Sharedwww / Tables / an_1-1000.gpOpen in CoCalc
\\ an_1-1000.gp
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N 
\\ in the range:  1 <= N <= 1000.
\\ The number of a_n computed is 17.
\\ William Stein ([email protected])

E[11,1] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,1,-2,4,4,-1,-4,-2]];

E[14,1] = [x, [1,-1,-2,1,0,2,1,-1,1,0,0,-2,-4,-1,0,1,6]];

E[15,1] = [x, [1,-1,-1,-1,1,1,0,3,1,-1,-4,1,-2,0,-1,-1,2]];

E[17,1] = [x, [1,-1,0,-1,-2,0,4,3,-3,2,0,0,-2,-4,0,-1,1]];

E[19,1] = [x, [1,0,-2,-2,3,0,-1,0,1,0,3,4,-4,0,-6,4,-3]];

E[20,1] = [x, [1,0,-2,0,-1,0,2,0,1,0,0,0,2,0,2,0,-6]];

E[21,1] = [x, [1,-1,1,-1,-2,-1,-1,3,1,2,4,-1,-2,1,-2,-1,-6]];

E[23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x,x-2,2*x+2,-2*x-1,2,-2*x+2,-2*x-4,x+3,3,2,2*x-4,3*x,-2*x+2]];

E[24,1] = [x, [1,0,-1,0,-2,0,0,0,1,0,4,0,-2,0,2,0,2]];

E[26,1] = [x, [1,-1,1,1,-3,-1,-1,-1,-2,3,6,1,1,1,-3,1,-3]];
E[26,2] = [x, [1,1,-3,1,-1,-3,1,1,6,-1,-2,-3,-1,1,3,1,-3]];

E[27,1] = [x, [1,0,0,-2,0,0,-1,0,0,0,0,0,5,0,0,4,0]];

E[29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1,2*x-1,2*x+2,x-2,-2*x-2,-x,x+2,-3*x+2,2*x+1,-2*x+2,x,3,-2*x-4]];

E[30,1] = [x, [1,-1,1,1,-1,-1,-4,-1,1,1,0,1,2,4,-1,1,6]];

E[31,1] = [x^2-x-1, [1,x,-2*x,x-1,1,-2*x-2,2*x-3,-2*x+1,4*x+1,x,2,-2,-2*x,-x+2,-2*x,-3*x,-2*x+4]];

E[32,1] = [x, [1,0,0,0,-2,0,0,0,-3,0,0,0,6,0,0,0,2]];

E[33,1] = [x, [1,1,-1,-1,-2,-1,4,-3,1,-2,1,1,-2,4,2,-1,-2]];

E[34,1] = [x, [1,1,-2,1,0,-2,-4,1,1,0,6,-2,2,-4,0,1,-1]];

E[35,1] = [x^2+x-4, [1,x,-x-1,-x+2,1,-4,-1,x-4,x+2,x,x+1,-2*x+2,x+3,-x,-x-1,-3*x,-x-3]];
E[35,2] = [x, [1,0,1,-2,-1,0,1,0,-2,0,-3,-2,5,0,-1,4,3]];

E[36,1] = [x, [1,0,0,0,0,0,-4,0,0,0,0,0,2,0,0,0,0]];

E[37,1] = [x, [1,-2,-3,2,-2,6,-1,0,6,4,-5,-6,-2,2,6,-4,0]];
E[37,2] = [x, [1,0,1,-2,0,0,-1,0,-2,0,3,-2,-4,0,0,4,6]];

E[38,1] = [x, [1,-1,1,1,0,-1,-1,-1,-2,0,-6,1,5,1,0,1,3]];
E[38,2] = [x, [1,1,-1,1,-4,-1,3,1,-2,-4,2,-1,-1,3,4,1,3]];

E[39,1] = [x, [1,1,-1,-1,2,-1,-4,-3,1,2,4,1,1,-4,-2,-1,2]];
E[39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2,x,2*x+2,x-2,1,2*x-2,-2,-2*x-1,-1,-2*x+2,-2*x-2,3,4*x+6]];

E[40,1] = [x, [1,0,0,0,1,0,-4,0,-3,0,4,0,-2,0,0,0,2]];

E[41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2,-x^2-2*x-1,x^2+2*x+1,-2*x^2+2*x+2,2*x,-2*x^2-2*x,3*x^2+2*x-9,x^2-2*x-7,-2*x^2+6,x^2+6*x+1,2*x^2+4*x-2,-8*x+6,-4]];

E[42,1] = [x, [1,1,-1,1,-2,-1,-1,1,1,-2,-4,-1,6,-1,2,1,2]];

E[43,1] = [x, [1,-2,-2,2,-4,4,0,0,1,8,3,-4,-5,0,8,-4,-3]];
E[43,2] = [x^2-2, [1,x,-x,0,-x+2,-2,x-2,-2*x,-1,2*x-2,2*x-1,0,2*x+1,-2*x+2,-2*x+2,-4,2*x+5]];

E[44,1] = [x, [1,0,1,0,-3,0,2,0,-2,0,-1,0,-4,0,-3,0,6]];

E[45,1] = [x, [1,1,0,-1,-1,0,0,-3,0,-1,4,0,-2,0,0,-1,-2]];

E[46,1] = [x, [1,-1,0,1,4,0,-4,-1,-3,-4,2,0,-2,4,0,1,-2]];

E[47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10,-x^2-x+1,3*x^3-x^2-16*x+7,x^3-4*x,3*x^3-x^2-14*x+6,-2*x^3+10*x-4,2*x^3-2*x^2-10*x+6,-3*x^3+x^2+13*x-8,-4*x^3+2*x^2+22*x-8,2*x^3-x^2-8*x+3,-4*x^3+4*x^2+22*x-16,x^3-x^2-5*x+5,x^3+x^2-6*x]];

E[48,1] = [x, [1,0,1,0,-2,0,0,0,1,0,-4,0,-2,0,-2,0,2]];

E[49,1] = [x, [1,1,0,-1,0,0,0,-3,-3,0,4,0,0,0,0,-1,0]];

E[50,1] = [x, [1,-1,1,1,0,-1,2,-1,-2,0,-3,1,-4,-2,0,1,-3]];
E[50,2] = [x, [1,1,-1,1,0,-1,-2,1,-2,0,-3,-1,4,-2,0,1,3]];

E[51,1] = [x^2+x-4, [1,x,-1,-x+2,-x+1,-x,0,x-4,1,2*x-4,-x-1,x-2,x+3,0,x-1,-3*x,1]];
E[51,2] = [x, [1,0,1,-2,3,0,-4,0,1,0,-3,-2,-1,0,3,4,-1]];

E[52,1] = [x, [1,0,0,0,2,0,-2,0,-3,0,-2,0,-1,0,0,0,6]];

E[53,1] = [x, [1,-1,-3,-1,0,3,-4,3,6,0,0,3,-3,4,0,-1,-3]];
E[53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3,-1,x^2-1,-x^2-x+1,-3*x^2-2*x+7,-x^2+1,x^2+2*x-3,2*x^2+x-6,1,-x^2+2*x+1,3*x^2+2*x-9,-2*x^2-2*x+3,2*x-1]];

E[54,1] = [x, [1,-1,0,1,3,0,-1,-1,0,-3,-3,0,-4,1,0,1,0]];
E[54,2] = [x, [1,1,0,1,-3,0,-1,1,0,-3,3,0,-4,-1,0,1,0]];

E[55,1] = [x, [1,1,0,-1,1,0,0,-3,-3,1,-1,0,2,0,0,-1,6]];
E[55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1,-2*x-2,-2,x+2,5,-x,1,-2*x-6,2*x-6,-2*x,2*x-2,3,2*x+2]];

E[56,1] = [x, [1,0,2,0,-4,0,1,0,1,0,0,0,0,0,-8,0,-2]];
E[56,2] = [x, [1,0,0,0,2,0,-1,0,-3,0,-4,0,2,0,0,0,-6]];

E[57,1] = [x, [1,1,1,-1,-2,1,0,-3,1,-2,0,-1,6,0,-2,-1,-6]];
E[57,2] = [x, [1,-2,1,2,1,-2,3,0,1,-2,-3,2,-6,-6,1,-4,3]];
E[57,3] = [x, [1,-2,-1,2,-3,2,-5,0,1,6,1,-2,2,10,3,-4,-1]];

E[58,1] = [x, [1,-1,-3,1,-3,3,-2,-1,6,3,-1,-3,3,2,9,1,-4]];
E[58,2] = [x, [1,1,-1,1,1,-1,-2,1,-2,1,-3,-1,-1,-2,-1,1,8]];

E[59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28,-4*x^3+16*x-8,-2*x^4-2*x^3+14*x^2+6*x-12,4*x^3-16*x,2*x^3+4*x^2-10*x-8,2*x^4+4*x^3-18*x^2-20*x+24,-2*x^4-4*x^3+18*x^2+24*x-32,-2*x^4+6*x^2-4*x,-2*x^4-4*x^3+18*x^2+24*x-24,-2*x^4-4*x^3+10*x^2+20*x-16,x^4+2*x^3-9*x^2-8*x+8,4*x^4-24*x^2+16,4*x^4-32*x^2+36]];

E[61,1] = [x, [1,-1,-2,-1,-3,2,1,3,1,3,-5,2,1,-1,6,-1,4]];
E[61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2,-x^2+1,x^2-x-3,x^2-x-1,-2*x^2+2*x+5,-x^2+x-1,x+4,x^2-2*x-5,-2*x^2+2*x+1,-1,3*x^2-2*x-7,-2*x^2+2*x+3,-x^2+2*x+1]];

E[62,1] = [x, [1,1,0,1,-2,0,0,1,-3,-2,0,0,2,0,0,1,-6]];
E[62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2,-x,2,-1,2*x-1,2*x-2,x-4,x,-3*x+2,-2,-2*x-4,1,2*x-2]];

E[63,1] = [x, [1,1,0,-1,2,0,-1,-3,0,2,-4,0,-2,-1,0,-1,6]];
E[63,2] = [x^2-3, [1,x,0,1,-2*x,0,1,-x,0,-6,2*x,0,2,x,0,-5,2*x]];

E[64,1] = [x, [1,0,0,0,2,0,0,0,-3,0,0,0,-6,0,0,0,2]];

E[65,1] = [x, [1,-1,-2,-1,-1,2,-4,3,1,1,2,2,-1,4,2,-1,2]];
E[65,2] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1,-x+1,-2*x,x-2,-1,x,-x+1,x-3,-1,4*x-2,x+1,3,-2*x-4]];
E[65,3] = [x^2-3, [1,x,-x+1,1,-1,x-3,2,-x,-2*x+1,-x,x-3,-x+1,1,2*x,x-1,-5,2*x]];

E[66,1] = [x, [1,-1,1,1,0,-1,2,-1,1,0,-1,1,-4,-2,0,1,-6]];
E[66,2] = [x, [1,1,1,1,-4,1,-2,1,1,-4,1,1,4,-2,-4,1,-2]];
E[66,3] = [x, [1,1,-1,1,2,-1,-4,1,1,2,-1,-1,-6,-4,-2,1,2]];

E[67,1] = [x, [1,2,-2,2,2,-4,-2,0,1,4,-4,-4,2,-4,-4,-4,3]];
E[67,2] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1,1,-x,-2*x-1,x-1,3*x-2,1,-x-2,x,x-1,x-1,3*x,-2*x+2]];
E[67,3] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3,1,3*x+4,4*x+3,3*x+5,-3*x,-2*x-3,3*x+6,-3*x-8,-5*x-3,3*x+9,-3*x+2,-2*x-6]];

E[68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2,0,-x,0,2*x-1,0,x-4,0,2*x,0,-2*x-4,0,-1]];

E[69,1] = [x, [1,1,1,-1,0,1,-2,-3,1,0,4,-1,-6,-2,0,-1,4]];
E[69,2] = [x^2-5, [1,x,-1,3,-x-1,-x,-x+1,x,1,-x-5,4,-3,2*x,x-5,x+1,-1,-x-5]];

E[70,1] = [x, [1,1,0,1,-1,0,-1,1,-3,-1,4,0,-6,-1,0,1,2]];

E[71,1] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1,-2*x+3,2*x^2+2*x-6,x-3,-x^2-3*x+6,-x^2-x,-2*x^2-2*x+6,3*x-6,4,2*x^2+4*x-6,x^2+2*x-6,-x^2-3*x+4,2*x^2+2*x-6]];
E[71,2] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5,-x^2,-2*x,-x^2+3,x^2-3,2*x^2+x-3,2*x^2-6,x^2-2*x-3,-2*x^2+4,-2*x^2,-2*x^2-x+3,-x^2-x+1,2*x^2+2*x-6]];

E[72,1] = [x, [1,0,0,0,2,0,0,0,0,0,-4,0,-2,0,0,0,-2]];

E[73,1] = [x, [1,1,0,-1,2,0,2,-3,-3,2,-2,0,-6,2,0,-1,2]];
E[73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x,1,-3,4*x+3,3*x+5,-3*x-1,-x-3,3*x+6,3*x+5,-3*x,1,-3*x+2,-6*x-9]];
E[73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x,-3,-1,3,-x+1,-x-3,x+3,-x-2,x-1,-x,3,x-2,2*x-3]];

E[74,1] = [x^2+x-1, [1,1,x,1,-3*x-1,x,2*x,1,-x-2,-3*x-1,-x-3,x,3*x+2,2*x,2*x-3,1,4*x+2]];
E[74,2] = [x^2-3*x-1, [1,-1,x,1,-x+1,-x,-2*x+4,-1,3*x-2,x-1,-x+1,x,x-2,2*x-4,-2*x-1,1,-6]];

E[75,1] = [x, [1,-2,1,2,0,-2,3,0,1,0,2,2,-1,-6,0,-4,-2]];
E[75,2] = [x, [1,1,1,-1,0,1,0,-3,1,0,-4,-1,2,0,0,-1,-2]];
E[75,3] = [x, [1,2,-1,2,0,-2,-3,0,1,0,2,-2,1,-6,0,-4,2]];

E[76,1] = [x, [1,0,2,0,-1,0,-3,0,1,0,5,0,-4,0,-2,0,-3]];

E[77,1] = [x, [1,1,2,-1,-2,2,-1,-3,1,-2,1,-2,4,-1,-4,-1,4]];
E[77,2] = [x^2-5, [1,x,-x+1,3,-2,x-5,1,x,-2*x+3,-2*x,-1,-3*x+3,x+1,x,2*x-2,-1,-x-1]];
E[77,3] = [x, [1,0,-3,-2,-1,0,-1,0,6,0,-1,6,-4,0,3,4,2]];
E[77,4] = [x, [1,0,1,-2,3,0,1,0,-2,0,-1,-2,-4,0,3,4,-6]];

E[78,1] = [x, [1,-1,-1,1,2,1,4,-1,1,-2,-4,-1,1,-4,-2,1,2]];

E[79,1] = [x, [1,-1,-1,-1,-3,1,-1,3,-2,3,-2,1,3,1,3,-1,-6]];
E[79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3,x^4-3*x^3-3*x^2+9*x-1,x^4-x^3-5*x^2+3*x+3,x^3-4*x,-x^4+x^3+5*x^2-5*x-2,2*x^3-x^2-5*x+1,-x^4-2*x^3+6*x^2+7*x-6,-x^4+x^3+3*x^2-3*x-1,x^3+x^2-2*x-3,-x^4+x^3+3*x^2-5*x+1,-x^4+3*x^3+x^2-9*x+3,x^4-6*x^2+4,-2*x^3+6*x+2]];

E[80,1] = [x, [1,0,2,0,-1,0,-2,0,1,0,0,0,2,0,-2,0,-6]];
E[80,2] = [x, [1,0,0,0,1,0,4,0,-3,0,-4,0,-2,0,0,0,2]];

E[81,1] = [x^2-3, [1,x,0,1,-x,0,2,-x,0,-3,-2*x,0,-1,2*x,0,-5,3*x]];

E[82,1] = [x, [1,-1,-2,1,-2,2,-4,-1,1,2,-2,-2,4,4,4,1,-2]];
E[82,2] = [x^2-2, [1,1,x,1,-2*x,x,-x-2,1,-1,-2*x,3*x,x,0,-x-2,-4,1,4*x+2]];

E[83,1] = [x, [1,-1,-1,-1,-2,1,-3,3,-2,2,3,1,-6,3,2,-1,5]];
E[83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8,2*x^5-2*x^4-14*x^3+6*x^2+16*x,3*x^5-x^4-25*x^3+3*x^2+38*x,4*x^3-16*x,-x^5+x^4+9*x^3-7*x^2-20*x+12,-4*x^5+28*x^3+8*x^2-32*x-16,-x^5+x^4+5*x^3+x^2-16,-4*x^3+4*x^2+12*x-16,4*x^3-20*x+8,2*x^5+2*x^4-18*x^3-22*x^2+36*x+24,4*x^4-28*x^2+24,4*x^4-24*x^2+16,x^5-3*x^4-7*x^3+17*x^2+14*x-16]];

E[84,1] = [x, [1,0,1,0,0,0,1,0,1,0,-6,0,2,0,0,0,0]];
E[84,2] = [x, [1,0,-1,0,4,0,-1,0,1,0,2,0,-6,0,-4,0,-4]];

E[85,1] = [x, [1,1,2,-1,-1,2,-2,-3,1,-1,2,-2,2,-2,-2,-1,1]];
E[85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1,-x-1,x-1,x-2,4*x+7,-x,x-3,3*x+5,-2*x-2,-3*x+1,x+3,3,-1]];
E[85,3] = [x^2-3, [1,x,-x+1,1,1,x-3,x-1,-x,-2*x+1,x,-x+3,-x+1,-4,-x+3,-x+1,-5,-1]];

E[86,1] = [x^2-x-1, [1,1,x,1,-x-1,x,-4*x+2,1,x-2,-x-1,4*x-4,x,4*x-2,-4*x+2,-2*x-1,1,-x]];
E[86,2] = [x^2+x-5, [1,-1,x,1,-x+1,-x,2,-1,-x+2,x-1,0,x,2,-2,2*x-5,1,x-4]];

E[87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2,x,-2*x-1,-2*x+1,1,-2,2*x+1,x-1,4*x-3,-3*x-2,-2*x+2,-3*x,3]];
E[87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8,-x,x^2-x-2,2*x^2-7,1,-4*x^2+14,x^2-x-6,-x^2+2,-x^2-x+6,x^2+2*x-7,2*x^2-8,2*x^2+x-10,3*x^2-x-10]];

E[88,1] = [x, [1,0,-3,0,-3,0,-2,0,6,0,-1,0,0,0,9,0,-6]];
E[88,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-2*x,0,x+1,0,-1,0,2*x-2,0,x-4,0,2]];

E[89,1] = [x, [1,-1,-1,-1,-1,1,-4,3,-2,1,-2,1,2,4,1,-1,3]];
E[89,2] = [x, [1,1,2,-1,-2,2,2,-3,1,-2,-4,-2,2,2,-4,-1,6]];
E[89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8,2*x^4-3*x^3-15*x^2+13*x+17,x^4-8*x^2-2*x+13,2*x^3-8*x,2*x^2-2*x-8,-2*x^3+8*x,-2*x^3+10*x+4,-3*x^4+3*x^3+19*x^2-15*x-18,-2*x^4+2*x^3+16*x^2-10*x-22,-x^4+2*x^3+8*x^2-8*x-17,x^4-x^3-5*x^2+5*x+2,2*x^4-12*x^2+8,2*x^4-2*x^3-14*x^2+8*x+8]];

E[90,1] = [x, [1,-1,0,1,1,0,2,-1,0,-1,6,0,-4,-2,0,1,-6]];
E[90,2] = [x, [1,1,0,1,1,0,-4,1,0,1,0,0,2,-4,0,1,-6]];
E[90,3] = [x, [1,1,0,1,-1,0,2,1,0,-1,-6,0,-4,2,0,1,6]];

E[91,1] = [x, [1,-2,0,2,-3,0,-1,0,-3,6,-6,0,-1,2,0,-4,4]];
E[91,2] = [x^2-2, [1,x,-x,0,x+3,-2,1,-2*x,-1,3*x+2,-3*x,0,-1,x,-3*x-2,-4,-x]];
E[91,3] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1,-2*x+2,-1,x^2-2,-2*x+3,-x^2+x,x^2-x-2,-4,1,-x,-x^2+3*x,-x^2+2*x+2,x^2+x-2]];
E[91,4] = [x, [1,0,-2,-2,-3,0,1,0,1,0,0,4,1,0,6,4,-6]];

E[92,1] = [x, [1,0,-3,0,-2,0,-4,0,6,0,2,0,-5,0,6,0,4]];
E[92,2] = [x, [1,0,1,0,0,0,2,0,-2,0,0,0,-1,0,0,0,-6]];

E[93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5,-x,2*x+1,4*x+3,1,x+2,2*x,3*x+3,2*x+2,-5*x-2,2*x+5,-3*x+2,-4*x-8]];
E[93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2,x,-x^2-x+4,-1,1,-x^2-2*x+1,2*x^2-6,x^2-2,2*x^2-4,-x^2+1,-x^2-x+2,-2*x^2-x+4,2*x^2+2*x-6]];

E[94,1] = [x, [1,1,0,1,0,0,0,1,-3,0,2,0,-4,0,0,1,-2]];
E[94,2] = [x^2-8, [2,-2,2*x,2,-x+4,-2*x,-2*x-4,-2,10,x-4,-x+8,2*x,-x-4,2*x+4,4*x-8,2,0]];

E[95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,2*x^2-2*x-4,x^2-x-1,-2*x^2+2*x+5,x,-2*x-2,x^2-2*x-5,x^2-2*x+1,2*x-2,-x^2+3,-2*x^2+2*x+3,-2*x^2+4*x+4]];
E[95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1,2*x^3-x^2-10*x+9,-2*x^2-2*x+8,x^3-4*x,-2*x+1,-x,2*x^2+2*x-6,-3*x^3+2*x^2+15*x-14,x^3+2*x^2-3*x-4,-2*x^3-2*x^2+8*x,x^3-5*x+2,-2*x^3+8*x-5,2*x^3-10*x+6]];

E[96,1] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,-2,0,2,0,-6]];
E[96,2] = [x, [1,0,-1,0,2,0,4,0,1,0,-4,0,-2,0,-2,0,-6]];

E[97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1,x^2+x-1,-x^2-3*x-3,-4*x^2-7*x+1,2*x^2+7*x+3,-3*x^2-7*x+2,x-1,-x^2+2*x+5,-x-2,x^2-1,-1,7*x^2+13*x,x^2+4*x+1]];
E[97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1,-x^3+x^2+2*x,x^3-x^2-4*x+2,x^3-4*x,x^3-2*x^2-2*x+2,-x^2+x,-2*x^3+4*x^2+3*x-3,-2*x^3+3*x^2+4*x-5,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+1,x^3-2*x^2-x+2,3*x^3-5*x^2-6*x+5,2*x^3-3*x^2-4*x+3]];

E[98,1] = [x, [1,-1,2,1,0,-2,0,-1,1,0,0,2,4,0,0,1,-6]];
E[98,2] = [x^2-2, [1,1,x,1,-2*x,x,0,1,-1,-2*x,-2,x,0,0,-4,1,x]];

E[99,1] = [x, [1,1,0,-1,4,0,-2,-3,0,4,1,0,-2,-2,0,-1,-2]];
E[99,2] = [x, [1,2,0,2,-1,0,-2,0,0,-2,-1,0,4,-4,0,-4,2]];
E[99,3] = [x, [1,-1,0,-1,2,0,4,3,0,-2,-1,0,-2,-4,0,-1,2]];
E[99,4] = [x, [1,-1,0,-1,-4,0,-2,3,0,4,-1,0,-2,2,0,-1,2]];

E[100,1] = [x, [1,0,2,0,0,0,-2,0,1,0,0,0,-2,0,0,0,6]];

E[101,1] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30,x^6+3*x^5-12*x^4-28*x^3+33*x^2+45*x-14,-x^5-2*x^4+10*x^3+16*x^2-21*x-14,4*x^3-16*x,x^6+2*x^5-10*x^4-20*x^3+21*x^2+34*x-4,-3*x^6-4*x^5+32*x^4+36*x^3-77*x^2-56*x+28,-x^6+12*x^4-35*x^2+20,x^6-x^5-10*x^4+6*x^3+23*x^2-5*x-18,3*x^6+4*x^5-34*x^4-36*x^3+91*x^2+48*x-40,-x^6-2*x^5+10*x^4+16*x^3-21*x^2-14*x,-3*x^6-3*x^5+34*x^4+30*x^3-93*x^2-55*x+50,4*x^4-24*x^2+16,3*x^6+3*x^5-32*x^4-28*x^3+79*x^2+45*x-42]];
E[101,2] = [x, [1,0,-2,-2,-1,0,-2,0,1,0,-2,4,1,0,2,4,3]];

E[102,1] = [x, [1,1,1,1,-2,1,0,1,1,-2,-4,1,-2,0,-2,1,1]];
E[102,2] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,-1]];
E[102,3] = [x, [1,-1,-1,1,-4,1,-2,-1,1,4,0,-1,-6,2,4,1,-1]];

E[103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3,-x,-1,4*x+3,-2,1,x,3*x+3,3*x+3,-x,x+3,-3*x+2,x-3]];
E[103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13,-x^5+2*x^4+6*x^3-10*x^2-8*x+11,-x^4+2*x^3+4*x^2-5*x-3,x^3-4*x,-x^5+3*x^4+5*x^3-15*x^2-7*x+17,3*x^5-7*x^4-15*x^3+27*x^2+19*x-22,-x^5+2*x^4+4*x^3-4*x^2-4*x-1,-x^4+x^3+5*x^2-3*x-5,2*x^5-4*x^4-11*x^3+15*x^2+14*x-11,-x^5+2*x^4+4*x^3-5*x^2-3*x,x^4-3*x^3-x^2+7*x-5,x^4-6*x^2+4,-3*x^5+7*x^4+16*x^3-30*x^2-21*x+30]];

E[104,1] = [x, [1,0,1,0,-1,0,5,0,-2,0,-2,0,-1,0,-1,0,-3]];
E[104,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-x,0,x+1,0,-2*x,0,1,0,x-4,0,3*x-2]];

E[105,1] = [x, [1,1,1,-1,1,1,1,-3,1,1,0,-1,-6,1,1,-1,2]];
E[105,2] = [x^2-5, [1,x,-1,3,-1,-x,1,x,1,-x,-2*x+2,-3,-2*x,x,1,-1,-2]];

E[106,1] = [x, [1,1,1,1,0,1,-4,1,-2,0,0,1,5,-4,0,1,-3]];
E[106,2] = [x, [1,1,-2,1,3,-2,2,1,1,3,-3,-2,-4,2,-6,1,3]];
E[106,3] = [x, [1,-1,2,1,1,-2,-2,-1,1,-1,5,2,-4,2,2,1,3]];
E[106,4] = [x, [1,-1,-1,1,-4,1,0,-1,-2,4,-4,-1,1,0,4,1,5]];

E[107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2,-x-1,2*x-1,-2*x-1,3*x+2,-x-1,2*x+3,2*x+3,-6,-3*x+2,3*x+5,3*x,x-1]];
E[107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x,-4*x^4+20*x^2-4*x-8,-2*x^6-2*x^5+16*x^4+14*x^3-30*x^2-24*x+8,4*x^3-16*x,x^6-x^5-8*x^4+9*x^3+15*x^2-18*x-4,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16,2*x^5-2*x^4-16*x^3+10*x^2+22*x,2*x^6-2*x^5-20*x^4+14*x^3+54*x^2-24*x-32,2*x^6-22*x^4+2*x^3+68*x^2-14*x-32,-4*x^5+28*x^3-32*x-16,-2*x^6+2*x^5+24*x^4-22*x^3-78*x^2+56*x+40,4*x^4-24*x^2+16,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16]];

E[108,1] = [x, [1,0,0,0,0,0,5,0,0,0,0,0,-7,0,0,0,0]];

E[109,1] = [x, [1,1,0,-1,3,0,2,-3,-3,3,1,0,0,2,0,-1,-8]];
E[109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x,-x^2-2*x,3*x^2+5*x-3,-2*x^2-3*x+1,x^2+4*x+1,x^2-2*x-2,x^2+2*x-5,x+3,-2*x^2-x+3,-x^2+3,3*x^2+8*x+2,-x^2-x+2,-x^2-3*x+1]];
E[109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x,x^3-x^2-3*x+3,x^3-x^2-4*x+2,x^3-4*x,-x^3-x^2+3*x+4,-x^2,x^3+x^2-5*x,2*x^2-x-5,2*x^2+x-7,-2*x^3+x^2+6*x-3,-x^3+x^2+3*x-3,-x^3-x^2+4*x+1,x^3-x^2-2*x+6]];

E[110,1] = [x, [1,1,1,1,-1,1,-1,1,-2,-1,-1,1,2,-1,-1,1,-3]];
E[110,2] = [x, [1,1,-1,1,1,-1,3,1,-2,1,1,-1,-6,3,-1,1,-7]];
E[110,3] = [x, [1,-1,1,1,-1,-1,5,-1,-2,1,1,1,2,-5,-1,1,3]];
E[110,4] = [x^2+x-8, [1,-1,x,1,1,-x,-x,-1,-x+5,-1,-1,x,2,x,x,1,-x-2]];

E[111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5,-x,-2*x^2+2*x+4,3*x^2-3*x-5,1,-3*x^2+4*x+5,2*x^2-4*x-2,-x^2+2,2*x^2-4*x-4,-4*x^2+2*x+10,x^2-5,4*x^2-2*x-11,-x^2+4*x+1]];
E[111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4,x,2*x^3+2*x^2-8*x-2,x^3-4*x,1,-2*x^3-3*x^2+6*x+5,2*x^2-6,x^2-2,-2*x^3-4*x^2+6*x+10,2*x^3+4*x^2-6*x-10,-x^3-2*x^2+3*x+4,-2*x-1,-x^3+3*x-2]];

E[112,1] = [x, [1,0,-2,0,-4,0,-1,0,1,0,0,0,0,0,8,0,-2]];
E[112,2] = [x, [1,0,2,0,0,0,-1,0,1,0,0,0,-4,0,0,0,6]];
E[112,3] = [x, [1,0,0,0,2,0,1,0,-3,0,4,0,2,0,0,0,-6]];

E[113,1] = [x, [1,-1,2,-1,2,-2,0,3,1,-2,0,-2,2,0,4,-1,-6]];
E[113,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3,-2*x-1,-x^2-x-2,-2*x^2-3*x+1,3*x^2+7*x,-2*x^2-x+2,-3*x^2-4*x+4,3*x+2,x^2+4*x-2,x^2-3*x-1,-x^2+1,-x^2-x+2,-x^2-5*x-2]];
E[113,3] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1,-2*x^2+9,-x^2-x+6,-2*x^2+x+9,-x^2-x+4,-x,x^2-4,2*x^2-x-8,x^2-2,x^2+x-9,-x^2+5,3*x^2-x-14,x^2-x-2]];
E[113,4] = [x^2-2*x-2, [1,1,x,-1,-2*x+2,x,4,-3,2*x-1,-2*x+2,-2*x,-x,2*x-4,4,-2*x-4,-1,-2]];

E[114,1] = [x, [1,-1,-1,1,0,1,4,-1,1,0,4,-1,0,-4,0,1,-2]];
E[114,2] = [x, [1,1,1,1,0,1,-4,1,1,0,0,1,-4,-4,0,1,6]];
E[114,3] = [x, [1,1,-1,1,2,-1,0,1,1,2,-4,-1,2,0,-2,1,-6]];

E[115,1] = [x, [1,2,0,2,-1,0,1,0,-3,-2,2,0,-2,2,0,-4,3]];
E[115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1,-x,-2*x-4,4*x+3,-2,-x,2*x+2,3*x+3,2*x-1,2*x+2,1,-3*x+2,-4*x-8]];
E[115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1,-x^3+x^2+2*x,x^3-2*x^2-4*x+3,x^3-4*x,x^2-x-1,x,-2*x+2,-x^3+3*x-2,-2*x^3+3*x^2+7*x-4,-2*x-2,-x^2+x+2,2*x^3-2*x^2-5*x+2,-x^3+2*x^2+2*x-3]];

E[116,1] = [x, [1,0,-3,0,3,0,4,0,6,0,-1,0,-3,0,-9,0,2]];
E[116,2] = [x, [1,0,1,0,3,0,-4,0,-2,0,3,0,5,0,3,0,-6]];
E[116,3] = [x, [1,0,2,0,-2,0,4,0,1,0,-6,0,2,0,-4,0,2]];

E[117,1] = [x, [1,-1,0,-1,-2,0,-4,3,0,2,-4,0,1,4,0,-1,-2]];
E[117,2] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2,0,-2*x+2,x+2,0,-2*x-2,2,0,-1,-2*x-2,0,3,4*x-6]];
E[117,3] = [x^2-3, [1,x,0,1,0,0,2,-x,0,0,-2*x,0,1,2*x,0,-5,-4*x]];

E[118,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-6,3,-1,1,-2]];
E[118,2] = [x, [1,1,2,1,-2,2,-3,1,1,-2,-1,2,-3,-3,-4,1,7]];
E[118,3] = [x, [1,-1,2,1,2,-2,-3,-1,1,-2,1,2,3,3,4,1,-1]];
E[118,4] = [x, [1,-1,-1,1,-3,1,-1,-1,-2,3,-2,-1,-2,1,3,1,-2]];

E[119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x,-x^2+3,1,x^3-4*x,-x^3-3*x^2+2*x+7,x^2+x-3,-2*x,x^3+2*x^2-5*x-2,2*x^3+4*x^2-6*x-4,x,2*x^2+2*x-9,-x^3-x^2+x+1,-1]];
E[119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18,-2*x^4-2*x^3+15*x^2+10*x-17,-1,x^3-4*x,2*x^4+x^3-13*x^2-8*x+13,5*x^4+x^3-34*x^2-10*x+34,-2*x^4-2*x^3+14*x^2+12*x-14,-4*x^4-x^3+26*x^2+9*x-26,-2*x^4+14*x^2-14,-x,-x^4-x^3+7*x^2+3*x-4,x^4-6*x^2+4,1]];

E[120,1] = [x, [1,0,1,0,1,0,0,0,1,0,-4,0,6,0,1,0,-6]];
E[120,2] = [x, [1,0,1,0,-1,0,4,0,1,0,0,0,-6,0,-1,0,-2]];

E[121,1] = [x, [1,1,2,-1,1,2,-2,-3,1,1,0,-2,1,-2,2,-1,-5]];
E[121,2] = [x, [1,2,-1,2,1,-2,2,0,-2,2,0,-2,-4,4,-1,-4,2]];
E[121,3] = [x, [1,-1,2,-1,1,-2,2,3,1,-1,0,-2,-1,-2,2,-1,5]];
E[121,4] = [x, [1,0,-1,-2,-3,0,0,0,-2,0,0,2,0,0,3,4,0]];

E[122,1] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3,x,2*x^2+3*x-5,1,x^2-3,-x^2-3*x+3,-x^2-x+1,x,-x^2-x+3,2*x^2+3*x-5,-2*x^2-2*x+2,1,-2*x^2-4*x+4]];
E[122,2] = [x, [1,-1,-2,1,1,2,-5,-1,1,-1,-3,-2,-3,5,-2,1,0]];
E[122,3] = [x^2-x-3, [1,-1,x,1,0,-x,-x+3,-1,x,0,-2*x+2,x,-2*x+4,x-3,0,1,2*x-2]];

E[123,1] = [x, [1,-2,1,2,-4,-2,-2,0,1,8,-3,2,-6,4,-4,-4,3]];
E[123,2] = [x^2-2, [1,x,1,0,-x+2,x,x-2,-2*x,1,2*x-2,-x+1,0,-3*x+2,-2*x+2,-x+2,-4,x+1]];
E[123,3] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4,-x,-x^2-x+4,x^2-2,1,2,-x-1,-x^2+2,x^2-x,-2*x^2+2,x^2-x-4,-x^2+2*x+2,2*x^2-x-5]];
E[123,4] = [x, [1,0,-1,-2,-2,0,-4,0,1,0,5,2,-4,0,2,4,-5]];

E[124,1] = [x, [1,0,-2,0,-3,0,-1,0,1,0,-6,0,2,0,6,0,6]];
E[124,2] = [x, [1,0,0,0,1,0,3,0,-3,0,6,0,-4,0,0,0,0]];

E[125,1] = [x^2-x-1, [1,x,-x+2,x-1,0,x-1,3,-2*x+1,-3*x+2,0,-3,2*x-3,3*x,3*x,0,-3*x,-2*x-1]];
E[125,2] = [x^2+x-1, [1,x,-x-2,-x-1,0,-x-1,-3,-2*x-1,3*x+2,0,-3,2*x+3,3*x,-3*x,0,3*x,-2*x+1]];
E[125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0,-3*x^2+11,x^3-7*x,2*x^3-8*x,-x^2+5,0,4,-x^3+x,-4*x,x^2-11,0,4*x^2-14,-2*x^3+10*x]];

E[126,1] = [x, [1,-1,0,1,2,0,-1,-1,0,-2,4,0,6,1,0,1,-2]];
E[126,2] = [x, [1,1,0,1,0,0,1,1,0,0,0,0,-4,1,0,1,-6]];

E[127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4,x^2-3,x^2+x-3,-3*x^2-4*x+3,x^2+3*x,-2*x^2-4*x+3,x^2+4*x+1,-x^2+x+3,-3*x^2-4*x+4,-2*x^2-3*x+3,2*x^2+5*x,3*x^2+3*x-5,-x-7]];
E[127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9,2*x^5-3*x^4-13*x^3+17*x^2+15*x-15,-x^5+x^4+7*x^3-7*x^2-9*x+8,x^3-4*x,x^5-3*x^4-7*x^3+19*x^2+9*x-17,-x^6+9*x^4+x^3-23*x^2-2*x+15,x^6-2*x^5-6*x^4+13*x^3+3*x^2-15*x+6,x^5-x^4-7*x^3+7*x^2+7*x-8,-2*x^6+6*x^5+11*x^4-38*x^3-2*x^2+39*x-13,-x^6+x^5+7*x^4-7*x^3-9*x^2+8*x,-x^5+4*x^4+6*x^3-24*x^2-8*x+21,x^4-6*x^2+4,x^6-x^5-9*x^4+6*x^3+24*x^2-6*x-15]];

E[128,1] = [x, [1,0,-2,0,-2,0,-4,0,1,0,2,0,-2,0,4,0,-2]];
E[128,2] = [x, [1,0,-2,0,2,0,4,0,1,0,2,0,2,0,-4,0,-2]];
E[128,3] = [x, [1,0,2,0,-2,0,4,0,1,0,-2,0,-2,0,-4,0,-2]];
E[128,4] = [x, [1,0,2,0,2,0,-4,0,1,0,-2,0,2,0,4,0,-2]];

E[129,1] = [x, [1,1,1,-1,2,1,0,-3,1,2,0,-1,-2,0,2,-1,-6]];
E[129,2] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2,-x,-2*x+3,x+2,1,-1,-x+4,-2*x+1,-5,-x-2,x-2,3,-2*x]];
E[129,3] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2,x,-x^2+6,-2*x^2+x+8,1,-x^2-2*x,x^2-x-5,x^2-2,3,2*x^2+x-8,-x-2,3*x^2-2*x-12,-x^2+5]];
E[129,4] = [x, [1,0,-1,-2,-2,0,-2,0,1,0,-5,2,3,0,2,4,-3]];

E[130,1] = [x, [1,-1,-2,1,1,2,-4,-1,1,-1,-6,-2,1,4,-2,1,-6]];
E[130,2] = [x, [1,1,2,1,-1,2,-4,1,1,-1,-2,2,-1,-4,-2,1,2]];
E[130,3] = [x, [1,1,0,1,1,0,0,1,-3,1,0,0,1,0,0,1,2]];

E[131,1] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16,2*x^9-32*x^7+162*x^5-268*x^3+80*x,-2*x^9-4*x^8+28*x^7+56*x^6-114*x^5-252*x^4+88*x^3+376*x^2+120*x-48,16*x^3-64*x,3*x^9-50*x^7+10*x^6+273*x^5-90*x^4-522*x^3+156*x^2+248*x+16,4*x^7+4*x^6-36*x^5-36*x^4+56*x^3+88*x^2+32*x-32,-x^9+18*x^7-6*x^6-107*x^5+62*x^4+234*x^3-140*x^2-176*x+32,-4*x^7+4*x^6+36*x^5-52*x^4-56*x^3+152*x^2-32*x-96,x^9+2*x^8-14*x^7-30*x^6+55*x^5+136*x^4-34*x^3-168*x^2-80*x+16,-4*x^9-8*x^8+60*x^7+108*x^6-288*x^5-452*x^4+432*x^3+584*x^2-16*x-64,-2*x^9+2*x^8+36*x^7-40*x^6-218*x^5+242*x^4+488*x^3-436*x^2-328*x+80,16*x^4-96*x^2+64,2*x^9+4*x^8-28*x^7-52*x^6+118*x^5+200*x^4-124*x^3-192*x^2-64*x-64]];
E[131,2] = [x, [1,0,-1,-2,-2,0,-1,0,-2,0,0,2,-3,0,2,4,4]];

E[132,1] = [x, [1,0,1,0,2,0,-2,0,1,0,1,0,-2,0,2,0,4]];
E[132,2] = [x, [1,0,-1,0,2,0,2,0,1,0,-1,0,6,0,-2,0,-4]];

E[133,1] = [x^2-x-1, [1,x,-x+2,x-1,1,x-1,1,-2*x+1,-3*x+2,x,x-1,2*x-3,-1,x,-x+2,-3*x,3*x-1]];
E[133,2] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3,-3*x-1,-1,4*x+3,-3*x-4,3*x+2,x-3,6*x+3,1,-x,3*x+2,-3*x+2,3*x+3]];
E[133,3] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4,-2*x^2+x+7,-1,2*x^2-7,-2*x^2+x+8,x^2-7,-x+3,-x^2-x+4,x^2-x-4,-x,3*x^2-2*x-13,2*x^2+x-10,-2*x^2-x+11]];
E[133,4] = [x^2+x-3, [1,x,-x-2,-x+1,-3,-x-3,1,-3,3*x+4,-3*x,-x-3,1,2*x-1,x,3*x+6,-x-2,x-3]];

E[134,1] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1,x,2*x^2-6*x,1,x^2-3,-x^2+x+1,-3*x^2+6*x+2,x,3*x^2-8*x-2,2*x^2-6*x,-2*x^2+x+1,1,-x^2+5*x-3]];
E[134,2] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5,-x,-2*x^2-2*x+12,-1,x^2-3,-x^2-x+5,-x^2-2*x+6,x,x^2-2,2*x^2+2*x-12,2*x^2+3*x-11,1,-x^2-x+5]];

E[135,1] = [x, [1,-2,0,2,-1,0,-3,0,0,2,-2,0,-5,6,0,-4,-8]];
E[135,2] = [x, [1,2,0,2,1,0,-3,0,0,2,2,0,-5,-6,0,-4,8]];
E[135,3] = [x^2-x-3, [1,x,0,x+1,-1,0,-2*x+2,3,0,-x,-2*x,0,2*x+2,-6,0,x-2,-2*x+3]];
E[135,4] = [x^2+x-3, [1,x,0,-x+1,1,0,2*x+2,-3,0,x,-2*x,0,-2*x+2,6,0,-x-2,-2*x-3]];

E[136,1] = [x, [1,0,-2,0,-2,0,-2,0,1,0,-6,0,2,0,4,0,1]];
E[136,2] = [x, [1,0,2,0,0,0,0,0,1,0,2,0,-6,0,0,0,-1]];
E[136,3] = [x^2+2*x-4, [1,0,x,0,2,0,-x,0,-2*x+1,0,-x,0,2*x+2,0,2*x,0,1]];

E[137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1,-2*x^3-3*x^2+2*x+1,-x^3-2*x^2+2*x-1,x^3-4*x,2*x^2+3*x-1,3*x^3+3*x^2-7*x-2,4*x^3+9*x^2-4*x-8,x^3-x+2,x^2+3*x-2,x^3+2*x^2-5*x-1,4*x+1,-3*x^3-6*x^2+4*x+5,-x^3-5*x^2-2*x+5]];
E[137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26,x^6+x^5-9*x^4-5*x^3+21*x^2+2*x-7,-2*x^6+18*x^4-2*x^3-42*x^2+6*x+22,2*x^3-8*x,-4*x^6+2*x^5+38*x^4-20*x^3-96*x^2+40*x+50,-2*x^6+16*x^4-4*x^3-32*x^2+12*x+14,4*x^6-2*x^5-38*x^4+20*x^3+94*x^2-42*x-44,3*x^6-x^5-27*x^4+11*x^3+65*x^2-24*x-35,2*x^6-18*x^4+4*x^3+44*x^2-16*x-20,-2*x^5-2*x^4+14*x^3+12*x^2-16*x-14,2*x^6-20*x^4+2*x^3+54*x^2-10*x-28,2*x^4-12*x^2+8,2*x^5+2*x^4-14*x^3-10*x^2+18*x+6]];

E[138,1] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,0]];
E[138,2] = [x, [1,-1,-1,1,-2,1,-2,-1,1,2,-6,-1,-2,2,2,1,0]];
E[138,3] = [x, [1,1,-1,1,2,-1,0,1,1,2,0,-1,-2,0,-2,1,2]];
E[138,4] = [x^2+2*x-4, [1,1,1,1,x,1,-2*x-2,1,1,x,-x-4,1,2*x+2,-2*x-2,x,1,-4]];

E[139,1] = [x, [1,1,2,-1,-1,2,3,-3,1,-1,5,-2,-7,3,-2,-1,-6]];
E[139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4,-x-1,2*x^2+3*x-2,-2*x^2-3*x+1,x^2+3*x-1,-x^2-3*x+1,-3*x^2-4*x+1,x^2+3*x,-3*x^2-5*x+3,-x^2+2,3*x^2+6*x-1,-x^2-x+2,x^2+3*x-1]];
E[139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12,4*x^5-32*x^3-4*x^2+48*x+16,-x^6+x^5+11*x^4-8*x^3-35*x^2+14*x+24,4*x^3-16*x,-4*x^5-4*x^4+36*x^3+28*x^2-72*x-28,-2*x^6-2*x^5+14*x^4+16*x^3-14*x^2-20*x-8,-2*x^6+4*x^5+20*x^4-34*x^3-50*x^2+54*x+28,4*x^5+4*x^4-36*x^3-28*x^2+64*x+32,2*x^5+2*x^4-18*x^3-16*x^2+34*x+28,4*x^2-8*x-8,4*x^6-36*x^4+76*x^2-4*x-24,4*x^4-24*x^2+16,2*x^6+2*x^5-18*x^4-16*x^3+34*x^2+24*x+8]];

E[140,1] = [x, [1,0,3,0,-1,0,-1,0,6,0,-5,0,-3,0,-3,0,-1]];
E[140,2] = [x, [1,0,1,0,1,0,1,0,-2,0,3,0,-1,0,1,0,-3]];

E[141,1] = [x, [1,-2,1,2,-3,-2,-3,0,1,6,-5,2,2,6,-3,-4,-6]];
E[141,2] = [x, [1,2,1,2,-1,2,-3,0,1,-2,1,2,-2,-6,-1,-4,2]];
E[141,3] = [x^2+x-4, [1,x,-1,-x+2,x+1,-x,x+1,x-4,1,4,-x+3,x-2,-2*x-4,4,-x-1,-3*x,-2*x]];
E[141,4] = [x, [1,0,-1,-2,-1,0,-3,0,1,0,-3,2,-4,0,1,4,8]];
E[141,5] = [x, [1,-1,1,-1,2,-1,0,3,1,-2,4,-1,-2,0,2,-1,2]];
E[141,6] = [x, [1,-1,-1,-1,0,1,4,3,1,0,0,1,6,-4,0,-1,-6]];

E[142,1] = [x, [1,1,-3,1,-4,-3,-3,1,6,-4,0,-3,1,-3,12,1,0]];
E[142,2] = [x, [1,1,1,1,0,1,-1,1,-2,0,0,1,-1,-1,0,1,0]];
E[142,3] = [x, [1,-1,3,1,2,-3,-3,-1,6,-2,-6,3,-5,3,6,1,6]];
E[142,4] = [x, [1,-1,-1,1,-2,1,-1,-1,-2,2,-2,-1,-3,1,2,1,-6]];
E[142,5] = [x, [1,-1,0,1,2,0,0,-1,-3,-2,6,0,4,0,0,1,6]];

E[143,1] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4,-x^2+2*x+1,x^3-x^2-4*x+2,x^3-4*x,x^3-3*x^2-2*x+5,-2*x^3+2*x^2+4*x,1,x^3-4*x^2+x+6,-1,2*x^3-3*x^2-3*x-1,-2*x^3+6*x^2+2*x-10,3*x^3-5*x^2-5*x+3,-4*x^2+6*x+8]];
E[143,2] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15,-x^5-2*x^4+8*x^3+13*x^2-12*x-12,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,x^3-4*x,-3*x^5-4*x^4+25*x^3+27*x^2-38*x-26,2*x^5+2*x^4-16*x^3-12*x^2+22*x+12,-1,-x^3+3*x-2,1,2*x^5+3*x^4-17*x^3-22*x^2+28*x+24,3*x^5+4*x^4-24*x^3-28*x^2+30*x+33,x^4-6*x^2+4,-2*x]];
E[143,3] = [x, [1,0,-1,-2,-1,0,-2,0,-2,0,-1,2,-1,0,1,4,-4]];

E[144,1] = [x, [1,0,0,0,2,0,0,0,0,0,4,0,-2,0,0,0,-2]];
E[144,2] = [x, [1,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0]];

E[145,1] = [x, [1,-1,0,-1,-1,0,-2,3,-3,1,-6,0,2,2,0,-1,-2]];
E[145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1,-2*x,-2*x-4,x-2,1,x,2*x,4*x+2,-2,-2,-2,3,2*x+2]];
E[145,3] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,x^2-1,x^2-x-1,-2*x^2+2*x+5,x,x^2-2*x-1,x^2-2*x-5,-2*x,x^2+2*x-1,-x^2+3,-2*x^2+2*x+3,3*x^2-4*x-7]];
E[145,4] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1,-x^2+5,-x^2+3,3*x^2-3*x-5,-2*x+3,-x,x^2-2*x+1,-x^2+3,2*x-4,-3*x^2+2*x+5,x^2-2*x-1,4*x^2-2*x-11,-3*x^2+2*x+9]];

E[146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4,-2*x,x^2,-2,2*x^2-6,x^2-4,-2*x^2-4*x+12,2*x,-x^2+8,-x^2,-4*x+4,2,2*x^2+4*x-12]];
E[146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2,2*x,2*x^3+x^2-14*x+2,2,2*x^2-6,-x^3-x^2+4*x+2,2*x^2-8,2*x,-3*x^2-2*x+10,2*x^3+x^2-14*x+2,-x^3-4*x^2+6*x+4,2,-2*x^3-2*x^2+12*x]];

E[147,1] = [x, [1,-1,-1,-1,2,1,0,3,1,-2,4,1,2,0,-2,-1,6]];
E[147,2] = [x, [1,2,1,2,-2,2,0,0,1,-4,-2,2,1,0,-2,-4,0]];
E[147,3] = [x, [1,2,-1,2,2,-2,0,0,1,4,-2,-2,-1,0,-2,-4,0]];
E[147,4] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5,-x-1,0,-x-5,2,-x+1,-4,2*x,x+7,0,-x+5,6,3*x+1]];
E[147,5] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5,x+1,0,-x-5,2,x-1,-4,-2*x,-x-7,0,-x+5,6,-3*x-1]];

E[148,1] = [x, [1,0,-1,0,-4,0,-3,0,-2,0,5,0,0,0,4,0,-6]];
E[148,2] = [x^2+x-4, [1,0,x,0,2,0,-x,0,-x+1,0,-x,0,2,0,2*x,0,-2*x+2]];

E[149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3,-2*x-1,x^2+x-3,-x^2-2*x+1,2*x^2+3*x-2,-2*x^2-x+1,-2*x^2+x+2,x,-2*x^2-x+2,-x+1,x^2+4*x+1,-3*x^2-x+3,4*x^2+3*x-4]];
E[149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26,2*x^8+x^7-31*x^6-8*x^5+157*x^4+7*x^3-277*x^2+28*x+117,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-474*x^2+56*x+202,4*x^3-16*x,-3*x^8+47*x^6-7*x^5-242*x^4+56*x^3+439*x^2-93*x-185,-x^7-3*x^6+12*x^5+29*x^4-45*x^3-73*x^2+42*x+39,3*x^8-49*x^6+3*x^5+258*x^4-30*x^3-471*x^2+63*x+207,5*x^8+x^7-76*x^6-3*x^5+377*x^4-29*x^3-656*x^2+79*x+274,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-470*x^2+56*x+190,-2*x^8+2*x^7+36*x^6-22*x^5-198*x^4+74*x^3+360*x^2-70*x-156,-7*x^8-3*x^7+104*x^6+21*x^5-503*x^4-9*x^3+844*x^2-77*x-338,4*x^4-24*x^2+16,-x^8-2*x^7+11*x^6+19*x^5-40*x^4-50*x^3+59*x^2+29*x-25]];

E[150,1] = [x, [1,-1,-1,1,0,1,2,-1,1,0,2,-1,6,-2,0,1,2]];
E[150,2] = [x, [1,1,1,1,0,1,-2,1,1,0,2,1,-6,-2,0,1,-2]];
E[150,3] = [x, [1,1,-1,1,0,-1,4,1,1,0,0,-1,-2,4,0,1,-6]];

E[151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1,-x^2-x,-1,-2*x^2-3*x+1,x^2+2*x-2,x^2-2*x-1,2*x^2+4*x-3,x^2+x+1,3*x^2+5*x-3,-x,3*x+2,-x^2-x+2,-3*x^2-5*x]];
E[151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5,2*x,-2,x-3,1,-2*x^2+3,2*x^2+x-7,2*x^2-4,-2*x^2+6,-2*x,-2*x^2-4*x+10,-x^2-3*x+4,-x+3]];
E[151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2,-x^3+x^2+2*x-1,-x^4+3*x^2+3*x+3,x^3-4*x,-x^5+3*x^4+4*x^3-13*x^2-4*x+9,x^4-4*x^2-x+1,x^3-5*x,2*x^5-3*x^4-13*x^3+10*x^2+23*x+2,2*x^5-3*x^4-11*x^3+12*x^2+13*x-4,-x^5+3*x^3+3*x^2+3*x,-x^5+7*x^3+3*x^2-13*x-10,x^4-6*x^2+4,-x^4-2*x^3+6*x^2+8*x]];

E[152,1] = [x, [1,0,-2,0,-1,0,-3,0,1,0,-3,0,-4,0,2,0,5]];
E[152,2] = [x, [1,0,1,0,0,0,3,0,-2,0,2,0,1,0,0,0,-5]];
E[152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8,0,x^2-x-4,0,2*x^2-6,0,-x^2-x+4,0,-2*x+4,0,-2*x^2-2*x+8,0,-x^2+x+8]];

E[153,1] = [x, [1,-2,0,2,-1,0,-2,0,0,2,-3,0,-5,4,0,-4,-1]];
E[153,2] = [x, [1,1,0,-1,2,0,4,-3,0,2,0,0,-2,4,0,-1,-1]];
E[153,3] = [x, [1,2,0,2,1,0,-2,0,0,2,3,0,-5,-4,0,-4,1]];
E[153,4] = [x^2-x-4, [1,x,0,x+2,-x-1,0,0,x+4,0,-2*x-4,-x+1,0,-x+3,0,0,3*x,-1]];
E[153,5] = [x, [1,0,0,-2,-3,0,-4,0,0,0,3,0,-1,0,0,4,1]];

E[154,1] = [x, [1,-1,2,1,2,-2,-1,-1,1,-2,1,2,-4,1,4,1,0]];
E[154,2] = [x, [1,-1,0,1,-4,0,-1,-1,-3,4,-1,0,2,1,0,1,-4]];
E[154,3] = [x^2+2*x-4, [1,1,x,1,-x,x,1,1,-2*x+1,-x,1,x,-x-2,1,2*x-4,1,2*x]];
E[154,4] = [x, [1,1,0,1,2,0,-1,1,-3,2,-1,0,2,-1,0,1,2]];

E[155,1] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,2,-2,-6,4,-1,-4,-7]];
E[155,2] = [x, [1,-1,2,-1,-1,-2,4,3,1,1,4,-2,0,-4,-2,-1,-8]];
E[155,3] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2,-2*x^2+2*x+4,-2*x^2-2*x+8,2*x^3-8*x,-2*x,2*x,-2*x^2+2*x+4,-4*x+4,2*x^3-10*x+4,-2*x^3-2*x^2+8*x,-x^3+x^2+4*x-2,2*x^3-8*x,x^3+x^2-6*x+2]];
E[155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2,-2*x^2-2*x+12,2*x^2+2*x-8,2*x^3-8*x,-4*x^2-2*x+20,-2*x,2*x^2-2*x-12,-4,-2*x^2-2*x+16,2*x^3+2*x^2-8*x,x^3+x^2-6*x-2,-2*x^3+4*x^2+8*x-16,-x^3+x^2+4*x-6]];
E[155,5] = [x, [1,0,-1,-2,-1,0,0,0,-2,0,-4,2,-6,0,1,4,5]];

E[156,1] = [x, [1,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,-6]];
E[156,2] = [x, [1,0,-1,0,-4,0,-2,0,1,0,-4,0,1,0,4,0,2]];

E[157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2,2*x^4+5*x^3-3*x^2-8*x+1,-x^4-5*x^3-4*x^2+6*x+2,x^3-4*x,2*x^4+6*x^3+x^2-5*x-2,-3*x^4-9*x^3+2*x^2+12*x-2,-x^4-2*x^3+4*x^2+5*x-6,-3*x^4-7*x^3+4*x^2+9*x,x^3+3*x^2+x-3,x^3-5*x+1,-x^4-4*x^3-x^2+8*x+1,x^4-6*x^2+4,x^4+x^3-3*x^2+3*x]];
E[157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3,x^5-3*x^4-2*x^3+7*x^2+x,-x^6+3*x^5+4*x^4-13*x^3-5*x^2+13*x+2,x^3-4*x,-2*x^6+7*x^5+7*x^4-35*x^3-3*x^2+42*x-3,x^6-4*x^5-3*x^4+20*x^3+x^2-24*x+1,-x^6+4*x^5+x^4-15*x^3+3*x^2+13*x+1,x^6-3*x^5-4*x^4+13*x^3+5*x^2-14*x-2,x^6-3*x^5-5*x^4+17*x^3+4*x^2-22*x+3,-2*x^6+6*x^5+8*x^4-27*x^3-8*x^2+29*x-1,3*x^6-11*x^5-8*x^4+50*x^3-57*x+5,x^4-6*x^2+4,x^6-3*x^5-4*x^4+13*x^3+6*x^2-16*x-2]];

E[158,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-1,3,-1,1,-2]];
E[158,2] = [x, [1,1,2,1,-2,2,0,1,1,-2,-4,2,2,0,-4,1,-2]];
E[158,3] = [x, [1,1,-3,1,-3,-3,-3,1,6,-3,-2,-3,-5,-3,9,1,6]];
E[158,4] = [x, [1,-1,-1,1,-1,1,-3,-1,-2,1,4,-1,-7,3,1,1,-4]];
E[158,5] = [x, [1,-1,1,1,3,-1,-1,-1,-2,-3,0,1,5,1,3,1,0]];
E[158,6] = [x^2-6, [1,-1,x,1,-2,-x,4,-1,3,2,0,x,-2*x+2,-4,-2*x,1,-2*x+2]];

E[159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x,x,x^3-3*x^2-2*x+5,x^3-4*x,1,-2*x^3+x^2+7*x-3,4*x^3-6*x^2-12*x+12,x^2-2,-3*x^3+5*x^2+8*x-10,-x^2-2*x+3,-x^3+x^2+2*x,3*x^3-5*x^2-7*x+7,-4*x^3+8*x^2+10*x-12]];
E[159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12,-3*x,x^4+4*x^3-6*x^2-21*x+4,3*x^3-12*x,3,-3*x^4-3*x^3+18*x^2+12*x,-2*x^4-2*x^3+12*x^2+6*x-2,-3*x^2+6,2*x^4-x^3-15*x^2+6*x+20,4*x^4+4*x^3-21*x^2-18*x-5,3*x^3+3*x^2-18*x-12,3*x^4-18*x^2+12,-6*x]];

E[160,1] = [x, [1,0,-2,0,-1,0,-2,0,1,0,-4,0,-6,0,2,0,2]];
E[160,2] = [x, [1,0,2,0,-1,0,2,0,1,0,4,0,-6,0,-2,0,2]];
E[160,3] = [x^2-8, [1,0,x,0,1,0,-x,0,5,0,-2*x,0,-2,0,x,0,2]];

E[161,1] = [x, [1,-1,0,-1,2,0,1,3,-3,-2,4,0,6,-1,0,-1,-2]];
E[161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2,-x,-1,-2*x-1,-2,-2,4*x+2,x+1,2*x-1,-x,2*x+2,3*x,0]];
E[161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5,x^2-1,-2,-2*x^2+2*x+2,-2*x^2-2*x+6,x^2-1,-2*x+2,x^2+4*x-9,2*x^2-6,-2*x,-2*x^2-2*x+12,-8*x+6,x^2-1]];
E[161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21,x^4+x^3-12*x^2-5*x+27,2,2*x^3-8*x,-2*x^2-2*x+14,-3*x^4+x^3+22*x^2-5*x-27,-2*x^4+16*x^2+2*x-24,x^4-x^3-6*x^2+x+5,2*x^4-18*x^2+28,2*x,2*x^3-16*x+6,2*x^4-12*x^2+8,x^4+x^3-6*x^2-5*x-3]];

E[162,1] = [x, [1,1,0,1,3,0,-4,1,0,3,0,0,-1,-4,0,1,3]];
E[162,2] = [x, [1,1,0,1,0,0,2,1,0,0,-3,0,2,2,0,1,-3]];
E[162,3] = [x, [1,-1,0,1,-3,0,-4,-1,0,3,0,0,-1,4,0,1,-3]];
E[162,4] = [x, [1,-1,0,1,0,0,2,-1,0,0,3,0,2,-2,0,1,3]];

E[163,1] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2,5*x^4+12*x^3-17*x^2-35*x+6,3*x^4+8*x^3-8*x^2-22*x-1,x^3-4*x,2*x^2+3*x-3,-5*x^4-13*x^3+15*x^2+34*x-6,-x^4-4*x^3+x^2+13*x+3,-9*x^4-22*x^3+28*x^2+60*x-9,-x^4-3*x^3+2*x^2+8*x-2,-7*x^4-17*x^3+23*x^2+47*x-9,5*x^4+13*x^3-14*x^2-32*x+6,x^4-6*x^2+4,-x^4-2*x^3+4*x^2+6*x-6]];
E[163,2] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6,x^6-x^5-6*x^4+5*x^3+5*x^2-2*x,x^6-2*x^5-7*x^4+12*x^3+11*x^2-11*x-4,x^3-4*x,-x^6+x^5+7*x^4-5*x^3-12*x^2+2*x+7,-2*x^6+2*x^5+13*x^4-11*x^3-17*x^2+10*x+6,x^6-2*x^5-7*x^4+12*x^3+12*x^2-12*x-6,2*x^6-3*x^5-12*x^4+17*x^3+11*x^2-14*x-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+8,x^6-2*x^5-7*x^4+11*x^3+12*x^2-8*x-6,2*x^5-x^4-13*x^3+4*x^2+14*x,x^4-6*x^2+4,x^6-x^5-6*x^4+5*x^3+6*x^2-3*x]];
E[163,3] = [x, [1,0,0,-2,-4,0,2,0,-3,0,-6,0,4,0,0,4,0]];

E[164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2,0,3*x^3-27*x+12,0,3*x^2-9,0,x^3+2*x^2-11*x-4,0,2*x^3-2*x^2-22*x+22,0,-5*x^3-4*x^2+46*x-4,0,-2*x^3-4*x^2+16*x+14]];

E[165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1,-x,-2*x-4,x-2,1,-x,-1,2*x+1,4*x+4,-2,1,3,-2*x-6]];
E[165,2] = [x^2-3, [1,x,1,1,-1,x,2,-x,1,-x,-1,1,-2*x+2,2*x,-1,-5,0]];
E[165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1,x,-x^2-2*x+3,-x^2+x+1,1,x,1,x^2-2,-x^2+3,-x^2-2*x-1,1,-4*x+3,x^2-2*x-5]];

E[166,1] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4,2*x,x^2-3*x-2,2,2*x^2-6,-x^2-x+4,-2*x+4,2*x,-x^2+x-2,x^2-3*x-2,-2*x^2-2*x+4,2,3*x^2+x-16]];
E[166,2] = [x, [1,-1,-1,1,-2,1,1,-1,-2,2,-5,-1,-2,-1,2,1,-3]];
E[166,3] = [x^2+2*x-4, [2,-2,2*x,2,x+4,-2*x,x-2,-2,-4*x+2,-x-4,-2*x+4,2*x,-x+2,-x+2,2*x+4,2,x+8]];

E[167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1,-1,x-2,-2*x-1,x-1,-x,0,x+2,-x-3,-3*x+1,x+1,3*x,x-2]];
E[167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612,1245*x^11-939*x^10-21141*x^9+12756*x^8+125727*x^7-49659*x^6-313236*x^5+33027*x^4+316095*x^3+51339*x^2-68721*x-4896,-294*x^11-102*x^10+5406*x^9+2262*x^8-35598*x^7-17565*x^6+100383*x^5+56706*x^4-111492*x^3-64902*x^2+25050*x+6336,933*x^3-3732*x,-972*x^11+234*x^10+17454*x^9-2061*x^8-112398*x^7-3006*x^6+312990*x^5+58266*x^4-357315*x^3-99834*x^2+98508*x+5277,-927*x^11-36*x^10+16836*x^9+1896*x^8-109596*x^7-21786*x^6+307536*x^5+89934*x^4-350094*x^3-117414*x^2+97092*x+7011,-623*x^11+628*x^10+10567*x^9-9024*x^8-62594*x^7+39396*x^6+154004*x^5-45156*x^4-149088*x^3-12775*x^2+24248*x+5829,463*x^11-290*x^10-7955*x^9+3870*x^8+48070*x^7-14193*x^6-122794*x^5+4296*x^4+129426*x^3+25418*x^2-33934*x-4323,652*x^11-491*x^10-11297*x^9+6681*x^8+69355*x^7-25893*x^6-182461*x^5+15825*x^4+202299*x^3+30887*x^2-59101*x-2265,-690*x^11+408*x^10+11964*x^9-5316*x^8-73131*x^7+18945*x^6+188124*x^5-4770*x^4-192204*x^3-35220*x^2+41616*x+2646,2158*x^11-2063*x^10-36209*x^9+29139*x^8+211147*x^7-123831*x^6-508297*x^5+133815*x^4+484143*x^3+35309*x^2-83227*x-4941,933*x^4-5598*x^2+3732,7*x^11+580*x^10-884*x^9-9606*x^8+12088*x^7+54510*x^6-54838*x^5-124284*x^4+78894*x^3+107774*x^2-19834*x-9081]];

E[168,1] = [x, [1,0,1,0,2,0,-1,0,1,0,0,0,-2,0,2,0,6]];
E[168,2] = [x, [1,0,-1,0,2,0,1,0,1,0,0,0,6,0,-2,0,-2]];

E[169,1] = [x^2-3, [1,x,2,1,-x,2*x,0,-x,1,-3,0,2,0,0,-2*x,-5,3]];
E[169,2] = [x^3-2*x^2-x+1, [1,x,-x^2+2*x,x^2-2,-x^2+2*x+2,-x+1,-x^2+3,2*x^2-3*x-1,x^2-3*x-1,x+1,x^2-2*x+2,x^2-3*x,0,-2*x^2+2*x+1,-x^2+x+2,-x^2+x+2,-x^2-x+2]];
E[169,3] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+2*x-2,-x-1,x^2-3,-2*x^2-3*x+1,x^2+3*x-1,-x+1,-x^2-2*x-2,x^2+3*x,0,-2*x^2-2*x+1,x^2+x-2,-x^2-x+2,-x^2+x+2]];

E[170,1] = [x, [1,1,1,1,-1,1,2,1,-2,-1,0,1,-1,2,-1,1,-1]];
E[170,2] = [x^2+x-4, [1,1,x,1,1,x,-2*x,1,-x+1,1,-4,x,-x+2,-2*x,x,1,1]];
E[170,3] = [x, [1,-1,3,1,-1,-3,2,-1,6,1,-4,3,-3,-2,-3,1,1]];
E[170,4] = [x, [1,-1,1,1,1,-1,2,-1,-2,-1,0,1,5,-2,1,1,-1]];
E[170,5] = [x, [1,-1,-2,1,1,2,-2,-1,1,-1,-2,-2,-6,2,-2,1,1]];
E[170,6] = [x, [1,-1,-2,1,-1,2,2,-1,1,1,6,-2,2,-2,2,1,1]];

E[171,1] = [x, [1,-1,0,-1,2,0,0,3,0,-2,0,0,6,0,0,-1,6]];
E[171,2] = [x^4-9*x^2+12, [2,2*x,0,2*x^2-4,-x^3+5*x,0,-2*x^2+10,2*x^3-8*x,0,-4*x^2+12,x^3-9*x,0,4,-2*x^3+10*x,0,6*x^2-16,-x^3+5*x]];
E[171,3] = [x, [1,0,0,-2,-3,0,-1,0,0,0,-3,0,-4,0,0,4,3]];
E[171,4] = [x, [1,2,0,2,3,0,-5,0,0,6,-1,0,2,-10,0,-4,1]];
E[171,5] = [x, [1,2,0,2,-1,0,3,0,0,-2,3,0,-6,6,0,-4,-3]];

E[172,1] = [x, [1,0,-2,0,0,0,-4,0,1,0,-3,0,-1,0,0,0,-3]];
E[172,2] = [x^2-4*x+2, [1,0,x,0,-x+2,0,-x+2,0,4*x-5,0,-2*x+5,0,-2*x+1,0,-2*x+2,0,2*x-3]];

E[173,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^2-x,x^2-2,x^2-2,-x^3-x^2,x^3+x^2-3*x-3,x^3-4*x,x^3+4*x^2+x-4,x^3-2*x,-3*x^3-4*x^2+6*x+2,-x^2+x+1,-4*x^3-5*x^2+10*x+3,-2*x-1,-x^2+x+1,-x^3-3*x^2+x+3,4*x^3+5*x^2-7*x-3]];
E[173,2] = [x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [116,116*x,9*x^9-22*x^8-138*x^7+324*x^6+645*x^5-1439*x^4-940*x^3+1860*x^2+392*x-303,116*x^2-232,-14*x^9+60*x^8+176*x^7-852*x^6-462*x^5+3566*x^4-716*x^3-4092*x^2+1504*x+742,-13*x^9+6*x^8+180*x^7-120*x^6-719*x^5+635*x^4+636*x^3-850*x^2+336*x+225,-2*x^9-37*x^8+79*x^7+537*x^6-849*x^5-2316*x^4+3125*x^3+2767*x^2-2913*x-387,116*x^3-464*x,36*x^9-59*x^8-523*x^7+861*x^6+2261*x^5-3610*x^4-2745*x^3+3641*x^2+611*x+151,46*x^9-48*x^8-628*x^7+728*x^6+2446*x^5-3166*x^4-2188*x^3+3436*x^2-252*x-350,23*x^9+5*x^8-343*x^7-71*x^6+1600*x^5+389*x^4-2399*x^3-921*x^2+715*x+550,-25*x^9+16*x^8+364*x^7-262*x^6-1695*x^5+1239*x^4+2798*x^3-1590*x^2-1482*x+281,-25*x^9-13*x^8+393*x^7+173*x^6-2014*x^5-791*x^4+3755*x^3+1455*x^2-2265*x-560,-39*x^9+47*x^8+569*x^7-679*x^6-2476*x^5+2775*x^4+3039*x^3-2637*x^2-529*x-50,-44*x^9+114*x^8+578*x^7-1642*x^6-1858*x^5+6932*x^4-502*x^3-7798*x^2+3194*x+1114,116*x^4-696*x^2+464,-10*x^9+18*x^8+134*x^7-302*x^6-504*x^5+1470*x^4+342*x^3-1854*x^2+254*x+124]];

E[174,1] = [x, [1,1,1,1,-1,1,1,1,1,-1,-2,1,0,1,-1,1,-3]];
E[174,2] = [x, [1,1,-1,1,1,-1,1,1,1,1,6,-1,-4,1,-1,1,-7]];
E[174,3] = [x, [1,-1,-1,1,3,1,-3,-1,1,-3,6,-1,0,3,-3,1,7]];
E[174,4] = [x, [1,-1,1,1,-3,-1,5,-1,1,3,6,1,-4,-5,-3,1,3]];
E[174,5] = [x, [1,-1,1,1,2,-1,0,-1,1,-2,-4,1,6,0,2,1,-2]];

E[175,1] = [x, [1,2,1,2,0,2,-1,0,-2,0,-3,2,1,-2,0,-4,7]];
E[175,2] = [x, [1,-2,-1,2,0,2,1,0,-2,0,-3,-2,-1,-2,0,-4,-7]];
E[175,3] = [x^2+x-1, [1,x,2*x+2,-x-1,0,2,-1,-2*x-1,4*x+5,0,-2*x+1,-2*x-4,-2*x,-x,0,3*x,-4*x]];
E[175,4] = [x^2-x-1, [1,x,2*x-2,x-1,0,2,1,-2*x+1,-4*x+5,0,2*x+1,-2*x+4,-2*x,x,0,-3*x,-4*x]];
E[175,5] = [x^2-x-4, [1,x,-x+1,x+2,0,-4,1,x+4,-x+2,0,-x+1,-2*x-2,x-3,x,0,3*x,-x+3]];
E[175,6] = [x, [1,0,-1,-2,0,0,-1,0,-2,0,-3,2,-5,0,0,4,-3]];

E[176,1] = [x, [1,0,3,0,-3,0,2,0,6,0,1,0,0,0,-9,0,-6]];
E[176,2] = [x, [1,0,1,0,1,0,2,0,-2,0,-1,0,4,0,1,0,-2]];
E[176,3] = [x, [1,0,-1,0,-3,0,-2,0,-2,0,1,0,-4,0,3,0,6]];
E[176,4] = [x^2+x-4, [1,0,x,0,x+2,0,-2*x,0,-x+1,0,1,0,-2*x-2,0,x+4,0,2]];

E[177,1] = [x^2+x-1, [1,x,-1,-x-1,-2*x-1,-x,x-3,-2*x-1,1,x-2,2*x+1,x+1,-2*x-5,-4*x+1,2*x+1,3*x,3*x]];
E[177,2] = [x^2+3*x+1, [1,x,1,-3*x-3,-3,x,-x-5,4*x+3,1,-3*x,-4*x-7,-3*x-3,6*x+9,-2*x+1,-3,-3*x+2,x]];
E[177,3] = [x^2-x-1, [1,x,1,x-1,1,x,-x+1,-2*x+1,1,x,-2*x+3,x-1,-1,-1,1,-3*x,-3*x+2]];
E[177,4] = [x^3-4*x-1, [1,x,-1,x^2-2,-x^2+x+2,-x,x+3,1,1,x^2-2*x-1,-x^2-x+2,-x^2+2,-x^2-x+4,x^2+3*x,x^2-x-2,-2*x^2+x+4,3*x^2-2*x-7]];

E[178,1] = [x, [1,-1,2,1,2,-2,0,-1,1,-2,0,2,-4,0,4,1,2]];
E[178,2] = [x^2+2*x-1, [1,-1,x,1,-2*x-3,-x,-2,-1,-2*x-2,2*x+3,2*x,x,-2,2,x-2,1,2*x-1]];
E[178,3] = [x, [1,1,1,1,3,1,-4,1,-2,3,-6,1,2,-4,3,1,3]];
E[178,4] = [x^3-x^2-8*x+4, [2,2,2*x,2,-2*x,2*x,-x^2-x+6,2,2*x^2-6,-2*x,4,2*x,x^2-3*x-6,-x^2-x+6,-2*x^2,2,-2*x^2+8]];

E[179,1] = [x, [1,2,0,2,3,0,-4,0,-3,6,4,0,-1,-8,0,-4,1]];
E[179,2] = [x^3+x^2-2*x-1, [1,x,-x-1,x^2-2,-x^2-x,-x^2-x,x-1,-x^2-2*x+1,x^2+2*x-2,-2*x-1,2*x^2+x-4,1,-x^2-2,x^2-x,x^2+3*x+1,-3*x^2-x+3,5*x^2+2*x-7]];
E[179,3] = [x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [136,136*x,-42*x^10-68*x^9+690*x^8+942*x^7-3876*x^6-4112*x^5+8482*x^4+5986*x^3-5790*x^2-1244*x+360,136*x^2-272,-3*x^10-17*x^9+42*x^8+247*x^7-221*x^6-1151*x^5+618*x^4+1841*x^3-892*x^2-628*x+424,58*x^10+102*x^9-948*x^8-1398*x^7+5338*x^6+6046*x^5-11948*x^4-8982*x^3+8836*x^2+2712*x-672,14*x^10+34*x^9-196*x^8-518*x^7+850*x^6+2606*x^5-1116*x^4-4738*x^3-144*x^2+2160*x+288,136*x^3-544*x,-96*x^10-170*x^9+1514*x^8+2396*x^7-8058*x^6-10890*x^5+16410*x^4+17636*x^3-10082*x^2-6564*x+920,-8*x^10+112*x^8-44*x^7-476*x^6+444*x^5+560*x^4-1120*x^3+92*x^2+592*x-48,40*x^10+68*x^9-628*x^8-936*x^7+3332*x^6+4036*x^5-6812*x^4-5688*x^3+4164*x^2+984*x-32,12*x^10-168*x^8+32*x^7+748*x^6-360*x^5-1180*x^4+1272*x^3+372*x^2-1432*x+208,-17*x^10-17*x^9+272*x^8+221*x^7-1513*x^6-867*x^5+3468*x^4+1003*x^3-2754*x^2-136*x+408,-8*x^10+112*x^8+24*x^7-544*x^6-304*x^5+1240*x^4+920*x^3-1200*x^2-496*x+224,140*x^10+238*x^9-2266*x^8-3344*x^7+12546*x^6+15146*x^5-27310*x^4-24600*x^3+19402*x^2+9360*x-2016,136*x^4-816*x^2+544,39*x^10+51*x^9-648*x^8-695*x^7+3723*x^6+3029*x^5-8476*x^4-4689*x^3+5986*x^2+1500*x+64]];

E[180,1] = [x, [1,0,0,0,1,0,2,0,0,0,0,0,2,0,0,0,6]];

E[181,1] = [x^5+3*x^4-x^3-7*x^2-2*x+1, [1,x,-x^4-2*x^3+2*x^2+3*x-1,x^2-2,2*x^4+5*x^3-4*x^2-11*x-1,x^4+x^3-4*x^2-3*x+1,-2*x^3-2*x^2+5*x+1,x^3-4*x,x^4+3*x^3-4*x-2,-x^4-2*x^3+3*x^2+3*x-2,-x^4-3*x^3+x^2+6*x-3,x^3-3*x+1,-2*x^4-3*x^3+8*x^2+8*x-5,-2*x^4-2*x^3+5*x^2+x,-x^4-3*x^3+3*x^2+9*x-2,x^4-6*x^2+4,2*x^4+4*x^3-5*x^2-8*x]];
E[181,2] = [x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [4,4*x,2*x^8-8*x^7-10*x^6+64*x^5-14*x^4-118*x^3