Sharedwww / Tables / an_s2g0new_101-200.gpOpen in CoCalc
Author: William A. Stein
1
\\ an_s2g0new_101-200.gp
2
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N
3
\\ in the range: 101 <= N <= 200.
4
\\ The number of a_n computed is sufficient to satisfy Sturm's bound.
5
\\ William Stein ([email protected])
6
7
E[101,1] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30,x^6+3*x^5-12*x^4-28*x^3+33*x^2+45*x-14,-x^5-2*x^4+10*x^3+16*x^2-21*x-14,4*x^3-16*x,x^6+2*x^5-10*x^4-20*x^3+21*x^2+34*x-4,-3*x^6-4*x^5+32*x^4+36*x^3-77*x^2-56*x+28,-x^6+12*x^4-35*x^2+20,x^6-x^5-10*x^4+6*x^3+23*x^2-5*x-18,3*x^6+4*x^5-34*x^4-36*x^3+91*x^2+48*x-40,-x^6-2*x^5+10*x^4+16*x^3-21*x^2-14*x,-3*x^6-3*x^5+34*x^4+30*x^3-93*x^2-55*x+50,4*x^4-24*x^2+16,3*x^6+3*x^5-32*x^4-28*x^3+79*x^2+45*x-42]];
8
E[101,2] = [x, [1,0,-2,-2,-1,0,-2,0,1,0,-2,4,1,0,2,4,3]];
9
10
E[102,1] = [x, [1,1,1,1,-2,1,0,1,1,-2,-4,1,-2,0,-2,1,1,1,4,-2,0,-4,0,1,-1,-2,1,0,-10,-2,8,1,-4,1,0,1]];
11
E[102,2] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,-1,-1,-4,0,2,0,-6,-1,-5,-2,1,2,0,0,-10,-1,0,1,0,1]];
12
E[102,3] = [x, [1,-1,-1,1,-4,1,-2,-1,1,4,0,-1,-6,2,4,1,-1,-1,4,-4,2,0,6,1,11,6,-1,-2,-4,-4,-6,-1,0,1,8,1]];
13
14
E[103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3,-x,-1,4*x+3,-2,1,x,3*x+3,3*x+3,-x,x+3,-3*x+2,x-3]];
15
E[103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13,-x^5+2*x^4+6*x^3-10*x^2-8*x+11,-x^4+2*x^3+4*x^2-5*x-3,x^3-4*x,-x^5+3*x^4+5*x^3-15*x^2-7*x+17,3*x^5-7*x^4-15*x^3+27*x^2+19*x-22,-x^5+2*x^4+4*x^3-4*x^2-4*x-1,-x^4+x^3+5*x^2-3*x-5,2*x^5-4*x^4-11*x^3+15*x^2+14*x-11,-x^5+2*x^4+4*x^3-5*x^2-3*x,x^4-3*x^3-x^2+7*x-5,x^4-6*x^2+4,-3*x^5+7*x^4+16*x^3-30*x^2-21*x+30]];
16
17
E[104,1] = [x, [1,0,1,0,-1,0,5,0,-2,0,-2,0,-1,0,-1,0,-3,0,-2,0,5,0,4,0,-4,0,-5,0]];
18
E[104,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-x,0,x+1,0,-2*x,0,1,0,x-4,0,3*x-2,0,2*x,0,-x-4,0,-8,0,-3*x+3,0,-x+4,0]];
19
20
E[105,1] = [x, [1,1,1,-1,1,1,1,-3,1,1,0,-1,-6,1,1,-1,2,1,-8,-1,1,0,8,-3,1,-6,1,-1,-2,1,4,5]];
21
E[105,2] = [x^2-5, [1,x,-1,3,-1,-x,1,x,1,-x,-2*x+2,-3,-2*x,x,1,-1,-2,x,2*x+2,-3,-1,2*x-10,4,-x,1,-10,-1,3,-2,x,2*x+6,-3*x]];
22
23
E[106,1] = [x, [1,1,-2,1,3,-2,2,1,1,3,-3,-2,-4,2,-6,1,3,1,-4,3,-4,-3,-9,-2,4,-4,4]];
24
E[106,2] = [x, [1,1,1,1,0,1,-4,1,-2,0,0,1,5,-4,0,1,-3,-2,-1,0,-4,0,3,1,-5,5,-5]];
25
E[106,3] = [x, [1,-1,2,1,1,-2,-2,-1,1,-1,5,2,-4,2,2,1,3,-1,-4,1,-4,-5,-3,-2,-4,4,-4]];
26
E[106,4] = [x, [1,-1,-1,1,-4,1,0,-1,-2,4,-4,-1,1,0,4,1,5,2,-7,-4,0,4,1,1,11,-1,5]];
27
28
E[107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2,-x-1,2*x-1,-2*x-1,3*x+2,-x-1,2*x+3,2*x+3,-6,-3*x+2,3*x+5,3*x,x-1,-x+3]];
29
E[107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x,-4*x^4+20*x^2-4*x-8,-2*x^6-2*x^5+16*x^4+14*x^3-30*x^2-24*x+8,4*x^3-16*x,x^6-x^5-8*x^4+9*x^3+15*x^2-18*x-4,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16,2*x^5-2*x^4-16*x^3+10*x^2+22*x,2*x^6-2*x^5-20*x^4+14*x^3+54*x^2-24*x-32,2*x^6-22*x^4+2*x^3+68*x^2-14*x-32,-4*x^5+28*x^3-32*x-16,-2*x^6+2*x^5+24*x^4-22*x^3-78*x^2+56*x+40,4*x^4-24*x^2+16,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16,-2*x^6+2*x^5+16*x^4-14*x^3-30*x^2+16*x+8]];
30
31
E[108,1] = [x, [1,0,0,0,0,0,5,0,0,0,0,0,-7,0,0,0,0,0,-1,0,0,0,0,0,-5,0,0,0,0,0,-4,0,0,0,0,0,-1,0,0,0,0,0,8,0,0,0,0,0,18,0,0,0,0,0,0,0,0,0,0,0,-13,0,0,0]];
32
33
E[109,1] = [x, [1,1,0,-1,3,0,2,-3,-3,3,1,0,0,2,0,-1,-8,-3]];
34
E[109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x,-x^2-2*x,3*x^2+5*x-3,-2*x^2-3*x+1,x^2+4*x+1,x^2-2*x-2,x^2+2*x-5,x+3,-2*x^2-x+3,-x^2+3,3*x^2+8*x+2,-x^2-x+2,-x^2-3*x+1,2*x^2+2*x+1]];
35
E[109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x,x^3-x^2-3*x+3,x^3-x^2-4*x+2,x^3-4*x,-x^3-x^2+3*x+4,-x^2,x^3+x^2-5*x,2*x^2-x-5,2*x^2+x-7,-2*x^3+x^2+6*x-3,-x^3+x^2+3*x-3,-x^3-x^2+4*x+1,x^3-x^2-2*x+6,-2*x^2+3]];
36
37
E[110,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,1,-1,-6,3,-1,1,-7,-2,5,1,-3,1,-6,-1,1,-6,5,3,5,-1,-3,1,-1,-7,3,-2]];
38
E[110,2] = [x, [1,1,1,1,-1,1,-1,1,-2,-1,-1,1,2,-1,-1,1,-3,-2,-1,-1,-1,-1,6,1,1,2,-5,-1,-9,-1,5,1,-1,-3,1,-2]];
39
E[110,3] = [x, [1,-1,1,1,-1,-1,5,-1,-2,1,1,1,2,-5,-1,1,3,2,-7,-1,5,-1,-6,-1,1,-2,-5,5,-3,1,-7,-1,1,-3,-5,-2]];
40
E[110,4] = [x^2+x-8, [1,-1,x,1,1,-x,-x,-1,-x+5,-1,-1,x,2,x,x,1,-x-2,x-5,x+4,1,x-8,1,-2*x-4,-x,1,-2,3*x-8,-x,-x-2,-x,-x,-1,-x,x+2,-x,-x+5]];
41
42
E[111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5,-x,-2*x^2+2*x+4,3*x^2-3*x-5,1,-3*x^2+4*x+5,2*x^2-4*x-2,-x^2+2,2*x^2-4*x-4,-4*x^2+2*x+10,x^2-5,4*x^2-2*x-11,-x^2+4*x+1,x,2*x^2-2*x-8,-3*x^2+2*x+5,2*x^2-2*x-4,2*x^2-10,-x^2+2*x+1,-3*x^2+3*x+5,-2*x+5]];
43
E[111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4,x,2*x^3+2*x^2-8*x-2,x^3-4*x,1,-2*x^3-3*x^2+6*x+5,2*x^2-6,x^2-2,-2*x^3-4*x^2+6*x+10,2*x^3+4*x^2-6*x-10,-x^3-2*x^2+3*x+4,-2*x-1,-x^3+3*x-2,x,2*x^2+2*x-4,-x^3-2*x^2+3*x+2,2*x^3+2*x^2-8*x-2,2*x^3-6*x,3*x^3+2*x^2-11*x-4,x^3-4*x,2*x^3+4*x^2-4*x-9]];
44
45
E[112,1] = [x, [1,0,2,0,0,0,-1,0,1,0,0,0,-4,0,0,0,6,0,-2,0,-2,0,0,0,-5,0,-4,0,-6,0,4,0,0,0,0,0,2,0,-8,0,6,0,-8,0,0,0]];
46
E[112,2] = [x, [1,0,-2,0,-4,0,-1,0,1,0,0,0,0,0,8,0,-2,0,2,0,2,0,-8,0,11,0,4,0,2,0,-4,0,0,0,4,0,-6,0,0,0,-2,0,-8,0,-4,0]];
47
E[112,3] = [x, [1,0,0,0,2,0,1,0,-3,0,4,0,2,0,0,0,-6,0,-8,0,0,0,0,0,-1,0,0,0,6,0,-8,0,0,0,2,0,-2,0,0,0,2,0,4,0,-6,0]];
48
49
E[113,1] = [x, [1,-1,2,-1,2,-2,0,3,1,-2,0,-2,2,0,4,-1,-6,-1,6]];
50
E[113,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3,-2*x-1,-x^2-x-2,-2*x^2-3*x+1,3*x^2+7*x,-2*x^2-x+2,-3*x^2-4*x+4,3*x+2,x^2+4*x-2,x^2-3*x-1,-x^2+1,-x^2-x+2,-x^2-5*x-2,x^2+3*x+3,3*x^2+5*x-4]];
51
E[113,3] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1,-2*x^2+9,-x^2-x+6,-2*x^2+x+9,-x^2-x+4,-x,x^2-4,2*x^2-x-8,x^2-2,x^2+x-9,-x^2+5,3*x^2-x-14,x^2-x-2,x^2-x-9,-3*x^2+x+16]];
52
E[113,4] = [x^2-2*x-2, [1,1,x,-1,-2*x+2,x,4,-3,2*x-1,-2*x+2,-2*x,-x,2*x-4,4,-2*x-4,-1,-2,2*x-1,x-4]];
53
54
E[114,1] = [x, [1,-1,-1,1,0,1,4,-1,1,0,4,-1,0,-4,0,1,-2,-1,1,0,-4,-4,-2,1,-5,0,-1,4,-6,0,6,-1,-4,2,0,1,-8,-1,0,0]];
55
E[114,2] = [x, [1,1,-1,1,2,-1,0,1,1,2,-4,-1,2,0,-2,1,-6,1,-1,2,0,-4,-4,-1,-1,2,-1,0,-2,-2,4,1,4,-6,0,1,10,-1,-2,2]];
56
E[114,3] = [x, [1,1,1,1,0,1,-4,1,1,0,0,1,-4,-4,0,1,6,1,1,0,-4,0,-6,1,-5,-4,1,-4,6,0,2,1,0,6,0,1,-4,1,-4,0]];
57
58
E[115,1] = [x, [1,2,0,2,-1,0,1,0,-3,-2,2,0,-2,2,0,-4,3,-6,-2,-2,0,4,1,0]];
59
E[115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1,-x,-2*x-4,4*x+3,-2,-x,2*x+2,3*x+3,2*x-1,2*x+2,1,-3*x+2,-4*x-8,-2*x,6*x+10,3*x+3,2*x+4,-4*x-2,-1,-4*x-3]];
60
E[115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1,-x^3+x^2+2*x,x^3-2*x^2-4*x+3,x^3-4*x,x^2-x-1,x,-2*x+2,-x^3+3*x-2,-2*x^3+3*x^2+7*x-4,-2*x-2,-x^2+x+2,2*x^3-2*x^2-5*x+2,-x^3+2*x^2+2*x-3,x^3-x^2-x,2*x-2,x^2-2,2*x^3-2*x^2-8*x+4,-2*x^2+2*x,-1,-3*x^2-x+2]];
61
62
E[116,1] = [x, [1,0,1,0,3,0,-4,0,-2,0,3,0,5,0,3,0,-6,0,-4,0,-4,0,-6,0,4,0,-5,0,-1,0]];
63
E[116,2] = [x, [1,0,2,0,-2,0,4,0,1,0,-6,0,2,0,-4,0,2,0,-6,0,8,0,4,0,-1,0,-4,0,-1,0]];
64
E[116,3] = [x, [1,0,-3,0,3,0,4,0,6,0,-1,0,-3,0,-9,0,2,0,4,0,-12,0,-6,0,4,0,-9,0,-1,0]];
65
66
E[117,1] = [x, [1,-1,0,-1,-2,0,-4,3,0,2,-4,0,1,4,0,-1,-2,0,0,2,0,4,0,0,-1,-1,0,4]];
67
E[117,2] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2,0,-2*x+2,x+2,0,-2*x-2,2,0,-1,-2*x-2,0,3,4*x-6,0,2*x-2,-2*x-6,0,2*x,4,0,3,-x,0,-2*x-6]];
68
E[117,3] = [x^2-3, [1,x,0,1,0,0,2,-x,0,0,-2*x,0,1,2*x,0,-5,-4*x,0,2,0,0,-6,4*x,0,-5,x,0,2]];
69
70
E[118,1] = [x, [1,1,2,1,-2,2,-3,1,1,-2,-1,2,-3,-3,-4,1,7,1,4,-2,-6,-1,4,2,-1,-3,-4,-3,4,-4]];
71
E[118,2] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-6,3,-1,1,-2,-2,-5,1,-3,2,4,-1,-4,-6,5,3,-5,-1]];
72
E[118,3] = [x, [1,-1,-1,1,-3,1,-1,-1,-2,3,-2,-1,-2,1,3,1,-2,2,3,-3,1,2,0,1,4,2,5,-1,-1,-3]];
73
E[118,4] = [x, [1,-1,2,1,2,-2,-3,-1,1,-2,1,2,3,3,4,1,-1,-1,-8,2,-6,-1,8,-2,-1,-3,-4,-3,-4,-4]];
74
75
E[119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x,-x^2+3,1,x^3-4*x,-x^3-3*x^2+2*x+7,x^2+x-3,-2*x,x^3+2*x^2-5*x-2,2*x^3+4*x^2-6*x-4,x,2*x^2+2*x-9,-x^3-x^2+x+1,-1,-2*x^3-3*x^2+6*x+3,-2*x^3-4*x^2+4*x+8,-x^3-x^2+5*x,-x^3-x^2+4*x+1,-2*x^2,2*x^2+4*x-6,x^3+2*x^2-x-9]];
76
E[119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18,-2*x^4-2*x^3+15*x^2+10*x-17,-1,x^3-4*x,2*x^4+x^3-13*x^2-8*x+13,5*x^4+x^3-34*x^2-10*x+34,-2*x^4-2*x^3+14*x^2+12*x-14,-4*x^4-x^3+26*x^2+9*x-26,-2*x^4+14*x^2-14,-x,-x^4-x^3+7*x^2+3*x-4,x^4-6*x^2+4,1,5*x^4+3*x^3-36*x^2-15*x+34,-2*x^4+14*x^2+2*x-14,7*x^4+4*x^3-50*x^2-24*x+49,x^4-6*x^2-x+4,-6*x^4-2*x^3+40*x^2+14*x-34,2*x^2-10,-5*x^4-2*x^3+35*x^2+10*x-34]];
77
78
E[120,1] = [x, [1,0,1,0,1,0,0,0,1,0,-4,0,6,0,1,0,-6,0,-4,0,0,0,0,0,1,0,1,0,-2,0,-8,0,-4,0,0,0,-2,0,6,0,-6,0,12,0,1,0,8,0]];
79
E[120,2] = [x, [1,0,1,0,-1,0,4,0,1,0,0,0,-6,0,-1,0,-2,0,4,0,4,0,-8,0,1,0,1,0,-6,0,0,0,0,0,-4,0,-6,0,-6,0,10,0,-4,0,-1,0,8,0]];
80
81
E[121,1] = [x, [1,2,-1,2,1,-2,2,0,-2,2,0,-2,-4,4,-1,-4,2,-4,0,2,-2,0]];
82
E[121,2] = [x, [1,1,2,-1,1,2,-2,-3,1,1,0,-2,1,-2,2,-1,-5,1,6,-1,-4,0]];
83
E[121,3] = [x, [1,-1,2,-1,1,-2,2,3,1,-1,0,-2,-1,-2,2,-1,5,-1,-6,-1,4,0]];
84
E[121,4] = [x, [1,0,-1,-2,-3,0,0,0,-2,0,0,2,0,0,3,4,0,0,0,6,0,0]];
85
86
E[122,1] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3,x,2*x^2+3*x-5,1,x^2-3,-x^2-3*x+3,-x^2-x+1,x,-x^2-x+3,2*x^2+3*x-5,-2*x^2-2*x+2,1,-2*x^2-4*x+4,x^2-3,x^2+2*x-4,-x^2-3*x+3,x^2+5*x-4,-x^2-x+1,3*x^2+4*x-9,x,3*x^2+5*x-6,-x^2-x+3,-x^2-x-2,2*x^2+3*x-5,x^2+4*x-2,-2*x^2-2*x+2,-2*x^2-x+6]];
87
E[122,2] = [x, [1,-1,-2,1,1,2,-5,-1,1,-1,-3,-2,-3,5,-2,1,0,-1,0,1,10,3,5,2,-4,3,4,-5,6,2,0]];
88
E[122,3] = [x^2-x-3, [1,-1,x,1,0,-x,-x+3,-1,x,0,-2*x+2,x,-2*x+4,x-3,0,1,2*x-2,-x,3*x-1,0,2*x-3,2*x-2,-3*x,-x,-5,2*x-4,-2*x+3,-x+3,-x-5,0,-x]];
89
90
E[123,1] = [x, [1,-2,1,2,-4,-2,-2,0,1,8,-3,2,-6,4,-4,-4,3,-2,0,-8,-2,6,-6,0,11,12,1,-4]];
91
E[123,2] = [x^2-2, [1,x,1,0,-x+2,x,x-2,-2*x,1,2*x-2,-x+1,0,-3*x+2,-2*x+2,-x+2,-4,x+1,x,x-4,0,x-2,x-2,x,-2*x,-4*x+1,2*x-6,1,0]];
92
E[123,3] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4,-x,-x^2-x+4,x^2-2,1,2,-x-1,-x^2+2,x^2-x,-2*x^2+2,x^2-x-4,-x^2+2*x+2,2*x^2-x-5,x,x^2-x-2,2*x^2-8,x^2+x-4,-x^2-x,x^2-x-6,-x^2+2,-4*x^2+2*x+13,4*x-2,-1,-4*x-4]];
93
E[123,4] = [x, [1,0,-1,-2,-2,0,-4,0,1,0,5,2,-4,0,2,4,-5,0,-2,4,4,0,4,0,-1,0,-1,8]];
94
95
E[124,1] = [x, [1,0,-2,0,-3,0,-1,0,1,0,-6,0,2,0,6,0,6,0,-1,0,2,0,-6,0,4,0,4,0,0,0,1,0]];
96
E[124,2] = [x, [1,0,0,0,1,0,3,0,-3,0,6,0,-4,0,0,0,0,0,-5,0,0,0,-4,0,-4,0,0,0,2,0,-1,0]];
97
98
E[125,1] = [x^2+x-1, [1,x,-x-2,-x-1,0,-x-1,-3,-2*x-1,3*x+2,0,-3,2*x+3,3*x,-3*x,0,3*x,-2*x+1,-x+3,x-2,0,3*x+6,-3*x,2*x+2,3*x+4,0]];
99
E[125,2] = [x^2-x-1, [1,x,-x+2,x-1,0,x-1,3,-2*x+1,-3*x+2,0,-3,2*x-3,3*x,3*x,0,-3*x,-2*x-1,-x-3,-x-2,0,-3*x+6,-3*x,2*x-2,-3*x+4,0]];
100
E[125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0,-3*x^2+11,x^3-7*x,2*x^3-8*x,-x^2+5,0,4,-x^3+x,-4*x,x^2-11,0,4*x^2-14,-2*x^3+10*x,-x^3+5*x,-2*x^2+18,0,4*x^2-22,4*x,x^3-3*x,-x^2-11,0]];
101
102
E[126,1] = [x, [1,-1,0,1,2,0,-1,-1,0,-2,4,0,6,1,0,1,-2,0,-4,2,0,-4,-8,0,-1,-6,0,-1,2,0,0,-1,0,2,-2,0,-10,4,0,-2,6,0,-4,4,0,8,0,0]];
103
E[126,2] = [x, [1,1,0,1,0,0,1,1,0,0,0,0,-4,1,0,1,-6,0,2,0,0,0,0,0,-5,-4,0,1,6,0,-4,1,0,-6,0,0,2,2,0,0,-6,0,8,0,0,0,12,0]];
104
105
E[127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4,x^2-3,x^2+x-3,-3*x^2-4*x+3,x^2+3*x,-2*x^2-4*x+3,x^2+4*x+1,-x^2+x+3,-3*x^2-4*x+4,-2*x^2-3*x+3,2*x^2+5*x,3*x^2+3*x-5,-x-7,3,x^2+x-1,x+2,x^2+3*x]];
106
E[127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9,2*x^5-3*x^4-13*x^3+17*x^2+15*x-15,-x^5+x^4+7*x^3-7*x^2-9*x+8,x^3-4*x,x^5-3*x^4-7*x^3+19*x^2+9*x-17,-x^6+9*x^4+x^3-23*x^2-2*x+15,x^6-2*x^5-6*x^4+13*x^3+3*x^2-15*x+6,x^5-x^4-7*x^3+7*x^2+7*x-8,-2*x^6+6*x^5+11*x^4-38*x^3-2*x^2+39*x-13,-x^6+x^5+7*x^4-7*x^3-9*x^2+8*x,-x^5+4*x^4+6*x^3-24*x^2-8*x+21,x^4-6*x^2+4,x^6-x^5-9*x^4+6*x^3+24*x^2-6*x-15,x^6-3*x^5-7*x^4+19*x^3+9*x^2-17*x,2*x^6-5*x^5-11*x^4+32*x^3+2*x^2-33*x+11,-x^5+6*x^3+2*x^2-6*x-3,x^6-3*x^5-4*x^4+20*x^3-10*x^2-23*x+17]];
107
108
E[128,1] = [x, [1,0,-2,0,-2,0,-4,0,1,0,2,0,-2,0,4,0,-2,0,-2,0,8,0,4,0,-1,0,4,0,6,0,0,0]];
109
E[128,2] = [x, [1,0,-2,0,2,0,4,0,1,0,2,0,2,0,-4,0,-2,0,-2,0,-8,0,-4,0,-1,0,4,0,-6,0,0,0]];
110
E[128,3] = [x, [1,0,2,0,2,0,-4,0,1,0,-2,0,2,0,4,0,-2,0,2,0,-8,0,4,0,-1,0,-4,0,-6,0,0,0]];
111
E[128,4] = [x, [1,0,2,0,-2,0,4,0,1,0,-2,0,-2,0,-4,0,-2,0,2,0,8,0,-4,0,-1,0,-4,0,6,0,0,0]];
112
113
E[129,1] = [x, [1,1,1,-1,2,1,0,-3,1,2,0,-1,-2,0,2,-1,-6,1,4,-2,0,0,-4,-3,-1,-2,1,0,-6]];
114
E[129,2] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2,-x,-2*x+3,x+2,1,-1,-x+4,-2*x+1,-5,-x-2,x-2,3,-2*x,x,4*x-5,x-4,2*x-3,2*x-1,6,-x-2,-2*x,-5*x,-1,-7,3*x]];
115
E[129,3] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2,x,-x^2+6,-2*x^2+x+8,1,-x^2-2*x,x^2-x-5,x^2-2,3,2*x^2+x-8,-x-2,3*x^2-2*x-12,-x^2+5,x,-x^2-2*x+2,-3*x-4,-x^2+6,-3*x^2+8,3*x^2+2*x-9,-2*x^2+x+8,x^2+4*x-1,3*x,1,-x^2+2*x+4,-x]];
116
E[129,4] = [x, [1,0,-1,-2,-2,0,-2,0,1,0,-5,2,3,0,2,4,-3,0,2,4,2,0,-1,0,-1,0,-1,4,0]];
117
118
E[130,1] = [x, [1,-1,-2,1,1,2,-4,-1,1,-1,-6,-2,1,4,-2,1,-6,-1,2,1,8,6,6,2,1,-1,4,-4,-6,2,2,-1,12,6,-4,1,2,-2,-2,-1,-6,-8]];
119
E[130,2] = [x, [1,1,2,1,-1,2,-4,1,1,-1,-2,2,-1,-4,-2,1,2,1,6,-1,-8,-2,6,2,1,-1,-4,-4,2,-2,-6,1,-4,2,4,1,-2,6,-2,-1,10,-8]];
120
E[130,3] = [x, [1,1,0,1,1,0,0,1,-3,1,0,0,1,0,0,1,2,-3,-8,1,0,0,-4,0,1,1,0,0,-2,0,-4,1,0,2,0,-3,6,-8,0,1,10,0]];
121
122
E[131,1] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16,2*x^9-32*x^7+162*x^5-268*x^3+80*x,-2*x^9-4*x^8+28*x^7+56*x^6-114*x^5-252*x^4+88*x^3+376*x^2+120*x-48,16*x^3-64*x,3*x^9-50*x^7+10*x^6+273*x^5-90*x^4-522*x^3+156*x^2+248*x+16,4*x^7+4*x^6-36*x^5-36*x^4+56*x^3+88*x^2+32*x-32,-x^9+18*x^7-6*x^6-107*x^5+62*x^4+234*x^3-140*x^2-176*x+32,-4*x^7+4*x^6+36*x^5-52*x^4-56*x^3+152*x^2-32*x-96,x^9+2*x^8-14*x^7-30*x^6+55*x^5+136*x^4-34*x^3-168*x^2-80*x+16,-4*x^9-8*x^8+60*x^7+108*x^6-288*x^5-452*x^4+432*x^3+584*x^2-16*x-64,-2*x^9+2*x^8+36*x^7-40*x^6-218*x^5+242*x^4+488*x^3-436*x^2-328*x+80,16*x^4-96*x^2+64,2*x^9+4*x^8-28*x^7-52*x^6+118*x^5+200*x^4-124*x^3-192*x^2-64*x-64,4*x^8+4*x^7-60*x^6-36*x^5+288*x^4+72*x^3-448*x^2-32*x+96,2*x^9-36*x^7+4*x^6+206*x^5-52*x^4-380*x^3+168*x^2+96*x-96,2*x^9+4*x^8-32*x^7-40*x^6+178*x^5+92*x^4-380*x^3-24*x^2+256*x-32,x^9-18*x^7+2*x^6+119*x^5-10*x^4-326*x^3-12*x^2+264*x+48,-4*x^7+4*x^6+44*x^5-36*x^4-112*x^3+56*x^2+48*x-32]];
123
E[131,2] = [x, [1,0,-1,-2,-2,0,-1,0,-2,0,0,2,-3,0,2,4,4,0,-2,4,1,0]];
124
125
E[132,1] = [x, [1,0,1,0,2,0,-2,0,1,0,1,0,-2,0,2,0,4,0,-6,0,-2,0,0,0,-1,0,1,0,-8,0,-8,0,1,0,-4,0,10,0,-2,0,8,0,-2,0,2,0,-8,0]];
126
E[132,2] = [x, [1,0,-1,0,2,0,2,0,1,0,-1,0,6,0,-2,0,-4,0,-2,0,-2,0,-8,0,-1,0,-1,0,0,0,0,0,1,0,4,0,-6,0,-6,0,0,0,10,0,2,0,0,0]];
127
128
E[133,1] = [x^2-x-1, [1,x,-x+2,x-1,1,x-1,1,-2*x+1,-3*x+2,x,x-1,2*x-3,-1,x,-x+2,-3*x,3*x-1,-x-3,-1,x-1,-x+2,1,-4*x+1,-3*x+4,-4,-x]];
129
E[133,2] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3,-3*x-1,-1,4*x+3,-3*x-4,3*x+2,x-3,6*x+3,1,-x,3*x+2,-3*x+2,3*x+3,5*x+3,-1,-3*x+3,-x,-6*x-1,-3,-9*x-4,0,x]];
130
E[133,3] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4,-2*x^2+x+7,-1,2*x^2-7,-2*x^2+x+8,x^2-7,-x+3,-x^2-x+4,x^2-x-4,-x,3*x^2-2*x-13,2*x^2+x-10,-2*x^2-x+11,-3*x^2+14,1,-x+1,x^2-5,-x^2+3*x,x^2+x,x^2-2*x-7,-3*x^2+x+11,x^2-7]];
131
E[133,4] = [x^2+x-3, [1,x,-x-2,-x+1,-3,-x-3,1,-3,3*x+4,-3*x,-x-3,1,2*x-1,x,3*x+6,-x-2,x-3,x+9,1,3*x-3,-x-2,-2*x-3,-3,3*x+6,4,-3*x+6]];
132
133
E[134,1] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5,-x,-2*x^2-2*x+12,-1,x^2-3,-x^2-x+5,-x^2-2*x+6,x,x^2-2,2*x^2+2*x-12,2*x^2+3*x-11,1,-x^2-x+5,-x^2+3,2,x^2+x-5,-4*x^2-4*x+22,x^2+2*x-6,x-4,-x,2*x^2+3*x-13,-x^2+2,x^2+2*x-11,-2*x^2-2*x+12,0,-2*x^2-3*x+11,4*x^2+2*x-22,-1,-3*x^2-2*x+11,x^2+x-5]];
134
E[134,2] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1,x,2*x^2-6*x,1,x^2-3,-x^2+x+1,-3*x^2+6*x+2,x,3*x^2-8*x-2,2*x^2-6*x,-2*x^2+x+1,1,-x^2+5*x-3,x^2-3,-4*x^2+12*x+2,-x^2+x+1,-2,-3*x^2+6*x+2,4*x^2-9*x-4,x,2*x^2+x-5,3*x^2-8*x-2,3*x^2-6*x-1,2*x^2-6*x,-4,-2*x^2+x+1,-2*x+6,1,-3*x^2+2*x+3,-x^2+5*x-3]];
135
136
E[135,1] = [x, [1,-2,0,2,-1,0,-3,0,0,2,-2,0,-5,6,0,-4,-8,0,1,-2,0,4,6,0,1,10,0,-6,2,0,0,8,0,16,3,0]];
137
E[135,2] = [x, [1,2,0,2,1,0,-3,0,0,2,2,0,-5,-6,0,-4,8,0,1,2,0,4,-6,0,1,-10,0,-6,-2,0,0,-8,0,16,-3,0]];
138
E[135,3] = [x^2-x-3, [1,x,0,x+1,-1,0,-2*x+2,3,0,-x,-2*x,0,2*x+2,-6,0,x-2,-2*x+3,0,2*x-1,-x-1,0,-2*x-6,3,0,1,4*x+6,0,-2*x-4,2*x-6,0,-2*x-1,-x-3,0,x-6,2*x-2,0]];
139
E[135,4] = [x^2+x-3, [1,x,0,-x+1,1,0,2*x+2,-3,0,x,-2*x,0,-2*x+2,6,0,-x-2,-2*x-3,0,-2*x-1,-x+1,0,2*x-6,-3,0,1,4*x-6,0,2*x-4,2*x+6,0,2*x-1,-x+3,0,-x-6,2*x+2,0]];
140
141
E[136,1] = [x, [1,0,-2,0,-2,0,-2,0,1,0,-6,0,2,0,4,0,1,0,0,0,4,0,6,0,-1,0,4,0,-10,0,2,0,12,0,4,0]];
142
E[136,2] = [x, [1,0,2,0,0,0,0,0,1,0,2,0,-6,0,0,0,-1,0,4,0,0,0,4,0,-5,0,-4,0,0,0,-8,0,4,0,0,0]];
143
E[136,3] = [x^2+2*x-4, [1,0,x,0,2,0,-x,0,-2*x+1,0,-x,0,2*x+2,0,2*x,0,1,0,-2*x-4,0,2*x-4,0,-x,0,-1,0,2*x-8,0,2,0,x,0,2*x-4,0,-2*x,0]];
144
145
E[137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1,-2*x^3-3*x^2+2*x+1,-x^3-2*x^2+2*x-1,x^3-4*x,2*x^2+3*x-1,3*x^3+3*x^2-7*x-2,4*x^3+9*x^2-4*x-8,x^3-x+2,x^2+3*x-2,x^3+2*x^2-5*x-1,4*x+1,-3*x^3-6*x^2+4*x+5,-x^3-5*x^2-2*x+5,2*x^3+3*x^2-x,-2*x^3-7*x^2-x+5,-2*x^3-x^2+4*x+1,-4*x^3-4*x^2+11*x+5,-3*x^3-4*x^2+8*x+4,x^2-2*x-4]];
146
E[137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26,x^6+x^5-9*x^4-5*x^3+21*x^2+2*x-7,-2*x^6+18*x^4-2*x^3-42*x^2+6*x+22,2*x^3-8*x,-4*x^6+2*x^5+38*x^4-20*x^3-96*x^2+40*x+50,-2*x^6+16*x^4-4*x^3-32*x^2+12*x+14,4*x^6-2*x^5-38*x^4+20*x^3+94*x^2-42*x-44,3*x^6-x^5-27*x^4+11*x^3+65*x^2-24*x-35,2*x^6-18*x^4+4*x^3+44*x^2-16*x-20,-2*x^5-2*x^4+14*x^3+12*x^2-16*x-14,2*x^6-20*x^4+2*x^3+54*x^2-10*x-28,2*x^4-12*x^2+8,2*x^5+2*x^4-14*x^3-10*x^2+18*x+6,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-28,2*x^6-2*x^5-20*x^4+16*x^3+56*x^2-26*x-34,-4*x^6+36*x^4-8*x^3-86*x^2+28*x+38,-6*x^6+4*x^5+62*x^4-36*x^3-174*x^2+68*x+98,-2*x^6+2*x^5+20*x^4-18*x^3-54*x^2+32*x+28,-x^6+x^5+7*x^4-11*x^3-9*x^2+24*x+1]];
147
148
E[138,1] = [x, [1,-1,-1,1,-2,1,-2,-1,1,2,-6,-1,-2,2,2,1,0,-1,0,-2,2,6,-1,1,-1,2,-1,-2,6,-2,8,-1,6,0,4,1,0,0,2,2,10,-2,-12,-6,-2,1,-8,-1]];
149
E[138,2] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,0,-1,2,0,2,0,-1,-1,-5,-2,1,2,-6,0,-4,-1,0,0,0,1,-10,-2,2,0,-6,-2,2,0,0,1,0,1]];
150
E[138,3] = [x, [1,1,-1,1,2,-1,0,1,1,2,0,-1,-2,0,-2,1,2,1,-8,2,0,0,-1,-1,-1,-2,-1,0,-2,-2,-8,1,0,2,0,1,2,-8,2,2,10,0,8,0,2,-1,8,-1]];
151
E[138,4] = [x^2+2*x-4, [1,1,1,1,x,1,-2*x-2,1,1,x,-x-4,1,2*x+2,-2*x-2,x,1,-4,1,3*x+2,x,-2*x-2,-x-4,1,1,-2*x-1,2*x+2,1,-2*x-2,-2*x-2,x,-2*x,1,-x-4,-4,2*x-8,1,x+10,3*x+2,2*x+2,x,-2,-2*x-2,x-6,-x-4,x,1,4,1]];
152
153
E[139,1] = [x, [1,1,2,-1,-1,2,3,-3,1,-1,5,-2,-7,3,-2,-1,-6,1,-2,1,6,5,2]];
154
E[139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4,-x-1,2*x^2+3*x-2,-2*x^2-3*x+1,x^2+3*x-1,-x^2-3*x+1,-3*x^2-4*x+1,x^2+3*x,-3*x^2-5*x+3,-x^2+2,3*x^2+6*x-1,-x^2-x+2,x^2+3*x-1,x^2+1,2*x^2+7*x,-3*x^2-2*x+7,-x-3,2*x^2-2*x-3,4*x^2+5*x-7]];
155
E[139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12,4*x^5-32*x^3-4*x^2+48*x+16,-x^6+x^5+11*x^4-8*x^3-35*x^2+14*x+24,4*x^3-16*x,-4*x^5-4*x^4+36*x^3+28*x^2-72*x-28,-2*x^6-2*x^5+14*x^4+16*x^3-14*x^2-20*x-8,-2*x^6+4*x^5+20*x^4-34*x^3-50*x^2+54*x+28,4*x^5+4*x^4-36*x^3-28*x^2+64*x+32,2*x^5+2*x^4-18*x^3-16*x^2+34*x+28,4*x^2-8*x-8,4*x^6-36*x^4+76*x^2-4*x-24,4*x^4-24*x^2+16,2*x^6+2*x^5-18*x^4-16*x^3+34*x^2+24*x+8,-4*x^6-4*x^5+36*x^4+28*x^3-72*x^2-28*x,-4*x^4+28*x^2-32,-2*x^6-6*x^5+14*x^4+44*x^3-2*x^2-64*x-40,-4*x^4+4*x^3+28*x^2-20*x-32,2*x^6-2*x^5-18*x^4+20*x^3+34*x^2-36*x-16,2*x^6-2*x^5-18*x^4+20*x^3+42*x^2-40*x-32]];
156
157
E[140,1] = [x, [1,0,3,0,-1,0,-1,0,6,0,-5,0,-3,0,-3,0,-1,0,6,0,-3,0,6,0,1,0,9,0,-9,0,-4,0,-15,0,1,0,2,0,-9,0,-4,0,10,0,-6,0,-1,0]];
158
E[140,2] = [x, [1,0,1,0,1,0,1,0,-2,0,3,0,-1,0,1,0,-3,0,2,0,1,0,-6,0,1,0,-5,0,-9,0,8,0,3,0,1,0,-10,0,-1,0,0,0,2,0,-2,0,-3,0]];
159
160
E[141,1] = [x, [1,-2,1,2,-3,-2,-3,0,1,6,-5,2,2,6,-3,-4,-6,-2,-6,-6,-3,10,9,0,4,-4,1,-6,1,6,-2,8]];
161
E[141,2] = [x, [1,2,1,2,-1,2,-3,0,1,-2,1,2,-2,-6,-1,-4,2,2,6,-2,-3,2,3,0,-4,-4,1,-6,3,-2,2,-8]];
162
E[141,3] = [x^2+x-4, [1,x,-1,-x+2,x+1,-x,x+1,x-4,1,4,-x+3,x-2,-2*x-4,4,-x-1,-3*x,-2*x,x,6,2*x-2,-x-1,4*x-4,-3*x-3,-x+4,x,-2*x-8,-1,2*x-2,x-7,-4,2*x+4,x-4]];
163
E[141,4] = [x, [1,0,-1,-2,-1,0,-3,0,1,0,-3,2,-4,0,1,4,8,0,-6,2,3,0,3,0,-4,0,-1,6,-1,0,4,0]];
164
E[141,5] = [x, [1,-1,1,-1,2,-1,0,3,1,-2,4,-1,-2,0,2,-1,2,-1,0,-2,0,-4,0,3,-1,2,1,0,-6,-2,-4,-5]];
165
E[141,6] = [x, [1,-1,-1,-1,0,1,4,3,1,0,0,1,6,-4,0,-1,-6,-1,2,0,-4,0,4,-3,-5,-6,-1,-4,8,0,6,-5]];
166
167
E[142,1] = [x, [1,1,1,1,0,1,-1,1,-2,0,0,1,-1,-1,0,1,0,-2,-1,0,-1,0,3,1,-5,-1,-5,-1,0,0,5,1,0,0,0,-2]];
168
E[142,2] = [x, [1,1,-3,1,-4,-3,-3,1,6,-4,0,-3,1,-3,12,1,0,6,-5,-4,9,0,-7,-3,11,1,-9,-3,-8,12,7,1,0,0,12,6]];
169
E[142,3] = [x, [1,-1,-1,1,-2,1,-1,-1,-2,2,-2,-1,-3,1,2,1,-6,2,5,-2,1,2,-1,1,-1,3,5,-1,6,-2,1,-1,2,6,2,-2]];
170
E[142,4] = [x, [1,-1,3,1,2,-3,-3,-1,6,-2,-6,3,-5,3,6,1,6,-6,1,2,-9,6,5,-3,-1,5,9,-3,-2,-6,-5,-1,-18,-6,-6,6]];
171
E[142,5] = [x, [1,-1,0,1,2,0,0,-1,-3,-2,6,0,4,0,0,1,6,3,-8,2,0,-6,-4,0,-1,-4,0,0,-2,0,-8,-1,0,-6,0,-3]];
172
173
E[143,1] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4,-x^2+2*x+1,x^3-x^2-4*x+2,x^3-4*x,x^3-3*x^2-2*x+5,-2*x^3+2*x^2+4*x,1,x^3-4*x^2+x+6,-1,2*x^3-3*x^2-3*x-1,-2*x^3+6*x^2+2*x-10,3*x^3-5*x^2-5*x+3,-4*x^2+6*x+8,-x^2-1,-3*x^3+7*x^2+2*x-3,-4*x^3+6*x^2+6*x-6,-2*x^3+8*x^2-4*x-9,x,x^3-x^2-2*x-2,-x^3+4*x^2-3*x-3,4*x^3-8*x^2-4*x+7,-x,2*x^2-2*x-7,x^3+x^2-3*x-6]];
174
E[143,2] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15,-x^5-2*x^4+8*x^3+13*x^2-12*x-12,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,x^3-4*x,-3*x^5-4*x^4+25*x^3+27*x^2-38*x-26,2*x^5+2*x^4-16*x^3-12*x^2+22*x+12,-1,-x^3+3*x-2,1,2*x^5+3*x^4-17*x^3-22*x^2+28*x+24,3*x^5+4*x^4-24*x^3-28*x^2+30*x+33,x^4-6*x^2+4,-2*x,-4*x^5-5*x^4+33*x^3+34*x^2-47*x-36,-2*x^5-3*x^4+16*x^3+20*x^2-23*x-22,2*x^2+2*x-6,2*x^5+3*x^4-17*x^3-19*x^2+29*x+14,-x,-3*x^5-4*x^4+25*x^3+29*x^2-38*x-33,2*x^5+3*x^4-16*x^3-23*x^2+22*x+24,-3*x^5-4*x^4+26*x^3+26*x^2-44*x-20,x,-5*x^5-7*x^4+41*x^3+47*x^2-59*x-47,-x^5-x^4+8*x^3+6*x^2-14*x-4]];
175
E[143,3] = [x, [1,0,-1,-2,-1,0,-2,0,-2,0,-1,2,-1,0,1,4,-4,0,2,2,2,0,7,0,-4,0,5,4]];
176
177
E[144,1] = [x, [1,0,0,0,2,0,0,0,0,0,4,0,-2,0,0,0,-2,0,4,0,0,0,-8,0,-1,0,0,0,-6,0,-8,0,0,0,0,0,6,0,0,0,6,0,-4,0,0,0,0,0]];
178
E[144,2] = [x, [1,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0,0,-8,0,0,0,0,0,-5,0,0,0,0,0,4,0,0,0,0,0,-10,0,0,0,0,0,-8,0,0,0,0,0]];
179
180
E[145,1] = [x, [1,-1,0,-1,-1,0,-2,3,-3,1,-6,0,2,2,0,-1,-2,3,-2,1,0,6,2,0,1,-2,0,2,-1,0]];
181
E[145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1,-2*x,-2*x-4,x-2,1,x,2*x,4*x+2,-2,-2,-2,3,2*x+2,x,-2*x-4,-2*x-1,4*x+8,-4*x+2,2*x-4,-2*x+4,1,-2*x,4,2*x+8,1,-2*x]];
182
E[145,3] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1,-x^2+5,-x^2+3,3*x^2-3*x-5,-2*x+3,-x,x^2-2*x+1,-x^2+3,2*x-4,-3*x^2+2*x+5,x^2-2*x-1,4*x^2-2*x-11,-3*x^2+2*x+9,-2*x^2+3*x,3*x^2-4*x-7,-x^2+2,2*x-2,x^2+2*x-5,x^2-2*x+3,-x^2+2*x-5,1,2*x^2-4*x,2*x^2-10,-5*x^2+2*x+9,1,x^2-5]];
183
E[145,4] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,x^2-1,x^2-x-1,-2*x^2+2*x+5,x,x^2-2*x-1,x^2-2*x-5,-2*x,x^2+2*x-1,-x^2+3,-2*x^2+2*x+3,3*x^2-4*x-7,-x+2,-x^2-1,x^2-2,-2*x-2,-x^2+2*x-1,-x^2+2*x+7,x^2-2*x-3,1,-2*x^2,-2*x^2+4*x+6,x^2+2*x+1,-1,-x^2+1]];
184
185
E[146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4,-2*x,x^2,-2,2*x^2-6,x^2-4,-2*x^2-4*x+12,2*x,-x^2+8,-x^2,-4*x+4,2,2*x^2+4*x-12,-2*x^2+6,-2*x^2-4*x+16,-x^2+4,8*x-4,2*x^2+4*x-12,2*x^2-8,-2*x,-2*x-2,x^2-8,4*x-8,x^2,3*x^2-4*x-20,4*x-4,x^2+4*x-4,-2,-4*x^2-4*x+8,-2*x^2-4*x+12,-2*x^2+2*x,2*x^2-6,-4*x^2-4*x+12]];
186
E[146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2,2*x,2*x^3+x^2-14*x+2,2,2*x^2-6,-x^3-x^2+4*x+2,2*x^2-8,2*x,-3*x^2-2*x+10,2*x^3+x^2-14*x+2,-x^3-4*x^2+6*x+4,2,-2*x^3-2*x^2+12*x,2*x^2-6,2*x^2+4*x-8,-x^3-x^2+4*x+2,x^3+2*x^2-6*x-8,2*x^2-8,-2*x^3-2*x^2+16*x-4,2*x,4*x^2+2*x-10,-3*x^2-2*x+10,2*x^3-12*x,2*x^3+x^2-14*x+2,3*x^3+x^2-20*x+6,-x^3-4*x^2+6*x+4,-x^3+x^2+12*x-10,2,2*x^3-8*x,-2*x^3-2*x^2+12*x,2*x^3+2*x^2-14*x-8,2*x^2-6,2*x^3-16*x+12]];
187
188
E[147,1] = [x, [1,-1,-1,-1,2,1,0,3,1,-2,4,1,2,0,-2,-1,6,-1,-4,-2,0,-4,0,-3,-1,-2,-1,0,-2,2,0,-5,-4,-6,0,-1,6]];
189
E[147,2] = [x, [1,2,-1,2,2,-2,0,0,1,4,-2,-2,-1,0,-2,-4,0,2,-1,4,0,-4,0,0,-1,-2,-1,0,4,-4,-9,-8,2,0,0,2,3]];
190
E[147,3] = [x, [1,2,1,2,-2,2,0,0,1,-4,-2,2,1,0,-2,-4,0,2,1,-4,0,-4,0,0,-1,2,1,0,4,-4,9,-8,-2,0,0,2,3]];
191
E[147,4] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5,x+1,0,-x-5,2,x-1,-4,-2*x,-x-7,0,-x+5,6,-3*x-1,-x-1,-2*x+2,-3*x+7,0,2*x+2,4*x-8,x+5,-4*x+6,5*x+7,-2,0,2*x-10,-x+1,2*x+6,-x+7,4,5*x+11,0,2*x,-8]];
192
E[147,5] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5,-x-1,0,-x-5,2,-x+1,-4,2*x,x+7,0,-x+5,6,3*x+1,-x-1,2*x-2,3*x-7,0,2*x+2,4*x-8,-x-5,-4*x+6,-5*x-7,2,0,2*x-10,-x+1,-2*x-6,-x+7,-4,-5*x-11,0,2*x,-8]];
193
194
E[148,1] = [x, [1,0,-1,0,-4,0,-3,0,-2,0,5,0,0,0,4,0,-6,0,2,0,3,0,-6,0,11,0,5,0,-6,0,4,0,-5,0,12,0,1,0]];
195
E[148,2] = [x^2+x-4, [1,0,x,0,2,0,-x,0,-x+1,0,-x,0,2,0,2*x,0,-2*x+2,0,2*x-2,0,x-4,0,-2,0,-1,0,-x-4,0,4*x+2,0,-2*x-6,0,x-4,0,-2*x,0,-1,0]];
196
197
E[149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3,-2*x-1,x^2+x-3,-x^2-2*x+1,2*x^2+3*x-2,-2*x^2-x+1,-2*x^2+x+2,x,-2*x^2-x+2,-x+1,x^2+4*x+1,-3*x^2-x+3,4*x^2+3*x-4,x^2+2*x+2,-2*x^2-x-3,-x^2-x+4,x^2-1,3*x^2-2*x-2,-x^2-x+4,x^2+4*x+2,x+1]];
198
E[149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26,2*x^8+x^7-31*x^6-8*x^5+157*x^4+7*x^3-277*x^2+28*x+117,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-474*x^2+56*x+202,4*x^3-16*x,-3*x^8+47*x^6-7*x^5-242*x^4+56*x^3+439*x^2-93*x-185,-x^7-3*x^6+12*x^5+29*x^4-45*x^3-73*x^2+42*x+39,3*x^8-49*x^6+3*x^5+258*x^4-30*x^3-471*x^2+63*x+207,5*x^8+x^7-76*x^6-3*x^5+377*x^4-29*x^3-656*x^2+79*x+274,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-470*x^2+56*x+190,-2*x^8+2*x^7+36*x^6-22*x^5-198*x^4+74*x^3+360*x^2-70*x-156,-7*x^8-3*x^7+104*x^6+21*x^5-503*x^4-9*x^3+844*x^2-77*x-338,4*x^4-24*x^2+16,-x^8-2*x^7+11*x^6+19*x^5-40*x^4-50*x^3+59*x^2+29*x-25,3*x^8+2*x^7-43*x^6-17*x^5+200*x^4+28*x^3-321*x^2+19*x+117,-2*x^8+30*x^6-6*x^5-148*x^4+48*x^3+262*x^2-82*x-110,x^8-x^7-16*x^6+11*x^5+81*x^4-35*x^3-142*x^2+33*x+52,2*x^8-30*x^6+6*x^5+144*x^4-48*x^3-230*x^2+74*x+82,-3*x^8-4*x^7+39*x^6+33*x^5-174*x^4-60*x^3+291*x^2+3*x-117,2*x^8-x^7-33*x^6+14*x^5+177*x^4-57*x^3-335*x^2+60*x+149,-8*x^8-3*x^7+119*x^6+18*x^5-583*x^4+15*x^3+1013*x^2-122*x-429,-2*x^8+x^7+33*x^6-16*x^5-179*x^4+71*x^3+347*x^2-76*x-163]];
199
200
E[150,1] = [x, [1,-1,-1,1,0,1,2,-1,1,0,2,-1,6,-2,0,1,2,-1,0,0,-2,-2,-4,1,0,-6,-1,2,0,0,-8,-1,-2,-2,0,1,2,0,-6,0,2,2,-4,2,0,4,-8,-1,-3,0,-2,6,6,1,0,-2,0,0,10,0]];
201
E[150,2] = [x, [1,1,-1,1,0,-1,4,1,1,0,0,-1,-2,4,0,1,-6,1,-4,0,-4,0,0,-1,0,-2,-1,4,-6,0,8,1,0,-6,0,1,-2,-4,2,0,-6,-4,4,0,0,0,0,-1,9,0,6,-2,6,-1,0,4,4,-6,0,0]];
202
E[150,3] = [x, [1,1,1,1,0,1,-2,1,1,0,2,1,-6,-2,0,1,-2,1,0,0,-2,2,4,1,0,-6,1,-2,0,0,-8,1,2,-2,0,1,-2,0,-6,0,2,-2,4,2,0,4,8,1,-3,0,-2,-6,-6,1,0,-2,0,0,10,0]];
203
204
E[151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1,-x^2-x,-1,-2*x^2-3*x+1,x^2+2*x-2,x^2-2*x-1,2*x^2+4*x-3,x^2+x+1,3*x^2+5*x-3,-x,3*x+2,-x^2-x+2,-3*x^2-5*x,-x+1,-5*x^2-6*x+5,-2*x^2+2*x+3,x+1,-x+2,3*x^2+6*x-2,x^2+4*x+1,4*x^2+3*x-4]];
205
E[151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5,2*x,-2,x-3,1,-2*x^2+3,2*x^2+x-7,2*x^2-4,-2*x^2+6,-2*x,-2*x^2-4*x+10,-x^2-3*x+4,-x+3,x,3*x^2+3*x-9,2*x^2-3*x-4,-4,x^2+3*x-6,2*x,2*x-6,-x^2-3*x+8]];
206
E[151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2,-x^3+x^2+2*x-1,-x^4+3*x^2+3*x+3,x^3-4*x,-x^5+3*x^4+4*x^3-13*x^2-4*x+9,x^4-4*x^2-x+1,x^3-5*x,2*x^5-3*x^4-13*x^3+10*x^2+23*x+2,2*x^5-3*x^4-11*x^3+12*x^2+13*x-4,-x^5+3*x^3+3*x^2+3*x,-x^5+7*x^3+3*x^2-13*x-10,x^4-6*x^2+4,-x^4-2*x^3+6*x^2+8*x,2*x^5-3*x^4-10*x^3+9*x^2+12*x-1,2*x^5-x^4-12*x^3+2*x^2+15*x+1,-x^5+2*x^4+8*x^3-7*x^2-17*x-4,-3*x^5+5*x^4+19*x^3-16*x^2-36*x-5,x^4-5*x^2,-x^5+6*x^3-7*x+1,-x^5+x^4+6*x^3-5*x^2-8*x+4,2*x^5-x^4-13*x^3+x^2+21*x+5]];
207
208
E[152,1] = [x, [1,0,-2,0,-1,0,-3,0,1,0,-3,0,-4,0,2,0,5,0,-1,0,6,0,0,0,-4,0,4,0,2,0,8,0,6,0,3,0,-10,0,8,0]];
209
E[152,2] = [x, [1,0,1,0,0,0,3,0,-2,0,2,0,1,0,0,0,-5,0,1,0,3,0,-1,0,-5,0,-5,0,-3,0,4,0,2,0,0,0,2,0,1,0]];
210
E[152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8,0,x^2-x-4,0,2*x^2-6,0,-x^2-x+4,0,-2*x+4,0,-2*x^2-2*x+8,0,-x^2+x+8,0,-2,0,6*x-8,0,2*x^2-4*x-16,0,-x^2+3*x+10,0,2*x^2+8*x-16,0,2*x^2-20,0,0,0,-2*x^2-6*x+8,0,x^2-3*x-12,0,-4,0,-2*x^2+4*x,0]];
211
212
E[153,1] = [x, [1,2,0,2,1,0,-2,0,0,2,3,0,-5,-4,0,-4,1,0,-1,2,0,6,7,0,-4,-10,0,-4,-6,0,4,-8,0,2,-2,0]];
213
E[153,2] = [x, [1,-2,0,2,-1,0,-2,0,0,2,-3,0,-5,4,0,-4,-1,0,-1,-2,0,6,-7,0,-4,10,0,-4,6,0,4,8,0,2,2,0]];
214
E[153,3] = [x, [1,1,0,-1,2,0,4,-3,0,2,0,0,-2,4,0,-1,-1,0,-4,-2,0,0,-4,0,-1,-2,0,-4,-6,0,4,5,0,-1,8,0]];
215
E[153,4] = [x^2-x-4, [1,x,0,x+2,-x-1,0,0,x+4,0,-2*x-4,-x+1,0,-x+3,0,0,3*x,-1,0,-3*x+3,-4*x-6,0,-4,-x+5,0,3*x,2*x-4,0,0,4*x-2,0,2*x-2,x+4,0,-x,0,0]];
216
E[153,5] = [x, [1,0,0,-2,-3,0,-4,0,0,0,3,0,-1,0,0,4,1,0,-1,6,0,0,-9,0,4,0,0,8,-6,0,2,0,0,0,12,0]];
217
218
E[154,1] = [x, [1,-1,2,1,2,-2,-1,-1,1,-2,1,2,-4,1,4,1,0,-1,4,2,-2,-1,4,-2,-1,4,-4,-1,2,-4,-10,-1,2,0,-2,1,-6,-4,-8,-2,0,2,-4,1,2,-4,10,2]];
219
E[154,2] = [x, [1,-1,0,1,-4,0,-1,-1,-3,4,-1,0,2,1,0,1,-4,3,-6,-4,0,1,4,0,11,-2,0,-1,-2,0,-2,-1,0,4,4,-3,10,6,0,4,4,0,-8,-1,12,-4,2,0]];
220
E[154,3] = [x^2+2*x-4, [1,1,x,1,-x,x,1,1,-2*x+1,-x,1,x,-x-2,1,2*x-4,1,2*x,-2*x+1,-x-6,-x,x,1,4,x,-2*x-1,-x-2,2*x-8,1,2*x+2,2*x-4,2,1,x,2*x,-x,-2*x+1,4*x+2,-x-6,-4,-x,-2*x,x,-2*x-8,1,-5*x+8,4,-2,x]];
221
E[154,4] = [x, [1,1,0,1,2,0,-1,1,-3,2,-1,0,2,-1,0,1,2,-3,0,2,0,-1,-8,0,-1,2,0,-1,-2,0,-8,1,0,2,-2,-3,-2,0,0,2,10,0,4,-1,-6,-8,8,0]];
222
223
E[155,1] = [x, [1,-1,2,-1,-1,-2,4,3,1,1,4,-2,0,-4,-2,-1,-8,-1,4,1,8,-4,2,6,1,0,-4,-4,-6,2,1,-5]];
224
E[155,2] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,2,-2,-6,4,-1,-4,-7,4,-5,2,2,-4,4,0,1,12,5,-4,0,2,1,8]];
225
E[155,3] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2,-2*x^2+2*x+4,-2*x^2-2*x+8,2*x^3-8*x,-2*x,2*x,-2*x^2+2*x+4,-4*x+4,2*x^3-10*x+4,-2*x^3-2*x^2+8*x,-x^3+x^2+4*x-2,2*x^3-8*x,x^3+x^2-6*x+2,-2*x^2,-2*x^3+2*x^2+6*x-6,2*x^2-4,-2*x^3+4*x^2+10*x-12,-2*x^3+2*x^2+4*x,2*x^2+2*x-8,-8,2,2*x^3+2*x^2-4*x-8,3*x^3-x^2-14*x+2,-4*x^3+12*x-8,2*x^3-4*x^2-10*x+8,-2*x^2+2*x+4,-2,-2*x^3+4*x^2+8*x-8]];
226
E[155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2,-2*x^2-2*x+12,2*x^2+2*x-8,2*x^3-8*x,-4*x^2-2*x+20,-2*x,2*x^2-2*x-12,-4,-2*x^2-2*x+16,2*x^3+2*x^2-8*x,x^3+x^2-6*x-2,-2*x^3+4*x^2+8*x-16,-x^3+x^2+4*x-6,-4*x^3-2*x^2+20*x,2*x^3+2*x^2-10*x-2,-2*x^2+4,2*x^3-14*x+4,2*x^3-2*x^2-12*x,-2*x^3-4*x^2+6*x+12,4*x^2-24,2,-2*x^3-2*x^2+16*x,-3*x^3-x^2+20*x+2,4*x^2+4*x-8,-2*x^3+14*x,2*x^2+2*x-12,2,2*x^3-8*x^2-8*x+24]];
227
E[155,5] = [x, [1,0,-1,-2,-1,0,0,0,-2,0,-4,2,-6,0,1,4,5,0,-1,2,0,0,8,0,1,0,5,0,-10,0,-1,0]];
228
229
E[156,1] = [x, [1,0,-1,0,-4,0,-2,0,1,0,-4,0,1,0,4,0,2,0,-2,0,2,0,0,0,11,0,-1,0,-6,0,-10,0,4,0,8,0,10,0,-1,0,8,0,4,0,-4,0,-4,0,-3,0,-2,0,-10,0,16,0]];
230
E[156,2] = [x, [1,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,-6,0,2,0,2,0,0,0,-5,0,1,0,-6,0,2,0,0,0,0,0,2,0,1,0,-12,0,-4,0,0,0,0,0,-3,0,-6,0,6,0,0,0]];
231
232
E[157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2,2*x^4+5*x^3-3*x^2-8*x+1,-x^4-5*x^3-4*x^2+6*x+2,x^3-4*x,2*x^4+6*x^3+x^2-5*x-2,-3*x^4-9*x^3+2*x^2+12*x-2,-x^4-2*x^3+4*x^2+5*x-6,-3*x^4-7*x^3+4*x^2+9*x,x^3+3*x^2+x-3,x^3-5*x+1,-x^4-4*x^3-x^2+8*x+1,x^4-6*x^2+4,x^4+x^3-3*x^2+3*x,-4*x^4-9*x^3+7*x^2+12*x-2,-x^3-5*x^2-3*x+5,2*x^4+3*x^3-8*x^2-3*x+7,x^4+6*x^3+6*x^2-6*x-1,3*x^4+9*x^3-x^2-13*x+1,-x^4-5*x^3-6*x^2+3*x+3,4*x^4+9*x^3-3*x^2-5*x+1,-x^4-3*x^3-3*x^2-2*x+6,x^4+3*x^3+x^2-3*x]];
233
E[157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3,x^5-3*x^4-2*x^3+7*x^2+x,-x^6+3*x^5+4*x^4-13*x^3-5*x^2+13*x+2,x^3-4*x,-2*x^6+7*x^5+7*x^4-35*x^3-3*x^2+42*x-3,x^6-4*x^5-3*x^4+20*x^3+x^2-24*x+1,-x^6+4*x^5+x^4-15*x^3+3*x^2+13*x+1,x^6-3*x^5-4*x^4+13*x^3+5*x^2-14*x-2,x^6-3*x^5-5*x^4+17*x^3+4*x^2-22*x+3,-2*x^6+6*x^5+8*x^4-27*x^3-8*x^2+29*x-1,3*x^6-11*x^5-8*x^4+50*x^3-57*x+5,x^4-6*x^2+4,x^6-3*x^5-4*x^4+13*x^3+6*x^2-16*x-2,-3*x^6+11*x^5+7*x^4-47*x^3+51*x-2,4*x^6-14*x^5-12*x^4+61*x^3+9*x^2-65*x-3,-x^6+3*x^5+3*x^4-13*x^3+x^2+14*x-5,x^4-2*x^3-4*x^2+4*x+3,-x^6+3*x^5+6*x^4-19*x^3-8*x^2+28*x-1,x^5-4*x^4+12*x^2-4*x-4,2*x^6-8*x^5-2*x^4+31*x^3-7*x^2-31*x+1,-x^6+4*x^5+3*x^4-20*x^3-2*x^2+26*x-1,2*x^6-7*x^5-4*x^4+26*x^3-x^2-24*x+1]];
234
235
E[158,1] = [x, [1,1,-3,1,-3,-3,-3,1,6,-3,-2,-3,-5,-3,9,1,6,6,0,-3,9,-2,-2,-3,4,-5,-9,-3,6,9,-10,1,6,6,9,6,-10,0,15,-3]];
236
E[158,2] = [x, [1,1,2,1,-2,2,0,1,1,-2,-4,2,2,0,-4,1,-2,1,0,-2,0,-4,0,2,-1,2,-4,0,8,-4,8,1,-8,-2,0,1,4,0,4,-2]];
237
E[158,3] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-1,3,-1,1,-2,-2,0,1,-3,2,-6,-1,-4,-1,5,3,-10,-1,2,1,-2,-2,3,-2,-2,0,1,1]];
238
E[158,4] = [x, [1,-1,-1,1,-1,1,-3,-1,-2,1,4,-1,-7,3,1,1,-4,2,-6,-1,3,-4,6,1,-4,7,5,-3,4,-1,8,-1,-4,4,3,-2,10,6,7,1]];
239
E[158,5] = [x, [1,-1,1,1,3,-1,-1,-1,-2,-3,0,1,5,1,3,1,0,2,2,3,-1,0,-6,-1,4,-5,-5,-1,0,-3,-4,-1,0,0,-3,-2,2,-2,5,-3]];
240
E[158,6] = [x^2-6, [1,-1,x,1,-2,-x,4,-1,3,2,0,x,-2*x+2,-4,-2*x,1,-2*x+2,-3,2*x,-2,4*x,0,2*x+2,-x,-1,2*x-2,0,4,-3*x-2,2*x,-2*x-2,-1,0,2*x-2,-8,3,-x-2,-2*x,2*x-12,2]];
241
242
E[159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x,x,x^3-3*x^2-2*x+5,x^3-4*x,1,-2*x^3+x^2+7*x-3,4*x^3-6*x^2-12*x+12,x^2-2,-3*x^3+5*x^2+8*x-10,-x^2-2*x+3,-x^3+x^2+2*x,3*x^3-5*x^2-7*x+7,-4*x^3+8*x^2+10*x-12,x,2*x^2-4*x-4,-3*x^3+3*x^2+7*x-6,x^3-3*x^2-2*x+5,6*x^3-8*x^2-16*x+12,-x^3+x^2+6*x-3,x^3-4*x,x^3+x^2-4*x-2,-4*x^3+5*x^2+11*x-9,1,-3*x^3+4*x^2+7*x-10,4*x^3-6*x^2-12*x+12,-2*x^3+x^2+7*x-3,2*x^2+2*x-10,2*x^3-4*x^2-6*x+9,4*x^3-6*x^2-12*x+12,-4*x^3+6*x^2+16*x-12,4*x^3-6*x^2-8*x+9,x^2-2]];
243
E[159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12,-3*x,x^4+4*x^3-6*x^2-21*x+4,3*x^3-12*x,3,-3*x^4-3*x^3+18*x^2+12*x,-2*x^4-2*x^3+12*x^2+6*x-2,-3*x^2+6,2*x^4-x^3-15*x^2+6*x+20,4*x^4+4*x^3-21*x^2-18*x-5,3*x^3+3*x^2-18*x-12,3*x^4-18*x^2+12,-6*x,3*x,-2*x^4-2*x^3+12*x^2+6*x-2,-3*x^4-6*x^3+18*x^2+30*x-9,-x^4-4*x^3+6*x^2+21*x-4,-2*x^4-8*x^3+6*x^2+42*x+10,x^4+4*x^3-21*x-26,-3*x^3+12*x,-3*x^4+18*x^2-3*x+3,-x^4+5*x^3+6*x^2-24*x-10,-3,2*x^4+11*x^3-6*x^2-51*x-28,6*x^2-12,3*x^4+3*x^3-18*x^2-12*x,2*x^4+2*x^3-12*x^2-12*x+8,6*x^3-30*x-15,2*x^4+2*x^3-12*x^2-6*x+2,-6*x^2,5*x^4-x^3-39*x^2+9*x+26,3*x^2-6]];
244
245
E[160,1] = [x, [1,0,2,0,-1,0,2,0,1,0,4,0,-6,0,-2,0,2,0,-8,0,4,0,6,0,1,0,-4,0,-2,0,-4,0,8,0,-2,0,2,0,-12,0,-10,0,2,0,-1,0,2,0]];
246
E[160,2] = [x, [1,0,-2,0,-1,0,-2,0,1,0,-4,0,-6,0,2,0,2,0,8,0,4,0,-6,0,1,0,4,0,-2,0,4,0,8,0,2,0,2,0,12,0,-10,0,-2,0,-1,0,-2,0]];
247
E[160,3] = [x^2-8, [1,0,x,0,1,0,-x,0,5,0,-2*x,0,-2,0,x,0,2,0,0,0,-8,0,x,0,1,0,2*x,0,6,0,2*x,0,-16,0,-x,0,-10,0,-2*x,0,2,0,-3*x,0,5,0,-x,0]];
248
249
E[161,1] = [x, [1,-1,0,-1,2,0,1,3,-3,-2,4,0,6,-1,0,-1,-2,3,4,-2,0,-4,-1,0,-1,-6,0,-1,-2,0,-4,-5]];
250
E[161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2,-x,-1,-2*x-1,-2,-2,4*x+2,x+1,2*x-1,-x,2*x+2,3*x,0,-2*x,-2*x-6,2*x+4,1,-2*x+4,-1,2*x+1,4*x+3,-3*x+2,5,x+1,-4*x+1,2,-9,x+5]];
251
E[161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5,x^2-1,-2,-2*x^2+2*x+2,-2*x^2-2*x+6,x^2-1,-2*x+2,x^2+4*x-9,2*x^2-6,-2*x,-2*x^2-2*x+12,-8*x+6,x^2-1,-4*x-2,4*x^2+4*x-8,x^2+4*x-9,x^2-5,-2*x^2+2*x,2,x^2-4*x+3,-2*x^2-2*x+2,-2*x^2+4*x+2,-4*x,-2*x^2+4,2*x^2+2*x-8,2*x-2,-3*x^2-8*x+19,-4*x^2+2*x-4]];
252
E[161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21,x^4+x^3-12*x^2-5*x+27,2,2*x^3-8*x,-2*x^2-2*x+14,-3*x^4+x^3+22*x^2-5*x-27,-2*x^4+16*x^2+2*x-24,x^4-x^3-6*x^2+x+5,2*x^4-18*x^2+28,2*x,2*x^3-16*x+6,2*x^4-12*x^2+8,x^4+x^3-6*x^2-5*x-3,-2*x^3-2*x^2+14*x,-4*x+4,-3*x^4-3*x^3+26*x^2+11*x-39,x^4-x^3-8*x^2+5*x+11,-4*x^4-2*x^3+36*x^2+8*x-54,-2,-x^4+x^3+8*x^2-x-27,2*x^3-12*x+8,4*x^4-34*x^2-4*x+54,-2*x^3+2*x^2+14*x-10,2*x^2-4,-6*x^2+2*x+24,2*x^4-16*x^2+6*x,-x^4+x^3+8*x^2-5*x+1,4*x^4+2*x^3-34*x^2-8*x+54]];
253
254
E[162,1] = [x, [1,-1,0,1,-3,0,-4,-1,0,3,0,0,-1,4,0,1,-3,0,-4,-3,0,0,0,0,4,1,0,-4,9,0,-4,-1,0,3,12,0,-1,4,0,3,6,0,8,0,0,0,-12,0,9,-4,0,-1,-6,0]];
255
E[162,2] = [x, [1,-1,0,1,0,0,2,-1,0,0,3,0,2,-2,0,1,3,0,-1,0,0,-3,6,0,-5,-2,0,2,-6,0,-4,-1,0,-3,0,0,-4,1,0,0,-9,0,-1,3,0,-6,6,0,-3,5,0,2,-12,0]];
256
E[162,3] = [x, [1,1,0,1,3,0,-4,1,0,3,0,0,-1,-4,0,1,3,0,-4,3,0,0,0,0,4,-1,0,-4,-9,0,-4,1,0,3,-12,0,-1,-4,0,3,-6,0,8,0,0,0,12,0,9,4,0,-1,6,0]];
257
E[162,4] = [x, [1,1,0,1,0,0,2,1,0,0,-3,0,2,2,0,1,-3,0,-1,0,0,-3,-6,0,-5,2,0,2,6,0,-4,1,0,-3,0,0,-4,-1,0,0,9,0,-1,-3,0,-6,-6,0,-3,-5,0,2,12,0]];
258
259
E[163,1] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2,5*x^4+12*x^3-17*x^2-35*x+6,3*x^4+8*x^3-8*x^2-22*x-1,x^3-4*x,2*x^2+3*x-3,-5*x^4-13*x^3+15*x^2+34*x-6,-x^4-4*x^3+x^2+13*x+3,-9*x^4-22*x^3+28*x^2+60*x-9,-x^4-3*x^3+2*x^2+8*x-2,-7*x^4-17*x^3+23*x^2+47*x-9,5*x^4+13*x^3-14*x^2-32*x+6,x^4-6*x^2+4,-x^4-2*x^3+4*x^2+6*x-6,2*x^3+3*x^2-3*x,-2*x^4-3*x^3+9*x^2+8*x-3,8*x^4+20*x^3-27*x^2-56*x+11,2*x^4+5*x^3-8*x^2-14*x+6,x^4+4*x^3-2*x^2-13*x+3,2*x^4+3*x^3-8*x^2-7*x,13*x^4+31*x^3-41*x^2-83*x+15,-9*x^4-22*x^3+32*x^2+65*x-16,2*x^4+5*x^3-7*x^2-18*x+3,x^4+2*x^3-7*x^2-11*x+6]];
260
E[163,2] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6,x^6-x^5-6*x^4+5*x^3+5*x^2-2*x,x^6-2*x^5-7*x^4+12*x^3+11*x^2-11*x-4,x^3-4*x,-x^6+x^5+7*x^4-5*x^3-12*x^2+2*x+7,-2*x^6+2*x^5+13*x^4-11*x^3-17*x^2+10*x+6,x^6-2*x^5-7*x^4+12*x^3+12*x^2-12*x-6,2*x^6-3*x^5-12*x^4+17*x^3+11*x^2-14*x-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+8,x^6-2*x^5-7*x^4+11*x^3+12*x^2-8*x-6,2*x^5-x^4-13*x^3+4*x^2+14*x,x^4-6*x^2+4,x^6-x^5-6*x^4+5*x^3+6*x^2-3*x,-2*x^6+2*x^5+14*x^4-12*x^3-21*x^2+11*x+6,x^6-6*x^4-x^3+4*x^2+3*x+2,-2*x^6+x^5+13*x^4-5*x^3-14*x^2+2*x,-2*x^4+x^3+12*x^2-4*x-10,x^6-2*x^5-7*x^4+12*x^3+11*x^2-10*x-6,x^6-x^5-7*x^4+6*x^3+12*x^2-8*x-6,x^6-9*x^4+x^3+22*x^2-6*x-12,-3*x^6+4*x^5+21*x^4-24*x^3-33*x^2+24*x+13,-2*x^6+3*x^5+13*x^4-16*x^3-18*x^2+12*x+6,-x^6+x^5+6*x^4-5*x^3-5*x^2+2*x-2]];
261
E[163,3] = [x, [1,0,0,-2,-4,0,2,0,-3,0,-6,0,4,0,0,4,0,0,-6,8,0,0,6,0,11,0,0]];
262
263
E[164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2,0,3*x^3-27*x+12,0,3*x^2-9,0,x^3+2*x^2-11*x-4,0,2*x^3-2*x^2-22*x+22,0,-5*x^3-4*x^2+46*x-4,0,-2*x^3-4*x^2+16*x+14,0,-2*x^3+2*x^2+19*x-16,0,6*x^3+3*x^2-54*x+6,0,-2*x^3+2*x^2+16*x-28,0,-2*x^3+2*x^2+22*x-13,0,3*x^3-18*x,0,6*x-6,0,-4*x^3-2*x^2+32*x-8,0,4*x^3-x^2-26*x+2,0,5*x^3-2*x^2-52*x+16,0,3*x^2-6,0,2*x^3-2*x^2-22*x+4,0,-3,0]];
264
265
E[165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1,-x,-2*x-4,x-2,1,-x,-1,2*x+1,4*x+4,-2,1,3,-2*x-6,x,2*x-2,2*x+1,2*x+4,-x,-4,-x+2,1,-4*x+4,-1,2*x+8,2*x,x,0,x+4,1,-2*x-2,2*x+4,-2*x-1,-4*x+2,-6*x+2,-4*x-4,-x+2,-2*x,2,2*x-4,2*x+1,-1,-4*x,-4,-3]];
266
E[165,2] = [x^2-3, [1,x,1,1,-1,x,2,-x,1,-x,-1,1,-2*x+2,2*x,-1,-5,0,x,-2*x+2,-1,2,-x,-4*x,-x,1,2*x-6,1,2,2*x,-x,4*x-4,-3*x,-1,0,-2,1,4*x+2,2*x-6,-2*x+2,x,-2*x,2*x,4*x+2,-1,-1,-12,4*x,-5]];
267
E[165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1,x,-x^2-2*x+3,-x^2+x+1,1,x,1,x^2-2,-x^2+3,-x^2-2*x-1,1,-4*x+3,x^2-2*x-5,x,2*x^2+2*x-4,x^2-2,-x^2-2*x+3,x,2*x^2+4*x-6,-x^2+x+1,1,x^2-2*x-1,1,x^2-2*x-7,-2*x-4,x,-2*x^2+10,-2*x^2+x-2,1,-3*x^2+1,-x^2-2*x+3,x^2-2,-2,6*x+2,-x^2+3,-x^2+x+1,2*x-4,-x^2-2*x-1,3*x^2+2*x-9,x^2-2,1,2*x^2+4*x+2,2*x^2-10,-4*x+3]];
268
269
E[166,1] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4,2*x,x^2-3*x-2,2,2*x^2-6,-x^2-x+4,-2*x+4,2*x,-x^2+x-2,x^2-3*x-2,-2*x^2-2*x+4,2,3*x^2+x-16,2*x^2-6,-5*x^2+x+18,-x^2-x+4,-2*x^2+4*x-4,-2*x+4,x^2+x,2*x,x^2+3*x-8,-x^2+x-2,2*x^2-8,x^2-3*x-2,2*x^2,-2*x^2-2*x+4,3*x^2+x-16,2,-2*x^2+4*x,3*x^2+x-16,2*x^2-6,2*x^2-6,-2*x^2-4,-5*x^2+x+18,-8*x+4,-x^2-x+4,-x^2+5*x+10,-2*x^2+4*x-4]];
270
E[166,2] = [x, [1,-1,-1,1,-2,1,1,-1,-2,2,-5,-1,-2,-1,2,1,-3,2,-2,-2,-1,5,4,1,-1,2,5,1,-3,-2,1,-1,5,3,-2,-2,1,2,2,2,6,1]];
271
E[166,3] = [x^2+2*x-4, [2,-2,2*x,2,x+4,-2*x,x-2,-2,-4*x+2,-x-4,-2*x+4,2*x,-x+2,-x+2,2*x+4,2,x+8,4*x-2,-x-2,x+4,-4*x+4,2*x-4,-3*x,-2*x,3*x,x-2,4*x-16,x-2,8,-2*x-4,x-8,-2,8*x-8,-x-8,-2,-4*x+2,-8*x-12,x+2,4*x-4,-x-4,5*x+2,4*x-4]];
272
273
E[167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1,-1,x-2,-2*x-1,x-1,-x,0,x+2,-x-3,-3*x+1,x+1,3*x,x-2,-2*x+1,4*x+2,x+1,2*x+1,0,-x,x+3,-4,-2*x-1,4*x+3,2*x+1]];
274
E[167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612,1245*x^11-939*x^10-21141*x^9+12756*x^8+125727*x^7-49659*x^6-313236*x^5+33027*x^4+316095*x^3+51339*x^2-68721*x-4896,-294*x^11-102*x^10+5406*x^9+2262*x^8-35598*x^7-17565*x^6+100383*x^5+56706*x^4-111492*x^3-64902*x^2+25050*x+6336,933*x^3-3732*x,-972*x^11+234*x^10+17454*x^9-2061*x^8-112398*x^7-3006*x^6+312990*x^5+58266*x^4-357315*x^3-99834*x^2+98508*x+5277,-927*x^11-36*x^10+16836*x^9+1896*x^8-109596*x^7-21786*x^6+307536*x^5+89934*x^4-350094*x^3-117414*x^2+97092*x+7011,-623*x^11+628*x^10+10567*x^9-9024*x^8-62594*x^7+39396*x^6+154004*x^5-45156*x^4-149088*x^3-12775*x^2+24248*x+5829,463*x^11-290*x^10-7955*x^9+3870*x^8+48070*x^7-14193*x^6-122794*x^5+4296*x^4+129426*x^3+25418*x^2-33934*x-4323,652*x^11-491*x^10-11297*x^9+6681*x^8+69355*x^7-25893*x^6-182461*x^5+15825*x^4+202299*x^3+30887*x^2-59101*x-2265,-690*x^11+408*x^10+11964*x^9-5316*x^8-73131*x^7+18945*x^6+188124*x^5-4770*x^4-192204*x^3-35220*x^2+41616*x+2646,2158*x^11-2063*x^10-36209*x^9+29139*x^8+211147*x^7-123831*x^6-508297*x^5+133815*x^4+484143*x^3+35309*x^2-83227*x-4941,933*x^4-5598*x^2+3732,7*x^11+580*x^10-884*x^9-9606*x^8+12088*x^7+54510*x^6-54838*x^5-124284*x^4+78894*x^3+107774*x^2-19834*x-9081,-1710*x^11+930*x^10+30015*x^9-12282*x^8-186714*x^7+43746*x^6+492750*x^5-4479*x