Sharedwww / Tables / an_s2g0new_1-100.gpOpen in CoCalc
Author: William A. Stein
1
\\ an_s2g0new_1-100.gp
2
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N
3
\\ in the range: 1 <= N <= 100.
4
\\ The number of a_n computed is sufficient to satisfy Sturm's bound.
5
\\ William Stein ([email protected])
6
7
E[11,1] = [x, [1,-2]];
8
9
E[14,1] = [x, [1,-1,-2,1]];
10
11
E[15,1] = [x, [1,-1,-1,-1]];
12
13
E[17,1] = [x, [1,-1,0]];
14
15
E[19,1] = [x, [1,0,-2]];
16
17
E[20,1] = [x, [1,0,-2,0,-1,0]];
18
19
E[21,1] = [x, [1,-1,1,-1,-2]];
20
21
E[23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1]];
22
23
E[24,1] = [x, [1,0,-1,0,-2,0,0,0]];
24
25
E[26,1] = [x, [1,-1,1,1,-3,-1,-1]];
26
E[26,2] = [x, [1,1,-3,1,-1,-3,1]];
27
28
E[27,1] = [x, [1,0,0,-2,0,0]];
29
30
E[29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1]];
31
32
E[30,1] = [x, [1,-1,1,1,-1,-1,-4,-1,1,1,0,1]];
33
34
E[31,1] = [x^2-x-1, [1,x,-2*x,x-1,1]];
35
36
E[32,1] = [x, [1,0,0,0,-2,0,0,0]];
37
38
E[33,1] = [x, [1,1,-1,-1,-2,-1,4,-3]];
39
40
E[34,1] = [x, [1,1,-2,1,0,-2,-4,1,1]];
41
42
E[35,1] = [x^2+x-4, [1,x,-x-1,-x+2,1,-4,-1,x-4]];
43
E[35,2] = [x, [1,0,1,-2,-1,0,1,0]];
44
45
E[36,1] = [x, [1,0,0,0,0,0,-4,0,0,0,0,0]];
46
47
E[37,1] = [x, [1,-2,-3,2,-2,6]];
48
E[37,2] = [x, [1,0,1,-2,0,0]];
49
50
E[38,1] = [x, [1,-1,1,1,0,-1,-1,-1,-2,0]];
51
E[38,2] = [x, [1,1,-1,1,-4,-1,3,1,-2,-4]];
52
53
E[39,1] = [x, [1,1,-1,-1,2,-1,-4,-3,1]];
54
E[39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2,x,2*x+2,x-2,1]];
55
56
E[40,1] = [x, [1,0,0,0,1,0,-4,0,-3,0,4,0]];
57
58
E[41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2,-x^2-2*x-1,x^2+2*x+1]];
59
60
E[42,1] = [x, [1,1,-1,1,-2,-1,-1,1,1,-2,-4,-1,6,-1,2,1]];
61
62
E[43,1] = [x, [1,-2,-2,2,-4,4,0]];
63
E[43,2] = [x^2-2, [1,x,-x,0,-x+2,-2,x-2]];
64
65
E[44,1] = [x, [1,0,1,0,-3,0,2,0,-2,0,-1,0]];
66
67
E[45,1] = [x, [1,1,0,-1,-1,0,0,-3,0,-1,4,0]];
68
69
E[46,1] = [x, [1,-1,0,1,4,0,-4,-1,-3,-4,2,0]];
70
71
E[47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10,-x^2-x+1,3*x^3-x^2-16*x+7,x^3-4*x]];
72
73
E[48,1] = [x, [1,0,1,0,-2,0,0,0,1,0,-4,0,-2,0,-2,0]];
74
75
E[49,1] = [x, [1,1,0,-1,0,0,0,-3,-3]];
76
77
E[50,1] = [x, [1,-1,1,1,0,-1,2,-1,-2,0,-3,1,-4,-2,0]];
78
E[50,2] = [x, [1,1,-1,1,0,-1,-2,1,-2,0,-3,-1,4,-2,0]];
79
80
E[51,1] = [x^2+x-4, [1,x,-1,-x+2,-x+1,-x,0,x-4,1,2*x-4,-x-1,x-2]];
81
E[51,2] = [x, [1,0,1,-2,3,0,-4,0,1,0,-3,-2]];
82
83
E[52,1] = [x, [1,0,0,0,2,0,-2,0,-3,0,-2,0,-1,0]];
84
85
E[53,1] = [x, [1,-1,-3,-1,0,3,-4,3,6]];
86
E[53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3,-1,x^2-1,-x^2-x+1,-3*x^2-2*x+7]];
87
88
E[54,1] = [x, [1,1,0,1,-3,0,-1,1,0,-3,3,0,-4,-1,0,1,0,0]];
89
E[54,2] = [x, [1,-1,0,1,3,0,-1,-1,0,-3,-3,0,-4,1,0,1,0,0]];
90
91
E[55,1] = [x, [1,1,0,-1,1,0,0,-3,-3,1,-1,0]];
92
E[55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1,-2*x-2,-2,x+2,5,-x,1,-2*x-6]];
93
94
E[56,1] = [x, [1,0,2,0,-4,0,1,0,1,0,0,0,0,0,-8,0]];
95
E[56,2] = [x, [1,0,0,0,2,0,-1,0,-3,0,-4,0,2,0,0,0]];
96
97
E[57,1] = [x, [1,1,1,-1,-2,1,0,-3,1,-2,0,-1,6]];
98
E[57,2] = [x, [1,-2,-1,2,-3,2,-5,0,1,6,1,-2,2]];
99
E[57,3] = [x, [1,-2,1,2,1,-2,3,0,1,-2,-3,2,-6]];
100
101
E[58,1] = [x, [1,1,-1,1,1,-1,-2,1,-2,1,-3,-1,-1,-2,-1]];
102
E[58,2] = [x, [1,-1,-3,1,-3,3,-2,-1,6,3,-1,-3,3,2,9]];
103
104
E[59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28,-4*x^3+16*x-8,-2*x^4-2*x^3+14*x^2+6*x-12,4*x^3-16*x,2*x^3+4*x^2-10*x-8,2*x^4+4*x^3-18*x^2-20*x+24]];
105
106
E[61,1] = [x, [1,-1,-2,-1,-3,2,1,3,1,3]];
107
E[61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2,-x^2+1,x^2-x-3,x^2-x-1,-2*x^2+2*x+5,-x^2+x-1]];
108
109
E[62,1] = [x, [1,1,0,1,-2,0,0,1,-3,-2,0,0,2,0,0,1]];
110
E[62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2,-x,2,-1,2*x-1,2*x-2,x-4,x,-3*x+2,-2,-2*x-4,1]];
111
112
E[63,1] = [x, [1,1,0,-1,2,0,-1,-3,0,2,-4,0,-2,-1,0,-1]];
113
E[63,2] = [x^2-3, [1,x,0,1,-2*x,0,1,-x,0,-6,2*x,0,2,x,0,-5]];
114
115
E[64,1] = [x, [1,0,0,0,2,0,0,0,-3,0,0,0,-6,0,0,0]];
116
117
E[65,1] = [x, [1,-1,-2,-1,-1,2,-4,3,1,1,2,2,-1,4]];
118
E[65,2] = [x^2-3, [1,x,-x+1,1,-1,x-3,2,-x,-2*x+1,-x,x-3,-x+1,1,2*x]];
119
E[65,3] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1,-x+1,-2*x,x-2,-1,x,-x+1,x-3,-1,4*x-2]];
120
121
E[66,1] = [x, [1,-1,1,1,0,-1,2,-1,1,0,-1,1,-4,-2,0,1,-6,-1,-4,0,2,1,6,-1]];
122
E[66,2] = [x, [1,1,1,1,-4,1,-2,1,1,-4,1,1,4,-2,-4,1,-2,1,0,-4,-2,1,-6,1]];
123
E[66,3] = [x, [1,1,-1,1,2,-1,-4,1,1,2,-1,-1,-6,-4,-2,1,2,1,4,2,4,-1,4,-1]];
124
125
E[67,1] = [x, [1,2,-2,2,2,-4,-2,0,1,4,-4]];
126
E[67,2] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1,1,-x,-2*x-1,x-1,3*x-2,1]];
127
E[67,3] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3,1,3*x+4,4*x+3,3*x+5,-3*x,-2*x-3]];
128
129
E[68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2,0,-x,0,2*x-1,0,x-4,0,2*x,0,-2*x-4,0,-1,0]];
130
131
E[69,1] = [x, [1,1,1,-1,0,1,-2,-3,1,0,4,-1,-6,-2,0,-1]];
132
E[69,2] = [x^2-5, [1,x,-1,3,-x-1,-x,-x+1,x,1,-x-5,4,-3,2*x,x-5,x+1,-1]];
133
134
E[70,1] = [x, [1,1,0,1,-1,0,-1,1,-3,-1,4,0,-6,-1,0,1,2,-3,0,-1,0,4,0,0]];
135
136
E[71,1] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1,-2*x+3,2*x^2+2*x-6,x-3,-x^2-3*x+6,-x^2-x,-2*x^2-2*x+6,3*x-6]];
137
E[71,2] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5,-x^2,-2*x,-x^2+3,x^2-3,2*x^2+x-3,2*x^2-6,x^2-2*x-3]];
138
139
E[72,1] = [x, [1,0,0,0,2,0,0,0,0,0,-4,0,-2,0,0,0,-2,0,-4,0,0,0,8,0]];
140
141
E[73,1] = [x, [1,1,0,-1,2,0,2,-3,-3,2,-2,0]];
142
E[73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x,1,-3,4*x+3,3*x+5,-3*x-1,-x-3,3*x+6]];
143
E[73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x,-3,-1,3,-x+1,-x-3,x+3,-x-2]];
144
145
E[74,1] = [x^2+x-1, [1,1,x,1,-3*x-1,x,2*x,1,-x-2,-3*x-1,-x-3,x,3*x+2,2*x,2*x-3,1,4*x+2,-x-2,-4*x-2]];
146
E[74,2] = [x^2-3*x-1, [1,-1,x,1,-x+1,-x,-2*x+4,-1,3*x-2,x-1,-x+1,x,x-2,2*x-4,-2*x-1,1,-6,-3*x+2,2]];
147
148
E[75,1] = [x, [1,1,1,-1,0,1,0,-3,1,0,-4,-1,2,0,0,-1,-2,1,4,0]];
149
E[75,2] = [x, [1,-2,1,2,0,-2,3,0,1,0,2,2,-1,-6,0,-4,-2,-2,-5,0]];
150
E[75,3] = [x, [1,2,-1,2,0,-2,-3,0,1,0,2,-2,1,-6,0,-4,2,2,-5,0]];
151
152
E[76,1] = [x, [1,0,2,0,-1,0,-3,0,1,0,5,0,-4,0,-2,0,-3,0,-1,0]];
153
154
E[77,1] = [x, [1,1,2,-1,-2,2,-1,-3,1,-2,1,-2,4,-1,-4,-1]];
155
E[77,2] = [x^2-5, [1,x,-x+1,3,-2,x-5,1,x,-2*x+3,-2*x,-1,-3*x+3,x+1,x,2*x-2,-1]];
156
E[77,3] = [x, [1,0,-3,-2,-1,0,-1,0,6,0,-1,6,-4,0,3,4]];
157
E[77,4] = [x, [1,0,1,-2,3,0,1,0,-2,0,-1,-2,-4,0,3,4]];
158
159
E[78,1] = [x, [1,-1,-1,1,2,1,4,-1,1,-2,-4,-1,1,-4,-2,1,2,-1,-8,2,-4,4,0,1,-1,-1,-1,4]];
160
161
E[79,1] = [x, [1,-1,-1,-1,-3,1,-1,3,-2,3,-2,1,3]];
162
E[79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3,x^4-3*x^3-3*x^2+9*x-1,x^4-x^3-5*x^2+3*x+3,x^3-4*x,-x^4+x^3+5*x^2-5*x-2,2*x^3-x^2-5*x+1,-x^4-2*x^3+6*x^2+7*x-6,-x^4+x^3+3*x^2-3*x-1,x^3+x^2-2*x-3]];
163
164
E[80,1] = [x, [1,0,2,0,-1,0,-2,0,1,0,0,0,2,0,-2,0,-6,0,4,0,-4,0,-6,0]];
165
E[80,2] = [x, [1,0,0,0,1,0,4,0,-3,0,-4,0,-2,0,0,0,2,0,-4,0,0,0,-4,0]];
166
167
E[81,1] = [x^2-3, [1,x,0,1,-x,0,2,-x,0,-3,-2*x,0,-1,2*x,0,-5,3*x,0]];
168
169
E[82,1] = [x, [1,-1,-2,1,-2,2,-4,-1,1,2,-2,-2,4,4,4,1,-2,-1,6,-2,8]];
170
E[82,2] = [x^2-2, [1,1,x,1,-2*x,x,-x-2,1,-1,-2*x,3*x,x,0,-x-2,-4,1,4*x+2,-1,-x-4,-2*x,-2*x-2]];
171
172
E[83,1] = [x, [1,-1,-1,-1,-2,1,-3,3,-2,2,3,1,-6,3]];
173
E[83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8,2*x^5-2*x^4-14*x^3+6*x^2+16*x,3*x^5-x^4-25*x^3+3*x^2+38*x,4*x^3-16*x,-x^5+x^4+9*x^3-7*x^2-20*x+12,-4*x^5+28*x^3+8*x^2-32*x-16,-x^5+x^4+5*x^3+x^2-16,-4*x^3+4*x^2+12*x-16,4*x^3-20*x+8,2*x^5+2*x^4-18*x^3-22*x^2+36*x+24]];
174
175
E[84,1] = [x, [1,0,1,0,0,0,1,0,1,0,-6,0,2,0,0,0,0,0,-4,0,1,0,-6,0,-5,0,1,0,6,0,8,0]];
176
E[84,2] = [x, [1,0,-1,0,4,0,-1,0,1,0,2,0,-6,0,-4,0,-4,0,-4,0,1,0,2,0,11,0,-1,0,-2,0,0,0]];
177
178
E[85,1] = [x, [1,1,2,-1,-1,2,-2,-3,1,-1,2,-2,2,-2,-2,-1,1,1]];
179
E[85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1,-x-1,x-1,x-2,4*x+7,-x,x-3,3*x+5,-2*x-2,-3*x+1,x+3,3,-1,-x+4]];
180
E[85,3] = [x^2-3, [1,x,-x+1,1,1,x-3,x-1,-x,-2*x+1,x,-x+3,-x+1,-4,-x+3,-x+1,-5,-1,x-6]];
181
182
E[86,1] = [x^2-x-1, [1,1,x,1,-x-1,x,-4*x+2,1,x-2,-x-1,4*x-4,x,4*x-2,-4*x+2,-2*x-1,1,-x,x-2,x+5,-x-1,-2*x-4,4*x-4]];
183
E[86,2] = [x^2+x-5, [1,-1,x,1,-x+1,-x,2,-1,-x+2,x-1,0,x,2,-2,2*x-5,1,x-4,x-2,-3*x-1,-x+1,2*x,0]];
184
185
E[87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2,x,-2*x-1,-2*x+1,1,-2,2*x+1,x-1,4*x-3,-3*x-2,-2*x+2,-3*x,3,x,2*x-6,2*x-4]];
186
E[87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8,-x,x^2-x-2,2*x^2-7,1,-4*x^2+14,x^2-x-6,-x^2+2,-x^2-x+6,x^2+2*x-7,2*x^2-8,2*x^2+x-10,3*x^2-x-10,x,2*x-2,-4*x^2-2*x+12]];
187
188
E[88,1] = [x, [1,0,-3,0,-3,0,-2,0,6,0,-1,0,0,0,9,0,-6,0,4,0,6,0,1,0]];
189
E[88,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-2*x,0,x+1,0,-1,0,2*x-2,0,x-4,0,2,0,-4,0,-2*x-8,0,x+4,0]];
190
191
E[89,1] = [x, [1,1,2,-1,-2,2,2,-3,1,-2,-4,-2,2,2,-4]];
192
E[89,2] = [x, [1,-1,-1,-1,-1,1,-4,3,-2,1,-2,1,2,4,1]];
193
E[89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8,2*x^4-3*x^3-15*x^2+13*x+17,x^4-8*x^2-2*x+13,2*x^3-8*x,2*x^2-2*x-8,-2*x^3+8*x,-2*x^3+10*x+4,-3*x^4+3*x^3+19*x^2-15*x-18,-2*x^4+2*x^3+16*x^2-10*x-22,-x^4+2*x^3+8*x^2-8*x-17,x^4-x^3-5*x^2+5*x+2]];
194
195
E[90,1] = [x, [1,-1,0,1,1,0,2,-1,0,-1,6,0,-4,-2,0,1,-6,0,-4,1,0,-6,0,0,1,4,0,2,-6,0,-4,-1,0,6,2,0,8,4,0,-1,0,0,8]];
196
E[90,2] = [x, [1,1,0,1,1,0,-4,1,0,1,0,0,2,-4,0,1,-6,0,-4,1,0,0,0,0,1,2,0,-4,6,0,8,1,0,-6,-4,0,2,-4,0,1,6,0,-4]];
197
E[90,3] = [x, [1,1,0,1,-1,0,2,1,0,-1,-6,0,-4,2,0,1,6,0,-4,-1,0,-6,0,0,1,-4,0,2,6,0,-4,1,0,6,-2,0,8,-4,0,-1,0,0,8]];
198
199
E[91,1] = [x, [1,-2,0,2,-3,0,-1,0,-3,6,-6,0,-1,2,0,-4,4,6]];
200
E[91,2] = [x^2-2, [1,x,-x,0,x+3,-2,1,-2*x,-1,3*x+2,-3*x,0,-1,x,-3*x-2,-4,-x,-x]];
201
E[91,3] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1,-2*x+2,-1,x^2-2,-2*x+3,-x^2+x,x^2-x-2,-4,1,-x,-x^2+3*x,-x^2+2*x+2,x^2+x-2,-2*x^2+3*x]];
202
E[91,4] = [x, [1,0,-2,-2,-3,0,1,0,1,0,0,4,1,0,6,4,-6,0]];
203
204
E[92,1] = [x, [1,0,1,0,0,0,2,0,-2,0,0,0,-1,0,0,0,-6,0,2,0,2,0,-1,0]];
205
E[92,2] = [x, [1,0,-3,0,-2,0,-4,0,6,0,2,0,-5,0,6,0,4,0,-2,0,12,0,1,0]];
206
207
E[93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5,-x,2*x+1,4*x+3,1,x+2,2*x,3*x+3,2*x+2,-5*x-2,2*x+5,-3*x+2,-4*x-8,x,-2*x-7,3*x+9,-2*x-1]];
208
E[93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2,x,-x^2-x+4,-1,1,-x^2-2*x+1,2*x^2-6,x^2-2,2*x^2-4,-x^2+1,-x^2-x+2,-2*x^2-x+4,2*x^2+2*x-6,x,-x^2+3*x+4,-x-3,-x^2-x+4]];
209
210
E[94,1] = [x, [1,1,0,1,0,0,0,1,-3,0,2,0,-4,0,0,1,-2,-3,-2,0,0,2,4,0]];
211
E[94,2] = [x^2-8, [2,-2,2*x,2,-x+4,-2*x,-2*x-4,-2,10,x-4,-x+8,2*x,-x-4,2*x+4,4*x-8,2,0,-10,3*x-8,-x+4,-4*x-16,x-8,-2*x,-2*x]];
212
213
E[95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,2*x^2-2*x-4,x^2-x-1,-2*x^2+2*x+5,x,-2*x-2,x^2-2*x-5,x^2-2*x+1,2*x-2,-x^2+3,-2*x^2+2*x+3,-2*x^2+4*x+4,-x+2,-1,x^2-2]];
214
E[95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1,2*x^3-x^2-10*x+9,-2*x^2-2*x+8,x^3-4*x,-2*x+1,-x,2*x^2+2*x-6,-3*x^3+2*x^2+15*x-14,x^3+2*x^2-3*x-4,-2*x^3-2*x^2+8*x,x^3-5*x+2,-2*x^3+8*x-5,2*x^3-10*x+6,-2*x^2+x,1,-x^2+2]];
215
216
E[96,1] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,-2,0,2,0,-6,0,-4,0,-4,0,0,0,-1,0,1,0,2,0,4,0]];
217
E[96,2] = [x, [1,0,-1,0,2,0,4,0,1,0,-4,0,-2,0,-2,0,-6,0,4,0,-4,0,0,0,-1,0,-1,0,2,0,-4,0]];
218
219
E[97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1,x^2+x-1,-x^2-3*x-3,-4*x^2-7*x+1,2*x^2+7*x+3,-3*x^2-7*x+2,x-1,-x^2+2*x+5,-x-2,x^2-1,-1,7*x^2+13*x]];
220
E[97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1,-x^3+x^2+2*x,x^3-x^2-4*x+2,x^3-4*x,x^3-2*x^2-2*x+2,-x^2+x,-2*x^3+4*x^2+3*x-3,-2*x^3+3*x^2+4*x-5,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+1,x^3-2*x^2-x+2,3*x^3-5*x^2-6*x+5]];
221
222
E[98,1] = [x, [1,-1,2,1,0,-2,0,-1,1,0,0,2,4,0,0,1,-6,-1,-2,0,0,0,0,-2,-5,-4,-4,0]];
223
E[98,2] = [x^2-2, [1,1,x,1,-2*x,x,0,1,-1,-2*x,-2,x,0,0,-4,1,x,-1,5*x,-2*x,0,-2,-4,x,3,0,-4*x,0]];
224
225
E[99,1] = [x, [1,2,0,2,-1,0,-2,0,0,-2,-1,0,4,-4,0,-4,2,0,0,-2,0,-2,1,0]];
226
E[99,2] = [x, [1,1,0,-1,4,0,-2,-3,0,4,1,0,-2,-2,0,-1,-2,0,-6,-4,0,1,-4,0]];
227
E[99,3] = [x, [1,-1,0,-1,2,0,4,3,0,-2,-1,0,-2,-4,0,-1,2,0,0,-2,0,1,-8,0]];
228
E[99,4] = [x, [1,-1,0,-1,-4,0,-2,3,0,4,-1,0,-2,2,0,-1,2,0,-6,4,0,1,4,0]];
229
230
E[100,1] = [x, [1,0,2,0,0,0,-2,0,1,0,0,0,-2,0,0,0,6,0,-4,0,-4,0,-6,0,0,0,-4,0,6,0]];
231
232
233