865*x^4+14223571*x^3+40964840*x^2+2609745*x-1497185,68301*x^14+379418*x^13-284244*x^12-4641629*x^11-3206522*x^10+20624391*x^9+24878713*x^8-40026524*x^7-61881580*x^6+31216302*x^5+62974122*x^4-4091640*x^3-22126090*x^2-2443386*x+764713,-12242*x^14-77550*x^13+15701*x^12+934241*x^11+1027363*x^10-4022484*x^9-6559825*x^8+7289023*x^7+15385208*x^6-4685561*x^5-15165972*x^4-352963*x^3+5419138*x^2+628481*x-275654,5095*x^14+50128*x^13+57618*x^12-590956*x^11-1230245*x^10+2526407*x^9+6409238*x^8-4797958*x^7-13893171*x^6+3978228*x^5+12785387*x^4-853833*x^3-3996362*x^2-274781*x+100383,154975*x^14+858687*x^13-661586*x^12-10530528*x^11-7062476*x^10+46999310*x^9+55414308*x^8-92129988*x^7-138071830*x^6+74060573*x^5+140527589*x^4-12632071*x^3-49432444*x^2-4254726*x+1630113,24617*x^6-246170*x^4+590808*x^2-196936,10394*x^14+54667*x^13-52969*x^12-667541*x^11-371113*x^10+2933661*x^9+3298737*x^8-5434046*x^7-8571554*x^6+3394708*x^5+8966054*x^4+684074*x^3-3222890*x^2-647958*x+141414,-16434*x^14-98873*x^13+37836*x^12+1190109*x^11+1146399*x^10-5161132*x^9-7629317*x^8+9655157*x^7+17982583*x^6-7086116*x^5-17588785*x^4+631404*x^3+6111138*x^2+590800*x-223164,18399*x^14+111176*x^13-35134*x^12-1306970*x^11-1322205*x^10+5467166*x^9+8416814*x^8-9538048*x^7-18947009*x^6+5628899*x^5+17128220*x^4+1215787*x^3-4983110*x^2-1317032*x+80090,69650*x^14+392299*x^13-261142*x^12-4768058*x^11-3655918*x^10+20887505*x^9+27254228*x^8-39250061*x^7-67196761*x^6+27917426*x^5+68094599*x^4-771938*x^3-23720565*x^2-3135082*x+708183,267*x^14-36137*x^13-179243*x^12+282607*x^11+2272333*x^10-58125*x^9-10849779*x^8-4335208*x^7+24000456*x^6+11855081*x^5-24533194*x^4-10275763*x^3+9271486*x^2+2332917*x-242760,19768*x^14+66492*x^13-249593*x^12-879046*x^11+1242474*x^10+4351523*x^9-3309143*x^8-10014482*x^7+5436892*x^6+10815385*x^5-5192796*x^4-4707089*x^3+2125639*x^2+402297*x-85071]];

E[422,1] = [x^3+5*x^2+6*x+1, [1,1,x,1,x^2+2*x-2,x,-2*x^2-7*x-6,1,x^2-3,x^2+2*x-2,-3*x^2-11*x-7,x,2*x^2+9*x+4,-2*x^2-7*x-6,-3*x^2-8*x-1,1,2*x^2+9*x+4,x^2-3,4*x^2+13*x+3,x^2+2*x-2,3*x^2+6*x+2,-3*x^2-11*x-7,4*x^2+16*x+7,x,-x^2-3*x,2*x^2+9*x+4,-5*x^2-12*x-1,-2*x^2-7*x-6,-3*x^2-5*x+8,-3*x^2-8*x-1,-x^2-3*x-3,1,4*x^2+11*x+3,2*x^2+9*x+4,x^2+10*x+13,x^2-3,-5*x^2-19*x-12,4*x^2+13*x+3,-x^2-8*x-2,x^2+2*x-2,-5*x^2-16*x-6,3*x^2+6*x+2,-3*x^2-16*x-12,-3*x^2-11*x-7,4*x^2+11*x+9,4*x^2+16*x+7,x^2+x-4,x,9*x^2+32*x+21,-x^2-3*x,-x^2-8*x-2,2*x^2+9*x+4,-4*x-1,-5*x^2-12*x-1,5*x^2+23*x+16,-2*x^2-7*x-6,-7*x^2-21*x-4,-3*x^2-5*x+8,-x^2-9*x-15,-3*x^2-8*x-1,-7*x^2-32*x-20,-x^2-3*x-3,-3*x^2+5*x+15,1,-9*x^2-30*x-11,4*x^2+11*x+3,9*x^2+35*x+19,2*x^2+9*x+4,-4*x^2-17*x-4,x^2+10*x+13,3*x^2+4*x-6,x^2-3,2*x^2+6*x-9,-5*x^2-19*x-12,2*x^2+6*x+1,4*x^2+13*x+3,8*x^2+31*x+29,-x^2-8*x-2,8*x^2+24*x+4,x^2+2*x-2,10*x^2+29*x+14,-5*x^2-16*x-6,-5*x^2-11*x+2,3*x^2+6*x+2,-9*x^2-30*x-11,-3*x^2-16*x-12,10*x^2+26*x+3,-3*x^2-11*x-7,-11*x^2-33*x-7,4*x^2+11*x+9,x^2-6*x-12,4*x^2+16*x+7,2*x^2+3*x+1,x^2+x-4,-8*x^2-30*x-7,x,x^2+5*x-2,9*x^2+32*x+21,12*x+17,-x^2-3*x,-x^2+2*x+18,-x^2-8*x-2,-6*x^2-18*x-11,2*x^2+9*x+4,5*x^2+7*x-1,-4*x-1]];
E[422,2] = [x^6-4*x^5-4*x^4+28*x^3-15*x^2-33*x+28, [1,1,x,1,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,x,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,1,x^2-3,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,x,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,-6*x^5+15*x^4+46*x^3-98*x^2-55*x+112,1,x^5-3*x^4-8*x^3+23*x^2+11*x-32,x^2-3,-3*x^5+8*x^4+23*x^3-53*x^2-30*x+63,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,5*x^5-12*x^4-39*x^3+76*x^2+49*x-84,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,x^5-3*x^4-7*x^3+20*x^2+6*x-22,x,8*x^5-20*x^4-62*x^3+131*x^2+77*x-152,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,x^3-6*x,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,-5*x^5+13*x^4+38*x^3-86*x^2-45*x+98,-6*x^5+15*x^4+46*x^3-98*x^2-55*x+112,-3*x^5+8*x^4+22*x^3-53*x^2-24*x+62,1,2*x^5-6*x^4-15*x^3+43*x^2+19*x-56,x^5-3*x^4-8*x^3+23*x^2+11*x-32,-12*x^5+31*x^4+92*x^3-206*x^2-111*x+238,x^2-3,-7*x^5+19*x^4+53*x^3-129*x^2-63*x+153,-3*x^5+8*x^4+23*x^3-53*x^2-30*x+63,9*x^5-22*x^4-71*x^3+144*x^2+91*x-168,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,3*x^5-8*x^4-23*x^3+54*x^2+29*x-66,5*x^5-12*x^4-39*x^3+76*x^2+49*x-84,-8*x^5+20*x^4+61*x^3-130*x^2-72*x+149,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,3*x^5-8*x^4-23*x^3+53*x^2+28*x-63,x^5-3*x^4-7*x^3+20*x^2+6*x-22,-10*x^5+25*x^4+78*x^3-166*x^2-98*x+195,x,9*x^5-22*x^4-71*x^3+144*x^2+91*x-167,8*x^5-20*x^4-62*x^3+131*x^2+77*x-152,x^5-4*x^4-5*x^3+26*x^2+x-28,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,-5*x^5+13*x^4+39*x^3-88*x^2-48*x+102,x^3-6*x,-5*x^5+11*x^4+41*x^3-69*x^2-57*x+77,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,-4*x^5+11*x^4+31*x^3-75*x^2-36*x+84,-5*x^5+13*x^4+38*x^3-86*x^2-45*x+98,x^5-4*x^4-6*x^3+29*x^2+4*x-36,-6*x^5+15*x^4+46*x^3-98*x^2-55*x+112,10*x^5-26*x^4-76*x^3+173*x^2+92*x-204,-3*x^5+8*x^4+22*x^3-53*x^2-24*x+62,-x^5+2*x^4+8*x^3-11*x^2-12*x+10,1,-17*x^5+43*x^4+132*x^3-284*x^2-166*x+329,2*x^5-6*x^4-15*x^3+43*x^2+19*x-56,2*x^5-6*x^4-15*x^3+44*x^2+21*x-60,x^5-3*x^4-8*x^3+23*x^2+11*x-32,x^5-3*x^4-8*x^3+21*x^2+11*x-28,-12*x^5+31*x^4+92*x^3-206*x^2-111*x+238,-3*x^5+9*x^4+21*x^3-61*x^2-18*x+67,x^2-3,2*x^5-6*x^4-15*x^3+45*x^2+18*x-58,-7*x^5+19*x^4+53*x^3-129*x^2-63*x+153,12*x^5-30*x^4-93*x^3+197*x^2+112*x-224,-3*x^5+8*x^4+23*x^3-53*x^2-30*x+63,14*x^5-36*x^4-107*x^3+239*x^2+127*x-282,9*x^5-22*x^4-71*x^3+144*x^2+91*x-168,6*x^5-12*x^4-51*x^3+73*x^2+74*x-79,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,x^4-9*x^2+9,3*x^5-8*x^4-23*x^3+54*x^2+29*x-66,14*x^5-35*x^4-107*x^3+227*x^2+128*x-256,5*x^5-12*x^4-39*x^3+76*x^2+49*x-84,-4*x^5+9*x^4+32*x^3-56*x^2-39*x+56,-8*x^5+20*x^4+61*x^3-130*x^2-72*x+149,-7*x^5+18*x^4+54*x^3-120*x^2-67*x+140,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,9*x^5-20*x^4-74*x^3+129*x^2+102*x-152,3*x^5-8*x^4-23*x^3+53*x^2+28*x-63,19*x^5-48*x^4-147*x^3+316*x^2+183*x-362,x^5-3*x^4-7*x^3+20*x^2+6*x-22,-4*x^5+10*x^4+31*x^3-69*x^2-37*x+84,-10*x^5+25*x^4+78*x^3-166*x^2-98*x+195,18*x^5-45*x^4-139*x^3+292*x^2+169*x-329,x,-2*x^5+3*x^4+19*x^3-15*x^2-36*x+16,9*x^5-22*x^4-71*x^3+144*x^2+91*x-167,-4*x^5+11*x^4+29*x^3-74*x^2-29*x+85,8*x^5-20*x^4-62*x^3+131*x^2+77*x-152,-20*x^5+50*x^4+153*x^3-326*x^2-178*x+367,x^5-4*x^4-5*x^3+26*x^2+x-28,7*x^5-16*x^4-55*x^3+101*x^2+65*x-105,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,-17*x^5+44*x^4+130*x^3-291*x^2-158*x+336,-5*x^5+13*x^4+39*x^3-88*x^2-48*x+102]];
E[422,3] = [x^2-3*x+1, [1,-1,x,1,-2*x+4,-x,4,-1,3*x-4,2*x-4,-2*x+4,x,0,-4,-2*x+2,1,-2,-3*x+4,4*x-6,-2*x+4,4*x,2*x-4,4*x-6,-x,-4*x+7,0,2*x-3,4,x-5,2*x-2,-2*x+6,-1,-2*x+2,2,-8*x+16,3*x-4,-4*x+6,-4*x+6,0,2*x-4,-8*x+14,-4*x,2*x+2,-2*x+4,2*x-10,-4*x+6,7*x-15,x,9,4*x-7,-2*x,0,-4*x+6,-2*x+3,-4*x+12,-4,6*x-4,-x+5,4*x-2,-2*x+2,x-1,2*x-6,12*x-16,1,0,2*x-2,5*x-13,-2,6*x-4,8*x-16,9*x-16,-3*x+4,-11*x+14,4*x-6,-5*x+4,4*x-6,-8*x+16,0,-5*x-3,-2*x+4,-6*x+10,8*x-14,-10,4*x,4*x-8,-2*x-2,-2*x-1,2*x-4,6*x-14,-2*x+10,0,4*x-6,2,-7*x+15,4*x-16,-x,-8*x+18,-9,2*x-10,-4*x+7,10*x-20,2*x,-11*x+12,0,-8*x+8,4*x-6]];
E[422,4] = [x^3+x^2-6*x-5, [1,-1,x,1,x^2-4,-x,-x,-1,x^2-3,-x^2+4,-x^2+x+3,x,x+4,x,-x^2+2*x+5,1,x+2,-x^2+3,-x+3,x^2-4,-x^2,x^2-x-3,-2*x-1,-x,-x^2-x+6,-x-4,-x^2+5,-x,x^2-x,x^2-2*x-5,-x^2+x+5,-1,2*x^2-3*x-5,-x-2,x^2-2*x-5,x^2-3,x^2-x+2,x-3,x^2+4*x,-x^2+4,-x^2+4,x^2,-x^2-2*x+2,-x^2+x+3,-x+7,2*x+1,-x^2+x+6,x,x^2-7,x^2+x-6,x^2+2*x,x+4,-2*x^2-4*x+9,x^2-5,-x^2+3*x-2,x,-x^2+3*x,-x^2+x,x^2-x-9,-x^2+2*x+5,x^2-2*x,x^2-x-5,x^2-3*x-5,1,3*x^2+2*x-11,-2*x^2+3*x+5,x^2-x+5,x+2,-2*x^2-x,-x^2+2*x+5,x^2-10,-x^2+3,-2*x^2+2*x+11,-x^2+x-2,-5,-x+3,-2*x^2+3*x+5,-x^2-4*x,4*x+4,x^2-4,-2*x^2-x+4,x^2-4,3*x^2-3*x-12,-x^2,x^2+2*x-3,x^2+2*x-2,-2*x^2+6*x+5,x^2-x-3,-x^2-3*x-5,x-7,-x^2-4*x,-2*x-1,2*x^2-x-5,x^2-x-6,4*x^2-2*x-17,-x,3*x^2-3*x-10,-x^2+7,-2*x^2+4*x+1,-x^2-x+6,-5*x^2+20,-x^2-2*x,2*x^2-2*x-13,-x-4,-3*x^2+x+5,2*x^2+4*x-9]];
E[422,5] = [x^3+x^2-8*x-3, [3,-3,3*x,3,-x^2-2*x,-3*x,-3*x-6,-3,3*x^2-9,x^2+2*x,x^2-x+3,3*x,-2*x^2-x,3*x+6,-x^2-8*x-3,3,2*x^2+x-18,-3*x^2+9,-3*x-15,-x^2-2*x,-3*x^2-6*x,-x^2+x-3,9,-3*x,3*x^2+9*x-12,2*x^2+x,-3*x^2+6*x+9,-3*x-6,-5*x^2-x+30,x^2+8*x+3,3*x^2+9*x-21,-3,-2*x^2+11*x+3,-2*x^2-x+18,3*x^2+12*x+3,3*x^2-9,x^2-x-18,3*x+15,x^2-16*x-6,x^2+2*x,7*x^2+2*x-36,3*x^2+6*x,-3*x^2-6*x,x^2-x+3,-4*x^2-5*x-3,-9,x^2-x-12,3*x,3*x^2+12*x-9,-3*x^2-9*x+12,-x^2-2*x+6,-2*x^2-x,4*x^2+14*x-33,3*x^2-6*x-9,-3*x^2-3*x,3*x+6,-3*x^2-15*x,5*x^2+x-30,-5*x^2-7*x+39,-x^2-8*x-3,-3*x^2+6*x+12,-3*x^2-9*x+21,-3*x^2-15*x+9,3,5*x^2+10*x+3,2*x^2-11*x-3,3*x^2-9*x-15,2*x^2+x-18,9*x,-3*x^2-12*x-3,-5*x^2+2*x+48,-3*x^2+9,-2*x^2+2*x+9,-x^2+x+18,6*x^2+12*x+9,-3*x-15,-9*x-9,-x^2+16*x+6,-8*x^2-4*x+48,-x^2-2*x,-15*x+18,-7*x^2-2*x+36,5*x^2+x-36,-3*x^2-6*x,x^2+2*x-3,3*x^2+6*x,4*x^2-10*x-15,-x^2+x-3,-9*x^2-3*x+39,4*x^2+5*x+3,3*x^2+18*x+6,9,6*x^2+3*x+9,-x^2+x+12,6*x^2+18*x+3,-3*x,x^2-13*x-6,-3*x^2-12*x+9,10*x^2-10*x-15,3*x^2+9*x-12,x^2+2*x-24,x^2+2*x-6,6*x-9,2*x^2+x,9*x^2+27*x+9,-4*x^2-14*x+33]];
E[422,6] = [x, [1,-1,0,1,1,0,-2,-1,-3,-1,-3,0,-7,2,0,1,4,3,7,1,0,3,-6,0,-4,7,0,-2,-6,0,2,-1,0,-4,-2,-3,-7,-7,0,-1,2,0,-3,-3,-3,6,7,0,-3,4,0,-7,6,0,-3,2,0,6,12,0,-8,-2,6,1,-7,0,-8,4,0,2,-9,3,-10,7,0,7,6,0,-3,1,9,-2,16,0,4,3,0,3,16,3,14,-6,0,-7,7,0,-12,3,9,-4,3,0,15,7,0,-6]];

E[423,1] = [x^2-x-4, [1,x,0,x+2,x-1,0,-x+1,x+4,0,4,-x-3,0,2*x-4,-4,0,3*x,-2*x,0,6,2*x+2,0,-4*x-4,-3*x+3,0,-x,-2*x+8,0,-2*x-2,x+7,0,-2*x+4,x+4,0,-2*x-8,x-5,0,x+5,6*x,0,4*x,-2*x-2,0,-2*x+8,-6*x-10,0,-12,-1,0,-x-2,-x-4,0,2*x,4*x+2,0,-3*x-1,-4*x,0,8*x+4,-2*x-2,0,2,2*x-8,0,-x+4,-4*x+12,0,2*x,-6*x-8,0,-4*x+4,-2*x+2,0,2*x+4,6*x+4,0,6*x+12,3*x+1,0,-x-7,12,0,-4*x-8,-2*x-2,0,-8,6*x-8,0,-8*x-16,4*x-2,0,4*x-12,-6*x-6,0,-x,6*x-6,0]];
E[423,2] = [x^3-2*x^2-3*x+2, [1,x,0,x^2-2,-x+1,0,-x^2+2*x+1,2*x^2-x-2,0,-x^2+x,-x^2+2*x+5,0,-2*x,-2*x+2,0,x^2+4*x,4,0,-x^2+x+2,-x^2-x,0,2*x+2,-x^2+3,0,x^2-2*x-4,-2*x^2,0,-2*x-2,-2*x^2+x+9,0,3*x^2-7*x-6,2*x^2+5*x+2,0,4*x,-x^2+4*x-1,0,-x^2-2*x+5,-x^2-x+2,0,-x^2-5*x+2,3*x^2-5*x-4,0,x^2-x+2,4*x^2-2*x-10,0,-2*x^2+2,1,0,x^2-4*x-2,-x-2,0,-4*x^2-2*x+4,4*x^2-6*x-6,0,-x^2+3,-2*x^2+2*x-4,0,-3*x^2+3*x+4,-2*x^2+6,0,2*x-6,-x^2+3*x-6,0,7*x^2-4,2*x^2-2*x,0,-3*x^2+9*x+4,4*x^2-8,0,2*x^2-4*x+2,2*x^2+2*x-14,0,4*x^2-4*x-6,-4*x^2+2*x+2,0,-x^2-3*x-2,-3*x^2+4*x+9,0,-x^2+2*x-3,-5*x^2+x+2,0,x^2+5*x-6,6*x^2-10*x-10,0,-4*x+4,x^2+5*x-2,0,6*x^2-2*x-12,-4*x^2+10*x+6,0,4*x-4,-2*x^2-4*x-2,0,x,2*x,0]];
E[423,3] = [x^3+2*x^2-3*x-2, [1,x,0,x^2-2,-x-1,0,-x^2-2*x+1,-2*x^2-x+2,0,-x^2-x,x^2+2*x-5,0,2*x,-2*x-2,0,x^2-4*x,-4,0,-x^2-x+2,x^2-x,0,-2*x+2,x^2-3,0,x^2+2*x-4,2*x^2,0,2*x-2,2*x^2+x-9,0,3*x^2+7*x-6,-2*x^2+5*x-2,0,-4*x,x^2+4*x+1,0,-x^2+2*x+5,x^2-x-2,0,-x^2+5*x+2,-3*x^2-5*x+4,0,x^2+x+2,-4*x^2-2*x+10,0,-2*x^2+2,-1,0,x^2+4*x-2,-x+2,0,-4*x^2+2*x+4,-4*x^2-6*x+6,0,-x^2+3,2*x^2+2*x+4,0,-3*x^2-3*x+4,2*x^2-6,0,-2*x-6,x^2+3*x+6,0,7*x^2-4,-2*x^2-2*x,0,-3*x^2-9*x+4,-4*x^2+8,0,2*x^2+4*x+2,-2*x^2+2*x+14,0,4*x^2+4*x-6,4*x^2+2*x-2,0,-x^2+3*x-2,3*x^2+4*x-9,0,-x^2-2*x-3,5*x^2+x-2,0,x^2-5*x-6,-6*x^2-10*x+10,0,4*x+4,-x^2+5*x+2,0,6*x^2+2*x-12,4*x^2+10*x-6,0,-4*x-4,2*x^2-4*x+2,0,-x,2*x,0]];
E[423,4] = [x^4+x^3-5*x^2-5*x-1, [1,x,0,x^2-2,-4*x^3-2*x^2+20*x+10,0,-3*x^3-x^2+16*x+7,x^3-4*x,0,2*x^3-10*x-4,2*x^3+2*x^2-10*x-6,0,4*x^3+2*x^2-22*x-8,2*x^3+x^2-8*x-3,0,-x^3-x^2+5*x+5,x^3-x^2-6*x,0,2*x^3-10*x-2,6*x^3+4*x^2-34*x-18,0,4*x+2,-2*x^3+12*x+4,0,-4*x^3-4*x^2+20*x+19,-2*x^3-2*x^2+12*x+4,0,5*x^3+4*x^2-25*x-12,-2*x^3-2*x^2+10*x+10,0,-4*x^3-2*x^2+22*x+8,-2*x^3+8*x-1,0,-2*x^3-x^2+5*x+1,-2*x^2-2*x+10,0,-3*x^3-x^2+14*x+8,-2*x^3+8*x+2,0,-6*x^3-4*x^2+32*x+14,-2*x-2,0,2*x^3+2*x^2-14*x-8,-4*x^3+22*x+12,0,2*x^3+2*x^2-6*x-2,-1,0,3*x^3+x^2-14*x-5,-x-4,0,-8*x^3-2*x^2+38*x+14,5*x^3+3*x^2-30*x-13,0,4*x^3+4*x^2-24*x-20,-5*x^3-2*x^2+29*x+11,0,-2,7*x^3+x^2-36*x-11,0,7*x^3+5*x^2-38*x-23,2*x^3+2*x^2-12*x-4,0,4*x^3-21*x-12,-8*x^3+40*x+4,0,12*x^3+6*x^2-60*x-26,-x^3-3*x^2+3*x-2,0,-2*x^3-2*x^2+10*x,7*x^3+3*x^2-34*x-12,0,-2*x^2+4*x+12,2*x^3-x^2-7*x-3,0,-2*x^3-2*x^2+12*x+2,2*x^3+4*x^2-8*x-10,0,-7*x^3-3*x^2+34*x+20,-10*x^3-6*x^2+52*x+30,0,-2*x^2-2*x,8*x^3+4*x^2-40*x-24,0,-8*x^3-4*x^2+46*x+20,-4*x^2+2*x+2,0,4*x^3+2*x^2-16*x-8,5*x^3-x^2-26*x-1,0,-10*x^3-2*x^2+50*x+10,4*x^3+4*x^2-16*x-6,0,-x,-8*x^3-4*x^2+44*x+16,0]];
E[423,5] = [x, [1,0,0,-2,1,0,-3,0,0,0,3,0,-4,0,0,4,-8,0,-6,-2,0,0,-3,0,-4,0,0,6,1,0,4,0,0,0,-3,0,1,0,0,0,10,0,-8,-6,0,0,1,0,2,0,0,8,-10,0,3,0,0,0,10,0,2,0,0,-8,-4,0,4,16,0,0,6,0,-8,0,0,12,-9,0,-3,4,0,0,18,0,-8,0,0,0,2,0,12,6,0,0,-6,0]];
E[423,6] = [x, [1,2,0,2,3,0,-3,0,0,6,5,0,2,-6,0,-4,6,0,-6,6,0,10,-9,0,4,4,0,-6,-1,0,-2,-8,0,12,-9,0,1,-12,0,0,-6,0,2,10,0,-18,-1,0,2,8,0,4,0,0,15,0,0,-2,12,0,-2,-4,0,-8,6,0,2,12,0,-18,2,0,-2,2,0,-12,-15,0,-15,-12,0,-12,4,0,18,4,0,0,-10,0,-6,-18,0,-2,-18,0]];
E[423,7] = [x, [1,2,0,2,3,0,1,0,0,6,-3,0,0,2,0,-4,0,0,-4,6,0,-6,7,0,4,0,0,2,-1,0,0,-8,0,0,3,0,-3,-8,0,0,10,0,-12,-6,0,14,1,0,-6,8,0,0,2,0,-9,0,0,-2,-6,0,14,0,0,-8,0,0,-14,0,0,6,6,0,-10,-6,0,-8,-3,0,5,-12,0,20,-2,0,0,-24,0,0,2,0,0,14,0,2,-12,0]];
E[423,8] = [x, [1,-2,0,2,-3,0,1,0,0,6,3,0,0,-2,0,-4,0,0,-4,-6,0,-6,-7,0,4,0,0,2,1,0,0,8,0,0,-3,0,-3,8,0,0,-10,0,-12,6,0,14,-1,0,-6,-8,0,0,-2,0,-9,0,0,-2,6,0,14,0,0,-8,0,0,-14,0,0,6,-6,0,-10,6,0,-8,3,0,5,12,0,20,2,0,0,24,0,0,-2,0,0,-14,0,2,12,0]];
E[423,9] = [x, [1,-2,0,2,1,0,-3,0,0,-2,-1,0,-2,6,0,-4,-2,0,6,2,0,2,-3,0,-4,4,0,-6,-3,0,2,8,0,4,-3,0,-7,-12,0,0,-10,0,-10,-2,0,6,1,0,2,8,0,-4,-4,0,-1,0,0,6,-8,0,-10,-4,0,-8,-2,0,10,-4,0,6,14,0,-10,14,0,12,3,0,17,-4,0,20,-8,0,-2,20,0,0,-6,0,6,-6,0,-2,6,0]];
E[423,10] = [x, [1,1,0,-1,-2,0,0,-3,0,-2,-4,0,-2,0,0,-1,-2,0,0,2,0,-4,0,0,-1,-2,0,0,6,0,-4,5,0,-2,0,0,-10,0,0,6,2,0,8,4,0,0,1,0,-7,-1,0,2,2,0,8,0,0,6,4,0,14,-4,0,7,4,0,-8,2,0,0,-16,0,2,-10,0,0,0,0,8,2,0,2,4,0,4,8,0,12,-18,0,0,0,0,1,0,0]];
E[423,11] = [x, [1,1,0,-1,0,0,4,-3,0,0,0,0,6,4,0,-1,6,0,2,0,0,0,-4,0,-5,6,0,-4,-8,0,6,5,0,6,0,0,-6,2,0,0,8,0,-6,0,0,-4,-1,0,9,-5,0,-6,-2,0,0,-12,0,-8,-12,0,2,6,0,7,0,0,-2,-6,0,0,0,0,-10,-6,0,-2,0,0,-4,0,0,8,-4,0,0,-6,0,0,10,0,24,4,0,-1,0,0]];

E[424,1] = [x^3-2*x^2-3*x+2, [1,0,x,0,-x^2+2*x+3,0,2,0,x^2-3,0,-x^2+5,0,x^2-2*x-4,0,2,0,2*x^2-4*x-5,0,-2*x^2+x+6,0,2*x,0,3*x^2-5*x-3,0,-3*x^2+4*x+8,0,2*x^2-3*x-2,0,x^2-2*x-2,0,x^2-2*x+1,0,-2*x^2+2*x+2,0,-2*x^2+4*x+6,0,-3*x^2+6*x+6,0,-x-2,0,-4*x+6,0,x^2-2*x-5,0,3*x^2-4*x-9,0,2*x+4,0,-3,0,x-4,0,-1,0,-5*x^2+8*x+15,0,-3*x^2+4,0,-x^2+6*x+3,0,-2*x^2+2*x+2,0,2*x^2-6,0,4*x^2-6*x-16,0,4*x^2-2*x-16,0,x^2+6*x-6,0,-5*x+2,0,4*x^2-6*x-12,0,-2*x^2-x+6,0,-2*x^2+10,0,3*x^2-3*x-11,0,-2*x^2+4*x+5,0,5*x-4,0,5*x^2-6*x-23,0,x-2,0,-x^2+4*x+5,0,2*x^2-4*x-8,0,4*x-2,0,-6*x^2+8*x+20,0,4*x^2-8*x-13,0,x^2-4*x-11,0,x^2-6*x-1,0,-4*x^2+3*x+14,0,4,0,-6*x^2+6*x+12,0]];
E[424,2] = [x^3+x^2-3*x-1, [1,0,x,0,-x^2-2*x+1,0,x^2-5,0,x^2-3,0,x^2+2*x-3,0,2*x^2-5,0,-x^2-2*x-1,0,-4*x^2-2*x+7,0,-x^2-x-1,0,-x^2-2*x+1,0,-x^2+x+1,0,2*x^2+6*x-1,0,-x^2-3*x+1,0,-x^2-2*x,0,-x^2-1,0,x^2+1,0,4*x^2+6*x-6,0,3*x^2+4*x-2,0,-2*x^2+x+2,0,4*x^2+6*x-8,0,-x^2+2*x+5,0,2*x^2+2*x-4,0,-4*x-6,0,-6*x^2-2*x+17,0,2*x^2-5*x-4,0,1,0,-2*x-6,0,-4*x-1,0,-2*x^2-2*x+2,0,-3*x^2+9,0,-4*x^2-2*x+14,0,3*x^2+2*x-7,0,7*x^2+6*x-11,0,2*x^2-2*x-1,0,-5*x-6,0,-x^2-2*x+9,0,4*x^2+5*x+2,0,-6*x^2-6*x+16,0,6*x^2+x-16,0,-5*x^2-2*x+8,0,-5*x^2-7*x+13,0,-x^2+6*x+13,0,-x^2-3*x-1,0,-4*x-10,0,-7*x^2-4*x+23,0,x^2-4*x-1,0,3*x^2+8*x+1,0,x^2-2*x-2,0,-4*x^2-2*x+10,0,3*x^2+8*x-7,0,-x^2+x+9,0,2*x^2+6*x+4,0,-5*x^2-2*x+17,0]];
E[424,3] = [x^5-x^4-13*x^3+9*x^2+42*x-16, [2,0,2*x,0,x^4-x^3-7*x^2+5*x+4,0,-2*x^3+14*x,0,2*x^2-6,0,-x^4+x^3+7*x^2-5*x,0,2*x^3-2*x^2-14*x+12,0,6*x^3-4*x^2-38*x+16,0,-x^4+x^3+5*x^2-5*x+12,0,-2*x^3+4*x^2+12*x-16,0,-2*x^4+14*x^2,0,x^4-5*x^3-3*x^2+31*x-16,0,x^4+x^3-7*x^2-9*x+6,0,2*x^3-12*x,0,-4*x^3+2*x^2+24*x-4,0,x^4-x^3-7*x^2+x,0,-6*x^3+4*x^2+42*x-16,0,-2*x^4+2*x^3+10*x^2-14*x+16,0,-2*x^2+12,0,2*x^4-2*x^3-14*x^2+12*x,0,4*x^3-4*x^2-24*x+20,0,x^4+3*x^3-11*x^2-23*x+16,0,3*x^4-x^3-17*x^2+x-12,0,4*x^3-4*x^2-28*x+16,0,8*x^3-4*x^2-52*x+18,0,-8*x^3+4*x^2+54*x-16,0,2,0,x^4-3*x^3-7*x^2+19*x-8,0,-2*x^4+4*x^3+12*x^2-16*x,0,-x^4+3*x^3+11*x^2-19*x-16,0,-2*x^4-4*x^3+22*x^2+24*x-36,0,-2*x^4-6*x^3+18*x^2+42*x-32,0,2*x^4-4*x^3-14*x^2+28*x+8,0,2*x^4-4*x^3-14*x^2+20*x,0,-4*x^4+10*x^3+22*x^2-58*x+16,0,-2*x^4+2*x^3+18*x^2-12*x-24,0,-2*x^3+4*x^2+18*x-28,0,2*x^4+6*x^3-18*x^2-36*x+16,0,2*x^4-6*x^3-10*x^2+42*x-16,0,-x^4+7*x^3+7*x^2-41*x-16,0,2*x^4-18*x^2+18,0,-2*x^4+8*x^3+6*x^2-50*x+32,0,x^4-5*x^3-11*x^2+33*x+16,0,-4*x^4+2*x^3+24*x^2-4*x,0,-x^4-x^3+11*x^2+5*x-20,0,2*x^4-8*x^3-14*x^2+52*x,0,6*x^3-8*x^2-42*x+16,0,2*x^4-4*x^3-6*x^2+16*x-32,0,x^4-7*x^3-x^2+47*x-20,0,-3*x^4+x^3+21*x^2-x,0,x^4+7*x^3-7*x^2-55*x+4,0,2*x^3-12*x-24,0,-16*x^3+4*x^2+100*x-32,0,-2*x^4+14*x^2+8*x+8,0]];
E[424,4] = [x^2+2*x-1, [1,0,x,0,-2,0,-2*x,0,-2*x-2,0,-2*x-4,0,2*x-1,0,-2*x,0,-3,0,3*x+2,0,4*x-2,0,x,0,-1,0,-x-2,0,-5,0,4*x+6,0,-2,0,4*x,0,-4*x-5,0,-5*x+2,0,4*x-2,0,-4*x,0,4*x+4,0,6*x+8,0,-8*x-3,0,-3*x,0,-1,0,4*x+8,0,-4*x+3,0,-2*x-4,0,6,0,-4*x+4,0,-4*x+2,0,-2,0,-2*x+1,0,3*x-6,0,4*x-2,0,-x,0,4,0,5*x+10,0,6*x+5,0,-x-10,0,6,0,-5*x,0,2,0,10*x-4,0,-2*x+4,0,-6*x-4,0,-10*x-15,0,4*x+12,0,-8*x-8,0,-3*x+12,0,-8*x+4,0,4,0]];

E[425,1] = [x^2-3, [1,x,-x-1,1,0,-x-3,x+1,-x,2*x+1,0,x+3,-x-1,4,x+3,0,-5,1,x+6,-2*x+2,0,-2*x-4,3*x+3,3*x+3,x+3,0,4*x,-4,x+1,-2*x,0,-x+5,-3*x,-4*x-6,x,0,2*x+1,-2*x+4,2*x-6,-4*x-4,0,-2*x,-4*x-6,-2*x+4,x+3,0,3*x+9,-4*x-6,5*x+5,2*x-3,0,-x-1,4,-6,-4*x,0,-x-3,4,-6,-2*x+6,0,-4*x+2,5*x-3,3*x+7,1,0,-6*x-12,10,1,-6*x-12,0,5*x+3,-x-6,-6*x+4,4*x-6,0,-2*x+2,4*x+6,-4*x-12,9*x-1,0,-2*x+1,-6,2*x-12,-2*x-4,0,4*x-6,2*x+6,-3*x-3,6*x-6,0]];
E[425,2] = [x^2-2*x-1, [1,x,-x+3,2*x-1,0,x-1,x+1,x+2,-4*x+7,0,-x-3,3*x-5,-2*x+2,3*x+1,0,3,1,-x-4,2*x-2,0,2,-5*x-1,-x+3,-x+5,0,-2*x-2,-8*x+16,5*x+1,2*x-4,0,-3*x+3,x-4,2*x-8,x,0,2*x-15,6*x-4,2*x+2,-4*x+8,0,6*x-4,2*x,4*x-6,-9*x+1,0,x-1,-2*x+4,-3*x+9,4*x-5,0,-x+3,-2*x-6,-4*x-2,-8,0,5*x+3,4*x-8,2,-2*x-10,0,-4*x+6,-3*x-3,-5*x+3,-2*x-5,0,-4*x+2,2*x+4,2*x-1,-4*x+10,0,3*x-3,-9*x+10,-2*x+4,8*x+6,0,2*x+6,-6*x-4,-4,-x+5,0,-12*x+35,8*x+6,8*x-6,4*x-2,0,2*x+4,6*x-14,-7*x-7,-4*x-4,0]];
E[425,3] = [x^5-x^4-10*x^3+6*x^2+21*x+3, [2,2*x,-x^3-x^2+7*x+5,2*x^2-4,0,-x^4-x^3+7*x^2+5*x,x^4-x^3-7*x^2+5*x+4,2*x^3-8*x,2*x+2,0,x^4-8*x^2-2*x+9,-2*x^4-x^3+13*x^2+7*x-7,-2*x^3+12*x+4,3*x^3-x^2-17*x-3,0,2*x^4-12*x^2+8,-2,2*x^2+2*x,-2*x^2+4*x+10,0,2*x^3-2*x^2-14*x+4,x^4+2*x^3-8*x^2-12*x-3,-x^4+2*x^3+6*x^2-12*x-3,-x^4-5*x^3+5*x^2+25*x+6,0,-2*x^4+12*x^2+4*x,-x^4+x^3+9*x^2-9*x-10,x^4+x^3-3*x^2-13*x-8,2*x^4-2*x^3-16*x^2+10*x+18,0,-2*x^4+x^3+17*x^2-7*x-11,2*x^4+4*x^3-12*x^2-18*x-6,2*x^4-18*x^2-2*x+18,-2*x,0,2*x^3+2*x^2-4*x-4,-2*x^2-4*x+10,-2*x^3+4*x^2+10*x,-x^4+x^3+7*x^2-x+4,0,-2*x^3+10*x,2*x^4-2*x^3-14*x^2+4*x,-2*x^4+18*x^2-4*x-20,x^4+2*x^3-2*x^2-20*x-21,0,x^4-4*x^3-6*x^2+18*x+3,-2*x^4+2*x^3+18*x^2-14*x-24,-2*x^4-3*x^3+5*x^2+13*x+17,-2*x^4+2*x^3+16*x^2-16*x-12,0,x^3+x^2-7*x-5,-2*x^4-4*x^3+16*x^2+18*x-2,-2*x^2,-x^3-3*x^2+11*x+3,0,2*x^4+x^3-17*x^2+5*x+3,-4*x^3-2*x^2+24*x+22,4*x^3-2*x^2-24*x-6,-2*x^4-2*x^3+16*x^2+10*x-6,0,-2*x^3-2*x^2+14*x+10,-x^4-3*x^3+5*x^2+31*x+6,x^4+2*x^3-8*x^2-12*x+1,2*x^4+8*x^3-6*x^2-48*x-22,0,2*x^4+2*x^3-14*x^2-24*x-6,4*x^3-4*x^2-24*x+16,-2*x^2+4,2*x^4-2*x^3-12*x^2+12*x,0,x^4-3*x^3-5*x^2+23*x+6,2*x^4+2*x^3-8*x^2-8*x,2*x^4-10*x^2-20,-2*x^3-4*x^2+10*x,0,-2*x^4+4*x^3+14*x^2-8*x-20,-4*x^3+26*x+18,-3*x^3+5*x^2+25*x+3,x^4-5*x^3-9*x^2+33*x+34,0,2*x^2-2*x-22,-2*x^4+10*x^2,2*x^4-2*x^3-14*x^2+10*x+12,2*x^3-4*x^2-14*x-14,0,-2*x^4-2*x^3+8*x^2+22*x+6,2*x^4+2*x^3-20*x^2-14*x+30,x^4+4*x^3-10*x^2-18*x+3,-2*x^4+6*x^3+20*x^2-42*x-42,0]];
E[425,4] = [x^5+x^4-10*x^3-6*x^2+21*x-3, [2,2*x,-x^3+x^2+7*x-5,2*x^2-4,0,-x^4+x^3+7*x^2-5*x,-x^4-x^3+7*x^2+5*x-4,2*x^3-8*x,-2*x+2,0,x^4-8*x^2+2*x+9,2*x^4-x^3-13*x^2+7*x+7,-2*x^3+12*x-4,-3*x^3-x^2+17*x-3,0,2*x^4-12*x^2+8,2,-2*x^2+2*x,-2*x^2-4*x+10,0,-2*x^3-2*x^2+14*x+4,-x^4+2*x^3+8*x^2-12*x+3,x^4+2*x^3-6*x^2-12*x+3,-x^4+5*x^3+5*x^2-25*x+6,0,-2*x^4+12*x^2-4*x,x^4+x^3-9*x^2-9*x+10,-x^4+x^3+3*x^2-13*x+8,2*x^4+2*x^3-16*x^2-10*x+18,0,-2*x^4-x^3+17*x^2+7*x-11,-2*x^4+4*x^3+12*x^2-18*x+6,-2*x^4+18*x^2-2*x-18,2*x,0,-2*x^3+2*x^2+4*x-4,2*x^2-4*x-10,-2*x^3-4*x^2+10*x,-x^4-x^3+7*x^2+x+4,0,2*x^3-10*x,-2*x^4-2*x^3+14*x^2+4*x,2*x^4-18*x^2-4*x+20,x^4-2*x^3-2*x^2+20*x-21,0,x^4+4*x^3-6*x^2-18*x+3,2*x^4+2*x^3-18*x^2-14*x+24,2*x^4-3*x^3-5*x^2+13*x-17,-2*x^4-2*x^3+16*x^2+16*x-12,0,-x^3+x^2+7*x-5,2*x^4-4*x^3-16*x^2+18*x+2,2*x^2,x^3-3*x^2-11*x+3,0,2*x^4-x^3-17*x^2-5*x+3,-4*x^3+2*x^2+24*x-22,4*x^3+2*x^2-24*x+6,-2*x^4+2*x^3+16*x^2-10*x-6,0,2*x^3-2*x^2-14*x+10,x^4-3*x^3-5*x^2+31*x-6,-x^4+2*x^3+8*x^2-12*x-1,2*x^4-8*x^3-6*x^2+48*x-22,0,2*x^4-2*x^3-14*x^2+24*x-6,4*x^3+4*x^2-24*x-16,2*x^2-4,2*x^4+2*x^3-12*x^2-12*x,0,x^4+3*x^3-5*x^2-23*x+6,-2*x^4+2*x^3+8*x^2-8*x,-2*x^4+10*x^2+20,2*x^3-4*x^2-10*x,0,-2*x^4-4*x^3+14*x^2+8*x-20,-4*x^3+26*x-18,-3*x^3-5*x^2+25*x-3,x^4+5*x^3-9*x^2-33*x+34,0,2*x^2+2*x-22,2*x^4-10*x^2,-2*x^4-2*x^3+14*x^2+10*x-12,-2*x^3-4*x^2+14*x-14,0,-2*x^4+2*x^3+8*x^2-22*x+6,-2*x^4+2*x^3+20*x^2-14*x-30,-x^4+4*x^3+10*x^2-18*x-3,-2*x^4-6*x^3+20*x^2+42*x-42,0]];
E[425,5] = [x^4-2*x^3-4*x^2+8*x-1, [1,x,-x^3+x^2+4*x-2,x^2-2,0,-x^3+6*x-1,-x+3,x^3-4*x,-2*x^3+x^2+8*x-2,0,x^2+x-4,-x+3,3*x^3-2*x^2-13*x+8,-x^2+3*x,0,2*x^3-2*x^2-8*x+5,-1,-3*x^3+14*x-2,2*x^3-2*x^2-10*x+8,0,-2*x^3+3*x^2+6*x-5,x^3+x^2-4*x,-x^3-x^2+4*x+4,2*x^3-x^2-9*x+2,0,4*x^3-x^2-16*x+3,-x^3-x^2+5*x+5,-x^3+3*x^2+2*x-6,-2*x^3+10*x-2,0,-x^3-2*x^2+4*x+3,-3*x+2,x^3-2*x^2-3*x+6,-x,0,-2*x^3+6*x+1,-2*x^3+10*x+2,2*x^3-2*x^2-8*x+2,3*x^3+x^2-15*x-7,0,x^3-x^2-7*x+3,-x^3-2*x^2+11*x-2,-x^3+2*x^2+5*x-2,3*x^3-2*x^2-10*x+9,0,-3*x^3+12*x-1,3*x^3-2*x^2-13*x+8,3*x^3-x^2-12*x-4,x^2-6*x+2,0,x^3-x^2-4*x+2,x^3+4*x^2-3*x-12,4*x^2-10,-3*x^3+x^2+13*x-1,0,x^3-4*x-1,2*x^3+2*x^2-12*x-8,-4*x^3+2*x^2+14*x-2,-2,0,x^3+3*x^2-5*x-7,-4*x^3+11*x-1,-3*x^3+3*x^2+10*x-4,-4*x^3+x^2+18*x-10,0,x^2-2*x+1,3*x^3-13*x+2,-x^2+2,-4*x^3+3*x^2+18*x-9,0,-2*x^3-x^2+9*x,2*x^3-2*x^2-11*x+2,-3*x^3-x^2+17*x+1,-4*x^3+2*x^2+18*x-2,0,-2*x^3+4*x^2+6*x-14,-x^3+2*x^2+7*x-12,7*x^3-3*x^2-31*x+3,x^3-5,0,x^2+4*x-6,x^3-3*x^2-5*x+1,3*x^3-4*x^2-15*x+10,x^2-6*x+9,0,x^2+6*x-1,-4*x^3+22*x-2,2*x^3-7*x+3,4*x^3-3*x^2-16*x+15,0]];
E[425,6] = [x^4+2*x^3-4*x^2-8*x-1, [1,x,-x^3-x^2+4*x+2,x^2-2,0,x^3-6*x-1,-x-3,x^3-4*x,2*x^3+x^2-8*x-2,0,x^2-x-4,-x-3,3*x^3+2*x^2-13*x-8,-x^2-3*x,0,-2*x^3-2*x^2+8*x+5,1,-3*x^3+14*x+2,-2*x^3-2*x^2+10*x+8,0,2*x^3+3*x^2-6*x-5,x^3-x^2-4*x,-x^3+x^2+4*x-4,-2*x^3-x^2+9*x+2,0,-4*x^3-x^2+16*x+3,-x^3+x^2+5*x-5,-x^3-3*x^2+2*x+6,2*x^3-10*x-2,0,x^3-2*x^2-4*x+3,-3*x-2,x^3+2*x^2-3*x-6,x,0,2*x^3-6*x+1,-2*x^3+10*x-2,2*x^3+2*x^2-8*x-2,-3*x^3+x^2+15*x-7,0,-x^3-x^2+7*x+3,-x^3+2*x^2+11*x+2,-x^3-2*x^2+5*x+2,-3*x^3-2*x^2+10*x+9,0,3*x^3-12*x-1,3*x^3+2*x^2-13*x-8,3*x^3+x^2-12*x+4,x^2+6*x+2,0,-x^3-x^2+4*x+2,x^3-4*x^2-3*x+12,-4*x^2+10,3*x^3+x^2-13*x-1,0,-x^3+4*x-1,2*x^3-2*x^2-12*x+8,-4*x^3-2*x^2+14*x+2,-2,0,-x^3+3*x^2+5*x-7,-4*x^3+11*x+1,-3*x^3-3*x^2+10*x+4,4*x^3+x^2-18*x-10,0,x^2+2*x+1,3*x^3-13*x-2,x^2-2,4*x^3+3*x^2-18*x-9,0,2*x^3-x^2-9*x,2*x^3+2*x^2-11*x-2,-3*x^3+x^2+17*x-1,4*x^3+2*x^2-18*x-2,0,2*x^3+4*x^2-6*x-14,-x^3-2*x^2+7*x+12,7*x^3+3*x^2-31*x-3,-x^3-5,0,x^2-4*x-6,x^3+3*x^2-5*x-1,3*x^3+4*x^2-15*x-10,x^2+6*x+9,0,x^2-6*x-1,-4*x^3+22*x+2,2*x^3-7*x-3,-4*x^3-3*x^2+16*x+15,0]];
E[425,7] = [x, [1,1,-1,-1,0,-1,1,-3,-2,0,-4,1,-1,1,0,-1,1,-2,-6,0,-1,-4,0,3,0,-1,5,-1,0,0,-7,5,4,1,0,2,-4,-6,1,0,-2,-1,4,4,0,0,-6,1,-6,0,-1,1,11,5,0,-3,6,0,8,0,10,-7,-2,7,0,4,8,-1,0,0,7,6,4,-4,0,6,-4,1,-11,0,1,-2,-8,1,0,4,0,12,-6,0]];
E[425,8] = [x, [1,1,0,-1,0,0,-4,-3,-3,0,0,0,2,-4,0,-1,-1,-3,-4,0,0,0,-4,0,0,2,0,4,6,0,4,5,0,-1,0,3,2,-4,0,0,-6,0,-4,0,0,-4,0,0,9,0,0,-2,-6,0,0,12,0,6,-12,0,-10,4,12,7,0,0,-4,1,0,0,-4,9,6,2,0,4,0,0,12,0,9,-6,4,0,0,-4,0,0,10,0]];
E[425,9] = [x, [1,-1,-2,-1,0,2,2,3,1,0,2,2,-2,-2,0,-1,-1,-1,0,0,-4,-2,-6,-6,0,2,4,-2,-6,0,-10,-5,-4,1,0,-1,-2,0,4,0,10,4,-4,-2,0,6,-12,2,-3,0,2,2,10,-4,0,6,0,6,8,0,-14,10,2,7,0,4,-8,1,12,0,-2,3,14,2,0,0,4,-4,-14,0,-11,-10,-4,4,0,4,12,6,6,0]];
E[425,10] = [x, [1,-1,1,-1,0,-1,-1,3,-2,0,-4,-1,1,1,0,-1,-1,2,-6,0,-1,4,0,3,0,-1,-5,1,0,0,-7,-5,-4,1,0,2,4,6,1,0,-2,1,-4,4,0,0,6,-1,-6,0,-1,-1,-11,5,0,-3,-6,0,8,0,10,7,2,7,0,4,-8,1,0,0,7,-6,-4,-4,0,6,4,-1,-11,0,1,2,8,1,0,4,0,-12,-6,0]];

E[426,1] = [x, [1,-1,-1,1,-2,1,2,-1,1,2,-2,-1,0,-2,2,1,0,-1,-4,-2,-2,2,-4,1,-1,0,-1,2,-6,-2,-2,-1,2,0,-4,1,-6,4,0,2,0,2,-4,-2,-2,4,0,-1,-3,1,0,0,6,1,4,-2,4,6,-10,2,0,2,2,1,0,-2,4,0,4,4,-1,-1,10,6,1,-4,-4,0,-8,-2,1,0,-8,-2,0,4,6,2,6,2,0,-4,2,0,8,1,18,3,-2,-1,10,0,-4,0,4,-6,4,-1,6,-4,6,2,12,-4,8,-6,0,10,0,-2,-7,0,0,-2,12,-2,-2,-1,4,0,-12,2,-8,-4,2,0,8,-4,-8,-4,0,1,0,1]];
E[426,2] = [x^2-2*x-7, [2,-2,-2,2,2*x,2,3*x-5,-2,2,-2*x,-x+11,-2,-2*x-6,-3*x+5,-2*x,2,-2*x+2,-2,2,2*x,-3*x+5,x-11,-2*x+14,2,4*x+4,2*x+6,-2,3*x-5,4*x+2,2*x,-5*x+7,-2,x-11,2*x-2,x+21,2,-2*x-14,-2,2*x+6,-2*x,x-3,3*x-5,2*x+12,-x+11,2*x,2*x-14,-2*x+2,-2,-6*x+30,-4*x-4,2*x-2,-2*x-6,12,2,9*x-7,-3*x+5,-2,-4*x-2,x+1,-2*x,-9*x+7,5*x-7,3*x-5,2,-10*x-14,-x+11,2*x+14,-2*x+2,2*x-14,-x-21,2,-2,-14,2*x+14,-4*x-4,2,16*x-38,-2*x-6,6*x-10,2*x,2,-x+3,-4*x,-3*x+5,-2*x-14,-2*x-12,-4*x-2,x-11,2*x-14,-2*x,-10*x-6,-2*x+14,5*x-7,2*x-2,2*x,2,-4*x-16,6*x-30,-x+11,4*x+4,4*x-18,-2*x+2,6*x-6,2*x+6,-x-21,-12,-6*x+6,-2,6*x-2,-9*x+7,2*x+14,3*x-5,-x+23,2,10*x-14,4*x+2,-2*x-6,-x-1,2*x-26,2*x,-10*x+42,9*x-7,-x+3,-5*x+7,2*x+28,-3*x+5,-8*x+4,-2,-2*x-12,10*x+14,-2*x+26,x-11,3*x-5,-2*x-14,-2*x,2*x-2,-10*x+10,-2*x+14,-6*x-6,x+21,2*x-2,-2,-6*x-26,2]];
E[426,3] = [x, [1,-1,1,1,3,-1,-1,-1,1,-3,3,1,2,1,3,1,-6,-1,5,3,-1,-3,-6,-1,4,-2,1,-1,-9,-3,11,-1,3,6,-3,1,-4,-5,2,-3,9,1,5,3,3,6,12,1,-6,-4,-6,2,-6,-1,9,1,5,9,-3,3,-1,-11,-1,1,6,-3,-4,-6,-6,3,-1,-1,-7,4,4,5,-3,-2,-10,3,1,-9,-6,-1,-18,-5,-9,-3,-6,-3,-2,-6,11,-12,15,-1,14,6,3,4,-3,6,-4,-2,-3,6,-12,1,2,-9,-4,-1,-9,-5,-18,-9,2,3,6,-3,-2,1,9,11,-3,1,-4,-1,5,-6,-12,3,-5,4,3,6,18,6,2,-3,12,1,6,1]];
E[426,4] = [x^2+3*x-2, [1,-1,1,1,x,-1,x+4,-1,1,-x,-x-2,1,2,-x-4,x,1,-2*x,-1,-3*x-2,x,x+4,x+2,2*x+4,-1,-3*x-3,-2,1,x+4,x+4,-x,x,-1,-x-2,2*x,x+2,1,2*x+6,3*x+2,2,-x,-3*x-6,-x-4,x+2,-x-2,x,-2*x-4,-4,1,5*x+11,3*x+3,-2*x,2,-2*x,-1,x-2,-x-4,-3*x-2,-x-4,-3*x-2,x,x+4,-x,x+4,1,2*x,x+2,2*x+6,-2*x,2*x+4,-x-2,-1,-1,-5*x-8,-2*x-6,-3*x-3,-3*x-2,-3*x-10,-2,-6*x-8,x,1,3*x+6,6*x+8,x+4,6*x-4,-x-2,x+4,x+2,4*x-2,-x,2*x+8,2*x+4,x,4,7*x-6,-1,-18,-5*x-11,-x-2,-3*x-3,-5*x-4,2*x,-4*x-8,-2,x+2,2*x,4,1,-14,-x+2,2*x+6,x+4,-5*x-18,3*x+2,-2*x+4,x+4,2,3*x+2,-2*x-4,-x,x-5,-x-4,-3*x-6,x,x-6,-x-4,-2*x-14,-1,x+2,-2*x,4,-x-2,-5*x-14,-2*x-6,x,2*x,6*x,-2*x-4,4*x+6,x+2,-4,1,-2*x-4,1]];
E[426,5] = [x^3-4*x^2-3*x+10, [2,2,-2,2,2*x,-2,x^2-3*x-2,2,2,2*x,-x^2-x+10,-2,-2*x^2+6*x+8,x^2-3*x-2,-2*x,2,2*x^2-6*x,2,-2*x^2+4*x+8,2*x,-x^2+3*x+2,-x^2-x+10,2*x^2-6*x-4,-2,2*x^2-10,-2*x^2+6*x+8,-2,x^2-3*x-2,-2*x^2+20,-2*x,x^2+x-10,2,x^2+x-10,2*x^2-6*x,x^2+x-10,2,2*x^2-6*x-8,-2*x^2+4*x+8,2*x^2-6*x-8,2*x,-3*x^2+9*x+10,-x^2+3*x+2,-2*x-12,-x^2-x+10,2*x,2*x^2-6*x-4,2*x^2-2*x-12,-2,-2*x-2,2*x^2-10,-2*x^2+6*x,-2*x^2+6*x+8,-4*x^2+12*x+12,-2,-5*x^2+7*x+10,x^2-3*x-2,2*x^2-4*x-8,-2*x^2+20,x^2+5*x-18,-2*x,x^2-7*x-6,x^2+x-10,x^2-3*x-2,2,-2*x^2+2*x+20,x^2+x-10,-2*x^2+10*x-4,2*x^2-6*x,-2*x^2+6*x+4,x^2+x-10,-2,2,2*x^2-12*x-12,2*x^2-6*x-8,-2*x^2+10,-2*x^2+4*x+8,2*x^2-12*x,2*x^2-6*x-8,2*x^2-14*x-4,2*x,2,-3*x^2+9*x+10,4*x-16,-x^2+3*x+2,2*x^2+6*x-20,-2*x-12,2*x^2-20,-x^2-x+10,6*x^2-14*x-16,2*x,2*x^2-2*x-28,2*x^2-6*x-4,-x^2-x+10,2*x^2-2*x-12,-4*x^2+2*x+20,-2,-12,-2*x-2,-x^2-x+10,2*x^2-10,2*x^2-16*x+4,-2*x^2+6*x,-2*x^2+2*x-4,-2*x^2+6*x+8,-x^2-x+10,-4*x^2+12*x+12,-2*x^2+10*x+4,-2,-2*x^2+10*x+8,-5*x^2+7*x+10,-2*x^2+6*x+8,x^2-3*x-2,-5*x^2+19*x+22,2*x^2-4*x-8,2*x^2+2*x-20,-2*x^2+20,-2*x^2+6*x+8,x^2+5*x-18,2*x^2-10*x+20,-2*x,4*x^2-6*x-2,x^2-7*x-6,3*x^2-9*x-10,x^2+x-10,8*x^2-14*x-20,x^2-3*x-2,-4*x+8,2,2*x+12,-2*x^2+2*x+20,2*x^2+6*x-36,x^2+x-10,x^2-3*x-18,-2*x^2+10*x-4,-2*x,2*x^2-6*x,2*x^2-6*x+16,-2*x^2+6*x+4,2*x^2-6*x+28,x^2+x-10,-2*x^2+2*x+12,-2,-6*x^2+22*x+20,2]];
E[426,6] = [x, [1,1,1,1,1,1,3,1,1,1,-3,1,-6,3,1,1,-2,1,5,1,3,-3,-6,1,-4,-6,1,3,5,1,7,1,-3,-2,3,1,8,5,-6,1,7,3,-11,-3,1,-6,-12,1,2,-4,-2,-6,-6,1,-3,3,5,5,-5,1,-13,7,3,1,-6,-3,8,-2,-6,3,1,1,9,8,-4,5,-9,-6,10,1,1,7,-6,3,-2,-11,5,-3,-10,1,-18,-6,7,-12,5,1,18,2,-3,-4,7,-2,4,-6,3,-6,-12,1,10,-3,8,3,9,5,-6,5,-6,-5,-6,1,-2,-13,7,7,-9,3,-12,1,-11,-6,-8,-3,15,8,1,-2,-2,-6,-10,3,-12,1,18,1]];
E[426,7] = [x^3-x^2-12*x+4, [2,2,2,2,2*x,2,-2*x,2,2,2*x,x^2-x-6,2,-x^2-x+14,-2*x,2*x,2,-2*x^2+2*x+12,2,-2*x-4,2*x,-2*x,x^2-x-6,2*x^2-2*x-12,2,2*x^2-10,-x^2-x+14,2,-2*x,2*x-8,2*x,-2*x-8,2,x^2-x-6,-2*x^2+2*x+12,-2*x^2,2,4*x-4,-2*x-4,-x^2-x+14,2*x,2*x-12,-2*x,-2*x^2+4*x+24,x^2-x-6,2*x,2*x^2-2*x-12,-2*x^2-2*x+12,2,2*x^2-14,2*x^2-10,-2*x^2+2*x+12,-x^2-x+14,3*x^2-x-22,2,6*x-4,-2*x,-2*x-4,2*x-8,3*x^2-3*x-26,2*x,-x^2+5*x+18,-2*x-8,-2*x,2,-2*x^2+2*x+4,x^2-x-6,x^2-3*x-22,-2*x^2+2*x+12,2*x^2-2*x-12,-2*x^2,2,2,-4*x^2+6*x+32,4*x-4,2*x^2-10,-2*x-4,-6*x+4,-x^2-x+14,2*x^2-2*x-12,2*x,2,2*x-12,-2*x^2+2*x+4,-2*x,-12*x+8,-2*x^2+4*x+24,2*x-8,x^2-x-6,-8*x+4,2*x,2*x^2-2*x-4,2*x^2-2*x-12,-2*x-8,-2*x^2-2*x+12,-2*x^2-4*x,2,2*x^2-6*x-8,2*x^2-14,x^2-x-6,2*x^2-10,2*x^2+8*x-28,-2*x^2+2*x+12,-2*x^2-2*x+12,-x^2-x+14,-2*x^2,3*x^2-x-22,-8,2,-2*x^2-2*x+24,6*x-4,4*x-4,-2*x,-2*x^2-4*x+16,-2*x-4,12*x-8,2*x-8,-x^2-x+14,3*x^2-3*x-26,12*x-8,2*x,-2*x-2,-x^2+5*x+18,2*x-12,-2*x-8,2*x^2+4*x-8,-2*x,-4*x+28,2,-2*x^2+4*x+24,-2*x^2+2*x+4,8*x-8,x^2-x-6,2*x^2+4*x,x^2-3*x-22,2*x,-2*x^2+2*x+12,2*x^2+6*x-28,2*x^2-2*x-12,x^2+9*x-6,-2*x^2,-2*x^2-2*x+12,2,4*x^2-8*x-40,2]];

E[427,1] = [x, [1,-1,1,-1,0,-1,-1,3,-2,0,-5,-1,4,1,0,-1,-5,2,-7,0,-1,5,9,3,-5,-4,-5,1,-6,0,0,-5,-5,5,0,2,2,7,4,0,-10,1,1,5,0,-9,7,-1,1,5,-5,-4,-6,5,0,-3,-7,6,-6,0,-1,0,2,7,0,5,5,5,9,0,1,-6,10,-2,-5,7,5,-4,-3,0,1,10]];
E[427,2] = [x, [1,1,1,-1,-4,1,1,-3,-2,-4,-3,-1,-4,1,-4,-1,5,-2,1,4,1,-3,7,-3,11,-4,-5,-1,-10,-4,-8,5,-3,5,-4,2,10,1,-4,12,-6,1,-1,3,8,7,-9,-1,1,11,5,4,-2,-5,12,-3,1,-10,-6,4,1,-8,-2,7,16,-3,3,-5,7,-4,-1,6,-2,10,11,-1,-3,-4,-5,4,1,-6]];
E[427,3] = [x^6+5*x^5+2*x^4-18*x^3-12*x^2+18*x+5, [1,x,x^5+3*x^4-3*x^3-9*x^2+4*x+3,x^2-2,-x^5-3*x^4+2*x^3+7*x^2-2*x-2,-2*x^5-5*x^4+9*x^3+16*x^2-15*x-5,-1,x^3-4*x,x^5+2*x^4-5*x^3-6*x^2+6*x+1,2*x^5+4*x^4-11*x^3-14*x^2+16*x+5,-x^5-3*x^4+3*x^3+9*x^2-4*x-4,3*x^5+7*x^4-14*x^3-21*x^2+23*x+4,-x^5-2*x^4+8*x^3+12*x^2-14*x-10,-x,-2*x^5-5*x^4+9*x^3+16*x^2-14*x-6,x^4-6*x^2+4,-x^4-4*x^3-x^2+9*x+2,-3*x^5-7*x^4+12*x^3+18*x^2-17*x-5,-x^5-x^4+10*x^3+7*x^2-21*x-1,-4*x^5-9*x^4+18*x^3+26*x^2-27*x-6,-x^5-3*x^4+3*x^3+9*x^2-4*x-3,2*x^5+5*x^4-9*x^3-16*x^2+14*x+5,-2*x^4-6*x^3+3*x^2+11*x-5,-4*x^5-10*x^4+15*x^3+27*x^2-20*x-5,2*x^5+6*x^4-5*x^3-14*x^2+8*x-1,3*x^5+10*x^4-6*x^3-26*x^2+8*x+5,x^5+x^4-9*x^3-4*x^2+18*x-1,-x^2+2,x^5+6*x^4+6*x^3-14*x^2-13*x+5,5*x^5+13*x^4-20*x^3-38*x^2+30*x+10,x^5+2*x^4-4*x^3-2*x^2+9*x-3,x^5-8*x^3+12*x,-2*x^5-5*x^4+8*x^3+15*x^2-10*x-7,-x^5-4*x^4-x^3+9*x^2+2*x,x^5+3*x^4-2*x^3-7*x^2+2*x+2,6*x^5+14*x^4-26*x^3-41*x^2+37*x+13,2*x^4+4*x^3-5*x^2-6*x-3,4*x^5+12*x^4-11*x^3-33*x^2+17*x+5,-3*x^5-9*x^4+6*x^3+23*x^2-10,7*x^5+18*x^4-24*x^3-47*x^2+34*x+10,2*x^5+3*x^4-14*x^3-15*x^2+19*x+12,2*x^5+5*x^4-9*x^3-16*x^2+15*x+5,-x^5-3*x^4-x+11,-3*x^5-7*x^4+14*x^3+20*x^2-23*x-2,-3*x^5-6*x^4+18*x^3+22*x^2-27*x-7,-2*x^5-6*x^4+3*x^3+11*x^2-5*x,x^5+2*x^4-6*x^3-5*x^2+15*x-4,4*x^5+9*x^4-17*x^3-26*x^2+21*x+12,1,-4*x^5-9*x^4+22*x^3+32*x^2-37*x-10,-3*x^5-7*x^4+16*x^3+25*x^2-29*x-9,-3*x^5-8*x^4+12*x^3+20*x^2-21*x+5,x^5+4*x^4-x^3-13*x^2+x+1,-4*x^5-11*x^4+14*x^3+30*x^2-19*x-5,3*x^5+8*x^4-11*x^3-23*x^2+16*x+8,-x^3+4*x,x^5+3*x^4-7*x^3-17*x^2+17*x+12,x^5+4*x^4+4*x^3-x^2-13*x-5,-x^4-4*x^3+8*x+2,-8*x^5-20*x^4+34*x^3+58*x^2-52*x-13,-1,-3*x^5-6*x^4+16*x^3+21*x^2-21*x-5,-x^5-2*x^4+5*x^3+6*x^2-6*x-1,-5*x^5-12*x^4+18*x^3+36*x^2-18*x-13,5*x^5+13*x^4-20*x^3-42*x^2+25*x+15,5*x^5+12*x^4-21*x^3-34*x^2+29*x+10,-x^4-2*x^3+2*x^2+3*x-1,x^5+3*x^4-x^3-8*x^2+1,-x^4-2*x^3+6*x^2+6*x-10,-2*x^5-4*x^4+11*x^3+14*x^2-16*x-5,-3*x^5-10*x^4+5*x^3+29*x^2-16,-10*x^5-24*x^4+43*x^3+73*x^2-61*x-20,x^5-9*x^3+4*x^2+20*x-6,2*x^5+4*x^4-5*x^3-6*x^2-3*x,3*x^5+5*x^4-18*x^3-14*x^2+28*x+2,-6*x^5-17*x^4+19*x^3+51*x^2-25*x-18,x^5+3*x^4-3*x^3-9*x^2+4*x+4,6*x^5+12*x^4-31*x^3-36*x^2+44*x+15,-x^5-3*x^4+4*x^3+3*x^2-18*x+12,-9*x^5-20*x^4+43*x^3+66*x^2-62*x-23,3*x^5+9*x^4-8*x^3-21*x^2+15*x-1,-7*x^5-18*x^4+21*x^3+43*x^2-24*x-10]];
E[427,4] = [x^7-4*x^6-3*x^5+26*x^4-12*x^3-38*x^2+23*x+11, [1,x,-2*x^6+5*x^5+13*x^4-31*x^3-21*x^2+38*x+13,x^2-2,x^6-2*x^5-7*x^4+12*x^3+13*x^2-14*x-7,-3*x^6+7*x^5+21*x^4-45*x^3-38*x^2+59*x+22,1,x^3-4*x,x^6-2*x^5-8*x^4+13*x^3+18*x^2-18*x-10,2*x^6-4*x^5-14*x^4+25*x^3+24*x^2-30*x-11,-x^6+2*x^5+7*x^4-13*x^3-13*x^2+18*x+9,-x^6+2*x^5+7*x^4-12*x^3-13*x^2+15*x+7,x^6-4*x^5-6*x^4+26*x^3+10*x^2-34*x-9,x,-4*x^6+10*x^5+27*x^4-63*x^3-48*x^2+80*x+30,x^4-6*x^2+4,4*x^6-10*x^5-27*x^4+64*x^3+47*x^2-83*x-28,2*x^6-5*x^5-13*x^4+30*x^3+20*x^2-33*x-11,x^5-x^4-6*x^3+3*x^2+7*x+3,2*x^6-4*x^5-13*x^4+24*x^3+20*x^2-29*x-8,-2*x^6+5*x^5+13*x^4-31*x^3-21*x^2+38*x+13,-2*x^6+4*x^5+13*x^4-25*x^3-20*x^2+32*x+11,-x^2-x+5,4*x^6-10*x^5-28*x^4+65*x^3+53*x^2-88*x-33,3*x^6-7*x^5-20*x^4+43*x^3+34*x^2-52*x-22,-3*x^5+22*x^3+4*x^2-32*x-11,x^6-2*x^5-7*x^4+13*x^3+12*x^2-20*x-4,x^2-2,x^6-2*x^5-6*x^4+12*x^3+6*x^2-15*x+2,-6*x^6+15*x^5+41*x^4-96*x^3-72*x^2+122*x+44,3*x^6-6*x^5-20*x^4+36*x^3+30*x^2-41*x-10,x^5-8*x^3+12*x,-4*x^6+10*x^5+27*x^4-64*x^3-47*x^2+84*x+29,6*x^6-15*x^5-40*x^4+95*x^3+69*x^2-120*x-44,x^6-2*x^5-7*x^4+12*x^3+13*x^2-14*x-7,x^6-3*x^5-6*x^4+18*x^3+7*x^2-21*x-2,4*x^6-8*x^5-28*x^4+50*x^3+51*x^2-66*x-29,x^6-x^5-6*x^4+3*x^3+7*x^2+3*x,-3*x^6+6*x^5+21*x^4-36*x^3-37*x^2+42*x+15,x^5-6*x^3-x^2+6*x,-x^6+x^5+9*x^4-6*x^3-21*x^2+5*x+11,-3*x^6+7*x^5+21*x^4-45*x^3-38*x^2+59*x+22,-7*x^6+16*x^5+49*x^4-102*x^3-90*x^2+133*x+52,-2*x^6+3*x^5+13*x^4-18*x^3-18*x^2+21*x+4,3*x^6-8*x^5-20*x^4+50*x^3+34*x^2-61*x-18,-x^3-x^2+5*x,-6*x^6+15*x^5+40*x^4-94*x^3-65*x^2+115*x+36,8*x^6-20*x^5-53*x^4+125*x^3+90*x^2-155*x-58,1,5*x^6-11*x^5-35*x^4+70*x^3+62*x^2-91*x-33,-4*x^6+9*x^5+27*x^4-54*x^3-45*x^2+59*x+21,-5*x^6+8*x^5+34*x^4-48*x^3-52*x^2+57*x+18,x^6-2*x^5-8*x^4+13*x^3+19*x^2-17*x-12,2*x^6-4*x^5-13*x^4+24*x^3+18*x^2-27*x-11,-x^6+2*x^5+6*x^4-13*x^3-7*x^2+18*x+3,x^3-4*x,-4*x^6+11*x^5+25*x^4-69*x^3-37*x^2+83*x+28,2*x^6-3*x^5-14*x^4+18*x^3+23*x^2-21*x-11,3*x^6-9*x^5-19*x^4+58*x^3+30*x^2-72*x-21,-x^6+3*x^5+6*x^4-18*x^3-10*x^2+22*x+6,-1,6*x^6-11*x^5-42*x^4+66*x^3+73*x^2-79*x-33,x^6-2*x^5-8*x^4+13*x^3+18*x^2-18*x-10,x^6-10*x^4+24*x^2-8,6*x^6-15*x^5-41*x^4+94*x^3+74*x^2-119*x-47,-6*x^6+15*x^5+40*x^4-95*x^3-68*x^2+121*x+44,x^4-4*x^2-x-5,x^6-2*x^5-7*x^4+13*x^3+14*x^2-16*x-10,-2*x^6+6*x^5+11*x^4-36*x^3-12*x^2+40*x+10,2*x^6-4*x^5-14*x^4+25*x^3+24*x^2-30*x-11,-8*x^6+17*x^5+54*x^4-103*x^3-91*x^2+120*x+50,-3*x^6+7*x^5+18*x^4-41*x^3-23*x^2+41*x+11,-2*x^6+5*x^5+16*x^4-35*x^3-40*x^2+56*x+34,8*x^6-16*x^5-54*x^4+99*x^3+86*x^2-121*x-44,-x^6+2*x^5+9*x^4-14*x^3-24*x^2+22*x+11,3*x^6-5*x^5-21*x^4+31*x^3+35*x^2-37*x-17,-x^6+2*x^5+7*x^4-13*x^3-13*x^2+18*x+9,-6*x^6+12*x^5+42*x^4-73*x^3-72*x^2+84*x+33,2*x^6-7*x^5-15*x^4+48*x^3+37*x^2-70*x-36,-3*x^6+8*x^5+20*x^4-49*x^3-34*x^2+58*x+16,2*x^6-5*x^5-13*x^4+34*x^3+19*x^2-49*x-11,-3*x^6+6*x^5+20*x^4-33*x^3-33*x^2+34*x+11]];
E[427,5] = [x^9-5*x^8-3*x^7+45*x^6-32*x^5-108*x^4+123*x^3+30*x^2-43*x+4, [16,16*x,-5*x^8+18*x^7+37*x^6-170*x^5-30*x^4+434*x^3-161*x^2-161*x+28,16*x^2-32,2*x^8-4*x^7-18*x^6+20*x^5+60*x^4+12*x^3-86*x^2-86*x+40,-7*x^8+22*x^7+55*x^6-190*x^5-106*x^4+454*x^3-11*x^2-187*x+20,-16,16*x^3-64*x,x^8-10*x^7+15*x^6+82*x^5-170*x^4-202*x^3+381*x^2+141*x-60,6*x^8-12*x^7-70*x^6+124*x^5+228*x^4-332*x^3-146*x^2+126*x-8,-x^8+10*x^7-15*x^6-82*x^5+186*x^4+170*x^3-461*x^2-13*x+108,-3*x^8-2*x^7+51*x^6+10*x^5-242*x^4-18*x^3+345*x^2+41*x-28,2*x^8-4*x^7-18*x^6+20*x^5+76*x^4-20*x^3-166*x^2+42*x+72,-16*x,16*x^4-48*x^3-64*x^2+192*x,16*x^4-96*x^2+64,-5*x^8+18*x^7+37*x^6-154*x^5-62*x^4+354*x^3-33*x^2-145*x+44,-5*x^8+18*x^7+37*x^6-138*x^5-94*x^4+258*x^3+111*x^2-17*x-4,-5*x^8+18*x^7+37*x^6-170*x^5-30*x^4+450*x^3-193*x^2-241*x+124,14*x^8-44*x^7-110*x^6+380*x^5+196*x^4-908*x^3+118*x^2+422*x-104,5*x^8-18*x^7-37*x^6+170*x^5+30*x^4-434*x^3+161*x^2+161*x-28,5*x^8-18*x^7-37*x^6+154*x^5+62*x^4-338*x^3+17*x^2+65*x+4,x^8-10*x^7-x^6+114*x^5-74*x^4-346*x^3+269*x^2+189*x-44,-3*x^8-2*x^7+35*x^6+42*x^5-130*x^4-194*x^3+153*x^2+217*x-28,12*x^8-40*x^7-92*x^6+344*x^5+136*x^4-744*x^3+188*x^2+76*x-32,6*x^8-12*x^7-70*x^6+140*x^5+196*x^4-412*x^3-18*x^2+158*x-8,-3*x^8+14*x^7+19*x^6-134*x^5-18*x^4+382*x^3-23*x^2-279*x-28,-16*x^2+32,16*x^8-64*x^7-96*x^6+576*x^5-64*x^4-1408*x^3+848*x^2+512*x-224,16*x^5-48*x^4-64*x^3+192*x^2,-12*x^8+40*x^7+92*x^6-360*x^5-136*x^4+920*x^3-188*x^2-508*x+64,16*x^5-128*x^3+192*x,5*x^8-18*x^7-37*x^6+154*x^5+62*x^4-322*x^3+x^2-31*x+68,-7*x^8+22*x^7+71*x^6-222*x^5-186*x^4+582*x^3+5*x^2-171*x+20,-2*x^8+4*x^7+18*x^6-20*x^5-60*x^4-12*x^3+86*x^2+86*x-40,-9*x^8+42*x^7+57*x^6-418*x^5+58*x^4+1130*x^3-629*x^2-501*x+140,-8*x^8+32*x^7+40*x^6-256*x^5+48*x^4+528*x^3-344*x^2-88*x+160,-7*x^8+22*x^7+55*x^6-190*x^5-90*x^4+422*x^3-91*x^2-91*x+20,-8*x^8+32*x^7+56*x^6-320*x^5+880*x^3-408*x^2-440*x+96,14*x^8-44*x^7-110*x^6+396*x^5+148*x^4-940*x^3+294*x^2+246*x-40,-8*x^8+32*x^7+56*x^6-304*x^5-32*x^4+784*x^3-280*x^2-296*x+96,7*x^8-22*x^7-55*x^6+190*x^5+106*x^4-454*x^3+11*x^2+187*x-20,13*x^8-50*x^7-93*x^6+474*x^5+46*x^4-1202*x^3+537*x^2+393*x-156,9*x^8-42*x^7-41*x^6+386*x^5-170*x^4-938*x^3+837*x^2+245*x-236,-14*x^8+44*x^7+126*x^6-412*x^5-308*x^4+1068*x^3+106*x^2-550*x-24,-5*x^8+2*x^7+69*x^6-42*x^5-238*x^4+146*x^3+159*x^2-x-4,x^8+6*x^7-33*x^6-46*x^5+214*x^4+102*x^3-403*x^2-115*x+116,-11*x^8+30*x^7+75*x^6-246*x^5-34*x^4+558*x^3-383*x^2-239*x+68,16,20*x^8-56*x^7-196*x^6+520*x^5+552*x^4-1288*x^3-284*x^2+484*x-48,-5*x^8+18*x^7+37*x^6-170*x^5-30*x^4+418*x^3-161*x^2-81*x+28,14*x^8-44*x^7-94*x^6+348*x^5+84*x^4-716*x^3+310*x^2+166*x-168,-8*x^8+16*x^7+88*x^6-144*x^5-304*x^4+352*x^3+296*x^2-184*x+96,-x^8+10*x^7+x^6-114*x^5+58*x^4+346*x^3-189*x^2-157*x+12,16*x^7-48*x^6-144*x^5+448*x^4+304*x^3-1072*x^2+112*x+192,-16*x^3+64*x,x^8+6*x^7-33*x^6-46*x^5+230*x^4+54*x^3-467*x^2+141*x+52,16*x^8-48*x^7-144*x^6+448*x^5+320*x^4-1120*x^3+32*x^2+464*x-64,2*x^8-20*x^7+14*x^6+180*x^5-196*x^4-500*x^3+474*x^2+378*x-232,16*x^6-48*x^5-96*x^4+288*x^3+128*x^2-384*x,16,-20*x^8+56*x^7+180*x^6-520*x^5-376*x^4+1288*x^3-148*x^2-452*x+48,-x^8+10*x^7-15*x^6-82*x^5+170*x^4+202*x^3-381*x^2-141*x+60,16*x^6-160*x^4+384*x^2-128,-4*x^8+24*x^7+4*x^6-232*x^5+216*x^4+616*x^3-692*x^2-276*x+176,7*x^8-22*x^7-71*x^6+222*x^5+218*x^4-614*x^3-181*x^2+283*x-20,x^8-10*x^7-x^6+146*x^5-122*x^4-570*x^3+477*x^2+541*x-108,-3*x^8+14*x^7+19*x^6-102*x^5-50*x^4+158*x^3+105*x^2+9*x-60,-9*x^8+42*x^7+41*x^6-370*x^5+106*x^4+938*x^3-517*x^2-517*x+44,-6*x^8+12*x^7+70*x^6-124*x^5-228*x^4+332*x^3+146*x^2-126*x+8,-7*x^8+22*x^7+71*x^6-190*x^5-314*x^4+518*x^3+613*x^2-491*x-140,7*x^8-6*x^7-87*x^6+46*x^5+346*x^4-38*x^3-453*x^2-213*x+44,12*x^8-56*x^7-44*x^6+488*x^5-280*x^4-1160*x^3+1148*x^2+444*x-304,-8*x^8+16*x^7+104*x^6-208*x^5-336*x^4+640*x^3+152*x^2-184*x+32,9*x^8-26*x^7-89*x^6+258*x^5+278*x^4-778*x^3-251*x^2+629*x-76,-3*x^8-2*x^7+51*x^6+26*x^5-274*x^4-130*x^3+505*x^2+201*x-220,x^8-10*x^7+15*x^6+82*x^5-186*x^4-170*x^3+461*x^2+13*x-108,-8*x^8+32*x^7+40*x^6-256*x^5+16*x^4+576*x^3-200*x^2-248*x+32,-3*x^8+14*x^7+3*x^6-118*x^5+142*x^4+270*x^3-423*x^2-23*x+4,-2*x^8+20*x^7-14*x^6-164*x^5+180*x^4+388*x^3-410*x^2-282*x+152,8*x^8-16*x^7-104*x^6+192*x^5+384*x^4-624*x^3-360*x^2+440*x+48,-8*x^8+32*x^7+56*x^6-288*x^5-80*x^4+704*x^3-56*x^2-248*x+32]];
E[427,6] = [x^6+5*x^5+2*x^4-22*x^3-30*x^2+9, [3,3*x,-x^5-5*x^4+x^3+25*x^2+12*x-15,3*x^2-6,3*x^5+9*x^4-12*x^3-45*x^2-6*x+18,3*x^4+3*x^3-18*x^2-15*x+9,3,3*x^3-12*x,x^5+8*x^4+5*x^3-40*x^2-36*x+21,-6*x^5-18*x^4+21*x^3+84*x^2+18*x-27,-5*x^5-13*x^4+23*x^3+59*x^2-6*x-18,5*x^5+13*x^4-20*x^3-65*x^2-15*x+30,-3*x^5-12*x^4+6*x^3+60*x^2+30*x-30,3*x,3*x^4+3*x^3-12*x^2-6*x,3*x^4-18*x^2+12,6*x^5+21*x^4-18*x^3-99*x^2-39*x+18,3*x^5+3*x^4-18*x^3-6*x^2+21*x-9,3*x^5+9*x^4-12*x^3-45*x^2-9*x+15,6*x^5+15*x^4-24*x^3-72*x^2-15*x+18,-x^5-5*x^4+x^3+25*x^2+12*x-15,12*x^5+33*x^4-51*x^3-156*x^2-18*x+45,2*x^5+10*x^4-2*x^3-47*x^2-21*x+9,-12*x^5-36*x^4+39*x^3+171*x^2+60*x-63,-12*x^5-36*x^4+45*x^3+174*x^2+36*x-69,3*x^5+12*x^4-6*x^3-60*x^2-30*x+27,-3*x^5-15*x^4-3*x^3+72*x^2+72*x-33,3*x^2-6,-x^5-2*x^4+4*x^3+10*x^2+3*x-9,3*x^5+3*x^4-12*x^3-6*x^2,15*x^5+48*x^4-48*x^3-222*x^2-75*x+69,3*x^5-24*x^3+36*x,-8*x^5-31*x^4+20*x^3+155*x^2+72*x-63,-9*x^5-30*x^4+33*x^3+141*x^2+18*x-54,3*x^5+9*x^4-12*x^3-45*x^2-6*x+18,-14*x^5-40*x^4+50*x^3+191*x^2+63*x-69,-6*x^5-18*x^4+24*x^3+81*x^2+12*x-21,-6*x^5-18*x^4+21*x^3+81*x^2+15*x-27,7*x^5+29*x^4-10*x^3-145*x^2-90*x+78,-3*x^5+18*x^3-3*x^2-18*x,-6*x^5-21*x^4+18*x^3+105*x^2+45*x-54,3*x^4+3*x^3-18*x^2-15*x+9,-3*x^5-9*x^4+18*x^3+48*x^2-15*x-21,-17*x^5-49*x^4+62*x^3+224*x^2+57*x-72,3*x^5+6*x^4-12*x^3-30*x^2-15*x+9,-6*x^4-3*x^3+39*x^2+9*x-18,-5*x^5-10*x^4+26*x^3+41*x^2-9*x,14*x^5+37*x^4-53*x^3-170*x^2-33*x+48,3,24*x^5+69*x^4-90*x^3-324*x^2-69*x+108,9*x^5+27*x^4-36*x^3-129*x^2-3*x+63,3*x^5+12*x^4-6*x^3-60*x^2-33*x+33,x^5-4*x^4-19*x^3+17*x^2+57*x-9,3*x^4+6*x^3-18*x^2-33*x+27,15*x^5+48*x^4-51*x^3-225*x^2-54*x+72,3*x^3-12*x,x^5+5*x^4-x^3-19*x^2-3*x+6,3*x^5+6*x^4-12*x^3-27*x^2-9*x+9,-4*x^5-11*x^4+10*x^3+46*x^2+36*x-18,-12*x^5-24*x^4+54*x^3+114*x^2+12*x-27,3,-27*x^5-78*x^4+108*x^3+375*x^2+69*x-135,x^5+8*x^4+5*x^3-40*x^2-36*x+21,-15*x^5-36*x^4+66*x^3+162*x^2-51,3*x^5+9*x^4-12*x^3-42*x^2-3*x+9,9*x^5+36*x^4-21*x^3-168*x^2-63*x+72,-3*x^4-12*x^3+6*x^2+45*x+15,3*x^5+9*x^4-21*x^3-54*x^2+24*x+45,8*x^5+25*x^4-32*x^3-128*x^2-18*x+54,-6*x^5-18*x^4+21*x^3+84*x^2+18*x-27,5*x^5+10*x^4-35*x^3-53*x^2+48*x+36,24*x^5+72*x^4-81*x^3-345*x^2-111*x+144,-21*x^5-66*x^4+75*x^3+318*x^2+78*x-138,12*x^5+36*x^4-51*x^3-168*x^2-21*x+54,5*x^5+13*x^4-14*x^3-68*x^2-42*x+48,6*x^5+15*x^4-27*x^3-75*x^2-9*x+24,-5*x^5-13*x^4+23*x^3+59*x^2-6*x-18,-6*x^5-24*x^4+9*x^3+120*x^2+78*x-63,-9*x^5-33*x^4+18*x^3+153*x^2+96*x-30,3*x^5-6*x^4-21*x^3+36*x^2+30*x-9,17*x^5+61*x^4-44*x^3-299*x^2-141*x+129,9*x^5+30*x^4-27*x^3-135*x^2-54*x+54]];
E[427,7] = [x, [1,0,2,-2,4,0,1,0,1,0,-2,-4,2,0,8,4,5,0,-8,-8,2,0,-6,0,11,0,-4,-2,2,0,1,0,-4,0,4,-2,4,0,4,0,0,0,8,4,4,0,-8,8,1,0,10,-4,-12,0,-8,0,-16,0,1,-16,-1,0,1,-8,8,0,6,-10,-12,0,6,0,-10,0,22,16,-2,0,-14,16,-11,0]];

E[428,1] = [x, [1,0,-1,0,2,0,-4,0,-2,0,-5,0,1,0,-2,0,2,0,-1,0,4,0,-3,0,-1,0,5,0,-10,0,4,0,5,0,-8,0,-7,0,-1,0,3,0,-6,0,-4,0,0,0,9,0,-2,0,1,0,-10,0,1,0,8,0,7,0,8,0,2,0,2,0,3,0,-6,0,-8,0,1,0,20,0,13,0,1,0,12,0,4,0,10,0,-3,0,-4,0,-4,0,-2,0,-12,0,10,0,19,0,-12,0,8,0,1,0]];
E[428,2] = [x, [1,0,1,0,2,0,4,0,-2,0,-3,0,5,0,2,0,-6,0,1,0,4,0,-1,0,-1,0,-5,0,6,0,4,0,-3,0,8,0,-3,0,5,0,-5,0,6,0,-4,0,8,0,9,0,-6,0,-11,0,-6,0,1,0,0,0,-5,0,-8,0,10,0,-10,0,-1,0,6,0,-16,0,-1,0,-12,0,-1,0,1,0,4,0,-12,0,6,0,-3,0,20,0,4,0,2,0,12,0,6,0,-9,0,-12,0,8,0,-1,0]];
E[428,3] = [x^2+3*x-1, [1,0,x,0,-x-2,0,-1,0,-3*x-2,0,1,0,-2,0,x-1,0,x-3,0,-2*x-6,0,-x,0,2*x-1,0,x,0,4*x-3,0,5,0,2*x-3,0,x,0,x+2,0,-x+4,0,-2*x,0,2*x+2,0,-x-4,0,-x+7,0,-2*x-2,0,-6,0,-6*x+1,0,4*x+5,0,-x-2,0,-2,0,x,0,3*x+4,0,3*x+2,0,2*x+4,0,-2*x-6,0,-7*x+2,0,3*x+12,0,2*x+3,0,-3*x+1,0,-1,0,-3*x-8,0,-6*x+10,0,-5*x-2,0,4*x+5,0,5*x,0,-6*x-9,0,2,0,-9*x+2,0,4*x+14,0,6*x+3,0,-3*x-2,0,2*x+3,0,-7*x-13,0,-x+1,0,1,0]];
E[428,4] = [x^5-5*x^4-2*x^3+32*x^2-10*x-43, [3,0,3*x,0,-2*x^4+5*x^3+12*x^2-19*x-17,0,x^4-x^3-9*x^2+2*x+19,0,3*x^2-9,0,-3*x^2+3*x+18,0,3*x^4-9*x^3-18*x^2+39*x+27,0,-5*x^4+8*x^3+45*x^2-37*x-86,0,3*x^4-6*x^3-27*x^2+27*x+66,0,x^4-4*x^3-6*x^2+17*x+22,0,4*x^4-7*x^3-30*x^2+29*x+43,0,-2*x^4+5*x^3+15*x^2-25*x-23,0,-x^4+4*x^3+9*x^2-23*x-19,0,3*x^3-18*x,0,-9,0,x^4-x^3-9*x^2-4*x+25,0,-3*x^3+3*x^2+18*x,0,-2*x^4+5*x^3+6*x^2-19*x+7,0,2*x^4-2*x^3-24*x^2+7*x+62,0,6*x^4-12*x^3-57*x^2+57*x+129,0,-4*x^4+7*x^3+42*x^2-38*x-103,0,-4*x^4+7*x^3+36*x^2-29*x-73,0,-11*x^4+20*x^3+87*x^2-79*x-164,0,-5*x^4+11*x^3+45*x^2-58*x-104,0,3*x^4-3*x^3-27*x^2+12*x+42,0,9*x^4-21*x^3-69*x^2+96*x+129,0,-4*x^4+7*x^3+33*x^2-23*x-73,0,3*x^3-6*x^2-15*x+27,0,x^4-4*x^3-15*x^2+32*x+43,0,3*x^3-12*x^2-3*x+39,0,-5*x^4+11*x^3+36*x^2-46*x-65,0,10*x^4-19*x^3-72*x^2+77*x+115,0,8*x^4-20*x^3-54*x^2+88*x+62,0,-6*x^3+12*x^2+30*x-12,0,-5*x^4+11*x^3+39*x^2-43*x-86,0,-3*x^3+6*x^2+9*x-21,0,-3*x^4+9*x^3+21*x^2-42*x-33,0,-x^4+7*x^3+9*x^2-29*x-43,0,-3*x^4+9*x^3+15*x^2-42*x-15,0,3*x^4-12*x^3-12*x^2+54*x+18,0,3*x^4-27*x^2+27,0,-x^4-2*x^3+21*x^2+7*x-67,0,3*x^4-3*x^3-39*x^2+12*x+99,0,-9*x,0,6*x^4-18*x^3-33*x^2+69*x+48,0,-4*x^4+4*x^3+48*x^2-20*x-130,0,4*x^4-7*x^3-36*x^2+35*x+43,0,4*x^4-4*x^3-42*x^2+26*x+76,0,-7*x^4+13*x^3+63*x^2-68*x-127,0,-3*x^4+3*x^3+27*x^2-9*x-54,0,3*x^4-33*x^2-6*x+36,0,-x^4+4*x^3-3*x^2-5*x+50,0,-5*x^4+2*x^3+45*x^2-13*x-86,0,-3,0]];

E[429,1] = [x^2-3, [1,x,-1,1,-x-1,-x,-2,-x,1,-x-3,-1,-1,-1,-2*x,x+1,-5,-x+5,x,-2*x-4,-x-1,2,-x,-2,x,2*x-1,-x,-1,-2,3*x+1,x+3,3*x-3,-3*x,1,5*x-3,2*x+2,1,-2,-4*x-6,1,x+3,2*x-2,2*x,3*x-1,-1,-x-1,-2*x,2*x+2,5,-3,-x+6,x-5,-1,2,-x,x+1,2*x,2*x+4,x+9,2*x-10,x+1,-4*x-2,-3*x+9,-2,1,x+1,x,3*x-7,-x+5,2,2*x+6,-4*x,-x,-4*x-4,-2*x,-2*x+1,-2*x-4,2,x,5*x+5,5*x+5,1,-2*x+6,-8*x,2,-4*x-2,-x+9,-3*x-1,x,5*x-7,-x-3,2,-2,-3*x+3,2*x+6,6*x+10,3*x,-4*x+2,-3*x,-1,2*x-1,-3*x+3,-5*x+3,-10*x+2,x,-2*x-2,2*x,6*x+2,-1,-8,x+3,2,10]];
E[429,2] = [x^3-3*x^2-x+5, [1,x,1,x^2-2,-x^2+x+4,x,-x^2+3,3*x^2-3*x-5,1,-2*x^2+3*x+5,-1,x^2-2,-1,-3*x^2+2*x+5,-x^2+x+4,4*x^2-2*x-11,-x+1,x,x^2-3,-x^2+x+2,-x^2+3,-x,-x^2-2*x+7,3*x^2-3*x-5,-3*x^2+4*x+6,-x,1,-5*x^2+2*x+9,4*x^2-7*x-7,-2*x^2+3*x+5,x^2-x+2,4*x^2-x-10,-1,-x^2+x,2,x^2-2,-4*x+4,3*x^2-2*x-5,-1,2*x^2-5*x-5,x^2-5,-3*x^2+2*x+5,-6*x^2+9*x+11,-x^2+2,-x^2+x+4,-5*x^2+6*x+5,4*x^2-6*x-4,4*x^2-2*x-11,4*x^2-2*x-13,-5*x^2+3*x+15,-x+1,-x^2+2,-4*x^2+2*x+12,x,x^2-x-4,-7*x^2+15,x^2-3,5*x^2-3*x-20,2*x^2-2*x+4,-x^2+x+2,2*x^2+2*x-12,2*x^2+3*x-5,-x^2+3,3*x^2-2*x+2,x^2-x-4,-x,7*x^2-9*x-16,-2*x^2+x+3,-x^2-2*x+7,2*x,-4*x^2+12*x+6,3*x^2-3*x-5,3*x^2-8*x-11,-4*x^2+4*x,-3*x^2+4*x+6,5*x^2-2*x-9,x^2-3,-x,4*x^2-5*x-17,3*x^2-5*x-14,1,3*x^2-4*x-5,2*x^2-2*x,-5*x^2+2*x+9,x^2-2*x-1,-9*x^2+5*x+30,4*x^2-7*x-7,-3*x^2+3*x+5,x^2-x-2,-2*x^2+3*x+5,x^2-3,-7*x^2+4*x+11,x^2-x+2,6*x^2-20,-2,4*x^2-x-10,4*x-8,10*x^2-9*x-20,-1,-6*x^2+2*x+13,-2*x^2+5*x-7,-x^2+x,-4*x^2+8*x+8,-3*x^2+3*x+5,2,-10*x^2+8*x+20,-6*x^2+10*x+8,x^2-2,-7*x^2+4*x+19,2*x^2-3*x-5,-4*x+4,-11*x^2+4*x+17]];
E[429,3] = [x^3-x^2-3*x+1, [1,x,1,x^2-2,-x^2+x+2,x,-x^2+2*x+1,x^2-x-1,1,-x+1,1,x^2-2,1,x^2-2*x+1,-x^2+x+2,-2*x^2+2*x+3,2*x^2-3*x-1,x,-x^2-2*x+5,x^2-x-4,-x^2+2*x+1,x,x^2-2*x+1,x^2-x-1,-x^2,x,1,x^2-3,-2*x^2+x+5,-x+1,x^2-x-4,-2*x^2-x+4,1,-x^2+5*x-2,-2*x+4,x^2-2,-2*x^2+2*x,-3*x^2+2*x+1,1,x-3,-x^2-2*x+7,x^2-2*x+1,4*x^2-5*x-7,x^2-2,-x^2+x+2,-x^2+4*x-1,-2*x^2+4*x+4,-2*x^2+2*x+3,2*x^2-6*x-3,-x^2-3*x+1,2*x^2-3*x-1,x^2-2,6*x^2-2*x-14,x,-x^2+x+2,-x^2+4*x-3,-x^2-2*x+5,-x^2-x+2,2*x^2-6*x,x^2-x-4,2*x^2-6,-x-1,-x^2+2*x+1,x^2-6*x-4,-x^2+x+2,x,3*x^2-x-6,x+3,x^2-2*x+1,-2*x^2+4*x,-2*x^2-2*x+6,x^2-x-1,3*x^2+2*x-9,-6*x+2,-x^2,x^2-4*x-7,-x^2+2*x+1,x,2*x^2-3*x+1,-x^2-x+8,1,-3*x^2+4*x+1,2*x-2,x^2-3,-x^2+4*x-5,-x^2+5*x-4,-2*x^2+x+5,x^2-x-1,3*x^2+5*x-12,-x+1,-x^2+2*x+1,x^2-1,x^2-x-4,2*x^2-2*x+2,-4*x^2+6*x+8,-2*x^2-x+4,-2*x^2+2*x,-4*x^2+3*x-2,1,-2*x^2-2*x+1,3*x+3,-x^2+5*x-2,2*x^2-14,x^2-x-1,-2*x+4,4*x^2+4*x-6,-2*x^2+6*x+8,x^2-2,5*x^2-10*x-15,-x+1,-2*x^2+2*x,x^2-6*x+7]];
E[429,4] = [x^3+x^2-5*x-3, [1,x,-1,x^2-2,x^2+x-4,-x,x^2-3,-x^2+x+3,1,x+3,1,-x^2+2,-1,-x^2+2*x+3,-x^2-x+4,-2*x+1,-x-1,x,-x^2+7,-x^2+x+8,-x^2+3,x,x^2+2*x-7,x^2-x-3,-3*x^2+14,-x,-1,x^2-2*x+3,2*x^2+x-3,-x-3,x^2+x+2,-x-6,-1,-x^2-x,-2*x^2+12,x^2-2,-2*x^2-4*x+6,x^2+2*x-3,1,2*x^2+x-9,x^2-4*x-5,x^2-2*x-3,2*x^2-x-13,x^2-2,x^2+x-4,x^2-2*x+3,-2*x^2-2*x+6,2*x-1,-2*x-1,3*x^2-x-9,x+1,-x^2+2,-2*x-4,-x,x^2+x-4,-x^2+4*x-3,x^2-7,-x^2+7*x+6,-2*x^2-2*x+12,x^2-x-8,-2*x+2,7*x+3,x^2-3,-x^2-2*x-2,-x^2-x+4,-x,-x^2-3*x+12,-3*x-1,-x^2-2*x+7,2*x^2+2*x-6,2*x^2-8,-x^2+x+3,-3*x^2+4*x+15,-2*x^2-4*x-6,3*x^2-14,3*x^2+2*x-11,x^2-3,x,x+7,x^2-x-10,1,-5*x^2+3,2*x^2-2*x,-x^2+2*x-3,-x^2-2*x+1,-3*x^2-3*x+6,-2*x^2-x+3,-x^2+x+3,-3*x^2-x+4,x+3,-x^2+3,-5*x^2+4*x+17,-x^2-x-2,-4*x-6,6*x^2+4*x-28,x+6,2*x^2+4*x-10,-2*x^2-x,1,2*x^2+6*x-19,-2*x^2+5*x+11,x^2+x,4*x+4,x^2-x-3,2*x^2-12,-2*x^2-4*x,-2*x^2-2*x+4,-x^2+2,3*x^2-11,x+3,2*x^2+4*x-6,3*x^2-4*x-9]];
E[429,5] = [x^4+2*x^3-6*x^2-12*x-1, [1,x,-1,x^2-2,x^3-6*x-1,-x,x^3-5*x,x^3-4*x,1,-2*x^3+11*x+1,-1,-x^2+2,1,-2*x^3+x^2+12*x+1,-x^3+6*x+1,-2*x^3+12*x+5,-x^3-x^2+8*x+4,x,x^3-5*x+4,2*x^3-x^2-11*x,-x^3+5*x,-x,-x^2-2*x+3,-x^3+4*x,2*x^3+x^2-14*x-6,x,-1,3*x^3-13*x-2,-2*x^3-2*x^2+11*x+7,2*x^3-11*x-1,-x^3-2*x^2+4*x+11,2*x^3-11*x-2,1,x^3+2*x^2-8*x-1,x^3+x^2-9*x-1,x^2-2,x^3-x^2-5*x+3,-2*x^3+x^2+16*x+1,-1,-x^3+x^2+2*x,x^3+2*x^2-5*x-8,2*x^3-x^2-12*x-1,-3*x^3-x^2+18*x+14,-x^2+2,x^3-6*x-1,-x^3-2*x^2+3*x,-x^3+x^2+3*x-3,2*x^3-12*x-5,2*x^2-2*x-7,-3*x^3-2*x^2+18*x+2,x^3+x^2-8*x-4,x^2-2,2*x^2-2*x-10,-x,-x^3+6*x+1,-2*x^3+3*x^2+10*x+1,-x^3+5*x-4,2*x^3-x^2-17*x-2,2*x^3+4*x^2-12*x-14,-2*x^3+x^2+11*x,-x^3-3*x^2+7*x+11,-2*x^2-x-1,x^3-5*x,x^2-2*x-8,x^3-6*x-1,x,x^3-2*x^2-6*x+7,2*x^3-5*x-7,x^2+2*x-3,-x^3-3*x^2+11*x+1,-x^3-3*x^2+5*x+15,x^3-4*x,-3*x^3+19*x+2,-3*x^3+x^2+15*x+1,-2*x^3-x^2+14*x+6,3*x^3+4*x^2-13*x-10,-x^3+5*x,-x,5*x^3+x^2-28*x-10,-x^3-2*x^2+10*x-1,1,x^2+4*x+1,-2*x^3+2*x^2+12*x-8,-3*x^3+13*x+2,-7*x^3+41*x+2,5*x^3-22*x-3,2*x^3+2*x^2-11*x-7,-x^3+4*x,-x^2+x+6,-2*x^3+11*x+1,x^3-5*x,-x^2-8*x-7,x^3+2*x^2-4*x-11,3*x^3-3*x^2-15*x-1,5*x^3+x^2-33*x-5,-2*x^3+11*x+2,-x^3-3*x^2+x+13,2*x^3-2*x^2-7*x,-1,-2*x^2-6*x+9,3*x^3+x^2-22*x-8,-x^3-2*x^2+8*x+1,2*x^2-2,x^3-4*x,-x^3-x^2+9*x+1,2*x^3-2*x^2-10*x,-2*x^3-4*x^2+16*x+18,-x^2+2,-x^3+9*x+6,2*x^3-11*x-1,-x^3+x^2+5*x-3,x^3-2*x^2+3*x+2]];
E[429,6] = [x^2+2*x-1, [1,x,1,-2*x-1,x-1,x,-2*x-4,x-2,1,-3*x+1,1,-2*x-1,-1,-2,x-1,3,-x-5,x,-6,5*x-1,-2*x-4,x,-2*x,x-2,-4*x-3,-x,1,2*x+8,3*x+3,-3*x+1,3*x+3,x+4,1,-3*x-1,2*x+2,-2*x-1,4*x+6,-6*x,-1,-5*x+3,-12,-2,5*x+3,-2*x-1,x-1,4*x-2,-6*x-6,3,8*x+13,5*x-4,-x-5,2*x+1,8*x+10,x,x-1,4*x+6,-6,-3*x+3,-2*x-10,5*x-1,-2,-3*x+3,-2*x-4,2*x-5,-x+1,x,-5*x-1,7*x+7,-2*x,-2*x+2,-4*x-4,x-2,6*x+10,-2*x+4,-4*x-3,12*x+6,-2*x-4,-x,-5*x-7,3*x-3,1,-12*x,8*x+8,2*x+8,-2*x+4,-7*x+5,3*x+3,x-2,-x-15,-3*x+1,2*x+4,-6*x+4,3*x+3,6*x-6,-6*x+6,x+4,10,-3*x+8,1,-6*x+11,-7*x-7,-3*x-1,-6*x-6,-x+2,2*x+2,-6*x+8,6*x+6,-2*x-1,-2*x-6,-3*x+1,4*x+6,-6*x-12]];
E[429,7] = [x, [1,-1,-1,-1,0,1,0,3,1,0,1,1,1,0,0,-1,-4,-1,-8,0,0,-1,0,-3,-5,-1,-1,0,4,0,-6,-5,-1,4,0,-1,-6,8,-1,0,6,0,-2,-1,0,0,-8,1,-7,5,4,-1,6,1,0,0,8,-4,0,0,-14,6,0,7,0,1,14,4,0,0,-4,3,6,6,5,8,0,1,-10,0,1,-6,-12,0,0,2,-4,3,12,0,0,0,6,8,0,5,-2,7,1,5,-12,-4,4,3,0,-6,-16,1,10,0,6,0]];
E[429,8] = [x, [1,-1,1,-1,-2,-1,0,3,1,2,-1,-1,1,0,-2,-1,-6,-1,-4,2,0,1,-8,3,-1,-1,1,0,-10,2,0,-5,-1,6,0,-1,6,4,1,-6,10,0,4,1,-2,8,8,-1,-7,1,-6,-1,-10,-1,2,0,-4,10,-12,2,14,0,0,7,-2,1,-12,6,-8,0,0,3,-6,-6,-1,4,0,-1,8,2,1,-10,12,0,12,-4,-10,-3,2,2,0,8,0,-8,8,-5,-14,7,-1,1,-2,6,8,3,0,10,12,-1,14,-2,6,0]];

E[430,1] = [x^2-6, [1,1,x,1,-1,x,1,1,3,-1,-x+2,x,-1,1,-x,1,-x,3,-2*x+1,-1,x,-x+2,x+2,x,1,-1,0,1,-x+7,-x,-x-3,1,2*x-6,-x,-1,3,-x-2,-2*x+1,-x,-1,2*x-7,x,-1,-x+2,-3,x+2,-x,x,-6,1,-6,-1,4*x+4,0,x-2,1,x-12,-x+7,-2*x,-x,x-1,-x-3,3,1,1,2*x-6,x-3,-x,2*x+6,-1,-3*x+6,3,x-5,-x-2,x,-2*x+1,-x+2,-x,-x+9,-1,-9,2*x-7,6,x,x,-1,7*x-6,-x+2,5*x+6,-3,-1,x+2,-3*x-6,-x,2*x-1,x,x-14,-6,-3*x+6,1,-3*x+4,-6,2*x-6,-1,-x,4*x+4,-x+3,0,2*x+8,x-2,-2*x-6,1,-x-1,x-12,-x-2,-x+7,-3,-2*x,-x,-x,-4*x-1,x-1,-7*x+12,-x-3,-1,3,2*x-4,1,-x,1,-2,2*x-6]];
E[430,2] = [x^2-2, [1,1,x,1,1,x,1,1,-1,1,-x+2,x,-2*x+1,1,x,1,x,-1,-1,1,x,-x+2,-5*x+2,x,1,-2*x+1,-4*x,1,3*x-3,x,-x+1,1,2*x-2,x,1,-1,3*x-2,-1,x-4,1,-2*x+1,x,1,-x+2,-1,-5*x+2,5*x,x,-6,1,2,-2*x+1,-4*x,-4*x,-x+2,1,-x,3*x-3,2*x-4,x,5*x-7,-x+1,-1,1,-2*x+1,2*x-2,-3*x+3,x,2*x-10,1,7*x+2,-1,-3*x-5,3*x-2,x,-1,-x+2,x-4,-x-7,1,-5,-2*x+1,4*x-2,x,x,1,-3*x+6,-x+2,-5*x-2,-1,-2*x+1,-5*x+2,x-2,5*x,-1,x,11*x-2,-6,x-2,1,x,2,2*x-2,-2*x+1,x,-4*x,-5*x+9,-4*x,-2*x-8,-x+2,-2*x+6,1,7*x-5,-x,-5*x+2,3*x-3,2*x-1,2*x-4,x,x,-4*x-5,5*x-7,x-4,-x+1,1,-1,-6*x+12,1,x,-2*x+1,6,2*x-2]];
E[430,3] = [x, [1,1,-2,1,-1,-2,-1,1,1,-1,-6,-2,5,-1,2,1,-6,1,-7,-1,2,-6,-6,-2,1,5,4,-1,-3,2,5,1,12,-6,1,1,2,-7,-10,-1,-3,2,1,-6,-1,-6,12,-2,-6,1,12,5,6,4,6,-1,14,-3,-12,2,-1,5,-1,1,-5,12,-13,-6,12,1,12,1,11,2,-2,-7,6,-10,-1,-1,-11,-3,0,2,6,1,6,-6,6,-1,-5,-6,-10,12,7,-2,8,-6,-6,1,6,12,14,5,-2,6,-9,4,-16,6,-4,-1,-3,14,6,-3,5,-12,6,2,25,-1,6,5,-1,-1,-16,1,-2,-5,-12,12]];
E[430,4] = [x, [1,1,-2,1,1,-2,-5,1,1,1,-2,-2,-5,-5,-2,1,2,1,3,1,10,-2,-6,-2,1,-5,4,-5,-1,-2,-11,1,4,2,-5,1,-10,3,10,1,5,10,-1,-2,1,-6,4,-2,18,1,-4,-5,10,4,-2,-5,-6,-1,8,-2,-3,-11,-5,1,-5,4,-3,2,12,-5,-8,1,7,-10,-2,3,10,10,7,1,-11,5,0,10,2,-1,2,-2,6,1,25,-6,22,4,3,-2,12,18,-2,1,-14,-4,-14,-5,10,10,-7,4,-8,-2,20,-5,-15,-6,-6,-1,-5,8,-10,-2,-7,-3,-10,-11,1,-5,16,1,2,-5,-12,4]];
E[430,5] = [x^2-2*x-2, [1,-1,x,1,1,-x,-2*x+3,-1,2*x-1,-1,-x+2,x,2*x-1,2*x-3,x,1,x+4,-2*x+1,2*x-5,1,-x-4,x-2,-3*x+6,-x,1,-2*x+1,4,-2*x+3,-x+9,-x,-x-7,-1,-2,-x-4,-2*x+3,2*x-1,-3*x+2,-2*x+5,3*x+4,-1,-2*x+1,x+4,-1,-x+2,2*x-1,3*x-6,-x+8,x,-4*x+10,-1,6*x+2,2*x-1,-2*x,-4,-x+2,2*x-3,-x+4,x-9,2*x-12,x,-x+1,x+7,-11,1,2*x-1,2,3*x-3,x+4,-6,2*x-3,x-6,-2*x+1,3*x+1,3*x-2,x,2*x-5,-3*x+10,-3*x-4,-7*x+5,1,-2*x+3,2*x-1,2*x-2,-x-4,x+4,1,7*x-2,x-2,7*x-10,-2*x+1,-11,-3*x+6,-9*x-2,x-8,2*x-5,-x,-9*x+6,4*x-10,x-6,1,-5*x,-6*x-2,6*x-14,-2*x+1,-x-4,2*x,7*x-5,4,-2*x-12,x-2,-4*x-6,-2*x+3,-x+13,x-4,-3*x+6,-x+9,4*x+9,-2*x+12,-9*x+8,-x,-2*x-5,x-1,-3*x-4,-x-7,1,11,-2*x,-1,-x,-2*x+1,10*x-10,-2]];
E[430,6] = [x^3+2*x^2-6*x-8, [2,-2,2*x,2,-2,-2*x,x^2+2*x-8,-2,2*x^2-6,2,-2*x^2+2*x+16,2*x,-3*x^2-2*x+12,-x^2-2*x+8,-2*x,2,2*x^2+2*x-4,-2*x^2+6,-x^2+2*x+8,-2,-2*x+8,2*x^2-2*x-16,2*x^2+2*x,-2*x,2,3*x^2+2*x-12,-4*x^2+16,x^2+2*x-8,-x^2-8*x+4,2*x,3*x^2-16,-2,6*x^2+4*x-16,-2*x^2-2*x+4,-x^2-2*x+8,2*x^2-6,-4*x^2-6*x+12,x^2-2*x-8,4*x^2-6*x-24,2,-3*x^2+2*x+28,2*x-8,2,-2*x^2+2*x+16,-2*x^2+6,-2*x^2-2*x,2*x,2*x,-5*x^2-6*x+26,-2,-2*x^2+8*x+16,-3*x^2-2*x+12,-2*x^2-8*x+20,4*x^2-16,2*x^2-2*x-16,-x^2-2*x+8,4*x^2+2*x-8,x^2+8*x-4,4*x^2+4*x-8,-2*x,3*x^2+8*x-12,-3*x^2+16,-5*x^2+2*x+24,2,3*x^2+2*x-12,-6*x^2-4*x+16,x^2-4*x-24,2*x^2+2*x-4,-2*x^2+12*x+16,x^2+2*x-8,-2*x^2+2*x+8,-2*x^2+6,5*x^2-4*x-36,4*x^2+6*x-12,2*x,-x^2+2*x+8,10*x^2+6*x-56,-4*x^2+6*x+24,3*x^2+4*x-16,-2,2*x^2-8*x-14,3*x^2-2*x-28,-2*x^2-8*x+8,-2*x+8,-2*x^2-2*x+4,-2,-6*x^2-2*x-8,2*x^2-2*x-16,-8*x^2-6*x+28,2*x^2-6,9*x^2+2*x-56,2*x^2+2*x,-6*x^2+2*x+24,-2*x,x^2-2*x-8,-2*x,-4*x^2-6*x+12,5*x^2+6*x-26,-2*x^2+14*x,2,-2*x^2+2*x+4,2*x^2-8*x-16,-2*x^2+8,3*x^2+2*x-12,2*x-8,2*x^2+8*x-20,-5*x^2-8*x+24,-4*x^2+16,2*x^2-4,-2*x^2+2*x+16,2*x^2-12*x-32,x^2+2*x-8,-3*x^2-4*x+28,-4*x^2-2*x+8,-2*x^2-2*x,-x^2-8*x+4,-5*x^2+6*x-4,-4*x^2-4*x+8,-4*x^2+2*x+24,2*x,-2*x^2+42,-3*x^2-8*x+12,8*x^2+10*x-24,3*x^2-16,-2,5*x^2-2*x-24,4*x^2+4*x-24,-2,2*x,-3*x^2-2*x+12,2*x^2-8*x,6*x^2+4*x-16]];
E[430,7] = [x, [1,-1,0,1,-1,0,1,-1,-3,1,-4,0,-1,-1,0,1,0,3,1,-1,0,4,-4,0,1,1,0,1,-5,0,-9,-1,0,0,-1,-3,4,-1,0,1,-7,0,-1,-4,3,4,6,0,-6,-1,0,-1,-2,0,4,-1,0,5,0,0,-7,9,-3,1,1,0,15,0,0,1,-6,3,-5,-4,0,1,-4,0,9,-1,9,7,0,0,0,1,0,4,0,-3,-1,-4,0,-6,-1,0,-2,6,12,1,16,0,6,1,0,2,15,0,8,-4,0,1,-19,0,4,-5,3,0,0,0,5,7,0,-9,-1,3,8,-1,0,-1,16,0]];
E[430,8] = [x, [1,-1,0,1,1,0,-3,-1,-3,-1,0,0,-3,3,0,1,-4,3,-1,1,0,0,0,0,1,3,0,-3,-3,0,7,-1,0,4,-3,-3,-8,1,0,-1,-7,0,1,0,-3,0,-6,0,2,-1,0,-3,-6,0,0,3,0,3,-4,0,7,-7,9,1,-3,0,5,-4,0,3,2,3,-1,8,0,-1,0,0,9,1,9,7,8,0,-4,-1,0,0,4,3,9,0,0,6,-1,0,-2,-2,0,1,-12,0,18,3,0,6,-19,0,16,0,0,-3,9,0,0,-3,9,4,12,0,-11,-7,0,7,1,-9,-8,-1,0,3,0,0]];

E[431,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^3-x^2+3*x,x^2-2,x^3+x^2-3*x-2,-x+1,-x^2-x+2,x^3-4*x,x^3-4*x,-x-1,-x^3-2*x^2+2,2*x^3+x^2-5*x,2*x^3+3*x^2-4*x-4,-x^3-x^2+2*x,x^3+2*x^2-2*x-3,-x^3-3*x^2+x+3,-x^3+2*x^2+3*x-4,-x^3-x^2+x-1,x^3+3*x^2-5,-2*x^3-3*x^2+5*x+4,-2*x^3-x^2+6*x-1,-x^3-3*x^2+x+1,2*x^3+4*x^2-2*x-3,-x^3+x^2+4*x-4,-3*x^3-4*x^2+8*x+2,x^3+2*x^2-2*x-2,2*x^3+4*x^2-5*x-4,x^2+x-3,-x^2+2*x+1,x^3+x^2-2*x-1,x^3+x^2-3*x-7,-4*x^3-2*x^2+10*x+1,-x^3-x^2+4*x,3*x^3-5*x+1,2*x^3+3*x^2-4*x-3,-2*x^3-2*x^2+6*x+1,-5*x^3-8*x^2+8*x+7,2*x^3+3*x^2-4*x-1,2*x^3+3*x^2-5*x-4,-x^3-x^2+4*x+4,-2*x^2+4*x+5,x^3-3*x+2,-x^3-3*x^2+2*x,2*x^2-3,-x^3-x^2+4*x+4,2*x^3+4*x^2-x-2,-5*x^3-9*x^2+8*x+8,-2*x^3-x^2+5*x+1,x^3-3*x-4,-x^3-x^2-x+3,5*x^3+x^2-13*x+3,-3*x^3-5*x^2+7*x+7,-7*x^3-9*x^2+14*x+8,2*x^3+x^2-2*x-2,3*x^3+5*x^2-4*x-4,3*x^3+3*x^2-7*x,4*x^3+3*x^2-12*x,-x^3+2*x^2+x,-x^3+2*x^2+4*x-3,-2*x^3-3*x^2+4*x+5,2*x^3+4*x^2+2*x-3,-6*x-1,3*x^3+3*x^2-7*x,4*x^3+4*x^2-5*x-2,-6*x^3-9*x^2+13*x+12,x^2-x+1,6*x^3+6*x^2-13*x-1,-x^3-2*x+5,x^3+x^2-3*x-2,x^3+2*x^2-x-2,4*x^3+6*x^2-4*x-2,2*x^3+2*x^2-3*x+4]];
E[431,2] = [x^24-x^23-40*x^22+40*x^21+692*x^20-687*x^19-6790*x^18+6631*x^17+41657*x^16-39533*x^15-166175*x^14+150668*x^13+434546*x^12-367120*x^11-733353*x^10+555013*x^9+766426*x^8-486022*x^7-458392*x^6+216189*x^5+133642*x^4-39443*x^3-11021*x^2+2767*x+13, [3739222839496792400,3739222839496792400*x,7935096512256799*x^23+810620141708163*x^22-347056827413606066*x^21-23895258075624573*x^20+6643058587402330834*x^19+252660572416622679*x^18-73061583647644979333*x^17-758983487655886210*x^16+509534382412117002413*x^15-6650597706161081198*x^14-2345291193955692024574*x^13+72258602694291551120*x^12+7184575795215946444514*x^11-293971286954165816598*x^10-14402977230229462788321*x^9+590485552799907048989*x^8+18032974552918244244406*x^7-515734288981752615025*x^6-12801662575745517106358*x^5+27385716846365639607*x^4+4165925951152361601299*x^3+138803431432890603680*x^2-321943156993297734389*x+10917761056369362926,3739222839496792400*x^2-7478445678993584800,-6003837216916642*x^23-25519417413591614*x^22+287562107923492403*x^21+1002408111908591174*x^20-6011501607761727132*x^19-16932298038253081847*x^18+71928844431916175609*x^17+160827436846257916510*x^16-543060246362583052439*x^15-942558898465922137941*x^14+2689980717810505381012*x^13+3517749072355698182560*x^12-8804726807274501644302*x^11-8320124430544179870646*x^10+18689228698024334454698*x^9+11998378247655425125968*x^8-24465019598760262751343*x^7-9709914382292721658750*x^6+17796031658323038626364*x^5+3820952747901107923889*x^4-5722288875361777878787*x^3-651551490728019157710*x^2+432741984388948972677*x+13141980820492227997,8745716653964962*x^23-29652966923334106*x^22-341299118565896533*x^21+1151971800920625926*x^20+5704071876337043592*x^19-19182278329421314123*x^18-53376608460430720379*x^17+178982067001035526470*x^16+307047572712886953669*x^15-1026676531031418450749*x^14-1123306518614415840612*x^13+3736411346200803466260*x^12+2619161344625550232282*x^11-8583750397676402471274*x^10-3813596167757275734398*x^9+11951310273415314814032*x^8+3340897188098321348553*x^7-9164277815299098499150*x^6-1688094863041919479404*x^5+3105463783061338469341*x^4+451787443165835526637*x^3-234490458331715552610*x^2-11038650993045199907*x-103156254659338387,-143150520486373692*x^23+243352793885647876*x^22+5525725862722532978*x^21-9598993897319374536*x^20-91221690741440240992*x^19+162328065917404749838*x^18+840535066727456971654*x^17-1538648140726313503460*x^16-4728215687348435290574*x^15+8968316948233314064834*x^14+16658188289896411025032*x^13-33165496138812343316320*x^12-36110700346697339209292*x^11+77378252899513210812124*x^10+44774500963538149918228*x^9-109233484657811697272352*x^8-25718535426184754729938*x^7+84669827426659596449000*x^6+1260478077435543950064*x^5-29026165351366834049466*x^4+2761249926099770742718*x^3+2556838898063913309020*x^2-399745417757493770358*x+5073182238849510902,3739222839496792400*x^3-14956891357987169600*x,34710677557254954*x^23-45437716117336442*x^22-1365048373449729261*x^21+1796242652260830102*x^20+23097022670077719324*x^19-30461595267189805851*x^18-220099642809166571563*x^17+289821021040911981910*x^16+1298739296626790041833*x^15-1698159508100251360333*x^14-4915759482022420347324*x^13+6327969513906895380400*x^12+11965460145504538640634*x^11-14936604419492682979678*x^10-18298593960580544437946*x^9+21492355675734960727364*x^8+16734476667729751055121*x^7-17258057985710288689950*x^6-8497331767635338783068*x^5+6413087485031861979677*x^4+2176928128674512924649*x^3-739400738708113787950*x^2-145593396630496150659*x+29287179901976449941,-31523254630508256*x^23+47408619246826723*x^22+1242561600585256854*x^21-1856846253655410868*x^20-21056934206274814901*x^19+31162789729052176429*x^18+200638881431632169612*x^17-292958399417486496645*x^16-1179908595162287746127*x^15+1692293068289382396662*x^14+4422335218154094799416*x^13-6195783360012242529770*x^12-10524253149618617481686*x^11+14286296663486864294072*x^10+15330585952927981352314*x^9-19863522655947708489851*x^8-12627911354132981836874*x^7+15043920708786185266700*x^6+5118916311989099841227*x^5-4919924062018604008623*x^4-888360842074862268116*x^3+366573694421310661195*x^2+29754598399700576411*x+78049883819916346,269806514115488964*x^23-356762590862336942*x^22-10527353746325305226*x^21+14143848584044171712*x^20+176330047365078878014*x^19-240329092973587773996*x^18-1657517977748366357518*x^17+2288176195402201058070*x^16+9592693908245268150408*x^15-13391576685572816456078*x^14-35263368959942088196144*x^13+49695851963616972646140*x^12+81880554999090756686864*x^11-116221809574712873284508*x^10-115279064269599249960576*x^9+164069302222744687963234*x^8+89830908505094842301946*x^7-126395907128745967727400*x^6-32425830968176529312738*x^5+42146693441308637443572*x^4+4275346203916624577594*x^3-3140553862510670021290*x^2+41952117615319893836*x-16390902062883514834,-36777443293882742*x^23+6908307309285621*x^22+1496256789589239578*x^21-300173532055460966*x^20-26460088162952046897*x^19+5501486475158126243*x^18+267112387163883822114*x^17-55754778966019695945*x^16-1700000879374455612829*x^15+343314141770533882134*x^14+7109294097292594620792*x^13-1325772049876891247210*x^12-19742174490104678510862*x^11+3188043951486222676384*x^10+35903278296607184936168*x^9-4543018549733242715237*x^8-40979616221542228226798*x^7+3352340263365892611750*x^6+26818061196848341512239*x^5-771779055596081204181*x^4-8221385058654098759042*x^3-192258970615478561065*x^2+619583759750415080537*x-21949216429240270358,-158631533291772680*x^23+290744998255858560*x^22+6112792361735046370*x^21-11478337979386589820*x^20-100574602374895331460*x^19+194362901784224784050*x^18+920946327366157859170*x^17-1845608885338950301460*x^16-5120906533996035327090*x^15+10782914145051188462110*x^14+17643843085048449396840*x^13-39996429301057841552440*x^12-36493838340613339355900*x^11+93675373366701854087620*x^10+40133696180499841548760*x^9-132934545471878090488740*x^8-13273579906718470600930*x^7+103973414065699214477500*x^6-11754920931175464058740*x^5-36584457312627922284030*x^4+7900055403858478345610*x^3+3781047969907171061940*x^2-837097369742211893850*x-16144406880598239030,100202273399274184*x^23-200294956732414702*x^22-3872973077864426856*x^21+7838469435130353872*x^20+63983658343266023434*x^19-131456967375020397026*x^18-589417039381169551808*x^17+1235005544552433597070*x^16+3309147421845502898998*x^15-7129849451926737243068*x^14-11597293518171391890064*x^13+26094785728574403154540*x^12+24824833818555701005084*x^11-60205362686705456231048*x^10-29783084831107975354356*x^9+83995745388104688534854*x^8+15095525158831281915776*x^7-64358575309354265473200*x^6+1921402522061808050322*x^5+21892171784939723688982*x^4-3089447081480124224536*x^3-1977407304037818229890*x^2+401170672424645516666*x+1860956766322857996,66810993771158523*x^23-60172503549828834*x^22-2687510804726645232*x^21+2409099918390541319*x^20+46787703365113052333*x^19-41357569776061639632*x^18-462226863155712512221*x^17+398160026230238323385*x^16+2855563193251295139866*x^15-2359302446530452768296*x^14-11463360238535074430478*x^13+8881342421174525109110*x^12+30104869897953058473688*x^11-21125180716118205309726*x^10-50798513904951759890087*x^9+30439976535692693825158*x^8+52659050630612372489892*x^7-24043279606756429376925*x^6-30859708130040992665091*x^5+8234216591935009433584*x^4+8684106323545207904403*x^3-590310298556199654585*x^2-632039508659278533138*x+34029300149331720732,3739222839496792400*x^4-22435337036980754400*x^2+14956891357987169600,-117788546736358508*x^23+104968331082715364*x^22+4691548439132116722*x^21-4205960498737084324*x^20-80719060505631733068*x^19+72216031487268940622*x^18+786222735298969904566*x^17-694841248458781555060*x^16-4774765657591048575186*x^15+4111427484784206282166*x^14+18774785832777732634688*x^13-15439608804187081639560*x^12-48084064604830520181948*x^11+36591508567067124128396*x^10+78715753917838710572652*x^9-52446283416925327777568*x^8-78703079224992023715882*x^7+41066093617126950074300*x^6+44226617562089334640036*x^5-13761128252699472094714*x^4-11832955818329700074738*x^3+809685272284116030260*x^2+708537343307704495998*x-13622784891118521622,-10727038560081488*x^23+23378728840468899*x^22+407815549970631942*x^21-922766199542708844*x^20-6615359785355652453*x^19+15585857804594566097*x^18+59654518158754381936*x^17-147203398375779576945*x^16-325942292229291263851*x^15+852287361054421633626*x^14+1098181147710405971128*x^13-3117925944290372600250*x^12-2193620474673244267198*x^11+7156585558065047842816*x^10+2227478392650216942962*x^9-9868689089766934319283*x^8-387905057978121436962*x^7+7413765139189874090900*x^6-1090979185393529270629*x^5-2461876241432153637819*x^4+629692516182693362672*x^3+236952980728010697375*x^2-66757264898948007777*x-451238808244314402,281324527852433579*x^23-487863155509851437*x^22-10866571341879211486*x^21+19248787131524483207*x^20+179477977714848958354*x^19-325624394582622090381*x^18-1653790237158210929973*x^17+3087694854327251968970*x^16+9293556051720599052513*x^15-18004926890749526564958*x^14-32632276535742625327734*x^13+66609091168252629890640*x^12+70095457655544595388154*x^11-155430997054588513024038*x^10-84686031783071407416061*x^9+219319594061300561909349*x^8+43869247881251542191706*x^7-169656443274758588934525*x^6+4406486879156441459082*x^5+57801766203859116535267*x^4-8469578900572476561741*x^3-5009902476968296039340*x^2+1186889311028330763071*x-23877724333140068874,27893039050151751*x^23+32670250192109842*x^22-1171040284282065434*x^21-1247658225780284097*x^20+21529317013416458821*x^19+20460578566987275066*x^18-227785386826418602327*x^17-188399250711721158955*x^16+1532204735706665617092*x^15+1069076176861229634498*x^14-6826199066963835376786*x^13-3861447087661173235030*x^12+20322933038083676639956*x^11+8853161460969220031238*x^10-39746163929754098711919*x^9-12464425896001911475754*x^8+48652964644277827171754*x^7+10088737339986602674375*x^6-33697006483349731904967*x^5-4317435542546693767542*x^4+10567779712753729277361*x^3+985439790572907402455*x^2-778181073331461684656*x-25874159330787848666,174919345359049014*x^23-299159666123747672*x^22-6876963979759185176*x^21+11792994506932463782*x^20+116233900943315521334*x^19-199411089860903089016*x^18-1105050384522752905758*x^17+1891133110177107694010*x^16+6492091594484527364228*x^15-11037025308855263473628*x^14-24380347384278637391084*x^13+40907192587629769442500*x^12+58513065031647915653144*x^11-95768435014370252711348*x^10-87198226397547392436286*x^9+135854198127123340838624*x^8+75953833594286002922536*x^7-105944718034645969449250*x^6-35259386084821240154138*x^5+36370372764438043356032*x^4+7931999958771372700434*x^3-2900324969734494045850*x^2-308640661967432148644*x+21770307995099076156,-86956076746847978*x^23+264906818294253334*x^22+3351588019424613152*x^21-10376060402839485074*x^20-54972017776246855728*x^19+174468253095803708042*x^18+499089200302393737786*x^17-1646636050263655622940*x^16-2725315763045191242266*x^15+9571728523199290396556*x^14+9044644094864481418188*x^13-35362786483738510663480*x^12-17170442112634564820828*x^11+82584352276536928255716*x^10+14323179403964811586702*x^9-116955818882382902420718*x^8+4735994474692209533808*x^7+91251316650250687873150*x^6-16182507038804806194624*x^5-31782135955505551549294*x^4+7501424473746561185762*x^3+3015489709682123766080*x^2-762945526620441478222*x-3507484683501356532,-300064858386950083*x^23+514431868063463014*x^22+11612296745814570072*x^21-20306849741568284399*x^20-192347237029403583093*x^19+343726349704661020672*x^18+1780425538563949674841*x^17-3261770190683614344785*x^16-10079954846352953357386*x^15+19038454691173852853016*x^14+35855430833171383786238*x^13-70526379288831141004710*x^12-78948947941756517804248*x^11+164894430142168524691446*x^10+100848043033609128682127*x^9-233413706720017325474418*x^8-62750614816348326141532*x^7+181632781578812144175525*x^6+8538491663870001558411*x^5-62737092154274568428064*x^4+4182140668683639313737*x^3+5694910306532135224385*x^2-814802947235111861302*x-6259674783245413372,-47360569292527045*x^23+84464991680598110*x^22+1853522436831641780*x^21-3314041005426441285*x^20-31172760820413404695*x^19+55758103857262632180*x^18+294869664436578207015*x^17-525927058083253282275*x^16-1724703669392306464690*x^15+3051155519994466870440*x^14+6462024813554665405670*x^13-11233506308922715438250*x^12-15552013719815110031220*x^11+26099930720061199384790*x^10+23496132920649051039205*x^9-36695048014415483434770*x^8-21204100657410228117680*x^7+28288131041077040639675*x^6+10555289358748973864865*x^5-9517301548095698291360*x^4-2546446552787766607045*x^3+683240473871964486175*x^2+101891271151023676570*x+684419272139152420,-322248660900147421*x^23+466380105900001478*x^22+12669061939529976814*x^21-18378918720593824353*x^20-214264633578449460231*x^19+310418703577718613554*x^18+2040190883914518654997*x^17-2937739934563504757775*x^16-12021199418270875992772*x^15+17090312479563756467742*x^14+45374845835718393185186*x^13-63052462447172158977890*x^12-109835468497978342213836*x^11+146661102781264476547782*x^10+166024805676887308074569*x^9-206083816463842718965646*x^8-148028419543617606795914*x^7+158156117703864682110275*x^6+71144052357586081937257*x^5-52299711305950857014038*x^4-16493405315850694077011*x^3+3447531949958579883415*x^2+792909596337985356136*x+18026820075838642206,132113464964085880*x^23-232468969935860830*x^22-5133076647715682620*x^21+9198418663011363100*x^20+85383038412776952890*x^19-156161783684978638030*x^18-793723188081205660380*x^17+1487207248339339203670*x^16+4511733739427539103670*x^15-8716751959711875702160*x^14-16095733443053035402200*x^13+32438859925193311647380*x^12+35438564864626267806020*x^11-76199214653621528647280*x^10-44891982285011460043900*x^9+108305751627961697440750*x^8+26874998992165272998540*x^7-84470346739857726389300*x^6-2290064761812878367510*x^5+29099890776037562846170*x^4-2475855597720218755300*x^3-2585375498150838600130*x^2+422789045737736766530*x+2062209932793044840,24889047351501625*x^23-37455772482718735*x^22-860270879646861650*x^21+1499350900441594165*x^20+12020897345857029890*x^19-25691135927445996015*x^18-83198389595051452055*x^17+246507867444334195630*x^16+243320224216876115115*x^15-1454885102229856780950*x^14+379908177986698374270*x^13+5463954511422971117720*x^12-5512925601296716129090*x^11-13064085823167272188930*x^10+19096571872236248785905*x^9+19366967080486803416055*x^8-32887445170549650997970*x^7-16876499210420468505175*x^6+28664581188929975297050*x^5+8065001324185549461745*x^4-10488055726092854788095*x^3-2010733315979114110020*x^2+802412682382484288965*x+65872185632831120630,186208357639606866*x^23-351587729664755248*x^22-7221073226285679444*x^21+13841672945607037178*x^20+119825375933161449366*x^19-233699734834907342124*x^18-1110505863813067460342*x^17+2212317600304565223030*x^16+6287878397063639654152*x^15-12882814632513632493532*x^14-22318866979740261650436*x^13+47613328999619388077260*x^12+48802296617030760617616*x^11-111055952825956476319652*x^10-61166820905122973985994*x^9+156764866882142560714096*x^8+35779004865077281442724*x^7-121486331823217293095550*x^6-2291413653847050775922*x^5+41571651399627743376268*x^4-3547628886549788075814*x^3-3608177868569780319510*x^2+524092101785518731584*x-11448994031889586196,123746154424603511*x^23-195711055030188698*x^22-4808682861745240374*x^21+7711085975715111123*x^20+80159023387407028921*x^19-130215430764407840814*x^18-749468325999438460527*x^17+1232139473382517994225*x^16+4313599456762481770452*x^15-7167849665795863437222*x^14-15784650388636984353926*x^13+26455883809131854010990*x^12+36614818618163377340676*x^11-61635602830607064515362*x^10-52025429995054248404179*x^9+87018107043011598713586*x^8+42105545282361013220874*x^7-67681894978396101060825*x^6-17252733288009915874887*x^5+23394807053160672964858*x^4+3258795554522567368601*x^3-2014622989801666363265*x^2-62412224729761317776*x+22532346153413158754,6638490221329689*x^23-15071053880304312*x^22-263339832455799601*x^21+554495675471354417*x^20+4541582944724265669*x^19-8580215449546141051*x^18-44863673466313842628*x^17+72417625726144547255*x^16+281936570224757121463*x^15-361043348612806870953*x^14-1184936388338387234254*x^13+1072419798671206938130*x^12+3402471317149511654034*x^11-1802471189891343572468*x^10-6640993550219311500641*x^9+1453367918558430341094*x^8+8428333207889578288581*x^7-234083073292094990075*x^6-6209585340457980495263*x^5-244648506019959426363*x^4+2044915728759605968104*x^3+104284453692659548845*x^2-150836719615463912409*x-868542919025060799,-148662306392968114*x^23+356297794363356632*x^22+5554742166762018326*x^21-14089120217419386422*x^20-87479678777429986174*x^19+239062347358440433206*x^18+749879939105257739088*x^17-2275717791885823853490*x^16-3738554404358103183018*x^15+13334270293660552472678*x^14+10421246398396590152764*x^13-49618558015133653425420*x^12-11822912314395070224604*x^11+116601403583628463662128*x^10-14104801525491034048494*x^9-166020089120779890330404*x^8+59917013863977877407834*x^7+130329036145732119293050*x^6-66516934679706484132262*x^5-46289742528822583007602*x^4+25999856789596658016736*x^3+5129382107003420342170*x^2-2250908619387773360546*x+4038876475112045314,3739222839496792400*x^5-29913782715974339200*x^3+44870674073961508800*x,-202363206342934401*x^23+341538862180487893*x^22+7881771827909264034*x^21-13454619639506038693*x^20-131651688890687705136*x^19+227257436953688589549*x^18+1232448929146593632907*x^17-2151860128577605929600*x^16-7089690044005215055157*x^15+12533693988461083916202*x^14+25829387133432781722866*x^13-46348879783457403083340*x^12-59147999573134883210466*x^11+108283718675274298559442*x^10+81350189265367197825139*x^9-153540685489492950074301*x^8-60559011044325875191934*x^7+120436583649925918341175*x^6+19496536256379636011792*x^5-42723935741430834832203*x^4-1799868793059812098341*x^3+4310474865365632750090*x^2-139086992195789609459*x-55981237369659109714,-12820215653643144*x^23-19993430322223598*x^22+505581370717255996*x^21+790613835928354468*x^20-8704700120609354374*x^19-13561497040904364754*x^18+86214604950011711488*x^17+131951833805437792570*x^16-545107133344254614598*x^15-798725921136642432212*x^14+2307355955486582043784*x^13+3100477225267124035420*x^12-6651022710784811328564*x^11-7664830196910010344672*x^10+12927891272861216823036*x^9+11573125495968282136526*x^8-16181731444771484700876*x^7-9766709953483514559100*x^6+11703459877687137391298*x^5+3908541144610723651398*x^4-3836248376638072600784*x^3-589610230273702620670*x^2+312298123928385470014*x+1531251107572660604,237744214784271204*x^23-566540075054318612*x^22-9027538388482237686*x^21+22333182149122074132*x^20+145403459913743205204*x^19-377807988821159977606*x^18-1289304995355911952598*x^17+3586262411826486638920*x^16+6805604225945218431938*x^15-20959279822883132335958*x^14-21335683497124537826184*x^13+77828438992136615359640*x^12+35653983902432176420404*x^11-182650746029450952444388*x^10-15370385141548608242236*x^9+260031832661759021407024*x^8-43786957921144973266194*x^7-204430809464900799802500*x^6+67179217574097969536932*x^5+72703415592698276500842*x^4-28697348491680721028966*x^3-7836733644484407424640*x^2+2709448806143310303746*x+33423589286586693526,-56769664834122497*x^23+69609439802045306*x^22+2236412089760009198*x^21-2784734406300922961*x^20-37977663026336854807*x^19+47741116870180690118*x^18+364126879934453913109*x^17-458728089013800682055*x^16-2169263247594859915144*x^15+2711934531189367423394*x^14+8329814465524825728382*x^13-10188167804357864743550*x^12-20712445129121145313012*x^11+24233981322484143433054*x^10+32682144683740661455953*x^9-35151135153999028369802*x^8-31268764931317552980078*x^7+28507948126394174661975*x^6+16851855033103980737549*x^5-10762899566634620377386*x^4-4540009858546309283107*x^3+1293821520546621488875*x^2+320417270148493464212*x-58434908302671840538,-435497202900499490*x^23+566824041569985160*x^22+16983958840001620210*x^21-22431930974448784230*x^20-284311013781877770150*x^19+380391907925842140670*x^18+2670824489896699278000*x^17-3613406696368512490470*x^16-15447221869510233112890*x^15+21092258103548882597030*x^14+56758504346762550308060*x^13-78043611490479755243780*x^12-131800590508997077991780*x^11+181942685544067566439400*x^10+185819574979288400943090*x^9-256068122474954846078260*x^8-145445551358231764024330*x^7+196902788781265950332650*x^6+53065817683907945128330*x^5-65906491478126865453650*x^4-7012778829191436721560*x^3+5181232406837602030030*x^2-93475591745419602370*x-3612387985876826630,-206538627657417858*x^23+386409772218131674*x^22+7995806017427140047*x^21-15198595559035078314*x^20-132354443948000221608*x^19+256403306959813071437*x^18+1222231910137764906621*x^17-2425579805028226547890*x^16-6883324331159269886351*x^15+14116826880135524662591*x^14+24222487205782167409868*x^13-52152990624619006631980*x^12-52151136389403097501558*x^11+121624154691094315044326*x^10+63180823884337843927822*x^9-171745184702577716026948*x^8-32926533598863116001787*x^7+133363399850489174604050*x^6-3017502148030646475164*x^5-46066351451827404926459*x^4+6086380875115241617157*x^3+4287366932490001237230*x^2-802302692900823781967*x-3657218862081636527,155042109285693750*x^23-232667701441479340*x^22-6082596498154535800*x^21+9173916855984290210*x^20+102644224787863957010*x^19-154986947672345491260*x^18-975202065153935050870*x^17+1466399824516858695470*x^16+5734721524534246180460*x^15-8521192006590202484900*x^14-21618529984355652555220*x^13+31354958897879257596980*x^12+52349612828548225869440*x^11-72545704538203957753220*x^10-79436369764190498534030*x^9+100888841118638182725620*x^8+71595985089085290044720*x^7-75769406333515229471750*x^6-35180822266414447877350*x^5+23605226850991769265580*x^4+8324224423891088414570*x^3-947009223105770198030*x^2-368531836344624950940*x-42162344530037483780,123609798503278105*x^23-150135960769648840*x^22-4848502988956867845*x^21+5941026498022268865*x^20+81736964806991157805*x^19-100717231133992565895*x^18-774635755516541759060*x^17+956181206829467118975*x^16+4531588879955454299035*x^15-5575659439383632947685*x^14-16908705931577626853530*x^13+20593691211020918909450*x^12+40141760256298165821730*x^11-47863313390181890248960*x^10-58606597084199747958145*x^9+67002059609121638239530*x^8+48901190673485420672645*x^7-50998901944644940993975*x^6-20585436385738150346935*x^5+16679946312050556987465*x^4+3862346613977767453380*x^3-1203919278802360559275*x^2-162563395181958896505*x-518709275291805455,356772155407177204*x^23-554859092056071572*x^22-13762978741570529536*x^21+21882047817104187572*x^20+227074774872531199744*x^19-369776699760088515596*x^18-2091215516944014091428*x^17+3500301843665369122400*x^16+11757995288480533757228*x^15-20361101796001095656208*x^14-41404638207267152694664*x^13+75089830309399763514560*x^12+89681687256302404513464*x^11-174585952935678073455368*x^10-110920219132333282742156*x^9+245499113347529090932404*x^8+62898053056581329063936*x^7-189684882109309181519100*x^6-1610091108555769637568*x^5+65293724593210146721012*x^4-7771185230207182154036*x^3-6251605877082606402760*x^2+1005953120111906985236*x+40080526294359868256,-124240320764698658*x^23+119809834602775384*x^22+4796220692570503222*x^21-4810286045146396354*x^20-79241499599236416398*x^19+82651970465189899302*x^18+731242931101253682176*x^17-794523575137377411970*x^16-4121938828775978803166*x^15+4686874830761332510366*x^14+14552444661072572601148*x^13-17497436816745397184500*x^12-31552044946156178691668*x^11+41079400279547279127656*x^10+38771687501361470431442*x^9-58108900591868496681428*x^8-20930067964550249566942*x^7+44922242473003955471350*x^6-1445265589389403931614*x^5-15444571193702655628554*x^4+3999018769262476213352*x^3+1619145443234647034650*x^2-462231520613389545582*x-2273951489667637182,32419498105924816*x^23-74377828980653468*x^22-1278243165642823594*x^21+2901244334482325208*x^20+21626845648111088396*x^19-48530668218629965654*x^18-205207624559820766002*x^17+455102706057099476440*x^16+1197153831474215204282*x^15-2624741587258394219282*x^14-4423578604229246349296*x^13+9605202475957527316400*x^12+10259131432248721808636*x^11-22177636214712670327612*x^10-14198349864577203344784*x^9+30988086769740719826256*x^8+10364177027766109858234*x^7-23789238222805233984000*x^6-2839516943471715128972*x^5+8096456265677241860658*x^4-85748755991042513154*x^3-703723962276230421000*x^2+84484915542402216914*x-9908859877846160486,-361662286683572572*x^23+586870131275367916*x^22+14156890159685044498*x^21-23086109835516398376*x^20-237930666359438608872*x^19+389315625138471515158*x^18+2245005650141426034214*x^17-3679338864806147138860*x^16-13051293875324387018534*x^15+21377871412602651586194*x^14+48265449607439756878112*x^13-78775730713832708665120*x^12-113100072616947414801372*x^11+182997298802859352945484*x^10+161864062680313934314148*x^9-256757211894017458006032*x^8-130673066692595544694258*x^7+196749337286545990928800*x^6+51868473256671824592024*x^5-65170978400268456225506*x^4-8965011233277050185362*x^3+4559819276573886998820*x^2+153195744444387210922*x+33912233123476053382,-59698112861275754*x^23+127779347869612622*x^22+2209556746585607861*x^21-5053199800687086422*x^20-34307699394362066544*x^19+85656295067455882571*x^18+287289606041132514703*x^17-813401679734986334350*x^16-1369516441441540715553*x^15+4744636120394871605633*x^14+3405731508223021982364*x^13-17520802041565880569160*x^12-1790682608043168234714*x^11+40640293531095851729718*x^10-12843980757232074644694*x^9-56520430223092056067904*x^8+34783831294011438005439*x^7+42282565899360534430750*x^6-35675972226426244775432*x^5-13261276928440851244637*x^4+13835466118580146590411*x^3+936089420050906620710*x^2-1236268760170814643261*x+83416689237452505119,214367009676512931*x^23-390297589663433248*x^22-8304255406090281079*x^21+15297644974365874343*x^20+137581791992826313651*x^19-257014849883441388729*x^18-1272040114719748344412*x^17+2419846959472226250145*x^16+7175990644562555221777*x^15-14007847009280046256287*x^14-25316207205386145899266*x^13+51443036010859092963070*x^12+54734619331151410220486*x^11-119205421059035875536172*x^10-66873809472100999058339*x^9+167226894337728278171826*x^8+35794658975869890935699*x^7-129008838901840820888125*x^6+2133629515541783065623*x^5+44283408473232422306023*x^4-6140547902824336899384*x^3-4121817751517688726045*x^2+824019788373445466289*x+3900843159030351079,-228200177374078302*x^23+259375403979512786*x^22+9003063283406985768*x^21-10323194725736439586*x^20-153110795080744994072*x^19+176105487971707583498*x^18+1470347478648295361914*x^17-1683631214019213298800*x^16-8775943305205718654214*x^15+9897367827713891987104*x^14+33779319392765936692532*x^13-36913649486751937263680*x^12-84252886063211151846532*x^11+86849806077985921124084*x^10+133425569219481707398578*x^9-123563586698768788093402*x^8-127962780841341025145368*x^7+96221699777390742791750*x^6+68487238809612921150784*x^5-32514952886113276727606*x^4-17657894464522765673582*x^3+2306811381055131575380*x^2+1020646960485847761982*x-38087498683018771528,110659308975836549*x^23-54716949488011262*x^22-4412131812903838641*x^21+2201100194126232377*x^20+76141569079200646059*x^19-37711574009996681021*x^18-746103897432274091108*x^17+359705123558532040765*x^16+4578851892901906426113*x^15-2094746072172084061473*x^14-18316372249341439863774*x^13+7679876323729129759770*x^12+48197267501598027646114*x^11-17611970554705980345448*x^10-82215872962876540480521*x^9+24180308122650590303964*x^8+87229084875468917628281*x^7-17859097247122868570275*x^6-52914589827010251984333*x^5+5326472759796295149207*x^4+15257967656575017768324*x^3-35551621790959764245*x^2-1107436404996268675139*x+44514120259283392301,534808975776033732*x^23-969966368561455136*x^22-20672946482578201888*x^21+38192955845126542516*x^20+341536536987692172892*x^19-644829268179285244608*x^18-3145264339086626558404*x^17+6102855928712602258780*x^16+17636773619564461228664*x^15-35520988943375652762464*x^14-61594732810652452711592*x^13+131177310075275018281000*x^12+130625292043111646035472*x^11-305615996811624084714024*x^10-152488794740116033802068*x^9+430786413936857097113712*x^8+68136920799772632320768*x^7-333506202138364134938300*x^6+22407648339602990219356*x^5+114674414009996029756016*x^4-21274975012503904624308*x^3-10701196739903408216700*x^2+2534394140939295268328*x-1252916067442657872,144131444999854057*x^23-220884496475920026*x^22-5488972284587927513*x^21+8731439764452555101*x^20+89033873539317335327*x^19-147877523597482333593*x^18-800909064134627209124*x^17+1402713048846565123825*x^16+4350856168198228473349*x^15-8174825389363604499489*x^14-14499901206668747350662*x^13+30196398101537118992030*x^12+28357174391602355350262*x^11-70297216540218503558044*x^10-27231620431669198394173*x^9+98951332635438780491432*x^8+1536179035853232261013*x^7-76572155809754294669775*x^6+17366904445391113784531*x^5+26572550224166807560271*x^4-9262921981925934843088*x^3-2758592895442539370705*x^2+909688864786546556113*x+4189232591701916473,-83050182120203002*x^23-21561898561395414*x^22+3327907134076114318*x^21+785062016582049914*x^20-57730900313735728672*x^19-12333633967580376652*x^18+568468746988151859864*x^17+109485094874411130500*x^16-3501058182469696545164*x^15-603379697918442767946*x^14+14010081908836889550532*x^13+2131361227420802236720*x^12-36646728910527682305632*x^11-4790395513213097739216*x^10+61422429700718507946478*x^9+6522953500862070136698*x^8-62734777136434894663118*x^7-4768344989418448784350*x^6+35367785026964368837384*x^5+1318762750763356043444*x^4-8944371997723444598632*x^3+106367169083826383280*x^2+540179427764448852632*x-53495523034731353078,216907561611770410*x^23-430028045663964540*x^22-8311704659022164840*x^21+16917196616402703570*x^20+135749371495139024450*x^19-285398564543512103280*x^18-1230729792569829984950*x^17+2699500900096514203430*x^16+6747902718705402046060*x^15-15707606692748441217420*x^14-22754097784112478514140*x^13+58022045720458288100420*x^12+45289957285220358330120*x^11-135356923146607895863500*x^10-45286331263150182173210*x^9+191488895437356969311140*x^8+6286863542354162381920*x^7-149677137461394052617550*x^6+24048254761267728652330*x^5+53037151342805260637800*x^4-13174534907289355926510*x^3-5683284396707414873870*x^2+1310698991861591202580*x+30571338716663361620,38622909541387325*x^23-102726566460832645*x^22-1398498566708181750*x^21+4081561521884781705*x^20+21091084833531518380*x^19-69565346074570472905*x^18-169302030050754401235*x^17+664941295764786984660*x^16+750449705021270632505*x^15-3910409374821017259550*x^14-1547108192528601577210*x^13+14595784387267041519940*x^12-736821921336571331030*x^11-34376128819455015136610*x^10+11413140432128582766785*x^9+48991886242792232784885*x^8-24964034511486205852990*x^7-38396546386432374198675*x^6+23567881780293448339100*x^5+13498565527225562000415*x^4-8784695268197755686515*x^3-1402177364747745026590*x^2+827184829891650105655*x-4623400186882108890,-12566725131217110*x^23+135291014413203350*x^22+503789006381529165*x^21-5202323421382094610*x^20-8592360396964379640*x^19+85798241921644581695*x^18+81468594456526920255*x^17-793482821304627077510*x^16-470946393282943039825*x^15+4515845621622480908645*x^14+1713971525066924282220*x^13-16328361571702341266340*x^12-3926818759483995618930*x^11+37349029414602019984530*x^10+5553222242787832019930*x^9-51963058175971635440220*x^8-4779874638548945719425*x^7+40073521382479508184050*x^6+2684263066311764654620*x^5-13814277792242234956345*x^4-1029034621293835515145*x^3+1076714873243383698090*x^2-2995808388773875745*x-323557615569521125,-444940177018817364*x^23+994338122917066172*x^22+16941642624722951901*x^21-39005487045698919432*x^20-274091077270421591884*x^19+656065254528467602041*x^18+2448898446343856008933*x^17-6185725432904751509510*x^16-13108012448208155932103*x^15+35868878386635650113053*x^14+42304340200286026052584*x^13-131997312182774394069800*x^12-76408609430647740674894*x^11+306660459880149343694498*x^10+53682834005366626507536*x^9-431868192834867930054174*x^8+43447859344639826114039*x^7+335919888951380196206700*x^6-93798691308987730021812*x^5-118498479575472969567207*x^4+42614878670980002305641*x^3+12776623264809361982650*x^2-4109883713080699823431*x-68806513663623317781,-365783918823696750*x^23+627850992763424600*x^22+14139284795751616250*x^21-24707746423707209650*x^20-233741909823029472050*x^19+416762819309903953850*x^18+2156404059558671198200*x^17-3939014246234330756950*x^16-12139734473638060057950*x^15+22884005754874883793250*x^14+42752275207117884570900*x^13-84303371818978650884300*x^12-92344808206415405683900*x^11+195800362168366552477800*x^10+112982977345727385903550*x^9-274927412623425427507900*x^8-61176023744162848700050*x^7+211782158439996150689950*x^6-2527352274244841478050*x^5-72217229788101576239750*x^4+9915332544769481745200*x^3+6531109019407262461550*x^2-1329028864469972817750*x-6142622181960605250,-95746024614257144*x^23+320159116142266052*x^22+3523420043048144496*x^21-12578113745054541932*x^20-54130421163558192724*x^19+212067610732518867296*x^18+444395636137529363588*x^17-2006384146772871100880*x^16-2032374227962508099748*x^15+11690023513371534280988*x^14+4474593968911547883384*x^13-43302388968918663292680*x^12+797868029174079929536*x^11+101532764640506515260728*x^10-28905137657856787832264*x^9-144991681069780803766724*x^8+66569908579346077203224*x^7+115607466007228576587700*x^6-64130751362973886754052*x^5-43307414281275290427552*x^4+23547941452608412508916*x^3+5800348385391412010080*x^2-1868688699057339679036*x-106490279169978843796,-71964900605585187*x^23+141163315238900066*x^22+2761239798730970683*x^21-5473315474418600691*x^20-45201822674705228757*x^19+90768062543619379163*x^18+411578723392972112784*x^17-841294098103226687275*x^16-2275792942928012836859*x^15+4778866822871504086499*x^14+7811298214285692215642*x^13-17158577802430379950330*x^12-16205914618246623557042*x^11+38724183590692010198204*x^10+18337382637349130262943*x^9-52736724868670157300812*x^8-7538541512641453437583*x^7+39471513930992936739425*x^6-3357750325739935474721*x^5-13278888015090295048461*x^4+2866296579167969921108*x^3+1301394143183793976955*x^2-319873263139464756183*x-1608700007519845643,-254012865569012500*x^23+658763463216415720*x^22+9621108467675443925*x^21-25802465220052882280*x^20-154348773379808811080*x^19+433410754079438017205*x^18+1359976449020591436685*x^17-4081536062694499884610*x^16-7102587912729580973355*x^15+23640930696436744384325*x^14+21818250446372471302360*x^13-86894695790786640322640*x^12-34578976869023055248470*x^11+201551323921858865148610*x^10+8638890994769042004040*x^9-283035151410648027536810*x^8+56935671012371726302815*x^7+218772618383680989718700*x^6-78801456140456033304800*x^5-75870136896219690542715*x^4+32642942941811265947265*x^3+7739647443688594160190*x^2-2949951705316283398755*x-2268442741672431885,-142054551201291669*x^23+122544783497045627*x^22+5663977676071457321*x^21-4870452125216961757*x^20-97594979397718749374*x^19+82926814688638024946*x^18+952851523379932403938*x^17-790923069385650379980*x^16-5809730301195570555448*x^15+4636819617251979371913*x^14+22998932231074054216834*x^13-17244942896917469600380*x^12-59575088455742905094164*x^11+40477724601299890536028*x^10+99365947355251095440311*x^9-57539531369868637583249*x^8-102325732040165741862701*x^7+44920004682590637058675*x^6+60039599191602981768598*x^5-15310698565269355196402*x^4-17002086223597849336734*x^3+1102946678226209899230*x^2+1244841771957112756014*x-68144900671540727421,296864966719626284*x^23-580957224132299772*x^22-11373700090180491256*x^21+22862804028872646452*x^20+185707445905569645464*x^19-385800639092033872356*x^18-1682791951240490547068*x^17+3649672955372651723880*x^16+9217148298425588460828*x^15-21236178549195478409368*x^14-31015361433407789018824*x^13+78426980301625038221280*x^12+61435704629696049164504*x^11-182854770831739344382808*x^10-60517819984592152869796*x^9+258343650661902969505964*x^8+6341974533538216588536*x^7-201261091589058458327900*x^6+34742754628217285256472*x^5+70556907499014457476572*x^4-18650424600830568999676*x^3-7176610066920476481280*x^2+1842357769438232114196*x+14866755185191664456,207635487970388518*x^23-391750088956706234*x^22-8142627961700661862*x^21+15394637246503948714*x^20+136931342866471338888*x^19-259537121302995754972*x^18-1289938038194052289556*x^17+2454271293053769541880*x^16+7457203335027344021916*x^15-14282712366454886191186*x^14-27219905635517933625268*x^13+52777698279443651841640*x^12+62024497660642009650448*x^11-123126749905693379354736*x^10-83510576462699478474922*x^9+173855670703514857148398*x^8+58075884668008970590542*x^7-134662546631791923844950*x^6-14150587172033199410056*x^5+45867384740565702707924*x^4-734305244054420978332*x^3-3889315898144674944940*x^2+415387478264454816752*x+1932609983108585482,343530026384572474*x^23-554193709728063962*x^22-13364417797435796766*x^21+21868210895694307302*x^20+222868211543556844884*x^19-369987735468610784496*x^18-2081454075082032271708*x^17+3509114289795894645440*x^16+11930547785816413095888*x^15-20469847413754173272598*x^14-43211961534922818609924*x^13+75780204261413326583320*x^12+97936496476334215976864*x^11-177072101717770860795648*x^10-131961359828796123710446*x^9+250564017189426123839614*x^8+93466375179685869757206*x^7-195070114411546499342450*x^6-25183054155392198373508*x^5+67628332398888760453432*x^4+70169659137898600924*x^3-6338228543772591778820*x^2+466048912398709112636*x+58117224104914662526,3739222839496792400*x^6-37392228394967924000*x^4+89741348147923017600*x^2-29913782715974339200,578448510521227654*x^23-1148755882840913552*x^22-22211743122945764586*x^21+45176235921900915142*x^20+363798994701068314714*x^19-761774404685462687166*x^18-3311672847535167315868*x^17+7200535903512759872890*x^16+18270415446934697351998*x^15-41856495253579672578558*x^14-62259038768258466757204*x^13+154379062317988917548620*x^12+126553274146983019433644*x^11-359240695377256811785408*x^10-134206145520722390131566*x^9+505831740670359443550244*x^8+35927204380151713671626*x^7-391201835163055297838050*x^6+48864001412252937868682*x^5+134218840513891414314922*x^4-29734997054185454638596*x^3-12335996943004540275770*x^2+3238010890649316708806*x-21121533290219384954,139175655837553492*x^23-212756425808112006*x^22-5360091385788662653*x^21+8383649898622900356*x^20+88233914196092656062*x^19-141597241921930949883*x^18-809989707317607916569*x^17+1340154042622403287300*x^16+4533669352105858241469*x^15-7798318680604342363309*x^14-15859220210180162753472*x^13+28788122290361889006480*x^12+33992138362656221264322*x^11-67053475195842773951414*x^10-41226475247481899372088*x^9+94537411740263966028892*x^8+22083613376720254898353*x^7-73265138625570749931400*x^6+1024763474641810385586*x^5+25244354829022627120101*x^4-3671337082418728828553*x^3-2369331889301269642880*x^2+503957754581240377853*x+2630721682458147213,431001446220463530*x^23-646169958903346360*x^22-16789347177913697220*x^21+25456843843235552370*x^20+280590463678284775810*x^19-429779029617582769900*x^18-2629869471623120789470*x^17+4064839225413517229710*x^16+15163273440805417160040*x^15-23627610049114078488560*x^14-55481743491517212019540*x^13+87080795660990732126140*x^12+128096177931810725664600*x^11-202330929382253464627220*x^10-179125062726613940203610*x^9+284168513906641908995040*x^8+138474248706043211539180*x^7-218684334738121066665750*x^6-49550786499395431014510*x^5+73833266181393600213380*x^4+6517419058910711606290*x^3-6045051440787659843590*x^2+106711077966865153800*x+15036391913117181080,202763447496850274*x^23-217163917593900492*x^22-8079674416190153216*x^21+8578810109185869922*x^20+139069135816306261454*x^19-145266722312763117516*x^18-1355482786793194328698*x^17+1378627087057120945130*x^16+8243983808609980306408*x^15-8045898350325979974748*x^14-32517498188185236013764*x^13+29799168329017365603180*x^12+83796741441985558993944*x^11-69656869471519192015588*x^10-138742995989133696727906*x^9+98536581991638271137604*x^8+141408541644085584739496*x^7-76305411650471550821750*x^6-81773104377622487970458*x^5+25399327389145048639092*x^4+22570633640359051000014*x^3-1448364017358647680530*x^2-1380069898794205751944*x+27412232585734404116,258263507181602977*x^23-319253831893984566*x^22-10062107258653763918*x^21+12642961038503746181*x^20+168185746570811780267*x^19-214478350239083616818*x^18-1576114824885090167529*x^17+2037582063369376635115*x^16+9078797736556049300684*x^15-11891682783090236826854*x^14-33122786649034255013722*x^13+43979135456003894520490*x^12+75916306891601826416412*x^11-102435773396107320106174*x^10-104270700042035623784413*x^9+143916781402614075041342*x^8+76864392610974304862058*x^7-110217854334869112816975*x^6-23476820890305020194709*x^5+36498343327861855547366*x^4+1364294168915791358847*x^3-2821652165269569090515*x^2+180912822643430297488*x-6996834935717998182,-328795860270047408*x^23+482230202888610474*x^22+12823413557751225972*x^21-19115536716972467964*x^20-214477713264365660458*x^19+324978223029289522562*x^18+2009780523591984285196*x^17-3098106529323167113090*x^16-11560537779816538828226*x^15+18171461394651729498516*x^14+42007993639020041595368*x^13-67656813655213738192980*x^12-95370089897849308031908*x^11+158980048003141032024776*x^10+128080702781696307661372*x^9-226000305481394815063098*x^8-88881890707019740692012*x^7+176159263677489615280900*x^6+21305731542701469179286*x^5-60469960843880293273934*x^4+1540611419251601674732*x^3+5329627797280763243030*x^2-624414653021491727942*x-3090674792195525652,-180621596551616736*x^23+243804060624204548*x^22+6962939214308617524*x^21-9608296534385680648*x^20-114824118428392539896*x^19+162059071343123731364*x^18+1057158578797280608152*x^17-1528827113689485942600*x^16-5943578937363156598052*x^15+8845176340255301010172*x^14+20931859509483341335976*x^13-32352802909551659780240*x^12-45335721909004833133776*x^11+74276737959592826518512*x^10+55976675358162752323304*x^9-102318667988697837502236*x^8-31307525817006771892724*x^7+76068692251086636530800*x^6-176004585130440589688*x^5-23786426301958674261508*x^4+4760277404233365291224*x^3+1466907429725917702640*x^2-685335646157533591524*x+44742625147842558596,34293852088085785*x^23-81131961285828480*x^22-1329578912877286965*x^21+3152477437961330805*x^20+21971076699849839585*x^19-52510859898426973715*x^18-201597477816243168320*x^17+489997477151740096275*x^16+1119543955760585277195*x^15-2808459310394323477845*x^14-3831158238551108307810*x^13+10192437534468194468850*x^12+7779942917927580868810*x^11-23263230447487669772120*x^10-8098189950718632828265*x^9+31978360388373484544210*x^8+1692452200340533298965*x^7-23998435447918847089075*x^6+3692035874976546667805*x^5+7970554172079796736605*x^4-2204729401871058885640*x^3-779147167444391969975*x^2+232161284091241124215*x+1640483259332221265]];
E[431,3] = [x^3-x^2-4*x+3, [1,x,-x,x^2-2,-x^2+2,-x^2,-2,x^2-3,x^2-3,-x^2-2*x+3,0,-x^2-2*x+3,-2,-2*x,x^2+2*x-3,-x^2+x+1,-2,x^2+x-3,x-4,-x^2-x-1,2*x,0,x^2-x-3,-x^2-x+3,x^2+x-4,-2*x,-x^2+2*x+3,-2*x^2+4,3*x^2-x-7,3*x^2+x-3,-2*x^2+8,-2*x^2-3*x+9,0,-2*x,2*x^2-4,x+3,2*x-4,x^2-4*x,2*x,-x-3,-x^2-x-3,2*x^2,2*x+6,0,-x-3,x-3,4*x,3*x-3,-3,2*x^2-3,2*x,-2*x^2+4,2*x^2-x-2,x^2-x+3,0,-2*x^2+6,-x^2+4*x,2*x^2+5*x-9,-x^2+2*x-2,2*x^2+5*x-3,-2*x^2-x+2,-2*x^2+6,-2*x^2+6,-3*x^2-x+4,2*x^2-4,0,-2,-2*x^2+4,-x+3,2*x^2+4*x-6,-2*x^2-4*x+6,-x^2+x+6]];
E[431,4] = [x^3-5*x+1, [1,x,x^2-3,x^2-2,x^2+x-3,2*x-1,-2*x,x-1,-x^2-x+6,x^2+2*x-1,-4,-x+6,2*x^2-4,-2*x^2,-x^2+x+8,-x^2-x+4,-2*x^2-2*x+6,-x^2+x+1,-x^2+3,2*x+5,-4*x+2,-4*x,2*x^2+x-5,-x^2+2*x+2,3*x+2,6*x-2,x^2-x-8,-6*x+2,x-1,x^2+3*x+1,-2*x^2+2*x+8,-x^2-3*x+3,-4*x^2+12,-2*x^2-4*x+2,-2*x^2-4*x+2,3*x^2-2*x-11,4,-2*x+1,-2*x+12,x+2,x+3,-4*x^2+2*x,2*x^2+4*x-12,-4*x^2+8,3*x^2-16,x^2+5*x-2,4*x^2-10,2*x^2-x-11,4*x^2-7,3*x^2+2*x,2*x^2-2*x-16,2*x^2-2*x+8,x^2+2*x+3,-x^2-3*x-1,-4*x^2-4*x+12,-2*x^2+2*x,x^2+x-9,x^2-x,x^2-x-3,5*x^2+4*x-17,x^2-2*x-1,2*x^2-2*x+2,2*x^2-2*x-2,-x^2-7,4*x+10,-8*x+4,-2*x^2-4*x+10,-4*x-10,-x^2+14,-4*x^2-8*x+2,2*x^2-12,2*x-5]];
E[431,5] = [x, [1,-1,3,-1,-3,-3,2,3,6,3,1,-3,-2,-2,-9,-1,6,-6,7,3,6,-1,1,9,4,2,9,-2,-7,9,4,-5,3,-6,-6,-6,4,-7,-6,-9,2,-6,6,-1,-18,-1,-6,-3,-3,-4,18,2,-13,-9,-3,6,21,7,-11,9,2,-4,12,7,6,-3,2,-6,3,6,10,18]];
E[431,6] = [x, [1,-1,1,-1,1,-1,-2,3,-2,-1,-5,-1,-2,2,1,-1,-2,2,5,-1,-2,5,-1,3,-4,2,-5,2,-3,-1,-4,-5,-5,2,-2,2,4,-5,-2,3,2,2,-6,5,-2,1,6,-1,-3,4,-2,2,-9,5,-5,-6,5,3,15,-1,-14,4,4,7,-2,5,-2,2,-1,2,-2,-6]];

E[432,1] = [x, [1,0,0,0,-1,0,-3,0,0,0,-5,0,4,0,0,0,-8,0,-2,0,0,0,-2,0,-4,0,0,0,6,0,7,0,0,0,3,0,-6,0,0,0,-6,0,2,0,0,0,-6,0,2,0,0,0,5,0,5,0,0,0,4,0,-8,0,0,0,-4,0,10,0,0,0,8,0,1,0,0,0,15,0,-16,0,0,0,11,0,8,0,0,0,6,0,-12,0,0,0,2,0,-1,0,0,0,9,0,-4,0,0,0,-9,0,10,0,0,0,-6,0,2,0,0,0,24,0,14,0,0,0,9,0,11,0,0,0,-1,0,6,0,0,0,-18,0,-12,0,0,0,-20,0]];
E[432,2] = [x, [1,0,0,0,4,0,3,0,0,0,-4,0,1,0,0,0,-4,0,1,0,0,0,-4,0,11,0,0,0,0,0,4,0,0,0,12,0,-9,0,0,0,0,0,8,0,0,0,12,0,2,0,0,0,-8,0,-16,0,0,0,-4,0,-5,0,0,0,4,0,-11,0,0,0,-8,0,1,0,0,0,-12,0,5,0,0,0,-8,0,-16,0,0,0,12,0,3,0,0,0,4,0,5,0,0,0,0,0,-1,0,0,0,-12,0,-14,0,0,0,12,0,-16,0,0,0,-12,0,5,0,0,0,24,0,-4,0,0,0,16,0,3,0,0,0,-12,0,-9,0,0,0,-4,0]];
E[432,3] = [x, [1,0,0,0,-4,0,3,0,0,0,4,0,1,0,0,0,4,0,1,0,0,0,4,0,11,0,0,0,0,0,4,0,0,0,-12,0,-9,0,0,0,0,0,8,0,0,0,-12,0,2,0,0,0,8,0,-16,0,0,0,4,0,-5,0,0,0,-4,0,-11,0,0,0,8,0,1,0,0,0,12,0,5,0,0,0,8,0,-16,0,0,0,-12,0,3,0,0,0,-4,0,5,0,0,0,0,0,-1,0,0,0,12,0,-14,0,0,0,-12,0,-16,0,0,0,12,0,5,0,0,0,-24,0,-4,0,0,0,-16,0,3,0,0,0,12,0,-9,0,0,0,4,0]];
E[432,4] = [x, [1,0,0,0,1,0,-3,0,0,0,5,0,4,0,0,0,8,0,-2,0,0,0,2,0,-4,0,0,0,-6,0,7,0,0,0,-3,0,-6,0,0,0,6,0,2,0,0,0,6,0,2,0,0,0,-5,0,5,0,0,0,-4,0,-8,0,0,0,4,0,10,0,0,0,-8,0,1,0,0,0,-15,0,-16,0,0,0,-11,0,8,0,0,0,-6,0,-12,0,0,0,-2,0,-1,0,0,0,-9,0,-4,0,0,0,9,0,10,0,0,0,6,0,2,0,0,0,-24,0,14,0,0,0,-9,0,11,0,0,0,1,0,6,0,0,0,18,0,-12,0,0,0,20,0]];
E[432,5] = [x, [1,0,0,0,-3,0,1,0,0,0,-3,0,-4,0,0,0,0,0,-2,0,0,0,-6,0,4,0,0,0,-6,0,-5,0,0,0,-3,0,2,0,0,0,6,0,10,0,0,0,6,0,-6,0,0,0,-9,0,9,0,0,0,12,0,8,0,0,0,12,0,-14,0,0,0,0,0,-7,0,0,0,-3,0,-8,0,0,0,-3,0,0,0,0,0,18,0,-4,0,0,0,6,0,-1,0,0,0,3,0,4,0,0,0,9,0,2,0,0,0,6,0,18,0,0,0,0,0,-2,0,0,0,3,0,7,0,0,0,-15,0,-2,0,0,0,-6,0,4,0,0,0,12,0]];
E[432,6] = [x, [1,0,0,0,3,0,1,0,0,0,3,0,-4,0,0,0,0,0,-2,0,0,0,6,0,4,0,0,0,6,0,-5,0,0,0,3,0,2,0,0,0,-6,0,10,0,0,0,-6,0,-6,0,0,0,9,0,9,0,0,0,-12,0,8,0,0,0,-12,0,-14,0,0,0,0,0,-7,0,0,0,3,0,-8,0,0,0,3,0,0,0,0,0,-18,0,-4,0,0,0,-6,0,-1,0,0,0,-3,0,4,0,0,0,-9,0,2,0,0,0,-6,0,18,0,0,0,0,0,-2,0,0,0,-3,0,7,0,0,0,15,0,-2,0,0,0,6,0,4,0,0,0,-12,0]];
E[432,7] = [x, [1,0,0,0,0,0,-5,0,0,0,0,0,-7,0,0,0,0,0,1,0,0,0,0,0,-5,0,0,0,0,0,4,0,0,0,0,0,-1,0,0,0,0,0,-8,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,-13,0,0,0,0,0,-11,0,0,0,0,0,17,0,0,0,0,0,13,0,0,0,0,0,0,0,0,0,0,0,35,0,0,0,0,0,5,0,0,0,0,0,7,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-11,0,0,0,0,0,-20,0,0,0,0,0,-5,0,0,0,0,0,7,0,0,0,0,0]];
E[432,8] = [x, [1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0,0,7,0,0,0,0,0,-5,0,0,0,0,0,4,0,0,0,0,0,11,0,0,0,0,0,-8,0,0,0,0,0,-6,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,-5,0,0,0,0,0,-7,0,0,0,0,0,-17,0,0,0,0,0,0,0,0,0,0,0,5,0,0,0,0,0,-19,0,0,0,0,0,13,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-11,0,0,0,0,0,-20,0,0,0,0,0,7,0,0,0,0,0,-23,0,0,0,0,0]];

E[433,1] = [x, [1,-1,-2,-1,-4,2,-3,3,1,4,-4,2,-5,3,8,-1,-3,-1,-4,4,6,4,8,-6,11,5,4,3,2,-8,-9,-5,8,3,12,-1,-3,4,10,-12,-9,-6,-7,4,-4,-8,9,2,2,-11,6,5,-5,-4,16,-9,8,-2,-8,-8,-8,9,-3,7,20,-8,-7,3,-16,-12,-9,3]];
E[433,2] = [x^15+10*x^14+29*x^13-22*x^12-251*x^11-272*x^10+583*x^9+1252*x^8-186*x^7-1821*x^6-675*x^5+899*x^4+482*x^3-93*x^2-27*x-1, [4,4*x,14*x^14+120*x^13+236*x^12-632*x^11-2582*x^10-184*x^9+8120*x^8+5872*x^7-10040*x^6-10414*x^5+4226*x^4+5312*x^3-274*x^2-306*x-24,4*x^2-8,-22*x^14-190*x^13-380*x^12+992*x^11+4146*x^10+378*x^9-13104*x^8-9612*x^7+16484*x^6+16966*x^5-7456*x^4-8630*x^3+858*x^2+424*x+26,-20*x^14-170*x^13-324*x^12+932*x^11+3624*x^10-42*x^9-11656*x^8-7436*x^7+15080*x^6+13676*x^5-7274*x^4-7022*x^3+996*x^2+354*x+14,31*x^14+267*x^13+526*x^12-1432*x^11-5825*x^10-227*x^9+18758*x^8+12654*x^7-24540*x^6-22843*x^5+12418*x^4+11653*x^3-2129*x^2-486*x-9,4*x^3-16*x,-44*x^14-380*x^13-760*x^12+1984*x^11+8292*x^10+760*x^9-26196*x^8-19260*x^7+32864*x^6+34060*x^5-14620*x^4-17484*x^3+1456*x^2+1008*x+60,30*x^14+258*x^13+508*x^12-1376*x^11-5606*x^10-278*x^9+17932*x^8+12392*x^7-23096*x^6-22306*x^5+11148*x^4+11462*x^3-1622*x^2-568*x-22,14*x^14+124*x^13+268*x^12-584*x^11-2794*x^10-788*x^9+8460*x^8+7948*x^7-9740*x^6-13354*x^5+3226*x^4+6960*x^3+206*x^2-562*x-44,2*x^14+16*x^13+20*x^12-132*x^11-318*x^10+372*x^9+1364*x^8-384*x^7-2664*x^6+54*x^5+2506*x^4+12*x^3-958*x^2+86*x+28,8*x^14+68*x^13+128*x^12-388*x^11-1476*x^10+128*x^9+4976*x^8+2708*x^7-7120*x^6-5224*x^5+4456*x^4+2648*x^3-1188*x^2+20*x+12,-43*x^14-373*x^13-750*x^12+1956*x^11+8205*x^10+685*x^9-26158*x^8-18774*x^7+33608*x^6+33343*x^5-16216*x^4-17071*x^3+2397*x^2+828*x+31,26*x^14+226*x^13+460*x^12-1160*x^11-4982*x^10-634*x^9+15672*x^8+12060*x^7-19524*x^6-21138*x^5+8524*x^4+10918*x^3-774*x^2-684*x-54,4*x^4-24*x^2+16,-42*x^14-360*x^13-704*x^12+1928*x^11+7790*x^10+324*x^9-24932*x^8-17112*x^7+32108*x^6+30930*x^5-15490*x^4-15956*x^3+2266*x^2+818*x+16,60*x^14+516*x^13+1016*x^12-2752*x^11-11208*x^10-544*x^9+35828*x^8+24680*x^7-46064*x^6-44320*x^5+22072*x^4+22664*x^3-3084*x^2-1128*x-44,-32*x^14-278*x^13-564*x^12+1436*x^11+6128*x^10+702*x^9-19368*x^8-14600*x^7+24404*x^6+25692*x^5-11090*x^4-13218*x^3+1312*x^2+746*x+14,2*x^14+18*x^13+44*x^12-60*x^11-410*x^10-314*x^9+1040*x^8+1708*x^7-644*x^6-2534*x^5-596*x^4+1178*x^3+506*x^2-60*x-22,-88*x^14-748*x^13-1428*x^12+4096*x^11+15984*x^10-124*x^9-51532*x^8-32984*x^7+67136*x^6+60640*x^5-33220*x^4-31120*x^3+5104*x^2+1460*x+32,-16*x^14-138*x^13-276*x^12+720*x^11+3020*x^10+298*x^9-9580*x^8-7136*x^7+12140*x^6+12676*x^5-5626*x^4-6542*x^3+740*x^2+334*x+14,-4*x^14-34*x^13-68*x^12+168*x^11+724*x^10+146*x^9-2172*x^8-1944*x^7+2388*x^6+3296*x^5-606*x^4-1670*x^3-148*x^2+134*x-6,36*x^14+302*x^13+560*x^12-1680*x^11-6332*x^10+282*x^9+20424*x^8+12580*x^7-26464*x^6-23496*x^5+12762*x^4+12122*x^3-1720*x^2-626*x-26,20*x^14+168*x^13+312*x^12-936*x^11-3528*x^10+180*x^9+11408*x^8+6868*x^7-14916*x^6-12740*x^5+7460*x^4+6356*x^3-1196*x^2-176*x-4,-12*x^14-104*x^13-212*x^12+532*x^11+2304*x^10+312*x^9-7308*x^8-5632*x^7+9344*x^6+9856*x^5-4544*x^4-5044*x^3+764*x^2+228*x+8,124*x^14+1060*x^13+2060*x^12-5700*x^11-22836*x^10-724*x^9+73072*x^8+49532*x^7-93916*x^6-89652*x^5+44840*x^4+46048*x^3-6132*x^2-2340*x-108,-5*x^14-37*x^13-42*x^12+276*x^11+639*x^10-635*x^9-2454*x^8+302*x^7+4120*x^6+445*x^5-3250*x^4-183*x^3+1087*x^2-158*x-25,-30*x^14-254*x^13-476*x^12+1428*x^11+5410*x^10-358*x^9-17756*x^8-10228*x^7+24008*x^6+19250*x^5-13108*x^4-9682*x^3+2614*x^2+200*x-2,-34*x^14-294*x^13-588*x^12+1544*x^11+6438*x^10+514*x^9-20492*x^8-14688*x^7+26208*x^6+26074*x^5-12456*x^4-13306*x^3+1734*x^2+648*x+26,-x^14+x^13+58*x^12+156*x^11-297*x^10-1385*x^9+58*x^8+4318*x^7+2028*x^6-5751*x^5-3624*x^4+3003*x^3+1695*x^2-412*x-59,4*x^5-32*x^3+48*x,20*x^14+164*x^13+276*x^12-1012*x^11-3344*x^10+984*x^9+11496*x^8+4376*x^7-16712*x^6-9712*x^5+10504*x^4+5132*x^3-2652*x^2-108*x+52,60*x^14+514*x^13+1004*x^12-2752*x^11-11100*x^10-446*x^9+35472*x^8+24296*x^7-45552*x^6-43840*x^5+21802*x^4+22510*x^3-3088*x^2-1118*x-42,-6*x^14-56*x^13-136*x^12+228*x^11+1358*x^10+680*x^9-4000*x^8-4640*x^7+4332*x^6+7450*x^5-1010*x^4-3820*x^3-374*x^2+302*x+32,4*x^14+36*x^13+88*x^12-116*x^11-808*x^10-672*x^9+1952*x^8+3616*x^7-788*x^6-5548*x^5-2036*x^4+2964*x^3+1540*x^2-440*x-60,-14*x^14-120*x^13-236*x^12+636*x^11+2598*x^10+152*x^9-8288*x^8-5800*x^7+10676*x^6+10414*x^5-5250*x^4-5440*x^3+882*x^2+362*x-20,42*x^14+364*x^13+732*x^12-1904*x^11-8002*x^10-712*x^9+25464*x^8+18452*x^7-32580*x^6-32690*x^5+15550*x^4+16736*x^3-2230*x^2-850*x-32,-14*x^14-116*x^13-204*x^12+684*x^11+2390*x^10-436*x^9-7968*x^8-3844*x^7+10992*x^6+7766*x^5-6210*x^4-4028*x^3+1302*x^2+134*x-20,-62*x^14-530*x^13-1032*x^12+2844*x^11+11442*x^10+430*x^9-36660*x^8-25056*x^7+47300*x^6+45366*x^5-22916*x^4-23382*x^3+3370*x^2+1168*x+46,28*x^14+236*x^13+444*x^12-1292*x^11-4964*x^10+68*x^9+15852*x^8+10200*x^7-20192*x^6-18680*x^5+9332*x^4+9516*x^3-1080*x^2-472*x-24,132*x^14+1124*x^13+2160*x^12-6104*x^11-24060*x^10-228*x^9+77192*x^8+50768*x^7-99608*x^6-92620*x^5+47992*x^4+47520*x^3-6724*x^2-2344*x-88,63*x^14+537*x^13+1030*x^12-2940*x^11-11521*x^10+103*x^9+37242*x^8+23546*x^7-48944*x^6-43127*x^5+24968*x^4+21819*x^3-4309*x^2-800*x+1,-6*x^14-60*x^13-168*x^12+172*x^11+1534*x^10+1324*x^9-4024*x^8-6732*x^7+3020*x^6+10282*x^5+1390*x^4-5468*x^3-1566*x^2+706*x+72,-30*x^14-254*x^13-488*x^12+1348*x^11+5362*x^10+298*x^9-16732*x^8-12136*x^7+20128*x^6+21666*x^5-7472*x^4-11162*x^3-214*x^2+792*x+78,6*x^14+48*x^13+80*x^12-280*x^11-942*x^10+160*x^9+3064*x^8+1644*x^7-3988*x^6-3306*x^5+1926*x^4+1780*x^3-238*x^2-114*x-4,-31*x^14-261*x^13-478*x^12+1508*x^11+5525*x^10-707*x^9-18442*x^8-9514*x^7+25732*x^6+18587*x^5-15080*x^4-9463*x^3+3449*x^2+168*x-37,-62*x^14-516*x^13-928*x^12+2968*x^11+10710*x^10-1308*x^9-35220*x^8-19000*x^7+47388*x^6+36954*x^5-25254*x^4-19096*x^3+4638*x^2+774*x-20,14*x^14+116*x^13+208*x^12-660*x^11-2386*x^10+232*x^9+7740*x^8+4476*x^7-10088*x^6-8642*x^5+4902*x^4+4576*x^3-638*x^2-278*x-24,-32*x^14-268*x^13-496*x^12+1492*x^11+5620*x^10-252*x^9-18172*x^8-11196*x^7+23680*x^6+20960*x^5-11624*x^4-10836*x^3+1684*x^2+536*x+20,32*x^14+274*x^13+528*x^12-1516*x^11-5956*x^10+146*x^9+19576*x^8+11888*x^7-26652*x^6-22084*x^5+14870*x^4+11266*x^3-3184*x^2-346*x+34,12*x^12+68*x^11-568*x^9-560*x^8+1696*x^7+2244*x^6-2196*x^5-3168*x^4+1252*x^3+1488*x^2-356*x-36,-88*x^14-752*x^13-1460*x^12+4044*x^11+16172*x^10+476*x^9-51680*x^8-34876*x^7+66268*x^6+62984*x^5-31456*x^4-32164*x^3+4200*x^2+1600*x+80,-180*x^14-1536*x^13-2972*x^12+8288*x^11+33004*x^10+780*x^9-105716*x^8-70852*x^7+136152*x^6+128540*x^5-65428*x^4-65900*x^3+9192*x^2+3240*x+124,-46*x^14-386*x^13-704*x^12+2224*x^11+8130*x^10-990*x^9-27012*x^8-14272*x^7+37268*x^6+27886*x^5-21208*x^4-14458*x^3+4542*x^2+504*x-30,99*x^14+849*x^13+1666*x^12-4528*x^11-18405*x^10-909*x^9+58878*x^8+40738*x^7-75876*x^6-73311*x^5+36744*x^4+37639*x^3-5417*x^2-1816*x-67,82*x^14+694*x^13+1304*x^12-3872*x^11-14754*x^10+722*x^9+48080*x^8+28788*x^7-63980*x^6-54002*x^5+33464*x^4+27802*x^3-6006*x^2-1176*x+6,46*x^14+394*x^13+768*x^12-2120*x^11-8518*x^10-266*x^9+27332*x^8+18428*x^7-35380*x^6-33358*x^5+17288*x^4+17074*x^3-2590*x^2-812*x-30,62*x^14+530*x^13+1024*x^12-2884*x^11-11414*x^10-62*x^9+36792*x^8+23784*x^7-48044*x^6-43354*x^5+24012*x^4+22046*x^3-3858*x^2-968*x-2,-6*x^14-54*x^13-124*x^12+224*x^11+1230*x^10+598*x^9-3464*x^8-4236*x^7+3208*x^6+6870*x^5+212*x^4-3714*x^3-966*x^2+476*x+74,26*x^14+218*x^13+400*x^12-1236*x^11-4574*x^10+386*x^9+14948*x^8+8572*x^7-19864*x^6-16338*x^5+10252*x^4+8418*x^3-1762*x^2-404*x+30,11*x^14+87*x^13+134*x^12-548*x^11-1657*x^10+641*x^9+5570*x^8+1842*x^7-7572*x^6-4299*x^5+3902*x^4+2177*x^3-505*x^2-86*x-1,77*x^14+657*x^13+1266*x^12-3576*x^11-14123*x^10-77*x^9+45506*x^8+29542*x^7-59300*x^6-54017*x^5+29338*x^4+27755*x^3-4451*x^2-1366*x-15,4*x^6-40*x^4+96*x^2-32,2*x^14+14*x^13+8*x^12-136*x^11-226*x^10+494*x^9+1140*x^8-820*x^7-2544*x^6+618*x^5+2728*x^4-266*x^3-1178*x^2+184*x+30,-36*x^14-304*x^13-572*x^12+1676*x^11+6424*x^10-164*x^9-20664*x^8-12992*x^7+26708*x^6+24004*x^5-12848*x^4-12292*x^3+1752*x^2+592*x+20,35*x^14+295*x^13+558*x^12-1596*x^11-6201*x^10-95*x^9+19586*x^8+13350*x^7-24216*x^6-24171*x^5+10010*x^4+12293*x^3-457*x^2-650*x-61,-2*x^14-16*x^13-24*x^12+104*x^11+294*x^10-156*x^9-960*x^8-168*x^7+1204*x^6+442*x^5-450*x^4-96*x^3-70*x^2-58*x+28,-74*x^14-630*x^13-1216*x^12+3380*x^11+13442*x^10+446*x^9-42620*x^8-29280*x^7+53528*x^6+52734*x^5-23660*x^4-26950*x^3+2174*x^2+1464*x+94,4*x^14+38*x^13+96*x^12-148*x^11-952*x^10-502*x^9+2872*x^8+3216*x^7-3476*x^6-5060*x^5+1574*x^4+2518*x^3-256*x^2-130*x-6,-19*x^14-167*x^13-350*x^12+832*x^11+3741*x^10+675*x^9-11702*x^8-9506*x^7+14576*x^6+16291*x^5-6598*x^4-8217*x^3+905*x^2+370*x-7,-124*x^14-1060*x^13-2060*x^12+5700*x^11+22832*x^10+708*x^9-73048*x^8-49404*x^7+93864*x^6+89304*x^5-44776*x^4-45716*x^3+6100*x^2+2304*x+92]];
E[433,3] = [x^16-7*x^15-5*x^14+129*x^13-125*x^12-929*x^11+1471*x^10+3333*x^9-6394*x^8-6443*x^7+13118*x^6+7162*x^5-12217*x^4-4691*x^3+3598*x^2+1114*x-3, [197716,197716*x,13456*x^15-56746*x^14-215630*x^13+1035152*x^12+1403792*x^11-7574942*x^10-5201414*x^9+28343416*x^8+13348668*x^7-56176856*x^6-24111798*x^5+52615312*x^4+24553850*x^3-14782282*x^2-7861136*x-325058,197716*x^2-395432,31748*x^15-160070*x^14-478458*x^13+3174656*x^12+2402040*x^11-25188026*x^10-4027502*x^9+101560912*x^8+2012332*x^7-216201984*x^6-20242790*x^5+219968308*x^4+56350086*x^3-66664682*x^2-21379484*x-165534,37446*x^15-148350*x^14-700672*x^13+3085792*x^12+4925682*x^11-24995190*x^10-16505432*x^9+99386332*x^8+30520152*x^7-200627606*x^6-43756560*x^5+188945802*x^4+48339814*x^3-56275824*x^2-15315042*x+40368,55708*x^15-260584*x^14-903966*x^13+5228748*x^12+5197644*x^11-41731712*x^10-12258514*x^9+167843236*x^8+12912160*x^7-352756556*x^6-29636272*x^5+352119146*x^4+68844982*x^3-107855832*x^2-26381794*x+358910,197716*x^3-790864*x,-88392*x^15+439236*x^14+1302268*x^13-8572504*x^12-6098912*x^11+66608004*x^10+6346200*x^9-261659892*x^8+16219636*x^7+540770856*x^6+1472948*x^5-535837780*x^4-90427548*x^3+162423872*x^2+40281088*x-95828,62166*x^15-319718*x^14-920836*x^13+6370540*x^12+4305866*x^11-50728810*x^10-4255172*x^9+205009044*x^8-11649620*x^7-436713054*x^6-7410868*x^5+444215402*x^4+82265186*x^3-135608788*x^2-35532806*x+95244,-137646*x^15+639498*x^14+2223664*x^13-12711724*x^12-12851958*x^11+100461254*x^10+31736612*x^9-399971212*x^8-41110804*x^7+832227506*x^6+92794744*x^5-823715946*x^4-182406258*x^3+252268332*x^2+68027714*x-380856,86860*x^15-399950*x^14-1313482*x^13+7536128*x^12+6984560*x^11-56438614*x^10-15018358*x^9+213263044*x^8+13939636*x^7-422619476*x^6-31018854*x^5+400586972*x^4+70275662*x^3-120481186*x^2-25952204*x+762454,-182691*x^15+854108*x^14+2938339*x^13-17018914*x^12-16723251*x^11+134875698*x^10+39072321*x^9-538770184*x^8-42272078*x^7+1125412803*x^6+102144287*x^5-1117812989*x^4-230831428*x^3+340584749*x^2+87448217*x-555115,129372*x^15-625426*x^14-1957584*x^13+12161144*x^12+10021020*x^11-94204982*x^10-17831528*x^9+369109112*x^8+6170088*x^7-760413816*x^6-46861550*x^5+749429618*x^4+153470396*x^3-226819178*x^2-61699802*x+167124,32672*x^15-182216*x^14-394260*x^13+3384680*x^12+1085272*x^11-25474704*x^10+3009252*x^9+99781516*x^8-14755512*x^7-212971044*x^6-2336464*x^5+223428732*x^4+51607124*x^3-72399696*x^2-23180116*x+452988,197716*x^4-1186296*x^2+790864,43733*x^15-208842*x^14-734087*x^13+4365890*x^12+4283369*x^11-36242176*x^10-9511945*x^9+151411644*x^8+6134930*x^7-330347305*x^6-17025899*x^5+342265579*x^4+59305810*x^3-108729889*x^2-24124475*x+1553055,-179508*x^15+860308*x^14+2830064*x^13-17147912*x^12-15508164*x^11+136370832*x^10+32950644*x^9-548958812*x^8-28738800*x^7+1160999204*x^6+97225724*x^5-1170312612*x^4-252223000*x^3+358315504*x^2+98372860*x-265176,-62980*x^15+275676*x^14+1079684*x^13-5538736*x^12-6982488*x^11+44275492*x^10+21869136*x^9-178260936*x^8-41315268*x^7+374213008*x^6+72951660*x^5-371684576*x^4-97940844*x^3+114169472*x^2+33254200*x+482612,51948*x^15-289866*x^14-691958*x^13+5727304*x^12+2219324*x^11-45325306*x^10+5864770*x^9+182717960*x^8-40202180*x^7-390500488*x^6+39468090*x^5+401810592*x^4+43311746*x^3-125876710*x^2-26398712*x+517566,95634*x^15-463238*x^14-1418452*x^13+8885944*x^12+7157470*x^11-68275222*x^10-12883816*x^9+267317000*x^8+5911816*x^7-554331130*x^6-34339340*x^5+550828126*x^4+106848330*x^3-166655676*x^2-42527022*x-388960,-324024*x^15+1535434*x^14+5044610*x^13-30057708*x^12-27411880*x^11+234213878*x^10+58802906*x^9-921219328*x^8-54625672*x^7+1898434972*x^6+162104706*x^5-1864027440*x^4-393429054*x^3+563278022*x^2+152956788*x-412938,162612*x^15-737804*x^14-2674976*x^13+14663240*x^12+15973268*x^11-115509156*x^10-42371724*x^9+456370356*x^8+61796596*x^7-936808712*x^6-121133380*x^5+908840120*x^4+207272592*x^3-270732704*x^2-75191592*x+140136,133178*x^15-582482*x^14-2267468*x^13+11670476*x^12+14402962*x^11-92799038*x^10-43230472*x^9+370549812*x^8+75979200*x^7-769193122*x^6-133991228*x^5+753552678*x^4+190299446*x^3-225922836*x^2-65369502*x+179844,274612*x^15-1283240*x^14-4350092*x^13+25238072*x^12+24399660*x^11-197398292*x^10-56823920*x^9+778239848*x^8+66800028*x^7-1604434104*x^6-168671676*x^5+1571805660*x^4+355367588*x^3-469936300*x^2-132748848*x-379064,-424729*x^15+2024884*x^14+6548225*x^13-39559626*x^12-34844241*x^11+307810782*x^10+70138919*x^9-1210398332*x^8-51665310*x^7+2498684825*x^6+190619953*x^5-2462767375*x^4-516418732*x^3+744770435*x^2+202962659*x-548073,-242988*x^15+1185200*x^14+3649780*x^13-23090452*x^12-18250896*x^11+179306600*x^10+28993212*x^9-704739208*x^8+4153596*x^7+1457499840*x^6+66668148*x^5-1442281348*x^4-285930884*x^3+435279524*x^2+119828632*x+692860,168762*x^15-789556*x^14-2719912*x^13+15735024*x^12+15586318*x^11-124674316*x^10-37570736*x^9+497688184*x^8+47305660*x^7-1038450334*x^6-117860102*x^5+1029769828*x^4+242374910*x^3-311468594*x^2-91189696*x-329704,-136530*x^15+674376*x^14+2045474*x^13-13156484*x^12-10390446*x^11+102829108*x^10+18987498*x^9-409402464*x^8-13667100*x^7+862862554*x^6+79890894*x^5-870970878*x^4-211015904*x^3+264725498*x^2+80273354*x+643506,46488*x^15-230900*x^14-830008*x^13+5169272*x^12+4877584*x^11-45051260*x^10-9114260*x^9+194149256*x^8-2465348*x^7-430927760*x^6-10568132*x^5+450760948*x^4+80864656*x^3-140733972*x^2-35943620*x+98016,266998*x^15-1270864*x^14-4207464*x^13+25204696*x^12+23113746*x^11-199156572*x^10-49826156*x^9+795366280*x^8+45670096*x^7-1667386278*x^6-142444286*x^5+1668953508*x^4+355765894*x^3-513815742*x^2-137056244*x+2038004,197716*x^5-1581728*x^3+2372592*x,246292*x^15-1192492*x^14-3708192*x^13+23158428*x^12+18731000*x^11-179175352*x^10-31290044*x^9+701216440*x^8+1320672*x^7-1443196732*x^6-68430964*x^5+1421965940*x^4+274800828*x^3-431425536*x^2-115111280*x+656064,97289*x^15-515422*x^14-1275667*x^13+9749994*x^12+4385781*x^11-73843188*x^10+5649555*x^9+285763732*x^8-48575586*x^7-590715393*x^6+29049833*x^5+593591871*x^4+96421614*x^3-181475809*x^2-47165507*x+131199,-7886*x^15+30450*x^14+102436*x^13-423872*x^12-542234*x^11+2043770*x^10+2025648*x^9-3733904*x^8-6538384*x^7+757562*x^6+12372736*x^5+4082982*x^4-9864750*x^3-1587964*x^2+3045574*x-332748,-219464*x^15+1054052*x^14+3404084*x^13-20801656*x^12-18194276*x^11+163790904*x^10+36648952*x^9-653193168*x^8-28010112*x^7+1370469956*x^6+112377788*x^5-1373596676*x^4-302901428*x^3+419394900*x^2+119144560*x-346868,52165*x^15-274846*x^14-674431*x^13+5201454*x^12+1989469*x^11-39133872*x^10+7013315*x^9+148980432*x^8-45037294*x^7-299718017*x^6+58260161*x^5+290897251*x^4+9115638*x^3-84688417*x^2-12929043*x+395459,-165184*x^15+764784*x^14+2585684*x^13-14854988*x^12-14232928*x^11+114512716*x^10+31651404*x^9-444009388*x^8-31567132*x^7+899123300*x^6+79378184*x^5-867367504*x^4-181269708*x^3+259856240*x^2+70642332*x-188940,-94592*x^15+476138*x^14+1380522*x^13-9309008*x^12-6395196*x^11+72950254*x^10+6337362*x^9-291535872*x^8+18478368*x^7+618072640*x^6-663954*x^5-629792328*x^4-97950958*x^3+194634718*x^2+43493420*x+441326,-50562*x^15+207218*x^14+867684*x^13-4028256*x^12-5677346*x^11+30906882*x^10+18085620*x^9-118064756*x^8-32500284*x^7+231440334*x^6+44580752*x^5-210470342*x^4-46719014*x^3+57909960*x^2+13713106*x-34644,258237*x^15-1253144*x^14-3818537*x^13+24024738*x^12+18918989*x^11-183788326*x^10-30963607*x^9+713085156*x^8+1430814*x^7-1460082397*x^6-66835737*x^5+1436932507*x^4+261581404*x^3-442507479*x^2-106810647*x+2191245,206200*x^15-940282*x^14-3450842*x^13+19111720*x^12+20568764*x^11-153561430*x^10-51431122*x^9+617395612*x^8+61838732*x^7-1288866152*x^6-134102582*x^5+1275208908*x^4+281963418*x^3-386618154*x^2-106925236*x+286902,-123140*x^15+598028*x^14+1802646*x^13-11401960*x^12-8765496*x^11+86822284*x^10+13191662*x^9-335697352*x^8+5497352*x^7+685339744*x^6+16644520*x^5-670880642*x^4-108371454*x^3+203472984*x^2+46329342*x-1032070,-457442*x^15+2145494*x^14+7294060*x^13-42491432*x^12-41100502*x^11+334519702*x^10+95279440*x^9-1326492704*x^8-107030052*x^7+2748196526*x^6+271042960*x^5-2704598370*x^4-591906046*x^3+814258476*x^2+224494370*x-210360,-21308*x^15+97294*x^14+323090*x^13-1805644*x^12-1742412*x^11+13159562*x^10+3869542*x^9-47363076*x^8-2853832*x^7+86289596*x^6-375326*x^5-71956740*x^4+2255446*x^3+19956202*x^2-1764156*x-9966,400480*x^15-1861916*x^14-6313708*x^13+36299768*x^12+35557392*x^11-281573976*x^10-85615440*x^9+1101537724*x^8+110900404*x^7-2254277596*x^6-255787024*x^5+2193903396*x^4+492080188*x^3-660269568*x^2-181009632*x+487836,441140*x^15-2044288*x^14-7091906*x^13+40452472*x^12+40761480*x^11-318241500*x^10-100141586*x^9+1261415048*x^8+131243312*x^7-2613640980*x^6-304559712*x^5+2574797926*x^4+595658754*x^3-777623656*x^2-220039130*x-216126,176044*x^15-801678*x^14-2882522*x^13+15977956*x^12+16954204*x^11-126258082*x^10-43295746*x^9+500993244*x^8+60993460*x^7-1035781280*x^6-138230450*x^5+1016161128*x^4+258263838*x^3-303581574*x^2-96276040*x-1125374,110423*x^15-470086*x^14-1992461*x^13+9741350*x^12+13560943*x^11-79746984*x^10-44514499*x^9+326041988*x^8+85366594*x^7-688981343*x^6-143116845*x^5+684511525*x^4+183864854*x^3-208856059*x^2-61250309*x-800343,639044*x^15-2977032*x^14-10186876*x^13+58726160*x^12+57716256*x^11-460778172*x^10-137041948*x^9+1822669156*x^8+164891012*x^7-3771031892*x^6-394965484*x^5+3710302392*x^4+818268592*x^3-1120802824*x^2-306296832*x+823836,124366*x^15-629338*x^14-1836648*x^13+12394460*x^12+8815346*x^11-97916770*x^10-11867864*x^9+394732332*x^8-6266020*x^7-844070930*x^6-51483880*x^5+864413246*x^4+200018122*x^3-260896804*x^2-82747898*x-2382096,-582837*x^15+2716364*x^14+9353737*x^13-53897538*x^12-53315957*x^11+425163882*x^10+127078783*x^9-1689842168*x^8-153299966*x^7+3511389369*x^6+374853149*x^5-3469706947*x^4-785970448*x^3+1049968103*x^2+297703599*x-163957,-407555*x^15+1886088*x^14+6579595*x^13-37396926*x^12-38122187*x^11+294913790*x^10+95424585*x^9-1172197168*x^8-129536710*x^7+2435906527*x^6+291776003*x^5-2406815197*x^4-555155660*x^3+732753501*x^2+204007637*x-1342995,-515716*x^15+2434840*x^14+8255000*x^13-48624396*x^12-46429252*x^11+386428560*x^10+105139796*x^9-1549511676*x^8-108071844*x^7+3254184732*x^6+297998708*x^5-3254515280*x^4-704577184*x^3+994099456*x^2+271381492*x-728964,-636980*x^15+2996892*x^14+10084800*x^13-59240460*x^12-55950940*x^11+465637900*x^10+123691024*x^9-1844820944*x^8-117919156*x^7+3823967672*x^6+324543496*x^5-3774004580*x^4-789284112*x^3+1145196132*x^2+309995836*x-613092,133034*x^15-625250*x^14-2120106*x^13+12359280*x^12+12063542*x^11-97409674*x^10-29132506*x^9+388151664*x^8+36543056*x^7-810852386*x^6-85180516*x^5+805281028*x^4+173253156*x^3-244757016*x^2-64930968*x+172038,-46922*x^15+200860*x^14+794954*x^13-3919856*x^12-5208738*x^11+30493516*x^10+17296118*x^9-119754140*x^8-35118548*x^7+245606214*x^6+54838414*x^5-238424634*x^4-56365392*x^3+73383802*x^2+14144898*x-1040098,-281334*x^15+1362824*x^14+4455886*x^13-27456696*x^12-24007262*x^11+219823128*x^10+45652026*x^9-886639920*x^8-16800236*x^7+1870891434*x^6+106856982*x^5-1879002914*x^4-375736732*x^3+571508294*x^2+152737926*x-409590,123398*x^15-620260*x^14-1741262*x^13+11807248*x^12+7577434*x^11-89477132*x^10-5197158*x^9+342987180*x^8-27800400*x^7-691994458*x^6+3641698*x^5+668429202*x^4+113477384*x^3-195851638*x^2-53058886*x-473886,29172*x^15-233136*x^14-39160*x^13+3919224*x^12-4034452*x^11-26548700*x^10+33186248*x^9+95215892*x^8-101894552*x^7-194455628*x^6+122486820*x^5+201951088*x^4-25873012*x^3-58408052*x^2-5329384*x-766512,59388*x^15-255062*x^14-1023122*x^13+5068924*x^12+6766444*x^11-40084466*x^10-22318926*x^9+159452052*x^8+44556900*x^7-329083692*x^6-72919710*x^5+316919136*x^4+85951558*x^3-90148966*x^2-27010968*x-1748290,598122*x^15-2872474*x^14-9238046*x^13+56488496*x^12+48884570*x^11-442580214*x^10-94538054*x^9+1752855308*x^8+52881836*x^7-3644924050*x^6-243286168*x^5+3617680460*x^4+738671876*x^3-1097715048*x^2-295397768*x+800994,-21648*x^15+95172*x^14+272850*x^13-1502900*x^12-1010528*x^11+8495900*x^10+471850*x^9-19066596*x^8+2188060*x^7+7061960*x^6+1558952*x^5+23589586*x^4-4444178*x^3-12568048*x^2+2261726*x+12794,197716*x^6-1977160*x^4+4745184*x^2-1581728,-56386*x^15+256934*x^14+984052*x^13-5387992*x^12-6071230*x^11+44301178*x^10+15157244*x^9-180291676*x^8-13561448*x^7+375449514*x^6+18124520*x^5-364092166*x^4-50226002*x^3+106148560*x^2+18993262*x+308700,531552*x^15-2476732*x^14-8613240*x^13+49517500*x^12+49629916*x^11-393585576*x^10-119674796*x^9+1576111720*x^8+143662624*x^7-3299289420*x^6-341977364*x^5+3283750192*x^4+723930236*x^3-1001269896*x^2-273713224*x+738876,-283422*x^15+1335836*x^14+4467188*x^13-26267400*x^12-25009138*x^11+206055652*x^10+58831732*x^9-817958112*x^8-73376428*x^7+1704179898*x^6+188248018*x^5-1688329832*x^4-389257054*x^3+506904206*x^2+145404836*x+317516,78135*x^15-371538*x^14-1332113*x^13+7815126*x^12+7971555*x^11-64978212*x^10-19476615*x^9+270666992*x^8+23847774*x^7-586492659*x^6-69140149*x^5+600470169*x^4+156295270*x^3-179751551*x^2-59999797*x-2814243,-272690*x^15+1359784*x^14+4081654*x^13-26816880*x^12-19797910*x^11+210829328*x^10+25645858*x^9-839177360*x^8+28662896*x^7+1759292810*x^6+54669710*x^5-1768062150*x^4-344133168*x^3+540714958*x^2+143985714*x-278778,-24752*x^15+63006*x^14+593422*x^13-1527984*x^12-5282324*x^11+13625954*x^10+22550134*x^9-56961468*x^8-50051936*x^7+115821284*x^6+60562514*x^5-106208012*x^4-38581190*x^3+31419402*x^2+8452256*x-23658,-124762*x^15+610584*x^14+1871176*x^13-11834832*x^12-9663274*x^11+91910436*x^10+19373428*x^9-363775676*x^8-21119816*x^7+762526526*x^6+85669042*x^5-764397364*x^4-193339098*x^3+227342110*x^2+69891316*x+2583060,-123180*x^15+586148*x^14+1849072*x^13-11331452*x^12-9074824*x^11+86738832*x^10+12379056*x^9-333345304*x^8+13941004*x^7+669308132*x^6+3753044*x^5-643467892*x^4-105664724*x^3+192145024*x^2+47390308*x-128040]];
E[433,4] = [x^3-8*x+4, [2,2,2*x,-2,2*x,2*x,-x^2+10,-6,2*x^2-6,2*x,-2*x+4,-2*x,-2*x^2-4*x+14,-x^2+10,2*x^2,-2,-2*x^2-2*x+10,2*x^2-6,2*x-4,-2*x,2*x+4,-2*x+4,-2*x+4,-6*x,2*x^2-10,-2*x^2-4*x+14,4*x-8,x^2-10,4*x+4,2*x^2,x^2-2*x-14,10,-2*x^2+4*x,-2*x^2-2*x+10,2*x+4,-2*x^2+6,4*x^2+6*x-22,2*x-4,-4*x^2-2*x+8,-6*x,6,2*x+4,3*x^2+2*x-10,2*x-4,10*x-8,-2*x+4,-3*x^2-10*x+22,-2*x,-6*x^2-2*x+36,2*x^2-10,-2*x^2-6*x+8,2*x^2+4*x-14,4*x^2-4*x-26,4*x-8,-2*x^2+4*x,3*x^2-30,2*x^2-4*x,4*x+4,-2*x^2-4*x+16,-2*x^2,-2*x^2-2*x,x^2-2*x-14,5*x^2+4*x-30,14,-4*x^2-2*x+8,-2*x^2+4*x,5*x^2+4*x-14,2*x^2+2*x-10,-2*x^2+4*x,2*x+4,7*x^2-34,-6*x^2+18]];

E[434,1] = [x^2-2*x-1, [1,-1,x,1,2*x-3,-x,1,-1,2*x-2,-2*x+3,0,x,-2*x+6,-1,x+2,1,-2*x+2,-2*x+2,2,2*x-3,x,0,-x-2,-x,-4*x+8,2*x-6,-x+2,1,-x+6,-x-2,-1,-1,0,2*x-2,2*x-3,2*x-2,-2*x-2,-2,2*x-2,-2*x+3,-2*x+2,-x,4*x+2,0,-2*x+10,x+2,-6*x+11,x,1,4*x-8,-2*x-2,-2*x+6,6*x-10,x-2,0,-1,2*x,x-6,-6*x+10,x+2,2*x-2,1,2*x-2,1,10*x-22,0,4*x-3,-2*x+2,-4*x-1,-2*x+3,-2*x+10,-2*x+2,x+4,2*x+2,-4,2,0,-2*x+2,-3*x+2,2*x-3,-6*x+5,2*x-2,3*x-14,x,2*x-10,-4*x-2,4*x-1,0,-7*x+8,2*x-10,-2*x+6,-x-2,-x,6*x-11,4*x-6,-x,2*x-6,-1,0,-4*x+8,-7,2*x+2,-4*x+9,2*x-6,x+2,-6*x+10,-4*x-3,-x+2,8*x-10,0,-6*x-2,1,-15,-2*x,-5*x+4,-x+6,8*x-16,6*x-10,-2*x+2,-x-2,-11,-2*x+2,-2*x-2,-1,2*x-17,-2*x+2,x,-1]];
E[434,2] = [x^3+2*x^2-5*x-8, [1,-1,x,1,-x^2+4,-x,-1,-1,x^2-3,x^2-4,-2*x^2+10,x,2*x+2,1,2*x^2-x-8,1,2*x-2,-x^2+3,6,-x^2+4,-x,2*x^2-10,2*x^2+x-4,-x,x^2-2*x-5,-2*x-2,-2*x^2-x+8,-1,-2*x^2-3*x+8,-2*x^2+x+8,1,-1,4*x^2-16,-2*x+2,x^2-4,x^2-3,-2*x^2+2*x+16,-6,2*x^2+2*x,x^2-4,-2*x-2,x,-4*x^2-4*x+14,-2*x^2+10,-2*x^2+2*x+4,-2*x^2-x+4,-3*x^2-4*x+12,x,1,-x^2+2*x+5,2*x^2-2*x,2*x+2,2*x^2+2*x-12,2*x^2+x-8,-4*x+8,1,6*x,2*x^2+3*x-8,2*x+2,2*x^2-x-8,2*x+2,-1,-x^2+3,1,2*x^2-2*x-8,-4*x^2+16,x^2-2*x-4,2*x-2,-3*x^2+6*x+16,-x^2+4,2*x^2-2*x-16,-x^2+3,2*x^2+x-14,2*x^2-2*x-16,-4*x^2+8,6,2*x^2-10,-2*x^2-2*x,-2*x^2+3*x+12,-x^2+4,-2*x-7,2*x+2,6*x^2+3*x-24,-x,6*x^2-2*x-24,4*x^2+4*x-14,x^2-2*x-16,2*x^2-10,2*x^2+x-18,2*x^2-2*x-4,-2*x-2,2*x^2+x-4,x,3*x^2+4*x-12,-6*x^2+24,-x,-4*x^2-6*x+14,-1,-2*x^2+4*x+2,x^2-2*x-5,-x^2-2*x-4,-2*x^2+2*x,-x^2+2*x,-2*x-2,-2*x^2+x+8,-2*x^2-2*x+12,-3*x^2-2*x+8,-2*x^2-x+8,10,4*x-8,6*x^2+6*x-16,-1,-5*x^2-2*x+18,-6*x,-4*x^2+3*x+8,-2*x^2-3*x+8,-2*x^2+4*x+10,-2*x-2,-2*x+2,-2*x^2+x+8,-4*x^2-8*x+25,-2*x-2,-2*x^2-2*x,1,x^2+4*x-8,x^2-3,-x+8,-1]];
E[434,3] = [x, [1,-1,0,1,0,0,-1,-1,-3,0,-2,0,-2,1,0,1,2,3,-6,0,0,2,0,0,-5,2,0,-1,8,0,-1,-1,0,-2,0,-3,-8,6,0,0,-10,0,-6,-2,0,0,-4,0,1,5,0,-2,4,0,0,1,0,-8,6,0,6,1,3,1,0,0,-4,2,0,0,-8,3,14,8,0,-6,2,0,-16,0,9,10,8,0,0,6,0,2,-6,0,2,0,0,4,0,0,14,-1,6,-5,8,0,8,2,0,-4,0,0,-6,0,0,-1,18,0,0,8,6,-6,-2,0,-7,-6,0,-1,0,-3,4,-1]];
E[434,4] = [x, [1,1,2,1,2,2,-1,1,1,2,-6,2,4,-1,4,1,2,1,-4,2,-2,-6,-4,2,-1,4,-4,-1,0,4,-1,1,-12,2,-2,1,8,-4,8,2,-2,-2,6,-6,2,-4,8,2,1,-1,4,4,0,-4,-12,-1,-8,0,0,4,-8,-1,-1,1,8,-12,4,2,-8,-2,-8,1,6,8,-2,-4,6,8,0,2,-11,-2,6,-2,4,6,0,-6,6,2,-4,-4,-2,8,-8,2,-2,1,-6,-1,-14,4,-16,4,-4,0,16,-4,-18,-12,16,-1,14,-8,-8,0,4,0,-2,4,25,-8,-4,-1,-12,-1,16,1]];
E[434,5] = [x, [1,1,-3,1,-3,-3,-1,1,6,-3,4,-3,4,-1,9,1,2,6,6,-3,3,4,-9,-3,4,4,-9,-1,5,9,-1,1,-12,2,3,6,-2,6,-12,-3,8,3,6,4,-18,-9,-7,-3,1,4,-6,4,10,-9,-12,-1,-18,5,0,9,12,-1,-6,1,-12,-12,-1,2,27,3,-8,6,11,-2,-12,6,-4,-12,5,-3,9,8,11,3,-6,6,-15,4,-9,-18,-4,-9,3,-7,-18,-3,8,1,24,4,-19,-6,-1,4,-9,10,-9,-9,-18,-12,6,-1,9,-18,27,5,24,0,-2,9,5,12,-24,-1,3,-6,1,1]];
E[434,6] = [x, [1,1,-2,1,-2,-2,1,1,1,-2,-2,-2,-4,1,4,1,-2,1,-8,-2,-2,-2,0,-2,-1,-4,4,1,0,4,-1,1,4,-2,-2,1,-8,-8,8,-2,6,-2,2,-2,-2,0,8,-2,1,-1,4,-4,0,4,4,1,16,0,12,4,-8,-1,1,1,8,4,4,-2,0,-2,0,1,-14,-8,2,-8,-2,8,4,-2,-11,6,2,-2,4,2,0,-2,-6,-2,-4,0,2,8,16,-2,14,1,-2,-1,-10,4,-8,-4,4,0,8,4,-2,4,16,1,-2,16,0,0,-4,12,-2,4,-7,-8,-12,-1,12,1,12,1]];
E[434,7] = [x, [1,1,1,1,3,1,1,1,-2,3,0,1,-4,1,3,1,-6,-2,2,3,1,0,-3,1,4,-4,-5,1,3,3,1,1,0,-6,3,-2,2,2,-4,3,12,1,-10,0,-6,-3,3,1,1,4,-6,-4,6,-5,0,1,2,3,0,3,8,1,-2,1,-12,0,-13,-6,-3,3,-12,-2,11,2,4,2,0,-4,-1,3,1,12,-9,1,-18,-10,3,0,-9,-6,-4,-3,1,3,6,1,8,1,0,4,3,-6,5,-4,3,6,3,-5,2,0,2,1,-15,2,-9,3,8,0,-6,3,-11,8,12,1,-3,-2,11,1]];
E[434,8] = [x^2-x-4, [1,1,x,1,-x+2,x,-1,1,x+1,-x+2,4,x,-2*x-2,-1,x-4,1,2,x+1,2*x-4,-x+2,-x,4,-x+4,x,-3*x+3,-2*x-2,-x+4,-1,-x+2,x-4,-1,1,4*x,2,x-2,x+1,-2,2*x-4,-4*x-8,-x+2,-2*x+2,-x,2*x-4,4,-2,-x+4,x-12,x,1,-3*x+3,2*x,-2*x-2,-4*x-2,-x+4,-4*x+8,-1,-2*x+8,-x+2,4*x-4,x-4,6*x-2,-1,-x-1,1,4,4*x,3*x,2,3*x-4,x-2,8,x+1,x-2,-2,-12,2*x-4,-4,-4*x-8,5*x+4,-x+2,-7,-2*x+2,-x-8,-x,-2*x+4,2*x-4,x-4,4,-3*x-2,-2,2*x+2,-x+4,-x,x-12,6*x-16,x,6*x-6,1,4*x+4,-3*x+3,-x+2,2*x,-x-12,-2*x-2,-x+4,-4*x-2,3*x-8,-x+4,14,-4*x+8,-2*x,-1,-x-2,-2*x+8,-5*x+12,-x+2,-6*x-10,4*x-4,-2,x-4,5,6*x-2,-8,-1,-x+8,-x-1,x+4,1]];
E[434,9] = [x^3-x^2-8*x+4, [1,1,x,1,-x,x,1,1,x^2-3,-x,-x^2+x+4,x,4,1,-x^2,1,-x^2-x+8,x^2-3,x^2-x-2,-x,x,-x^2+x+4,-x-2,x,x^2-5,4,x^2+2*x-4,1,x^2-2*x-8,-x^2,1,1,-4*x+4,-x^2-x+8,-x,x^2-3,-2*x-4,x^2-x-2,4*x,-x,2*x-6,x,-x^2-x+4,-x^2+x+4,-x^2-5*x+4,-x-2,-x^2+4,x,1,x^2-5,-2*x^2+4,4,2*x-4,x^2+2*x-4,4*x-4,1,6*x-4,x^2-2*x-8,3*x^2-x-14,-x^2,-2*x^2-2*x+12,1,x^2-3,1,-4*x,-4*x+4,-x^2+4*x+8,-x^2-x+8,-x^2-2*x,-x,2*x^2-2*x-12,x^2-3,3*x-8,-2*x-4,x^2+3*x-4,x^2-x-2,-x^2+x+4,4*x,2*x^2+3*x-14,-x,4*x+5,2*x-6,2*x^2+x-12,x,2*x^2-4,-x^2-x+4,-x^2-4,-x^2+x+4,-2*x^2+5*x+12,-x^2-5*x+4,4,-x-2,x,-x^2+4,-6*x+4,x,-2*x^2+4*x+14,1,-x^2+x-12,x^2-5,2*x^2+x-4,-2*x^2+4,-x^2-2*x+8,4,-x^2,2*x-4,x^2+2*x-16,x^2+2*x-4,-4*x+6,4*x-4,-2*x^2-4*x,1,-x^2+10,6*x-4,x^2+2*x,x^2-2*x-8,4*x^2-12,3*x^2-x-14,-x^2-x+8,-x^2,-4*x+9,-2*x^2-2*x+12,2*x^2-6*x,1,-x^2+2*x+4,x^2-3,-3*x-10,1]];

E[435,1] = [x, [1,1,1,-1,1,1,4,-3,1,1,-4,-1,6,4,1,-1,6,1,-4,-1,4,-4,-4,-3,1,6,1,-4,1,1,-8,5,-4,6,4,-1,2,-4,6,-3,-6,4,4,4,1,-4,0,-1,9,1,6,-6,-10,1,-4,-12,-4,1,-12,-1,-10,-8,4,7,6,-4,8,-6,-4,4,-8,-3,-2,2,1,4,-16,6,0,-1,1,-6,8,-4,6,4,1,12,-6,1,24,4,-8,0,-4,5,-2,9,-4,-1,-2,6,-12,-18,4,-10,8,-1,14,-4,2,-4,-2,-4,-4,-1,6,-12,24,-3]];
E[435,2] = [x, [1,-1,1,-1,1,-1,-4,3,1,-1,0,-1,6,4,1,-1,2,-1,8,-1,-4,0,-4,3,1,-6,1,4,1,-1,4,-5,0,-2,-4,-1,6,-8,6,3,2,4,-4,0,1,4,0,-1,9,-1,2,-6,6,-1,0,-12,8,-1,-12,-1,6,-4,-4,7,6,0,-8,-2,-4,4,16,3,-6,-6,1,-8,0,-6,12,-1,1,-2,-16,4,2,4,1,0,2,-1,-24,4,4,0,8,-5,-14,-9,0,-1,-10,-2,4,18,-4,-6,-16,-1,-2,0,6,4,2,-8,-4,-1,6,12,-8,3]];
E[435,3] = [x^2+x-5, [1,x,1,-x+3,1,x,1,2*x-5,1,x,5,-x+3,-2*x-1,x,1,-5*x+4,-3,x,2*x,-x+3,1,5*x,-4,2*x-5,1,x-10,1,-x+3,1,x,4,5*x-15,5,-3*x,1,-x+3,-4,-2*x+10,-2*x-1,2*x-5,-4*x-2,x,-2*x-6,-5*x+15,1,-4*x,2*x+7,-5*x+4,-6,x,-3,-7*x+7,-2*x+4,x,5,2*x-5,2*x,x,-2*x-4,-x+3,6*x+2,4*x,1,-10*x+17,-2*x-1,5*x,-4*x+3,3*x-9,-4,x,-2*x-6,2*x-5,4,-4*x,1,8*x-10,5,x-10,2*x+4,-5*x+4,1,2*x-20,-2*x-8,-x+3,-3,-4*x-10,1,10*x-25,-2*x+5,x,-2*x-1,4*x-12,4,5*x+10,2*x,5*x-15,2*x+8,-6*x,5,-x+3,-2*x+3,-3*x,4*x+8,12*x-15,1,6*x-10,4*x-2,-x+3,4*x+7,5*x,-4,-5*x+4,-4*x-7,-2*x+10,-4,-x+3,-2*x-1,-2*x-10,-3,2*x-5]];
E[435,4] = [x^2+x-1, [1,x,1,-x-1,-1,x,-3,-2*x-1,1,-x,-4*x-3,-x-1,-2*x-5,-3*x,-1,3*x,4*x+1,x,6*x+4,x+1,-3,x-4,0,-2*x-1,1,-3*x-2,1,3*x+3,1,-x,-8,x+5,-4*x-3,-3*x+4,3,-x-1,-8,-2*x+6,-2*x-5,2*x+1,-4*x-2,-3*x,2*x+2,3*x+7,-1,0,6*x+3,3*x,2,x,4*x+1,5*x+7,2*x-8,x,4*x+3,6*x+3,6*x+4,x,2*x+4,x+1,-6*x-2,-8*x,-3,-2*x+1,2*x+5,x-4,-4*x-9,-x-5,0,3*x,2*x+6,-2*x-1,-8,-8*x,1,-4*x-10,12*x+9,-3*x-2,-10*x,-3*x,1,2*x-4,-6*x,3*x+3,-4*x-1,2,1,2*x+11,10*x+5,-x,6*x+15,0,-8,-3*x+6,-6*x-4,x+5,-2*x+4,2*x,-4*x-3,-x-1,2*x+3,-3*x+4,12*x,8*x+9,3,-10*x+2,-4*x+10,-x-1,-12*x-9,-x+4,-8,-9*x,-8*x-3,-2*x+6,0,-x-1,-2*x-5,2*x+2,-12*x-3,2*x+1]];
E[435,5] = [x^2-5, [1,x,1,3,-1,x,2,x,1,-x,-2,3,2,2*x,-1,-1,-2*x,x,2,-3,2,-2*x,-2,x,1,2*x,1,6,-1,-x,-2,-3*x,-2,-10,-2,3,-2*x+4,2*x,2,-x,2,2*x,4,-6,-1,-2*x,-4*x+4,-1,-3,x,-2*x,6,2,x,2,2*x,2,-x,8,-3,-4*x-2,-2*x,2,-13,-2,-2*x,-4*x-6,-6*x,-2,-2*x,4,x,2*x+8,4*x-10,1,6,-4,2*x,4*x+6,1,1,2*x,4*x-6,6,2*x,4*x,-1,-2*x,-6,-x,4,-6,-2,4*x-20,-2,-3*x,6*x-4,-3*x,-2,3,4*x+6,-10,4*x-6,2*x,-2,2*x,-4*x-2,3,2,2*x,-2*x+4,-2,2*x,2*x,2,-3,2,8*x,-4*x,-x]];
E[435,6] = [x^2-x-4, [1,x,1,x+2,1,x,-2*x+2,x+4,1,x,-x-3,x+2,-2,-8,1,3*x,2*x-4,x,-2*x+2,x+2,-2*x+2,-4*x-4,-x+5,x+4,1,-2*x,1,-4*x-4,1,x,4,x+4,-x-3,-2*x+8,-2*x+2,x+2,3*x+3,-8,-2,x+4,3*x+3,-8,-3*x+3,-6*x-10,1,4*x-4,2*x-10,3*x,-4*x+13,x,2*x-4,-2*x-4,-x-5,x,-x-3,-8*x,-2*x+2,x,12,x+2,2*x+4,4*x,-2*x+2,-x+4,-2,-4*x-4,6*x-2,2*x,-x+5,-8,-2*x-6,x+4,-3*x-3,6*x+12,1,-4*x-4,6*x+2,-2*x,-12,3*x,1,6*x+12,x-1,-4*x-4,2*x-4,-12,1,-8*x-16,-4*x+6,x,4*x-4,2*x+6,4,-8*x+8,-2*x+2,x+4,3*x-1,9*x-16,-x-3,x+2,x-7,-2*x+8,-2*x-6,-2*x-8,-2*x+2,-6*x-4,-8*x+4,x+2,3*x-1,-4*x-4,3*x+3,-24,-2*x-8,-8,-x+5,x+2,-2,12*x,8*x-24,x+4]];
E[435,7] = [x^3-x^2-5*x+4, [1,x,-1,x^2-2,1,-x,-x^2+x+2,x^2+x-4,1,x,3,-x^2+2,x^2+x-2,-3*x+4,-1,x,-x^2+x+4,x,-2*x^2+6,x^2-2,x^2-x-2,3*x,-x^2-3*x+5,-x^2-x+4,1,2*x^2+3*x-4,-1,-x^2+2*x-4,-1,-x,0,-x^2-2*x+8,-3,-x+4,-x^2+x+2,x^2-2,-x^2-3*x+9,-2*x^2-4*x+8,-x^2-x+2,x^2+x-4,x^2-x+1,3*x-4,x^2-3*x-7,3*x^2-6,1,-4*x^2+4,3*x^2-x-10,-x,x^2-5*x+1,x,x^2-x-4,3*x^2+4*x-4,-3*x^2-3*x+11,-x,3,x^2-3*x-4,2*x^2-6,-x,-2*x+8,-x^2+2,2*x^2-4,0,-x^2+x+2,-3*x^2+x+4,x^2+x-2,-3*x,x^2+3*x-14,x^2+2*x-8,x^2+3*x-5,-3*x+4,6*x-2,x^2+x-4,5*x^2-x-17,-4*x^2+4*x+4,-1,-2*x^2-2*x-4,-3*x^2+3*x+6,-2*x^2-3*x+4,4*x^2+2*x-16,x,1,6*x-4,x^2+x-9,x^2-2*x+4,-x^2+x+4,-2*x^2-2*x-4,1,3*x^2+3*x-12,-3*x^2-3*x+22,x,-x^2-x,-2*x^2-10*x+6,0,2*x^2+5*x-12,-2*x^2+6,x^2+2*x-8,-x^2-5*x+5,-4*x^2+6*x-4,3,x^2-2,-2*x^2+15,x-4,2*x^2-6*x-10,3*x^2+5*x-4,x^2-x-2,-6*x^2-4*x+12,2*x^2+2*x-12,-x^2+2,-4*x^2+11,3*x,x^2+3*x-9,-3*x+4,-x^2+5*x+8,2*x^2+4*x-8,-x^2-3*x+5,-x^2+2,x^2+x-2,-2*x^2+8*x,-x^2-3*x+12,-x^2-x+4]];
E[435,8] = [x^4+3*x^3-2*x^2-7*x+1, [1,x,-1,x^2-2,-1,-x,-x^3-3*x^2+x+5,x^3-4*x,1,-x,x^3+3*x^2-x-5,-x^2+2,x^3+x^2-5*x-3,-x^2-2*x+1,1,-3*x^3-4*x^2+7*x+3,-x^3-x^2+3*x-3,x,2*x^3+4*x^2-6*x-6,-x^2+2,x^3+3*x^2-x-5,x^2+2*x-1,-2*x^3-2*x^2+6*x-4,-x^3+4*x,1,-2*x^3-3*x^2+4*x-1,-1,x^3+4*x^2-x-10,-1,x,2*x^3+2*x^2-6*x,3*x^3+x^2-10*x+3,-x^3-3*x^2+x+5,2*x^3+x^2-10*x+1,x^3+3*x^2-x-5,x^2-2,2*x^2+6*x-6,-2*x^3-2*x^2+8*x-2,-x^3-x^2+5*x+3,-x^3+4*x,4*x^2+8*x-10,x^2+2*x-1,-2*x^3+10*x-4,-x^3-4*x^2+x+10,-1,4*x^3+2*x^2-18*x+2,x^3+x^2-x-1,3*x^3+4*x^2-7*x-3,-3*x^3-9*x^2+7*x+18,x,x^3+x^2-3*x+3,x^3-2*x^2-5*x+8,2*x^3-10*x+2,-x,-x^3-3*x^2+x+5,x^3+3*x^2+x-3,-2*x^3-4*x^2+6*x+6,-x,-6*x^2-8*x+14,x^2-2,-4*x^3-10*x^2+8*x+8,-4*x^3-2*x^2+14*x-2,-x^3-3*x^2+x+5,-2*x^3+4*x^2+10*x-9,-x^3-x^2+5*x+3,-x^2-2*x+1,x^3+3*x^2+3*x-1,-3*x^3-4*x^2+9*x+4,2*x^3+2*x^2-6*x+4,x^2+2*x-1,-2*x^3-4*x^2+2*x,x^3-4*x,-2*x^2-6*x+2,2*x^3+6*x^2-6*x,-1,-4*x^2-4*x+14,3*x^3+9*x^2-7*x-25,2*x^3+3*x^2-4*x+1,-2*x^3-4*x^2+10*x+14,3*x^3+4*x^2-7*x-3,1,4*x^3+8*x^2-10*x,2*x^3+8*x^2-2*x-18,-x^3-4*x^2+x+10,x^3+x^2-3*x+3,6*x^3+6*x^2-18*x+2,1,-x^3-3*x^2-x+3,x^3+5*x^2-5*x-15,-x,3*x^3+11*x^2+x-19,-6*x^3-6*x^2+18*x+4,-2*x^3-2*x^2+6*x,-2*x^3+x^2+6*x-1,-2*x^3-4*x^2+6*x+6,-3*x^3-x^2+10*x-3,4*x^3+8*x^2-6*x-12,x^2-3*x+3,x^3+3*x^2-x-5,x^2-2,-x^3-5*x^2+x+7,-2*x^3-x^2+10*x-1,2*x^3+2*x^2-10*x+4,-x^3+3*x^2+7*x+1,-x^3-3*x^2+x+5,-6*x^3-6*x^2+16*x-2,-4*x^2-8*x+6,-x^2+2,-3*x^3-5*x^2+7*x+3,-x^2-2*x+1,-2*x^2-6*x+6,-2*x^3-5*x^2+6*x+19,3*x^3+3*x^2-13*x-7,2*x^3+2*x^2-8*x+2,2*x^3+2*x^2-6*x+4,-x^2+2,x^3+x^2-5*x-3,-6*x^3-8*x^2+14*x,3*x^3+9*x^2-3*x-13,x^3-4*x]];
E[435,9] = [x, [1,0,1,-2,-1,0,2,0,1,0,3,-2,2,0,-1,4,0,0,2,2,2,0,3,0,1,0,1,-4,-1,0,8,0,3,0,-2,-2,-1,0,2,0,-3,0,-1,-6,-1,0,-6,4,-3,0,0,-4,-3,0,-3,0,2,0,-12,2,8,0,2,-8,-2,0,14,0,3,0,-6,0,-7,0,1,-4,6,0,-4,-4,1,0,9,-4,0,0,-1,0,-6,0,4,-6,8,0,-2,0,11,0,3,-2,-9,0,14,0,-2,0,-12,-2,-13,0,-1,8,0,0,-3,2,2,0,0,0]];
E[435,10] = [x, [1,0,-1,-2,-1,0,-2,0,1,0,1,2,6,0,1,4,4,0,-2,2,2,0,3,0,1,0,-1,4,1,0,-4,0,-1,0,2,-2,-3,0,-6,0,7,0,5,-2,-1,0,6,-4,-3,0,-4,-12,13,0,-1,0,2,0,0,-2,0,0,-2,-8,-6,0,-10,-8,-3,0,6,0,3,0,-1,4,-2,0,0,-4,1,0,9,-4,-4,0,-1,0,-10,0,-12,-6,4,0,2,0,17,0,1,-2,-3,0,-6,0,-2,0,12,2,11,0,3,-8,-12,0,-3,-2,6,0,-8,0]];

E[436,1] = [x^2-8, [2,0,2*x,0,2*x+2,0,-4,0,10,0,-x-6,0,0,0,2*x+16,0,-2*x+8,0,-3*x-6,0,-4*x,0,-3*x-6,0,4*x+8,0,4*x,0,-4*x-2,0,12,0,-6*x-8,0,-4*x-4,0,-2*x+4,0,0,0,-2*x+4,0,6*x,0,10*x+10,0,3*x+18,0,-6,0,8*x-16,0,4*x,0,-7*x-14,0,-6*x-24,0,-4*x+12,0,14,0,-20,0,0,0,4*x-20,0,-6*x-24,0,4*x+20,0,6,0,8*x+32,0,2*x+12,0,-4*x-4,0,2,0,6*x-12,0,6*x-8,0,-2*x-32,0,-2*x+14,0,0,0,12*x,0,-9*x-30,0,-2*x-2,0,-5*x-30,0,2*x+24,0,-5*x-2,0,-4*x-32,0,-3*x-6,0,-2,0]];
E[436,2] = [x^3-3*x-1, [1,0,x,0,-x-2,0,-x^2-x+1,0,x^2-3,0,3*x^2-2*x-7,0,-2*x^2+x+3,0,-x^2-2*x,0,x^2+x-5,0,-3*x^2+3*x+5,0,-x^2-2*x-1,0,2*x^2-x-7,0,x^2+4*x-1,0,-3*x+1,0,-2*x^2+3*x+2,0,-2*x^2+x+3,0,-2*x^2+2*x+3,0,3*x^2+4*x-1,0,7*x^2-2*x-12,0,x^2-3*x-2,0,-2*x^2+x-2,0,5*x^2-4*x-5,0,-2*x^2+5,0,-2*x^2+5*x+6,0,2*x^2+5*x-4,0,x^2-2*x+1,0,-5*x^2+5,0,-4*x^2+2*x+11,0,3*x^2-4*x-3,0,-7*x^2+13,0,-2*x^2-2*x+6,0,x^2-x-4,0,3*x^2+x-4,0,-2*x^2-2*x+9,0,-x^2-x+2,0,-x^2-7*x+2,0,5*x^2-10*x-14,0,4*x^2+2*x+1,0,3*x^2-x-8,0,x^2+7*x,0,-6*x^2+x+9,0,-5*x^2+6*x+17,0,-3*x^2+9,0,3*x^2-4*x-2,0,5*x^2-8*x-21,0,3*x+4,0,x^2-3*x-2,0,3*x^2-2*x-7,0,x^2+x+6,0,-7*x^2+3*x+19,0,5*x^2-4*x-16,0,10*x^2-2*x-21,0,4*x^2+8*x+3,0,3*x+6,0,1,0]];
E[436,3] = [x^4-7*x^2-x+8, [1,0,x,0,-x+2,0,x^3-x^2-4*x+4,0,x^2-3,0,-x^3+x^2+5*x-2,0,-x^3+4*x+2,0,-x^2+2*x,0,x^3-3*x^2-4*x+10,0,-x^3+x^2+4*x-2,0,-x^3+3*x^2+5*x-8,0,x^3-4*x+2,0,x^2-4*x-1,0,x^3-6*x,0,2*x^2-x-2,0,-x^3+2*x^2+4*x-8,0,x^3-2*x^2-3*x+8,0,3*x^3-5*x^2-13*x+16,0,-3*x^2+10,0,-3*x^2+x+8,0,-x+2,0,-x^3+x^2+3*x-4,0,-x^3+2*x^2+3*x-6,0,4*x^2-x-14,0,3*x^3-2*x^2-16*x+9,0,-3*x^3+3*x^2+11*x-8,0,-x^3-3*x^2+7*x+10,0,-3*x^3+4*x^2+13*x-12,0,x^3-3*x^2-3*x+8,0,-x^3-x^2+7*x-2,0,2*x^2+2*x-10,0,x^2+3*x-4,0,-2*x^3+3*x^2+7*x-4,0,x^3+2*x^2-7*x-10,0,3*x^2+3*x-8,0,2*x^3-x^2-9*x,0,x^2+2*x-6,0,x^3-4*x^2-x,0,-2*x^3+3*x^2+13*x-16,0,-3*x^2-x+6,0,-2*x^2+x+1,0,x^3-x^2-9*x+4,0,5*x^3-9*x^2-19*x+28,0,2*x^3-x^2-2*x,0,x^3+x^2-7*x-2,0,-2*x^2+x,0,2*x^3-3*x^2-9*x+8,0,-3*x^3+5*x^2+11*x-12,0,x^2+x-10,0,x^3+x^2-6*x-2,0,-x^2+6*x+2,0,-x^3+2*x^2+7*x-10,0,-5*x^3+8*x^2+19*x-24,0,-2*x^2-3*x+6,0,-1,0]];

E[437,1] = [x, [1,2,2,2,1,4,-3,0,1,2,5,4,-2,-6,2,-4,3,2,-1,2,-6,10,1,0,-4,-4,-4,-6,4,4,-4,-8,10,6,-3,2,-8,-2,-4,0,0,-12,-3,10,1,2,-3,-8,2,-8,6,-4,12,-8,5,0,-2,8,4,4,5,-8,-3,-8,-2,20,12,6,2,-6,12,0,1,-16,-8,-2,-15,-8,-10,-4]];
E[437,2] = [x^2-2, [1,x,x-2,0,-x-1,-2*x+2,x-1,-2*x,-4*x+3,-x-2,x+1,0,-4*x,-x+2,x,-4,x-3,3*x-8,1,0,-3*x+4,x+2,1,4*x-4,2*x-2,-8,8*x-8,0,-5*x-2,2,2*x+4,0,-x,-3*x+2,-1,0,x,x,8*x-8,2*x+4,6,4*x-6,x-9,0,x+5,x,3,-4*x+8,-2*x-4,-2*x+4,-5*x+8,0,6*x-4,-8*x+16,-2*x-3,2*x-4,x-2,-2*x-10,2,0,7*x-5,4*x+4,7*x-11,8,4*x+8,-2,-7*x-6,0,x-2,-x,x+6,-6*x+16,-2*x+3,2,-6*x+8,0,1,-8*x+16,-8,4*x+4]];
E[437,3] = [x^8-13*x^6+47*x^4-2*x^3-37*x^2-2*x+2, [10,10*x,-3*x^7+x^6+37*x^5-9*x^4-128*x^3+22*x^2+102*x+12,10*x^2-20,x^7+3*x^6-14*x^5-32*x^4+51*x^3+81*x^2-34*x-24,x^7-2*x^6-9*x^5+13*x^4+16*x^3-9*x^2+6*x+6,-5*x^7+65*x^5-5*x^4-230*x^3+45*x^2+160*x,10*x^3-40*x,-5*x^7+65*x^5+5*x^4-240*x^3-25*x^2+210*x+40,3*x^7-x^6-32*x^5+4*x^4+83*x^3+3*x^2-22*x-2,-2*x^7-x^6+23*x^5+19*x^4-67*x^3-82*x^2+28*x+58,4*x^7+2*x^6-61*x^5-13*x^4+249*x^3-x^2-196*x-26,3*x^7-x^6-42*x^5+14*x^4+163*x^3-47*x^2-132*x-2,-5*x^5+5*x^4+35*x^3-25*x^2-10*x+10,8*x^7+4*x^6-102*x^5-46*x^4+348*x^3+118*x^2-222*x-52,10*x^4-60*x^2+40,3*x^7-x^6-42*x^5+14*x^4+173*x^3-57*x^2-182*x+8,5*x^5-5*x^4-35*x^3+25*x^2+30*x+10,-10,-3*x^7+x^6+32*x^5+6*x^4-93*x^3-73*x^2+72*x+42,-4*x^7-2*x^6+51*x^5+23*x^4-179*x^3-69*x^2+146*x+86,-x^7-3*x^6+19*x^5+27*x^4-86*x^3-46*x^2+54*x+4,10,-5*x^6+5*x^5+35*x^4-25*x^3-30*x^2-30*x-20,-2*x^7+4*x^6+28*x^5-46*x^4-122*x^3+128*x^2+148*x-12,-x^7-3*x^6+14*x^5+22*x^4-41*x^3-21*x^2+4*x-6,-5*x^7-5*x^6+70*x^5+60*x^4-275*x^3-185*x^2+240*x+130,10*x^7-5*x^6-125*x^5+45*x^4+435*x^3-100*x^2-310*x,-3*x^7+x^6+42*x^5-24*x^4-153*x^3+117*x^2+62*x-38,4*x^7+2*x^6-46*x^5-28*x^4+134*x^3+74*x^2-36*x-16,x^7+3*x^6-19*x^5-27*x^4+96*x^3+46*x^2-124*x+16,10*x^5-80*x^3+120*x,-18*x^7-4*x^6+232*x^5+46*x^4-818*x^3-98*x^2+562*x+92,-x^7-3*x^6+14*x^5+32*x^4-51*x^3-71*x^2+14*x-6,8*x^7+4*x^6-102*x^5-46*x^4+358*x^3+108*x^2-272*x-42,10*x^7+5*x^6-135*x^5-45*x^4+505*x^3+80*x^2-410*x-80,-12*x^7+4*x^6+153*x^5-51*x^4-527*x^3+203*x^2+318*x-42,-10*x,x^7+3*x^6-24*x^5-22*x^4+131*x^3+41*x^2-144*x-74,-5*x^7-5*x^6+70*x^5+40*x^4-245*x^3-45*x^2+80*x+10,10*x^7-120*x^5-10*x^4+390*x^3+30*x^2-260*x,-2*x^7-x^6+23*x^5+9*x^4-77*x^3-2*x^2+78*x+8,11*x^7-2*x^6-139*x^5+23*x^4+466*x^3-99*x^2-264*x+56,x^7+8*x^6-19*x^5-77*x^4+86*x^3+181*x^2-54*x-114,18*x^7+4*x^6-232*x^5-46*x^4+808*x^3+108*x^2-522*x-122,10*x,19*x^7-3*x^6-236*x^5+22*x^4+789*x^3-71*x^2-496*x+4,-13*x^7+x^6+157*x^5+x^4-528*x^3-28*x^2+372*x+52,-5*x^6-5*x^5+55*x^4+45*x^3-150*x^2-50*x+60,4*x^7+2*x^6-46*x^5-28*x^4+124*x^3+74*x^2-16*x+4,-x^7-3*x^6+14*x^5+22*x^4-31*x^3-x^2-86*x-86,-9*x^7+3*x^6+106*x^5-22*x^4-349*x^3+61*x^2+256*x+6,9*x^7-3*x^6-111*x^5+27*x^4+364*x^3-66*x^2-196*x-16,-5*x^7+5*x^6+60*x^5-40*x^4-195*x^3+55*x^2+120*x+10,3*x^7-x^6-42*x^5+4*x^4+183*x^3+33*x^2-252*x-112,-5*x^7+5*x^6+55*x^5-45*x^4-150*x^3+110*x^2+40*x-40,3*x^7-x^6-37*x^5+9*x^4+128*x^3-22*x^2-102*x-12,x^7+3*x^6-24*x^5-12*x^4+111*x^3-49*x^2-44*x+6,x^7+3*x^6-19*x^5-27*x^4+96*x^3+66*x^2-124*x-84,-14*x^7-2*x^6+176*x^5+38*x^4-614*x^3-124*x^2+436*x+96,-4*x^7-2*x^6+56*x^5+8*x^4-214*x^3+36*x^2+146*x-14,3*x^7-6*x^6-27*x^5+49*x^4+48*x^3-87*x^2+18*x-2,-10*x^7-5*x^6+135*x^5+65*x^4-515*x^3-220*x^2+460*x+190,10*x^6-100*x^4+240*x^2-80,-10*x^7+120*x^5+20*x^4-390*x^3-100*x^2+240*x+40,-4*x^7-2*x^6+46*x^5+28*x^4-134*x^3-104*x^2+56*x+36,20*x^4-10*x^3-140*x^2+50*x+140,-9*x^7+3*x^6+116*x^5-32*x^4-419*x^3+91*x^2+356*x-14,-3*x^7+x^6+37*x^5-9*x^4-128*x^3+22*x^2+102*x+12,4*x^7+2*x^6-46*x^5-18*x^4+124*x^3+24*x^2-26*x-16,-2*x^7+4*x^6+33*x^5-51*x^4-147*x^3+163*x^2+118*x-62,5*x^7-5*x^6-55*x^5+45*x^4+170*x^3-90*x^2-120*x-40,7*x^7-4*x^6-93*x^5+41*x^4+362*x^3-113*x^2-358*x-8,4*x^7-3*x^6-51*x^5+37*x^4+179*x^3-126*x^2-66*x+24,5*x^7+5*x^6-55*x^5-55*x^4+130*x^3+120*x^2+60*x+60,-10*x^2+20,-26*x^7+2*x^6+334*x^5-18*x^4-1176*x^3+84*x^2+824*x+34,3*x^7-11*x^6-22*x^5+84*x^4+43*x^3-107*x^2-72*x-2,10*x^7-130*x^5+460*x^3-300*x,x^7+3*x^6-24*x^5-22*x^4+131*x^3+41*x^2-144*x-74]];
E[437,4] = [x^12-2*x^11-19*x^10+35*x^9+137*x^8-219*x^7-483*x^6+605*x^5+866*x^4-707*x^3-682*x^2+236*x+96, [244,244*x,-47*x^11+91*x^10+782*x^9-1403*x^8-4548*x^7+7137*x^6+11294*x^5-13993*x^4-10833*x^3+8828*x^2+1196*x-560,244*x^2-488,-24*x^11+88*x^10+350*x^9-1464*x^8-1580*x^7+8418*x^6+2198*x^5-20176*x^4+480*x^3+18242*x^2-1632*x-2700,-3*x^11-111*x^10+242*x^9+1891*x^8-3156*x^7-11407*x^6+14442*x^5+29869*x^4-24401*x^3-30858*x^2+10532*x+4512,5*x^11+63*x^10-200*x^9-1037*x^8+2210*x^7+5917*x^6-9308*x^5-14239*x^4+14601*x^3+13244*x^2-5516*x-1420,244*x^3-976*x,-56*x^11+124*x^10+898*x^9-1952*x^8-4866*x^7+10370*x^6+10456*x^5-22474*x^4-6932*x^3+18368*x^2-1368*x-2396,40*x^11-106*x^10-624*x^9+1708*x^8+3162*x^7-9394*x^6-5656*x^5+21264*x^4+1274*x^3-18000*x^2+2964*x+2304,14*x^11+30*x^10-316*x^9-610*x^8+2650*x^7+4514*x^6-9934*x^5-14420*x^4+15214*x^3+17246*x^2-5392*x-2268,-23*x^11+3*x^10+432*x^9+61*x^8-2968*x^7-1281*x^6+9096*x^5+6183*x^4-11313*x^3-9170*x^2+2828*x+1408,-26*x^11+14*x^10+430*x^9-122*x^8-2464*x^7-244*x^6+5970*x^5+3722*x^4-5946*x^3-7210*x^2+1892*x+2504,73*x^11-105*x^10-1212*x^9+1525*x^8+7012*x^7-6893*x^6-17264*x^5+10271*x^4+16779*x^3-2106*x^2-2600*x-480,-2*x^11+48*x^10-42*x^9-854*x^8+946*x^7+5490*x^6-5134*x^5-15630*x^4+9800*x^3+17370*x^2-5016*x-1872,244*x^4-1464*x^2+976,26*x^11-14*x^10-430*x^9+122*x^8+2464*x^7+244*x^6-5970*x^5-3722*x^4+5702*x^3+6966*x^2-672*x-1284,12*x^11-166*x^10+8*x^9+2806*x^8-1894*x^7-16592*x^6+11406*x^5+41564*x^4-21224*x^3-39560*x^2+10820*x+5376,244,22*x^11-40*x^10-392*x^9+610*x^8+2526*x^7-3172*x^6-7332*x^5+6986*x^4+9320*x^3-6240*x^2-3872*x+1560,6*x^11-22*x^10-118*x^9+488*x^8+700*x^7-3782*x^6-824*x^5+11998*x^4-3048*x^3-13558*x^2+4312*x+1712,58*x^11-50*x^10-1100*x^9+732*x^8+7580*x^7-3172*x^6-22890*x^5+3090*x^4+27144*x^3+4156*x^2-5572*x-1344,-244,-37*x^11+217*x^10+382*x^9-3599*x^8-6*x^7+20801*x^6-8786*x^5-51133*x^4+23371*x^3+48858*x^2-14228*x-6816,32*x^11-36*x^10-548*x^9+488*x^8+3408*x^7-1952*x^6-9844*x^5+2420*x^4+13512*x^3-980*x^2-7096*x+1648,-38*x^11-64*x^10+788*x^9+1098*x^8-5938*x^7-6588*x^6+19452*x^5+16570*x^4-25592*x^3-15840*x^2+8640*x+2496,-81*x^11+53*x^10+1532*x^9-671*x^8-10548*x^7+1891*x^6+31986*x^5+2849*x^4-38213*x^3-12106*x^2+7180*x+2752,31*x^11+49*x^10-630*x^9-915*x^8+4674*x^7+6161*x^6-15278*x^5-17961*x^4+20303*x^3+20698*x^2-6676*x-4168,32*x^11+86*x^10-792*x^9-1464*x^8+6946*x^7+8906*x^6-25948*x^5-23932*x^4+38766*x^3+25860*x^2-15148*x-3720,44*x^11-80*x^10-784*x^9+1220*x^8+5052*x^7-6100*x^6-14420*x^5+11532*x^4+15956*x^3-6380*x^2-1400*x+192,2*x^11-170*x^10+164*x^9+2928*x^8-2776*x^7-17812*x^6+13918*x^5+46374*x^4-24928*x^3-46284*x^2+11360*x+6752,244*x^5-1952*x^3+2928*x,53*x^11-113*x^10-778*x^9+1647*x^8+3540*x^7-7625*x^6-4920*x^5+13059*x^4-1243*x^3-8112*x^2+3116*x+1296,38*x^11+64*x^10-788*x^9-1098*x^8+5938*x^7+6588*x^6-19452*x^5-16814*x^4+25348*x^3+17060*x^2-7420*x-2496,68*x^11-168*x^10-1012*x^9+2684*x^8+4680*x^7-14640*x^6-6248*x^5+32928*x^4-4776*x^3-26696*x^2+9992*x+1428,-30*x^11-12*x^10+590*x^9+366*x^8-4232*x^7-3538*x^6+13392*x^5+13332*x^4-17212*x^3-17732*x^2+5280*x+3640,61*x^11-305*x^10-732*x^9+4941*x^8+1708*x^7-27389*x^6+5124*x^5+62647*x^4-19093*x^3-53314*x^2+12200*x+6344,244*x,12*x^11-166*x^10+8*x^9+2928*x^8-2138*x^7-18422*x^6+14456*x^5+50104*x^4-31594*x^3-52492*x^2+18872*x+7328,-76*x^11+238*x^10+1088*x^9-3904*x^8-4678*x^7+22082*x^6+4988*x^5-52260*x^4+6766*x^3+47132*x^2-9560*x-6720,-60*x^11+98*x^10+1058*x^9-1464*x^8-6634*x^7+6832*x^6+17878*x^5-9936*x^4-18198*x^3-938*x^2+1532*x+2400,-10*x^11-4*x^10+278*x^9-122*x^8-2468*x^7+2074*x^6+8368*x^5-8244*x^4-9316*x^3+8404*x^2+296*x-576,104*x^11-178*x^10-1720*x^9+2684*x^8+9856*x^7-13054*x^6-23514*x^5+23054*x^4+19758*x^3-9834*x^2+1216*x-988,38*x^11-58*x^10-666*x^9+854*x^8+4230*x^7-3904*x^6-12132*x^5+5756*x^4+14734*x^3-508*x^2-4248*x-1032,-64*x^11+194*x^10+974*x^9-3172*x^8-4742*x^7+17812*x^6+7610*x^5-41196*x^4+1646*x^3+34046*x^2-10208*x-2076,-244*x,-94*x^11+304*x^10+1320*x^9-5002*x^8-5314*x^7+28548*x^6+3556*x^5-68978*x^4+12860*x^3+64748*x^2-12736*x-9660,189*x^11-327*x^10-3168*x^9+4941*x^8+18634*x^7-24095*x^6-46940*x^5+43047*x^4+45325*x^3-21122*x^2-3740*x+736,-6*x^11+144*x^10-126*x^9-2318*x^8+2716*x^7+12810*x^6-13816*x^5-29688*x^4+23788*x^3+27100*x^2-11144*x-4152,28*x^11+60*x^10-632*x^9-976*x^8+5056*x^7+5612*x^6-16940*x^5-14200*x^4+21644*x^3+14728*x^2-5904*x-3072,-96*x^11+108*x^10+1766*x^9-1708*x^8-11688*x^7+8906*x^6+33558*x^5-17264*x^4-37364*x^3+8430*x^2+6648*x+912,-88*x^11+38*x^10+1568*x^9-488*x^8-9982*x^7+1586*x^6+27620*x^5-128*x^4-30814*x^3-2856*x^2+7680*x-1360,8*x^11+52*x^10-320*x^9-854*x^8+3536*x^7+5002*x^6-14966*x^5-13120*x^4+23874*x^3+13724*x^2-9704*x-1296,-109*x^11-7*x^10+2164*x^9+549*x^8-15848*x^7-7137*x^6+51854*x^5+31933*x^4-69373*x^3-48062*x^2+21868*x+7776,-32*x^11-86*x^10+792*x^9+1464*x^8-6946*x^7-8906*x^6+25948*x^5+23932*x^4-38522*x^3-26104*x^2+13928*x+4452,-35*x^11+169*x^10+424*x^9-2623*x^8-1074*x^7+13481*x^6-2188*x^5-27085*x^4+9057*x^3+18678*x^2-6284*x-2016,-47*x^11+91*x^10+782*x^9-1403*x^8-4548*x^7+7137*x^6+11294*x^5-13993*x^4-10833*x^3+8828*x^2+1196*x-560,150*x^11-184*x^10-2584*x^9+2562*x^8+15914*x^7-10492*x^6-43292*x^5+11054*x^4+48484*x^3+6676*x^2-11272*x-3072,-60*x^11+98*x^10+1058*x^9-1586*x^8-6634*x^7+8662*x^6+17756*x^5-18720*x^4-17344*x^3+13214*x^2+556*x-528,12*x^11-44*x^10-236*x^9+732*x^8+1644*x^7-4148*x^6-4820*x^5+9112*x^4+5128*x^3-6132*x^2-160*x-480,30*x^11+12*x^10-590*x^9-122*x^8+4110*x^7+122*x^6-11806*x^5+1186*x^4+11600*x^3-1666*x^2+88*x+20,-166*x^11+202*x^10+2858*x^9-3050*x^8-17374*x^7+14884*x^6+45164*x^5-26660*x^4-44870*x^3+12724*x^2+6280*x-192,52*x^11-28*x^10-1104*x^9+488*x^8+8466*x^7-2684*x^6-27678*x^5+4146*x^4+33364*x^3+2830*x^2-4760*x-2812,244*x^6-2440*x^4+5856*x^2-1952,22*x^11-284*x^10-26*x^9+4758*x^8-3086*x^7-27694*x^6+21094*x^5+67498*x^4-46312*x^3-60774*x^2+30044*x+4488,-7*x^11+229*x^10-208*x^9-3721*x^8+3982*x^7+20679*x^6-19006*x^5-47141*x^4+29359*x^3+39262*x^2-11212*x-5088,16*x^11-18*x^10-274*x^9+244*x^8+1826*x^7-976*x^6-6630*x^5+1088*x^4+13710*x^3+486*x^2-11112*x+824,88*x^11-38*x^10-1568*x^9+488*x^8+9982*x^7-1586*x^6-27864*x^5-116*x^4+32522*x^3+4564*x^2-10120*x-1080,47*x^11-91*x^10-782*x^9+1403*x^8+4548*x^7-7137*x^6-11294*x^5+13993*x^4+10833*x^3-8828*x^2-1196*x+560,-32*x^11+280*x^10+304*x^9-4636*x^8+252*x^7+26596*x^6-8212*x^5-63664*x^4+21380*x^3+56368*x^2-14620*x-6528,42*x^11-276*x^10-460*x^9+4636*x^8+386*x^7-27206*x^6+8262*x^5+67638*x^4-23654*x^3-64284*x^2+14324*x+8568,-96*x^11+352*x^10+1400*x^9-5734*x^8-6320*x^7+32086*x^6+8670*x^5-74360*x^4+3506*x^3+63940*x^2-10920*x-7872,-71*x^11+57*x^10+1254*x^9-793*x^8-7836*x^7+3233*x^6+20934*x^5-3303*x^4-21821*x^3-1966*x^2+4444*x+644,-183*x^11+427*x^10+2806*x^9-6649*x^8-14030*x^7+34587*x^6+25742*x^5-71919*x^4-10187*x^3+53802*x^2-8052*x-5856,29*x^11+97*x^10-672*x^9-1891*x^8+5742*x^7+13481*x^6-21876*x^5-42009*x^4+35105*x^3+49902*x^2-15596*x-8480,244*x^2-488,119*x^11-477*x^10-1588*x^9+7625*x^8+5750*x^7-41419*x^6-1662*x^5+92089*x^4-17691*x^3-75754*x^2+17364*x+9636,-142*x^11+236*x^10+2508*x^9-3782*x^8-15794*x^7+20252*x^6+42844*x^5-41986*x^4-44008*x^3+27056*x^2+4496*x-1152,-38*x^11+180*x^10+422*x^9-3050*x^8-326*x^7+18178*x^6-8486*x^5-46382*x^4+25648*x^3+45282*x^2-16492*x-5800,42*x^11-276*x^10-460*x^9+4514*x^8+386*x^7-25376*x^6+8384*x^5+58610*x^4-25240*x^3-48912*x^2+18960*x+4176]];
E[437,5] = [x^5+x^4-7*x^3-2*x^2+12*x-4, [1,x,-x^2-x+2,x^2-2,x^2+x-3,-x^3-x^2+2*x,-x^2-x+1,x^3-4*x,x^4+2*x^3-3*x^2-4*x+1,x^3+x^2-3*x,-x^4-x^3+6*x^2+x-7,-x^4-x^3+4*x^2+2*x-4,-x^4-2*x^3+5*x^2+6*x-8,-x^3-x^2+x,-x^4-2*x^3+4*x^2+5*x-6,x^4-6*x^2+4,2*x^4+2*x^3-11*x^2-5*x+11,x^4+4*x^3-2*x^2-11*x+4,-1,x^4+x^3-5*x^2-2*x+6,x^4+2*x^3-2*x^2-3*x+2,-x^3-x^2+5*x-4,-1,-x^3+2*x^2+4*x-4,x^4+2*x^3-5*x^2-6*x+4,-x^4-2*x^3+4*x^2+4*x-4,-2*x^4-5*x^3+8*x^2+14*x-12,-x^4-x^3+3*x^2+2*x-2,-x^4-3*x^3+2*x^2+7*x+2,-x^4-3*x^3+3*x^2+6*x-4,2*x^4+5*x^3-8*x^2-14*x+8,-x^4-x^3+2*x^2+4,-x^4+8*x^2+x-10,3*x^3-x^2-13*x+8,-x^4-2*x^3+3*x^2+4*x-3,x^4+x^3-3*x^2+2,-2*x^4-5*x^3+9*x^2+17*x-14,-x,x^3+4*x^2-8,-2*x^2+4,-x^4-2*x^3+7*x^2+12*x-14,x^4+5*x^3-x^2-10*x+4,x^2+3*x-3,x^4+x^3-7*x^2-6*x+14,x^4+3*x^3-2*x^2-7*x+5,-x,x^4+3*x^3-7*x^2-12*x+13,x^4+4*x^3-4*x^2-8*x+8,x^4+2*x^3-x^2-2*x-6,x^4+2*x^3-4*x^2-8*x+4,x^4+2*x^3-8*x^2-5*x+14,x^4+x^3-8*x^2-4*x+12,4*x^4+8*x^3-20*x^2-24*x+24,-3*x^4-6*x^3+10*x^2+12*x-8,2*x^4+x^3-14*x^2-2*x+17,-2*x^3+2*x^2+8*x-4,x^2+x-2,-2*x^4-5*x^3+5*x^2+14*x-4,-x^4-x^3+5*x^2-2,-4*x^2-2*x+8,3*x^2+5*x-11,3*x^4+6*x^3-10*x^2-16*x+8,-3*x^4-7*x^3+8*x^2+15*x-7,-2*x^4-5*x^3+10*x^2+16*x-12,x^4+x^3-9*x^2-6*x+16,x^4+x^3-x^2+2*x-4,-3*x^4-6*x^3+12*x^2+19*x-12,-x^4-5*x^3+9*x^2+18*x-22,x^2+x-2,-x^4-4*x^3+2*x^2+9*x-4,-x^4-3*x^3+4*x^2+7*x-10,-2*x^4-4*x^3+6*x^2+12*x-4,x^4+x^3-3*x^2-2*x+1,-3*x^4-5*x^3+13*x^2+10*x-8,-x^3+4*x,-x^2+2,x^3+2*x^2-3,x^4+4*x^3-8*x,3*x^4+5*x^3-15*x^2-12*x+16,-2*x^4-4*x^3+10*x^2+8*x-12]];
E[437,6] = [x^2-5, [2,2*x,-x-1,6,-2*x-2,-x-5,-x-5,2*x,x-3,-2*x-10,-x-7,-3*x-3,4*x,-5*x-5,2*x+6,-2,2*x+6,-3*x+5,2,-6*x-6,3*x+5,-7*x-5,2,-x-5,4*x+2,20,4*x+2,-3*x-15,2*x+2,6*x+10,-5*x-7,-6*x,4*x+6,6*x+10,6*x+10,3*x-9,-x-21,2*x,-2*x-10,-2*x-10,-6*x+6,5*x+15,-x-15,-3*x-21,2*x-2,2*x,6*x-6,x+1,5*x+1,2*x+20,-4*x-8,12*x,-3*x+7,2*x+20,8*x+12,-5*x-5,-x-1,2*x+10,3*x-23,6*x+18,2*x+2,-7*x-25,-x+5,-26,-4*x-20,6*x+20,-8*x-12,6*x+18,-x-1,10*x+30,5*x+15,-3*x+5,-x-9,-21*x-5,-3*x-11,6,6*x+20,-10*x-10,8,2*x+2]];
E[437,7] = [x, [1,0,2,-2,-1,0,-5,0,1,0,-1,-4,0,0,-2,4,-7,0,1,2,-10,0,1,0,-4,0,-4,10,6,0,4,0,-2,0,5,-2,2,0,0,0,-2,0,-5,2,-1,0,-3,8,18,0,-14,0,-4,0,1,0,2,0,6,4,11,0,-5,-8,0,0,-16,14,2,0,-10,0,-7,0,-8,-2,5,0,4,-4]];
E[437,8] = [x^2+3*x+1, [1,-1,x,-1,2*x+4,-x,-3*x-4,3,-3*x-4,-2*x-4,-3*x-7,-x,4*x+6,3*x+4,-2*x-2,-1,-2*x-2,3*x+4,-1,-2*x-4,5*x+3,3*x+7,-1,3*x,4*x+7,-4*x-6,2*x+3,3*x+4,-2*x-8,2*x+2,-x-9,-5,2*x+3,2*x+2,-2*x-10,3*x+4,-x-6,1,-6*x-4,6*x+12,-6*x-6,-5*x-3,x-7,3*x+7,-2*x-10,1,-2*x-2,-x,-3*x,-4*x-7,4*x+2,-4*x-6,3*x+7,-2*x-3,-8*x-22,-9*x-12,-x,2*x+8,7*x+11,2*x+2,2*x+16,x+9,-3*x+7,7,4*x+16,-2*x-3,4*x-2,2*x+2,-x,2*x+10,5*x+1,-9*x-12,3*x-6,x+6,-5*x-4,1,6*x+19,6*x+4,0,-2*x-4]];

E[438,1] = [x, [1,1,1,1,0,1,2,1,1,0,0,1,-4,2,0,1,6,1,-4,0,2,0,0,1,-5,-4,1,2,0,0,2,1,0,6,0,1,2,-4,-4,0,6,2,-4,0,0,0,-6,1,-3,-5,6,-4,-12,1,0,2,-4,0,0,0,-10,2,2,1,0,0,-4,6,0,0,12,1,1,2,-5,-4,0,-4,-4,0,1,6,0,2,0,-4,0,0,6,0,-8,0,2,-6,0,1,2,-3,0,-5,-12,6,14,-4,0,-12,12,1,-10,0,2,2,-6,-4,0,0,-4,0,12,0,-11,-10,6,2,0,2,-16,1,-4,0,12,0,-8,-4,0,6,6,0,20,0,-6,12,0,1,0,1,-3,2]];
E[438,2] = [x, [1,1,1,1,0,1,-2,1,1,0,4,1,4,-2,0,1,-2,1,4,0,-2,4,0,1,-5,4,1,-2,0,0,-10,1,4,-2,0,1,-6,4,4,0,-10,-2,-8,4,0,0,6,1,-3,-5,-2,4,4,1,0,-2,4,0,12,0,-2,-10,-2,1,0,4,12,-2,0,0,-12,1,1,-6,-5,4,-8,4,-12,0,1,-10,12,-2,0,-8,0,4,6,0,-8,0,-10,6,0,1,2,-3,4,-5,4,-2,-14,4,0,4,8,1,-10,0,-6,-2,2,4,0,0,4,12,4,0,5,-2,-10,-10,0,-2,16,1,-8,0,0,4,-8,12,0,-2,-10,0,-8,0,6,-12,16,1,0,1,-3,-6]];
E[438,3] = [x, [1,1,-1,1,-2,-1,-4,1,1,-2,0,-1,-2,-4,2,1,-6,1,-4,-2,4,0,0,-1,-1,-2,-1,-4,6,2,-4,1,0,-6,8,1,6,-4,2,-2,10,4,-8,0,-2,0,4,-1,9,-1,6,-2,-2,-1,0,-4,4,6,-8,2,-2,-4,-4,1,4,0,-4,-6,0,8,8,1,1,6,1,-4,0,2,-8,-2,1,10,0,4,12,-8,-6,0,-6,-2,8,0,4,4,8,-1,-14,9,0,-1,14,6,4,-2,-8,-2,8,-1,14,0,-6,-4,-6,4,0,6,-2,-8,24,2,-11,-2,-10,-4,12,-4,-8,1,8,4,-8,0,16,-4,2,-6,-22,0,-16,8,-4,8,0,1,-12,1,-9,6]];
E[438,4] = [x^2+2*x-4, [1,1,-1,1,x,-1,2,1,1,x,-x,-1,-x+2,2,-x,1,-2*x,1,4,x,-2,-x,4*x+4,-1,-2*x-1,-x+2,-1,2,x-4,-x,2*x+6,1,x,-2*x,2*x,1,2*x-2,4,x-2,x,-4*x-2,-2,-3*x-2,-x,x,4*x+4,-2*x,-1,-3,-2*x-1,2*x,-x+2,-x-8,-1,2*x-4,2,-4,x-4,x-8,-x,2*x+2,2*x+6,2,1,4*x-4,x,-2*x,-2*x,-4*x-4,2*x,-4*x-4,1,-1,2*x-2,2*x+1,4,-2*x,x-2,-4*x,x,1,-4*x-2,-3*x-4,-2,4*x-8,-3*x-2,-x+4,-x,-2,x,-2*x+4,4*x+4,-2*x-6,-2*x,4*x,-1,6*x+10,-3,-x,-2*x-1,-x,2*x,2,-x+2,-2*x,-x-8,3*x-4,-1,2*x-6,2*x-4,-2*x+2,2,-12,-4,-4*x+16,x-4,-x+2,x-8,-4*x,-x,-2*x-7,2*x+2,4*x+2,2*x+6,-2*x-8,2,2*x+16,1,3*x+2,4*x-4,5*x-4,x,8,-2*x,-x,-2*x,-2,-4*x-4,3*x-2,2*x,2*x,-4*x-4,-4*x+4,1,-6*x+4,-1,3,2*x-2]];
E[438,5] = [x^2-8, [1,-1,-1,1,x,1,x,-1,1,-x,-2,-1,-x+4,-x,-x,1,2,-1,0,x,-x,2,-2*x,1,3,x-4,-1,x,x,x,x+4,-1,2,-2,8,1,10,0,x-4,-x,2,x,6,-2,x,2*x,x-4,-1,1,-3,-2,-x+4,-x+4,1,-2*x,-x,0,-x,-4*x+2,-x,-2*x-2,-x-4,x,1,4*x-8,-2,4*x+4,2,2*x,-8,-8,-1,1,-10,-3,0,-2*x,-x+4,-2*x-8,x,1,-2,-4*x+2,-x,2*x,-6,-x,2,4*x-2,-x,4*x-8,-2*x,-x-4,-x+4,0,1,-4*x-2,-1,-2,3,-x+4,2,-x-8,x-4,-8,x-4,2*x-2,-1,4*x-2,2*x,-10,x,-2*x+14,0,-16,x,-x+4,4*x-2,2*x,x,-7,2*x+2,-2,x+4,-2*x,-x,-2*x,-1,-6,-4*x+8,2*x-6,2,0,-4*x-4,-x,-2,4*x+6,-2*x,2,8,-x+4,8,2*x-8,1,8,-1,-1,10]];
E[438,6] = [x, [1,-1,-1,1,0,1,-2,-1,1,0,4,-1,-6,2,0,1,0,-1,-4,0,2,-4,0,1,-5,6,-1,-2,-4,0,2,-1,-4,0,0,1,-10,4,6,0,-2,-2,2,4,0,0,-12,-1,-3,5,0,-6,0,1,0,2,4,4,-4,0,-6,-2,-2,1,0,4,8,0,0,0,8,-1,-1,10,5,-4,-8,-6,8,0,1,2,8,2,0,-2,4,-4,10,0,12,0,-2,12,0,1,14,3,4,-5,8,0,-2,6,0,0,16,-1,-14,0,10,-2,-12,-4,0,-4,-6,4,0,0,5,6,2,2,0,2,-4,-1,-2,0,-16,-4,8,-8,0,0,10,0,-22,0,12,-8,-24,1,0,1,3,-10]];
E[438,7] = [x, [1,-1,1,1,2,-1,-2,-1,1,-2,2,1,4,2,2,1,4,-1,-4,2,-2,-2,0,-1,-1,-4,1,-2,6,-2,-2,-1,2,-4,-4,1,-6,4,4,-2,6,2,8,2,2,0,8,1,-3,1,4,4,6,-1,4,2,-4,-6,-10,2,-2,2,-2,1,8,-2,-12,4,0,4,-8,-1,-1,6,-1,-4,-4,-4,0,2,1,-6,-6,-2,8,-8,6,-2,-6,-2,-8,0,-2,-8,-8,-1,2,3,2,-1,-18,-4,14,-4,-4,-6,6,1,-2,-4,-6,-2,-4,4,0,6,4,10,-8,-2,-7,2,6,-2,-12,2,-16,-1,8,-8,-14,2,8,12,2,-4,-6,0,-4,-4,8,8,8,1,12,1,-3,-6]];
E[438,8] = [x, [1,-1,1,1,-4,-1,0,-1,1,4,2,1,0,0,-4,1,-6,-1,-8,-4,0,-2,-8,-1,11,0,1,0,-4,4,-4,-1,2,6,0,1,2,8,0,4,10,0,-6,2,-4,8,4,1,-7,-11,-6,0,-8,-1,-8,0,-8,4,14,-4,-2,4,0,1,0,-2,12,-6,-8,0,0,-1,1,-2,11,-8,0,0,8,-4,1,-10,-18,0,24,6,-4,-2,6,4,0,-8,-4,-4,32,-1,-2,7,2,11,-8,6,-8,0,0,8,2,1,-2,8,2,0,14,8,32,-4,0,-14,0,4,-7,2,10,-4,-24,0,8,-1,-6,0,6,2,0,-12,-4,6,14,8,-2,0,4,0,0,1,16,-1,-7,2]];
E[438,9] = [x, [1,-1,1,1,0,-1,-4,-1,1,0,-6,1,-4,4,0,1,-6,-1,8,0,-4,6,0,-1,-5,4,1,-4,0,0,8,-1,-6,6,0,1,2,-8,-4,0,-6,4,2,-6,0,0,0,1,9,5,-6,-4,-12,-1,0,4,8,0,6,0,-10,-8,-4,1,0,6,-4,-6,0,0,0,-1,1,-2,-5,8,24,4,-16,0,1,6,6,-4,0,-2,0,6,6,0,16,0,8,0,0,-1,14,-9,-6,-5,-12,6,-4,4,0,12,18,1,14,0,2,-4,6,-8,0,0,-4,-6,24,0,25,10,-6,8,0,4,-16,-1,2,0,6,-6,-32,4,0,6,-18,0,-10,0,0,0,24,1,0,-1,9,2]];

E[439,1] = [x^25-4*x^24-31*x^23+138*x^22+389*x^21-2034*x^20-2453*x^19+16766*x^18+7126*x^17-84887*x^16+1717*x^15+272618*x^14-79978*x^13-552928*x^12+255108*x^11+682589*x^10-376568*x^9-476301*x^8+270078*x^7+167567*x^6-81530*x^5-24739*x^4+6834*x^3+740*x^2-187*x+5, [85318433382171922788,85318433382171922788*x,-14104854800347166937*x^24+33510873812971511061*x^23+484148117403082974750*x^22-1149082882909004027256*x^21-7080042312862245012693*x^20+16810580920659368742651*x^19+57638120517021604055754*x^18-137318911927711238618760*x^17-285944681635255256274966*x^16+687756559323051763328817*x^15+886885051987253317450746*x^14-2180957653216587483309444*x^13-1688039930226035353114434*x^12+4361220272931106505358762*x^11+1834341928592508975147570*x^10-5305037882042007445080951*x^9-947225074811594302297281*x^8+3648355703208006728121546*x^7+112307378654131377023160*x^6-1257447637119504859251255*x^5+35126129648781223841997*x^4+177340840768659511495854*x^3-1644010741415690969856*x^2-6483292438416736809084*x+229585419895110846579,85318433382171922788*x^2-170636866764343845576,4942101066828663015*x^24+158907989149996689*x^23-191233689295905215670*x^22-19715673922500817440*x^21+3218613469814067757527*x^20+551625274506480529191*x^19-30933379144687527103530*x^18-7252480398507708074412*x^17+187210660148093639661762*x^16+54232792042075623535737*x^15-741326018985822462372306*x^14-248013628703629928590176*x^13+1930995994120811340119058*x^12+708463649438786515964094*x^11-3238213890513106629231714*x^10-1248689221718416603050807*x^9+3317106448950463562031615*x^8+1301838008543970620662290*x^7-1874173684937629165187496*x^6-740217812895087517044495*x^5+468660148061304425373357*x^4+186431031210382443413286*x^3-24257358148018998700008*x^2-7505552696107022217648*x+625500068385750135183,-22908545388417156687*x^24+46897618592320799703*x^23+797387079538905010050*x^22-1593253795527197074200*x^21-11878693743246768807207*x^20+23038911691770003559293*x^19+99163083654909362246982*x^18-185433486327981344681904*x^17-509562250114018196452302*x^16+911103087679449403081575*x^15+1664279652744456472721622*x^14-2816118007448201070401820*x^13-3437748882115251814782774*x^12+5432603226999474038111766*x^11+4322780851272164887278942*x^10-6258662037268726261429497*x^9-3069800743052149231138491*x^8+3921718353422293529034246*x^7+1106060567210268862881024*x^6-1114842682223523296531613*x^5-171599162137129051358589*x^4+94748566964156847877602*x^3+3954300113840166724296*x^2-2408022427769809370640*x+70524274001735834685,9130396703536748424*x^24-4235367008024855556*x^23-346939245595324829892*x^22+128618463514959884748*x^21+5724173814083725594452*x^20-1574399926696324136820*x^19-53832651300685470869304*x^18+9662048562626032478532*x^17+318194033090530752846996*x^16-27750671116962139004580*x^15-1227978124798010399947272*x^14+2358912096725809304328*x^13+3109725848104674265480080*x^12+224977869267702701881548*x^11-5056000234343023381932144*x^10-665886800890041109206288*x^9+5008015972454929482024060*x^8+871550429641667795412732*x^7-2731881526062549847752012*x^6-552949423659424316226084*x^5+656599000729024096289232*x^4+143104616988955033488000*x^3-30056052941746793860212*x^2-3482191995965298555420*x+330527046481044200148,85318433382171922788*x^3-341273733528687691152*x,-19263247937221014411*x^24+2534131959621160227*x^23+739939507945944539190*x^22-45788654588011685592*x^21-12335593368925830066771*x^20-84550450292643745119*x^19+117107715623104790105286*x^18+8473077558954649144452*x^17-697706306145542947801902*x^16-92095843566023538882177*x^15+2708280319259697687916074*x^14+495129464280051749930688*x^13-6879058366035817626143586*x^12-1524414549266564895319518*x^11+11177812223521368550320258*x^10+2743721067082346898360111*x^9-11015966226947709073942971*x^8-2797585515609375305592882*x^7+5947477313696352249639516*x^6+1510478646214182857378067*x^5-1403792111122003024847301*x^4-355067559898697409357570*x^3+60981589877859239582880*x^2+9908710118969286016332*x-610245625956419966547,19927312256464648749*x^24-38028556224216662205*x^23-701725621144856313510*x^22+1296136154817717844692*x^21+10603858844435981101701*x^20-18810405227756816727735*x^19-90111746884957072183902*x^18+151993247945872587016872*x^17+473752925301960340890042*x^16-749811606517567276769061*x^15-1595319337340326382413446*x^14+2326255353243634150732728*x^13+3441089708118225499522014*x^12-4498983409469633193662334*x^11-4622113046823926861796642*x^10+5178143563483999536264135*x^9+3655765688775529643369805*x^8-3208926456864580814952666*x^7-1568350862360366092479000*x^6+871589648039845320986307*x^5+308693669502656737741371*x^4-58031676838726081744518*x^3-11162707485560232848748*x^2+1549672967882710118988*x-24710505334143315075,-10727931432544606354*x^24+50177498903325598374*x^23+326995030093594871176*x^22-1743340206399597113984*x^21-4001198936133337568890*x^20+25912591779446198372834*x^19+24138917484204404400280*x^18-215744910758742766180972*x^17-62030742939924433515740*x^16+1105308410717138024183670*x^15-70220996572767570263404*x^14-3598852388181576917301504*x^13+944422146768466318803628*x^12+7414101056894976842304836*x^11-2724755391543660473158876*x^10-9309475992164043293886702*x^9+3764510784285791235520718*x^8+6605641243783858716795044*x^7-2506832966927804986710904*x^6-2352003450741874279780446*x^5+660295465333834244944886*x^4+344413321560756147938016*x^3-30648985814330548099044*x^2-10116559856461707304400*x+543336788741847858482,-16526853360653493171*x^24+20200424872030130631*x^23+599829233268204599106*x^22-669103821334486801452*x^21-9396985002546003116679*x^20+9347259975803339408469*x^19+83374944620177496220830*x^18-71678131820735060663220*x^17-461645241436607264057862*x^16+328100506530265204095567*x^15+1655393715276800716393254*x^14-908013218756904205676772*x^13-3858093097075176868288902*x^12+1444493502358275884668614*x^11+5709775193680534354098006*x^10-1086350098793606200286805*x^9-5095194574002998013545979*x^8-3556717792815749650482*x^7+2499258785569111643992596*x^6+475562406584229882452811*x^5-542238196697457639086085*x^4-194170382239036007468454*x^3+17832322642490268517452*x^2+8753211163201201152384*x-344628112848135909723,19840072560899042517*x^24-29500326610383613485*x^23-706347722643922265766*x^22+980134957737720610848*x^21+10816801945196520064569*x^20-13765813545873322326159*x^19-93407804621768143567686*x^18+106555831522820798144880*x^17+500532858381226056061602*x^16-496014138388171091756493*x^15-1723331194009663284156762*x^14+1417152124176471416414436*x^13+3811241705460297121719954*x^12-2413859501317960168526586*x^11-5254607659025026223213814*x^10+2209011676758918924941523*x^9+4244332735813595300474217*x^8-741450078605971348539066*x^7-1808261224207651249979256*x^6-214709470386155066462073*x^5+311748409959499744694127*x^4+149415109274184005764470*x^3+4282125268147533431856*x^2-5384714266726887503832*x-24629248531167376263,32286219806122138140*x^24-63896947785685628748*x^23-1131376281573111397764*x^22+2172449496407930457516*x^21+16996826968297422157596*x^20-31435788186909826985232*x^19-143418182568871091598252*x^18+253130826181127883577572*x^17+747301313856161824463508*x^16-1243655015937982996991280*x^15-2486751576428055472549704*x^14+3839956715660136330934752*x^13+5273429857760869934467020*x^12-7385237476588876198881936*x^11-6898195156360486679196024*x^10+8446231198312355762552892*x^9+5220367509932924606512356*x^8-5197800806960347788609084*x^7-2082902608080966639390492*x^6+1401000243968375195297952*x^5+368981501037750652749336*x^4-92453184013716932589828*x^3-10238685556582492389180*x^2+2037911230042416155436*x-45651983517683742120,42340274890309236804*x^24-118785160792299904008*x^23-1418732291048647334892*x^22+4079229560809380432108*x^21+20097342941506158667800*x^20-59788489372932245839620*x^19-156644619533813126724852*x^18+489486304479751381329156*x^17+729770608520340524651640*x^16-2457849113465562099944472*x^15-2049124811105884263069348*x^14+7814008325317755297099420*x^13+3239880747367915050343932*x^12-15651266893463643935460732*x^11-2135035626162992222299284*x^10+19011198593571893118988656*x^9-832596085268989777974972*x^8-12952087683027857097235776*x^7+1808753899130729055479064*x^6+4346216739039971575205916*x^5-647681006299676125369080*x^4-571660798021583733133488*x^3+34402179398674079993088*x^2+15249776143931599244700*x-379901776210773078756,85318433382171922788*x^4-511910600293031536728*x^2+341273733528687691152,-18008324666718759096*x^24+54238054644415050360*x^23+602974895988419799408*x^22-1871761430243141826888*x^21-8545102903090104847992*x^20+27597678453970900966524*x^19+66802584199712555660832*x^18-227574723962802487119084*x^17-313958262798229077470616*x^16+1152728447238972269008920*x^15+901841709882532902004896*x^14-3703667895483848976259344*x^13-1519276549663638476918904*x^12+7513845190505685404139072*x^11+1289926268720395110702960*x^10-9269528090973382461024792*x^9-231051932672995245581520*x^8+6435183299915305816633368*x^7-303077719815820637097696*x^6-2208277658030370543819672*x^5+111832689597861275371836*x^4+296265496048863408131208*x^3+1657668086298786156996*x^2-8154392257941760155048*x+291011664050178811536,-74518859789262897417*x^24+142778821892093092449*x^23+2612539560748488303126*x^22-4842189921346855460892*x^21-39265996754600187057093*x^20+69854968433101641755103*x^19+331440692474402176759278*x^18-560436401344905999109116*x^17-1727295171212903789188734*x^16+2741355315967906169659761*x^15+5746637590429370256628686*x^14-8419694409558879916706544*x^13-12175603704698305951564926*x^12+16092020878289947094681646*x^11+15892602213302101904150190*x^10-18269888976171152028664419*x^9-11972689771355681690566593*x^8+11150056790085129379733574*x^7+4738363313310496579186104*x^6-2974324715443632329776131*x^5-831621050617608084871299*x^4+192626626280827652067654*x^3+24163513592512836680472*x^2-4212472990216749661404*x+96316239686105072055,-32883039709489126166*x^24+86289107484648811134*x^23+1115196179787480332636*x^22-2958832213408877422888*x^21-16070221007893805651534*x^20+43282642086240595783414*x^19+128476501102021382125292*x^18-353432368654003158460004*x^17-623023287765166289057716*x^16+1768272704005842056922042*x^15+1875703506358893823954084*x^14-5591936035489621022855208*x^13-3422716819125168850785352*x^12+11107240317301915581192868*x^11+3464362904987245535350324*x^10-13298155687715863959379218*x^9-1491859312018952473535006*x^8+8809902723753360648036412*x^7-60757285069794300732704*x^6-2782833761096072206322226*x^5+155963576700608232384538*x^4+321168820220584904681880*x^3-17415404610897069428100*x^2-10630240900864548296200*x+677805769251716902006,31796490667984606761*x^24-84296757172752195669*x^23-1071365557982593251330*x^22+2891565724516234373220*x^21+15284520962264143312677*x^20-42333300468862249860987*x^19-120241311056638659701802*x^18+346255858959408670053492*x^17+567336828700760082263778*x^16-1738000116568827431386953*x^15-1623636621517600537177542*x^14+5530863545173015034349888*x^13+2657393513631229429586622*x^12-11122657120823683506784722*x^11-1947592801317735330203598*x^10+13657132254004742699584851*x^9-351740599699139275218447*x^8-9553955519049766738636002*x^7+1280777085036091854437616*x^6+3413803063562394584336331*x^5-502370195048655987089721*x^4-520208021867004529225986*x^3+35318178194136867444744*x^2+18712802278838790436284*x-1350636698053823514111,37323488080701272850*x^24-87670588822656208110*x^23-1286581683119841266244*x^22+3002728603787423906832*x^21+18941549044562940592314*x^20-43872171061794061182606*x^19-155871039045437308872756*x^18+357865251740348783608008*x^17+787035598809858143967132*x^16-1789494563254592342910954*x^15-2515462306783790199759252*x^14+5663948431352476722864144*x^13+5056515138086712245368692*x^12-11297485032587107079929428*x^11-6140282109722557483585692*x^10+13687238489117829817182990*x^9+4174361485420484658591894*x^8-9340070281974466422352404*x^7-1458411488080122780716664*x^6+3163614938811431370883326*x^5+264117253943998381211166*x^4-429032043162028465627164*x^3-23178897317284094845344*x^2+16113629841312573832320*x-411443477262062945526,7265773173147172958*x^24-5570844315287925798*x^23-262885668708441437132*x^22+171966391126514302816*x^21+4091979245650469048798*x^20-2176698319827514986082*x^19-35880412360699896049808*x^18+14416496448388431362864*x^17+194646495202724024611672*x^16-51801138303088481153586*x^15-674225176904131422286732*x^14+86423646656413791823416*x^13+1482327385760952740200324*x^12+12025740349928964597356*x^11-1986708003554852987316196*x^10-275284899404666089992354*x^9+1495916774531430165778490*x^8+390545298510977208164708*x^7-554356164384672226859728*x^6-214352784361527511096734*x^5+79015025851035131346410*x^4+42665697595679291724192*x^3-2177890596378698602440*x^2-1462786389143993529716*x+53639657162723031770,25848687140928756451*x^24-73093247834885956371*x^23-872966140814965736818*x^22+2521095371835349045316*x^21+12503073704081570091307*x^20-37126456471939471571513*x^19-99052854419699441778910*x^18+305442448622010986738188*x^17+473632476410535275487470*x^16-1540818272627751291967119*x^15-1393374035142763986972410*x^14+4915811604873470360306112*x^13+2436633812626959991997186*x^12-9852767947017957702003770*x^11-2233074601112032452379874*x^10+11896189251397579043193009*x^9+611696931550668056134771*x^8-7931289380576241214513778*x^7+403720930500568888384864*x^6+2512351155242141482645053*x^5-236927147073333333497003*x^4-291470944662158481046590*x^3+30052411652026437307656*x^2+11153912552667357084620*x-731968057841014772897,-89897793749528679*x^24-6298458096695288601*x^23+16827783357885236046*x^22+218468545802599875240*x^21-510972273272328086931*x^20-3243250057045529646219*x^19+7084924314162681347802*x^18+26992088267372217642492*x^17-55689994467491477806506*x^16-138435852861856041995289*x^15+268945185228816850171662*x^14+452358239742880195684500*x^13-818168708410635157820526*x^12-939298753188822386258058*x^11+1549136507257171275255030*x^10+1198645384219889892895887*x^9-1735712014221136738213971*x^8-880638419336901285438558*x^7+1032796509248316046875720*x^6+340012813255509655745511*x^5-259829883253984672308645*x^4-58720295419117454907138*x^3+13074482422404452650332*x^2+1380895164249279608580*x-58414281200204203515,9187610258242067715*x^24-26315744088588678987*x^23-310216567211631998478*x^22+909420831172072002876*x^21+4452781008447864354879*x^20-13441597688380064251425*x^19-35526082072270268339142*x^18+111289924642723981754328*x^17+172791891602418127176174*x^16-567327347293577629532427*x^15-528316060385180104229118*x^14+1840917112335731470903044*x^13+1010901573778492627152090*x^12-3792113671280780576012718*x^11-1176648316404583144601838*x^10+4790987015688338241947661*x^9+816072167180218945098519*x^8-3457006595816692445549106*x^7-378722758322687855273172*x^6+1264698008418753985889661*x^5+149624963360185439697921*x^4-184982169161248181509926*x^3-34504802444360946065328*x^2+2782938376507358029632*x+1122974470275487209243,49859963633212556583*x^24-91305473256051947739*x^23-1757795055666347256498*x^22+3099013719006792525456*x^21+26588894042995330153419*x^20-44740106629882792273485*x^19-226082825033212548695142*x^18+359152501312259479085460*x^17+1188150101088865930384086*x^16-1757396598596726940158451*x^15-3991608777230703756485070*x^14+5398011028735880744144580*x^13+8556272139634825612313190*x^12-10315968889890859161640650*x^11-11333603612512597607694990*x^10+11715469179926225943015873*x^9+8708396322222803501350551*x^8-7166628341310142854885582*x^7-3539250909198324923908212*x^6+1929309525849598681105137*x^5+640238664358265418592533*x^4-131304930613036523129322*x^3-20066367961792178966412*x^2+3685464320356953574416*x-99200362804495212585,-76995528099559135680*x^24+179354098255226805732*x^23+2643139664950524298008*x^22-6132642027001189639764*x^21-38666340559013909682816*x^20+89417446769798205893772*x^19+315022660265643343049568*x^18-727519093900199963890128*x^17-1565097866858122018588932*x^16+3626593732868878516533324*x^15+4866950801465199449704692*x^14-11435549539993869017414796*x^13-9308535490061449767249708*x^12+22710893778393764389615908*x^11+10221379281249017199504756*x^10-27389861692702630943484060*x^9-5446961916803206235494344*x^8+18625726157923582407434604*x^7+828983305474471365695880*x^6-6315591674099466013579452*x^5+95403530926684674590904*x^4+865827159735580411003812*x^3+12149723854069979924028*x^2-28810889834292428828592*x+711228766183398610752,46987138031729426964*x^24-122032733567275404312*x^23-1589170345646274946020*x^22+4180250536685990651640*x^21+22786035270575150802624*x^20-61071285531060838467192*x^19-180514632486944942739060*x^18+497905614392483403120804*x^17+860637258563245437604908*x^16-2486685673601242905726924*x^15-2505891705849247924621224*x^14+7850899321221454680019284*x^13+4247265772161276867631824*x^12-15584623857196098499578240*x^11-3479986824242701624427280*x^10+18710098331664808140028452*x^9+164126028005573765562936*x^8-12545801140162157054790876*x^7+1454658301841006569096596*x^6+4107175849149737207755704*x^5-606922393688109549722832*x^4-517091945689531251413940*x^3+38258214457005621652260*x^2+12956255112157753200900*x-822485191992699090996,8666261812305836583*x^24-36755431427491692735*x^23-279196165871289871014*x^22+1286156824564291013676*x^21+3751869977190130656831*x^20-19281863737095147559029*x^19-27164179744100152708698*x^18+162211922425882776756120*x^17+113267484682053325605534*x^16-841654951944982632489831*x^15-262373459473754431222170*x^14+2784211912380329897636076*x^13+256348614448597504601970*x^12-5855199084271156601776074*x^11+157958502973654671554718*x^10+7563367498660365480996189*x^9-581719268483203483799457*x^8-5595779134634497466989158*x^7+407490247939034736939792*x^6+2122271978031648497674425*x^5-49020525750622154883495*x^4-338106932698733754735066*x^3-16900113919374133559304*x^2+11216919712239357812988*x+281786058091017015,50575938768937043208*x^24-106183769449060993968*x^23-1763728374053294246844*x^22+3626976009175865551044*x^21+26331629753956741819716*x^20-52783925227884568844640*x^19-220390744331173282926708*x^18+428053809651996903186336*x^17+1136289801148118084636676*x^16-2121823063092545222661816*x^15-3728712734728568221933452*x^14+6626171252545067191454244*x^13+7759856621085261752101380*x^12-12936378472880001004894116*x^11-9889807303529398521816900*x^10+15111396549624978906833700*x^9+7214627587501322701746228*x^8-9626422862694209002071648*x^7-2748616103504476308329952*x^6+2804321605507235951261040*x^5+475795262489776476160668*x^4-254951259201699244325448*x^3-16082027274897235990260*x^2+7537729628277054203592*x-211701374451546184020,-11200702528188368095*x^24+32558211455687918559*x^23+368785302553375781926*x^22-1111234549723254148040*x^21-5087404089221834408791*x^20+16163633040776522165909*x^19+37988216924984669401642*x^18-131092695507601762318948*x^17-163890349133189982309638*x^16+650690286913575922985115*x^15+390352855985539094777414*x^14-2039813646569674901116188*x^13-357313891624838394581678*x^12+4018198277199050761281758*x^11-463047613310875127244850*x^10-4791528248087047431830913*x^9+1463439879439890462892685*x^8+3211792152832194421076738*x^7-1250437585052411657651488*x^6-1078094539203320409858813*x^5+349078995093657101499827*x^4+149693300294239796781198*x^3-5451797367586981217580*x^2-2262193929381765294320*x-478642058845950783031,85318433382171922788*x^5-682547467057375382304*x^3+1023821200586063073456*x,-16491148966033935132*x^24+6964809605913500292*x^23+639879862066353293124*x^22-215902384292258270088*x^21-10814220821686013155080*x^20+2706005374505792708796*x^19+104553852538488368565576*x^18-17002446826138467750876*x^17-638058990862659294245184*x^16+48865323049906332702732*x^15+2555366464037051523745200*x^14+14808841071621650540760*x^13-6755585379697751479862568*x^12-557498660649766164778296*x^11+11538143331821679773211192*x^10+1754345123208507377566404*x^9-12055876097691479766237444*x^8-2580321063366663477428412*x^7+6903520543895788168203048*x^6+1869722796985503612890304*x^5-1688764470328947834658092*x^4-552266732306644194815544*x^3+55403672170632589930812*x^2+19874077984936894818840*x-601490060172587037684,-17795244022459986024*x^24+44716831320138267432*x^23+613387373764046928360*x^22-1539864607736507559648*x^21-9031253918135055034740*x^20+22628163792251439598344*x^19+74352847399404227884452*x^18-185630941223191200152520*x^17-375944208744783034373232*x^16+932762003335289011372728*x^15+1205725558507685690973984*x^14-2959546339858471391898792*x^13-2443461750813784625294016*x^12+5883993957797684306165328*x^11+3022756234957508591554752*x^10-7012410735769944920844048*x^9-2142199747167505859550528*x^8+4560574589522248382031792*x^7+809323281397691761619760*x^6-1356386020479719153725044*x^5-149242447881091973144736*x^4+124726558858654785819060*x^3+5171767995430121575992*x^2-3076545048626229139416*x+90041623333593795480,-17992045932430065966*x^24+35790368624460735186*x^23+617574098770715194500*x^22-1202465971984082416440*x^21-9017436562692318439230*x^20+17138287512749603048406*x^19+73073944799890903804668*x^18-135315433129774768115364*x^17-358616774941844731187280*x^16+647597162776776554657190*x^15+1085564543091651037725852*x^14-1927797604950546853871868*x^13-1950985362505260833958180*x^12+3511202122346433375264540*x^11+1801626340998144655322064*x^10-3666762336520046760190026*x^9-372697497768478385867802*x^8+1869940046042689988062980*x^7-558687676221555101203560*x^6-256723923097747969060278*x^5+331267694912287210180026*x^4-60164049647981953935036*x^3-48431783873636101774272*x^2+5315535281168980643652*x+724994427473035858818,-116770121390516468397*x^24+297386643362096162745*x^23+3961533713679535304274*x^22-10186582987400896590696*x^21-57045205640407431457533*x^20+148815030311925576885615*x^19+454731370635666158773734*x^18-1213219931472525680484096*x^17-2188914522672167507773314*x^16+6058778159819581729258029*x^15+6478927469950997275489014*x^14-19125732001484077461043128*x^13-11353426495195972996018158*x^12+37951788594954510929045262*x^11+10240240561479282755667678*x^10-45521549898643526241811671*x^9-2311418192505159774995001*x^8+30459438958693791998960394*x^7-2382377564528920897580724*x^6-9928100981664577826035443*x^5+1156688776198258882563093*x^4+1243560521189730296343390*x^3-71031696501880684738584*x^2-33656130778844628777588*x+1593085550859154420179,-57692925248534854788*x^24+148077589264377683484*x^23+1951079813123169432084*x^22-5075117736990393263424*x^21-27954797223175564497972*x^20+74209084606224163164972*x^19+221021070087188801704056*x^18-605893544402086601116380*x^17-1048957994833460859233772*x^16+3033584354049031410245712*x^15+3023001047348986734692856*x^14-9620560433858745444794424*x^13-4994343284176641425700384*x^12+19258773371214168716270808*x^11+3738269193980618912854608*x^10-23510322285017508965645796*x^9+520136567924242356689508*x^8+16331828203925396761103100*x^7-2245749736734714734009040*x^6-5782954421369608683944460*x^5+819743364669716334901452*x^4+863160688558246570273464*x^3-24854066156450533697436*x^2-24861454252122034992516*x+959062565867293991400,-45243051353307693530*x^24+95821948793317421490*x^23+1579027266500621988020*x^22-3278718560902535572960*x^21-23601460682860286838230*x^20+47814404694644555640094*x^19+197884675115291530839152*x^18-388698746795346775998800*x^17-1023069887813561395931200*x^16+1932163685540086653581106*x^15+3372572484031885574267380*x^14-6052636569010690183289700*x^13-7074713063186487971521180*x^12+11853089399195597533306252*x^11+9147445504544609181144556*x^10-13874559809341853735613294*x^9-6852321972916019633955554*x^8+8820228313589609915928244*x^7+2727278553903892197935896*x^6-2524990650814040223929442*x^5-492324699152466587538794*x^4+207307288763751618790344*x^3+13703208484157405066640*x^2-5471322656422749691036*x+164415198547445630830,77195592950127138051*x^24-176574172988976365367*x^23-2647694537583119922678*x^22+6020934327094931470896*x^21+38672286128054787729663*x^20-87471322264440584727417*x^19-314189356182879173511366*x^18+708260861324960138951532*x^17+1553029887251069591116146*x^16-3507515921052489965223843*x^15-4783037428126044533313378*x^14+10959030645607047624717000*x^13+8968145342317677769564914*x^12-21475180889486401821417282*x^11-9387397739078182988065962*x^10+25367987545535565546568545*x^9+4247856152009519486873247*x^8-16656300509518383835059006*x^7+102305482501596600316524*x^6+5286092253632047167097449*x^5-435632063697897696369867*x^4-631028742694484924398398*x^3+31168855781662914179760*x^2+14700221431763097762048*x-538247879402079399429,3034580986256933877*x^24-9617234826637117329*x^23-92898745375928732778*x^22+323413782782695593264*x^21+1133043860946478087485*x^20-4623708992558785861599*x^19-6620609810107102533630*x^18+36768540308956600451148*x^17+13602736160461200953970*x^16-178607982959395553448057*x^15+53206526929040273206482*x^14+547902537788034007652424*x^13-423666544992741858682542*x^12-1061165123706686004464118*x^11+1197423579083651678793906*x^10+1265513171194489051029531*x^9-1720786594949089840504551*x^8-888902607862693140454410*x^7+1222462236520950168173844*x^6+346818393032438360161995*x^5-350981978237046818048349*x^4-65915685353417771670894*x^3+17508814155650647130640*x^2+1495961121093877712220*x-109561442671636403655,29305342932040543426*x^24-80380221170451954858*x^23-988112272521054697192*x^22+2771197477125527828924*x^21+14098389114825871342894*x^20-40796396666658324484634*x^19-110802847754586638529892*x^18+335646362951596371217588*x^17+521264905846657315422332*x^16-1694658753360113151721902*x^15-1481691026757001775661836*x^14+5421400078310094627784080*x^13+2386995304460942422134044*x^12-10940313291835505913127772*x^11-1659820090983324619635524*x^10+13421641028382846560889942*x^9-459102492369468936969398*x^8-9289111931184711753987104*x^7+1201008566309059335045628*x^6+3214155556249625637754458*x^5-413574639749686045190774*x^4-453129571471075406924436*x^3+10912030990924360631460*x^2+13597569827407308503888*x-62905669941516875954,61623363500148883290*x^24-129553552618101807894*x^23-2147912751349351746468*x^22+4422712181170145453664*x^21+32043803694352327794294*x^20-64316522783477086571706*x^19-267900349420688756995092*x^18+521068422746780873638032*x^17+1378784369451896605506996*x^16-2579546735818354285242702*x^15-4511106242232142878957156*x^14+8041573067805038645365992*x^13+9339716584898886314475372*x^12-15661802507014097797803492*x^11-11789363916399971316225660*x^10+18229192744994001573170694*x^9+8437144414351630537375446*x^8-11538664501939761149498964*x^7-3090569988407438816772624*x^6+3307101237163573156671666*x^5+494313728466440323408986*x^4-278247614860796593502244*x^3-11505751338406368076680*x^2+6568048793829075077424*x-186617440403506364250,-49598358093756437707*x^24+122114667705018722103*x^23+1686425058594997365826*x^22-4174853616568791384968*x^21-24347375592581243853307*x^20+60840086207109816595373*x^19+194661095358441255492226*x^18-494420008129644587488792*x^17-940088532216958522428518*x^16+2458779446397011100120459*x^15+2791391361956557896430466*x^14-7718101902767602593962736*x^13-4899216699474769468244930*x^12+15196599567014061560091002*x^11+4382567019218806303122314*x^10-18021779946249470633552265*x^9-835063057570937949292951*x^8+11840954639328509283162986*x^7-1281787693847193999873028*x^6-3731816261251489775857149*x^5+664587929670095004604295*x^4+437192392417525990448370*x^3-68092830666777306463812*x^2-11892430178883837992420*x+1496754000395848869797,44948111242389978742*x^24-138001698147530272182*x^23-1484700366954985307740*x^22+4752273894095412996104*x^21+20604282186620509948270*x^20-69882654325862277529502*x^19-155679291541005879251524*x^18+574360417088362802474908*x^17+689030034925704456763640*x^16-2897317330876701166622958*x^15-1753914911115087065113820*x^14+9261134168966071173638256*x^13+2140630875894916376311124*x^12-18668466980000035670895332*x^11+214689039197299214097136*x^10+22850926431125201380000038*x^9-3677781241917433635808370*x^8-15727964139009631838600540*x^7+3581809336189330131271888*x^6+5375400414141472702173042*x^5-1098177270541501286357618*x^4-740658827583178774473444*x^3+54458513091388194679452*x^2+21645458953464658983716*x-1123002443349431581754,22516924619111154402*x^24-18145586391403538838*x^23-837039825319927877160*x^22+577631936705669407104*x^21+13483897251065712034398*x^20-7605601969344089451006*x^19-123571730092098132305208*x^18+53036742606853798836636*x^17+710376472248107682956412*x^16-204293376295273140971958*x^15-2660530152617441302653288*x^14+377350052345970768498684*x^13+6520146485564955140150040*x^12+33229039901887872000384*x^11-10213903146519123084796368*x^10-1536676895470255876362594*x^9+9665963404004016875687226*x^8+2834377365393761711981484*x^7-4929217700865667179858048*x^6-2168364127246190792061666*x^5+1003979533806811202318274*x^4+642130629521494732705164*x^3+11917145306891184104976*x^2-26917336442572399700796*x-247344637770961197102,30301500728829069433*x^24-71656839446174286837*x^23-1046023453612819344922*x^22+2447934406260283831868*x^21+15449773172709619049821*x^20-35646024863001202204607*x^19-127936639982800543919278*x^18+289434731844276957017644*x^17+653399232704268056888918*x^16-1437756230963738661798777*x^15-2131005786112245365852606*x^14+4503960112784160075435264*x^13+4439694936441497744934758*x^12-8827281480260085653081582*x^11-5747840255441839893938630*x^10+10345485350835928015374939*x^9+4380466153335266411853973*x^8-6577440795147187796388314*x^7-1819035802901867449579664*x^6+1870516315526588179953027*x^5+347999726517278024794699*x^4-146597516269080684278478*x^3-7974115931619922689120*x^2+4101736437512662683440*x-129243435704643782255,19223615738026393011*x^24+9677831666781758445*x^23-765400776364244233602*x^22-384958079349170901300*x^21+13244260289823803419131*x^20+6604811666849041093599*x^19-130663476428247765861678*x^18-63984995077995602361108*x^17+809977708756230559295970*x^16+384598413607720494401337*x^15-3275937114238649000942922*x^14-1483379161263538731564336*x^13+8684511291684535966866906*x^12+3668880605294901141603438*x^11-14753554859388831636163746*x^10-5659309997807296238204007*x^9+15207899201239758740886099*x^8+5161791541773286927689054*x^7-8546821028498219511830520*x^6-2572401115936478985266211*x^5+2067599890060047291983733*x^4+576472603783317740064570*x^3-83043518626229588808528*x^2-16887572080958707298064*x+634132143364398607191,26395657449613583025*x^24-26359897992410414265*x^23-968784025196374365270*x^22+862205611165212172104*x^21+15367867835559935254053*x^20-11830114925511591318723*x^19-138250574562978176967054*x^18+88306880852237784886488*x^17+777223475993342245146162*x^16-387101473319845617277629*x^15-2833921434074312227690386*x^14+990667883354673448843956*x^13+6727180433659191956897634*x^12-1316916851091525731839866*x^11-10159541758003481783830194*x^10+403135550969403146765967*x^9+9266932319608400482317021*x^8+1064189361174232752743646*x^7-4643440854277486360085688*x^6-1218284063546843510413137*x^5+1023532116456228233275251*x^4+402029608422960746579526*x^3-34217225753356606203864*x^2-17581647495033768371256*x+689705714665019462841,27958018241042957292*x^24-64756385810455841832*x^23-964648525144716247128*x^22+2218265676921611118924*x^21+14200812768917190899712*x^20-32374536762738027049320*x^19-116637266405512094164848*x^18+263179345989280532721732*x^17+585951433328716424536284*x^16-1306150469103116696835876*x^15-1852858761724001739704280*x^14+4072418275556388305463672*x^13+3646225710863987772898080*x^12-7887121535690446834875936*x^11-4238457542758077200960688*x^10+9000289503170402402352348*x^9+2604851320655530210766892*x^8-5372258335851886714743972*x^7-683879749194189675851076*x^6+1262643068992381604583144*x^5+32572640237577510065376*x^4-6344976012825824647104*x^3+13559618908315219990116*x^2-5008447679302147497060*x-6520716188912203008,10434696944379591873*x^24-25400649206127899313*x^23-358469384465333341794*x^22+878800617991700013744*x^21+5246001576884301480885*x^20-12988874108802476234247*x^19-42749548946962525555362*x^18+107320980902185152639084*x^17+212581324697816772590778*x^16-544091187198581734495773*x^15-663790821045704545424826*x^14+1745708267012176718862360*x^13+1287973293588489441506802*x^12-3520481194164200555240058*x^11-1480374682874856517566474*x^10+4275832186905917900400639*x^9+919061357794262649173109*x^8-2860094161648189019604942*x^7-274842279724094574909744*x^6+898690827714661220501871*x^5+42310121017402331691459*x^4-97292930949187236829638*x^3-4015893214591772079468*x^2+2841057588566753871948*x-45938051291210338575,49608314078873953584*x^24-99128568243070013496*x^23-1719011063355842899932*x^22+3355752536640889070616*x^21+25429346872310282678124*x^20-48319245495571359768348*x^19-209931226322216991345564*x^18+386977154617898727191172*x^17+1059318439802056327703160*x^16-1890826268825162926095840*x^15-3354739567967199136389432*x^14+5812071720281188986295560*x^13+6555184961552825983803240*x^12-11170992154197395798068344*x^11-7384309614421298052803784*x^10+12914900958304288320596136*x^9+4061174833484112662645376*x^8-8310647872590221756206884*x^7-633730143386310774929616*x^6+2612360436749176806549756*x^5-108458255229815378792148*x^4-322237504112883779777244*x^3+4950790511992414041684*x^2+7571846684316840081000*x-220954297059471274992,68454236155000193559*x^24-153135529815990775455*x^23-2368965817088695751466*x^22+5233098274200204420936*x^21+35041455509678507687199*x^20-76244707149195502744725*x^19-289984039718645957449746*x^18+619736337192951655883868*x^17+1474000417573335238379466*x^16-3085190058012587532625095*x^15-4748050149003933438086190*x^14+9709668062738956629879492*x^13+9630517670973499081244466*x^12-19225560212418266155417782*x^11-11809178218454647395989886*x^10+23066039754136551658814649*x^9+8093056725525440457205467*x^8-15522430010117163083653554*x^7-2809052551861627287879912*x^6+5134740440146395289728669*x^5+478683889790009424789261*x^4-659639577979534802183574*x^3-41775159304515405160716*x^2+19994041370060027876100*x-200041321103728030389,18752987659297372823*x^24-20504093158394325999*x^23-689665902155803029746*x^22+668777572408361447248*x^21+11003448270180718944239*x^20-9158635611406282494181*x^19-100090152640051893767546*x^18+68356281272395292293316*x^17+573058704193036367828446*x^16-300543834215270110318395*x^15-2147929898943358674562198*x^14+775633441719509458962348*x^13+5302075153343956862770942*x^12-1051054285390550849712070*x^11-8434314843436202499082006*x^10+352019918011221794380089*x^9+8185028497462145197326503*x^8+843516896622592428134030*x^7-4331279812904016935339104*x^6-1014559700004153454238427*x^5+944081301422263707011069*x^4+341328923239767581320626*x^3-3664839485947437584100*x^2-9330544213241588631080*x-466572763853619959881,-128628014143009736988*x^24+256278293864191091928*x^23+4492740850737971084076*x^22-8715080128285405903296*x^21-67191457384705076079348*x^20+126152629837424783226528*x^19+563387930217008504920752*x^18-1016427733620663617733252*x^17-2909325660918397833934836*x^16+4999152123212142485667252*x^15+9554817339451743433395444*x^14-15466483836407990320664748*x^13-19862089582639269383655132*x^12+29863554463671349184558196*x^11+25166438837247339921191460*x^10-34441013942197990840240584*x^9-18047320871424533476085076*x^8+21623781543547203611878920*x^7+6586317982959359674911108*x^6-6182041875030371657399496*x^5-1038965209919413046583708*x^4+538337162886457113161148*x^3+28165800959381331574608*x^2-13686934988434159761408*x+384977640497795678400,37021306235650578254*x^24-98320534834911174450*x^23-1240197465909284154320*x^22+3365186499885246166756*x^21+17537953894436969324414*x^20-49130227845049786871794*x^19-136046693415374325392576*x^18+400435426898923011692492*x^17+626711494673593267216744*x^16-2000987223985410715050738*x^15-1713017002147285065082912*x^14+6331856459080801002992076*x^13+2510455910990497398422356*x^12-12643239420212165315980396*x^11-1085642950924711871926084*x^10+15388645989946702054160058*x^9-1779710537365880795368582*x^8-10655328717871232058593872*x^7+2245901811563593817211620*x^6+3767683781578815386666922*x^5-675227075728423984201342*x^4-568758544396463083224720*x^3+1867247670761136616728*x^2+17992994258163594348640*x+323440054649421648482,1343378947398027264*x^24-4775171091291452640*x^23-41221948546447473864*x^22+163139583416542798596*x^21+506899288881971662392*x^20-2383606521293004425904*x^19-3044376709749986161116*x^18+19545260586885773904300*x^17+7308884785849312039128*x^16-99258589973761356735852*x^15+14862878143552705046940*x^14+325289666342660315489112*x^13-150979315109749776161688*x^12-696306680063379880595520*x^11+433585082445623676490704*x^10+965516225713149093436704*x^9-606515328377248475435424*x^8-839932349571718029268428*x^7+399487306748865598460100*x^6+421938482102040240056184*x^5-92640139998078263250216*x^4-97945518824399417040060*x^3-1336855918157037974100*x^2+3888287159855871440400*x-143631723123279650580,-77816526246489284160*x^24+133243000454358963708*x^23+2777582779799712881856*x^22-4514808805196330992944*x^21-42728075561893164042444*x^20+65040691337506713833928*x^19+371829183254954591147148*x^18-520591076892237791585160*x^17-2018315604538467695273484*x^16+2536003780734265502606196*x^15+7099204974794699478674328*x^14-7729676550687149479519800*x^13-16266104462426496869230008*x^12+14549004949884346340004120*x^11+23780538887170100325504888*x^10-15964917458664926188334664*x^9-21146314029075413648071380*x^8+8898272989847657741105832*x^7+10481512597588216953052440*x^6-1654194024722486378493228*x^5-2353163030536834857839376*x^4-165529938372018337799436*x^3+89491532686333238667024*x^2+6291732634360805061156*x-173841930665120289612,-2090384178268346403*x^24-10542049689808936941*x^23+90212694466085565222*x^22+380694132203160226044*x^21-1654687210865075949207*x^20-5905839518513935570599*x^19+16913376880763120605542*x^18+51511703007561934115076*x^17-106001985483777082468710*x^16-277253431005483552635181*x^15+421632949633137340051782*x^14+949458901673193702837144*x^13-1063380272916514991611050*x^12-2052874215440062687461246*x^11+1647872514460336793642802*x^10+2681717609653180786587687*x^9-1468029967171415196669675*x^8-1933076409804900995723682*x^7+670092484928996378970864*x^6+657539799806672701728495*x^5-123712281724099663508229*x^4-76125347144672220767526*x^3+4803885971133038741568*x^2+1620872744959282458036*x-43331309061529182915,-100040010416759862175*x^24+249330706597937909235*x^23+3426559103680773051334*x^22-8560218971234527093928*x^21-50010930717180209495131*x^20+125387685595605257731505*x^19+406606170491088555140014*x^18-1025282098663538197449004*x^17-2017936454550433652257262*x^16+5136828238110457617450507*x^15+6285613479117826376726930*x^14-16268488607165220548994984*x^13-12127597197873368119679498*x^12+32369854972457079235559354*x^11+13701052372790727761921450*x^10-38850539817402913828192125*x^9-8037627314105350279355875*x^8+25844586444484921388834342*x^7+1976948494430275164595772*x^6-8209886568994339294944429*x^5-180946973857325308388149*x^4+939187799547752361247062*x^3+24634199160531286720224*x^2-25233188773419321160388*x-254838471617838285619,11439435846068705256*x^24+41696049368353900620*x^23-515038958840151741876*x^22-1500869548778528852412*x^21+9892848345121059704832*x^20+23249012214893775741756*x^19-106613140680375309789288*x^18-203086947478830047921844*x^17+711875434145532514832400*x^16+1100146605336291074767356*x^15-3063490400553243127685604*x^14-3823197598688202000408036*x^13+8548712704014990321331044*x^12+8510399895931898130398100*x^11-15141111666399004034873244*x^10-11762489489301379049480940*x^9+16128139519427253170891904*x^8+9496110871714259130611376*x^7-9288044524448695678932024*x^6-4093181927758729541502924*x^5+2291608902602386518335424*x^4+781603603221354476993244*x^3-98692823858084517756504*x^2-21253553112523517593524*x+506923858576860941472,936213634305172967*x^24-18633892857939460827*x^23-3315810442032601526*x^22+662527538106746501140*x^21-523644677499964724605*x^20-10113248426095372810429*x^19+10772191185582597220726*x^18+86838928923284225645180*x^17-100482101823685044595994*x^16-461353965623008384436415*x^15+537755993306700137199350*x^14+1570085915021434136468460*x^13-1758477556406289574875290*x^12-3424247459016867206973022*x^11+3516986474969035338470546*x^10+4656634754437230597088497*x^9-4102115377893625226291353*x^8-3736715908191782206602706*x^7+2482303157711105475048164*x^6+1624681295425976961567969*x^5-587303781846434771704651*x^4-319326972315922352406510*x^3+4878883240207043982348*x^2+10983430528245192896284*x+368567577164477357291,-12244598657065553821*x^24+21563524179536370981*x^23+434462399166740649070*x^22-730330805756559219836*x^21-6618595901558618539321*x^20+10512893623338602464607*x^19+56698283080004417161822*x^18-84074142917319671264668*x^17-300103748596750079495150*x^16+409584462226438522796529*x^15+1013699475259981632206522*x^14-1253123678424287698083588*x^13-2174983770307087232750402*x^12+2394341207250203080734410*x^11+2853948089926522557767042*x^10-2754386270194946933905275*x^9-2123113662046453490939857*x^8+1774625752355646420709922*x^7+798773581337619866716052*x^6-564114282029540549285523*x^5-127400879550612241521007*x^4+71093803710052326343650*x^3+6026325941477627095980*x^2-2573173431617175616796*x+56003512640941840475,43263096928575750186*x^24-58574563128933125466*x^23-1572576309052558831428*x^22+1972377614238927745680*x^21+24708119390405430049494*x^20-28196592683973108410262*x^19-220330733853513083468160*x^18+223568184758103294919248*x^17+1229997450125792672602704*x^16-1076651507710354945638810*x^15-4467495359489786216190684*x^14+3237072725901253063907832*x^13+10617644708420491373942292*x^12-6000199516081201964617992*x^11-16177732398202027814708004*x^10+6489632140712139900585150*x^9+15049975824851650619736978*x^8-3602251075725966118720428*x^7-7800874418945163406281312*x^6+710998414257169265756298*x^5+1831901199182263279836642*x^4+34314865641352546774896*x^3-87008566553699591732544*x^2+4928722073692358641860*x-635820397176049625982,85318433382171922788*x^6-853184333821719227880*x^4+2047642401172126146912*x^2-682547467057375382304,-19567312360931529252*x^24+4872136913309470548*x^23+754998854011998193392*x^22-139865335005435407724*x^21-12643200657740512117968*x^20+1515800008694459400576*x^19+120584469436615374184800*x^18-6537923550898593006372*x^17-722108231913877374135492*x^16-7315804698826822769208*x^15+2820634601050798173882240*x^14+200469217779827170927980*x^13-7225654781687656514638716*x^12-910624681271692462438368*x^11+11887842045994806101923572*x^10+2046740271082504845778968*x^9-11939281950287960111228808*x^8-2476633756661336816582148*x^7+6640424651439742227857088*x^6+1543103003760071525979348*x^5-1657084892156357698610880*x^4-400441688447464073459772*x^3+91648976734869548705616*x^2+10529280661109015892732*x-1217839685358151923948,-58999786258222240236*x^24+128654244119301304032*x^23+2059876173020424778128*x^22-4399163873898812388732*x^21-30836991622407231349692*x^20+64101064124807125686780*x^19+259488156738386488672236*x^18-520543063330701472494552*x^17-1351018839229816318847352*x^16+2583681766811731790366844*x^15+4510592889893860978356336*x^14-8074514491703213543849664*x^13-9675916676140977849444792*x^12+15745167362248664896865448*x^11+13011022004784645125383152*x^10-18265915081532946651024420*x^9-10435071807037592814735144*x^8+11357417074344301300783344*x^7+4633095155776912021154148*x^6-3033287845529694565970052*x^5-960241266577357716046092*x^4+168104184204508502622900*x^3+32077528219802006816520*x^2-3685334916820932907368*x+82455744830169675660,7205637713612795311*x^24-52993071566276282451*x^23-184442588670546306574*x^22+1861624946508055519040*x^21+1475775756906330304483*x^20-28035184228868672812073*x^19+1560823005477931383626*x^18+237072993105212121938140*x^17-103503317697896126883514*x^16-1237438909696340480655999*x^15+770525756400530247147874*x^14+4122334522485331811803308*x^13-2897195749860496993642354*x^12-8745128572084529792684606*x^11+6227461030792132516056658*x^10+11433275292592565772717993*x^9-7578979953760589139619913*x^8-8630596370153056831700330*x^7+4759437660665394825967264*x^6+3409522206682706453698665*x^5-1226450440444384184278991*x^4-585139677617614513410642*x^3+53568391612101944315460*x^2+15586566785267307267224*x-1107141608698940380325,9552504563735841528*x^24-46741300221042739104*x^23-290070724613869087152*x^22+1634618867088163182372*x^21+3522843256748037721512*x^20-24494243095631919765468*x^19-20881048342052185795800*x^18+206014148084871800271960*x^17+50093649597186332694672*x^16-1069176901983695051040648*x^15+88074075291459273982248*x^14+3540646013725608564997200*x^13-916941629725793892275136*x^12-7465225033972140102112800*x^11+2554574548836204257886168*x^10+9695736983729547045413424*x^9-3453214068273474930022392*x^8-7254939403334971766257104*x^7+2231665074263474598553956*x^6+2816466623028486453957888*x^5-539175362208705359172348*x^4-465746526452805150198408*x^3+6776599355396588204352*x^2+13071115507017096719088*x-493047107988057692952,-24779293463523497226*x^24+86967250230814192914*x^23+773105359093304947608*x^22-2981425350547659858360*x^21-9771057434116753313874*x^20+43648364491578357757002*x^19+62043857694698481038616*x^18-357433691996762818289364*x^17-180304082028170838319944*x^16+1800447340422746612110314*x^15-62621486450892985960224*x^14-5776162807128855208947252*x^13+2184561012086262933794136*x^12+11816351029270804879546512*x^11-7015072964703557256478608*x^10-15031653691344281080283466*x^9+10455760941249349213357506*x^8+11313664006167162396005580*x^7-7463359988522465501341116*x^6-4673448743146183809499362*x^5+2101007494652391666896298*x^4+901697937205400599643580*x^3-91766907922847281382928*x^2-30453103714277980647264*x+912338476145360072274,-36177815105259528678*x^24+59820674865383149554*x^23+1280436366691266686868*x^22-2018530694977022778456*x^21-19457533913813151126438*x^20+28939456127639951990070*x^19+166339208973347717870592*x^18-230405455627348081113564*x^17-879693640289414454998652*x^16+1116456885957633460989474*x^15+2977157973056672869647120*x^14-3389953212089152649786928*x^13-6437103850980258139183908*x^12+6391541194728513923776392*x^11+8614410304451459537475948*x^10-7147926250451803466552490*x^9-6699689423619682861608786*x^8+4300568105117292254761788*x^7+2758149237661760894664444*x^6-1135623809958736068027954*x^5-505269273970369355867910*x^4+74525858028590969037372*x^3+18629649271167229458492*x^2-2639518161891386476824*x+89960229662150329830,7627486912663294120*x^24-80484435344119297224*x^23-147406583712106980412*x^22+2818055377409211245864*x^21-46636309189195721156*x^20-42313729621265647650980*x^19+24664062274174689443060*x^18+357084590555908506530164*x^17-292666155285255957270676*x^16-1863331602111083162384664*x^15+1704794228764273674613984*x^14+6225357218049782903900952*x^13-5782869020417781352764520*x^12-13318546322234325081303896*x^11+11767378710186495903455284*x^10+17733430697728474390752432*x^9-13891074084611630262534080*x^8-13869578505614069866554644*x^7+8599273322851789198810768*x^6+5826646888738114336961784*x^5-2207282347090196803717532*x^4-1092517024976678321278212*x^3+92465493560497526527908*x^2+33351367408007883080828*x-2033358941054651609240,-20656122621443916009*x^24+56102306789338599069*x^23+702614642993399441838*x^22-1937248576802814329316*x^21-10163403087184545719697*x^20+28584325998525978285687*x^19+81666538812069075141450*x^18-235937834953535155758060*x^17-398896792231382145180642*x^16+1196711136442701712407141*x^15+1214629770897000607152846*x^14-3853078444648939272060336*x^13-2262473675864367005641302*x^12+7845190932591263786126262*x^11+2399246064583515596527782*x^10-9743531311946861188987659*x^9-1212907087019229033865917*x^8+6854549700208727094677094*x^7+161991322759102075472448*x^6-2414929789883284126292055*x^5+18026589344959554412605*x^4+341722060519253556151206*x^3+4426731865111884475248*x^2-11817981168733925847252*x+391218127580372197875,10088731771918732783*x^24-21616562782033321299*x^23-343045267349524985710*x^22+738344524204162844024*x^21+4927859321158487030575*x^20-10747389737172475134653*x^19-38820207145952515638022*x^18+87234906594753764543680*x^17+181095706637890375618478*x^16-433580255005066698277611*x^15-496337527239912689305814*x^14+1363514905593544523512248*x^13+700635874330235428968638*x^12-2708039292798004461219422*x^11-163239249266927019193334*x^10+3297238121450963482814337*x^9-853923880879259358561353*x^8-2325913723330506602673458*x^7+1001538489322784272792432*x^6+876169468878099654580293*x^5-357776686261434961550267*x^4-152822512529780284106586*x^3+28278074000649534298524*x^2+5521679185348947856352*x-1399986475995373000193]];
E[439,2] = [x^9+x^8-12*x^7-6*x^6+49*x^5-x^4-72*x^3+30*x^2+18*x-9, [9,9*x,x^8+x^7-15*x^6-9*x^5+76*x^4+17*x^3-138*x^2+6*x+45,9*x^2-18,-7*x^8-10*x^7+84*x^6+81*x^5-343*x^4-158*x^3+501*x^2+30*x-144,-3*x^7-3*x^6+27*x^5+18*x^4-66*x^3-24*x^2+27*x+9,3*x^8+6*x^7-33*x^6-54*x^5+120*x^4+135*x^3-156*x^2-90*x+45,9*x^3-36*x,12*x^8+21*x^7-126*x^6-162*x^5+444*x^4+294*x^3-576*x^2-54*x+126,-3*x^8+39*x^6-165*x^4-3*x^3+240*x^2-18*x-63,8*x^8+14*x^7-87*x^6-108*x^5+320*x^4+187*x^3-426*x^2-6*x+72,-5*x^8-5*x^7+57*x^6+36*x^5-218*x^4-58*x^3+303*x^2-3*x-90,12*x^8+15*x^7-141*x^6-117*x^5+561*x^4+216*x^3-804*x^2-36*x+216,3*x^8+3*x^7-36*x^6-27*x^5+138*x^4+60*x^3-180*x^2-9*x+27,-18*x^8-33*x^7+192*x^6+261*x^5-702*x^4-492*x^3+987*x^2+90*x-270,9*x^4-54*x^2+36,-28*x^8-49*x^7+300*x^6+387*x^5-1093*x^4-740*x^3+1500*x^2+174*x-414,9*x^8+18*x^7-90*x^6-144*x^5+306*x^4+288*x^3-414*x^2-90*x+108,-6*x^8-6*x^7+81*x^6+54*x^5-357*x^4-111*x^3+531*x^2-9*x-126,17*x^8+23*x^7-186*x^6-180*x^5+680*x^4+340*x^3-930*x^2-69*x+261,-6*x^8-6*x^7+72*x^6+45*x^5-285*x^4-66*x^3+396*x^2-27*x-108,6*x^8+9*x^7-60*x^6-72*x^5+195*x^4+150*x^3-246*x^2-72*x+72,-7*x^8-10*x^7+84*x^6+90*x^5-334*x^4-221*x^3+465*x^2+120*x-144,3*x^7+12*x^6-27*x^5-99*x^4+75*x^3+195*x^2-54*x-63,21*x^8+33*x^7-240*x^6-261*x^5+939*x^4+486*x^3-1344*x^2-63*x+342,3*x^8+3*x^7-45*x^6-27*x^5+228*x^4+60*x^3-396*x^2+108,-4*x^8-7*x^7+48*x^6+54*x^5-205*x^4-89*x^3+339*x^2+3*x-117,-6*x^8-12*x^7+57*x^6+99*x^5-177*x^4-234*x^3+213*x^2+153*x-63,-38*x^8-71*x^7+384*x^6+549*x^5-1304*x^4-1021*x^3+1686*x^2+240*x-423,-15*x^8-24*x^7+153*x^6+180*x^5-510*x^4-309*x^3+630*x^2+54*x-162,-9*x^8-24*x^7+75*x^6+189*x^5-189*x^4-375*x^3+195*x^2+162*x-72,9*x^5-72*x^3+108*x,9*x^2+9*x-18,-21*x^8-36*x^7+219*x^6+279*x^5-768*x^4-516*x^3+1014*x^2+90*x-252,30*x^8+48*x^7-324*x^6-369*x^5+1191*x^4+663*x^3-1638*x^2-72*x+405,-15*x^8-24*x^7+162*x^6+189*x^5-591*x^4-354*x^3+792*x^2+54*x-171,39*x^8+75*x^7-405*x^6-594*x^5+1416*x^4+1140*x^3-1845*x^2-279*x+423,9*x^7+18*x^6-63*x^5-117*x^4+99*x^3+171*x^2-18*x-54,31*x^8+58*x^7-321*x^6-459*x^5+1123*x^4+878*x^3-1506*x^2-183*x+396,12*x^8+18*x^7-156*x^6-153*x^5+687*x^4+300*x^3-1059*x^2-9*x+279,49*x^8+88*x^7-516*x^6-702*x^5+1834*x^4+1385*x^3-2463*x^2-399*x+630,9*x^6+9*x^5-72*x^4-36*x^3+153*x^2-54,-9*x^8-30*x^7+69*x^6+234*x^5-162*x^4-453*x^3+174*x^2+162*x-27,-13*x^8-16*x^7+138*x^6+117*x^5-484*x^4-188*x^3+600*x^2-24*x-90,4*x^8+10*x^7-45*x^6-90*x^5+178*x^4+218*x^3-270*x^2-102*x+81,-3*x^8+48*x^6+9*x^5-228*x^4-39*x^3+330*x^2-18*x-63,36*x^8+63*x^7-369*x^6-477*x^5+1269*x^4+819*x^3-1647*x^2-45*x+378,13*x^8+22*x^7-141*x^6-171*x^5+511*x^4+311*x^3-660*x^2-57*x+180,-27*x^8-45*x^7+288*x^6+351*x^5-1026*x^4-639*x^3+1323*x^2+81*x-279,12*x^8+12*x^7-135*x^6-90*x^5+507*x^4+168*x^3-693*x^2-36*x+189,-21*x^8-27*x^7+255*x^6+216*x^5-1056*x^4-399*x^3+1590*x^2+18*x-459,-24*x^8-39*x^7+273*x^6+315*x^5-1059*x^4-612*x^3+1518*x^2+126*x-405,-2*x^8+x^7+33*x^6-9*x^5-152*x^4+50*x^3+183*x^2-102*x+9,-3*x^8+30*x^6-9*x^5-93*x^4+51*x^3+123*x^2-45*x-36,9*x^8+15*x^7-102*x^6-126*x^5+396*x^4+285*x^3-573*x^2-135*x+189,-12*x^8-21*x^7+135*x^6+171*x^5-516*x^4-339*x^3+693*x^2+63*x-108,-20*x^8-38*x^7+201*x^6+288*x^5-683*x^4-511*x^3+888*x^2+96*x-225,-33*x^8-72*x^7+321*x^6+558*x^5-1059*x^4-1050*x^3+1380*x^2+261*x-342,-32*x^8-56*x^7+330*x^6+432*x^5-1145*x^4-793*x^3+1497*x^2+168*x-342,27*x^8+39*x^7-294*x^6-297*x^5+1080*x^4+534*x^3-1470*x^2-72*x+405,48*x^8+69*x^7-546*x^6-540*x^5+2091*x^4+972*x^3-2883*x^2-63*x+693,-15*x^8-33*x^7+135*x^6+252*x^5-384*x^4-453*x^3+432*x^2+90*x-81,-27*x^8-48*x^7+294*x^6+396*x^5-1089*x^4-840*x^3+1515*x^2+324*x-423,9*x^6-90*x^4+216*x^2-72,-31*x^8-52*x^7+327*x^6+396*x^5-1168*x^4-701*x^3+1572*x^2+93*x-441,9*x^3+9*x^2-18*x,-6*x^8-3*x^7+84*x^6+9*x^5-393*x^4+72*x^3+636*x^2-171*x-180,41*x^8+65*x^7-447*x^6-513*x^5+1649*x^4+982*x^3-2280*x^2-222*x+639,-6*x^8-15*x^7+54*x^6+117*x^5-168*x^4-228*x^3+243*x^2+81*x-72,18*x^8+36*x^7-189*x^6-279*x^5+693*x^4+522*x^3-972*x^2-135*x+270,13*x^8+34*x^7-111*x^6-270*x^5+304*x^4+557*x^3-384*x^2-264*x+144,-27*x^8-54*x^7+279*x^6+432*x^5-981*x^4-864*x^3+1332*x^2+279*x-351,12*x^8+36*x^7-102*x^6-288*x^5+282*x^4+579*x^3-366*x^2-225*x+171]];
E[439,3] = [x^2-x-1, [1,-1,x,-1,-x+1,-x,-2,3,x-2,x-1,-2*x+2,-x,-3*x,2,-1,-1,4*x-4,-x+2,2*x-6,x-1,-2*x,2*x-2,-3*x+1,3*x,-x-3,3*x,-4*x+1,2,-x-3,1,3*x,-5,-2,-4*x+4,2*x-2,-x+2,8*x-4,-2*x+6,-3*x-3,-3*x+3,-2*x,2*x,3*x-1,2*x-2,2*x-3,3*x-1,x-3,-x,-3,x+3,4,3*x,3*x-8,4*x-1,-2*x+4,-6,-4*x+2,x+3,-5*x-5,1,7*x,-3*x,-2*x+4,7,3,2,-7*x+4,-4*x+4,-2*x-3,-2*x+2,4*x,3*x-6,-13*x+8]];

E[440,1] = [x, [1,0,3,0,1,0,1,0,6,0,-1,0,-6,0,3,0,3,0,-5,0,3,0,-2,0,1,0,9,0,-5,0,5,0,-3,0,1,0,-1,0,-18,0,-2,0,12,0,6,0,-2,0,-6,0,9,0,-13,0,-1,0,-15,0,2,0,1,0,6,0,-6,0,16,0,-6,0,15,0,10,0,3,0,-1,0,2,0,9,0,-14,0,3,0,-15,0,9,0,-6,0,15,0,-5,0,-16,0,-6,0,-10,0,-16,0,3,0,-4,0,10,0,-3,0,-16,0,-2,0,-36,0,3,0,1,0,-6,0,1,0,-8,0,36,0,7,0,-5,0,9,0,12,0,-4,0,-6,0,6,0]];
E[440,2] = [x^2+x-4, [1,0,x,0,1,0,x,0,-x+1,0,1,0,2,0,x,0,x+2,0,-x,0,-x+4,0,-2*x,0,1,0,-x-4,0,-3*x+2,0,-x+4,0,x,0,x,0,3*x+2,0,2*x,0,2,0,-4*x,0,-x+1,0,2*x-8,0,-x-3,0,x+4,0,-x+2,0,1,0,x-4,0,-2*x-4,0,3*x+10,0,2*x-4,0,2,0,-4*x-4,0,2*x-8,0,-3*x-4,0,-2,0,x,0,x,0,6*x,0,-7,0,-2*x,0,x+2,0,5*x-12,0,x-10,0,2*x,0,5*x-4,0,-x,0,-2*x+2,0,-x+1,0,4*x+6,0,-4*x,0,-x+4,0,-16,0,-8*x-2,0,-x+12,0,2*x-14,0,-2*x,0,-2*x+2,0,x+4,0,1,0,2*x,0,1,0,-4*x+4,0,4*x-16,0,3*x,0,x-4,0,-x-4,0,-10*x-6,0,12,0,-10*x+8,0,2,0]];
E[440,3] = [x^2-5*x+2, [1,0,x-2,0,-1,0,x,0,x-1,0,-1,0,-2*x+8,0,-x+2,0,-3*x+6,0,-x+6,0,3*x-2,0,2*x-8,0,1,0,-x+6,0,x+4,0,x-6,0,-x+2,0,-x,0,-x+12,0,2*x-12,0,-4*x+6,0,-2*x+6,0,-x+1,0,-6*x+16,0,5*x-9,0,-3*x-6,0,3*x-4,0,1,0,3*x-10,0,2*x-8,0,-x-8,0,4*x-2,0,2*x-8,0,0,0,-2*x+12,0,3*x-10,0,2*x-8,0,x-2,0,-x,0,-6*x+16,0,-7,0,-6,0,3*x-6,0,7*x-10,0,3*x-4,0,-2*x+4,0,-3*x+10,0,x-6,0,2*x-14,0,-x+1,0,-2,0,0,0,-3*x+2,0,2*x-2,0,-4*x+14,0,9*x-22,0,-2*x+10,0,-2*x+8,0,-4,0,-9*x+6,0,1,0,-6*x-4,0,-1,0,-2*x+14,0,-8,0,-5*x+6,0,x+2,0,x-6,0,-2*x+2,0,-4,0,-2*x-20,0,2*x-8,0]];
E[440,4] = [x^2-3*x-2, [1,0,-x+2,0,-1,0,x,0,-x+3,0,1,0,-2*x+4,0,x-2,0,x+2,0,-x+6,0,-x-2,0,2*x,0,1,0,x+2,0,x-4,0,3*x-2,0,-x+2,0,-x,0,5*x-8,0,-2*x+12,0,-10,0,2*x-2,0,x-3,0,-2*x,0,3*x-5,0,-3*x+2,0,x-8,0,-1,0,-5*x+14,0,-6*x+8,0,-x,0,-2,0,2*x-4,0,0,0,-2*x-4,0,x-6,0,-2*x+12,0,-x+2,0,x,0,-2*x+8,0,-7,0,10,0,-x-2,0,3*x-10,0,5*x-8,0,-2*x-4,0,-x-10,0,x-6,0,2*x+10,0,-x+3,0,-4*x-2,0,-4*x,0,x+2,0,2*x-2,0,-2,0,3*x-26,0,2*x-6,0,-2*x,0,-4*x+16,0,5*x+2,0,1,0,10*x-20,0,-1,0,-6*x+14,0,-8,0,3*x-10,0,3*x-2,0,-x-2,0,-6*x+2,0,8*x-12,0,2*x+4,0,-2*x+4,0]];
E[440,5] = [x, [1,0,0,0,1,0,4,0,-3,0,-1,0,6,0,0,0,-6,0,4,0,0,0,4,0,1,0,0,0,-2,0,8,0,0,0,4,0,-10,0,0,0,10,0,0,0,-3,0,4,0,9,0,0,0,-10,0,-1,0,0,0,-4,0,-2,0,-12,0,6,0,-8,0,0,0,0,0,-14,0,0,0,-4,0,-16,0,9,0,-8,0,-6,0,0,0,-6,0,24,0,0,0,4,0,2,0,3,0,-10,0,20,0,0,0,8,0,-2,0,0,0,2,0,4,0,-18,0,-24,0,1,0,0,0,1,0,-20,0,0,0,-20,0,16,0,0,0,-6,0,-4,0,0,0,-6,0]];
E[440,6] = [x, [1,0,0,0,-1,0,-2,0,-3,0,1,0,-4,0,0,0,-4,0,0,0,0,0,0,0,1,0,0,0,-6,0,0,0,0,0,2,0,-2,0,0,0,6,0,2,0,3,0,0,0,-3,0,0,0,-10,0,-1,0,0,0,12,0,-6,0,6,0,4,0,-12,0,0,0,16,0,4,0,0,0,-2,0,-4,0,9,0,2,0,4,0,0,0,6,0,8,0,0,0,0,0,-2,0,-3,0,6,0,4,0,0,0,-6,0,-10,0,0,0,14,0,0,0,12,0,8,0,1,0,0,0,-1,0,-22,0,0,0,8,0,0,0,0,0,6,0,-12,0,0,0,-4,0]];
E[440,7] = [x, [1,0,0,0,-1,0,-2,0,-3,0,-1,0,0,0,0,0,0,0,-8,0,0,0,-8,0,1,0,0,0,10,0,8,0,0,0,2,0,-10,0,0,0,-2,0,-6,0,3,0,-8,0,-3,0,0,0,14,0,1,0,0,0,-4,0,10,0,6,0,0,0,4,0,0,0,0,0,-8,0,0,0,2,0,-4,0,9,0,10,0,0,0,0,0,6,0,0,0,0,0,8,0,-10,0,3,0,14,0,-4,0,0,0,2,0,-2,0,0,0,-10,0,8,0,0,0,0,0,1,0,0,0,-1,0,10,0,0,0,16,0,16,0,0,0,-18,0,-4,0,0,0,0,0]];

E[441,1] = [x, [1,1,0,-1,-2,0,0,-3,0,-2,-4,0,2,0,0,-1,-6,0,-4,2,0,-4,0,0,-1,2,0,0,2,0,0,5,0,-6,0,0,6,-4,0,6,2,0,-4,4,0,0,0,0,0,-1,0,-2,-6,0,8,0,0,2,12,0,2,0,0,7,-4,0,4,6,0,0,0,0,6,6,0,4,0,0,-16,2,0,2,-12,0,12,-4,0,12,-14,0,0,0,0,0,8,0,-18,0,0,1,14,0,-8,-6,0,-6,-4,0,-18,8,0,0]];
E[441,2] = [x, [1,-1,0,-1,0,0,0,3,0,0,-4,0,0,0,0,-1,0,0,0,0,0,4,-8,0,-5,0,0,0,-2,0,0,-5,0,0,0,0,-6,0,0,0,0,0,-12,4,0,8,0,0,0,5,0,0,10,0,0,0,0,2,0,0,0,0,0,7,0,0,4,0,0,0,-16,0,0,6,0,0,0,0,8,0,0,0,0,0,0,12,0,-12,0,0,0,8,0,0,0,0,0,0,0,5,0,0,0,0,0,-10,20,0,18,0,0,0]];
E[441,3] = [x^2-3, [1,x,0,1,2*x,0,0,-x,0,6,2*x,0,-2,0,0,-5,-2*x,0,4,2*x,0,6,-2*x,0,7,-2*x,0,0,0,0,4,-3*x,0,-6,0,0,2,4*x,0,-6,-6*x,0,-4,2*x,0,-6,-4*x,0,0,7*x,0,-2,-4*x,0,12,0,0,0,4*x,0,10,4*x,0,1,-4*x,0,-4,-2*x,0,0,-6*x,0,-14,2*x,0,4,0,0,8,-10*x,0,-18,0,0,-12,-4*x,0,-6,2*x,0,0,-2*x,0,-12,8*x,0,-14,0,0,7,-2*x,0,4,2*x,0,-12,10*x,0,2,12*x,0,0]];
E[441,4] = [x^2-7, [1,x,0,5,0,0,0,3*x,0,0,-2*x,0,0,0,0,11,0,0,0,0,0,-14,2*x,0,-5,0,0,0,-4*x,0,0,5*x,0,0,0,0,6,0,0,0,0,0,12,-10*x,0,14,0,0,0,-5*x,0,0,-4*x,0,0,0,0,-28,0,0,0,0,0,13,0,0,4,0,0,0,-2*x,0,0,6*x,0,0,0,0,8,0,0,0,0,0,0,12*x,0,-42,0,0,0,10*x,0,0,0,0,0,0,0,-25,0,0,0,0,0,-28,-2*x,0,-18,0,0,0]];
E[441,5] = [x, [1,-2,0,2,-2,0,0,0,0,4,2,0,-1,0,0,-4,0,0,-1,-4,0,-4,0,0,-1,2,0,0,-4,0,-9,8,0,0,0,0,3,2,0,0,-10,0,5,4,0,0,-6,0,0,2,0,-2,-12,0,-4,0,0,8,-12,0,-10,18,0,-8,2,0,-5,0,0,0,6,0,3,-6,0,-2,0,0,-1,8,0,20,6,0,0,-10,0,0,16,0,0,0,0,12,2,0,6,0,0,-2,2,0,7,0,0,24,8,0,9,8,0,0]];
E[441,6] = [x, [1,-2,0,2,2,0,0,0,0,-4,2,0,1,0,0,-4,0,0,1,4,0,-4,0,0,-1,-2,0,0,-4,0,9,8,0,0,0,0,3,-2,0,0,10,0,5,4,0,0,6,0,0,2,0,2,-12,0,4,0,0,8,12,0,10,-18,0,-8,2,0,-5,0,0,0,6,0,-3,-6,0,2,0,0,-1,-8,0,-20,-6,0,0,-10,0,0,-16,0,0,0,0,-12,2,0,-6,0,0,-2,-2,0,-7,0,0,24,8,0,9,-8,0,0]];
E[441,7] = [x^2-4*x+2, [1,-x+3,0,-2*x+5,x,0,0,-x+5,0,-x+2,2,0,x-6,0,0,3,-3*x+8,0,2*x-4,-3*x+4,0,-2*x+6,4*x-6,0,4*x-7,5*x-16,0,0,2*x,0,-2*x+8,-x-1,0,-5*x+18,0,0,-4,2*x-8,0,x+2,3*x-4,0,4*x-8,-4*x+10,0,2*x-10,-2*x+4,0,0,3*x-13,0,9*x-26,2,0,2*x,0,0,-2*x+4,2*x-8,0,-3*x-2,-6*x+20,0,2*x-11,-2*x-2,0,-4*x+8,-7*x+28,0,0,-8*x+18,0,-7*x+10,4*x-12,0,2*x-12,0,0,4*x,3*x,0,x-6,8*x-20,0,-4*x+6,4*x-16,0,-2*x+10,-3*x-4,0,0,-14,0,-2*x+8,4*x-4,0,x-6,0,0,2*x-19,-5*x+20,0,-6*x+16,7*x-28,0,-2*x+6,-4*x+14,0,-4*x+8,-2*x+4,0,0]];
E[441,8] = [x^2+4*x+2, [1,x+3,0,2*x+5,x,0,0,x+5,0,-x-2,2,0,x+6,0,0,3,-3*x-8,0,2*x+4,-3*x-4,0,2*x+6,-4*x-6,0,-4*x-7,5*x+16,0,0,-2*x,0,-2*x-8,x-1,0,-5*x-18,0,0,-4,2*x+8,0,x-2,3*x+4,0,-4*x-8,4*x+10,0,-2*x-10,-2*x-4,0,0,-3*x-13,0,9*x+26,2,0,2*x,0,0,2*x+4,2*x+8,0,-3*x+2,-6*x-20,0,-2*x-11,2*x-2,0,4*x+8,-7*x-28,0,0,8*x+18,0,-7*x-10,-4*x-12,0,2*x+12,0,0,-4*x,3*x,0,x+6,8*x+20,0,4*x+6,-4*x-16,0,2*x+10,-3*x+4,0,0,-14,0,-2*x-8,-4*x-4,0,x+6,0,0,-2*x-19,-5*x-20,0,-6*x-16,7*x+28,0,2*x+6,4*x+14,0,4*x+8,-2*x-4,0,0]];
E[441,9] = [x, [1,0,0,-2,0,0,0,0,0,0,0,0,7,0,0,4,0,0,7,0,0,0,0,0,-5,0,0,0,0,0,7,0,0,0,0,0,-1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,-14,0,0,0,0,0,0,0,0,-14,0,0,-8,0,0,11,0,0,0,0,0,7,0,0,-14,0,0,-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-14,0,0,10,0,0,7,0,0,0,0,0,17,0,0,0]];
E[441,10] = [x, [1,0,0,-2,0,0,0,0,0,0,0,0,-7,0,0,4,0,0,-7,0,0,0,0,0,-5,0,0,0,0,0,-7,0,0,0,0,0,-1,0,0,0,0,0,5,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,14,0,0,-8,0,0,11,0,0,0,0,0,-7,0,0,14,0,0,-13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,0,0,10,0,0,-7,0,0,0,0,0,17,0,0,0]];

E[442,1] = [x^3-2*x^2-6*x+8, [1,1,x,1,-x+2,x,0,1,x^2-3,-x+2,-x^2+4,x,1,0,-x^2+2*x,1,1,x^2-3,-x^2+4,-x+2,0,-x^2+4,x^2-x-4,x,x^2-4*x-1,1,2*x^2-8,0,x^2-2,-x^2+2*x,-2*x,1,-2*x^2-2*x+8,1,0,x^2-3,-x+2,-x^2+4,x,-x+2,x^2+3*x-10,0,-2*x^2+2*x+4,-x^2+4,-3*x+2,x^2-x-4,x^2+2*x-8,x,-7,x^2-4*x-1,x,1,-3*x^2+2*x+14,2*x^2-8,2*x,0,-2*x^2-2*x+8,x^2-2,x^2-4*x-4,-x^2+2*x,-x^2+2*x+6,-2*x,0,1,-x+2,-2*x^2-2*x+8,2*x^2-12,1,x^2+2*x-8,0,4*x,x^2-3,x^2-3*x-2,-x+2,-2*x^2+5*x-8,-x^2+4,0,x,3*x^2-x-12,-x+2,x^2+4*x-7,x^2+3*x-10,2*x^2-12,0,-x+2,-2*x^2+2*x+4,2*x^2+4*x-8,-x^2+4,2*x+2,-3*x+2,0,x^2-x-4,-2*x^2,x^2+2*x-8,2*x,x,-x^2+x+6,-7,-3*x^2-4*x+4,x^2-4*x-1,-x^2+2*x-2,x,-2*x,1,0,-3*x^2+2*x+14,-4*x^2+3*x+16,2*x^2-8,3*x-6,2*x,-x^2+2*x,0,-2*x+10,-2*x^2-2*x+8,x^2-4*x,x^2-2,x^2-3,x^2-4*x-4,0,-x^2+2*x,2*x^2+4*x-11,-x^2+2*x+6,5*x^2-4*x-8,-2*x,4*x^2-8*x-4,0]];
E[442,2] = [x, [1,1,2,1,4,2,-4,1,1,4,-2,2,-1,-4,8,1,-1,1,-4,4,-8,-2,-4,2,11,-1,-4,-4,-8,8,4,1,-4,-1,-16,1,8,-4,-2,4,10,-8,0,-2,4,-4,8,2,9,11,-2,-1,2,-4,-8,-4,-8,-8,0,8,12,4,-4,1,-4,-4,8,-1,-8,-16,0,1,-10,8,22,-4,8,-2,-4,4,-11,10,0,-8,-4,0,-16,-2,-14,4,4,-4,8,8,-16,2,-6,9,-2,11,-6,-2,-8,-1,-32,2,6,-4,4,-8,16,-4,2,-8,-16,-8,-1,0,4,8,-7,12,20,4,24,-4]];
E[442,3] = [x, [1,1,2,1,-2,2,2,1,1,-2,4,2,-1,2,-4,1,-1,1,-4,-2,4,4,8,2,-1,-1,-4,2,-8,-4,10,1,8,-1,-4,1,-10,-4,-2,-2,-8,4,-12,4,-2,8,8,2,-3,-1,-2,-1,2,-4,-8,2,-8,-8,12,-4,0,10,2,1,2,8,-4,-1,16,-4,-6,1,-4,-10,-2,-4,8,-2,-4,-2,-11,-8,12,4,2,-12,-16,4,-2,-2,-2,8,20,8,8,2,12,-3,4,-1,18,-2,16,-1,-8,2,-6,-4,-2,-8,-20,2,-10,-8,-16,-8,-1,12,-2,-4,5,0,-16,10,12,2]];
E[442,4] = [x, [1,1,0,1,2,0,4,1,-3,2,-2,0,-1,4,0,1,-1,-3,0,2,0,-2,2,0,-1,-1,0,4,8,0,-8,1,0,-1,8,-3,-6,0,0,2,12,0,4,-2,-6,2,-8,0,9,-1,0,-1,-6,0,-4,4,0,8,-4,0,-8,-8,-12,1,-2,0,-8,-1,0,8,-8,-3,8,-6,0,0,-8,0,-10,2,9,12,0,0,-2,4,0,-2,6,-6,-4,2,0,-8,0,0,-16,9,6,-1,10,0,4,-1,0,-6,-16,0,10,-4,0,4,14,0,4,8,3,-4,-4,0,-7,-8,0,-8,-12,-12]];
E[442,5] = [x, [1,1,0,1,-4,0,-2,1,-3,-4,-2,0,-1,-2,0,1,1,-3,0,-4,0,-2,-4,0,11,-1,0,-2,2,0,-2,1,0,1,8,-3,0,0,0,-4,0,0,4,-2,12,-4,-8,0,-3,11,0,-1,-6,0,8,-2,0,2,8,0,-2,-2,6,1,4,0,16,1,0,8,-14,-3,-16,0,0,0,4,0,8,-4,9,0,-12,0,-4,4,0,-2,-18,12,2,-4,0,-8,0,0,-4,-3,6,11,-2,0,16,-1,0,-6,-4,0,4,8,0,-2,14,0,16,2,3,8,-2,0,-7,-2,0,-2,-24,6]];
E[442,6] = [x, [1,-1,2,1,2,-2,2,-1,1,-2,2,2,-1,-2,4,1,1,-1,-4,2,4,-2,-2,-2,-1,1,-4,2,2,-4,-2,-1,4,-1,4,1,2,4,-2,-2,2,-4,0,2,2,2,4,2,-3,1,2,-1,-2,4,4,-2,-8,-2,12,4,-6,2,2,1,-2,-4,8,1,-4,-4,6,-1,2,-2,-2,-4,4,2,-10,2,-11,-2,-12,4,2,0,4,-2,14,-2,-2,-2,-4,-4,-8,-2,-6,3,2,-1,-6,-2,-8,1,8,2,-6,-4,-14,-4,4,2,-14,8,-4,2,-1,-12,2,-4,-7,6,4,-2,-12,-2]];
E[442,7] = [x^2+4*x+2, [1,-1,x,1,-x-2,-x,2*x+4,-1,-4*x-5,x+2,-2*x-6,x,1,-2*x-4,2*x+2,1,1,4*x+5,2,-x-2,-4*x-4,2*x+6,-x-6,-x,-3,-1,8*x+8,2*x+4,-8,-2*x-2,-4,-1,2*x+4,-1,-4,-4*x-5,-x-6,-2,x,x+2,3*x+4,4*x+4,-6*x-16,-2*x-6,-3*x+2,x+6,-2*x-2,x,1,3,x,1,6*x+8,-8*x-8,2*x+8,-2*x-4,2*x,8,8*x+14,2*x+2,-2*x-4,4,6*x-4,1,-x-2,-2*x-4,0,1,-2*x+2,4,-6*x-4,4*x+5,x+8,x+6,-3*x,2,-4*x-16,-x,-x+2,-x-2,-12*x-1,-3*x-4,-16,-4*x-4,-x-2,6*x+16,-8*x,2*x+6,2*x+6,3*x-2,2*x+4,-x-6,-4*x,2*x+2,-2*x-4,-x,9*x+16,-1,2*x+14,-3,10*x+20,-x,-6*x-12,-1,-4*x,-6*x-8,-x-8,8*x+8,-5*x-2,-2*x-8,-2*x+2,2*x+4,10*x+26,-2*x,4*x+10,-8,-4*x-5,-8*x-14,2*x+4,-2*x-2,8*x+17,2*x+4,-8*x-6,-4,8*x+16,-6*x+4]];
E[442,8] = [x^3+2*x^2-4*x-4, [1,-1,x,1,-x^2-x+2,-x,x^2-4,-1,x^2-3,x^2+x-2,-2*x-2,x,-1,-x^2+4,x^2-2*x-4,1,-1,-x^2+3,-x^2,-x^2-x+2,-2*x^2+4,2*x+2,x^2+3*x-6,-x,x^2-1,1,-2*x^2-2*x+4,x^2-4,-x^2-2*x+4,-x^2+2*x+4,x^2+2*x,-1,-2*x^2-2*x,1,4*x-4,x^2-3,x^2+x-2,x^2,-x,x^2+x-2,2*x^2+3*x-8,2*x^2-4,2*x^2+6*x-4,-2*x-2,-x^2+3*x-2,-x^2-3*x+6,x^2+2*x-12,x,-4*x+1,-x^2+1,-x,-1,-3*x^2-2*x+6,2*x^2+2*x-4,6*x+4,-x^2+4,2*x^2-4*x-4,x^2+2*x-4,-x^2-4*x-4,x^2-2*x-4,-x^2-4*x+4,-x^2-2*x,x^2-4*x+4,1,x^2+x-2,2*x^2+2*x,-2*x^2-4*x,-1,x^2-2*x+4,-4*x+4,3*x^2+8*x-8,-x^2+3,-2*x^2-x+8,-x^2-x+2,-2*x^2+3*x+4,-x^2,2*x^2,x,-3*x^2-3*x+10,-x^2-x+2,-x^2-4*x+1,-2*x^2-3*x+8,-2*x^2+8,-2*x^2+4,x^2+x-2,-2*x^2-6*x+4,-4,2*x+2,-2*x^2+2*x+10,x^2-3*x+2,-x^2+4,x^2+3*x-6,4*x+4,-x^2-2*x+12,4*x^2-4,-x,-2*x^2+x+12,4*x-1,2*x^2-2*x-2,x^2-1,x^2-2*x-2,x,-2*x^2-2*x+8,1,4*x^2-4*x,3*x^2+2*x-6,2*x^2+3*x-8,-2*x^2-2*x+4,-x^2+3*x+18,-6*x-4,-x^2+2*x+4,x^2-4,2*x^2+2*x-10,-2*x^2+4*x+4,5*x^2-20,-x^2-2*x+4,-x^2+3,x^2+4*x+4,-x^2+4,-x^2+2*x+4,4*x^2+8*x-7,x^2+4*x-4,-x^2+8,x^2+2*x,2*x^2+6*x-8,-x^2+4*x-4]];
E[442,9] = [x^2-2*x-4, [1,-1,x,1,2,-x,-x,-1,2*x+1,-2,-x+2,x,1,x,2*x,1,-1,-2*x-1,2*x,2,-2*x-4,x-2,-x+6,-x,-1,-1,2*x+8,-x,-4,-2*x,-3*x+4,-1,-4,1,-2*x,2*x+1,-4*x+2,-2*x,x,-2,-4*x+4,2*x+4,4,-x+2,4*x+2,x-6,8,x,2*x-3,1,-x,1,10,-2*x-8,-2*x+4,x,4*x+8,4,4,2*x,-12,3*x-4,-5*x-8,1,2,4,2*x-8,-1,4*x-4,2*x,x-4,-2*x-1,-8,4*x-2,-x,2*x,4,-x,-x-6,2,6*x+5,4*x-4,2*x,-2*x-4,-2,-4,-4*x,x-2,-6,-4*x-2,-x,-x+6,-2*x-12,-8,4*x,-x,8*x-8,-2*x+3,-x-6,-1,-2,x,-6*x+12,-1,-4*x-8,-10,-3*x,2*x+8,-4*x+2,2*x-4,-6*x-16,-x,14,-4*x-8,-2*x+12,-4,2*x+1,-4,x,-2*x,-2*x-3,12,-4*x-16,-3*x+4,-12,5*x+8]];

E[443,1] = [x, [1,-1,-2,-1,0,2,1,3,1,0,3,2,3,-1,0,-1,-5,-1,-7,0,-2,-3,-3,-6,-5,-3,4,-1,0,0,7,-5,-6,5,0,-1,-3,7,-6,0,-6,2,-8,-3,0,3,-2,2,-6,5,10,-3,4,-4,0,3,14,0,6,0,-13,-7,1,7,0,6,-8,5,6,0,16,3,-8,3]];
E[443,2] = [x, [1,1,-2,-1,4,-2,-1,-3,1,4,5,2,3,-1,-8,-1,3,1,-1,-4,2,5,3,6,11,3,4,1,4,-8,-7,5,-10,3,-4,-1,-3,-1,-6,-12,10,2,-8,-5,4,3,6,2,-6,11,-6,-3,4,4,20,3,2,4,-10,8,-13,-7,-1,7,12,-10,-8,-3,-6,-4,4,-3,-4,-3]];
E[443,3] = [x^12+3*x^11-13*x^10-39*x^9+64*x^8+181*x^7-159*x^6-357*x^5+226*x^4+264*x^3-156*x^2-20*x+6, [10173,10173*x,-2859*x^11-7221*x^10+36354*x^9+86829*x^8-164967*x^7-356721*x^6+323694*x^5+578376*x^4-267246*x^3-319599*x^2+68826*x+23565,10173*x^2-20346,1928*x^11+5446*x^10-23676*x^9-68382*x^8+101843*x^7+301935*x^6-193308*x^5-552888*x^4+197453*x^3+360922*x^2-126538*x-16482,1356*x^11-813*x^10-24672*x^9+18009*x^8+160758*x^7-130887*x^6-442287*x^5+378888*x^4+435177*x^3-377178*x^2-33615*x+17154,2606*x^11+10126*x^10-25839*x^9-125502*x^8+70319*x^7+546768*x^6-12618*x^5-994170*x^4-88522*x^3+670810*x^2-16183*x-58770,10173*x^3-40692*x,3468*x^11+8994*x^10-42123*x^9-104556*x^8+173292*x^7+399060*x^6-257001*x^5-534699*x^4+18342*x^3+144486*x^2+168714*x+4080,-338*x^11+1388*x^10+6810*x^9-21549*x^8-47033*x^7+113244*x^6+135408*x^5-238275*x^4-148070*x^3+174230*x^2+22078*x-11568,-2324*x^11-6649*x^10+23769*x^9+74196*x^8-67316*x^7-276045*x^6+12330*x^5+390384*x^4+116590*x^3-173890*x^2-59543*x-10314,837*x^11+7398*x^10-1815*x^9-99684*x^8-46389*x^7+486759*x^6+215592*x^5-1028031*x^4-200670*x^3+817119*x^2-93378*x-55266,-1705*x^11-8288*x^10+14247*x^9+104721*x^8-15523*x^7-461043*x^6-104967*x^5+819498*x^4+202298*x^3-485564*x^2-26056*x-24945,2308*x^11+8039*x^10-23868*x^9-96465*x^8+75082*x^7+401736*x^6-63828*x^5-677478*x^4-17174*x^3+390353*x^2-6650*x-15636,3715*x^11+4067*x^10-56490*x^9-39900*x^8+319174*x^7+107367*x^6-803565*x^5-20562*x^4+818311*x^3-116650*x^2-184694*x-39114,10173*x^4-61038*x^2+40692,-1439*x^11-3421*x^10+22251*x^9+51492*x^8-126830*x^7-278262*x^6+331551*x^5+630555*x^4-402674*x^3-504637*x^2+188080*x+32616,-1410*x^11+2961*x^10+30696*x^9-48660*x^8-228648*x^7+294411*x^6+703377*x^5-765426*x^4-771066*x^3+709722*x^2+73440*x-20808,1660*x^11+3296*x^10-22791*x^9-37011*x^8+114934*x^7+125964*x^6-267492*x^5-107358*x^4+296029*x^3-64720*x^2-118784*x+42246,-1454*x^11-8476*x^10+12621*x^9+111363*x^8-29264*x^7-522204*x^6+27675*x^5+1034094*x^4-131444*x^3-752494*x^2+234748*x+34992,-269*x^11-5878*x^10-9930*x^9+71307*x^8+136924*x^7-304815*x^6-554262*x^5+538218*x^4+832159*x^3-307204*x^2-369605*x-50982,323*x^11-6443*x^10-16440*x^9+81420*x^8+144599*x^7-357186*x^6-439284*x^5+641814*x^4+439646*x^3-422087*x^2-56794*x+13944,5849*x^11+14506*x^10-69990*x^9-166179*x^8+282881*x^7+633615*x^6-433023*x^5-908166*x^4+163049*x^3+424012*x^2+99749*x-80088,2175*x^11+10692*x^10-17697*x^9-135975*x^8+13746*x^7+610449*x^6+155352*x^5-1147608*x^4-274203*x^3+791550*x^2+28704*x-39330,-33*x^11-948*x^10-840*x^9+15744*x^8+17289*x^7-91095*x^6-84597*x^5+230610*x^4+128748*x^3-242130*x^2-31614*x+31677,-3173*x^11-7918*x^10+38226*x^9+93597*x^8-152438*x^7-376062*x^6+210813*x^5+587628*x^4-35444*x^3-292036*x^2-59045*x+10230,-6384*x^11-15078*x^10+82575*x^9+178812*x^8-380532*x^7-714291*x^6+734214*x^5+1085985*x^4-475674*x^3-508683*x^2-52764*x+32583,-4097*x^11-14116*x^10+45225*x^9+178374*x^8-156650*x^7-790392*x^6+171714*x^5+1449558*x^4-41915*x^3-988222*x^2+62890*x+103692,-3020*x^11-7222*x^10+34722*x^9+77016*x^8-126242*x^7-245955*x^6+132303*x^5+180606*x^4+56623*x^3+162848*x^2-75239*x-91320,-7078*x^11-8195*x^10+104985*x^9+81414*x^8-565048*x^7-212880*x^6+1305693*x^5-21279*x^4-1097410*x^3+394846*x^2+35186*x-22290,-1659*x^11-9741*x^10+13260*x^9+129324*x^8-14961*x^7-617673*x^6-56097*x^5+1276122*x^4-22485*x^3-1030326*x^2+272337*x+87810,10173*x^5-81384*x^3+122076*x,-2716*x^11+7060*x^10+56949*x^9-110253*x^8-395872*x^7+631449*x^6+1100592*x^5-1567092*x^4-1018441*x^3+1431568*x^2-28159*x-86574,896*x^11+3544*x^10-4629*x^9-34734*x^8-17803*x^7+102750*x^6+116832*x^5-77460*x^4-124741*x^3-36404*x^2+3836*x+8634,-3880*x^11-8807*x^10+52290*x^9+108447*x^8-263248*x^7-471285*x^6+634905*x^5+858249*x^4-795124*x^3-585350*x^2+453890*x+65250,255*x^11-5622*x^10-19404*x^9+70704*x^8+203037*x^7-318933*x^6-754794*x^5+616992*x^4+1045278*x^3-435492*x^2-386436*x+300,-7957*x^11-19574*x^10+100182*x^9+230730*x^8-455038*x^7-933030*x^6+926943*x^5+1512039*x^4-869752*x^3-849740*x^2+312134*x-7167,-1684*x^11-1211*x^10+27729*x^9+8694*x^8-174496*x^7-3552*x^6+485262*x^5-79131*x^4-502960*x^3+140176*x^2+75446*x-9960,14500*x^11+37370*x^10-182409*x^9-452106*x^8+810532*x^7+1879074*x^6-1524525*x^5-3113562*x^4+1156060*x^3+1774097*x^2-249470*x-109605,-3438*x^11-9057*x^10+41037*x^9+106890*x^8-164964*x^7-429999*x^6+244200*x^5+673710*x^4-72498*x^3-340536*x^2-38244*x+31860,-1355*x^11-15805*x^10-5205*x^9+206553*x^8+163021*x^7-961029*x^6-644277*x^5+1898733*x^4+621688*x^3-1419805*x^2+126130*x+92556,-5071*x^11-13427*x^10+60816*x^9+154140*x^8-256126*x^7-597033*x^6+442185*x^5+892953*x^4-236188*x^3-411569*x^2-56362*x+1614,4352*x^11-1679*x^10-84975*x^9+24579*x^8+583493*x^7-138921*x^6-1699656*x^5+367848*x^4+1911206*x^3-383186*x^2-479845*x-22008,-2764*x^11+1057*x^10+46479*x^9-24465*x^8-281017*x^7+164163*x^6+732465*x^5-414120*x^4-740539*x^3+341374*x^2+139490*x+18690,-1513*x^11+5551*x^10+35781*x^9-85836*x^8-271483*x^7+492531*x^6+818199*x^5-1249140*x^4-848272*x^3+1209886*x^2+76496*x-130638,-3041*x^11+6047*x^10+61932*x^9-91455*x^8-425054*x^7+496968*x^6+1179927*x^5-1158825*x^4-1120124*x^3+1012193*x^2+36892*x-35094,2754*x^11+2355*x^10-32553*x^9-3441*x^8+115473*x^7-140286*x^6-49998*x^5+639063*x^4-377394*x^3-723636*x^2+440964*x+54105,2493*x^11-4218*x^10-47520*x^9+73914*x^8+309552*x^7-472341*x^6-802317*x^5+1290309*x^4+618690*x^3-1266234*x^2+190926*x+97482,112*x^11+443*x^10+693*x^9-6885*x^8-34016*x^7+25560*x^6+228237*x^5+15750*x^4-533144*x^3-152059*x^2+412486*x+69747,-849*x^11-1269*x^10+14457*x^9+19401*x^8-85122*x^7-89844*x^6+218829*x^5+136206*x^4-233418*x^3-36762*x^2+31017*x+198,1829*x^11+12775*x^10-5850*x^9-163572*x^8-100615*x^7+730587*x^6+600720*x^5-1325970*x^4-972772*x^3+804427*x^2+368654*x+48030,5011*x^11+13553*x^10-58644*x^9-158808*x^8+229297*x^7+628392*x^6-335199*x^5-957342*x^4+141040*x^3+417095*x^2-1118*x+68928,5066*x^11+25306*x^10-43680*x^9-320688*x^8+81797*x^7+1427898*x^6+46557*x^5-2637054*x^4+99401*x^3+1766734*x^2-426559*x-102552,4074*x^11-417*x^10-70164*x^9+28044*x^8+441213*x^7-280842*x^6-1193103*x^5+967110*x^4+1176693*x^3-1048668*x^2-95097*x+38304,-1698*x^11-2538*x^10+28914*x^9+38802*x^8-180417*x^7-210207*x^6+498696*x^5+465699*x^4-568566*x^3-358368*x^2+204456*x+41088,-6441*x^11-24114*x^10+66327*x^9+298488*x^8-198999*x^7-1283181*x^6+114585*x^5+2238963*x^4+127734*x^3-1356948*x^2+35052*x+55854,-2521*x^11+1564*x^10+49890*x^9-23871*x^8-341740*x^7+150588*x^6+991953*x^5-434628*x^4-1126303*x^3+431914*x^2+290900*x+4614,1838*x^11-4538*x^10-40764*x^9+67038*x^8+300665*x^7-347877*x^6-897534*x^5+739143*x^4+960128*x^3-546359*x^2-151720*x+18120,-543*x^11+123*x^10+7449*x^9-3588*x^8-22557*x^7+27948*x^6-60267*x^5-57285*x^4+337290*x^3-32391*x^2-316734*x+51423,5609*x^11+4837*x^10-81648*x^9-32256*x^8+429890*x^7-34443*x^6-940995*x^5+543342*x^4+626816*x^3-835682*x^2+205538*x+120696,-3406*x^11-1664*x^10+51408*x^9-1167*x^8-282226*x^7+152805*x^6+652386*x^5-705318*x^4-454444*x^3+884737*x^2-231394*x-58662,-4764*x^11-8307*x^10+64623*x^9+91215*x^8-317394*x^7-319878*x^6+683859*x^5+352449*x^4-592350*x^3+13533*x^2+54630*x+9954,10784*x^11+39748*x^10-116388*x^9-504519*x^8+401558*x^7+2273589*x^6-499101*x^5-4322802*x^4+338876*x^3+3036658*x^2-370924*x-170028,10173*x^6-101730*x^4+244152*x^2-81384,-8866*x^11-20717*x^10+116811*x^9+255636*x^8-556816*x^7-1103418*x^6+1201893*x^5+1970430*x^4-1249183*x^3-1267550*x^2+560342*x+53400,15208*x^11+21641*x^10-216177*x^9-222048*x^8+1123045*x^7+668748*x^6-2536704*x^5-404625*x^4+2148592*x^3-451855*x^2-140894*x+16296,-858*x^11+5871*x^10+18852*x^9-99306*x^8-130347*x^7+602046*x^6+313209*x^5-1542333*x^4-50334*x^3+1425927*x^2-394698*x-112314,3734*x^11+13861*x^10-44292*x^9-178131*x^8+194234*x^7+815820*x^6-420690*x^5-1588347*x^4+532400*x^3+1152886*x^2-349606*x-70608,2341*x^11-1186*x^10-43374*x^9+20040*x^8+291772*x^7-107376*x^6-874455*x^5+210942*x^4+1135876*x^3-110146*x^2-493859*x-57486,2833*x^11+1850*x^10-42873*x^9-14928*x^8+230995*x^7+17985*x^6-526911*x^5+81756*x^4+438970*x^3-151390*x^2-12350*x+23280,8515*x^11+14333*x^10-118347*x^9-154764*x^8+603835*x^7+508125*x^6-1386813*x^5-413727*x^4+1380262*x^3-263713*x^2-387950*x+105963,-3567*x^11-22011*x^10+19257*x^9+284037*x^8+92208*x^7-1303071*x^6-698727*x^5+2518500*x^4+1039320*x^3-1766100*x^2-141480*x+40086,9436*x^11+19520*x^10-127272*x^9-221463*x^8+643837*x^7+830940*x^6-1536669*x^5-1150188*x^4+1725823*x^3+452078*x^2-645008*x-41958,4297*x^11-3259*x^10-79593*x^9+54210*x^8+507187*x^7-338220*x^6-1328610*x^5+928530*x^4+1250908*x^3-929158*x^2-166307*x+47742]];
E[443,4] = [x^22-x^21-35*x^20+33*x^19+523*x^18-456*x^17-4360*x^16+3428*x^15+22226*x^14-15227*x^13-71363*x^12+40569*x^11+143034*x^10-62774*x^9-170342*x^8+51992*x^7+107186*x^6-20952*x^5-26926*x^4+5536*x^3+1736*x^2-512*x+32, [2212095231072,2212095231072*x,194653117720*x^21-146264520510*x^20-6824916808190*x^19+4779423817126*x^18+102276756870038*x^17-64862839372318*x^16-856132545884564*x^15+472964535877632*x^14+4388081755893464*x^13-1994820019271268*x^12-14184263152221902*x^11+4840089307767646*x^10+28644144619952830*x^9-6174379376324104*x^8-34336809401774196*x^7+2993230296472604*x^6+21611850496843240*x^5+352308009411604*x^4-5311329869641560*x^3+10235896895956*x^2+363845506465992*x-32718757780688,2212095231072*x^2-4424190462144,-17950769828*x^21+11157979128*x^20+552506074144*x^19-470517931016*x^18-7156135615888*x^17+7962357750692*x^16+50949722224408*x^15-71706216289392*x^14-219357938578936*x^13+377936066966292*x^12+595892442632992*x^11-1195025045294456*x^10-1043026698605612*x^9+2216662765179176*x^8+1174922602134000*x^7-2242152111291880*x^6-787958608742744*x^5+1078256154114568*x^4+236218288661640*x^3-222404691446360*x^2-32835974372112*x+11815219982176,48388597210*x^21-12057687990*x^20-1644129067634*x^19+473176302478*x^18+23898982308002*x^17-7444952625364*x^16-194306351666528*x^15+61721561448744*x^14+969163004251172*x^13-293232712369542*x^12-3056793025015034*x^11+802130579990350*x^10+6044775435431176*x^9-1179208023113956*x^8-7127174600025636*x^7+747761420907320*x^6+4430680131881044*x^5-70100021912840*x^4-1067363762801964*x^3+25927694104072*x^2+66943638491952*x-6228899767040,-154757040826*x^21+202467465270*x^20+5572652818514*x^19-6470627359294*x^18-85675078612274*x^17+86410658426932*x^16+734991604084160*x^15-624724007957592*x^14-3856108347384452*x^13+2642498413558998*x^12+12737462483610554*x^11-6568583303037790*x^10-26219323889696248*x^9+9045504528544708*x^8+31912674182409828*x^7-5839408295438168*x^6-20262013255238548*x^5+1157822432186504*x^4+4949069887804236*x^3-327275746702504*x^2-322471260428016*x+43528885303808,2212095231072*x^3-8848380924288*x,433118793903*x^21-358836039645*x^20-15193107271863*x^19+11765977323465*x^18+227818748985159*x^17-160588972950354*x^16-1908566562138408*x^15+1181517898974180*x^14+9793040830867926*x^13-5055913131365553*x^12-31701197504161395*x^11+12583941535867161*x^10+64131912057881400*x^9-16949187942603798*x^8-77014900877862222*x^7+9873065386438860*x^6+48488557903019742*x^5-849297104048820*x^4-11816880180898290*x^3+399648211283412*x^2+795414026309064*x-83502265055424,-6792790700*x^21-75770869836*x^20+121857473308*x^19+2232117004156*x^18-223193290876*x^17-27315634225672*x^16-10170977319008*x^15+179615871618192*x^14+104599694795336*x^13-685128344602572*x^12-466780264142324*x^11+1524543712972540*x^10+1089821139996304*x^9-1882847431907176*x^8-1308855686394504*x^7+1136112606041264*x^6+702151624678312*x^5-247124139727088*x^4-123029229678552*x^3-1673437950704*x^2+2624425830240*x+574424634496,176247187256*x^21-268271604876*x^20-6408598681900*x^19+8532060486380*x^18+99353513788252*x^17-113560407654356*x^16-858394670422120*x^15+820115398488480*x^14+4530661003688704*x^13-3478473494921616*x^12-15046203546088156*x^11+8735061279819068*x^10+31151832504000164*x^9-12360924618956048*x^8-38254734607345224*x^7+8623833525047080*x^6+24772594817550560*x^5-2290030002489256*x^4-6441381003888096*x^3+549326735542616*x^2+495772826062320*x-63803174883424,-352975326220*x^21+342000875736*x^20+12526186210928*x^19-10967101667080*x^18-189933266037680*x^17+146393610913708*x^16+1608110541981992*x^15-1052251029093552*x^14-8332583054439800*x^13+4386002476224732*x^12+27207579884221664*x^11-10556617793439256*x^10-55429951461759076*x^9+13464194578568392*x^8+66905560278313392*x^7-6742360641615224*x^6-42279963126855400*x^5-469068413148712*x^4+10380708159232632*x^3-37530760056520*x^2-709144950927504*x+63889080450656,-84319011885*x^21+16112152683*x^20+2856555337281*x^19-572531491767*x^18-41120392481601*x^17+8355392130450*x^16+327954235808760*x^15-66192380504892*x^14-1583922300497970*x^13+316705096110267*x^12+4756607615530941*x^11-966820015456311*x^10-8788538777775636*x^9+1938390791016810*x^8+9586204702421922*x^7-2510761128446076*x^6-5769985984762746*x^5+1836672173033604*x^4+1759432198883670*x^3-489068064315444*x^2-162485704377144*x+36142926886176,47710424444*x^21+156156389604*x^20-1363645012036*x^19-4737146260276*x^18+15841447810276*x^17+60250906082800*x^16-94216872006064*x^15-416478357985776*x^14+286012952901496*x^13+1693535779144716*x^12-290244913767796*x^11-4083805312190164*x^10-669213952266616*x^9+5551050334027336*x^8+2206719771187224*x^7-3674225077262912*x^6-2084647087199848*x^5+782081806523360*x^4+529459231310232*x^3-53813037554080*x^2-35706719599104*x+4952225306432,-19333971116*x^21+16913371056*x^20+593324556712*x^19-746589903776*x^18-7741141770232*x^17+13024676862644*x^16+56625562328440*x^15-119500346552112*x^14-259491420075208*x^13+633337469699724*x^12+792047250047464*x^11-1975312133435312*x^10-1651507664768780*x^9+3487819565322488*x^8+2253304739016096*x^7-3091977889214152*x^6-1682593197257480*x^5+1007228313099496*x^4+401356144698552*x^3-69291811665656*x^2-5908963683216*x+2692434880672,2212095231072*x^4-13272571386432*x^2+8848380924288,-738921666940*x^21+427791027888*x^20+25709325831920*x^19-14135164016152*x^18-382155291015248*x^17+193232516294092*x^16+3170797589249888*x^15-1413361225577472*x^14-16091844838340792*x^13+5945932948815132*x^12+51424286020275368*x^11-14249526636762184*x^10-102437750282401396*x^9+17523483932642464*x^8+120738925180288128*x^7-7233932650900472*x^6-74345513489103544*x^5-2242337397476344*x^4+17687803731163080*x^3+50671686384296*x^2-1170713511051744*x+105327799925696,74282754258*x^21-33949485258*x^20-2526942875334*x^19+1297619773890*x^18+36913197069414*x^17-20168620721328*x^16-303213326525304*x^15+166542517579848*x^14+1539186743395428*x^13-792541014861606*x^12-4987254813983646*x^11+2181198490759698*x^10+10239411225863124*x^9-3236579286837396*x^8-12645646946165916*x^7+2064286859732784*x^6+8225407865806836*x^5-154723536266112*x^4-1998097431763596*x^3+43519800093456*x^2+138254557422912*x-13859801404896,262919199780*x^21+1399339968*x^20-8881472592696*x^19+247459049472*x^18+127887606619272*x^17-6269376916284*x^16-1024661906728824*x^15+58950756487056*x^14+5000110958241048*x^13-263206359545124*x^12-15277717261126056*x^11+520105561092048*x^10+28898693718416388*x^9-88746424497336*x^8-32132281114823328*x^7-1109456397854568*x^6+18699869477463096*x^5+1118638936069992*x^4-4432260937146888*x^3-42668531704632*x^2+321432688223184*x-21224889213792,-46662120880*x^21-138206159448*x^20+1351266948968*x^19+4270472107256*x^18-16100875553096*x^17-55712260272392*x^16+101002113688976*x^15+398988693472320*x^14-349846291433600*x^13-1707406320799008*x^12+608335553614856*x^11+4451471255569016*x^10-223204678097752*x^9-6899278770172256*x^8-860561824152336*x^7+5914547911232272*x^6+1186470527012000*x^5-2462444220295888*x^4-436505125958784*x^3+459226093378160*x^2+62768464540320*x-23413070661952,177909132542*x^21-112330255278*x^20-6130526792722*x^19+3783070876934*x^18+90217041200194*x^17-52817190193112*x^16-740968589304184*x^15+396146603161032*x^14+3723539487290716*x^13-1722345763367562*x^12-11794157386361242*x^11+4336758056553878*x^10+23325995651915396*x^9-5855680748857100*x^8-27332208987447156*x^7+3288670576946944*x^6+16645092594470828*x^5-52294800696592*x^4-3729391359423828*x^3+35399648718656*x^2+188776723083840*x-13180527312736,-92024417620*x^21-239947127940*x^20+2715903306932*x^19+7176234853364*x^18-33191690265620*x^17-89956933985960*x^16+215940040574912*x^15+613391019736848*x^14-794757574574504*x^13-2468675521938228*x^12+1584889140030404*x^11+5942492322025460*x^10-1297183686147904*x^9-8232436235783672*x^8-539610234766872*x^7+5881363804328944*x^6+1402701064898456*x^5-1695749239833040*x^4-426377693106600*x^3+189807708985904*x^2+26435384991648*x-5639909992192,496248183100*x^21-337267487076*x^20-17315026510172*x^19+11038277711524*x^18+258006054210524*x^17-150037784024680*x^16-2144909876216912*x^15+1096725136446480*x^14+10900388614335992*x^13-4649600720593092*x^12-34857826738918556*x^11+11423552580203332*x^10+69439741576134592*x^9-15100929290750824*x^8-81849391788013464*x^7+8517060734070704*x^6+50548815429167320*x^5-626895006854192*x^4-12248712454236744*x^3+377439927027568*x^2+810740241926496*x-82895343809408,-107751644904*x^21+196165169208*x^20+3969342233448*x^19-6273523029576*x^18-62361102458616*x^17+84028024913520*x^16+546361092521664*x^15-610796576771568*x^14-2927078824629552*x^13+2604667103922888*x^12+9876824266009992*x^11-6546739811188296*x^10-20783029420428240*x^9+9137453305574064*x^8+25863881719266288*x^7-5941472652453120*x^6-16725967711872240*x^5+1016694569258592*x^4+4051268171501328*x^3-148235172817728*x^2-250721563557888*x+23753009973120,-239458379564*x^21+273612170916*x^20+8534342914828*x^19-8763351546164*x^18-129861632377996*x^17+117242262518216*x^16+1102492603578784*x^15-849379392934032*x^14-5723503125777112*x^13+3605110846186548*x^12+18709564819024060*x^11-9027539345626196*x^10-38143448834649920*x^9+12658979833116056*x^8+46103697758214168*x^7-8614449957654352*x^6-29307370012541912*x^5+2098419870309136*x^4+7383917987077800*x^3-496170139629968*x^2-509021771768160*x+57382579359136,-68206859202*x^21-94610078694*x^20+2209995900438*x^19+2978450734254*x^18-30094077289110*x^17-39676656009840*x^16+222853192236888*x^15+290152057658040*x^14-967220497862628*x^13-1260650029618314*x^12+2453917977706254*x^11+3271946768183454*x^10-3354650861052180*x^9-4776864420092748*x^8+1873152937478844*x^7+3267831623142864*x^6+70020236019084*x^5-510941515131840*x^4-22278014520084*x^3-16107899744784*x^2-7028407198944*x+2698208380320,195608167454*x^21-266840007096*x^20-6946377891076*x^19+8747053772624*x^18+105641396293516*x^17-120138930416450*x^16-900274967764252*x^15+896849890741752*x^14+4719531449602564*x^13-3939642431371374*x^12-15702527661304996*x^11+10261503180834632*x^10+32903174401687502*x^9-15049430561464652*x^8-41308081310631408*x^7+10755755469647380*x^6+27472434351117764*x^5-2676943690220356*x^4-7167391301826780*x^3+547663232910380*x^2+535057073247816*x-59893596302128,513380895700*x^21-98715087036*x^20-17456895903956*x^19+3830150544652*x^18+253357016853812*x^17-59020738284088*x^16-2050012901148128*x^15+475049075124336*x^14+10132239106922408*x^13-2170482721288620*x^12-31494294488679908*x^11+5643739803885868*x^10+60984672297467488*x^9-7757200165262344*x^8-69980133829775016*x^7+4480279949221904*x^6+42305737129951144*x^5-501534744483632*x^4-10216077722884536*x^3+536019476971120*x^2+674322483477792*x-88584504189824,-118122119382*x^21+68646876894*x^20+4115851418706*x^19-2249101868502*x^18-61260564603138*x^17+30436643523792*x^16+508865702506440*x^15-219761509586472*x^14-2584788088525260*x^13+908028887632290*x^12+8263873249986426*x^11-2114846723964774*x^10-16454165466194508*x^9+2452564426138428*x^8+19344197515659156*x^7-777293136672432*x^6-11824585756586652*x^5-509257435476288*x^4+2776190790837636*x^3-15968112079440*x^2-211445110522080*x+29212793530656,-2420600060*x^21-83364432348*x^20-108568856948*x^19+2370525123436*x^18+4208386033748*x^17-27670551737320*x^16-53223493566464*x^15+170225421949008*x^14+338939091516392*x^13-587682930703644*x^12-1190952259230308*x^11+1113907559837164*x^10+2274148862486704*x^9-1040082568825576*x^8-2086766062951080*x^7+389737830782096*x^6+602142950277064*x^5-119230361570864*x^4+37741052432520*x^3+27654810174160*x^2-7206558330720*x+618687075712,-680750863836*x^21+693001142964*x^20+24188696048316*x^19-22303860988452*x^18-367207719241692*x^17+299145511631688*x^16+3112561281844416*x^15-2164066383780720*x^14-16145545889202168*x^13+9104157019880100*x^12+52772145128437836*x^11-22246106717856228*x^10-107598667804323648*x^9+29265598743120600*x^8+129879109163916792*x^7-16259557302914736*x^6-81860436372965784*x^5+758701455791952*x^4+19833949828885608*x^3-488387431968144*x^2-1328527084729536*x+135977546529408,2212095231072*x^5-17696761848576*x^3+26545142772864*x,843110532418*x^21-772750436958*x^20-29833907264762*x^19+24877910628982*x^18+450840507828602*x^17-333429603699268*x^16-3801553582667984*x^15+2407637097295224*x^14+19599209374710068*x^13-10096228095759150*x^12-63595812408768914*x^11+24542690465924182*x^10+128549917800172312*x^9-32003926613170180*x^8-153624774060891732*x^7+17421674968328888*x^6+95808860129472772*x^5-559243068278792*x^4-23027227605312828*x^3+515270636557864*x^2+1498225370106000*x-145019847726848,-311130639052*x^21-152932510980*x^20+10249250992868*x^19+4300740794372*x^18-143715763830548*x^17-50900878608512*x^16+1119662248692848*x^15+331428131067648*x^14-5305627273680248*x^13-1307380897563852*x^12+15727786469326676*x^11+3253171426694564*x^10-28861584787849096*x^9-5130469409605352*x^8+31184082656644008*x^7+4856544303527296*x^6-17724224163203224*x^5-2208401072863360*x^4+4141342034564136*x^3+112054502756096*x^2-273000093547584*x+23645493342080,-198318452516*x^21+245121617004*x^20+6949376761156*x^19-8199217946204*x^18-104264714936260*x^17+115010239361432*x^16+876293538261376*x^15-878708849779728*x^14-4529047473022216*x^13+3968248647599388*x^12+14855294013318772*x^11-10727103904879292*x^10-30706165923945728*x^9+16695039149192360*x^8+38114646359952264*x^7-13492433865477712*x^6-25227850839001736*x^5+4776303012644944*x^4+6686711663058936*x^3-1071493010851760*x^2-509600956023264*x+88400167767808,-825904318806*x^21+790625602986*x^20+29232503427102*x^19-25468638054450*x^18-441933182749998*x^17+341837427940284*x^16+3729034360260240*x^15-2474857550691240*x^14-19247519177510892*x^13+10425611640861114*x^12+62570016441589686*x^11-25553431318409970*x^10-126837377786808504*x^9+33906201864857916*x^8+152231979656075292*x^7-19482794204968872*x^6-95575467075091980*x^5+1700634217484952*x^4+23266050834317748*x^3-789996726535800*x^2-1566655083842928*x+164627481974592,-364968178736*x^21+323442111582*x^20+12865076727142*x^19-10401230305790*x^18-193633205190862*x^17+139059082456478*x^16+1625886038612908*x^15-999702151561344*x^14-8345832243915880*x^13+4160517699701820*x^12+26961411199306126*x^11-9975576174518150*x^10-54272831375898398*x^9+12629596321764272*x^8+64655651564916612*x^7-6221714936406172*x^6-40318917904700168*x^5-478204875691556*x^4+9788515961329848*x^3-49219120390052*x^2-645012200109048*x+67704325832464,264318539748*x^21+320699399604*x^20-8428874543268*x^19-9619134865668*x^18+113621778183396*x^17+121665804311976*x^16-842336260358784*x^15-843531176069232*x^14+3740264295504936*x^13+3484985592774084*x^12-10146263454782772*x^11-8707691102916132*x^10+16415743422492384*x^9+12653901214101432*x^8-14779151432816328*x^7-9481387870155984*x^6+6627322009860552*x^5+2647101436129392*x^4-1498189221686712*x^3-134995042594896*x^2+113389741073568*x-8413414392960,-155829099417*x^21+4166925183*x^20+5385546283989*x^19+62438055789*x^18-79124937529557*x^17-4562111564526*x^16+643991148628320*x^15+70380203954292*x^14-3169078586756634*x^13-518405575647537*x^12+9648940044357993*x^11+2085597507253053*x^10-17832226809591420*x^9-4629767903411286*x^8+18740970976044042*x^7+5249487956968644*x^6-9739442967452610*x^5-2394323872492236*x^4+1894166401845870*x^3+155622066361788*x^2-109167814115784*x+12713028276576,-171282698928*x^21-130365542160*x^20+5566607149680*x^19+3839179658832*x^18-76543800811920*x^17-47813464896480*x^16+579288398486976*x^15+328034264008896*x^14-2627129825029440*x^13-1351356689539440*x^12+7278067365834384*x^11+3401977693907088*x^10-12008089026285984*x^9-5043385955278944*x^8+10958316272814240*x^7+3915771403573152*x^6-4844412226330272*x^5-1198681113319488*x^4+963606053926944*x^3+147120782289408*x^2-52552928212992*x+344338599168,-345233457556*x^21+537720212472*x^20+12457688459336*x^19-17243455581424*x^18-191954924897240*x^17+231421484111884*x^16+1651332760041008*x^15-1684855695309456*x^14-8697674834996744*x^13+7196689549036740*x^12+28900356229621952*x^11-18138687224854960*x^10-60033677319003556*x^9+25494256135884256*x^8+74090302477058208*x^7-16990316784012536*x^6-48016731011483848*x^5+3430521383605256*x^4+12086837592876120*x^3-631923678260824*x^2-841105333630368*x+82228345704992,65578877264*x^21+96292846248*x^20-2087930496952*x^19-2829435119272*x^18+28309374246040*x^17+34715228578936*x^16-213725903192944*x^15-230668892587776*x^14+986676597849472*x^13+901972039233504*x^12-2880837541542520*x^11-2121059212097032*x^10+5312387137334408*x^9+2973188468022208*x^8-5961181042176720*x^7-2424275686175984*x^6+3675257344323392*x^5+1060989943402064*x^4-949505309033856*x^3-120073531009072*x^2+77908948548768*x-5693092241344,-85955251946*x^21+337571796642*x^20+3556822083454*x^19-10445228742938*x^18-61567690873486*x^17+134991826745888*x^16+586341327176008*x^15-941847023261880*x^14-3380292189995380*x^13+3815037723632670*x^12+12171537745531750*x^11-8896986466714346*x^10-27100679177322020*x^9+10784150186794388*x^8+35280527466660684*x^7-4435071471630448*x^6-23340407733039332*x^5-1594625553102272*x^4+5407315915684284*x^3+388272158386960*x^2-333986228563008*x+15728665048480,-684465920072*x^21+31591899984*x^20+23030237998624*x^19-2127040823120*x^18-330627095997184*x^17+41834395060424*x^16+2645640064182448*x^15-389653665529344*x^14-12931253336415376*x^13+1974697615257576*x^12+39768238012627552*x^11-5604685695926960*x^10-76312842035461880*x^9+8506615656919184*x^8+87175366539918432*x^7-5981236758178384*x^6-53169034472908400*x^5+1675832843035792*x^4+13582016892706416*x^3-912463697105264*x^2-1044302063938272*x+130551131130688,300068946900*x^21-185504341800*x^20-10443409999392*x^19+6056055974568*x^18+155069374507056*x^17-82119447588660*x^16-1282872561434472*x^15+599839706882640*x^14+6475696426135128*x^13-2554935055737060*x^12-20522788144802544*x^11+6402349420796568*x^10+40438126209297852*x^9-9033045348846360*x^8-47200421545180560*x^7+6467789268630216*x^6+29293250048134104*x^5-2152296757121544*x^4-7654692806394024*x^3+667875554914200*x^2+560663023392048*x-76965690378336,158980696024*x^21+53659898328*x^20-5337912330776*x^19-1531745550776*x^18+76251387468920*x^17+18732202099088*x^16-604413635220320*x^15-129223503244608*x^14+2906770363470608*x^13+555932351646744*x^12-8708739959980568*x^11-1540621045390808*x^10+16050554155168576*x^9+2682516217606736*x^8-17283874801664496*x^7-2642042324589280*x^6+9770496925457008*x^5+1113266123913856*x^4-2369790014614032*x^3-50746603935104*x^2+171183725937792*x-15879941859200,559441876248*x^21-550043153646*x^20-19910844322422*x^19+17480671357182*x^18+302458433195646*x^17-231043041404310*x^16-2561852513569164*x^15+1641963755961600*x^14+13254149562536184*x^13-6751144122544356*x^12-43097519389783758*x^11+15963547509669318*x^10+87123896959523814*x^9-19821693265279152*x^8-103834195392240324*x^7+9312516498671820*x^6+64320430146989784*x^5+1090010887389972*x^4-15266004398971944*x^3+60719963663316*x^2+1002562372150584*x-87463449484752,794364176744*x^21-485967089664*x^20-27770091169600*x^19+15927211160336*x^18+414759806912656*x^17-216223301087192*x^16-3457645022004640*x^15+1572311293193856*x^14+17629098915849280*x^13-6584661321723624*x^12-56590523097521248*x^11+15742354943649008*x^10+113233354471888520*x^9-19419138134107664*x^8-134150369687231136*x^7+8308221382038352*x^6+83319008358940784*x^5+2088084207113648*x^4-20313138385094448*x^3+11396812108496*x^2+1386874069637280*x-124330108264384,-880264971640*x^21+535867014864*x^20+30642579094592*x^19-17745188848048*x^18-455525233860032*x^17+243803200619992*x^16+3777889921149488*x^15-1800454555893312*x^14-19152670806526064*x^13+7713865268499960*x^12+61107633685360352*x^11-19192929625470736*x^10-121529645687335144*x^9+25901397604113712*x^8+143287478452028064*x^7-15518351914205936*x^6-89031035979585616*x^5+2250971388165680*x^4+22175056868467248*x^3-1142937912942064*x^2-1614201774688608*x+197945758235936,34153791352*x^21+153299630088*x^20-861225020552*x^19-4624899866024*x^18+8049241437032*x^17+58454068679744*x^16-28516067788640*x^15-401301181587648*x^14-41121899434480*x^13+1621096478198328*x^12+687047654905720*x^11-3892758972092744*x^10-2372780485634480*x^9+5313878466523280*x^8+3835470112637136*x^7-3640784140595008*x^6-2918712098315792*x^5+936261658937536*x^4+829471449636336*x^3-93322024845056*x^2-65220110977632*x+7662668146048,-962160576439*x^21+705143937327*x^20+33558060569393*x^19-23283024513595*x^18-499907164087193*x^17+319927453762252*x^16+4155876583646252*x^15-2371505984242212*x^14-21129285221428190*x^13+10250871312162189*x^12+67651792835833541*x^11-25951743933695107*x^10-135124803912315490*x^9+36262001416704502*x^8+160097445015505482*x^7-23620322328485600*x^6-99870634447070950*x^5+4598135373606152*x^4+24740530300276842*x^3-1219982299897312*x^2-1707801914372400*x+170026302340688,5821085874*x^21-209468476998*x^20-483833586642*x^19+6723173057070*x^18+11461801157250*x^17-91239498144732*x^16-131943300615024*x^15+681129915770808*x^14+868608726308772*x^13-3046938307746606*x^12-3474184391912490*x^11+8334889068959310*x^10+8518595755912176*x^9-13622121454741860*x^8-12358366758070596*x^7+12402362903336808*x^6+9599960340393348*x^5-5532160251460344*x^4-3157379124969852*x^3+1089514829006616*x^2+292747705223184*x-70103234277888,-337066986504*x^21+222261215952*x^20+11744789790960*x^19-7272701472480*x^18-174539253765840*x^17+98700196244184*x^16+1444688234227008*x^15-719023548919872*x^14-7293956539573296*x^13+3030233381199336*x^12+23109621163156224*x^11-7371544578940032*x^10-45458434173082440*x^9+9571588388467008*x^8+52691456847316608*x^7-5141477578937712*x^6-31819702870837680*x^5+96678740257872*x^4+7437555182342928*x^3-64482043321584*x^2-442155253723104*x+24020383886400,-71231839642*x^21-100092030186*x^20+2291984246642*x^19+3338324715074*x^18-30941606057426*x^17-47423357664812*x^16+226305092709440*x^15+371944319769960*x^14-961116865549316*x^13-1743342007285194*x^12+2325875435393306*x^11+4924555778072066*x^10-2770323457707256*x^9-7987794850182140*x^8+585695627379012*x^7+6505977314393320*x^6+1421438634275852*x^5-1900445784960376*x^4-535223582114964*x^3+195481294547672*x^2+40257785434320*x-6259461358528,729783304088*x^21-504377517648*x^20-25501242716224*x^19+16565853588176*x^18+380655703691680*x^17-226004833652216*x^16-3171351901478224*x^15+1658520007635840*x^14+16160560106966608*x^13-7061615847610872*x^12-51862613439461632*x^11+17435539910822096*x^10+103803587717896712*x^9-23195249684371184*x^8-123119642661790560*x^7+13244200281125872*x^6+76625310400981712*x^5-1155907881252688*x^4-18715270701691824*x^3+756245944724048*x^2+1288059594122592*x-157217893629376,319244959776*x^21+199122666336*x^20-10384128989376*x^19-5666899076736*x^18+143398054534560*x^17+67825991938272*x^16-1096386891323136*x^15-445207964934240*x^14+5074742271732288*x^13+1755034812869760*x^12-14603119926231840*x^11-4278640113705984*x^10+25808200085942688*x^9+6368094037499712*x^8-26624859122386944*x^7-5373057402023232*x^6+14424115956622464*x^5+2043052661686944*x^4-3364975624244544*x^3-109280676349248*x^2+245679953606784*x-26332639275264,1342031604058*x^21-828554704350*x^20-46691871574010*x^19+27194421760006*x^18+693568553526746*x^17-369922065582844*x^16-5745715975678544*x^15+2699287693688568*x^14+29081975980524740*x^13-11382955658532390*x^12-92560486093307042*x^11+27645740876976358*x^10+183355138263833248*x^9-35608366852196068*x^8-214694124761234676*x^7+18475981122566120*x^6+131606912576262580*x^5+196840443555496*x^4-31684345218895116*x^3+542994836766424*x^2+2096601033048624*x-194213137999040,-49475242488*x^21-18422759664*x^20+1648928071104*x^19+517303833648*x^18-23427042914400*x^17-6146737999080*x^16+185161115655024*x^15+40594136859072*x^14-890616624197424*x^13-165675555471240*x^12+2677249537243584*x^11+441313757490480*x^10-4962433495947240*x^9-776960544109488*x^8+5364112094236512*x^7+836451731492400*x^6-2984152080767952*x^5-404365395642096*x^4+637955940819312*x^3-6385111274928*x^2-31265731592928*x+3779907820224,-251285960193*x^21-108622465545*x^20+8330485204341*x^19+2882150843613*x^18-117786248100885*x^17-31317637242006*x^16+927906425618184*x^15+179453547381108*x^14-4464572338368954*x^13-583767788864025*x^12+13524161320778769*x^11+1093535454051645*x^10-25621245453105492*x^9-1188445542443358*x^8+29068934174970858*x^7+789756721069236*x^6-17874659138514690*x^5-214623893765580*x^4+4796650573075662*x^3-217386044402724*x^2-408242969713464*x+45134079305568,-47117090176*x^21-227116601160*x^20+1263755811992*x^19+6967539672680*x^18-13292061824216*x^17-89826663553352*x^16+65272114297808*x^15+631740041554176*x^14-105558567666848*x^13-2630368480711536*x^12-371985616423624*x^11+6571001238339368*x^10+2110982012545544*x^9-9474735049016576*x^8-3991019808930576*x^7+7045553166736528*x^6+3195239620486976*x^5-2041892650982032*x^4-761657037290784*x^3+135579226704752*x^2+11197267211424*x-5307410559424,47044333980*x^21-430649807328*x^20-2187814909392*x^19+13598889567624*x^18+40771821937536*x^17-180735153063804*x^16-408256509128832*x^15+1312771302625968*x^14+2440244420139096*x^13-5657004818900892*x^12-9038954571438168*x^11+14663149079530824*x^10+20654381164384548*x^9-22047175578864960*x^8-27736759824991344*x^7+17444341139069304*x^6+19356063249651768*x^5-6158505829180968*x^4-5192764820219880*x^3+1238166428828760*x^2+420936181771968*x-82009890539424,12250279128*x^21+362415814056*x^20+160917518136*x^19-11175017455464*x^18-11276882277528*x^17+144487515519456*x^16+169547577449088*x^15-1015177189583232*x^14-1261636383750672*x^13+4191721232509368*x^12+5371275077106456*x^11-10228148746405224*x^10-13467855983320464*x^9+13918645516364880*x^8+19134041609646576*x^7-8893474281840288*x^6-13504390643299920*x^5+1504052069237472*x^4+3280249350227952*x^3-146743585110240*x^2-212566895754624*x+21784027642752,483709386256*x^21-646135145568*x^20-17321888540000*x^19+20872142183200*x^18+265203070729184*x^17-281948510386768*x^16-2269944580347968*x^15+2063948756097120*x^14+11913681222150368*x^13-8849596374152016*x^12-39515189757364928*x^11+22320087649460608*x^10+82088963906341456*x^9-31168683779633632*x^8-101480735272398816*x^7+20193350458839200*x^6+65907143818835200*x^5-3565880745565088*x^4-16591484284230624*x^3+885428304891616*x^2+1204395969641664*x-152164354521536,2212095231072*x^6-22120952310720*x^4+53090285545728*x^2-17696761848576,-724568821950*x^21+607219372638*x^20+25338035863554*x^19-19787446972758*x^18-378383409983922*x^17+268543816253256*x^16+3152950426773240*x^15-1966472399435112*x^14-16065738723600060*x^13+8391174803939466*x^12+51543336421222890*x^11-20916480105567174*x^10-103105651828877364*x^9+28550397466922412*x^8+122148589874009364*x^7-17682338966917344*x^6-75773404480350828*x^5+2872510650424752*x^4+18282969040746132*x^3-1105906742327712*x^2-1265034924908064*x+169161435390624,70360095460*x^21-325038630132*x^20-2944736940812*x^19+9893699373988*x^18+51028799083340*x^17-125591661325504*x^16-482545807833680*x^15+860234681187600*x^14+2741815981369736*x^13-3428915483823180*x^12-9661460723741660*x^11+7956445906296100*x^10+20921493948837352*x^9-10007639747744776*x^8-26413327833147768*x^7+5439214601717024*x^6+17105608806943144*x^5-325633409425760*x^4-4152189270908184*x^3+34585485828352*x^2+286652744871168*x-26979537037376,-306012002444*x^21+423916317348*x^20+11065104052036*x^19-13472442691244*x^18-170888684201092*x^17+178714048209584*x^16+1473694566600136*x^15-1280771572435056*x^14-7780696208553064*x^13+5348367792315252*x^12+25905802491921436*x^11-13007638510945244*x^10-53871146579867864*x^9+17106964259494592*x^8+66441125806681704*x^7-9583075561465408*x^6-42934480331556488*x^5+427040265385648*x^4+10788671933100504*x^3-105228060735536*x^2-768613249645392*x+59969176746496,1013780183848*x^21-1495903429728*x^20-36850599780752*x^19+47275888425952*x^18+571534132014272*x^17-623332370162056*x^16-4943611216761872*x^15+4436284761044448*x^14+26138722538272928*x^13-18367295222971464*x^12-86973141718155584*x^11+44139728311839040*x^10+180214116419347192*x^9-56861500526036704*x^8-220445001871457376*x^7+30092489816025392*x^6+139963816755926224*x^5+248513242402672*x^4-33541133741778192*x^3+165779323078096*x^2+2205773628250944*x-200699419401728,940334368912*x^21-714021320880*x^20-33027030865280*x^19+23031820294816*x^18+495329804566400*x^17-308458292893168*x^16-4144048273405616*x^15+2218568587890720*x^14+21188224296726944*x^13-9225976117799760*x^12-68139537122632304*x^11+22078756709479264*x^10+136415036600920144*x^9-27896837227697872*x^8-161453740419022080*x^7+13857668174978720*x^6+100066746901001632*x^5+633232244982976*x^4-24448334703457920*x^3+419793220330048*x^2+1734055811843520*x-166116884937344,46803164488*x^21+8230923096*x^20-1654709013176*x^19-544164270392*x^18+24577025014136*x^17+11625085291616*x^16-198873194554880*x^15-121221547401600*x^14+948453571138256*x^13+702694286419464*x^12-2681522604757688*x^11-2339884386772184*x^10+4245796610952976*x^9+4332684521471792*x^8-3181460882265840*x^7-3970889187621760*x^6+621134795529712*x^5+1346789010613120*x^4+26397942276816*x^3-165320122455488*x^2-13138879920384*x+6346190480512,720620150461*x^21-897956510703*x^20-25692890302061*x^19+28866379253923*x^18+391056618638621*x^17-387632643818254*x^16-3320800936686200*x^15+2817311367677484*x^14+17245906719752162*x^13-11977401115268499*x^12-56408850374159825*x^11+29919097565907571*x^10+115094741562894016*x^9-41392139318837170*x^8-139162908201573306*x^7+26774435275379540*x^6+88168866391347322*x^5-5066068180413548*x^4-21748400678686710*x^3+1184778895083340*x^2+1515086514849816*x-180662289182624,-183844224336*x^21+393751239408*x^20+6840090216816*x^19-12580463562240*x^18-108601335574080*x^17+168428771708736*x^16+962769107226336*x^15-1224054822888432*x^14-5228806908388704*x^13+5216088568360320*x^12+17927190619197936*x^11-13067376432230496*x^10-38417938295596176*x^9+18018944755698432*x^8+48748917030724512*x^7-11178660479017632*x^6-32054528801752032*x^5+1337198218679616*x^4+7778404445901408*x^3-219924786582624*x^2-534744644099904*x+54148541011584,687790130558*x^21-675327124650*x^20-24481855822606*x^19+21786608895698*x^18+372486979130926*x^17-292981382892932*x^16-3166190818507552*x^15+2125724480875176*x^14+16482282187344268*x^13-8971179876175074*x^12-54119220428398966*x^11+21985264321158386*x^10+111008148034234448*x^9-28942882110620924*x^8-135100606166367900*x^7+15871035829965784*x^6+86224897127052188*x^5-362758196640712*x^4-21434805072137508*x^3+407897996971976*x^2+1514626399074672*x-144236486511616,-41526067154*x^21+91190471382*x^20+1642719592498*x^19-2754847711934*x^18-27366407047138*x^17+34624779323948*x^16+251408765145664*x^15-234049503329544*x^14-1396852757911252*x^13+916187060168958*x^12+4830817868622634*x^11-2069972898573374*x^10-10280916130209392*x^9+2486242062668900*x^8+12753710612435940*x^7-1199438698703272*x^6-8125018156568228*x^5-38617219315688*x^4+1971244717092444*x^3-11427441823352*x^2-119159381680368*x+11678981719552]];
E[443,5] = [x, [1,0,1,-2,-2,0,2,0,-2,0,-2,-2,-3,0,-2,4,-2,0,-8,4,2,0,6,0,-1,0,-5,-4,-4,0,-10,0,-2,0,-4,4,7,0,-3,0,10,0,4,4,4,0,-7,4,-3,0,-2,6,12,0,4,0,-8,0,5,4,-10,0,-4,-8,6,0,8,4,6,0,9,0,4,0]];

E[444,1] = [x, [1,0,1,0,-2,0,-4,0,1,0,-4,0,-6,0,-2,0,6,0,-2,0,-4,0,2,0,-1,0,1,0,-2,0,2,0,-4,0,8,0,-1,0,-6,0,6,0,-2,0,-2,0,-4,0,9,0,6,0,10,0,8,0,-2,0,-6,0,-14,0,-4,0,12,0,-4,0,2,0,-12,0,-2,0,-1,0,16,0,-10,0,1,0,0,0,-12,0,-2,0,-10,0,24,0,2,0,4,0,10,0,-4,0,18,0,10,0,8,0,0,0,18,0,-1,0,14,0,-4,0,-6,0,-24,0,5,0,6,0,12,0,-12,0,-2,0,-2,0,8,0,-2,0,-10,0,-20,0,-4,0,24,0,4,0,9,0,-10,0,-16,0]];
E[444,2] = [x^2-6, [1,0,1,0,x,0,2,0,1,0,0,0,-2*x+2,0,x,0,-x,0,2,0,2,0,-x,0,1,0,1,0,-x,0,2*x+2,0,0,0,2*x,0,1,0,-2*x+2,0,2*x-6,0,2*x+2,0,x,0,-2*x,0,-3,0,-x,0,-6,0,0,0,2,0,x,0,2,0,2,0,2*x-12,0,-4*x+2,0,-x,0,-2*x,0,4*x-4,0,1,0,0,0,4*x+2,0,1,0,-6*x,0,-6,0,-x,0,-x-12,0,-4*x+4,0,2*x+2,0,2*x,0,-2*x+2,0,0,0,-2*x-6,0,2,0,2*x,0,6*x,0,-2*x+2,0,1,0,-x-12,0,-6,0,-2*x+2,0,-2*x,0,-11,0,2*x-6,0,-4*x,0,4*x-4,0,2*x+2,0,7*x,0,4,0,x,0,4*x-6,0,-10,0,-2*x,0,0,0,-6,0,-3,0,4*x-6,0,-4*x+8,0]];
E[444,3] = [x^2+2*x-2, [1,0,-1,0,x,0,-2*x-2,0,1,0,-4,0,2*x+2,0,-x,0,-x-4,0,-2*x-6,0,2*x+2,0,3*x,0,-2*x-3,0,-1,0,-x-4,0,4*x+2,0,4,0,2*x-4,0,1,0,-2*x-2,0,-2*x-2,0,4*x+2,0,x,0,-6*x-4,0,5,0,x+4,0,-4*x-10,0,-4*x,0,2*x+6,0,-3*x-4,0,10,0,-2*x-2,0,-2*x+4,0,6*x+6,0,-3*x,0,2*x-4,0,-2*x+8,0,2*x+3,0,8*x+8,0,2*x+2,0,1,0,6*x+8,0,-2*x-2,0,x+4,0,7*x+12,0,-12,0,-4*x-2,0,-2*x-4,0,-2*x+10,0,-4,0,-2*x-10,0,-2*x+2,0,-2*x+4,0,-2*x+12,0,-2*x-6,0,-1,0,7*x+12,0,-6*x+6,0,2*x+2,0,6*x+12,0,5,0,2*x+2,0,-4*x-4,0,4*x-4,0,-4*x-2,0,-5*x-12,0,8*x+20,0,-x,0,-4*x-10,0,-10*x-14,0,6*x+4,0,-8*x-8,0,-2*x-2,0,-5,0,-8*x-14,0,4*x-8,0]];
E[444,4] = [x, [1,0,-1,0,0,0,0,0,1,0,4,0,-2,0,0,0,0,0,6,0,0,0,8,0,-5,0,-1,0,8,0,6,0,-4,0,0,0,-1,0,2,0,2,0,-6,0,0,0,0,0,-7,0,0,0,2,0,0,0,-6,0,0,0,2,0,0,0,0,0,8,0,-8,0,0,0,-6,0,5,0,0,0,-10,0,1,0,-12,0,0,0,-8,0,-12,0,0,0,-6,0,0,0,-10,0,4,0,6,0,-14,0,0,0,20,0,-10,0,1,0,12,0,0,0,-2,0,0,0,5,0,-2,0,0,0,-4,0,6,0,-8,0,0,0,0,0,-10,0,8,0,0,0,-8,0,0,0,7,0,6,0,16,0]];

E[445,1] = [x^2-3, [1,x,x+1,1,1,x+3,-x-1,-x,2*x+1,x,0,x+1,2,-x-3,x+1,-5,0,x+6,x-1,1,-2*x-4,0,-x+3,-x-3,1,2*x,4,-x-1,-2*x,x+3,-3*x-1,-3*x,0,0,-x-1,2*x+1,-2*x-4,-x+3,2*x+2,-x,-2*x,-4*x-6,-x+11,0,2*x+1,3*x-3,-4*x+6,-5*x-5,2*x-3,x,0,2,-4*x,4*x,0,x+3,2,-6,3*x+9,x+1,2,-x-9,-3*x-7,1,2,0,6*x-4,0,2*x,-x-3,-2*x+6,-x-6,4*x+2,-4*x-6,x+1,x-1,0,2*x+6,6*x+2,-5,-2*x+1,-6,-3*x-3,-2*x-4,0,11*x-3,-2*x-6,0,-1,x+6]];
E[445,2] = [x^4-x^3-5*x^2+7*x-1, [1,x,x^3-5*x+2,x^2-2,-1,x^3-5*x+1,-4*x^3-2*x^2+16*x-3,x^3-4*x,-2*x^3-x^2+9*x-3,-x,-x^3+5*x-6,-x^3+4*x-3,5*x^3+3*x^2-21*x+2,-6*x^3-4*x^2+25*x-4,-x^3+5*x-2,x^3-x^2-7*x+5,x^3+3*x^2-3*x-7,-3*x^3-x^2+11*x-2,6*x^3+x^2-26*x+11,-x^2+2,7*x^3+4*x^2-29*x+4,-x^3+x-1,-3*x^3-3*x^2+11*x+1,-3*x^3-x^2+14*x-3,1,8*x^3+4*x^2-33*x+5,2*x^2+3*x-6,-2*x^3-x^2+6*x,5*x^3+2*x^2-19*x+3,-x^3+5*x-1,-7*x^3-2*x^2+28*x-13,-2*x^3-2*x^2+6*x+1,-2*x^3+x^2+11*x-8,4*x^3+2*x^2-14*x+1,4*x^3+2*x^2-16*x+3,-2*x^2+x+3,2*x^3+3*x^2-4*x-4,7*x^3+4*x^2-31*x+6,-11*x^3-5*x^2+47*x-9,-x^3+4*x,-6*x^3-5*x^2+22*x,11*x^3+6*x^2-45*x+7,3*x^3-x^2-13*x+12,x^3-4*x^2-4*x+11,2*x^3+x^2-9*x+3,-6*x^3-4*x^2+22*x-3,6*x^3+3*x^2-23*x-1,-2*x^3-x^2+10*x+3,-4*x^3+20*x-10,x,-6*x^3-x^2+26*x-13,2*x^3+x^2-9*x+4,-7*x^3-5*x^2+31*x-2,2*x^3+3*x^2-6*x,x^3-5*x+6,9*x^3+4*x^2-36*x+6,-8*x^3-6*x^2+33*x+3,7*x^3+6*x^2-32*x+5,6*x^3+2*x^2-26*x+3,x^3-4*x+3,-12*x^3-10*x^2+47*x,-9*x^3-7*x^2+36*x-7,-2*x^3-x^2+11*x-1,-6*x^3-2*x^2+29*x-12,-5*x^3-3*x^2+21*x-2,-x^3+x^2+6*x-2,-3*x^3-2*x^2+14*x-4,4*x^3-21*x+18,6*x^3+3*x^2-24*x+7,6*x^3+4*x^2-25*x+4,6*x^3+4*x^2-26*x+7,4*x^3+3*x^2-19*x+4,-12*x^3-6*x^2+49*x-10,5*x^3+6*x^2-18*x+2,x^3-5*x+2,-x^3+2*x^2+9*x-15,9*x^3+4*x^2-35*x+8,-16*x^3-8*x^2+68*x-11,8*x^3+6*x^2-29*x-6,-x^3+x^2+7*x-5,5*x^3+3*x^2-24*x+2,-11*x^3-8*x^2+42*x-6,x^3-x^2-10*x+8,3*x^3+2*x^2-12*x+3,-x^3-3*x^2+3*x+7,2*x^3+2*x^2-9*x+3,-9*x^3-5*x^2+38*x-6,-x^3+x^2+2*x+3,-1,3*x^3+x^2-11*x+2]];
E[445,3] = [x^7+4*x^6-3*x^5-24*x^4-8*x^3+29*x^2+6*x-9, [3,3*x,2*x^6+5*x^5-12*x^4-27*x^3+14*x^2+19*x-9,3*x^2-6,3,-3*x^6-6*x^5+21*x^4+30*x^3-39*x^2-21*x+18,-x^6-4*x^5+3*x^4+21*x^3+5*x^2-14*x-6,3*x^3-12*x,-2*x^6-5*x^5+12*x^4+30*x^3-11*x^2-31*x+6,3*x,-x^6-x^5+12*x^4+9*x^3-40*x^2-20*x+21,2*x^6+2*x^5-18*x^4-9*x^3+38*x^2-2*x-9,-5*x^6-17*x^5+15*x^4+84*x^3+40*x^2-37*x-30,-3*x^4-3*x^3+15*x^2-9,2*x^6+5*x^5-12*x^4-27*x^3+14*x^2+19*x-9,3*x^4-18*x^2+12,-x^6+5*x^5+24*x^4-27*x^3-97*x^2+16*x+42,3*x^6+6*x^5-18*x^4-27*x^3+27*x^2+18*x-18,3*x^5+6*x^4-18*x^3-27*x^2+12*x,3*x^2-6,-6*x^6-12*x^5+42*x^4+63*x^3-66*x^2-33*x+24,3*x^6+9*x^5-15*x^4-48*x^3+9*x^2+27*x-9,5*x^6+14*x^5-24*x^4-69*x^3+11*x^2+34*x-15,-3*x^4-6*x^3+18*x^2+21*x-18,3,3*x^6-36*x^4+108*x^2-45,-3*x^5-9*x^4+9*x^3+39*x^2+12*x-24,2*x^6+5*x^5-9*x^4-27*x^3-10*x^2+19*x+12,3*x^6+9*x^5-9*x^4-42*x^3-27*x^2+15*x+21,-3*x^6-6*x^5+21*x^4+30*x^3-39*x^2-21*x+18,2*x^6+2*x^5-24*x^4-15*x^3+80*x^2+28*x-45,3*x^5-24*x^3+36*x,-3*x^6-6*x^5+18*x^4+24*x^3-15*x^2+18*x-12,9*x^6+21*x^5-51*x^4-105*x^3+45*x^2+48*x-9,-x^6-4*x^5+3*x^4+21*x^3+5*x^2-14*x-6,-2*x^6+x^5+21*x^4-9*x^3-47*x^2+26*x+15,-6*x^5-15*x^4+33*x^3+72*x^2-33*x-33,3*x^6+6*x^5-18*x^4-27*x^3+12*x^2,6*x^4+9*x^3-33*x^2-27*x+21,3*x^3-12*x,-x^6-13*x^5-21*x^4+69*x^3+122*x^2-44*x-42,12*x^6+24*x^5-81*x^4-114*x^3+141*x^2+60*x-54,-x^6-4*x^5+3*x^4+24*x^3+8*x^2-23*x-15,-x^6-4*x^5+15*x^3+20*x^2+13*x-15,-2*x^6-5*x^5+12*x^4+30*x^3-11*x^2-31*x+6,-6*x^6-9*x^5+51*x^4+51*x^3-111*x^2-45*x+45,9*x^5+21*x^4-51*x^3-102*x^2+48*x+39,-4*x^6-7*x^5+30*x^4+36*x^3-55*x^2-14*x+18,5*x^6+17*x^5-21*x^4-87*x^3+5*x^2+52*x-12,3*x,-x^6-7*x^5+42*x^3+17*x^2-29*x+6,-2*x^6+7*x^5+42*x^4-36*x^3-167*x^2+11*x+87,3*x^6+15*x^5+3*x^4-78*x^3-78*x^2+57*x+24,-3*x^6-9*x^5+9*x^4+39*x^3+12*x^2-24*x,-x^6-x^5+12*x^4+9*x^3-40*x^2-20*x+21,-3*x^6-3*x^5+27*x^4+12*x^3-69*x^2+36,3*x^6-30*x^4+12*x^3+78*x^2-30*x-9,-3*x^6+30*x^4-3*x^3-72*x^2+3*x+27,-x^6-10*x^5-15*x^4+45*x^3+101*x^2+10*x-66,2*x^6+2*x^5-18*x^4-9*x^3+38*x^2-2*x-9,-4*x^6-7*x^5+27*x^4+27*x^3-49*x^2+10*x+30,-6*x^6-18*x^5+33*x^4+96*x^3-30*x^2-57*x+18,4*x^6+10*x^5-21*x^4-57*x^3-8*x^2+38*x+18,3*x^6-30*x^4+72*x^2-24,-5*x^6-17*x^5+15*x^4+84*x^3+40*x^2-37*x-30,6*x^6+9*x^5-48*x^4-39*x^3+105*x^2+6*x-27,-4*x^6-13*x^5+15*x^4+66*x^3+23*x^2-29*x-30,-13*x^6-34*x^5+63*x^4+171*x^3-19*x^2-95*x-3,-6*x^6-18*x^5+24*x^4+90*x^3+9*x^2-66*x+15,-3*x^4-3*x^3+15*x^2-9,6*x^6+24*x^5-9*x^4-117*x^3-99*x^2+39*x+72,3*x^6+3*x^5-21*x^4-9*x^3+30*x^2-9*x+18,8*x^6+17*x^5-51*x^4-87*x^3+65*x^2+46*x-12,-6*x^6-15*x^5+33*x^4+72*x^3-33*x^2-33*x,2*x^6+5*x^5-12*x^4-27*x^3+14*x^2+19*x-9,-6*x^6-15*x^5+33*x^4+72*x^3-33*x^2-42*x+27,5*x^6+11*x^5-36*x^4-57*x^3+74*x^2+34*x-27,6*x^5+9*x^4-33*x^3-27*x^2+21*x,-2*x^6-5*x^5+9*x^4+27*x^3+x^2-28*x+6,3*x^4-18*x^2+12,-x^6+2*x^5+21*x^4-6*x^3-76*x^2+10*x+45,-9*x^6-24*x^5+45*x^4+114*x^3-15*x^2-36*x-9,-3*x^6-9*x^5+12*x^4+45*x^3+15*x^2-3*x-33,-12*x^6-21*x^5+90*x^4+111*x^3-156*x^2-60*x+60,-x^6+5*x^5+24*x^4-27*x^3-97*x^2+16*x+42,6*x^2-9*x-9,-10*x^6-19*x^5+66*x^4+87*x^3-97*x^2-26*x+27,-6*x^6-21*x^5+21*x^4+108*x^3+24*x^2-63*x+9,3,3*x^6+6*x^5-18*x^4-27*x^3+27*x^2+18*x-18]];
E[445,4] = [x^2-2*x-1, [1,x,-x+1,2*x-1,1,-x-1,x-1,x+2,-1,x,4,-x-3,-2*x+4,x+1,-x+1,3,2*x+2,-x,-3*x+5,2*x-1,-2,4*x,-3*x-1,-3*x+1,1,-2,4*x-4,x+3,-2*x-4,-x-1,x+1,x-4,-4*x+4,6*x+2,x-1,-2*x+1,-4*x+6,-x-3,-2*x+6,x+2,-2*x,-2*x,5*x-5,8*x-4,-1,-7*x-3,-2*x,-3*x+3,-5,x,-4*x,2*x-8,-2*x+2,4*x+4,4,3*x-1,-2*x+8,-8*x-2,3*x+3,-x-3,-10,3*x+1,-x+1,-2*x-5,-2*x+4,-4*x-4,2,10*x+2,4*x+2,x+1,-2*x+2,-x-2,4*x+2,-2*x-4,-x+1,x-11,4*x-4,2*x-2,-2*x-6,3,-5,-4*x-2,-5*x+13,-4*x+2,2*x+2,5*x+5,6*x-2,4*x+8,-1,-x]];
E[445,5] = [x^8-x^7-11*x^6+9*x^5+34*x^4-19*x^3-27*x^2+11*x-1, [2,2*x,2*x^7-x^6-23*x^5+8*x^4+76*x^3-12*x^2-65*x+9,2*x^2-4,-2,x^7-x^6-10*x^5+8*x^4+26*x^3-11*x^2-13*x+2,6*x^7-5*x^6-67*x^5+42*x^4+212*x^3-74*x^2-173*x+33,2*x^3-8*x,-6*x^7+6*x^6+66*x^5-52*x^4-204*x^3+96*x^2+164*x-32,-2*x,-2*x^3+10*x+4,-4*x^7+3*x^6+45*x^5-24*x^4-144*x^3+38*x^2+121*x-17,2*x^7-2*x^6-24*x^5+18*x^4+84*x^3-38*x^2-78*x+18,x^7-x^6-12*x^5+8*x^4+40*x^3-11*x^2-33*x+6,-2*x^7+x^6+23*x^5-8*x^4-76*x^3+12*x^2+65*x-9,2*x^4-12*x^2+8,8*x^7-6*x^6-90*x^5+52*x^4+290*x^3-98*x^2-252*x+52,2*x^5-18*x^3+2*x^2+34*x-6,-3*x^7+3*x^6+34*x^5-26*x^4-110*x^3+49*x^2+91*x-16,-2*x^2+4,-8*x^7+6*x^6+90*x^5-52*x^4-290*x^3+96*x^2+252*x-42,-2*x^4+10*x^2+4*x,-4*x^7+3*x^6+43*x^5-24*x^4-128*x^3+36*x^2+95*x-15,-3*x^7+3*x^6+32*x^5-24*x^4-90*x^3+35*x^2+53*x-8,2,-2*x^6+16*x^4-24*x^2-4*x+2,2*x^7-24*x^5-2*x^4+86*x^3+8*x^2-88*x+18,-12*x^7+9*x^6+133*x^5-78*x^4-416*x^3+142*x^2+341*x-65,14*x^7-12*x^6-154*x^5+102*x^4+476*x^3-180*x^2-384*x+74,-x^7+x^6+10*x^5-8*x^4-26*x^3+11*x^2+13*x-2,-9*x^7+7*x^6+102*x^5-58*x^4-328*x^3+97*x^2+271*x-44,2*x^5-16*x^3+24*x,8*x^7-6*x^6-88*x^5+48*x^4+268*x^3-70*x^2-196*x+28,2*x^7-2*x^6-20*x^5+18*x^4+54*x^3-36*x^2-36*x+8,-6*x^7+5*x^6+67*x^5-42*x^4-212*x^3+74*x^2+173*x-33,12*x^7-10*x^6-132*x^5+86*x^4+410*x^3-158*x^2-334*x+64,-2*x^7+2*x^6+24*x^5-18*x^4-86*x^3+38*x^2+88*x-22,x^6+x^5-8*x^4-8*x^3+10*x^2+17*x-3,-2*x^7+22*x^5-66*x^3+38*x-8,-2*x^3+8*x,14*x^7-12*x^6-154*x^5+102*x^4+478*x^3-182*x^2-390*x+80,-2*x^7+2*x^6+20*x^5-18*x^4-56*x^3+36*x^2+46*x-8,6*x^7-5*x^6-67*x^5+46*x^4+214*x^3-96*x^2-187*x+39,-2*x^5+14*x^3+4*x^2-20*x-8,6*x^7-6*x^6-66*x^5+52*x^4+204*x^3-96*x^2-164*x+32,-x^7-x^6+12*x^5+8*x^4-40*x^3-13*x^2+29*x-4,-16*x^7+12*x^6+178*x^5-102*x^4-562*x^3+184*x^2+464*x-86,8*x^7-7*x^6-87*x^5+60*x^4+266*x^3-104*x^2-217*x+31,2*x^4-2*x^3-10*x^2+6*x+2,2*x,-10*x^7+10*x^6+108*x^5-84*x^4-320*x^3+144*x^2+226*x-42,-6*x^7+4*x^6+64*x^5-36*x^4-192*x^3+72*x^2+158*x-36,6*x^7-6*x^6-68*x^5+50*x^4+224*x^3-86*x^2-206*x+34,2*x^7-2*x^6-20*x^5+18*x^4+46*x^3-34*x^2-4*x+2,2*x^3-10*x-4,-5*x^7+3*x^6+54*x^5-24*x^4-166*x^3+39*x^2+133*x-24,6*x^7-2*x^6-70*x^5+16*x^4+236*x^3-26*x^2-208*x+32,2*x^7-24*x^5+86*x^3-6*x^2-80*x+14,-9*x^7+7*x^6+100*x^5-60*x^4-316*x^3+107*x^2+265*x-36,4*x^7-3*x^6-45*x^5+24*x^4+144*x^3-38*x^2-121*x+17,-20*x^7+16*x^6+222*x^5-134*x^4-698*x^3+234*x^2+580*x-108,-2*x^7+3*x^6+23*x^5-22*x^4-74*x^3+28*x^2+55*x-9,2*x^7-x^6-21*x^5+6*x^4+56*x^3+4*x^2-23*x-13,2*x^6-20*x^4+48*x^2-16,-2*x^7+2*x^6+24*x^5-18*x^4-84*x^3+38*x^2+78*x-18,2*x^7-24*x^5-4*x^4+82*x^3+20*x^2-60*x+8,10*x^7-10*x^6-106*x^5+86*x^4+312*x^3-156*x^2-244*x+48,-16*x^7+14*x^6+180*x^5-118*x^4-578*x^3+214*x^2+490*x-102,6*x^7-6*x^6-68*x^5+52*x^4+224*x^3-96*x^2-214*x+34,-x^7+x^6+12*x^5-8*x^4-40*x^3+11*x^2+33*x-6,-12*x^7+10*x^6+134*x^5-86*x^4-426*x^3+158*x^2+360*x-62,2*x^7-26*x^5+2*x^4+106*x^3-14*x^2-136*x+24,-10*x^7+8*x^6+112*x^5-70*x^4-362*x^3+136*x^2+324*x-70,2*x^6-18*x^4+34*x^2-2,2*x^7-x^6-23*x^5+8*x^4+76*x^3-12*x^2-65*x+9,7*x^7-5*x^6-76*x^5+44*x^4+230*x^3-81*x^2-185*x+32,18*x^7-14*x^6-200*x^5+116*x^4+630*x^3-198*x^2-512*x+96,-2*x^7+18*x^5+2*x^4-38*x^3-16*x^2+14*x-2,26*x^7-20*x^6-292*x^5+170*x^4+934*x^3-308*x^2-788*x+150,-2*x^4+12*x^2-8,14*x^7-8*x^6-164*x^5+66*x^4+560*x^3-118*x^2-518*x+94,2*x^7-24*x^5+2*x^4+84*x^3-12*x^2-74*x+14,-16*x^7+13*x^6+179*x^5-112*x^4-568*x^3+212*x^2+471*x-97,16*x^7-14*x^6-180*x^5+116*x^4+578*x^3-200*x^2-490*x+82,-8*x^7+6*x^6+90*x^5-52*x^4-290*x^3+98*x^2+252*x-52,x^7-x^6-8*x^5+10*x^4+18*x^3-25*x^2-27*x+6,-18*x^7+14*x^6+202*x^5-116*x^4-650*x^3+196*x^2+566*x-94,-2*x^6+18*x^4+4*x^3-40*x^2-16*x,2,-2*x^5+18*x^3-2*x^2-34*x+6]];
E[445,6] = [x^4-x^3-5*x^2+5*x+1, [1,x,x^3-5*x+2,x^2-2,1,x^3-3*x-1,3,x^3-4*x,-x^2-x+5,x,-x^3+3*x,-x^3+2*x^2+4*x-5,-x^3-x^2+5*x,3*x,x^3-5*x+2,x^3-x^2-5*x+3,-x^3+x^2+3*x-3,-x^3-x^2+5*x,-2*x^3+x^2+10*x-5,x^2-2,3*x^3-15*x+6,-x^3-2*x^2+5*x+1,-x^3-x^2+5*x+5,-x^3-x^2+6*x+3,1,-2*x^3+5*x+1,-2*x^2-x+6,3*x^2-6,x^3-2*x^2-x+9,x^3-3*x-1,3*x^3-2*x^2-12*x+5,-2*x^3+6*x-1,x^2-3*x-2,-2*x^2+2*x+1,3,-2*x^3+2*x^2+7*x-9,3*x^2+2*x-10,-x^3+5*x+2,x^3-x^2-3*x-3,x^3-4*x,2*x^3+3*x^2-10*x-4,3*x^3-9*x-3,x^3-x^2-7*x+2,-x^3+1,-x^2-x+5,-2*x^3+10*x+1,-4*x^3+x^2+19*x-5,-3*x^2+11,2,x,-2*x^3+3*x^2+6*x-9,-3*x^2+x+2,3*x^3+3*x^2-15*x-4,-2*x^3-x^2+6*x,-x^3+3*x,3*x^3-12*x,4*x^2+x-19,-x^3+4*x^2+4*x-1,2*x^3+2*x^2-6*x-9,-x^3+2*x^2+4*x-5,-2*x^3-2*x^2+5*x+4,x^3+3*x^2-10*x-3,-3*x^2-3*x+15,-4*x^3-2*x^2+19*x-4,-x^3-x^2+5*x,x^3-3*x^2-2*x,-3*x^3+2*x^2+10*x-4,-5*x+6,6*x^3-x^2-28*x+7,3*x,-2*x^3+10*x-9,2*x^3-x^2-9*x+2,-2*x^2-3*x+6,3*x^3+2*x^2-10*x,x^3-5*x+2,3*x^3-2*x^2-13*x+11,-3*x^3+9*x,2*x^2-8*x-1,2*x^3+2*x^2-7*x-6,x^3-x^2-5*x+3,3*x^3-x^2-12*x,5*x^3-14*x-2,-x^3-x^2+8*x+6,-3*x^3+6*x^2+12*x-15,-x^3+x^2+3*x-3,-2*x^2-3*x-1,9*x^3-5*x^2-36*x+20,x^3-x^2-4*x-1,-1,-x^3-x^2+5*x]];
E[445,7] = [x^2+2*x-4, [1,-1,x,-1,-1,-x,-x,3,-2*x+1,1,2*x,-x,-2*x,x,-x,-1,-2,2*x-1,-x-6,1,2*x-4,-2*x,-x-4,3*x,1,2*x,2*x-8,x,-2*x-2,x,x+2,-5,-4*x+8,2,x,2*x-1,2*x,x+6,4*x-8,-3,-10,-2*x+4,x+4,-2*x,2*x-1,x+4,8,-x,-2*x-3,-1,-2*x,2*x,2,-2*x+8,-2*x,-3*x,-4*x-4,2*x+2,-x-2,x,2*x-2,-x-2,-5*x+8,7,2*x,4*x-8,2*x+4,2,-2*x-4,-x,-2*x-12,-6*x+3,2,-2*x,x,x+6,4*x-8,-4*x+8,4*x+8,1,-6*x+5,10,x-12,-2*x+4,2,-x-4,2*x-8,6*x,-1,-2*x+1]];

E[446,1] = [x, [1,1,2,1,0,2,0,1,1,0,-2,2,4,0,0,1,-2,1,8,0,0,-2,-8,2,-5,4,-4,0,-6,0,8,1,-4,-2,0,1,-6,8,8,0,10,0,-12,-2,0,-8,0,2,-7,-5,-4,4,6,-4,0,0,16,-6,-10,0,4,8,0,1,0,-4,-6,-2,-16,0,4,1,10,-6,-10,8,0,8,12,0,-11,10,8,0,0,-12,-12,-2,-2,0,0,-8,16,0,0,2,-10,-7,-2,-5,-10,-4,16,4,0,6,18,-4,2,0,-12,0]];
E[446,2] = [x, [1,1,-1,1,-2,-1,-2,1,-2,-2,-3,-1,0,-2,2,1,1,-2,-6,-2,2,-3,-3,-1,-1,0,5,-2,5,2,2,1,3,1,4,-2,-7,-6,0,-2,3,2,0,-3,4,-3,2,-1,-3,-1,-1,0,-1,5,6,-2,6,5,3,2,6,2,4,1,0,3,-11,1,3,4,0,-2,7,-7,1,-6,6,0,-8,-2,1,3,-6,2,-2,0,-5,-3,15,4,0,-3,-2,2,12,-1,12,-3,6,-1,-6,-1,-7,0,-4,-1,-8,5,-10,6,7,-2]];
E[446,3] = [x^7-x^6-14*x^5+12*x^4+50*x^3-36*x^2-38*x+18, [239,239,239*x,239,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,239*x,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,239,239*x^2-717,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,36*x^6+17*x^5-552*x^4-301*x^3+2200*x^2+801*x-1324,239*x,64*x^6-76*x^5-822*x^4+713*x^3+2424*x^2-1205*x-1026,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,31*x^6+8*x^5-316*x^4-226*x^3+487*x^2+630*x+108,239,42*x^6-20*x^5-644*x^4+326*x^3+2487*x^2-1336*x-1704,239*x^2-717,-478*x,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,-67*x^6-25*x^5+868*x^4+288*x^3-2448*x^2-236*x+738,36*x^6+17*x^5-552*x^4-301*x^3+2200*x^2+801*x-1324,73*x^6-12*x^5-960*x^4+100*x^3+2974*x^2-228*x-1118,239*x,-115*x^6+32*x^5+1604*x^4-426*x^3-5461*x^2+1564*x+3539,64*x^6-76*x^5-822*x^4+713*x^3+2424*x^2-1205*x-1026,239*x^3-1434*x,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,-95*x^6+68*x^5+1138*x^4-726*x^3-2672*x^2+1770*x+440,31*x^6+8*x^5-316*x^4-226*x^3+487*x^2+630*x+108,-43*x^6+66*x^5+500*x^4-550*x^3-1061*x^2+298*x-304,239,53*x^6-48*x^5-733*x^4+400*x^3+2097*x^2+44*x-648,42*x^6-20*x^5-644*x^4+326*x^3+2487*x^2-1336*x-1704,-69*x^6+67*x^5+1058*x^4-638*x^3-4376*x^2+556*x+3414,239*x^2-717,13*x^6-120*x^5-40*x^4+1478*x^3-374*x^2-3714*x+292,-478*x,-12*x^6+74*x^5-55*x^4-776*x^3+1099*x^2+1406*x-1152,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,-63*x^6+30*x^5+966*x^4-250*x^3-3850*x^2+92*x+1600,-67*x^6-25*x^5+868*x^4+288*x^3-2448*x^2-236*x+738,22*x^6-56*x^5-178*x^4+626*x^3-302*x^2-1064*x+2112,36*x^6+17*x^5-552*x^4-301*x^3+2200*x^2+801*x-1324,57*x^6+7*x^5-874*x^4+101*x^3+3324*x^2-823*x-3132,73*x^6-12*x^5-960*x^4+100*x^3+2974*x^2-228*x-1118,-11*x^6+28*x^5+328*x^4-552*x^3-2239*x^2+1966*x+2290,239*x,12*x^6-74*x^5-184*x^4+776*x^3+574*x^2-928*x+435,-115*x^6+32*x^5+1604*x^4-426*x^3-5461*x^2+1564*x+3539,22*x^6-56*x^5-178*x^4+387*x^3+176*x^2-108*x-756,64*x^6-76*x^5-822*x^4+713*x^3+2424*x^2-1205*x-1026,39*x^6+118*x^5-598*x^4-1302*x^3+2224*x^2+2720*x-1992,239*x^3-1434*x,134*x^6+50*x^5-1975*x^4-576*x^3+7047*x^2+950*x-4344,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,-478*x^2,-95*x^6+68*x^5+1138*x^4-726*x^3-2672*x^2+1770*x+440,-5*x^6-9*x^5+236*x^4-164*x^3-1952*x^2+1263*x+2866,31*x^6+8*x^5-316*x^4-226*x^3+487*x^2+630*x+108,-27*x^6+47*x^5+414*x^4-551*x^3-1172*x^2+1371*x-680,-43*x^6+66*x^5+500*x^4-550*x^3-1061*x^2+298*x-304,31*x^6+8*x^5-555*x^4-226*x^3+2638*x^2+1108*x-2760,239,168*x^6-80*x^5-2337*x^4+826*x^3+7797*x^2-1520*x-5382,53*x^6-48*x^5-733*x^4+400*x^3+2097*x^2+44*x-648,-137*x^6+88*x^5+1782*x^4-813*x^3-4920*x^2+955*x+1666,42*x^6-20*x^5-644*x^4+326*x^3+2487*x^2-1336*x-1704,61*x^6+62*x^5-776*x^4-676*x^3+2400*x^2+1656*x-1314,-69*x^6+67*x^5+1058*x^4-638*x^3-4376*x^2+556*x+3414,176*x^6+30*x^5-2380*x^4-728*x^3+8100*x^2+2482*x-6048,239*x^2-717,-20*x^6-36*x^5+227*x^4+300*x^3-160*x^2+272*x-2398,13*x^6-120*x^5-40*x^4+1478*x^3-374*x^2-3714*x+292,-83*x^6-6*x^5+954*x^4+289*x^3-2576*x^2-831*x+2070,-478*x,-119*x^6-23*x^5+1506*x^4+590*x^3-3820*x^2-2110*x-430,-12*x^6+74*x^5-55*x^4-776*x^3+1099*x^2+1406*x-1152,-158*x^6+98*x^5+2104*x^4-976*x^3-6522*x^2+1862*x+3952,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,239*x^4-2151*x^2+2151,-63*x^6+30*x^5+966*x^4-250*x^3-3850*x^2+92*x+1600,-124*x^6-32*x^5+1742*x^4+426*x^3-5772*x^2-130*x+2436,-67*x^6-25*x^5+868*x^4+288*x^3-2448*x^2-236*x+738,169*x^6-126*x^5-2432*x^4+1289*x^3+9478*x^2-3350*x-8154,22*x^6-56*x^5-178*x^4+626*x^3-302*x^2-1064*x+2112,-27*x^6-192*x^5+414*x^4+2078*x^3-1650*x^2-3170*x+1710,36*x^6+17*x^5-552*x^4-301*x^3+2200*x^2+801*x-1324,126*x^6-60*x^5-1454*x^4+500*x^3+3159*x^2-1140*x-810,57*x^6+7*x^5-874*x^4+101*x^3+3324*x^2-823*x-3132,61*x^6-177*x^5-776*x^4+2192*x^3+2400*x^2-5514*x-1314,73*x^6-12*x^5-960*x^4+100*x^3+2974*x^2-228*x-1118,23*x^6-102*x^5-34*x^4+1089*x^3-1250*x^2-1938*x+774,-11*x^6+28*x^5+328*x^4-552*x^3-2239*x^2+1966*x+2290,-62*x^6-16*x^5+632*x^4+452*x^3-974*x^2-1260*x-216,239*x,-86*x^6+132*x^5+1000*x^4-1578*x^3-2600*x^2+4898*x+1782,12*x^6-74*x^5-184*x^4+776*x^3+574*x^2-928*x+435,-103*x^6-42*x^5+1420*x^4+350*x^3-4648*x^2-1037*x+3018,-115*x^6+32*x^5+1604*x^4-426*x^3-5461*x^2+1564*x+3539,-40*x^6-72*x^5+454*x^4+600*x^3-798*x^2+544*x-1450,22*x^6-56*x^5-178*x^4+387*x^3+176*x^2-108*x-756,-43*x^6+66*x^5+500*x^4-1028*x^3-1300*x^2+3644*x+1130,64*x^6-76*x^5-822*x^4+713*x^3+2424*x^2-1205*x-1026,-2*x^6+92*x^5+190*x^4-926*x^3-1928*x^2+792*x+1242,39*x^6+118*x^5-598*x^4-1302*x^3+2224*x^2+2720*x-1992,63*x^6-30*x^5-966*x^4+728*x^3+3372*x^2-3677*x-1122,239*x^3-1434*x,148*x^6-116*x^5-2110*x^4+1126*x^3+7398*x^2-1726*x-3478,134*x^6+50*x^5-1975*x^4-576*x^3+7047*x^2+950*x-4344,-107*x^6+142*x^5+1322*x^4-1024*x^3-3246*x^2+786*x-234,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322]];
E[446,4] = [x, [1,-1,-1,1,0,1,0,-1,-2,0,1,-1,-2,0,0,1,1,2,-4,0,0,-1,1,1,-5,2,5,0,-3,0,-10,-1,-1,-1,0,-2,-3,4,2,0,-5,0,-6,1,0,-1,6,-1,-7,5,-1,-2,-9,-5,0,0,4,3,-1,0,4,10,0,1,0,1,9,1,-1,0,4,2,-5,3,5,-4,0,-2,0,0,1,5,14,0,0,6,3,-1,-5,0,0,1,10,-6,0,1,2,7,-2,-5,2,1,13,2,0,9,12,5,-10,0,3,0]];
E[446,5] = [x, [1,-1,-3,1,-4,3,-4,-1,6,4,-5,-3,-6,4,12,1,1,-6,0,-4,12,5,-5,3,11,6,-9,-4,-3,-12,2,-1,15,-1,16,6,5,0,18,4,-5,-12,-6,-5,-24,5,-6,-3,9,-11,-3,-6,-1,9,20,4,0,3,-11,12,0,-2,-24,1,24,-15,11,1,15,-16,-12,-6,-5,-5,-33,0,20,-18,-8,-4,9,5,-6,12,-4,6,9,5,3,24,24,-5,-6,6,0,3,-18,-9,-30,11,-14,3,-1,6,-48,1,-4,-9,-2,-20,-15,-4]];
E[446,6] = [x^8-4*x^7-12*x^6+54*x^5+34*x^4-204*x^3+6*x^2+160*x+34, [33,-33,33*x,33,-x^7+19*x^5+2*x^4-116*x^3+2*x^2+221*x-10,-33*x,4*x^6-2*x^5-75*x^4+46*x^3+342*x^2-212*x-184,-33,33*x^2-99,x^7-19*x^5-2*x^4+116*x^3-2*x^2-221*x+10,2*x^7-6*x^6-35*x^5+92*x^4+163*x^3-352*x^2-91*x+164,33*x,-2*x^7+4*x^6+36*x^5-38*x^4-219*x^3+16*x^2+395*x+258,-4*x^6+2*x^5+75*x^4-46*x^3-342*x^2+212*x+184,-4*x^7+7*x^6+56*x^5-82*x^4-202*x^3+227*x^2+150*x+34,33,-7*x^6+20*x^5+90*x^4-196*x^3-351*x^2+404*x+322,-33*x^2+99,8*x^7-22*x^6-108*x^5+248*x^4+444*x^3-676*x^2-470*x+168,-x^7+19*x^5+2*x^4-116*x^3+2*x^2+221*x-10,4*x^7-2*x^6-75*x^5+46*x^4+342*x^3-212*x^2-184*x,-2*x^7+6*x^6+35*x^5-92*x^4-163*x^3+352*x^2+91*x-164,-2*x^7+18*x^6-4*x^5-218*x^4+206*x^3+718*x^2-644*x-452,-33*x,-6*x^7+18*x^6+72*x^5-210*x^4-192*x^3+627*x^2-156*x-129,2*x^7-4*x^6-36*x^5+38*x^4+219*x^3-16*x^2-395*x-258,33*x^3-198*x,4*x^6-2*x^5-75*x^4+46*x^3+342*x^2-212*x-184,-66*x+66,4*x^7-7*x^6-56*x^5+82*x^4+202*x^3-227*x^2-150*x-34,-4*x^7+11*x^6+54*x^5-124*x^4-222*x^3+305*x^2+202*x+180,-33,2*x^7-11*x^6-16*x^5+95*x^4+56*x^3-103*x^2-156*x-68,7*x^6-20*x^5-90*x^4+196*x^3+351*x^2-404*x-322,8*x^7-30*x^6-71*x^5+332*x^4+22*x^3-964*x^2+614*x+404,33*x^2-99,6*x^7-18*x^6-72*x^5+210*x^4+192*x^3-594*x^2+90*x+162,-8*x^7+22*x^6+108*x^5-248*x^4-444*x^3+676*x^2+470*x-168,-4*x^7+12*x^6+70*x^5-151*x^4-392*x^3+407*x^2+578*x+68,x^7-19*x^5-2*x^4+116*x^3-2*x^2-221*x+10,-4*x^6+2*x^5+42*x^4+20*x^3-78*x^2-184*x+52,-4*x^7+2*x^6+75*x^5-46*x^4-342*x^3+212*x^2+184*x,4*x^7-8*x^6-72*x^5+142*x^4+306*x^3-626*x^2-64*x+408,2*x^7-6*x^6-35*x^5+92*x^4+163*x^3-352*x^2-91*x+164,-6*x^7+8*x^6+77*x^5-72*x^4-241*x^3+168*x^2+11*x+166,2*x^7-18*x^6+4*x^5+218*x^4-206*x^3-718*x^2+644*x+452,-12*x^7+30*x^6+180*x^5-390*x^4-750*x^3+1269*x^2+534*x-312,33*x,-4*x^6+2*x^5+42*x^4+20*x^3-78*x^2-184*x+151,6*x^7-18*x^6-72*x^5+210*x^4+192*x^3-627*x^2+156*x+129,-7*x^7+20*x^6+90*x^5-196*x^4-351*x^3+404*x^2+322*x,-2*x^7+4*x^6+36*x^5-38*x^4-219*x^3+16*x^2+395*x+258,-6*x^7+22*x^6+70*x^5-252*x^4-212*x^3+672*x^2+28*x-82,-33*x^3+198*x,-2*x^7+14*x^6-2*x^5-143*x^4+160*x^3+409*x^2-366*x-400,-4*x^6+2*x^5+75*x^4-46*x^3-342*x^2+212*x+184,10*x^7-12*x^6-184*x^5+172*x^4+956*x^3-518*x^2-1112*x-272,66*x-66,5*x^7-4*x^6-93*x^5+32*x^4+534*x^3+44*x^2-893*x-360,-4*x^7+7*x^6+56*x^5-82*x^4-202*x^3+227*x^2+150*x+34,-6*x^6+3*x^5+96*x^4-69*x^3-348*x^2+351*x+210,4*x^7-11*x^6-54*x^5+124*x^4+222*x^3-305*x^2-202*x-180,14*x^7-39*x^6-164*x^5+431*x^4+466*x^3-1234*x^2-4*x+416,33,-6*x^7+19*x^6+88*x^5-237*x^4-428*x^3+729*x^2+616*x-208,-2*x^7+11*x^6+16*x^5-95*x^4-56*x^3+103*x^2+156*x+68,-33*x^3+297*x,-7*x^6+20*x^5+90*x^4-196*x^3-351*x^2+404*x+322,10*x^7-28*x^6-110*x^5+274*x^4+310*x^3-632*x^2-132*x+68,-8*x^7+30*x^6+71*x^5-332*x^4-22*x^3+964*x^2-614*x-404,14*x^7-44*x^6-178*x^5+500*x^4+656*x^3-1348*x^2-498*x+184,-33*x^2+99,4*x^7-14*x^6-36*x^5+139*x^4+72*x^3-380*x^2-76*x+354,-6*x^7+18*x^6+72*x^5-210*x^4-192*x^3+594*x^2-90*x-162,-6*x^7+114*x^5+12*x^4-597*x^3-120*x^2+831*x+204,8*x^7-22*x^6-108*x^5+248*x^4+444*x^3-676*x^2-470*x+168,x^7+14*x^6-59*x^5-182*x^4+508*x^3+700*x^2-930*x-832,4*x^7-12*x^6-70*x^5+151*x^4+392*x^3-407*x^2-578*x-68,-6*x^7+14*x^6+74*x^5-168*x^4-172*x^3+582*x^2-406*x-308,-x^7+19*x^5+2*x^4-116*x^3+2*x^2+221*x-10,33*x^4-297*x^2+297,4*x^6-2*x^5-42*x^4-20*x^3+78*x^2+184*x-52,-2*x^7+4*x^6+36*x^5-38*x^4-186*x^3+16*x^2+230*x-72,4*x^7-2*x^6-75*x^5+46*x^4+342*x^3-212*x^2-184*x,-10*x^7+22*x^6+146*x^5-310*x^4-511*x^3+1142*x^2-12*x-452,-4*x^7+8*x^6+72*x^5-142*x^4-306*x^3+626*x^2+64*x-408,-66*x^2+66*x,-2*x^7+6*x^6+35*x^5-92*x^4-163*x^3+352*x^2+91*x-164,-6*x^7+26*x^6+68*x^5-294*x^4-232*x^3+783*x^2+80*x-134,6*x^7-8*x^6-77*x^5+72*x^4+241*x^3-168*x^2-11*x-166,-19*x^7+52*x^6+269*x^5-640*x^4-1078*x^3+1976*x^2+816*x-536,-2*x^7+18*x^6-4*x^5-218*x^4+206*x^3+718*x^2-644*x-452,-5*x^7+6*x^6+92*x^5-86*x^4-511*x^3+226*x^2+820*x+136,12*x^7-30*x^6-180*x^5+390*x^4+750*x^3-1269*x^2-534*x+312,6*x^7-18*x^6-72*x^5+144*x^4+324*x^3-66*x^2-636*x-564,-33*x,-14*x^6+40*x^5+180*x^4-458*x^3-636*x^2+1270*x+446,4*x^6-2*x^5-42*x^4-20*x^3+78*x^2+184*x-151,-9*x^7+26*x^6+92*x^5-288*x^4-184*x^3+888*x^2-115*x-560,-6*x^7+18*x^6+72*x^5-210*x^4-192*x^3+627*x^2-156*x-129,-2*x^7-10*x^6+76*x^5+142*x^4-644*x^3-686*x^2+1368*x+902,7*x^7-20*x^6-90*x^5+196*x^4+351*x^3-404*x^2-322*x,10*x^7-30*x^6-142*x^5+394*x^4+518*x^3-1232*x^2-92*x+28,2*x^7-4*x^6-36*x^5+38*x^4+219*x^3-16*x^2-395*x-258,2*x^7+25*x^6-100*x^5-250*x^4+668*x^3+566*x^2-876*x-272,6*x^7-22*x^6-70*x^5+252*x^4+212*x^3-672*x^2-28*x+82,-2*x^7+14*x^6-2*x^5-176*x^4+226*x^3+640*x^2-861*x-664,33*x^3-198*x,-2*x^7-4*x^6+40*x^5+46*x^4-146*x^3-206*x^2-138*x+362,2*x^7-14*x^6+2*x^5+143*x^4-160*x^3-409*x^2+366*x+400,6*x^7-114*x^5-12*x^4+630*x^3+54*x^2-798*x-204,4*x^6-2*x^5-75*x^4+46*x^3+342*x^2-212*x-184]];

E[447,1] = [x^3+x^2-2*x-1, [1,x,-1,x^2-2,0,-x,-2*x^2-x+2,-x^2-2*x+1,1,0,x^2-x-1,-x^2+2,2*x^2-6,x^2-2*x-2,0,-3*x^2-x+3,-2*x^2-2*x,x,x^2+2*x-2,0,2*x^2+x-2,-2*x^2+x+1,4*x^2+x-8,x^2+2*x-1,-5,-2*x^2-2*x+2,-1,x^2+2*x-3,-2*x^2-2*x+4,0,3*x^2+x-5,4*x^2+x-5,-x^2+x+1,-4*x-2,0,x^2-2,x^2+4*x-6,x^2+1,-2*x^2+6,0,3*x^2+7*x-5,-x^2+2*x+2,4*x-2,x^2-x,0,-3*x^2+4,-4*x^2+2*x+10,3*x^2+x-3,x^2-3,-5*x,2*x^2+2*x,-4*x^2-2*x+10,-8*x^2-4*x+8,-x,0,-x^2+3*x+5,-x^2-2*x+2,-2,-3*x^2-4*x+8,0,-3*x^2+x+3,-2*x^2+x+3,-2*x^2-x+2,3*x^2+5*x-2,0,2*x^2-x-1,-7*x^2-5*x+9,2*x,-4*x^2-x+8,0,9*x^2+8*x-12,-x^2-2*x+1,4*x^2-7*x-12,3*x^2-4*x+1,5,-3*x^2-x+5,-2*x^2+3*x+1,2*x^2+2*x-2,8*x^2+2*x-12,0,1,4*x^2+x+3,4*x^2+3*x,-x^2-2*x+3,0,4*x^2-2*x,2*x^2+2*x-4,2*x^2-1,-6*x^2+3*x+14,0,6*x^2+6*x-10,-5*x^2-4*x+13,-3*x^2-x+5,6*x^2+2*x-4,0,-4*x^2-x+5,8*x^2+4*x-16,-x^2-x+1,x^2-x-1,-5*x^2+10]];
E[447,2] = [x^3+3*x^2-3, [1,x,1,x^2-2,-2,x,-x-2,-3*x^2-4*x+3,1,-2*x,-x^2-3*x-3,x^2-2,-2*x^2-2*x+4,-x^2-2*x,-2,3*x^2+3*x-5,2*x^2+4*x-4,x,x^2+2*x-2,-2*x^2+4,-x-2,-3*x-3,4*x^2+9*x-4,-3*x^2-4*x+3,-1,4*x^2+4*x-6,1,x^2+2*x+1,4*x^2+4*x-10,-2*x,-3*x^2-3*x+7,3*x+3,-x^2-3*x-3,-2*x^2-4*x+6,2*x+4,x^2-2,x^2-6,-x^2-2*x+3,-2*x^2-2*x+4,6*x^2+8*x-6,-3*x^2-7*x-3,-x^2-2*x,-2*x^2+8,-x^2+3*x+6,-2,-3*x^2-4*x+12,-2*x^2-2*x,3*x^2+3*x-5,x^2+4*x-3,-x,2*x^2+4*x-4,-4*x^2-2*x+4,-8*x^2-10*x+14,x,2*x^2+6*x+6,x^2+5*x+3,x^2+2*x-2,-8*x^2-10*x+12,3*x^2+4*x-14,-2*x^2+4,7*x^2+9*x-9,6*x^2+7*x-9,-x-2,-3*x^2-3*x+10,4*x^2+4*x-8,-3*x-3,-x^2+7*x+9,-2*x^2-2*x+2,4*x^2+9*x-4,2*x^2+4*x,-x^2-8*x-6,-3*x^2-4*x+3,-6*x^2-11*x,-3*x^2-6*x+3,-1,-x^2-x+1,2*x^2+9*x+9,4*x^2+4*x-6,-2*x^2-4*x+4,-6*x^2-6*x+10,1,2*x^2-3*x-9,4*x^2+3*x-12,x^2+2*x+1,-4*x^2-8*x+8,6*x^2+8*x-6,4*x^2+4*x-10,6*x^2+12*x+3,-6*x^2-9*x+14,-2*x,-2,-3*x^2-6*x-1,-3*x^2-3*x+7,4*x^2-6,-2*x^2-4*x+4,3*x+3,6*x^2+6*x-14,x^2-3*x+3,-x^2-3*x-3,-x^2+2]];
E[447,3] = [x^10-3*x^9-12*x^8+37*x^7+44*x^6-142*x^5-50*x^4+181*x^3-5*x^2-30*x+1, [647,647*x,-647,647*x^2-1294,-135*x^9+358*x^8+1898*x^7-4732*x^6-8776*x^5+19642*x^4+14058*x^3-26097*x^2-2602*x+2962,-647*x,29*x^9-144*x^8-355*x^7+1860*x^6+1636*x^5-7579*x^4-4357*x^3+10667*x^2+5572*x-1983,647*x^3-2588*x,647,-47*x^9+278*x^8+263*x^7-2836*x^6+472*x^5+7308*x^4-1662*x^3-3277*x^2-1088*x+135,-51*x^9+164*x^8+602*x^7-2334*x^6-2007*x^5+10986*x^4+1170*x^3-17666*x^2+2784*x+2528,-647*x^2+1294,270*x^9-716*x^8-3149*x^7+8170*x^6+11082*x^5-27638*x^4-12588*x^3+28902*x^2+1322*x-1395,-57*x^9-7*x^8+787*x^7+360*x^6-3461*x^5-2907*x^4+5418*x^3+5717*x^2-1113*x-29,135*x^9-358*x^8-1898*x^7+4732*x^6+8776*x^5-19642*x^4-14058*x^3+26097*x^2+2602*x-2962,647*x^4-3882*x^2+2588,-55*x^9+50*x^8+941*x^7-538*x^6-5780*x^5+1724*x^4+14354*x^3-2293*x^2-10166*x+2333,647*x,16*x^9-191*x^8-62*x^7+2521*x^6-436*x^5-10830*x^4+1612*x^3+16148*x^2-1254*x-1808,407*x^9-1017*x^8-4893*x^7+12004*x^6+18186*x^5-43296*x^4-22886*x^3+50871*x^2+3929*x-5877,-29*x^9+144*x^8+355*x^7-1860*x^6-1636*x^5+7579*x^4+4357*x^3-10667*x^2-5572*x+1983,11*x^9-10*x^8-447*x^7+237*x^6+3744*x^5-1380*x^4-8435*x^3+2529*x^2+998*x+51,-253*x^9+877*x^8+2517*x^7-9980*x^6-5884*x^5+33681*x^4-1389*x^3-36169*x^2+10043*x+5297,-647*x^3+2588*x,-350*x^9+1024*x^8+4106*x^7-12364*x^6-14078*x^5+45556*x^4+12292*x^3-54000*x^2+6242*x+9141,94*x^9+91*x^8-1820*x^7-798*x^6+10702*x^5+912*x^4-19968*x^3+2672*x^2+6705*x-270,-647,-236*x^9+391*x^8+3179*x^7-4673*x^6-14273*x^5+17726*x^4+24748*x^3-22732*x^2-12883*x+4023,181*x^9-341*x^8-2238*x^7+3488*x^6+9140*x^5-9532*x^4-15570*x^3+6205*x^2+9187*x+898,47*x^9-278*x^8-263*x^7+2836*x^6-472*x^5-7308*x^4+1662*x^3+3277*x^2+1088*x-135,166*x^9-445*x^8-2099*x^7+5694*x^6+8093*x^5-22590*x^4-8832*x^3+28107*x^2-3467*x-1289,647*x^5-5176*x^3+7764*x,51*x^9-164*x^8-602*x^7+2334*x^6+2007*x^5-10986*x^4-1170*x^3+17666*x^2-2784*x-2528,-115*x^9+281*x^8+1497*x^7-3360*x^6-6086*x^5+11604*x^4+7662*x^3-10441*x^2+683*x+55,65*x^9-412*x^8-171*x^7+5106*x^6-3874*x^5-20624*x^4+17386*x^3+30825*x^2-16336*x-7345,647*x^2-1294,-42*x^9+97*x^8+648*x^7-1199*x^6-3708*x^5+4328*x^4+10326*x^3-3892*x^2-13692*x+864,-143*x^9+130*x^8+1929*x^7-1140*x^6-8558*x^5+2412*x^4+13252*x^3-1174*x^2-1328*x-16,-270*x^9+716*x^8+3149*x^7-8170*x^6-11082*x^5+27638*x^4+12588*x^3-28902*x^2-1322*x+1395,298*x^9-565*x^8-3581*x^7+5950*x^6+13554*x^5-17152*x^4-19472*x^3+12518*x^2+8509*x-677,-95*x^9+204*x^8+1096*x^7-1988*x^6-4043*x^5+4860*x^4+6442*x^3-3196*x^2-5090*x+2324,57*x^9+7*x^8-787*x^7-360*x^6+3461*x^5+2907*x^4-5418*x^3-5717*x^2+1113*x+29,82*x^9-251*x^8-803*x^7+2002*x^6+2618*x^5-994*x^4-6296*x^3-11380*x^2+7969*x+6909,125*x^9-643*x^8-1374*x^7+7928*x^6+4196*x^5-29857*x^4-1802*x^3+36385*x^2-5187*x-5067,-135*x^9+358*x^8+1898*x^7-4732*x^6-8776*x^5+19642*x^4+14058*x^3-26097*x^2-2602*x+2962,118*x^9-519*x^8-619*x^7+5248*x^6-2245*x^5-14039*x^4+9624*x^3+8778*x^2-2293*x+253,38*x^9-211*x^8-309*x^7+2348*x^6+582*x^5-7120*x^4-1024*x^3+5678*x^2+95*x-2353,-647*x^4+3882*x^2-2588,-10*x^9-285*x^8+524*x^7+3843*x^6-4580*x^5-16038*x^4+10962*x^3+20640*x^2-3260*x+483,-26*x^9-94*x^8+586*x^7+1322*x^6-4144*x^5-5208*x^4+9350*x^3+4492*x^2-1359*x+350,55*x^9-50*x^8-941*x^7+538*x^6+5780*x^5-1724*x^4-14354*x^3+2293*x^2+10166*x-2333,-167*x^9+740*x^8+2022*x^7-9774*x^6-7904*x^5+40008*x^4+10834*x^3-50629*x^2-94*x+2696,-276*x^9+1192*x^8+2687*x^7-14534*x^6-6066*x^5+54506*x^4-1280*x^3-65690*x^2+8368*x+7249,-647*x,-325*x^9+1413*x^8+2796*x^7-16472*x^6-3922*x^5+57830*x^4-5408*x^3-66133*x^2+805*x+11492,-203*x^9+361*x^8+2485*x^7-4609*x^6-8864*x^5+18762*x^4+9148*x^3-25497*x^2-831*x+294,-16*x^9+191*x^8+62*x^7-2521*x^6+436*x^5+10830*x^4-1612*x^3-16148*x^2+1254*x+1808,202*x^9-66*x^8-3209*x^7+1176*x^6+16170*x^5-6520*x^4-26556*x^3+10092*x^2+6328*x-181,239*x^9-629*x^8-2948*x^7+7855*x^6+11118*x^5-31160*x^4-12638*x^3+41773*x^2-1020*x-8244,-407*x^9+1017*x^8+4893*x^7-12004*x^6-18186*x^5+43296*x^4+22886*x^3-50871*x^2-3929*x+5877,220*x^9-847*x^8-1823*x^7+9916*x^6+475*x^5-35364*x^4+17636*x^3+42169*x^2-23389*x-6097,53*x^9-107*x^8-448*x^7+789*x^6+982*x^5-532*x^4-1939*x^3-2637*x^2+3691*x-166,29*x^9-144*x^8-355*x^7+1860*x^6+1636*x^5-7579*x^4-4357*x^3+10667*x^2+5572*x-1983,647*x^6-6470*x^4+15528*x^2-5176,-146*x^9+368*x^8+1698*x^7-4322*x^6-6050*x^5+14552*x^4+8906*x^3-10510*x^2-8776*x-5500,-11*x^9+10*x^8+447*x^7-237*x^6-3744*x^5+1380*x^4+8435*x^3-2529*x^2-998*x-51,46*x^9+17*x^8-987*x^7+50*x^6+6187*x^5-1536*x^4-10570*x^3+4047*x^2-2473*x-1963,46*x^9+17*x^8-987*x^7+50*x^6+6834*x^5-1536*x^4-18334*x^3+4694*x^2+16937*x-4551,253*x^9-877*x^8-2517*x^7+9980*x^6+5884*x^5-33681*x^4+1389*x^3+36169*x^2-10043*x-5297,-217*x^9+609*x^8+2701*x^7-6734*x^6-11394*x^5+20636*x^4+19060*x^3-16011*x^2-5395*x-65,487*x^9-1325*x^8-5850*x^7+15551*x^6+22476*x^5-54744*x^4-32942*x^3+59147*x^2+11246*x-5212,647*x^3-2588*x,3*x^9-238*x^8+231*x^7+3182*x^6-2508*x^5-12787*x^4+6287*x^3+13865*x^2-2904*x+4837,-29*x^9+144*x^8+355*x^7-1860*x^6-1636*x^5+8226*x^4+3710*x^3-13902*x^2-396*x+42,350*x^9-1024*x^8-4106*x^7+12364*x^6+14078*x^5-45556*x^4-12292*x^3+54000*x^2-6242*x-9141,-331*x^9+595*x^8+4275*x^7-7308*x^6-17022*x^5+27762*x^4+21485*x^3-34339*x^2-1798*x+3759,476*x^9-1315*x^8-6050*x^7+15961*x^6+24555*x^5-58540*x^4-32918*x^3+66323*x^2-1398*x-7204,-94*x^9-91*x^8+1820*x^7+798*x^6-10702*x^5-912*x^4+19968*x^3-2672*x^2-6705*x+270,356*x^9-853*x^8-4938*x^7+10964*x^6+22002*x^5-43956*x^4-32068*x^3+57144*x^2+4125*x-7878,-485*x^9+2029*x^8+4710*x^7-23566*x^6-11208*x^5+82020*x^4+4352*x^3-91743*x^2+405*x+11456,647,-81*x^9-44*x^8+1527*x^7+137*x^6-8630*x^5+1692*x^4+13999*x^3-5565*x^2-526*x+95,107*x^9-509*x^8-819*x^7+5658*x^6-166*x^5-17835*x^4+9001*x^3+16601*x^2-13643*x-4327,236*x^9-391*x^8-3179*x^7+4673*x^6+14273*x^5-17726*x^4-24748*x^3+22732*x^2+12883*x-4023,-532*x^9+1660*x^8+5620*x^7-18638*x^6-15912*x^5+60860*x^4+7866*x^3-60082*x^2+14198*x+8356,-5*x^9+181*x^8-1032*x^7-990*x^6+10650*x^5-2196*x^4-26222*x^3+8379*x^2+9369*x-82,-181*x^9+341*x^8+2238*x^7-3488*x^6-9140*x^5+9532*x^4+15570*x^3-6205*x^2-9187*x-898,-290*x^9+146*x^8+4197*x^7-1778*x^6-19595*x^5+7208*x^4+30630*x^3-9620*x^2-3313*x-227,149*x^9+41*x^8-2761*x^7-260*x^6+16482*x^5-165*x^4-34969*x^3+1083*x^2+20753*x-15,-47*x^9+278*x^8+263*x^7-2836*x^6+472*x^5+7308*x^4-1662*x^3-3277*x^2-1088*x+135,138*x^9+51*x^8-2314*x^7-1144*x^6+14032*x^5+7038*x^4-36886*x^3-13092*x^2+33989*x+2522,341*x^9-957*x^8-4152*x^7+12523*x^6+14485*x^5-51838*x^4-9802*x^3+70635*x^2-16293*x-10712,-166*x^9+445*x^8+2099*x^7-5694*x^6-8093*x^5+22590*x^4+8832*x^3-28107*x^2+3467*x+1289,-97*x^9+147*x^8+942*x^7-1090*x^6-1724*x^5+876*x^4-1200*x^3+285*x^2-1213*x-38,161*x^9-911*x^8-543*x^7+9880*x^6-6490*x^5-31256*x^4+23176*x^3+33251*x^2-7685*x-7841,-647*x^5+5176*x^3-7764*x,213*x^9-723*x^8-2362*x^7+8530*x^6+8268*x^5-31192*x^4-12346*x^3+39795*x^2+6679*x-6600,-315*x^9+404*x^8+4213*x^7-4140*x^6-17458*x^5+10462*x^4+22450*x^3-3310*x^2+183*x+10,-51*x^9+164*x^8+602*x^7-2334*x^6-2007*x^5+10986*x^4+1170*x^3-17666*x^2+2784*x+2528,528*x^9-1774*x^8-5928*x^7+21728*x^6+19256*x^5-83062*x^4-15386*x^3+106511*x^2-12914*x-18256]];
E[447,4] = [x^9-4*x^8-6*x^7+37*x^6-3*x^5-101*x^4+49*x^3+72*x^2-21*x-13, [1,x,1,x^2-2,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,x,-4*x^8+9*x^7+39*x^6-77*x^5-120*x^4+178*x^3+117*x^2-63*x-26,x^3-4*x,1,4*x^8-9*x^7-39*x^6+77*x^5+119*x^4-177*x^3-113*x^2+61*x+26,-2*x^8+4*x^7+21*x^6-34*x^5-73*x^4+77*x^3+88*x^2-25*x-19,x^2-2,6*x^8-13*x^7-60*x^6+112*x^5+192*x^4-262*x^3-202*x^2+98*x+49,-7*x^8+15*x^7+71*x^6-132*x^5-226*x^4+313*x^3+225*x^2-110*x-52,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,x^4-6*x^2+4,2*x^8-5*x^7-19*x^6+43*x^5+57*x^4-99*x^3-55*x^2+31*x+16,x,-3*x^8+6*x^7+31*x^6-52*x^5-102*x^4+120*x^3+108*x^2-36*x-24,3*x^8-7*x^7-29*x^6+61*x^5+85*x^4-143*x^3-69*x^2+48*x+14,-4*x^8+9*x^7+39*x^6-77*x^5-120*x^4+178*x^3+117*x^2-63*x-26,-4*x^8+9*x^7+40*x^6-79*x^5-125*x^4+186*x^3+119*x^2-61*x-26,-5*x^8+11*x^7+51*x^6-97*x^5-166*x^4+232*x^3+175*x^2-88*x-40,x^3-4*x,12*x^8-26*x^7-120*x^6+226*x^5+376*x^4-528*x^3-366*x^2+178*x+83,11*x^8-24*x^7-110*x^6+210*x^5+344*x^4-496*x^3-334*x^2+175*x+78,1,-5*x^8+11*x^7+49*x^6-93*x^5-154*x^4+212*x^3+160*x^2-73*x-39,-9*x^8+20*x^7+89*x^6-175*x^5-273*x^4+415*x^3+253*x^2-152*x-55,4*x^8-9*x^7-39*x^6+77*x^5+119*x^4-177*x^3-113*x^2+61*x+26,-3*x^8+7*x^7+30*x^6-63*x^5-94*x^4+156*x^3+91*x^2-67*x-21,x^5-8*x^3+12*x,-2*x^8+4*x^7+21*x^6-34*x^5-73*x^4+77*x^3+88*x^2-25*x-19,3*x^8-7*x^7-31*x^6+63*x^5+103*x^4-153*x^3-113*x^2+58*x+26,-12*x^8+27*x^7+117*x^6-231*x^5-359*x^4+533*x^3+347*x^2-187*x-78,x^2-2,-x^8+2*x^7+11*x^6-20*x^5-36*x^4+54*x^3+34*x^2-24*x-10,-6*x^8+13*x^7+59*x^6-111*x^5-183*x^4+255*x^3+180*x^2-87*x-39,6*x^8-13*x^7-60*x^6+112*x^5+192*x^4-262*x^3-202*x^2+98*x+49,-3*x^8+7*x^7+28*x^6-60*x^5-78*x^4+138*x^3+58*x^2-45*x-13,12*x^8-26*x^7-121*x^6+226*x^5+389*x^4-531*x^3-406*x^2+191*x+97,-7*x^8+15*x^7+71*x^6-132*x^5-226*x^4+313*x^3+225*x^2-110*x-52,-x^8+x^7+12*x^6-8*x^5-48*x^4+18*x^3+68*x^2-9*x-19,-3*x^8+8*x^7+27*x^6-69*x^5-72*x^4+161*x^3+51*x^2-60*x-14,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,-9*x^8+21*x^7+88*x^6-181*x^5-273*x^4+420*x^3+272*x^2-145*x-65,13*x^8-29*x^7-128*x^6+250*x^5+396*x^4-580*x^3-384*x^2+197*x+89,x^4-6*x^2+4,3*x^8-6*x^7-31*x^6+52*x^5+102*x^4-122*x^3-106*x^2+42*x+19,22*x^8-48*x^7-218*x^6+412*x^5+684*x^4-954*x^3-686*x^2+335*x+156,2*x^8-5*x^7-19*x^6+43*x^5+57*x^4-99*x^3-55*x^2+31*x+16,8*x^8-18*x^7-77*x^6+153*x^5+231*x^4-349*x^3-213*x^2+113*x+45,-12*x^8+27*x^7+118*x^6-234*x^5-362*x^4+544*x^3+342*x^2-180*x-77,x,-7*x^8+16*x^7+67*x^6-135*x^5-201*x^4+303*x^3+191*x^2-92*x-49,5*x^8-11*x^7-50*x^6+95*x^5+159*x^4-221*x^3-163*x^2+76*x+39,-3*x^8+6*x^7+31*x^6-52*x^5-102*x^4+120*x^3+108*x^2-36*x-24,-16*x^8+35*x^7+158*x^6-300*x^5-494*x^4+694*x^3+496*x^2-244*x-117,7*x^8-16*x^7-68*x^6+139*x^5+203*x^4-325*x^3-177*x^2+111*x+37,3*x^8-7*x^7-29*x^6+61*x^5+85*x^4-143*x^3-69*x^2+48*x+14,13*x^8-29*x^7-128*x^6+251*x^5+396*x^4-588*x^3-385*x^2+213*x+87,-5*x^8+12*x^7+48*x^6-103*x^5-147*x^4+238*x^3+149*x^2-84*x-39,-4*x^8+9*x^7+39*x^6-77*x^5-120*x^4+178*x^3+117*x^2-63*x-26,x^6-10*x^4+24*x^2-8,16*x^8-36*x^7-156*x^6+308*x^5+478*x^4-708*x^3-462*x^2+238*x+112,-4*x^8+9*x^7+40*x^6-79*x^5-125*x^4+186*x^3+119*x^2-61*x-26,x^8-3*x^7-8*x^6+25*x^5+18*x^4-56*x^3-7*x^2+15*x-3,x^8-3*x^7-10*x^6+26*x^5+36*x^4-62*x^3-48*x^2+27*x+7,-5*x^8+11*x^7+51*x^6-97*x^5-166*x^4+232*x^3+175*x^2-88*x-40,-21*x^8+45*x^7+213*x^6-395*x^5-679*x^4+935*x^3+677*x^2-330*x-156,-x^8+2*x^7+10*x^6-17*x^5-31*x^4+41*x^3+27*x^2-21*x-1,x^3-4*x,-x^7+3*x^6+9*x^5-26*x^4-24*x^3+59*x^2+17*x-16,-2*x^8+5*x^7+17*x^6-39*x^5-47*x^4+83*x^3+48*x^2-31*x-13,12*x^8-26*x^7-120*x^6+226*x^5+376*x^4-528*x^3-366*x^2+178*x+83,-5*x^8+11*x^7+49*x^6-97*x^5-147*x^4+234*x^3+129*x^2-93*x-30,x^8-2*x^7-11*x^6+21*x^5+32*x^4-58*x^3-13*x^2+22*x,11*x^8-24*x^7-110*x^6+210*x^5+344*x^4-496*x^3-334*x^2+175*x+78,3*x^8-6*x^7-32*x^6+54*x^5+108*x^4-128*x^3-116*x^2+35*x+22,-11*x^8+24*x^7+109*x^6-209*x^5-335*x^4+491*x^3+309*x^2-172*x-67,1,22*x^8-49*x^7-218*x^6+425*x^5+681*x^4-994*x^3-673*x^2+349*x+156,-5*x^8+11*x^7+51*x^6-97*x^5-164*x^4+228*x^3+163*x^2-70*x-30,-5*x^8+11*x^7+49*x^6-93*x^5-154*x^4+212*x^3+160*x^2-73*x-39,-4*x^8+10*x^7+36*x^6-86*x^5-90*x^4+196*x^3+40*x^2-56*x-8,-3*x^8+6*x^7+29*x^6-51*x^5-83*x^4+117*x^3+63*x^2-40*x-13,-9*x^8+20*x^7+89*x^6-175*x^5-273*x^4+415*x^3+253*x^2-152*x-55,4*x^8-9*x^7-38*x^6+77*x^5+108*x^4-174*x^3-82*x^2+45*x+13,-17*x^8+37*x^7+171*x^6-323*x^5-544*x^4+764*x^3+553*x^2-282*x-132,4*x^8-9*x^7-39*x^6+77*x^5+119*x^4-177*x^3-113*x^2+61*x+26,-x^8+2*x^7+10*x^6-18*x^5-28*x^4+44*x^3+12*x^2-15*x,-5*x^8+12*x^7+50*x^6-106*x^5-157*x^4+249*x^3+153*x^2-78*x-37,-3*x^8+7*x^7+30*x^6-63*x^5-94*x^4+156*x^3+91*x^2-67*x-21,23*x^8-50*x^7-231*x^6+435*x^5+733*x^4-1021*x^3-739*x^2+362*x+169,-11*x^8+23*x^7+113*x^6-201*x^5-369*x^4+473*x^3+387*x^2-164*x-92,x^5-8*x^3+12*x,-15*x^8+34*x^7+147*x^6-295*x^5-449*x^4+691*x^3+423*x^2-248*x-99,6*x^8-13*x^7-59*x^6+111*x^5+181*x^4-253*x^3-174*x^2+82*x+39,-2*x^8+4*x^7+21*x^6-34*x^5-73*x^4+77*x^3+88*x^2-25*x-19,16*x^8-34*x^7-162*x^6+298*x^5+516*x^4-708*x^3-517*x^2+262*x+120]];

E[448,1] = [x^2+2*x-4, [1,0,x,0,-x-2,0,-1,0,-2*x+1,0,-2*x-4,0,x-2,0,-4,0,2*x+2,0,-x,0,-x,0,-4,0,2*x+3,0,2*x-8,0,2*x+2,0,2*x,0,-8,0,x+2,0,2*x+2,0,-4*x+4,0,-2*x-6,0,2*x+4,0,-x+6,0,-2*x-8,0,1,0,-2*x+8,0,10,0,4*x+16,0,2*x-4,0,-x-8,0,-x-10,0,2*x-1,0,2*x,0,4,0,-4*x,0,4*x,0,-4*x+2,0,-x+8,0,2*x+4,0,-4*x-8,0,-6*x+5,0,-x-8,0,-2*x-12,0,-2*x+8,0,-6,0,-x+2,0,-4*x+8,0,4,0,2*x+10,0,-2*x+12,0,3*x-2,0,-2*x+8,0,4,0,4*x+4,0,-2*x-6,0,-2*x+8,0,-2*x-10,0,4*x+8,0,9*x-10,0,-2*x-2,0,8*x+21,0,-2*x-8,0,2*x-4,0,-4*x-4,0,8,0,3*x+8,0,x,0,8*x+8,0,4*x+10,0,x,0,-4*x-8,0]];
E[448,2] = [x^2-2*x-4, [1,0,x,0,x-2,0,1,0,2*x+1,0,-2*x+4,0,-x-2,0,4,0,-2*x+2,0,-x,0,x,0,4,0,-2*x+3,0,2*x+8,0,-2*x+2,0,2*x,0,-8,0,x-2,0,-2*x+2,0,-4*x-4,0,2*x-6,0,2*x-4,0,x+6,0,-2*x+8,0,1,0,-2*x-8,0,10,0,4*x-16,0,-2*x-4,0,-x+8,0,x-10,0,2*x+1,0,-2*x,0,-4,0,4*x,0,4*x,0,4*x+2,0,-x-8,0,-2*x+4,0,-4*x+8,0,6*x+5,0,-x+8,0,2*x-12,0,-2*x-8,0,-6,0,-x-2,0,4*x+8,0,-4,0,-2*x+10,0,-2*x-12,0,-3*x-2,0,-2*x-8,0,4,0,4*x-4,0,2*x-6,0,-2*x-8,0,2*x-10,0,4*x-8,0,-9*x-10,0,-2*x+2,0,-8*x+21,0,-2*x+8,0,-2*x-4,0,-4*x+4,0,8,0,3*x-8,0,-x,0,8*x-8,0,-4*x+10,0,x,0,4*x-8,0]];
E[448,3] = [x, [1,0,0,0,-2,0,1,0,-3,0,-4,0,-2,0,0,0,-6,0,8,0,0,0,0,0,-1,0,0,0,-6,0,-8,0,0,0,-2,0,2,0,0,0,2,0,-4,0,6,0,8,0,1,0,0,0,-6,0,8,0,0,0,0,0,6,0,-3,0,4,0,-4,0,0,0,8,0,10,0,0,0,-4,0,-16,0,9,0,8,0,12,0,0,0,-6,0,-2,0,0,0,-16,0,-6,0,12,0,-2,0,16,0,0,0,-12,0,10,0,0,0,2,0,0,0,6,0,-6,0,5,0,0,0,12,0,8,0,0,0,8,0,8,0,0,0,-6,0,-8,0,0,0]];
E[448,4] = [x, [1,0,0,0,-2,0,-1,0,-3,0,4,0,-2,0,0,0,-6,0,-8,0,0,0,0,0,-1,0,0,0,-6,0,8,0,0,0,2,0,2,0,0,0,2,0,4,0,6,0,-8,0,1,0,0,0,-6,0,-8,0,0,0,0,0,6,0,3,0,4,0,4,0,0,0,-8,0,10,0,0,0,-4,0,16,0,9,0,-8,0,12,0,0,0,-6,0,2,0,0,0,16,0,-6,0,-12,0,-2,0,-16,0,0,0,12,0,10,0,0,0,2,0,0,0,6,0,6,0,5,0,0,0,12,0,-8,0,0,0,-8,0,8,0,0,0,-6,0,8,0,0,0]];
E[448,5] = [x, [1,0,2,0,4,0,-1,0,1,0,0,0,0,0,8,0,-2,0,-2,0,-2,0,-8,0,11,0,-4,0,-2,0,-4,0,0,0,-4,0,6,0,0,0,-2,0,8,0,4,0,4,0,1,0,-4,0,10,0,0,0,-4,0,6,0,-4,0,-1,0,0,0,-12,0,-16,0,0,0,-14,0,22,0,0,0,8,0,-11,0,6,0,-8,0,-4,0,10,0,0,0,-8,0,-8,0,-2,0,0,0,-12,0,12,0,-8,0,-12,0,-10,0,12,0,6,0,-32,0,0,0,2,0,-11,0,-4,0,24,0,-8,0,16,0,14,0,2,0,-16,0,2,0,18,0,8,0]];
E[448,6] = [x, [1,0,2,0,0,0,-1,0,1,0,4,0,4,0,0,0,-2,0,6,0,-2,0,8,0,-5,0,-4,0,-2,0,-4,0,8,0,0,0,-10,0,8,0,-10,0,-4,0,0,0,4,0,1,0,-4,0,2,0,0,0,12,0,-10,0,8,0,-1,0,0,0,8,0,16,0,0,0,-6,0,-10,0,-4,0,-16,0,-11,0,-2,0,0,0,-4,0,18,0,-4,0,-8,0,0,0,-2,0,4,0,0,0,-4,0,0,0,16,0,-10,0,-20,0,6,0,0,0,4,0,2,0,5,0,-20,0,0,0,-16,0,-8,0,6,0,-6,0,0,0,-14,0,10,0,8,0]];
E[448,7] = [x, [1,0,2,0,0,0,1,0,1,0,0,0,4,0,0,0,6,0,-2,0,2,0,0,0,-5,0,-4,0,6,0,-4,0,0,0,0,0,-2,0,8,0,6,0,-8,0,0,0,-12,0,1,0,12,0,-6,0,0,0,-4,0,6,0,-8,0,1,0,0,0,4,0,0,0,0,0,2,0,-10,0,0,0,8,0,-11,0,6,0,0,0,12,0,-6,0,4,0,-8,0,0,0,-10,0,0,0,0,0,-4,0,0,0,-12,0,-2,0,-4,0,6,0,0,0,4,0,6,0,-11,0,12,0,0,0,-16,0,-16,0,-18,0,-2,0,0,0,18,0,-14,0,-24,0]];
E[448,8] = [x, [1,0,-2,0,4,0,1,0,1,0,0,0,0,0,-8,0,-2,0,2,0,-2,0,8,0,11,0,4,0,-2,0,4,0,0,0,4,0,6,0,0,0,-2,0,-8,0,4,0,-4,0,1,0,4,0,10,0,0,0,-4,0,-6,0,-4,0,1,0,0,0,12,0,-16,0,0,0,-14,0,-22,0,0,0,-8,0,-11,0,-6,0,-8,0,4,0,10,0,0,0,-8,0,8,0,-2,0,0,0,-12,0,-12,0,-8,0,12,0,-10,0,-12,0,6,0,32,0,0,0,-2,0,-11,0,4,0,24,0,8,0,16,0,-14,0,2,0,16,0,2,0,-18,0,8,0]];
E[448,9] = [x, [1,0,-2,0,0,0,-1,0,1,0,0,0,4,0,0,0,6,0,2,0,2,0,0,0,-5,0,4,0,6,0,4,0,0,0,0,0,-2,0,-8,0,6,0,8,0,0,0,12,0,1,0,-12,0,-6,0,0,0,-4,0,-6,0,-8,0,-1,0,0,0,-4,0,0,0,0,0,2,0,10,0,0,0,-8,0,-11,0,-6,0,0,0,-12,0,-6,0,-4,0,-8,0,0,0,-10,0,0,0,0,0,4,0,0,0,12,0,-2,0,4,0,6,0,0,0,4,0,-6,0,-11,0,-12,0,0,0,16,0,-16,0,18,0,-2,0,0,0,18,0,14,0,-24,0]];
E[448,10] = [x, [1,0,-2,0,0,0,1,0,1,0,-4,0,4,0,0,0,-2,0,-6,0,-2,0,-8,0,-5,0,4,0,-2,0,4,0,8,0,0,0,-10,0,-8,0,-10,0,4,0,0,0,-4,0,1,0,4,0,2,0,0,0,12,0,10,0,8,0,1,0,0,0,-8,0,16,0,0,0,-6,0,10,0,-4,0,16,0,-11,0,2,0,0,0,4,0,18,0,4,0,-8,0,0,0,-2,0,-4,0,0,0,4,0,0,0,-16,0,-10,0,20,0,6,0,0,0,4,0,-2,0,5,0,20,0,0,0,16,0,-8,0,-6,0,-6,0,0,0,-14,0,-10,0,8,0]];

E[449,1] = [x^14+3*x^13-13*x^12-42*x^11+59*x^10+214*x^9-117*x^8-503*x^7+109*x^6+576*x^5-50*x^4-309*x^3+14*x^2+62*x-3, [581,581*x,1367*x^13+2544*x^12-21440*x^11-35460*x^10+130273*x^9+176883*x^8-397316*x^7-387181*x^6+642243*x^5+359615*x^4-504323*x^3-105389*x^2+145130*x-6416,581*x^2-1162,-689*x^13-1037*x^12+11692*x^11+15082*x^10-77477*x^9-79331*x^8+255690*x^7+183819*x^6-436275*x^5-177694*x^4+352434*x^3+49678*x^2-102958*x+5809,-1557*x^13-3669*x^12+21954*x^11+49620*x^10-115655*x^9-237377*x^8+300420*x^7+493240*x^6-427777*x^5-435973*x^4+317014*x^3+125992*x^2-91170*x+4101,291*x^13+1035*x^12-3099*x^11-13492*x^10+8490*x^9+60837*x^8+3319*x^7-115074*x^6-33397*x^5+87935*x^4+28887*x^3-19559*x^2-5371*x-1821,581*x^3-2324*x,-1968*x^13-3855*x^12+30362*x^11+53402*x^10-181116*x^9-264285*x^8+544017*x^7+573960*x^6-875063*x^5-532198*x^4+692696*x^3+159175*x^2-202779*x+7793,1030*x^13+2735*x^12-13856*x^11-36826*x^10+68115*x^9+175077*x^8-162748*x^7-361174*x^6+219170*x^5+317984*x^4-163223*x^3-93312*x^2+48527*x-2067,-1275*x^13-2672*x^12+18861*x^11+36126*x^10-106601*x^9-172354*x^8+302097*x^7+354412*x^6-462525*x^5-303487*x^4+350578*x^3+81426*x^2-98052*x+3684,-1732*x^13-3375*x^12+27106*x^11+47128*x^10-164725*x^9-235515*x^8+504701*x^7+516298*x^6-823627*x^5-480066*x^4+653525*x^3+141406*x^2-189625*x+8161,-1506*x^13-3260*x^12+21920*x^11+44015*x^10-121175*x^9-209776*x^8+335676*x^7+432049*x^6-510370*x^5-373914*x^4+397996*x^3+102307*x^2-118436*x+5441,162*x^13+684*x^12-1270*x^11-8679*x^10-1437*x^9+37366*x^8+31299*x^7-65116*x^6-79681*x^5+43437*x^4+70360*x^3-9445*x^2-19863*x+873,1716*x^13+3953*x^12-24965*x^11-54039*x^10+138227*x^9+262388*x^8-384900*x^7-555816*x^6+589729*x^5+502588*x^4-461227*x^3-150551*x^2+136069*x-5665,581*x^4-3486*x^2+2324,948*x^13+1485*x^12-15738*x^11-20899*x^10+102110*x^9+105021*x^8-331157*x^7-228612*x^6+555590*x^5+202026*x^4-434544*x^3-46857*x^2+120038*x-9610,2049*x^13+4778*x^12-29254*x^11-65004*x^10+156867*x^9+313761*x^8-415944*x^7-660551*x^6+601370*x^5+594296*x^4-448937*x^3-175227*x^2+129809*x-5904,-2082*x^13-5692*x^12+28114*x^11+77585*x^10-138531*x^9-375298*x^8+328777*x^7+791909*x^6-430087*x^5-714083*x^4+303987*x^3+213485*x^2-86158*x+2337,1023*x^13+1608*x^12-16950*x^11-22819*x^10+109611*x^9+116424*x^8-354464*x^7-260738*x^6+597254*x^5+243665*x^4-479910*x^3-65249*x^2+139989*x-8528,-2015*x^13-4699*x^12+28844*x^11+64366*x^10-154737*x^9-313565*x^8+407493*x^7+667399*x^6-576835*x^5-605988*x^4+415775*x^3+180353*x^2-117387*x+4086,1153*x^13+2286*x^12-17424*x^11-31376*x^10+100496*x^9+152922*x^8-286913*x^7-323550*x^6+430913*x^5+286828*x^4-312549*x^3-80202*x^2+82734*x-3825,-1523*x^13-4171*x^12+19801*x^11+55954*x^10-90285*x^9-264488*x^8+182741*x^7+540758*x^6-180138*x^5-469162*x^4+86312*x^3+132280*x^2-16581*x+2864,4935*x^13+11928*x^12-69524*x^11-161777*x^10+366443*x^9+776811*x^8-955738*x^7-1621319*x^6+1373120*x^5+1438871*x^4-1027810*x^3-417361*x^2+297885*x-13398,-1861*x^13-4888*x^12+24868*x^11+65304*x^10-120619*x^9-306628*x^8+281108*x^7+620289*x^6-366184*x^5-530955*x^4+266220*x^3+151520*x^2-78040*x+2140,1258*x^13+2342*x^12-19237*x^11-32321*x^10+112508*x^9+159474*x^8-325469*x^7-346216*x^6+493542*x^5+322696*x^4-363047*x^3-97352*x^2+98813*x-4518,2494*x^13+6205*x^12-34586*x^11-83949*x^10+177978*x^9+401870*x^8-450117*x^7-836679*x^6+630469*x^5+744482*x^4-469092*x^3-219552*x^2+138802*x-7928,-384*x^13-1234*x^12+4323*x^11+15989*x^10-14282*x^9-71421*x^8+9732*x^7+132809*x^6+16919*x^5-97410*x^4-17161*x^3+16987*x^2+1571*x+4128,3367*x^13+7567*x^12-49693*x^11-104090*x^10+280140*x^9+509432*x^8-792827*x^7-1087198*x^6+1218763*x^5+980980*x^4-939610*x^3-282296*x^2+273749*x-13391,-1195*x^13-2657*x^12+18033*x^11+36983*x^10-104836*x^9-184128*x^8+307332*x^7+402685*x^6-485828*x^5-375427*x^4+379693*x^3+112045*x^2-112057*x+5148,2189*x^13+4659*x^12-33027*x^11-64521*x^10+191475*x^9+319011*x^8-557407*x^7-691547*x^6+870989*x^5+640377*x^4-667715*x^3-195576*x^2+185914*x-6828,581*x^5-4648*x^3+6972*x,-5696*x^13-12107*x^12+85331*x^11+166385*x^10-490536*x^9-813358*x^8+1417910*x^7+1733630*x^6-2214702*x^5-1563439*x^4+1719199*x^3+449998*x^2-495433*x+22305,-1359*x^13-3414*x^12+18917*x^11+46178*x^10-97851*x^9-220241*x^8+248232*x^7+452258*x^6-344022*x^5-387144*x^4+246075*x^3+106766*x^2-68386*x+2844,1002*x^13+1713*x^12-16355*x^11-24954*x^10+102793*x^9+131614*x^8-316657*x^7-306287*x^6+496300*x^5+297845*x^4-364417*x^3-83897*x^2+99473*x-8157,2567*x^13+5093*x^12-39670*x^11-70828*x^10+237507*x^9+352359*x^8-717938*x^7-769891*x^6+1164198*x^5+717909*x^4-927478*x^3-217227*x^2+272616*x-9439,492*x^13+2852*x^12-1490*x^11-36300*x^10-36642*x^9+158305*x^8+251668*x^7-289321*x^6-575897*x^5+228624*x^4+524026*x^3-79447*x^2-158320*x+12722,554*x^13+1048*x^12-9859*x^11-15693*x^10+70250*x^9+85183*x^8-255337*x^7-203149*x^6+485149*x^5+199887*x^4-429853*x^3-57010*x^2+131421*x-6246,3070*x^13+7475*x^12-43104*x^11-101832*x^10+224965*x^9+492443*x^8-573362*x^7-1039669*x^6+791882*x^5+939982*x^4-567975*x^3-280764*x^2+162300*x-7148,-3521*x^13-9121*x^12+47859*x^11+122906*x^10-238728*x^9-584927*x^8+579327*x^7+1208095*x^6-783923*x^5-1064728*x^4+577304*x^3+312291*x^2-169008*x+7203,7684*x^13+17273*x^12-111252*x^11-234824*x^10+609781*x^9+1131347*x^8-1666487*x^7-2370035*x^6+2483621*x^5+2103797*x^4-1882733*x^3-595563*x^2+540310*x-29732,1346*x^13+2649*x^12-20264*x^11-35852*x^10+117645*x^9+171738*x^8-346146*x^7-357200*x^6+554652*x^5+315025*x^4-442282*x^3-89177*x^2+129016*x-6045,-1377*x^13-3490*x^12+18348*x^11+46755*x^10-86846*x^9-220584*x^8+184524*x^7+450068*x^6-186949*x^5-392745*x^4+83453*x^3+121243*x^2-11565*x-3644,1377*x^13+2909*x^12-20672*x^11-39783*x^10+119382*x^9+192696*x^8-347785*x^7-403588*x^6+547750*x^5+352075*x^4-425081*x^3-96260*x^2+120793*x-3909,-5141*x^13-11313*x^12+75665*x^11+155082*x^10-424222*x^9-756399*x^8+1189546*x^7+1612911*x^6-1806805*x^5-1469467*x^4+1377332*x^3+440439*x^2-395670*x+15322,398*x^13+2*x^12-8012*x^11-428*x^10+61434*x^9+4550*x^8-225311*x^7-14131*x^6+408086*x^5+10162*x^4-338327*x^3+4741*x^2+97290*x-4569,-4752*x^13-10187*x^12+71145*x^11+140127*x^10-408704*x^9-686077*x^8+1179887*x^7+1466960*x^6-1835820*x^5-1333414*x^4+1409712*x^3+395190*x^2-399823*x+13900,587*x^13+1381*x^12-8719*x^11-18978*x^10+50171*x^9+92687*x^8-148416*x^7-197391*x^6+243565*x^5+179072*x^4-199496*x^3-54017*x^2+59882*x-1517,-181*x^13-506*x^12+2251*x^11+6028*x^10-10348*x^9-22267*x^8+27337*x^7+22909*x^6-56672*x^5+15626*x^4+70045*x^3-25272*x^2-25869*x+4996,695*x^13+675*x^12-12858*x^11-10820*x^10+91626*x^9+63371*x^8-315794*x^7-163335*x^6+540981*x^5+173170*x^4-423529*x^3-51986*x^2+117522*x-5583,5029*x^13+11873*x^12-71136*x^11-161046*x^10+375852*x^9+773115*x^8-975514*x^7-1610657*x^6+1374513*x^5+1419123*x^4-997449*x^3-402198*x^2+281647*x-14699,1580*x^13+3637*x^12-23325*x^11-49744*x^10+132612*x^9+241269*x^8-384794*x^7-507678*x^6+618828*x^5+447681*x^4-504622*x^3-123413*x^2+154358*x-7108,-3367*x^13-8148*x^12+47369*x^11+110481*x^10-249347*x^9-530348*x^8+650482*x^7+1105790*x^6-938721*x^5-974589*x^4+710696*x^3+268352*x^2-210420*x+16296,-1277*x^13-2164*x^12+20799*x^11+30832*x^10-131846*x^9-158319*x^8+417803*x^7+358623*x^6-692062*x^5-344392*x^4+551094*x^3+103886*x^2-162556*x+7482,3912*x^13+7996*x^12-58965*x^11-109327*x^10+341658*x^9+530243*x^8-995773*x^7-1115980*x^6+1564283*x^5+984884*x^4-1217212*x^3-271934*x^2+351369*x-17652,-406*x^13-2037*x^12+2401*x^11+25732*x^10+13629*x^9-109928*x^8-122941*x^7+189007*x^6+283136*x^5-123235*x^4-242389*x^3+25837*x^2+67662*x-2898,-3650*x^13-5986*x^12+58984*x^11+84144*x^10-370084*x^9-424802*x^8+1158676*x^7+944313*x^6-1893437*x^5-891351*x^4+1476914*x^3+261981*x^2-414738*x+18612,-2534*x^13-5922*x^12+37324*x^11+81487*x^10-211106*x^9-398888*x^8+606403*x^7+851760*x^6-958412*x^5-771260*x^4+758107*x^3+226611*x^2-222145*x+10101,-1710*x^13-5477*x^12+20313*x^11+73407*x^10-75855*x^9-346906*x^8+86005*x^7+712254*x^6+37296*x^5-632608*x^4-104299*x^3+198790*x^2+33041*x-3405,-2504*x^13-5408*x^12+36723*x^11+73747*x^10-204852*x^9-357259*x^8+571400*x^7+756059*x^6-866565*x^5-685233*x^4+665244*x^3+205775*x^2-192900*x+7745,6996*x^13+17725*x^12-97043*x^11-240335*x^10+499899*x^9+1152774*x^8-1266462*x^7-2398934*x^6+1772554*x^5+2115336*x^4-1303454*x^3-611729*x^2+376063*x-16526,-1908*x^13-4570*x^12+27417*x^11+62324*x^10-149435*x^9-301294*x^8+409520*x^7+632388*x^6-620487*x^5-558265*x^4+480825*x^3+155268*x^2-142546*x+6567,3434*x^13+8560*x^12-47801*x^11-116147*x^10+247085*x^9+558383*x^8-626380*x^7-1169876*x^6+872151*x^5+1051310*x^4-637835*x^3-320657*x^2+184420*x-2346,581*x^6-5810*x^4+13944*x^2-4648,-2188*x^13-5494*x^12+30896*x^11+75883*x^10-162294*x^9-374542*x^8+414147*x^7+814066*x^6-561295*x^5-763722*x^4+382118*x^3+238379*x^2-102534*x+4348,4981*x^13+11283*x^12-72847*x^11-154472*x^10+405586*x^9+751478*x^8-1131458*x^7-1593838*x^6+1717457*x^5+1434399*x^4-1310066*x^3-415689*x^2+375457*x-17088,2245*x^13+4379*x^12-35001*x^11-60377*x^10+212755*x^9+295547*x^8-657451*x^7-625278*x^6+1091202*x^5+543539*x^4-878282*x^3-135971*x^2+254255*x-16145,-1233*x^13-1720*x^12+20576*x^11+24128*x^10-133635*x^9-120813*x^8+430995*x^7+261333*x^6-715540*x^5-225927*x^4+555923*x^3+44354*x^2-152974*x+15143,-5173*x^13-10157*x^12+80528*x^11+141841*x^10-485352*x^9-709044*x^8+1469818*x^7+1555372*x^6-2364075*x^5-1447082*x^4+1845592*x^3+425054*x^2-526022*x+25543,-1293*x^13-3329*x^12+17130*x^11+43675*x^10-82814*x^9-199423*x^8+197719*x^7+387082*x^6-279307*x^5-314317*x^4+225721*x^3+85445*x^2-70281*x+3006,-38*x^13+937*x^12+3124*x^11-12855*x^10-38095*x^9+63896*x^8+177696*x^7-146581*x^6-367990*x^5+162863*x^4+326128*x^3-75244*x^2-98436*x+8252,-6706*x^13-15855*x^12+95494*x^11+216062*x^10-510713*x^9-1045121*x^8+1353198*x^7+2205497*x^6-1963423*x^5-1987720*x^4+1473850*x^3+587132*x^2-428211*x+19509,222*x^13+550*x^12-3053*x^11-7891*x^10+14557*x^9+41608*x^8-27087*x^7-101972*x^6+8729*x^5+120788*x^4+21169*x^3-63318*x^2-9015*x+9524,1376*x^13+4906*x^12-15636*x^11-65670*x^10+53017*x^9+309232*x^8-41845*x^7-629525*x^6-54768*x^5+548626*x^4+72581*x^3-165208*x^2-17782*x+1476,-2185*x^13-4513*x^12+32637*x^11+61165*x^10-187465*x^9-293048*x^8+545032*x^7+607595*x^6-865676*x^5-530098*x^4+687908*x^3+148332*x^2-198670*x+8528]];
E[449,2] = [x^23-38*x^21+x^20+623*x^19-31*x^18-5771*x^17+398*x^16+33229*x^15-2753*x^14-123306*x^13+11230*x^12+296022*x^11-28009*x^10-450008*x^9+43215*x^8+412760*x^7-40559*x^6-210040*x^5+21311*x^4+50781*x^3-5664*x^2-3789*x+621, [3032489168928,3032489168928*x,21524408778*x^22-68857014861*x^21-905187870690*x^20+2476178523237*x^19+16350143582679*x^18-38065891453842*x^17-166180217327610*x^16+326678595433845*x^15+1046204683911930*x^14-1714106003240328*x^13-4233207429286713*x^12+5658933624403962*x^11+11058411115680687*x^10-11642305534076838*x^9-18247365545250282*x^8+14218428350735820*x^7+18053248104022479*x^6-9197369544320502*x^5-9716165505386580*x^4+2337567882270684*x^3+2344341230439507*x^2-11158803770049*x-121750048806273,3032489168928*x^2-6064978337856,72415240034*x^22-37700679936*x^21-2783536667992*x^20+1306527179348*x^19+46269072177460*x^18-19212911056322*x^17-435830429794372*x^16+156060552305554*x^15+2561515980216128*x^14-763149365908666*x^13-9750612599359908*x^12+2293588459644632*x^11+24167111717249490*x^10-4131128082634628*x^9-38230119042097708*x^8+4072330683982602*x^7+36784887184180684*x^6-1582353740653942*x^5-19649944067785166*x^4-386298777411344*x^3+4803951573725220*x^2+333082604559342*x-279869246271342,-68857014861*x^22-87260337126*x^21+2454654114459*x^20+2940436913985*x^19-37398634781724*x^18-41962854269772*x^17+318111880740201*x^16+330970104627768*x^15-1654849305874494*x^14-1579118680506645*x^13+5417214513827022*x^12+4686712580399571*x^11-11039428368613836*x^10-8561209399880058*x^9+13288251025394550*x^8+9168833136815199*x^7-8324361048693600*x^6-5195178685655460*x^5+1878861206802726*x^4+1251310228283889*x^3+110755447548543*x^2-40194063946431*x-13366657851138,-25625913704*x^22-57198642432*x^21+1051357992136*x^20+2167935492496*x^19-18500106572608*x^18-35339943660784*x^17+182502864204592*x^16+323801011875200*x^15-1107121963405736*x^14-1827863002061312*x^13+4261749349319160*x^12+6547296199422112*x^11-10370590298158080*x^10-14750659541175688*x^9+15431887476069640*x^8+19957178927272752*x^7-13181769711402856*x^6-14686310238011432*x^5+5912226625575344*x^4+4841953240834400*x^3-1227873193773480*x^2-429552099529248*x+104856987162168,3032489168928*x^3-12129956675712*x,-290335962*x^22+73834605342*x^21+186545127156*x^20-2417972461122*x^19-6151853081310*x^18+33201900791058*x^17+87959898254040*x^16-248094110535900*x^15-701645164156884*x^14+1093412609616966*x^13+3413409727402890*x^12-2865903793533588*x^11-10435784238701064*x^10+4212255487503288*x^9+19939587159608160*x^8-2769256096366806*x^7-22892393084023518*x^6-255528809195610*x^5+14433417136178850*x^4+1195930395192072*x^3-4039211822873886*x^2-413057153028852*x+253329874917624,-37700679936*x^22-31757546700*x^21+1234111939314*x^20+1154377636278*x^19-16968038615268*x^18-17922079558158*x^17+127239286772022*x^16+155229969126342*x^15-563790210095064*x^14-821379011727504*x^13+1480365314062812*x^12+2730607531904742*x^11-2102849624522322*x^10-5642681704877436*x^9+942906085913292*x^8+6894772707746844*x^7+1354735979885064*x^6-4439847051043806*x^5-1929539957775918*x^4+1126633269558666*x^3+743242524111918*x^2-5487901782516*x-44969864061114,305397351640*x^22+100181480664*x^21-11472625923572*x^20-3684992254412*x^19+185704715768936*x^18+58530340957844*x^17-1695268961853692*x^16-526222825425940*x^15+9591799279462432*x^14+2943286479049864*x^13-34807413870669576*x^12-10565473056180140*x^11+81046188976434684*x^10+24137162584524152*x^9-117811448795453672*x^8-33536341018673856*x^7+100906542446473712*x^6+25926976342164916*x^5-46235884874519740*x^4-9666599699037460*x^3+9582033417225588*x^2+1254161216916672*x-574602277709988,-130309154682*x^22-24198420537*x^21+4819669670226*x^20+546928430205*x^19-76797708895821*x^18-3130169114946*x^17+690735631197666*x^16-20156749926015*x^15-3861091410242838*x^14+354943445857212*x^13+13926391715862027*x^12-1974104364238818*x^11-32606647760483181*x^10+5586654549979338*x^9+48639220124533878*x^8-8339796296138880*x^7-44094446559447717*x^6+5810872894039290*x^5+22151053082759820*x^4-1067752245336384*x^3-5118882656998149*x^2-251948279619369*x+286260303841227,14056820424*x^22-89611549128*x^21-568673722260*x^20+3111738136812*x^19+9778219139160*x^18-45986628078252*x^17-93081276817524*x^16+377645945225868*x^15+534837861916488*x^14-1887992961935904*x^13-1891423022514336*x^12+5922105616690812*x^11+3987132723093276*x^10-11595715849514304*x^9-4454076156306768*x^8+13669098933510072*x^7+1601222610149640*x^6-8949191280392052*x^5+1028837468245428*x^4+2690022242049732*x^3-739170065792124*x^2-223418156702472*x+73677385959444,-57198642432*x^22+77573271384*x^21+2193561406200*x^20-2535162335016*x^19-36134346985608*x^18+34615716218808*x^17+334000125529392*x^16-255598476935520*x^15-1898411142488424*x^14+1101920434133736*x^13+6835075210318032*x^12-2784756071672592*x^11-15468415758111024*x^10+3900021301960008*x^9+21064602787991112*x^8-2604417570939816*x^7-15725671671931968*x^6+529759711187184*x^5+5388067087780344*x^4+73436330029344*x^3-574697274748704*x^2+7760400137712*x+15913692410184,-339058107877*x^22+43245408867*x^21+12757045770935*x^20-1577182713982*x^19-206746911805403*x^18+24022308501982*x^17+1888747178195657*x^16-196688958112973*x^15-10687776002708716*x^14+926340103149077*x^13+38760612603642723*x^12-2470588610007925*x^11-90112851264492051*x^10+3295752108507760*x^9+130605977081321396*x^8-1040429132118603*x^7-111196921000211927*x^6-2141088028557790*x^5+50280032410656622*x^4+2374966195861579*x^3-10131464180055690*x^2-679899042824712*x+549578508113403,3032489168928*x^4-18194935013568*x^2+12129956675712,176005436494*x^22+131108672820*x^21-6478847524286*x^20-4421040509378*x^19+102836411353208*x^18+63322233000812*x^17-922613896917290*x^16-504134904756364*x^15+5153571112600324*x^14+2453664470213518*x^13-18612966055998756*x^12-7569698347242854*x^11+43722310842119148*x^10+14859070722807908*x^9-65535113295027260*x^8-18150742267369506*x^7+59805432772189784*x^6+13119105804385180*x^5-30370578721822960*x^4-5105021425947394*x^3+7115854322271258*x^2+825942701313402*x-424871315639712,73834605342*x^22+175512360600*x^21-2417682125160*x^20-5970973776984*x^19+33192900376236*x^18+86284369417338*x^17-247978556823024*x^16-691997590475586*x^15+1092613314713580*x^14+3377609561272518*x^13-2862643320680328*x^12-10349838406557900*x^11+4204123467543630*x^10+19808933654020464*x^9-2756709227768976*x^8-22772554012348398*x^7-267304545478368*x^6+14372434970720370*x^5+1202117744878254*x^4-4024468272387564*x^3-414701615917620*x^2+252229791957606*x+180298632402,306027265668*x^22+201101716458*x^21-11245894701384*x^20-6718833107886*x^19+177815911630098*x^18+95260246897656*x^17-1583991393492360*x^16-750276370985766*x^15+8742318237092796*x^14+3611783380454376*x^13-30971917214197686*x^12-11019506578856400*x^11+70606989259577910*x^10+21356772317947668*x^9-101129430030313908*x^8-25583312253941856*x^7+86334517358102082*x^6+17867609991212136*x^5-40089233123881620*x^4-6643143764053404*x^3+8572697375998806*x^2+1009213689084282*x-510956676697266,-176588026768*x^22-123112538382*x^21+6759151652198*x^20+3906430626164*x^19-111628944991094*x^18-51905515025990*x^17+1041895699329614*x^16+376844578887172*x^15-6048200944023568*x^14-1642055994308272*x^13+22655211366305838*x^12+4470204132203006*x^11-55032863483703840*x^10-7760445325456940*x^9+84984245675376500*x^8+8771407262303220*x^7-79538723296929398*x^6-6683483290225474*x^5+41229960595245094*x^4+3430318306764622*x^3-9826927700390460*x^2-853982949457302*x+583150614782940,39958671730*x^22-89763501372*x^21-1890444735566*x^20+3009342800806*x^19+37224112134656*x^18-42309399234952*x^17-402937935365522*x^16+323136145662536*x^15+2651351681754964*x^14-1447863047847398*x^13-11028593168552460*x^12+3812390501002858*x^11+29151382015862880*x^10-5488895533881748*x^9-47908750580603252*x^8+3284084434543650*x^7+46549523586138560*x^6+731796237795712*x^5-24507611613629116*x^4-1717583133465826*x^3+5889705806542770*x^2+537112732588566*x-357304995468108,100181480664*x^22+132473438748*x^21-3990389606052*x^20-4557834302784*x^19+67997658858684*x^18+67179154460748*x^17-647770971378660*x^16-556249318183128*x^15+3784045388114784*x^14+2849911970652264*x^13-13995085315097340*x^12-9358145850741396*x^11+32691037006608912*x^10+19619802621359448*x^9-46734087569796456*x^8-25149268416452688*x^7+38313587527331676*x^6+17909774863945860*x^5-16174922659837500*x^4-5926349496405252*x^3+2983931816605632*x^2+582548287653972*x-189651755368440,-53832667664*x^22+5255502978*x^21+2047400639968*x^20-89992385342*x^19-33983204098366*x^18-282538632532*x^17+323674864615504*x^16+18315513996542*x^15-1955012205204356*x^14-191375536051412*x^13+7800566859755538*x^12+1010486486277760*x^11-20729675226683622*x^10-3109460307171748*x^9+36021360447147892*x^8+5740329643008084*x^7-38966372193198118*x^6-6189918888271124*x^5+23776910093848184*x^4+3553012767459140*x^3-6627384283442346*x^2-838489928849418*x+442502727456906,113515609185*x^22+42442466562*x^21-4232070644031*x^20-1495979356905*x^19+67627516653360*x^18+22647208067388*x^17-604517467842981*x^16-192988718570196*x^15+3305900954766654*x^14+1016728449656625*x^13-11345161584814002*x^12-3405696334007319*x^11+24015682173718872*x^10+7121476844156538*x^9-29284988227345350*x^8-8645706146535795*x^7+17174385986679252*x^6+5171275604663460*x^5-2048456263513734*x^4-1004273929659285*x^3-1211530226835303*x^2-127092955356009*x+107655300759798,-566947633314*x^22-296898135300*x^21+21367221950580*x^20+10259606713992*x^19-347055478748304*x^18-152210005053666*x^17+3180192875957076*x^16+1273432379666070*x^15-18073100021749356*x^14-6630113774836434*x^13+65957209240674348*x^12+22293161872578456*x^11-154820044679839938*x^10-48323759033855328*x^9+227905751040629424*x^8+64916936406253746*x^7-199275318126513060*x^6-49730633893583706*x^5+94380986784087354*x^4+19002743625546696*x^3-20470151725237692*x^2-2682068763640158*x+1266280162731234,-89611549128*x^22-34514546148*x^21+3097681316388*x^20+1020820015008*x^19-45550866645108*x^18-11959366150620*x^17+372051330697116*x^16+67743776047392*x^15-1849294535308632*x^14-158132723312592*x^13+5764247523329292*x^12-173995372460052*x^11-11201998366258488*x^10+1871605489056624*x^9+13061633438886912*x^8-4200870588060600*x^7-8379060700815036*x^6+3981332030102388*x^5+2390457341993868*x^4-1452989463743268*x^3-143800325820936*x^2+126938678545980*x-8729285483304,-215547404706*x^22-254316050109*x^21+7868136694446*x^20+8506963144773*x^19-123608505333825*x^18-120382469904222*x^17+1095221380219830*x^16+940836378916017*x^15-6027958053623286*x^14-4450524897401676*x^13+21408340333800663*x^12+13148649732144978*x^11-49410611869855365*x^10-24220456800016878*x^9+72907168475865150*x^8+27120540369927528*x^7-65905405105397841*x^6-17704874842789266*x^5+33489476977096152*x^4+6333071949193860*x^3-7975370886262605*x^2-1017493138958661*x+506911786119891,128825098792*x^22+134410278648*x^21-4580679676856*x^20-4835463735464*x^19+69842771448632*x^18+74586647375888*x^17-597839145656768*x^16-645359476865896*x^15+3158696498329912*x^14+3437865410720464*x^13-10665914015799552*x^12-11630951626949744*x^11+23039125122398280*x^10+24826075186803032*x^9-30996353190380216*x^8-32030717876245152*x^7+24573379395593408*x^6+22746684707385928*x^5-10532056652252992*x^4-7353999495078112*x^3+2139533676949824*x^2+658292235293832*x-174193617374064,430696065494*x^22+131782243398*x^21-16344483675070*x^20-4794460531120*x^19+267358215824362*x^18+75695340283312*x^17-2467338210836362*x^16-681186309795206*x^15+14119077156242864*x^14+3846376206521378*x^13-51858537152068482*x^12-14064414169562950*x^11+122391736440567726*x^10+32981889424433056*x^9-180852091125989656*x^8-47289191205065958*x^7+158335876484375026*x^6+37879959657723824*x^5-74888748568900880*x^4-14765600101800446*x^3+16188751822092624*x^2+2052095138687928*x-993668408043246,43245408867*x^22-127162328391*x^21-1238124606105*x^20+4486289401968*x^19+13511507157795*x^18-67957162362510*x^17-61743831177927*x^16+578785863936117*x^15-7086867836304*x^14-3047286446238639*x^13+1337033941450785*x^12+10255807945473243*x^11-6200926435019133*x^10-21972883928191620*x^9+13611966999785952*x^8+28752703607098593*x^7-15892945825941033*x^6-20935732567828458*x^5+9600633532828326*x^4+7086245596046247*x^3-2600324165840040*x^2-735112662632550*x+210555084991617,-224142225878*x^22-46953452292*x^21+8559762491146*x^20+1641967357726*x^19-141039367332688*x^18-24975535475560*x^17+1312943874792022*x^16+218278723495112*x^15-7595233247544332*x^14-1214756946002006*x^13+28299734507070132*x^12+4467892661873842*x^11-68138231908556352*x^10-10792288351573828*x^9+103651910298977332*x^8+16390167677784018*x^7-94708032708913960*x^6-14520687780766016*x^5+47512284525384308*x^4+6782771981043926*x^3-10955011848693030*x^2-1270159781411226*x+675699642353124,3032489168928*x^5-24259913351424*x^3+36389870027136*x,-186269755202*x^22+125055311556*x^21+7046673213670*x^20-3915301379990*x^19-115040618634712*x^18+50147898332816*x^17+1060637471969386*x^16-333532553548216*x^15-6065862440643812*x^14+1180432018806214*x^13+22240410712410372*x^12-1804769561586674*x^11-52162055568117120*x^10-994046757534892*x^9+75779116736810452*x^8+7314592899976830*x^7-63908244436136920*x^6-8932370635679048*x^5+28285478287345652*x^4+4056993108959162*x^3-5578865484516018*x^2-573331559642670*x+321754921943580,131108672820*x^22+209359062486*x^21-4597045945872*x^20-6814975582554*x^19+68778401532126*x^18+93113477089584*x^17-574185068480976*x^16-694913536658802*x^15+2938207436881500*x^14+3089560296330408*x^13-9546239399070474*x^12-8379170479707720*x^11+19788806993568354*x^10+13668741170764692*x^9-25756817205457716*x^8-12842571195073656*x^7+20257710303145326*x^6+6597603159376800*x^5-8855873283071028*x^4-1821877748330556*x^3+1822837493615418*x^2+242013283236054*x-109299376062774,22667492426*x^22-110470725048*x^21-1010028091330*x^20+3710213576678*x^19+19611597480388*x^18-52632376462844*x^17-217668423505822*x^16+410403989489704*x^15+1522541363193116*x^14-1915191691960678*x^13-6975947052000744*x^12+5440061775072302*x^11+21065368024602840*x^10-9057565193054900*x^9-41080372810141780*x^8+7696682645834106*x^7+49137875607255580*x^6-1556313781661572*x^5-32533919601793976*x^4-1845214613150510*x^3+9555433980684426*x^2+892704865293786*x-613798974814212,176093032524*x^22+240363667152*x^21-6417898636638*x^20-7970113829586*x^19+100876948345560*x^18+111717149023542*x^17-897303559909782*x^16-864648565123938*x^15+4984166558092812*x^14+4054781306386392*x^13-18005820479354340*x^12-11920736487938718*x^11+42748535592446670*x^10+22044942877967184*x^9-65842490801419248*x^8-25204764053708676*x^7+63151878896833584*x^6+17221395869303154*x^5-34464791819188626*x^4-6555957500173866*x^3+8748852642362466*x^2+1106053924330944*x-552511039752630,133198887410*x^22-79545443574*x^21-5149052201986*x^20+2598697050296*x^19+86164926604582*x^18-35191112395160*x^17-817898665472590*x^16+253154261037694*x^15+4847928321198584*x^14-1018236710290018*x^13-18614698647927558*x^12+2109660534616286*x^11+46495991641063242*x^10-1143871057791368*x^9-73925271104247808*x^8-3624321006076698*x^7+71165172303365686*x^6+7116829786143872*x^5-37875391346138072*x^4-4730637980605082*x^3+9221068395911376*x^2+1077363926869080*x-564820918757298,201101716458*x^22+383141394000*x^21-7024860373554*x^20-12839074881066*x^19+104747092133364*x^18+182091956677668*x^17-872075222721630*x^16-1426661773789176*x^15+4454276442838380*x^14+6763080806260722*x^13-14456192772308040*x^12-19983813977994786*x^11+29928290002042680*x^10+36585287738411436*x^9-38808280539784476*x^8-39981296819021598*x^7+30279769859440548*x^6+24188733757025100*x^5-13164890822704152*x^4-6967673201887902*x^3+2742552121827834*x^2+648580632918786*x-190042931979828,219918265218*x^22-16237968426*x^21-8486474358510*x^20+1088410491792*x^19+141320108461266*x^18-24664935968028*x^17-1329888557229642*x^16+278909386934598*x^15+7780981505584248*x^14-1795158861338466*x^13-29353594800376386*x^12+6882839489150658*x^11+71705824889028858*x^10-15662093154246288*x^9-111057914242096632*x^8+20037736206928638*x^7+103800384029477394*x^6-12303883170052524*x^5-53434162638759060*x^4+1761195785878890*x^3+12577841867782728*x^2+632755052330148*x-699751396725210,-47711178510*x^22+112321728414*x^21+1614794774304*x^20-3923359587186*x^19-23443666625262*x^18+58650355967802*x^17+192648039996792*x^16-490817340802380*x^15-1000622411810448*x^14+2523606161105838*x^13+3492557044682022*x^12-8220137687596428*x^11-8500800118157208*x^10+16803584335317228*x^9+14516846667255756*x^8-20439794783663406*x^7-16555189027678914*x^6+13019105554981986*x^5+11052665660769306*x^4-3112877652201984*x^3-3340662581295090*x^2-74965615075980*x+199600892745156,-287530675292*x^22+55541733438*x^21+11058567339730*x^20-1724159072312*x^19-183768862595626*x^18+21362995806098*x^17+1727913778420870*x^16-128332836381232*x^15-10110812529429788*x^14+309106508863024*x^13+38148127771938558*x^12+509501627498830*x^11-93032848090228044*x^10-5085124531516888*x^9+143157362333394352*x^8+12726199833837012*x^7-131885441984308918*x^6-14667708531383822*x^5+66456206466596342*x^4+7999621148199446*x^3-15382074054167100*x^2-1650052043170122*x+944828818310916,-89763501372*x^22-372015209826*x^21+2969384129076*x^20+12329859646866*x^19-41070680411322*x^18-172336440811692*x^17+307232594313996*x^16+1323564978838794*x^15-1337856824574708*x^14-6101449192213080*x^13+3363654617474958*x^12+17322736093004820*x^11-4369693097396178*x^10-29927028632729412*x^9+1557270435731700*x^8+30056182242863760*x^7+2352480004492782*x^6-16114692203459916*x^5-2569142386703856*x^4+3860564497421640*x^3+763438649267286*x^2-205901588283138*x-24814335144330,-217058532593*x^22-223630547811*x^21+7734677547835*x^20+7268059637728*x^19-117795894596305*x^18-99003886213798*x^17+1002074001904861*x^16+734767068427337*x^15-5223290017659200*x^14-3232937099959067*x^13+17223736400943837*x^12+8592357658716055*x^11-35838871315417281*x^10-13444110473931076*x^9+45578324164633120*x^8+11527596793965213*x^7-33052572006221125*x^6-4829175786292250*x^5+11939660558987438*x^4+923731215872195*x^3-1729964763853560*x^2-75972367971102*x+82586375781885,-478321264532*x^22-383856302148*x^21+18287236063696*x^20+12954580913836*x^19-301124651176540*x^18-186684328382404*x^17+2794416376219984*x^16+1507560617982608*x^15-16057886972004608*x^14-7528680618441884*x^13+59131643862741036*x^12+24166060849850584*x^11-139666592239591944*x^10-49925944988199448*x^9+206144286487559896*x^8+64035361605806748*x^7-179840049354750388*x^6-46986757145500772*x^5+84410452718203724*x^4+17229815445081968*x^3-18014090640316308*x^2-2318386558965888*x+1086991855927632,52289474138*x^22+125474003268*x^21-1752858804868*x^20-4718599989988*x^19+25218319218448*x^18+75979620832138*x^17-205702948239808*x^16-684224897379926*x^15+1062956235143432*x^14+3775902619986734*x^13-3692987982680928*x^12-13157006913941380*x^11+8901585770577906*x^10+28766128015187452*x^9-14890976336789476*x^8-37927394516933838*x^7+16530119528764480*x^6+27659660058047870*x^5-10868340890915402*x^4-9369893381862956*x^3+3316997832500628*x^2+1000080796395666*x-285409221018966,5255502978*x^22+1759268736*x^21-36159717678*x^20-445452143694*x^19-1951351330116*x^18+13006539526560*x^17+39740915726814*x^16-166206491397300*x^15-339576870130404*x^14+1162675940778354*x^13+1615027344144480*x^12-4794021279451014*x^11-4617259495772724*x^10+11796229337006580*x^9+8066708376107844*x^8-16746400288205478*x^7-8373318056055300*x^6+12469896577701624*x^5+4700240748046644*x^4-3893707586796762*x^3-1143398158498314*x^2+238530749678010*x+33430086619344,189391546101*x^22+104208307767*x^21-7037071438983*x^20-3294485728872*x^19+112827503470173*x^18+43276955054478*x^17-1023540857172033*x^16-306182715529557*x^15+5791182521683008*x^14+1265653901013159*x^13-21255652942796313*x^12-3114762144109539*x^11+51056724236780493*x^10+4547791731552468*x^9-79113337047354336*x^8-4213105366339377*x^7+75887761871207409*x^6+3460408157519490*x^5-41301156495320166*x^4-2664612651606159*x^3+10499682325011120*x^2+897282137315358*x-644095764789273,303060775926*x^22+129919346073*x^21-11248834306542*x^20-4186564729305*x^19+179761609743765*x^18+56841450993546*x^17-1619639193421158*x^16-425795722989681*x^15+9051419742228606*x^14+1942107229637184*x^13-32533260056878923*x^12-5639226759965562*x^11+75514231062785565*x^10+10624634930819454*x^9-110829723446533326*x^8-13000724268243588*x^7+97964248316493309*x^6+10172616501625086*x^5-47725511242520460*x^4-4840461886186020*x^3+10753624769064129*x^2+1041662503200501*x-643013800986339,-91931763568*x^22+102518771496*x^21+3926144522600*x^20-3332289180544*x^19-71201863959896*x^18+44825502446344*x^17+717544867912328*x^16-320134187268560*x^15-4411380226963456*x^14+1283026155735152*x^13+17082269526870264*x^12-2719774287127288*x^11-41494578828001728*x^10+2092600684600528*x^9+60970908718876976*x^8+1965287757862368*x^7-50243214905679032*x^6-4154851524441928*x^5+20437225555994872*x^4+2075740683536968*x^3-3315829267504800*x^2-251960231484744*x+151073353786032,-296898135300*x^22-176788115352*x^21+10826554347306*x^20+6152896806318*x^19-169785381686400*x^18-91661915898018*x^17+1499077537725042*x^16+766002885641550*x^15-8190920609349876*x^14-3950835632741736*x^13+28659983794694676*x^12+13008927629036970*x^11-64203395295347154*x^10-27225219531737088*x^9+89417578379918256*x^8+34737987000173580*x^7-72725462953166232*x^6-24700694117185206*x^5+31084964639101350*x^4+8320016042080542*x^3-5893260158730654*x^2-881884419895512*x+352074480287994,30412728286*x^22-62398493142*x^21-1721603243318*x^20+1543466424052*x^19+37532753302958*x^18-11509698188200*x^17-431835110529002*x^16-20114892894826*x^15+2940400470487072*x^14+812881713227338*x^13-12381868272033174*x^12-5329763930093558*x^11+32393700754852578*x^10+17110612309448432*x^9-51255228055672616*x^8-29336469103089486*x^7+46252789080210734*x^6+25453698473532688*x^5-21771735773234032*x^4-9575455273482214*x^3+4613441611712580*x^2+1056427190415060*x-328825314974898,-62628186996*x^22-128334452220*x^21+2247779008656*x^20+4053652188012*x^19-34293762451908*x^18-53123663164068*x^17+289571726235384*x^16+373115740213944*x^15-1474509041894952*x^14-1509408229576068*x^13+4615188369276060*x^12+3480780396328704*x^11-8612589836656080*x^10-4072848862077504*x^9+8579844820119456*x^8+1270804450238100*x^7-2855668011279444*x^6+1466830123932852*x^5-1600952676767316*x^4-973280733651432*x^3+1097718995869236*x^2+98568868275648*x-91705999910400,-176710826590*x^22-141756472884*x^21+6640817213228*x^20+5161320429560*x^19-108028014527600*x^18-81006010045862*x^17+997940890708604*x^16+718304008047058*x^15-5772399927638476*x^14-3958577907919534*x^13+21739490239808388*x^12+14023393555442216*x^11-53710569374864118*x^10-31825376393679560*x^9+85596617829963344*x^8+44550460007052966*x^7-84219167912003204*x^6-35442649499447374*x^5+46910311120458622*x^4+13787503582120120*x^3-12183425286098364*x^2-1931838415005714*x+831645588465270,-254316050109*x^22-322664684382*x^21+8722510549479*x^20+10677527798013*x^19-127064439450108*x^18-148702692338496*x^17+1026624245989005*x^16+1134466657352388*x^15-5043926902557294*x^14-5169947950877373*x^13+15569247086993358*x^12+14396161966024167*x^11-30257724058427232*x^10-24090888021072498*x^9+36435421464297318*x^8+23063941661050719*x^7-26447262030259920*x^6-11784099907352088*x^5+10926602690883426*x^4+2970341872112781*x^3-2238353639213445*x^2-309797330311143*x+133854938322426,-60137823054*x^22+55679401260*x^21+2391478303650*x^20-2383749332346*x^19-41250537210984*x^18+42763381851864*x^17+405212074839222*x^16-420453844466352*x^15-2503577148710772*x^14+2481955819702386*x^13+10143552981144852*x^12-9041218512281166*x^11-27246726341028648*x^10+20058045097629252*x^9+47809151251807380*x^8-25570164272850198*x^7-52246592070960336*x^6+16220148325770984*x^5+32096198331169284*x^4-3199868261947770*x^3-8923108735200294*x^2-473844442066218*x+542790151820532,248807563512*x^22+159527534472*x^21-9351411646656*x^20-5344940428752*x^19+150848919409656*x^18+76379067034248*x^17-1364632117243896*x^16-610835755558416*x^15+7589343192671688*x^14+3015152747579328*x^13-26747807907019968*x^12-9526426128861960*x^11+59371168895090208*x^10+19175929262890104*x^9-79727100096523656*x^8-23391633239912880*x^7+59423045233154592*x^6+15466847675644320*x^5-20875525350995112*x^4-4549206324865416*x^3+2537352144349128*x^2+298403881673400*x-111827771170200,-286136494494*x^22-576788735916*x^21+10057692653706*x^20+20132602102146*x^19-151327276570488*x^18-299992093258152*x^17+1276325499913986*x^16+2495649162623496*x^15-6640841442130656*x^14-12723022338581562*x^13+22121565619434768*x^12+41040839300595870*x^11-47469120348725568*x^10-83394851932984152*x^9+64566875535148848*x^8+102696333527081502*x^7-53627082607585164*x^6-70240670593545372*x^5+25393248670208316*x^4+22180525619161866*x^3-5926233632369022*x^2-2037583940536206*x+498327646095864,131782243398*x^22+21966813702*x^21-5225156596614*x^20-965432978400*x^19+89046918313626*x^18+18208783129512*x^17-852603343861818*x^16-192522404057262*x^15+5032082474826360*x^14+1248871899734682*x^13-18901130985060570*x^12-5103774259097142*x^11+45045255522854502*x^10+12964583914834296*x^9-65901721675389168*x^8-19438231508928414*x^7+55348561378094970*x^6+15574653027458880*x^5-23944163953543080*x^4-5682425079758190*x^3+4491557653645944*x^2+638238984113520*x-267462256671774,287969709466*x^22+94296695178*x^21-11300851258418*x^20-3758648286128*x^19+190777773747542*x^18+65081332733888*x^17-1811464240489430*x^16-639684932946826*x^15+10617628183157392*x^14+3906456931956190*x^13-39684382974152814*x^12-15215137743328922*x^11+94382250336136482*x^10+37267610584673024*x^9-138439923911021720*x^8-54459942253470090*x^7+117523955343249038*x^6+42889535582870224*x^5-52161494312562592*x^4-15358563744601090*x^3+10266079136157936*x^2+1683929043296808*x-649318110467634,550953887363*x^22+318710113107*x^21-21071047548769*x^20-10276017138382*x^19+346877268923173*x^18+139780806389566*x^17-3215920165184263*x^16-1050710642851901*x^15+18447320169789644*x^14+4816772120906933*x^13-67751063203388613*x^12-14061341638630357*x^11+159464079257748285*x^10+26481242736191368*x^9-234328100899731604*x^8-31662062525646747*x^7+203212099970832049*x^6+22966075268368586*x^5-94395422133631634*x^4-9546301665238325*x^3+19772757693301518*x^2+1734210024838104*x-1126012415133213,329729248860*x^22+332161213932*x^21-12330092643150*x^20-11306854887942*x^19+198665421228948*x^18+163985826885150*x^17-1806099834657414*x^16-1326793847471934*x^15+10190983541762580*x^14+6588364586534160*x^13-36995208503448744*x^12-20804234477795598*x^11+86707238836710618*x^10+41800589138842392*x^9-128350974152363448*x^8-51809596423197084*x^7+114192999408696060*x^6+36963270747406554*x^5-55888994339329794*x^4-13385420805450786*x^3+12690991088614278*x^2+1818761318943300*x-809760901885290,-46953452292*x^22+42357907782*x^21+1866109583604*x^20-1398760610694*x^19-31923944477778*x^18+19419089250084*x^17+307487329394556*x^16-147211223844270*x^15-1831820493844140*x^14+661653202957464*x^13+6985009858483782*x^12-1787201919699036*x^11-17070287956190730*x^10+2786115516070308*x^9+26076473969101788*x^8-2191087555510680*x^7-23611672320151818*x^6+433451401969188*x^5+11559466956729984*x^4+427154523617688*x^3-2539701348784218*x^2-173575251498618*x+139192322270238,-32645622074*x^22+213293158500*x^21+2034720933490*x^20-6802381356266*x^19-46606170911272*x^18+89490571923572*x^17+554276761271710*x^16-622035666959380*x^15-3879097831015028*x^14+2401877771610766*x^13+16793811560153364*x^12-4736855905563950*x^11-45425699672048220*x^10+2429642009291900*x^9+75242549211607612*x^8+6879583433732526*x^7-72663642188095888*x^6-11737411528896212*x^5+37692279631225784*x^4+6286192669371494*x^3-8856782385440886*x^2-1085885035443174*x+547326533152368,3032489168928*x^6-30324891689280*x^4+72779740054272*x^2-24259913351424,268274003136*x^22+38121490530*x^21-10581837474756*x^20-1517568565674*x^19+180465164474178*x^18+26714627916024*x^17-1743328814113812*x^16-272359542569334*x^15+10501254901432644*x^14+1760715285490068*x^13-40936993251568470*x^12-7404754948041828*x^11+103831922774901798*x^10+20004568448244492*x^9-168060315708446556*x^8-33233994547268220*x^7+165733632231377034*x^6+31499079721060560*x^5-91284942476673852*x^4-15233651990323080*x^3+23288311476122562*x^2+2940942964773870*x-1531990734019074,125055311556*x^22-31577484006*x^21-3729031624788*x^20+1005438856134*x^19+44373535921554*x^18-14325285301356*x^17-259397190977820*x^16+123695254963446*x^15+667631382735108*x^14-727767722527440*x^13+287039789331786*x^12+2977889906289324*x^11-6211276330987710*x^10-8043763262131164*x^9+15364240371031260*x^8+12976459721040600*x^7-16487285636916966*x^6-10838621095282428*x^5+8026587862068984*x^4+3880098954396744*x^3-1628363453106798*x^2-384021180516798*x+115673517980442,421074710184*x^22+211221375066*x^21-15596187513360*x^20-6911785149990*x^19+248651075248026*x^18+95708570491860*x^17-2234288275914912*x^16-734971871649090*x^15+12445248988022556*x^14+3454034585295108*x^13-44537470110268038*x^12-10359625069353984*x^11+102743380519177770*x^10+20054998865947884*x^9-149423029508333580*x^8-24685276967394948*x^7+130304741113849074*x^6+18558045868134900*x^5-62334075476201952*x^4-7975615886349132*x^3+13797485131706190*x^2+1499979321502902*x-828962523224406,-142651810502*x^22+122866275648*x^21+6011610793198*x^20-4060220615978*x^19-108494976759412*x^18+55798616361620*x^17+1098133005393418*x^16-410132842741552*x^15-6856639752596780*x^14+1712917671245410*x^13+27374411236521192*x^12-3882847857467978*x^11-70103657696458224*x^10+3524992987309028*x^9+112561794099064564*x^8+2442779044701138*x^7-107695625724096388*x^6-7556019252728588*x^5+56125222768848344*x^4+5375050831037786*x^3-13247095838453982*x^2-1264414017374598*x+768324145458204,159844640200*x^22-178585056168*x^21-6176323786100*x^20+5881431015892*x^19+103017245203304*x^18-81248804424652*x^17-970590062493404*x^16+610585817990156*x^15+5675136434173552*x^14-2703136259866616*x^13-21301683478233672*x^12+7107977534747764*x^11+51312427900554012*x^10-10525825706846488*x^9-77096380039803608*x^8+7342788598428240*x^7+68117736540162128*x^6-543495163070252*x^5-32162047987363228*x^4-1855995160507444*x^3+6877128591293796*x^2+607221110390496*x-410229313290180,-110470725048*x^22-148663379142*x^21+3687546084252*x^20+5489749698990*x^19-51929684197638*x^18-86854324715376*x^17+401382327504156*x^16+769323257369562*x^15-1852788085311900*x^14-4180909230920388*x^13+5185505835128322*x^12+14355291581673468*x^11-8422671397695066*x^10-30879819878502372*x^9+6717106960644516*x^8+39781641433499820*x^7-636942956355438*x^6-27772839492636936*x^5-2328281544240996*x^4+8404356047799720*x^3+1021093542394650*x^2-527911846012098*x-14076512796546,-113942658596*x^22+114538265922*x^21+4608523893808*x^20-4427480769878*x^19-80108736067078*x^18+73009345090472*x^17+783268742659912*x^16-669805725738814*x^15-4736427229819628*x^14+3739078517029720*x^13+18355360360056090*x^12-13054057965951344*x^11-45730496798105394*x^10+28210431714420812*x^9+71571433620087172*x^8-35939982963043008*x^7-66740286123104158*x^6+24043236227012560*x^5+33713727891325868*x^4-6150794754830668*x^3-7719222766028778*x^2-48073436950926*x+411548899646286,92694456468*x^22-77388121926*x^21-3310842611790*x^20+3112936637076*x^19+50790232279314*x^18-53639408048454*x^17-438776478422442*x^16+516766361303988*x^15+2354338795497804*x^14-3047712133495032*x^13-8172974601822582*x^12+11320800731742942*x^11+18568885690844640*x^10-26217084729399984*x^9-27301205998695384*x^8+36012826816924140*x^7+24898162266400806*x^6-26223081209288406*x^5-12712911606049338*x^4+7855608902536350*x^3+2932848092382120*x^2-389754123434406*x-109714370462208,-191712961916*x^22-11052559626*x^21+7116890390944*x^20+113826088390*x^19-114512241278146*x^18+2984812122368*x^17+1049282640797008*x^16-68416929503842*x^15-6050932770267524*x^14+585036639439960*x^13+22905928351679334*x^12-2619848886673736*x^11-57564477747746670*x^10+6411496631657588*x^9+94717694431538476*x^8-7781164625371320*x^7-97550927127706498*x^6+2636983905720544*x^5+56984896030322588*x^4+2319500840728964*x^3-15221326008000006*x^2-1375753693887930*x+929589896490858,-79545443574*x^22-87494480406*x^21+2465498162886*x^20+3182019748152*x^19-31061946885450*x^18-49207886229480*x^17+200141103848514*x^16+421862491451694*x^15-651540173250288*x^14-2190476636950098*x^13+613837029001986*x^12+7066190592180222*x^11+2586896579675322*x^10-13984706178648528*x^9-9380510925499848*x^8+16185999536014086*x^7+12519243460606062*x^6-9898297034541672*x^5-7569239470199592*x^4+2457095694344166*x^3+1831802425159320*x^2-60130334360808*x-82716509081610,642631601517*x^22+347789846439*x^21-23975372297955*x^20-11312549280084*x^19+385164165327357*x^18+155135683511058*x^17-3488434984280613*x^16-1172790305584017*x^15+19588502138759880*x^14+5375781367005255*x^13-70666767073003977*x^12-15521703942593415*x^11+164281545921451617*x^10+28483274252913492*x^9-240557969658118512*x^8-32875199150145921*x^7+210827337016144521*x^6+23476163769035142*x^5-101016288645915714*x^4-10239635121979371*x^3+22332776064479244*x^2+2118382089226542*x-1332657497297781]];

E[450,1] = [x, [1,1,0,1,0,0,-2,1,0,0,6,0,4,-2,0,1,6,0,-4,0,0,6,0,0,0,4,0,-2,-6,0,-4,1,0,6,0,0,-8,-4,0,0,0,0,-8,6,0,0,0,0,-3,0,0,4,6,0,0,-2,0,-6,6,0,2,-4,0,1,0,0,4,6,0,0,-12,0,10,-8,0,-4,-12,0,-4,0,0,0,-12,0,0,-8,0,6,12,0,-8,0,0,0,0,0,-2,-3,0,0,-6,0,-2,4,0,6,-12,0,2,0,0,-2,-6,0,0,-6,0,6,-12,0,25,2,0,-4,0,0,-2,1,0,0,-6,0,8,4,0,6,-6,0,20,0,0,-12,24,0,0,10,0,-8,6,0,-16,-4,0,-12,0,0,4,-4,0,0,0,0,-20,0,0,-12,24,0,3,0,0,-8,-18,0,0,6,0,12,6,0]];
E[450,2] = [x, [1,1,0,1,0,0,2,1,0,0,3,0,-4,2,0,1,3,0,5,0,0,3,-6,0,0,-4,0,2,0,0,2,1,0,3,0,0,2,5,0,0,3,0,-4,3,0,-6,-12,0,-3,0,0,-4,-6,0,0,2,0,0,0,0,2,2,0,1,0,0,-13,3,0,0,-12,0,11,2,0,5,6,0,-10,0,0,3,9,0,0,-4,0,3,-15,0,-8,-6,0,-12,0,0,2,-3,0,0,18,0,-4,-4,0,-6,3,0,-10,0,0,2,9,0,0,0,0,0,6,0,-2,2,0,2,0,0,2,1,0,0,-12,0,10,-13,0,3,3,0,5,0,0,-12,-12,0,0,11,0,2,0,0,2,5,0,6,0,0,2,-10,0,0,-12,0,11,3,0,9,-12,0,3,0,0,-4,24,0,0,3,0,-15,15,0]];
E[450,3] = [x, [1,1,0,1,0,0,2,1,0,0,-2,0,6,2,0,1,-2,0,0,0,0,-2,4,0,0,6,0,2,0,0,-8,1,0,-2,0,0,2,0,0,0,-2,0,-4,-2,0,4,8,0,-3,0,0,6,-6,0,0,2,0,0,-10,0,2,-8,0,1,0,0,-8,-2,0,0,-12,0,-4,2,0,0,-4,0,0,0,0,-2,4,0,0,-4,0,-2,10,0,12,4,0,8,0,0,-8,-3,0,0,8,0,-14,6,0,-6,-12,0,10,0,0,2,-6,0,0,0,0,-10,-4,0,-7,2,0,-8,0,0,2,1,0,0,18,0,0,-8,0,-2,18,0,-20,0,0,-12,-12,0,0,-4,0,2,20,0,-8,0,0,-4,0,0,22,0,0,0,8,0,16,-2,0,4,-12,0,23,0,0,-4,14,0,0,-2,0,10,-10,0]];
E[450,4] = [x, [1,-1,0,1,0,0,4,-1,0,0,0,0,-2,-4,0,1,6,0,-4,0,0,0,0,0,0,2,0,4,6,0,8,-1,0,-6,0,0,-2,4,0,0,6,0,4,0,0,0,0,0,9,0,0,-2,-6,0,0,-4,0,-6,0,0,-10,-8,0,1,0,0,4,6,0,0,0,0,-2,2,0,-4,0,0,8,0,0,-6,12,0,0,-4,0,0,-18,0,-8,0,0,0,0,0,-2,-9,0,0,-18,0,4,2,0,6,-12,0,-10,0,0,4,-18,0,0,6,0,0,24,0,-11,10,0,8,0,0,-20,-1,0,0,0,0,-16,-4,0,-6,6,0,-4,0,0,0,0,0,0,2,0,-2,6,0,8,4,0,0,0,0,-2,-8,0,0,0,0,4,6,0,-12,0,0,-9,0,0,4,18,0,0,0,0,18,-24,0]];
E[450,5] = [x, [1,-1,0,1,0,0,-2,-1,0,0,-2,0,-6,2,0,1,2,0,0,0,0,2,-4,0,0,6,0,-2,0,0,-8,-1,0,-2,0,0,-2,0,0,0,-2,0,4,-2,0,4,-8,0,-3,0,0,-6,6,0,0,2,0,0,-10,0,2,8,0,1,0,0,8,2,0,0,-12,0,4,2,0,0,4,0,0,0,0,2,-4,0,0,-4,0,2,10,0,12,-4,0,8,0,0,8,3,0,0,8,0,14,6,0,-6,12,0,10,0,0,-2,6,0,0,0,0,10,-4,0,-7,-2,0,-8,0,0,-2,-1,0,0,18,0,0,-8,0,-2,-18,0,-20,0,0,12,12,0,0,-4,0,-2,20,0,-8,0,0,-4,0,0,-22,0,0,0,8,0,-16,-2,0,4,12,0,23,0,0,4,-14,0,0,-2,0,-10,-10,0]];
E[450,6] = [x, [1,-1,0,1,0,0,-2,-1,0,0,3,0,4,2,0,1,-3,0,5,0,0,-3,6,0,0,-4,0,-2,0,0,2,-1,0,3,0,0,-2,-5,0,0,3,0,4,3,0,-6,12,0,-3,0,0,4,6,0,0,2,0,0,0,0,2,-2,0,1,0,0,13,-3,0,0,-12,0,-11,2,0,5,-6,0,-10,0,0,-3,-9,0,0,-4,0,-3,-15,0,-8,6,0,-12,0,0,-2,3,0,0,18,0,4,-4,0,-6,-3,0,-10,0,0,-2,-9,0,0,0,0,0,6,0,-2,-2,0,2,0,0,-2,-1,0,0,-12,0,-10,-13,0,3,-3,0,5,0,0,12,12,0,0,11,0,-2,0,0,2,-5,0,6,0,0,-2,10,0,0,-12,0,-11,3,0,9,12,0,3,0,0,4,-24,0,0,3,0,15,15,0]];
E[450,7] = [x, [1,-1,0,1,0,0,-2,-1,0,0,-6,0,4,2,0,1,-6,0,-4,0,0,6,0,0,0,-4,0,-2,6,0,-4,-1,0,6,0,0,-8,4,0,0,0,0,-8,-6,0,0,0,0,-3,0,0,4,-6,0,0,2,0,-6,-6,0,2,4,0,1,0,0,4,-6,0,0,12,0,10,8,0,-4,12,0,-4,0,0,0,12,0,0,8,0,6,-12,0,-8,0,0,0,0,0,-2,3,0,0,6,0,-2,-4,0,6,12,0,2,0,0,-2,6,0,0,6,0,6,12,0,25,-2,0,-4,0,0,-2,-1,0,0,6,0,8,-4,0,6,6,0,20,0,0,-12,-24,0,0,-10,0,-8,-6,0,-16,4,0,-12,0,0,4,4,0,0,0,0,-20,0,0,-12,-24,0,3,0,0,-8,18,0,0,-6,0,12,-6,0]];

E[451,1] = [x^5+2*x^4-5*x^3-10*x^2+4*x+9, [1,x,-x^4-x^3+6*x^2+3*x-8,x^2-2,-2*x^4-x^3+11*x^2+3*x-12,x^4+x^3-7*x^2-4*x+9,2*x^4+x^3-12*x^2-4*x+13,x^3-4*x,4*x^4+3*x^3-23*x^2-10*x+25,3*x^4+x^3-17*x^2-4*x+18,-1,x^4-6*x^2-x+7,3*x^4+x^3-18*x^2-3*x+21,-3*x^4-2*x^3+16*x^2+5*x-18,2*x^4+2*x^3-12*x^2-6*x+15,x^4-6*x^2+4,-3*x^4+19*x^2-25,-5*x^4-3*x^3+30*x^2+9*x-36,-3*x^4-x^3+17*x^2+2*x-17,-x^4+4*x^2-3,-3*x^4-2*x^3+19*x^2+8*x-23,-x,3*x^4+3*x^3-15*x^2-8*x+13,-4*x^4-3*x^3+23*x^2+11*x-27,x^2-x-5,-5*x^4-3*x^3+27*x^2+9*x-27,-5*x^4-3*x^3+29*x^2+12*x-32,-x^3-x^2+2*x+1,2*x^4-x^3-12*x^2+4*x+10,-2*x^4-2*x^3+14*x^2+7*x-18,6*x^4+3*x^3-35*x^2-9*x+39,-2*x^4-3*x^3+10*x^2+8*x-9,x^4+x^3-6*x^2-3*x+8,6*x^4+4*x^3-30*x^2-13*x+27,x^2+2*x-3,-x^4-x^3+5*x^2+4*x-5,x^4-x^3-10*x^2+4*x+16,5*x^4+2*x^3-28*x^2-5*x+27,-3*x^4-2*x^3+19*x^2+7*x-24,-4*x^4-3*x^3+24*x^2+9*x-27,-1,4*x^4+4*x^3-22*x^2-11*x+27,-5*x^4-3*x^3+29*x^2+11*x-30,-x^2+2,-x^4-2*x^3+7*x^2+8*x-12,-3*x^4+22*x^2+x-27,8*x^4+6*x^3-48*x^2-19*x+54,3*x^4+3*x^3-17*x^2-9*x+22,x^4+2*x^3-4*x^2-5*x,x^3-x^2-5*x,3*x^4+2*x^3-21*x^2-7*x+29,x^4-5*x^2-x+3,-x^4-2*x^3+3*x^2+4*x-2,7*x^4+4*x^3-38*x^2-12*x+45,2*x^4+x^3-11*x^2-3*x+12,5*x^4+3*x^3-30*x^2-9*x+36,-x^4-x^3+6*x^2+4*x-8,-5*x^4-2*x^3+24*x^2+2*x-18,-3*x^4+20*x^2+4*x-27,-2*x^4+11*x^2+2*x-12,2*x^4+2*x^3-9*x^2-5*x+3,-9*x^4-5*x^3+51*x^2+15*x-54,3*x^4+3*x^3-19*x^2-11*x+28,-x^4-x+10,2*x^4+x^3-11*x^2-x+9,-x^4-x^3+7*x^2+4*x-9,-7*x^4-4*x^3+37*x^2+10*x-36,-2*x^4+9*x^2+3*x-4,-3*x^4-3*x^3+14*x^2+8*x-14,x^3+2*x^2-3*x,x^4-3*x^3-7*x^2+13*x+5,11*x^4+6*x^3-66*x^2-19*x+81,7*x^4+4*x^3-36*x^2-13*x+33,-3*x^4-5*x^3+14*x^2+12*x-9,3*x^4+2*x^3-17*x^2-6*x+22,-2*x^4-x^3+11*x^2+3*x-11,-2*x^4-x^3+12*x^2+4*x-13,4*x^4+4*x^3-23*x^2-12*x+27,-8*x^4-2*x^3+44*x^2+5*x-44,7*x^4+4*x^3-39*x^2-11*x+42,-2*x^4-x^3+7*x^2+x+1,-x,-4*x^4-5*x^3+25*x^2+17*x-30,2*x^4+2*x^3-9*x^2-5*x+10]];
E[451,2] = [x^5+2*x^4-3*x^3-4*x^2+2*x+1, [1,x,-x^4-x^3+4*x^2+x-2,x^2-2,-x^3-3*x^2+x+2,x^4+x^3-3*x^2+1,2*x^4+3*x^3-6*x^2-4*x+1,x^3-4*x,x^3+x^2-4*x-1,-x^4-3*x^3+x^2+2*x,1,x^4+2*x^3-4*x^2-3*x+3,x^4+3*x^3-5*x-3,-x^4+4*x^2-3*x-2,-2*x^3-2*x^2+4*x-1,x^4-6*x^2+4,-x^4-4*x^3+x^2+8*x-1,x^4+x^3-4*x^2-x,x^4+3*x^3+x^2-2*x-5,-x^4+4*x^2-3,x^4-5*x^2+4*x-1,x,-x^4-3*x^3+x^2+6*x-1,-2*x^4-3*x^3+7*x^2+x-3,2*x^4+6*x^3+3*x^2-5*x-5,x^4+3*x^3-x^2-5*x-1,x^4+x^3-5*x^2-4*x+4,-2*x^4-5*x^3+5*x^2+8*x-1,-x^3-2*x^2+4*x-2,-2*x^4-2*x^3+4*x^2-x,-4*x^4-9*x^3+7*x^2+13*x-3,-2*x^4-5*x^3+4*x^2+10*x-1,-x^4-x^3+4*x^2+x-2,-2*x^4-2*x^3+4*x^2+x+1,4*x^3+5*x^2-8*x-1,-x^4-3*x^3+x^2+6*x+1,-3*x^4-3*x^3+14*x^2+2*x-10,x^4+4*x^3+2*x^2-7*x-1,x^4+2*x^3-3*x^2-3*x+2,4*x^4+7*x^3-6*x^2-5*x+1,1,-2*x^4-2*x^3+8*x^2-3*x-1,3*x^4+9*x^3-5*x^2-19*x,x^2-2,3*x^4+6*x^3-5*x^2-4*x,-x^4-2*x^3+2*x^2+x+1,-2*x^4-4*x^3+4*x^2+9*x,-x^4-3*x^3+x^2+7*x-4,-5*x^4-8*x^3+14*x^2+7*x-4,2*x^4+9*x^3+3*x^2-9*x-2,3*x^4+4*x^3-13*x^2-3*x+7,-x^4-4*x^3-x^2+7*x+5,-5*x^4-12*x^3+7*x^2+18*x-4,-x^4-2*x^3+2*x-1,-x^3-3*x^2+x+2,x^4-x^3-8*x^2+9*x+6,5*x^4+7*x^3-16*x^2-6*x+8,-x^4-2*x^3+4*x^2-2*x,x^4+4*x^3-12*x-3,2*x^4+2*x^3-5*x^2-4*x+4,8*x^4+16*x^3-19*x^2-19*x+5,-x^4-5*x^3-3*x^2+5*x+4,x^4-3*x^3-9*x^2+13*x+6,-3*x^4-2*x^3+14*x^2+3*x-6,x^3+x^2-3*x-3,x^4+x^3-3*x^2+1,-3*x^4-6*x^3+5*x^2+4*x+6,4*x^4+6*x^3-9*x^2-11*x+4,3*x^4+3*x^3-12*x^2-2*x+6,4*x^4+5*x^3-8*x^2-x,7*x^4+11*x^3-23*x^2-17*x+11,-3*x^4-4*x^3+10*x^2+5*x+1,x^4+6*x^3+4*x^2-9*x-3,3*x^4+5*x^3-10*x^2-4*x+3,3*x^4+8*x^3-5*x^2-8*x+4,-x^3-5*x^2+x+9,2*x^4+3*x^3-6*x^2-4*x+1,x^2-1,-8*x^4-18*x^3+14*x^2+25*x-2,x^4+6*x^3+3*x^2-7*x+2,-4*x^4-9*x^3+9*x^2+19*x-5,x,-6*x^4-17*x^3+5*x^2+25*x+4,2*x^3-x^2-5*x+4]];
E[451,3] = [x^10-4*x^9-6*x^8+38*x^7-7*x^6-105*x^5+74*x^4+77*x^3-74*x^2+8, [4,4*x,14*x^9-48*x^8-112*x^7+468*x^6+178*x^5-1370*x^4+216*x^3+1210*x^2-296*x-176,4*x^2-8,x^9-4*x^8-6*x^7+38*x^6-7*x^5-105*x^4+70*x^3+81*x^2-54*x-8,8*x^9-28*x^8-64*x^7+276*x^6+100*x^5-820*x^4+132*x^3+740*x^2-176*x-112,10*x^9-34*x^8-80*x^7+332*x^6+126*x^5-976*x^4+158*x^3+874*x^2-210*x-132,4*x^3-16*x,4*x^9-12*x^8-36*x^7+116*x^6+88*x^5-332*x^4-40*x^3+276*x^2-8*x-28,-4*x^4+4*x^3+20*x^2-8*x-8,4,-24*x^9+80*x^8+196*x^7-780*x^6-336*x^5+2280*x^4-308*x^3-2004*x^2+480*x+288,10*x^9-32*x^8-84*x^7+308*x^6+162*x^5-878*x^4+72*x^3+730*x^2-160*x-92,6*x^9-20*x^8-48*x^7+196*x^6+74*x^5-582*x^4+104*x^3+530*x^2-132*x-80,-28*x^9+92*x^8+232*x^7-896*x^6-424*x^5+2616*x^4-272*x^3-2308*x^2+500*x+352,4*x^4-24*x^2+16,-3*x^9+12*x^8+22*x^7-122*x^6-19*x^5+383*x^4-98*x^3-383*x^2+94*x+72,4*x^9-12*x^8-36*x^7+116*x^6+88*x^5-336*x^4-32*x^3+288*x^2-28*x-32,-19*x^9+62*x^8+158*x^7-602*x^6-295*x^5+1749*x^4-160*x^3-1523*x^2+316*x+220,-2*x^9+8*x^8+12*x^7-76*x^6+10*x^5+214*x^4-120*x^3-170*x^2+100*x+16,4*x^5-4*x^4-28*x^3+12*x^2+40*x+8,4*x,9*x^9-30*x^8-74*x^7+294*x^6+133*x^5-875*x^4+92*x^3+817*x^2-168*x-140,-32*x^9+108*x^8+260*x^7-1056*x^6-440*x^5+3108*x^4-420*x^3-2776*x^2+640*x+416,-4*x^9+14*x^8+32*x^7-136*x^6-56*x^5+398*x^4-30*x^3-356*x^2+46*x+64,8*x^9-24*x^8-72*x^7+232*x^6+172*x^5-668*x^4-40*x^3+580*x^2-92*x-80,64*x^9-212*x^8-528*x^7+2068*x^6+952*x^5-6060*x^4+664*x^3+5372*x^2-1184*x-800,-16*x^9+56*x^8+128*x^7-548*x^6-204*x^5+1612*x^4-248*x^3-1436*x^2+340*x+216,7*x^9-26*x^8-54*x^7+258*x^6+71*x^5-777*x^4+152*x^3+723*x^2-176*x-100,-20*x^9+64*x^8+168*x^7-620*x^6-324*x^5+1800*x^4-152*x^3-1572*x^2+352*x+224,-14*x^9+46*x^8+116*x^7-448*x^6-214*x^5+1308*x^4-122*x^3-1150*x^2+230*x+164,4*x^5-32*x^3+48*x,14*x^9-48*x^8-112*x^7+468*x^6+178*x^5-1370*x^4+216*x^3+1210*x^2-296*x-176,4*x^8-8*x^7-40*x^6+68*x^5+124*x^4-152*x^3-128*x^2+72*x+24,-23*x^9+76*x^8+190*x^7-738*x^6-347*x^5+2143*x^4-222*x^3-1859*x^2+422*x+268,-4*x^9+12*x^8+36*x^7-116*x^6-92*x^5+336*x^4+60*x^3-284*x^2-16*x+24,-21*x^9+74*x^8+166*x^7-726*x^6-249*x^5+2147*x^4-364*x^3-1941*x^2+452*x+308,-14*x^9+44*x^8+120*x^7-428*x^6-246*x^5+1246*x^4-60*x^3-1090*x^2+220*x+152,34*x^9-116*x^8-276*x^7+1136*x^6+466*x^5-3342*x^4+448*x^3+2958*x^2-688*x-416,-4*x^6+4*x^5+36*x^4-24*x^3-88*x^2+32*x+32,-4,4*x^6-4*x^5-28*x^4+12*x^3+40*x^2+8*x,-26*x^9+84*x^8+220*x^7-820*x^6-434*x^5+2402*x^4-156*x^3-2126*x^2+404*x+320,4*x^2-8,5*x^9-16*x^8-42*x^7+158*x^6+73*x^5-469*x^4+86*x^3+433*x^2-158*x-88,6*x^9-20*x^8-48*x^7+196*x^6+70*x^5-574*x^4+124*x^3+498*x^2-140*x-72,-6*x^9+20*x^8+52*x^7-200*x^6-110*x^5+606*x^4-16*x^3-558*x^2+80*x+72,28*x^9-92*x^8-232*x^7+896*x^6+420*x^5-2612*x^4+304*x^3+2280*x^2-544*x-320,-7*x^9+18*x^8+66*x^7-170*x^6-175*x^5+469*x^4+88*x^3-359*x^2+68*x+24,-2*x^9+8*x^8+16*x^7-84*x^6-22*x^5+266*x^4-48*x^3-250*x^2+64*x+32,20*x^9-68*x^8-160*x^7+660*x^6+256*x^5-1920*x^4+304*x^3+1680*x^2-444*x-240,-12*x^9+40*x^8+96*x^7-388*x^6-152*x^5+1124*x^4-180*x^3-960*x^2+240*x+120,-4*x^9+16*x^8+24*x^7-152*x^6+20*x^5+432*x^4-232*x^3-376*x^2+168*x+72,44*x^9-144*x^8-364*x^7+1400*x^6+660*x^5-4072*x^4+444*x^3+3552*x^2-800*x-512,x^9-4*x^8-6*x^7+38*x^6-7*x^5-105*x^4+70*x^3+81*x^2-54*x-8,-20*x^9+72*x^8+156*x^7-708*x^6-216*x^5+2100*x^4-412*x^3-1904*x^2+480*x+288,-48*x^9+160*x^8+396*x^7-1564*x^6-716*x^5+4592*x^4-476*x^3-4068*x^2+852*x+584,2*x^9-12*x^8-8*x^7+120*x^6-42*x^5-366*x^4+184*x^3+342*x^2-100*x-56,-54*x^9+178*x^8+444*x^7-1728*x^6-790*x^5+5020*x^4-594*x^3-4378*x^2+1022*x+644,40*x^9-136*x^8-324*x^7+1328*x^6+548*x^5-3904*x^4+512*x^3+3488*x^2-776*x-544,-32*x^9+108*x^8+260*x^7-1060*x^6-432*x^5+3136*x^4-472*x^3-2816*x^2+708*x+408,-10*x^9+32*x^8+84*x^7-312*x^6-162*x^5+914*x^4-72*x^3-806*x^2+164*x+112,82*x^9-274*x^8-672*x^7+2672*x^6+1178*x^5-7816*x^4+954*x^3+6894*x^2-1578*x-1012,4*x^6-40*x^4+96*x^2-32,-3*x^9+16*x^8+14*x^7-162*x^6+45*x^5+503*x^4-210*x^3-487*x^2+86*x+104,8*x^9-28*x^8-64*x^7+276*x^6+100*x^5-820*x^4+132*x^3+740*x^2-176*x-112,-10*x^9+36*x^8+76*x^7-356*x^6-82*x^5+1066*x^4-304*x^3-966*x^2+344*x+112,10*x^9-32*x^8-84*x^7+312*x^6+162*x^5-918*x^4+68*x^3+838*x^2-164*x-144,-24*x^9+80*x^8+196*x^7-780*x^6-332*x^5+2280*x^4-348*x^3-1996*x^2+548*x+280,-16*x^9+52*x^8+136*x^7-508*x^6-272*x^5+1480*x^4-88*x^3-1280*x^2+268*x+184,26*x^9-84*x^8-220*x^7+820*x^6+438*x^5-2402*x^4+136*x^3+2118*x^2-412*x-304,-12*x^9+36*x^8+108*x^7-352*x^6-260*x^5+1028*x^4+88*x^3-888*x^2+80*x+96,48*x^9-164*x^8-388*x^7+1604*x^6+640*x^5-4708*x^4+696*x^3+4148*x^2-1036*x-584,-10*x^9+40*x^8+72*x^7-396*x^6-58*x^5+1190*x^4-324*x^3-1102*x^2+308*x+168,-26*x^9+84*x^8+220*x^7-820*x^6-434*x^5+2402*x^4-152*x^3-2142*x^2+408*x+328,26*x^9-88*x^8-212*x^7+860*x^6+366*x^5-2522*x^4+308*x^3+2230*x^2-480*x-328,10*x^9-34*x^8-80*x^7+332*x^6+126*x^5-976*x^4+158*x^3+874*x^2-210*x-132,20*x^9-72*x^8-156*x^7+704*x^6+228*x^5-2068*x^4+340*x^3+1828*x^2-416*x-272,2*x^9-4*x^8-24*x^7+40*x^6+98*x^5-122*x^4-156*x^3+126*x^2+96*x-28,4*x^9-16*x^8-28*x^7+156*x^6+16*x^5-452*x^4+152*x^3+372*x^2-168*x-32,28*x^9-92*x^8-236*x^7+904*x^6+464*x^5-2672*x^4+144*x^3+2380*x^2-376*x-332,-4*x,42*x^9-140*x^8-344*x^7+1364*x^6+598*x^5-3982*x^4+524*x^3+3490*x^2-876*x-504,4*x^7-4*x^6-36*x^5+20*x^4+96*x^3-16*x^2-80*x-16]];
E[451,4] = [x^12-3*x^11-16*x^10+48*x^9+93*x^8-270*x^7-251*x^6+633*x^5+359*x^4-582*x^3-248*x^2+136*x+32, [232,232*x,-11*x^11-15*x^10+216*x^9+288*x^8-1559*x^7-1766*x^6+4841*x^5+3869*x^4-5605*x^3-2238*x^2+1504*x-248,232*x^2-464,59*x^11-83*x^10-974*x^9+1176*x^8+5599*x^7-5476*x^6-13121*x^5+9213*x^4+11403*x^3-4716*x^2-1940*x+824,-48*x^11+40*x^10+816*x^9-536*x^8-4736*x^7+2080*x^6+10832*x^5-1656*x^4-8640*x^3-1224*x^2+1248*x+352,-7*x^11+x^10+148*x^9+4*x^8-1203*x^7-122*x^6+4557*x^5+353*x^4-7553*x^3+126*x^2+3836*x-432,232*x^3-928*x,-3*x^11-99*x^10+196*x^9+1576*x^8-2239*x^7-8570*x^6+8913*x^5+18297*x^4-11937*x^3-13634*x^2+3616*x+1936,94*x^11-30*x^10-1656*x^9+112*x^8+10454*x^7+1688*x^6-28134*x^5-9778*x^4+29622*x^3+12692*x^2-7200*x-1888,-232,-82*x^11+78*x^10+1336*x^9-848*x^8-7762*x^7+2316*x^6+19046*x^5+854*x^4-17950*x^3-6180*x^2+3872*x+2032,-49*x^11+123*x^10+688*x^9-1712*x^8-3085*x^7+7846*x^6+4291*x^5-13073*x^4+489*x^3+6566*x^2-2496*x-240,-20*x^11+36*x^10+340*x^9-552*x^8-2012*x^7+2800*x^6+4784*x^5-5040*x^4-3948*x^3+2100*x^2+520*x+224,41*x^11-39*x^10-668*x^9+424*x^8+3765*x^7-810*x^6-8595*x^5-3443*x^4+7235*x^3+9238*x^2-776*x-2872,232*x^4-1392*x^2+928,-8*x^11+142*x^10-38*x^9-2216*x^8+1376*x^7+11966*x^6-6624*x^5-25854*x^4+8942*x^3+19574*x^2-1764*x-1952,-108*x^11+148*x^10+1720*x^9-1960*x^8-9380*x^7+8160*x^6+20196*x^5-10860*x^4-15380*x^3+2872*x^2+2344*x+96,21*x^11-61*x^10-270*x^9+916*x^8+825*x^7-4564*x^6+1061*x^5+8627*x^4-5703*x^3-6584*x^2+4152*x+1760,134*x^11+14*x^10-2452*x^9-640*x^8+15870*x^7+6412*x^6-43038*x^5-22550*x^4+44594*x^3+25544*x^2-10792*x-4656,38*x^11-138*x^10-472*x^9+2000*x^8+1758*x^7-10076*x^6-1770*x^5+20886*x^4+634*x^3-16692*x^2-2496*x+3008,-232*x,-84*x^11+70*x^10+1370*x^9-764*x^8-7708*x^7+1842*x^6+17448*x^5+2554*x^4-14830*x^3-7594*x^2+3344*x+2008,-72*x^11-56*x^10+1456*x^9+936*x^8-10352*x^7-5696*x^6+31096*x^5+14800*x^4-36624*x^3-14016*x^2+10688*x+1920,58*x^11-58*x^10-1044*x^9+812*x^8+6786*x^7-3712*x^6-19198*x^5+6090*x^4+22678*x^3-3248*x^2-8236*x+1392,-24*x^11-96*x^10+640*x^9+1472*x^8-5384*x^7-8008*x^6+17944*x^5+18080*x^4-21952*x^3-14648*x^2+6424*x+1568,19*x^11-69*x^10-236*x^9+1000*x^8+647*x^7-4574*x^6+1319*x^5+6615*x^4-5367*x^3-1502*x^2+2928*x+344,-10*x^11+18*x^10+112*x^9-160*x^8-194*x^7+8*x^6-1494*x^5+2526*x^4+5566*x^3-4692*x^2-4728*x+1504,-35*x^11+63*x^10+566*x^9-908*x^8-3231*x^7+4320*x^6+7821*x^5-7225*x^4-7779*x^3+2428*x^2+1664*x+1088,84*x^11-12*x^10-1544*x^9-48*x^8+10260*x^7+1696*x^6-29396*x^5-7484*x^4+33100*x^3+9392*x^2-8448*x-1312,52*x^11-140*x^10-768*x^9+2108*x^8+3700*x^7-10760*x^6-6244*x^5+21456*x^4+3096*x^3-15552*x^2-1468*x+2248,232*x^5-1856*x^3+2784*x,11*x^11+15*x^10-216*x^9-288*x^8+1559*x^7+1766*x^6-4841*x^5-3869*x^4+5605*x^3+2238*x^2-1504*x+248,118*x^11-166*x^10-1832*x^9+2120*x^8+9806*x^7-8632*x^6-20790*x^5+11814*x^4+14918*x^3-3748*x^2-864*x+256,-77*x^11+185*x^10+1222*x^9-2856*x^8-6737*x^7+15072*x^6+15559*x^5-31671*x^4-15745*x^3+25224*x^2+4844*x-4752,-170*x^11+190*x^10+2832*x^9-2488*x^8-16522*x^7+10228*x^6+39678*x^5-13202*x^4-36110*x^3+2828*x^2+7552*x-416,16*x^11+6*x^10-330*x^9-92*x^8+2352*x^7+486*x^6-6588*x^5-1014*x^4+5026*x^3+930*x^2+2136*x-40,2*x^11+66*x^10-92*x^9-1128*x^8+1106*x^7+6332*x^6-4666*x^5-13242*x^4+5638*x^3+9360*x^2-1096*x-672,14*x^11+114*x^10-412*x^9-1864*x^8+3798*x^7+10336*x^6-13754*x^5-22166*x^4+17078*x^3+16336*x^2-3264*x-2384,228*x^11-248*x^10-3760*x^9+3184*x^8+21684*x^7-12780*x^6-51104*x^5+16044*x^4+44288*x^3-2944*x^2-8480*x-512,232,-24*x^11+136*x^10+176*x^9-1776*x^8+184*x^7+7768*x^6-3168*x^5-13008*x^4+5424*x^3+6928*x^2-2160*x-1216,-42*x^11+122*x^10+540*x^9-1832*x^8-1650*x^7+9128*x^6-2122*x^5-17022*x^4+11174*x^3+11080*x^2-6680*x-1200,-232*x^2+464,56*x^11-182*x^10-778*x^9+2752*x^8+3360*x^7-13814*x^6-4672*x^5+25654*x^4+2714*x^3-15798*x^2-2036*x+3456,-182*x^11+26*x^10+3268*x^9+104*x^8-20838*x^7-3636*x^6+55726*x^5+15326*x^4-56482*x^3-17488*x^2+13432*x+2688,-54*x^11-42*x^10+1092*x^9+760*x^8-7822*x^7-4736*x^6+23322*x^5+11854*x^4-24974*x^3-10976*x^2+4768*x+2368,-108*x^11+148*x^10+1720*x^9-1960*x^8-9612*x^7+8392*x^6+22284*x^5-12484*x^4-20020*x^3+5192*x^2+3968*x-1760,5*x^11-9*x^10-114*x^9+196*x^8+1025*x^7-1744*x^6-4067*x^5+6799*x^4+6149*x^3-9428*x^2-3320*x+3656,116*x^11-116*x^10-1972*x^9+1392*x^8+11948*x^7-4640*x^6-30624*x^5+1856*x^4+30508*x^3+6148*x^2-6496*x-1856,50*x^11+26*x^10-1024*x^9-360*x^8+7466*x^7+1468*x^6-23502*x^5-1030*x^4+30286*x^3-2292*x^2-11624*x+368,-70*x^11+10*x^10+1248*x^9+272*x^8-8318*x^7-3772*x^6+24690*x^5+12810*x^4-29594*x^3-12660*x^2+9824*x+1248,-232*x^4+1624*x^2-464*x-464,-12*x^11+68*x^10+88*x^9-1120*x^8+556*x^7+6088*x^6-5412*x^5-12188*x^4+9556*x^3+7640*x^2-2240*x-608,-59*x^11+83*x^10+974*x^9-1176*x^8-5599*x^7+5476*x^6+13121*x^5-9213*x^4-11403*x^3+4716*x^2+1940*x-824,28*x^11-120*x^10-360*x^9+1840*x^8+1332*x^7-9604*x^6-712*x^5+19236*x^4-2616*x^3-11408*x^2+1824*x-128,82*x^11-78*x^10-1336*x^9+848*x^8+7762*x^7-2316*x^6-19278*x^5-854*x^4+19806*x^3+6644*x^2-7352*x-3424,-42*x^11+6*x^10+772*x^9+24*x^8-5130*x^7-964*x^6+14930*x^5+4786*x^4-17942*x^3-7016*x^2+5848*x+1120,18*x^11-102*x^10-248*x^9+1796*x^8+906*x^7-10988*x^6-118*x^5+27446*x^4-1574*x^3-24916*x^2-1164*x+3000,158*x^11-122*x^10-2744*x^9+1600*x^8+16846*x^7-6692*x^6-43466*x^5+9830*x^4+43810*x^3-6092*x^2-11184*x+3056,78*x^11+22*x^10-1384*x^9-840*x^8+8798*x^7+7988*x^6-23634*x^5-27498*x^4+23378*x^3+31076*x^2-2376*x-4864,16*x^11+64*x^10-388*x^9-1136*x^8+3280*x^7+6808*x^6-11460*x^5-15572*x^4+14712*x^3+11428*x^2-4824*x-1664,13*x^11-35*x^10-76*x^9+324*x^8-815*x^7+94*x^6+6849*x^5-6555*x^4-12885*x^3+11598*x^2+4940*x-3440,232*x^6-2320*x^4+5568*x^2-1856,-176*x^11+50*x^10+3050*x^9-32*x^8-18680*x^7-4998*x^6+47876*x^5+25770*x^4-47630*x^3-33314*x^2+11884*x+5312,48*x^11-40*x^10-816*x^9+536*x^8+4736*x^7-2080*x^6-10832*x^5+1656*x^4+8640*x^3+1224*x^2-1248*x-352,23*x^11-53*x^10-304*x^9+600*x^8+1467*x^7-2002*x^6-3373*x^5+1359*x^4+3705*x^3+2718*x^2-1120*x-1928,204*x^11-228*x^10-3468*x^9+3264*x^8+20476*x^7-15104*x^6-49632*x^5+24264*x^4+47044*x^3-10748*x^2-12264*x+128,-139*x^11+285*x^10+2044*x^9-4080*x^8-9703*x^7+19518*x^6+15321*x^5-35463*x^4-3705*x^3+23150*x^2-1432*x-4104,-46*x^11-10*x^10+840*x^9+424*x^8-5718*x^7-3768*x^6+17070*x^5+11898*x^4-19590*x^3-14252*x^2+5720*x+2464,103*x^11+35*x^10-1896*x^9-904*x^8+12299*x^7+7446*x^6-33413*x^5-23721*x^4+35505*x^3+25174*x^2-10856*x-4680,-104*x^11-184*x^10+2232*x^9+3208*x^8-16912*x^7-19312*x^6+54016*x^5+46640*x^4-65352*x^3-40352*x^2+18016*x+5248,108*x^11-148*x^10-1720*x^9+1960*x^8+9380*x^7-8160*x^6-19964*x^5+10860*x^4+13524*x^3-3800*x^2+1368*x+2224,54*x^11-74*x^10-860*x^9+864*x^8+4806*x^7-2572*x^6-11142*x^5-718*x^4+10242*x^3+6104*x^2-2216*x-512,-106*x^11+98*x^10+1860*x^9-1464*x^8-11522*x^7+7648*x^6+30262*x^5-17142*x^4-33290*x^3+17568*x^2+13312*x-5216,30*x^11+62*x^10-684*x^9-912*x^8+5222*x^7+4964*x^6-16630*x^5-12334*x^4+21930*x^3+12568*x^2-9248*x-3584,7*x^11-x^10-148*x^9-4*x^8+1203*x^7+122*x^6-4557*x^5-353*x^4+7553*x^3-126*x^2-3836*x+432,156*x^11-188*x^10-2536*x^9+2496*x^8+14116*x^7-10240*x^6-31028*x^5+12052*x^4+24484*x^3+208*x^2-4288*x-448,-117*x^11+199*x^10+1728*x^9-2568*x^8-8441*x^7+10406*x^6+14223*x^5-12925*x^4-2123*x^3+134*x^2-7456*x+1264,168*x^11-140*x^10-2856*x^9+1760*x^8+17040*x^7-6700*x^6-42204*x^5+7536*x^4+40564*x^3-3024*x^2-9936*x+2016,108*x^11-148*x^10-1720*x^9+1960*x^8+9380*x^7-7928*x^6-20196*x^5+8540*x^4+15844*x^3+2928*x^2-4432*x-2648,232*x,-154*x^11+138*x^10+2676*x^9-1768*x^8-16490*x^7+6712*x^6+42950*x^5-6270*x^4-44250*x^3-1288*x^2+11080*x-224,-12*x^11+68*x^10+320*x^9-1584*x^8-2228*x^7+10960*x^6+5724*x^5-27732*x^4-8308*x^3+25272*x^2+7040*x-5248]];
E[451,5] = [x, [1,0,1,-2,-3,0,4,0,-2,0,-1,-2,-6,0,-3,4,2,0,-8,6,4,0,-5,0,4,0,-5,-8,-8,0,3,0,-1,0,-12,4,7,0,-6,0,-1,0,6,2,6,0,0,4,9,0,2,12,-2,0,3,0,-8,0,9,6,12,0,-8,-8,18,0,-9,-4,-5,0,-13,0,6,0,4,16,-4,0,10,-12,1,0,-12,-8]];

E[452,1] = [x^3+3*x^2-1, [1,0,x,0,-1,0,-x^2-4*x-1,0,x^2-3,0,2*x^2+3*x-3,0,x-3,0,-x,0,-3*x^2-6*x+1,0,x^2+4*x-1,0,-x^2-x-1,0,-3*x^2-7*x+2,0,-4,0,-3*x^2-6*x+1,0,4*x^2+13*x,0,7*x^2+18*x-2,0,-3*x^2-3*x+2,0,x^2+4*x+1,0,3*x^2+7*x-6,0,x^2-3*x,0,-3*x^2-13*x-5,0,-3*x^2-7*x-2,0,-x^2+3,0,-2*x^2-3*x+8,0,3*x^2+9*x-1,0,3*x^2+x-3,0,5*x^2+11*x-3,0,-2*x^2-3*x+3,0,x^2-x+1,0,-5*x^2-7*x+9,0,-8*x^2-17*x+4,0,5*x^2+11*x+2,0,-x+3,0,-7*x^2-19*x+1,0,2*x^2+2*x-3,0,-4*x^2-14*x+4,0,x^2+2*x-8,0,-4*x,0,4*x^2+7*x-2,0,-x^2+4*x+8,0,x+6,0,5*x^2+19*x-2,0,3*x^2+6*x-1,0,x^2+4,0,x^2+3*x+6,0,2*x^2+11*x+2,0,-3*x^2-2*x+7,0,-x^2-4*x+1,0,x^2-4*x-11,0,-7*x+6,0,-2*x-7,0,8*x^2+16*x-3,0,x^2+x+1,0,5*x^2+11*x+7,0,-12*x^2-28*x+7,0,-2*x^2-6*x+3,0,1,0]];
E[452,2] = [x^7-3*x^6-12*x^5+33*x^4+40*x^3-98*x^2-16*x+58, [1,0,x,0,x^6-2*x^5-13*x^4+16*x^3+52*x^2-22*x-44,0,-3*x^6+5*x^5+44*x^4-46*x^3-188*x^2+82*x+156,0,x^2-3,0,4*x^6-7*x^5-58*x^4+64*x^3+246*x^2-112*x-200,0,-2*x^6+4*x^5+27*x^4-34*x^3-111*x^2+52*x+96,0,x^6-x^5-17*x^4+12*x^3+76*x^2-28*x-58,0,3*x^6-5*x^5-44*x^4+46*x^3+188*x^2-82*x-154,0,-x^6+x^5+17*x^4-11*x^3-78*x^2+23*x+66,0,-4*x^6+8*x^5+53*x^4-68*x^3-212*x^2+108*x+174,0,-x^6+2*x^5+13*x^4-17*x^3-50*x^2+27*x+38,0,5*x^6-10*x^5-67*x^4+86*x^3+270*x^2-140*x-215,0,x^3-6*x,0,x^6-3*x^5-9*x^4+22*x^3+24*x^2-28*x-16,0,-8*x^6+15*x^5+111*x^4-132*x^3-458*x^2+220*x+374,0,5*x^6-10*x^5-68*x^4+86*x^3+280*x^2-136*x-232,0,-7*x^6+13*x^5+98*x^4-116*x^3-406*x^2+198*x+328,0,-3*x^6+6*x^5+40*x^4-52*x^3-160*x^2+86*x+130,0,-2*x^6+3*x^5+32*x^4-31*x^3-144*x^2+64*x+116,0,2*x^6-3*x^5-30*x^4+28*x^3+127*x^2-50*x-98,0,2*x^6-3*x^5-31*x^4+30*x^3+136*x^2-61*x-110,0,-x^6+x^5+18*x^4-12*x^3-86*x^2+24*x+74,0,13*x^6-25*x^5-178*x^4+217*x^3+730*x^2-355*x-600,0,-7*x^6+14*x^5+94*x^4-120*x^3-382*x^2+192*x+317,0,4*x^6-8*x^5-53*x^4+68*x^3+212*x^2-106*x-174,0,-4*x^6+7*x^5+58*x^4-64*x^3-247*x^2+110*x+206,0,12*x^6-21*x^5-172*x^4+188*x^3+724*x^2-318*x-596,0,-2*x^6+5*x^5+22*x^4-38*x^3-75*x^2+50*x+58,0,-3*x^6+7*x^5+36*x^4-56*x^3-134*x^2+79*x+104,0,3*x^6-5*x^5-45*x^4+48*x^3+194*x^2-90*x-154,0,5*x^6-10*x^5-68*x^4+86*x^3+280*x^2-136*x-236,0,-4*x^6+7*x^5+58*x^4-66*x^3-242*x^2+126*x+184,0,-6*x^6+10*x^5+88*x^4-93*x^3-372*x^2+169*x+296,0,-x^6+x^5+16*x^4-10*x^3-71*x^2+22*x+58,0,-3*x^6+5*x^5+45*x^4-46*x^3-198*x^2+79*x+166,0,6*x^6-11*x^5-85*x^4+100*x^3+356*x^2-178*x-288,0,5*x^6-7*x^5-79*x^4+70*x^3+350*x^2-135*x-290,0,-x^6+x^5+17*x^4-10*x^3-78*x^2+18*x+62,0,-x^5+4*x^4+5*x^3-24*x^2+x+8,0,x^4-9*x^2+9,0,-3*x^6+6*x^5+40*x^4-50*x^3-164*x^2+76*x+140,0,9*x^6-17*x^5-124*x^4+148*x^3+510*x^2-242*x-416,0,3*x^5-11*x^4-16*x^3+70*x^2-58,0,-13*x^6+24*x^5+182*x^4-212*x^3-758*x^2+356*x+622,0,-5*x^6+7*x^5+79*x^4-70*x^3-354*x^2+138*x+302,0,-9*x^6+15*x^5+132*x^4-138*x^3-564*x^2+246*x+464,0,-5*x^6+9*x^5+72*x^4-84*x^3-300*x^2+152*x+228,0,7*x^6-11*x^5-106*x^4+106*x^3+458*x^2-198*x-368,0,-7*x^6+13*x^5+95*x^4-112*x^3-384*x^2+184*x+310,0,-3*x^6+4*x^5+47*x^4-40*x^3-204*x^2+78*x+160,0,6*x^6-11*x^5-84*x^4+96*x^3+352*x^2-159*x-300,0,-8*x^6+14*x^5+115*x^4-126*x^3-488*x^2+216*x+406,0,10*x^6-16*x^5-150*x^4+153*x^3+644*x^2-289*x-520,0,-11*x^6+21*x^5+152*x^4-184*x^3-629*x^2+302*x+522,0,-3*x^6+4*x^5+47*x^4-40*x^3-208*x^2+82*x+174,0,-1,0]];

E[453,1] = [x^2-3*x+1, [1,x,-1,3*x-3,x-3,-x,1,4*x-3,1,-1,-2*x+6,-3*x+3,-1,x,-x+3,3*x+2,-4*x+9,x,0,-3*x+6,-1,2,2*x-3,-4*x+3,-3*x+3,-x,-1,3*x-3,-x+6,1,-3*x-2,3*x+3,2*x-6,-3*x+4,x-3,3*x-3,-3*x+7,0,1,-3*x+5,3*x-3,-x,1,6*x-12,x-3,3*x-2,-4*x+6,-3*x-2,-6,-6*x+3,4*x-9,-3*x+3,-6*x+9,-x,6*x-16,4*x-3,0,3*x+1,-3*x+3,3*x-6,-3*x+1,-11*x+3,1,6*x-7,-x+3,-2,-3*x+9,3*x-15,-2*x+3,-1,7*x-9,4*x-3,6*x-3,-2*x+3,3*x-3,0,-2*x+6,x,-3*x+12,2*x-9,1,6*x-3,-x+15,-3*x+3,9*x-23,x,x-6,6*x-10,-10*x+15,-1,-1,3*x+3,3*x+2,-6*x+4,0,-3*x-3,-14,-6*x,-2*x+6,-9*x,x+3]];
E[453,2] = [x^2+x-1, [1,x,1,-x-1,-x-1,x,-3,-2*x-1,1,-1,2*x-2,-x-1,-1,-3*x,-x-1,3*x,-2*x-1,x,-4,x+2,-3,-4*x+2,-4*x-5,-2*x-1,x-3,-x,1,3*x+3,3*x+6,-1,5*x,x+5,2*x-2,x-2,3*x+3,-x-1,-3*x-3,-4*x,-1,x+3,-3*x+3,-3*x,4*x-3,2*x,-x-1,-x-4,4*x+2,3*x,2,-4*x+1,-2*x-1,x+1,8*x+3,x,2*x,6*x+3,-4,3*x+3,-x-3,x+2,9*x+7,-5*x+5,-3,-2*x+1,x+1,-4*x+2,-3*x-9,x+3,-4*x-5,3,5*x+9,-2*x-1,-6*x-11,-3,x-3,4*x+4,-6*x+6,-x,-11*x-2,-3,1,6*x-3,x-7,3*x+3,x+3,-7*x+4,3*x+6,6*x-2,-3,-1,3,5*x+9,5*x,-2*x+4,4*x+4,x+5,-12*x-6,2*x,2*x-2,3*x+2,-5*x+5]];
E[453,3] = [x^2+3*x+1, [1,x,1,-3*x-3,x+3,x,-2*x-5,4*x+3,1,-1,2*x+6,-3*x-3,-2*x+1,x+2,x+3,-3*x+2,-1,x,4*x+8,-3*x-6,-2*x-5,-2,5,4*x+3,3*x+3,7*x+2,1,3*x+9,3*x+2,-1,-5*x-10,3*x-3,2*x+6,-x,-5*x-13,-3*x-3,-x+3,-4*x-4,-2*x+1,3*x+5,-7*x-13,x+2,4*x+13,-6*x-12,x+3,5*x,10,-3*x+2,8*x+14,-6*x-3,-1,-15*x-9,-3,x,6*x+16,-2*x-7,4*x+8,-7*x-3,-3*x-7,-3*x-6,-11*x-19,5*x+5,-2*x-5,-6*x-7,x+5,-2,-3*x+1,3*x+3,5,2*x+5,-3*x+5,4*x+3,-4*x-9,6*x+1,3*x+3,-12,-10*x-26,7*x+2,7*x+2,2*x+9,1,8*x+7,x+5,3*x+9,-x-3,x-4,3*x+2,6*x+10,-5,-1,-4*x-9,-15*x-15,-5*x-10,10*x,8*x+20,3*x-3,4*x+10,-10*x-8,2*x+6,9*x,-9*x-23]];
E[453,4] = [x^2-3, [1,x,-1,1,2,-x,1,-x,1,2*x,x+2,-1,2*x,x,-2,-5,0,x,0,2,-1,2*x+3,-2*x+6,x,-1,6,-1,1,-2*x,-2*x,2*x+6,-3*x,-x-2,0,2,1,-4*x+1,0,-2*x,-2*x,-3*x-6,-x,-2*x,x+2,2,6*x-6,-x+2,5,-6,-x,0,2*x,-x+6,-x,2*x+4,-x,0,-6,-5*x+2,-2,-2*x-4,6*x+6,1,1,4*x,-2*x-3,5,0,2*x-6,2*x,4*x+6,-x,-4*x-8,x-12,1,0,x+2,-6,-4*x-5,-10,1,-6*x-9,-2*x-2,-1,0,-6,2*x,-2*x-3,4*x,2*x,2*x,-2*x+6,-2*x-6,2*x-3,0,3*x,4*x-1,-6*x,x+2,-1,5*x-6]];
E[453,5] = [x^3+x^2-2*x-1, [1,x,-1,x^2-2,-2*x^2-x+2,-x,2*x^2+2*x-2,-x^2-2*x+1,1,x^2-2*x-2,-x^2-3*x+1,-x^2+2,-2*x-2,2*x+2,2*x^2+x-2,-3*x^2-x+3,-x^2-x-5,x,5*x^2+2*x-6,x^2+2*x-3,-2*x^2-2*x+2,-2*x^2-x-1,2*x^2+2*x-8,x^2+2*x-1,x^2-1,-2*x^2-2*x,-1,-2*x^2-2*x+4,-x^2+2*x,-x^2+2*x+2,-2*x^2+3*x+6,4*x^2+x-5,x^2+3*x-1,-7*x-1,-2*x-6,x^2-2,-x^2-5*x+1,-3*x^2+4*x+5,2*x+2,-x^2+3*x+5,2*x^2+2*x,-2*x-2,-2*x^2-x-6,3*x^2+x-4,-2*x^2-x+2,-4*x+2,7*x^2-12,3*x^2+x-3,4*x+1,-x^2+x+1,x^2+x+5,2,8*x+2,-x,-2*x^2+5*x+7,-4*x-6,-5*x^2-2*x+6,3*x^2-2*x-1,7*x+4,-x^2-2*x+3,-2*x^2-4*x-2,5*x^2+2*x-2,2*x^2+2*x-2,3*x^2+5*x-2,2*x^2+6*x,2*x^2+x+1,-4*x^2+4*x+6,-5*x^2+x+10,-2*x^2-2*x+8,-2*x^2-6*x,-6*x-4,-x^2-2*x+1,-6*x^2+6*x+18,-4*x^2-x-1,-x^2+1,-3*x^2-5*x+9,-6*x-8,2*x^2+2*x,4*x^2-8,2*x^2-x+5,1,4*x+2,-6*x^2-4*x+8,2*x^2+2*x-4,12*x^2+7*x-9,x^2-10*x-2,x^2-2*x,2*x^2+4*x+5,4*x^2-2*x-6,x^2-2*x-2,-4*x^2-8*x,-8*x^2-2*x+16,2*x^2-3*x-6,-7*x^2+2*x+7,-x^2+2*x-11,-4*x^2-x+5,-7*x^2-4*x+18,4*x^2+x,-x^2-3*x+1,-x+1,-8*x^2-12*x+14]];
E[453,6] = [x^9-6*x^8+3*x^7+42*x^6-68*x^5-62*x^4+168*x^3-15*x^2-98*x+31, [2,2*x,2,2*x^2-4,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-246*x^3+76*x^2+148*x-54,2*x,-3*x^8+11*x^7+16*x^6-86*x^5+6*x^4+180*x^3-76*x^2-99*x+47,2*x^3-8*x,2,10*x^8-36*x^7-56*x^6+282*x^5+2*x^4-596*x^3+208*x^2+338*x-124,-15*x^8+55*x^7+84*x^6-436*x^5-2*x^4+940*x^3-318*x^2-543*x+195,2*x^2-4,4*x^8-16*x^7-20*x^6+128*x^5-16*x^4-280*x^3+108*x^2+164*x-52,-7*x^8+25*x^7+40*x^6-198*x^5-6*x^4+428*x^3-144*x^2-247*x+93,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-246*x^3+76*x^2+148*x-54,2*x^4-12*x^2+8,6*x^8-24*x^7-28*x^6+190*x^5-40*x^4-412*x^3+198*x^2+246*x-100,2*x,12*x^8-46*x^7-62*x^6+364*x^5-36*x^4-784*x^3+320*x^2+454*x-174,16*x^8-58*x^7-90*x^6+458*x^5+4*x^4-980*x^3+336*x^2+560*x-202,-3*x^8+11*x^7+16*x^6-86*x^5+6*x^4+180*x^3-76*x^2-99*x+47,-35*x^8+129*x^7+194*x^6-1022*x^5+10*x^4+2202*x^3-768*x^2-1275*x+465,4*x^8-12*x^7-28*x^6+92*x^5+44*x^4-184*x^3-4*x^2+92*x-12,2*x^3-8*x,-24*x^8+90*x^7+130*x^6-716*x^5+28*x^4+1560*x^3-560*x^2-930*x+332,8*x^8-32*x^7-40*x^6+256*x^5-32*x^4-564*x^3+224*x^2+340*x-124,2,-11*x^8+39*x^7+64*x^6-310*x^5-18*x^4+672*x^3-200*x^2-395*x+123,-4*x^8+18*x^7+14*x^6-144*x^5+64*x^4+316*x^3-208*x^2-190*x+98,10*x^8-36*x^7-56*x^6+282*x^5+2*x^4-596*x^3+208*x^2+338*x-124,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-242*x^3+72*x^2+132*x-42,2*x^5-16*x^3+24*x,-15*x^8+55*x^7+84*x^6-436*x^5-2*x^4+940*x^3-318*x^2-543*x+195,12*x^8-46*x^7-62*x^6+368*x^5-40*x^4-810*x^3+336*x^2+488*x-186,18*x^8-66*x^7-100*x^6+524*x^5-8*x^4-1132*x^3+412*x^2+654*x-246,2*x^2-4,-3*x^8+13*x^7+12*x^6-104*x^5+38*x^4+228*x^3-146*x^2-135*x+81,26*x^8-98*x^7-140*x^6+780*x^5-40*x^4-1696*x^3+634*x^2+1002*x-372,4*x^8-16*x^7-20*x^6+128*x^5-16*x^4-280*x^3+108*x^2+164*x-52,18*x^8-66*x^7-102*x^6+528*x^5+8*x^4-1160*x^3+384*x^2+690*x-248,9*x^8-35*x^7-44*x^6+274*x^5-46*x^4-580*x^3+280*x^2+333*x-155,-7*x^8+25*x^7+40*x^6-198*x^5-6*x^4+428*x^3-144*x^2-247*x+93,18*x^8-68*x^7-96*x^6+540*x^5-34*x^4-1170*x^3+456*x^2+682*x-272,-51*x^8+189*x^7+280*x^6-1498*x^5+36*x^4+3232*x^3-1164*x^2-1879*x+695,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-246*x^3+76*x^2+148*x-54,12*x^8-40*x^7-76*x^6+316*x^5+64*x^4-676*x^3+152*x^2+380*x-124,3*x^8-11*x^7-18*x^6+90*x^5+6*x^4-204*x^3+68*x^2+125*x-59,2*x^4-12*x^2+8,-13*x^8+49*x^7+68*x^6-386*x^5+38*x^4+820*x^3-360*x^2-465*x+207,-54*x^8+202*x^7+292*x^6-1604*x^5+72*x^4+3472*x^3-1290*x^2-2020*x+744,6*x^8-24*x^7-28*x^6+190*x^5-40*x^4-412*x^3+198*x^2+246*x-100,8*x^8-32*x^7-40*x^6+256*x^5-36*x^4-560*x^3+244*x^2+332*x-144,-x^8+3*x^7+8*x^6-26*x^5-18*x^4+68*x^3+16*x^2-61*x-9,2*x,30*x^8-110*x^7-166*x^6+870*x^5-12*x^4-1872*x^3+666*x^2+1088*x-398,-13*x^8+47*x^7+72*x^6-370*x^5+2*x^4+792*x^3-272*x^2-461*x+155,12*x^8-46*x^7-62*x^6+364*x^5-36*x^4-784*x^3+320*x^2+454*x-174,-6*x^8+26*x^7+24*x^6-208*x^5+68*x^4+464*x^3-250*x^2-294*x+124,-5*x^8+17*x^7+32*x^6-134*x^5-32*x^4+286*x^3-48*x^2-165*x+49,16*x^8-58*x^7-90*x^6+458*x^5+4*x^4-980*x^3+336*x^2+560*x-202,-12*x^8+44*x^7+68*x^6-352*x^5-8*x^4+776*x^3-240*x^2-472*x+152,10*x^8-36*x^7-56*x^6+282*x^5+6*x^4-600*x^3+192*x^2+350*x-124,-3*x^8+11*x^7+16*x^6-86*x^5+6*x^4+180*x^3-76*x^2-99*x+47,2*x^6-20*x^4+48*x^2-16,12*x^8-48*x^7-60*x^6+388*x^5-52*x^4-872*x^3+356*x^2+540*x-208,-35*x^8+129*x^7+194*x^6-1022*x^5+10*x^4+2202*x^3-768*x^2-1275*x+465,-23*x^8+87*x^7+124*x^6-694*x^5+34*x^4+1512*x^3-556*x^2-883*x+323,14*x^8-50*x^7-80*x^6+396*x^5+14*x^4-856*x^3+272*x^2+498*x-172,4*x^8-12*x^7-28*x^6+92*x^5+44*x^4-184*x^3-4*x^2+92*x-12,42*x^8-154*x^7-232*x^6+1216*x^5-16*x^4-2612*x^3+924*x^2+1518*x-558,18*x^8-66*x^7-100*x^6+520*x^5-1108*x^3+380*x^2+626*x-246,2*x^3-8*x,-10*x^8+34*x^7+64*x^6-272*x^5-60*x^4+596*x^3-112*x^2-354*x+110,-5*x^8+21*x^7+22*x^6-166*x^5+42*x^4+358*x^3-180*x^2-213*x+93,-24*x^8+90*x^7+130*x^6-716*x^5+28*x^4+1560*x^3-560*x^2-930*x+332,34*x^8-126*x^7-188*x^6+1000*x^5-12*x^4-2166*x^3+752*x^2+1268*x-458,-37*x^8+135*x^7+208*x^6-1070*x^5-10*x^4+2308*x^3-776*x^2-1337*x+475,8*x^8-32*x^7-40*x^6+256*x^5-32*x^4-564*x^3+224*x^2+340*x-124,19*x^8-71*x^7-104*x^6+566*x^5-18*x^4-1232*x^3+448*x^2+723*x-263,10*x^8-40*x^7-48*x^6+316*x^5-52*x^4-680*x^3+288*x^2+396*x-154,2,19*x^8-71*x^7-104*x^6+566*x^5-22*x^4-1232*x^3+468*x^2+727*x-279,-8*x^8+32*x^7+40*x^6-260*x^5+36*x^4+592*x^3-240*x^2-384*x+128,-11*x^8+39*x^7+64*x^6-310*x^5-18*x^4+672*x^3-200*x^2-395*x+123,-20*x^8+68*x^7+122*x^6-534*x^5-72*x^4+1128*x^3-314*x^2-622*x+220,40*x^8-150*x^7-216*x^6+1190*x^5-54*x^4-2568*x^3+952*x^2+1492*x-558,-4*x^8+18*x^7+14*x^6-144*x^5+64*x^4+316*x^3-208*x^2-190*x+98,-47*x^8+175*x^7+256*x^6-1388*x^5+50*x^4+3000*x^3-1108*x^2-1753*x+651,6*x^8-22*x^7-36*x^6+176*x^5+24*x^4-380*x^3+60*x^2+206*x-38,10*x^8-36*x^7-56*x^6+282*x^5+2*x^4-596*x^3+208*x^2+338*x-124,2*x^8-6*x^7-16*x^6+52*x^5+36*x^4-128*x^3-32*x^2+90*x+18,24*x^8-88*x^7-132*x^6+696*x^5-20*x^4-1496*x^3+568*x^2+868*x-348,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-242*x^3+72*x^2+132*x-42,7*x^8-27*x^7-36*x^6+210*x^5-18*x^4-436*x^3+170*x^2+235*x-93,-16*x^8+56*x^7+92*x^6-434*x^5-22*x^4+894*x^3-294*x^2-472*x+172,2*x^5-16*x^3+24*x,-17*x^8+63*x^7+94*x^6-502*x^5+10*x^4+1092*x^3-392*x^2-631*x+235,-29*x^8+107*x^7+160*x^6-846*x^5+14*x^4+1824*x^3-660*x^2-1067*x+403,-15*x^8+55*x^7+84*x^6-436*x^5-2*x^4+940*x^3-318*x^2-543*x+195,-74*x^8+274*x^7+404*x^6-2168*x^5+68*x^4+4662*x^3-1710*x^2-2688*x+1010,-19*x^8+73*x^7+96*x^6-574*x^5+74*x^4+1220*x^3-544*x^2-695*x+301]];
E[453,7] = [x^5+3*x^4-6*x^3-18*x^2+8*x+19, [1,x,-1,x^2-2,-x^4-x^3+6*x^2+2*x-6,-x,x^4+x^3-7*x^2-4*x+7,x^3-4*x,1,2*x^4-16*x^2+2*x+19,x^4-7*x^2+2*x+3,-x^2+2,-x^4+x^3+9*x^2-6*x-11,-2*x^4-x^3+14*x^2-x-19,x^4+x^3-6*x^2-2*x+6,x^4-6*x^2+4,2*x^4+x^3-14*x^2+18,x,-2*x^4-2*x^3+13*x^2+5*x-15,-4*x^4-2*x^3+26*x^2-x-26,-x^4-x^3+7*x^2+4*x-7,-3*x^4-x^3+20*x^2-5*x-19,x^4-x^3-9*x^2+6*x+11,-x^3+4*x,x^3+3*x^2-2*x-7,4*x^4+3*x^3-24*x^2-3*x+19,-1,3*x^4-23*x^2+5*x+24,-2*x^4-x^3+15*x^2-20,-2*x^4+16*x^2-2*x-19,2*x^4+2*x^3-11*x^2-4*x+5,-3*x^4-2*x^3+18*x^2+4*x-19,-x^4+7*x^2-2*x-3,-5*x^4-2*x^3+36*x^2+2*x-38,x^4+2*x^3-3*x^2-3*x-4,x^2-2,3*x-3,4*x^4+x^3-31*x^2+x+38,x^4-x^3-9*x^2+6*x+11,6*x^4+2*x^3-41*x^2+2*x+38,x^4-7*x^2+3*x+2,2*x^4+x^3-14*x^2+x+19,-x^4+4*x^2-5*x+3,6*x^4+2*x^3-45*x^2+x+51,-x^4-x^3+6*x^2+2*x-6,-4*x^4-3*x^3+24*x^2+3*x-19,x^2+3*x-7,-x^4+6*x^2-4,-x^4-x^3+5*x^2+4*x+4,x^4+3*x^3-2*x^2-7*x,-2*x^4-x^3+14*x^2-18,-7*x^4-2*x^3+51*x^2-x-54,-x^4-x^3+5*x^2+2*x-3,-x,3*x^4+4*x^3-18*x^2-9*x+20,-5*x^4-3*x^3+31*x^2+2*x-19,2*x^4+2*x^3-13*x^2-5*x+15,5*x^4+3*x^3-36*x^2-4*x+38,-x^4+x^3+10*x^2-6*x-22,4*x^4+2*x^3-26*x^2+x+26,x^4-2*x^3-11*x^2+9*x+22,-4*x^4+x^3+32*x^2-11*x-38,x^4+x^3-7*x^2-4*x+7,5*x^4-38*x^2+5*x+49,-x^4-2*x^3+5*x^2+x-10,3*x^4+x^3-20*x^2+5*x+19,-x^4+7*x^2-3*x-14,9*x^4+4*x^3-60*x^2+2*x+59,-x^4+x^3+9*x^2-6*x-11,-x^4+3*x^3+15*x^2-12*x-19,-x^4+5*x^2-3*x,x^3-4*x,x^4-x^3-11*x^2+6*x+21,3*x^2-3*x,-x^3-3*x^2+2*x+7,-7*x^4-3*x^3+47*x^2-4*x-46,-4*x^4-4*x^3+30*x^2+16*x-36,-4*x^4-3*x^3+24*x^2+3*x-19,2*x^4-x^3-16*x^2+11*x+21,-8*x^4-x^3+58*x^2-8*x-62,1,-3*x^4-x^3+21*x^2-6*x-19,-3*x^4+27*x^2-3*x-42,-3*x^4+23*x^2-5*x-24,-2*x^3-5*x^2+8*x+6,3*x^4-2*x^3-23*x^2+11*x+19,2*x^4+x^3-15*x^2+20,-10*x^4-7*x^3+69*x^2+13*x-76,-3*x^4-3*x^3+15*x^2+6*x-5,2*x^4-16*x^2+2*x+19,x^4-3*x^3-17*x^2+12*x+37,7*x^4+2*x^3-51*x^2+x+54,-2*x^4-2*x^3+11*x^2+4*x-5,x^3+3*x^2-7*x,-x^4+x^3+10*x^2-5*x-5,3*x^4+2*x^3-18*x^2-4*x+19,4*x^4+2*x^3-25*x^2-3*x+13,2*x^4-x^3-14*x^2+12*x+19,x^4-7*x^2+2*x+3,2*x^3+5*x^2-4*x-5,x^4-9*x^2+3*x+14]];

E[454,1] = [x^2+3*x+1, [1,1,x,1,-2*x-4,x,x-1,1,-3*x-4,-2*x-4,x-3,x,-2*x-2,x-1,2*x+2,1,2*x,-3*x-4,3*x+4,-2*x-4,-4*x-1,x-3,-3*x-6,x,4*x+7,-2*x-2,2*x+3,x-1,5*x+4,2*x+2,2*x+2,1,-6*x-1,2*x,4*x+6,-3*x-4,0,3*x+4,4*x+2,-2*x-4,-6*x-12,-4*x-1,-3*x-4,x-3,2*x+10,-3*x-6,3*x+9,x,-5*x-7,4*x+7,-6*x-2,-2*x-2,x+3,2*x+3,8*x+14,x-1,-5*x-3,5*x+4,-8*x-8,2*x+2,8*x+16,2*x+2,8*x+7,1,4,-6*x-1,-6*x-10,2*x,3*x+3,4*x+6,-x-10,-3*x-4,9*x+13,0,-5*x-4,3*x+4,-7*x+2,4*x+2,-7*x-13,-2*x-4,6*x+10,-6*x-12,-6*x,-4*x-1,4*x+4,-3*x-4,-11*x-5,x-3,-3*x-6,2*x+10,6*x+4,-3*x-6,-4*x-2,3*x+9,-2*x-10,x,-9*x-10,-5*x-7,14*x+15,4*x+7,5*x-1,-6*x-2,-5*x+1,-2*x-2,-6*x-4,x+3,-8*x-14,2*x+3,5*x+20,8*x+14,0,x-1,4*x-10,-5*x-3]];
E[454,2] = [x^7-4*x^6-9*x^5+48*x^4-11*x^3-92*x^2+28*x+56, [4,4,4*x,4,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,4*x,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,4,4*x^2-12,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,8*x^6-20*x^5-104*x^4+232*x^3+280*x^2-360*x-312,4*x,5*x^6-14*x^5-57*x^4+158*x^3+85*x^2-206*x-92,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,4*x^4-4*x^3-44*x^2+32*x+56,4,10*x^6-28*x^5-118*x^4+316*x^3+218*x^2-416*x-256,4*x^2-12,12*x^6-28*x^5-156*x^4+324*x^3+420*x^2-496*x-464,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,-10*x^6+24*x^5+126*x^4-276*x^3-306*x^2+404*x+336,8*x^6-20*x^5-104*x^4+232*x^3+280*x^2-360*x-312,-9*x^6+22*x^5+117*x^4-254*x^3-313*x^2+378*x+356,4*x,-5*x^6+14*x^5+53*x^4-154*x^3-41*x^2+166*x+40,5*x^6-14*x^5-57*x^4+158*x^3+85*x^2-206*x-92,4*x^3-24*x,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,-24*x^6+60*x^5+304*x^4-688*x^3-748*x^2+996*x+840,4*x^4-4*x^3-44*x^2+32*x+56,-2*x^6+8*x^5+14*x^4-88*x^3+62*x^2+84*x-64,4,12*x^6-32*x^5-152*x^4+368*x^3+376*x^2-536*x-448,10*x^6-28*x^5-118*x^4+316*x^3+218*x^2-416*x-256,-9*x^6+24*x^5+113*x^4-276*x^3-273*x^2+404*x+320,4*x^2-12,10*x^6-22*x^5-134*x^4+254*x^3+390*x^2-390*x-428,12*x^6-28*x^5-156*x^4+324*x^3+420*x^2-496*x-464,6*x^6-12*x^5-82*x^4+140*x^3+254*x^2-232*x-280,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,-6*x^6+12*x^5+86*x^4-144*x^3-298*x^2+264*x+328,-10*x^6+24*x^5+126*x^4-276*x^3-306*x^2+404*x+336,-4*x^6+8*x^5+60*x^4-96*x^3-228*x^2+180*x+256,8*x^6-20*x^5-104*x^4+232*x^3+280*x^2-360*x-312,3*x^6-8*x^5-31*x^4+88*x^3+11*x^2-88*x-12,-9*x^6+22*x^5+117*x^4-254*x^3-313*x^2+378*x+356,-21*x^6+48*x^5+281*x^4-560*x^3-825*x^2+896*x+924,4*x,-15*x^6+36*x^5+195*x^4-416*x^3-523*x^2+636*x+568,-5*x^6+14*x^5+53*x^4-154*x^3-41*x^2+166*x+40,12*x^6-28*x^5-164*x^4+328*x^3+504*x^2-536*x-560,5*x^6-14*x^5-57*x^4+158*x^3+85*x^2-206*x-92,-4*x^6+8*x^5+56*x^4-96*x^3-184*x^2+172*x+192,4*x^3-24*x,14*x^6-28*x^5-194*x^4+332*x^3+614*x^2-576*x-648,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,20*x^6-48*x^5-252*x^4+552*x^3+608*x^2-800*x-672,-24*x^6+60*x^5+304*x^4-688*x^3-748*x^2+996*x+840,32*x^6-76*x^5-416*x^4+876*x^3+1120*x^2-1316*x-1248,4*x^4-4*x^3-44*x^2+32*x+56,10*x^6-22*x^5-138*x^4+262*x^3+438*x^2-450*x-500,-2*x^6+8*x^5+14*x^4-88*x^3+62*x^2+84*x-64,2*x^6-6*x^5-30*x^4+70*x^3+114*x^2-122*x-148,4,5*x^6-14*x^5-65*x^4+162*x^3+181*x^2-246*x-232,12*x^6-32*x^5-152*x^4+368*x^3+376*x^2-536*x-448,4*x^6-6*x^5-64*x^4+78*x^3+272*x^2-182*x-300,10*x^6-28*x^5-118*x^4+316*x^3+218*x^2-416*x-256,-14*x^6+36*x^5+178*x^4-412*x^3-450*x^2+608*x+504,-9*x^6+24*x^5+113*x^4-276*x^3-273*x^2+404*x+320,-7*x^6+12*x^5+107*x^4-148*x^3-415*x^2+304*x+452,4*x^2-12,-21*x^6+54*x^5+269*x^4-626*x^3-685*x^2+958*x+756,10*x^6-22*x^5-134*x^4+254*x^3+390*x^2-390*x-428,-6*x^6+8*x^5+86*x^4-96*x^3-294*x^2+180*x+280,12*x^6-28*x^5-156*x^4+324*x^3+420*x^2-496*x-464,20*x^6-52*x^5-252*x^4+600*x^3+616*x^2-892*x-712,6*x^6-12*x^5-82*x^4+140*x^3+254*x^2-232*x-280,-7*x^6+14*x^5+99*x^4-166*x^3-331*x^2+286*x+364,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,4*x^4-36*x^2+36,-6*x^6+12*x^5+86*x^4-144*x^3-298*x^2+264*x+328,-27*x^6+74*x^5+323*x^4-842*x^3-635*x^2+1150*x+740,-10*x^6+24*x^5+126*x^4-276*x^3-306*x^2+404*x+336,16*x^6-44*x^5-184*x^4+492*x^3+296*x^2-604*x-368,-4*x^6+8*x^5+60*x^4-96*x^3-228*x^2+180*x+256,-36*x^6+88*x^5+464*x^4-1012*x^3-1212*x^2+1512*x+1344,8*x^6-20*x^5-104*x^4+232*x^3+280*x^2-360*x-312,32*x^6-78*x^5-416*x^4+902*x^3+1124*x^2-1366*x-1292,3*x^6-8*x^5-31*x^4+88*x^3+11*x^2-88*x-12,16*x^6-42*x^5-192*x^4+478*x^3+380*x^2-662*x-416,-9*x^6+22*x^5+117*x^4-254*x^3-313*x^2+378*x+356,-4*x^5+8*x^4+40*x^3-100*x^2-8*x+112,-21*x^6+48*x^5+281*x^4-560*x^3-825*x^2+896*x+924,16*x^6-40*x^5-212*x^4+468*x^3+604*x^2-744*x-688,4*x,-4*x^6+10*x^5+52*x^4-122*x^3-136*x^2+218*x+132,-15*x^6+36*x^5+195*x^4-416*x^3-523*x^2+636*x+568,-8*x^6+16*x^5+104*x^4-188*x^3-272*x^2+296*x+264,-5*x^6+14*x^5+53*x^4-154*x^3-41*x^2+166*x+40,-22*x^6+60*x^5+258*x^4-676*x^3-458*x^2+880*x+528,12*x^6-28*x^5-164*x^4+328*x^3+504*x^2-536*x-560,-19*x^6+40*x^5+263*x^4-472*x^3-839*x^2+792*x+916,5*x^6-14*x^5-57*x^4+158*x^3+85*x^2-206*x-92,-12*x^6+32*x^5+156*x^4-372*x^3-424*x^2+572*x+504,-4*x^6+8*x^5+56*x^4-96*x^3-184*x^2+172*x+192,5*x^6-16*x^5-49*x^4+172*x^3-7*x^2-148*x+20,4*x^3-24*x,18*x^6-44*x^5-234*x^4+512*x^3+630*x^2-788*x-728,14*x^6-28*x^5-194*x^4+332*x^3+614*x^2-576*x-648,18*x^6-44*x^5-226*x^4+500*x^3+530*x^2-708*x-560,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,x^6-4*x^5-9*x^4+48*x^3-3*x^2-84*x-4,20*x^6-48*x^5-252*x^4+552*x^3+608*x^2-800*x-672]];
E[454,3] = [x^4+2*x^3-3*x^2-2*x+1, [1,-1,x,1,-x^3-3*x^2+x+2,-x,x^3+3*x^2-2*x-3,-1,x^2-3,x^3+3*x^2-x-2,x^3+2*x^2-3*x-4,x,3*x^3+6*x^2-8*x-5,-x^3-3*x^2+2*x+3,-x^3-2*x^2+1,1,-2*x^3-3*x^2+5*x-1,-x^2+3,-2*x^3-4*x^2+5*x+2,-x^3-3*x^2+x+2,x^3+x^2-x-1,-x^3-2*x^2+3*x+4,-3*x^3-8*x^2+5*x+7,-x,2*x^2+4*x-3,-3*x^3-6*x^2+8*x+5,x^3-6*x,x^3+3*x^2-2*x-3,3*x^3+7*x^2-4*x-10,x^3+2*x^2-1,-3*x^2-5*x+5,-1,-2*x-1,2*x^3+3*x^2-5*x+1,2*x^3+3*x^2-5*x-5,x^2-3,-2*x^3-4*x^2+8*x+2,2*x^3+4*x^2-5*x-2,x^2+x-3,x^3+3*x^2-x-2,x^3+5*x^2+7*x-8,-x^3-x^2+x+1,-4*x^3-6*x^2+15*x+4,x^3+2*x^2-3*x-4,3*x^3+6*x^2-4*x-5,3*x^3+8*x^2-5*x-7,-5*x^3-9*x^2+12*x+5,x,-4*x^3-7*x^2+8*x+2,-2*x^2-4*x+3,x^3-x^2-5*x+2,3*x^3+6*x^2-8*x-5,4*x^3+4*x^2-19*x-3,-x^3+6*x,4*x^3+11*x^2-5*x-9,-x^3-3*x^2+2*x+3,-x^2-2*x+2,-3*x^3-7*x^2+4*x+10,2*x^2-6,-x^3-2*x^2+1,-2*x^3-3*x^2+7*x-3,3*x^2+5*x-5,-4*x^3-7*x^2+7*x+8,1,4*x^3+10*x^2-8*x-12,2*x+1,-2*x^2-4*x+8,-2*x^3-3*x^2+5*x-1,-2*x^3-4*x^2+x+3,-2*x^3-3*x^2+5*x+5,5*x^3+10*x^2-9*x-7,-x^2+3,2*x^3-x^2-12*x+8,2*x^3+4*x^2-8*x-2,2*x^3+4*x^2-3*x,-2*x^3-4*x^2+5*x+2,-5*x^3-13*x^2+10*x+14,-x^2-x+3,3*x^3+x^2-16*x+3,-x^3-3*x^2+x+2,-2*x^3-6*x^2+2*x+8,-x^3-5*x^2-7*x+8,-x^3+3*x^2+11*x-6,x^3+x^2-x-1,2*x^3+4*x^2,4*x^3+6*x^2-15*x-4,x^3+5*x^2-4*x-3,-x^3-2*x^2+3*x+4,4*x^3+11*x^2+2*x-11,-3*x^3-6*x^2+4*x+5,-7*x^3-17*x^2+15*x+20,-3*x^3-8*x^2+5*x+7,-3*x^3-5*x^2+5*x,5*x^3+9*x^2-12*x-5,-x^3-2*x^2+4*x+5,-x,2*x^3+7*x^2+2*x-5,4*x^3+7*x^2-8*x-2,-3*x^3-8*x^2+8*x+12,2*x^2+4*x-3,-4*x^3-8*x^2+5*x+7,-x^3+x^2+5*x-2,9*x^3+19*x^2-18*x-9,-3*x^3-6*x^2+8*x+5,-x^3+x^2-x-2,-4*x^3-4*x^2+19*x+3,6*x^3+11*x^2-21*x-9,x^3-6*x,-3*x^3-5*x^2+8*x+2,-4*x^3-11*x^2+5*x+9,2*x^2-2*x+2,x^3+3*x^2-2*x-3,-4*x^3-12*x^2+6*x+20,x^2+2*x-2]];
E[454,4] = [x^5+x^4-11*x^3-8*x^2+28*x+8, [4,-4,4*x,4,x^4-3*x^3-7*x^2+20*x+4,-4*x,2*x^4-16*x^2+2*x+12,-4,4*x^2-12,-x^4+3*x^3+7*x^2-20*x-4,-4*x^2+24,4*x,-x^4-3*x^3+9*x^2+22*x-12,-2*x^4+16*x^2-2*x-12,-4*x^4+4*x^3+28*x^2-24*x-8,4,2*x^4+2*x^3-14*x^2-8*x+16,-4*x^2+12,-4*x^3-4*x^2+24*x+16,x^4-3*x^3-7*x^2+20*x+4,-2*x^4+6*x^3+18*x^2-44*x-16,4*x^2-24,-x^4+5*x^3+9*x^2-30*x-4,-4*x,-x^4-3*x^3+9*x^2+14*x-16,x^4+3*x^3-9*x^2-22*x+12,4*x^3-24*x,2*x^4-16*x^2+2*x+12,-4*x+24,4*x^4-4*x^3-28*x^2+24*x+8,6*x^4-6*x^3-46*x^2+36*x+32,-4,-4*x^3+24*x,-2*x^4-2*x^3+14*x^2+8*x-16,-3*x^4+9*x^3+25*x^2-64*x-24,4*x^2-12,-2*x^4+4*x^3+8*x^2-30*x+28,4*x^3+4*x^2-24*x-16,-2*x^4-2*x^3+14*x^2+16*x+8,-x^4+3*x^3+7*x^2-20*x-4,2*x^4-6*x^3-22*x^2+32*x+56,2*x^4-6*x^3-18*x^2+44*x+16,4*x^4-4*x^3-20*x^2+28*x-32,-4*x^2+24,5*x^4-7*x^3-35*x^2+44*x+20,x^4-5*x^3-9*x^2+30*x+4,-x^4-5*x^3+3*x^2+28*x+20,4*x,-7*x^4+5*x^3+49*x^2-40*x-16,x^4+3*x^3-9*x^2-14*x+16,8*x^3+8*x^2-40*x-16,-x^4-3*x^3+9*x^2+22*x-12,4*x^4-28*x^2+4*x+32,-4*x^3+24*x,-2*x^4-2*x^3+14*x^2+16*x-8,-2*x^4+16*x^2-2*x-12,-4*x^4-4*x^3+24*x^2+16*x,4*x-24,4*x^3+4*x^2-28*x-16,-4*x^4+4*x^3+28*x^2-24*x-8,-2*x^4+8*x^3+20*x^2-58*x-28,-6*x^4+6*x^3+46*x^2-36*x-32,2*x^4-4*x^3-12*x^2+34*x-20,4,-3*x^4-5*x^3+19*x^2+34*x+16,4*x^3-24*x,4*x^4+2*x^3-34*x^2-14*x+28,2*x^4+2*x^3-14*x^2-8*x+16,6*x^4-2*x^3-38*x^2+24*x+8,3*x^4-9*x^3-25*x^2+64*x+24,x^4+x^3-3*x^2-12*x-20,-4*x^2+12,-x^4+5*x^3+5*x^2-26*x-4,2*x^4-4*x^3-8*x^2+30*x-28,-2*x^4-2*x^3+6*x^2+12*x+8,-4*x^3-4*x^2+24*x+16,4*x^4+4*x^3-36*x^2-28*x+56,2*x^4+2*x^3-14*x^2-16*x-8,-3*x^4+3*x^3+27*x^2-10*x-44,x^4-3*x^3-7*x^2+20*x+4,4*x^4-36*x^2+36,-2*x^4+6*x^3+22*x^2-32*x-56,3*x^4-11*x^3-23*x^2+74*x+4,-2*x^4+6*x^3+18*x^2-44*x-16,4*x^3+4*x^2-28*x-16,-4*x^4+4*x^3+20*x^2-28*x+32,-4*x^2+24*x,4*x^2-24,-2*x^3+2*x^2+14*x-12,-5*x^4+7*x^3+35*x^2-44*x-20,10*x^3+10*x^2-70*x-64,-x^4+5*x^3+9*x^2-30*x-4,-12*x^4+20*x^3+84*x^2-136*x-48,x^4+5*x^3-3*x^2-28*x-20,-4*x^4-4*x^3+28*x^2+24*x,-4*x,4*x^4-6*x^3-18*x^2+46*x-60,7*x^4-5*x^3-49*x^2+40*x+16,-4*x^4+36*x^2-72,-x^4-3*x^3+9*x^2+14*x-16,-6*x^4-6*x^3+46*x^2+32*x-48,-8*x^3-8*x^2+40*x+16,x^4-3*x^3-19*x^2+12*x+28,x^4+3*x^3-9*x^2-22*x+12,12*x^4-8*x^3-88*x^2+60*x+24,-4*x^4+28*x^2-4*x-32,-5*x^4-5*x^3+39*x^2+24*x-44,4*x^3-24*x,2*x^4-6*x^3-22*x^2+44*x+56,2*x^4+2*x^3-14*x^2-16*x+8,6*x^4-14*x^3-46*x^2+84*x+16,2*x^4-16*x^2+2*x+12,5*x^4-11*x^3-31*x^2+56*x-44,4*x^4+4*x^3-24*x^2-16*x]];

E[455,1] = [x, [1,1,0,-1,-1,0,-1,-3,-3,-1,0,0,-1,-1,0,-1,-2,-3,-4,1,0,0,0,0,1,-1,0,1,-2,0,0,5,0,-2,1,3,2,-4,0,3,6,0,-4,0,3,0,-8,0,1,1,0,1,6,0,0,3,0,-2,-4,0,-10,0,3,7,1,0,12,2,0,1,4,9,-10,2,0,4,0,0,0,1,9,6,12,0,2,-4,0,0,-18,3,1,0,0,-8,4,0,-2,1,0,-1,-2,0,-4,3,0,6,-4,0,-2,0,0,1]];
E[455,2] = [x, [1,-1,0,-1,1,0,-1,3,-3,-1,0,0,1,1,0,-1,-6,3,0,-1,0,0,-4,0,1,-1,0,1,-2,0,-4,-5,0,6,-1,3,-10,0,0,3,2,0,-8,0,-3,4,0,0,1,-1,0,-1,-2,0,0,-3,0,2,0,0,-2,4,3,7,1,0,-4,6,0,1,12,-9,-6,10,0,0,0,0,8,-1,9,-2,4,0,-6,8,0,0,2,3,-1,4,0,0,0,0,-14,-1,0,-1,6,0,4,3,0,2,8,0,-10,0,0,1]];
E[455,3] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-2,x^2-2,1,-x^2+3*x+1,-1,x^3-4*x,-x^3+3*x^2-2*x,x,-2*x^3+2*x^2+6*x,x^3-3*x^2+x+4,-1,-x,-x^3+3*x^2-2,3*x^3-5*x^2-5*x+3,-x^3+x^2+2*x+5,-3*x^2+5*x+1,x^3+x^2-6*x-3,x^2-2,x^3-3*x^2+2,-4*x^3+4*x^2+10*x+2,2*x^3-8*x^2+2*x+10,4*x^2-7*x-3,1,-x,2*x^2-8*x+3,-x^2+2,-x^3+3*x^2-2*x-2,-x^2+3*x+1,3*x^3-5*x^2-6*x+2,2*x^3-2*x^2-4*x-3,-2*x^3+10*x+4,-2*x^3+x^2+10*x+1,-1,-x^3-x^2+5*x,5*x^3-11*x^2-8*x+10,4*x^3-5*x^2-8*x-1,x^3-3*x^2+2,x^3-4*x,3*x^3-5*x^2-4*x+3,x^2-3*x-1,4*x^2-2*x-12,-4*x^3+2*x^2+10*x+4,-x^3+3*x^2-2*x,-2*x^3+4*x^2-2,-6*x^2+12*x+10,2*x^3-x^2-5*x-8,1,x,-6*x^3+16*x^2+2*x-9,-x^2+2,2*x^3+2*x^2-14*x-2,2*x^3-8*x^2+3*x,-2*x^3+2*x^2+6*x,-x^3+4*x,2*x^3-12*x+1,-3*x^2+3*x+1,-3*x^3+5*x^2+6*x-6,x^3-3*x^2+x+4,2*x^3-8*x^2+6*x+14,4*x^3-3*x^2-13*x-3,x^3-3*x^2+2*x,-2*x^3+8*x^2-3*x-8,-1,-6*x^3+8*x^2+14*x+2,-5*x^3+13*x^2+2*x-13,-3*x^3+6*x^2+7*x-8,-2*x^3+4*x^2+8*x-16,-x,-2*x^3+2*x^2+12*x-8,-4*x^3+10*x^2-5*x-1,-2*x^3+2*x^2+2*x+12,4*x^3-3*x^2-15*x-5,-x^3+3*x^2-2,5*x^3-6*x^2-9*x+2,2*x^3-2*x^2-6*x,x^2-3*x-1,-x^3+3*x^2-4*x-7,3*x^3-5*x^2-5*x+3,-2*x^3+14*x^2-16*x-14,4*x^3-x^2-12*x-3,2*x^3-6*x^2-2*x+6,-x^3+3*x^2-x-4,-x^3+x^2+2*x+5,4*x^3-2*x^2-12*x,-x^3+5*x^2-8*x+1,-2*x^3-2*x^2+4*x,x^3-5*x^2+6*x-2,-3*x^2+5*x+1,1,-6*x^3+14*x^2+4*x-18,3*x^3-3*x^2-8*x-7,-6*x^3+12*x^2+10*x,x^3+x^2-6*x-3,5*x^3-11*x^2-4*x+4,-8*x^2+10*x+14,x,2*x^3-4*x^2+2*x,x^2-2,-2*x^3-4*x^2+18*x+4,-2*x^3-4*x^2+21*x+6,-3*x^3+11*x^2-9,-x^3+4*x,x^3-3*x^2+2,8*x^3-12*x^2-12*x-2,-2*x^3-4*x^2+16*x+10,-2*x^3+x^2+6*x-8,2*x^3-8*x^2-2*x+6,-4*x^3+4*x^2+10*x+2,x^3+5*x^2-10*x-23,-3*x^3+5*x^2+5*x-3]];
E[455,4] = [x^6-3*x^5-6*x^4+20*x^3+6*x^2-31*x+9, [1,x,-x^3+x^2+4*x-2,x^2-2,1,-x^4+x^3+4*x^2-2*x,1,x^3-4*x,x^5-x^4-8*x^3+6*x^2+15*x-8,x,-x^5+2*x^4+6*x^3-10*x^2-8*x+9,-x^5+x^4+6*x^3-4*x^2-8*x+4,1,x,-x^3+x^2+4*x-2,x^4-6*x^2+4,x^5-x^4-6*x^3+2*x^2+7*x+3,2*x^5-2*x^4-14*x^3+9*x^2+23*x-9,x^4-2*x^3-4*x^2+5*x+2,x^2-2,-x^3+x^2+4*x-2,-x^5+10*x^3-2*x^2-22*x+9,-x^5+2*x^4+6*x^3-8*x^2-8*x+3,-2*x^5+2*x^4+14*x^3-10*x^2-23*x+9,1,x,-x^4+x^3+3*x^2-3*x+4,x^2-2,-x^5+11*x^3-3*x^2-26*x+9,-x^4+x^3+4*x^2-2*x,-2*x^4+3*x^3+9*x^2-8*x-4,x^5-8*x^3+12*x,2*x^3-10*x,2*x^5-18*x^3+x^2+34*x-9,1,2*x^5-15*x^3-x^2+23*x-2,x^5-2*x^4-7*x^3+11*x^2+10*x-7,x^5-2*x^4-4*x^3+5*x^2+2*x,-x^3+x^2+4*x-2,x^3-4*x,x^5-x^4-8*x^3+2*x^2+17*x+3,-x^4+x^3+4*x^2-2*x,-x^5+2*x^4+8*x^3-12*x^2-20*x+17,-x^5+6*x^3+4*x^2-6*x-9,x^5-x^4-8*x^3+6*x^2+15*x-8,-x^5+12*x^3-2*x^2-28*x+9,2*x^2-4*x-6,-2*x^5+18*x^3-3*x^2-37*x+10,1,x,-x^4-x^3+5*x^2+7*x-6,x^2-2,-2*x^5+2*x^4+16*x^3-12*x^2-28*x+18,-x^5+x^4+3*x^3-3*x^2+4*x,-x^5+2*x^4+6*x^3-10*x^2-8*x+9,x^3-4*x,x^4-3*x^3-x^2+7*x-4,-3*x^5+5*x^4+17*x^3-20*x^2-22*x+9,2*x^4-3*x^3-9*x^2+8*x,-x^5+x^4+6*x^3-4*x^2-8*x+4,-2*x^3+4*x^2+6*x-10,-2*x^5+3*x^4+9*x^3-8*x^2-4*x,x^5-x^4-8*x^3+6*x^2+15*x-8,3*x^5-4*x^4-20*x^3+18*x^2+31*x-17,1,2*x^4-10*x^2,x^5-x^4-6*x^3+2*x^2+7*x+5,4*x^5-4*x^4-27*x^3+18*x^2+39*x-24,-2*x^5+2*x^4+16*x^3-10*x^2-34*x+12,x,x^5-4*x^4-4*x^3+20*x^2+4*x-15,2*x^5+x^4-13*x^3-7*x^2+14*x,-2*x^3+6*x^2+6*x-16,x^5-x^4-9*x^3+4*x^2+24*x-9,-x^3+x^2+4*x-2,x^5-11*x^3+4*x^2+21*x-13,-x^5+2*x^4+6*x^3-10*x^2-8*x+9,-x^4+x^3+4*x^2-2*x,x^5-5*x^4-4*x^3+26*x^2+5*x-19,x^4-6*x^2+4,x^4+x^3-7*x^2-x+7,2*x^5-2*x^4-18*x^3+11*x^2+34*x-9,-2*x^3+2*x^2+10*x-6,-x^5+x^4+6*x^3-4*x^2-8*x+4,x^5-x^4-6*x^3+2*x^2+7*x+3,-x^5+2*x^4+8*x^3-14*x^2-14*x+9,-x^5+3*x^4+10*x^3-18*x^2-23*x+9,-x^5+4*x^3+4*x^2+4*x-9,3*x^5-6*x^4-17*x^3+27*x^2+20*x-21,2*x^5-2*x^4-14*x^3+9*x^2+23*x-9,1,-x^5+2*x^4+6*x^3-6*x^2-6*x+3,x^5-x^4-6*x^3+2*x^2+13*x-1,2*x^3-4*x^2-6*x,x^4-2*x^3-4*x^2+5*x+2,-2*x^5+2*x^4+9*x^3-5*x^2-6*x,-2*x^5+2*x^4+18*x^3-14*x^2-36*x+26,x,-x^5+8*x^3+2*x^2-18*x-9,x^2-2,-2*x^4+14*x^2+4*x-18,-x^5-x^4+5*x^3+7*x^2-6*x,x^4+4*x^3-12*x^2-17*x+14,x^3-4*x,-x^3+x^2+4*x-2,-4*x^5+4*x^4+28*x^3-16*x^2-44*x+18,-x^5+8*x^3+2*x^2-12*x-3,-2*x^5-x^4+15*x^3+4*x^2-25*x+1,-2*x^5+4*x^4+14*x^3-20*x^2-22*x+20,-x^5+10*x^3-2*x^2-22*x+9,x^5+x^4-16*x^3+2*x^2+45*x-13,x^4-6*x^2+4]];
E[455,5] = [x^4+x^3-5*x^2-3*x+1, [1,x,x^3+x^2-4*x-2,x^2-2,-1,x^2+x-1,-1,x^3-4*x,-x^3-x^2+6*x+4,-x,2*x^3+2*x^2-10*x-4,-x^3-x^2+7*x+4,1,-x,-x^3-x^2+4*x+2,-x^3-x^2+3*x+3,x^3-x^2-6*x+3,x^2+x+1,-x^3-x^2+6*x+7,-x^2+2,-x^3-x^2+4*x+2,2*x-2,2*x^3-10*x-2,-x+3,1,x,2*x^2-7,-x^2+2,-x^3-x^2+6*x+2,-x^2-x+1,x^3+x^2-6*x+2,-2*x^3-2*x^2+8*x+1,-2*x^3-4*x^2+10*x+16,-2*x^3-x^2+6*x-1,1,3*x^3+3*x^2-11*x-8,x^3+x^2-8*x-2,x^2+4*x+1,x^3+x^2-4*x-2,-x^3+4*x,-3*x^3-3*x^2+12*x+9,-x^2-x+1,-2*x,-4*x^3-2*x^2+18*x+8,x^3+x^2-6*x-4,-2*x^3+4*x-2,2*x^2-10,2*x^3+x^2-11*x-8,1,x,2*x^3-14*x-1,x^2-2,-2*x^3+2*x^2+10*x-6,2*x^3-7*x,-2*x^3-2*x^2+10*x+4,-x^3+4*x,6*x^3+8*x^2-24*x-19,x^2-x+1,-x^3-x^2+6*x+10,x^3+x^2-7*x-4,2*x^3+4*x^2-10*x-10,-x^2+5*x-1,x^3+x^2-6*x-4,2*x^3-11*x-4,-1,-2*x^3+10*x+2,3*x^3+x^2-10*x+3,-x^3-2*x^2+5*x-4,-2*x^3-4*x^2+4*x+12,x,2*x^3-2*x^2-12*x+4,2*x^2-x-5,-2*x^3-2*x^2+6*x+12,-3*x^2+x-1,x^3+x^2-4*x-2,3*x^3+6*x^2-11*x-14,-2*x^3-2*x^2+10*x+4,x^2+x-1,-x^3-x^2+4*x+5,x^3+x^2-3*x-3,-2*x^3-2*x^2+8*x+2,-3*x^2+3,2*x^3+6*x^2-6*x-14,x^3+x^2-7*x-4,-x^3+x^2+6*x-3,-2*x^2,x^3+3*x^2-4*x-9,2*x^3-2*x^2-8*x+8,3*x^3+x^2-10*x+6,-x^2-x-1,-1,-2*x^3-6*x^2+12*x+6,3*x^3+x^2-12*x+1,2*x^3-10*x,x^3+x^2-6*x-7,-x^3-x^2-8,-4*x^3+22*x+2,x,6*x^3+8*x^2-26*x-28,x^2-2,-2*x^3+10*x-4,-2*x^3-4*x^2+5*x-2,-5*x^3-3*x^2+28*x+9,x^3-4*x,x^3+x^2-4*x-2,4*x^3-12*x+2,-6*x^3-4*x^2+28*x+6,-2*x^3-x^2+6*x+12,2*x^3-6*x+2,-2*x+2,-x^3-5*x^2+2*x+11,x^3+x^2-3*x-3]];
E[455,6] = [x^7-15*x^5+2*x^4+66*x^3-17*x^2-72*x+19, [14,14*x,-x^6-5*x^5+18*x^4+46*x^3-88*x^2-73*x+71,14*x^2-28,-14,-5*x^6+3*x^5+48*x^4-22*x^3-90*x^2-x+19,14,14*x^3-56*x,-2*x^6+4*x^5+22*x^4-48*x^3-64*x^2+120*x+86,-14*x,3*x^6+x^5-26*x^4-12*x^3+26*x^2+51*x+53,5*x^6-17*x^5-48*x^4+148*x^3+90*x^2-195*x-47,-14,14*x,x^6+5*x^5-18*x^4-46*x^3+88*x^2+73*x-71,14*x^4-84*x^2+56,2*x^6-4*x^5-22*x^4+20*x^3+64*x^2+48*x-72,4*x^6-8*x^5-44*x^4+68*x^3+86*x^2-58*x+38,5*x^6-3*x^5-48*x^4+36*x^3+90*x^2-97*x+9,-14*x^2+28,-x^6-5*x^5+18*x^4+46*x^3-88*x^2-73*x+71,x^6+19*x^5-18*x^4-172*x^3+102*x^2+269*x-57,-3*x^6-x^5+26*x^4+12*x^3-54*x^2-51*x+87,-7*x^6+21*x^5+42*x^4-196*x^3+70*x^2+315*x-133,14,-14*x,-2*x^6-10*x^5+50*x^4+106*x^3-302*x^2-216*x+310,14*x^2-28,2*x^6-4*x^5-36*x^4+34*x^3+162*x^2-50*x-72,5*x^6-3*x^5-48*x^4+22*x^3+90*x^2+x-19,5*x^6-3*x^5-62*x^4+22*x^3+188*x^2-27*x-75,14*x^5-112*x^3+168*x,-10*x^6+6*x^5+124*x^4-44*x^3-404*x^2-30*x+262,-4*x^6+8*x^5+16*x^4-68*x^3+82*x^2+72*x-38,-14,-4*x^6+8*x^5+16*x^4-82*x^3+138*x^2+86*x-248,-2*x^6+4*x^5+8*x^4-34*x^3+62*x^2+50*x-124,-3*x^6+27*x^5+26*x^4-240*x^3-12*x^2+369*x-95,x^6+5*x^5-18*x^4-46*x^3+88*x^2+73*x-71,-14*x^3+56*x,2*x^6-4*x^5-22*x^4+48*x^3+64*x^2-148*x-16,-5*x^6+3*x^5+48*x^4-22*x^3-90*x^2-x+19,-5*x^6-11*x^5+62*x^4+104*x^3-202*x^2-197*x+145,13*x^6-5*x^5-122*x^4+60*x^3+234*x^2-87*x-125,2*x^6-4*x^5-22*x^4+48*x^3+64*x^2-120*x-86,-x^6-19*x^5+18*x^4+144*x^3-102*x^2-129*x+57,28*x^2-140,11*x^6-29*x^5-86*x^4+236*x^3+16*x^2-247*x+227,14,14*x,-2*x^6-10*x^5+22*x^4+106*x^3-22*x^2-272*x-110,-14*x^2+28,6*x^6+2*x^5-80*x^4-24*x^3+276*x^2+46*x-174,-10*x^6+20*x^5+110*x^4-170*x^3-250*x^2+166*x+38,-3*x^6-x^5+26*x^4+12*x^3-26*x^2-51*x-53,14*x^3-56*x,2*x^6+10*x^5-22*x^4-106*x^3+78*x^2+188*x-86,-4*x^6-6*x^5+30*x^4+30*x^3-16*x^2+72*x-38,-5*x^6+3*x^5+62*x^4-22*x^3-188*x^2+27*x+19,-5*x^6+17*x^5+48*x^4-148*x^3-90*x^2+195*x+47,2*x^6+10*x^5-36*x^4-92*x^3+148*x^2+118*x-2,-3*x^6+13*x^5+12*x^4-142*x^3+58*x^2+285*x-95,-2*x^6+4*x^5+22*x^4-48*x^3-64*x^2+120*x+86,14*x^6-140*x^4+336*x^2-112,14,6*x^6-26*x^5-24*x^4+256*x^3-200*x^2-458*x+190,6*x^6-12*x^5-66*x^4+116*x^3+192*x^2-192*x-132,4*x^6-36*x^5-16*x^4+306*x^3-124*x^2-422*x+220,-6*x^6-2*x^5+80*x^4+24*x^3-304*x^2-18*x+258,-14*x,-x^6+9*x^5+18*x^4-80*x^3-74*x^2+95*x+57,-28*x^5+14*x^4+266*x^3-154*x^2-420*x,2*x^6+10*x^5-36*x^4-92*x^3+176*x^2+174*x-86,4*x^6-22*x^5-30*x^4+194*x^3+16*x^2-268*x+38,-x^6-5*x^5+18*x^4+46*x^3-88*x^2-73*x+71,17*x^6-13*x^5-138*x^4+114*x^3+138*x^2-117*x+39,3*x^6+x^5-26*x^4-12*x^3+26*x^2+51*x+53,5*x^6-3*x^5-48*x^4+22*x^3+90*x^2+x-19,-2*x^6+4*x^5+22*x^4-48*x^3-64*x^2+148*x+100,-14*x^4+84*x^2-56,-6*x^6+26*x^5+66*x^4-242*x^3-206*x^2+388*x+356,-4*x^6+8*x^5+44*x^4-68*x^3-114*x^2+128*x-38,-8*x^6+16*x^5+88*x^4-164*x^3-228*x^2+340*x+92,5*x^6-17*x^5-48*x^4+148*x^3+90*x^2-195*x-47,-2*x^6+4*x^5+22*x^4-20*x^3-64*x^2-48*x+72,-11*x^6-13*x^5+114*x^4+128*x^3-282*x^2-215*x+95,-6*x^6-16*x^5+66*x^4+164*x^3-136*x^2-340*x-148,-7*x^6+35*x^5+70*x^4-280*x^3-70*x^2+273*x-133,6*x^6-12*x^5-80*x^4+102*x^3+290*x^2-122*x-244,-4*x^6+8*x^5+44*x^4-68*x^3-86*x^2+58*x-38,-14,-13*x^6+5*x^5+94*x^4-60*x^3-38*x^2+87*x-155,-2*x^6+4*x^5+22*x^4-20*x^3-8*x^2-76*x-208,28*x^3-140*x,-5*x^6+3*x^5+48*x^4-36*x^3-90*x^2+97*x-9,-15*x^6+37*x^5+130*x^4-318*x^3-200*x^2+389*x+57,4*x^6-8*x^5-44*x^4+68*x^3+100*x^2-44*x+24,14*x,11*x^6-15*x^5-86*x^4+96*x^3-54*x^2+103*x+521,14*x^2-28,4*x^6+20*x^5-44*x^4-184*x^3+156*x^2+292*x-144,-10*x^6-8*x^5+110*x^4+110*x^3-306*x^2-254*x+38,-x^6-5*x^5+4*x^4+32*x^3-18*x^2-3*x+127,-14*x^3+56*x,x^6+5*x^5-18*x^4-46*x^3+88*x^2+73*x-71,2*x^6+10*x^5-36*x^4-120*x^3+148*x^2+258*x-114,-5*x^6-11*x^5+90*x^4+104*x^3-454*x^2-197*x+369,24*x^6-20*x^5-250*x^4+198*x^3+600*x^2-250*x-430,-6*x^6-2*x^5+52*x^4+52*x^3-52*x^2-242*x-22,-x^6-19*x^5+18*x^4+172*x^3-102*x^2-269*x+57,2*x^6-4*x^5-50*x^4+48*x^3+288*x^2-92*x-352,14*x^4-84*x^2+56]];

E[456,1] = [x, [1,0,1,0,-3,0,-3,0,1,0,-1,0,-2,0,-3,0,-5,0,1,0,-3,0,-4,0,4,0,1,0,-6,0,-2,0,-1,0,9,0,8,0,-2,0,-8,0,13,0,-3,0,13,0,2,0,-5,0,-6,0,3,0,1,0,4,0,-13,0,-3,0,6,0,4,0,-4,0,-8,0,-3,0,4,0,3,0,-4,0,1,0,4,0,15,0,-6,0,-6,0,6,0,-2,0,-3,0,2,0,-1,0,10,0,-6,0,9,0,-6,0,16,0,8,0,6,0,12,0,-2,0,15,0,-10,0,-8,0,3,0,6,0,13,0,-15,0,-3,0,-3,0,-5,0,-15,0,13,0,2,0,18,0,2,0,-5,0,4,0,-5,0,6,0,14,0,-6,0]];
E[456,2] = [x, [1,0,1,0,2,0,0,0,1,0,0,0,2,0,2,0,2,0,-1,0,0,0,0,0,-1,0,1,0,2,0,-4,0,0,0,0,0,2,0,2,0,6,0,-4,0,2,0,0,0,-7,0,2,0,10,0,0,0,-1,0,-4,0,-2,0,0,0,4,0,-12,0,0,0,0,0,-6,0,-1,0,0,0,-4,0,1,0,-8,0,4,0,2,0,6,0,0,0,-4,0,-2,0,-14,0,0,0,-6,0,4,0,0,0,-20,0,-6,0,2,0,14,0,0,0,2,0,0,0,-11,0,6,0,-12,0,12,0,-4,0,0,0,0,0,2,0,-6,0,-4,0,0,0,0,0,4,0,-7,0,2,0,20,0,2,0,-8,0,-10,0,10,0]];
E[456,3] = [x^2-x-4, [1,0,1,0,x,0,x,0,1,0,-x+4,0,-2*x,0,x,0,-3*x+2,0,1,0,x,0,-2*x+6,0,x-1,0,1,0,4*x-2,0,-2,0,-x+4,0,x+4,0,-8,0,-2*x,0,2*x-2,0,x,0,x,0,3*x-2,0,x-3,0,-3*x+2,0,-4*x-2,0,3*x-4,0,1,0,12,0,-3*x+2,0,x,0,-2*x-8,0,-4*x,0,-2*x+6,0,0,0,7*x-6,0,x-1,0,3*x-4,0,-6*x+2,0,1,0,4,0,-x-12,0,4*x-2,0,-6,0,-2*x-8,0,-2,0,x,0,-4*x-2,0,-x+4,0,-2*x+4,0,-6,0,x+4,0,6*x-4,0,4*x+4,0,-8,0,-2,0,4*x-8,0,-2*x,0,-x-12,0,-7*x+9,0,2*x-2,0,-5*x+4,0,-18,0,x,0,-3*x+16,0,x,0,x,0,5*x-6,0,5*x,0,3*x-2,0,-6*x+8,0,2*x+16,0,x-3,0,-5*x-4,0,2*x-14,0,-3*x+2,0,-2*x,0,4*x-6,0,-4*x-2,0]];
E[456,4] = [x, [1,0,-1,0,1,0,-3,0,1,0,-5,0,-2,0,-1,0,-1,0,1,0,3,0,4,0,-4,0,-1,0,-6,0,-10,0,5,0,-3,0,0,0,2,0,0,0,-11,0,1,0,9,0,2,0,1,0,10,0,-5,0,-1,0,4,0,-5,0,-3,0,-2,0,-4,0,-4,0,8,0,13,0,4,0,15,0,4,0,1,0,-4,0,-1,0,6,0,-6,0,6,0,10,0,1,0,2,0,-5,0,-6,0,10,0,3,0,18,0,-8,0,0,0,6,0,4,0,-2,0,3,0,14,0,0,0,-9,0,-2,0,11,0,-19,0,-3,0,-1,0,-9,0,-15,0,-9,0,10,0,-6,0,-2,0,-1,0,20,0,-1,0,-10,0,-2,0,-10,0]];
E[456,5] = [x, [1,0,-1,0,4,0,4,0,1,0,-4,0,-4,0,-4,0,6,0,1,0,-4,0,-6,0,11,0,-1,0,2,0,2,0,4,0,16,0,4,0,4,0,-6,0,4,0,4,0,-2,0,9,0,-6,0,-6,0,-16,0,-1,0,-4,0,-10,0,4,0,-16,0,8,0,6,0,0,0,-2,0,-11,0,-16,0,14,0,1,0,-16,0,24,0,-2,0,-18,0,-16,0,-2,0,4,0,14,0,-4,0,12,0,-2,0,-16,0,-12,0,-16,0,-4,0,2,0,-24,0,-4,0,24,0,5,0,6,0,24,0,2,0,-4,0,16,0,4,0,-4,0,-2,0,4,0,2,0,16,0,8,0,-9,0,-16,0,-2,0,6,0,8,0,-22,0,6,0]];
E[456,6] = [x^2+x-10, [1,0,-1,0,x,0,-x-2,0,1,0,x+2,0,6,0,-x,0,-x,0,1,0,x+2,0,4,0,-x+5,0,-1,0,2,0,2*x+4,0,-x-2,0,-x-10,0,-2*x+2,0,-6,0,-2*x+2,0,3*x+2,0,x,0,-x+2,0,3*x+7,0,x,0,-6,0,x+10,0,-1,0,-4,0,-x+4,0,-x-2,0,6*x,0,-12,0,-4,0,0,0,x+4,0,x-5,0,-3*x-14,0,-4*x,0,1,0,-4*x,0,x-10,0,-2,0,-4*x-2,0,-6*x-12,0,-2*x-4,0,x,0,-6,0,x+2,0,4*x+6,0,-2*x-4,0,x+10,0,2*x,0,-2*x+2,0,2*x-2,0,-18,0,4*x,0,6,0,x+10,0,3*x+3,0,2*x-2,0,x-10,0,2*x+4,0,-3*x-2,0,-x-10,0,-x-2,0,-x,0,-x-8,0,-x+18,0,x-2,0,6*x+12,0,2*x,0,-3*x-7,0,3*x+12,0,4*x-8,0,-x,0,2*x+20,0,-2,0,6,0]];

E[457,1] = [x^15+10*x^14+27*x^13-43*x^12-324*x^11-310*x^10+917*x^9+1910*x^8-330*x^7-3170*x^6-1281*x^5+1917*x^4+1110*x^3-506*x^2-232*x+79, [3,3*x,-22*x^14-176*x^13-248*x^12+1409*x^11+4334*x^10-1464*x^9-17000*x^8-9601*x^7+24824*x^6+23065*x^5-14540*x^4-15932*x^3+4537*x^2+3510*x-1043,3*x^2-6,-8*x^14-79*x^13-184*x^12+502*x^11+2524*x^10+765*x^9-9145*x^8-9500*x^7+12118*x^6+18116*x^5-5953*x^4-11923*x^3+1877*x^2+2634*x-661,44*x^14+346*x^13+463*x^12-2794*x^11-8284*x^10+3174*x^9+32419*x^8+17564*x^7-46675*x^6-42722*x^5+26242*x^4+28957*x^3-7622*x^2-6147*x+1738,15*x^14+153*x^13+369*x^12-978*x^11-5046*x^10-1464*x^9+18663*x^8+18642*x^7-26172*x^6-36324*x^5+15006*x^4+24831*x^3-5496*x^2-5775*x+1638,3*x^3-12*x,31*x^14+245*x^13+335*x^12-1961*x^11-5915*x^10+2061*x^9+23006*x^8+13096*x^7-32771*x^6-31183*x^5+17993*x^4+21041*x^3-5134*x^2-4485*x+1235,x^14+32*x^13+158*x^12-68*x^11-1715*x^10-1809*x^9+5780*x^8+9478*x^7-7244*x^6-16201*x^5+3413*x^4+10757*x^3-1414*x^2-2517*x+632,-7*x^14-77*x^13-206*x^12+455*x^11+2684*x^10+1119*x^9-9638*x^8-10615*x^7+12791*x^6+19645*x^5-6359*x^4-12755*x^3+1999*x^2+2763*x-680,-50*x^14-373*x^13-406*x^12+3154*x^11+8146*x^10-5001*x^9-32476*x^8-12953*x^7+47110*x^6+36476*x^5-26311*x^4-24598*x^3+7043*x^2+4926*x-1390,33*x^14+255*x^13+315*x^12-2118*x^11-5901*x^10+2991*x^9+23439*x^8+10494*x^7-34413*x^6-27606*x^5+19995*x^4+18678*x^3-5751*x^2-3825*x+1125,3*x^14-36*x^13-333*x^12-186*x^11+3186*x^10+4908*x^9-10008*x^8-21222*x^7+11226*x^6+34221*x^5-3924*x^4-22146*x^3+1815*x^2+5118*x-1185,-7*x^14-38*x^13+25*x^12+413*x^11+263*x^10-1530*x^9-1427*x^8+2549*x^7+2051*x^6-2480*x^5-635*x^4+1741*x^3-374*x^2-549*x+181,3*x^4-18*x^2+12,53*x^14+445*x^13+736*x^12-3337*x^11-11770*x^10+1284*x^9+44569*x^8+32813*x^7-61669*x^6-70244*x^5+32200*x^4+46633*x^3-9203*x^2-9990*x+2569,-65*x^14-502*x^13-628*x^12+4129*x^11+11671*x^10-5421*x^9-46114*x^8-22541*x^7+67087*x^6+57704*x^5-38386*x^4-39544*x^3+11201*x^2+8427*x-2449,50*x^14+421*x^13+706*x^12-3130*x^11-11221*x^10+894*x^9+42418*x^8+32393*x^7-58642*x^6-68993*x^5+30763*x^4+46282*x^3-9107*x^2-10110*x+2623,38*x^14+289*x^13+343*x^12-2395*x^11-6547*x^10+3333*x^9+25858*x^8+12086*x^7-37267*x^6-31538*x^5+20746*x^4+21322*x^3-5765*x^2-4404*x+1243,22*x^14+149*x^13+83*x^12-1406*x^11-2636*x^10+3576*x^9+11462*x^8-485*x^7-18251*x^6-6412*x^5+11822*x^4+5189*x^3-3358*x^2-1071*x+428,-7*x^14-17*x^13+154*x^12+416*x^11-1051*x^10-3219*x^9+2755*x^8+10481*x^7-2545*x^6-15326*x^5+664*x^4+9769*x^3-779*x^2-2304*x+553,-32*x^14-280*x^13-511*x^12+2038*x^11+7852*x^10-72*x^9-29791*x^8-23765*x^7+42187*x^6+50105*x^5-23827*x^4-34381*x^3+7916*x^2+7824*x-2209,39*x^14+252*x^13+78*x^12-2466*x^11-3933*x^10+7026*x^9+17709*x^8-4518*x^7-28674*x^6-4917*x^5+18768*x^4+4629*x^3-5130*x^2-696*x+474,10*x^14+59*x^13-16*x^12-635*x^11-620*x^10+2310*x^9+3134*x^8-3731*x^7-5177*x^6+3539*x^5+3059*x^4-2575*x^3-259*x^2+885*x-235,-75*x^14-576*x^13-699*x^12+4791*x^11+13221*x^10-6822*x^9-52536*x^8-23523*x^7+77004*x^6+62268*x^5-44583*x^4-42381*x^3+12873*x^2+8781*x-2607,37*x^14+305*x^13+473*x^12-2369*x^11-7871*x^10+1734*x^9+30545*x^8+19630*x^7-44282*x^6-44581*x^5+25847*x^4+30515*x^3-8281*x^2-6684*x+1967,-96*x^14-720*x^13-795*x^12+6114*x^11+15930*x^10-9831*x^9-64278*x^8-25068*x^7+96075*x^6+72567*x^5-57909*x^4-51177*x^3+17628*x^2+11061*x-3513,-88*x^14-707*x^13-1028*x^12+5546*x^11+17603*x^10-4656*x^9-68123*x^8-42907*x^7+97046*x^6+98737*x^5-53987*x^4-67268*x^3+16303*x^2+14682*x-4091,32*x^14+214*x^13+112*x^12-2005*x^11-3700*x^10+4992*x^9+15919*x^8-259*x^7-24670*x^6-9602*x^5+15160*x^4+7396*x^3-4091*x^2-1443*x+553,-34*x^14-296*x^13-533*x^12+2159*x^11+8192*x^10-192*x^9-30791*x^8-24244*x^7+42497*x^6+50329*x^5-22238*x^4-33188*x^3+6460*x^2+7092*x-1826,3*x^5-24*x^3+36*x,20*x^14+145*x^13+139*x^12-1252*x^11-3016*x^10+2220*x^9+12193*x^8+4067*x^7-17902*x^6-12815*x^5+10207*x^4+8773*x^3-2759*x^2-1719*x+493,-85*x^14-695*x^13-1058*x^12+5402*x^11+17714*x^10-4032*x^9-68417*x^8-44179*x^7+97766*x^6+100093*x^5-54968*x^4-68033*x^3+16828*x^2+14865*x-4187,-31*x^14-215*x^13-143*x^12+2009*x^11+4022*x^10-4929*x^9-17450*x^8-244*x^7+28253*x^6+10936*x^5-19151*x^4-8783*x^3+5932*x^2+1875*x-824,86*x^14+637*x^13+664*x^12-5467*x^11-13741*x^10+9369*x^9+55597*x^8+19445*x^7-82804*x^6-59285*x^5+49075*x^4+41269*x^3-14195*x^2-8559*x+2665,-12*x^14-75*x^13-9*x^12+753*x^11+1038*x^10-2319*x^9-4752*x^8+2313*x^7+7518*x^6-381*x^5-4452*x^4+228*x^3+768*x^2-312*x+84,-79*x^14-644*x^13-980*x^12+4979*x^11+16394*x^10-3432*x^9-63107*x^8-42142*x^7+89507*x^6+94813*x^5-49568*x^4-64607*x^3+15190*x^2+14223*x-3950,-35*x^14-259*x^13-271*x^12+2203*x^11+5536*x^10-3654*x^9-21961*x^8-8057*x^7+31264*x^6+23126*x^5-16462*x^4-14764*x^3+3758*x^2+2565*x-628,-93*x^14-747*x^13-1077*x^12+5901*x^11+18543*x^10-5370*x^9-72054*x^8-43683*x^7+103410*x^6+101826*x^5-58350*x^4-69459*x^3+17652*x^2+15093*x-4266,32*x^14+241*x^13+274*x^12-2017*x^11-5356*x^10+3000*x^9+21220*x^8+9242*x^7-30538*x^6-24962*x^5+16750*x^4+16852*x^3-4394*x^2-3414*x+916,-71*x^14-511*x^13-460*x^12+4492*x^11+10396*x^10-8712*x^9-42505*x^8-10991*x^7+63328*x^6+40004*x^5-36985*x^4-27778*x^3+10061*x^2+5532*x-1738,56*x^14+442*x^13+607*x^12-3517*x^11-10681*x^10+3495*x^9+41389*x^8+24410*x^7-58543*x^6-57314*x^5+31708*x^4+38449*x^3-8993*x^2-8130*x+2194,67*x^14+497*x^13+527*x^12-4229*x^11-10757*x^10+6936*x^9+43127*x^8+16375*x^7-63098*x^6-47593*x^5+35906*x^4+32501*x^3-9844*x^2-6597*x+1913,50*x^14+403*x^13+595*x^12-3139*x^11-10114*x^10+2388*x^9+39079*x^8+25589*x^7-55642*x^6-58463*x^5+31087*x^4+40327*x^3-9677*x^2-9069*x+2545,40*x^14+353*x^13+662*x^12-2516*x^11-9992*x^10-447*x^9+37355*x^8+31627*x^7-51335*x^6-64819*x^5+26963*x^4+43436*x^3-8368*x^2-9633*x+2528,-52*x^14-392*x^13-443*x^12+3302*x^11+8708*x^10-5118*x^9-34712*x^8-14116*x^7+50660*x^6+39100*x^5-28844*x^4-26357*x^3+8017*x^2+5325*x-1589,-38*x^14-229*x^13+23*x^12+2395*x^11+2824*x^10-8052*x^9-14056*x^8+10102*x^7+24493*x^6-4225*x^5-17512*x^4+776*x^3+4952*x^2-330*x-301,54*x^14+402*x^13+435*x^12-3399*x^11-8757*x^10+5388*x^9+34911*x^8+13959*x^7-50613*x^6-39273*x^5+28275*x^4+26430*x^3-7653*x^2-5280*x+1548,-41*x^14-286*x^13-205*x^12+2620*x^11+5410*x^10-6036*x^9-22831*x^8-1877*x^7+35239*x^6+15869*x^5-21745*x^4-11359*x^3+5945*x^2+2085*x-790,8*x^14+64*x^13+79*x^12-565*x^11-1501*x^10+1131*x^9+6223*x^8+1136*x^7-9970*x^6-4361*x^5+6814*x^4+2671*x^3-2132*x^2-312*x+229,108*x^14+816*x^13+936*x^12-6843*x^11-18270*x^10+10257*x^9+72849*x^8+31266*x^7-106656*x^6-85446*x^5+61404*x^4+58767*x^3-17667*x^2-12357*x+3675,21*x^13+123*x^12-36*x^11-1329*x^10-1320*x^9+4800*x^8+6969*x^7-7239*x^6-12507*x^5+5235*x^4+9057*x^3-2571*x^2-2343*x+762,-65*x^14-526*x^13-778*x^12+4117*x^11+13204*x^10-3384*x^9-51040*x^8-32072*x^7+72709*x^6+73244*x^5-40414*x^4-49351*x^3+12038*x^2+10551*x-2923,25*x^14+224*x^13+434*x^12-1574*x^11-6452*x^10-528*x^9+24011*x^8+20953*x^7-32831*x^6-42442*x^5+17084*x^4+28379*x^3-5308*x^2-6315*x+1649,234*x^14+1869*x^13+2652*x^12-14802*x^11-45963*x^10+13938*x^9+178308*x^8+106839*x^7-254205*x^6-249327*x^5+140703*x^4+168480*x^3-41145*x^2-36021*x+9954,-78*x^14-630*x^13-927*x^12+4929*x^11+15738*x^10-4065*x^9-60600*x^8-38148*x^7+85419*x^6+86724*x^5-46035*x^4-57837*x^3+12996*x^2+12180*x-3219,173*x^14+1348*x^13+1762*x^12-10909*x^11-31936*x^10+12573*x^9+125173*x^8+68006*x^7-180223*x^6-166715*x^5+101428*x^4+113983*x^3-29846*x^2-24507*x+6952,-21*x^14-93*x^13+219*x^12+1326*x^11-558*x^10-7149*x^9-891*x^8+18444*x^7+5493*x^6-23703*x^5-6549*x^4+14457*x^3+1401*x^2-3471*x+621,-92*x^14-676*x^13-679*x^12+5842*x^11+14386*x^10-10365*x^9-58525*x^8-19208*x^7+87736*x^6+61112*x^5-52678*x^4-43093*x^3+15497*x^2+9075*x-2890,-17*x^14-91*x^13+77*x^12+1045*x^11+517*x^10-4269*x^9-3403*x^8+8269*x^7+5995*x^6-9028*x^5-3481*x^4+5900*x^3+11*x^2-1665*x+398,44*x^14+385*x^13+697*x^12-2824*x^11-10732*x^10+387*x^9+40696*x^8+31277*x^7-57451*x^6-65792*x^5+31990*x^4+44200*x^3-10112*x^2-9714*x+2686,-103*x^14-863*x^13-1421*x^12+6482*x^11+22799*x^10-2568*x^9-86543*x^8-63604*x^7+120419*x^6+136942*x^5-64031*x^4-91835*x^3+19048*x^2+20031*x-5327,3*x^6-30*x^4+72*x^2-24,-x^14-56*x^13-299*x^12+101*x^11+3209*x^10+3381*x^9-10961*x^8-17509*x^7+14372*x^6+30154*x^5-7679*x^4-20456*x^3+3325*x^2+4956*x-1316,-55*x^14-401*x^13-392*x^12+3464*x^11+8420*x^10-6147*x^9-34133*x^8-11302*x^7+50585*x^6+35827*x^5-29567*x^4-24959*x^3+8401*x^2+5133*x-1580,-8*x^14-91*x^13-265*x^12+463*x^11+3310*x^10+2139*x^9-11356*x^8-15533*x^7+13573*x^6+27692*x^5-4900*x^4-17845*x^3+1355*x^2+3927*x-862,49*x^14+347*x^13+275*x^12-3152*x^11-6842*x^10+6960*x^9+29033*x^8+4090*x^7-46019*x^6-23365*x^5+30512*x^4+17912*x^3-9739*x^2-3927*x+1577,86*x^14+712*x^13+1120*x^12-5485*x^11-18442*x^10+3597*x^9+70978*x^8+47201*x^7-101155*x^6-105452*x^5+56653*x^4+71512*x^3-17372*x^2-15657*x+4408,95*x^14+694*x^13+676*x^12-6022*x^11-14539*x^10+10977*x^9+58966*x^8+18023*x^7-87334*x^6-58862*x^5+50644*x^4+40342*x^3-13811*x^2-8016*x+2449,40*x^14+299*x^13+317*x^12-2588*x^11-6530*x^10+4626*x^9+26714*x^8+8362*x^7-40841*x^6-26881*x^5+25601*x^4+19016*x^3-7846*x^2-4014*x+1379,-93*x^14-654*x^13-513*x^12+5865*x^11+12687*x^10-12423*x^9-52587*x^8-9342*x^7+79161*x^6+43833*x^5-46821*x^4-30567*x^3+12555*x^2+5763*x-1896,-37*x^14-350*x^13-746*x^12+2372*x^11+10631*x^10+1740*x^9-39164*x^8-35818*x^7+53144*x^6+70147*x^5-27269*x^4-45740*x^3+8239*x^2+9828*x-2498,45*x^14+315*x^13+237*x^12-2850*x^11-6039*x^10+6252*x^9+25233*x^8+3558*x^7-38421*x^6-19824*x^5+23232*x^4+14088*x^3-6384*x^2-2700*x+948,24*x^14+213*x^13+399*x^12-1542*x^11-6063*x^10-30*x^9+22998*x^8+18345*x^7-32700*x^6-38391*x^5+18687*x^4+26184*x^3-6261*x^2-5916*x+1701,46*x^14+311*x^13+170*x^12-2942*x^11-5480*x^10+7548*x^9+23912*x^8-1349*x^7-38333*x^6-12781*x^5+25310*x^4+10316*x^3-7537*x^2-2058*x+995]];
E[457,2] = [x^2-x-1, [1,x,-x+1,x-1,-2,-1,-x,-2*x+1,-x-1,-2*x,-5,x-2,x+4,-x-1,2*x-2,-3*x,6*x-3,-2*x-1,-2*x-4,-2*x+2,1,-5*x,-x-2,-x+3,-1,5*x+1,4*x-3,-1,2*x-2,2,6*x-2,x-5,5*x-5,3*x+6,2*x,-x,x+5,-6*x-2,-4*x+3,4*x-2,-8*x+1,x,-2*x+4,-5*x+5,2*x+2,-3*x-1,-7*x+4,3,x-6,-x,3*x-9,4*x-3,-2*x+7,x+4,10,x+2,4*x-2,2,-x-9,-2*x+4,5*x-11,4*x+6,2*x+1,2*x+1,-2*x-8,5,-4*x+5,-3*x+9,2*x-1,2*x+2,4*x-7,3*x+1,-4*x+11,6*x+1,x-1,-4*x+2]];
E[457,3] = [x^20-6*x^19-12*x^18+130*x^17-25*x^16-1135*x^15+1068*x^14+5145*x^13-6910*x^12-12965*x^11+21043*x^10+17930*x^9-33307*x^8-12486*x^7+25549*x^6+3888*x^5-7077*x^4-927*x^3+255*x^2+6*x-1, [141335001074,141335001074*x,44910231344*x^19-262132953782*x^18-563277420572*x^17+5654100777618*x^16-473601547870*x^15-49145361624864*x^14+40936673953584*x^13+222077953664738*x^12-270620374380398*x^11-560219751788428*x^10+819915782213548*x^9+784177139072470*x^8-1279159638790676*x^7-568426102864896*x^6+960623957509494*x^5+195146259448128*x^4-256480160792170*x^3-44219181634722*x^2+6522543544288*x+271817263110,141335001074*x^2-282670002148,28269732272*x^19-181716809048*x^18-300832245364*x^17+3963907016606*x^16-1645333444716*x^15-34890755875230*x^14+39551782913484*x^13+159677427659620*x^12-244248864879272*x^11-406820865283386*x^10+737410175813690*x^9+570192093781662*x^8-1167685979967860*x^7-406298485161842*x^6+894032612012266*x^5+137008689693482*x^4-240633807259142*x^3-38487704445738*x^2+5619931590802*x+390073936886,7328434282*x^19-24354644444*x^18-184229297102*x^17+649154235730*x^16+1827750950576*x^15-7027453121808*x^14-8985186600142*x^13+39709324206642*x^12+22041397586532*x^11-125130215958244*x^10-21063308925450*x^9+216665436583932*x^8-7676954303712*x^7-186787543098362*x^6+20535279982656*x^5+61349546429318*x^4-2587397178834*x^3-4929565448432*x^2+2355875046*x+44910231344,28412209168*x^19-147859835320*x^18-435251926208*x^17+3247622629562*x^16+1436648948070*x^15-28926184952564*x^14+10400689721198*x^13+135098424956624*x^12-98689765501488*x^11-356413952662390*x^10+327384605324462*x^9+530287321025626*x^8-526564120403620*x^7-416819831794398*x^6+393404686132240*x^5+153037773103314*x^4-96981879065262*x^3-28208799812468*x^2+44405963740*x+126681165202,141335001074*x^3-565340004296*x,48601650942*x^19-267786267644*x^18-675971307790*x^17+5827187704810*x^16+921068956168*x^15-51264110944702*x^14+31840710604600*x^13+235616736830582*x^12-236710614490850*x^11-609542592589586*x^10+747002352955672*x^9+889043259737778*x^8-1193246388411476*x^7-695808825584154*x^6+912548212641866*x^5+276099532585680*x^4-247413052983682*x^3-64477888895508*x^2+5976880985198*x+940985446530,-12098415416*x^19+38404541900*x^18+288841821246*x^17-938590137916*x^16-2804609746510*x^15+9359708846988*x^14+14229655120180*x^13-48905014879752*x^12-40303786376906*x^11+142530199613994*x^10+63315794144702*x^9-226106007184356*x^8-53322608013650*x^7+171769222194938*x^6+27095970619946*x^5-40568911970198*x^4-12281662629594*x^3-1588850138558*x^2+220455543254*x+28269732272,-24595468169*x^19+113970680785*x^18+445417497035*x^17-2581228633099*x^16-2733464669600*x^15+23910472380145*x^14+4112562606153*x^13-117414593764540*x^12+24752728806900*x^11+330424742426235*x^10-124173939309914*x^9-535441799567240*x^8+219725078787495*x^7+473758827059255*x^6-159870598577262*x^5-204048720337364*x^4+29709262547955*x^3+38571711168796*x^2+3216976978289*x-459481756199,-70204501440*x^19+427977821846*x^18+823012620214*x^17-9297239747610*x^16+2237522884002*x^15+81478768836410*x^14-79868818081416*x^13-371475028854324*x^12+511123683268682*x^11+945163952055280*x^10-1554564954519424*x^9-1331943071818078*x^8+2463034564928042*x^7+970153318241630*x^6-1888391321078086*x^5-341016586661376*x^4+514824214715322*x^3+86571968402580*x^2-13044147462924*x-536306091938,-49254150648*x^19+290846669692*x^18+622619925336*x^17-6349761375246*x^16+514717515088*x^15+56127754441040*x^14-45989076720716*x^13-259808028529570*x^12+308349689625552*x^11+679563477563104*x^10-949541813653834*x^9-1009282450144502*x^8+1509234092282816*x^7+816024457540128*x^6-1156158382814502*x^5-344287215870826*x^4+311880604779356*x^3+85884472545566*x^2-4349695918588*x-857474794850,22613419688*x^19-94305416192*x^18-445964562278*x^17+2146954177270*x^16+3321672453116*x^15-19943549670226*x^14-11082391212736*x^13+97638599849392*x^12+11950339200730*x^11-270493512197762*x^10+20856410643386*x^9+419761330354956*x^8-62064988122750*x^7-332498845900992*x^6+42571103858130*x^5+104091325216674*x^4-1870681913732*x^3-7200707374100*x^2-43792089806*x+28412209168,47613662618*x^19-337197562394*x^18-358632845282*x^17+7174868062318*x^16-5852411671526*x^15-61230106901520*x^14+92285312205636*x^13+270009337448640*x^12-522129997594702*x^11-660281463481396*x^10+1509977995768522*x^9+894181789495826*x^8-2334545352391020*x^7-647362766237328*x^6+1777897209925694*x^5+269639495598524*x^4-493801129716728*x^3-91819937506164*x^2+12369289335572*x+1411024712926,141335001074*x^4-848010006444*x^2+565340004296,-37002869054*x^19+191152811002*x^18+590006360640*x^17-4311407923556*x^16-2147454391264*x^15+39560349663828*x^14-13582971421280*x^13-190565238561650*x^12+142292368821040*x^11+516887920243316*x^10-501991348916042*x^9-781336152102034*x^8+856195885284834*x^7+604736025654644*x^6-681149646253820*x^5-202899001098022*x^4+186897957959648*x^3+36886276500736*x^2-7272530836376*x-465501326450,23823638008*x^19-92751496486*x^18-491026917650*x^17+2136110229718*x^16+3898762874468*x^15-20065852601456*x^14-14438757266008*x^13+99126793518370*x^12+20577811873444*x^11-275722187816834*x^10+17615658347718*x^9+425528799513718*x^8-88968611922342*x^7-329175367275292*x^6+87136313723184*x^5+96540830732852*x^4-19424158472274*x^3-6416540005012*x^2+649375540878*x+48601650942,-50617143680*x^19+274208704684*x^18+718153544720*x^17-5940342001194*x^16-1363126299948*x^15+51982264605442*x^14-28528342587204*x^13-237408153593196*x^12+219008856722936*x^11+609168236022172*x^10-687411949174436*x^9-876195669125924*x^8+1080120743399094*x^7+661326185635762*x^6-807458393964656*x^5-232801742326286*x^4+213686772007332*x^3+44115410748366*x^2-5508916204742*x-171314508354,-90725415140*x^19+507094454350*x^18+1235868356892*x^17-11034884165122*x^16-1081325760740*x^15+96932274534928*x^14-65762233391400*x^13-443258692220706*x^12+474171973504098*x^11+1131544480310362*x^10-1484001770402856*x^9-1596668717837686*x^8+2356080367246482*x^7+1148795356407014*x^6-1781595496857322*x^5-371919527915590*x^4+468463533289094*x^3+80280960365810*x^2-11139002956836*x-792246289188,6329551524*x^19-4102726754*x^18-188067300680*x^17-2695765648*x^16+2678705575670*x^15+970257279690*x^14-22584669447044*x^13-9384583295220*x^12+115736626221084*x^11+38614314664646*x^10-352781232864408*x^9-83228700506738*x^8+604691759929300*x^7+107033802874488*x^6-513247587464486*x^5-92926083811400*x^4+151264736328932*x^3+43671615547708*x^2+298736568852*x-186827621588,-33602128229*x^19+150271879007*x^18+616182228871*x^17-3348351373825*x^16-4005383991670*x^15+30380522610645*x^14+9129089964965*x^13-145201956240890*x^12+11544497615150*x^11+393388497370353*x^10-94445055297070*x^9-599476179517388*x^8+166659811501121*x^7+468519017672519*x^6-108421540096292*x^5-144352865684058*x^4+15771712176133*x^3+9488821361384*x^2-311908947185*x-24595468169,-66828478401*x^19+431650691989*x^18+674036720809*x^17-9271663110759*x^16+4491276250362*x^15+80025136118317*x^14-96618677324729*x^13-357308946563370*x^12+580325833685504*x^11+882838098739135*x^10-1720104892784928*x^9-1191708416629598*x^8+2689465340206701*x^7+812906289819105*x^6-2052222279346650*x^5-266758751871040*x^4+565206995085095*x^3+77490132847684*x^2-16406410349233*x-75215182709,-7906055358*x^19+29267891822*x^18+197804033794*x^17-815898123458*x^16-1858842199142*x^15+9164495700120*x^14+7697504254760*x^13-53408070095002*x^12-9120204287384*x^11+173008801198984*x^10-31049743147978*x^9-308597637701902*x^8+108933821869214*x^7+278838572409198*x^6-109132045027968*x^5-104712134834194*x^4+26667189925368*x^3+14717131301140*x^2-119790833390*x-160024964128,93053882960*x^19-547446983612*x^18-1199072776404*x^17+12073723298880*x^16-788645615578*x^15-107847236873440*x^14+88628981199208*x^13+503533847961754*x^12-608831880585126*x^11-1319455349130032*x^10+1914587430373466*x^9+1927820287986444*x^8-3103295736286566*x^7-1464496832274562*x^6+2420381353229552*x^5+526333681757968*x^4-667528337464586*x^3-121489361168922*x^2+16615943404938*x+923225166648,-4678234196*x^19+31570117560*x^18+53278208994*x^17-716636251112*x^16+224293455560*x^15+6614356171348*x^14-6395423445610*x^13-31996491352128*x^12+40983414411784*x^11+86913278432030*x^10-126155529025862*x^9-131273903350120*x^8+201037132549200*x^7+102235912091250*x^6-152787078151402*x^5-36691019356540*x^4+40225874894870*x^3+8210112496652*x^2-561949890962*x-49254150648,99381072834*x^19-507224160164*x^18-1562193941830*x^17+11206083668190*x^16+5735451387368*x^15-100413227111678*x^14+31820650051384*x^13+471418629036694*x^12-333691662637174*x^11-1246816206129986*x^10+1144469408759910*x^9+1848413610984720*x^8-1890807370200572*x^7-1429139909757936*x^6+1460787997234170*x^5+503434673639108*x^4-393063473830718*x^3-92505270760378*x^2+12867831677540*x+1530079857326,-15449316400*x^19+121116144618*x^18+77713470246*x^17-2608237313808*x^16+2849383779514*x^15+22618846465608*x^14-39508823887764*x^13-101987780668438*x^12+220069005060134*x^11+257830125473582*x^10-640466495299808*x^9-369454460625786*x^8+1002980553130616*x^7+298460507838214*x^6-770639022794750*x^5-147911056988384*x^4+207725690807200*x^3+50607385514690*x^2-196080236440*x-230748910716,34371193530*x^19-169475052980*x^18-568938647870*x^17+3741012005026*x^16+2777317503102*x^15-33728190929276*x^14+2204045035158*x^13+161681737846430*x^12-65230062111692*x^11-449459704912878*x^10+238960731573960*x^9+740012519011340*x^8-390093143804102*x^7-703400280661760*x^6+290249617749212*x^5+355162102475646*x^4-69610396506884*x^3-76883185200094*x^2-5858674130044*x+1080535470804,-51515586686*x^19+212731106134*x^18+985091921978*x^17-4662070106076*x^16-7188599830090*x^15+41433920529612*x^14+25037043279030*x^13-193119588904322*x^12-42970327639026*x^11+508043693297948*x^10+40468818755086*x^9-748677091573294*x^8-52858574788980*x^7+561415743698412*x^6+84517575339740*x^5-156839239369142*x^4-47682072259278*x^3+227805367982*x^2+1125342737218*x+47613662618,-33089831567*x^19+201093196679*x^18+391673655943*x^17-4365863118659*x^16+943366221614*x^15+38259972649885*x^14-36373235992973*x^13-174614019664302*x^12+233693148069214*x^11+445465108555543*x^10-711251308456668*x^9-630346685214314*x^8+1129305589176249*x^7+459383570675341*x^6-873111536399680*x^5-156049452696150*x^4+246768118561351*x^3+36095970037368*x^2-10452096957281*x-1569322349,141335001074*x^5-1130680008592*x^3+1696020012888*x,-37343789506*x^19+192881648596*x^18+558304979216*x^17-4169508016956*x^16-1599074075348*x^15+36200736545364*x^14-16077184289008*x^13-161977876918692*x^12+139884696617946*x^11+395629919062754*x^10-453775144976820*x^9-503608244099256*x^8+723453144899064*x^7+263550080215224*x^6-547431949441062*x^5+5995392298298*x^4+154489531762714*x^3-17294421905348*x^2-12476975911192*x+400261526212,-30864403322*x^19+145971931992*x^18+498965053464*x^17-3072526117614*x^16-2437906712462*x^15+25936092728392*x^14-185477278820*x^13-113397456342100*x^12+37145722958206*x^11+276660024587280*x^10-117874709963814*x^9-376258674296744*x^8+142718202646400*x^7+264236655206826*x^6-59031846216070*x^5-74971346335510*x^4+2584616887678*x^3+2163200772394*x^2-243484112126*x-37002869054,33189133654*x^19-118939281556*x^18-748574075940*x^17+2831440055076*x^16+6874646144242*x^15-27581802777702*x^14-33419625988822*x^13+141491090067054*x^12+94557663209940*x^11-407522066794378*x^10-165630907521324*x^9+642194343907322*x^8+194821223115158*x^7-479789685328278*x^6-159351821176650*x^5+93731009989608*x^4+66873024891086*x^3+18792053919886*x^2+238633820704*x-71914331656,-47012970322*x^19+330429273734*x^18+390979904258*x^17-7160021584952*x^16+5131838625288*x^15+62645819230852*x^14-87127245241990*x^13-286034323152440*x^12+506572507938586*x^11+735380028924546*x^10-1495633735881066*x^9-1073561220265442*x^8+2354779353715548*x^7+870083837425100*x^6-1821181899125984*x^5-403023337461018*x^4+510494078395768*x^3+123530125639854*x^2-12048102147502*x-1858147255052,58558374056*x^19-359327268464*x^18-668552203590*x^17+7782154571678*x^16-2330399436486*x^15-67732647295932*x^14+71503685581128*x^13+304209288110470*x^12-453151692003356*x^11-748867514111446*x^10+1378384927791866*x^9+976109639222480*x^8-2189183363014096*x^7-572591891931452*x^6+1681689078826876*x^5+91959089327988*x^4-459861270112856*x^3-23585102176690*x^2+16642052262366*x-154087590920,-29494157396*x^19+110747820560*x^18+639886677206*x^17-2628554891948*x^16-5468193471358*x^15+25530766863036*x^14+23017050640404*x^13-130755606105864*x^12-47083031789028*x^11+377724605283804*x^10+31369717056476*x^9-605784461150666*x^8+29320529647282*x^7+485759009915664*x^6-36002287698446*x^5-144530753816028*x^4-2806681442994*x^3+7398455433658*x^2+132388353726*x-50617143680,-91353631994*x^19+553587292676*x^18+1053902354306*x^17-11876333842402*x^16+3022750002292*x^15+102443308724346*x^14-102163151221252*x^13-457793557437334*x^12+642532779901430*x^11+1135408206789916*x^10-1925286653982674*x^9-1546158520827292*x^8+3014393423231410*x^7+1069203966984844*x^6-2301877967508176*x^5-346534119507770*x^4+643484515440416*x^3+90339582162976*x^2-23994455641950*x-1387104743520,-13061205658*x^19+70354291412*x^18+181736160586*x^17-1472280863408*x^16-431852155952*x^15+12413092284144*x^14-4935741565766*x^13-54930615353798*x^12+35897045774074*x^11+140072741160176*x^10-96593612666890*x^9-213499020452786*x^8+122643038996274*x^7+192809690164662*x^6-73371055091162*x^5-92462405716290*x^4+20741825790218*x^3+15173678180980*x^2-688804884856*x-147264879684,-3110292970*x^19+46655800506*x^18-61646144738*x^17-1013737029786*x^16+2359106881404*x^15+8879925367106*x^14-24781714666148*x^13-40456684973868*x^12+127789783114918*x^11+103187279684630*x^10-362891217161768*x^9-148352819167564*x^8+569362890500394*x^7+118533086594150*x^6-453721821603352*x^5-57010623892808*x^4+144415730515094*x^3+20067608691012*x^2-9651658509410*x-519635882342,33874582390*x^19-112112682392*x^18-825537463768*x^17+2836944363770*x^16+8154298259430*x^15-29344630474676*x^14-41950125886200*x^13+159473827251924*x^12+120676950173306*x^11-485973985583940*x^10-196717559332058*x^9+815510132539168*x^8+186064583203152*x^7-674961299351162*x^6-117535380136712*x^5+196058972464280*x^4+49539109810456*x^3-1315299069768*x^2-224804930732*x+6329551524,-33418903229*x^19+149612881883*x^18+612874570791*x^17-3407496978919*x^16-3700042500508*x^15+31541575509809*x^14+3419365797491*x^13-152754710791498*x^12+55488666549120*x^11+413173407215851*x^10-263016935812376*x^9-611032939324136*x^8+499288062798171*x^7+437966380465697*x^6-419336599582352*x^5-105452861898840*x^4+118516750118065*x^3+2168061812636*x^2-5838104374123*x+1277188136931,-2149954029*x^19-14984671447*x^18+129090301875*x^17+317020068803*x^16-2290963590070*x^15-2804781846753*x^14+19455868285009*x^13+14182979081840*x^12-91768552732432*x^11-48204955826693*x^10+251357858248410*x^9+118357325712298*x^8-390487312969765*x^7-197438420092081*x^6+306033406024818*x^5+186066891374228*x^4-81078876602809*x^3-68886788586382*x^2-6256936655373*x+885361384169,146325037358*x^19-935164670472*x^18-1561033700906*x^17+20308732822798*x^16-8167627772804*x^15-178062431467040*x^14+198994708296348*x^13+813803547716650*x^12-1225113595748430*x^11-2085935923682664*x^10+3687626167397538*x^9+2999124900317232*x^8-5844073318570998*x^7-2308195042140840*x^6+4522395734164414*x^5+932268729986068*x^4-1267261119217266*x^3-254587092663462*x^2+34193107181858*x+2999779531142,30679821583*x^19-127905020003*x^18-583960918629*x^17+2820564290337*x^16+4174813133182*x^15-25245862392461*x^14-13476425190225*x^13+118541047934594*x^12+16406876270170*x^11-313833221792685*x^10+6526201100332*x^9+463609210104594*x^8-21514091495781*x^7-344821484679501*x^6-6929627847952*x^5+92261853441218*x^4+15540133369957*x^3+634851643022*x^2+325755687697*x-66828478401,73421963306*x^19-386756070698*x^18-1130464113128*x^17+8658246379982*x^16+3406023936034*x^15-78691732263836*x^14+34271337283702*x^13+374480678704890*x^12-315124563658850*x^11-1000012108065758*x^10+1079977136169088*x^9+1481073879261476*x^8-1825604448606480*x^7-1114445806056712*x^6+1463303568990872*x^5+358033824314936*x^4-421023964039856*x^3-62113583669868*x^2+19394287827372*x+845960121656,122240562554*x^19-753024274194*x^18-1434136167346*x^17+16537985912128*x^16-4283922899214*x^15-146816366295716*x^14+147006220884740*x^13+679199010897484*x^12-951740573054850*x^11-1755010524360144*x^10+2942287843905886*x^9+2509492979696464*x^8-4745945564646874*x^7-1847446873169686*x^6+3702809250553882*x^5+652749209479554*x^4-1022260211446370*x^3-171247683522260*x^2+25975706293868*x+1064706128518,-69879044880*x^19+376566567490*x^18+1046474693708*x^17-8427786383498*x^16-2592673620816*x^15+76701041761872*x^14-38446083807478*x^13-366888358326590*x^12+327464050785330*x^11+993395787684802*x^10-1100824119841894*x^9-1523648064423092*x^8+1840292862683360*x^7+1256884900215354*x^6-1448083484228176*x^5-519536612141912*x^4+382703140278246*x^3+119862154909134*x^2-479185166656*x-1474864512110,10876314148*x^19-82426180884*x^18-23281485920*x^17+1537701458422*x^16-2231079713840*x^15-10752565802072*x^14+24771620132554*x^13+34170450668474*x^12-113011756553632*x^11-43545428753814*x^10+259364166513644*x^9-3950056537846*x^8-302626049636002*x^7+42947697484512*x^6+164540184809488*x^5-8986007756666*x^4-35228411665002*x^3-7112796749862*x^2+364901868888*x+93053882960,-131168344744*x^19+746921376930*x^18+1731768336560*x^17-16236416793044*x^16-345220331606*x^15+142592872649774*x^14-106182831773926*x^13-653470050098148*x^12+740027968898974*x^11+1681915596750828*x^10-2302379149511710*x^9-2430452139807924*x^8+3672709598887234*x^7+1870444352920190*x^6-2820395092315940*x^5-727342390621240*x^4+767443444375092*x^3+177498763583396*x^2-16555927040414*x-2143418440346,102009013680*x^19-584553940742*x^18-1353705656304*x^17+12806860351152*x^16+275125328712*x^15-113654578206362*x^14+84051177027724*x^13+528272873176564*x^12-590439407170214*x^11-1386838401965642*x^10+1851690463091828*x^9+2063784086472032*x^8-2974644704645638*x^7-1665311787758054*x^6+2293814720826512*x^5+695692443231430*x^4-619887820161752*x^3-171137945262114*x^2+8678207091704*x+1710271355504,-113783388196*x^19+658709744720*x^18+1461675302684*x^17-14293844274862*x^16+542721589402*x^15+125313881138254*x^14-99011868582050*x^13-573562822269928*x^12+670288034576044*x^11+1476713018321932*x^10-2057497117772538*x^9-2143137822957936*x^8+3244611741704586*x^7+1672277254320872*x^6-2456921335689522*x^5-671211966497504*x^4+650310702779926*x^3+166218148211054*x^2-7606180685288*x-1934773932718,89062276840*x^19-369621067822*x^18-1713455800230*x^17+8219978208218*x^16+12384290554912*x^15-74318335735328*x^14-39896990694236*x^13+353031550645766*x^12+41659403162824*x^11-946806506885952*x^10+66510975071100*x^9+1419278022681466*x^8-188267834352612*x^7-1078299032601696*x^6+117041062460516*x^5+310256378615500*x^4-379016243260*x^3-12474341895130*x^2+933793420322*x+99381072834,-40361436344*x^19+183788749476*x^18+740920772056*x^17-4158503913226*x^16-4704516156176*x^15+38412753837588*x^14+8656084178370*x^13-187325466191968*x^12+32314125661440*x^11+518711964950234*x^10-185876463400780*x^9-809209410391158*x^8+348439013087182*x^7+650283210899156*x^6-281340967161442*x^5-209866977697348*x^4+82648398067058*x^3+14718406364992*x^2-6823779935084*x-114347372634,-16806593158*x^19+80932505830*x^18+292102942748*x^17-1830757485026*x^16-1559472554624*x^15+16878145367888*x^14-336265364966*x^13-81962970962650*x^12+33629059946122*x^11+225620494100916*x^10-134161038860558*x^9-351112488914096*x^8+229690319513314*x^7+289073253710834*x^6-172986322541444*x^5-109791771788948*x^4+40027233039354*x^3+18144910193760*x^2-50468832704*x-72273734736,-24886504090*x^19+81367598862*x^18+592727779768*x^17-2023454717668*x^16-5679809442556*x^15+20626558101046*x^14+27770124931246*x^13-110995471386396*x^12-71430709033192*x^11+337692068307700*x^10+84203872226792*x^9-575313071745464*x^8-10866530597420*x^7+506147907399808*x^6-49196912829216*x^5-190923820973640*x^4+16620387278776*x^3+26817980581750*x^2-953103477468*x-997974779782,36752108200*x^19-156484325510*x^18-727243153874*x^17+3636597341352*x^16+5283113727274*x^15-34504389654882*x^14-15158052865420*x^13+172274885180608*x^12-3837180796428*x^11-484312293877830*x^10+123737019018440*x^9+754708199099608*x^8-274241558246180*x^7-587900005748758*x^6+221526902031006*x^5+173634540104926*x^4-45021088797784*x^3-14623328480194*x^2+874308309624*x+34371193530,-28937802767*x^19+171475751541*x^18+394200843331*x^17-3873614961089*x^16-189864396048*x^15+35835767524447*x^14-24072261442611*x^13-176392433446224*x^12+175379346105312*x^11+502072686328199*x^10-566495323654334*x^9-840466048460344*x^8+936804711876175*x^7+806800774577941*x^6-744032987348100*x^5-418367382937092*x^4+207227598597947*x^3+103774065326778*x^2-1854519693783*x-1408723158419,-191589739218*x^19+1041300006534*x^18+2752221853668*x^17-22826225621876*x^16-5331447015946*x^15+202515903662718*x^14-112642519816124*x^13-938961706536566*x^12+884404107103362*x^11+2445074236351376*x^10-2844958613830358*x^9-3557051799531234*x^8+4587282833119056*x^7+2695414832055010*x^6-3512341058185362*x^5-951536870433148*x^4+940075115943516*x^3+197901692354476*x^2-24381871488410*x-2873565012538,57903161804*x^19-336625824010*x^18-754038130824*x^17+7378784422574*x^16-185229135336*x^15-65492814824118*x^14+51055858742120*x^13+304125955072630*x^12-352680460426150*x^11-795273520996214*x^10+1104167778501200*x^9+1169374454639360*x^8-1782132518677108*x^7-911264705512362*x^6+1394121153353046*x^5+346073836739720*x^4-397986826240350*x^3-77085034807902*x^2+14777398853398*x+1191119907774,2554207277*x^19-5404322861*x^18-64185014949*x^17+116120432439*x^16+703013821340*x^15-1033295879417*x^14-4366836252087*x^13+5042411941244*x^12+16455442289388*x^11-14941982792287*x^10-37046005218004*x^9+27182569174180*x^8+46223933729779*x^7-27699429694397*x^6-27396187563654*x^5+12591380561692*x^4+5421696174759*x^3-2014189907696*x^2+196969667053*x-33089831567,-18338341536*x^19+76004810302*x^18+387965210230*x^17-1835270903286*x^16-3134985871796*x^15+18131589834020*x^14+11549682873662*x^13-94292723691780*x^12-15051934211710*x^11+275424625981574*x^10-18195696038480*x^9-442262600024708*x^8+66076040298132*x^7+344901529648388*x^6-44577679003976*x^5-85844135119854*x^4-1122299534688*x^3-3171794832954*x^2+49419806558*x+61205410134,141335001074*x^6-1413350010740*x^4+3392040025776*x^2-1130680008592,-108230558840*x^19+648467516354*x^18+1332053499366*x^17-14190478875406*x^16+2152600217674*x^15+125577782851248*x^14-112631401678694*x^13-580091649474642*x^12+745166633587116*x^11+1503099983621522*x^10-2304343479889248*x^9-2175839545400952*x^8+3699199681074366*x^7+1654933809753346*x^6-2876379510762366*x^5-620543156378980*x^4+803978805243426*x^3+154136752664312*x^2-24951298339072*x-2052920672434,-31181088440*x^19+110179505144*x^18+685184618824*x^17-2532668812998*x^16-6184464543946*x^15+23805982903400*x^14+30155920089678*x^13-118160888868514*x^12-88532311882536*x^11+332050217597938*x^10+165965901743324*x^9-520356452177278*x^8-202724475556692*x^7+406664528647732*x^6+151188045897626*x^5-109792466571248*x^4-51912114777410*x^3-2954309587162*x^2+624324263248*x-37343789506,-59787048994*x^19+278900040222*x^18+1055258710302*x^17-6252941180718*x^16-6006071190478*x^15+57045661283534*x^14+3897364025234*x^13-273608550433980*x^12+91134458910294*x^11+741567998040258*x^10-391402104412456*x^9-1128065702129712*x^8+678807578919092*x^7+889186264511128*x^6-503190084705426*x^5-303606988595206*x^4+100437099522860*x^3+43587205505042*x^2+7867530347684*x-175902060472,34791250168*x^19-253713408404*x^18-240166407034*x^17+5413299051600*x^16-4800096259550*x^15-46342993858580*x^14+72565841592150*x^13+205003173126486*x^12-408081702124530*x^11-502170911345600*x^10+1181122775098800*x^9+677389825404614*x^8-1833528055241334*x^7-479949257051580*x^6+1407328746288066*x^5+189955236773928*x^4-400244017026396*x^3-66145614266488*x^2+14693245223630*x+900138249578,49329857866*x^19-253046203490*x^18-680369775778*x^17+5129358648130*x^16+1494452854104*x^15-40858912235838*x^14+19894464574038*x^13+162472353571240*x^12-141354313438782*x^11-333830230667934*x^10+377420411552266*x^9+309158786852172*x^8-467291415227320*x^7-18873596786220*x^6+247270379171284*x^5-146897545689666*x^4-44034865035730*x^3+61585784718284*x^2+6385457512928*x-2720026645370,80195520368*x^19-350304472092*x^18-1483147319944*x^17+7704374485592*x^16+10087863919588*x^15-68865620731294*x^14-29267002582776*x^13+323894576759080*x^12+22775051029732*x^11-864029847002446*x^10+47113177491102*x^9+1300251697728936*x^8-65390162524434*x^7-1007300996902696*x^6-35308341657144*x^5+301752523760444*x^4+49558380817144*x^3-8224595261066*x^2-271049133580*x+33189133654,41536980637*x^19-286564805303*x^18-397454281655*x^17+6400514878337*x^16-3766311259674*x^15-57989701794627*x^14+74194781007483*x^13+274957606840340*x^12-456786097260730*x^11-732733014139459*x^10+1410986879647520*x^9+1094381307648458*x^8-2312630557155583*x^7-871011945523099*x^6+1854763369615418*x^5+362085720704264*x^4-539766308375855*x^3-102512017332274*x^2+17265426839861*x+1160355556469,704175786*x^19+12327253366*x^18-66281607792*x^17-315706092198*x^16+1488572166446*x^15+3214312264818*x^14-15275076313734*x^13-16540704023174*x^12+84701244952928*x^11+45104574238448*x^10-265849979087418*x^9-62139247826742*x^8+461017113829292*x^7+38303214181378*x^6-394509536295450*x^5-15298374038730*x^4+118797419095908*x^3+12773285294632*x^2-2874820514876*x-144216272206,-47591317264*x^19+256198058820*x^18+631793913766*x^17-5310844541536*x^16-613419280550*x^15+43469885180296*x^14-29577735187240*x^13-178113073405336*x^12+200433960171646*x^11+374495178896774*x^10-574427763213520*x^9-334354189767632*x^8+813655420919138*x^7-49420083455146*x^6-533432494001814*x^5+245541109313610*x^4+125586862244820*x^3-79016214214044*x^2-14984944169840*x+1063514199112,-7977024128*x^19+34148285082*x^18+169565944398*x^17-866440085086*x^16-1268892742372*x^15+8963342089320*x^14+2926453592350*x^13-48513327276396*x^12+10341805524594*x^11+146141062531458*x^10-73842007601600*x^9-238779598330904*x^8+158567966531764*x^7+185581180070132*x^6-135715869001740*x^5-45443656918544*x^4+30698510573222*x^3+1709666878086*x^2-505437835256*x+58558374056,131001400366*x^19-788766737162*x^18-1574069227396*x^17+17143847474980*x^16-3255239487966*x^15-150507798757014*x^14+140080553472990*x^13+689234044419826*x^12-908520898630598*x^11-1771845261229294*x^10+2775425130489580*x^9+2557436681637472*x^8-4412939315676222*x^7-1973433697434458*x^6+3406256674136884*x^5+788129201650038*x^4-945448185372902*x^3-208337358855424*x^2+24188623486548*x+3788865433376,35017163544*x^19-262460620914*x^18-230621519908*x^17+5675136596130*x^16-5218849181528*x^15-49447718471552*x^14+78048518870964*x^13+223928647791004*x^12-442684858801208*x^11-566321200903840*x^10+1297869679308486*x^9+799349967510558*x^8-2042746526128980*x^7-605108431659566*x^6+1585059318068932*x^5+254066651318086*x^4-447316172487098*x^3-80577423007026*x^2+11144180210180*x+313134859312]];

E[458,1] = [x, [1,1,-1,1,-1,-1,-4,1,-2,-1,-1,-1,-2,-4,1,1,-3,-2,1,-1,4,-1,2,-1,-4,-2,5,-4,-6,1,8,1,1,-3,4,-2,-6,1,2,-1,0,4,1,-1,2,2,-2,-1,9,-4,3,-2,2,5,1,-4,-1,-6,-2,1,-1,8,8,1,2,1,-10,-3,-2,4,-1,-2,-4,-6,4,1,4,2,4,-1,1,0,5,4,3,1,6,-1,12,2,8,2,-8,-2,-1,-1,3,9,2,-4,-8,3,-11,-2,-4,2,18,5,2,1,6,-4,-6,-1,-2]];
E[458,2] = [x^9-2*x^8-20*x^7+41*x^6+112*x^5-241*x^4-160*x^3+385*x^2+28*x-112, [145364,145364,145364*x,145364,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,145364*x,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,145364,145364*x^2-436092,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,7074*x^8+5084*x^7-131768*x^6-102930*x^5+647584*x^4+607898*x^3-783280*x^2-1236226*x+157064,145364*x,-30432*x^8+14624*x^7+613588*x^6-303624*x^5-3560656*x^4+1743800*x^3+6114780*x^2-1892808*x-2012192,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,-10100*x^8-4012*x^7+193764*x^6+34392*x^5-1004656*x^4+98364*x^3+1239948*x^2-43648*x-82544,145364,-9643*x^8-9314*x^7+203088*x^6+157633*x^5-1274796*x^4-657633*x^3+2509376*x^2+601685*x-717432,145364*x^2-436092,4708*x^8+18220*x^7-85888*x^6-317928*x^5+407400*x^4+1338820*x^3-526808*x^2-1120344*x+41816,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,22584*x^8-2140*x^7-437812*x^6+89360*x^5+2376904*x^4-847688*x^3-3670836*x^2+1182964*x+1075984,7074*x^8+5084*x^7-131768*x^6-102930*x^5+647584*x^4+607898*x^3-783280*x^2-1236226*x+157064,2967*x^8+5338*x^7-71788*x^6-116593*x^5+553216*x^4+751781*x^3-1375048*x^2-1407269*x+467076,145364*x,-11009*x^8-8734*x^7+198120*x^6+143603*x^5-897380*x^4-523663*x^3+823872*x^2+334731*x+293788,-30432*x^8+14624*x^7+613588*x^6-303624*x^5-3560656*x^4+1743800*x^3+6114780*x^2-1892808*x-2012192,145364*x^3-872184*x,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,9078*x^8-3216*x^7-185988*x^6+60250*x^5+1071216*x^4-229054*x^3-1515368*x^2-375934*x+67168,-10100*x^8-4012*x^7+193764*x^6+34392*x^5-1004656*x^4+98364*x^3+1239948*x^2-43648*x-82544,18477*x^8-1886*x^7-377832*x^6+75697*x^5+2282536*x^4-703805*x^3-4407968*x^2+1011921*x+1967452,145364,19232*x^8+9712*x^7-392964*x^6-144704*x^5+2312732*x^4+348560*x^3-3959716*x^2-41008*x+792288,-9643*x^8-9314*x^7+203088*x^6+157633*x^5-1274796*x^4-657633*x^3+2509376*x^2+601685*x-717432,40270*x^8-21568*x^7-791704*x^6+499166*x^5+4374428*x^4-3345238*x^3-6803484*x^2+4749542*x+1900484,145364*x^2-436092,32345*x^8-5646*x^7-621316*x^6+156625*x^5+3259412*x^4-1216409*x^3-4343452*x^2+1449281*x+710224,4708*x^8+18220*x^7-85888*x^6-317928*x^5+407400*x^4+1338820*x^3-526808*x^2-1120344*x+41816,-46240*x^8+4948*x^7+944088*x^6-152272*x^5-5590312*x^4+1245660*x^3+9823512*x^2-1160096*x-3408384,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,-27500*x^8-18120*x^7+526136*x^6+287940*x^5-2738328*x^4-1027500*x^3+3544488*x^2+1152012*x+57344,22584*x^8-2140*x^7-437812*x^6+89360*x^5+2376904*x^4-847688*x^3-3670836*x^2+1182964*x+1075984,-6884*x^8-6016*x^7+133736*x^6+100412*x^5-675604*x^4-442220*x^3+626536*x^2+845140*x+197968,7074*x^8+5084*x^7-131768*x^6-102930*x^5+647584*x^4+607898*x^3-783280*x^2-1236226*x+157064,-22001*x^8+17642*x^7+416308*x^6-364097*x^5-2191280*x^4+2105065*x^3+3196000*x^2-2668353*x-938348,2967*x^8+5338*x^7-71788*x^6-116593*x^5+553216*x^4+751781*x^3-1375048*x^2-1407269*x+467076,20653*x^8-14090*x^7-425680*x^6+293213*x^5+2550740*x^4-1745769*x^3-4507696*x^2+2450037*x+1291576,145364*x,-27903*x^8-3902*x^7+503600*x^6-5863*x^5-2231328*x^4+695203*x^3+1070660*x^2-1091775*x+2206992,-11009*x^8-8734*x^7+198120*x^6+143603*x^5-897380*x^4-523663*x^3+823872*x^2+334731*x+293788,-28600*x^8+10228*x^7+552996*x^6-194780*x^5-2981596*x^4+966496*x^3+4314240*x^2-447428*x-1080016,-30432*x^8+14624*x^7+613588*x^6-303624*x^5-3560656*x^4+1743800*x^3+6114780*x^2-1892808*x-2012192,2859*x^8-12494*x^7-45364*x^6+224531*x^5+79496*x^4-1036267*x^3+1033752*x^2+1062819*x-1980988,145364*x^3-872184*x,4962*x^8-4448*x^7-51124*x^6+75014*x^5-249768*x^4-197834*x^3+2502972*x^2-643978*x-2782560,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,27636*x^8+8272*x^7-510956*x^6-119896*x^5+2473448*x^4+226472*x^3-2932924*x^2-90008*x+527296,9078*x^8-3216*x^7-185988*x^6+60250*x^5+1071216*x^4-229054*x^3-1515368*x^2-375934*x+67168,-58005*x^8+16754*x^7+1181812*x^6-382717*x^5-7041816*x^4+2451333*x^3+12972584*x^2-2432069*x-5714644,-10100*x^8-4012*x^7+193764*x^6+34392*x^5-1004656*x^4+98364*x^3+1239948*x^2-43648*x-82544,9463*x^8-20406*x^7-159048*x^6+410907*x^5+582172*x^4-2322447*x^3+148560*x^2+3127491*x-552304,18477*x^8-1886*x^7-377832*x^6+75697*x^5+2282536*x^4-703805*x^3-4407968*x^2+1011921*x+1967452,14207*x^8+3758*x^7-253744*x^6-20729*x^5+1099024*x^4-242247*x^3-357452*x^2+360055*x-1826472,145364,-18120*x^8+12376*x^7+363168*x^6-234208*x^5-2178344*x^4+1199488*x^3+4650536*x^2-1476680*x-3194688,19232*x^8+9712*x^7-392964*x^6-144704*x^5+2312732*x^4+348560*x^3-3959716*x^2-41008*x+792288,26641*x^8+5502*x^7-582468*x^6-110535*x^5+3894032*x^4+579135*x^3-8462192*x^2-945407*x+3595124,-9643*x^8-9314*x^7+203088*x^6+157633*x^5-1274796*x^4-657633*x^3+2509376*x^2+601685*x-717432,11272*x^8-12448*x^7-238240*x^6+220912*x^5+1466828*x^4-900328*x^3-2549564*x^2+384000*x+332304,40270*x^8-21568*x^7-791704*x^6+499166*x^5+4374428*x^4-3345238*x^3-6803484*x^2+4749542*x+1900484,13122*x^8-13872*x^7-303236*x^6+272902*x^5+2173296*x^4-1452306*x^3-4993844*x^2+1732654*x+2060128,145364*x^2-436092,56476*x^8-10784*x^7-1122672*x^6+285924*x^5+6330088*x^4-2145052*x^3-10161168*x^2+2556476*x+2912656,32345*x^8-5646*x^7-621316*x^6+156625*x^5+3259412*x^4-1216409*x^3-4343452*x^2+1449281*x+710224,-30752*x^8-22060*x^7+594972*x^6+335628*x^5-3176832*x^4-937568*x^3+4573196*x^2+602040*x-1233008,4708*x^8+18220*x^7-85888*x^6-317928*x^5+407400*x^4+1338820*x^3-526808*x^2-1120344*x+41816,-35336*x^8+44800*x^7+698976*x^6-933320*x^5-3885596*x^4+5445752*x^3+5850000*x^2-7181244*x-1802072,-46240*x^8+4948*x^7+944088*x^6-152272*x^5-5590312*x^4+1245660*x^3+9823512*x^2-1160096*x-3408384,-31663*x^8+37494*x^7+648272*x^6-744059*x^5-3826684*x^4+4003807*x^3+6506016*x^2-4338847*x-2447176,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,145364*x^4-1308276*x^2+1308276,-27500*x^8-18120*x^7+526136*x^6+287940*x^5-2738328*x^4-1027500*x^3+3544488*x^2+1152012*x+57344,-50080*x^8+832*x^7+1011424*x^6-40176*x^5-5926800*x^4+322504*x^3+10657916*x^2+868192*x-4815112,22584*x^8-2140*x^7-437812*x^6+89360*x^5+2376904*x^4-847688*x^3-3670836*x^2+1182964*x+1075984,12430*x^8-15068*x^7-230836*x^6+294314*x^5+1135388*x^4-1425302*x^3-1517216*x^2+993402*x+1368412,-6884*x^8-6016*x^7+133736*x^6+100412*x^5-675604*x^4-442220*x^3+626536*x^2+845140*x+197968,14940*x^8-4428*x^7-311948*x^6+54480*x^5+1958744*x^4-62888*x^3-3870964*x^2-187016*x+1016736,7074*x^8+5084*x^7-131768*x^6-102930*x^5+647584*x^4+607898*x^3-783280*x^2-1236226*x+157064,29998*x^8-21676*x^7-604312*x^6+479222*x^5+3525200*x^4-3041862*x^3-6195896*x^2+4709526*x+2403920,-22001*x^8+17642*x^7+416308*x^6-364097*x^5-2191280*x^4+2105065*x^3+3196000*x^2-2668353*x-938348,-25272*x^8+42868*x^7+514020*x^6-854004*x^5-2990392*x^4+4751372*x^3+4879984*x^2-6362688*x-1857184,2967*x^8+5338*x^7-71788*x^6-116593*x^5+553216*x^4+751781*x^3-1375048*x^2-1407269*x+467076,35068*x^8-8292*x^7-681860*x^6+213112*x^5+3749152*x^4-1451648*x^3-6101724*x^2+1450096*x+2069424,20653*x^8-14090*x^7-425680*x^6+293213*x^5+2550740*x^4-1745769*x^3-4507696*x^2+2450037*x+1291576,24926*x^8+29216*x^7-477820*x^6-443566*x^5+2544120*x^4+1367418*x^3-3650444*x^2-839046*x-160360,145364*x,-14131*x^8+24942*x^7+283604*x^6-445443*x^5-1546324*x^4+1936595*x^3+1661176*x^2-1156091*x+776500,-27903*x^8-3902*x^7+503600*x^6-5863*x^5-2231328*x^4+695203*x^3+1070660*x^2-1091775*x+2206992,26954*x^8-23576*x^7-537912*x^6+467538*x^5+3040720*x^4-2706290*x^3-5095488*x^2+3962470*x+1682792,-11009*x^8-8734*x^7+198120*x^6+143603*x^5-897380*x^4-523663*x^3+823872*x^2+334731*x+293788,-65328*x^8+19012*x^7+1301820*x^6-462400*x^5-7319872*x^4+2990436*x^3+11249860*x^2-2474352*x-2487136,-28600*x^8+10228*x^7+552996*x^6-194780*x^5-2981596*x^4+966496*x^3+4314240*x^2-447428*x-1080016,34118*x^8-3632*x^7-691700*x^6+80338*x^5+4034616*x^4-535670*x^3-6480916*x^2+643610*x+294264,-30432*x^8+14624*x^7+613588*x^6-303624*x^5-3560656*x^4+1743800*x^3+6114780*x^2-1892808*x-2012192,58972*x^8+13696*x^7-1151904*x^6-135812*x^5+6359832*x^4-360284*x^3-10754408*x^2+772924*x+4510240,2859*x^8-12494*x^7-45364*x^6+224531*x^5+79496*x^4-1036267*x^3+1033752*x^2+1062819*x-1980988,59443*x^8-5446*x^7-1194460*x^6+169331*x^5+6883304*x^4-1247907*x^3-11826944*x^2+131659*x+4251916,145364*x^3-872184*x,-13014*x^8+31704*x^7+276812*x^6-614026*x^5-1699576*x^4+3094990*x^3+2585044*x^2-2458374*x+97208,4962*x^8-4448*x^7-51124*x^6+75014*x^5-249768*x^4-197834*x^3+2502972*x^2-643978*x-2782560,59044*x^8+25584*x^7-1169520*x^6-363228*x^5+6578736*x^4+831748*x^3-11003544*x^2-195436*x+3622640,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,-6504*x^8-7880*x^7+137672*x^6+95376*x^5-877008*x^4+179864*x^3+1766688*x^2-2262856*x-545608,27636*x^8+8272*x^7-510956*x^6-119896*x^5+2473448*x^4+226472*x^3-2932924*x^2-90008*x+527296,-25533*x^8-226*x^7+505196*x^6-29621*x^5-2948076*x^4+466597*x^3+6001148*x^2-744605*x-4090784]];
E[458,3] = [x, [1,-1,-3,1,1,3,-2,-1,6,-1,1,-3,2,2,-3,1,1,-6,-1,1,6,-1,-4,3,-4,-2,-9,-2,-2,3,-4,-1,-3,-1,-2,6,-6,1,-6,-1,-2,-6,-5,1,6,4,-2,-3,-3,4,-3,2,-2,9,1,2,3,2,0,-3,-7,4,-12,1,2,3,-14,1,12,2,15,-6,-2,6,12,-1,-2,6,14,1,9,2,-9,6,1,5,6,-1,18,-6,-4,-4,12,2,-1,3,3,3,6,-4,2,3,1,-2,6,2,-4,-9,-16,-1,18,-2,12,-3,-4]];
E[458,4] = [x^7-4*x^6-6*x^5+31*x^4+12*x^3-77*x^2-10*x+59, [1,-1,x,1,x^6-5*x^5+x^4+24*x^3-22*x^2-27*x+31,-x,x^6-5*x^5+26*x^3-16*x^2-33*x+23,-1,x^2-3,-x^6+5*x^5-x^4-24*x^3+22*x^2+27*x-31,-x^5+4*x^4+3*x^3-20*x^2-x+24,x,-x^6+6*x^5-4*x^4-30*x^3+37*x^2+38*x-44,-x^6+5*x^5-26*x^3+16*x^2+33*x-23,-x^6+7*x^5-7*x^4-34*x^3+50*x^2+41*x-59,1,x^6-7*x^5+7*x^4+37*x^3-58*x^2-48*x+77,-x^2+3,-x^5+3*x^4+6*x^3-17*x^2-9*x+23,x^6-5*x^5+x^4+24*x^3-22*x^2-27*x+31,-x^6+6*x^5-5*x^4-28*x^3+44*x^2+33*x-59,x^5-4*x^4-3*x^3+20*x^2+x-24,-2*x^6+10*x^5-55*x^3+40*x^2+73*x-60,-x,-3*x^6+15*x^5-x^4-80*x^3+68*x^2+99*x-106,x^6-6*x^5+4*x^4+30*x^3-37*x^2-38*x+44,x^3-6*x,x^6-5*x^5+26*x^3-16*x^2-33*x+23,x^6-5*x^5-x^4+30*x^3-17*x^2-43*x+29,x^6-7*x^5+7*x^4+34*x^3-50*x^2-41*x+59,3*x^6-15*x^5+x^4+80*x^3-67*x^2-101*x+107,-1,-x^6+4*x^5+3*x^4-20*x^3-x^2+24*x,-x^6+7*x^5-7*x^4-37*x^3+58*x^2+48*x-77,2*x^5-6*x^4-14*x^3+40*x^2+20*x-54,x^2-3,2*x^6-12*x^5+8*x^4+60*x^3-78*x^2-74*x+108,x^5-3*x^4-6*x^3+17*x^2+9*x-23,2*x^6-10*x^5+x^4+49*x^3-39*x^2-54*x+59,-x^6+5*x^5-x^4-24*x^3+22*x^2+27*x-31,2*x^5-8*x^4-6*x^3+38*x^2+4*x-42,x^6-6*x^5+5*x^4+28*x^3-44*x^2-33*x+59,-2*x^5+7*x^4+12*x^3-44*x^2-20*x+64,-x^5+4*x^4+3*x^3-20*x^2-x+24,2*x^5-6*x^4-10*x^3+30*x^2+12*x-34,2*x^6-10*x^5+55*x^3-40*x^2-73*x+60,x^6-4*x^5-3*x^4+23*x^3-8*x^2-32*x+23,x,x^6-6*x^5+5*x^4+25*x^3-38*x^2-22*x+50,3*x^6-15*x^5+x^4+80*x^3-68*x^2-99*x+106,-3*x^6+13*x^5+6*x^4-70*x^3+29*x^2+87*x-59,-x^6+6*x^5-4*x^4-30*x^3+37*x^2+38*x-44,-2*x^6+12*x^5-8*x^4-60*x^3+80*x^2+70*x-110,-x^3+6*x,-x^6+5*x^5+x^4-30*x^3+16*x^2+41*x-23,-x^6+5*x^5-26*x^3+16*x^2+33*x-23,-x^6+3*x^5+6*x^4-17*x^3-9*x^2+23*x,-x^6+5*x^5+x^4-30*x^3+17*x^2+43*x-29,-2*x^6+14*x^5-14*x^4-72*x^3+112*x^2+90*x-146,-x^6+7*x^5-7*x^4-34*x^3+50*x^2+41*x-59,-x^6+5*x^5-x^4-26*x^3+30*x^2+33*x-53,-3*x^6+15*x^5-x^4-80*x^3+67*x^2+101*x-107,-x^6+4*x^5+3*x^4-22*x^3+4*x^2+30*x-10,1,4*x^6-22*x^5+8*x^4+114*x^3-120*x^2-136*x+170,x^6-4*x^5-3*x^4+20*x^3+x^2-24*x,2,x^6-7*x^5+7*x^4+37*x^3-58*x^2-48*x+77,2*x^6-12*x^5+7*x^4+64*x^3-81*x^2-80*x+118,-2*x^5+6*x^4+14*x^3-40*x^2-20*x+54,-x^6+5*x^5-x^4-28*x^3+32*x^2+39*x-55,-x^2+3,2*x^6-8*x^5-6*x^4+44*x^3-10*x^2-54*x+28,-2*x^6+12*x^5-8*x^4-60*x^3+78*x^2+74*x-108,3*x^6-19*x^5+13*x^4+104*x^3-132*x^2-136*x+177,-x^5+3*x^4+6*x^3-17*x^2-9*x+23,-x^4+16*x^2-7*x-38,-2*x^6+10*x^5-x^4-49*x^3+39*x^2+54*x-59,3*x^6-15*x^5+x^4+80*x^3-62*x^2-108*x+91,x^6-5*x^5+x^4+24*x^3-22*x^2-27*x+31,x^4-9*x^2+9,-2*x^5+8*x^4+6*x^3-38*x^2-4*x+42,2*x^6-14*x^5+14*x^4+74*x^3-117*x^2-98*x+160,-x^6+6*x^5-5*x^4-28*x^3+44*x^2+33*x-59,-5*x^6+29*x^5-15*x^4-146*x^3+160*x^2+177*x-209,2*x^5-7*x^4-12*x^3+44*x^2+20*x-64,-x^6+5*x^5-x^4-29*x^3+34*x^2+39*x-59,x^5-4*x^4-3*x^3+20*x^2+x-24,-2*x^6+8*x^5+6*x^4-42*x^3+6*x^2+52*x-28,-2*x^5+6*x^4+10*x^3-30*x^2-12*x+34,3*x^6-11*x^5-15*x^4+65*x^3+21*x^2-86*x-9,-2*x^6+10*x^5-55*x^3+40*x^2+73*x-60,-3*x^6+19*x^5-13*x^4-103*x^3+130*x^2+137*x-177,-x^6+4*x^5+3*x^4-23*x^3+8*x^2+32*x-23,x^6-3*x^5-5*x^4+14*x^3+4*x^2-13*x+5,-x,-2*x^6+10*x^5+x^4-56*x^3+32*x^2+74*x-48,-x^6+6*x^5-5*x^4-25*x^3+38*x^2+22*x-50,-x^4+2*x^3+7*x^2-7*x-13,-3*x^6+15*x^5-x^4-80*x^3+68*x^2+99*x-106,3*x^6-16*x^5+5*x^4+83*x^3-86*x^2-104*x+121,3*x^6-13*x^5-6*x^4+70*x^3-29*x^2-87*x+59,-x^6+7*x^5-5*x^4-44*x^3+54*x^2+69*x-75,x^6-6*x^5+4*x^4+30*x^3-37*x^2-38*x+44,2*x^6-6*x^5-14*x^4+40*x^3+20*x^2-54*x,2*x^6-12*x^5+8*x^4+60*x^3-80*x^2-70*x+110,-2*x^6+12*x^5-8*x^4-60*x^3+76*x^2+72*x-96,x^3-6*x,-3*x^6+13*x^5+5*x^4-70*x^3+40*x^2+84*x-85,x^6-5*x^5-x^4+30*x^3-16*x^2-41*x+23,-4*x^6+20*x^5-2*x^4-102*x^3+80*x^2+128*x-118,x^6-5*x^5+26*x^3-16*x^2-33*x+23,-2*x^2+6*x+2,x^6-3*x^5-6*x^4+17*x^3+9*x^2-23*x,6*x^6-34*x^5+18*x^4+166*x^3-196*x^2-194*x+264]];
E[458,5] = [x^2-x-3, [1,-1,0,1,x,0,-x-1,-1,-3,-x,-2*x,0,-4,x+1,0,1,-x-1,3,4*x-2,x,0,2*x,-x,0,x-2,4,0,-x-1,2*x+2,0,-3*x-4,-1,0,x+1,-2*x-3,-3,3*x-3,-4*x+2,0,-x,4,0,-8,-2*x,-3*x,x,x-3,0,3*x-3,-x+2,0,-4,x,0,-2*x-6,x+1,0,-2*x-2,-x-2,0,x+7,3*x+4,3*x+3,1,-4*x,0,-3*x-2,-x-1,0,2*x+3,2*x-2,3,4,-3*x+3,0,4*x-2,4*x+6,0,-3*x-7,x,9,-4,4*x+2,0,-2*x-3,8,0,2*x,-6*x+6,3*x,4*x+4,-x,0,-x+3,2*x+12,0,-x-2,-3*x+3,6*x,x-2,-4*x+12,0,-6*x+4,4,0,-x,7*x-2,0,-6*x+8,2*x+6,0,-x-1,-6,0,-x-3]];

E[459,1] = [x, [1,-1,0,-1,1,0,-2,3,0,-1,0,0,-5,2,0,-1,1,0,-1,-1,0,0,1,0,-4,5,0,2,-9,0,-8,-5,0,-1,-2,0,-2,1,0,3,3,0,7,0,0,-1,-6,0,-3,4,0,5,-6,0,0,-6,0,9,0,0,-10,8,0,7,-5,0,1,-1,0,2,11,0,6,2,0,1,0,0,0,-1,0,-3,-4,0,1,-7,0,0,-2,0,10,-1,0,6,-1,0,2,3,0,4,14,0,17,-15,0,6,17,0]];
E[459,2] = [x, [1,1,0,-1,-1,0,-2,-3,0,-1,0,0,-5,-2,0,-1,-1,0,-1,1,0,0,-1,0,-4,-5,0,2,9,0,-8,5,0,-1,2,0,-2,-1,0,3,-3,0,7,0,0,-1,6,0,-3,-4,0,5,6,0,0,6,0,9,0,0,-10,-8,0,7,5,0,1,1,0,2,-11,0,6,-2,0,1,0,0,0,1,0,-3,4,0,1,7,0,0,2,0,10,1,0,6,1,0,2,-3,0,4,-14,0,17,15,0,6,-17,0]];
E[459,3] = [x^2-x-1, [1,x,0,x-1,-x-1,0,-3*x,-2*x+1,0,-2*x-1,2*x-5,0,2*x,-3*x-3,0,-3*x,-1,0,3,-x,0,-3*x+2,5*x-4,0,3*x-3,2*x+2,0,-3,-2*x-5,0,2*x+1,x-5,0,-x,6*x+3,0,4*x-6,3*x,0,3*x+1,x-8,0,3*x,-5*x+7,0,x+5,-7*x,0,9*x+2,3,0,2,-7*x+1,0,x+3,3*x+6,0,-7*x-2,-5*x+4,0,-13*x+7,3*x+2,0,2*x+1,-4*x-2,0,3*x-8,-x+1,0,9*x+6,-2*x+5,0,-4*x-5,-2*x+4,0,3*x-3,9*x-6,0,3*x-3,6*x+3,0,-7*x+1,4*x+9,0,x+1,3*x+3,0,8*x-9,-7*x+5,0,-6*x-6,-4*x+9,0,-7*x-7,-3*x-3,0,5*x+4,11*x+9,0,-3*x+6,2*x-13,0,-9*x+6,-2*x-4,0,-6*x-7,12*x-3,0]];
E[459,4] = [x^2+x-1, [1,x,0,-x-1,-x+1,0,3*x,-2*x-1,0,2*x-1,2*x+5,0,-2*x,-3*x+3,0,3*x,1,0,3,-x,0,3*x+2,5*x+4,0,-3*x-3,2*x-2,0,-3,-2*x+5,0,-2*x+1,x+5,0,x,6*x-3,0,-4*x-6,3*x,0,-3*x+1,x+8,0,-3*x,-5*x-7,0,-x+5,-7*x,0,-9*x+2,-3,0,2,-7*x-1,0,-x+3,3*x-6,0,7*x-2,-5*x-4,0,13*x+7,3*x-2,0,-2*x+1,-4*x+2,0,-3*x-8,-x-1,0,-9*x+6,-2*x-5,0,4*x-5,-2*x-4,0,-3*x-3,9*x+6,0,-3*x-3,6*x-3,0,7*x+1,4*x-9,0,-x+1,3*x-3,0,-8*x-9,-7*x-5,0,6*x-6,-4*x-9,0,7*x-7,-3*x+3,0,-5*x+4,11*x-9,0,3*x+6,2*x+13,0,9*x+6,-2*x+4,0,6*x-7,12*x+3,0]];
E[459,5] = [x^3-x^2-7*x+9, [1,x,0,x^2-2,-x^2+6,0,x^2+2*x-7,x^2+3*x-9,0,-x^2-x+9,-2*x^2-2*x+12,0,-2*x^2-2*x+11,3*x^2-9,0,2*x^2-2*x-5,-1,0,x^2+2*x-4,2*x-3,0,-4*x^2-2*x+18,2*x^2-9,0,-4*x^2-2*x+22,-4*x^2-3*x+18,0,x^2+8*x-13,x^2-6,0,2*x^2-10,-2*x^2+3*x,0,-x,3*x^2-15,0,x^2-1,3*x^2+3*x-9,0,4*x^2-x-18,x^2-6,0,x^2+2*x-4,-2*x^2-6*x+12,0,2*x^2+5*x-18,-3*x^2-4*x+15,0,2*x^2-2*x-3,-6*x^2-6*x+36,0,-3*x^2-6*x+14,x^2-2*x-3,0,-6*x^2-2*x+36,3*x^2-6*x+9,0,x^2+x-9,x^2-15,0,-x^2+17,2*x^2+4*x-18,0,-3*x^2-10*x+28,-5*x^2-2*x+30,0,-x^2-2*x-4,-x^2+2,0,3*x^2+6*x-27,-4*x^2-4*x+15,0,5*x^2-25,x^2+6*x-9,0,4*x^2+8*x-19,-12,0,x^2+2*x-1,3*x^2+6*x-30,0,x^2+x-9,6*x^2+4*x-30,0,x^2-6,3*x^2+3*x-9,0,2*x-18,2*x^2,0,-x^2-2*x-5,3*x^2-4*x,0,-7*x^2-6*x+27,3,0,-x^2+5,11*x-18,0,-4*x^2-2*x+10,5*x^2+6*x-27,0,x^2-4*x-4,-x^2-x-9,0,-x^2+4*x-9,6*x^2+6*x-27,0]];
E[459,6] = [x^3+x^2-7*x-9, [1,x,0,x^2-2,x^2-6,0,x^2-2*x-7,-x^2+3*x+9,0,-x^2+x+9,2*x^2-2*x-12,0,-2*x^2+2*x+11,-3*x^2+9,0,2*x^2+2*x-5,1,0,x^2-2*x-4,2*x+3,0,-4*x^2+2*x+18,-2*x^2+9,0,-4*x^2+2*x+22,4*x^2-3*x-18,0,x^2-8*x-13,-x^2+6,0,2*x^2-10,2*x^2+3*x,0,x,-3*x^2+15,0,x^2-1,-3*x^2+3*x+9,0,4*x^2+x-18,-x^2+6,0,x^2-2*x-4,2*x^2-6*x-12,0,2*x^2-5*x-18,3*x^2-4*x-15,0,2*x^2+2*x-3,6*x^2-6*x-36,0,-3*x^2+6*x+14,-x^2-2*x+3,0,-6*x^2+2*x+36,-3*x^2-6*x-9,0,x^2-x-9,-x^2+15,0,-x^2+17,-2*x^2+4*x+18,0,-3*x^2+10*x+28,5*x^2-2*x-30,0,-x^2+2*x-4,x^2-2,0,3*x^2-6*x-27,4*x^2-4*x-15,0,5*x^2-25,-x^2+6*x+9,0,4*x^2-8*x-19,12,0,x^2-2*x-1,-3*x^2+6*x+30,0,x^2-x-9,-6*x^2+4*x+30,0,x^2-6,-3*x^2+3*x+9,0,-2*x-18,-2*x^2,0,-x^2+2*x-5,-3*x^2-4*x,0,-7*x^2+6*x+27,-3,0,-x^2+5,11*x+18,0,-4*x^2+2*x+10,-5*x^2+6*x+27,0,x^2+4*x-4,x^2-x+9,0,-x^2-4*x-9,-6*x^2+6*x+27,0]];
E[459,7] = [x^2-x-3, [1,x,0,x+1,-x+3,0,-x+2,3,0,2*x-3,3,0,2*x-4,x-3,0,x-2,-1,0,-1,x,0,3*x,-x,0,-5*x+7,-2*x+6,0,-1,3,0,2*x-1,-x-3,0,-x,-4*x+9,0,-4*x+2,-x,0,-3*x+9,3*x,0,-x-10,3*x+3,0,-x-3,-3*x,0,-3*x,2*x-15,0,2,3*x+3,0,-3*x+9,-3*x+6,0,3*x,3*x,0,-3*x-1,x+6,0,-6*x+1,8*x-18,0,-x+2,-x-1,0,5*x-12,4*x-3,0,4*x+5,-2*x-12,0,-x-1,-3*x+6,0,x-7,4*x-9,0,3*x+9,-2*x+3,0,x-3,-11*x-3,0,9,-x+15,0,6*x-14,-2*x-3,0,-3*x-9,x-3,0,3*x+2,-3*x-9,0,-3*x-8,-8*x+9,0,3*x-4,6*x-12,0,6*x+9,-2*x-15,0]];
E[459,8] = [x^2+x-3, [1,x,0,-x+1,-x-3,0,x+2,-3,0,-2*x-3,-3,0,-2*x-4,x+3,0,-x-2,1,0,-1,x,0,-3*x,-x,0,5*x+7,-2*x-6,0,-1,-3,0,-2*x-1,-x+3,0,x,-4*x-9,0,4*x+2,-x,0,3*x+9,3*x,0,x-10,3*x-3,0,x-3,-3*x,0,3*x,2*x+15,0,2,3*x-3,0,3*x+9,-3*x-6,0,-3*x,3*x,0,3*x-1,x-6,0,6*x+1,8*x+18,0,x+2,-x+1,0,-5*x-12,4*x+3,0,-4*x+5,-2*x+12,0,x-1,-3*x-6,0,-x-7,4*x+9,0,-3*x+9,-2*x-3,0,-x-3,-11*x+3,0,9,-x-15,0,-6*x-14,-2*x+3,0,3*x-9,x+3,0,-3*x+2,-3*x+9,0,3*x-8,-8*x-9,0,-3*x-4,6*x+12,0,-6*x+9,-2*x+15,0]];
E[459,9] = [x, [1,2,0,2,-2,0,4,0,0,-4,3,0,7,8,0,-4,1,0,-4,-4,0,6,1,0,-1,14,0,8,-9,0,-2,-8,0,2,-8,0,-8,-8,0,0,-9,0,7,6,0,2,0,0,9,-2,0,14,6,0,-6,0,0,-18,0,0,2,-4,0,-8,-14,0,7,2,0,-16,-7,0,6,-16,0,-8,12,0,-12,8,0,-18,14,0,-2,14,0,0,-8,0,28,2,0,0,8,0,-10,18,0,-2,8,0,8,0,0,12,-7,0]];
E[459,10] = [x, [1,2,0,2,4,0,1,0,0,8,-6,0,1,2,0,-4,1,0,-7,8,0,-12,4,0,11,2,0,2,6,0,-8,-8,0,2,4,0,1,-14,0,0,0,0,4,-12,0,8,6,0,-6,22,0,2,0,0,-24,0,0,12,6,0,-7,-16,0,-8,4,0,1,2,0,8,-4,0,3,2,0,-14,-6,0,-9,-16,0,0,14,0,4,8,0,0,-14,0,1,8,0,12,-28,0,-1,-12,0,22,2,0,-1,0,0,0,2,0]];
E[459,11] = [x, [1,-2,0,2,2,0,4,0,0,-4,-3,0,7,-8,0,-4,-1,0,-4,4,0,6,-1,0,-1,-14,0,8,9,0,-2,8,0,2,8,0,-8,8,0,0,9,0,7,-6,0,2,0,0,9,2,0,14,-6,0,-6,0,0,-18,0,0,2,4,0,-8,14,0,7,-2,0,-16,7,0,6,16,0,-8,-12,0,-12,-8,0,-18,-14,0,-2,-14,0,0,8,0,28,-2,0,0,-8,0,-10,-18,0,-2,-8,0,8,0,0,12,7,0]];
E[459,12] = [x, [1,-2,0,2,-4,0,1,0,0,8,6,0,1,-2,0,-4,-1,0,-7,-8,0,-12,-4,0,11,-2,0,2,-6,0,-8,8,0,2,-4,0,1,14,0,0,0,0,4,12,0,8,-6,0,-6,-22,0,2,0,0,-24,0,0,12,-6,0,-7,16,0,-8,-4,0,1,-2,0,8,4,0,3,-2,0,-14,6,0,-9,16,0,0,-14,0,4,-8,0,0,14,0,1,-8,0,12,28,0,-1,12,0,22,-2,0,-1,0,0,0,-2,0]];
E[459,13] = [x, [1,0,0,-2,3,0,2,0,0,0,-3,0,2,0,0,4,1,0,5,-6,0,0,0,0,4,0,0,-4,-3,0,8,0,0,0,6,0,8,0,0,0,6,0,-4,6,0,0,-6,0,-3,0,0,-4,12,0,-9,0,0,0,-12,0,-10,0,0,-8,6,0,5,-2,0,0,-15,0,2,0,0,-10,-6,0,-10,12,0,0,-6,0,3,0,0,0,0,0,4,0,0,0,15,0,14,0,0,-8,-18,0,-13,0,0,0,0,0]];
E[459,14] = [x, [1,0,0,-2,-3,0,2,0,0,0,3,0,2,0,0,4,-1,0,5,6,0,0,0,0,4,0,0,-4,3,0,8,0,0,0,-6,0,8,0,0,0,-6,0,-4,-6,0,0,6,0,-3,0,0,-4,-12,0,-9,0,0,0,12,0,-10,0,0,-8,-6,0,5,2,0,0,15,0,2,0,0,-10,6,0,-10,-12,0,0,6,0,3,0,0,0,0,0,4,0,0,0,-15,0,14,0,0,-8,18,0,-13,0,0,0,0,0]];

E[460,1] = [x, [1,0,-1,0,1,0,-2,0,-2,0,-4,0,1,0,-1,0,0,0,-4,0,2,0,-1,0,1,0,5,0,-7,0,-7,0,4,0,-2,0,-4,0,-1,0,3,0,6,0,-2,0,-13,0,-3,0,0,0,10,0,-4,0,4,0,-8,0,0,0,4,0,1,0,8,0,1,0,13,0,11,0,-1,0,8,0,4,0,1,0,-4,0,0,0,7,0,-6,0,-2,0,7,0,-4,0,-2,0,8,0,10,0,4,0,2,0,-4,0,10,0,4,0,-10,0,-1,0,-2,0,0,0,5,0,-3,0,1,0,5,0,-6,0,1,0,8,0,5,0,-12,0,-5,0,13,0,-4,0]];
E[460,2] = [x, [1,0,3,0,-1,0,2,0,6,0,0,0,-3,0,-3,0,4,0,-4,0,6,0,-1,0,1,0,9,0,1,0,1,0,0,0,-2,0,-8,0,-9,0,11,0,-10,0,-6,0,-1,0,-3,0,12,0,-6,0,0,0,-12,0,-8,0,-8,0,12,0,3,0,12,0,-3,0,13,0,7,0,3,0,0,0,-12,0,9,0,16,0,-4,0,3,0,-6,0,-6,0,3,0,4,0,2,0,0,0,-14,0,-16,0,-6,0,4,0,2,0,-24,0,-6,0,1,0,-18,0,8,0,-11,0,33,0,-1,0,17,0,-30,0,-15,0,-8,0,-9,0,-12,0,11,0,-3,0,0,0]];
E[460,3] = [x, [1,0,1,0,-1,0,-4,0,-2,0,-6,0,-1,0,-1,0,0,0,2,0,-4,0,1,0,1,0,-5,0,9,0,5,0,-6,0,4,0,2,0,-1,0,-9,0,-4,0,2,0,-3,0,9,0,0,0,-6,0,6,0,2,0,0,0,2,0,8,0,1,0,-10,0,1,0,-3,0,-7,0,1,0,24,0,-10,0,1,0,-12,0,0,0,9,0,0,0,4,0,5,0,-2,0,8,0,12,0,-6,0,-4,0,4,0,-18,0,20,0,2,0,12,0,-1,0,2,0,0,0,25,0,-9,0,-1,0,11,0,-4,0,-15,0,-8,0,5,0,-12,0,23,0,-3,0,6,0]];
E[460,4] = [x^2-x-4, [1,0,x,0,1,0,-x+1,0,x+1,0,2,0,x-2,0,x,0,-x+1,0,6,0,-4,0,1,0,1,0,-x+4,0,-2*x+3,0,-4*x+1,0,2*x,0,-x+1,0,x-3,0,-x+4,0,-2*x+1,0,0,0,x+1,0,-3*x,0,-x-2,0,-4,0,x-3,0,2,0,6*x,0,3*x+1,0,2*x-4,0,-x-3,0,x-2,0,x-7,0,x,0,-2*x+7,0,-x-6,0,x,0,-2*x+2,0,2*x+8,0,-7,0,7*x-3,0,-x+1,0,x-8,0,-4*x+8,0,2*x-6,0,-3*x-16,0,6,0,2*x-10,0,2*x+2,0,3*x-13,0,-16,0,-4,0,x+5,0,-6*x+6,0,-2*x+4,0,-5*x+5,0,1,0,2,0,-x+5,0,-7,0,-x-8,0,1,0,-5*x,0,0,0,5*x+8,0,-6*x+6,0,-x+4,0,2*x+10,0,4*x-5,0,-3*x-12,0,2*x-4,0]];
E[460,5] = [x, [1,0,0,0,-1,0,-1,0,-3,0,6,0,6,0,0,0,7,0,2,0,0,0,-1,0,1,0,0,0,-5,0,1,0,0,0,1,0,-5,0,0,0,-7,0,8,0,3,0,8,0,-6,0,0,0,3,0,-6,0,0,0,13,0,-8,0,3,0,-6,0,-9,0,0,0,7,0,-2,0,0,0,-6,0,-12,0,9,0,-5,0,-7,0,0,0,-12,0,-6,0,0,0,-2,0,2,0,-18,0,7,0,8,0,0,0,19,0,-10,0,0,0,3,0,1,0,-18,0,-7,0,25,0,0,0,-1,0,-4,0,0,0,-12,0,-2,0,0,0,6,0,-13,0,0,0,36,0]];

E[461,1] = [x^2+x-1, [1,x,x-1,-x-1,2*x+1,-2*x+1,-2*x-2,-2*x-1,-3*x-1,-x+2,-2*x-1,x,-1,-2,-3*x+1,3*x,-3*x+3,2*x-3,x-3,-x-3,2*x,x-2,-2*x-4,3*x-1,0,-x,2*x+1,2*x+4,2*x-1,4*x-3,0,x+5,3*x-1,6*x-3,-2*x-6,x+4,3*x-1,-4*x+1,-x+1,-5,-3*x,-2*x+2,3*x,x+3,x-7,-2*x-2,-6*x-3,-6*x+3,4*x+1,0,9*x-6,x+1,-2*x+1,-x+2,-5,2*x+6,-5*x+4,-3*x+2,-12,-x+2,4*x+10,0,2*x+8,-2*x+1,-2*x-1,-4*x+3,7*x+9,-3*x,2,-4*x-2,7*x-4,-x+7,-6*x-3,-4*x+3,0,3*x+2,2*x+6]];
E[461,2] = [x^3+2*x^2-x-1, [1,x,2*x^2+3*x-2,x^2-2,-2*x^2-4*x+1,-x^2+2,-1,-2*x^2-3*x+1,-3*x^2-4*x+5,-x-2,-x^2-3*x-3,-2*x^2-5*x+3,-2*x^2-x+2,-x,2*x^2+x-8,-x^2-x+2,2*x^2+5*x+1,2*x^2+2*x-3,-x^2-x-1,3*x^2+6*x-2,-2*x^2-3*x+2,-x^2-4*x-1,3*x^2+4*x,x^2+x-6,4*x+4,3*x^2-2,2*x^2+3*x-9,-x^2+2,6*x^2+9*x-6,-3*x^2-6*x+2,3*x^2+4*x-9,5*x^2+7*x-3,-5*x^2-10*x+1,x^2+3*x+2,2*x^2+4*x-1,4*x^2+7*x-8,-5*x^2-8*x+4,x^2-2*x-1,x^2+4*x-4,3*x+7,3*x^2+5*x-3,x^2-2,-x^2-9*x-5,4*x+5,-7*x^2-10*x+13,-2*x^2+3*x+3,-4*x^2-5*x+4,3*x^2+5*x-5,-6,4*x^2+4*x,x^2+5*x+6,-2*x^2+3*x-1,x^2+5*x-5,-x^2-7*x+2,7*x^2+17*x+3,2*x^2+3*x-1,-3*x^2-4*x+1,-3*x^2+6,-x^2+2*x-1,-4*x^2-3*x+13,-2*x^2-5*x-1,-2*x^2-6*x+3,3*x^2+4*x-5,-x^2+4*x+1,-2*x^2-3*x+4,-4*x-5,2*x^2+6*x-7,-3*x^2-7*x-1,2*x^2+3*x+5,x+2,-6*x^2-2*x+16,-5*x^2-8*x+10,-2*x^2-7*x+2,2*x^2-x-5,4*x^2+12*x,-2*x^2+2*x+3,x^2+3*x+3]];
E[461,3] = [x^7-8*x^5+x^4+18*x^3-2*x^2-12*x+1, [1,x,x^5-6*x^3+x^2+6*x-1,x^2-2,-x^5+6*x^3-x^2-7*x,x^6-6*x^4+x^3+6*x^2-x,-2*x^5+12*x^3-4*x^2-13*x+5,x^3-4*x,-2*x^6+12*x^4-3*x^3-12*x^2+4*x-3,-x^6+6*x^4-x^3-7*x^2,x^6+2*x^5-6*x^4-11*x^3+8*x^2+13*x-1,-x^2+1,-x^6+2*x^5+6*x^4-14*x^3-2*x^2+16*x-7,-2*x^6+12*x^4-4*x^3-13*x^2+5*x,x^6-x^5-6*x^4+8*x^3+5*x^2-9*x+1,x^4-6*x^2+4,2*x^6-2*x^5-13*x^4+15*x^3+16*x^2-18*x-4,-4*x^5-x^4+24*x^3-27*x+2,2*x^6-2*x^5-12*x^4+17*x^3+11*x^2-23*x-1,-x^3+2*x+1,3*x^6-x^5-18*x^4+11*x^3+19*x^2-13*x-1,2*x^6+2*x^5-12*x^4-10*x^3+15*x^2+11*x-1,-2*x^6+x^5+15*x^4-8*x^3-26*x^2+10*x+6,-2*x^6+12*x^4-3*x^3-12*x^2+3*x,2*x^5-13*x^3+3*x^2+16*x-6,2*x^6-2*x^5-13*x^4+16*x^3+14*x^2-19*x+1,2*x^5+2*x^4-11*x^3-6*x^2+11*x+2,-2*x^4-x^3+9*x^2+2*x-8,-x^6-x^5+4*x^4+4*x^3+4*x^2-5*x-10,-x^6+2*x^5+7*x^4-13*x^3-7*x^2+13*x-1,2*x^6-14*x^4+21*x^2+6*x-5,x^5-8*x^3+12*x,-2*x^6-3*x^5+11*x^4+14*x^3-11*x^2-12*x+1,-2*x^6+3*x^5+13*x^4-20*x^3-14*x^2+20*x-2,-x^6+3*x^5+6*x^4-19*x^3-2*x^2+21*x-4,-x^5+6*x^3-3*x^2-6*x+6,3*x^6+3*x^5-19*x^4-13*x^3+29*x^2+14*x-10,-2*x^6+4*x^5+15*x^4-25*x^3-19*x^2+23*x-2,-3*x^6+3*x^5+19*x^4-22*x^3-21*x^2+24*x+1,2*x^6-13*x^4+2*x^3+16*x^2+x,-4*x^6+x^5+26*x^4-12*x^3-35*x^2+18*x+6,-x^6+6*x^5+8*x^4-35*x^3-7*x^2+35*x-3,-x^5-2*x^4+4*x^3+7*x^2-7,x^3-x^2-3*x,2*x^6-x^5-13*x^4+8*x^3+15*x^2-6*x+2,x^6-x^5-6*x^4+10*x^3+6*x^2-18*x+2,2*x^5-2*x^4-14*x^3+10*x^2+19*x-2,-4*x^5-x^4+24*x^3+x^2-24*x,-4*x^6+4*x^5+28*x^4-28*x^3-39*x^2+30*x+6,2*x^6-13*x^4+3*x^3+16*x^2-6*x,2*x^6-6*x^5-13*x^4+39*x^3+9*x^2-41*x+6,-x^5+2*x^4+6*x^3-11*x^2-7*x+12,-2*x^6-2*x^5+12*x^4+10*x^3-14*x^2-14*x+3,2*x^6+2*x^5-11*x^4-6*x^3+11*x^2+2*x,-x^6-x^5+7*x^4+7*x^3-12*x^2-12*x+1,4*x^6-2*x^5-25*x^4+17*x^3+28*x^2-18*x,x^6-9*x^5-8*x^4+54*x^3+4*x^2-56*x+6,-x^6-4*x^5+5*x^4+22*x^3-7*x^2-22*x+1,6*x^6-3*x^5-39*x^4+25*x^3+47*x^2-27*x+3,x^5-5*x^3+x^2+5*x-1,-8*x^6+5*x^5+53*x^4-40*x^3-71*x^2+45*x+9,2*x^5-2*x^4-15*x^3+10*x^2+19*x-2,2*x^6-4*x^5-15*x^4+25*x^3+24*x^2-23*x-9,x^6-10*x^4+24*x^2-8,2*x^6-3*x^5-12*x^4+20*x^3+9*x^2-21*x+5,-3*x^6-5*x^5+16*x^4+25*x^3-16*x^2-23*x+2,-x^6+x^5+8*x^4-6*x^3-16*x^2+x+3,-x^6+x^5+8*x^4-8*x^3-16*x^2+10*x+10,-3*x^5-x^4+17*x^3+x^2-16*x-2,3*x^6-2*x^5-18*x^4+16*x^3+19*x^2-16*x+1,-x^6-x^5+8*x^4+8*x^3-19*x^2-18*x+11,-x^6+8*x^5+8*x^4-51*x^3-6*x^2+60*x-4,-x^6+6*x^5+11*x^4-36*x^3-23*x^2+43*x+10,3*x^6+5*x^5-16*x^4-25*x^3+20*x^2+26*x-3,-2*x^6-2*x^5+12*x^4+9*x^3-15*x^2-7*x+3,3*x^5+x^4-17*x^3-3*x^2+20*x+4,x^6+2*x^5-4*x^4-9*x^3+x^2+6*x]];
E[461,4] = [x^26-3*x^25-41*x^24+126*x^23+726*x^22-2303*x^21-7266*x^20+24054*x^19+45144*x^18-158550*x^17-179824*x^16+687620*x^15+456511*x^14-1985932*x^13-703693*x^12+3785104*x^11+571532*x^10-4624305*x^9-111938*x^8+3430214*x^7-156745*x^6-1399829*x^5+108715*x^4+249906*x^3-21297*x^2-6102*x+223, [79452970167808,79452970167808*x,-18411620439*x^25+504124605276*x^24-470141107935*x^23-20612532444589*x^22+36754184162415*x^21+364237934953392*x^20-753510909479226*x^19-3641958132508816*x^18+8073693987022900*x^17+22652375835053178*x^16-52457925400371350*x^15-90693691656790686*x^14+217656635876641153*x^13+233496124711315187*x^12-582246532910211218*x^11-373820503413376726*x^10+983354853923556414*x^9+343467078638191121*x^8-992645198412472247*x^7-150194664903861945*x^6+537972502717940624*x^5+13620998787985797*x^4-124835163766573768*x^3+5764216701847466*x^2+4325996849510437*x-48453363884879,79452970167808*x^2-158905940335616,-533667583320*x^25+1070948233227*x^24+22722271687947*x^23-44162634567320*x^22-422227565561867*x^21+789640228287734*x^20+4499008951511820*x^19-8027279296218828*x^18-30381371911163382*x^17+51127779851991152*x^16+135691366785720340*x^15-212009684413759972*x^14-406181818081007652*x^13+576100090591804269*x^12+808845880412822488*x^11-1006850664071936146*x^10-1042522792793858504*x^9+1079791855264038202*x^8+823928140449728253*x^7-649619966109323688*x^6-358732742406467765*x^5+183920627873384021*x^4+65182043250006016*x^3-15397912298726654*x^2-176881129779974*x+94898764459539,448889743959*x^25-1225017545934*x^24-18292668269275*x^23+50121020601129*x^22+321835973082375*x^21-887289743589000*x^20-3199085014469110*x^19+8904868180121116*x^18+19733213414449728*x^17-55768776634194086*x^16-78033493210525506*x^15+226061743134869482*x^14+196931898509651039*x^13-595202661331792445*x^12-304130605243236070*x^11+993877684176298962*x^10+258326130184021226*x^9-994706158381173029*x^8-87038866711317999*x^7+535086573272229569*x^6-12152121439519134*x^5-122833544450547883*x^4+10365391119276200*x^3+3933884569021054*x^2-160801071803657*x+4105791357897,269972620418*x^25-451039652138*x^24-11836077626848*x^23+18814326551762*x^22+228175655318140*x^21-342244902905008*x^20-2545541849355908*x^19+3565652828834684*x^18+18199800199959460*x^17-23496224908060992*x^16-87244939871805972*x^15+102039058403139616*x^14+285004277019395610*x^13-294976334222686348*x^12-631779940206416580*x^11+559435644228653752*x^10+927431139777785660*x^9-667012407680284634*x^8-855711999953356524*x^7+458523735016735974*x^6+447015235744728338*x^5-152932740100850684*x^4-103663011059705176*x^3+17310643536509428*x^2+3915305332877942*x-270231480525444,79452970167808*x^3-317811880671232*x,-221164430577*x^25+1393132452858*x^24+7284297020557*x^23-57517955298179*x^22-88281865594749*x^21+1029120036920564*x^20+341085241908042*x^19-10457217049487624*x^18+2558112265784144*x^17+66433359867953838*x^16-37530529716622554*x^15-273639041890329866*x^14+205867848746380815*x^13+732721351234874679*x^12-629056743742682662*x^11-1241704206606630790*x^10+1128840037363391226*x^9+1246293507094846147*x^8-1148816961260830863*x^7-638954685874027687*x^6+595071062288668566*x^5+102944372558794205*x^4-123854049420627848*x^3+15293183051786882*x^2+2127384435621311*x-195726918313523,-530054516733*x^25+841900771827*x^24+23079480931000*x^23-34784900071547*x^22-439396216098226*x^21+621380291108700*x^20+4809560752960452*x^19-6289482529765302*x^18-33485215483394848*x^17+39725127282784660*x^16+154950819228738428*x^15-162556695952011132*x^14-483727440486049971*x^13+433307737703621728*x^12+1013136640222929134*x^11-737514691563812264*x^10-1388049818620554398*x^9+764190458508054093*x^8+1180974049541106792*x^7-442382467753961165*x^6-563122731617868259*x^5+123199714570639816*x^4+117968818778441266*x^3-11542399651746014*x^2-3161540828959101*x+119007871080360,-654486464095*x^25+2148325256257*x^24+25986288436292*x^23-88816208595081*x^22-440641598708662*x^21+1590810325100560*x^20+4149154426094600*x^19-16180963527196262*x^18-23534114177737764*x^17+102941930070078088*x^16+80752701751371896*x^15-425253926000341200*x^14-153557123852975485*x^13+1146465620589004060*x^12+97130412475095698*x^11-1975015197652364888*x^10+180897908371518422*x^9+2066518903949019575*x^8-392900640666124672*x^7-1194265712543343851*x^6+264312392250545123*x^5+317579627757854744*x^4-62864656642058582*x^3-23236863618643070*x^2+1892099576957565*x+418100735784124,158474926821*x^25-896437977508*x^24-5498804921835*x^23+37167083857319*x^22+72994968423747*x^21-665928004769800*x^20-385703902110218*x^19+6752451078182264*x^18-744695703540436*x^17-42617095562948646*x^16+22312028194524602*x^15+173396175918765362*x^14-139051426085089963*x^13-455242284070125857*x^12+459276384578534662*x^11+749412283866399490*x^10-885612778789962362*x^9-723725203828417699*x^8+980589085912596837*x^7+358598431285058211*x^6-570409668490046120*x^5-65677654971198079*x^4+141423971748350736*x^3-2129229598403766*x^2-5908762690025159*x-3195685133099,1022359648668*x^25-2950964621426*x^24-41522351658258*x^23+121964201300020*x^22+726732038273022*x^21-2183905296776552*x^20-7168431140696444*x^19+22205254398126148*x^18+43735317536480736*x^17-141175111399302284*x^16-170357642167441012*x^15+582406158674304532*x^14+421695483196446664*x^13-1565404080393564638*x^12-638943030719293264*x^11+2677541310497012588*x^10+549642142303336232*x^9-2751095740044755168*x^8-245368560916246714*x^7+1508542351271317112*x^6+70216016272270074*x^5-330482871980866466*x^4-20729424600336756*x^3-750573007734768*x^2+2933087190075164*x+341170943020614,358878209116*x^25-767200189710*x^24-15202223620906*x^23+32175532894672*x^22+279502041917646*x^21-583920789398720*x^20-2928268582699888*x^19+6012156223809268*x^18+19307934059212908*x^17-38697383377759540*x^16-83599514848685544*x^15+161758806099754012*x^14+241170931789273228*x^13-441802097026612906*x^12-462438801205999720*x^11+773133148085045284*x^10+581423330781774856*x^9-825491804769006440*x^8-467540127157773478*x^7+489332094132147748*x^6+224982763166257838*x^5-133013084488448046*x^4-50157134141671280*x^3+9664912229920088*x^2+1377141449265192*x-60203894353214,63881722636*x^25-579723611756*x^24-2046063831316*x^23+24768103205780*x^22+22874797419472*x^21-459401010008076*x^20-51046493810908*x^19+4852816216298572*x^18-1182317070222140*x^17-32188663801023404*x^16+13071876666707676*x^15+139388297046570940*x^14-64537482354947920*x^13-396929629522448612*x^12+178520458046245952*x^11+730481557907336784*x^10-279581661124849304*x^9-831552413730695076*x^8+226554652687081696*x^7+540343806551437432*x^6-74667033889272168*x^5-173462925090104568*x^4+7539781448649716*x^3+19851215664409884*x^2-1994487195944784*x+138597589075748,79452970167808*x^4-476717821006848*x^2+317811880671232,-292931793370*x^25+1363761679523*x^24+10730239086177*x^23-56641692675482*x^22-159790030772685*x^21+1019168651686482*x^20+1184295334019056*x^19-10414313136039776*x^18-3679374510762790*x^17+66572218234817200*x^16-7445724076367592*x^15-276442923322350492*x^14+110913117880207706*x^13+749823533249269627*x^12-438622857904484916*x^11-1302044948647220342*x^10+905161108754393692*x^9+1379046608511070832*x^8-1026505322535081365*x^7-814706293476830174*x^6+594964629034538111*x^5+226592473836418915*x^4-143089736018793760*x^3-18251140757849622*x^2+5091620426255384*x+148846416186893,729639161127*x^25-1783444633100*x^24-29651237045477*x^23+72283511004153*x^22+519778353301733*x^21-1265895510664440*x^20-5137327836388466*x^19+12542359319752232*x^18+31367739399970488*x^17-77301202280701002*x^16-121561956136973126*x^15+306831844113517662*x^14+293503831290231915*x^13-784688605388703523*x^12-404573835771905782*x^11+1255242586699925190*x^10+223561724955472162*x^9-1173573665290759089*x^8+119686640193225791*x^7+560404643617876701*x^6-206648011131377128*x^5-99810158350449293*x^4+70563501239562644*x^3-2582754442377058*x^2-1545272273694377*x+49319668018671,122836180012*x^25-248428633700*x^24-5220464953416*x^23+10390938778668*x^22+96173191848448*x^21-187529568027040*x^20-1007801852409880*x^19+1913430187957432*x^18+6627918748254392*x^17-12149140538261328*x^16-28483104543927768*x^15+49764003953256336*x^14+80804457021224588*x^13-131668092629670704*x^12-149646016940493048*x^11+217888761036351024*x^10+175486233551764104*x^9-206287743063988316*x^8-123623019467777152*x^7+84709876392057716*x^6+47472694590354212*x^5+8370374451237440*x^4-7489985710575440*x^3-11907478302003480*x^2+269437890288100*x+461529535731104,319072388268*x^25-794650721507*x^24-13442574339083*x^23+33748632184572*x^22+245119870196335*x^21-621095822196994*x^20-2537569087293360*x^19+6498124212437360*x^18+16447727477094274*x^17-42621263892238868*x^16-69463342727506352*x^15+182267645829768536*x^14+193019147341036876*x^13-512059194004074373*x^12-348894980885312008*x^11+928594627580762850*x^10+398102292094775536*x^9-1037942903481028166*x^8-272038324592646809*x^7+653033805375465032*x^6+98679515279736689*x^5-192247560181698681*x^4-9442682093080948*x^3+16345712725631506*x^2-2761622530464458*x-71595371687619,69617016718*x^25-39046911688*x^24-2863711032214*x^23+1264148941358*x^22+50398779469478*x^21-16292448134920*x^20-488906429678952*x^19+99180564897624*x^18+2766957782258204*x^17-190818806796708*x^16-8400903462519808*x^15-1063356776359140*x^14+5502214430468114*x^13+7378335593012906*x^12+53868092854340252*x^11-16232271658687148*x^10-207456301580064796*x^9+4687514325323526*x^8+342001967973475030*x^7+36068813342001758*x^6-271452383987674176*x^5-50894449698496386*x^4+83855976784074124*x^3+18023119601994924*x^2-3464018590627334*x-59501800326586,184865863972*x^25-847656591603*x^24-6350914119111*x^23+34515574224308*x^22+83527998289775*x^21-606344222019670*x^20-437946119855132*x^19+6012022757366916*x^18-826898812184162*x^17-36939672168047384*x^16+24784056440662700*x^15+145223146357497060*x^14-153299992024107480*x^13-363427130903307137*x^12+502284135539475992*x^11+554957866168661962*x^10-960026124397809400*x^9-466162546483990782*x^8+1050762919405822479*x^7+161724911435974348*x^6-598589504789785011*x^5+8287839302029343*x^4+140323230677482000*x^3-12046498648873650*x^2-3575575668123566*x+145950481493185,-1084808517944*x^25+1428457300710*x^24+48201930827038*x^23-59532260593472*x^22-940660083957750*x^21+1078142508918740*x^20+10607644727480200*x^19-11138320477338976*x^18-76520124929330252*x^17+72465706846870568*x^16+369185903789888552*x^15-309337655854183008*x^14-1209638254549172736*x^13+875578296620732778*x^12+2676185336140366992*x^11-1622553696425853700*x^10-3892393114370608848*x^9+1894928961222320844*x^8+3520077080218075154*x^7-1292724882975584280*x^6-1772967338986863474*x^5+444479468905261442*x^4+383890234225404048*x^3-55970909813496548*x^2-8266930126859332*x+479208006503526,-1318792684963*x^25+3448702169694*x^24+53784579616423*x^23-142299869650557*x^22-944632194465787*x^21+2540354403349168*x^20+9338665217368150*x^19-25708624160189892*x^18-56957322744378552*x^17+162347176703572278*x^16+220492633159160354*x^15-663520459672810458*x^14-534385652717945763*x^13+1761199403921569505*x^12+757829414942997246*x^11-2963941639018420058*x^10-507541067723475746*x^9+2987740769033431993*x^8-10926747922675485*x^7-1615742662629947613*x^6+180464386244753798*x^5+369862458980101487*x^4-62463846899084992*x^3-10401491311560430*x^2+1285420461935957*x-43551491396877,-472737271628*x^25+1450607409173*x^24+17961963741973*x^23-58047140904936*x^22-284695605104917*x^21+997795965311642*x^20+2389089667879088*x^19-9618182539904380*x^18-10712569469978534*x^17+56869487453198944*x^16+17390255728807512*x^15-211410649107299972*x^14+63491430176311044*x^13+483515959333237967*x^12-418529245226108128*x^11-621633675359518526*x^10+1011637438793350120*x^9+321342527041615322*x^8-1249527907411838593*x^7+113988121794730752*x^6+761598522840579517*x^5-168169090269990049*x^4-178471033421775420*x^3+42046541006451366*x^2+579918482386398*x-390257902594711,116114324578*x^25+394393937130*x^24-6853114432148*x^23-15501066659946*x^22+170588974105852*x^21+260034066525244*x^20-2386584590933924*x^19-2418086442987456*x^18+20920010897009116*x^17+13487159294633420*x^16-120588782942785628*x^15-45022942376630684*x^14+464932661404973938*x^13+80484297530837660*x^12-1192196285114828884*x^11-34669112419183144*x^10+1976607095088920572*x^9-130927666563648130*x^8-1998370028624737840*x^7+230465779402735734*x^6+1100645812654411306*x^5-131875253805278376*x^4-256244383367759976*x^3+24706280627757560*x^2+6579609519192750*x-227986201652964,1386617511858*x^25-2345858794698*x^24-60028949018824*x^23+96837566168642*x^22+1136736538740908*x^21-1731619248528216*x^20-12381192816556204*x^19+17585830494827716*x^18+85821422421920572*x^17-111773354404735400*x^16-395701212552180012*x^15+462033226041159672*x^14+1232499253534735474*x^13-1250774937003607492*x^12-2581620726586502084*x^11+2179212952721519608*x^10+3551788036753390988*x^9-2340267877090419226*x^8-3054540530766164668*x^7+1432622946126849294*x^6+1484449251511004986*x^5-436047741198630060*x^4-316683665127766624*x^3+49255331446501116*x^2+7014708078346926*x-726344351867564,-230510803198*x^25+413862257126*x^24+10629033799752*x^23-18672191004094*x^22-213775584440852*x^21+363830290546984*x^20+2470783480444820*x^19-4024569470789164*x^18-18196843722336660*x^17+27927850043512024*x^16+89476851691022036*x^15-126739035138760280*x^14-299102931479248014*x^13+380053950846838364*x^12+678301683660070380*x^11-742558338288018360*x^10-1020791787518413380*x^9+906656797174822598*x^8+969727036834229972*x^7-635812341979326690*x^6-524675431389263558*x^5+216692901555984148*x^4+127305116621987344*x^3-25601116404210212*x^2-5700939728083266*x+460433120418020,-480213281416*x^25+780742896092*x^24+21160124700200*x^23-32802399918936*x^22-408874959529164*x^21+597979547676644*x^20+4559140014531188*x^19-6202881831695940*x^18-32491261215475388*x^17+40351542372499484*x^16+154906418200746972*x^15-171049158444247020*x^14-502762983835614692*x^13+475282621106466024*x^12+1108742916332421896*x^11-847784658345505456*x^10-1627582411730886240*x^9+919565115132464848*x^8+1516778660513414244*x^7-540829178774738100*x^6-809789585567302488*x^5+129969269481703548*x^4+190761197612613788*x^3-1890903152374420*x^2-5581483472617684*x+131113405873008,-388078443848*x^25+573086796760*x^24+16719006153644*x^23-23503333214264*x^22-312281402777368*x^21+413118102862268*x^20+3316205260012228*x^19-4066193556901724*x^18-22060216677085604*x^17+24559343558003740*x^16+95461946927604620*x^15-93700191437230916*x^14-270064872324491860*x^13+223473579093140700*x^12+488682594030922640*x^11-316092109826447656*x^10-536143844336427096*x^9+233705444955510264*x^8+321215827221313328*x^7-64653893274692348*x^6-84039437174275324*x^5+594879972276976*x^4+3886789887337668*x^3-633998148965892*x^2+528403860600620*x-14245624147828,-688413474255*x^25+1246190459547*x^24+30084830150122*x^23-52198936956765*x^22-576410495692716*x^21+949307891147572*x^20+6371840265286908*x^19-9831796130139158*x^18-45014614654262884*x^17+63921873728284176*x^16+212734000315823708*x^15-271125511689046456*x^14-684226775042464625*x^13+754805563576807754*x^12+1493814849365298978*x^11-1350806682054193396*x^10-2164695931640424034*x^9+1471634963057707587*x^8+1978706858755140486*x^7-869086089696285367*x^6-1023515656467856259*x^5+207206174060171622*x^4+227616708121420438*x^3+213970916501334*x^2-4414409494712907*x-589263235880530,79452970167808*x^5-635623761342464*x^3+953435642013696*x,643339096716*x^25-899361697011*x^24-28716394928695*x^23+37462307828812*x^22+563520211064047*x^21-677566132507774*x^20-6398583713912636*x^19+6983017705388516*x^18+46554852056671830*x^17-45241463905023904*x^16-227013505004214788*x^15+191726484314406132*x^14+753523656151361480*x^13-535643702978447201*x^12-1693046643677864800*x^11+968409643425613474*x^10+2506923388079473296*x^9-1075964295034140654*x^8-2313734941339610113*x^7+656744712419725588*x^6+1193528544223130445*x^5-166709307834638041*x^4-267349875657410600*x^3+3044308658049062*x^2+6876763968938890*x+348887621188665,484966299413*x^25-1279964441993*x^24-19732286710862*x^23+52878451213935*x^22+344546731555372*x^21-944147076607364*x^20-3368131778317796*x^19+9544738369132490*x^18+20127882396003700*x^17-60121890887334472*x^16-75017163565271092*x^15+244639703803339776*x^14+168080910978398787*x^13-644756910376400326*x^12-193267645835259862*x^11+1072581002482736532*x^10+24440651771212982*x^9-1059295521621332425*x^8+190112445186051006*x^7+549049035082757461*x^6-183461945544914815*x^5-111243656102574210*x^4+54954271996073598*x^3-1146947977145506*x^2-1638623386956847*x+65323789921510,-272415601310*x^25-373855140151*x^24+14523146519097*x^23+14371217793002*x^22-336163602638779*x^21-233568572667904*x^20+4453594787880550*x^19+2072493045373722*x^18-37423359442007992*x^17-10720700526841926*x^16+208598445043376650*x^15+30985795885982338*x^14-782792493832081380*x^13-35596659482956365*x^12+1963761083817210376*x^11-51158217313769918*x^10-3198871925046168500*x^9+213980561322462544*x^8+3189706313236765405*x^7-242588282237109172*x^6-1740880291558610385*x^5+93973985817708281*x^4+407261586508614706*x^3-7624753733534804*x^2-13110998232707142*x+327907117005249,847801711435*x^25-2522296344986*x^24-34219617338963*x^23+105096232919889*x^22+591027208600539*x^21-1894009765480812*x^20-5690551545812710*x^19+19343343209028448*x^18+33266862184416560*x^17-123222043362379154*x^16-119821576427384970*x^15+507693611985643750*x^14+252589455653800211*x^13-1356574568030713129*x^12-248404033153161694*x^11+2289958009131497178*x^10-57179719022149806*x^9-2291226025578232377*x^8+355220100693447249*x^7+1185628650927529861*x^6-268582225646539142*x^5-214647965279947571*x^4+62784140198274576*x^3-16592513162746422*x^2+246808957973003*x+228744303695725,315439896646*x^25-1514147211808*x^24-11526097055270*x^23+62984006221578*x^22+170565128350642*x^21-1134204671126708*x^20-1243520682240752*x^19+11585021162597804*x^18+3602694998054860*x^17-73868637353569848*x^16+10408639931752624*x^15+304809325666386096*x^14-128959947099555470*x^13-815761559897530586*x^12+493870977733936364*x^11+1378093808825193364*x^10-996389748374179500*x^9-1376467662953302698*x^8+1098520653329741558*x^7+707353880886313542*x^6-607307195728839980*x^5-126662630076728922*x^4+131162093878963076*x^3-8216180646886464*x^2-290354538906206*x-386846676974102,120079906336*x^25-184181572924*x^24-5086419902844*x^23+6994125159736*x^22+95362154540596*x^21-115274168442688*x^20-1041271286051216*x^19+1082602237792664*x^18+7326535802641272*x^17-6394211309449880*x^16-34700610146595104*x^15+24728389647766456*x^14+112276208013920480*x^13-63207056919308732*x^12-247058955271790224*x^11+105281425917145720*x^10+361744218346403344*x^9-109872983149593896*x^8-336644507991624852*x^7+66726651626335152*x^6+180320021481255388*x^5-20844121020580020*x^4-42604976704082352*x^3+2885480016003664*x^2+1211075906164328*x-27392468142676,-354294685904*x^25+557443318842*x^24+16484821132418*x^23-24612204905184*x^22-339630774257050*x^21+476735881815388*x^20+4081153563888144*x^19-5322571917029504*x^18-31700426541647580*x^17+37826894492138344*x^16+166599972969563312*x^15-178211913262686272*x^14-602063606437535120*x^13+561370678925163582*x^12+1488354604548903168*x^11-1161971188502149676*x^10-2449936464803856848*x^9+1506598726539214828*x^8+2535497720313145926*x^7-1111228289609369864*x^6-1470731018263069950*x^5+384501124186999334*x^4+364074670586617464*x^3-43146626858700076*x^2-9339153670177628*x+911942920251570,1222675476763*x^25-2044407963749*x^24-52613450599196*x^23+83043116456861*x^22+992520320180662*x^21-1461949696355472*x^20-10795964520882016*x^19+14622488640654286*x^18+74938094234442228*x^17-91536724145170840*x^16-347034548248550480*x^15+372472484204446192*x^14+1089051753145871345*x^13-990981450175081740*x^12-2305400825987855290*x^11+1690771595010813488*x^10+3213644774189734370*x^9-1764702916610811611*x^8-2803400866957077904*x^7+1033457452286726679*x^6+1380644685250844009*x^5-290530065924916200*x^4-299330029093753834*x^3+27118461425971166*x^2+8198465999441919*x-309168884744484,418729753122*x^25-920818075199*x^24-17356222992669*x^23+37174006492358*x^22+312943214325869*x^21-647996580321270*x^20-3223379265982760*x^19+6382045394024108*x^18+20956983401681214*x^17-39001873846385684*x^16-89800836598165464*x^15+152725494846716040*x^14+257660182279391830*x^13-381013379635276715*x^12-494973965711189492*x^11+577979496743433230*x^10+630245599606526748*x^9-468758708212421592*x^8-520596246921557295*x^7+119086057972823006*x^6+260824246663565873*x^5+66330355758333801*x^4-61124905914850624*x^3-34714752124389734*x^2+1531763823482384*x+798217101070051,169804138466*x^25-9413346776*x^24-7507595165110*x^23-143174667790*x^22+144035541366634*x^21+16930813794036*x^20-1575387155237148*x^19-375832820459188*x^18+10846959193842192*x^17+4117906951777824*x^16-48933409811990300*x^15-26278719488482784*x^14+145632996837824082*x^13+102857100199679826*x^12-279739920106055820*x^11-247244654378936772*x^10+326617832819454516*x^9+349794757590854514*x^8-202732452042315894*x^7-260540264702211266*x^6+46557469196844836*x^5+76287562811576754*x^4+625409422066416*x^3-1981384985584088*x^2+365301235686650*x-15524594728114,1455604770044*x^25-3343763786078*x^24-61300357913246*x^23+138788454011588*x^22+1123582685861642*x^21-2497853242147856*x^20-11772759830565276*x^19+25560867790953332*x^18+77913557476966904*x^17-163900266705999196*x^16-339897734567963668*x^15+684269563127069700*x^14+991207668366566488*x^13-1871802654797388258*x^12-1922471315421164512*x^11+3290542249384219140*x^10+2427707077942107448*x^9-3539983390028890872*x^8-1915879152365118782*x^7+2118163614454108776*x^6+867152159791492110*x^5-578667985288844246*x^4-174797666333059604*x^3+40015496977580760*x^2+3499234181482980*x-175119781993478,1015913928503*x^25-3068064208773*x^24-40750101508748*x^23+126947798236265*x^22+700685060125170*x^21-2276331402435700*x^20-6733049586804772*x^19+23189443679056394*x^18+39439038920188744*x^17-147856484576592548*x^16-143399722529673372*x^15+612814559548853228*x^14+310818151772285737*x^13-1660558291222483532*x^12-339039479965402522*x^11+2884347513939275272*x^10+26917775868011834*x^9-3061581373410918935*x^8+313396718049373684*x^7+1818918720145193831*x^6-261556347701000115*x^5-514933717239943468*x^4+67483726033456882*x^3+46835239874174258*x^2-2510197170464801*x-877426559234004,-1231974946352*x^25+2313931210826*x^24+52136672404494*x^23-94639326222276*x^22-960632504470454*x^21+1675098466515132*x^20+10113679750838556*x^19-16812795372514312*x^18-67121224396072376*x^17+105349990569583648*x^16+292191059604928476*x^15-427631970321517008*x^14-841293172950369980*x^13+1129441373680730262*x^12+1576439635580162544*x^11-1898950322402605852*x^10-1840796825822906120*x^9+1929954567102404796*x^8+1229692170227047862*x^7-1076792895930516260*x^6-393119662093617294*x^5+273312404368368990*x^4+34053751195320276*x^3-16262148293258404*x^2+2713924984904816*x-177565574495318,-1825968253122*x^25+3724781591334*x^24+77153612667472*x^23-153089099930406*x^22-1420171507906292*x^21+2725426036099096*x^20+14955663613286000*x^19-27547529195266316*x^18-99530683673150632*x^17+174111296859126696*x^16+436598377254470272*x^15-714411233214039352*x^14-1278777653036831030*x^13+1912813175722799800*x^12+2483559364078052476*x^11-3272390332493038640*x^10-3121556492348708076*x^9+3398645784336459682*x^8+2428400482595175736*x^7-1943005650131995754*x^6-1074066953959770134*x^5+501825192253686008*x^4+215129247671816716*x^3-31370097133512700*x^2-6140293569990762*x+241912299501512,214584086335*x^25-1659456513451*x^24-6740422845850*x^23+69166502458785*x^22+72884330344808*x^21-1251434775738472*x^20-118719033162444*x^19+12886572807735162*x^18-4429947228538628*x^17-83197818002902796*x^16+47089200905572700*x^15+349632031788153468*x^14-234562935556901727*x^13-960786583989068502*x^12+670915953398534214*x^11+1687206171432154820*x^10-1122368293795293478*x^9-1787426243335825947*x^8+1034764448252046994*x^7+1011770634049919719*x^6-452848594309642825*x^5-223529144723712126*x^4+69188729082877106*x^3-2916628059277378*x^2+345691875290283*x-179627397994610,-824625738837*x^25+1506955487956*x^24+34865618498451*x^23-61522872897287*x^22-642815086968115*x^21+1088173577966592*x^20+6785022888130546*x^19-10926647930773408*x^18-45258012090230500*x^17+68576248504271134*x^16+198683709972398398*x^15-279134637150332394*x^14-579730338342191085*x^13+740288802223580601*x^12+1109273058848701770*x^11-1252633414634001410*x^10-1339533280424468998*x^9+1288900644164771619*x^8+946820296602530795*x^7-743446635729888059*x^6-335402449438877600*x^5+212264009789063711*x^4+36324769920101576*x^3-22542448152913522*x^2+3726700925009215*x+300482139012947,934166294414*x^25-1854212216394*x^24-40913731049584*x^23+77936398193518*x^22+787910089693968*x^21-1427498128940860*x^20-8785600944508744*x^19+14962058552895904*x^18+62870828745642592*x^17-99090390515306564*x^16-302435440889383280*x^15+432000698167734980*x^14+995447632007028474*x^13-1252079200837632068*x^12-2236027200814403508*x^11+2377500388371098616*x^10+3349081875311852196*x^9-2834051657149891566*x^8-3172459799738660184*x^7+1944261892552296734*x^6+1701305637996695814*x^5-643882483092717600*x^4-394541445032823244*x^3+70365395013026968*x^2+9990482951024734*x-778924924773220,32395594289*x^25-1420264394775*x^24+1517755320192*x^23+58511654097011*x^22-90917971247642*x^21-1045819347769960*x^20+1753039791835532*x^19+10628681920395898*x^18-18083006963420456*x^17-67619251404425960*x^16+113652953609545388*x^15+279301194784480952*x^14-455308115985499329*x^13-751191154109830332*x^12+1167726062428710786*x^11+1281821917121444216*x^10-1864738801834103218*x^9-1302445172123333657*x^8+1735578129254899144*x^7+687499319199248657*x^6-829920432475741661*x^5-127077400936737400*x^4+160186421609918334*x^3-9487967191475118*x^2-3274900734068767*x+105420411573044,-990229073790*x^25+3347944550532*x^24+38493533193486*x^23-137744802212610*x^22-630965956924030*x^21+2449980329253368*x^20+5605972326902892*x^19-24672365757509248*x^18-28421999321425288*x^17+154740105492832948*x^16+73940638012110548*x^15-626149925577917052*x^14-20901490498414166*x^13+1636771051382390906*x^12-462403528312289748*x^11-2686768434390994636*x^10+1405993493976652620*x^9+2591840655894090690*x^8-1880136055902034442*x^7-1283069847049134570*x^6+1193421020064561588*x^5+230485256523739598*x^4-291301325806506864*x^3+10283457315852084*x^2+2151609944626394*x+301897850395974,-1301982386472*x^25+3809502118402*x^24+52913231759742*x^23-157638428137816*x^22-926018720517666*x^21+2824912685002928*x^20+9125761875006220*x^19-28732362967992412*x^18-55573549616486152*x^17+182641582158733212*x^16+215849810091926980*x^15-752887122371062484*x^14-532311516024218972*x^13+2020320713077566946*x^12+803712154601917272*x^11-3444838578059818100*x^10-693263899452652304*x^9+3516819056729384660*x^8+322905919467229470*x^7-1898238550082244308*x^6-109767087490121362*x^5+392097991797475686*x^4+37147463430441404*x^3+10553642305199952*x^2-5385630973228336*x-708235380422122,657146057185*x^25-2257391799014*x^24-26323087557985*x^23+93656472258435*x^22+453277723869145*x^21-1686354759554772*x^20-4382542621529698*x^19+17277198253614144*x^18+26055268301360464*x^17-110961675143352438*x^16-97952004202333774*x^15+463925517613911154*x^14+230146943546865577*x^13-1269480363102956131*x^12-320840718941167578*x^11+2226438806736028062*x^10+238785835486256918*x^9-2376605884473036283*x^8-85988136402480949*x^7+1395190702481500767*x^6+32556754925299958*x^5-362939976989947745*x^4-14670383969974432*x^3+19938717610583310*x^2+1545753687524609*x-338923508406609,1813993740876*x^25-3177631032646*x^24-77876240325466*x^23+130052225132000*x^22+1461760881280758*x^21-2306029975395976*x^20-15767867135404616*x^19+23223961466603020*x^18+108074852100350500*x^17-146354105099827020*x^16-491432707462638288*x^15+599493106578928036*x^14+1502953151555574164*x^13-1605867689814610490*x^12-3069278537882243624*x^11+2759291756966164532*x^10+4071874416082089464*x^9-2899325339723803864*x^8-3323771855693628318*x^7+1701794613407187196*x^6+1504979663808042222*x^5-467429787929409094*x^4-297268704471884232*x^3+36545501228386752*x^2+7734795705489952*x-309215705144334,101903721654*x^25-1817476927265*x^24-302917721713*x^23+74826046231914*x^22-85865036603217*x^21-1329294049968020*x^20+2108800733657138*x^19+13332543104153546*x^18-24142852004525768*x^17-82900402145103590*x^16+162205731770705302*x^15+329981507830420674*x^14-685007176238278444*x^13-836433741360642463*x^12+1844404173276142128*x^11+1292885938605414046*x^10-3101002865946600276*x^9-1092023411241227584*x^8+3072636105498758571*x^7+358806836635492340*x^6-1601078647655474851*x^5+55981675464640911*x^4+346684056625860622*x^3-43844762509946568*x^2-9078268908797882*x+768077712927275,-995426570700*x^25+2712491248054*x^24+40776617440666*x^23-110775807108448*x^22-726040173053302*x^21+1963733563205592*x^20+7376674554735304*x^19-19814976470384684*x^18-47235505921956692*x^17+125420243772263964*x^16+198963833053619568*x^15-517389826400033860*x^14-560066693148318628*x^13+1399697039078485978*x^12+1054826627351943672*x^11-2435313783315144612*x^10-1322142124171254504*x^9+2594907728083865128*x^8+1089969296617244638*x^7-1539471035500829564*x^6-555948331906384670*x^5+418391267568554006*x^4+132319184663131736*x^3-29939952763631248*x^2-3700426699226560*x+171811697819582,1080420138412*x^25-1935670963594*x^24-46227899680538*x^23+79884386275836*x^22+860679499544430*x^21-1424401902678224*x^20-9151478004161948*x^19+14370697018140700*x^18+61316828042311680*x^17-90227942432082644*x^16-269481435073496036*x^15+365183708352575820*x^14+784061020482679384*x^13-953752643249796638*x^12-1489281166212609376*x^11+1561172342522189340*x^10+1778430467715582840*x^9-1493457566679517936*x^8-1246477143455848546*x^7+715687716339338792*x^6+456671349384738650*x^5-102608489850344842*x^4-73202365354193444*x^3-18608156539451432*x^2+4499852733392956*x+451279789423174,-659896948156*x^25+1471380162144*x^24+27704473539480*x^23-60240117221148*x^22-507951639424404*x^21+1069910311762532*x^20+5348168439484524*x^19-10812512839231484*x^18-35786273396007316*x^17+68552545083396188*x^16+159155098123022900*x^15-283540338523115116*x^14-478388301282573688*x^13+770820191692952608*x^12+969872553995321808*x^11-1353125154576636928*x^10-1301087563185951032*x^9+1463024546218270036*x^8+1106405142124364924*x^7-885060616362853408*x^6-542247208029574316*x^5+242967584501754228*x^4+118117277153172476*x^3-15808585726934236*x^2-2799148037327424*x+107087561755768,-1632606406798*x^25+3464060631538*x^24+69548852901728*x^23-144274587370106*x^22-1292674088160788*x^21+2608420746310592*x^20+13778688560849688*x^19-26856458414353580*x^18-93156674387161680*x^17+173664079762255488*x^16+417485345272347640*x^15-733658049527989072*x^14-1259953374933277874*x^13+2041441679658445224*x^12+2553150477411282708*x^11-3681316273285740016*x^10-3406572911458460820*x^9+4120929742539227102*x^8+2870933612289465392*x^7-2635140960279446718*x^6-1397368905578042954*x^5+818433095120005376*x^4+308858398010715212*x^3-84330456888611292*x^2-10274249027995006*x+974662925995080,-718911980056*x^25+1967237179388*x^24+29486678373216*x^23-80072658955280*x^22-526376148158620*x^21+1415229307028812*x^20+5370738319039884*x^19-14246435840608636*x^18-34605859573652380*x^17+90053456443128676*x^16+147006554788115492*x^15-371679387938139412*x^14-418148856344909796*x^13+1009453768689089200*x^12+795784244203900632*x^11-1775307710981765528*x^10-1001724321073316768*x^9+1940879929835246056*x^8+813428912536767732*x^7-1225556405958104948*x^6-393314512222480680*x^5+393002588090482124*x^4+81269570542012964*x^3-47438934086850004*x^2+1606674103381244*x-190653685173392,271382075562*x^25+149398435619*x^24-11844141603503*x^23-8879986698582*x^22+226456089126335*x^21+214738838098686*x^20-2485518096569532*x^19-2849826017661156*x^18+17220117833456590*x^17+23225401315864244*x^16-77847587930133916*x^15-121939000581765952*x^14+228424637537962778*x^13+417852923336834115*x^12-414612586314239716*x^11-921346981276474454*x^10+404860210292507092*x^9+1249126631709270836*x^8-108536165851129529*x^7-946082143553355030*x^6-116051050712451445*x^5+326276878876248439*x^4+61915648782366372*x^3-31317285927601562*x^2-393951017780656*x-169819925362499,-819049963218*x^25+1859877705667*x^24+34541160799365*x^23-76622313383586*x^22-636108340061693*x^21+1369827961350078*x^20+6727301579590612*x^19-13936876772495164*x^18-45226082614846074*x^17+88940735721392588*x^16+202241361478176644*x^15-369958451496840320*x^14-612336784177372906*x^13+1009383106426375263*x^12+1254909913002304124*x^11-1771245601872515374*x^10-1711798908007060188*x^9+1901647231273984296*x^8+1492319447481855203*x^7-1131421026489956234*x^6-756454971192730773*x^5+302457578975052763*x^4+172252628613671364*x^3-19075551255921642*x^2-4789962255784540*x+153516204758865,598779794372*x^25-1529855269916*x^24-24301782576036*x^23+62607190926292*x^22+424104042058472*x^21-1107430604418684*x^20-4153082861421052*x^19+11087768624653140*x^18+24929463558481116*x^17-69106617036749932*x^16-93641139535141284*x^15+277706093218203380*x^14+212438945143873552*x^13-720170254960846364*x^12-249595426204345416*x^11+1170616541430159896*x^10+37951367046975328*x^9-1113229266772298564*x^8+243701902219213856*x^7+534447422631675616*x^6-238169692007287360*x^5-82999742845403584*x^4+63862797129372524*x^3-9999196373972116*x^2+2203197484163912*x+101394793386404,79452970167808*x^6-794529701678080*x^4+1906871284027392*x^2-635623761342464,-1675817810400*x^25+4108351168850*x^24+69889490972338*x^23-169662370230368*x^22-1267449282318194*x^21+3036808678073732*x^20+13126829515682904*x^19-30884002005250792*x^18-85801097175918084*x^17+196576507726078784*x^16+369639213097071368*x^15-813087892044433080*x^14-1066569905180143432*x^13+2196692843676003182*x^12+2061055072527465040*x^11-3794319127067482748*x^10-2638649185201760464*x^9+3975645511479897052*x^8+2185103877613670094*x^7-2280208835063257120*x^6-1090095623448777438*x^5+577003822412681406*x^4+253054352011385296*x^3-31749021724178020*x^2-8247580868050612*x+715241848408290,1030655593137*x^25-2339491963339*x^24-43598418357404*x^23+96456026848231*x^22+804043807229174*x^21-1724081837174180*x^20-8491860927018148*x^19+17511951874524726*x^18+56759949879297896*x^17-111325695276356804*x^16-250646345369449788*x^15+459832281770443604*x^14+741983996040952111*x^13-1240333424692492612*x^12-1466695744910504990*x^11+2139234507455184384*x^10+1899031906605141726*x^9-2241720849531414505*x^8-1550046063882851636*x^7+1294368730937879865*x^6+733855416582223523*x^5-337290485556890540*x^4-157729991645859634*x^3+20577956711699542*x^2+4274542789349697*x-143464618567668,-1301426191124*x^25+3384863633604*x^24+52640238956840*x^23-138049035607940*x^22-915683897240104*x^21+2433492889757752*x^20+8941440933846384*x^19-24279397293528160*x^18-53571984029832384*x^17+150782683416182744*x^16+201365300416071008*x^15-603649856524481272*x^14-460629782336344236*x^13+1559196482887198192*x^12+563374814954572856*x^11-2523918814134129008*x^10-166297227735612184*x^9+2392567545278038484*x^8-383576690835882008*x^7-1155505665407776612*x^6+398606270342079860*x^5+197461856032137144*x^4-105783765318803736*x^3+11745867505213616*x^2-3612472811515572*x-112406494354768,760798042986*x^25-2576191793975*x^24-29687780684457*x^23+105744583532498*x^22+492310372486145*x^21-1882703950155902*x^20-4489231664985924*x^19+19063190047382780*x^18+24128264906122258*x^17-120953020209262180*x^16-73941374846292100*x^15+499574307311771728*x^14+96526946789042178*x^13-1351647322200966907*x^12+114178838518362412*x^11+2351356790029542950*x^10-626985655923086844*x^9-2513694614212398264*x^8+938521490378255809*x^7+1521966684010236218*x^6-622303024230650055*x^5-450953786917448527*x^4+163836536039336836*x^3+45191985407341058*x^2-7158652703571132*x-405840317142885,-761447501930*x^25+1498607157628*x^24+30442499829502*x^23-58845697365430*x^22-516704542438954*x^21+982690604020716*x^20+4808917862182488*x^19-9062450093290460*x^18-26154645488984340*x^17+49954025555357264*x^16+78557796407865928*x^15-164561365137923432*x^14-78252933777238918*x^13+292955084123130210*x^12-276350342552414660*x^11-149797241138932660*x^10+1128449788377474868*x^9-362341261040910274*x^8-1725530476493596934*x^7+632004681287606014*x^6+1225762980323567144*x^5-320340585031047878*x^4-329730477303450580*x^3+44568399805210032*x^2+4952199991397074*x-19696575810194,-1191101944081*x^25+3354106865387*x^24+48695583558062*x^23-138389876087719*x^22-860941702484834*x^21+2474223028762090*x^20+8625177919284462*x^19-25125429536469352*x^18-53912194114542426*x^17+159611581953407210*x^16+218304211658764538*x^15-658431775262451970*x^14-576595519423727285*x^13+1772064132084572546*x^12+979963164867116322*x^11-3043177691598261580*x^10-1045752265893377006*x^9+3159212655657326625*x^8+691855527194871168*x^7-1783580074985946335*x^6-287361272948467709*x^5+436877248605031356*x^4+60453539527442056*x^3-18912633293806212*x^2-1334372882188371*x+60748679092130,1575281209954*x^25-2896174848822*x^24-67602423528188*x^23+119265183118490*x^22+1268592555621648*x^21-2128502055015904*x^20-13689180411747796*x^19+21587656414091508*x^18+93996741439147580*x^17-137139073126675464*x^16-429363949566606868*x^15+567239352983876856*x^14+1325396797200611450*x^13-1538981041172565000*x^12-2753331979621160708*x^11+2693728961554061552*x^10+3760993003702185180*x^9-2917952330459765378*x^8-3217476532130794016*x^7+1816384134213477478*x^6+1563544124627032238*x^5-572734609678611104*x^4-342694064973612408*x^3+70009538519868708*x^2+13052470475486158*x-1292447937823416,-1438169532935*x^25+4107142096072*x^24+57575691370033*x^23-169043855909577*x^22-981079130649473*x^21+3001366710802880*x^20+9224976514947890*x^19-30091016916109544*x^18-51538560814300880*x^17+187235923091104474*x^16+167852111442655302*x^15-748105039662138398*x^14-259905682217644539*x^13+1917565307349074807*x^12-109911968484155498*x^11-3052210700161868606*x^10+1182144217708250974*x^9+2797268659249576457*x^8-1961885929247218811*x^7-1256502833623413469*x^6+1385425478899151300*x^5+170235693840517137*x^4-369590250139746820*x^3+23467950891158314*x^2+8492574894260849*x-287699117687347,516930267451*x^25+373347827882*x^24-25212060063135*x^23-15550910420271*x^22+540086262882647*x^21+278678052613036*x^20-6678342955535670*x^19-2805917232161120*x^18+52687224233983560*x^17+17366705175309822*x^16-276690266388210650*x^15-67719142767066714*x^14+979225663994514163*x^13+162650751674094291*x^12-2312388858571773342*x^11-219200785568507614*x^10+3526270065152381394*x^9+116469317423381935*x^8-3258645162296135491*x^7+49621825809130677*x^6+1625540680594160686*x^5-71405983987291847*x^4-346757933041014704*x^3+16665504097073874*x^2+10654027460693875*x+246784286075441,-567827521870*x^25+1406938707216*x^24+23238579244182*x^23-58444236614354*x^22-407746589150970*x^21+1048465606789084*x^20+3997429888674920*x^19-10637523696132164*x^18-23855641740346548*x^17+67132303906222928*x^16+87906543934663576*x^15-272961729757317576*x^14-189319375071546514*x^13+715843824924450042*x^12+184120994270832180*x^11-1176673743384061172*x^10+82222628306278332*x^9+1133830364480501506*x^8-374672468747348702*x^7-557863569129062710*x^6+314899285005344612*x^5+96869045515093186*x^4-87046503458101740*x^3+6427568939963656*x^2+1537967572359790*x-70343096952058,-1707242328558*x^25+4795902374795*x^24+69761575671179*x^23-198176434802298*x^22-1231949841565057*x^21+3550763947347136*x^20+12314138523691422*x^19-36166886531890474*x^18-76662966954158876*x^17+230737811442117550*x^16+308376291549891418*x^15-957747232598443602*x^14-806141579881156660*x^13+2601775994036537813*x^12+1350489500266523216*x^11-4535087004165196482*x^10-1420043793502984188*x^9+4829747321931936988*x^8+941797465788082019*x^7-2860617796317232684*x^6-407657431265730947*x^5+779129611548499551*x^4+82843363957597706*x^3-54669118769571036*x^2+3748783333426686*x-486364438476617,-69614213940*x^25+333713524332*x^24+2304986868232*x^23-12597735016676*x^22-31076527847776*x^21+206288449440240*x^20+209803875606280*x^19-1921211864905976*x^18-611379656385864*x^17+11190920006892416*x^16-874746459138328*x^15-42069598013945888*x^14+13654557587907244*x^13+100776619516850032*x^12-49941473993887128*x^11-142662812754325456*x^10+94440661015974376*x^9+89372482691790948*x^8-97927085270546448*x^7+29722193615776276*x^6+52301825005128100*x^5-72400212623875472*x^4-12143237635649872*x^3+27583374275409080*x^2+166459339743396*x-949836890575136,-98505378525*x^25+584054349515*x^24+3208426876930*x^23-23920621769711*x^22-36395459785722*x^21+420259323222646*x^20+77122621648662*x^19-4136418981911604*x^18+2089830718867510*x^17+24966870440912566*x^16-23695433435334726*x^15-94867790040379526*x^14+123091039821467079*x^13+222848188629224498*x^12-367726142920814318*x^11-298991570387405084*x^10+650329885959133138*x^9+175148784170191109*x^8-651696473528521732*x^7+29954389338815749*x^6+328179828872239087*x^5-73844031720887272*x^4-61511122368127520*x^3+21887614785583872*x^2-1247588399337895*x-669855951148166]];

E[462,1] = [x, [1,1,-1,1,-4,-1,1,1,1,-4,-1,-1,-6,1,4,1,-4,1,-2,-4,-1,-1,-8,-1,11,-6,-1,1,-6,4,6,1,1,-4,-4,1,-6,-2,6,-4,12,-1,4,-1,-4,-8,6,-1,1,11,4,-6,2,-1,4,1,2,-6,0,4,10,6,1,1,24,1,4,-4,8,-4,-12,1,0,-6,-11,-2,-1,6,-16,-4,1,12,-14,-1,16,4,6,-1,-14,-4,-6,-8,-6,6,8,-1,-14,1,-1,11,14,4,-6,-6,4,2,-8,-1,6,4,6,1,14,2,32,-6,-6,0,-4,4,1,10,-12,6,-24,1,0,1,-4,24,-2,1,-2,4,4,-4,14,8,2,-4,-6,-12,6,1,24,0,-1,-6,-10,-11,-8,-2,-4,-1,-24,6,-4,-16,-2,-4,-8,1,4,12,-4,-14,-12,-1,23,16,-2,4,2,6,11,-1,0,-14,-4,-4,-8,-6,-10,-8,24,-6,4,6,-1,8,0,-1]];
E[462,2] = [x, [1,1,1,1,2,1,-1,1,1,2,1,1,-2,-1,2,1,-2,1,0,2,-1,1,0,1,-1,-2,1,-1,-2,2,4,1,1,-2,-2,1,-2,0,-2,2,-10,-1,4,1,2,0,4,1,1,-1,-2,-2,-2,1,2,-1,0,-2,-12,2,-2,4,-1,1,-4,1,12,-2,0,-2,8,1,6,-2,-1,0,-1,-2,-8,2,1,-10,-8,-1,-4,4,-2,1,-14,2,2,0,4,4,0,1,-14,1,1,-1,-10,-2,4,-2,-2,-2,-12,1,14,2,-2,-1,18,0,0,-2,-2,-12,2,2,1,-2,-10,4,-12,-1,8,1,4,-4,0,1,0,12,2,-2,10,0,0,-2,4,8,-2,1,-4,6,1,-2,-10,-1,8,0,-2,-1,8,-2,18,-8,-2,2,0,1,4,-10,2,-8,0,-1,-9,-4,0,4,6,-2,1,1,-12,-14,12,2,2,2,-2,0,-4,4,-2,4,-1,0,-8,1]];
E[462,3] = [x, [1,1,1,1,0,1,1,1,1,0,-1,1,2,1,0,1,0,1,2,0,1,-1,0,1,-5,2,1,1,-6,0,2,1,-1,0,0,1,2,2,2,0,0,1,-4,-1,0,0,-6,1,1,-5,0,2,-6,1,0,1,2,-6,0,0,2,2,1,1,0,-1,-4,0,0,0,-12,1,-4,2,-5,2,-1,2,8,0,1,0,6,1,0,-4,-6,-1,-6,0,2,0,2,-6,0,1,2,1,-1,-5,6,0,14,2,0,-6,0,1,-10,0,2,1,-18,2,0,-6,2,0,0,0,1,2,0,2,0,1,8,1,-4,0,-6,-1,2,-4,0,0,-18,0,14,0,-6,-12,-2,1,0,-4,1,2,6,-5,8,2,0,-1,0,2,-16,8,-6,0,0,1,20,0,0,6,12,1,-9,0,2,-4,18,-6,-5,-1,0,-6,-12,0,20,2,2,0,0,2,0,-6,1,0,24,1]];
E[462,4] = [x^2-12, [1,-1,1,1,x,-1,1,-1,1,-x,1,1,2,-1,x,1,-x,-1,-x+2,x,1,-1,-2*x,-1,7,-2,1,1,-6,-x,-x+2,-1,1,x,x,1,2*x+2,x-2,2,-x,-x,-1,2*x-4,1,x,2*x,-x+6,1,1,-7,-x,2,2*x+6,-1,x,-1,-x+2,6,-2*x,x,2,x-2,1,1,2*x,-1,-2*x+8,-x,-2*x,-x,-12,-1,-x-4,-2*x-2,7,-x+2,1,-2,2*x-4,x,1,x,-3*x-6,1,-12,-2*x+4,-6,-1,2*x+6,-x,2,-2*x,-x+2,x-6,2*x-12,-1,2,-1,1,7,4*x-6,x,x-10,-2,x,-2*x-6,2*x,1,-4*x+2,-x,2*x+2,1,-4*x-6,x-2,-24,-6,2,2*x,-x,-x,1,-2,-x,-x+2,2*x,-1,2*x-4,-1,2*x-4,-2*x,3*x+6,1,-x+2,2*x-8,x,x,-4*x-6,2*x,x-10,x,-x+6,12,2,1,-6*x,x+4,1,2*x+2,-6,-7,-16,x-2,-x,-1,2*x-12,2,3*x+8,-2*x+4,2*x+6,-x,-2*x,-1,-4,-x,x,3*x+6,-2*x+12,-1,-9,12,-x+2,2*x-4,2*x+6,6,7,1,-2*x,-2*x-6,6*x,x,-3*x-4,-2,2,2*x,2*x+24,x-2,-x,-x+6,1,-2*x+12,-6*x,1]];
E[462,5] = [x, [1,-1,1,1,0,-1,-1,-1,1,0,-1,1,6,1,0,1,4,-1,6,0,-1,1,-4,-1,-5,-6,1,-1,6,0,-2,-1,-1,-4,0,1,10,-6,6,0,-4,1,8,-1,0,4,-6,1,1,5,4,6,-10,-1,0,1,6,-6,0,0,-2,2,-1,1,0,1,-4,4,-4,0,16,-1,12,-10,-5,6,1,-6,-16,0,1,4,-2,-1,0,-8,6,1,-6,0,-6,-4,-2,6,0,-1,-6,-1,-1,-5,-14,-4,-14,-6,0,10,8,1,-14,0,10,-1,-2,-6,0,6,6,0,-4,0,1,2,-4,-2,0,1,-16,-1,8,0,-22,-1,-6,4,0,-4,22,4,-14,0,-6,-16,-6,1,0,-12,1,10,-6,5,0,-6,4,-1,0,6,12,16,-10,0,4,-1,-4,-4,0,2,12,1,23,0,6,8,6,-6,5,-1,0,6,4,0,8,6,-2,4,0,2,-4,-6,-1,0,-12,1]];
E[462,6] = [x, [1,-1,-1,1,2,1,-1,-1,1,-2,1,-1,2,1,-2,1,6,-1,-8,2,1,-1,4,1,-1,-2,-1,-1,2,2,8,-1,-1,-6,-2,1,6,8,-2,-2,6,-1,8,1,2,-4,4,-1,1,1,-6,2,10,1,2,1,8,-2,4,-2,-14,-8,-1,1,4,1,-4,6,-4,2,-4,-1,-14,-6,1,-8,-1,2,-8,2,1,-6,4,1,12,-8,-2,-1,-14,-2,-2,4,-8,-4,-16,1,18,-1,1,-1,-6,6,-16,-2,2,-10,-12,-1,10,-2,-6,-1,10,-8,8,2,2,-4,-6,2,1,14,-6,8,-12,1,8,-1,-8,-4,-4,-1,8,4,-2,-6,-6,4,-16,-2,-4,4,2,1,4,14,-1,6,10,-1,16,8,6,1,16,-2,-2,8,-10,-2,-4,-1,12,6,-2,-4,-8,-1,-9,-12,-8,8,-14,2,1,1,-4,14,-12,2,-10,2,14,-4,12,8,6,4,1,16,-4,-1]];
E[462,7] = [x, [1,-1,-1,1,-2,1,1,-1,1,2,1,-1,2,-1,2,1,-6,-1,-4,-2,-1,-1,-4,1,-1,-2,-1,1,2,-2,-4,-1,-1,6,-2,1,-2,4,-2,2,-6,1,0,1,-2,4,-8,-1,1,1,6,2,-14,1,-2,-1,4,-2,12,2,-14,4,1,1,-4,1,4,-6,4,2,12,-1,6,2,1,-4,1,2,0,-2,1,6,0,-1,12,0,-2,-1,-6,2,2,-4,4,8,8,1,-14,-1,1,-1,10,-6,-4,-2,2,14,12,-1,10,2,2,1,-6,-4,8,2,2,-12,-6,-2,1,14,6,-4,12,-1,16,-1,0,4,0,-1,-4,-4,2,6,-22,-4,12,-2,8,-12,2,1,-4,-6,-1,-2,10,-1,0,4,-6,-1,8,-2,2,0,14,2,-4,-1,-20,-6,2,0,0,1,-9,-12,-4,0,10,2,-1,1,-12,6,-4,-2,-14,-2,14,4,4,-4,-6,-8,-1,-8,4,-1]];
E[462,8] = [x, [1,-1,-1,1,0,1,-1,-1,1,0,-1,-1,-2,1,0,1,-4,-1,6,0,1,1,-4,1,-5,2,-1,-1,-10,0,6,-1,1,4,0,1,-6,-6,2,0,-12,-1,-8,-1,0,4,2,-1,1,5,4,-2,6,1,0,1,-6,10,-8,0,6,-6,-1,1,0,-1,-4,-4,4,0,0,-1,-12,6,5,6,1,-2,0,0,1,12,14,1,0,8,10,1,10,0,2,-4,-6,-2,0,1,10,-1,-1,-5,-6,-4,10,2,0,-6,8,-1,18,0,6,-1,-2,6,0,-10,-2,8,4,0,1,-6,12,6,0,1,-16,-1,8,0,10,1,-6,4,0,4,-10,-4,-14,0,-2,0,2,1,0,12,-1,-6,10,-5,-16,-6,-4,-1,0,2,12,0,-6,0,4,-1,12,-12,0,-14,12,-1,-9,0,6,-8,-18,-10,5,-1,8,-10,20,0,-8,-2,-6,4,0,6,4,2,1,0,-12,-1]];

E[463,1] = [x^22-8*x^21-x^20+161*x^19-281*x^18-1216*x^17+3523*x^16+3859*x^15-19383*x^14-1030*x^13+56835*x^12-26406*x^11-90387*x^10+71356*x^9+71796*x^8-76057*x^7-22452*x^6+32959*x^5+1404*x^4-4772*x^3-174*x^2+237*x+25, [2192028849037,2192028849037*x,88081079557*x^21-274019422929*x^20-2628417572230*x^19+8497220344229*x^18+32189971934528*x^17-109880752912386*x^16-208266773801349*x^15+771496154587641*x^14+755393757720071*x^13-3202984347030693*x^12-1452100823408494*x^11+8005041723954874*x^10+999239360848340*x^9-11686683734002023*x^8+993848469210485*x^7+9112869445104238*x^6-1892870464522139*x^5-3089704075101813*x^4+771221864284476*x^3+257495674539470*x^2-57299624398580*x-4959079589235,2192028849037*x^2-4384057698074,-97598814399*x^21-229142941029*x^20+6158276837549*x^19-2974529732687*x^18-107461690992292*x^17+138090235403933*x^16+872349945365154*x^15-1503806189886096*x^14-3795322820045360*x^13+7940622433385189*x^12+8965478486377590*x^11-23099866942251974*x^10-10123163282652780*x^9+37400061934068795*x^8+1939259022320828*x^7-31536458444330130*x^6+5092393651938517*x^5+11711403309945568*x^4-2812510092495637*x^3-1367124790224856*x^2+225193380521624*x+56904893671196,430629213527*x^21-2540336492673*x^20-5683833464448*x^19+56940755290045*x^18-2774160171074*x^17-518576417080660*x^16+431591268577178*x^15+2462669322773402*x^14-3112260835086983*x^13-6458188980030589*x^12+10330910710737016*x^11+8960623898766899*x^10-17971797246871315*x^9-5330020718663887*x^8+15812052112970987*x^7+84725933691625*x^6-5992768376220976*x^5+647556028586448*x^4+677818586185474*x^3-41973516555662*x^2-25834295444244*x-2202026988925,-222625289944*x^21+1982976056150*x^20-901430985342*x^19-38899721488001*x^18+88315032444433*x^17+278295627293925*x^16-1026555612083387*x^15-739309575040831*x^14+5523724445972888*x^13-823645537379160*x^12-16093317475926696*x^11+9581679579189143*x^10+25700475951367957*x^9-22473039772819819*x^8-20833485990737514*x^7+22689966688318300*x^6+6991023755631008*x^5-9312805842636427*x^4-617237644097082*x^3+1114215736056160*x^2+21782425702458*x-26555072225671,2192028849037*x^3-8768115396148*x,369272468869*x^21-1855224922259*x^20-7102733399471*x^19+46307786660108*x^18+45326792887290*x^17-486706617496632*x^16-32769601682534*x^15+2809061182051202*x^14-1002429998841825*x^13-9711761338400229*x^12+5672434184167208*x^11+20533509475459321*x^10-14614003142882626*x^9-25912528986154729*x^8+20242035462709085*x^7+18103762679351239*x^6-14625527512237569*x^5-5981237764257899*x^4+4629089661456092*x^3+725836169225037*x^2-374427795331522*x-47872611360836,-1009933456221*x^21+6060678023150*x^20+12738879385552*x^19-134886957838411*x^18+19410077094749*x^17+1216190568492831*x^16-1127172365120355*x^15-5687080639541177*x^14+7840095654554219*x^13+14512507102744755*x^12-25677061235271968*x^11-18944827319735193*x^10+44364322934323839*x^9+8946463500911432*x^8-38959531471074873*x^7+2901105071052169*x^6+14928162633722209*x^5-2675481357079441*x^4-1832866332536884*x^3+208211186816198*x^2+80035812683759*x+2439970359975,-377503382094*x^21+3076480403503*x^20+264598916261*x^19-62513375389721*x^18+109084437083606*x^17+482375572081841*x^16-1363387321551088*x^15-1635812937585184*x^14+7518281570385921*x^13+1244080279270289*x^12-22160897233422553*x^11+7367200619029801*x^10+35571494323123671*x^9-21980826006363710*x^8-28767100539855269*x^7+23077657560880722*x^6+9419865419517220*x^5-8944235223660024*x^4-713138500460331*x^3+801702390083506*x^2+44460554853556*x-5346927633707,728535056429*x^21-4705165405063*x^20-7133712943342*x^19+101238208141555*x^18-59311237300884*x^17-865753944853671*x^16+1217404735375407*x^15+3691632901531576*x^14-7525428405537921*x^13-7737931946008643*x^12+23236020557977849*x^11+4941402028283886*x^10-38056477600793179*x^9+8267964566590541*x^8+30849395088493694*x^7-14550020164321248*x^6-9759811291005667*x^5+6252623320597192*x^4+470545361826230*x^3-465896161369486*x^2+10338098202336*x-847571159705,-185526721264*x^21+880112226622*x^20+3478976124052*x^19-20528968497307*x^18-23280988978840*x^17+198754862672365*x^16+53710403893317*x^15-1039476970694517*x^14+90359649147676*x^13+3199445832292557*x^12-704435592600010*x^11-5940627969286164*x^10+1288720310058817*x^9+6649399195956646*x^8-761357837048641*x^7-4500790243338669*x^6-143120577976740*x^5+1841178995753636*x^4+161930939692913*x^3-368335078525329*x^2+4468507737272*x+18152844079943,201973736598*x^21-1124056275286*x^20-3057049807017*x^19+25757325970169*x^18+7583274722021*x^17-242246715610675*x^16+119801418853065*x^15+1208578450988336*x^14-1052949586021480*x^13-3440409121959456*x^12+3703036172927879*x^11+5578043869199629*x^10-6587389583575755*x^9-4849880673918090*x^8+5757755011047492*x^7+1992640745808320*x^6-1975298911372131*x^5-304671737015706*x^4+51847852443392*x^3-16954374747798*x^2+26207121491057*x+5565632248600,410254152297*x^21-4517947087352*x^20+6844855768989*x^19+82323394084014*x^18-276736004988484*x^17-492626579528454*x^16+2902891977807382*x^15+388236124621915*x^14-14793684845925254*x^13+8138498983915339*x^12+40931639892670296*x^11-38924963488624024*x^10-60581477665788866*x^9+77318650524794117*x^8+41508341636651695*x^7-72284456621445952*x^6-6608310439915212*x^5+28142743752201906*x^4-2651530609530534*x^3-3267380944892560*x^2+320850309008581*x+115396266946445,2192028849037*x^4-13152173094222*x^2+8768115396148,942220397459*x^21-6508692032108*x^20-7043861092395*x^19+138022374248054*x^18-126980759363803*x^17-1151457961648849*x^16+2050054929501081*x^15+4675777484018986*x^14-12119511022402491*x^13-8579410915247792*x^12+36881899270311071*x^11+890728920926339*x^10-60324016294552892*x^9+20852330365885051*x^8+49513176455522328*x^7-28051921511621284*x^6-16518783274273842*x^5+11731627332128855*x^4+1277918674900624*x^3-1090672087820580*x^2-50655474734857*x+22010586320984,1098954828693*x^21-6733460930602*x^20-13145080827801*x^19+149092356639479*x^18-37671295351928*x^17-1333716509508021*x^16+1384038724685731*x^15+6155178265246002*x^14-9331410695465159*x^13-15315166584002407*x^12+30284518288414135*x^11+18763427500779677*x^10-52262335274771093*x^9-6270250712209639*x^8+46189518844120772*x^7-6334622041190781*x^6-18152089065711270*x^5+4110631115164016*x^4+2488004390667905*x^3-310174385748316*x^2-135390186482789*x-9231811721725,-245215183679*x^21+1592190883857*x^20+2804841300515*x^19-36519583048610*x^18+13499008227907*x^17+344612867411533*x^16-384765592590090*x^15-1733869741312447*x^14+2662063981670221*x^13+5032955247769979*x^12-9280455509774705*x^11-8530735446274825*x^10+18098528400942363*x^9+8236168572389438*x^8-19715049711377152*x^7-4407609512093720*x^6+11294502689358286*x^5+1391562602074719*x^4-2961244366479204*x^3-292427888199990*x^2+224637856808414*x+35653309161728,-1823591997820*x^21+12187231811389*x^20+15395774938072*x^19-258432164637978*x^18+203034867712679*x^17+2154642730338362*x^16-3534447322714646*x^15-8727832147605232*x^14+21062921282927845*x^13+15841261882278189*x^12-63544087137462099*x^11-720798488619740*x^10+101257601768322668*x^9-41250472916369547*x^8-77789921853390084*x^7+55326053563308577*x^6+20426128122631464*x^5-23837726379893736*x^4+1013828918720860*x^3+2638556971751017*x^2-208592561558896*x-88561450936867,-18417752674*x^21+954856854423*x^20-5272335313151*x^19-10684873296092*x^18+119824638242543*x^17-49705788959552*x^16-1055349954729119*x^15+1362322391739280*x^14+4652125495305981*x^13-8897679278684686*x^12-10390701059307334*x^11+28497252812841104*x^10+8835754080974185*x^9-48699622256750033*x^8+5748352058040730*x^7+42509737814278477*x^6-14503918814001278*x^5-16342799497251191*x^4+6811217607125124*x^3+2183487055978548*x^2-623786362742189*x-130102830176045,56453346751*x^21-112904465833*x^20-1735330872587*x^19+3005986715192*x^18+23331459455537*x^17-33442906433926*x^16-179027386084438*x^15+201133515257919*x^14+855251795713469*x^13-705492512110063*x^12-2601153688544363*x^11+1450096125793293*x^10+4956305326335754*x^9-1663867719034445*x^8-5634117171042636*x^7+944159484742732*x^6+3497898746776122*x^5-183123752000355*x^4-999743749269062*x^3-21225033630800*x^2+84121373922571*x+9437584552350,-1012524011094*x^21+7813977641850*x^20+2629588385376*x^19-158652805254392*x^18+246734983356115*x^17+1221234913673453*x^16-3202582322906595*x^15-4103130449449963*x^14+17742754371632156*x^13+2801559289282153*x^12-51909075109311305*x^11+20121792073398913*x^10+81616559547505375*x^9-58979717183252732*x^8-62773608289854008*x^7+62441516408479225*x^6+17323340843402528*x^5-25046076168310826*x^4+153008477064617*x^3+2659147954965101*x^2-76262713409830*x-67464109653726,261856619315*x^21-1324504901567*x^20-4688269014618*x^19+31525602975575*x^18+25693004106141*x^17-312071434262640*x^16+17033581617709*x^15+1670427947678582*x^14-763019167712807*x^13-5253891414103188*x^12+3517277306874028*x^11+9872372747121046*x^10-7773788426214553*x^9-10796466385555016*x^8+9236066396557231*x^7+6427805928554991*x^6-5773626851804267*x^5-1847429914572982*x^4+1655035955538754*x^3+221050231132306*x^2-121841788644890*x-13809322432875,469667499750*x^21-4509265946844*x^20+4249340291796*x^19+84007892593885*x^18-235695695419375*x^17-531478173870148*x^16+2570301763695893*x^15+738025906125715*x^14-13225587272804078*x^13+6491234021266334*x^12+36417941309365450*x^11-34513915472236098*x^10-52632886690006192*x^9+70546886177498463*x^8+33286689399232739*x^7-66594556772378657*x^6-2105191204358907*x^5+25821541505087098*x^4-3655820048907592*x^3-2926432290870083*x^2+343253776235303*x+114986971169008,-604101543490*x^21+3293449402788*x^20+9340833626197*x^19-75413997654024*x^18-26845630384659*x^17+707321042906389*x^16-323529353336741*x^15-3505704789112436*x^14+3008353309390637*x^13+9839975610439430*x^12-10839646570983348*x^11-15480483444830351*x^10+19887843918470630*x^9+12558718642821503*x^8-18611396082514717*x^7-4308566523796068*x^6+7955954201893812*x^5+422410456347569*x^4-1253668592397137*x^3-27813141762664*x^2+62122677019511*x+4638168031600,-930859130352*x^21+7798209117105*x^20-1003215367352*x^19-155171709039509*x^18+305307478350551*x^17+1145675663107290*x^16-3682021362428564*x^15-3402760323286893*x^14+19980987661822020*x^13-666518170688911*x^12-58087104605110518*x^11+29906254828208981*x^10+91572813857644700*x^9-74582505088895015*x^8-71661064625563181*x^7+75501783015471245*x^6+21409162521353445*x^5-29826627522571829*x^4-786826975778058*x^3+3110343482600366*x^2-14412558714979*x-57507426146890,936984197386*x^21-6821028182719*x^20-4957583651425*x^19+142137337682061*x^18-173276716796373*x^17-1148343309769539*x^16+2482273025623428*x^15+4340526500539216*x^14-14279825065209292*x^13-6128850071861131*x^12+43097997309659809*x^11-7494948612070615*x^10-70662870525340892*x^9+36202928163897122*x^8+59021129211717434*x^7-42820517953910435*x^6-20943571632811204*x^5+18393888411532654*x^4+2181339584492022*x^3-2167080920453211*x^2-85866994730042*x+48060801036392,-1282403682668*x^21+9054708685171*x^20+8541900644959*x^19-191313765924786*x^18+198253458733597*x^17+1584519121394344*x^16-3048642493860153*x^15-6326627879602590*x^14+17924946488940473*x^13+10956411234513852*x^12-54897141004158222*x^11+1871485407205770*x^10+91499473277160316*x^9-34762876427624861*x^8-78626438451677320*x^7+44934050115961093*x^6+30017450973688511*x^5-19300668588336893*x^4-4118350372717030*x^3+2046593951410758*x^2+254550401122197*x-21869935989285,-1235913868976*x^21+7255109921286*x^20+16272475564197*x^19-161454588193027*x^18+6242469664698*x^17+1457566599265051*x^16-1194934649092208*x^15-6841728611952503*x^14+8561060760781249*x^13+17614845146870301*x^12-28091792343069442*x^11-23499835602119927*x^10+48044555233489385*x^9+12053734518336283*x^8-41081756560193023*x^7+2602715787457032*x^6+14621177146645083*x^5-3227527439355522*x^4-1309648130131276*x^3+392234531508259*x^2+18166032852056*x-10256353807425,701994617345*x^21-4413419174566*x^20-7378966336936*x^19+94944539142470*x^18-44899093838930*x^17-810972514432872*x^16+1047621194046386*x^15+3445462613574825*x^14-6543591632110941*x^13-7138710561651195*x^12+19991537071464541*x^11+4208454028581150*x^10-31704123909679719*x^9+8568983962813193*x^8+23632472639059946*x^7-14457973110325390*x^6-5351019357953792*x^5+6291654128480483*x^4-748272646595414*x^3-579185842569752*x^2+105080101476212*x+16646473762773,2192028849037*x^5-17536230792296*x^3+26304346188444*x,281406248935*x^21-1093953319044*x^20-7279146415771*x^19+31297605657439*x^18+75070191091822*x^17-377243802668334*x^16-376059360083552*x^15+2491124120542925*x^14+762791070155886*x^13-9804486432522873*x^12+1003807391774363*x^11+23407021308841045*x^10-8683428659573638*x^9-32945949747617015*x^8+18338416769746510*x^7+25221725016171386*x^6-17069677889561028*x^5-8956068690084332*x^4+6329295442863829*x^3+1186460976643344*x^2-571378961275433*x-78677994647140,1029071147564*x^21-6101640694936*x^20-13675109742845*x^19+137783172322176*x^18-5717958338705*x^17-1269387530746976*x^16+1039748970224705*x^15+6143546941545306*x^14-7608923905865022*x^13-16669197019271194*x^12+25771000736228693*x^11+24840458770573741*x^10-46380748315199353*x^9-18134479200444036*x^8+43610535257917879*x^7+4635949089475626*x^6-19323014747722326*x^5-44958763131812*x^4+3405603648853768*x^3+113290874423009*x^2-201295647876799*x-23555509936475,60502481965*x^21-232098265667*x^20-1961005763313*x^19+8591185111285*x^18+23197556024997*x^17-125587172135968*x^16-120380822012085*x^15+968065082859278*x^14+163723413391846*x^13-4354042316155491*x^12+1099768529729219*x^11+11794376083680718*x^10-5771817363355270*x^9-19022351719084919*x^8+11584529197320249*x^7+17375166377363201*x^6-10928588229211270*x^5-8233619187145010*x^4+4357977387457521*x^3+1811260162563762*x^2-506599196566386*x-131930371474918,1319632761204*x^21-8335676154590*x^20-13633903981152*x^19+178519438190589*x^18-88041023591913*x^17-1514165901806444*x^16+1979850784684783*x^15+6351508384988856*x^14-12178383112764967*x^13-12751056723552062*x^12+36437560338912619*x^11+6001875875384456*x^10-55459265182662095*x^9+19114015935587602*x^8+36764514439294550*x^7-29685880610598512*x^6-2858766059253433*x^5+12907547339698731*x^4-4324141266137504*x^3-1395844384740281*x^2+479171484541078*x+68271352004347,-568399264883*x^21+3985896851618*x^20+3844135559901*x^19-83740138281462*x^18+85333441398052*x^17+687032857031352*x^16-1311557836226886*x^15-2690969730482398*x^14+7631183954716764*x^13+4378163194684718*x^12-22919532359219667*x^11+2013639858079556*x^10+36793840319635030*x^9-17092372070706707*x^8-29015168924051042*x^7+21230800204608899*x^6+8390386837745160*x^5-9167370785695470*x^4+87029526971215*x^3+1161674923002819*x^2-111960744819716*x-51860617410258,-369530585575*x^21+2559626116836*x^20+2960061523709*x^19-55406458385892*x^18+46431204057869*x^17+479127499511027*x^16-787584347495186*x^15-2090941923579836*x^14+4780383608580609*x^13+4656349454621260*x^12-15005887586502499*x^11-4065736406251410*x^10+25733743218988162*x^9-2109580383959668*x^8-23057940737167423*x^7+5788931385397378*x^6+9473609840950880*x^5-2616962248593888*x^4-1462594744716178*x^3+181970414848268*x^2+93769307693651*x+6130379591975,-167112653373*x^21+408640705887*x^20+5376889020109*x^19-13461756506424*x^18-70292934079707*x^17+180203010528285*x^16+486881443946906*x^15-1285694426175411*x^14-1933761092689164*x^13+5352004041721674*x^12+4376175924770368*x^11-13293321277033601*x^10-5019345177585335*x^9+19242805463254368*x^8+1477350684096878*x^7-15097210037025839*x^6+1878735106753651*x^5+5588955594397948*x^4-1216968179997844*x^3-829605801401502*x^2+108563040898092*x+51030856014360,-381637258729*x^21+1450826893952*x^20+9688388239938*x^19-39620567997919*x^18-101665293200256*x^17+457686148619552*x^16+563754102222858*x^15-2909601131734861*x^14-1717229184584849*x^13+11074749853148091*x^12+2479553687489276*x^11-25681753499163286*x^10+145111811426695*x^9+35243762220271772*x^8-5451820072737417*x^7-26319369554527514*x^6+6409717008811226*x^5+8925114797819022*x^4-2397891376772255*x^3-942319942811972*x^2+183558227178955*x+40709859225550,408823942564*x^21-3481043341987*x^20+582070568527*x^19+69672471178807*x^18-137506043261206*x^17-521182568382150*x^16+1650476162479398*x^15+1617472491149168*x^14-8942286383811356*x^13-243811771327783*x^12+25949980733903360*x^11-11593029573767343*x^10-40732459135307616*x^9+29889464465399678*x^8+31455281094772943*x^7-29922358676524084*x^6-8882111179427375*x^5+11148427107481790*x^4+60827109363984*x^3-906075514838595*x^2+9767543166949*x+16691720345214,807514833031*x^21-5290753065825*x^20-7719615115578*x^19+114649249741149*x^18-72101776211136*x^17-990464212058617*x^16+1433396499308246*x^15+4295134195225839*x^14-8916649563938906*x^13-9343928086080544*x^12+28010913635731460*x^11+7171028670029347*x^10-47385405096944089*x^9+7070673029023234*x^8+41108938799152059*x^7-14917434197037926*x^6-15735768786868825*x^5+6837076131879420*x^4+2095597540218220*x^3-626991051707465*x^2-125737822792307*x+460443816850,528913876656*x^21-4613899502784*x^20+1747166695804*x^19+90114431264497*x^18-199517754879461*x^17-638831400545348*x^16+2325038047628244*x^15+1644265366734438*x^14-12430160509086467*x^13+2245629922468309*x^12+35707951908964472*x^11-22983770108127225*x^10-55459129707438716*x^9+52671650153734218*x^8+42194460003878515*x^7-51886418296953139*x^6-11509558620693226*x^5+20269827446675275*x^4-57386551189572*x^3-2095035559342197*x^2+33635517532422*x+44085004613477,1093729072363*x^21-7831838332842*x^20-6612199944241*x^19+164221600672010*x^18-182964510951922*x^17-1342663670851893*x^16+2710054693247986*x^15+5221112890958470*x^14-15683908705728375*x^13-8297840209678026*x^12+47262597666945305*x^11-4675447258941211*x^10-76835141376046143*x^9+34274410358349988*x^8+62772032758294077*x^7-41389925833731870*x^6-20883500446601004*x^5+16809466199212582*x^4+1674447337985634*x^3-1509460523909767*x^2-92862968334749*x+9282521598639,258550645987*x^21-2977290834970*x^20+5897709574973*x^19+49070193431111*x^18-204279045769492*x^17-204873032859638*x^16+2022523555883990*x^15-880912245987020*x^14-9623850366747266*x^13+11086030108431357*x^12+23636430671331953*x^11-42080820496666326*x^10-26194237638827220*x^9+77787776009586365*x^8+1370229475555597*x^7-71111942173617074*x^6+19268632152004254*x^5+28325233210732282*x^4-10566506157476944*x^3-3905384535006456*x^2+1033279942880883*x+210867579828812,-286214446902*x^21+1617064374282*x^20+4363560531742*x^19-37784263761299*x^18-9994283816851*x^17+364539768177567*x^16-195800290638217*x^15-1882998535402846*x^14+1758659557855333*x^13+5637727061216185*x^12-6614916963549251*x^11-9902448243248003*x^10+13269946152370732*x^9+9921565610650816*x^8-14568022303297133*x^7-5409848253679960*x^6+8325702713336320*x^5+1574592188640593*x^4-2172616625975467*x^3-252441891340186*x^2+172504080975552*x+25313100277350,682148097844*x^21-4721530327097*x^20-4473491107229*x^19+97193410829797*x^18-103131271743895*x^17-767030110606344*x^16+1546076615096443*x^15+2738649400857117*x^14-8753005202649483*x^13-2903867183576068*x^12+25127787768391526*x^11-8997718909303823*x^10-36813195884358367*x^9+31152984269294807*x^8+22430894683373461*x^7-34811659740695229*x^6+718144767955759*x^5+14948206561495442*x^4-4175009950772279*x^3-2094041206672323*x^2+542373021732837*x+114040638704095,-686722059905*x^21+4983918414823*x^20+3634113152544*x^19-103201702149454*x^18+124968689426168*x^17+826020601478306*x^16-1774886217008817*x^15-3070718118593314*x^14+10066677714867104*x^13+4110520240123289*x^12-29685082479202762*x^11+6011841767242580*x^10+46631447888190202*x^9-26100120576963591*x^8-35354955353191442*x^7+29205618293698609*x^6+9041660351435267*x^5-11217857379173890*x^4+529539294851026*x^3+855513585854892*x^2-96545537615202*x-4851273163465,1077157478601*x^21-8577572031184*x^20-1034618682107*x^19+171007094392325*x^18-299751494013158*x^17-1269154225304771*x^16+3715015390965050*x^15+3842153036263654*x^14-20092254668801861*x^13+158959436577063*x^12+57224975921852780*x^11-31018678270890076*x^10-85917265631101751*x^9+78556665465083081*x^8+58858573280279214*x^7-79627283120719655*x^6-8516194105051944*x^5+31410146397448775*x^4-4346670824712814*x^3-3454271442866492*x^2+466787928642319*x+134177498227384,-751925948844*x^21+4719007791546*x^20+8391425134135*x^19-103719127989625*x^18+39637505825852*x^17+915663162076643*x^16-1074420975409535*x^15-4122022125149828*x^14+6974991546008834*x^13+9724388961074200*x^12-22111875473837598*x^11-10181050390102942*x^10+37033292065337463*x^9-433558412818261*x^8-30873055743892907*x^7+8439783500028093*x^6+10341770380826848*x^5-4315233218556592*x^4-685178982063083*x^3+424975921191803*x^2+3675773728258*x-11741687493750,963363772097*x^21-5434752271522*x^20-13867263075121*x^19+122189397847672*x^18+22742171761802*x^17-1119075577569952*x^16+661003847543757*x^15+5368169723326100*x^14-5214006777134326*x^13-14340071953030734*x^12+17120534788217333*x^11+20647024932117305*x^10-27630977470079212*x^9-13486366229985513*x^8+19433722529605546*x^7+1103505517164463*x^6-1925804953038456*x^5+2157105106112470*x^4-2489122526864504*x^3-823135198561835*x^2+351922289389261*x+79678537593680,-1168309502604*x^21+6976507629463*x^20+14888398599762*x^19-155540227110735*x^18+19295543980229*x^17+1407210659033799*x^16-1281897740571160*x^15-6621992966686999*x^14+9037031722349378*x^13+17095572988685688*x^12-30023517617027271*x^11-22833826354387672*x^10+53087547759976309*x^9+11461879941980031*x^8-48732001942917716*x^7+3394246834133670*x^6+20619234384187959*x^5-4087868016844449*x^4-3234447586682770*x^3+693679165502909*x^2+138873218364186*x-21203149572636,41243054290*x^21-982191270163*x^20+3446490357899*x^19+17012452908249*x^18-91260062874846*x^17-87388447090738*x^16+892077366066079*x^15-95134850363805*x^14-4509823874541923*x^13+2635255998717630*x^12+12839274271942096*x^11-10852465067157395*x^10-20531902843248860*x^9+20617773442767100*x^8+17154726037005576*x^7-19066474506509182*x^6-6367531138918933*x^5+7533114083683271*x^4+838750363067655*x^3-869129745770684*x^2-51972494593105*x+10112230434637,351336074289*x^21-1934074497704*x^20-5303389052837*x^19+43736062721639*x^18+13750960599258*x^17-402604646198468*x^16+189425060741475*x^15+1938145138209204*x^14-1625303074951471*x^13-5181725931554598*x^12+5325988632134069*x^11+7435249642518476*x^10-8160120983497703*x^9-4829102502810989*x^8+4703430138289181*x^7+509513326690341*x^6+853558554699739*x^5+520099243236150*x^4-1331716287439378*x^3-176382047396227*x^2+163106187746534*x+23271478258800,411911870552*x^21-4181137095660*x^20+4852630030064*x^19+77927549478722*x^18-233759963061594*x^17-494382289951434*x^16+2529079889482881*x^15+704651608584306*x^14-13147393555618797*x^13+5912196929231057*x^12+37238193259918271*x^11-31791084824730413*x^10-57450934195240348*x^9+65513688010330527*x^8+43812456741209969*x^7-62643796948417619*x^6-12411707356510433*x^5+24845648475302911*x^4+271696968703831*x^3-2828886797975314*x^2+24722946338552*x+63493729763419,270897923173*x^21-1772486903467*x^20-2603018483051*x^19+38501190728755*x^18-24137075192205*x^17-334228870546100*x^16+485101645120512*x^15+1464582730746874*x^14-3057857176510591*x^13-3274681304854589*x^12+9840983758248343*x^11+2872232385388232*x^10-17481737057626784*x^9+1449173124028358*x^8+16928179124581583*x^7-3891683924717372*x^6-8537575927368258*x^5+1475157245393490*x^4+2200511964585997*x^3+111077005110718*x^2-226418696726204*x-34555869431850,-468545308549*x^21+1705014543773*x^20+12227276889296*x^19-46557880818182*x^18-135099936280941*x^17+539410519544031*x^16+824991213998910*x^15-3453108263839065*x^14-3044451640917590*x^13+13305420132903399*x^12+6972531444731731*x^11-31458219690532596*x^10-9841836506255132*x^9+44461624046852791*x^8+8422393218301955*x^7-34709143879907634*x^6-4506478772242266*x^5+12556580872666592*x^4+1565747988069034*x^3-1351863764177904*x^2-170044579138406*x+17002891631460,-1204520776173*x^21+7259496962291*x^20+15153226984762*x^19-162101976096111*x^18+25116243270056*x^17+1469265680179211*x^16-1377832068186778*x^15-6931884092213371*x^14+9635535441365812*x^13+17988272300277558*x^12-31991666237325438*x^11-24413148388152200*x^10+56744320752832947*x^9+13445016349154408*x^8-52601726776718983*x^7+1224923490426575*x^6+22966074388717719*x^5-2317855602251158*x^4-4073036422280938*x^3+31412160337965*x^2+282059736803031*x+32060092066700,-344241421405*x^21+3270371556991*x^20-3091853287721*x^19-59983694413019*x^18+170153292390731*x^17+365440602401138*x^16-1833911770428867*x^15-362628328774666*x^14+9269652296431074*x^13-5492986319133986*x^12-24747820083086013*x^11+27073971692361361*x^10+33438816193408420*x^9-54258461102583084*x^8-16605659512878107*x^7+50996557114679252*x^6-4796491071124341*x^5-20064380576605084*x^4+5006251241129516*x^3+2488069464095900*x^2-493193400357562*x-116327684879890,-3452709335116*x^21+24072455869925*x^20+23837833174131*x^19-505696115685586*x^18+508167344567203*x^17+4144443070367148*x^16-7878120947188883*x^15-16171130010824389*x^14+45929223553675529*x^13+25874374432350840*x^12-137998657011640775*x^11+14183935335603721*x^10+221406559884565471*x^9-106985385472780361*x^8-174413868618553990*x^7+131441352203287835*x^6+50723578648054886*x^5-55859912562492784*x^4-202485232184145*x^3+6337878909435352*x^2-359045384877275*x-199894687168490,-138321184948*x^21-102254578157*x^20+7647449410746*x^19-8491584240530*x^18-126050568053724*x^17+223545972318347*x^16+972849793910129*x^15-2170702299691720*x^14-3964110918653760*x^13+10898648883692006*x^12+8312518228236361*x^11-30845551423630782*x^10-6373806230121082*x^9+49208339253908451*x^8-5444418269121796*x^7-41352411656191250*x^6+11737740950519964*x^5+15612972753325041*x^4-5289789546522642*x^3-1981920277251811*x^2+496698975766813*x+85320236241740,1202537764194*x^21-6676971719591*x^20-18076594250075*x^19+152361393635015*x^18+42652940258648*x^17-1425505842860049*x^16+736465385240470*x^15+7063170035887194*x^14-6415656105785845*x^13-19906327005338534*x^12+22745323894193220*x^11+31747063568282796*x^10-41522543952456627*x^9-26767932907841674*x^8+38933631501083275*x^7+10410163790676148*x^6-16845386464593372*x^5-1733873089347794*x^4+2770732471400588*x^3+227227164894242*x^2-149726250547992*x-17549865433625,-1273040431912*x^21+10476925064692*x^20-615725821869*x^19-207787057028282*x^18+398005114308792*x^17+1523939139501210*x^16-4823228725752823*x^15-4432613029016274*x^14+26062438145813300*x^13-1562217160389391*x^12-74959252581731827*x^11+41979238212237672*x^10+115600477440162489*x^9-102873824091291705*x^8-85791180996385379*x^7+103361875689862600*x^6+20874534503781754*x^5-40556565308580521*x^4+1513550340452778*x^3+4241884703671955*x^2-221762114991260*x-120659683576337,2192028849037*x^6-21920288490370*x^4+52608692376888*x^2-17536230792296,1658974098949*x^21-11548427485632*x^20-11444217982664*x^19+242164463555558*x^18-244006863986235*x^17-1977055769337095*x^16+3777217028557484*x^15+7639114026437820*x^14-21968705950299695*x^13-11733954769558534*x^12+65717715676160187*x^11-9079473214320092*x^10-104485881140190997*x^9+55886799524408790*x^8+80428788775241591*x^7-68416135801785485*x^6-21250787572957718*x^5+30229193269261429*x^4-1197777570236965*x^3-4027229353177898*x^2+348888522063382*x+158379086576894,1157296672436*x^21-6997740166836*x^20-14008800421096*x^19+154145347042557*x^18-35053803963374*x^17-1367453575081557*x^16+1405177405902760*x^15+6217288393262991*x^14-9514637996119823*x^13-14989916766446362*x^12+30837834718218655*x^11+16752037962914207*x^10-53025974046622875*x^9-1865426278790750*x^8+46624640091420681*x^7-10751544788472408*x^6-18230937248732997*x^5+5934201069359089*x^4+2529331596561164*x^3-522414273960743*x^2-145371275644735*x-7035156223375,-1415197907312*x^21+10752766988521*x^20+4092502432033*x^19-216070998045812*x^18+330357477008834*x^17+1629113411549328*x^16-4271536825431063*x^15-5164947170446127*x^14+23256758837161444*x^13+1469272210264799*x^12-65755647884992060*x^11+34438050693021694*x^10+96143325225509115*x^9-92113501131760990*x^8-60121275761632176*x^7+95788963409521885*x^6+1295773436147222*x^5-39273414018918771*x^4+8783306049722429*x^3+5008170810428259*x^2-1005789987998399*x-236693386118321,246487690658*x^21+371345468935*x^20-13809560250838*x^19+7406285630671*x^18+235924503418454*x^17-282752759345569*x^16-1927748475906332*x^15+2986007179330018*x^14+8629768307524708*x^13-15557436105075663*x^12-21749687047473417*x^11+44852447657815237*x^10+29083152583084964*x^9-71977317584357167*x^8-16122339551293882*x^7+59885533680627170*x^6-924548167146004*x^5-21502466906583798*x^4+2468181040797169*x^3+2159106907440497*x^2-166134422439429*x-69747951331068,-1712411759308*x^21+12051989444632*x^20+9989394050693*x^19-245988114181966*x^18+284894072186973*x^17+1912523044112959*x^16-4099025819633151*x^15-6591702208119643*x^14+22902676275069144*x^13+5564365019130377*x^12-65183053227663557*x^11+27799371591273641*x^10+94735655751579789*x^9-86513983355349666*x^8-57248806408760751*x^7+93758283958736675*x^6-1466857385147011*x^5-39024637617463088*x^4+9711897276141503*x^3+4964522295096707*x^2-1067582867918010*x-242548540245095,251921590053*x^21-1900503281348*x^20-1149714485080*x^19+40198753457162*x^18-52016154066528*x^17-333531065974780*x^16+734586004956343*x^15+1336443021319441*x^14-4291724759731541*x^13-2338890032751556*x^12+13392004622448508*x^11-303179525984815*x^10-23339566822179459*x^9+7240693002161109*x^8+21976803648175206*x^7-9570186504133090*x^6-10227720490229445*x^5+4273031902778661*x^4+2099978006500742*x^3-496071764704476*x^2-146269459700623*x-1512562049125,629980226112*x^21-3933281802870*x^20-7702525230058*x^19+89379692788375*x^18-20437432200047*x^17-832876524945826*x^16+817879739544364*x^15+4117523774064979*x^14-5728140846469460*x^13-11653759058929993*x^12+19562044982095881*x^11+19059152047716674*x^10-36568732611731346*x^9-17689942143712085*x^8+37216626534516956*x^7+9709983733752400*x^6-19365736642303661*x^5-4015777899888520*x^4+4689867284862275*x^3+1155737294238508*x^2-429099050643889*x-99593393106089,23476277656*x^21+1152650641256*x^20-7651274707653*x^19-15408930972547*x^18+165850126521476*x^17-1782414020867*x^16-1509031889868842*x^15+1089702167160161*x^14+7270986411418376*x^13-7933434476111907*x^12-19720938009090990*x^11+26291526202724499*x^10+29474971176657164*x^9-45439337859688556*x^8-21697609379947428*x^7+39438872777680337*x^6+5717949294598635*x^5-14398167893195952*x^4-74565629610603*x^3+1329136356487206*x^2+26298760564577*x-14527195586650,115157164271*x^21-495211599049*x^20-2363604855805*x^19+11540339599579*x^18+19579293365998*x^17-111543769885757*x^16-86346144029416*x^15+579416763213651*x^14+234554292064228*x^13-1740348029084341*x^12-468921127972622*x^11+2993197715477330*x^10+789405424626137*x^9-2654919825045278*x^8-957281301936153*x^7+785126878697908*x^6+585624590035340*x^5+274424280742069*x^4-89681106204080*x^3-153706571438942*x^2-7380682306197*x+15762087275423,-561297267446*x^21+3275736295018*x^20+7772143364701*x^19-74386752034071*x^18-4140649066376*x^17+690912773955923*x^16-497516967298901*x^15-3386098996510425*x^14+3792711951855228*x^13+9385439860405638*x^12-12995511130420942*x^11-14582064035344691*x^10+23466325874284641*x^9+11793624697488826*x^8-21999942684597432*x^7-4371313457407956*x^6+9566500585583327*x^5+885062094866947*x^4-1550726369018857*x^3-210862216909358*x^2+82850008367013*x+14209981622075,1767922467731*x^21-12989482132080*x^20-7737738998377*x^19+264629231931785*x^18-355961435417818*x^17-2050339421615555*x^16+4852230999349097*x^15+7003996709135475*x^14-27032938507801275*x^13-5498180350362740*x^12+78268040890236208*x^11-31442357424768297*x^10-119295175304551007*x^9+95963917708182881*x^8+83952063226170100*x^7-104083080516789875*x^6-14260104690573689*x^5+43849422976728351*x^4-5392443881576615*x^3-5709214448347312*x^2+711688187898118*x+248435478004610,93811799594*x^21-593850829580*x^20-1521716709347*x^19+15632275608514*x^18+2780290996013*x^17-174953829337527*x^16+104607791334269*x^15+1085511751005278*x^14-1048395011861432*x^13-4069527250887332*x^12+4737349970604550*x^11+9394453073170287*x^10-11938412721554694*x^9-12999459960003599*x^8+17113643061073907*x^7+9992128157808420*x^6-13026609057344035*x^5-3726899006718316*x^4+4341059193442776*x^3+614326762203581*x^2-355566585243578*x-62068353684081,-979526428178*x^21+7465871457741*x^20+3272625949013*x^19-152894002626042*x^18+222152845716144*x^17+1197333692907349*x^16-2942320846202371*x^15-4214576775585353*x^14+16365731451402261*x^13+4198363576829322*x^12-47766645389046391*x^11+14681505625671936*x^10+74277871907082671*x^9-48536802728623826*x^8-55171232533723847*x^7+52437441792087759*x^6+12907255493311610*x^5-20928845994629578*x^4+1411950103668361*x^3+2210970955912037*x^2-161356440837494*x-66881512026569]];
E[463,2] = [x^16+9*x^15+17*x^14-70*x^13-282*x^12+7*x^11+1223*x^10+1073*x^9-2045*x^8-2946*x^7+1137*x^6+2847*x^5+88*x^4-954*x^3-47*x^2+118*x-9, [27157,27157*x,16567*x^15+123555*x^14+102271*x^13-1241603*x^12-2734229*x^11+3506452*x^10+13535438*x^9-203986*x^8-26549731*x^7-10979775*x^6+21686537*x^5+12171527*x^4-6229152*x^3-2631590*x^2+913821*x-7771,27157*x^2-54314,83122*x^15+552227*x^14+87178*x^13-6186401*x^12-8887931*x^11+23320843*x^10+49292191*x^9-33481162*x^8-105111955*x^7+10919259*x^6+97009640*x^5+8696311*x^4-35462726*x^3-1670331*x^2+4828811*x-430872,-25548*x^15-179368*x^14-81913*x^13+1937665*x^12+3390483*x^11-6726003*x^10-17980377*x^9+7329784*x^8+37826607*x^7+2849858*x^6-34994722*x^5-7687048*x^4+13173328*x^3+1692470*x^2-1962677*x+149103,-100601*x^15-682759*x^14-206583*x^13+7436061*x^12+11817341*x^11-26290788*x^10-63030099*x^9+30652400*x^8+129342031*x^7+5968668*x^6-111675910*x^5-24976422*x^4+35430488*x^3+4720443*x^2-4565284*x+330669,27157*x^3-108628*x,-12000*x^15-88944*x^14-65364*x^13+933587*x^12+1947848*x^11-2964489*x^10-10209437*x^9+1785704*x^8+21974134*x^7+5509798*x^6-21588843*x^5-7577537*x^4+9415384*x^3+1793506*x^2-1857614*x+138673,-195871*x^15-1325896*x^14-367861*x^13+14552473*x^12+22738989*x^11-52366015*x^10-122671068*x^9+64872535*x^8+255796671*x^7+2499926*x^6-227952023*x^5-42777462*x^4+77628057*x^3+8735545*x^2-10239268*x+748098,51912*x^15+357832*x^14+159146*x^13-3738178*x^12-6545388*x^11+11919997*x^10+33076029*x^9-8494259*x^8-63003655*x^7-15977128*x^6+46393421*x^5+21152721*x^4-8688081*x^3-3003299*x^2+593608*x-175870,17430*x^15+105293*x^14-55237*x^13-1330847*x^12-1078709*x^11+6251923*x^10+7671912*x^9-14011081*x^8-19315088*x^7+16012904*x^6+21675034*x^5-8921502*x^4-10222018*x^3+2099747*x^2+1336125*x-214390,-178593*x^15-1226292*x^14-462163*x^13+13173181*x^12+21987011*x^11-45123967*x^10-115304471*x^9+46716958*x^8+233410957*x^7+24575881*x^6-197951075*x^5-53985991*x^4+60659504*x^3+10180859*x^2-7530115*x+452346,222650*x^15+1503634*x^14+393991*x^13-16552141*x^12-25586581*x^11+60004924*x^10+138597273*x^9-76387014*x^8-290401878*x^7+2707427*x^6+261434625*x^5+44283376*x^4-91252911*x^3-9293531*x^2+12201587*x-905409,5281*x^15+33820*x^14+5655*x^13-350950*x^12-519147*x^11+1112629*x^10+2617991*x^9-841458*x^8-4740047*x^7-1142204*x^6+3230522*x^5+1330061*x^4-606644*x^3+83122*x^2+153376*x-115095,27157*x^4-162942*x^2+108628,-101253*x^15-664997*x^14-44694*x^13+7617746*x^12+10288033*x^11-30017111*x^10-59206352*x^9+48027286*x^8+131480063*x^7-25919185*x^6-129162684*x^5-2426140*x^4+52168763*x^3+1087840*x^2-7273051*x+539102,19056*x^15+138636*x^14+93587*x^13-1436152*x^12-2880489*x^11+4466563*x^10+14661704*x^9-2565866*x^8-29842202*x^7-7944843*x^6+26586463*x^5+10471384*x^4-9654494*x^3-2421614*x^2+1554673*x-108000,42335*x^15+263275*x^14-75868*x^13-3182760*x^12-3240864*x^11+13851296*x^10+20711147*x^9-27147067*x^8-48816222*x^7+24467270*x^6+50768076*x^5-8605659*x^4-21474637*x^3+587353*x^2+2488625*x-56265,270699*x^15+1857492*x^14+667147*x^13-20123831*x^12-33219056*x^11+70237479*x^10+176457736*x^9-77797200*x^8-364312130*x^7-27085214*x^6+320847995*x^5+77472083*x^4-107199937*x^3-16104543*x^2+14203254*x-901095,-37005*x^15-258530*x^14-124033*x^13+2722898*x^12+4835938*x^11-8905511*x^10-24655165*x^9+7542625*x^8+48285939*x^7+8676113*x^6-38333589*x^5-13202127*x^4+9695376*x^3+2112812*x^2-1001945*x+65664,-109376*x^15-723358*x^14-104338*x^13+8093796*x^12+11556613*x^11-30412347*x^10-64195835*x^9+43156385*x^8+136955624*x^7-12630523*x^6-126640743*x^5-13256337*x^4+46520749*x^3+3033472*x^2-6301486*x+467208,-27166*x^15-205265*x^14-197236*x^13+1969766*x^12+4737696*x^11-4735478*x^10-22601446*x^9-4193168*x^8+42206333*x^7+26574256*x^6-31409704*x^5-27189684*x^4+6724780*x^3+6669923*x^2-621211*x-234580,-481*x^15+7189*x^14+53079*x^13-38779*x^12-651053*x^11-192972*x^10+3247283*x^9+1669694*x^8-8291530*x^7-3842592*x^6+11444732*x^5+3618238*x^4-7618689*x^3-1229605*x^2+1654224*x-141336,174408*x^15+1180608*x^14+320827*x^13-13020345*x^12-20331948*x^11+47270288*x^10+110828705*x^9-59838623*x^8-235133548*x^7-110838*x^6+216456058*x^5+38299105*x^4-78797602*x^3-8611057*x^2+10957791*x-822575,381045*x^15+2573918*x^14+671671*x^13-28376215*x^12-43873816*x^11+103114768*x^10+238347247*x^9-131811728*x^8-501559097*x^7+5109166*x^6+454468280*x^5+76375688*x^4-160196863*x^3-15923986*x^2+21526320*x-1607337,-22708*x^15-170267*x^14-165295*x^13+1586453*x^12+3847761*x^11-3414348*x^10-17457077*x^9-5221873*x^8+28824263*x^7+23587761*x^6-13548526*x^5-20767677*x^4-4792280*x^3+3188731*x^2+1777258*x-307456,-299014*x^15-2025541*x^14-553475*x^13+22328597*x^12+34811692*x^11-81122101*x^10-189230266*x^9+103612572*x^8+399950265*x^7-3655761*x^6-366249354*x^5-60893267*x^4+132253593*x^3+13225251*x^2-18047541*x+1342512,-13163*x^15-51180*x^14+261599*x^13+1242380*x^12-1250376*x^11-9968287*x^10-1178686*x^9+34924343*x^8+20460895*x^7-55789717*x^6-45635702*x^5+36586703*x^4+34940154*x^3-6272682*x^2-6086245*x+654954,-13709*x^15-84122*x^14+18720*x^13+970095*x^12+1075662*x^11-3840672*x^10-6507971*x^9+6059598*x^8+14415622*x^7-2773975*x^6-13704946*x^5-1071372*x^4+5121196*x^3+401583*x^2-738253*x+47529,86868*x^15+603456*x^14+287742*x^13-6300668*x^12-11251811*x^11+20042259*x^10+56992762*x^9-13822675*x^8-110062745*x^7-29252213*x^6+84620802*x^5+40772913*x^4-19482627*x^3-9163232*x^2+1971317*x+141384,27157*x^5-217256*x^3+325884*x,25766*x^15+178594*x^14+64688*x^13-1977170*x^12-3264846*x^11+7258758*x^10+17955522*x^9-9631427*x^8-39685230*x^7+1443715*x^6+40203254*x^5+3976700*x^4-18038878*x^3-181077*x^2+3316625*x-529100,246280*x^15+1676607*x^14+530036*x^13-18265313*x^12-29308340*x^11+64626067*x^10+156671755*x^9-75582322*x^8-324210523*x^7-14038023*x^6+285841151*x^5+61079027*x^4-95507522*x^3-12031942*x^2+12486956*x-911277,-200862*x^15-1374947*x^14-469430*x^13+14965478*x^12+24425343*x^11-52837452*x^10-130690738*x^9+61273396*x^8+272819209*x^7+13032167*x^6-246157753*x^5-51792891*x^4+87300469*x^3+10656763*x^2-12161794*x+893358,-8868*x^15-52477*x^14+28496*x^13+626129*x^12+437475*x^11-2714806*x^10-2594080*x^9+5555910*x^8+4245865*x^7-6099805*x^6-603362*x^5+3823652*x^4-3072958*x^3-1136707*x^2+1358620*x-105842,270507*x^15+1868887*x^14+732147*x^13-20213611*x^12-34095586*x^11+70256093*x^10+181118989*x^9-76528966*x^8-376729548*x^7-30147921*x^6+338072718*x^5+79128431*x^4-118297503*x^3-15318927*x^2+16602237*x-1442668,-117740*x^15-795563*x^14-219310*x^13+8697606*x^12+13554951*x^11-31064558*x^10-72572522*x^9+37758853*x^8+149186180*x^7+2633181*x^6-129133404*x^5-25200117*x^4+40974943*x^3+4478370*x^2-5051795*x+381015,-43475*x^15-319521*x^14-257855*x^13+3158885*x^12+6954147*x^11-8475712*x^10-33958859*x^9-1818407*x^8+65028392*x^7+32370817*x^6-51219333*x^5-34414086*x^4+14123147*x^3+7634809*x^2-2456261*x+16347,-187057*x^15-1282944*x^14-439179*x^13+14013116*x^12+22864608*x^11-49875111*x^10-122915091*x^9+59522255*x^8+258800698*x^7+8063380*x^6-237303924*x^5-45466525*x^4+86886189*x^3+9455017*x^2-12365041*x+940095,-290889*x^15-1978897*x^14-600873*x^13+21671304*x^12+34481804*x^11-77613622*x^10-185814373*x^9+94729386*x^8+389570389*x^7+7119445*x^6-353034737*x^5-66316815*x^4+125975906*x^3+13864929*x^2-17610715*x+1297558,74515*x^15+505052*x^14+132548*x^13-5599472*x^12-8646476*x^11+20601950*x^10+47248990*x^9-27389286*x^8-100340617*x^7+3741096*x^6+92151108*x^5+12951816*x^4-33189958*x^3-2741180*x^2+4432254*x-333045,15063*x^15+135871*x^14+240292*x^13-1139222*x^12-4096562*x^11+1298655*x^10+18179847*x^9+9630938*x^8-32318520*x^7-27262918*x^6+22815521*x^5+21262802*x^4-4420062*x^3-2750865*x^2+519434*x-99598,157202*x^15+1039390*x^14+119184*x^13-11811063*x^12-16555939*x^11+45731019*x^10+94364775*x^9-69729778*x^8-208844909*x^7+29674025*x^6+205350293*x^5+13840395*x^4-83935070*x^3-5435560*x^2+12186360*x-632644,-203526*x^15-1356021*x^14-246480*x^13+15118366*x^12+22141848*x^11-56360795*x^10-122227448*x^9+78143693*x^8+260095277*x^7-18623855*x^6-239794978*x^5-28688856*x^4+87824703*x^3+6512207*x^2-12214517*x+925284,39229*x^15+264586*x^14+68146*x^13-2923116*x^12-4545316*x^11+10622572*x^10+24955950*x^9-13348137*x^8-53456780*x^7-521962*x^6+50151918*x^5+9115388*x^4-19246441*x^3-1898013*x^2+2971008*x-244494,99750*x^15+630719*x^14-142376*x^13-7701036*x^12-8411006*x^11+33941890*x^10+54699610*x^9-67297410*x^8-135532410*x^7+60285230*x^6+153503652*x^5-19516387*x^4-75237374*x^3+900250*x^2+11561360*x-825138,-23342*x^15-149330*x^14+38025*x^13+1874999*x^12+1967813*x^11-8668300*x^10-13158017*x^9+18746987*x^8+33370558*x^7-20034179*x^6-38362423*x^5+10266643*x^4+18755557*x^3-2567877*x^2-2756828*x+424451,226207*x^15+1589418*x^14+797719*x^13-16797218*x^12-30379066*x^11+55155130*x^10+156800126*x^9-46340930*x^8-315927690*x^7-57957397*x^6+268095433*x^5+89333585*x^4-83280147*x^3-16549442*x^2+11207855*x-968527,-389064*x^15-2644109*x^14-811785*x^13+28851108*x^12+46049432*x^11-102472279*x^10-246978407*x^9+121530812*x^8+513695130*x^7+18154162*x^6-458240471*x^5-94145506*x^4+157774175*x^3+19154967*x^2-21402719*x+1569672,-84190*x^15-595773*x^14-309491*x^13+6345557*x^12+11633166*x^11-21095662*x^10-60964535*x^9+18073480*x^8+126313330*x^7+23450937*x^6-112837848*x^5-38392067*x^4+39435482*x^3+9000433*x^2-6045712*x+366604,-498301*x^15-3353510*x^14-778739*x^13+37234512*x^12+56473431*x^11-137422854*x^10-310064071*x^9+184244012*x^8+660845822*x^7-27931647*x^6-612557277*x^5-85756841*x^4+226273936*x^3+19073717*x^2-31510417*x+2524713,255972*x^15+1789940*x^14+883402*x^13-18800337*x^12-33875412*x^11+60772728*x^10+173251671*x^9-46753066*x^8-342349124*x^7-74826911*x^6+278134187*x^5+108113498*x^4-76311893*x^3-21300500*x^2+8894935*x-335781,34105*x^15+220741*x^14-3107*x^13-2555895*x^12-3255392*x^11+10314807*x^10+19143811*x^9-17613597*x^8-43310007*x^7+12270470*x^6+43881999*x^5-2793976*x^4-18474701*x^3+709982*x^2+2372088*x-204372,-61223*x^15-381330*x^14+115505*x^13+4683891*x^12+4804017*x^11-20880115*x^10-31905196*x^9+42446509*x^8+79672463*x^7-40731383*x^6-90901985*x^5+17337869*x^4+45150675*x^3-3822884*x^2-7347500*x+940263,220285*x^15+1522495*x^14+609635*x^13-16405974*x^12-27855841*x^11+56454008*x^10+147260048*x^9-58759337*x^8-303747249*x^7-31685290*x^6+267530341*x^5+70000073*x^4-89528283*x^3-13514137*x^2+12222990*x-880308,19142*x^15+123631*x^14-1157*x^13-1435542*x^12-1894383*x^11+5728381*x^10+11522366*x^9-8921199*x^8-27735396*x^7+2548069*x^6+31530062*x^5+5964839*x^4-16551884*x^3-4036305*x^2+3103325*x+27366,67287*x^15+485370*x^14+320970*x^13-4962342*x^12-9876146*x^11+14919663*x^10+49048242*x^9-6457440*x^8-94567915*x^7-30669371*x^6+74061764*x^5+36098498*x^4-18830184*x^3-6704906*x^2+2208188*x-118467,-18276*x^15-173047*x^14-371228*x^13+1223797*x^12+5664023*x^11+1157393*x^10-22869332*x^9-24770209*x^8+32243835*x^7+59128248*x^6-5546912*x^5-46862531*x^4-15011004*x^3+7974603*x^2+3464380*x-327786,28697*x^15+184133*x^14-845*x^13-2088376*x^12-2706415*x^11+8032878*x^10+15533373*x^9-11936367*x^8-33680595*x^7+4166595*x^6+31497107*x^5+3667466*x^4-11463515*x^3-1548820*x^2+1358439*x+106809,-190413*x^15-1337800*x^14-683514*x^13+14061941*x^12+25588289*x^11-45549754*x^10-131107595*x^9+35524160*x^8+260946647*x^7+54585820*x^6-215821053*x^5-78942096*x^4+62511106*x^3+14415219*x^2-7799152*x+747400,-178356*x^15-1189014*x^14-219908*x^13+13244965*x^12+19434183*x^11-49246802*x^10-107032039*x^9+67582315*x^8+226660915*x^7-14148114*x^6-206540283*x^5-27127011*x^4+73708840*x^3+6054113*x^2-10109040*x+781812,260744*x^15+1750574*x^14+431106*x^13-19178265*x^12-29340342*x^11+68809102*x^10+157641691*x^9-84853880*x^8-324006852*x^7-3050435*x^6+279895638*x^5+54080720*x^4-88585041*x^3-9867351*x^2+10999770*x-803016,27157*x^6-271570*x^4+651768*x^2-217256,-302161*x^15-2042023*x^14-550602*x^13+22433850*x^12+34903374*x^11-80863682*x^10-188655579*x^9+100602550*x^8+393860051*x^7+2881895*x^6-351061574*x^5-64735917*x^4+119161219*x^3+12326600*x^2-15709028*x+1322793,-53300*x^15-373334*x^14-173550*x^13+4001166*x^12+7078396*x^11-13556296*x^10-37278345*x^9+13006240*x^8+77350351*x^7+10907312*x^6-69379102*x^5-20306286*x^4+24399687*x^3+4527627*x^2-3569488*x+231894,81817*x^15+498560*x^14-214448*x^13-6180500*x^12-5599486*x^11+27985125*x^10+38309225*x^9-58348261*x^8-95138472*x^7+57752631*x^6+106173468*x^5-23797323*x^4-50731102*x^3+2970110*x^2+7467214*x-634507,-337407*x^15-2326730*x^14-936325*x^13+24907128*x^12+42326041*x^11-84494463*x^10-221428058*x^9+83377505*x^8+448542731*x^7+57659161*x^6-381754765*x^5-112327882*x^4+118581652*x^3+21886436*x^2-15426215*x+1138316,-49971*x^15-336819*x^14-59254*x^13+3859942*x^12+5641071*x^11-15114962*x^10-32392304*x^9+23284237*x^8+72990593*x^7-9473121*x^6-72878361*x^5-5992981*x^4+29381361*x^3+2929953*x^2-3671429*x-143366,432811*x^15+2945224*x^14+905138*x^13-32217741*x^12-51431418*x^11+114963488*x^10+276798322*x^9-137943581*x^8-578707285*x^7-17777659*x^6+520061223*x^5+104976325*x^4-180965585*x^3-21602308*x^2+24595074*x-1807758,293741*x^15+2026324*x^14+798577*x^13-21806438*x^12-36838201*x^11+74919022*x^10+194113671*x^9-78081667*x^8-397800039*x^7-40271591*x^6+346449368*x^5+89461941*x^4-113901383*x^3-16138278*x^2+15815141*x-1396082,-10777*x^15-98020*x^14-181805*x^13+809003*x^12+3108248*x^11-681642*x^10-14252134*x^9-8757463*x^8+27459471*x^7+25369240*x^6-24102078*x^5-23235342*x^4+9712209*x^3+5785052*x^2-2168764*x+136188,373056*x^15+2490914*x^14+419562*x^13-28121523*x^12-40897593*x^11+107412057*x^10+230526380*x^9-158087693*x^8-506745642*x^7+55869711*x^6+493821131*x^5+41696430*x^4-198740717*x^3-12204725*x^2+28545518*x-1904087,-565676*x^15-3866472*x^14-1278121*x^13+42187388*x^12+68362544*x^11-149711072*x^10-366782977*x^9+176457267*x^8+766765701*x^7+30506259*x^6-691004998*x^5-142102119*x^4+242744751*x^3+29316066*x^2-33362494*x+2434563,98028*x^15+643809*x^14+40027*x^13-7369051*x^12-9844662*x^11+29055935*x^10+56218662*x^9-46877958*x^8-122931120*x^7+26808939*x^6+117215902*x^5-61299*x^4-44501632*x^3+29978*x^2+5549376*x-455497,179427*x^15+1255720*x^14+607542*x^13-13282209*x^12-23758650*x^11+43720906*x^10+122671579*x^9-37297986*x^8-246596415*x^7-44197564*x^6+208469511*x^5+68547381*x^4-64896316*x^3-11760281*x^2+9297085*x-947130,163770*x^15+1096545*x^14+194935*x^13-12383403*x^12-18084744*x^11+47373190*x^10+101760292*x^9-70248888*x^8-223441101*x^7+26564076*x^6+217308183*x^5+16042288*x^4-87108642*x^3-4474249*x^2+12369519*x-958950]];

E[464,1] = [x, [1,0,-2,0,-2,0,-4,0,1,0,6,0,2,0,4,0,2,0,6,0,8,0,-4,0,-1,0,4,0,-1,0,6,0,-12,0,8,0,2,0,-4,0,2,0,-10,0,-2,0,2,0,9,0,-4,0,10,0,-12,0,-12,0,0,0,10,0,-4,0,-4,0,12,0,8,0,-8,0,10,0,2,0,-24,0,6,0,-11,0,-16,0,-4,0,2,0,2,0,-8,0,-12,0,-12,0,10,0,6,0,-14,0,4,0,-16,0,8,0,-10,0,-4,0,-6,0,8,0,2,0,-8,0]];
E[464,2] = [x^2+2*x-1, [1,0,x,0,-1,0,-2*x-2,0,-2*x-2,0,-x-2,0,2*x+1,0,-x,0,-2*x-4,0,-6,0,2*x-2,0,4*x+6,0,-4,0,-x-2,0,1,0,5*x+2,0,-1,0,2*x+2,0,-4,0,-3*x+2,0,6*x+10,0,-x-6,0,2*x+2,0,-3*x-4,0,1,0,-2,0,-6*x-5,0,x+2,0,-6*x,0,-4*x-6,0,2*x,0,8,0,-2*x-1,0,4*x+4,0,-2*x+4,0,-2*x+4,0,4,0,-4*x,0,2*x+6,0,-x,0,6*x+5,0,4*x+2,0,2*x+4,0,x,0,6*x+2,0,2*x-6,0,-8*x+5,0,6,0,-6*x-10,0,2*x+6,0,-4*x-12,0,-2*x,0,-2*x+2,0,-2*x+10,0,-4*x+3,0,-4*x,0,8*x+6,0,-4*x-6,0,2*x-6,0,4*x+12,0]];
E[464,3] = [x^2-2*x-1, [1,0,x,0,2*x-3,0,4,0,2*x-2,0,-x+2,0,-4*x+3,0,x+2,0,-4*x+2,0,-2,0,4*x,0,-2*x+4,0,-4*x+8,0,-x+2,0,1,0,-x+8,0,-1,0,8*x-12,0,4*x,0,-5*x-4,0,4*x-8,0,-x-2,0,-2*x+10,0,-5*x+10,0,9,0,-6*x-4,0,-7,0,3*x-8,0,-2*x,0,6*x-8,0,6,0,8*x-8,0,2*x-17,0,-4*x+4,0,-2,0,6*x-4,0,4,0,-4,0,-4*x+8,0,9*x-6,0,-6*x+5,0,-2*x+8,0,-14,0,x,0,4*x-8,0,-16*x+12,0,6*x-1,0,-4*x+6,0,8*x-4,0,2*x-6,0,-8*x+8,0,-2*x+16,0,4*x+8,0,-4*x-4,0,-2*x+1,0,8*x+4,0,-10,0,6*x-16,0,-2*x-14,0,-16*x+8,0]];
E[464,4] = [x^3+2*x^2-5*x-8, [1,0,x,0,-x^2+6,0,0,0,x^2-3,0,-2*x^2-x+8,0,x^2+2*x-2,0,2*x^2+x-8,0,2,0,2*x^2-8,0,0,0,-2*x,0,-3*x^2-2*x+15,0,-2*x^2-x+8,0,1,0,-x+4,0,3*x^2-2*x-16,0,0,0,2*x^2-10,0,3*x+8,0,-2*x^2-4*x+10,0,2*x^2-x-8,0,2*x-2,0,-2*x^2+3*x+12,0,-7,0,2*x,0,-x^2+2*x+6,0,-4*x^2-5*x+24,0,-4*x^2+2*x+16,0,-2*x-4,0,-4*x-2,0,0,0,3*x^2+4*x-12,0,4*x-4,0,-2*x^2,0,4*x^2-2*x-24,0,2*x^2+4*x-6,0,4*x^2-24,0,0,0,-2*x^2+x+20,0,-2*x-7,0,-2*x-12,0,-2*x^2+12,0,x,0,6*x^2+4*x-22,0,0,0,-x^2+4*x,0,2*x^2+4*x-16,0,2*x^2-14,0,-2*x^2+2*x,0,2*x^2-4*x-10,0,-2*x,0,0,0,4*x^2+4*x-20,0,3*x^2-4*x-18,0,-4*x^2+16,0,-4*x^2+18,0,-4*x^2-2*x+16,0,2*x+6,0,0,0]];
E[464,5] = [x, [1,0,-1,0,1,0,-2,0,-2,0,-3,0,-1,0,-1,0,0,0,0,0,2,0,-4,0,-4,0,5,0,-1,0,-3,0,3,0,-2,0,-8,0,1,0,-6,0,5,0,-2,0,-3,0,-3,0,0,0,5,0,-3,0,0,0,8,0,0,0,4,0,-1,0,12,0,4,0,-6,0,-4,0,4,0,6,0,-1,0,1,0,12,0,0,0,1,0,6,0,2,0,3,0,0,0,14,0,6,0,16,0,-10,0,2,0,-18,0,-11,0,8,0,18,0,-4,0,2,0,0,0]];
E[464,6] = [x, [1,0,-1,0,3,0,4,0,-2,0,-3,0,5,0,-3,0,-6,0,4,0,-4,0,6,0,4,0,5,0,-1,0,-5,0,3,0,12,0,8,0,-5,0,0,0,1,0,-6,0,3,0,9,0,6,0,3,0,-9,0,-4,0,-6,0,2,0,-8,0,15,0,-8,0,-6,0,-6,0,-16,0,-4,0,-12,0,-11,0,1,0,-6,0,-18,0,1,0,-12,0,20,0,5,0,12,0,8,0,6,0,12,0,-14,0,-12,0,0,0,11,0,-8,0,-6,0,18,0,-10,0,-24,0]];
E[464,7] = [x, [1,0,1,0,1,0,2,0,-2,0,3,0,-1,0,1,0,8,0,0,0,2,0,-4,0,-4,0,-5,0,-1,0,3,0,3,0,2,0,8,0,-1,0,2,0,11,0,-2,0,-13,0,-3,0,8,0,-11,0,3,0,0,0,0,0,-8,0,-4,0,-1,0,12,0,-4,0,-2,0,4,0,-4,0,6,0,-15,0,1,0,-4,0,8,0,-1,0,-10,0,-2,0,3,0,0,0,-2,0,-6,0,-8,0,-14,0,2,0,2,0,5,0,8,0,-6,0,-4,0,2,0,16,0]];
E[464,8] = [x, [1,0,1,0,-3,0,-2,0,-2,0,3,0,-5,0,-3,0,-4,0,0,0,-2,0,0,0,4,0,-5,0,-1,0,-9,0,3,0,6,0,8,0,-5,0,-2,0,11,0,6,0,7,0,-3,0,-4,0,9,0,-9,0,0,0,-4,0,-12,0,4,0,15,0,-12,0,0,0,-2,0,-4,0,4,0,-6,0,-3,0,1,0,16,0,12,0,-1,0,2,0,10,0,-9,0,0,0,-14,0,-6,0,0,0,10,0,6,0,14,0,1,0,8,0,-6,0,0,0,10,0,8,0]];
E[464,9] = [x, [1,0,3,0,3,0,-4,0,6,0,1,0,-3,0,9,0,2,0,-4,0,-12,0,6,0,4,0,9,0,-1,0,-9,0,3,0,-12,0,-8,0,-9,0,-8,0,5,0,18,0,7,0,9,0,6,0,-5,0,3,0,-12,0,10,0,10,0,-24,0,-9,0,-8,0,18,0,2,0,0,0,12,0,-4,0,1,0,9,0,-6,0,6,0,-3,0,12,0,12,0,-27,0,-12,0,0,0,6,0,-4,0,-6,0,-36,0,8,0,-5,0,-24,0,-6,0,18,0,-18,0,-8,0]];
E[464,10] = [x, [1,0,3,0,-3,0,2,0,6,0,1,0,3,0,-9,0,-4,0,8,0,6,0,0,0,4,0,9,0,-1,0,-3,0,3,0,-6,0,-8,0,9,0,-2,0,-7,0,-18,0,-11,0,-3,0,-12,0,1,0,-3,0,24,0,4,0,4,0,12,0,-9,0,4,0,0,0,2,0,-12,0,12,0,2,0,7,0,9,0,0,0,12,0,-3,0,-6,0,6,0,-9,0,-24,0,-6,0,6,0,8,0,6,0,-18,0,2,0,1,0,-24,0,18,0,0,0,18,0,-8,0]];

E[465,1] = [x, [1,1,-1,-1,1,-1,-2,-3,1,1,-4,1,0,-2,-1,-1,2,1,-8,-1,2,-4,-8,3,1,0,-1,2,0,-1,1,5,4,2,-2,-1,8,-8,0,-3,-6,2,0,4,1,-8,4,1,-3,1,-2,0,6,-1,-4,6,8,0,10,1,-14,1,-2,7,0,4,2,-2,8,-2,6,-3,-16,8,-1,8,8,0,0,-1,1,-6,4,-2,2,0,0,12,4,1,0,8,-1,4,-8,-5,6,-3,-4,-1,14,-2,2,0,2,6,16,1,-14,-4,-8,2,-6,8,-8,0,0,10,-4,3,5,-14,6,-1,1,-2,-4,-3]];
E[465,2] = [x, [1,-1,1,-1,1,-1,-4,3,1,-1,-4,-1,2,4,1,-1,-6,-1,-4,-1,-4,4,0,3,1,-2,1,4,-6,-1,-1,-5,-4,6,-4,-1,10,4,2,3,-6,4,-12,4,1,0,0,-1,9,-1,-6,-2,-2,-1,-4,-12,-4,6,-8,-1,6,1,-4,7,2,4,8,6,0,4,-12,3,6,-10,1,4,16,-2,-8,-1,1,6,12,4,-6,12,-6,-12,6,-1,-8,0,-1,0,-4,-5,-6,-9,-4,-1,-10,6,20,6,-4,2,12,-1,-2,4,10,4,18,4,0,6,2,8,24,3,5,-6,-6,1,1,4,-8,3]];
E[465,3] = [x^2-3, [1,x,-1,1,-1,-x,-x-3,-x,1,-x,-2*x+2,-1,x-3,-3*x-3,1,-5,-2*x+2,x,2*x+2,-1,x+3,2*x-6,2*x-4,x,1,-3*x+3,-1,-x-3,x-1,x,-1,-3*x,2*x-2,2*x-6,x+3,1,-x-5,2*x+6,-x+3,x,2*x,3*x+3,-4,-2*x+2,-1,-4*x+6,-6,5,6*x+5,x,2*x-2,x-3,6*x+2,-x,2*x-2,3*x+3,-2*x-2,-x+3,-3*x-7,1,-6*x,-x,-x-3,1,-x+3,-2*x+6,-3*x-5,-2*x+2,-2*x+4,3*x+3,3*x-9,-x,5*x-3,-5*x-3,-1,2*x+2,4*x,3*x-3,-10,5,1,6,2*x+12,x+3,2*x-2,-4*x,-x+1,-2*x+6,-x+9,-x,6,2*x-4,1,-6*x,-2*x-2,3*x,-2,5*x+18,-2*x+2,1,-2*x+8,-2*x+6,-x+5,3*x-3,-x-3,2*x+18,-8*x-2,-1,2*x-6,-2*x+6,x+5,5*x+15,-4*x+2,-2*x-6,-2*x+4,x-1,x-3,-7*x-9,4*x,-x,-8*x+5,-18,-2*x,-1,-1,-3*x-3,2*x-14,7*x]];
E[465,4] = [x^3-x^2-3*x+1, [1,x,1,x^2-2,1,x,-x+1,x^2-x-1,1,x,2,x^2-2,-2*x^2+3*x+3,-x^2+x,1,-2*x^2+2*x+3,-x^2-2*x+3,x,0,x^2-2,-x+1,2*x,-x^2+3,x^2-x-1,1,x^2-3*x+2,1,-x-1,3*x^2-x-4,x,1,-2*x^2-x+4,2,-3*x^2+1,-x+1,x^2-2,4*x^2-7*x-7,0,-2*x^2+3*x+3,x^2-x-1,-4*x+4,-x^2+x,-2*x^2+4*x,2*x^2-4,1,-x^2+1,-3*x^2+5,-2*x^2+2*x+3,x^2-2*x-6,x,-x^2-2*x+3,2*x^2-x-7,-x^2+4*x+1,x,2,x^2-3*x,0,2*x^2+5*x-3,5*x^2-3*x-6,x^2-2,2*x^2-4*x-4,x,-x+1,x^2-6*x-4,-2*x^2+3*x+3,2*x,5*x-7,-x^2-4*x-3,-x^2+3,-x^2+x,-x^2-3*x+10,x^2-x-1,4*x^2-x-9,-3*x^2+5*x-4,1,0,-2*x+2,x^2-3*x+2,5*x^2-6*x-7,-2*x^2+2*x+3,1,-4*x^2+4*x,5*x^2-11,-x-1,-x^2-2*x+3,2*x^2-6*x+2,3*x^2-x-4,2*x^2-2*x-2,-7*x^2+7*x+12,x,-3*x^2+6*x+1,x^2-2*x-5,1,-3*x^2-4*x+3,0,-2*x^2-x+4,-12,-x^2-3*x-1,2,x^2-2,-2*x^2+8*x+6,-3*x^2+1,-2*x^2+7*x+1,-x^2+5*x-6,-x+1,3*x^2-2*x+1,-x^2+2*x+1,x^2-2,-5*x^2+4*x+3,2*x,4*x^2-7*x-7,-2*x^2+5*x+1,2*x^2+2*x-10,0,-x^2+3,x^2+5*x+6,-2*x^2+3*x+3,2*x^2+9*x-5,2*x^2-2*x+2,x^2-x-1,-7,-2*x^2+2*x-2,-4*x+4,x^2-2,1,-x^2+x,4*x^2-6*x-10,-x^2+x-9]];
E[465,5] = [x^3-3*x^2-x+5, [1,x,1,x^2-2,-1,x,-2*x^2+3*x+5,3*x^2-3*x-5,1,-x,-2*x^2+2*x+6,x^2-2,-x-1,-3*x^2+3*x+10,-1,4*x^2-2*x-11,-x^2+5,x,2*x^2-4*x-6,-x^2+2,-2*x^2+3*x+5,-4*x^2+4*x+10,x^2-2*x+3,3*x^2-3*x-5,1,-x^2-x,1,-2*x^2+x+5,-x^2-x+10,-x,-1,4*x^2-x-10,-2*x^2+2*x+6,-3*x^2+4*x+5,2*x^2-3*x-5,x^2-2,2*x^2-x-9,2*x^2-4*x-10,-x-1,-3*x^2+3*x+5,2*x^2+2*x-8,-3*x^2+3*x+10,2*x^2-6*x-2,-4*x^2+2*x+8,-1,x^2+4*x-5,7*x^2-10*x-11,4*x^2-2*x-11,-7*x^2+10*x+18,x,-x^2+5,-4*x^2+x+7,x^2-6*x+5,x,2*x^2-2*x-6,x^2-3*x-10,2*x^2-4*x-6,-4*x^2+9*x+5,-x^2-x-4,-x^2+2,-4*x-2,-x,-2*x^2+3*x+5,3*x^2-2*x+2,x+1,-4*x^2+4*x+10,6*x^2-5*x-17,-3*x^2+2*x+5,x^2-2*x+3,3*x^2-3*x-10,-x^2+x+4,3*x^2-3*x-5,6*x^2-7*x-19,5*x^2-7*x-10,1,-2*x^2+2,-6*x^2+10*x+20,-x^2-x,5*x^2-2*x-15,-4*x^2+2*x+11,1,8*x^2-6*x-10,-5*x^2+6*x+9,-2*x^2+x+5,x^2-5,-10,-x^2-x+10,-2*x^2-4*x,3*x^2-3*x-10,-x,5*x^2-6*x-15,5*x^2-11,-1,11*x^2-4*x-35,-2*x^2+4*x+6,4*x^2-x-10,-8*x^2+6*x+26,-11*x^2+11*x+35,-2*x^2+2*x+6,x^2-2,6*x-2,-3*x^2+4*x+5,-8*x^2+9*x+23,-9*x^2+5*x+20,2*x^2-3*x-5,-3*x^2+6*x-5,-x^2+8*x+3,x^2-2,-3*x^2+8*x+5,4*x^2-4*x-10,2*x^2-x-9,4*x^2-11*x-15,-4*x^2+2*x+16,2*x^2-4*x-10,-x^2+2*x-3,-x^2+3*x,-x-1,-4*x^2-5*x+5,-4*x^2+8*x+10,-3*x^2+3*x+5,-4*x^2+8*x+5,-4*x^2-2*x,2*x^2+2*x-8,-x^2+2,-1,-3*x^2+3*x+10,-4*x^2+2*x+22,-x^2+7*x+5]];
E[465,6] = [x^3-x^2-5*x+3, [1,x,-1,x^2-2,-1,-x,-x+3,x^2+x-3,1,-x,2*x,-x^2+2,x+1,-x^2+3*x,1,2*x+1,-x^2+5,x,-2*x^2+6,-x^2+2,x-3,2*x^2,x^2-2*x-1,-x^2-x+3,1,x^2+x,-1,2*x^2-3*x-3,-x^2-3*x+4,x,1,-x+6,-2*x,-x^2+3,x-3,x^2-2,x+3,-2*x^2-4*x+6,-x-1,-x^2-x+3,-2*x-2,x^2-3*x,-2*x+4,2*x^2+6*x-6,-1,-x^2+4*x-3,-3*x^2+2*x+7,-2*x-1,x^2-6*x+2,x,x^2-5,2*x^2+3*x-5,x^2-2*x-3,-x,-2*x,x^2+x-6,2*x^2-6,-4*x^2-x+3,x^2-x-6,x^2-2,-2,x,-x+3,-x^2+2*x-2,-x-1,-2*x^2,2*x^2-x-1,x^2-2*x-7,-x^2+2*x+1,x^2-3*x,3*x^2+x-8,x^2+x-3,3*x+5,x^2+3*x,-1,-2*x^2-4*x-6,-2*x^2+6*x,-x^2-x,-x^2-2*x+11,-2*x-1,1,-2*x^2-2*x,3*x^2-2*x-3,-2*x^2+3*x+3,x^2-5,-2*x^2+4*x,x^2+3*x-4,4*x^2+4*x-6,5*x^2-5*x-14,-x,-x^2+2*x+3,x^2-4*x+5,-1,-x^2-8*x+9,2*x^2-6,x-6,-2*x^2+6*x+8,-5*x^2+7*x-3,2*x,x^2-2,-2*x^2+2*x-4,x^2-3,-4*x^2+x+19,3*x^2+3*x-6,-x+3,-x^2+2*x-3,x^2-4*x-3,-x^2+2,-3*x^2+4*x+5,-2*x^2,-x-3,-2*x^2+5*x+3,-6*x,2*x^2+4*x-6,-x^2+2*x+1,-3*x^2-11*x+4,x+1,-x-3,-2*x^2+12,x^2+x-3,4*x^2-11,-2*x,2*x+2,x^2-2,-1,-x^2+3*x,-4*x^2+2*x+14,x^2-5*x-9]];
E[465,7] = [x^4-2*x^3-6*x^2+12*x-1, [1,x,-1,x^2-2,1,-x,-x^3+x^2+6*x-4,x^3-4*x,1,x,x^3-x^2-7*x+7,-x^2+2,-2*x^3+11*x-1,-x^3+8*x-1,-1,2*x^3-12*x+5,x^3-5*x-2,x,4,x^2-2,x^3-x^2-6*x+4,x^3-x^2-5*x+1,-x^3-2*x^2+7*x+8,-x^3+4*x,1,-4*x^3-x^2+23*x-2,-1,-x+7,x^3-6*x+1,-x,-1,2*x^3-11*x+2,-x^3+x^2+7*x-7,2*x^3+x^2-14*x+1,-x^3+x^2+6*x-4,x^2-2,x^3-x^2-8*x+8,4*x,2*x^3-11*x+1,x^3-4*x,-x^3+x^2+3*x-5,x^3-8*x+1,3*x^3-x^2-17*x+7,-x^3+3*x^2+3*x-13,1,-4*x^3+x^2+20*x-1,-x^3+2*x^2+3*x-8,-2*x^3+12*x-5,-2*x^3-x^2+12*x+4,x,-x^3+5*x+2,-5*x^3-x^2+24*x-2,x^3-7*x,-x,x^3-x^2-7*x+7,2*x^3-x^2-9*x+2,-4,2*x^3-11*x+1,-x^3-2*x^2+4*x+9,-x^2+2,4*x^3-2*x^2-24*x+12,-x,-x^3+x^2+6*x-4,x^2+2*x-8,-2*x^3+11*x-1,-x^3+x^2+5*x-1,-3*x+1,3*x^3-2*x^2-13*x+6,x^3+2*x^2-7*x-8,-x^3+8*x-1,2*x^3+x^2-13*x+4,x^3-4*x,-x^3+x^2+4*x-12,x^3-2*x^2-4*x+1,-1,4*x^2-8,4*x^2-2*x-22,4*x^3+x^2-23*x+2,-x^2+6*x+7,2*x^3-12*x+5,1,-x^3-3*x^2+7*x-1,x^3-2*x^2-7*x+8,x-7,x^3-5*x-2,5*x^3+x^2-29*x+3,-x^3+6*x-1,-x^3-x^2+9*x-3,3*x^2+x-16,x,-6*x^3+x^2+36*x-3,-5*x^3+33*x-20,1,-3*x^2+4*x-1,4,-2*x^3+11*x-2,-x^3+x^2+7*x-9,-5*x^3+28*x-2,x^3-x^2-7*x+7,x^2-2,-x^3-x^2+7*x-3,-2*x^3-x^2+14*x-1,4*x^3+2*x^2-25*x+1,-3*x^3-4*x^2+12*x-1,x^3-x^2-6*x+4,2*x^3-x^2-12*x+1,-3*x^3+2*x^2+15*x-2,-x^2+2,-x^2+4*x+3,x^3-x^2-5*x+1,-x^3+x^2+8*x-8,3*x^3+3*x^2-20*x-12,2*x^2+6*x-10,-4*x,-x^3-2*x^2+7*x+8,2*x^3+x^2-11*x,-2*x^3+11*x-1,-4*x^3-2*x^2+21*x-1,5*x^3-3*x^2-29*x+11,-x^3+4*x,2*x^3-6*x^2-14*x+31,6*x^3-36*x+4,x^3-x^2-3*x+5,-x^2+2,1,-x^3+8*x-1,4*x^3-26*x+18,-3*x^3+2*x^2+14*x-4]];
E[465,8] = [x^2+2*x-1, [1,x,1,-2*x-1,-1,x,-x-3,x-2,1,-x,2*x+2,-2*x-1,-x-5,-x-1,-1,3,-4,x,-2*x-2,2*x+1,-x-3,-2*x+2,-6,x-2,1,-3*x-1,1,3*x+5,-3*x-5,-x,1,x+4,2*x+2,-4*x,x+3,-2*x-1,x+1,2*x-2,-x-5,-x+2,2*x+4,-x-1,8*x+8,2*x-6,-1,-6*x,2*x,3,4*x+3,x,-4,7*x+7,-4,x,-2*x-2,x+5,-2*x-2,x-3,3*x+7,2*x+1,6*x+4,x,-x-3,2*x-5,x+5,-2*x+2,-7*x-13,8*x+4,-6,x+1,-7*x-7,x-2,7*x+11,-x+1,1,-2*x+6,-4*x-8,-3*x-1,6*x,-3,1,2,-4*x-10,3*x+5,4,-8*x+8,-3*x-5,-6*x-2,-5*x-7,-x,6*x+16,12*x+6,1,-4*x+2,2*x+2,x+4,-4*x+6,-5*x+4,2*x+2,-2*x-1,2*x,-4*x,3*x+5,-x+9,x+3,-4*x,-2*x-8,-2*x-1,-8*x,2*x-2,x+1,-3*x-9,-8*x-2,2*x-2,6,x+11,-x-5,x+3,4*x+12,-x+2,-3,-8*x+6,2*x+4,-2*x-1,-1,-x-1,-6*x-14,-11*x-6]];

E[466,1] = [x, [1,-1,2,1,0,-2,0,-1,1,0,2,2,2,0,0,1,6,-1,0,0,0,-2,8,-2,-5,-2,-4,0,-2,0,0,-1,4,-6,0,1,2,0,4,0,6,0,-10,2,0,-8,0,2,-7,5,12,2,0,4,0,0,0,2,-10,0,4,0,0,1,0,-4,14,6,16,0,8,-1,-6,-2,-10,0,0,-4,-4,0,-11,-6,-6,0,0,10,-4,-2,6,0,0,8,0,0,0,-2,-10,7,2,-5,-2,-12,-16,-2,0,0,-8,-4,-10,0,4,0,-14,0,0,-2,2]];
E[466,2] = [x^3+2*x^2-3*x-5, [1,-1,x,1,x^2+x-1,-x,2*x^2+x-5,-1,x^2-3,-x^2-x+1,-x^2+6,x,-2*x^2+5,-2*x^2-x+5,-x^2+2*x+5,1,-x-2,-x^2+3,-x^2-2*x+3,x^2+x-1,-3*x^2+x+10,x^2-6,x^2-3*x-5,-x,2*x^2+3*x-4,2*x^2-5,-2*x^2-3*x+5,2*x^2+x-5,-x+5,x^2-2*x-5,-x^2-4*x+2,-1,2*x^2+3*x-5,x+2,2*x^2+x,x^2-3,-x^2-x-2,x^2+2*x-3,4*x^2-x-10,-x^2-x+1,-x^2+5,3*x^2-x-10,-4*x^2+x+19,-x^2+6,x^2-x-2,-x^2+3*x+5,x+8,x,x^2-2*x-2,-2*x^2-3*x+4,-x^2-2*x,-2*x^2+5,-3*x^2-2*x+11,2*x^2+3*x-5,2*x^2+4*x-1,-2*x^2-x+5,-5,x-5,x^2+x+4,-x^2+2*x+5,2*x^2+2*x-3,x^2+4*x-2,x^2-2*x,1,-3*x^2+x+5,-2*x^2-3*x+5,4*x^2+3*x-18,-x-2,-5*x^2-2*x+5,-2*x^2-x,-7*x^2-5*x+21,-x^2+3,5*x^2-3*x-20,x^2+x+2,-x^2+2*x+10,-x^2-2*x+3,5*x^2+5*x-15,-4*x^2+x+10,5*x^2+2*x-13,x^2+x-1,-2*x^2-x-1,x^2-5,6*x^2+4*x-13,-3*x^2+x+10,-x^2-4*x-3,4*x^2-x-19,-x^2+5*x,x^2-6,x^2-5*x-3,-x^2+x+2,-4*x^2+3*x+5,x^2-3*x-5,-2*x^2-x-5,-x-8,x^2-3*x-8,-x,3*x^2+2*x-16,-x^2+2*x+2,2*x^2+x-8,2*x^2+3*x-4,5*x^2+6*x-9,x^2+2*x,-9*x^2-2*x+29,2*x^2-5,-3*x^2+6*x+10,3*x^2+2*x-11,-x^2+4*x+8,-2*x^2-3*x+5,-3*x-9,-2*x^2-4*x+1,x^2-5*x-5,2*x^2+x-5,-3*x^2+3*x+12,5,2*x^2-9*x-15,-x+5,-3*x^2+2*x+5]];
E[466,3] = [x^5-8*x^3+x^2+5*x-1, [5,-5,5*x,5,5*x^4-40*x^2+15,-5*x,-7*x^4-x^3+53*x^2-3*x-24,-5,5*x^2-15,-5*x^4+40*x^2-15,-4*x^4+3*x^3+31*x^2-21*x-23,5*x,4*x^4+2*x^3-26*x^2-14*x+3,7*x^4+x^3-53*x^2+3*x+24,-5*x^2-10*x+5,5,-7*x^4-6*x^3+53*x^2+32*x-34,-5*x^2+15,-4*x^4-2*x^3+31*x^2+4*x-23,5*x^4-40*x^2+15,-x^4-3*x^3+4*x^2+11*x-7,4*x^4-3*x^3-31*x^2+21*x+23,13*x^4+4*x^3-102*x^2-18*x+41,-5*x,5*x^4+5*x^3-35*x^2-15*x+15,-4*x^4-2*x^3+26*x^2+14*x-3,5*x^3-30*x,-7*x^4-x^3+53*x^2-3*x-24,11*x^4-2*x^3-89*x^2+24*x+37,5*x^2+10*x-5,-8*x^4-9*x^3+57*x^2+63*x-31,-5,3*x^4-x^3-17*x^2-3*x-4,7*x^4+6*x^3-53*x^2-32*x+34,-9*x^4-2*x^3+81*x^2+24*x-68,5*x^2-15,11*x^4+8*x^3-94*x^2-46*x+72,4*x^4+2*x^3-31*x^2-4*x+23,2*x^4+6*x^3-18*x^2-17*x+4,-5*x^4+40*x^2-15,2*x^4+6*x^3-13*x^2-32*x-31,x^4+3*x^3-4*x^2-11*x+7,-12*x^4-11*x^3+98*x^2+82*x-54,-4*x^4+3*x^3+31*x^2-21*x-23,-15*x^4-5*x^3+110*x^2+5*x-45,-13*x^4-4*x^3+102*x^2+18*x-41,12*x^4+6*x^3-88*x^2-37*x+14,5*x,20*x^4+10*x^3-155*x^2-40*x+80,-5*x^4-5*x^3+35*x^2+15*x-15,-6*x^4-3*x^3+39*x^2+x-7,4*x^4+2*x^3-26*x^2-14*x+3,-12*x^4-6*x^3+103*x^2+32*x-69,-5*x^3+30*x,-18*x^4-9*x^3+142*x^2+53*x-86,7*x^4+x^3-53*x^2+3*x+24,-2*x^4-x^3+8*x^2-3*x-4,-11*x^4+2*x^3+89*x^2-24*x-37,-10*x^4-5*x^3+75*x^2+30*x-45,-5*x^2-10*x+5,-12*x^4-11*x^3+88*x^2+47*x-24,8*x^4+9*x^3-57*x^2-63*x+31,18*x^4-x^3-147*x^2+7*x+71,5,-7*x^4-6*x^3+48*x^2+22*x-9,-3*x^4+x^3+17*x^2+3*x+4,-2*x^4+4*x^3+18*x^2-23*x+6,-7*x^4-6*x^3+53*x^2+32*x-34,4*x^4+2*x^3-31*x^2-24*x+13,9*x^4+2*x^3-81*x^2-24*x+68,5*x^4+10*x^3-30*x^2-50*x-15,-5*x^2+15,15*x^4+15*x^3-120*x^2-75*x+85,-11*x^4-8*x^3+94*x^2+46*x-72,5*x^4+5*x^3-20*x^2-10*x+5,-4*x^4-2*x^3+31*x^2+4*x-23,25*x^4+10*x^3-200*x^2-50*x+135,-2*x^4-6*x^3+18*x^2+17*x-4,31*x^4+8*x^3-234*x^2-41*x+87,5*x^4-40*x^2+15,5*x^4-45*x^2+45,-2*x^4-6*x^3+13*x^2+32*x+31,9*x^4-3*x^3-71*x^2+16*x+28,-x^4-3*x^3+4*x^2+11*x-7,-14*x^4+8*x^3+121*x^2-46*x-63,12*x^4+11*x^3-98*x^2-82*x+54,-2*x^4-x^3+13*x^2-18*x+11,4*x^4-3*x^3-31*x^2+21*x+23,-21*x^4-13*x^3+154*x^2+81*x-62,15*x^4+5*x^3-110*x^2-5*x+45,3*x^4-x^3-27*x^2-3*x+6,13*x^4+4*x^3-102*x^2-18*x+41,-9*x^4-7*x^3+71*x^2+9*x-8,-12*x^4-6*x^3+88*x^2+37*x-14,-13*x^4+x^3+112*x^2+3*x-61,-5*x,-10*x^4-15*x^3+85*x^2+105*x-35,-20*x^4-10*x^3+155*x^2+40*x-80,11*x^4-2*x^3-99*x^2+44*x+72,5*x^4+5*x^3-35*x^2-15*x+15,-20*x^4-5*x^3+155*x^2+25*x-70,6*x^4+3*x^3-39*x^2-x+7,8*x^4+14*x^3-67*x^2-88*x+41,-4*x^4-2*x^3+26*x^2+14*x-3,-2*x^4+9*x^3+33*x^2-23*x-9,12*x^4+6*x^3-103*x^2-32*x+69,-16*x^4-3*x^3+109*x^2+x+13,5*x^3-30*x,-25*x^4+195*x^2-20*x-75,18*x^4+9*x^3-142*x^2-53*x+86,8*x^4-6*x^3-57*x^2+17*x+11,-7*x^4-x^3+53*x^2-3*x-24,-x^4+2*x^3+4*x^2-4*x+8,2*x^4+x^3-8*x^2+3*x+4,11*x^4+3*x^3-89*x^2-x+92,11*x^4-2*x^3-89*x^2+24*x+37,-6*x^4-8*x^3+59*x^2+36*x-7]];
E[466,4] = [x, [1,1,1,1,0,1,2,1,-2,0,0,1,5,2,0,1,0,-2,-4,0,2,0,6,1,-5,5,-5,2,3,0,-4,1,0,0,0,-2,-7,-4,5,0,-6,2,-1,0,0,6,9,1,-3,-5,0,5,6,-5,0,2,-4,3,3,0,-10,-4,-4,1,0,0,-7,0,6,0,-12,-2,14,-7,-5,-4,0,5,-13,0,1,-6,-9,2,0,-1,3,0,-3,0,10,6,-4,9,0,1,14,-3,0,-5,-9,0,-4,5,0,6,12,-5,11,0,-7,2,15,-4,0,3,-10]];
E[466,5] = [x^3+4*x^2+3*x-1, [1,1,x,1,-x^2-3*x-3,x,2*x^2+3*x-3,1,x^2-3,-x^2-3*x-3,-3*x^2-8*x-4,x,2*x^2+6*x-1,2*x^2+3*x-3,x^2-1,1,-2*x^2-3*x,x^2-3,3*x^2+12*x+5,-x^2-3*x-3,-5*x^2-9*x+2,-3*x^2-8*x-4,-3*x^2-7*x+1,x,4*x^2+13*x+6,2*x^2+6*x-1,-4*x^2-9*x+1,2*x^2+3*x-3,4*x^2+9*x-3,x^2-1,-x^2-2*x+2,1,4*x^2+5*x-3,-2*x^2-3*x,-2*x^2+x+8,x^2-3,x^2+5*x+2,3*x^2+12*x+5,-2*x^2-7*x+2,-x^2-3*x-3,-x^2-4*x-7,-5*x^2-9*x+2,-2*x^2-13*x-9,-3*x^2-8*x-4,-x^2+5*x+10,-3*x^2-7*x+1,-2*x^2-5*x,x,x^2-2*x-2,4*x^2+13*x+6,5*x^2+6*x-2,2*x^2+6*x-1,-5*x^2-6*x+11,-4*x^2-9*x+1,8*x^2+24*x+17,2*x^2+3*x-3,-4*x+3,4*x^2+9*x-3,7*x^2+13*x-10,x^2-1,-6*x^2-16*x-5,-x^2-2*x+2,5*x^2+8*x+4,1,-x^2-5*x-1,4*x^2+5*x-3,-4*x^2-13*x-2,-2*x^2-3*x,5*x^2+10*x-3,-2*x^2+x+8,9*x^2+23*x+3,x^2-3,-x^2-5*x-6,x^2+5*x+2,-3*x^2-6*x+4,3*x^2+12*x+5,-x^2+9*x+11,-2*x^2-7*x+2,-9*x^2-16*x+9,-x^2-3*x-3,4*x^2+13*x+5,-x^2-4*x-7,-10*x-13,-5*x^2-9*x+2,5*x^2+8*x+1,-2*x^2-13*x-9,-7*x^2-15*x+4,-3*x^2-8*x-4,-x^2+x-1,-x^2+5*x+10,-10*x^2-23*x+5,-3*x^2-7*x+1,2*x^2+5*x-1,-2*x^2-5*x,-5*x^2-27*x-24,x,3*x^2+6*x-12,x^2-2*x-2,-2*x^2+9*x+16,4*x^2+13*x+6,-5*x^2-14*x-9,5*x^2+6*x-2,-3*x^2-8*x+11,2*x^2+6*x-1,9*x^2+14*x-2,-5*x^2-6*x+11,x^2+8*x+6,-4*x^2-9*x+1,-5*x-9,8*x^2+24*x+17,x^2-x+1,2*x^2+3*x-3,-5*x^2-15*x+6,-4*x+3,4*x^2+9*x+1,4*x^2+9*x-3,-5*x^2-10*x+1]];
E[466,6] = [x^6-x^5-13*x^4+10*x^3+43*x^2-12*x-36, [12,12,12*x,12,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,12,12*x^2-36,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x^4-120*x^2+12*x+192,12*x,2*x^5-2*x^4-26*x^3+20*x^2+62*x-12,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,-6*x^5+6*x^4+54*x^3-72*x^2-42*x+108,12,-6*x^5+6*x^4+66*x^3-60*x^2-138*x+84,12*x^2-36,-4*x^5+16*x^4+40*x^3-160*x^2-52*x+240,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x^2-12*x-72,12*x^4-120*x^2+12*x+192,4*x^5-4*x^4-40*x^3+52*x^2+52*x-120,12*x,12*x^5-24*x^4-120*x^3+228*x^2+168*x-228,2*x^5-2*x^4-26*x^3+20*x^2+62*x-12,12*x^3-72*x,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,-4*x^5+4*x^4+40*x^3-40*x^2-76*x+48,-6*x^5+6*x^4+54*x^3-72*x^2-42*x+108,-2*x^5+2*x^4+14*x^3-8*x^2-2*x-36,12,12*x^5-120*x^3+12*x^2+192*x,-6*x^5+6*x^4+66*x^3-60*x^2-138*x+84,4*x^5-16*x^4-28*x^3+172*x^2-44*x-312,12*x^2-36,-12*x^4+120*x^2-24*x-168,-4*x^5+16*x^4+40*x^3-160*x^2-52*x+240,-24*x^2+12*x+72,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,-14*x^5+14*x^4+134*x^3-152*x^2-170*x+228,12*x^2-12*x-72,-2*x^5-10*x^4+26*x^3+88*x^2-62*x-132,12*x^4-120*x^2+12*x+192,-9*x^5+3*x^4+87*x^3-36*x^2-135*x+18,4*x^5-4*x^4-40*x^3+52*x^2+52*x-120,3*x^5-9*x^4-21*x^3+96*x^2-27*x-198,12*x,12*x^4-12*x^3-144*x^2+96*x+300,12*x^5-24*x^4-120*x^3+228*x^2+168*x-228,-12*x^4+120*x^2+12*x-216,2*x^5-2*x^4-26*x^3+20*x^2+62*x-12,-7*x^5+x^4+61*x^3-40*x^2-37*x+102,12*x^3-72*x,6*x^5+6*x^4-78*x^3-72*x^2+222*x+156,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,12*x^5-12*x^4-120*x^3+120*x^2+192*x-144,-4*x^5+4*x^4+40*x^3-40*x^2-76*x+48,2*x^5-2*x^4-14*x^3+56*x^2-10*x-204,-6*x^5+6*x^4+54*x^3-72*x^2-42*x+108,19*x^5-25*x^4-193*x^3+256*x^2+301*x-294,-2*x^5+2*x^4+14*x^3-8*x^2-2*x-36,6*x^5-6*x^4-66*x^3+48*x^2+150*x-36,12,2*x^5+10*x^4-26*x^3-100*x^2+86*x+204,12*x^5-120*x^3+12*x^2+192*x,-12*x^5+12*x^4+108*x^3-120*x^2-96*x+120,-6*x^5+6*x^4+66*x^3-60*x^2-138*x+84,12*x^4+12*x^3-120*x^2-72*x+144,4*x^5-16*x^4-28*x^3+172*x^2-44*x-312,12*x^5-12*x^4-120*x^3+132*x^2+204*x-168,12*x^2-36,4*x^5-4*x^4-52*x^3+52*x^2+160*x-120,-12*x^4+120*x^2-24*x-168,-12*x^5+36*x^4+108*x^3-348*x^2-84*x+432,-4*x^5+16*x^4+40*x^3-160*x^2-52*x+240,-20*x^5+20*x^4+224*x^3-188*x^2-476*x+120,-24*x^2+12*x+72,-3*x^5-15*x^4+33*x^3+156*x^2-69*x-282,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x^4-108*x^2+108,-14*x^5+14*x^4+134*x^3-152*x^2-170*x+228,-18*x^5+42*x^4+186*x^3-420*x^2-246*x+588,12*x^2-12*x-72,6*x^5-30*x^4-54*x^3+312*x^2+18*x-492,-2*x^5-10*x^4+26*x^3+88*x^2-62*x-132,-12*x^4+96*x^2-144,12*x^4-120*x^2+12*x+192,8*x^5+4*x^4-68*x^3-40*x^2+68*x+120,-9*x^5+3*x^4+87*x^3-36*x^2-135*x+18,-12*x^4+12*x^3+132*x^2-84*x-312,4*x^5-4*x^4-40*x^3+52*x^2+52*x-120,-12*x^4+12*x^3+84*x^2-60*x-72,3*x^5-9*x^4-21*x^3+96*x^2-27*x-198,2*x^5+10*x^4-38*x^3-100*x^2+170*x+132,12*x,-14*x^5+14*x^4+146*x^3-152*x^2-254*x+156,12*x^4-12*x^3-144*x^2+96*x+300,12*x^5-108*x^3+36*x^2+108*x-144,12*x^5-24*x^4-120*x^3+228*x^2+168*x-228,-2*x^5+14*x^4+26*x^3-116*x^2-50*x+132,-12*x^4+120*x^2+12*x-216,13*x^5-19*x^4-127*x^3+232*x^2+151*x-450,2*x^5-2*x^4-26*x^3+20*x^2+62*x-12,-12*x^5+24*x^4+132*x^3-216*x^2-264*x+144,-7*x^5+x^4+61*x^3-40*x^2-37*x+102,4*x^5+8*x^4-52*x^3-56*x^2+136*x-24,12*x^3-72*x,2*x^5+10*x^4-26*x^3-112*x^2+62*x+180,6*x^5+6*x^4-78*x^3-72*x^2+222*x+156,-12*x^5+120*x^3-24*x^2-168*x,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,-8*x^5+20*x^4+80*x^3-200*x^2-80*x+240,12*x^5-12*x^4-120*x^3+120*x^2+192*x-144,-8*x^5+20*x^4+92*x^3-188*x^2-212*x+168,-4*x^5+4*x^4+40*x^3-40*x^2-76*x+48,-6*x^5+6*x^4+54*x^3-48*x^2-114*x+36]];

E[467,1] = [x^12+5*x^11-3*x^10-46*x^9-28*x^8+144*x^7+140*x^6-182*x^5-197*x^4+102*x^3+104*x^2-22*x-17, [7,7*x,-3*x^11-10*x^10+28*x^9+103*x^8-97*x^7-387*x^6+155*x^5+633*x^4-114*x^3-417*x^2+40*x+81,7*x^2-14,7*x^6+21*x^5-21*x^4-91*x^3-21*x^2+56*x+14,5*x^11+19*x^10-35*x^9-181*x^8+45*x^7+575*x^6+87*x^5-705*x^4-111*x^3+352*x^2+15*x-51,x^11+x^10-21*x^9-25*x^8+149*x^7+192*x^6-425*x^5-554*x^4+458*x^3+545*x^2-172*x-146,7*x^3-28*x,2*x^11+9*x^10-7*x^9-71*x^8-17*x^7+195*x^6+67*x^5-233*x^4-22*x^3+124*x^2-29*x-26,7*x^7+21*x^6-21*x^5-91*x^4-21*x^3+56*x^2+14*x,4*x^11+11*x^10-49*x^9-135*x^8+204*x^7+544*x^6-377*x^5-858*x^4+355*x^3+528*x^2-128*x-108,-7*x^9-21*x^8+49*x^7+161*x^6-105*x^5-392*x^4+70*x^3+329*x^2-21*x-77,-2*x^11-16*x^10-21*x^9+113*x^8+276*x^7-188*x^6-830*x^5-103*x^4+792*x^3+247*x^2-237*x-93,-4*x^11-18*x^10+21*x^9+177*x^8+48*x^7-565*x^6-372*x^5+655*x^4+443*x^3-276*x^2-124*x+17,x^11+x^10-21*x^9-32*x^8+121*x^7+213*x^6-250*x^5-498*x^4+157*x^3+377*x^2-39*x-76,7*x^4-42*x^2+28,3*x^11+17*x^10-152*x^8-176*x^7+429*x^6+678*x^5-423*x^4-719*x^3+200*x^2+205*x-32,-x^11-x^10+21*x^9+39*x^8-93*x^7-213*x^6+131*x^5+372*x^4-80*x^3-237*x^2+18*x+34,12*x^11+61*x^10-14*x^9-489*x^8-480*x^7+1121*x^6+1816*x^5-432*x^4-1840*x^3-453*x^2+561*x+201,7*x^8+21*x^7-35*x^6-133*x^5+21*x^4+238*x^3+56*x^2-112*x-28,-2*x^11-9*x^10+14*x^9+92*x^8-32*x^7-356*x^6+38*x^5+618*x^4-55*x^3-411*x^2+71*x+47,-9*x^11-37*x^10+49*x^9+316*x^8-32*x^7-937*x^6-130*x^5+1143*x^4+120*x^3-544*x^2-20*x+68,4*x^11+32*x^10+49*x^9-198*x^8-573*x^7+215*x^6+1646*x^5+465*x^4-1577*x^3-648*x^2+460*x+172,-10*x^11-45*x^10+49*x^9+411*x^8+71*x^7-1255*x^6-566*x^5+1480*x^4+551*x^3-725*x^2-107*x+102,7*x^11+42*x^10+14*x^9-329*x^8-476*x^7+693*x^6+1568*x^5-98*x^4-1414*x^3-364*x^2+378*x+112,-6*x^11-27*x^10+21*x^9+220*x^8+100*x^7-550*x^6-467*x^5+398*x^4+451*x^3-29*x^2-137*x-34,6*x^11+13*x^10-91*x^9-192*x^8+467*x^7+935*x^6-996*x^5-1819*x^4+830*x^3+1296*x^2-241*x-267,7*x^10+35*x^9-14*x^8-287*x^7-196*x^6+777*x^5+763*x^4-784*x^3-798*x^2+273*x+224,-14*x^10-63*x^9+56*x^8+525*x^7+140*x^6-1449*x^5-770*x^4+1477*x^3+742*x^2-476*x-175,-4*x^11-18*x^10+14*x^9+149*x^8+69*x^7-390*x^6-316*x^5+354*x^4+275*x^3-143*x^2-54*x+17,-15*x^11-64*x^10+77*x^9+571*x^8+75*x^7-1662*x^6-737*x^5+1772*x^4+641*x^3-762*x^2-73*x+76,7*x^5-56*x^3+84*x,4*x^11+18*x^10-21*x^9-156*x^8+36*x^7+523*x^6-69*x^5-837*x^4+103*x^3+542*x^2-58*x-101,2*x^11+9*x^10-14*x^9-92*x^8-3*x^7+258*x^6+123*x^5-128*x^4-106*x^3-107*x^2+34*x+51,-12*x^11-61*x^10+21*x^9+503*x^8+389*x^7-1317*x^6-1508*x^5+1146*x^4+1553*x^3-268*x^2-456*x-54,7*x^9+21*x^8-35*x^7-119*x^6+56*x^5+189*x^4-91*x^3-126*x^2+70*x+35,-11*x^11-53*x^10+28*x^9+429*x^8+251*x^7-1104*x^6-967*x^5+970*x^4+807*x^3-318*x^2-131*x+3,x^11+22*x^10+63*x^9-144*x^8-607*x^7+136*x^6+1752*x^5+524*x^4-1677*x^3-687*x^2+465*x+204,-7*x^10-28*x^9+35*x^8+245*x^7+70*x^6-658*x^5-511*x^4+553*x^3+497*x^2-161*x-112,7*x^9+21*x^8-49*x^7-175*x^6+63*x^5+420*x^4+98*x^3-224*x^2-56*x,9*x^11+51*x^10+7*x^9-393*x^8-472*x^7+846*x^6+1495*x^5-261*x^4-1156*x^3-261*x^2+174*x+93,x^11+8*x^10-88*x^8-68*x^7+318*x^6+254*x^5-449*x^4-207*x^3+279*x^2+3*x-34,-10*x^11-45*x^10+49*x^9+404*x^8+36*x^7-1269*x^6-405*x^5+1690*x^4+432*x^3-1012*x^2-121*x+193,-14*x^8-49*x^7+42*x^6+259*x^5+63*x^4-336*x^3-140*x^2+126*x+63,-3*x^11-17*x^10+138*x^8+134*x^7-373*x^6-489*x^5+360*x^4+586*x^3-39*x^2-198*x-52,12*x^11+61*x^10-14*x^9-461*x^8-361*x^7+1086*x^6+1193*x^5-789*x^4-1056*x^3+44*x^2+260*x+68,-18*x^11-74*x^10+112*x^9+702*x^8-29*x^7-2189*x^6-736*x^5+2482*x^4+912*x^3-934*x^2-236*x+45,5*x^11+19*x^10-35*x^9-167*x^8+87*x^7+512*x^6-130*x^5-635*x^4+155*x^3+275*x^2-76*x-16,19*x^11+89*x^10-77*x^9-818*x^8-347*x^7+2444*x^6+1900*x^5-2595*x^4-2113*x^3+884*x^2+582*x+26,7*x^11+35*x^10-7*x^9-280*x^8-315*x^7+588*x^6+1176*x^5-35*x^4-1078*x^3-350*x^2+266*x+119,-4*x^11-11*x^10+49*x^9+142*x^8-190*x^7-593*x^6+307*x^5+963*x^4-306*x^3-563*x^2+184*x+45,7*x^11+35*x^10-14*x^9-294*x^8-238*x^7+749*x^6+966*x^5-525*x^4-1001*x^3-7*x^2+308*x+84,-18*x^11-88*x^10+49*x^9+772*x^8+545*x^7-2077*x^6-2374*x^5+1635*x^4+2396*x^3-157*x^2-614*x-165,-17*x^11-73*x^10+84*x^9+635*x^8+71*x^7-1836*x^6-727*x^5+2012*x^4+684*x^3-865*x^2-135*x+102,x^11+x^10-14*x^9+3*x^8+121*x^7-4*x^6-446*x^5-134*x^4+591*x^3+251*x^2-235*x-97,15*x^11+71*x^10-56*x^9-641*x^8-292*x^7+1907*x^6+1507*x^5-2094*x^4-1684*x^3+825*x^2+472*x-34,9*x^11+37*x^10-63*x^9-365*x^8+109*x^7+1294*x^6+18*x^5-1997*x^4-36*x^3+1307*x^2-57*x-229,-14*x^11-63*x^10+56*x^9+525*x^8+140*x^7-1449*x^6-770*x^5+1477*x^4+742*x^3-476*x^2-175*x,18*x^11+67*x^10-140*x^9-646*x^8+358*x^7+2217*x^6-363*x^5-3175*x^4+180*x^3+1669*x^2-79*x-157,7*x^9+21*x^8-56*x^7-182*x^6+126*x^5+483*x^4-49*x^3-392*x^2+7*x+84,-5*x^11-26*x^10+14*x^9+258*x^8+214*x^7-785*x^6-1046*x^5+747*x^4+1308*x^3-191*x^2-428*x-19,11*x^11+32*x^10-119*x^9-345*x^8+498*x^7+1363*x^6-958*x^5-2314*x^4+768*x^3+1487*x^2-254*x-255,12*x^11+61*x^10-28*x^9-538*x^8-403*x^7+1485*x^6+1739*x^5-1279*x^4-1910*x^3+191*x^2+575*x+110,7*x^6-70*x^4+168*x^2-56,3*x^11+17*x^10+7*x^9-110*x^8-162*x^7+135*x^6+335*x^5+158*x^4+107*x^3-10*x^2-180*x-67,-2*x^11-9*x^10+28*x^9+148*x^8-53*x^7-629*x^6-109*x^5+891*x^4+134*x^3-474*x^2-13*x+68,17*x^11+73*x^10-98*x^9-684*x^8+13*x^7+2214*x^6+622*x^5-2880*x^4-733*x^3+1383*x^2+121*x-130,-7*x^11-42*x^10+357*x^8+322*x^7-1015*x^6-1120*x^5+1134*x^4+1127*x^3-574*x^2-315*x+98,-5*x^11-26*x^10+174*x^8+144*x^7-372*x^6-346*x^5+299*x^4+216*x^3-23*x^2-x-40,-x^11-15*x^10-49*x^9+53*x^8+411*x^7+172*x^6-1038*x^5-811*x^4+956*x^3+792*x^2-318*x-204,-x^11-x^10+14*x^9+11*x^8-58*x^7+4*x^6+117*x^5-167*x^4-171*x^3+225*x^2+60*x-50,2*x^11+9*x^10-21*x^9-113*x^8+67*x^7+482*x^6-73*x^5-835*x^4+34*x^3+544*x^2-x-68,-18*x^11-74*x^10+105*x^9+674*x^8-x^7-1993*x^6-708*x^5+2076*x^4+751*x^3-696*x^2-187*x-4,2*x^11-5*x^10-77*x^9-57*x^8+480*x^7+573*x^6-1032*x^5-1360*x^4+804*x^3+1013*x^2-239*x-187,17*x^11+73*x^10-84*x^9-635*x^8-57*x^7+1871*x^6+643*x^5-2215*x^4-544*x^3+1180*x^2+86*x-200,-7*x^11-56*x^10-70*x^9+399*x^8+952*x^7-630*x^6-2926*x^5-616*x^4+2891*x^3+1267*x^2-896*x-385,2*x^11+23*x^10+56*x^9-127*x^8-563*x^7+6*x^6+1642*x^5+810*x^4-1723*x^3-1031*x^2+594*x+317,-7*x^11-28*x^10+35*x^9+245*x^8+70*x^7-658*x^6-511*x^5+553*x^4+497*x^3-161*x^2-112*x]];
E[467,2] = [x^26-5*x^25-30*x^24+181*x^23+338*x^22-2813*x^21-1420*x^20+24571*x^19-4052*x^18-132574*x^17+73889*x^16+457016*x^15-370842*x^14-1004824*x^13+992642*x^12+1361654*x^11-1526411*x^10-1049992*x^9+1309411*x^8+383566*x^7-569750*x^6-29300*x^5+105328*x^4-5888*x^3-6944*x^2+448*x+128, [381903588083879883328,381903588083879883328*x,-20726664122746789758*x^25+102778462327042983682*x^24+640153010816021075224*x^23-3765809513089141432278*x^22-7677447890317148997240*x^21+59461731520805704997726*x^20+40061535265894884290324*x^19-530542007455243196843242*x^18-11527246293851209886860*x^17+2947350451173392159305252*x^16-992730836429716106045326*x^15-10589080411897002482950676*x^14+5695514056373752791385564*x^13+24743057003540198961273776*x^12-15695402348202127164605804*x^11-36847120901086292021901676*x^10+23805980521862210254536594*x^9+33259062196480090519536028*x^8-19262717446456768567248154*x^7-16469187859084251587795336*x^6+7346633828024843920804236*x^5+3609035880998649253393464*x^4-1080326063539033556669520*x^3-300888846260465911745552*x^2+41531258985286248796160*x+7039335801804030371136,381903588083879883328*x^2-763807176167759766656,-8058368862605944686*x^25+31526904926750379830*x^24+274406064850633782012*x^23-1157303006041918757006*x^22-3916420393510693166364*x^21+18304118609602370546014*x^20+30191440294675798373192*x^19-163514294072893514753346*x^18-133561611836019204324504*x^17+908705485847998920781020*x^16+319320078111164427277938*x^15-3261241658203985895339024*x^14-251935760295304413897612*x^13+7595378649383836076177520*x^12-591430778348156292039404*x^11-11240226050300107625115540*x^10+1646046477772035904126890*x^9+10057930850163735238764016*x^8-1457462230288188869070402*x^7-4965450784958197934020276*x^6+458178453523417960433900*x^5+1135462311935475033779112*x^4-34841624497326374429200*x^3-103822965048946753923616*x^2+437762421203378668032*x+2432275187103422265600,-854858286690965108*x^25+18353087133617382484*x^24-14283306871972486080*x^23-671835416828734059036*x^22+1157625343518985408472*x^21+10629672211594442833964*x^20-21267143295231825699424*x^19-95511689319221201986276*x^18+199533681764359253928160*x^17+538741648935921442383536*x^16-1116663281175755614908548*x^15-1990803520233912216050672*x^14+3916407453065278689481184*x^13+4878754979929491714354832*x^12-8624575791691634760761944*x^11-7831427588403839846761944*x^10+11496230680908943247954092*x^9+7877004549173228156564384*x^8-8519144208178756427478308*x^7-4462383055910139543816264*x^6+3001744622202168313484064*x^5+1102772015181640314961104*x^4-422927444615199009840656*x^3-102394696683067459283392*x^2+16324881328794592182720*x+2653013007711589089024,-24058256997224544661*x^25+104771983448012659849*x^24+784333362494501976086*x^23-3836511191260278131057*x^22-10415344940842674245250*x^21+60511751116108371014929*x^20+70016145652973210491908*x^19-538910129304975291308647*x^18-219873487785124462474596*x^17+2984759138576149340221398*x^16-34470232451786793377853*x^15-10671387665225809701179128*x^14+2760834414023047466529970*x^13+24745061813036102631105216*x^12-9828187273475540420936842*x^11-36422639972186583307713886*x^10+16532879257118188567265383*x^9+32347517433522199406636728*x^8-14211645013372546337052079*x^7-15772655990921798295371358*x^6+5716698157709467264934382*x^5+3521348028969990003223228*x^4-875909821600665258887008*x^3-318650287250925588745072*x^2+35062660754863801224448*x+8649689834881649024256,381903588083879883328*x^3-1527614352335519533312*x,-15705487395827785742*x^25+71562098235327577156*x^24+503807440903564599994*x^23-2623033998968858331950*x^22-6497493056378429175910*x^21+41422519397068974495838*x^20+40940285394840844958050*x^19-369457289722389746112478*x^18-101140545687825824325878*x^17+2049986515286177113653712*x^16-255804695037844172899786*x^15-7345244109976296742604618*x^14+2624142628155480503056936*x^13+17073339910339039081741692*x^12-8267238371116477273843732*x^11-25182709435650858851785544*x^10+13377060161726919351718470*x^9+22356684909022932807917822*x^8-11368554929111113510868270*x^7-10786691755771822823537746*x^6+4614369963457881947778108*x^5+2290966490790569959529460*x^4-750550388453021039192544*x^3-182733795424993519745152*x^2+37770664330650353039040*x+4591172750657198444032,-8764939386279343600*x^25+32654998972455441432*x^24+301261758089757231160*x^23-1192691717949883862496*x^22-4364073000908151855704*x^21+18748556509775356919072*x^20+34487887250197152126360*x^19-166214122467298492192176*x^18-159624707743121590020744*x^17+914744895000255074181792*x^16+421561845908732521277952*x^15-3240317386041818153143224*x^14-501863784615319686987744*x^13+7407644606166733852961008*x^12-267515855057272619644896*x^11-10654336396167166729975056*x^10+1596708011378394166021504*x^9+9094254600465523768169544*x^8-1874534473803886154590000*x^7-4133077205946319024414600*x^6+899352104261120854479312*x^5+813930251063232567457808*x^4-151270640911970556234784*x^3-55519550960732301231552*x^2+6042424437550885484928*x+1031471214413560919808,44317055841213078648*x^25-199550151005291725416*x^24-1426238931731031023704*x^23+7305959658787816505952*x^22+18516638146574011738368*x^21-115229334797147078995952*x^20-118629025154666973440880*x^19+1026377101677353480534432*x^18+315278756829911460079584*x^17-5687307455186091080268984*x^16+543195390094840369383912*x^15+20353713046406868538757088*x^14-6717908054281864464840168*x^13-47277614400523930998276496*x^12+21627055051176995310685344*x^11+69771265968619052356437776*x^10-35104755555680518239431736*x^9-62156441334593413562099008*x^8+29659220504599503494751248*x^7+30310461155552647412848720*x^6-11854951294075678444467192*x^5-6644923907730394965261280*x^4+1875986815149911782811760*x^3+578471378739307795522688*x^2-85640755008970213366400*x-15934506191920550910464,55532123945656136460*x^25-245485980126787406684*x^24-1797412088569711524936*x^23+8978186470598814479532*x^22+23579851631767055979640*x^21-141404505103944406148236*x^20-154630036888727266898256*x^19+1257153810897173856997028*x^18+448464159023855853929264*x^17-6948199559577231212654040*x^16+385342067375878105837708*x^15+24777550920106232772801600*x^14-7371255255883976192097288*x^13-57262121559354539696574160*x^12+24723398313506313885618296*x^11+83885607390835284550290056*x^10-40632550856710412188187940*x^9-73917907757104634153518976*x^8+34390946410596304313295172*x^7+35453064831528494118791736*x^6-13615542988668092804311768*x^5-7550958692991911543732160*x^4+2053224024802963251499744*x^3+612166437906944353963872*x^2-80026528450423356134912*x-13969249742911617208448,23079244919120542168*x^25-107108435331080017368*x^24-733084753322465821132*x^23+3919789062918253824068*x^22+9293909489485208164616*x^21-61798227077776454407092*x^20-56372099408589970836360*x^19+550291944901552254240660*x^18+117201137690159939892544*x^17-3049112951364034751555988*x^16+534498762335794613527512*x^15+10917386208035296269753416*x^14-4356289706587765449438620*x^13-25398436400449297248572000*x^12+13118632329339314854383496*x^11+37624277781046533787028528*x^10-20742938547657296289763744*x^9-33799839849399652900245768*x^8+17309342878004982243053820*x^7+16776729686695747942543984*x^6-6894639368751473814353780*x^5-3805656312552043450979080*x^4+1102031885525087180295816*x^3+335627452873010533868656*x^2-49398713393035069200896*x-7393100561297406823168,-15519301538110063456*x^25+62585652577765636256*x^24+518033325237364452584*x^23-2283654075780778149832*x^22-7164125817084273116464*x^21+35853420716914357073288*x^20+52225303373828995556784*x^19-317357545137878317440968*x^18-204740224573897443666016*x^17+1743170318816137587078776*x^16+323620714617762801612448*x^15-6160977727341697124644592*x^14+570747784056946766660552*x^13+14053049068763426040447520*x^12-3663618098887793171884592*x^11-20189908864272325873276288*x^10+7086540052492405308944016*x^9+17290501339620241912052592*x^8-6544726587524368597930232*x^7-7990493766459217055670368*x^6+2816441098951310844655928*x^5+1658098271403001581166800*x^4-460305304450583707709040*x^3-131997875833863436901536*x^2+19427788969638245032384*x+3079456895644741716608,-77467057704449747512*x^25+371738617586947204224*x^24+2425115064941618711496*x^23-13608898753882324078088*x^22-29885869643696499119112*x^21+214639705807724762780040*x^20+168473342635978882917048*x^19-1912191997663909431519112*x^18-208778624636129754890888*x^17+10600965466183691810312272*x^16-2807085652345961107865224*x^15-37978481467014535180862040*x^14+18155487634632282385934672*x^13+88394265011409947131016240*x^12-51807734254469903621312624*x^11-130925089913796317656649088*x^10+79933827403479464182802008*x^9+117337613752539352406929224*x^8-65540541666360747084948776*x^7-57649021553877363854396312*x^6+25512638317575158225960096*x^5+12594229827562227612324016*x^4-3925597143110319218620640*x^3-1056610116143552649670336*x^2+167630737429313903077568*x+27262939252619784818944,381903588083879883328*x^4-2291421528503279299968*x^2+1527614352335519533312,-35300160168077187046*x^25+142228939772882367186*x^24+1177041155158221423008*x^23-5183937805341667751318*x^22-16245657881481123012072*x^21+81256965790410037772854*x^20+117949991301461094427860*x^19-717547087548040694366482*x^18-457669338184750087849884*x^17+3927333351315916640158788*x^16+688569231069270084859218*x^15-13804748486109379524442732*x^14+1478003750000016728032428*x^13+31214116013619674042100536*x^12-8764209654518435599103612*x^11-44192599917136821873707452*x^10+16744398091577402254271386*x^9+36864548114635929768254452*x^8-15381733775341924418188802*x^7-16172931543644485004469032*x^6+6573253380378129794464188*x^5+2970856527074865808369424*x^4-1052842334837041582012288*x^3-187750925295686057840224*x^2+43983803979738531693856*x+4333837847835243682496,-6965338743811351554*x^25+32642819028731027734*x^24+219659219675970887352*x^23-1189038316588637595114*x^22-2757016647394586796408*x^21+18638493292765389204410*x^20+16442241080494777354204*x^19-164779180615720012152462*x^18-32152770728295753306196*x^17+904658063152475087790852*x^16-167585082284665413938746*x^15-3200111728688087217077828*x^14+1292089243313780101322284*x^13+7322688048452807620666632*x^12-3797269701172371085048276*x^11-10595968559625966910513492*x^10+5866048787302924401103758*x^9+9196383027347143245349692*x^8-4762600777303742357621774*x^7-4333831480314998978726392*x^6+1830795710092815837288860*x^5+903677187974727977440832*x^4-275207705211627522194048*x^3-71288240145977791153408*x^2+11627231103988046456448*x+2010302386665956574976,-20901642170818757258*x^25+103092166743432198662*x^24+642866534711391499080*x^23-3764162205878294626810*x^22-7647942506795706929024*x^21+59176338029490429174858*x^20+38968372665675216587364*x^19-525068134658632150004510*x^18+824394170192281024340*x^17+2896093861507732001738492*x^16-1070557008904052659753106*x^15-10307557353224011978215004*x^14+6007269360736115979603236*x^13+23785839667363937773001720*x^12-16528056590329925806368212*x^11-34834104629974284708746516*x^10+25292470021232427035430054*x^9+30766988489196174546967188*x^8-20948929973111488381167518*x^7-14872138668597534587472736*x^6+8401043509271363107397172*x^5+3234725203276085920904064*x^4-1335306591131878000102512*x^3-298559618125567377581024*x^2+58194429458743917535360*x+10731094463148748679936,4947039766270612804*x^25-24740233352123836500*x^24-155049818734590234920*x^23+913082523738103795108*x^22+1925622803192949705000*x^21-14566563897524256877668*x^20-11233677396380337342960*x^19+131888346009461539218748*x^18+19865044475695784404400*x^17-748216519474470901023688*x^16+126759996295693486998500*x^15+2770211879906047764379104*x^14-895705327121412472770168*x^13-6757826191549844582208736*x^12+2463339935613959184418152*x^11+10698260218428570272432984*x^10-3400954591156768585335436*x^9-10513488127403935049498432*x^8+2143779995267681421003804*x^7+5836429458844860706419864*x^6-359239380001588120889992*x^5-1499001729104889921092208*x^4-37444265072492327489952*x^3+152824615437120631373760*x^2+4082639217059949516544*x-3742638132763088550400,78028758867755734915*x^25-350466805975298994817*x^24-2508741215760287306768*x^23+12813894083709229184907*x^22+32526248354300131655564*x^21-201754085357100878963035*x^20-207914427933094956999850*x^19+1793151150693822708772345*x^18+549132571959752617501422*x^17-9908085459350452565196210*x^16+973110832585230966242671*x^15+35327782365890706415637078*x^14-11819609856570129280746302*x^13-81654148069658189485391860*x^12+37875801326867129642611446*x^11+119695965231580721082844286*x^10-61205559310427870649762157*x^9-105650347031195236304036786*x^8+51390797704895948904603785*x^7+50856077406704538120720244*x^6-20309050793366266634115038*x^5-10914052748506240757046160*x^4+3107492069999350992795480*x^3+911581971422877176539264*x^2-125986964761228434425760*x-22432577591345132987008,22035128200773667824*x^25-96727256494638664264*x^24-715427448471750729336*x^23+3537473272243991155344*x^22+9434543284185311240872*x^21-55698805860144401760720*x^20-62537277397093074925576*x^19+494851467098506854761280*x^18+187981905906891608410968*x^17-2731347548956552798838160*x^16+100109454079032187362720*x^15+9716717567985276047141448*x^14-2746773081932840458878544*x^13-22363915893156437504622672*x^12+9426769614207898963073984*x^11+32541285967961378352740592*x^10-15623887237766410686328192*x^9-28370019901499155030805080*x^8+13311945314761911688149952*x^7+13394691271455473115230808*x^6-5346434171582851760874880*x^5-2791840042493379365024784*x^4+839410203532370402602112*x^3+222096880752413404765312*x^2-35788547208784010144768*x-5672583147675274066944,100846908819127121854*x^25-464975461311974142280*x^24-3205435526125730886578*x^23+17001229727593577226194*x^22+40670290233944445715194*x^21-267685544446194579390306*x^20-246919406198789208902502*x^19+2379024444399207268672650*x^18+513971081056211992543450*x^17-13143414673304704701705236*x^16+2346394605720001776620754*x^15+46848489376158187993888638*x^14-19153951229231770586387684*x^13-108213809520877106208150084*x^12+57780820939991255830125900*x^11+158434762223438924481170560*x^10-91529911148838311151412422*x^9-139489406993392132945039594*x^8+76475032829191895562042450*x^7+66734002797797050101357574*x^6-30363442341939585853271336*x^5-14049351682107781616920980*x^4+4718755442395533477269976*x^3+1137099816117629118424784*x^2-202337537157227025913408*x-28887686030488604852160,33884356174875205832*x^25-168154544467262196104*x^24-1044561349821001247568*x^23+6153664571792749974232*x^22+12492108868148334896800*x^21-97033765309084438792984*x^20-64791719981079420562784*x^19+864503703890096922837736*x^18+14848876865466914537680*x^17-4795354336716551045822304*x^16+1631808325309759142215336*x^15+17203995692838861197103376*x^14-9294925553915115413253488*x^13-40157630224016668151018688*x^12+25519220275120093236509104*x^11+59795149164110196415381008*x^10-38602083232975142615518840*x^9-54077436635555699298058656*x^8+31191118594546465336331992*x^7+26948650741189770031405760*x^6-11927356705788523372422288*x^5-6001407556508386919481344*x^4+1784994472929365705121664*x^3+510377933594347774010112*x^2-71497403928154750707968*x-12414137880467163644928,-56980114612998435904*x^25+241135922731103941208*x^24+1879072779090678951272*x^23-8829140798756108014480*x^22-25459539843532870483624*x^21+139240822626356206037776*x^20+178408207085114470784936*x^19-1239807221489659629661248*x^18-633434140518051945883096*x^17+6864331148317983587443392*x^16+543623301355818396798672*x^15-24527210130780574768167528*x^14+4315273119951118789925856*x^13+56810016252835226192080368*x^12-18217305778571795878981568*x^11-83428185191304429073342288*x^10+32030269423064107793910736*x^9+73719878553302725327223672*x^8-27897185749942096465035488*x^7-35506657983190932936518872*x^6+11237626123609371085229616*x^5+7660074733209878029565264*x^4-1751638093489022731336480*x^3-631799627504052755974144*x^2+73122797912163876788480*x+15257777359542088741568,8287789264522693472*x^25-40707405748849556092*x^24-257554267442564308340*x^23+1493124706822464911832*x^22+3123688879709630711492*x^21-23599571623438800957800*x^20-16788182006158587369268*x^19+210718238102436376757280*x^18+10594864543452005824444*x^17-1170803565493103126723840*x^16+369802012078502570302728*x^15+4202463637708734649226836*x^14-2207857203838917585153568*x^13-9790795505666338364344360*x^12+6198331619946371061802656*x^11+14485474768582409601435304*x^10-9566817318282436588183112*x^9-12910874290785565997689228*x^8+7924316030048358065332896*x^7+6254760423917455085864220*x^6-3129434436421811565456680*x^5-1328858823316041285175288*x^4+471518046956792286153840*x^3+110863563325337975613696*x^2-17732602285063409714432*x-2954143349647429397504,-23672957085009656179*x^25+107754597265448473815*x^24+763899458621386014834*x^23-3959816414912615478015*x^22-9965632408947317234814*x^21+62750477099311937332087*x^20+64550442263675168305068*x^19-562351503173717123168209*x^18-179138190362156667674652*x^17+3140882908740928447605594*x^16-228363191239893367008387*x^15-11358407380697774626788752*x^14+3351368815890487249081326*x^13+26750705100310065185400904*x^12-10936122607847747110756582*x^11-40209536501452812649274418*x^10+17678651409299290306871809*x^9+36685517805508172285364880*x^8-14656047840508289481377385*x^7-18405978107672496189205202*x^6+5607317755666209232445778*x^5+4139069075713692123519196*x^4-833243353953569503227504*x^3-349371712794092876808736*x^2+32737470341052049142688*x+7763935791581658321280,33105658881664408298*x^25-157089687801962770794*x^24-1043327222371860616468*x^23+5754420485317484593778*x^22+13028315371896097062060*x^21-90835607042504036580594*x^20-76065078350922369247408*x^19+810195824203631161827566*x^18+125461412272982959412224*x^17-4499191891185121400129964*x^16+1000531849302785222518410*x^15+16158314293512754016868856*x^14-7062786408012575294724164*x^13-37748631207567348825004272*x^12+20598384699252475313713620*x^11+56242987416777451854435372*x^10-32070399635219396970770526*x^9-50918617308250531111219272*x^8+26385472674052600217997886*x^7+25519631029456698781342644*x^6-10230013579082557807962764*x^5-5868384369984506950461928*x^4+1528444119911075027243552*x^3+548962333590853141884064*x^2-60093217525009552304000*x-15312909072885209926144,41363690454484632166*x^25-198256675154420102346*x^24-1293402778707813476112*x^23+7254247409313270116878*x^22+15896139807415587834864*x^21-114333162080285879270814*x^20-88859041023367537409388*x^19+1017562670302072221700554*x^18+100351215183803076817108*x^17-5633246434626091805814700*x^16+1569326681253766569642622*x^15+20140050713251786053099060*x^14-9983344640903736207641972*x^13-46734878693836379613158248*x^12+28433015762357625883371612*x^11+68911545422765676894440524*x^10-43974307331594719222711066*x^9-61340134164705600957100316*x^8+36268606641776865492543546*x^7+29813870081355242378939648*x^6-14240173629355240196044980*x^5-6380946563886150784287792*x^4+2178078606200214930818624*x^3+511760603372195986643264*x^2-85786797137841606782400*x-11917414368835430852224,-15596670935301533336*x^25+101103333808126286136*x^24+412638690623080221584*x^23-3702004139592484460056*x^22-3275127514892376971216*x^21+58470120695660241450008*x^20-8748922807874685401760*x^19-522675142454560131809512*x^18+330847758073970983656384*x^17+2916877774378126286048944*x^16-2574796623157729371917848*x^15-10572550978601270880910432*x^14+10553506220593934037018352*x^13+25089320839390502648494080*x^12-25441760922301501157944240*x^11-38312741614227379366737424*x^10+35997822899328753117309320*x^9+35895675829480501254486656*x^8-27935292098412392000208520*x^7-18624217809535085419001904*x^6+10324445036821850010222416*x^5+4233853110783963787323296*x^4-1512736151907352763020992*x^3-370300511270385143645760*x^2+61968181104213271704320*x+9915783386169567681536,28091622892536612392*x^25-126432146019469838216*x^24-904221314951141922736*x^23+4632515208019226212440*x^22+11732014485891021443040*x^21-73121993628733319306824*x^20-74924598169592763620112*x^19+651826202278952978866360*x^18+195688084166976371222224*x^17-3614428082784245981614608*x^16+376775835561349773136408*x^15+12942361087445169072897952*x^14-4403956410156269396714672*x^13-30070037930111187128197104*x^12+14094579219498077404241072*x^11+44365111054179329770803408*x^10-22840231534260076485517368*x^9-39473391829855308526738400*x^8+19287271357188775042496024*x^7+19172117187989310280577664*x^6-7732295013759548077652560*x^5-4137316703540950028202416*x^4+1256577261585178385760576*x^3+344012576650296424194336*x^2-62210766892031332453504*x-8740217912783493140352,381903588083879883328*x^5-3055228704671039066624*x^3+4582843057006558599936*x,14277542650893842614*x^25-59436664119665547578*x^24-482770722156588791528*x^23+2200169227611506772806*x^22+6817395862031072456272*x^21-35174049416454961974566*x^20-51656006605367926680300*x^19+318600150180496636455026*x^18+221399110918019075774500*x^17-1802586195619679092811124*x^16-490828842193397475308002*x^15+6620629518587095833900612*x^14+231160572050943011516276*x^13-15880073549096767422240920*x^12+1354809949282564094390956*x^11+24360695666253569837285772*x^10-2921579201353681600141434*x^9-22654405924642028825090604*x^8+1977061353061886510727378*x^7+11435128686476083010522800*x^6-121410479696640610689884*x^5-2447603443708672378634128*x^4-144272572807635911167376*x^3+160590519591254319541376*x^2+19789802506934604467712*x+552486296666863982848,-34271861067503568044*x^25+118036350115905811628*x^24+1205391185080303104008*x^23-4314203744671033790524*x^22-18042384762391089387544*x^21+67823763862791488822540*x^20+149813147941783868540784*x^19-600705587185798849760276*x^18-752550082806748355277616*x^17+3296862765728325358501112*x^16+2327989513264584190572004*x^15-11612778247050063470480304*x^14-4256332127108317354209368*x^13+26276211935042039504611920*x^12+3874004376366152176226632*x^11-37138154690737464901800520*x^10-200337660563772012549180*x^9+30840684250500193148901104*x^8-2632990308615790677982996*x^7-13539012875383847524994312*x^6+1936561834150204227921624*x^5+2665252935346192375168800*x^4-395598268365324535167072*x^3-201140508227389455153568*x^2+20148309603133823479104*x+4518420501513879941888,-56716565017675707724*x^25+243229998964704863036*x^24+1861225462911107868952*x^23-8910394809525661361484*x^22-24992811719929999986232*x^21+140600518957877476951340*x^20+171849980552211158417456*x^19-1252666088923832745557812*x^18-577370364725684801947280*x^17+6940115784014988653056792*x^16+235849350611026127854324*x^15-24817725368952645198918976*x^14+5419879160171829254841224*x^13+57549794727731729184103104*x^12-20788813614044427513575480*x^11-84702391110125280138773320*x^10+35788298762441486509229796*x^9+75239850687657829315824576*x^8-31132081972640009277304052*x^7-36748517550904104160335368*x^6+12701459417872465120740984*x^5+8250110875683529528827632*x^4-2022237928196983935871456*x^3-746271591674728756275840*x^2+84848598686861665601856*x+21436015634714489554816,29227100101329841448*x^25-132425139109024813580*x^24-935926885765912163828*x^23+4843335845951366692744*x^22+12039981519180915634828*x^21-76293578729855290844152*x^20-75514413131212983035228*x^19+678538256126560142421952*x^18+183516335906080615522612*x^17-3752896198415542686272664*x^16+494768912729289770524608*x^15+13399537312833884353543052*x^14-4924536745769650899343736*x^13-31029861740516061619265992*x^12+15422889544472689726084288*x^11+45599497981324813167782152*x^10-24871287254398664098974816*x^9-40355479425476842323782724*x^8+21074945498515972913171712*x^7+19435677472349943936472852*x^6-8529147164134708518647584*x^5-4123495487584605404773256*x^4+1388800622236503049281728*x^3+328727509716949060755776*x^2-70410554517407264006912*x-8290782142106543889152,-29804274713129972490*x^25+137312026322747023922*x^24+948492292387095295940*x^23-5020774889440817813530*x^22-12064937003087880976724*x^21+79056118669967985644826*x^20+73726524999377117259256*x^19-702652145419798161584870*x^18-158797087671274732912744*x^17+3882342746614949250020244*x^16-655733403297311179014010*x^15-13840184961882101667533248*x^14+5538302156458561258554268*x^13+31975343420024577533731616*x^12-16864891521890464318063492*x^11-46831629099274634184983164*x^10+26952077791952933073799518*x^9+41274108102044302148002112*x^8-22843541285857635564888902*x^7-19828652681859107111001756*x^6+9323579360692730352923332*x^5+4253130410321813152129960*x^4-1513624014093518692309776*x^3-352206920061228617479040*x^2+64889941233336824537152*x+9713633621411270489600,-1416044110661587628*x^25+15817269586828781340*x^24+19035027039900436888*x^23-583187453058966975820*x^22+380018602977265008104*x^21+9288040783112581281004*x^20-11493884879444465418192*x^19-83869059905965323385076*x^18+125079552353606077016400*x^17+473844429455574495283256*x^16-755172454885106811192876*x^15-1743937425174653599468000*x^14+2783367974713150829989128*x^13+4219791297395947035727424*x^12-6373299961510240613361784*x^11-6612026506369203049510984*x^10+8820431422973845976125252*x^9+6419910203422471378787520*x^8-6854979387705267141050708*x^7-3507667117552623840348328*x^6+2622307087671096333244664*x^5+866221575436120064368112*x^4-421628487227348220316128*x^3-86946573775421532864192*x^2+20095030155675551931520*x+2675410197864800929024,-119709172871487106681*x^25+547817011485997617633*x^24+3822689605379222648422*x^23-20048762389772879736593*x^22-48922196292567533056422*x^21+316056193921935912621561*x^20+303191309289610002935920*x^19-2813555915812885654342751*x^18-698848811837687224002704*x^17+15579378840340677302839426*x^16-2302559058496170758248705*x^15-55708200564202297158196172*x^14+21055696488257316399114822*x^13+129266654074317080604196736*x^12-64837078098867451953074586*x^11-190526534489425855740372478*x^10+103421460273357237336859811*x^9+169425787378637845149953092*x^8-86469230050655637412708399*x^7-82300282819338083191346754*x^6+34132308021158842427351138*x^5+17773935724085037065678004*x^4-5233374390063534534124344*x^3-1469677034842729003544176*x^2+211196743296508080892032*x+35627146041149275782272,17524844251787914720*x^25-71948623691382733664*x^24-584855190136391584736*x^23+2638906798093250302240*x^22+8077604966811280651392*x^21-41705993947826780999424*x^20-58641142587967992241056*x^19+372338694543221291870560*x^18+226881745985332500895296*x^17-2068261614994785970839840*x^16-333788137733347659409664*x^15+7419499565965550426977248*x^14-783194336216102968066752*x^13-17262588724389902156492032*x^12+4497135442641670504704960*x^11+25458934117850457235381120*x^10-8512551971894710102243872*x^9-22522437493055535497633728*x^8+7687982151463279144820800*x^7+10725490938723731573018208*x^6-3152757672475402674893632*x^5-2186366571700708567825280*x^4+484494067404863112033280*x^3+149473985275507687290624*x^2-18043760823154094056448*x-2696163518909760278528,-29757698139759869583*x^25+151047968895131327095*x^24+908488391034261217666*x^23-5527473577880251988775*x^22-10654732335789908956994*x^21+87155280645165958284263*x^20+52102045822703001312168*x^19-776419633541793589179505*x^18+27366326988501824109800*x^17+4305929601002900789866854*x^16-1638420495718111630393471*x^15-15441794623183043598835764*x^14+8801857580586682720818690*x^13+36011518720263052714842872*x^12-23571485652719140136261446*x^11-53507711354510681388775266*x^10+34921312054571616320700581*x^9+48135003521067423106283948*x^8-27441293336558798890201617*x^7-23641982827923753586448454*x^6+9986816922016760560566662*x^5+5038494415058533228294628*x^4-1383632985457126280686632*x^3-413479380168776858856256*x^2+51224239565229069078176*x+11802946295952353770880,39676988363479679758*x^25-167878449727615259318*x^24-1309311271354558834708*x^23+6152527856998693254294*x^22+17740813337896003352860*x^21-97113590340881813420550*x^20-124093483445803453824120*x^19+865305102891898855377002*x^18+436499218783396235425000*x^17-4792356131394372530891764*x^16-332608896815548532276562*x^15+17116731139466142966602128*x^14-3248978469124400905161900*x^13-39578821933139658574883984*x^12+13447793604265653612894876*x^11+57898396541662028437577908*x^10-23720774450122656689166106*x^9-50780917472890955706181280*x^8+20926898482834941902313354*x^7+24147834571537563333706212*x^6-8627810113680997724036660*x^5-5111121044023625054331640*x^4+1371015303636222943718784*x^3+415844736816467388824000*x^2-57389461564099702228928*x-9987681135072734069120,63358954490993220057*x^25-274149035464675532097*x^24-2071257749229904141422*x^23+10037310811178844792225*x^22+27637452869882852021966*x^21-158264825436732306853105*x^20-187693250589977538834872*x^19+1408625955085049214631639*x^18+608818736713943915385704*x^17-7792913829720597664943546*x^16-77673976394985410663143*x^15+27805144944862859814413756*x^14-6647308145250967025104638*x^13-64234015303962197623758936*x^12+24358728467615275246777802*x^11+93872342672315064886623502*x^10-41118673443159390133573843*x^9-82154523892827281573672324*x^8+35047469993592284789163351*x^7+38734240580783948532576074*x^6-13755804974486636947551386*x^5-7885643045488535771629196*x^4+1993184160261792511421112*x^3+581920754912789335231392*x^2-64038681275986200030432*x-12125246669757894073600,-75185727173196482440*x^25+344726699562042756216*x^24+2401592931366019326608*x^23-12625249365251821495544*x^22-30747266524516097648544*x^21+199211274242299691376408*x^20+190684382386631009539536*x^19-1775485957978280450635048*x^18-440619976527007480898352*x^17+9846570776824248806053152*x^16-1440079362009183265879560*x^15-35282648162515269013204912*x^14+13213325874621491422640640*x^13+82109004687783385783475968*x^12-40717044589488880155850992*x^11-121531757102933380322304080*x^10+64976199539648626473915800*x^9+108771788731445489653256304*x^8-54375675721201486546852072*x^7-53412842190297349343848320*x^6+21563691801940645991152800*x^5+11808342035862071448558400*x^4-3400133914701254804710496*x^3-1039719374461227251820288*x^2+155737189436318549480704*x+29048515974142072339456,-80781731930402770450*x^25+346527636123356778810*x^24+2643570807227692474172*x^23-12664524997404728768490*x^22-35362611475019107348692*x^21+199257508920625040883402*x^20+241711306438407846090376*x^19-1768820314606372522154790*x^18-801775977898293920357320*x^17+9754244048565654031967356*x^16+264087654695825940976798*x^15-34666197129968842157838128*x^14+7804388655517372141886644*x^13+79694999463076202076248192*x^12-29351590780561356782814212*x^11-115770276370700457371262060*x^10+49830454341741987650713350*x^9+100592523237152769951417168*x^8-42555691086923164278170582*x^7-47054640358972384690431308*x^6+16801833437218295264106412*x^5+9496859956629942959715672*x^4-2499750506689698431745632*x^3-676222147079529970506656*x^2+94244120076422058112192*x+12608288941254282569216,39259082783661466990*x^25-180028261551917230958*x^24-1252060768668431829380*x^23+6584035053079478528542*x^22+15996810062010014384996*x^21-103716795675628695869822*x^20-98884952195565242401984*x^19+922602755591315090295858*x^18+226263416482254350966960*x^17-5105082640016482130049452*x^16+759838495275987272660974*x^15+18244318131070969536193384*x^14-6880415213606515118326388*x^13-42324056324044728661272368*x^12+21116165442239202500184044*x^11+62403919788674338044873572*x^10-33600959508579208015314426*x^9-55575018894570168191925544*x^8+28052557369679736480306210*x^7+27094083957758091823045164*x^6-11094537253707356946598780*x^5-5903247769705488013368136*x^4+1730886415244649611901136*x^3+497943397682791708240768*x^2-74067101181457555442752*x-12908404328848271597312,56274161474120397516*x^25-232416919763049436272*x^24-1873712823456341059112*x^23+8517947472100905532536*x^22+25783072478739396408492*x^21-134485456801238504369352*x^20-185919092961338871403316*x^19+1199121260399409123261992*x^18+707926353798395080866628*x^17-6650593601143625268459252*x^16-961092196341622415608908*x^15+23817864385362725945027908*x^14-2902473047809827502811884*x^13-55347328923096977035025928*x^12+15352158054251104533095936*x^11+81709828235111725988609504*x^10-28816932196881391540071012*x^9-72934386317385078680180828*x^8+26364765231336137278684304*x^7+35968973457987688272733340*x^6-11309485213969225524334332*x^5-8294307520069859704803840*x^4+1910851269999946037703048*x^3+762041424607904107081008*x^2-90784364041385215470464*x-19512887404822628540288,-109797011484198439864*x^25+462941295678829740760*x^24+3615420281279760768512*x^23-16917176460157113633480*x^22-48876774652694596746848*x^21+266133075995132184015128*x^20+341191262094692774136176*x^19-2362159333708286465425112*x^18-1200098019236357215709264*x^17+13024526251058867483802768*x^16+947618636470337916910648*x^15-46284284981524509877706144*x^14+8632694596814088058109456*x^13+106408428311688698562169280*x^12-35790416585845954877821712*x^11-154651844021398273906870000*x^10+62765967986634692200270568*x^9+134658385405456215499684992*x^8-54830129040575021795341496*x^7-63527874438210363087223760*x^6+22222490056751642220019792*x^5+13317940391725933112713088*x^4-3396559026853913517050560*x^3-1060537310463710029338304*x^2+132458727454035456412160*x+23601301895439208070400,125871598992260886663*x^25-590149826625555875243*x^24-3968902877277694237198*x^23+21563974490021732590007*x^22+49618069213567266287678*x^21-339281948782537756356927*x^20-290625842285646030689892*x^19+3012997845040917353545617*x^18+490318063615650399423452*x^17-16632662183815273336299406*x^16+3730291398406507175125495*x^15+59240299031042896925567544*x^14-26613096755607813441063050*x^13-136751098718109727201111608*x^12+77917940749582053548735958*x^11+200148798547936090452807114*x^10-121851316439446393633788517*x^9-176238095669019363521863064*x^8+101096062994331193144909633*x^7+84338122025668626214331210*x^6-39938454659303859862058342*x^5-17692566308881542240980116*x^4+6173833228108889035357576*x^3+1404883007060192553757488*x^2-257935120156291517666272*x-34581393066475624395648,-43764650333888238312*x^25+169669340700725874152*x^24+1484259946196608884144*x^23-6200261104339399148072*x^22-21044239780008394160176*x^21+97496444334656691801256*x^20+160251174666324938935936*x^19-864317564929921608166104*x^18-689750566385671054093504*x^17+4753826989995659827309328*x^16+1513613929193518414934936*x^15-16815346543362447177585312*x^14-444970433056314166720528*x^13+38343549151104197533636800*x^12-5840984208056656830917072*x^11-54944804303477447752749808*x^10+13891214050571271615510904*x^9+46713203105578798490457056*x^8-13651023341541574870565208*x^7-21226794177146487771074384*x^6+5990557375049023857578064*x^5+4249963418468876525560032*x^4-967298542345387546576896*x^3-322547117960497262128896*x^2+40784868706165388026560*x+7293454670463799795712,-69233273857090954280*x^25+321513006913094293672*x^24+2199333299157872068644*x^23-11770139774523670401692*x^22-27886812643712915064536*x^21+185644495068624431800812*x^20+169209723908854024715496*x^19-1654020420036594015043084*x^18-352738567800785589225200*x^17+9171178913054003421222444*x^16-1592901735936498873452408*x^15-32864332579191843828969224*x^14+12997307903725571038620052*x^13+76513552201596153116137360*x^12-39033509177458727790840904*x^11-113344662969842748192464240*x^10+61315706303382214370907104*x^9+101523889115413800075533400*x^8-50408428573499381957724052*x^7-49749163421589097045396544*x^6+19370907959978471162676780*x^5+10792282960487145811216392*x^4-2859571678156183220887048*x^3-881181193958916544951280*x^2+108346777092050960502752*x+20210141637967135413440,-45426949264477173068*x^25+205296281155276530556*x^24+1459204356588789035664*x^23-7517162017535547330180*x^22-18873839401306880550296*x^21+118576932905016546175156*x^20+119823166901029217129488*x^19-1056406903159806548708332*x^18-306460466918591442152000*x^17+5855651453840254775462096*x^16-654186185477957857627740*x^15-20969169273475385432116976*x^14+7249553467443943479841808*x^13+48768396709730630065513632*x^12-23036891293290603764254376*x^11-72164800181326155096951176*x^10+37277115229963738545890484*x^9+64671873300199739283959440*x^8-31542839509128420844524572*x^7-31960925876351502844872648*x^6+12703252139637421262261872*x^5+7209894404407232930093184*x^4-2044401704535326765814800*x^3-631437099378238893982176*x^2+92130353845916542328832*x+13725364096735908881920,-57281422371809698885*x^25+277254629416998769729*x^24+1789570759077304944090*x^23-10159600285711616759029*x^22-21977333799994185339754*x^21+160473666867106850704621*x^20+122869610836228452583804*x^19-1432886848915913899570531*x^18-141214397935601916179524*x^17+7971535728016423586161962*x^16-2136404875829681646874837*x^15-28711832545750853129407704*x^14+13594959364483954841635486*x^13+67377306399470169479915368*x^12-38583318699307272742251490*x^11-101054032201464709514833950*x^10+59310599981045272252919391*x^9+92289276040272867492447000*x^8-48447455719368951242176435*x^7-46611045448588918575343214*x^6+18808010242897689880209298*x^5+10619141145414654591320380*x^4-2975531450274788825877720*x^3-938271661539502634434192*x^2+139229398374165621903904*x+24807784302433627471552,-10610188159599807080*x^25+53710746071096329464*x^24+324988817474132290384*x^23-1964172914214053446312*x^22-3841551180820225499440*x^21+30934843202961456530888*x^20+19316725362055138806000*x^19-275061012470615794511960*x^18+2464296152858289330848*x^17+1520807934814385118401744*x^16-539487225535001598486888*x^15-5427557935428663667651392*x^14+2963549670322322424993408*x^13+12562648858930408018078336*x^12-7975159794821074274514352*x^11-18456010687787383990971760*x^10+11829102249904713374664312*x^9+16341582569131289425623184*x^8-9325836650403682407250888*x^7-7880349543518042375539472*x^6+3445451433122909197474496*x^5+1660181869896327562794208*x^4-488758084110629732390688*x^3-131647543657255003364288*x^2+18369420565665984289472*x+3030138506881235990912,101443560197007636240*x^25-447872459477265678056*x^24-3291900857213079544392*x^23+16397452506919552718304*x^22+43385036123351298956168*x^21-258602270150166353531168*x^20-287381301209875348527976*x^19+2303039257663881067951792*x^18+863202527974149717077976*x^17-12757058480407723111384992*x^16+458250000367049764115264*x^15+45625650705526716991428904*x^14-12575983483838060746475584*x^13-105857642307811062831390000*x^12+43068245088508665560713696*x^11+155902239579263331105433904*x^10-71093630377849513862534592*x^9-138369116838188126696103224*x^8+60032690785989755367003536*x^7+66991794633995986157743544*x^6-23572020779114391173672656*x^5-14437188265492566872019856*x^4+3519348839708450689254560*x^3+1182043839288565140864512*x^2-130830236172299562349440*x-28306575652321532913920,39477209682579397608*x^25-175328761077459640040*x^24-1273770422738502213328*x^23+6405910821455083357000*x^22+16618863025786490194608*x^21-100761884172787623610824*x^20-107693926925403005576160*x^19+894320632337243776717656*x^18+299238178540450752901120*x^17-4931952817436791416370064*x^16+381257064814487190925192*x^15+17536137797665011456611936*x^14-5624766195571684954695824*x^13-40369780881887498348924736*x^12+18491770775699169981599664*x^11+58842259972545505910340528*x^10-30331020432758766331473688*x^9-51544443907086958139999776*x^8+25910879049900945543972440*x^7+24612923101664172931163472*x^6-10531270762654361476642384*x^5-5274705261582876932301792*x^4+1664499061987260593360768*x^3+433788229416994972720384*x^2-68999822191147354908416*x-10396438128142527695360,213376499741151292718*x^25-946521509764496877734*x^24-6891732880873014498356*x^23+34609846411075375798950*x^22+90045687315090907998316*x^21-544931324404091409047942*x^20-584957695918929158298360*x^19+4842579912882419840655658*x^18+1637092880591255441945816*x^17-26747748977728253706645300*x^16+1985273550095735795358558*x^15+95297369173556707721697360*x^14-30247500080417979270425884*x^13-219954684080248066000929024*x^12+99800699013482276858842524*x^11+321656481201041497356959956*x^10-163833604271867724957734298*x^9-282835400863090748365307760*x^8+139731289367906402195359642*x^7+135463914365338300322443924*x^6-56495928861963182394783620*x^5-28989437852453641881056328*x^4+8940057577547012636477568*x^3+2429321935861258637568160*x^2-393693189323459711687552*x-65089589171211328386432,8561777118003058484*x^25-52492065073274511132*x^24-232580562948448305168*x^23+1915212433799782162756*x^22+2022899168179391012144*x^21-30122600577999359733668*x^20+1215432144930324749768*x^19+267956888905374806353740*x^18-149496536313246181039416*x^17-1486995042737648416470952*x^16+1236182356505037399122404*x^15+5356049054618253754061800*x^14-5171649796599313581589464*x^13-12626320657762908359150960*x^12+12588510860654859567077960*x^11+19163684778725622646425160*x^10-17908590097020373059857644*x^9-17893464639920311196570680*x^8+13948164788490389957555692*x^7+9326789007087378980533520*x^6-5168990433569751061823992*x^5-2178676181989742405961824*x^4+755310012768201500836672*x^3+201442669378099678978304*x^2-30448347692444546062592*x-5294552378174032917248,66308647437290544902*x^25-292696071440256198492*x^24-2150782238217271997282*x^23+10714921800805296606750*x^22+28320010930047349412358*x^21-168964633205063236683022*x^20-187165499894237379828146*x^19+1504614718141752665585758*x^18+557211092176193501666390*x^17-8334221427508463186194056*x^16+346351903552966649671010*x^15+29812040169469005181223354*x^14-8430733548690670285840432*x^13-69209554832272412996923836*x^12+28793208817315169468405172*x^11+102105049025738791394018200*x^10-47768128877031357285167902*x^9-91052575606971164941289422*x^8+40888942920679910621498398*x^7+44677024739559132061338050*x^6-16591649613330742765509012*x^5-10030047689781216355772964*x^4+2690132382642546279694704*x^3+898444965039749035421856*x^2-126922367844710207818944*x-26323580706228845935936,178054094540518114480*x^25-798738672609860186944*x^24-5729236830186144349232*x^23+29214344769004189452528*x^22+74368424642050026414064*x^21-460175607151452388298960*x^20-476396026175223922044752*x^19+4092034042771948033617136*x^18+1266721971073720315343856*x^17-22624305136786617995878688*x^16+2169548490258416893905392*x^15+80726568511633913173353520*x^14-26893563705767490056188128*x^13-186748380314561810766263008*x^12+86539996260449501948985568*x^11+274041072647896839629670400*x^10-140348358686177554701650672*x^9-242188067117426980747041872*x^8+118439218207156276686451824*x^7+116736284879188529100829040*x^6-47248405982770687591341696*x^5-25058429650758368084454816*x^4+7389060576483197865313152*x^3+2066885130416584723559808*x^2-318358382893443151539072*x-52529504625520973370880,-53448740356264476276*x^25+254213038219293544540*x^24+1681366271401561387696*x^23-9311806491044676051204*x^22-20915217606916975341872*x^21+146975621447050326005156*x^20+120828122117247710448312*x^19-1310666174906572996485868*x^18-184025141187592093099848*x^17+7275655813200476320644456*x^16-1722562157791478299124836*x^15-26111274141089056332469544*x^14+11798269326901322534498584*x^13+60919327887857716980044112*x^12-34183109233717522449120392*x^11-90525999173833082313194888*x^10+53117505621540497284286060*x^9+81488987557267889089817080*x^8-43732852391688352240234636*x^7-40274109286673438002586224*x^6+17057412750606323755647352*x^5+8892820002118357037350464*x^4-2616278988891847465933376*x^3-768972426140351037743040*x^2+101940806923566049707712*x+21854927861474777879040,14025968443213223744*x^25-61472628175043550976*x^24-452068535529900630512*x^23+2237045948213646454544*x^22+5899741567972171351872*x^21-35034493662190774023472*x^20-38413063813564124217472*x^19+309515340127534724634608*x^18+109790730570902869642400*x^17-1698886088345287979896080*x^16+104039959589656623955680*x^15+6013597206557793015959392*x^14-1842901048740978118018096*x^13-13790345511795250593778592*x^12+6114040376065281360787040*x^11+20039130656759626572367744*x^10-9977412525675005808037536*x^9-17496208666150483126325088*x^8+8397125761590612011827792*x^7+8272907129263186832689440*x^6-3314232152789627285116816*x^5-1702257194439917924264000*x^4+509416052241551997958432*x^3+132857462473742903996544*x^2-21325264968639895491968*x-3595727730244686386176,-60768726145568853490*x^25+276368525328006034044*x^24+1943643006439592444874*x^23-10111532876180805998230*x^22-24928747006311067936706*x^21+159306312653442699595190*x^20+155025272167985132220326*x^19-1416577145878947673742918*x^18-360758681397447671554650*x^17+7828684169260065664760860*x^16-1161799634953300403890342*x^15-27901255235514312179624542*x^14+10777045814366087941313292*x^13+64386845073958326033945940*x^12-33443249247413116786097796*x^11-94036727544838524053225592*x^10+53872232233685283247775618*x^9+82373807926625828336180538*x^8-45740920911558631735812158*x^7-39050465912588413673659262*x^6+18509205443189435778664752*x^5+8097051633591275131512980*x^4-2892098747970608905271432*x^3-620836242715616959700240*x^2+117412043267238185206944*x+12526793012652495112256,381903588083879883328*x^6-3819035880838798833280*x^4+9165686114013117199872*x^2-3055228704671039066624,52878005049878745022*x^25-244319831076909529050*x^24-1670292384749184618040*x^23+8907925434759754347766*x^22+20942148934080037178040*x^21-139731561720808568475958*x^20-123412873600435342616580*x^19+1235604971858288101860162*x^18+215249418155766263065212*x^17-6779188009275889736870668*x^16+1533769702802147515085750*x^15+23928505270637006502055196*x^14-11146468227455607373556852*x^13-54491533370265357817065320*x^12+32924112805908772418023948*x^11+78098033542105933155965836*x^10-52012722087945203600857170*x^9-66531400873596247805903316*x^8+43830034969198505101138578*x^7+30210310848776326314751192*x^6-17734362240737799818334212*x^5-5817506017225774890563568*x^4+2754727810901606712816640*x^3+422199666501550417835296*x^2-110313067864387266593536*x-10866096589001039274624,11951049134803665492*x^25-54444442629773513108*x^24-384065992200278740328*x^23+1991586446028953652740*x^22+4988678060509417298616*x^21-31381896041098670168420*x^20-32213350294615970413568*x^19+279251713739440926046428*x^18+90244743779921197897312*x^17-1545782191125292612213848*x^16+95564086446195457820788*x^15+5525873043793717394177264*x^14-1533656032455012911470984*x^13-12817678542786001625655232*x^12+4919622605493365466562216*x^11+18871818953939839598136920*x^10-7663100361544701231131516*x^9-16718110046987670840312976*x^8+5958748762043335374441276*x^7+8013219445650126218636616*x^6-2029271444037482790043928*x^5-1648097585140982566014768*x^4+244656690719717264852608*x^3+118933058674741447579328*x^2-5843852810933577508224*x-1827525459314411854592,-88220968269760210948*x^25+386794001056485143896*x^24+2854795803653223918828*x^23-14116560312103941914100*x^22-37438209036801311910564*x^21+221716337445847902740356*x^20+245328641981670865105900*x^19-1963809312737579142352996*x^18-709499462879604253744420*x^17+10798131712750019713995552*x^16-631447173555537596780668*x^15-38227790216643961156847276*x^14+11805883691599624716424720*x^13+87416961218625362200052184*x^12-39625382552161320552990584*x^11-126035987293422682786959632*x^10+65412818756562281297830356*x^9+108319674471741668176576292*x^8-55928164693833225232070852*x^7-49851297656908554872072556*x^6+22609914257083817420160168*x^5+9802291871827487839215304*x^4-3495014147951658765661568*x^3-677345859726674748086048*x^2+139363024870354235316416*x+13446106637647474957440,17277365114542345500*x^25-107222526490568671684*x^24-465079201769330820576*x^23+3909379889108452113964*x^22+3908334442866197938912*x^21-61366826354891273627404*x^20+5488328500909131793128*x^19+543674511243808575741060*x^18-331356267065392495664376*x^17-2994363646950477950542456*x^16+2672872148437607012997964*x^15+10643719343115283514103048*x^14-11116984090251199207697192*x^13-24534538937104319117642192*x^12+27056681328309909737791480*x^11+35871916449800682933255640*x^10-38633291878644817777297316*x^9-31486134665626735678429816*x^8+30369975337518074891748196*x^7+14756032078229016343790688*x^6-11485419354687921757448776*x^5-2727524739997040336967488*x^4+1702751443481232700227936*x^3+157666356941761162662016*x^2-68095393699721584962112*x-4280877479030030655360,-62144511724398546646*x^25+273459143643702412698*x^24+2000764946887561790348*x^23-9963596512049987309178*x^22-25986875195761897204680*x^21+156155567307000261564634*x^20+166481617135094354455140*x^19-1379307234143844053228374*x^18-440178614777617799827108*x^17+7556990700094277399701568*x^16-800209194789064388366814*x^15-26627890371686345955245644*x^14+9716150994787854018933920*x^13+60521795381020064926584632*x^12-31587416447876197719875748*x^11-86616610898381521699303276*x^10+52377080795749568184358114*x^9+73943104160408468298868036*x^8-46045777401094305984314654*x^7-34198377982427468253754480*x^6+19720666640782823070985704*x^5+7212714164010816802628616*x^4-3327253154906733413742104*x^3-655274857810602390758064*x^2+159210758975715512614816*x+21772327871921119269632,-40352826123673675584*x^25+159728512380836637232*x^24+1355303458673641736560*x^23-5822612743955610775520*x^22-18943178436844288876272*x^21+91312458227111653449376*x^20+140916630125477068928592*x^19-807185886177306769644928*x^18-579026106638350622744784*x^17+4426579623202066495872960*x^16+1102652309165436042272608*x^15-15613005244113065548942384*x^14+559629000410753846042528*x^13+35510430918231222352991328*x^12-7474053487547082013557824*x^11-50784489962753908193468768*x^10+15687911151618477611286368*x^9+43133212143719756849286512*x^8-14993971573334303651471584*x^7-19612803500948269355008016*x^6+6588315520665631292514432*x^5+3951604431984763007282016*x^4-1080218726498803323354752*x^3-308991228795878448833600*x^2+46845036762633206615168*x+7259720322262490588672,-12440764920973102859*x^25+35055336390530326315*x^24+452229595235649573574*x^23-1257301961053424834311*x^22-7074994462667387484522*x^21+19240735257942983106279*x^20+62402303590580585558584*x^19-163801224135099593982521*x^18-341031008983511390091520*x^17+846317474519971418368938*x^16+1191218795958312732537061*x^15-2704829535976870887434276*x^14-2622046067200761198671090*x^13+5162045315330418832441816*x^12+3335074665923791989725914*x^11-5152451281948868550913690*x^10-1637541129239061431825199*x^9+1396344906715368456772332*x^8-1223840499222893700667505*x^7+1359525874795873814482682*x^6+1833207175432624427158042*x^5-698804499400860453247444*x^4-494661341242583152003360*x^3+72831210427743553862064*x^2+35461396434456225359968*x-383623031126385225664,27641038885247096768*x^25-124399520783478975856*x^24-886087711741276384048*x^23+4539298318108704415632*x^22+11436287149974726741888*x^21-71288917572855386587888*x^20-72485302624204946505264*x^19+631502906748109157374832*x^18+186162911874751220466880*x^17-3474108412962821059808368*x^16+377455097493856362221376*x^15+12314322967383884597071136*x^14-4245948594924965218765408*x^13-28234533651217181989874592*x^12+13396839622293371410843712*x^11+40933216957624254336535296*x^10-21399355710487168244321824*x^9-35588106926960722597794800*x^8+17750357149490746686872832*x^7+16790656079227966603803200*x^6-6928732874801272724924576*x^5-3496985753185822445634880*x^4+1051232085536834211589696*x^3+275118908878182737314816*x^2-44638985195478405770752*x-7761673586302132855296,62827670553551840616*x^25-265716643005297543492*x^24-2069406705447547449300*x^23+9722495607662827189120*x^22+27980284675765005701092*x^21-153205901358072839638256*x^20-195244935710843870500532*x^19+1362872566749956795692472*x^18+684910861046068822906284*x^17-7537671135837268945052752*x^16-520140544028768478264208*x^15+26902714148381074354771972*x^14-5068382285200103274666112*x^13-62250351829751247355352104*x^12+20908529723136850763814736*x^11+91397628777752326579262328*x^10-36763277954907561101621952*x^9-80967716093022412034349900*x^8+32351866488039798678870600*x^7+39461867046485721702966748*x^6-13350443280280231440077672*x^5-8898933425374450108137624*x^4+2171018631718458756710544*x^3+820812095990464398055552*x^2-106332177887665255418624*x-22522851080153748737536,-11709347242902838528*x^25+54364050993196121240*x^24+373798833635707207160*x^23-1991092150049950275104*x^22-4783306098066626969544*x^21+31404454906732556323456*x^20+29668688556518392466920*x^19-279564008808877381442224*x^18-68929169203543722869016*x^17+1546474650981149358299600*x^16-219154549586294160043408*x^15-5514374686707983999582312*x^14+2027292885678466056439856*x^13+12720083337900297834355088*x^12-6248519219042354624084704*x^11-18541494977190501364633872*x^10+9979858087455536073282032*x^9+16182503870536594843214488*x^8-8396746247242696082902416*x^7-7657406157113071473254168*x^6+3379865161227104958172960*x^5+1625600632891035050116944*x^4-527694489572137895500160*x^3-142070942374637704433408*x^2+23065948692893498165120*x+3814947163280636478720,-95049441680889684706*x^25+456918886588018779350*x^24+2976909419786840481328*x^23-16741903023711095494746*x^22-36710128300326095851152*x^21+264346803220762428983378*x^20+207201512581756894026228*x^19-2358360843425356124278582*x^18-259045665003744443748012*x^17+13098140674620285013574684*x^16-3436111902126625181249410*x^15-47032603278624701624649396*x^14+22268351422401571540266500*x^13+109778798377897111771112320*x^12-63553400045286875261340308*x^11-163125807809636557381708772*x^10+97921107449247543463906014*x^9+146600728367342605811092156*x^8-79907039275450778975818406*x^7-71962055488951666280862064*x^6+30693533964633943542618596*x^5+15500062818085498874153176*x^4-4610519105448309882432912*x^3-1272800442780272480237936*x^2+193701516187834549427072*x+32020472317785179486400,50540333375158357716*x^25-229630629766811589276*x^24-1612616538452002613312*x^23+8386965924137470879988*x^22+20600593713412949141488*x^21-131857343575564778199668*x^20-127012185394249886952216*x^19+1169478010934469623956764*x^18+284465009188340615040104*x^17-6442730094607896766424568*x^16+1044331407911567851436260*x^15+22873354051075210307276360*x^14-9217622531527704050196520*x^13-52539354438142776493132048*x^12+28372248801749442003242152*x^11+76327175375923350760775176*x^10-45651864826884164408771564*x^9-66534772631112116117417976*x^8+38933339204020375442108156*x^7+31559793292816725957137136*x^6-15977355535548990667926632*x^5-6741929799691756360442272*x^4+2575328940764759039387168*x^3+607381256102376242604736*x^2-113079060958046642884352*x-21280935280132814143488,-82480279517081742050*x^25+378393037035851976522*x^24+2623424509916157976244*x^23-13822449886070523981826*x^22-33329520660947533638388*x^21+217365350620653791437490*x^20+202993280045897853755208*x^19-1928594447551471699429134*x^18-429306514734523882172600*x^17+10630749927640720713095012*x^16-1874816708936206506069922*x^15-37773292159140794765733984*x^14+15546548590995916426079788*x^13+86866961872981863358658096*x^12-47151146380391404561188660*x^11-126395031947261871308387244*x^10+75139327430943469765157414*x^9+110351335745717230829901056*x^8-63416132336239322983859246*x^7-52288055339139763798997436*x^6+25644116417628314868864468*x^5+10956177247316324148710456*x^4-4058593393738776402400752*x^3-881774791410780588915232*x^2+178045577734223900039936*x+21579389194475799141120,-50728852871437915772*x^25+231414419234609447992*x^24+1618597899966286572668*x^23-8460495862004890998244*x^22-20685709365557318472092*x^21+133204283812098311448900*x^20+127818170812424043916100*x^19-1183910380312952980274116*x^18-290945043923854378287468*x^17+6542632015805140067303704*x^16-999193215166745611272276*x^15-23337492597750705216680580*x^14+8980004152897920120567592*x^13+53991274678631252596966616*x^12-27524060412273950979762104*x^11-79303937998582268659192080*x^10+43732113536959355031756540*x^9+70279277708171166433566492*x^8-36383914217713259630142308*x^7-34071993222370936604148612*x^6+14266456958950464839924704*x^5+7375353370144459438372024*x^4-2174524644710045087681904*x^3-620063753123098387900832*x^2+89256855487575499575360*x+15322774127550349655168]];
E[467,3] = [x, [1,0,-3,-2,2,0,1,0,6,0,4,6,-6,0,-6,4,-7,0,2,-4,-3,0,-7,0,-1,0,-9,-2,-8,0,6,0,-12,0,2,-12,-2,0,18,0,6,0,-4,-8,12,0,4,-12,-6,0,21,12,-9,0,8,0,-6,0,-3,12,-10,0,6,-8,-12,0,-4,14,21,0,-12,0,14,0,3,-4,4,0]];

E[468,1] = [x, [1,0,0,0,-2,0,-2,0,0,0,2,0,-1,0,0,0,-6,0,-6,0,0,0,-8,0,-1,0,0,0,-2,0,10,0,0,0,4,0,-6,0,0,0,6,0,4,0,0,0,2,0,-3,0,0,0,-6,0,-4,0,0,0,10,0,-2,0,0,0,2,0,10,0,0,0,-10,0,2,0,0,0,-4,0,-4,0,0,0,6,0,12,0,0,0,6,0,2,0,0,0,12,0,2,0,0,0,2,0,-8,0,0,0,16,0,-14,0,0,0,-14,0,16,0,0,0,12,0,-7,0,0,0,12,0,-8,0,0,0,16,0,12,0,0,0,-18,0,16,0,0,0,-2,0,4,0,0,0,-18,0,6,0,0,0,-20,0,2,0,0,0,16,0,-10,0,0,0,-6,0]];
E[468,2] = [x, [1,0,0,0,-4,0,4,0,0,0,4,0,-1,0,0,0,0,0,0,0,0,0,8,0,11,0,0,0,8,0,4,0,0,0,-16,0,6,0,0,0,-12,0,-8,0,0,0,4,0,9,0,0,0,0,0,-16,0,0,0,-4,0,-2,0,0,0,4,0,-8,0,0,0,4,0,-10,0,0,0,16,0,-4,0,0,0,-12,0,0,0,0,0,12,0,-4,0,0,0,0,0,14,0,0,0,-8,0,4,0,0,0,8,0,-14,0,0,0,8,0,-32,0,0,0,0,0,5,0,0,0,-24,0,4,0,0,0,8,0,0,0,0,0,-12,0,16,0,0,0,-4,0,-32,0,0,0,-12,0,-12,0,0,0,-16,0,14,0,0,0,32,0,-16,0,0,0,-12,0]];
E[468,3] = [x, [1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,6,0,2,0,0,0,0,0,-5,0,0,0,6,0,2,0,0,0,0,0,2,0,0,0,12,0,-4,0,0,0,0,0,-3,0,0,0,-6,0,0,0,0,0,-12,0,2,0,0,0,0,0,-10,0,0,0,-12,0,14,0,0,0,0,0,8,0,0,0,-12,0,0,0,0,0,0,0,2,0,0,0,0,0,-10,0,0,0,-18,0,-16,0,0,0,12,0,14,0,0,0,-6,0,0,0,0,0,12,0,-11,0,0,0,0,0,-4,0,0,0,-12,0,4,0,0,0,12,0,-16,0,0,0,0,0,0,0,0,0,-12,0,-10,0,0,0,0,0,2,0,0,0,0,0,14,0,0,0,24,0]];
E[468,4] = [x, [1,0,0,0,4,0,-2,0,0,0,4,0,1,0,0,0,-2,0,-2,0,0,0,0,0,11,0,0,0,6,0,-10,0,0,0,-8,0,10,0,0,0,-8,0,4,0,0,0,4,0,-3,0,0,0,10,0,16,0,0,0,8,0,-14,0,0,0,4,0,2,0,0,0,-16,0,-10,0,0,0,-8,0,-16,0,0,0,0,0,-8,0,0,0,4,0,-2,0,0,0,-8,0,-2,0,0,0,-10,0,-8,0,0,0,-12,0,-2,0,0,0,-6,0,0,0,0,0,4,0,5,0,0,0,24,0,12,0,0,0,-4,0,4,0,0,0,-8,0,0,0,0,0,4,0,24,0,0,0,0,0,18,0,0,0,-40,0,2,0,0,0,0,0,2,0,0,0,12,0]];
E[468,5] = [x, [1,0,0,0,4,0,4,0,0,0,-4,0,-1,0,0,0,0,0,0,0,0,0,-8,0,11,0,0,0,-8,0,4,0,0,0,16,0,6,0,0,0,12,0,-8,0,0,0,-4,0,9,0,0,0,0,0,-16,0,0,0,4,0,-2,0,0,0,-4,0,-8,0,0,0,-4,0,-10,0,0,0,-16,0,-4,0,0,0,12,0,0,0,0,0,-12,0,-4,0,0,0,0,0,14,0,0,0,8,0,4,0,0,0,-8,0,-14,0,0,0,-8,0,-32,0,0,0,0,0,5,0,0,0,24,0,4,0,0,0,-8,0,0,0,0,0,12,0,16,0,0,0,4,0,-32,0,0,0,12,0,-12,0,0,0,16,0,14,0,0,0,-32,0,-16,0,0,0,12,0]];

E[469,1] = [x, [1,-1,-3,-1,1,3,-1,3,6,-1,0,3,3,1,-3,-1,0,-6,-4,-1,3,0,3,-9,-4,-3,-9,1,-3,3,-5,-5,0,0,-1,-6,5,4,-9,3,-5,-3,0,0,6,-3,-6,3,1,4,0,-3,2,9,0,-3,12,3,-6,3,-14,5,-6,7,3,0,-1,0,-9,1,-9,18,14,-5,12,4,0,9,14,-1,9,5,-10,-3,0,0,9,0,4,-6]];
E[469,2] = [x^2-x-4, [1,x,-x,x+2,x-2,-x-4,1,x+4,x+1,-x+4,4,-3*x-4,x-4,x,x-4,3*x,-x+5,2*x+4,-x+5,x,-x,4*x,-2*x+1,-5*x-4,-3*x+3,-3*x+4,x-4,x+2,-2*x+7,-3*x+4,3*x-2,x+4,-4*x,4*x-4,x-2,4*x+6,-2*x-1,4*x-4,3*x-4,3*x-4,-3*x,-x-4,4,4*x+8,2,-x-8,-3*x-3,-3*x-12,1,-12,-4*x+4,-x-4,-4*x-2,-3*x+4,4*x-8,x+4,-4*x+4,5*x-8,-x-1,-x-4,-2*x-8,x+12,x+1,-x+4,-5*x+12,-4*x-16,-1,2*x+6,x+8,-x+4,3*x-4,6*x+8,-x+11,-3*x-8,12,2*x+6,4,-x+12,6,-3*x+12,-7,-3*x-12,2*x+12,-3*x-4,6*x-14,4*x,-5*x+8,4*x+16,7*x-3,2*x]];
E[469,3] = [x^3+3*x^2-3, [1,x,-x-2,x^2-2,x^2+2*x,-x^2-2*x,1,-3*x^2-4*x+3,x^2+4*x+1,-x^2+3,-3*x^2-4*x+3,x^2+2*x+1,-2*x^2-3*x+2,x,-x^2-4*x-3,3*x^2+3*x-5,x^2+3*x-3,x^2+x+3,-3*x-4,x^2-x-3,-x-2,5*x^2+3*x-9,-2*x-6,x^2+5*x+3,x^2+3*x-2,3*x^2+2*x-6,-3*x^2-6*x+1,x^2-2,x^2-2*x-9,-x^2-3*x-3,-2*x^2+5,3*x+3,x^2+5*x+3,-3*x+3,x^2+2*x,-4*x^2-5*x+1,3*x^2+3*x-7,-3*x^2-4*x,x^2+4*x+2,-2*x^2-3*x-3,x^2+4*x,-x^2-2*x,3*x^2-10,-6*x^2-x+9,5*x+9,-2*x^2-6*x,5*x^2+12*x-3,-x+1,1,-2*x+3,-2*x^2-3*x+3,-3*x^2+5,-x^2+x+6,3*x^2+x-9,-2*x^2-3*x-3,-3*x^2-4*x+3,3*x^2+10*x+8,-5*x^2-9*x+3,-x^2-2*x-9,2*x^2+5*x+3,-3*x^2-3*x+8,6*x^2+5*x-6,x^2+4*x+1,-3*x^2-3*x+10,-x^2-2*x-3,2*x^2+3*x+3,1,-5*x^2-3*x+6,2*x^2+10*x+12,-x^2+3,x^2+x-15,5*x^2-x-18,-x^2-6*x-4,-6*x^2-7*x+9,-2*x^2-4*x+1,5*x^2+6*x-1,-3*x^2-4*x+3,x^2+2*x+3,2*x^2+6*x-4,x^2-x,-x+4,x^2+3,2*x^2+2*x+6,x^2+2*x+1,-3*x^2-3*x+6,-9*x^2-10*x+9,3*x^2+13*x+15,7*x^2+3*x,7*x^2+11*x,5*x^2+9*x]];
E[469,4] = [x^5-2*x^4-5*x^3+9*x^2+3*x-4, [1,x,-x,x^2-2,-x^2+2,-x^2,-1,x^3-4*x,x^2-3,-x^3+2*x,-x^4+6*x^2+x-8,-x^3+2*x,2*x^4-2*x^3-10*x^2+7*x+4,-x,x^3-2*x,x^4-6*x^2+4,-x^4+x^3+5*x^2-4*x-3,x^3-3*x,x^3-x^2-5*x+1,-x^4+4*x^2-4,x,-2*x^4+x^3+10*x^2-5*x-4,-2*x^4+3*x^3+9*x^2-10*x-7,-x^4+4*x^2,x^4-4*x^2-1,2*x^4-11*x^2-2*x+8,-x^3+6*x,-x^2+2,x^4-3*x^3-5*x^2+13*x+3,x^4-2*x^2,x^4-3*x^2-3*x-2,2*x^4-3*x^3-9*x^2+9*x+4,2*x^4-x^3-10*x^2+5*x+4,-x^4+5*x^2-4,x^2-2,x^4-5*x^2+6,-2*x^3+3*x^2+7*x-5,x^4-x^3-5*x^2+x,-2*x^4+11*x^2+2*x-8,-2*x^4+x^3+9*x^2-5*x-4,-2*x^4+4*x^3+9*x^2-12*x-4,x^2,x^4-3*x^3-5*x^2+15*x,-x^4+x^2+8,-x^4+5*x^2-6,-x^4-x^3+8*x^2-x-8,-2*x^4+2*x^3+11*x^2-6*x-11,-2*x^4+x^3+9*x^2-x-4,1,2*x^4+x^3-9*x^2-4*x+4,x^4-5*x^2+4,3*x^3-12*x,2*x^3-x^2-7*x+2,-x^4+6*x^2,x^4-x^2-8,-x^3+4*x,-x^4+x^3+5*x^2-x,-x^4+4*x^2+4,4*x^4-4*x^3-23*x^2+14*x+15,2*x^4+x^3-9*x^2+x+4,-2*x^4+2*x^3+7*x^2-7*x+4,2*x^4+2*x^3-12*x^2-5*x+4,-x^2+3,-x^4+x^3+3*x^2-2*x,-3*x^3+12*x,3*x^4-13*x^2-2*x+8,-1,-2*x^3-x^2+7*x+2,x^4+x^3-8*x^2+x+8,x^3-2*x,x^4-2*x^3-6*x^2+6*x+8,2*x^4-2*x^3-9*x^2+9*x+4,-2*x^4+3*x^3+8*x^2-12*x+3,-2*x^4+3*x^3+7*x^2-5*x,-2*x^4-x^3+9*x^2+4*x-4,x^4-2*x^3-6*x^2+7*x+2,x^4-6*x^2-x+8,-4*x^4+x^3+20*x^2-2*x-8,2*x^3-10*x-2,-x^4-x^3+5*x^2+2*x,x^4-9*x^2+9,-x^3+6*x^2+2*x-8,2*x^4-4*x^3-8*x^2+12*x-4,x^3-2*x,2*x^3+x^2-7*x-2,-x^4+6*x^2-3*x+4,x^4-4*x^2-4,2*x^4-6*x^3-11*x^2+21*x+4,3*x^4-4*x^3-16*x^2+16*x+5,-2*x^4+9*x^2-3*x-4]];
E[469,5] = [x^9+x^8-13*x^7-10*x^6+53*x^5+28*x^4-69*x^3-12*x^2+12*x+1, [4,4*x,2*x^6-20*x^4+6*x^3+48*x^2-22*x-6,4*x^2-8,-x^8-2*x^7+13*x^6+21*x^5-56*x^4-62*x^3+81*x^2+39*x-9,2*x^7-20*x^5+6*x^4+48*x^3-22*x^2-6*x,-4,4*x^3-16*x,-2*x^8+28*x^6-2*x^5-120*x^4+14*x^3+158*x^2-36*x-12,-x^8+11*x^6-3*x^5-34*x^4+12*x^3+27*x^2+3*x+1,-2*x^7-2*x^6+20*x^5+14*x^4-54*x^3-26*x^2+32*x+18,2*x^8-24*x^6+6*x^5+88*x^4-34*x^3-102*x^2+44*x+12,x^8-2*x^7-13*x^6+19*x^5+40*x^4-34*x^3-13*x^2-19*x+5,-4*x,4*x^8+4*x^7-50*x^6-40*x^5+188*x^4+110*x^3-200*x^2-34*x+10,4*x^4-24*x^2+16,2*x^8+4*x^7-26*x^6-42*x^5+112*x^4+120*x^3-162*x^2-58*x+26,2*x^8+2*x^7-22*x^6-14*x^5+70*x^4+20*x^3-60*x^2+12*x+2,-x^8-2*x^7+15*x^6+25*x^5-68*x^4-80*x^3+85*x^2+29*x+5,3*x^8+2*x^7-39*x^6-23*x^5+152*x^4+82*x^3-171*x^2-65*x+19,-2*x^6+20*x^4-6*x^3-48*x^2+22*x+6,-2*x^8-2*x^7+20*x^6+14*x^5-54*x^4-26*x^3+32*x^2+18*x,-2*x^8-4*x^7+28*x^6+42*x^5-132*x^4-114*x^3+206*x^2+36*x-20,-2*x^8-2*x^7+26*x^6+22*x^5-102*x^4-60*x^3+112*x^2-2,-2*x^7+24*x^5-2*x^4-84*x^3-2*x^2+82*x+20,-3*x^8+29*x^6-13*x^5-62*x^4+56*x^3-7*x^2-7*x-1,-4*x^8+50*x^6-8*x^5-184*x^4+42*x^3+188*x^2-58*x+14,-4*x^2+8,-4*x^8-2*x^7+52*x^6+20*x^5-202*x^4-56*x^3+230*x^2-6*x-32,2*x^7-24*x^5-2*x^4+76*x^3+14*x^2-38*x-4,-2*x^8+20*x^6-2*x^5-40*x^4-10*x^3-30*x^2+60*x+12,4*x^5-32*x^3+48*x,-4*x^5-4*x^4+32*x^3+24*x^2-60*x-20,2*x^8-22*x^6+6*x^5+64*x^4-24*x^3-34*x^2+2*x-2,x^8+2*x^7-13*x^6-21*x^5+56*x^4+62*x^3-81*x^2-39*x+9,4*x^8+4*x^7-50*x^6-32*x^5+204*x^4+50*x^3-280*x^2+50*x+22,8*x^8+4*x^7-98*x^6-32*x^5+352*x^4+74*x^3-352*x^2+2*x+26,-x^8+2*x^7+15*x^6-15*x^5-52*x^4+16*x^3+17*x^2+17*x+1,-4*x^8-4*x^7+50*x^6+36*x^5-196*x^4-78*x^3+240*x^2-26*x-10,x^8-15*x^6-x^5+66*x^4+12*x^3-83*x^2-23*x-5,3*x^8+2*x^7-35*x^6-7*x^5+132*x^4-26*x^3-175*x^2+59*x+31,-2*x^7+20*x^5-6*x^4-48*x^3+22*x^2+6*x,-2*x^8+2*x^7+28*x^6-18*x^5-110*x^4+30*x^3+120*x^2+6*x-24,-2*x^7-2*x^6+12*x^5+2*x^4+2*x^3+46*x^2-40*x-34,5*x^8+6*x^7-63*x^6-57*x^5+248*x^4+132*x^3-301*x^2+19*x+27,-2*x^8+2*x^7+22*x^6-26*x^5-58*x^4+68*x^3+12*x^2+4*x+2,3*x^8+2*x^7-41*x^6-23*x^5+164*x^4+68*x^3-171*x^2-3*x+1,-4*x^8+50*x^6-8*x^5-180*x^4+42*x^3+180*x^2-66*x-22,4,-2*x^8+24*x^6-2*x^5-84*x^4-2*x^3+82*x^2+20*x,-6*x^8-4*x^7+78*x^6+38*x^5-308*x^4-100*x^3+362*x^2+18*x-30,x^8-6*x^7-17*x^6+59*x^5+60*x^4-146*x^3-17*x^2+73*x-7,4*x^8+4*x^7-56*x^6-44*x^5+248*x^4+132*x^3-344*x^2-60*x+28,4*x^8-2*x^7-48*x^6+28*x^5+154*x^4-88*x^3-106*x^2+62*x+4,-8*x^8-12*x^7+100*x^6+124*x^5-388*x^4-360*x^3+456*x^2+192*x-32,-4*x^3+16*x,4*x^6-36*x^4+24*x^3+76*x^2-104*x-12,2*x^8-20*x^6+10*x^5+56*x^4-46*x^3-54*x^2+16*x+4,7*x^8+6*x^7-89*x^6-55*x^5+348*x^4+132*x^3-411*x^2-7*x+53,-6*x^8-8*x^7+76*x^6+78*x^5-300*x^4-206*x^3+362*x^2+64*x-20,-5*x^8-2*x^7+59*x^6+13*x^5-200*x^4-28*x^3+181*x^2+13*x-23,2*x^8-6*x^7-22*x^6+66*x^5+46*x^4-168*x^3+36*x^2+36*x+2,2*x^8-28*x^6+2*x^5+120*x^4-14*x^3-158*x^2+36*x+12,4*x^6-40*x^4+96*x^2-32,2*x^8-2*x^7-26*x^6+22*x^5+90*x^4-52*x^3-60*x^2+4*x-18,-4*x^6-4*x^5+32*x^4+24*x^3-60*x^2-20*x,4,-6*x^8-4*x^7+78*x^6+42*x^5-304*x^4-136*x^3+350*x^2+90*x-54,2*x^8+4*x^7-24*x^6-46*x^5+80*x^4+154*x^3-54*x^2-120*x+12,x^8-11*x^6+3*x^5+34*x^4-12*x^3-27*x^2-3*x-1,6*x^8+4*x^7-68*x^6-34*x^5+216*x^4+110*x^3-170*x^2-136*x+32,-4*x^8-2*x^7+52*x^6+20*x^5-202*x^4-44*x^3+218*x^2-50*x-8,-2*x^8-4*x^7+26*x^6+42*x^5-108*x^4-120*x^3+134*x^2+74*x-2,-4*x^8+6*x^7+48*x^6-72*x^5-150*x^4+200*x^3+98*x^2-70*x-8,4*x^8+8*x^7-52*x^6-88*x^5+208*x^4+256*x^3-228*x^2-104*x-20,5*x^8+6*x^7-55*x^6-49*x^5+180*x^4+108*x^3-165*x^2-45*x-9,2*x^7+2*x^6-20*x^5-14*x^4+54*x^3+26*x^2-32*x-18,-2*x^7-4*x^6+16*x^5+34*x^4-36*x^3-74*x^2+38*x+4,-2*x^8+2*x^7+20*x^6-34*x^5-50*x^4+130*x^3+28*x^2-94*x,-7*x^8-6*x^7+87*x^6+59*x^5-320*x^4-178*x^3+331*x^2+113*x-39,-4*x^8-4*x^7+52*x^6+24*x^5-228*x^4+20*x^3+340*x^2-184*x-12,-x^8+4*x^7+23*x^6-27*x^5-110*x^4+32*x^3+95*x^2-5*x-3,3*x^8+6*x^7-41*x^6-67*x^5+180*x^4+200*x^3-251*x^2-95*x+49,-2*x^8+24*x^6-6*x^5-88*x^4+34*x^3+102*x^2-44*x-12,-4*x^8+52*x^6-8*x^5-208*x^4+44*x^3+276*x^2-60*x-92,4*x^8+2*x^7-38*x^6-4*x^5+86*x^4-18*x^3-18*x^2+2,-4*x^7+2*x^6+44*x^5-20*x^4-102*x^3+24*x^2-42*x+26,2*x^8+2*x^7-28*x^6-26*x^5+110*x^4+98*x^3-104*x^2-70*x,4*x^7-32*x^5+32*x^4+48*x^3-156*x^2+12*x+52,x^8+2*x^7-7*x^6-17*x^5-8*x^4+44*x^3+79*x^2-33*x-5]];
E[469,6] = [x^3+x^2-3*x-1, [1,x,-x^2+2,x^2-2,-3,x^2-x-1,1,-x^2-x+1,-2*x,-3*x,-4,2*x-3,-2*x+1,x,3*x^2-6,-2*x^2-2*x+3,3*x^2+2*x-3,-2*x^2,2*x^2-6,-3*x^2+6,-x^2+2,-4*x,x^2+2*x-4,-x+2,4,-2*x^2+x,x^2+2*x-4,x^2-2,2*x^2+2*x-7,-3*x^2+3*x+3,x^2+4*x-2,2*x^2-x-4,4*x^2-8,-x^2+6*x+3,-3,2*x^2-2*x-2,-2*x^2-2*x+1,-2*x^2+2,-3*x^2+2*x+4,3*x^2+3*x-3,-6*x^2-6*x+11,x^2-x-1,-5*x^2-4*x+11,-4*x^2+8,6*x,x^2-x+1,-4*x+2,-x^2-2*x+6,1,4*x,-x^2+4*x-5,3*x^2-2*x-4,-2*x^2-4*x-4,x^2-x+1,12,-x^2-x+1,2*x^2+4*x-10,-x+2,-x^2+4*x+5,-6*x+9,2*x^2+6*x-2,3*x^2+x+1,-2*x,x^2+6*x-4,6*x-3,-4*x^2+4*x+4,1,x^2-4*x+5,4*x^2-9,-3*x,-x^2-6*x+6,4*x+2,4*x^2+4*x-6,-5*x-2,-4*x^2+8,-2*x^2-4*x+10,-4,5*x^2-5*x-3,-3*x^2+4*x+11,6*x^2+6*x-9,4*x^2+6*x-9,-7*x-6,2*x^2+4*x-12,2*x-3,-9*x^2-6*x+9,x^2-4*x-5,5*x^2+2*x-14,4*x^2+4*x-4,2*x^2-6,6*x^2]];
E[469,7] = [x^7-x^6-12*x^5+9*x^4+43*x^3-17*x^2-44*x-11, [4,4*x,x^6-12*x^4+x^3+36*x^2-5*x-9,4*x^2-8,-x^6-2*x^5+10*x^4+21*x^3-20*x^2-51*x-9,x^6-8*x^4-7*x^3+12*x^2+35*x+11,4,4*x^3-16*x,3*x^6-32*x^4-5*x^3+84*x^2+17*x-11,-3*x^6-2*x^5+30*x^4+23*x^3-68*x^2-53*x-11,2*x^6-20*x^4-6*x^3+48*x^2+26*x-2,-x^6+4*x^5+8*x^4-33*x^3-20*x^2+65*x+29,-x^6+2*x^5+10*x^4-15*x^3-28*x^2+21*x+15,4*x,-x^6-4*x^5+8*x^4+47*x^3-4*x^2-127*x-43,4*x^4-24*x^2+16,-2*x^6+4*x^5+20*x^4-34*x^3-56*x^2+62*x+38,3*x^6+4*x^5-32*x^4-45*x^3+68*x^2+121*x+33,-2*x^5+2*x^4+18*x^3-12*x^2-36*x-2,-3*x^6-2*x^5+30*x^4+19*x^3-64*x^2-41*x-15,x^6-12*x^4+x^3+36*x^2-5*x-9,2*x^6+4*x^5-24*x^4-38*x^3+60*x^2+86*x+22,-3*x^6+4*x^5+32*x^4-35*x^3-88*x^2+67*x+51,x^6-4*x^5-8*x^4+37*x^3+24*x^2-85*x-33,x^6-4*x^5-12*x^4+37*x^3+44*x^2-73*x-41,x^6-2*x^5-6*x^4+15*x^3+4*x^2-29*x-11,3*x^6+4*x^5-32*x^4-45*x^3+68*x^2+117*x+49,4*x^2-8,-x^6-4*x^5+12*x^4+39*x^3-32*x^2-83*x-7,-5*x^6-4*x^5+56*x^4+39*x^3-144*x^2-87*x-11,-x^6+8*x^4-x^3-16*x^2+5*x+25,4*x^5-32*x^3+48*x,4*x^6+4*x^5-44*x^4-44*x^3+104*x^2+120*x+32,2*x^6-4*x^5-16*x^4+30*x^3+28*x^2-50*x-22,-x^6-2*x^5+10*x^4+21*x^3-20*x^2-51*x-9,x^6+4*x^5-8*x^4-51*x^3+4*x^2+131*x+55,x^6-4*x^4-7*x^3-16*x^2+35*x+43,-2*x^6+2*x^5+18*x^4-12*x^3-36*x^2-2*x,-3*x^6+32*x^4+5*x^3-76*x^2-33*x-9,x^6-2*x^5-14*x^4+19*x^3+44*x^2-41*x-11,-x^6-2*x^5+10*x^4+21*x^3-20*x^2-43*x-25,x^6-8*x^4-7*x^3+12*x^2+35*x+11,-6*x^6+4*x^5+60*x^4-30*x^3-152*x^2+54*x+54,2*x^6-16*x^4-14*x^3+24*x^2+58*x+26,-6*x^5+2*x^4+66*x^3+4*x^2-184*x-66,x^6-4*x^5-8*x^4+41*x^3+16*x^2-81*x-33,2*x^5+6*x^4-22*x^3-44*x^2+48*x+66,-x^6-4*x^5+12*x^4+47*x^3-28*x^2-119*x-47,4,-3*x^6+28*x^4+x^3-56*x^2+3*x+11,-4*x^6+4*x^5+40*x^4-32*x^3-92*x^2+44*x+8,x^6+2*x^5-14*x^4-9*x^3+44*x^2-9*x-19,-4*x^4+32*x^2-20,7*x^6+4*x^5-72*x^4-61*x^3+168*x^2+181*x+33,-2*x^6-4*x^5+24*x^4+42*x^3-60*x^2-110*x-34,4*x^3-16*x,-8*x^5+4*x^4+76*x^3-12*x^2-164*x-56,-5*x^6+48*x^4+11*x^3-100*x^2-51*x-11,4*x^6-2*x^5-46*x^4+18*x^3+140*x^2-52*x-54,-7*x^6+4*x^5+68*x^4-23*x^3-164*x^2+23*x+31,-2*x^6+2*x^5+18*x^4-16*x^3-32*x^2+26*x-4,-x^6-4*x^5+8*x^4+27*x^3-12*x^2-19*x-11,3*x^6-32*x^4-5*x^3+84*x^2+17*x-11,4*x^6-40*x^4+96*x^2-32,3*x^6+8*x^5-32*x^4-81*x^3+64*x^2+185*x+57,8*x^6+4*x^5-80*x^4-68*x^3+188*x^2+208*x+44,-4,2*x^6-28*x^4+10*x^3+96*x^2-58*x-54,-5*x^6+8*x^5+44*x^4-57*x^3-88*x^2+77*x+9,-3*x^6-2*x^5+30*x^4+23*x^3-68*x^2-53*x-11,-3*x^6+36*x^4-3*x^3-104*x^2+23*x+31,-x^6-4*x^5+4*x^4+51*x^3+12*x^2-143*x-55,4*x^6-4*x^5-40*x^4+36*x^3+108*x^2-88*x-88,x^6+8*x^5-16*x^4-59*x^3+52*x^2+87*x+11,4*x^6-4*x^5-40*x^4+28*x^3+96*x^2-32*x-4,-2*x^5+2*x^4+14*x^3-12*x^2-16*x-18,2*x^6-20*x^4-6*x^3+48*x^2+26*x-2,-3*x^6-4*x^5+32*x^4+53*x^3-84*x^2-141*x-33,-4*x^5+36*x^3-4*x^2-60*x-8,5*x^6+2*x^5-50*x^4-37*x^3+104*x^2+115*x+41,4*x^6+4*x^5-40*x^4-56*x^3+84*x^2+180*x+52,-3*x^6-2*x^5+30*x^4+23*x^3-60*x^2-69*x-11,-2*x^5+2*x^4+22*x^3-56*x-38,-x^6+4*x^5+8*x^4-33*x^3-20*x^2+65*x+29,12*x^5-116*x^3-24*x^2+256*x+96,-2*x^6-12*x^5+24*x^4+106*x^3-48*x^2-210*x-66,x^6-12*x^5-8*x^4+117*x^3+32*x^2-261*x-97,-2*x^6+16*x^4+14*x^3-28*x^2-58*x-22,10*x^6-108*x^4+2*x^3+288*x^2-26*x-70,-6*x^6+2*x^5+66*x^4+4*x^3-184*x^2-66*x]];
E[469,8] = [x, [1,1,1,-1,-3,1,-1,-3,-2,-3,0,-1,-1,-1,-3,-1,-8,-2,8,3,-1,0,3,-3,4,-1,-5,1,-3,-3,-1,5,0,-8,3,2,-3,8,-1,9,-9,-1,4,0,6,3,10,-1,1,4,-8,1,6,-5,0,3,8,-3,-14,3,-6,-1,2,7,3,0,-1,8,3,3,-9,6,-14,-3,4,-8,0,-1,14,3,1,-9,10,1,24,4,-3,0,0,6]];
E[469,9] = [x^2+x-4, [1,1,x,-1,x,x,1,-3,-x+1,x,4,-x,-x+4,1,-x+4,-1,2*x+2,-x+1,2*x+2,-x,x,4,-3*x,-3*x,-x-1,-x+4,-x-4,-1,-3*x-2,-x+4,-x-8,5,4*x,2*x+2,x,x-1,x-6,2*x+2,5*x-4,-3*x,-x+4,x,4,-4,2*x-4,-3*x,-2,-x,1,-x-1,8,x-4,-4*x-2,-x-4,4*x,-3,8,-3*x-2,-4*x-2,x-4,2*x+8,-x-8,-x+1,7,5*x-4,4*x,-1,-2*x-2,3*x-12,x,x+8,3*x-3,-2,x-6,-4,-2*x-2,4,5*x-4,-6*x,-x,-7,-x+4,-4*x-6,-x,8,4,x-12,-12,2*x+2,2*x-4]];

E[470,1] = [x, [1,-1,-1,1,1,1,-1,-1,-2,-1,1,-1,-5,1,-1,1,0,2,5,1,1,-1,-6,1,1,5,5,-1,-6,1,-11,-1,-1,0,-1,-2,-8,-5,5,-1,2,-1,-2,1,-2,6,1,-1,-6,-1,0,-5,-6,-5,1,1,-5,6,8,-1,-5,11,2,1,-5,1,2,0,6,1,12,2,-15,8,-1,5,-1,-5,0,1,1,-2,-1,1,0,2,6,-1,14,2,5,-6,11,-1,5,1,6,6,-2,1,7,0,0,5,1,6,18,5,-12,-1,8,-1,-2,5,-6,-6,10,-8,0,1,-10,5,-2,-11,1,-2,12,-1,2,5,-8,-1,-5,-2,5,0,3,-6,-21,-1,-1,-12,-5,-2]];
E[470,2] = [x^2-x-5, [1,-1,x,1,1,-x,4,-1,x+2,-1,x-3,x,-2*x+2,-4,x,1,-4,-x-2,-x,1,4*x,-x+3,-x+1,-x,1,2*x-2,5,4,-3*x+2,-x,2*x-2,-1,-2*x+5,4,4,x+2,-3*x+1,x,-10,-1,-4*x+4,-4*x,8,x-3,x+2,x-1,-1,x,9,-1,-4*x,-2*x+2,x+9,-5,x-3,-4,-x-5,3*x-2,-6,x,4*x-4,-2*x+2,4*x+8,1,-2*x+2,2*x-5,4*x+2,-4,-5,-4,x+7,-x-2,-3*x+8,3*x-1,x,-x,4*x-12,10,x-14,1,2*x-6,4*x-4,x+9,4*x,-4,-8,-x-15,-x+3,-5*x-4,-x-2,-8*x+8,-x+1,10,1,-x,-x,6*x-2,-9,-1,1,2*x+8,4*x,2*x-4,2*x-2,4*x,-x-9,-6*x,5,-3*x+9,-x+3,-2*x-15,4,-x-16,x+5,-x+1,-3*x+2,-4*x-6,6,-16,-x,-5*x+3,-4*x+4,-20,2*x-2,1,-4*x-8,3*x-6,-1,8*x,2*x-2,4*x-2,-2*x+5,-4*x,-4*x-2,5,4,4*x-6,5,-8*x+4,4,-x,-x-7,6*x-16,x+2]];
E[470,3] = [x^3-6*x-1, [1,-1,x,1,-1,-x,-x^2+x+5,-1,x^2-3,1,-x^2+4,x,x^2+x-3,x^2-x-5,-x,1,0,-x^2+3,x+4,-1,x^2-x-1,x^2-4,x-1,-x,1,-x^2-x+3,1,-x^2+x+5,-x^2+7,x,-x^2-x+7,-1,-2*x-1,0,x^2-x-5,x^2-3,-3*x+5,-x-4,x^2+3*x+1,1,2*x^2-2*x-6,-x^2+x+1,-2*x^2-2*x+6,-x^2+4,-x^2+3,-x+1,1,x,-3*x^2-x+16,-1,0,x^2+x-3,2*x^2-x-13,-1,x^2-4,x^2-x-5,x^2+4*x,x^2-7,-2*x^2+2*x+12,-x,-x^2-3*x+9,x^2+x-7,2*x^2+2*x-14,1,-x^2-x+3,2*x+1,4*x^2-14,0,x^2-x,-x^2+x+5,2*x^2+3*x-11,-x^2+3,-2*x^2+x+6,3*x-5,x,x+4,-3*x^2-x+19,-x^2-3*x-1,-x^2+2*x+7,-1,-3*x^2+x+9,-2*x^2+2*x+6,-x^2-2*x-6,x^2-x-1,0,2*x^2+2*x-6,x-1,x^2-4,x^2+2*x-9,x^2-3,3*x^2+x-15,x-1,-x^2+x-1,-1,-x-4,-x,2*x^2-4*x-8,3*x^2+x-16,x^2-x-12,1,-3*x^2+x+11,0,2*x^2-4*x-14,-x^2-x+3,-x^2+x+1,-2*x^2+x+13,-4*x^2-2*x+12,1,4*x^2+3*x-17,-x^2+4,-3*x^2+5*x,-x^2+x+5,3*x^2-2*x-19,-x^2-4*x,-x+1,-x^2+7,4*x+10,2*x^2-2*x-12,0,x,-2*x^2+x+5,x^2+3*x-9,-2*x^2+6*x+2,-x^2-x+7,-1,-2*x^2-2*x+14,3*x^2-6*x-13,-1,-2*x^2-6*x-2,x^2+x-3,2*x^2-6*x-8,-2*x-1,-3*x^2+3*x+19,-4*x^2+14,-1,0,-x^2+x+3,-x^2+x,x^2-5*x-9,x^2-x-5,x,-2*x^2-3*x+11,x^2-3*x-13,x^2-3]];
E[470,4] = [x, [1,-1,1,1,-1,-1,-1,-1,-2,1,-3,1,-5,1,-1,1,2,2,-7,-1,-1,3,8,-1,1,5,-5,-1,-2,1,-5,-1,-3,-2,1,-2,-4,7,-5,1,12,1,8,-3,2,-8,-1,1,-6,-1,2,-5,-4,5,3,1,-7,2,-10,-1,-11,5,2,1,5,3,-8,2,8,-1,0,2,3,4,1,-7,3,5,10,-1,1,-12,9,-1,-2,-8,-2,3,-18,-2,5,8,-5,1,7,-1,12,6,6,1,-7,-2,0,5,1,4,18,-5,12,-3,-4,-1,14,7,-8,-2,10,10,-2,1,-2,11,12,-5,-1,-2,-6,-1,8,-5,10,-3,7,8,5,-2,-11,-8,3,1,-1,0,15,-2]];
E[470,5] = [x, [1,-1,1,1,1,-1,-1,-1,-2,-1,3,1,5,1,1,1,6,2,-1,1,-1,-3,0,-1,1,-5,-5,-1,-6,-1,5,-1,3,-6,-1,-2,8,1,5,-1,0,1,8,3,-2,0,-1,1,-6,-1,6,5,0,5,3,1,-1,6,-6,1,5,-5,2,1,5,-3,-4,6,0,1,-12,2,5,-8,1,-1,-3,-5,2,1,1,0,-15,-1,6,-8,-6,-3,6,2,-5,0,5,1,-1,-1,-16,6,-6,1,-15,-6,8,-5,-1,0,-6,-5,-4,-3,8,-1,18,1,0,-6,-10,6,-6,-1,-2,-5,0,5,1,-2,2,-1,8,-5,-18,3,1,4,-5,-6,3,0,-19,-1,-1,12,15,-2]];
E[470,6] = [x, [1,1,1,1,-1,1,5,1,-2,-1,-3,1,5,5,-1,1,0,-2,-7,-1,5,-3,6,1,1,5,-5,5,-6,-1,5,1,-3,0,-5,-2,8,-7,5,-1,-6,5,-10,-3,2,6,-1,1,18,1,0,5,-6,-5,3,5,-7,-6,-12,-1,-1,5,-10,1,-5,-3,2,0,6,-5,0,-2,-13,8,1,-7,-15,5,-16,-1,1,-6,9,5,0,-10,-6,-3,6,2,25,6,5,-1,7,1,2,18,6,1,3,0,8,5,-5,-6,18,-5,-16,3,8,5,-6,-7,-6,-6,-10,-12,0,-1,-2,-1,-6,5,-1,-10,20,1,-10,-5,0,-3,-35,2,5,0,-15,6,-1,-5,-1,0,-15,-2]];
E[470,7] = [x, [1,1,-1,1,-1,-1,-3,1,-2,-1,-5,-1,-1,-3,1,1,2,-2,-1,-1,3,-5,0,-1,1,-1,5,-3,2,1,-7,1,5,2,3,-2,0,-1,1,-1,-8,3,-4,-5,2,0,1,-1,2,1,-2,-1,12,5,5,-3,1,2,6,1,-7,-7,6,1,1,5,0,2,0,3,-16,-2,11,0,-1,-1,15,1,10,-1,1,-8,-9,3,-2,-4,-2,-5,6,2,3,0,7,1,1,-1,-16,2,10,1,5,-2,-8,-1,-3,12,18,5,0,5,0,-3,-2,1,0,2,2,6,-6,1,14,-7,8,-7,-1,6,-2,1,4,1,-18,5,3,0,-5,2,-3,0,-19,3,-1,-16,5,-2]];
E[470,8] = [x, [1,1,-3,1,1,-3,-3,1,6,1,-1,-3,-1,-3,-3,1,-8,6,-5,1,9,-1,-2,-3,1,-1,-9,-3,-2,-3,-5,1,3,-8,-3,6,-4,-5,3,1,6,9,6,-1,6,-2,-1,-3,2,1,24,-1,2,-9,-1,-3,15,-2,-12,-3,11,-5,-18,1,-1,3,14,-8,6,-3,-4,6,-11,-4,-3,-5,3,3,-4,1,9,6,5,9,-8,6,6,-1,14,6,3,-2,15,-1,-5,-3,-14,2,-6,1,15,24,16,-1,9,2,-6,-9,-8,-1,12,-3,6,15,-2,-2,-6,-12,24,-3,-10,11,-18,-5,1,-18,12,1,-18,-1,8,3,15,14,-9,-8,-17,6,5,-3,3,-4,1,6]];
E[470,9] = [x^3-3*x^2-5*x+12, [1,1,x,1,-1,x,0,1,x^2-3,-1,-x^2+8,x,-2*x+2,0,-x,1,-2*x^2+2*x+10,x^2-3,-x+4,-1,0,-x^2+8,x^2-2*x-8,x,1,-2*x+2,3*x^2-x-12,0,x-2,-x,2*x^2-4*x-8,1,-3*x^2+3*x+12,-2*x^2+2*x+10,0,x^2-3,x^2+2*x-10,-x+4,-2*x^2+2*x,-1,2*x^2-2*x-6,0,0,-x^2+8,-x^2+3,x^2-2*x-8,-1,x,-7,1,-4*x^2+24,-2*x+2,x^2-2*x-10,3*x^2-x-12,x^2-8,0,-x^2+4*x,x-2,2*x^2-2*x-12,-x,-2*x^2+2*x+14,2*x^2-4*x-8,0,1,2*x-2,-3*x^2+3*x+12,-2*x^2+6*x+8,-2*x^2+2*x+10,x^2-3*x-12,0,-x^2-2*x+8,x^2-3,2*x^2-3*x-2,x^2+2*x-10,x,-x+4,0,-2*x^2+2*x,-2*x^2+x+20,-1,5*x^2+3*x-27,2*x^2-2*x-6,-x^2+4*x-4,0,2*x^2-2*x-10,0,x^2-2*x,-x^2+8,2*x^2-x-10,-x^2+3,0,x^2-2*x-8,2*x^2+2*x-24,-1,x-4,x,2*x+10,-7,-3*x^2-3*x+12,1,-2*x^2+4*x+6,-4*x^2+24,-4*x^2+6*x+16,-2*x+2,0,x^2-2*x-10,-2*x,3*x^2-x-12,-3*x^2+2*x+10,x^2-8,5*x^2-5*x-12,0,2*x^2-5*x-18,-x^2+4*x,-x^2+2*x+8,x-2,-4*x^2-4*x+18,2*x^2-2*x-12,0,-x,-2*x^2+3*x+17,-2*x^2+2*x+14,4*x^2+4*x-24,2*x^2-4*x-8,-1,0,2*x^2-5*x-12,1,0,2*x-2,-2*x^2+2*x+20,-3*x^2+3*x+12,0,-2*x^2+6*x+8,-3*x^2+x+12,-2*x^2+2*x+10,4*x-14,x^2-3*x-12,4*x^2-4*x-16,0,-x,-x^2-2*x+8,4*x^2-6*x-8,x^2-3]];
E[470,10] = [x^3-2*x^2-4*x+7, [1,1,x,1,1,x,-x^2-x+5,1,x^2-3,1,x^2-4,x,-x^2+x+3,-x^2-x+5,x,1,2*x^2-2*x-6,x^2-3,-2*x^2-x+10,1,-3*x^2+x+7,x^2-4,4*x^2-x-13,x,1,-x^2+x+3,2*x^2-2*x-7,-x^2-x+5,-3*x^2+9,x,x^2-x-3,1,2*x^2-7,2*x^2-2*x-6,-x^2-x+5,x^2-3,-2*x^2-x+5,-2*x^2-x+10,-x^2-x+7,1,-4,-3*x^2+x+7,-4*x^2+16,x^2-4,x^2-3,4*x^2-x-13,1,x,3*x^2-x-10,1,2*x^2+2*x-14,-x^2+x+3,-2*x^2+3*x+5,2*x^2-2*x-7,x^2-4,-x^2-x+5,-5*x^2+2*x+14,-3*x^2+9,4*x-2,x,-x^2+3*x-3,x^2-x-3,-2*x^2-2*x+6,1,-x^2+x+3,2*x^2-7,6*x^2-2*x-20,2*x^2-2*x-6,7*x^2+3*x-28,-x^2-x+5,3*x-9,x^2-3,6*x^2-x-18,-2*x^2-x+5,x,-2*x^2-x+10,-x^2-x+1,-x^2-x+7,-3*x^2+13,1,-x^2+x-5,-4,-x^2+8,-3*x^2+x+7,2*x^2-2*x-6,-4*x^2+16,-6*x^2-3*x+21,x^2-4,5*x^2+2*x-21,x^2-3,-x^2+3*x+1,4*x^2-x-13,x^2+x-7,1,-2*x^2-x+10,x,2*x-2,3*x^2-x-10,x^2+x-2,1,x^2-5*x-9,2*x^2+2*x-14,-2*x^2-4*x+14,-x^2+x+3,-3*x^2+x+7,-2*x^2+3*x+5,6*x-8,2*x^2-2*x-7,-2*x^2+5*x+7,x^2-4,-5*x^2-3*x+14,-x^2-x+5,-5*x^2+2*x+25,-5*x^2+2*x+14,4*x^2-x-13,-3*x^2+9,-2,4*x-2,2*x^2-6*x-2,x,x-9,-x^2+3*x-3,-4*x,x^2-x-3,1,-2*x^2-2*x+6,x^2-3,1,-8*x^2+28,-x^2+x+3,8*x^2-4*x-26,2*x^2-7,3*x^2-x+1,6*x^2-2*x-20,2*x^2-2*x-7,2*x^2-2*x-6,3*x^2-5*x-5,7*x^2+3*x-28,-3*x^2+x+23,-x^2-x+5,x,3*x-9,x^2-x-5,x^2-3]];

E[471,1] = [x, [1,-1,-1,-1,-2,1,3,3,1,2,0,1,1,-3,2,-1,-3,-1,-2,2,-3,0,-9,-3,-1,-1,-1,-3,0,-2,-2,-5,0,3,-6,-1,1,2,-1,-6,-2,3,1,0,-2,9,0,1,2,1,3,-1,-6,1,0,9,2,0,-1,-2,8,2,3,7,-2,0,2,3,9,6,-12,3,-14,-1,1,2,0,1,-8,2,1,2,4,3,6,-1,0,0,-13,2,3,9,2,0,4,5,0,-2,0,1,-13,-3,-8,3,6]];
E[471,2] = [x^3-4*x+1, [1,x,-1,x^2-2,-x^2-x+2,-x,-1,-1,1,-x^2-2*x+1,-x^2+1,-x^2+2,2*x^2-x-6,-x,x^2+x-2,-2*x^2-x+4,-3,x,2*x^2-4,-x-3,1,-3*x+1,-2*x+1,1,x^2+3*x-3,-x^2+2*x-2,-1,-x^2+2,2*x^2+3*x-11,x^2+2*x-1,x^2-3,-x^2-4*x+4,x^2-1,-3*x,x^2+x-2,x^2-2,-x^2+3*x+1,4*x-2,-2*x^2+x+6,x^2+x-2,-x^2+x-4,x,-x^2-x+9,-x^2+x-2,-x^2-x+2,-2*x^2+x,x-3,2*x^2+x-4,-6,3*x^2+x-1,3,-2*x^2-4*x+13,4*x+6,-x,x^2+2*x+1,1,-2*x^2+4,3*x^2-3*x-2,x^2+x-9,x+3,-3*x^2+x,x-1,-1,2*x-7,3*x^2+2*x-11,3*x-1,-3*x^2+2*x+15,-3*x^2+6,2*x-1,x^2+2*x-1,-x^2+5,-1,-x^2+3,3*x^2-3*x+1,-x^2-3*x+3,-2*x+8,x^2-1,x^2-2*x+2,-5*x^2-5*x+12,x^2+4*x+5,1,x^2-8*x+1,-x^2-4*x+1,x^2-2,3*x^2+3*x-6,-x^2+5*x+1,-2*x^2-3*x+11,x^2-1,2*x^2-5*x-8,-x^2-2*x+1,-2*x^2+x+6,x^2-4*x,-x^2+3,x^2-3*x,-2*x-6,x^2+4*x-4,-3*x^2-7*x+8,-6*x,-x^2+1,-x^2+5*x+3,-x^2-4*x+8,3*x,-x^2+6*x+7,-2*x^2+x+6,-x^2-x+2]];
E[471,3] = [x^2+x-1, [1,x,1,-x-1,-1,x,-3,-2*x-1,1,-x,-3*x-2,-x-1,-x-2,-3*x,-1,3*x,2*x-1,x,2*x-2,x+1,-3,x-3,1,-2*x-1,-4,-x-1,1,3*x+3,-x-1,-x,7*x+2,x+5,-3*x-2,-3*x+2,3,-x-1,-2*x+2,-4*x+2,-x-2,2*x+1,2*x-7,-3*x,-2*x-10,2*x+5,-1,x,-3*x+7,3*x,2,-4*x,2*x-1,2*x+3,4*x+2,x,3*x+2,6*x+3,2*x-2,-1,10*x+6,x+1,2*x-7,-5*x+7,-3,-2*x+1,x+2,x-3,5*x+4,x-1,1,3*x,-3*x-2,-2*x-1,-9*x-10,4*x-2,-4,2*x,9*x+6,-x-1,-10*x-5,-3*x,1,-9*x+2,7*x+10,3*x+3,-2*x+1,-8*x-2,-x-1,x+8,-13*x-6,-x,3*x+6,-x-1,7*x+2,10*x-3,-2*x+2,x+5,2*x-3,2*x,-3*x-2,4*x+4,7*x-5,-3*x+2,-7*x-2,3*x+4,3]];
E[471,4] = [x^9-2*x^8-11*x^7+19*x^6+39*x^5-53*x^4-49*x^3+45*x^2+14*x-1, [59,59*x,-59,59*x^2-118,-8*x^8+41*x^7+41*x^6-376*x^5+37*x^4+950*x^3-143*x^2-599*x-47,-59*x,-31*x^8+63*x^7+299*x^6-513*x^5-867*x^4+1041*x^3+825*x^2-411*x-160,59*x^3-236*x,59,25*x^8-47*x^7-224*x^6+349*x^5+526*x^4-535*x^3-239*x^2+65*x-8,15*x^8-40*x^7-158*x^6+410*x^5+528*x^4-1324*x^3-580*x^2+1396*x+125,-59*x^2+118,17*x^8-6*x^7-242*x^6+32*x^5+1094*x^4+2*x^3-1562*x^2+56*x+299,x^8-42*x^7+76*x^6+342*x^5-602*x^4-694*x^3+984*x^2+274*x-31,8*x^8-41*x^7-41*x^6+376*x^5-37*x^4-950*x^3+143*x^2+599*x+47,59*x^4-354*x^2+236,-45*x^8+61*x^7+533*x^6-581*x^5-1997*x^4+1671*x^3+2389*x^2-1533*x-198,59*x,9*x^8-24*x^7-83*x^6+246*x^5+246*x^4-818*x^3-407*x^2+932*x+311,19*x^8-31*x^7-208*x^6+303*x^5+716*x^4-914*x^3-774*x^2+840*x+119,31*x^8-63*x^7-299*x^6+513*x^5+867*x^4-1041*x^3-825*x^2+411*x+160,-10*x^8+7*x^7+125*x^6-57*x^5-529*x^4+155*x^3+721*x^2-85*x+15,3*x^8-8*x^7-67*x^6+141*x^5+377*x^4-607*x^3-647*x^2+586*x+320,-59*x^3+236*x,24*x^8-5*x^7-300*x^6+7*x^5+1069*x^4+159*x^3-810*x^2-327*x-154,28*x^8-55*x^7-291*x^6+431*x^5+903*x^4-729*x^3-709*x^2+61*x+17,-59,22*x^8-39*x^7-275*x^6+385*x^5+1093*x^4-1049*x^3-1421*x^2+777*x+321,-24*x^8+64*x^7+241*x^6-597*x^5-715*x^4+1493*x^3+515*x^2-912*x+331,-25*x^8+47*x^7+224*x^6-349*x^5-526*x^4+535*x^3+239*x^2-65*x+8,-38*x^8+62*x^7+475*x^6-606*x^5-1904*x^4+1710*x^3+2433*x^2-1444*x-356,59*x^5-472*x^3+708*x,-15*x^8+40*x^7+158*x^6-410*x^5-528*x^4+1324*x^3+580*x^2-1396*x-125,-29*x^8+38*x^7+274*x^6-242*x^5-714*x^4+184*x^3+492*x^2+432*x-45,25*x^8-47*x^7-283*x^6+467*x^5+939*x^4-1243*x^3-829*x^2+537*x+228,59*x^2-118,17*x^8-6*x^7-183*x^6-86*x^5+622*x^4+828*x^3-677*x^2-1124*x+63,-6*x^8+16*x^7+75*x^6-105*x^5-341*x^4+34*x^3+527*x^2+185*x+9,-17*x^8+6*x^7+242*x^6-32*x^5-1094*x^4-2*x^3+1562*x^2-56*x-299,-43*x^8+95*x^7+390*x^6-723*x^5-959*x^4+1227*x^3+463*x^2-277*x+35,2*x^8-25*x^7-25*x^6+330*x^5+153*x^4-1270*x^3-451*x^2+1197*x+469,-x^8+42*x^7-76*x^6-342*x^5+602*x^4+694*x^3-984*x^2-274*x+31,-50*x^8+94*x^7+566*x^6-934*x^5-1996*x^4+2722*x^3+2248*x^2-2372*x-574,-43*x^8+95*x^7+449*x^6-959*x^5-1431*x^4+2879*x^3+1525*x^2-2637*x-260,-8*x^8+41*x^7+41*x^6-376*x^5+37*x^4+950*x^3-143*x^2-599*x-47,-2*x^8-34*x^7+84*x^6+260*x^5-448*x^4-500*x^3+451*x^2+278*x+3,-16*x^8+23*x^7+141*x^6-221*x^5-221*x^4+661*x^3-345*x^2-667*x+319,-59*x^4+354*x^2-236,3*x^8-67*x^7+51*x^6+731*x^5-567*x^4-2377*x^3+1123*x^2+1943*x+25,43*x^8-36*x^7-449*x^6+133*x^5+1431*x^4+366*x^3-1407*x^2-490*x+24,45*x^8-61*x^7-533*x^6+581*x^5+1997*x^4-1671*x^3-2389*x^2+1533*x+198,-33*x^8+29*x^7+383*x^6-253*x^5-1433*x^4+659*x^3+1925*x^2-487*x-570,-x^8+42*x^7-76*x^6-401*x^5+720*x^4+1107*x^3-1574*x^2-982*x+503,-59*x,41*x^8-70*x^7-424*x^6+570*x^5+1278*x^4-1196*x^3-838*x^2+614*x-327,3*x^8+51*x^7-185*x^6-449*x^5+1321*x^4+1045*x^3-2181*x^2-535*x+84,-9*x^8+24*x^7+83*x^6-246*x^5-246*x^4+818*x^3+407*x^2-932*x-311,16*x^8-23*x^7-141*x^6+221*x^5+221*x^4-661*x^3+168*x^2+667*x-24,78*x^8-149*x^7-798*x^6+1306*x^5+2486*x^4-3156*x^3-2544*x^2+2197*x+532,-19*x^8+31*x^7+208*x^6-303*x^5-716*x^4+914*x^3+774*x^2-840*x-119,93*x^8-189*x^7-1015*x^6+1775*x^5+3545*x^4-4775*x^3-4127*x^2+3475*x+598,-14*x^8+57*x^7+116*x^6-422*x^5-304*x^4+571*x^3+266*x^2+176*x-38,-31*x^8+63*x^7+299*x^6-513*x^5-867*x^4+1041*x^3+825*x^2-411*x-160,59*x^6-590*x^4+1416*x^2-472,15*x^8-40*x^7-40*x^6+174*x^5-534*x^4+446*x^3+1780*x^2-1318*x-347,10*x^8-7*x^7-125*x^6+57*x^5+529*x^4-155*x^3-721*x^2+85*x-15,27*x^8-72*x^7-308*x^6+738*x^5+1210*x^4-2336*x^3-1752*x^2+2442*x+107,70*x^8-167*x^7-757*x^6+1579*x^5+2641*x^4-4271*x^3-3041*x^2+3427*x+367,-3*x^8+8*x^7+67*x^6-141*x^5-377*x^4+607*x^3+647*x^2-586*x-320,3*x^8-8*x^7-8*x^6-36*x^5+82*x^4+396*x^3-588*x^2-122*x+25,-9*x^8+24*x^7+142*x^6-364*x^5-718*x^4+1644*x^3+1174*x^2-1994*x-311,59*x^3-236*x,31*x^8-122*x^7-240*x^6+1162*x^5+454*x^4-3106*x^3-294*x^2+2004*x+337,28*x^8+4*x^7-409*x^6-41*x^5+1729*x^4+156*x^3-1889*x^2-175*x+17,-24*x^8+5*x^7+300*x^6-7*x^5-1069*x^4-159*x^3+810*x^2+327*x+154,-14*x^8+57*x^7+175*x^6-599*x^5-776*x^4+1869*x^3+1269*x^2-1771*x-628,-75*x^8+82*x^7+908*x^6-634*x^5-3584*x^4+1192*x^3+4670*x^2-490*x-625,-28*x^8+55*x^7+291*x^6-431*x^5-903*x^4+729*x^3+709*x^2-61*x-17,-35*x^8+113*x^7+231*x^6-937*x^5-111*x^4+2047*x^3-751*x^2-1271*x-36,-29*x^8-21*x^7+510*x^6+112*x^5-2484*x^4+184*x^3+3206*x^2-1043*x-281,59,-21*x^8-3*x^7+292*x^6+75*x^5-1164*x^4-353*x^3+1107*x^2+441*x+2,-13*x^8+15*x^7+192*x^6-198*x^5-906*x^4+644*x^3+1486*x^2-317*x-423,-22*x^8+39*x^7+275*x^6-385*x^5-1093*x^4+1049*x^3+1421*x^2-777*x-321,-29*x^8+97*x^7+215*x^6-891*x^5-183*x^4+2249*x^3-865*x^2-1397*x+486,-6*x^8+16*x^7+16*x^6-46*x^5+72*x^4-202*x^3-122*x^2+126*x-50,24*x^8-64*x^7-241*x^6+597*x^5+715*x^4-1493*x^3-515*x^2+912*x-331,29*x^8-38*x^7-392*x^6+360*x^5+1658*x^4-892*x^3-2144*x^2+512*x-73,-27*x^8+72*x^7+190*x^6-502*x^5-148*x^4+566*x^3-726*x^2+390*x+719,25*x^8-47*x^7-224*x^6+349*x^5+526*x^4-535*x^3-239*x^2+65*x-8,33*x^8-88*x^7-206*x^6+548*x^5-42*x^4-10*x^3+1320*x^2-2168*x-787,-44*x^8+78*x^7+432*x^6-652*x^5-1360*x^4+1567*x^3+1662*x^2-1141*x-642,38*x^8-62*x^7-475*x^6+606*x^5+1904*x^4-1710*x^3-2433*x^2+1444*x+356,-9*x^8-35*x^7+83*x^6+403*x^5-187*x^4-1129*x^3+53*x^2+543*x-16,11*x^8-49*x^7+10*x^6+281*x^5-604*x^4+95*x^3+1384*x^2-1057*x-459,-59*x^5+472*x^3-708*x,45*x^8-61*x^7-533*x^6+581*x^5+1997*x^4-1789*x^3-2153*x^2+2123*x-274,-61*x^8+84*x^7+674*x^6-684*x^5-2218*x^4+1270*x^3+1808*x^2-17*x+3,15*x^8-40*x^7-158*x^6+410*x^5+528*x^4-1324*x^3-580*x^2+1396*x+125,2*x^8+34*x^7-84*x^6-260*x^5+507*x^4+382*x^3-805*x^2+76*x+351,64*x^8-151*x^7-623*x^6+1415*x^5+1769*x^4-3883*x^3-1393*x^2+3199*x+199,29*x^8-38*x^7-274*x^6+242*x^5+714*x^4-184*x^3-492*x^2-432*x+45,-99*x^8+146*x^7+1090*x^6-1172*x^5-3768*x^4+2390*x^3+3946*x^2-1520*x-117,-93*x^8+130*x^7+956*x^6-1008*x^5-2896*x^4+1766*x^3+2416*x^2-230*x-67,-25*x^8+47*x^7+283*x^6-467*x^5-939*x^4+1243*x^3+829*x^2-537*x-228]];
E[471,5] = [x^12+x^11-20*x^10-17*x^9+149*x^8+106*x^7-500*x^6-294*x^5+711*x^4+349*x^3-290*x^2-173*x-15, [2,2*x,2,2*x^2-4,2*x^11-42*x^9+2*x^8+324*x^7-28*x^6-1106*x^5+128*x^4+1552*x^3-200*x^2-570*x-50,2*x,x^11+x^10-19*x^9-14*x^8+136*x^7+64*x^6-444*x^5-98*x^4+615*x^3+19*x^2-219*x-32,2*x^3-8*x,2,-2*x^11-2*x^10+36*x^9+26*x^8-240*x^7-106*x^6+716*x^5+130*x^4-898*x^3+10*x^2+296*x+30,2*x^10+6*x^9-28*x^8-84*x^7+132*x^6+388*x^5-240*x^4-644*x^3+150*x^2+274*x+36,2*x^2-4,-2*x^11-3*x^10+35*x^9+41*x^8-230*x^7-180*x^6+696*x^5+256*x^4-924*x^3-33*x^2+317*x+37,x^10+3*x^9-13*x^8-42*x^7+56*x^6+196*x^5-96*x^4-330*x^3+71*x^2+141*x+15,2*x^11-42*x^9+2*x^8+324*x^7-28*x^6-1106*x^5+128*x^4+1552*x^3-200*x^2-570*x-50,2*x^4-12*x^2+8,-2*x^11+x^10+45*x^9-15*x^8-366*x^7+80*x^6+1300*x^5-188*x^4-1876*x^3+195*x^2+723*x+89,2*x,2*x^10+6*x^9-28*x^8-84*x^7+134*x^6+388*x^5-260*x^4-640*x^3+200*x^2+258*x+20,-4*x^11-4*x^10+76*x^9+54*x^8-542*x^7-228*x^6+1754*x^5+268*x^4-2396*x^3+116*x^2+824*x+70,x^11+x^10-19*x^9-14*x^8+136*x^7+64*x^6-444*x^5-98*x^4+615*x^3+19*x^2-219*x-32,2*x^11+6*x^10-28*x^9-84*x^8+132*x^7+388*x^6-240*x^5-644*x^4+150*x^3+274*x^2+36*x,3*x^11-x^10-69*x^9+14*x^8+574*x^7-76*x^6-2088*x^5+226*x^4+3077*x^3-355*x^2-1163*x-116,2*x^3-8*x,-6*x^11-4*x^10+118*x^9+54*x^8-864*x^7-226*x^6+2840*x^5+248*x^4-3894*x^3+166*x^2+1374*x+160,-x^11-5*x^10+7*x^9+68*x^8+32*x^7-304*x^6-332*x^5+498*x^4+665*x^3-263*x^2-309*x-30,2,-x^11+x^10+25*x^9-14*x^8-216*x^7+68*x^6+792*x^5-134*x^4-1159*x^3+103*x^2+453*x+64,-2*x^10-8*x^9+26*x^8+114*x^7-112*x^6-540*x^5+192*x^4+924*x^3-150*x^2-390*x-46,-2*x^11-2*x^10+36*x^9+26*x^8-240*x^7-106*x^6+716*x^5+130*x^4-898*x^3+10*x^2+296*x+30,2*x^6-20*x^4+8*x^3+50*x^2-36*x-16,2*x^5-16*x^3+24*x,2*x^10+6*x^9-28*x^8-84*x^7+132*x^6+388*x^5-240*x^4-644*x^3+150*x^2+274*x+36,3*x^11+5*x^10-49*x^9-68*x^8+292*x^7+300*x^6-776*x^5-454*x^4+893*x^3+143*x^2-257*x-30,2*x^11+2*x^10-36*x^9-26*x^8+240*x^7+108*x^6-720*x^5-156*x^4+930*x^3+74*x^2-344*x-70,2*x^2-4,8*x^11+5*x^10-157*x^9-65*x^8+1146*x^7+254*x^6-3752*x^5-220*x^4+5134*x^3-271*x^2-1843*x-205,2*x^11+6*x^10-28*x^9-84*x^8+134*x^7+388*x^6-260*x^5-640*x^4+200*x^3+258*x^2+20*x,-2*x^11-3*x^10+35*x^9+41*x^8-230*x^7-180*x^6+696*x^5+256*x^4-924*x^3-33*x^2+317*x+37,4*x^11-86*x^9+2*x^8+676*x^7-34*x^6-2340*x^5+188*x^4+3308*x^3-356*x^2-1214*x-120,-2*x^11-4*x^10+34*x^9+58*x^8-216*x^7-280*x^6+630*x^5+488*x^4-800*x^3-204*x^2+234*x+42,x^10+3*x^9-13*x^8-42*x^7+56*x^6+196*x^5-96*x^4-330*x^3+71*x^2+141*x+15,-x^11-x^10+17*x^9+12*x^8-104*x^7-44*x^6+272*x^5+54*x^4-287*x^3-35*x^2+93*x+30,4*x^11+8*x^10-62*x^9-110*x^8+344*x^7+496*x^6-832*x^5-792*x^4+864*x^3+316*x^2-202*x-42,2*x^11-42*x^9+2*x^8+324*x^7-28*x^6-1106*x^5+128*x^4+1552*x^3-200*x^2-570*x-50,-4*x^11-9*x^10+65*x^9+127*x^8-394*x^7-588*x^6+1108*x^5+944*x^4-1402*x^3-293*x^2+403*x+45,-4*x^11-2*x^10+80*x^9+26*x^8-592*x^7-100*x^6+1952*x^5+72*x^4-2668*x^3+158*x^2+952*x+94,2*x^4-12*x^2+8,-x^10-5*x^9+13*x^8+74*x^7-60*x^6-364*x^5+140*x^4+634*x^3-191*x^2-231*x+3,2*x^11-2*x^10-48*x^9+30*x^8+410*x^7-160*x^6-1516*x^5+372*x^4+2260*x^3-366*x^2-878*x-90,-2*x^11+x^10+45*x^9-15*x^8-366*x^7+80*x^6+1300*x^5-188*x^4-1876*x^3+195*x^2+723*x+89,-7*x^10-19*x^9+99*x^8+262*x^7-472*x^6-1188*x^5+864*x^4+1934*x^3-533*x^2-837*x-89,-4*x^11-4*x^10+76*x^9+54*x^8-544*x^7-228*x^6+1778*x^5+268*x^4-2478*x^3+108*x^2+892*x+86,2*x,6*x^11+6*x^10-114*x^9-82*x^8+812*x^7+352*x^6-2620*x^5-424*x^4+3554*x^3-186*x^2-1198*x-90,2*x^11+3*x^10-37*x^9-41*x^8+258*x^7+180*x^6-820*x^5-256*x^4+1112*x^3+21*x^2-391*x-45,2*x^10+6*x^9-28*x^8-84*x^7+134*x^6+388*x^5-260*x^4-640*x^3+200*x^2+258*x+20,-2*x^11-8*x^10+26*x^9+114*x^8-112*x^7-540*x^6+192*x^5+924*x^4-150*x^3-390*x^2-46*x,x^11+7*x^10-3*x^9-98*x^8-86*x^7+456*x^6+572*x^5-782*x^4-1061*x^3+393*x^2+519*x+60,-4*x^11-4*x^10+76*x^9+54*x^8-542*x^7-228*x^6+1754*x^5+268*x^4-2396*x^3+116*x^2+824*x+70,6*x^11+2*x^10-124*x^9-26*x^8+948*x^7+92*x^6-3232*x^5+8*x^4+4566*x^3-346*x^2-1684*x-178,2*x^7-20*x^5+8*x^4+50*x^3-36*x^2-16*x,x^11+x^10-19*x^9-14*x^8+136*x^7+64*x^6-444*x^5-98*x^4+615*x^3+19*x^2-219*x-32,2*x^6-20*x^4+48*x^2-16,-4*x^10-8*x^9+58*x^8+104*x^7-284*x^6-432*x^5+528*x^4+616*x^3-312*x^2-252*x-10,2*x^11+6*x^10-28*x^9-84*x^8+132*x^7+388*x^6-240*x^5-644*x^4+150*x^3+274*x^2+36*x,-10*x^11-6*x^10+198*x^9+78*x^8-1460*x^7-300*x^6+4832*x^5+208*x^4-6666*x^3+490*x^2+2366*x+218,6*x^11+9*x^10-107*x^9-125*x^8+714*x^7+564*x^6-2172*x^5-864*x^4+2848*x^3+223*x^2-957*x-133,3*x^11-x^10-69*x^9+14*x^8+574*x^7-76*x^6-2088*x^5+226*x^4+3077*x^3-355*x^2-1163*x-116,4*x^10+8*x^9-58*x^8-104*x^7+280*x^6+432*x^5-492*x^4-624*x^3+236*x^2+276*x+30,-8*x^11-2*x^10+166*x^9+24*x^8-1272*x^7-64*x^6+4332*x^5-144*x^4-6072*x^3+594*x^2+2186*x+196,2*x^3-8*x,2*x^10+6*x^9-28*x^8-84*x^7+132*x^6+384*x^5-248*x^4-612*x^3+198*x^2+222*x+8,-3*x^11+3*x^10+71*x^9-46*x^8-594*x^7+248*x^6+2132*x^5-554*x^4-3063*x^3+477*x^2+1179*x+120,-6*x^11-4*x^10+118*x^9+54*x^8-864*x^7-226*x^6+2840*x^5+248*x^4-3894*x^3+166*x^2+1374*x+160,4*x^11+8*x^10-62*x^9-108*x^8+344*x^7+472*x^6-828*x^5-702*x^4+840*x^3+200*x^2-170*x-10,-6*x^10-14*x^9+84*x^8+188*x^7-388*x^6-824*x^5+644*x^4+1288*x^3-282*x^2-570*x-96,-x^11-5*x^10+7*x^9+68*x^8+32*x^7-304*x^6-332*x^5+498*x^4+665*x^3-263*x^2-309*x-30,-10*x^11-8*x^10+194*x^9+108*x^8-1408*x^7-452*x^6+4620*x^5+500*x^4-6382*x^3+300*x^2+2270*x+244,4*x^11+2*x^10-82*x^9-28*x^8+626*x^7+116*x^6-2144*x^5-72*x^4+3040*x^3-286*x^2-1076*x-80,2,-2*x^11-6*x^10+24*x^9+82*x^8-68*x^7-370*x^6-100*x^5+622*x^4+494*x^3-346*x^2-304*x-30,2*x^11-44*x^9+354*x^7-4*x^6-1256*x^5+44*x^4+1830*x^3-120*x^2-718*x-96,-x^11+x^10+25*x^9-14*x^8-216*x^7+68*x^6+792*x^5-134*x^4-1159*x^3+103*x^2+453*x+64,2*x^10+8*x^9-24*x^8-112*x^7+84*x^6+520*x^5-64*x^4-876*x^3-50*x^2+400*x+100,-3*x^10-5*x^9+45*x^8+62*x^7-228*x^6-240*x^5+424*x^4+314*x^3-197*x^2-143*x-15,-2*x^10-8*x^9+26*x^8+114*x^7-112*x^6-540*x^5+192*x^4+924*x^3-150*x^2-390*x-46,6*x^10+14*x^9-84*x^8-192*x^7+392*x^6+864*x^5-692*x^4-1380*x^3+410*x^2+578*x+60,4*x^11+5*x^10-73*x^9-69*x^8+498*x^7+308*x^6-1540*x^5-452*x^4+2026*x^3+55*x^2-679*x-77,-2*x^11-2*x^10+36*x^9+26*x^8-240*x^7-106*x^6+716*x^5+130*x^4-898*x^3+10*x^2+296*x+30,x^11+7*x^10-3*x^9-100*x^8-88*x^7+484*x^6+596*x^5-906*x^4-1141*x^3+565*x^2+565*x+38,-11*x^11-13*x^10+197*x^9+174*x^8-1312*x^7-740*x^6+3944*x^5+990*x^4-5051*x^3-47*x^2+1679*x+172,2*x^6-20*x^4+8*x^3+50*x^2-36*x-16,2*x^11-42*x^9+4*x^8+324*x^7-48*x^6-1104*x^5+176*x^4+1554*x^3-208*x^2-598*x-60,14*x^11+10*x^10-274*x^9-134*x^8+2002*x^7+552*x^6-6590*x^5-568*x^4+9084*x^3-470*x^2-3220*x-350,2*x^5-16*x^3+24*x,4*x^11+6*x^10-72*x^9-84*x^8+488*x^7+384*x^6-1516*x^5-596*x^4+2024*x^3+134*x^2-668*x-80,-x^11-5*x^10+13*x^9+74*x^8-60*x^7-364*x^6+140*x^5+634*x^4-191*x^3-231*x^2+3*x,2*x^10+6*x^9-28*x^8-84*x^7+132*x^6+388*x^5-240*x^4-644*x^3+150*x^2+274*x+36,8*x^11-172*x^9+4*x^8+1356*x^7-64*x^6-4720*x^5+342*x^4+6724*x^3-630*x^2-2492*x-290,-4*x^11+x^10+89*x^9-15*x^8-718*x^7+84*x^6+2536*x^5-224*x^4-3646*x^3+283*x^2+1375*x+173,3*x^11+5*x^10-49*x^9-68*x^8+292*x^7+300*x^6-776*x^5-454*x^4+893*x^3+143*x^2-257*x-30,-6*x^11-6*x^10+110*x^9+78*x^8-752*x^7-312*x^6+2324*x^5+336*x^4-3058*x^3+142*x^2+1074*x+94,-5*x^11-9*x^10+85*x^9+126*x^8-536*x^7-580*x^6+1528*x^5+938*x^4-1863*x^3-311*x^2+529*x+60,2*x^11+2*x^10-36*x^9-26*x^8+240*x^7+108*x^6-720*x^5-156*x^4+930*x^3+74*x^2-344*x-70]];

E[472,1] = [x, [1,0,-3,0,-1,0,3,0,6,0,-4,0,6,0,3,0,-6,0,-7,0,-9,0,-6,0,-4,0,-9,0,-3,0,8,0,12,0,-3,0,2,0,-18,0,3,0,-12,0,-6,0,-2,0,2,0,18,0,-5,0,4,0,21,0,-1,0,-4,0,18,0,-6,0,-8,0,18,0,8,0,-10,0,12,0,-12,0,5,0,9,0,6,0,6,0,9,0,-4,0,18,0,-24,0,7,0,-14,0,-24,0,10,0,-2,0,9,0,9,0,-2,0,-6,0,-4,0,6,0,36,0,-18,0]];
E[472,2] = [x, [1,0,3,0,-3,0,3,0,6,0,6,0,-6,0,-9,0,-2,0,-1,0,9,0,8,0,4,0,9,0,-1,0,-2,0,18,0,-9,0,-4,0,-18,0,-1,0,-10,0,-18,0,6,0,2,0,-6,0,5,0,-18,0,-3,0,-1,0,-8,0,18,0,18,0,2,0,24,0,-4,0,-8,0,12,0,18,0,-11,0,9,0,-10,0,6,0,-3,0,-16,0,-18,0,-6,0,3,0,-4,0,36,0,-10,0,20,0,-27,0,15,0,8,0,-12,0,-6,0,-24,0,-36,0,-6,0]];
E[472,3] = [x, [1,0,2,0,2,0,1,0,1,0,1,0,-1,0,4,0,-1,0,0,0,2,0,0,0,-1,0,-4,0,-4,0,4,0,2,0,2,0,3,0,-2,0,-3,0,-1,0,2,0,10,0,-6,0,-2,0,-4,0,2,0,0,0,1,0,-6,0,1,0,-2,0,4,0,0,0,13,0,-6,0,-2,0,1,0,-1,0,-11,0,-3,0,-2,0,-8,0,2,0,-1,0,8,0,0,0,-10,0,1,0,5,0,-6,0,4,0,-6,0,-2,0,6,0,-4,0,0,0,-1,0,-1,0]];
E[472,4] = [x^4+x^3-5*x^2+1, [1,0,x,0,x^3+x^2-6*x-1,0,-2*x^3-3*x^2+8*x,0,x^2-3,0,2*x^2+2*x-6,0,2*x^3+2*x^2-8*x-2,0,-x^2-x-1,0,-3*x^3-4*x^2+11*x+2,0,x^3+x^2-4*x-1,0,-x^3-2*x^2+2,0,2*x^3-12*x+2,0,-2*x^3-2*x^2+11*x+3,0,x^3-6*x,0,2*x^3+3*x^2-6*x-4,0,2*x^2+4*x-8,0,2*x^3+2*x^2-6*x,0,3*x^3+7*x^2-5*x-10,0,-2*x^3-4*x^2+10*x+4,0,2*x^2-2*x-2,0,2*x^3+2*x^2-9*x+2,0,-2*x^2-4*x+4,0,-4*x^3-4*x^2+17*x+3,0,-2*x^3+10*x-6,0,3*x^3+5*x^2-8*x+4,0,-x^3-4*x^2+2*x+3,0,2*x^2+5*x-8,0,-8*x^3-10*x^2+32*x+4,0,x^2-x-1,0,-1,0,-2*x^3-2*x^2+8*x+4,0,5*x^3+4*x^2-22*x+1,0,-4*x^3-8*x^2+18*x+12,0,-4*x^3-8*x^2+14*x+8,0,-2*x^3-2*x^2+2*x-2,0,5*x^3+4*x^2-29*x,0,-2*x^3+12*x+2,0,x^2+3*x+2,0,8*x^3+4*x^2-44*x+6,0,2*x^3+4*x^2-5*x-2,0,-x^3-4*x^2+8,0,-4*x^3-6*x^2+18*x+6,0,6*x^3+13*x^2-19*x-16,0,x^3+4*x^2-4*x-2,0,6*x^3+6*x^2-28*x,0,2*x^3+6*x^2-10*x-12,0,2*x^3+4*x^2-8*x,0,-2*x^3-4*x^2+9*x+6,0,-2*x+10,0,-2*x^2-6*x+16,0,-4*x^3-2*x^2+16*x-12,0,2*x^3+4*x^2-10*x-4,0,4*x^3+10*x^2-10*x-3,0,-3*x^3-3*x^2+12*x-9,0,-2*x^3-6*x^2+8*x+12,0,-2*x^3+4*x+2,0,-4*x^3-6*x^2+14*x-6,0,2*x^3+2*x^2+12,0,-4*x^3-8*x^2+22*x+6,0,x^3+x^2+5*x+15,0]];
E[472,5] = [x^6+x^5-15*x^4-16*x^3+51*x^2+30*x-56, [2,0,2*x,0,2*x^4-24*x^2-8*x+44,0,x^5+3*x^4-13*x^3-40*x^2+15*x+60,0,2*x^2-6,0,-x^5-3*x^4+13*x^3+38*x^2-15*x-52,0,-x^5-3*x^4+13*x^3+38*x^2-15*x-48,0,2*x^5-24*x^3-8*x^2+44*x,0,-x^5-3*x^4+11*x^3+42*x^2-x-64,0,-4*x^5-6*x^4+48*x^3+92*x^2-56*x-136,0,2*x^5+2*x^4-24*x^3-36*x^2+30*x+56,0,-4*x,0,2*x^5+2*x^4-22*x^3-36*x^2+16*x+62,0,2*x^3-12*x,0,2*x^5+6*x^4-26*x^3-78*x^2+30*x+116,0,4*x^4-48*x^2-20*x+80,0,-2*x^5-2*x^4+22*x^3+36*x^2-22*x-56,0,4*x^5+4*x^4-50*x^3-66*x^2+78*x+88,0,-5*x^5-7*x^4+61*x^3+106*x^2-83*x-144,0,-2*x^5-2*x^4+22*x^3+36*x^2-18*x-56,0,x^5-x^4-13*x^3+6*x^2+33*x-8,0,5*x^5+11*x^4-61*x^3-154*x^2+63*x+228,0,-2*x^5+24*x^3+14*x^2-36*x-20,0,-2*x^5-2*x^4+26*x^3+32*x^2-50*x-40,0,5*x^5+9*x^4-61*x^3-130*x^2+75*x+190,0,-2*x^5-4*x^4+26*x^3+50*x^2-34*x-56,0,4*x^5+8*x^4-48*x^3-112*x^2+46*x+164,0,-2*x^5-2*x^4+26*x^3+28*x^2-50*x-24,0,-2*x^5-12*x^4+28*x^3+148*x^2-16*x-224,0,-2,0,-4*x^4+48*x^2+24*x-84,0,-3*x^5-3*x^4+35*x^3+48*x^2-49*x-68,0,-2*x^5+2*x^4+26*x^3-20*x^2-66*x+64,0,-4*x^4+52*x^2+16*x-104,0,-4*x^2,0,-x^5-3*x^4+11*x^3+42*x^2-x-68,0,-4*x^5-8*x^4+48*x^3+116*x^2-48*x-172,0,8*x^4-4*x^3-86*x^2+2*x+112,0,-x^5-3*x^4+13*x^3+42*x^2-11*x-76,0,5*x^5+7*x^4-61*x^3-106*x^2+77*x+132,0,2*x^4-18*x^2+18,0,-x^5-7*x^4+13*x^3+90*x^2+5*x-148,0,4*x^4-4*x^3-42*x^2+14*x+48,0,4*x^5+4*x^4-46*x^3-72*x^2+56*x+112,0,-4*x^4+48*x^2+16*x-76,0,x^5+3*x^4-13*x^3-38*x^2+19*x+44,0,4*x^5-48*x^3-20*x^2+80*x,0,-2*x^5-14*x^4+26*x^3+180*x^2-304,0,4*x^4-52*x^2-16*x+100,0,3*x^5+x^4-35*x^3-34*x^2+49*x+44,0,x^5+7*x^4-13*x^3-90*x^2-x+152,0,6*x^5+14*x^4-74*x^3-192*x^2+74*x+280,0,10*x^4-2*x^3-126*x^2-32*x+224,0,-2*x^5+22*x^3+16*x^2-26*x-32,0,4*x^2-4*x-36,0,-2*x^5-14*x^4+26*x^3+172*x^2+6*x-280,0,-2*x^5-10*x^4+26*x^3+124*x^2-6*x-180,0,-4*x^5+48*x^3+16*x^2-88*x,0,3*x^5+x^4-35*x^3-30*x^2+49*x+32,0,x^5+9*x^4-13*x^3-110*x^2-11*x+180,0]];
E[472,6] = [x, [1,0,-1,0,-1,0,1,0,-2,0,4,0,2,0,1,0,2,0,3,0,-1,0,6,0,-4,0,5,0,5,0,4,0,-4,0,-1,0,-6,0,-2,0,3,0,8,0,2,0,-2,0,-6,0,-2,0,11,0,-4,0,-3,0,1,0,0,0,-2,0,-2,0,-8,0,-6,0,-8,0,-6,0,4,0,4,0,-1,0,1,0,6,0,-2,0,-5,0,-16,0,2,0,-4,0,-3,0,-10,0,-8,0,2,0,-6,0,1,0,3,0,10,0,6,0,8,0,-6,0,-4,0,2,0]];
E[472,7] = [x, [1,0,-1,0,-1,0,1,0,-2,0,0,0,-2,0,1,0,-6,0,3,0,-1,0,-6,0,-4,0,5,0,-3,0,-4,0,0,0,-1,0,-2,0,2,0,-5,0,0,0,2,0,2,0,-6,0,6,0,3,0,0,0,-3,0,1,0,12,0,-2,0,2,0,4,0,6,0,0,0,-6,0,4,0,0,0,15,0,1,0,-14,0,6,0,3,0,12,0,-2,0,4,0,-3,0,6,0,0,0,-6,0,6,0,1,0,3,0,2,0,2,0,-8,0,6,0,4,0,-6,0]];

E[473,1] = [x, [1,-2,1,2,-1,-2,0,0,-2,2,-1,2,-2,0,-1,-4,6,4,-8,-2,0,2,-1,0,-4,4,-5,0,6,2,-1,8,-1,-12,0,-4,-3,16,-2,0,-4,0,-1,-2,2,2,-8,-4,-7,8,6,-4,-14,10,1,0,-8,-12,9,-2,-4,2,0,-8,2,2,9,12,-1,0,-13,0,-16,6,-4,-16,0,4,16,4,1,8,-6,0,-6,2,6,0]];
E[473,2] = [x^5-x^4-6*x^3+5*x^2+x-1, [1,x,2*x^4-x^3-13*x^2+4*x+4,x^2-2,-5*x^4+2*x^3+31*x^2-7*x-9,x^4-x^3-6*x^2+2*x+2,x^3-x^2-6*x,x^3-4*x,6*x^4-3*x^3-36*x^2+10*x+8,-3*x^4+x^3+18*x^2-4*x-5,-1,-4*x^4+2*x^3+23*x^2-7*x-7,3*x^4-x^3-18*x^2+3*x+3,x^4-x^3-6*x^2,-10*x^4+5*x^3+63*x^2-17*x-19,x^4-6*x^2+4,7*x^4-4*x^3-43*x^2+14*x+11,3*x^4-20*x^2+2*x+6,-9*x^4+2*x^3+57*x^2-5*x-18,8*x^4-4*x^3-51*x^2+12*x+15,-6*x^4+3*x^3+40*x^2-12*x-13,-x,-4*x^4+3*x^3+25*x^2-14*x-7,-4*x^4+x^3+25*x^2-7*x-8,15*x^4-7*x^3-93*x^2+27*x+24,2*x^4-12*x^2+3,2*x^4-14*x^2+x+4,-2*x^3-3*x^2+11*x+1,-9*x^4+3*x^3+57*x^2-7*x-17,-5*x^4+3*x^3+33*x^2-9*x-10,-12*x^4+4*x^3+75*x^2-8*x-25,x^4-2*x^3-5*x^2+11*x+1,-2*x^4+x^3+13*x^2-4*x-4,3*x^4-x^3-21*x^2+4*x+7,18*x^4-7*x^3-111*x^2+25*x+31,-9*x^4+4*x^3+59*x^2-17*x-13,10*x^4-4*x^3-63*x^2+13*x+15,-7*x^4+3*x^3+40*x^2-9*x-9,-x^2-x,10*x^4-5*x^3-64*x^2+15*x+18,7*x^4-5*x^3-42*x^2+22*x+5,-3*x^4+4*x^3+18*x^2-7*x-6,-1,-x^2+2,-10*x^4+5*x^3+62*x^2-21*x-20,-x^4+x^3+6*x^2-3*x-4,10*x^4-3*x^3-63*x^2+5*x+19,5*x^4-3*x^3-33*x^2+10*x+10,-6*x^4+x^3+40*x^2+2*x-8,8*x^4-3*x^3-48*x^2+9*x+15,15*x^4-6*x^3-95*x^2+25*x+29,-4*x^4+2*x^3+26*x^2-5*x-4,11*x^4-3*x^3-70*x^2+5*x+25,2*x^4-2*x^3-9*x^2+2*x+2,5*x^4-2*x^3-31*x^2+7*x+9,-4*x^4-x^3+23*x^2+x,-14*x^4+8*x^3+86*x^2-23*x-25,-6*x^4+3*x^3+38*x^2-8*x-9,13*x^4-5*x^3-80*x^2+17*x+13,18*x^4-7*x^3-110*x^2+29*x+33,-7*x^4+4*x^3+41*x^2-13*x+1,-8*x^4+3*x^3+52*x^2-13*x-12,-20*x^4+7*x^3+121*x^2-15*x-36,-3*x^4+x^3+18*x^2-7,5*x^4-2*x^3-32*x^2+4*x+8,-x^4+x^3+6*x^2-2*x-2,4*x^4-2*x^3-24*x^2+4*x-1,-12*x^4+5*x^3+75*x^2-24*x-19,-16*x^4+8*x^3+99*x^2-28*x-31,11*x^4-3*x^3-65*x^2+13*x+18,x^4+2*x^3-9*x^2-15*x+10,-11*x^4+5*x^3+68*x^2-8*x-21,-10*x^4+5*x^3+59*x^2-20*x-7,6*x^4-3*x^3-37*x^2+5*x+10,30*x^4-15*x^3-187*x^2+50*x+57,14*x^4-6*x^3-88*x^2+8*x+29,-x^3+x^2+6*x,-x^3-x^2,-5*x^4+3*x^3+32*x^2-12*x-15,-11*x^4+4*x^3+67*x^2-16*x-20,-15*x^4+6*x^3+94*x^2-26*x-20,2*x^4-13*x^2-2*x+7,-12*x^4+6*x^3+75*x^2-19*x-19,13*x^4-6*x^3-72*x^2+21*x+23,-24*x^4+12*x^3+151*x^2-43*x-46,-x,-14*x^4+6*x^3+86*x^2-22*x-25,-x^3+4*x]];
E[473,3] = [x^5+3*x^4-4*x^3-13*x^2+3*x+9, [3,3*x,-2*x^4-3*x^3+11*x^2+8*x-12,3*x^2-6,x^4-7*x^2-x+3,3*x^4+3*x^3-18*x^2-6*x+18,2*x^4+3*x^3-11*x^2-8*x+6,3*x^3-12*x,3*x^3-18*x+6,-3*x^4-3*x^3+12*x^2-9,3,-2*x^4+11*x^2-7*x-3,-x^4-3*x^3-2*x^2+7*x+9,-3*x^4-3*x^3+18*x^2-18,2*x^4+3*x^3-11*x^2-5*x+9,3*x^4-18*x^2+12,3*x^4+6*x^3-9*x^2-12*x-9,3*x^4-18*x^2+6*x,x^4+6*x^3+5*x^2-13*x-18,4*x^4-25*x^2+2*x+21,4*x^4+3*x^3-22*x^2+2*x+9,3*x,-2*x^4-3*x^3+11*x^2+14*x-3,-3*x^3+3*x^2+15*x-18,x^4+3*x^3+5*x^2-x-18,-6*x^3-6*x^2+12*x+9,-4*x^4-6*x^3+28*x^2+19*x-42,2*x^4-17*x^2+7*x+15,x^4+3*x^3-7*x^2-19*x+15,-3*x^4-3*x^3+21*x^2+3*x-18,-3*x^2-3,-9*x^4-12*x^3+39*x^2+27*x-27,-2*x^4-3*x^3+11*x^2+8*x-12,-3*x^4+3*x^3+27*x^2-18*x-27,-4*x^4-3*x^3+25*x^2+7*x-15,-9*x^4-12*x^3+45*x^2+27*x-39,-6*x^3-15*x^2+21*x+27,3*x^4+9*x^3-21*x-9,2*x^4-11*x^2+7*x+6,-6*x^4-3*x^3+30*x^2+9*x-18,-x^4-9*x^3-8*x^2+22*x+21,-9*x^4-6*x^3+54*x^2-3*x-36,3,3*x^2-6,2*x^4+3*x^3-8*x^2+7*x+6,3*x^4+3*x^3-12*x^2+3*x+18,-2*x^4-9*x^3-x^2+29*x-9,x^4+3*x^3-7*x^2-4*x+6,-8*x^4-9*x^3+44*x^2+14*x-42,9*x^3+12*x^2-21*x-9,9*x^4+12*x^3-51*x^2-27*x+45,-4*x^4+16*x^2-5*x-18,5*x^4+15*x^3-14*x^2-47*x+9,6*x^4+12*x^3-33*x^2-30*x+36,x^4-7*x^2-x+3,-3*x^3-3*x^2+9*x+18,4*x^4+6*x^3-22*x^2-19*x+21,-3*x^3-6*x^2+12*x-9,-5*x^4-3*x^3+32*x^2+5*x-39,2*x^4+3*x^3-14*x^2+x+9,3*x^4+6*x^3-15*x^2-21*x+9,-3*x^3-3*x,10*x^4+9*x^3-61*x^2-7*x+66,9*x^4+3*x^3-54*x^2+57,-3*x^4+6*x^3+30*x^2-12*x-30,3*x^4+3*x^3-18*x^2-6*x+18,-6*x^3+24*x-27,6*x^4+3*x^3-39*x^2+6*x+45,-3*x^2-6*x+15,9*x^4+9*x^3-45*x^2-3*x+36,-7*x^4-6*x^3+43*x^2+7*x-48,9*x^4+9*x^3-54*x^2-24*x+81,-8*x^4-15*x^3+41*x^2+38*x-45,-6*x^4-15*x^3+21*x^2+27*x,4*x^4+9*x^3-25*x^2-34*x+39,-2*x^4+8*x^2+8*x+9,2*x^4+3*x^3-11*x^2-8*x+6,-6*x^4-3*x^3+33*x^2-18,3*x^4+3*x^3-18*x^2+21,7*x^4+6*x^3-19*x^2-4*x+12,3*x^4+6*x^3-18*x^2-18*x+48,-6*x^4-12*x^3+9*x^2+24*x+9,2*x^4+6*x^3-5*x^2-11*x-3,13*x^4+12*x^3-76*x^2-13*x+63,-6*x^4-12*x^3+21*x^2+21*x,3*x,-12*x^4-18*x^3+72*x^2+54*x-93,3*x^3-12*x]];
E[473,4] = [x^9-4*x^8-5*x^7+36*x^6-20*x^5-65*x^4+66*x^3+4*x^2-8*x+1, [1,x,x^8-3*x^7-7*x^6+27*x^5-2*x^4-49*x^3+33*x^2+4*x-3,x^2-2,-5*x^8+18*x^7+31*x^6-165*x^5+45*x^4+320*x^3-224*x^2-69*x+21,x^8-2*x^7-9*x^6+18*x^5+16*x^4-33*x^3+5*x-1,2*x^8-8*x^7-11*x^6+74*x^5-31*x^4-148*x^3+115*x^2+40*x-9,x^3-4*x,x^7-2*x^6-10*x^5+18*x^4+25*x^3-33*x^2-16*x+3,-2*x^8+6*x^7+15*x^6-55*x^5-5*x^4+106*x^3-49*x^2-19*x+5,1,2*x^7-4*x^6-18*x^5+36*x^4+32*x^3-65*x^2-x+5,4*x^8-14*x^7-26*x^6+128*x^5-25*x^4-245*x^3+158*x^2+43*x-13,-x^7+2*x^6+9*x^5-18*x^4-17*x^3+32*x^2+7*x-2,3*x^8-14*x^7-12*x^6+129*x^5-87*x^4-254*x^3+246*x^2+61*x-22,x^4-6*x^2+4,-x^8+14*x^6-61*x^4-x^3+81*x^2+7*x-3,x^8-2*x^7-10*x^6+18*x^5+25*x^4-33*x^3-16*x^2+3*x,-4*x^8+16*x^7+21*x^6-147*x^5+71*x^4+287*x^3-246*x^2-66*x+24,8*x^8-31*x^7-45*x^6+285*x^5-114*x^4-557*x^3+437*x^2+127*x-40,-x^8+5*x^7+4*x^6-46*x^5+28*x^4+90*x^3-75*x^2-21*x+4,x,-8*x^8+28*x^7+51*x^6-257*x^5+60*x^4+500*x^3-340*x^2-109*x+35,x^3-x^2-5*x+2,6*x^8-21*x^7-39*x^6+194*x^5-38*x^4-386*x^3+240*x^2+99*x-20,2*x^8-6*x^7-16*x^6+55*x^5+15*x^4-106*x^3+27*x^2+19*x-4,2*x^8-3*x^7-21*x^6+27*x^5+60*x^4-49*x^3-56*x^2+4*x+7,-5*x^8+18*x^7+31*x^6-166*x^5+45*x^4+328*x^3-223*x^2-82*x+18,5*x^8-16*x^7-35*x^6+147*x^5-9*x^4-287*x^3+158*x^2+63*x-11,-2*x^8+3*x^7+21*x^6-27*x^5-59*x^4+48*x^3+49*x^2+2*x-3,5*x^8-19*x^7-29*x^6+174*x^5-63*x^4-336*x^3+256*x^2+71*x-21,x^5-8*x^3+12*x,x^8-3*x^7-7*x^6+27*x^5-2*x^4-49*x^3+33*x^2+4*x-3,-4*x^8+9*x^7+36*x^6-81*x^5-66*x^4+147*x^3+11*x^2-11*x+1,-17*x^8+62*x^7+104*x^6-569*x^5+165*x^4+1108*x^3-780*x^2-249*x+68,2*x^8-7*x^7-14*x^6+65*x^5-4*x^4-132*x^3+65*x^2+40*x-7,-x^7+2*x^6+10*x^5-18*x^4-26*x^3+34*x^2+21*x-4,x^7-3*x^6-9*x^5+27*x^4+18*x^3-50*x^2-8*x+4,2*x^8-x^7-24*x^6+7*x^5+87*x^4+2*x^3-105*x^2-36*x+12,5*x^8-17*x^7-33*x^6+156*x^5-27*x^4-303*x^3+193*x^2+62*x-18,-8*x^8+26*x^7+55*x^6-237*x^5+23*x^4+450*x^3-267*x^2-77*x+25,x^8-x^7-10*x^6+8*x^5+25*x^4-9*x^3-17*x^2-4*x+1,-1,x^2-2,5*x^8-23*x^7-21*x^6+212*x^5-135*x^4-419*x^3+387*x^2+106*x-32,-4*x^8+11*x^7+31*x^6-100*x^5-20*x^4+188*x^3-77*x^2-29*x+8,-6*x^8+24*x^7+32*x^6-220*x^5+102*x^4+425*x^3-361*x^2-85*x+33,-4*x^7+8*x^6+36*x^5-71*x^4-65*x^3+125*x^2+4*x-10,14*x^8-55*x^7-78*x^6+507*x^5-207*x^4-1001*x^3+782*x^2+245*x-70,3*x^8-9*x^7-22*x^6+82*x^5+4*x^4-156*x^3+75*x^2+28*x-6,-7*x^8+16*x^7+63*x^6-147*x^5-113*x^4+286*x^3+4*x^2-55*x+7,-6*x^8+22*x^7+35*x^6-201*x^5+74*x^4+385*x^3-305*x^2-74*x+24,-4*x^8+20*x^7+14*x^6-185*x^5+134*x^4+369*x^3-359*x^2-98*x+26,5*x^8-11*x^7-45*x^6+100*x^5+81*x^4-188*x^3-4*x^2+23*x-2,-5*x^8+18*x^7+31*x^6-165*x^5+45*x^4+320*x^3-224*x^2-69*x+21,-2*x^8+8*x^7+10*x^6-73*x^5+39*x^4+141*x^3-126*x^2-36*x+9,10*x^8-32*x^7-69*x^6+292*x^5-27*x^4-557*x^3+334*x^2+99*x-34,4*x^8-10*x^7-33*x^6+91*x^5+38*x^4-172*x^3+43*x^2+29*x-5,x^8-14*x^6+x^5+62*x^4-8*x^3-87*x^2+9*x+6,-11*x^8+39*x^7+69*x^6-357*x^5+92*x^4+689*x^3-482*x^2-141*x+46,-2*x^8+11*x^7+5*x^6-102*x^5+84*x^4+205*x^3-206*x^2-59*x+15,x^8-4*x^7-6*x^6+37*x^5-11*x^4-74*x^3+51*x^2+19*x-5,-6*x^8+24*x^7+32*x^6-221*x^5+101*x^4+435*x^3-354*x^2-104*x+27,x^6-10*x^4+24*x^2-8,-5*x^8+19*x^7+29*x^6-175*x^5+63*x^4+346*x^3-256*x^2-92*x+19,x^8-2*x^7-9*x^6+18*x^5+16*x^4-33*x^3+5*x-1,-3*x^8+12*x^7+16*x^6-110*x^5+50*x^4+215*x^3-174*x^2-57*x+15,-5*x^8+16*x^7+35*x^6-146*x^5+9*x^4+277*x^3-157*x^2-45*x+10,6*x^8-27*x^7-25*x^6+247*x^5-164*x^4-475*x^3+469*x^2+95*x-40,-6*x^8+19*x^7+43*x^6-175*x^5+3*x^4+342*x^3-181*x^2-68*x+17,x^8-12*x^7+11*x^6+110*x^5-164*x^4-214*x^3+327*x^2+54*x-27,-x^8+13*x^6-52*x^4-x^3+64*x^2+3*x-2,7*x^8-31*x^7-31*x^6+284*x^5-175*x^4-549*x^3+520*x^2+115*x-45,-x^8+2*x^7+10*x^6-18*x^5-26*x^4+34*x^3+21*x^2-4*x,-3*x^8+11*x^7+17*x^6-100*x^5+41*x^4+189*x^3-156*x^2-35*x+5,9*x^8-35*x^7-51*x^6+321*x^5-124*x^4-624*x^3+484*x^2+136*x-48,2*x^8-8*x^7-11*x^6+74*x^5-31*x^4-148*x^3+115*x^2+40*x-9,7*x^8-14*x^7-65*x^6+127*x^5+132*x^4-237*x^3-44*x^2+28*x-2,x^8-2*x^7-9*x^6+17*x^5+17*x^4-25*x^3-7*x^2-8*x+5,-13*x^8+54*x^7+66*x^6-497*x^5+250*x^4+977*x^3-832*x^2-232*x+75,9*x^8-29*x^7-63*x^6+266*x^5-16*x^4-516*x^3+285*x^2+109*x-32,-6*x^8+15*x^7+51*x^6-137*x^5-70*x^4+261*x^3-45*x^2-39*x+8,19*x^8-69*x^7-116*x^6+632*x^5-188*x^4-1219*x^3+886*x^2+240*x-80,5*x^8-15*x^7-36*x^6+137*x^5-263*x^3+142*x^2+51*x-9,-8*x^8+33*x^7+42*x^6-305*x^5+141*x^4+606*x^3-487*x^2-148*x+42,-x,x^8-2*x^7-10*x^6+17*x^5+25*x^4-23*x^3-15*x^2-18*x-2,x^3-4*x]];
E[473,5] = [x^11+x^10-17*x^9-15*x^8+102*x^7+77*x^6-255*x^5-150*x^4+248*x^3+59*x^2-93*x+18, [18,18*x,-19*x^10-22*x^9+311*x^8+336*x^7-1758*x^6-1769*x^5+3930*x^4+3606*x^3-2930*x^2-1829*x+816,18*x^2-36,-14*x^10-20*x^9+232*x^8+312*x^7-1338*x^6-1672*x^5+3090*x^4+3432*x^3-2428*x^2-1756*x+750,-3*x^10-12*x^9+51*x^8+180*x^7-306*x^6-915*x^5+756*x^4+1782*x^3-708*x^2-951*x+342,-6*x^10-6*x^9+102*x^8+90*x^7-594*x^6-462*x^5+1332*x^4+900*x^3-894*x^2-354*x+180,18*x^3-72*x,-11*x^10-8*x^9+181*x^8+114*x^7-1032*x^6-559*x^5+2352*x^4+1074*x^3-1846*x^2-481*x+426,-6*x^10-6*x^9+102*x^8+90*x^7-594*x^6-480*x^5+1332*x^4+1044*x^3-930*x^2-552*x+252,-18,29*x^10+44*x^9-487*x^8-672*x^7+2832*x^6+3529*x^5-6528*x^4-7176*x^3+5086*x^2+3721*x-1578,6*x^10+6*x^9-102*x^8-90*x^7+612*x^6+462*x^5-1512*x^4-918*x^3+1344*x^2+480*x-324,18*x^7-198*x^5+594*x^3-378*x+108,-8*x^10-14*x^9+130*x^8+222*x^7-744*x^6-1210*x^5+1776*x^4+2532*x^3-1660*x^2-1402*x+714,18*x^4-108*x^2+72,20*x^10+26*x^9-334*x^8-402*x^7+1932*x^6+2152*x^5-4440*x^4-4494*x^3+3466*x^2+2398*x-1056,3*x^10-6*x^9-51*x^8+90*x^7+288*x^6-453*x^5-576*x^4+882*x^3+168*x^2-597*x+198,12*x^10+12*x^9-204*x^8-180*x^7+1206*x^6+942*x^5-2862*x^4-1962*x^3+2364*x^2+1032*x-576,28*x^10+40*x^9-464*x^8-606*x^7+2658*x^6+3146*x^5-6036*x^4-6306*x^3+4658*x^2+3206*x-1392,-8*x^10+4*x^9+130*x^8-66*x^7-708*x^6+356*x^5+1416*x^4-708*x^3-706*x^2+542*x-60,-18*x,16*x^10+28*x^9-260*x^8-444*x^7+1470*x^6+2402*x^5-3336*x^4-4920*x^3+2600*x^2+2570*x-942,21*x^10+30*x^9-339*x^8-486*x^7+1908*x^6+2697*x^5-4338*x^4-5670*x^3+3426*x^2+3021*x-1206,-12*x^10-12*x^9+204*x^8+198*x^7-1206*x^6-1140*x^5+2844*x^4+2556*x^3-2256*x^2-1446*x+684,18*x^5-18*x^4-144*x^3+126*x^2+234*x-108,-45*x^10-54*x^9+747*x^8+828*x^7-4302*x^6-4383*x^5+9882*x^4+9018*x^3-7740*x^2-4743*x+2232,12*x^10+12*x^9-186*x^8-180*x^7+990*x^6+924*x^5-2070*x^4-1800*x^3+1410*x^2+816*x-360,-31*x^10-52*x^9+515*x^8+804*x^7-2982*x^6-4277*x^5+6954*x^4+8826*x^3-5708*x^2-4859*x+1950,-6*x^10-6*x^9+102*x^8+72*x^7-594*x^6-264*x^5+1332*x^4+324*x^3-930*x^2-30*x+144,30*x^10+48*x^9-492*x^8-738*x^7+2790*x^6+3894*x^5-6282*x^4-7920*x^3+4848*x^2+4128*x-1602,18*x^5-144*x^3+216*x,19*x^10+22*x^9-311*x^8-336*x^7+1758*x^6+1769*x^5-3930*x^4-3606*x^3+2930*x^2+1829*x-816,6*x^10+6*x^9-102*x^8-108*x^7+612*x^6+660*x^5-1494*x^4-1494*x^3+1218*x^2+804*x-360,8*x^10-4*x^9-130*x^8+84*x^7+708*x^6-554*x^5-1434*x^4+1284*x^3+796*x^2-866*x+204,13*x^10+16*x^9-227*x^8-246*x^7+1380*x^6+1307*x^5-3372*x^4-2724*x^3+2918*x^2+1439*x-906,6*x^10+6*x^9-102*x^8-108*x^7+612*x^6+678*x^5-1530*x^4-1656*x^3+1452*x^2+1092*x-486,-18*x^7+18*x^6+198*x^5-162*x^4-612*x^3+324*x^2+540*x-216,40*x^10+52*x^9-668*x^8-786*x^7+3864*x^6+4106*x^5-8898*x^4-8412*x^3+7058*x^2+4472*x-2076,24*x^10+24*x^9-390*x^8-378*x^7+2178*x^6+2064*x^5-4770*x^4-4374*x^3+3414*x^2+2316*x-1008,-6*x^10-6*x^9+102*x^8+90*x^7-594*x^6-480*x^5+1368*x^4+1080*x^3-1146*x^2-732*x+360,12*x^10-6*x^9-186*x^8+108*x^7+972*x^6-624*x^5-1908*x^4+1278*x^3+1014*x^2-804*x+144,18,-18*x^2+36,-74*x^10-116*x^9+1216*x^8+1806*x^7-6954*x^6-9658*x^5+16014*x^4+19902*x^3-13006*x^2-10750*x+4512,12*x^10+12*x^9-204*x^8-162*x^7+1170*x^6+744*x^5-2520*x^4-1368*x^3+1626*x^2+546*x-288,-6*x^10-6*x^9+102*x^8+90*x^7-612*x^6-462*x^5+1530*x^4+918*x^3-1434*x^2-480*x+360,-49*x^10-70*x^9+803*x^8+1110*x^7-4584*x^6-6041*x^5+10536*x^4+12570*x^3-8390*x^2-6695*x+2778,-6*x^10-6*x^9+102*x^8+72*x^7-576*x^6-264*x^5+1152*x^4+306*x^3-444*x^2+96*x-126,18*x^8+18*x^7-216*x^6-216*x^5+756*x^4+720*x^3-738*x^2-432*x+216,20*x^10+26*x^9-334*x^8-402*x^7+1950*x^6+2134*x^5-4620*x^4-4368*x^3+3916*x^2+2326*x-1272,-12*x^10-12*x^9+204*x^8+180*x^7-1206*x^6-942*x^5+2880*x^4+1962*x^3-2454*x^2-1068*x+648,-11*x^10-26*x^9+181*x^8+402*x^7-1032*x^6-2125*x^5+2334*x^4+4314*x^3-1810*x^2-2353*x+786,-9*x^10-18*x^9+153*x^8+288*x^7-918*x^6-1593*x^5+2268*x^4+3420*x^3-2088*x^2-1953*x+810,14*x^10+20*x^9-232*x^8-312*x^7+1338*x^6+1672*x^5-3090*x^4-3432*x^3+2428*x^2+1756*x-750,18*x^9-270*x^7+1386*x^5-2754*x^3+108*x^2+1512*x-432,28*x^10+40*x^9-464*x^8-624*x^7+2694*x^6+3344*x^5-6378*x^4-6918*x^3+5432*x^2+3818*x-1788,-21*x^10-12*x^9+339*x^8+180*x^7-1890*x^6-951*x^5+4176*x^4+1980*x^3-3030*x^2-933*x+558,-24*x^10-42*x^9+390*x^8+630*x^7-2196*x^6-3234*x^5+4950*x^4+6408*x^3-3990*x^2-3306*x+1494,16*x^10+28*x^9-278*x^8-426*x^7+1686*x^6+2222*x^5-4128*x^4-4506*x^3+3644*x^2+2390*x-1320,45*x^10+72*x^9-747*x^8-1098*x^7+4302*x^6+5733*x^5-9864*x^4-11502*x^3+7704*x^2+5877*x-2502,18*x^10+18*x^9-288*x^8-270*x^7+1584*x^6+1368*x^5-3420*x^4-2592*x^3+2358*x^2+1188*x-540,-28*x^10-22*x^9+464*x^8+318*x^7-2640*x^6-1598*x^5+5856*x^4+3210*x^3-4172*x^2-1604*x+888,18*x^6-180*x^4+432*x^2-144,26*x^10+50*x^9-436*x^8-780*x^7+2562*x^6+4180*x^5-6132*x^4-8688*x^3+5332*x^2+4966*x-2064,3*x^10+12*x^9-51*x^8-180*x^7+306*x^6+915*x^5-756*x^4-1782*x^3+708*x^2+951*x-342,48*x^10+48*x^9-798*x^8-720*x^7+4572*x^6+3732*x^5-10296*x^4-7542*x^3+7620*x^2+3642*x-1818,-40*x^10-52*x^9+650*x^8+804*x^7-3666*x^6-4268*x^5+8286*x^4+8718*x^3-6482*x^2-4598*x+2004,-44*x^10-50*x^9+724*x^8+744*x^7-4110*x^6-3802*x^5+9174*x^4+7554*x^3-6646*x^2-3778*x+1578,-12*x^10+6*x^9+204*x^8-108*x^7-1170*x^6+606*x^5+2484*x^4-1188*x^3-1338*x^2+948*x-144,26*x^10+32*x^9-436*x^8-492*x^7+2526*x^6+2614*x^5-5808*x^4-5412*x^3+4630*x^2+2806*x-1470,-3*x^10+6*x^9+51*x^8-126*x^7-270*x^6+849*x^5+378*x^4-2070*x^3+336*x^2+1497*x-630,-3*x^10-12*x^9+51*x^8+198*x^7-342*x^6-1095*x^5+1134*x^4+2286*x^3-1680*x^2-1527*x+810,-18*x^8+216*x^6-756*x^4-36*x^3+738*x^2+72*x-108,-37*x^10-40*x^9+617*x^8+606*x^7-3558*x^6-3173*x^5+8142*x^4+6486*x^3-6332*x^2-3341*x+1734,-24*x^10-24*x^9+390*x^8+378*x^7-2214*x^6-2046*x^5+5112*x^4+4248*x^3-4188*x^2-2280*x+1152,6*x^10+6*x^9-102*x^8-90*x^7+594*x^6+462*x^5-1332*x^4-900*x^3+894*x^2+354*x-180,12*x^10+12*x^9-186*x^8-216*x^7+1026*x^6+1302*x^5-2412*x^4-2862*x^3+2112*x^2+1644*x-720,-21*x^10-48*x^9+357*x^8+756*x^7-2142*x^6-4083*x^5+5310*x^4+8514*x^3-4938*x^2-4875*x+2106,-56*x^10-62*x^9+910*x^8+942*x^7-5100*x^6-4942*x^5+11298*x^4+10074*x^3-8416*x^2-5188*x+2352,-70*x^10-82*x^9+1160*x^8+1272*x^7-6654*x^6-6830*x^5+15162*x^4+14280*x^3-11726*x^2-7592*x+3498,18*x^7-18*x^6-162*x^5+180*x^4+342*x^3-378*x^2-198*x+108,-11*x^10-26*x^9+199*x^8+420*x^7-1284*x^6-2323*x^5+3450*x^4+4926*x^3-3412*x^2-2821*x+1218,-2*x^10+10*x^9+28*x^8-120*x^7-132*x^6+440*x^5+246*x^4-546*x^3-100*x^2+176*x-96,24*x^10+24*x^9-408*x^8-378*x^7+2412*x^6+2082*x^5-5706*x^4-4500*x^3+4638*x^2+2352*x-1332,18*x,29*x^10+26*x^9-469*x^8-402*x^7+2580*x^6+2143*x^5-5376*x^4-4350*x^3+3070*x^2+1939*x-462,-18*x^3+72*x]];
E[473,6] = [x^2+2*x-4, [2,-x,2*x,-x-2,-2*x,2*x-4,2*x-2,2*x+2,-4*x+2,-2*x+4,2,-4,-12,3*x-4,4*x-8,3*x,-4,-5*x+8,2*x+2,4,-6*x+8,-x,-2*x-14,-2*x+8,-4*x-2,6*x,4*x-16,x-2,-10,8*x-8,2*x+6,-x-10,2*x,2*x,6*x-8,-x+6,-6*x,x-4,-12*x,2*x-8,6*x,-10*x+12,2,-x-2,-10*x+16,5*x+4,2*x+18,-6*x+12,-8*x-4,-3*x+8,-4*x,6*x+12,-2,12*x-8,-2*x,-4*x+6,-2*x+8,5*x,2*x+22,4*x,-4*x-10,-x-4,14*x-18,-2*x+2,12*x,2*x-4,6*x+2,2*x+4,-10*x-8,10*x-12,-4*x,6*x-14,-8*x-20,-6*x+12,6*x-16,-x-6,2*x-2,-12*x+24,-4*x-4,6*x-12,-12*x+10,6*x-12,8,-4*x+4,4*x,-x,-10*x,2*x+2]];
E[473,7] = [x^2+x-1, [1,x+1,-2,x,-2*x,-2*x-2,2*x+1,-2*x-1,1,-2,-1,-2*x,-4*x-2,x+3,4*x,-3*x-3,-2*x-4,x+1,2*x-1,2*x-2,-4*x-2,-x-1,2*x-5,4*x+2,-4*x-1,-2*x-6,4,-x+2,8*x+3,4,-2*x-7,x-4,2,-4*x-6,2*x-4,x,4*x+2,-x+1,8*x+4,-2*x+4,10,-2*x-6,-1,-x,-2*x,-5*x-3,2*x-5,6*x+6,-2,-x-5,4*x+8,2*x-4,8*x-1,4*x+4,2*x,-5,-4*x+2,3*x+11,2*x+9,-4*x+4,-13,-7*x-9,2*x+1,2*x+3,-4*x+8,2*x+2,2*x+3,-2*x-2,-4*x+10,-4*x-2,12,-2*x-1,2,2*x+6,8*x+2,-3*x+2,-2*x-1,4*x+12,-10*x-8,6,-11,10*x+10,-10*x-10,2*x-4,4*x+4,-x-1,-16*x-6,2*x+1]];

E[474,1] = [x, [1,-1,-1,1,2,1,-3,-1,1,-2,-5,-1,-1,3,-2,1,5,-1,-6,2,3,5,3,1,-1,1,-1,-3,-5,2,-4,-1,5,-5,-6,1,-8,6,1,-2,-2,-3,-5,-5,2,-3,0,-1,2,1,-5,-1,2,1,-10,3,6,5,-2,-2,-12,4,-3,1,-2,-5,14,5,-3,6,10,-1,-9,8,1,-6,15,-1,-1,2,1,2,9,3,10,5,5,5,-12,-2,3,3,4,0,-12,1,7,-2,-5,-1,2,5,1,1,6,-2,-4,-1,16,10,8,-3,14,-6,6,-5,-1,2,-15,2,14,12,2,-4,-12,3,8,-1,5,2,0,5,18,-14,-2,-5,-9,3,13,-6,0,-10,5,1,-10,9,-2,-8,-23,-1,-16,6,5,-15,-8,1,-6,1,-2,-2]];
E[474,2] = [x^2+x-7, [1,-1,-1,1,x,1,x+1,-1,1,-x,0,-1,0,-x-1,-x,1,-x-2,-1,-x+5,x,-x-1,0,x+1,1,-x+2,0,-1,x+1,0,x,6,-1,0,x+2,7,1,x+4,x-5,0,-x,-x+1,x+1,8,0,x,-x-1,2*x,-1,x+1,x-2,x+2,0,-4*x-2,1,0,-x-1,x-5,0,-x+4,-x,3*x+4,-6,x+1,1,0,0,-3*x,-x-2,-x-1,-7,6,-1,x-6,-x-4,x-2,-x+5,0,0,1,x,1,x-1,-2*x-6,-x-1,-x-7,-8,0,0,-4*x-4,-x,0,x+1,-6,-2*x,6*x-7,1,-3*x-9,-x-1,0,-x+2,5*x+5,-x-2,-8,0,-7,4*x+2,-x+1,-1,3*x+3,0,-x-4,x+1,3*x-6,-x+5,7,0,0,x-4,-2*x-9,x,-11,-3*x-4,x-1,6,-2*x-7,-x-1,-x+6,-1,-8,0,6,0,5*x-2,3*x,-x,x+2,-x+5,x+1,2*x-6,7,-2*x,-6,0,1,0,-x+6,-x-1,x+4,-4*x+4,-x+2,-6*x-4,x-5,-x-2,0,6*x,0,-7*x-3,-1,4*x+2,-x]];
E[474,3] = [x, [1,-1,1,1,-2,-1,-1,-1,1,2,-5,1,-1,1,-2,1,-1,-1,-2,-2,-1,5,-5,-1,-1,1,1,-1,1,2,0,-1,-5,1,2,1,4,2,-1,2,-6,1,1,-5,-2,5,4,1,-6,1,-1,-1,-2,-1,10,1,-2,-1,-6,-2,0,0,-1,1,2,5,-10,-1,-5,-2,6,-1,7,-4,-1,-2,5,1,1,-2,1,6,-15,-1,2,-1,1,5,4,2,1,-5,0,-4,4,-1,-1,6,-5,-1,6,1,19,1,2,2,12,1,-8,-10,4,-1,18,2,10,1,-1,6,1,2,14,0,-6,0,12,1,0,-1,1,-2,0,-5,2,10,-2,1,13,5,-9,2,4,-6,5,1,-2,-7,-6,4,11,1,-4,2,-1,-5,0,-1,-2,-1,-2,2]];
E[474,4] = [x^2-3*x+1, [1,-1,1,1,x,-1,3*x-5,-1,1,-x,4,1,-4*x+4,-3*x+5,x,1,x+2,-1,-5*x+9,x,3*x-5,-4,-7*x+9,-1,3*x-6,4*x-4,1,3*x-5,4,-x,-2,-1,4,-x-2,4*x-3,1,3*x-12,5*x-9,-4*x+4,-x,x+3,-3*x+5,4*x-4,4,x,7*x-9,-6*x+16,1,-3*x+9,-3*x+6,x+2,-4*x+4,4*x-14,-1,4*x,-3*x+5,-5*x+9,-4,-3*x+8,x,x-4,2,3*x-5,1,-8*x+4,-4,5*x-4,x+2,-7*x+9,-4*x+3,4*x-2,-1,-11*x+18,-3*x+12,3*x-6,-5*x+9,12*x-20,4*x-4,-1,x,1,-x-3,10*x-14,3*x-5,5*x-1,-4*x+4,4,-4,4*x-16,-x,-4*x-8,-7*x+9,-2,6*x-16,-6*x+5,-1,-7*x-1,3*x-9,4,3*x-6,5*x-15,-x-2,8*x-16,4*x-4,4*x-3,-4*x+14,x-9,1,-15*x+21,-4*x,3*x-12,3*x-5,-11*x+14,5*x-9,-12*x+7,4,-4*x+4,3*x-8,10*x-13,-x,5,-x+4,x+3,-2,-2*x-3,-3*x+5,17*x-26,-1,4*x-4,8*x-4,-8*x+10,4,7*x-30,-5*x+4,x,-x-2,x-1,7*x-9,-2*x+18,4*x-3,-6*x+16,-4*x+2,-16*x+16,1,4*x,11*x-18,-3*x+9,3*x-12,12*x-12,-3*x+6,-10*x+16,5*x-9,x+2,-12*x+20,-2*x,-4*x+4,3*x+3,1,4*x-14,-x]];
E[474,5] = [x^3-3*x^2-x+2, [1,1,1,1,x,1,-x+1,1,1,x,-x^2+x+3,1,x^2-x-3,-x+1,x,1,3*x^2-8*x-3,1,-3*x^2+8*x+2,x,-x+1,-x^2+x+3,-3*x+3,1,x^2-5,x^2-x-3,1,-x+1,-3*x^2+7*x+5,x,2*x^2-6*x-4,1,-x^2+x+3,3*x^2-8*x-3,-x^2+x,1,-2*x^2+5*x+2,-3*x^2+8*x+2,x^2-x-3,x,-x^2+4*x+2,-x+1,3*x^2-7*x-9,-x^2+x+3,x,-3*x+3,4*x^2-6*x-8,1,x^2-2*x-6,x^2-5,3*x^2-8*x-3,x^2-x-3,2,1,-2*x^2+2*x+2,-x+1,-3*x^2+8*x+2,-3*x^2+7*x+5,7*x-8,x,-6*x^2+15*x+6,2*x^2-6*x-4,-x+1,1,2*x^2-2*x-2,-x^2+x+3,-x-4,3*x^2-8*x-3,-3*x+3,-x^2+x,-4*x^2+4*x+10,1,5*x^2-14*x-9,-2*x^2+5*x+2,x^2-5,-3*x^2+8*x+2,x^2-x+1,x^2-x-3,1,x,1,-x^2+4*x+2,3*x^2-5*x-7,-x+1,x^2-6,3*x^2-7*x-9,-3*x^2+7*x+5,-x^2+x+3,-4*x^2+8*x+4,x,-x^2+x-1,-3*x+3,2*x^2-6*x-4,4*x^2-6*x-8,-x^2-x+6,1,2*x^2-11*x+1,x^2-2*x-6,-x^2+x+3,x^2-5,3*x^2-10*x+2,3*x^2-8*x-3,x^2+3*x-15,x^2-x-3,-x^2+x,2,-3*x^2+10*x,1,5*x^2-16*x,-2*x^2+2*x+2,-2*x^2+5*x+2,-x+1,-6*x^2+9*x+16,-3*x^2+8*x+2,-3*x^2+3*x,-3*x^2+7*x+5,x^2-x-3,7*x-8,2*x^2-8*x+3,x,-x^2+5*x-4,-6*x^2+15*x+6,-x^2+4*x+2,2*x^2-6*x-4,3*x^2-9*x-2,-x+1,5*x-6,1,3*x^2-7*x-9,2*x^2-2*x-2,2*x^2+2*x-4,-x^2+x+3,-2*x^2+9*x-4,-x-4,x,3*x^2-8*x-3,-2*x^2+9*x+13,-3*x+3,-x^2+11*x-7,-x^2+x,4*x^2-6*x-8,-4*x^2+4*x+10,x^2-5*x-7,1,-2*x^2+2*x+6,5*x^2-14*x-9,x^2-2*x-6,-2*x^2+5*x+2,7*x^2-19*x-1,x^2-5,-2*x+8,-3*x^2+8*x+2,3*x^2-8*x-3,x^2-x+1,-2*x-4,x^2-x-3,-7*x^2+14*x+14,1,2,x]];
E[474,6] = [x^4-x^3-19*x^2+20*x-4, [4,4,-4,4,4*x,-4,3*x^3-x^2-59*x+30,4,4,4*x,-5*x^3+3*x^2+93*x-50,-4,-x^3-x^2+17*x+14,3*x^3-x^2-59*x+30,-4*x,4,-x^3-x^2+21*x+6,4,2*x^3-2*x^2-42*x+36,4*x,-3*x^3+x^2+59*x-30,-5*x^3+3*x^2+93*x-50,3*x^3-x^2-59*x+30,-4,4*x^2-20,-x^3-x^2+17*x+14,-4,3*x^3-x^2-59*x+30,x^3+x^2-17*x+2,-4*x,-4*x^3+4*x^2+76*x-56,4,5*x^3-3*x^2-93*x+50,-x^3-x^2+21*x+6,2*x^3-2*x^2-30*x+12,4,-2*x^3-2*x^2+38*x+12,2*x^3-2*x^2-42*x+36,x^3+x^2-17*x-14,4*x,8*x^3-4*x^2-152*x+72,-3*x^3+x^2+59*x-30,5*x^3-3*x^2-93*x+50,-5*x^3+3*x^2+93*x-50,4*x,3*x^3-x^2-59*x+30,-8*x-16,-4,-x^3-x^2+13*x+18,4*x^2-20,x^3+x^2-21*x-6,-x^3-x^2+17*x+14,-8,-4,-2*x^3-2*x^2+50*x-20,3*x^3-x^2-59*x+30,-2*x^3+2*x^2+42*x-36,x^3+x^2-17*x+2,-6*x^3+2*x^2+114*x-84,-4*x,-10*x^3+6*x^2+198*x-116,-4*x^3+4*x^2+76*x-56,3*x^3-x^2-59*x+30,4,-2*x^3-2*x^2+34*x-4,5*x^3-3*x^2-93*x+50,-6*x^3+2*x^2+122*x-68,-x^3-x^2+21*x+6,-3*x^3+x^2+59*x-30,2*x^3-2*x^2-30*x+12,-6*x^3+2*x^2+110*x-44,4,3*x^3+3*x^2-55*x-2,-2*x^3-2*x^2+38*x+12,-4*x^2+20,2*x^3-2*x^2-42*x+36,-x^3+7*x^2+9*x-90,x^3+x^2-17*x-14,-4,4*x,4,8*x^3-4*x^2-152*x+72,x^3+x^2-25*x-22,-3*x^3+x^2+59*x-30,-2*x^3+2*x^2+26*x-4,5*x^3-3*x^2-93*x+50,-x^3-x^2+17*x-2,-5*x^3+3*x^2+93*x-50,6*x^3-2*x^2-110*x+52,4*x,17*x^3-7*x^2-329*x+154,3*x^3-x^2-59*x+30,4*x^3-4*x^2-76*x+56,-8*x-16,-4*x^2-4*x+8,-4,7*x^3-5*x^2-127*x+78,-x^3-x^2+13*x+18,-5*x^3+3*x^2+93*x-50,4*x^2-20,-8*x^3+4*x^2+144*x-88,x^3+x^2-21*x-6,7*x^3-x^2-143*x+54,-x^3-x^2+17*x+14,-2*x^3+2*x^2+30*x-12,-8,4*x^3-76*x-8,-4,-14*x^3+6*x^2+262*x-148,-2*x^3-2*x^2+50*x-20,2*x^3+2*x^2-38*x-12,3*x^3-x^2-59*x+30,4*x^3-4*x^2-72*x+40,-2*x^3+2*x^2+42*x-36,2*x^3-2*x^2-30*x+12,x^3+x^2-17*x+2,-x^3-x^2+17*x+14,-6*x^3+2*x^2+114*x-84,13*x^3-7*x^2-241*x+106,-4*x,3*x^3-5*x^2-75*x+130,-10*x^3+6*x^2+198*x-116,-8*x^3+4*x^2+152*x-72,-4*x^3+4*x^2+76*x-56,4*x^3-40*x,3*x^3-x^2-59*x+30,-12*x^3+4*x^2+232*x-96,4,-5*x^3+3*x^2+93*x-50,-2*x^3-2*x^2+34*x-4,-4*x^3+4*x^2+76*x-40,5*x^3-3*x^2-93*x+50,10*x^3-6*x^2-198*x+140,-6*x^3+2*x^2+122*x-68,-4*x,-x^3-x^2+21*x+6,13*x^3-7*x^2-261*x+138,-3*x^3+x^2+59*x-30,3*x^3+3*x^2-43*x-34,2*x^3-2*x^2-30*x+12,8*x+16,-6*x^3+2*x^2+110*x-44,-27*x^3+13*x^2+515*x-254,4,2*x^3+2*x^2-18*x+4,3*x^3+3*x^2-55*x-2,x^3+x^2-13*x-18,-2*x^3-2*x^2+38*x+12,-x^3-x^2+17*x+14,-4*x^2+20,8*x+48,2*x^3-2*x^2-42*x+36,-x^3-x^2+21*x+6,-x^3+7*x^2+9*x-90,24*x-16,x^3+x^2-17*x-14,12*x^3-8*x^2-244*x+144,-4,8,4*x]];

E[475,1] = [x, [1,-1,0,-1,0,0,2,3,-3,0,-4,0,-2,-2,0,-1,4,3,1,0,0,4,-6,0,0,2,0,-2,-6,0,-4,-5,0,-4,0,3,-10,-1,0,0,-10,0,2,4,0,6,-6,0,-3,0,0,2,10,0,0,6,0,6,0,0,2,4,-6,7,0,0,8,-4,0,0,4,-9,4,10,0,-1,-8,0,4,0,9,10,-18,0,0,-2,0,-12,-2,0,-4,6,0,6,0,0,6,3,12,0]];
E[475,2] = [x, [1,1,0,-1,0,0,-2,-3,-3,0,-4,0,2,-2,0,-1,-4,-3,1,0,0,-4,6,0,0,2,0,2,-6,0,-4,5,0,-4,0,3,10,1,0,0,-10,0,-2,4,0,6,6,0,-3,0,0,-2,-10,0,0,6,0,-6,0,0,2,-4,6,7,0,0,-8,4,0,0,4,9,-4,10,0,-1,8,0,4,0,9,-10,18,0,0,-2,0,12,-2,0,-4,-6,0,6,0,0,-6,-3,12,0]];
E[475,3] = [x^3+2*x^2-3*x-5, [1,x,-x^2-x+2,x^2-2,0,x^2-x-5,x^2+x-4,-2*x^2-x+5,x+1,0,-x^2-x+3,-x^2+1,3*x^2-11,-x^2-x+5,0,x^2-x-6,-x^2-x-2,x^2+x,1,0,2*x^2+x-8,x^2-5,2*x^2-x-10,5,0,-6*x^2-2*x+15,3*x^2+x-9,-x^2+3,-x^2-x+1,0,3*x^2+2*x-9,x^2-x-5,-x^2+6,x^2-5*x-5,0,-x^2+x+3,-5*x^2-3*x+13,x,2*x^2+5*x-7,0,-2*x^2+3*x+9,-3*x^2-2*x+10,-2*x^2+4*x+11,-1,0,-5*x^2-4*x+10,-x^2+4*x+3,2*x^2+5*x-2,-4*x^2-3*x+9,0,4*x^2+5*x-4,4*x^2-3*x-8,2*x^2-17,-5*x^2+15,0,4*x^2+2*x-15,-x^2-x+2,x^2-2*x-5,2*x^2+4*x-6,0,x^2+2*x-1,-4*x^2+15,1,-5*x^2+17,0,2*x^2+3*x-5,x^2-3*x-1,-5*x^2+9,3*x^2+7*x-5,0,-2*x+1,x^2-2*x-5,-2*x^2+x+7,7*x^2-2*x-25,0,x^2-2,3*x^2+2*x-12,x^2-x+10,5*x^2+x-22,0,x^2-x-11,7*x^2+3*x-10,-6*x^2-9*x+13,-x+1,0,8*x^2+5*x-10,x^2+2*x+2,-2*x^2-x+10,-2*x^2+3*x+2,0,-8*x^2-5*x+29,2*x^2-3*x-5,2*x^2+x-13,6*x^2-5,0,x^2+4*x,3*x^2+4*x-3,5*x^2-3*x-20,-x-2,0]];
E[475,4] = [x^3-2*x^2-3*x+5, [1,x,x^2-x-2,x^2-2,0,x^2+x-5,-x^2+x+4,2*x^2-x-5,-x+1,0,-x^2+x+3,x^2-1,-3*x^2+11,-x^2+x+5,0,x^2+x-6,x^2-x+2,-x^2+x,1,0,2*x^2-x-8,-x^2+5,-2*x^2-x+10,5,0,-6*x^2+2*x+15,-3*x^2+x+9,x^2-3,-x^2+x+1,0,3*x^2-2*x-9,-x^2-x+5,x^2-6,x^2+5*x-5,0,-x^2-x+3,5*x^2-3*x-13,x,2*x^2-5*x-7,0,-2*x^2-3*x+9,3*x^2-2*x-10,2*x^2+4*x-11,-1,0,-5*x^2+4*x+10,x^2+4*x-3,-2*x^2+5*x+2,-4*x^2+3*x+9,0,4*x^2-5*x-4,-4*x^2-3*x+8,-2*x^2+17,-5*x^2+15,0,4*x^2-2*x-15,x^2-x-2,-x^2-2*x+5,2*x^2-4*x-6,0,x^2-2*x-1,4*x^2-15,-1,-5*x^2+17,0,2*x^2-3*x-5,-x^2-3*x+1,5*x^2-9,3*x^2-7*x-5,0,2*x+1,-x^2-2*x+5,2*x^2+x-7,7*x^2+2*x-25,0,x^2-2,-3*x^2+2*x+12,-x^2-x-10,5*x^2-x-22,0,x^2+x-11,-7*x^2+3*x+10,6*x^2-9*x-13,x+1,0,8*x^2-5*x-10,-x^2+2*x-2,2*x^2-x-10,-2*x^2-3*x+2,0,-8*x^2+5*x+29,-2*x^2-3*x+5,-2*x^2+x+13,6*x^2-5,0,x^2-4*x,-3*x^2+4*x+3,-5*x^2-3*x+20,x-2,0]];
E[475,5] = [x^3+x^2-3*x-1, [1,x,x^2-3,x^2-2,0,-x^2+1,-2*x^2-2*x+4,-x^2-x+1,-2*x^2-2*x+5,0,2*x-2,-x^2-2*x+5,-x^2-2*x-1,-2*x-2,0,-2*x^2-2*x+3,2*x^2+4*x-4,-x-2,-1,0,4*x^2+4*x-12,2*x^2-2*x,2*x+2,x^2+2*x-3,0,-x^2-4*x-1,2*x^2+4*x-6,2*x^2+2*x-8,2*x^2-8,0,-4*x,2*x^2-x-4,-4*x^2+8,2*x^2+2*x+2,0,3*x^2+2*x-10,-x^2-2*x-5,-x,2*x+2,0,2*x^2+4*x-4,4,6*x^2+2*x-12,-4*x^2+2*x+6,0,2*x^2+2*x,-2*x^2-2*x+4,3*x^2+4*x-9,-4*x^2+13,0,-6*x^2-4*x+14,-x^2+1,x^2+2*x-7,2*x^2+2,0,2*x+6,-x^2+3,-2*x^2-2*x+2,-2*x^2-2,0,-2*x^2-6*x+2,-4*x^2,-6*x^2-2*x+24,x^2+6*x-4,0,4*x^2-4*x-4,-x^2+4*x+3,-4*x^2+10,-4,0,-4*x^2+8,-x^2+x+7,-2*x^2+4,-x^2-8*x-1,0,-x^2+2,4*x^2-12,2*x^2+2*x,6*x^2-14,0,-2*x^2+2*x+5,2*x^2+2*x+2,-2*x+10,-8*x^2-4*x+24,0,-4*x^2+6*x+6,-6*x^2-4*x+22,2*x^2-2*x-4,6*x^2+4*x-12,0,4*x^2+8*x,2*x-2,4*x^2-4,-2*x-2,0,-x^2-4*x+9,5*x^2-2*x-19,4*x^2+x-4,4*x^2+2*x-14,0]];
E[475,6] = [x^3+4*x^2+3*x-1, [1,x,x^2+3*x,x^2-2,0,-x^2-3*x+1,x^2+x-2,-4*x^2-7*x+1,-2*x^2-5*x-1,0,-3*x^2-7*x+1,-x^2-2*x-1,-x^2-2*x-1,-3*x^2-5*x+1,0,7*x^2+13*x,-x^2-5*x-4,3*x^2+5*x-2,-1,0,-2*x^2-5*x,5*x^2+10*x-3,-x-4,4*x^2+8*x-3,0,2*x^2+2*x-1,-x^2-5*x-3,5*x^2+8*x+1,5*x^2+15*x+1,0,-3*x^2-4*x+3,-7*x^2-7*x+5,5*x^2+12*x-4,-x^2-x-1,0,-3*x^2-x+5,-x^2-5*x-5,-x,-x-1,0,8*x^2+19*x-1,3*x^2+6*x-2,-6*x^2-16*x-3,-4*x^2-4*x+3,0,-x^2-4*x,x^2+4*x+1,-6*x^2-11*x+6,2*x^2+3*x-5,0,-x-4,-4*x^2-3*x+4,4*x^2+14*x-1,-x^2-1,0,-6*x^2-4*x+3,-x^2-3*x,-5*x^2-14*x+5,-2*x^2+10,0,x^2+6*x-1,8*x^2+12*x-3,4*x+3,7*x^2-7,0,-8*x^2-19*x+5,5*x^2+19*x+9,5*x^2+12*x+7,-3*x^2-9*x-1,0,2*x^2-13,5*x^2+4*x+1,-8*x^2-15*x+7,-x^2-2*x-1,0,-x^2+2,x^2+6*x,-x^2-x,-3*x^2-9*x+4,0,7*x^2+17*x-1,-13*x^2-25*x+8,-5*x-11,-2*x^2-x+3,0,8*x^2+15*x-6,-9*x^2-22*x+10,2*x^2-5*x+2,-6*x^2-11*x+6,0,-2*x^2-x+3,5*x+7,4*x^2+9*x-1,-2*x+1,0,5*x^2+8*x,-x^2-2*x-1,-5*x^2-11*x+2,-2*x^2-7*x+4,0]];
E[475,7] = [x^3-4*x^2+3*x+1, [1,x,-x^2+3*x,x^2-2,0,-x^2+3*x+1,-x^2+x+2,4*x^2-7*x-1,-2*x^2+5*x-1,0,-3*x^2+7*x+1,x^2-2*x+1,x^2-2*x+1,-3*x^2+5*x+1,0,7*x^2-13*x,x^2-5*x+4,-3*x^2+5*x+2,-1,0,-2*x^2+5*x,-5*x^2+10*x+3,-x+4,4*x^2-8*x-3,0,2*x^2-2*x-1,x^2-5*x+3,-5*x^2+8*x-1,5*x^2-15*x+1,0,-3*x^2+4*x+3,7*x^2-7*x-5,-5*x^2+12*x+4,-x^2+x-1,0,-3*x^2+x+5,x^2-5*x+5,-x,x-1,0,8*x^2-19*x-1,-3*x^2+6*x+2,6*x^2-16*x+3,-4*x^2+4*x+3,0,-x^2+4*x,-x^2+4*x-1,6*x^2-11*x-6,2*x^2-3*x-5,0,x-4,4*x^2-3*x-4,-4*x^2+14*x+1,-x^2-1,0,-6*x^2+4*x+3,x^2-3*x,5*x^2-14*x-5,-2*x^2+10,0,x^2-6*x-1,-8*x^2+12*x+3,4*x-3,7*x^2-7,0,-8*x^2+19*x+5,-5*x^2+19*x-9,-5*x^2+12*x-7,-3*x^2+9*x-1,0,2*x^2-13,-5*x^2+4*x-1,8*x^2-15*x-7,-x^2+2*x-1,0,-x^2+2,-x^2+6*x,x^2-x,-3*x^2+9*x+4,0,7*x^2-17*x-1,13*x^2-25*x-8,-5*x+11,-2*x^2+x+3,0,8*x^2-15*x-6,9*x^2-22*x-10,-2*x^2-5*x-2,-6*x^2+11*x+6,0,-2*x^2+x+3,5*x-7,-4*x^2+9*x+1,2*x+1,0,5*x^2-8*x,x^2-2*x+1,5*x^2-11*x-2,-2*x^2+7*x+4,0]];
E[475,8] = [x^4-2*x^3-6*x^2+8*x+9, [1,x,-x^3+5*x+2,x^2-2,0,-2*x^3-x^2+10*x+9,2*x^2-2*x-8,x^3-4*x,2*x+1,0,2*x^2-2*x-6,-3*x^3-2*x^2+15*x+14,x^3-2*x^2-3*x+4,2*x^3-2*x^2-8*x,0,2*x^3-8*x-5,2*x^3-10*x-6,2*x^2+x,1,0,2*x^3-2*x^2-10*x+2,2*x^3-2*x^2-6*x,-2*x^3+2*x^2+8*x,-4*x^3-x^2+18*x+9,0,3*x^2-4*x-9,-2*x^3-2*x^2+10*x+14,2*x^3-12*x-2,-2*x^3+10*x+6,0,-2*x^3-2*x^2+10*x+14,2*x^3+4*x^2-13*x-18,-2*x^2+6,4*x^3+2*x^2-22*x-18,0,2*x^3+x^2-4*x-2,x^3-3*x-2,x,2*x^2-2*x-10,0,-2*x^2+12,2*x^3+2*x^2-14*x-18,2*x^2-2*x-8,2*x^3+2*x^2-12*x-6,0,-2*x^3-4*x^2+16*x+18,-2*x^2-2*x+12,-3*x^3-2*x^2+11*x+8,-4*x^2+21,0,2*x^3-14*x-12,x^3-3*x-8,-x^3+3*x+6,-6*x^3-2*x^2+30*x+18,0,4*x^2-2*x-18,-x^3+5*x+2,-4*x^3-2*x^2+22*x+18,2*x^2-4*x-6,0,4*x^2-2*x-10,-6*x^3-2*x^2+30*x+18,4*x^3-2*x^2-18*x-8,4*x^3-x^2-18*x-8,0,-2*x^3+6*x,-3*x^3+2*x^2+15*x+4,6*x^3+2*x^2-30*x-24,-2*x^3-2*x^2+14*x+18,0,-2*x^3-2*x^2+14*x+6,5*x^3+4*x^2-20*x-18,-2*x^3+10*x-2,2*x^3+3*x^2-10*x-9,0,x^2-2,-4*x+12,2*x^3-2*x^2-10*x,2*x^2-4*x-10,0,4*x^2-2*x-11,-2*x^3+12*x,2*x^3+2*x^2-12*x-12,2*x^3+2*x^2-14*x-22,0,2*x^3-2*x^2-8*x,-2*x^3+14*x+12,2*x^3+4*x^2-10*x-18,2*x^3-6*x-6,0,-2*x^3+2*x^2+14*x-14,-4*x^3+18*x+18,4*x^2+4*x-8,-2*x^3-2*x^2+12*x,0,-5*x^2-4*x+9,-x^3-4*x^2+7*x+10,-4*x^3+21*x,4*x^3-2*x^2-14*x-6,0]];
E[475,9] = [x^6-10*x^4+27*x^2-16, [4,4*x,-2*x^5+16*x^3-26*x,4*x^2-8,0,-4*x^4+28*x^2-32,-x^5+10*x^3-19*x,4*x^3-16*x,-8*x^2+36,0,4*x^4-24*x^2+20,-4*x^3+20*x,-4*x^3+20*x,8*x^2-16,0,4*x^4-24*x^2+16,-x^5+2*x^3+13*x,-8*x^3+36*x,-4,0,-8*x^2+40,4*x^5-24*x^3+20*x,2*x^5-12*x^3+6*x,4*x^4-36*x^2+64,0,-4*x^4+20*x^2,-4*x^5+40*x^3-92*x,2*x^5-12*x^3+22*x,24,0,8*x^4-56*x^2+64,4*x^5-32*x^3+48*x,2*x^5-12*x^3-2*x,-8*x^4+40*x^2-16,0,-8*x^4+52*x^2-72,2*x^5-16*x^3+18*x,-4*x,-8*x^4+64*x^2-96,0,-8*x^4+56*x^2-56,-8*x^3+40*x,x^5-10*x^3+19*x,8*x^4-40*x^2+24,0,8*x^4-48*x^2+32,-5*x^5+34*x^3-47*x,4*x^5-28*x^3+24*x,4*x^4-24*x^2+16,0,-8*x^4+64*x^2-88,-4*x^5+28*x^3-40*x,-4*x^3+4*x,16*x^2-64,0,8*x^4-48*x^2+64,2*x^5-16*x^3+26*x,24*x,-8*x^2+40,0,-12*x^4+80*x^2-92,8*x^5-56*x^3+64*x,-9*x^5+74*x^3-139*x,-12*x^2+32,0,8*x^4-56*x^2+32,8*x^5-68*x^3+116*x,-6*x^5+36*x^3-42*x,8*x^4-56*x^2+48,0,8*x^2+8,-8*x^5+68*x^3-144*x,5*x^5-42*x^3+79*x,4*x^4-36*x^2+32,0,-4*x^2+8,3*x^5-14*x^3+x,-8*x^5+64*x^3-96*x,8*x^4-56*x^2+48,0,16*x^4-120*x^2+180,-8*x^5+56*x^3-56*x,-2*x^5+12*x^3+10*x,-8*x^4+56*x^2-80,0,-8*x^2+16,-12*x^5+96*x^3-156*x,8*x^3-16*x,-8*x^4+80*x^2-128,0,-8*x^4+56*x^2-80,4*x^5-24*x^3+20*x,16*x^3-96*x,-16*x^4+88*x^2-80,0,4*x^4-12*x^2-64,-4*x^3+20*x,4*x^5-24*x^3+16*x,4*x^4-40*x^2+52,0]];
E[475,10] = [x, [1,0,2,-2,0,0,1,0,1,0,3,-4,4,0,0,4,3,0,1,0,2,0,0,0,0,0,-4,-2,6,0,-4,0,6,0,0,-2,-2,0,8,0,-6,0,1,-6,0,0,3,8,-6,0,6,-8,-12,0,0,0,2,0,-6,0,-1,0,1,-8,0,0,4,-6,0,0,6,0,7,0,0,-2,3,0,8,0,-11,0,-12,-4,0,0,12,0,12,0,4,0,-8,0,0,0,-8,0,3,0]];

E[476,1] = [x^2+3*x-1, [1,0,x,0,-x-3,0,1,0,-3*x-2,0,2*x+4,0,-2*x-6,0,-1,0,-1,0,-6,0,x,0,-2*x-2,0,3*x+5,0,4*x-3,0,-2*x-8,0,x-7,0,-2*x+2,0,-x-3,0,4*x+6,0,-2,0,5*x+8,0,-x-4,0,2*x+9,0,10,0,1,0,-x,0,-x+1,0,-4*x-14,0,-6*x,0,4*x+4,0,-x-4,0,-3*x-2,0,6*x+20,0,-x+3,0,4*x-2,0,-2,0,-5*x-12,0,-4*x+3,0,2*x+4,0,-6,0,-6*x+10,0,4*x+8,0,x+3,0,-2*x-2,0,-2,0,-2*x-6,0,-10*x+1,0,6*x+18,0,3*x-3,0,2*x-14,0,-8*x-10,0,4*x+12,0,-1,0,2*x-10,0,-2,0,-6*x+4,0,4*x+18,0,2*x+8,0,4*x+18,0,-1,0,4*x+9,0,-7*x+5,0,-3,0,-7*x-3,0,-x-1,0,-8*x-8,0,-6,0,3*x+5,0,3*x-4,0,5*x-3,0,10*x,0,-8*x-28,0]];
E[476,2] = [x^2+x-1, [1,0,x,0,-x-1,0,-1,0,-x-2,0,-2*x-4,0,-2*x-2,0,-1,0,1,0,4*x-2,0,-x,0,6*x+2,0,x-3,0,-4*x-1,0,6*x+4,0,-7*x-5,0,-2*x-2,0,x+1,0,-4*x-6,0,-2,0,5*x+8,0,5*x-4,0,2*x+3,0,4*x-2,0,1,0,x,0,-11*x-7,0,4*x+6,0,-6*x+4,0,0,0,7*x+4,0,x+2,0,2*x+4,0,5*x-5,0,-4*x+6,0,-8*x-2,0,3*x+12,0,-4*x+1,0,2*x+4,0,-8*x-10,0,6*x+2,0,-12*x-4,0,-x-1,0,-2*x+6,0,2,0,2*x+2,0,2*x-7,0,2*x-2,0,-5*x+7,0,6*x+10,0,4*x+6,0,-12*x-4,0,1,0,2*x+14,0,-4*x-10,0,-2*x-4,0,6,0,-2*x-8,0,4*x+6,0,-1,0,12*x+9,0,3*x+5,0,8*x+7,0,3*x-3,0,-9*x+5,0,-8,0,-4*x+2,0,x+5,0,x+4,0,13*x+7,0,-6*x+4,0,8*x+12,0]];
E[476,3] = [x^2-x-3, [1,0,x,0,x-1,0,1,0,x,0,0,0,-2*x+4,0,3,0,1,0,-2*x+4,0,x,0,0,0,-x-1,0,-2*x+3,0,0,0,-x+3,0,0,0,x-1,0,2*x,0,2*x-6,0,-3*x,0,-x+6,0,3,0,-2*x+2,0,1,0,x,0,-x-5,0,0,0,2*x-6,0,-4*x+4,0,3*x-4,0,x,0,4*x-10,0,-x-3,0,0,0,6*x,0,3*x-4,0,-2*x-3,0,0,0,-2*x+10,0,-2*x-6,0,6,0,x-1,0,0,0,2*x-14,0,-2*x+4,0,2*x-3,0,4*x-10,0,x-5,0,0,0,-6*x+12,0,4*x-2,0,3,0,-2*x-4,0,-8*x-2,0,2*x+6,0,-2*x+2,0,0,0,2*x-6,0,1,0,-11,0,-3*x-9,0,-6*x+3,0,-3*x+11,0,5*x-3,0,4*x-16,0,-2*x+4,0,3*x-9,0,-x-14,0,3*x+11,0,-6,0,0,0]];
E[476,4] = [x^2+x-3, [1,0,x,0,x+1,0,-1,0,-x,0,4,0,2*x,0,3,0,-1,0,-2*x+4,0,-x,0,4,0,x-1,0,-2*x-3,0,-4*x,0,-x+5,0,4*x,0,-x-1,0,-6*x-4,0,-2*x+6,0,5*x,0,x-2,0,-3,0,2*x+2,0,1,0,-x,0,x+3,0,4*x+4,0,6*x-6,0,-8,0,-5*x+4,0,x,0,6,0,x+5,0,4*x,0,-2*x-8,0,-5*x-4,0,-2*x+3,0,-4,0,2*x+2,0,2*x-6,0,-4*x-6,0,-x-1,0,4*x-12,0,-6*x-6,0,-2*x,0,6*x-3,0,4*x-2,0,x-11,0,-4*x,0,2*x-8,0,14,0,-3,0,2*x,0,4*x+14,0,2*x-18,0,-2*x-14,0,4*x+4,0,2*x-6,0,1,0,5,0,-5*x+15,0,-6*x-3,0,-5*x+3,0,-3*x+3,0,4*x,0,2*x-4,0,-3*x-9,0,-7*x+2,0,-5*x-3,0,6,0,8*x,0]];

E[477,1] = [x, [1,1,0,-1,0,0,-4,-3,0,0,0,0,-3,-4,0,-1,3,0,-5,0,0,0,-7,0,-5,-3,0,4,7,0,4,5,0,3,0,0,5,-5,0,0,-6,0,-2,0,0,-7,2,0,9,-5,0,3,1,0,0,12,0,7,2,0,-8,4,0,7,0,0,-12,-3,0,0,-1,0,-4,5,0,5,0,0,-1,0,0,-6,1,0,0,-2,0,0,14,0,12,7,0,2,0,0,1,9,0,5,2,0,-1,9,0,1,-6,0]];
E[477,2] = [x^4-3*x^3-x^2+5*x+1, [1,x,0,x^2-2,-x^3+3*x^2-2,0,-x^3+3*x^2-3,x^3-4*x,0,-x^2+3*x+1,-2*x^2+2*x+6,0,-x^3-x^2+6*x+2,-x^2+2*x+1,0,3*x^3-5*x^2-5*x+3,2*x^3-4*x^2-4*x+6,0,2*x^3-4*x^2-2*x+2,x^3-3*x^2+x+4,0,-2*x^3+2*x^2+6*x,-x^3+x^2+2*x+3,0,-x^3+3*x^2-2*x-2,-4*x^3+5*x^2+7*x+1,0,x^3-4*x^2+x+6,-2*x^3+4*x^2+2*x,0,-2*x^3+6*x^2-2*x-4,2*x^3-2*x^2-4*x-3,0,2*x^3-2*x^2-4*x-2,-2*x+5,0,3*x^3-5*x^2-6*x+1,2*x^3-8*x-2,0,4*x^2-7*x-3,3*x^3-3*x^2-8*x-1,0,-x^3+5*x^2-6*x-6,-4*x^3+8*x^2+6*x-10,0,-2*x^3+x^2+8*x+1,2*x^3-6*x^2+2*x+10,0,x^3-3*x^2-2*x+1,-3*x^2+3*x+1,0,-5*x^3+5*x^2+9*x,1,0,-4*x^3+10*x^2+4*x-10,-x^3+4*x^2-3*x-3,0,-2*x^3+10*x+2,-2*x^3+8*x^2+2*x-12,0,2*x^3-4*x^2-8*x+8,-4*x^2+6*x+2,0,-2*x^3+8*x^2-3*x-8,-x^3-3*x^2+12*x+1,0,6*x^3-12*x^2-12*x+12,6*x^2-4*x-14,0,-2*x^2+5*x,3*x^3-15*x^2+8*x+18,0,2*x^3-12*x^2+10*x+14,4*x^3-3*x^2-14*x-3,0,2*x^3+2*x^2-8*x-6,-4*x^3+12*x^2+2*x-16,0,-2*x^3+6*x+4,2*x^3-x^2-5*x-8,0,6*x^3-5*x^2-16*x-3,3*x^3-3*x^2-12*x+10,0,-2*x^3+10*x^2-6*x-14,2*x^3-7*x^2-x+1,0,-2*x^2-2*x+4,-2*x^3+6*x^2-2*x-6,0,-2*x^2+6*x-1,-3*x^3+4*x^2+7*x-4,0,4*x^2-2,2*x^3-4*x^2-4,0,5*x^3-11*x^2-6*x+10,-x^2-4*x-1,0,-x^3-3*x^2+5*x+4,-4*x^3+12*x^2-4*x-14,0,-2*x^2+8*x+2,-2*x^3-6*x^2+11*x+3,0,x,6*x^2-8*x-4,0]];
E[477,3] = [x^4+3*x^3-x^2-7*x-3, [1,x,0,x^2-2,-x^3-x^2+2*x,0,-x^3-3*x^2+2*x+5,x^3-4*x,0,2*x^3+x^2-7*x-3,4*x^3+6*x^2-12*x-12,0,3*x^3+5*x^2-8*x-10,x^2-2*x-3,0,-3*x^3-5*x^2+7*x+7,-4*x^3-8*x^2+10*x+12,0,2*x^2+4*x-4,-3*x^3-3*x^2+7*x+6,0,-6*x^3-8*x^2+16*x+12,-x^3-x^2+6*x+3,0,-x^3+x^2+4*x-2,-4*x^3-5*x^2+11*x+9,0,3*x^3+4*x^2-7*x-10,4*x^3+6*x^2-12*x-12,0,2*x^2-2*x-10,2*x^3+4*x^2-6*x-9,0,4*x^3+6*x^2-16*x-12,4*x^3+6*x^2-8*x-9,0,-x^3-3*x^2+4*x+5,2*x^3+4*x^2-4*x,0,2*x^3+2*x^2-x-3,-x^3+3*x^2+8*x-9,0,3*x^3+3*x^2-12*x-10,2*x^3-2*x^2-6*x+6,0,2*x^3+5*x^2-4*x-3,-4*x^3-6*x^2+14*x+12,0,-3*x^3-5*x^2+8*x+9,4*x^3+3*x^2-9*x-3,0,x^3-3*x^2-3*x+8,1,0,-2*x^3-6*x^2+10*x+12,-5*x^3-6*x^2+15*x+15,0,-6*x^3-8*x^2+16*x+12,-2*x^3-8*x^2+12,0,2*x^3+6*x^2-6*x-10,2*x^3-2*x^2-10*x,0,4*x^3+6*x^2-9*x-8,-x^3-5*x^2+4*x+9,0,-4*x^2-2*x+8,2*x^3+4*x^2-4*x-12,0,-6*x^3-4*x^2+19*x+12,-x^3+x^2+6*x,0,-8*x^3-14*x^2+20*x+26,3*x^2-2*x-3,0,-2*x^3-6*x^2+6*x+14,-2*x^3+4*x^2+10*x-12,0,-2*x^2+8,2*x^3+7*x^2-3*x-6,0,6*x^3+7*x^2-16*x-3,-x^3-3*x^2-2*x,0,8*x^3+14*x^2-18*x-18,-6*x^3-9*x^2+11*x+9,0,4*x^3+12*x^2-12*x-18,2*x^3+8*x^2-6*x-18,0,6*x^2+2*x-17,x^3-x,0,6*x^3+10*x^2-16*x-12,2*x^3-2*x^2-14*x,0,x^3-x^2-8*x+2,4*x^3+5*x^2-12*x-9,0,-7*x^3-7*x^2+17*x+16,-4*x^2+6,0,-4*x^3-8*x^2+10*x+8,2*x^3+8*x^2-7*x-15,0,x,4*x^2+10*x-6,0]];
E[477,4] = [x^4+3*x^3-x^2-5*x+1, [1,x,0,x^2-2,-x^3-3*x^2+2,0,x^3+3*x^2-3,x^3-4*x,0,-x^2-3*x+1,2*x^2+2*x-6,0,x^3-x^2-6*x+2,x^2+2*x-1,0,-3*x^3-5*x^2+5*x+3,2*x^3+4*x^2-4*x-6,0,-2*x^3-4*x^2+2*x+2,x^3+3*x^2+x-4,0,2*x^3+2*x^2-6*x,-x^3-x^2+2*x-3,0,x^3+3*x^2+2*x-2,-4*x^3-5*x^2+7*x-1,0,-x^3-4*x^2-x+6,-2*x^3-4*x^2+2*x,0,2*x^3+6*x^2+2*x-4,2*x^3+2*x^2-4*x+3,0,-2*x^3-2*x^2+4*x-2,-2*x-5,0,-3*x^3-5*x^2+6*x+1,2*x^3-8*x+2,0,4*x^2+7*x-3,3*x^3+3*x^2-8*x+1,0,x^3+5*x^2+6*x-6,-4*x^3-8*x^2+6*x+10,0,2*x^3+x^2-8*x+1,2*x^3+6*x^2+2*x-10,0,-x^3-3*x^2+2*x+1,3*x^2+3*x-1,0,5*x^3+5*x^2-9*x,-1,0,4*x^3+10*x^2-4*x-10,-x^3-4*x^2-3*x+3,0,2*x^3-10*x+2,-2*x^3-8*x^2+2*x+12,0,-2*x^3-4*x^2+8*x+8,4*x^2+6*x-2,0,2*x^3+8*x^2+3*x-8,-x^3+3*x^2+12*x-1,0,-6*x^3-12*x^2+12*x+12,-6*x^2-4*x+14,0,-2*x^2-5*x,3*x^3+15*x^2+8*x-18,0,-2*x^3-12*x^2-10*x+14,4*x^3+3*x^2-14*x+3,0,-2*x^3+2*x^2+8*x-6,-4*x^3-12*x^2+2*x+16,0,2*x^3-6*x+4,2*x^3+x^2-5*x+8,0,-6*x^3-5*x^2+16*x-3,3*x^3+3*x^2-12*x-10,0,2*x^3+10*x^2+6*x-14,2*x^3+7*x^2-x-1,0,-2*x^2+2*x+4,-2*x^3-6*x^2-2*x+6,0,-2*x^2-6*x-1,-3*x^3-4*x^2+7*x+4,0,4*x^2-2,2*x^3+4*x^2+4,0,-5*x^3-11*x^2+6*x+10,x^2-4*x+1,0,x^3-3*x^2-5*x+4,-4*x^3-12*x^2-4*x+14,0,-2*x^2-8*x+2,-2*x^3+6*x^2+11*x-3,0,-x,-6*x^2-8*x+4,0]];
E[477,5] = [x^5-10*x^3+22*x-5, [3,3*x,0,3*x^2-6,-3*x^3+3*x^2+18*x-12,0,x^4-4*x^3-6*x^2+21*x+4,3*x^3-12*x,0,-3*x^4+3*x^3+18*x^2-12*x,2*x^4-2*x^3-12*x^2+6*x+2,0,2*x^4+x^3-15*x^2-6*x+20,-4*x^4+4*x^3+21*x^2-18*x+5,0,3*x^4-18*x^2+12,-6*x,0,-2*x^4+2*x^3+12*x^2-6*x-2,3*x^4-6*x^3-18*x^2+30*x+9,0,-2*x^4+8*x^3+6*x^2-42*x+10,-x^4+4*x^3-21*x+26,0,-3*x^4+18*x^2+3*x+3,x^4+5*x^3-6*x^2-24*x+10,0,2*x^4-11*x^3-6*x^2+51*x-28,-6*x^2+12,0,2*x^4-2*x^3-12*x^2+12*x+8,6*x^3-30*x+15,0,-6*x^2,-5*x^4-x^3+39*x^2+9*x-26,0,x^4-4*x^3-6*x^2+15*x+4,2*x^4-8*x^3-6*x^2+42*x-10,0,6*x^3-6*x^2-33*x+15,3*x^4-24*x^2-3*x+18,0,-2*x^4+5*x^3+15*x^2-30*x-8,4*x^4-10*x^3-18*x^2+42*x-14,0,4*x^4-10*x^3-21*x^2+48*x-5,-4*x^4+4*x^3+30*x^2-18*x-28,0,-2*x^4-x^3+15*x^2+6*x+1,-12*x^3+3*x^2+69*x-15,0,x^4+2*x^3+6*x^2-35,-3,0,2*x^4+4*x^3-12*x^2-36*x+2,-3*x^4+6*x^3+9*x^2-36*x,0,-6*x^3+12*x,2*x^4+4*x^3-18*x^2-30*x+38,0,-2*x^4+8*x^3-48*x+52,-2*x^4+8*x^3+12*x^2-36*x+10,0,6*x^2+15*x-24,-x^4+4*x^3+12*x^2-27*x-40,0,-6*x^4+6*x^3+42*x^2-24*x-30,-6*x^3+12*x,0,-x^4-11*x^3+9*x^2+84*x-25,4*x^4-7*x^3-15*x^2+42*x-32,0,2*x^4-2*x^3+6*x-40,-4*x^4+4*x^3+15*x^2-18*x+5,0,-4*x^4+10*x^3+18*x^2-42*x+14,4*x^4+2*x^3-24*x^2-30*x+16,0,2*x^4-2*x^3-12*x^2+18*x+2,6*x^3+3*x^2-45*x-18,0,6*x^3-3*x^2-48*x+15,4*x^4-7*x^3-27*x^2+42*x+40,0,6*x^4-6*x^3-36*x^2+24*x,5*x^4-5*x^3-30*x^2+36*x-10,0,-6*x^4+6*x^3+30*x^2-18*x,-4*x^4+10*x^3+24*x^2-54*x-22,0,3*x^4+3*x^3-33*x^2-33*x+60,-8*x^4+11*x^3+48*x^2-51*x-32,0,4*x^4-10*x^3-18*x^2+60*x-20,-2*x^4-4*x^3+12*x^2+36*x-2,0,6*x^4+3*x^3-45*x^2-18*x+36,-x^4-5*x^3+6*x^2+45*x-10,0,-6*x^4+3*x^3+33*x^2-21*x-6,-4*x^4+4*x^3+24*x^2-12*x+2,0,-2*x^4+2*x^3+6*x^2+10,6*x^3+12*x^2-9*x-15,0,-3*x,4*x^4-4*x^3-36*x^2+6*x+58,0]];
E[477,6] = [x^3-x^2-3*x+1, [1,x,0,x^2-2,-x^2+3,0,x^2-1,x^2-x-1,0,-x^2+1,-x^2+2*x+3,0,1,x^2+2*x-1,0,-2*x^2+2*x+3,2*x+1,0,-x+4,x^2-2*x-5,0,x^2+1,-2*x^2-x+4,0,-2*x^2+2*x+3,x,0,x^2+2*x+1,3*x^2-4*x-4,0,-x^2-4*x+3,-2*x^2-x+4,0,2*x^2+x,-2*x-2,0,x^2-6*x-2,-x^2+4*x,0,x^2-2*x-3,-2*x+4,0,-3*x^2+6*x+11,3*x^2-7,0,-3*x^2-2*x+2,2*x^2-4*x,0,2*x^2+2*x-7,-3*x+2,0,x^2-2,-1,0,-4*x^2+2*x+10,x^2+1,0,-x^2+5*x-3,-4*x^2+2*x+8,0,3*x^2+2*x-11,-5*x^2+1,0,x^2-6*x-4,-x^2+3,0,3*x^2-6*x-3,3*x^2+2*x-4,0,-2*x^2-2*x,3*x^2-7*x-3,0,x^2-4*x+1,-5*x^2+x-1,0,3*x^2-x-7,2*x^2+2*x-4,0,5*x^2-3*x-13,-3*x^2+4*x+9,0,-2*x^2+4*x,3*x-10,0,-3*x^2+5,3*x^2+2*x+3,0,x^2+2*x-5,4*x^2+4*x-10,0,x^2-1,-x^2-5*x-5,0,-2*x^2+6*x-2,-3*x^2+11,0,5*x^2-12,4*x^2-x-2,0,x^2-2*x-6,-x^2+2*x-9,0,-2*x^2+x+8,x^2-x-1,0,-x,3*x^2-2*x-11,0]];

E[478,1] = [x^4+6*x^3+10*x^2+3*x-1, [1,1,x,1,-x^3-4*x^2-4*x-3,x,2*x^3+7*x^2+2*x-4,1,x^2-3,-x^3-4*x^2-4*x-3,x^3+8*x^2+15*x+1,x,-3*x^3-15*x^2-16*x,2*x^3+7*x^2+2*x-4,2*x^3+6*x^2-1,1,-3*x^2-9*x-5,x^2-3,2*x^3+11*x^2+17*x,-x^3-4*x^2-4*x-3,-5*x^3-18*x^2-10*x+2,x^3+8*x^2+15*x+1,-3*x^3-12*x^2-8*x+1,x,3*x^3+15*x^2+20*x+6,-3*x^3-15*x^2-16*x,x^3-6*x,2*x^3+7*x^2+2*x-4,2*x^3+9*x^2+6*x-5,2*x^3+6*x^2-1,-3*x^3-17*x^2-23*x-2,1,2*x^3+5*x^2-2*x+1,-3*x^2-9*x-5,-2*x^3-6*x^2+7*x+12,x^2-3,-6*x^3-27*x^2-25*x+5,2*x^3+11*x^2+17*x,3*x^3+14*x^2+9*x-3,-x^3-4*x^2-4*x-3,x^3+6*x^2+13*x+7,-5*x^3-18*x^2-10*x+2,6*x^3+26*x^2+27*x+4,x^3+8*x^2+15*x+1,-3*x^3-8*x^2+5*x+11,-3*x^3-12*x^2-8*x+1,x^3+11*x^2+21*x-3,x,2*x^3+10*x^2+9*x+2,3*x^3+15*x^2+20*x+6,-3*x^3-9*x^2-5*x,-3*x^3-15*x^2-16*x,-3*x^2-14*x-9,x^3-6*x,-3*x^3-21*x^2-40*x-8,2*x^3+7*x^2+2*x-4,-x^3-3*x^2-6*x+2,2*x^3+9*x^2+6*x-5,-6*x^3-25*x^2-21*x+1,2*x^3+6*x^2-1,9*x^3+43*x^2+47*x+2,-3*x^3-17*x^2-23*x-2,6*x^3+19*x^2+11*x+7,1,10*x^3+45*x^2+45*x+4,2*x^3+5*x^2-2*x+1,4*x^3+11*x^2-5*x-10,-3*x^2-9*x-5,6*x^3+22*x^2+10*x-3,-2*x^3-6*x^2+7*x+12,-3*x^3-13*x^2-8*x+7,x^2-3,-3*x^3-16*x^2-26*x-4,-6*x^3-27*x^2-25*x+5,-3*x^3-10*x^2-3*x+3,2*x^3+11*x^2+17*x,-9*x^3-46*x^2-53*x-2,3*x^3+14*x^2+9*x-3,x^3-10*x,-x^3-4*x^2-4*x-3,-6*x^3-19*x^2-3*x+10,x^3+6*x^2+13*x+7,-4*x^3-18*x^2-19*x-10,-5*x^3-18*x^2-10*x+2,5*x^3+26*x^2+41*x+18,6*x^3+26*x^2+27*x+4,-3*x^3-14*x^2-11*x+2,x^3+8*x^2+15*x+1,-x^2-11*x-15,-3*x^3-8*x^2+5*x+11,-4*x^3-3*x^2+28*x+7,-3*x^3-12*x^2-8*x+1,x^3+7*x^2+7*x-3,x^3+11*x^2+21*x-3,-12*x^2-37*x-7,x,x^3+3*x^2-3*x-2,2*x^3+10*x^2+9*x+2,-10*x^3-46*x^2-50*x-1,3*x^3+15*x^2+20*x+6,3*x^2+7*x-6,-3*x^3-9*x^2-5*x,7*x^2+18*x-3,-3*x^3-15*x^2-16*x,6*x^3+27*x^2+18*x-2,-3*x^2-14*x-9,-x^3-2*x^2+2*x-8,x^3-6*x,2*x^3+4*x^2+x+15,-3*x^3-21*x^2-40*x-8,9*x^3+35*x^2+23*x-6,2*x^3+7*x^2+2*x-4,-6*x^3-25*x^2-12*x+17,-x^3-3*x^2-6*x+2,7*x^3+29*x^2+20*x-1,2*x^3+9*x^2+6*x-5,5*x^3+24*x^2+36*x+3,-6*x^3-25*x^2-21*x+1,-x^3+7*x^2+29*x+17,2*x^3+6*x^2-1]];
E[478,2] = [x^5-2*x^4-6*x^3+11*x^2+7*x-12, [1,1,x,1,-x^4+x^3+6*x^2-3*x-6,x,-x^2+4,1,x^2-3,-x^4+x^3+6*x^2-3*x-6,x^4-x^3-6*x^2+2*x+8,x,2*x^4-x^3-13*x^2+2*x+16,-x^2+4,-x^4+8*x^2+x-12,1,x^4-2*x^3-5*x^2+6*x+6,x^2-3,x^2-x-2,-x^4+x^3+6*x^2-3*x-6,-x^3+4*x,x^4-x^3-6*x^2+2*x+8,x^4+x^3-8*x^2-5*x+12,x,-x^4+x^3+5*x^2-3*x-5,2*x^4-x^3-13*x^2+2*x+16,x^3-6*x,-x^2+4,x^4-9*x^2+x+14,-x^4+8*x^2+x-12,-2*x^4+x^3+15*x^2-5*x-20,1,x^4-9*x^2+x+12,x^4-2*x^3-5*x^2+6*x+6,-2*x^4+2*x^3+12*x^2-7*x-12,x^2-3,-3*x^4+21*x^2+2*x-28,x^2-x-2,3*x^4-x^3-20*x^2+2*x+24,-x^4+x^3+6*x^2-3*x-6,-x^4+x^3+4*x^2-2*x-2,-x^3+4*x,-4*x^4+2*x^3+28*x^2-5*x-38,x^4-x^3-6*x^2+2*x+8,x^4-x^3-6*x^2+4*x+6,x^4+x^3-8*x^2-5*x+12,-x^4-x^3+9*x^2+4*x-12,x,x^4-8*x^2+9,-x^4+x^3+5*x^2-3*x-5,x^3-5*x^2-x+12,2*x^4-x^3-13*x^2+2*x+16,x^4-2*x^3-x^2+5*x-8,x^3-6*x,x^3-x^2-4*x,-x^2+4,x^3-x^2-2*x,x^4-9*x^2+x+14,-x^4+3*x^2+4*x+2,-x^4+8*x^2+x-12,x^3+3*x^2-5*x-10,-2*x^4+x^3+15*x^2-5*x-20,-x^4+7*x^2-12,1,2*x^4-13*x^2-3*x+12,x^4-9*x^2+x+12,2*x^4-17*x^2+x+24,x^4-2*x^3-5*x^2+6*x+6,3*x^4-2*x^3-16*x^2+5*x+12,-2*x^4+2*x^3+12*x^2-7*x-12,-x^4-x^3+9*x^2+5*x-12,x^2-3,-4*x^4+x^3+30*x^2-46,-3*x^4+21*x^2+2*x-28,-x^4-x^3+8*x^2+2*x-12,x^2-x-2,2*x^4-x^3-14*x^2+3*x+20,3*x^4-x^3-20*x^2+2*x+24,2*x^4+x^3-14*x^2-2*x+16,-x^4+x^3+6*x^2-3*x-6,x^4-9*x^2+9,-x^4+x^3+4*x^2-2*x-2,-2*x^4+18*x^2-x-28,-x^3+4*x,-2*x^4+x^3+14*x^2-x-24,-4*x^4+2*x^3+28*x^2-5*x-38,2*x^4-3*x^3-10*x^2+7*x+12,x^4-x^3-6*x^2+2*x+8,3*x^4-2*x^3-21*x^2+10*x+26,x^4-x^3-6*x^2+4*x+6,3*x^4-2*x^3-21*x^2+5*x+28,x^4+x^3-8*x^2-5*x+12,-3*x^4+3*x^3+17*x^2-6*x-24,-x^4-x^3+9*x^2+4*x-12,x^4-8*x^2+12,x,3*x^3-5*x^2-11*x+10,x^4-8*x^2+9,-x^4+8*x^2-x-12,-x^4+x^3+5*x^2-3*x-5,4*x^4-4*x^3-25*x^2+11*x+30,x^3-5*x^2-x+12,7*x^4-6*x^3-43*x^2+19*x+48,2*x^4-x^3-13*x^2+2*x+16,-2*x^4+15*x^2+2*x-24,x^4-2*x^3-x^2+5*x-8,-x^3+4*x+6,x^3-6*x,-3*x^4+18*x^2+8*x-22,x^3-x^2-4*x,-6*x^4+3*x^3+35*x^2-7*x-36,-x^2+4,-x^4+4*x^3+5*x^2-15*x-6,x^3-x^2-2*x,3*x^4+x^3-23*x^2-9*x+36,x^4-9*x^2+x+14,-x^4+x^3+8*x^2-3*x-12,-x^4+3*x^2+4*x+2,3*x^4-3*x^3-19*x^2+12*x+24,-x^4+8*x^2+x-12]];
E[478,3] = [x^4+2*x^3-4*x^2-5*x-1, [1,-1,x,1,-x^3-2*x^2+4*x+3,-x,2*x^3+3*x^2-10*x-6,-1,x^2-3,x^3+2*x^2-4*x-3,-3*x^3-4*x^2+13*x+5,x,3*x^3+5*x^2-14*x-10,-2*x^3-3*x^2+10*x+6,-2*x-1,1,-x^2-x-1,-x^2+3,2*x^3+3*x^2-9*x-4,-x^3-2*x^2+4*x+3,-x^3-2*x^2+4*x+2,3*x^3+4*x^2-13*x-5,-x^3-2*x^2+4*x+1,-x,-x^3-x^2+6*x,-3*x^3-5*x^2+14*x+10,x^3-6*x,2*x^3+3*x^2-10*x-6,x^2+2*x-3,2*x+1,-5*x^3-7*x^2+25*x+14,-1,2*x^3+x^2-10*x-3,x^2+x+1,2*x^3+4*x^2-7*x-8,x^2-3,-4*x^3-5*x^2+21*x+7,-2*x^3-3*x^2+9*x+4,-x^3-2*x^2+5*x+3,x^3+2*x^2-4*x-3,3*x^3+6*x^2-11*x-15,x^3+2*x^2-4*x-2,-2*x^3-4*x^2+5*x+4,-3*x^3-4*x^2+13*x+5,3*x^3+4*x^2-13*x-9,x^3+2*x^2-4*x-1,x^3+3*x^2+x-7,x,-2*x^3-4*x^2+9*x+6,x^3+x^2-6*x,-x^3-x^2-x,3*x^3+5*x^2-14*x-10,4*x^3+7*x^2-16*x-17,-x^3+6*x,x^3+x^2-2*x+2,-2*x^3-3*x^2+10*x+6,-x^3-x^2+6*x+2,-x^2-2*x+3,6*x^3+7*x^2-31*x-13,-2*x-1,x^3-x^2-7*x+4,5*x^3+7*x^2-25*x-14,-6*x^3-9*x^2+27*x+17,1,4*x^3+7*x^2-17*x-16,-2*x^3-x^2+10*x+3,-2*x^3-x^2+11*x+2,-x^2-x-1,-4*x-1,-2*x^3-4*x^2+7*x+8,-x^3-5*x^2+13,-x^2+3,3*x^3+4*x^2-14*x-8,4*x^3+5*x^2-21*x-7,x^3+2*x^2-5*x-1,2*x^3+3*x^2-9*x-4,-3*x^3-2*x^2+17*x,x^3+2*x^2-5*x-3,-7*x^3-8*x^2+34*x+14,-x^3-2*x^2+4*x+3,-2*x^3-5*x^2+5*x+10,-3*x^3-6*x^2+11*x+15,4*x^3+6*x^2-23*x-14,-x^3-2*x^2+4*x+2,x^3+4*x^2-x-2,2*x^3+4*x^2-5*x-4,x^3+2*x^2-3*x,3*x^3+4*x^2-13*x-5,-6*x^3-11*x^2+29*x+23,-3*x^3-4*x^2+13*x+9,-6*x^3-11*x^2+26*x+27,-x^3-2*x^2+4*x+1,3*x^3+5*x^2-11*x-5,-x^3-3*x^2-x+7,-x-3,-x,x^3+x^2-x-2,2*x^3+4*x^2-9*x-6,6*x^3+10*x^2-32*x-13,-x^3-x^2+6*x,-6*x^3-9*x^2+25*x+18,x^3+x^2+x,-6*x^3-7*x^2+30*x+17,-3*x^3-5*x^2+14*x+10,x^2+2*x+2,-4*x^3-7*x^2+16*x+17,x^3-2*x^2-4*x+10,x^3-6*x,2*x^3+4*x^2-5*x-3,-x^3-x^2+2*x-2,3*x^3+5*x^2-13*x-4,2*x^3+3*x^2-10*x-6,-2*x^3-x^2+4*x-7,x^3+x^2-6*x-2,x^3+3*x^2-2*x-1,x^2+2*x-3,-9*x^3-14*x^2+40*x+29,-6*x^3-7*x^2+31*x+13,-x^3-x^2+9*x+5,2*x+1]];
E[478,4] = [x^6-2*x^5-12*x^4+19*x^3+35*x^2-32*x-32, [124,-124,124*x,124,16*x^5-68*x^4-132*x^3+632*x^2+68*x-696,-124*x,38*x^5-84*x^4-360*x^3+726*x^2+394*x-816,-124,124*x^2-372,-16*x^5+68*x^4+132*x^3-632*x^2-68*x+696,22*x^5-16*x^4-228*x^3-30*x^2+450*x+624,124*x,-41*x^5+58*x^4+408*x^3-519*x^2-523*x+776,-38*x^5+84*x^4+360*x^3-726*x^2-394*x+816,-36*x^5+60*x^4+328*x^3-492*x^2-184*x+512,124,-56*x^5+52*x^4+648*x^3-228*x^2-1416*x+80,-124*x^2+372,27*x^5-14*x^4-308*x^3-3*x^2+789*x+112,16*x^5-68*x^4-132*x^3+632*x^2+68*x-696,-8*x^5+96*x^4+4*x^3-936*x^2+400*x+1216,-22*x^5+16*x^4+228*x^3+30*x^2-450*x-624,20*x^5+132*x^4-444*x^3-1380*x^2+1728*x+2416,-124*x,-4*x^5-76*x^4+188*x^3+648*x^2-1040*x-508,41*x^5-58*x^4-408*x^3+519*x^2+523*x-776,124*x^3-744*x,38*x^5-84*x^4-360*x^3+726*x^2+394*x-816,-2*x^5+24*x^4+32*x^3-234*x^2-210*x+552,36*x^5-60*x^4-328*x^3+492*x^2+184*x-512,-74*x^5+20*x^4+812*x^3+270*x^2-1570*x-1896,-124,28*x^5+36*x^4-448*x^3-320*x^2+1328*x+704,56*x^5-52*x^4-648*x^3+228*x^2+1416*x-80,24*x^5-40*x^4-136*x^3+80*x^2-580*x+1312,124*x^2-372,87*x^5-114*x^4-1020*x^3+817*x^2+2005*x-328,-27*x^5+14*x^4+308*x^3+3*x^2-789*x-112,-24*x^5-84*x^4+260*x^3+912*x^2-536*x-1312,-16*x^5+68*x^4+132*x^3-632*x^2-68*x+696,30*x^5-112*x^4-356*x^3+1154*x^2+794*x-1336,8*x^5-96*x^4-4*x^3+936*x^2-400*x-1216,-21*x^5+66*x^4+212*x^3-535*x^2-283*x+464,22*x^5-16*x^4-228*x^3-30*x^2+450*x+624,-60*x^5+100*x^4+588*x^3-820*x^2-844*x+936,-20*x^5-132*x^4+444*x^3+1380*x^2-1728*x-2416,18*x^5+32*x^4-164*x^3-374*x^2-218*x+1232,124*x,-32*x^5+12*x^4+512*x^3-272*x^2-1872*x+1020,4*x^5+76*x^4-188*x^3-648*x^2+1040*x+508,-60*x^5-24*x^4+836*x^3+544*x^2-1712*x-1792,-41*x^5+58*x^4+408*x^3-519*x^2-523*x+776,-45*x^5-18*x^4+596*x^3+253*x^2-1563*x-104,-124*x^3+744*x,100*x^5-208*x^4-980*x^3+1656*x^2+1324*x-1312,-38*x^5+84*x^4+360*x^3-726*x^2-394*x+816,40*x^5+16*x^4-516*x^3-156*x^2+976*x+864,2*x^5-24*x^4-32*x^3+234*x^2+210*x-552,x^5+50*x^4-140*x^3-689*x^2+1035*x+1584,-36*x^5+60*x^4+328*x^3-492*x^2-184*x+512,22*x^5+108*x^4-476*x^3-1146*x^2+1814*x+1864,74*x^5-20*x^4-812*x^3-270*x^2+1570*x+1896,-34*x^5+160*x^4+296*x^3-1498*x^2-222*x+2192,124,-2*x^5-100*x^4+32*x^3+1254*x^2+286*x-2672,-28*x^5-36*x^4+448*x^3+320*x^2-1328*x-704,-12*x^5+144*x^4-56*x^3-1280*x^2+600*x+1328,-56*x^5+52*x^4+648*x^3-228*x^2-1416*x+80,172*x^5-204*x^4-1760*x^3+1028*x^2+3056*x+640,-24*x^5+40*x^4+136*x^3-80*x^2+580*x-1312,-42*x^5+8*x^4+548*x^3+294*x^2-1186*x-2296,-124*x^2+372,80*x^5+32*x^4-908*x^3-808*x^2+1952*x+2472,-87*x^5+114*x^4+1020*x^3-817*x^2-2005*x+328,-84*x^5+140*x^4+724*x^3-900*x^2-636*x-128,27*x^5-14*x^4-308*x^3-3*x^2+789*x+112,84*x^5-264*x^4-724*x^3+2388*x^2+512*x-2848,24*x^5+84*x^4-260*x^3-912*x^2+536*x+1312,-88*x^5+64*x^4+1036*x^3-128*x^2-2296*x-1504,16*x^5-68*x^4-132*x^3+632*x^2+68*x-696,124*x^4-1116*x^2+1116,-30*x^5+112*x^4+356*x^3-1154*x^2-794*x+1336,-30*x^5-12*x^4+232*x^3+334*x^2+74*x-400,-8*x^5+96*x^4+4*x^3-936*x^2+400*x+1216,-20*x^5-256*x^4+444*x^3+2868*x^2-1728*x-4896,21*x^5-66*x^4-212*x^3+535*x^2+283*x-464,20*x^5+8*x^4-196*x^3-140*x^2+488*x-64,-22*x^5+16*x^4+228*x^3+30*x^2-450*x-624,-12*x^5+20*x^4+192*x^3-288*x^2-1012*x+584,60*x^5-100*x^4-588*x^3+820*x^2+844*x-936,108*x^5-180*x^4-1232*x^3+1600*x^2+2536*x-3024,20*x^5+132*x^4-444*x^3-1380*x^2+1728*x+2416,-128*x^5-76*x^4+1676*x^3+1020*x^2-4264*x-2368,-18*x^5-32*x^4+164*x^3+374*x^2+218*x-1232,-14*x^5+168*x^4-24*x^3-1762*x^2+886*x+2624,-124*x,-158*x^5+284*x^4+1660*x^3-2366*x^2-2950*x+1944,32*x^5-12*x^4-512*x^3+272*x^2+1872*x-1020,26*x^5-64*x^4-168*x^3+438*x^2+250*x-976,-4*x^5-76*x^4+188*x^3+648*x^2-1040*x-508,6*x^5+52*x^4-96*x^3-538*x^2-114*x+1816,60*x^5+24*x^4-836*x^3-544*x^2+1712*x+1792,6*x^5-72*x^4+152*x^3+702*x^2-1354*x-1408,41*x^5-58*x^4-408*x^3+519*x^2+523*x-776,8*x^5+152*x^4-376*x^3-1420*x^2+2080*x+768,45*x^5+18*x^4-596*x^3-253*x^2+1563*x+104,-15*x^5-130*x^4+240*x^3+1283*x^2-645*x-1936,124*x^3-744*x,-30*x^5+112*x^4+232*x^3-906*x^2-298*x+344,-100*x^5+208*x^4+980*x^3-1656*x^2-1324*x+1312,60*x^5+24*x^4-836*x^3-1040*x^2+2456*x+2784,38*x^5-84*x^4-360*x^3+726*x^2+394*x-816,-100*x^5+84*x^4+1104*x^3-664*x^2-1944*x+816,-40*x^5-16*x^4+516*x^3+156*x^2-976*x-864,76*x^5+204*x^4-1340*x^3-2144*x^2+4880*x+2336,-2*x^5+24*x^4+32*x^3-234*x^2-210*x+552,-9*x^5-202*x^4+144*x^3+1861*x^2-511*x-3096,-x^5-50*x^4+140*x^3+689*x^2-1035*x-1584,184*x^5-348*x^4-1828*x^3+3052*x^2+2456*x-4160,36*x^5-60*x^4-328*x^3+492*x^2+184*x-512]];

E[479,1] = [x^8+2*x^7-6*x^6-11*x^5+10*x^4+17*x^3-4*x^2-7*x-1, [1,x,-x^6-x^5+6*x^4+3*x^3-9*x^2-x+2,x^2-2,x^7+2*x^6-6*x^5-10*x^4+11*x^3+12*x^2-7*x-3,-x^7-x^6+6*x^5+3*x^4-9*x^3-x^2+2*x,x^6+2*x^5-5*x^4-9*x^3+5*x^2+8*x,x^3-4*x,-2*x^7-2*x^6+14*x^5+9*x^4-27*x^3-11*x^2+13*x+3,x^5+x^4-5*x^3-3*x^2+4*x+1,x^7+x^6-7*x^5-5*x^4+14*x^3+9*x^2-9*x-6,x^7+2*x^6-6*x^5-11*x^4+10*x^3+16*x^2-5*x-5,x^7+x^6-8*x^5-6*x^4+19*x^3+11*x^2-13*x-6,x^7+2*x^6-5*x^5-9*x^4+5*x^3+8*x^2,x^6+x^5-6*x^4-3*x^3+9*x^2+x-3,x^4-6*x^2+4,-3*x^7-4*x^6+20*x^5+19*x^4-39*x^3-23*x^2+22*x+5,2*x^7+2*x^6-13*x^5-7*x^4+23*x^3+5*x^2-11*x-2,-2*x^7-2*x^6+12*x^5+6*x^4-17*x^3-x^2+3*x-2,-2*x^7-3*x^6+13*x^5+15*x^4-25*x^3-20*x^2+15*x+6,x^7+x^6-7*x^5-4*x^4+15*x^3+5*x^2-10*x-4,-x^7-x^6+6*x^5+4*x^4-8*x^3-5*x^2+x+1,-2*x^7-3*x^6+11*x^5+13*x^4-14*x^3-14*x^2+3*x+3,2*x^7+2*x^6-12*x^5-6*x^4+17*x^3+x^2-2*x+1,x^7-9*x^5+22*x^3+2*x^2-14*x-5,-x^7-2*x^6+5*x^5+9*x^4-6*x^3-9*x^2+x+1,2*x^7+5*x^6-10*x^5-25*x^4+13*x^3+30*x^2-4*x-6,-x^6-2*x^5+5*x^4+9*x^3-6*x^2-9*x+1,-x^4-3*x^3+3*x^2+9*x-2,x^7+x^6-6*x^5-3*x^4+9*x^3+x^2-3*x,x^7-x^6-8*x^5+10*x^4+17*x^3-19*x^2-8*x+1,x^5-8*x^3+12*x,3*x^7+5*x^6-18*x^5-25*x^4+29*x^3+34*x^2-12*x-11,2*x^7+2*x^6-14*x^5-9*x^4+28*x^3+10*x^2-16*x-3,-2*x^7-4*x^6+11*x^5+19*x^4-17*x^3-21*x^2+10*x+4,2*x^7+3*x^6-13*x^5-15*x^4+25*x^3+19*x^2-14*x-4,-2*x^7-4*x^6+13*x^5+22*x^4-26*x^3-31*x^2+17*x+6,2*x^7-16*x^5+3*x^4+33*x^3-5*x^2-16*x-2,x^7+3*x^6-5*x^5-17*x^4+7*x^3+26*x^2-3*x-8,x^7+x^6-9*x^5-7*x^4+24*x^3+13*x^2-16*x-4,x^7-6*x^5+4*x^4+7*x^3-12*x^2+2*x+4,-x^7-x^6+7*x^5+5*x^4-12*x^3-6*x^2+3*x+1,-3*x^7-3*x^6+19*x^5+13*x^4-28*x^3-16*x^2+5*x+4,-x^7-2*x^6+7*x^5+12*x^4-16*x^3-21*x^2+12*x+11,-x^7-3*x^6+5*x^5+15*x^4-9*x^3-16*x^2+9*x+1,x^7-x^6-9*x^5+6*x^4+20*x^3-5*x^2-11*x-2,-x^5-x^4+8*x^3+6*x^2-12*x-5,-4*x^7-4*x^6+28*x^5+19*x^4-53*x^3-26*x^2+25*x+12,x^7+2*x^6-6*x^5-11*x^4+9*x^3+15*x^2-6,-2*x^7-3*x^6+11*x^5+12*x^4-15*x^3-10*x^2+2*x+1,2*x^7+2*x^6-13*x^5-7*x^4+23*x^3+4*x^2-9*x,-2*x^7-3*x^6+14*x^5+16*x^4-30*x^3-25*x^2+20*x+11,-2*x^7-2*x^6+17*x^5+11*x^4-44*x^3-17*x^2+31*x+9,x^7+2*x^6-3*x^5-7*x^4-4*x^3+4*x^2+8*x+2,-3*x^7-4*x^6+19*x^5+19*x^4-33*x^3-26*x^2+17*x+10,-3*x^7-6*x^6+15*x^5+27*x^4-16*x^3-25*x^2+x,4*x^7+5*x^6-26*x^5-22*x^4+46*x^3+24*x^2-17*x-8,-x^5-3*x^4+3*x^3+9*x^2-2*x,-3*x^7-x^6+26*x^5+6*x^4-64*x^3-17*x^2+44*x+14,-x^7-2*x^6+6*x^5+11*x^4-10*x^3-17*x^2+5*x+7,-x^7+x^6+11*x^5-4*x^4-31*x^3-4*x^2+21*x+8,-3*x^7-2*x^6+21*x^5+7*x^4-36*x^3-4*x^2+8*x+1,-x^6-4*x^5+2*x^4+19*x^3+5*x^2-19*x-4,x^6-10*x^4+24*x^2-8,x^5+2*x^4-4*x^3-8*x^2+2*x+6,-x^7+8*x^5-x^4-17*x^3+10*x+3,6*x^7+10*x^6-35*x^5-46*x^4+54*x^3+50*x^2-19*x-10,4*x^7+6*x^6-27*x^5-30*x^4+54*x^3+38*x^2-33*x-8,-x^7-x^6+7*x^5+5*x^4-14*x^3-9*x^2+10*x+6,-x^6-3*x^5+3*x^4+13*x^3+2*x^2-10*x-2,2*x^7+4*x^6-10*x^5-19*x^4+9*x^3+18*x^2+2*x+3,-5*x^7-5*x^6+33*x^5+19*x^4-61*x^3-16*x^2+32*x+6,2*x^7+2*x^6-15*x^5-9*x^4+33*x^3+10*x^2-19*x-6,x^6-6*x^4+3*x^3+9*x^2-8*x-2,-x^7+2*x^6+10*x^5-14*x^4-23*x^3+24*x^2+11*x-4,x^5+x^4-5*x^3-6*x^2+6*x+6,-2*x^7-5*x^6+9*x^5+25*x^4-6*x^3-30*x^2-5*x+5,x^7+x^6-6*x^5-3*x^4+9*x^3+x^2-x+1,6*x^7+10*x^6-39*x^5-53*x^4+73*x^3+71*x^2-37*x-16,3*x^7+3*x^6-22*x^5-16*x^4+46*x^3+28*x^2-27*x-11]];
E[479,2] = [x^32-3*x^31-49*x^30+150*x^29+1068*x^28-3349*x^27-13663*x^26+44102*x^25+114017*x^24-381227*x^23-652363*x^22+2278423*x^21+2617329*x^20-9659993*x^19-7391907*x^18+29333039*x^17+14485613*x^16-63589225*x^15-18892591*x^14+96842403*x^13+14744217*x^12-100301909*x^11-4507611*x^10+66698107*x^9-2210691*x^8-25684834*x^7+2153748*x^6+4689118*x^5-470371*x^4-268239*x^3+38414*x^2-242*x-7, [129898672517437825926381972477387781975273791,129898672517437825926381972477387781975273791*x,594648971532753466112437954971735874053255*x^31-1581786056233368506203882485282172715624889*x^30-29423407168504859402794049874143934460430130*x^29+79050272045494830678253891725500988089866665*x^28+648819969543095147878911912532805997578713920*x^27-1763900618132356022964033999573659030577089127*x^26-8417533322879146179223112757858714856596350040*x^25+23212456078760365877107024247317186507554645870*x^24+71450963574026732023449102145328861552856917796*x^23-200495464833753224046291138499745450092497787776*x^22-417488891368385633906168484420705836021480604432*x^21+1197205401603988579127350649533192400001284360520*x^20+1719756517273359216716428959680191883056419225657*x^19-5070941465837958606180169691829187963581408975816*x^18-5025900501951919662095041375183093632702280234662*x^17+15382696102385344280713070431732036719856710811044*x^16+10321592803713633762273534207948116133819869191308*x^15-33315862483743991666637028308379249779720495067144*x^14-14456491567042921977141729337427336137087535760540*x^13+50701755657048090525879105937183763598019309314852*x^12+12901684707992272202390803852488172673884318917408*x^11-52499443454245183681719272880917577507045482865528*x^10-6128064376644340693430482136279738492337985299300*x^9+34928792994661263891188389904509193646352926388056*x^8+406040222502678205058506645275819727550962236996*x^7-13476058509323921707022703261266022222351356263392*x^6+843963432125332466007464154660850080442455466293*x^5+2475101478587315915012846529695654097968657831412*x^4-239930175269313944123889803004559822089709551543*x^3-147134381451772915577178165975600393292654162464*x^2+20030204393299159954687327665177083713630512069*x-102839837509540903795424056603393626549815952,129898672517437825926381972477387781975273791*x^2-259797345034875651852763944954775563950547582,1030105604896516974940885442342379089765492*x^31-3338000639463150696895674393852488296302298*x^30-50429320795341699118544069525986004391479670*x^29+167417895026252911878166801688436684356500752*x^28+1098050266656135760968703369933055954488731774*x^27-3750686606524400969987598660826590583610644712*x^26-14032365504015299710711177186834310656280776876*x^25+49576635850813876832395740605289511049252826381*x^24+116973049242727452048649425619293532752323463715*x^23-430281124355003654108277871348250363553314021193*x^22-668641510061650817104793525941426808819109264827*x^21+2582581511958197675263990515497397986261997292647*x^20+2681178546685931842640869978038473068025229412365*x^19-10997779365948658490927696482207501028395154681617*x^18-7575360009401530379828330698820606453620559620879*x^17+33541872167500848056578240102548625243280723287302*x^16+14883032656579732150049775217028269497541680049933*x^15-73017443321641907979369233529520666070507300508769*x^14-19559326970243750803920705123344846233497369900903*x^13+111618646580675719044440386587130698610355461542303*x^12+15616553331399372175515584917552044111846720744381*x^11-115964646863067456762011068730668892524304436220009*x^10-5371010664578784005059237228169897864834237463640*x^9+77286029066713307088989388520670730962035104264283*x^8-1601787848097641684775938620818224565657311285681*x^7-29795466629630781985081882843302958989415910209093*x^6+1869294067690646598011248460941001048571044983943*x^5+5432979658478713378478506089123610568263759019401*x^4-396715575562450542816245018067676245145734487975*x^3-305141344630307815215516650185743233364727682527*x^2+36452793386099847468612147715736971557064166397*x-123662975306465908677471551590750265568588037,202160858364891892133431379633034906534876*x^31-285607563399939563284590080528876631820635*x^30-10147073684418189238611801520259393018121585*x^29+13734867946114446070828176622992084089837580*x^28+227578787530835335046520711626684411627261868*x^27-292844424827135571728872979079887609406726975*x^26-3012752863777127485383714442846309009942006140*x^25+3650871786776780077707263833316452400926942461*x^24+26200778636763781579355245760264501965202456109*x^23-29561904352363984492660122801479306016477012867*x^22-157656492062582171392948573147374965366755056345*x^21+163364519260509120009827839431973399556487369762*x^20+673363436625639147191718166132095777621915951399*x^19-630310606736158586664248468761834423136906227377*x^18-2060165370894802918148250486534135571446506180901*x^17+1707737931242150227760143505716124324067675870993*x^16+4497404763070863359516664108858331356023599110231*x^15-3222031759303967638047079041269913708571876826835*x^14-6885479687662348339028453810684935526603254856913*x^13+4134051232886532490526872245348670080158457641073*x^12+7144983575376644995725062646803571704279561298267*x^11-3447618131424614309293929573631637177360918475495*x^10-4733167736070280796199870847056827656989599300229*x^9+1720625352029392497812078220390241478697626586201*x^8+1797401612765576632999890947482488394551405571278*x^7-436760601015392246125266865983616114827994383447*x^6-313277717508405952497376308845502080300193147678*x^5+39775456119518836484883750313450552724594056062*x^4+12373664023201341419356078628063065827516905481*x^3-2812641199160031692555863937107178152251225501*x^2+41065213601385435003785928499766454971071758*x+4162542800729274262787065684802151118372785,801259027329361249903787877108751888497997*x^31-2212110193254191442802527666239733105916901*x^30-38912160137035182208359356847431734545984195*x^29+109308403057909805293783630602394447904488314*x^28+838922593063401282233262658657021453847213694*x^27-2407400330763162442595579841868396639326211612*x^26-10588805793362244253541032310976507625896290234*x^25+31205457777143207229633011990029425874778666151*x^24+86886880376627200447687605316234650040507671377*x^23-264868631365608835111195229024943123140389733811*x^22-486608425792975444768795347514913448373766793757*x^21+1550099270558319148843593434674105002104996569233*x^20+1898874497587453171819366395991249431386548589235*x^19-6415984060960419007288556905381262029055561200499*x^18-5167404468041688881062643019244196132953086213461*x^17+18957851307780560573855684297265636157520954419137*x^16+9608999515095219701688777193349392605176163258875*x^15-39854561477787729525402137329919501863095510200240*x^14-11535498217446552726951736301160224070727646711841*x^13+58656452231539747369597943023435646048854997832789*x^12+7566743958906623404845947513582557784699698569348*x^11-58514850555939360596044895634248498542612755411623*x^10-600388715741708152656566734762718212390091573291*x^9+37377480309128049725261550637212223571623128260045*x^8-2848576115404549775316459164417928949081019662081*x^7-13823819526421297117043941059239772280333274608604*x^6+1852473852914895531094578031397640531934689841552*x^5+2448147884104325259927377151077273906620910937614*x^4-386656205343345219491166592482106050304815697577*x^3-142586949470931281851176912019996895122419404519*x^2+26264561685819637328456736982793740621828351767*x-299607432643559930105134127554890294037485245,129898672517437825926381972477387781975273791*x^3-519594690069751303705527889909551127901095164*x,-41513034583277795232374278658474609686851*x^31+430637232345330534696929423430546704092416*x^30+1627226136792821053600457774694462669279987*x^29-21776922999001820546320999936295953978037460*x^28-24408626111261261912190945812648765775607215*x^27+492433883232393567446990357515723480839043704*x^26+132801208594813941830678251244649444341297538*x^25-6577548617106493444464125240855516360511234771*x^24+832060442360555723803598279265193042856340075*x^23+57758091280103478275495919716215593942301046319*x^22-19536062268626048874224911389260945702489739363*x^21-351151157188081076578106625252241233836470517205*x^20+160179158412932198867456540825291829327907937541*x^19+1516197705124837877467001656185219907651335238719*x^18-788040175655061467766564919969247112226422133095*x^17-4691555412462068205367402437218321848607467506261*x^16+2578521061712317159128128304548827951509597811845*x^15+10361217169247638515600639821608331133207984609915*x^14-5782364192683313195018084484942726898931196309528*x^13-16050264266659593817380018332509350010201895998698*x^12+8881045445869236848104329618281559109806651599919*x^11+16851867638900600570543673535063546427193066745887*x^10-9113920011027359780013272659415110564481439403551*x^9-11296544820028967940659131733059145676122805769713*x^8+5908199456518392387501218702517116395729315840953*x^7+4356071812330757052222487229754871603129711472586*x^6-2158845997449280296868354208244068920768388397675*x^5-800870948343291000686647842490461845115282849822*x^4+347194071198550388202226356132723457526589415065*x^3+53314325263028364011109086258559124579001134080*x^2-16441598319510303100550805542684131001294341143*x+258809855275191491089451903349220726458768360,-247683824773599772073018066825351027005822*x^31+45853844587632653559317148790571007029438*x^30+12902054291775365637033985337079820891676952*x^29-2102519373344368268162282488604913380813682*x^28-300862935725965620910573314421963011986012004*x^27+41967375685811717906140611889614847185140320*x^26+4146918463667685203552810827105908432415098197*x^25-476501510758723883185509860257503925468637649*x^24-37577054917119177302488936820392210299284802509*x^23+3361272665455686218567323881374641317576392769*x^22+235565209333060779668253483299347593421235713531*x^21-14946726072264034864182775882063652611595998503*x^20-1046966433387538788617567695378215417914130320061*x^19+39084822172267722856024988628121936670609052365*x^18+3325744284952724666475224727787368050405045597114*x^17-38678485082117796874589178077247496093497816663*x^16-7513826238116188343533907437186595096114232485069*x^15-97963090126258271805307283316196123605643631131*x^14+11860744458728448860874257402976758820512509785027*x^13+428452759888863352803607783515018516081827584617*x^12-12643088220347056724535096713418838219143226295781*x^11-727695308785590227128977658527524113637318304028*x^10+8579935210025693967065892612576399798293713940639*x^9+675457341696644323073102358599091806675453989291*x^8-3337375165394156305543080443722380903718149260765*x^7-349293818644017043733733678733013231253203880073*x^6+602692924657567493977651225497998615620774703345*x^5+87816227918329043203674208332350949686349749557*x^4-28826847278470998374348480017265808705121873939*x^3-3117683320394955606767025666403178797187443291*x^2+125622581078491199258222725456105474154661027*x+7210739234275618824586198096396653628358444,-956304044143028931596094345135445327497241*x^31+2331245075463355755349987836841899595729424*x^30+47351712461231795255939229145279937139678072*x^29-115566759347927660322101816546275985909087316*x^28-1045507507816105158452365242965762851795617855*x^27+2554655298488908201998720926277036795601511323*x^26+13593740407953540162903028911140577880439566280*x^25-33254631740580342800722913706923212663859085732*x^24-115803750482275172926833809732753748328886711678*x^23+283626766808937186615566758148171860442942294934*x^22+680584373506038024065652701047650214609979398267*x^21-1668969146150841886044935897867003905143072210930*x^20-2829958231750084227897714712811540808085729268088*x^19+6950449995215933843532581719371999561173425210130*x^18+8398555939473694993943996038473372118602195963746*x^17-20677188896003719627975717763336506552348997085522*x^16-17702657815135331176778451207749223519228495391622*x^15+43794751692383590285004897380157632521457878214238*x^14+25983353642407554530996612495407280327937573584190*x^13-64980637118723143575828153766442905930206672388530*x^12-25486802574597939058939695773677489946315162710146*x^11+65390351803930844379326723769330215262387361009142*x^10+15414212021849981067117240232980653967790576555262*x^9-42142292571114409038888888882275745996808608513398*x^8-4797467941599280614177966052784425261466944289918*x^7+15693912695705604401177461098407058257445146404211*x^6+370164994518558540680057428906624526954488574798*x^5-2762836233555288364550385371199489076196913354521*x^4+84569877836460012207836518908116591195347822094*x^3+151104398651229620543507538484533030872331879641*x^2-17715469440990741584489823914643021673839941769*x+194899180751749453867592062818400877172578636,-868422931370770819109171851573243660322517*x^31+2922380487928250488334101052323662833337117*x^30+42257553528390381056401569426324717030466440*x^29-146429553293858867108491785272398844731719030*x^28-913447649249302920731835113754465702578855091*x^27+3277172180327102482763426496227164979198182902*x^26+11570240256926610209284898644457776666118541189*x^25-43273908108946829040236248345989611988293792523*x^24-95394653948544807177206682528774030808619675607*x^23+375216701650420246127475398963661485550051831195*x^22+537734352598968308271835683995746780747536798078*x^21-2250168843845662142208684952357840641266673235845*x^20-2116951164604029896331404194886758423367188262823*x^19+9576071824854567225916445246253328512575807419263*x^18+5829546592455139449216490393482692987723363772153*x^17-29196411399721461938192108082025967755245207250845*x^16-11009965057972992533045649435620671871711414898351*x^15+63565587693122466271538639288046222610724374781091*x^14+13469291050373594775392039480934983822615734015125*x^13-97239231303357767295189054443482802522283987143529*x^12-8973867528331883354470287180910861936044918432027*x^11+101176981681355115274030143669357371465181945372063*x^10+493007542884669419724978057027935532575438505069*x^9-67613269186417409927464541311463565327591955645518*x^8+3943627042379011021150810679730226920623886413145*x^7+26203435756757768278649436646664652700522843263858*x^6-2596107527985411234986976043010346983021321555892*x^5-4842738688041477924411642729293874868088082598347*x^4+531275135826408092809203241913398116321176480949*x^3+286544020903918259444946484862477150140648670022*x^2-40007323316073286797215577870798170828761211361*x+207094801027636050835782132864218497445376036,523697566910146234052116426222823745694146*x^31-1357281271470483926544928376733973356564225*x^30-26178692602154239188292804879193702695085625*x^29+68523613278727837170532287647988996944023314*x^28+583659711364844374448111043656043883114427355*x^27-1546550473379539231075525435983756075782333778*x^26-7660620390519926756951488848507693399337682019*x^25+20613356990179752196093207194416595226016176236*x^24+65799282263357658818177488272544132109395782654*x^23-180588417218085293873409628789112383727276772558*x^22-388828726846473045390239872468684947709456017228*x^21+1095344259536073275555602333217683931484172737768*x^20+1616829592450604597126231481331101408852849932460*x^19-4719591055685067833874882736939173471691212188322*x^18-4749199776246477732778507471964529372491786067960*x^17+14584736354288518647955652749362642623998652481762*x^16+9714658515684562688604223365700923779383775457312*x^15-32222236780296127346493396440036274574174156366506*x^14-13285854399199421953452242700758919002350806411300*x^13+50088820965474652938135952270886254957089563959776*x^12+10980384430358504762201144521386093354691177360602*x^11-53051774774926748169235129748277271041841297175682*x^10-3771619912726112198793128903972265965694332174586*x^9+36168209024417964252458266481575075690508822576166*x^8-1469078509350459447953091610505950973191530413742*x^7-14337012203452779183410212902902426209020498944868*x^6+1681184211249554004798132109495033829320223002089*x^5+2717506677358800265271635530561564782141551499385*x^4-411176243358792305179198495135554429413150505786*x^3-167846834425024671384319372362858331373528055723*x^2+32563839580491765770804451500210353374306375768*x-270564919542355318786930428566634758647016061,191666888733892306908835965086522559577090*x^31+349532202103519036926249130897107990417658*x^30-10880451041494382191784550963918335370211236*x^29-16822048124356532663982794095125563068647102*x^28+276016151762868383332205758568813435253580341*x^27+358796297038818503894421453960369426651842777*x^26-4131667846136282613623840966220749911759997543*x^25-4470270142384581182592577068073914030368452572*x^24+40592943846081566105876112001595033056036168508*x^23+36103317052688648302189423359383259862452023154*x^22-275507726266526098245944651651648801942275249498*x^21-198283991153476579030064824613923040184025400778*x^20+1324172534228019361253284660974141452571870333522*x^19+755427744887407847629915916071126712898477296818*x^18-4545510989973658814660871749692590229114443003746*x^17-1997728667554330901613781228539546164624972558286*x^16+11096879094340172101011058339821271443778533082085*x^15+3602360870944891658729317411813687879142614928386*x^14-18939397400478268526168393798044579164079092334002*x^13-4247193013246409335126730068478212658474573264001*x^12+21852959488678744519931094770816716481091486364650*x^11+3011375289697421240383496441759339996474253181876*x^10-16064980030401611162475032895490160523868344931634*x^9-1077239995018776824405404438584505127945494176154*x^8+6756385581534809912767366535510919922924287668894*x^7+126763825322338397836794698650420369585905798796*x^6-1309050243608274505498972851655162531269039759032*x^5-9767195399406239012671984938585315760124350690*x^4+72341970760869250461765244347777602696394812764*x^3-4515002590010445725347370528461854422933704991*x^2-105702748029854507628417461294572337020969971*x+5608813191305528749326515139761263219485979,-716404463557204141405857559826693534807852*x^31+1862556125044944243995783858214091244831254*x^30+35341178263787428038728833159475719336512579*x^29-92929979375154496152838691406876805522035489*x^28-776245484901603296325272378012665965095021877*x^27+2069836384332067311119235173349239697257303465*x^26+10018482769197907632835941458612085151176439159*x^25-27183760481590196594958125626058824324438620552*x^24-84456486767385435463038514266451953004226400352*x^23+234282718880565346623150402004417462320755180409*x^22+488980728210746500424995913033166341987913440522*x^21-1395672446254023931096137268247729062156410633138*x^20-1989874453091859616958568508737605442440211542166*x^19+5897055941937892359029515569042045941666517693886*x^18+5722361768524839187909653131386773953244187448998*x^17-17844098061911573910604974974789716025161668020634*x^16-11506630011609053246155024501424582556581571812479*x^15+38552318014638066847873005548247520487943397239130*x^14+15686122843477483174980982033893007234785166859664*x^13-58535259963300736117702596707472677638416769641102*x^12-13540770022200794411105984919534273802532109232914*x^11+60480465358822383690928383898802161137282684320467*x^10+6205845359054505242748836137892857451571911744410*x^9-40151753147397560940975192188531045000007658258462*x^8-454516347997283185037487076110637629375262305778*x^7+15437651662109547542487536884575554572179757212082*x^6-720810600541664234735342130925443877586838124880*x^5-2792125406331161953974722043418789520002694611285*x^4+200251986589338847408232439825504943805489638108*x^3+141858268947070638056614838910940606993971425125*x^2-22071098740339638898005637183507291511923715679*x+1107019067255675476009371661207648302953403829,129898672517437825926381972477387781975273791*x^4-779392035104626955558291834864326691851642746*x^2+519594690069751303705527889909551127901095164,546341469637104480040564832693580609993995*x^31-1927541973194342135581991787760521187606144*x^30-26847640909953210697464951892311110094450543*x^29+97875960056062476300902540196164721856207425*x^28+586310554414802258720907620208147867379063077*x^27-2223568789906913532648354983223751374344115860*x^26-7502220327242902501918289794804224821567471854*x^25+29858462526706825162713608830065759456720955524*x^24+62419865798116496014597236244093784149704785842*x^23-263782849684866849883386325255881427402752607260*x^22-354062815504205747348433232825461242988594557864*x^21+1614944351054983890428921929014435450336562761012*x^20+1393725077852437855864768481263625186956776191358*x^19-7029907733648827721926376863132472647432310603626*x^18-3785512677368408882453085930024620450584460151928*x^17+21963236901126711384999518432055674478088902232914*x^16+6833631826375179447479478489720179517668262824986*x^15-49076126175668518042258688364051247849360545354580*x^14-7296672131450930816860974152842050224581563585840*x^13+77138694543894719270605240978559520491663798408610*x^12+2432092605684844897252580851816236772353435952230*x^11-82510493994811302297558599182218800805612070326160*x^10+4338787262690796036589693094320527231105130710260*x^9+56644175288851160642187962729510480688011915775772*x^8-6264539118221500374626994196467031177900767867722*x^7-22481398192063753708343413827121387580887092844495*x^6+3221921904743465933202722249205086892275606300588*x^5+4218056608736638465215814887867191548562966580169*x^4-601875573108186782053958307337762906487948068309*x^3-250336484672717028506506376318238685155596117479*x^2+42698469012309622091221930347401519216421164640*x+160295152295101303767758979822411276420410510,306098128595497148999806587455122875031863*x^31-406912557787790912785881879570793205375712*x^30-15549967811510151261464858137524762525009810*x^29+19927294823679423395984783794602117369949653*x^28+353406730412996231213768898288492012997779705*x^27-434391382916510574429251518066089147810147675*x^26-4746740765914776119125954803459469124101731969*x^25+5565252106442140102813216409068492615522030542*x^24+41932201645024234232443570586081293915211900142*x^23-46617630048476901205402292937739417501632918276*x^22-256566904393745532531374724148363538209926401232*x^21+268832427705748087385211479212198521024983978520*x^20+1115182081641616458466832750964305787398622386676*x^19-1094900666582434685289318977004776188892923847952*x^18-3473851950022431889982153658732418442153289336072*x^17+3179862815141295572357547176349650317759372586508*x^16+7721435472698805557065264531781891021043636829440*x^15-6566652976234036019725081690557316383629510330469*x^14-12030042241792868510534949791831052493640167655745*x^13+9493122636093589232292021408040577644019884790586*x^12+12688031021814818231425434783120584047572019247328*x^11-9301044622358323185858470514013115958326595526512*x^10-8527703997498805143526142231048389702445981278656*x^9+5816426964582451415081165976055334502366081516912*x^8+3289816410223007705792962456542208560108151554852*x^7-2069437382241614911942218570331936547104552430127*x^6-606211430644220592062207429695992700289695462404*x^5+327667543608579428380979234305858096893575623344*x^4+42178910379444511495772242125488553751209908691*x^3-14846916609028269874494380002297487344783646829*x^2+248763700906038264643217327913869870914550418*x-290591242082944566626619950609322267807957,-22387350342141417372792391527430783082128*x^31-802869357930985139343132870090920969826052*x^30+1434613547118671961661109541059131110427914*x^29+41930592199972998960009333227320283729556429*x^28-39709302693530284147575722495141231284352046*x^27-981265835444390839623277775111434094290938551*x^26+631914141285140820447474155651355973960332614*x^25+13589749627825257167229490645463201674717601676*x^24-6462225852617749854127589220228873827059336964*x^23-123911302116371926944878707298411206401920317770*x^22+44852681654141040103969070877710929189965761014*x^21+782981962216723573656812928371174562550449477162*x^20-217343478258098450389436960790163627326506812260*x^19-3514648068418136685339323679172027679956225788814*x^18+745688094974080754031760097453347837638676619420*x^17+11299899209095464988647164262504550088335476012420*x^16-1824687741476617132142309442423818782666910302982*x^15-25894779781649221891974938489527724580418915352644*x^14+3209656452440446201706648470826267536742768265666*x^13+41535991368835999256261353269043042836790662156612*x^12-4120634139952540318959798342177310239114328349238*x^11-45034465833327778291819783918015079456878538589784*x^10+3919981088461811111126650549199613781495549071482*x^9+31053473104695125601955847649215263388232670121266*x^8-2672603241833310987548476028795738787959910694502*x^7-12208221859476427241828125587995681747314937723452*x^6+1107388254093385976997673677913952487338502601460*x^5+2199624544566840578387742454647585136022201882074*x^4-188021992045600815531493496324276940427758430831*x^3-108563488669971160108296232720178522826500834206*x^2+15573579672354414291253171242735538612151883927*x-504955696050600379974139205980534603261830952,-2757408839526200612541507936370240253519012*x^31+7441548156795278199247448850342597160996270*x^30+135908695933378995779878566587169749453018958*x^29-371172400920266888092923622429361483856795612*x^28-2983626286793245440703803633774597651234821106*x^27+8264187578834793457694362301724318517655841635*x^26+38511581537437172686201087296542748380103677947*x^25-108490159969535405754831117105745184351667648297*x^24-325008587286964338186811985918840520159419038255*x^23+934547695062288219775938940867461848497264698531*x^22+1886664817143177112831326318871206728030308509857*x^21-5563859399893073021305448422547082212276003815917*x^20-7715896284725796345452664981855247342798901251611*x^19+23490447218719296077945670932909590073213830277794*x^18+22377360825474111247391022021456593274999451378153*x^17-71009718541087705541552440184243672016316792820787*x^16-45614050865674732538204719997795017278943295198947*x^15+153216241903248976728143971989876065576876161137763*x^14+63533403475682697848448379083986285756838264856689*x^13-232228477321846563902820751665486758796507449549013*x^12-56803962424797884519048746987703889941125260506988*x^11+239392766603089056648894201032693497478709846069415*x^10+27937520917773020706093347648989300648138134295525*x^9-158456985701093344537245729868232044915030885432333*x^8-3507436046243731402315161362506612220312636412259*x^7+60727074726157622426044135427492882718164330242387*x^6-2489353226408231536795336382073694790404254173333*x^5-11011289452578480653721118239375194133156395412703*x^4+723875006331060500764628717241783977361266845201*x^3+619922838286547183274704439115971606555011672389*x^2-72958315518560630463241379605549281409035383274*x+245592163839516618950431976713723073948135320,-153053055038278414707571465175712515505034*x^31+1403069164526484964275553551422393790213944*x^30+6913688146717825670561797881848755220108202*x^29-71840258401822538396354478649180028267417532*x^28-135237274070656521875726609483178735431717805*x^27+1647334727455559371806050500269684288198073756*x^26+1486868999299236424212199550483876116227110291*x^25-22350137442166279264262071570984597192030673802*x^24-9852487816966752952142030369576440144695863108*x^23+199703997897435455770375920068259743640155311746*x^22+37353367957828259237459498422356823493285873194*x^21-1237800500527348051670851280992961052914029772547*x^20-45765234748571330193014159477126813846704082682*x^19+5459658538750430841369293279274603616445577518102*x^18-300840097121844072338677152638286931734373252489*x^17-17294362097942521660117429584836561548131188237430*x^16+1955595220090081147091353427199320030160372688960*x^15+39191350141418536405720813814069497930712412826826*x^14-5921446553321285124589653559123658927911278378882*x^13-62463456813424497344184597402753608984580845835558*x^12+11122024233482956092383503419770197428093381957894*x^11+67699025706425166690769969242347727289195481833334*x^10-13487649791098288502456330222146249054223218640782*x^9-47027588636169589565364176107750593315755194240913*x^8+10160875699355392323870232369245848007730361954338*x^7+18843114031729044026983210895327624817386395139768*x^6-4221447257099393908452450974031545066838853402831*x^5-3556427520055981255230667973509089461356340525852*x^4+739295914607186022741703778532391261207356512720*x^3+213472009002001219023501927280801227844056511031*x^2-45158301796159119945857040292033327264537976262*x+990296816795231436885730217496753162515902205,-537667056965731039438295198564436386762299*x^31+492814298223377607730606233643116092313263*x^30+27878847273526679417312335224040813215498834*x^29-24174788671350259507736482361107242028564467*x^28-648006945346095689916599035581569606186748786*x^27+527758252827335870505591873554988370844762497*x^26+8920289214215519140528039102240197169424236850*x^25-6768832281219443233041920783445678423633784581*x^24-80942155027577303890017500764778555422848399773*x^23+56726998356759241162829805772055694427896767784*x^22+509895983017650521369032168259532844269174120013*x^21-326995924197254457392240696552530824512702978799*x^20-2287440377077416634483168481975986354332630369183*x^19+1329645381444530433276305076006257854158047735159*x^18+7374114926701469600660849910200971521495345559877*x^17-3850007521344497425873956212628729922445203697889*x^16-17015881339037408627768755053887855883962866613987*x^15+7916292464767363425184624835350472152671145742759*x^14+27630144514705853858460248031184980059748121921593*x^13-11386848229775541454208724396527589646059774504849*x^12-30528769408035226501991955991859814650716103523927*x^11+11103565393126378281736437805810324119665410554011*x^10+21641376889670057944803092531663115949252413909389*x^9-6911560685249877385997067456726248027957147493449*x^8-8868597931636765964065577204735562495397124138783*x^7+2429802916983518816047282432553399630161016384066*x^6+1721386273308583173117629352273340046986294368917*x^5-365247811711140649375949974307587962944856924317*x^4-105413641845652317038897212560253688330200548958*x^3+19019994110719571793842544259389975136639074005*x^2-36526397930863547578662768704376892081753686*x-6694128309001202521172660415948117292480687,-524445094664703130217507212593097837144240*x^31+1964934963565034645706787545807046858520411*x^30+25342581386788890332782101766087173914707101*x^29-98766109007445989368631973413538941174642310*x^28-542702102713155678280942893255566021803194312*x^27+2217687223573679569260486457136734226181644968*x^26+6786502136367376559226125712876120042232113281*x^25-29380645579799426014293699997191723349315217007*x^24-54957545585988328046656565490139248157858242047*x^23+255563889800773339860079942187581216234507593543*x^22+301894886102436582114899238063201887123800910209*x^21-1536987234982780752476481986774746363297673649129*x^20-1143533831870797673616669207247151104298056647315*x^19+6555628584494650152117417658962292098093552689555*x^18+2962188490332578328559112480525165454339901397588*x^17-20013223319146563213736143273884618840631756496173*x^16-5021240296689721441946991428596872152510510280581*x^15+43572381760932127314906935008148300781347596902143*x^14+4819797496276730273455309021242746192562352585149*x^13-66553253541481627169566503137850649356083199465381*x^12-811777977909811430708144931428593578924900143607*x^11+69043202009421514820395731460300542543030864372743*x^10-3903996870915359603618456988685904386039525579759*x^9-45978170188249171297824369970586190997127818741148*x^8+4738062755415407573877761909910810480253131436429*x^7+17803197325538596627082504558155760541032453793119*x^6-2302090075915091211967621301140533490026111466318*x^5-3331196480751760827192288751375806246911975782478*x^4+429478996106239842307374092352256255006927269701*x^3+210263226622486090352760256986910937533752645977*x^2-29539561523604065375146019245385202696187827171*x-608538427017989831865579833378716902309772498,-87210022913845753260277261662137960700186*x^31+276045018022490046621328860293530938304377*x^30+4128033780593134235107595504106490352901690*x^29-13441694437548578064895929520225641534082095*x^28-86333791895279660526231457944996862476450267*x^27+290666595262039651254029594572323753945445368*x^26+1050785737921160594883877537786197939133864491*x^25-3681420155997190850250763194580413191481139740*x^24-8251124480792164087767350016580479274125269382*x^23+30331172525866113390639252990829438801512666141*x^22+43778920842087962564388851513973829749847027536*x^21-170731680583319919142870220644358966251889905254*x^20-159614486477837585665857408005435788677916445916*x^19+670866260567336209376166157159141008553540556988*x^18+397403056461287795095676070942471032390948850120*x^17-1845802416294747391257468254669471701711330192416*x^16-651563011114764487262117363028035197394929518696*x^15+3506595311572487611321629422988812221943245897248*x^14+631891566216459467678374624199315101070823858648*x^13-4437753846198195921310655201720506174692353079984*x^12-217463305262474675563597746110764395873188009424*x^11+3473731047634766415617323965249289458347234279172*x^10-224768116455519569643610779729586020349863669741*x^9-1417438420254754687340619990776561637453412188504*x^8+303333697174974071786547866568273654483796514124*x^7+147777825639308167378298345939055633566967554718*x^6-144045653921219897657328417297445541483496032985*x^5+43243260935569578884235468290138817122425725018*x^4+28851794169551382859209179312195712284363221497*x^3-1022442432076433166844122490249232556629592321*x^2-85193975566861357396209312216039378294816594*x-14404046121053944259338334330617007859003189,-547271904421693214538981336428438618160781*x^31+1600494042933118249540047601446339339057653*x^30+27440502983110275230599577987253443294714811*x^29-81600194776239285503147336197975481976306570*x^28-613775769810010973805488065466289217531933575*x^27+1861306072683700926843213147998116651909451872*x^26+8083800601193252661344919698813432037098097191*x^25-25090425392269316677712191480233004374957201552*x^24-69695232729893996548713391088432571826469773634*x^23+222427875758455337683875585947119444042139242212*x^22+413602745023841686337679026067744593919200612704*x^21-1365549007375236924903789176194786008797525333376*x^20-1728797615608628010694419095049042227880403130580*x^19+5954619453264245737554368296527495453206088644615*x^18+5114684832737862466963307969097732100783720909148*x^17-18608468549822811583295609432803674503984030502876*x^16-10584058398659275290319881502644129765526138104488*x^15+41506561434860014174665675319670144896789962596756*x^14+14798421645653811046693621841265636095729591395644*x^13-64948881488025607770627630052681796599604137210452*x^12-12896635619453219415657215001785338152052348744764*x^11+68899220571888483145006224389206468963872205870592*x^10+5507438557348443736531693089052022604104607034304*x^9-46630937430743224319371494548297253686518870379936*x^8+378406377490619983165357582132723686718687098223*x^7+18033145640863928001903436307653630641557975440373*x^6-1212768632526519089038715282160518904472733929507*x^5-3194510711658361429286587548035679609516260843441*x^4+280293734806807152132006799933302559028981324468*x^3+158938989411389170578275064243470070110804521505*x^2-24850319983101762677480635451227451021111827464*x+1290261092019627063755760219136342876497347954,213811429259954775611420901934497880518213*x^31-517511823557073719739099994275339156072471*x^30-10031021757794097937285176285434564910098586*x^29+24350709904808196480450700450068122713079427*x^28+207312678202540506765012475436480648547361176*x^27-505340533826598761097422117025252561918565221*x^26-2482753105691517018073231434862377606587050656*x^25+6088856776963515650257329703896437096586338172*x^24+19059235122369024495576560030536044372465424584*x^23-47187811004269317705299044308684980497185850230*x^22-97860321956042837472122930966200815651520473990*x^21+246140763347238464500839647601744357358936476426*x^20+339323774783976416044923575558320351948018312656*x^19-878076065520399414265029696153054966929008391538*x^18-776904800091910331198206413572068998573814207932*x^17+2128578232382578568717842984494047232047960135814*x^16+1079285633905716313549296713242764726113674810344*x^15-3391850459870895403315334375749435109863294939014*x^14-627309859357193448871429680304210021392437713062*x^13+3258873861463289185603950623892289695423873106920*x^12-523909075183849424647046707870389978187923250968*x^11-1410994999448701022571234327849577198542197029380*x^10+1238572671005371348003161508907571658059883394544*x^9-311345011460301359650184296102990523999193098856*x^8-885927131161780246056455146695951289608144163104*x^7+553271623911960373500854460750479632678947442881*x^6+261826989804229176545643458264449945379708996157*x^5-164844095113699910921870439616698601327249357620*x^4-27370722774613955708413714309274312652276026829*x^3+12446521245205408335926451103286802007211451324*x^2-143830108350099930146318253420711412189032729*x+3665882968371023638364814983559766219859022,-960591845046376435083986539585793505685167*x^31+2952351368312333763376763795654234057436435*x^30+47688986615184366388171385618611374589739862*x^29-149006624636383156342420318125608904393180849*x^28-1056195729308458758019906233671514858857022831*x^27+3362056312419462904000754401806812561211170679*x^26+13782862740396182340393405747242792755458730560*x^25-44799065870911898402441023638043067173026672525*x^24-117930749144914870477420096721071986144361710021*x^23+392355597174505467000114198100061620415036945799*x^22+696805284998393506278050500783432222499329650441*x^21-2378863210065768479268871183937356260418696782357*x^20-2916710608709326781858059987625482745585483275920*x^19+10243451160119965188687280011726183840195030879018*x^18+8728495305317516987236098448907378713582830981075*x^17-31617899786278546445877170022312346436026405470165*x^16-18592019260302082700661607446183393694310717773767*x^15+69698897825245478026300749048094744703771500321659*x^14+27641571271420068516119982276059087251652890412553*x^13-107894143094814412169440321650867361023492488591685*x^12-27505744413079944413858670865910504182572226716687*x^11+113403789718522048150838721759496354303497218162523*x^10+16829245715446285180064053646681846589547101823881*x^9-76251337129858462193023800181101903038313226648509*x^8-5202782809947798696397142669501369095325430470994*x^7+29473757296329991436107393442628845576029284558459*x^6+367491344088511488542462057194148482595954683596*x^5-5312785897129988731917337644492486881525236079997*x^4+55466940333226549962204916395280196173491047256*x^3+286809668825066051618140372985016411471535705710*x^2-22318638680093590499340947034292697968054721388*x-379729006745572349963555889778276622127054759,-677985186353526542154818728060828107847066*x^31+2935446892974723732353466657800736260899976*x^30+32252238839629985716410524836759522086757788*x^29-147300891520748211033998313348381554183728407*x^28-677156478718178724734412216278909429018910201*x^27+3301877516161212860862744508493201098394206351*x^26+8254448317397788805196003821633283298955304716*x^25-43671255360977047510214662209733861368822234324*x^24-64601850709210190107250978811046304398668030170*x^23+379265922999799758988414763089976560871893381794*x^22+338234612802733198923375104335573866804196057666*x^21-2277681313111608554183298936038011555973468197554*x^20-1190820446786319948515609815027319830017847521282*x^19+9703240948447458880601814993244755542792488007882*x^18+2714907946289123200154650001463241486826595392126*x^17-29595235896334172988258934325434878185066545162359*x^16-3427689246496104714853212302906069822686230734114*x^15+64390809692189125717110993036264374892475022406668*x^14+262321341122937574511565742039287899824660812411*x^13-98285923173608113646959267962694688010418552489458*x^12+7102442203984165814061737680629787324223215707990*x^11+101828680857469779065052403366426461602655012123602*x^10-12660281216665604131774651413848214639751934598202*x^9-67574858770799272419903133250420437576567932182006*x^8+10746848276557932025300217923963405847740611976018*x^7+25925786630957476640368617624691214239753471024856*x^6-4613463559195288927589575130668450871148509140414*x^5-4733799251327131611099972976073057507674591662074*x^4+820209942663770531769905064874593971045096734673*x^3+277705504330008970117129381815865540304223503807*x^2-52477131171374367189892209146896781521019561775*x+600556533508257106358630106865386245992010120,2891999775991027880688503062172198527405858*x^31-7669678205405539077898871938048652925754589*x^30-142784936585166504298877711833773627681869163*x^29+382473733761854968510296130203741743865495462*x^28+3140913434294800376041615548884723437173904509*x^27-8513936497561024910034343210455970249781119549*x^26-40639718430551205492035356858266455768312836028*x^25+111742621725696719243045438358956784504163471731*x^24+343966762291547405895738736409986998358337349233*x^23-962334715561408366549142006534277137844958347255*x^22-2003788330860808559942857648360627695055679438149*x^21+5727992823657907349450339148382976654489066823429*x^20+8230725736166230070564380595388135472180390801179*x^19-24178975907180710942596964014503801294839655486993*x^18-24002517513510985312989314822261595798914529628757*x^17+73084425933901355387035110606172317454470299862615*x^16+49285496000845736896871039313365179912665906357959*x^15-157704771762421733821982002531884612726406987559549*x^14-69375586610354443263214380539721759633097911163497*x^13+239114141419503888341616870964338906589456659298839*x^12+63155728795333716930269115478514364883563284988087*x^11-246670037804078454086370129065448361277944437309305*x^10-32430739029652801952330612553220474138243551996905*x^9+163461576047650275326528482515123276224211492378149*x^8+5436963265481367829398604886043252735718529317109*x^7-62718771909593503265236427111539974301875932372183*x^6+2017413849992177161246417969142839887026686888258*x^5+11356993784687548717882683869420402202453121873616*x^4-655815773742830359218320783724372294843190074989*x^3-629005094223496230372860473266626302346278182338*x^2+69929233148552740164186516811989456065534370996*x+225562162879879039874096204008046842926989131,-286657265626668180221788821265989359592302*x^31+237359549484425109841812727967736130927831*x^30+14530690158426125058039942567127224699142311*x^29-11125517822509273303816504117757269920235941*x^28-329402164121009358448981794510356950814192883*x^27+230248583615827448807709618699971385096757283*x^26+4411109170209620449323004477418013947657268352*x^25-2774199045983690872366852867691836246039538868*x^24-38830005547956916592580457955633433873437813995*x^23+21624963151178135125046457731945067540058686246*x^22+236599960817371800378220930785285501501099944258*x^21-114808274894146058736916747533965479675111074858*x^20-1023406161193454746522078617880894817722588971150*x^19+426766599525096994622704793900919226443282595234*x^18+3170222007385973900214559656051518672404912201594*x^17-1129072201046790691752495956650752941752998379203*x^16-7003286609505287670915887141523055702998435355570*x^15+2151386322916820227893950151829255399316155435132*x^14+10843069807504840897592447661860587816939761307254*x^13-2977947151744784636919335986359021932828086041030*x^12-11376269952086122394785073133896909561902819469001*x^11+2976572718674952725702237136784895580443155182838*x^10+7631068418218441503355825763548661840814678877702*x^9-2038265247943022365606143730901470586533167451510*x^8-2963078061216290333634441167218137638233143304486*x^7+822144080035737070409240776836177669618503504416*x^6+567179659015268015166029945800636014548430743251*x^5-136723897338526821788982186447736720855614514984*x^4-50309347953050243629950987079411840089351987503*x^3+5448862322746800989958975119675313934185111049*x^2+933649187074832073789154131729588467529903645*x-5014831244900428989841002918786854743654964,-238633664090924411695226207025294698063817*x^31+1561195085370669628940352273288694252550397*x^30+11093747212646610814904051755770831744544737*x^29-79553337862236838731964246720731425092813896*x^28-226090948182310515814017099667535707280883945*x^27+1814361226084046677078931728424652522022117266*x^26+2648519291120574343400519171132606134626390681*x^25-24468299800319492696591040586858537543139788389*x^24-19603824283002847750925935880729676616896998565*x^23+217184976110914815482522001032959303420608524259*x^22+94357282802479007404992216700243292672891697963*x^21-1336551789825999777156373374210670974240520318077*x^20-287500665448667002530562581533583828924346816773*x^19+5851198200091268050641826349888019830107739657931*x^18+471469851933415006409553198679705433588631670575*x^17-18396232758997048130876083177292562624843473879397*x^16+22171238170601494062398625441287636432396933835*x^15+41401662490114963925863820872730607747670939222635*x^14-2022492602954641426672371254750926877009496584769*x^13-65637258214081854863812668967696131070494606186957*x^12+4866447793133667600814989640703901396066217797597*x^11+70999046632524944819143574846700379456762006741485*x^10-6014215058506866534877128402095479822743429763569*x^9-49546862653933016275276737970380156537491821950717*x^8+4196540343687337360893394410045331900534818113421*x^7+20205783343679762107628726909336865033668233994628*x^6-1491016671806944944615562976052451808481572039004*x^5-3982182424697608202250746060631526898749359477360*x^4+185235875633834292650199377028403107443742695817*x^3+250333800655727545130940286244393934911068720488*x^2-16380270628988841817799569882205826319527988125*x-916490790113803463450360573739013359342810258,129898672517437825926381972477387781975273791*x^5-1039189380139502607411055779819102255802190328*x^3+1558784070209253911116583669728653383703285492*x,295383014273604277358944269429469656610573*x^31-2413515269946668373124770418321758157626116*x^30-13169164339667581948699214426331107381396628*x^29+122452234275587569363404617961273651659986164*x^28+253589447546405032420846532928745512299763267*x^27-2779669114365534677221022652295024795291290670*x^26-2738848402895128682028172824051828801247697450*x^25+37296679114079047812045074009403614788943348433*x^24+17851738374768859404493447559076738610517291840*x^23-329240686837979899614149495042168026655676320565*x^22-67951824735489047061724602780394903432693636561*x^21+2014070919375863565029550680263153833736036704147*x^20+106928794850830454384891897982918706516649185893*x^19-8759041182267301303411327382296298578995588453881*x^18+277334146559824527621987250823933512100546482417*x^17+27329677356788361154122001724193345607870698132963*x^16-2028849071769313093991497898694716424570182844652*x^15-60939800441748782934104535144687467910312601540589*x^14+5519209255185465113957200528059535796705025235371*x^13+95446468532624215238899251738849907608534201938715*x^12-8732065320774581977041713602645427460552897383859*x^11-101476689107719490442338812923082041306531643489154*x^10+8612923810624250780705497090688245690991283868165*x^9+68965787659074432095500956158100121427271705047555*x^8-5254943774718085525037686922085832359831001719823*x^7-26919704881812087412163222909112044549147764294790*x^6+1810437342323341192975565286761524407124782655213*x^5+4890182989547708512913248146910389874488181207169*x^4-263726784956230113683573461145432218217791809875*x^3-247736355493003550018472086231441055391783122731*x^2+31752410281923627834840389408001731195798957811*x-640364544902693891763805242334677284555671865,-288517564283028695460297289679779357624159*x^31-76908897735091175477275090325660204744788*x^30+15924739610496804294817815292127630357108175*x^29+2817864842374674037584378891403775905476417*x^28-393871208092250628992503358532949911474226605*x^27-37556827591143991124052485711832947219518169*x^26+5763711032771243383964618578613467394765788034*x^25+127650454502754513812155714869803740019457927*x^24-55502730239522420270961915782605772196571875395*x^23+2350144652664642564269763125021084488918002321*x^22+370147380780003389701458081214229436172214691127*x^21-36230294531375175775323031725431457418196747997*x^20-1752252961344685904465880863266312809954588861591*x^19+252992656432391183290125540716886915494421446537*x^18+5937381264944209824894908612626399395491257132109*x^17-1080459268639166490954367978088776783008681068949*x^16-14334695536084012912451202090811794384815148650705*x^15+3025133800741802548813080640221196565565496405205*x^14+24229673765685983461411405103220211545639507038625*x^13-5623284578743534808137675843986610248390395024685*x^12-27711401624344185717037549024787053577829893289705*x^11+6801482080983174198969823580383270818100772506205*x^10+20204233488458314862263005178076942949507167908307*x^9-5056746948367980234541637885914826765612533067177*x^8-8448708237118684897845192833148996747572590272665*x^7+2045240057195491433524315821920953040662259557328*x^6+1656196989314838379976961600716734225789144733759*x^5-344892389693512310672797786418850701384462646164*x^4-103786395198729759884905306161345315911416892674*x^3+21711307797669890594943672864310313664111840710*x^2+292509787947280587937575669334257784038957300*x+3824390287459731360283953828855064269957965,-1710746883448780571139863893575308618292970*x^31+4098497568835807420399701061012139266068389*x^30+84958408563510289052387012298329531159312703*x^29-204242253982995002246194667977333949237199900*x^28-1881658282172245359675124264367235932712917598*x^27+4544274045915689178694651688652654985704886138*x^26+24539942196023769054793833485872674329978009402*x^25-59634845437602138337471333402608499450853468736*x^24-209597541849207492892350576355989432047595265181*x^23+513807657570516475755205443733034918812516368132*x^22+1233541693477706873889517137095358484472795629186*x^21-3062223837359631643995314014129026022419799381587*x^20-5122866340862921986332186649930683616428899464812*x^19+12958526847821384576704354984248558975661952700728*x^18+15102293527054704827734617484664651939415339569264*x^17-39331299730173105650734835546741506845926434550748*x^16-31274152197109245183254498224507736850496856618444*x^15+85403010787456758034382567675854182616036910527604*x^14+44049016453986490848870389218210803191729549944044*x^13-130632854958619432312415694003036620386034411963904*x^12-39179182233313263738678912754995306141705569518260*x^11+136321004253307400922069391438603257793549405366268*x^10+17889906337491595599906128310048125773205971453256*x^9-91583813678297991692612602995104162419832318935436*x^8-122154093926759995646787667634554142289064130264*x^7+35623592160529033768366220459786328700560281033618*x^6-3212428514249953255678900014682425154170656925922*x^5-6499513440859857322659314342678743913764789714595*x^4+869256690138826586810328764564645670593146532132*x^3+364592607308018436682722469453798911521913068285*x^2-70735471842563013572345619068349875549787793086*x+1654566100088060299145222972752724185213209110,594407897165256124678286440111524639093579*x^31-1412433975021452029868194199084835056633355*x^30-29241876739230791061187119873055239223389771*x^29+70047775071008917174617462759012690419824941*x^28+639548501972331901395482634946414892222775942*x^27-1549389801379285707235578114091572244219475208*x^26-8199889978066103046037610213366635307815786560*x^25+20186908551164422683860873385921581793726446013*x^24+68411120336877578968739776419484324692426437475*x^23-172395993489008182469405738768808401970117251601*x^22-389516464205938215581925022418543013868758934803*x^21+1016324887199054654128531225731458955687292467159*x^20+1541646796137303207833856577515014939398931633925*x^19-4243598460820152100744443658647223291647806480769*x^18-4222845177467314588109460605989885500889546768959*x^17+12670527266764336724785534105492969883099641754943*x^16+7740847671679331856625887746511013616399312522016*x^15-26969489830868013464016824499152347427335037248542*x^14-8585427305530743266462126086457722436472037077147*x^13+40275382323828090678450990164671474636842141258453*x^12+3639091125359055966670911601948042017324396000117*x^11-40851667983763528785313322129690308678986863761137*x^10+3628101253074942412923668545498912414306133540673*x^9+26559594428283851774930757347288252956080827341611*x^8-6023756674592402267411357744474855843767038246291*x^7-9977613287572029490171217327324031888403243280100*x^6+3210029293943679621794012585039605072906693051860*x^5+1787900489911619102341255951454265845833388039508*x^4-627127603089801486528387973055369697522290577702*x^3-118138340337018117239253525439705469408561703024*x^2+32956981794898633566592937659581792416078585175*x-515477023650214502135905160586255592792313679,484973495852492644306610251657909927395850*x^31-1156669637031345665973719855800381391290496*x^30-24083177992922615012692208707010069342718315*x^29+57658695843664834229717773483927289410304907*x^28+532750456651402688896075470988543944274518447*x^27-1282220208184964990332343738585736898300207693*x^26-6927755086764288973173656123748377866829241356*x^25+16797224274489580089138066186070299153145032819*x^24+58853279332981431383608576449687292467559371443*x^23-144205661666818687239156301644919983529084437645*x^22-343312006282132896330667146401263799790305883667*x^21+854128247387421318057347376647892069134651503737*x^20+1406382165250815754704736366448909358581224003353*x^19-3578964870018383019802532039142765998004503508743*x^18-4063063092075256063955330792414551182580661054375*x^17+10703103488205618843437065053017671653650701893765*x^16+8174214687987753362469800586755209112310690599987*x^15-22751883034987991194646249240825444536565256386105*x^14-11056405109536649081804225408946420792168619372929*x^13+33796910705766735424201455308150511834188510129691*x^12+9287874570929095522201607922393309720364917577485*x^11-33927884362859940217844529922851658917816080223605*x^10-3869987591853551219138569952095932152653220285369*x^9+21709169733214556079633988558097568540551566103387*x^8-103541631853557950203870811019591876169927433695*x^7-7982820038357832934932238559795365477561804671167*x^6+653273436014435760419578577440939450006038152263*x^5+1384931275846660779606616922111393068584439892852*x^4-143910731427367374383526463533723552036803141516*x^3-76727084262337592982968623264855389851913669098*x^2+7628562245567783887139018312292073092008626218*x-249393558243792901018187384178224965915590215,-870031408957409391461510044673213319072436*x^31+337633380353742510394282356215022739403642*x^30+45288694751294211565928191956434901191875629*x^29-15799612528123250393433448343845154952639342*x^28-1056241071740222446404759494336799786832985223*x^27+326035773560462634883011710212069184709217750*x^26+14577076552614377956204380696605954070205610732*x^25-3909687328657811869533919115445798232384348788*x^24-132445964525255473065656232343239061543970728826*x^23+30248002622890638642402107963701601246159492550*x^22+833989816145316448251582687452277989632780801306*x^21-158748416974451796598523623466064743272943816148*x^20-3730909716011770382170576571780268352514100693918*x^19+580202883268553215963894408974991540158413081324*x^18+11956588229788162527958561022081946818284076839412*x^17-1500393248324938968808562129412977574652256878518*x^16-27318374039709479463112342752653614317754546223444*x^15+2786701398852658339122187289786652471162404552018*x^14+43704036172771846280468515284676280286635684030196*x^13-3790550188452983016527777425547909320871504295462*x^12-47279959810096365602276625448891812865380880772136*x^11+3819067621798720694621460464434259981935934995274*x^10+32546666993261760467018013468097735193338233252962*x^9-2722094755748529939661751813613906273242523324950*x^8-12783237236714172751573014280840747857269403770204*x^7+1155604965118072370381490545581373481540069617204*x^6+2304601472028482057136015968021908314726703765178*x^5-198552352413384216162551226319426085296882060319*x^4-114568649138396831762956691031105028649667766798*x^3+16433567348397434698211618170870264713468748919*x^2-510373434833398602978354964730172852767705928*x-156711452394989921609546740692015481574896,-142439989971422528916144486574364328572886*x^31+1756837026120391701761277561911413475630985*x^30+4971134897082673119511361157091650051583341*x^29-87966768243697961371363525773257869586635764*x^28-55106300891977259381070100340889832350236001*x^27+1967387973605891304249811411849456292502870426*x^26-133557018508007262352272292398714056725333173*x^25-25961420832225756320361946279929640551742831371*x^24+9856133745509251080181275878115697709276553279*x^23+224964848468800140335859356691911495962586810325*x^22-120081159357650995822035921041652695585654199087*x^21-1348358240288316067942672481951092271693206196223*x^20+816086690577288148499849908486531330828935018021*x^19+5735458669108611977426623434008252404966787927301*x^18-3593178903920746992279461035709701870255942115607*x^17-17479406909151271636703756582371651026147388762359*x^16+10738696334785254920080573689968584553982406915893*x^15+38039055421922497741374223562515397985999827191815*x^14-22031102664710751781878185063322396380409839225703*x^13-58154445911179685426283137629924938117881007283575*x^12+30714070835538812102947057117191814626151403988363*x^11+60444195472587201814388567154921412208185970127699*x^10-28216979081886352931405031941721568172515612048959*x^9-40309719095615249840430059540713717250930492225343*x^8+16089457624060710051792890957389183535198120640969*x^7+15554361958426772784939479351074851517452588728193*x^6-5074671353127130721885796083200201355993281572540*x^5-2836925039539573753358067965830062747793659730686*x^4+699972412914015804741750081103773295158431571153*x^3+151994143428737553905058256212292096943885114142*x^2-40155928781215524597971494464360895378030081305*x+1148337540166398211998029118191532619580112606,-335310712236124094231038825117421545549122*x^31+703955107419900458226043407446835016528494*x^30+16634816425112472514234597352014912387702284*x^29-34508607432574449973148592753971233714888926*x^28-368648753286521151886001148335690067407305545*x^27+753169811619070281234183138136926101903136351*x^26+4823247743913723252368844249843334444197622533*x^25-9664100609188075180295855817199829323004571753*x^24-41496894769528306536444631550371312032458084175*x^23+81110769032434930194775929214158402888732498963*x^22+247553901820609997586704747762714510025072635097*x^21-468956712032997152701647004499135485073047095657*x^20-1052170002466847578565872551114945348269790369000*x^19+1916681478373976810429111738789615879989273837539*x^18+3221973917773629215001051776539367678716182222453*x^17-5593936563354851510816311238952597257258003591265*x^16-7097596734139110730827983140883635015972869737799*x^15+11634732230982072435362813685521704322578547678859*x^14+11084131833855187154022299330224887400577859146769*x^13-17005033656883132207811048033668912333269589122618*x^12-11894427454169406856918193297054454299604572732931*x^11+16963585118798664491052463835474553836007683703249*x^10+8297093700319625287381523187986631533299875596673*x^9-10954129634498036006801364801067058629955742548133*x^8-3421763256417166346696653140414538926153110300091*x^7+4147998184191678067532178610333863877638218643789*x^6+713140120887803122202989921205356872702617692023*x^5-748762602762376093964481328961324200299423847365*x^4-62068056862179346084120148193513651398430839601*x^3+39200154283788751080462157594983485284018830276*x^2-672945937482806327801058394800086015712787638*x-33723340345234641936962951747384989031349972,674881421641195447179215322920772307393523*x^31-1726074195613269789649714165646300329329796*x^30-33680339019504465067575741691829372504614728*x^29+86741489646842820844996173220956512177291088*x^28+749855965719799156034515944762879290068535739*x^27-1947753303661969028114988245354178995714954081*x^26-9833197979262884325048870028767598376760348091*x^25+25815094668617341799918721436418186411809866678*x^24+84465474439015944163086702312272996276221808464*x^23-224766686382291703259051956520593444795429865022*x^22-500015299189920463826479243785409040281577673278*x^21+1354152335771991342165160129923528870476998451328*x^20+2089160784706404677459358504882448134573065150766*x^19-5792372507340691166374798238677952412643999219672*x^18-6200464992069547055596396940989445546464747694254*x^17+17760506353774810268769906650228555206015754484696*x^16+12956230596355373259566163214399645408005402102634*x^15-38913536994837893496009596276881275865587979425574*x^14-18548136624083755928736879039785840427829396063986*x^13+59961794776912233124355813769548104557817996245432*x^12+17180862941256083632735176293987976110980057516908*x^11-62925530650832258483748611749314028265632922263018*x^10-9081739344970261106071978794578069926698127494550*x^9+42475508402249547643673284828711730059819053597166*x^8+1821565487221921818898863016557033084226645010998*x^7-16627287591343416817841161064353768542826067313397*x^6+292548354525118396186494945263332366166652237026*x^5+3066478596979188797598297772582534424558245275694*x^4-94731147585773898176034813940089442339580040430*x^3-165245017477874031630861914088105414167221102669*x^2+13474515614038453859098765124355573388087748655*x-77017623808788315460644464439496249189415383,943909999411649720152839155895256243698842*x^31-585911550157816650109203911761158039638464*x^30-48882300146080776190218758872823150941662432*x^29+28223388710224825031959715324482231127658507*x^28+1134760046132364960950393663396223073771714890*x^27-604294891688761555937349378211883983118169251*x^26-15600191608868124618828754813805323833227664334*x^25+7598162359332637057571145375362773735641598470*x^24+141356040884357690566652573113718388491717715028*x^23-62492782186108162216415945314066520259124622148*x^22-889080899707868631197582180592918616199503691165*x^21+354824964741710874695139155899755648647571051504*x^20+3981167098452046623243055878677476946654557613340*x^19-1432194046030679553964477619070892505083642612327*x^18-12804850865435554428642062201550244478033921219104*x^17+4172662543842282448798741841577668529022794764802*x^16+29458824987652066680237742711431450246946817168176*x^15-8813015323459968557788185853959138616929044181976*x^14-47641431177026358680872834420906791745898594678856*x^13+13378671689480276345247928645328845886315467846272*x^12+52347512107803773622106874531296741548848472523428*x^11-14177553425572437705654741141858407721951380454556*x^10-36819239594549606765408200813314146155361277470275*x^9+9822522688059765576981936499325086931116022835844*x^8+14911971719877999299436079269152668024917170685412*x^7-3891809545916811849332848346052284587994917435399*x^6-2838743684720999251813929879867282742076406505840*x^5+667304196055775966537288680886226189576738165106*x^4+172417210571588455340757665033533278397501695905*x^3-39278921739918692923280390028773506693927600186*x^2+953257977475968060526497922924230733763683977*x-1071371385267948902953000256229987608535238,826030296498006687488289916557376950823947*x^31-2896602808674535806611325319615513097815776*x^30-39527247843279676767828061593148489674948315*x^29+144846597546016817058804744771509200161576015*x^28+835174879597179367453930403822271006870085716*x^27-3233786683220223681621562509778391038224764388*x^26-10247014171388226853038759666758101666559925996*x^25+42572769376556379373961465637207950852011686417*x^24+80680737782891652523096756679265715755945742221*x^23-367783470121610305948712399129883992887390396725*x^22-424173766150991049347347165363942951436119188279*x^21+2195763141619716757540280328511774875461820601365*x^20+1491776253536960353094843021094223062706953589245*x^19-9294394215128204503022715970686473990513442823185*x^18-3346636544584327680120350570349076409682634676031*x^17+28157017419859748121313147306007258464385026219521*x^16+3901249934844427816346262880135729441886468118477*x^15-60847463245557970573027059281265242494538177357799*x^14+1029506337720039268355239894933112355003489341139*x^13+92295293056716662177193735926931268545942588418227*x^12-11581748208046217385229027515387436108623494500245*x^11-95136508557743752857806259216243073580075470200843*x^10+18939033454332563685990259921980278106753610988535*x^9+62937760185683345588534623324351789705531737345543*x^8-15384993252714560476767335176963332684680371664439*x^7-24130460505796196607530204562676887399556350407016*x^6+6336720040845146134092142903726527483040719941223*x^5+4411212081437621810189901414693030019631436392394*x^4-1084546574767692131797928592177901982516749951662*x^3-264078838006664696465016898905092576692953246375*x^2+63010207045744610540194471373927556185574816597*x-518092217232476771395912155901280439358517727,792421215612242352607909328220697587020848*x^31-3129328668720853025864105179300368927312665*x^30-38228155048954194103870660867001658293575761*x^29+157354990189160380847703869577800426693561178*x^28+818126294681312936331471739494216615169058856*x^27-3535166382085080455314830048299770774112077033*x^26-10244120550823853257540283758638060655522006643*x^25+46870293287645137635064430303789213414346816774*x^24+83361300195434840044554461574438800669439230267*x^23-408111644883559049943185918657902291194124132392*x^22-463131682276298693453427237449052408096544200856*x^21+2457749495765326993328697047521479179681695332048*x^20+1795701838325135808215078951563273925260405267428*x^19-10501169945784784116945523874877874879214450174576*x^18-4875710649300877170407897136572117613731995328720*x^17+32126933363024564727573562098947738282492113861344*x^16+9131776634556337422415900252915296795113283897728*x^15-70117282671488584255662127652871968783785563733592*x^14-11284585704091368005309672134999980267236496708732*x^13+107359984591065160658778134058718135778816505128016*x^12+8148138322247685563400533231618274910974817045512*x^11-111562920658507986670263848265293552241292301466584*x^10-1878609833074415318554914871250531444573098335980*x^9+74227371486761423196405316309006317057932159349404*x^8-1785150305251265392216850880002336744454542309464*x^7-28508439769496796334509143437223018728787470492853*x^6+1415606474076777069452755072781235804168223888369*x^5+5167355834012896537310243178994771956385856817155*x^4-294343035255631180909719359324569059202788891644*x^3-281591381374108512485611067980116179275658559182*x^2+35294129325886775054914407730817501624790926493*x-393562030902259025011252192026752809052493365,1344409043472502690183873310070773602052411*x^31-4545256202859407802183986727838412575054192*x^30-65161186691191322198005758837113884667485272*x^29+226843390063377452498668399834237632196416699*x^28+1402097288872621607055126605976994400361914991*x^27-5053513844467168768724489135983046869128230507*x^26-17664952525359093223698501411532382232966724849*x^25+66372644151392219670586900472468873452848717219*x^24+144727295706488883360930101170435920881222191489*x^23-571914487262991629451132366769333611751211601558*x^22-809643648135556361639931288083517990220090162832*x^21+3404923658247301187720751429470436273636108917367*x^20+3157355484968065085186277067980110289063127154739*x^19-14368680853464886158890057729421446736482046315829*x^18-8585499423922737607148413838587620604739795143003*x^17+43383324949019975736861212382629147431427477069988*x^16+15909983004039476468082866988860499598127123642293*x^15-93396482631494944292331532585022798380127540740633*x^14-18786094019016660217783565967657110315967645800019*x^13+141031095011144154226610444443725648849502756027263*x^12+11283497028728411854481758723911394277560641659325*x^11-144536950357834325947369557631025023421252283974905*x^10+1413726454689298732676862308213804083647346487834*x^9+94822102843181219035668124324488837449452656859507*x^8-7161296963334258133732176594700190395276331079761*x^7-35822851760078686629547052943363515186198339481484*x^6+4221205116828193537609683321111148221115135085501*x^5+6323685197685966297967602685203679632000745497016*x^4-812549616709266943196581958154986782566180446215*x^3-336792462857010602565446077364655311724224370100*x^2+61860094513911014517633388198078643351488115736*x-1118637058876908529354159970105860429464178450,391599679570925255054265908027753347087691*x^31-355228251781563047875751650974620105360659*x^30-20099344807740519836005891524574265603006310*x^29+17405258388747264791354809793862468266854008*x^28+461320601541588786162054802162449569585585208*x^27-378991192036462308935675332783375706669637839*x^26-6251568014896688565441196907410922535579944527*x^25+4838110772397128751352954368087987939816570033*x^24+55631259697032559636650320052352307073520411063*x^23-40233689188313146023184419665669197209126928911*x^22-342079469061543852416918550936742609897982915609*x^21+229111523302875105492388727981929064696839887645*x^20+1489492641149280567138209507863455142965054299235*x^19-914460876035103392617590606792242599731466268092*x^18-4629654903988134371643925724109988852864115950813*x^17+2575668384371532862272423877735469587497975538539*x^16+10223324636152020409301569927442968968169162088143*x^15-5088329179179788102163795785828700667588381740691*x^14-15764730332589296757681192000503193592932340256661*x^13+6920754302412113761798038610109173634160434716473*x^12+16440357848866075941304172815943989253692484018583*x^11-6267991348522016745121324892749890720827110390399*x^10-10998675148677672795342140631780003993812724787468*x^9+3578676704646000346234090672596162429558894366589*x^8+4332912126961411068165447908899333048223615336959*x^7-1172567502171176174667925577032574209472378854798*x^6-872011547347797414633031765675684502997851402158*x^5+182795232483708766243835007257628232251553956661*x^4+69586598874720787406346339788150966796018852617*x^3-9393527657154159330970697180833942380128991811*x^2-735454139926847989378216578826246578898678578*x-3671115662652921911522550488151684860009680,2896776469106557341058830938519206828633062*x^31-8463714245329207665833008862645919285582945*x^30-142155304558288530536082810657349500636162906*x^29+422310123201354816431875549195565598205501488*x^28+3105174374619799632836191587374887344737881071*x^27-9407231110447908090850223504020153469031707649*x^26-39850873560481520491143000115390921723924175379*x^25+123570858239540125732663795574357889118664168190*x^24+334092736588657128588792894122661182580379504104*x^23-1065273951760239433155036472212169200044719651020*x^22-1924527241202947403292405124841222669089072984044*x^21+6348220174157275155519268376488498738367603594676*x^20+7798994836063840042930704375800316629723076822378*x^19-26833301687983433159539027735907660293983951965856*x^18-22360913206952215822333448143131979847131637462838*x^17+81227025800637200526757470569674274267236658231352*x^16+44867799120696474477743461606193447857775906214894*x^15-175537120316887710882675454232780356996624881425604*x^14-60915735500353649096912460005094135871160722187796*x^13+266508375790045106754226433775099794559384760590384*x^12+51627710351549431841459222510604940654459110962340*x^11-275189554665908988719912412472596997961743801836948*x^10-21342788034622355842702266420978985693546296767754*x^9+182425911286638810348423923763855568772242825952100*x^8-1855220807825990096296781490113516959928672872932*x^7-70012625755895257730147214181694370320388116868636*x^6+4998966422068054634515782339316812832487779083309*x^5+12740033601638296257069880686739795405475188339710*x^4-1253422446685621316118783766171903842602962972440*x^3-737704697999726696765537942616386468744865569229*x^2+108239584013069098361507204960784858430346557947*x-7090797926498390490817678610353558502804361,1751260812022494425058840778453604376848853*x^31-5990018318041808651314192421985595388081658*x^30-84875298057252477188657479123554381489987075*x^29+299665619164425338172728228054964169014786441*x^28+1825495527022176065049031272774755128718232636*x^27-6695109165804918897438143680757922976309142631*x^26-22975764239303985858535812689672358180918619146*x^25+88240116919669445242182179218330728567615422826*x^24+187873665017579052766896898416705632074902209133*x^23-763547074636897686824696201663046447806512074372*x^22-1047499063743823353006000889287819168914563614732*x^21+4568980523276559690286480721699147380396887148968*x^20+4062320378897806422464969021217236789889845223936*x^19-19399388972094863477182130733985375219426095783108*x^18-10946760597882295169322358974486160052559034491468*x^17+59004550429979261312543963486161367564407588407012*x^16+19980907658194779458050673940012591201360790598100*x^15-128146907114040389128832238803075882797460613425460*x^14-22930707762283500755024399697969259588198246323276*x^13+195546842803869774005412496566967183425195800601996*x^12+12674134322106061541009115113066062850841438688152*x^11-202971840337762453287403209766162460305883480529513*x^10+3413289933756042305658995543175842848938511549260*x^9+135337077657244361344594914889634270879189452916634*x^8-9979451220797038349018503273287975813363606450696*x^7-52363088755006106991563386078876444633947078363573*x^6+5644396405132118619694512346961473813167603612750*x^5+9673308104564498690875704762054663953748021229185*x^4-1086965843421279689794034118708035689639239746673*x^3-569823149963190909481548888307680972037255211634*x^2+79979137760480368977882830309943487263173974521*x-414800072215669021944386206560071960615653374,-1513088259811345882940649464294094620332294*x^31+6271018953560006633545232373264655962309158*x^30+71746715442380737102682635918168361094961779*x^29-314113665159536859341884252026420561522690939*x^28-1500566268686318192637536381921637276283293846*x^27+7027388215448365275126289005013440717486947392*x^26+18206269768147361393956827923388269273396616866*x^25-92754057534722418564628267141870532440348625484*x^24-141668331702584920865763111810440003242654294784*x^23+803845297528487875811982235115548061803311464091*x^22+736387240762007205161937979358820078802075745680*x^21-4817891068618453395523288915079163794848150573656*x^20-2568722876247147061218556297811942381023298435844*x^19+20490237672501319881259407076857803360126796361760*x^18+5785164911026445302287283024794803831030490710288*x^17-62427193767572486512320298287095363452088169122172*x^16-7175525689156479411245649108017659673854894568084*x^15+135807596115415543476554355648074049116497937764244*x^14+451913495962409589003010102380483056344063277712*x^13-207582374394191124859878483378377559822819601144224*x^12+14460804903691873596077976472245743463804718577880*x^11+215826457027970282270674083899638177012966043908940*x^10-24864514632442868614181264305443802844974785472876*x^9-144154669896303086682813518697345580612262123197100*x^8+20200222729948913550523726458565999466147279386540*x^7+55857821513783896055904269588698201361663464969214*x^6-8174081381796615904255163695618152281172254430166*x^5-10303345232852072786959157063816256397311103892795*x^4+1335739712901487206148651989505538956600618457990*x^3+585377786964790404823200538982467391218204246052*x^2-92022765185991851547175116111879417950532516156*x+735701591561718614185075083862745130806770331,-41321670331961394076896407838976515424690*x^31+624179666447307718189492502259951004836542*x^30+490590887014696677699864266290310747810580*x^29-29289375887642620677855998160716773336219467*x^28+28492464775450351352164652299275719688996303*x^27+606424571079658271098817699191675197167346388*x^26-954639863463802530114036581066004436830437890*x^25-7296932003445801306622356052871285899632006357*x^24+13793049451486498584823348004515074956559183925*x^23+56582803639592635821385544491279091659979037201*x^22-118632113087049405954239702705493607091784205013*x^21-296406989280502131178321612756133407848264356631*x^20+667976687454020236960310359498133400843271310082*x^19+1069301811539817442560110055483001680130716709781*x^18-2555320433817012075188302871076163808367733159417*x^17-2656489385433638579782224448918965748594292760735*x^16+6705965168410469474373119846721465207874973412031*x^15+4459037389623669616933393895489744514212783722073*x^14-11949755169442511545878140260800363278914664813709*x^13-4827539902656515153066919218534434194709652791287*x^12+14006803816327112714399841430062833673023802639663*x^11+3040549700986270764050420888172491976058270830113*x^10-10128937391531357174876561700190256889498956038369*x^9-831442696167277410977037607477597710501788011448*x^8+3976557622928871787543314152391031854908930145019*x^7-34082862922106171611813306790442087486188172319*x^6-628288173740320186513988461725032373203415762283*x^5+22872901852070893116091609736121457766076604717*x^4+12139321041218604403553249541242123613974786846*x^3-3827417046646839534180206393665409943083586130*x^2+1157821291149577305837326735720660730902438952*x-3830903330951852501772869354999070327125467,490718063030420645188016235716437510544308*x^31-1898774485265791625650267216334790122211200*x^30-24181567050115057387646674835740719278810832*x^29+96931936195967358159279359892680978945162661*x^28+530978717257998569365023130138555707880068402*x^27-2216889849069619200673469207289124984948230991*x^26-6859531657160485885927135604242408678151435396*x^25+30017912281734829584181468553699544540770099751*x^24+57987827225861435507031730732252211639273541581*x^23-267946422972221188021178638651796991947414997789*x^22-337529232090698085567040116044352794804706370027*x^21+1661400459117033891059116332346787505694892183967*x^20+1385348410086373719153116642172393453056567599569*x^19-7344336877141759871153964927450991221630315442313*x^18-4031744241020608535134342355246068512007385880437*x^17+23369722667903785469307547931394892687424905988685*x^16+8218274735208266665431397339800230614665268525307*x^15-53340330382570232448872493614777168541627176828135*x^14-11287536843012926240492287048185090897645415991925*x^13+85865694382642209746309083432700078004640687197735*x^12+9456839266663783982329445206384046124832694338635*x^11-94233170070337107466392657150748513754650285510229*x^10-3337147850640675247470505198963747136607715830203*x^9+66398524027171900488181540175227686438923649414305*x^8-1263638495260977513463581865394172009333507792295*x^7-26998091225828689368349513111066812558663657045911*x^6+1424491623236510696102182026715761291716360052853*x^5+5165082928865881120548085394636956473351566842967*x^4-274624363357177045090744626500465535461292574814*x^3-312837985011613195651668544718611257195226849949*x^2+25353935139378789971112858735106924393620926070*x+1083275356749177340610075283248495536879500883,-923472669597501861009070140917493005906124*x^31+3160300818884653920764304662823777948422301*x^30+44636380720123458515323174918280846025518727*x^29-158085154804546867929049623125541081734136936*x^28-956605479964698966470995603758706926291924594*x^27+3531653399046323543256663220236179086497961119*x^26+11980585904780843650145422783796598368647472484*x^25-46545616587922743547497231334162790922612019509*x^24-97275685788499856099638864671990421219660628187*x^23+402799177906439627556889700460718792631536058445*x^22+536645338951430615568418946890809788353900092783*x^21-2410979598621698307962545748716364914139181075957*x^20-2046318340450450295794596026074321800313934303949*x^19+10242751511904889862077050505262206369296352470903*x^18+5355238791747539463028799766563304202373450132427*x^17-31187376693907902259370890351016608168390703122749*x^16-9225064408457173064344624804335561682335082798713*x^15+67856615585368819498238713228867916373953341279833*x^14+9124570061463600950972641637646004352334853743681*x^13-103854033116222077922720048706100856428767656094741*x^12-1926069339373789299481364704089833535493878581967*x^11+108305900971316761692521993588651977667443060365051*x^10-7028922772611471400955468227422105218687514872475*x^9-72749674177635590068121800424727625616645100500253*x^8+8983139710457560528493632052080238513524143152007*x^7+28475355458564018465302522719369681422250366673569*x^6-4529799539161388538023609415444055092467497267932*x^5-5361813381699780298492565114368572174378146658576*x^4+892151571936051027749555372688403437805837399803*x^3+327336486498107340088155303945384149752640444535*x^2-65072270912134251462272574327168998495307484968*x+542626519089530321003140803446811002457659613,-688412878554395987522775586109465036345405*x^31+1717287001745468161160506924340160462589210*x^30+34201834426828036963354754881558058844909150*x^29-85313358283199837405229945039212140197262188*x^28-759098444017590958161745152137548294334190654*x^27+1891397633748045542956107772408896244333101050*x^26+9947503135820458889232889150360121989855173826*x^25-24718338105727375349837752606614475335754839924*x^24-85732941412101087953812017339076373360995246390*x^23+211945174187636959555995601182268889911137115164*x^22+512517820824797295868329942844220210491023881306*x^21-1256021106564472824533140951516578907455989960196*x^20-2184523514171805219443560111622599530242356951932*x^19+5279394135759664852534203651603859762393620168880*x^18+6718820999750461697087247393898362871265908196626*x^17-15893149035723568389063080591758666619936666110092*x^16-14909823890725197536855981080075808450125304844880*x^15+34160025604090404047028508871593744208817268493086*x^14+23581868721025948576423591781074828714608324003888*x^13-51573746012206348094920977666781792425357648864690*x^12-25862307953607482857847125640477100363627050305296*x^11+52904889600193885282665395513592344762196824794396*x^10+18708262651684393239407458501084430334629858683360*x^9-34741535650218094102815106103036722587357413801290*x^8-8193574585630577891697934818057842793610083076096*x^7+13112541899469211080212999828400899028401659180729*x^6+1903673774328338387084731108576142920611381326626*x^5-2300416408290792566128949796054558404036779587514*x^4-217616068462759380889541320732030525326054607994*x^3+119101120072976067872884988988534995371623917296*x^2+5372909604930733864746344125764103592781964950*x-587019450798570728647561812323301039827482568,70575833173204458124804176896853540380934*x^31+619986207911921069056045178907492811166679*x^30-4917847879426691079822337187739878540405799*x^29-30283638798928725350208609393887394785264475*x^28+145034223359148222904483480733990110671546396*x^27+658296361527541107840897656882096087282293839*x^26-2435044320676604862367049269230401985299437491*x^25-8406948748262168478449203437118568006656024182*x^24+26152049863010517782351261573388319623197785890*x^23+70150707188404235957355789859625213750037050820*x^22-190228656699668342915509320454673863814981530716*x^21-402525715505939393396124581957937415144030816977*x^20+964140661114884150411015627233195675830857455187*x^19+1627889721776291692103732759037374598354105237606*x^18-3440821732451229666877624581167221687816680137652*x^17-4677257542004306609715355936534408673042088771396*x^16+8615606857426311461047235085402314667218636796084*x^15+9493502425023502496040173934159381138286855514856*x^14-14868120518319671753333558337724493271146754855384*x^13-13342569801285795191293960101178474617559390787448*x^12+17054593890538298179300296508737196403472615078720*x^11+12499271348204943251138689996992988339592080517844*x^10-12181679465627826763513511977248912116218849769640*x^9-7326354556465217664049395956684826526202077991391*x^8+4801115214560090399463423115133310624227713901181*x^7+2436364109173454642851727898853972073878371739512*x^6-808457385869814155389184849963030009733817167291*x^5-396367606413082580184684916216229080889146639701*x^4+29141472901671083047646907593062747300052194797*x^3+14581536455517913877975311897355973759335283750*x^2-612192233246795447253880632358038650502865173*x-6724142915324635045587905777100554539796169,1488090141238854647775401125296368577187782*x^31-3307976195621680069415698599456247023396264*x^30-73493718290362245364219661530948438266535848*x^29+163319671053626214020076517152305963458099605*x^28+1617134631448881574877578956120210566726833842*x^27-3595703349347967958855398202676651136346568364*x^26-20926793300212406022073928745271751943251140356*x^25+46631900087183728733123373634034709191100845031*x^24+177083104449908891045057013379411497727569087417*x^23-396532223662633117690441429741552656752725696695*x^22-1030590428548610104210295084637060818140557267441*x^21+2329608486523574260596347872798276547286423306408*x^20+4222357150302807149586077946483777143202278138607*x^19-9708610891706043120620886306194289390214280342535*x^18-12242163143924542005084331474365452724840750856833*x^17+29006324072268503175225255902943104818431944503917*x^16+24827590457213563531261069956170968711579707202083*x^15-62015452663260161070667776582635716516398248860551*x^14-34021275364894447725475410301652793399861640244922*x^13+93520539977142396279358830998619797538376591316598*x^12+29048949038435147687045946521428985313905663090649*x^11-96459731162648432705250920950168781140136395296555*x^10-12131476270126717515451888781276509933732556433453*x^9+64317134775499149380742080843572358790859492057893*x^8-881639093088713350884538350574348639383062664753*x^7-25000204578840155612681528046540064737634939713825*x^6+2682672187717503066444128954611384102130699198076*x^5+4627187364780814818257789243627232408284968167705*x^4-666042148127580296628443871897346579654944735096*x^3-277755189680604198338426969428685153789788635681*x^2+49090780805983516648991692950711180990806312337*x-1094013405353484654846235028712437190846692907,518157556446359492071338543445206818204598*x^31-1668099695899852923028091100015271178583762*x^30-23842211484730465327206402211420667266246035*x^29+80575796556100687614899773480306116299050491*x^28+479272823537515704521845071079860894707221635*x^27-1726455877828081348054127367782549991862843596*x^26-5507416980141254720855164732353720333030934506*x^25+21640526568029008014800142242412962034467799096*x^24+39613776669640763690607459844341177689607614796*x^23-176264471427789733300747752277138659840143505600*x^22-181928818331395352935401081890177792123682041640*x^21+980257825334122480596049380897245421033456686988*x^20+505563725712658235565491841959969541642844710300*x^19-3807550988388629816745181470362943655161841296372*x^18-616848003656593510374749037911032467063466141293*x^17+10388799117862623763257240334014418936358575643916*x^16-915501058192547317465876576251980231293389221352*x^15-19751297230602804111522317989981536421319077532367*x^14+5250586272226741271930963288208594451592660118144*x^13+25593188940858818537105492739779051462968906153314*x^12-9880446584867171035107078148659898697446560454692*x^11-21739125279904652742750668898979892080741061981280*x^10+9775429793826403041029042630364899116959905385324*x^9+11402512516990421729108248432376895953067062145720*x^8-5000921498061537735006636776664137458681091909976*x^7-3406781970701430640150308002045739194700918034638*x^6+1063453776953093072193892011724401730275106283778*x^5+520839763372288376635344794815064824649213154567*x^4-48840505594013136947467527675998135909355258495*x^3-17403003042769107148862261470244421740314958469*x^2+647889614470412698413998897263810517934960090*x-15963522687085743293736761375948323193901420,-3253492309763051995651532144988112023067106*x^31+8306900387851441847394432933439250837039143*x^30+160139362006382190182052304835335153672477515*x^29-412698389320237333769798683937536953902755224*x^28-3508741338337441378934037289591412783108906703*x^27+9147156945681709221160904313974903629437516401*x^26+45165580209482253138431555280410527117868371369*x^25-119459291831218813341992469346602638847180847551*x^24-379691763934156767011474836876318283407779735931*x^23+1022959990645246129848740958773391425689613174061*x^22+2192100576192154742917166370327547627166110851647*x^21-6049509080470758703016780587223915374907159854755*x^20-8896210881323155750295976538420450976829374028699*x^19+25349382782795030990596979058151967550254150655565*x^18+25520724537188304328951367608622552550761785883959*x^17-75992705432057419088338232205153312086976585332967*x^16-51219934974595514326496711306651955506894145756535*x^15+162478795230229092019792353809438017657379358433279*x^14+69745665056304148486077400234792712052407777352759*x^13-243848450868042428233618025006599384480327185369999*x^12-60189534819834919475639200781497767653271745345119*x^11+248705830208610960362987944343937056073427275771259*x^10+27583979709272689245359236509607827713854760654677*x^9-162699608054319707250177382588065506171243257073809*x^8-2007886777729248027326061907814166413130472102807*x^7+61495780368916580970136599435181334865308236412035*x^6-3166984515482381999480214109445315197375198139090*x^5-10937179931446625517573096204586208488891856161948*x^4+823277039057408428282540488873904049964675542839*x^3+592353470696762717737291051183292986786547758468*x^2-78642648087088504831919335484685573827658297600*x+827883280681391192911379791090495061625076552,1006321122567544564166637248467942656462985*x^31-1076947561606138145141061787335899838982121*x^30-51326232636799213592979329122088035245383238*x^29+52257673536382599466294278484815409904448165*x^28+1171370752232927462391453544758722618501098893*x^27-1126325491185791558188339519807707288366598174*x^26-15800352395059592351078923688961514951489677785*x^25+14229623832378380023277682770299438859103637647*x^24+140173683040323219322093950348443590162394680511*x^23-117154680995973638613263725212785747121611695695*x^22-861205981954898367551602064040590430918570378505*x^21+661410854471409058629821564176037272643743887897*x^20+3757721684894186447658810746558201274511240952001*x^19-2625124125364474384532804217469486298793476037551*x^18-11746716283234729087288096568144206665668301679847*x^17+7393106449753015545007210405423772685494753437005*x^16+26195252693021336064392373601772308177472783120501*x^15-14738217670464333843769693783854841284016744965419*x^14-40954066362928958064255060049275198597587985697935*x^13+20515456534170611804347716924682978428410867564901*x^12+43403060555394009218910962422768837747851937873617*x^11-19394729027398108776032428576639388161925105011667*x^10-29429334455375333299616528395465673581946856932657*x^9+11830281142266749245985752409059772470467912944987*x^8+11561762264773233339619579748844624289587980985389*x^7-4211224883548947154730684124004408346976624967526*x^6-2203934420907947955955628232466373011979180179628*x^5+704497052889845416049011090132626898691230758329*x^4+146742033688561097315142899627382058446541761724*x^3-41164046246366604844581639818293378166234258216*x^2+925426108669707787000713945053718886559206767*x+20243998431937195164819521435205389691841006,170975280102172574161979504603259878187759*x^31-1187537994942041844766249600377242084928087*x^30-7656230073391691237302727376200958020647479*x^29+59783872440354777456334040949095827384765353*x^28+148585190416425319441983237990308892245632326*x^27-1345436544454709936143842736247535716797470591*x^26-1627847996124118051155612985791397991231595924*x^25+17882441193490091296277049978532616834061125751*x^24+10915537568431643659628203599161613447356246763*x^23-156250429130658788693684794365096796286497985871*x^22-44460965872837035040767612903802569133966534827*x^21+945536330490700269373071040054751227333751142405*x^20+92314391370424066555877404046619846637118689293*x^19-4066858464190533726907107661196948632607943602505*x^18+36521761082329421145331849172947363752738560739*x^17+12555181540053369588376397501940217930386521174127*x^16-825124146623259095988529331463530295054942893361*x^15-27742876544988973199248386663170324976521064627567*x^14+2514416635079894760855201340604775875282288161923*x^13+432105423