Sharedwww / Tables / an_1-1000.gpOpen in CoCalc
Author: William A. Stein

\\ an_1-1000.gp
\\ This is a PARI readable nonnormalized basis for S_2(Gamma_0(N)) for N
\\ in the range:  1 <= N <= 1000.
\\ The number of a_n computed is 17.
\\ William Stein ([email protected])

E[11,1] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,1,-2,4,4,-1,-4,-2]];

E[14,1] = [x, [1,-1,-2,1,0,2,1,-1,1,0,0,-2,-4,-1,0,1,6]];

E[15,1] = [x, [1,-1,-1,-1,1,1,0,3,1,-1,-4,1,-2,0,-1,-1,2]];

E[17,1] = [x, [1,-1,0,-1,-2,0,4,3,-3,2,0,0,-2,-4,0,-1,1]];

E[19,1] = [x, [1,0,-2,-2,3,0,-1,0,1,0,3,4,-4,0,-6,4,-3]];

E[20,1] = [x, [1,0,-2,0,-1,0,2,0,1,0,0,0,2,0,2,0,-6]];

E[21,1] = [x, [1,-1,1,-1,-2,-1,-1,3,1,2,4,-1,-2,1,-2,-1,-6]];

E[23,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,2*x,x-2,2*x+2,-2*x-1,2,-2*x+2,-2*x-4,x+3,3,2,2*x-4,3*x,-2*x+2]];

E[24,1] = [x, [1,0,-1,0,-2,0,0,0,1,0,4,0,-2,0,2,0,2]];

E[26,1] = [x, [1,-1,1,1,-3,-1,-1,-1,-2,3,6,1,1,1,-3,1,-3]];
E[26,2] = [x, [1,1,-3,1,-1,-3,1,1,6,-1,-2,-3,-1,1,3,1,-3]];

E[27,1] = [x, [1,0,0,-2,0,0,-1,0,0,0,0,0,5,0,0,4,0]];

E[29,1] = [x^2+2*x-1, [1,x,-x,-2*x-1,-1,2*x-1,2*x+2,x-2,-2*x-2,-x,x+2,-3*x+2,2*x+1,-2*x+2,x,3,-2*x-4]];

E[30,1] = [x, [1,-1,1,1,-1,-1,-4,-1,1,1,0,1,2,4,-1,1,6]];

E[31,1] = [x^2-x-1, [1,x,-2*x,x-1,1,-2*x-2,2*x-3,-2*x+1,4*x+1,x,2,-2,-2*x,-x+2,-2*x,-3*x,-2*x+4]];

E[32,1] = [x, [1,0,0,0,-2,0,0,0,-3,0,0,0,6,0,0,0,2]];

E[33,1] = [x, [1,1,-1,-1,-2,-1,4,-3,1,-2,1,1,-2,4,2,-1,-2]];

E[34,1] = [x, [1,1,-2,1,0,-2,-4,1,1,0,6,-2,2,-4,0,1,-1]];

E[35,1] = [x^2+x-4, [1,x,-x-1,-x+2,1,-4,-1,x-4,x+2,x,x+1,-2*x+2,x+3,-x,-x-1,-3*x,-x-3]];
E[35,2] = [x, [1,0,1,-2,-1,0,1,0,-2,0,-3,-2,5,0,-1,4,3]];

E[36,1] = [x, [1,0,0,0,0,0,-4,0,0,0,0,0,2,0,0,0,0]];

E[37,1] = [x, [1,-2,-3,2,-2,6,-1,0,6,4,-5,-6,-2,2,6,-4,0]];
E[37,2] = [x, [1,0,1,-2,0,0,-1,0,-2,0,3,-2,-4,0,0,4,6]];

E[38,1] = [x, [1,-1,1,1,0,-1,-1,-1,-2,0,-6,1,5,1,0,1,3]];
E[38,2] = [x, [1,1,-1,1,-4,-1,3,1,-2,-4,2,-1,-1,3,4,1,3]];

E[39,1] = [x, [1,1,-1,-1,2,-1,-4,-3,1,2,4,1,1,-4,-2,-1,2]];
E[39,2] = [x^2+2*x-1, [1,x,1,-2*x-1,-2*x-2,x,2*x+2,x-2,1,2*x-2,-2,-2*x-1,-1,-2*x+2,-2*x-2,3,4*x+6]];

E[40,1] = [x, [1,0,0,0,1,0,-4,0,-3,0,4,0,-2,0,0,0,2]];

E[41,1] = [x^3+x^2-5*x-1, [2,2*x,-x^2-2*x+3,2*x^2-4,-2*x-2,-x^2-2*x-1,x^2+2*x+1,-2*x^2+2*x+2,2*x,-2*x^2-2*x,3*x^2+2*x-9,x^2-2*x-7,-2*x^2+6,x^2+6*x+1,2*x^2+4*x-2,-8*x+6,-4]];

E[42,1] = [x, [1,1,-1,1,-2,-1,-1,1,1,-2,-4,-1,6,-1,2,1,2]];

E[43,1] = [x, [1,-2,-2,2,-4,4,0,0,1,8,3,-4,-5,0,8,-4,-3]];
E[43,2] = [x^2-2, [1,x,-x,0,-x+2,-2,x-2,-2*x,-1,2*x-2,2*x-1,0,2*x+1,-2*x+2,-2*x+2,-4,2*x+5]];

E[44,1] = [x, [1,0,1,0,-3,0,2,0,-2,0,-1,0,-4,0,-3,0,6]];

E[45,1] = [x, [1,1,0,-1,-1,0,0,-3,0,-1,4,0,-2,0,0,-1,-2]];

E[46,1] = [x, [1,-1,0,1,4,0,-4,-1,-3,-4,2,0,-2,4,0,1,-2]];

E[47,1] = [x^4-x^3-5*x^2+5*x-1, [1,x,x^3-x^2-6*x+4,x^2-2,-4*x^3+2*x^2+20*x-10,-x^2-x+1,3*x^3-x^2-16*x+7,x^3-4*x,3*x^3-x^2-14*x+6,-2*x^3+10*x-4,2*x^3-2*x^2-10*x+6,-3*x^3+x^2+13*x-8,-4*x^3+2*x^2+22*x-8,2*x^3-x^2-8*x+3,-4*x^3+4*x^2+22*x-16,x^3-x^2-5*x+5,x^3+x^2-6*x]];

E[48,1] = [x, [1,0,1,0,-2,0,0,0,1,0,-4,0,-2,0,-2,0,2]];

E[49,1] = [x, [1,1,0,-1,0,0,0,-3,-3,0,4,0,0,0,0,-1,0]];

E[50,1] = [x, [1,-1,1,1,0,-1,2,-1,-2,0,-3,1,-4,-2,0,1,-3]];
E[50,2] = [x, [1,1,-1,1,0,-1,-2,1,-2,0,-3,-1,4,-2,0,1,3]];

E[51,1] = [x^2+x-4, [1,x,-1,-x+2,-x+1,-x,0,x-4,1,2*x-4,-x-1,x-2,x+3,0,x-1,-3*x,1]];
E[51,2] = [x, [1,0,1,-2,3,0,-4,0,1,0,-3,-2,-1,0,3,4,-1]];

E[52,1] = [x, [1,0,0,0,2,0,-2,0,-3,0,-2,0,-1,0,0,0,6]];

E[53,1] = [x, [1,-1,-3,-1,0,3,-4,3,6,0,0,3,-3,4,0,-1,-3]];
E[53,2] = [x^3+x^2-3*x-1, [1,x,-x^2-x+3,x^2-2,x^2-3,-1,x^2-1,-x^2-x+1,-3*x^2-2*x+7,-x^2+1,x^2+2*x-3,2*x^2+x-6,1,-x^2+2*x+1,3*x^2+2*x-9,-2*x^2-2*x+3,2*x-1]];

E[54,1] = [x, [1,-1,0,1,3,0,-1,-1,0,-3,-3,0,-4,1,0,1,0]];
E[54,2] = [x, [1,1,0,1,-3,0,-1,1,0,-3,3,0,-4,-1,0,1,0]];

E[55,1] = [x, [1,1,0,-1,1,0,0,-3,-3,1,-1,0,2,0,0,-1,6]];
E[55,2] = [x^2-2*x-1, [1,x,-2*x+2,2*x-1,-1,-2*x-2,-2,x+2,5,-x,1,-2*x-6,2*x-6,-2*x,2*x-2,3,2*x+2]];

E[56,1] = [x, [1,0,2,0,-4,0,1,0,1,0,0,0,0,0,-8,0,-2]];
E[56,2] = [x, [1,0,0,0,2,0,-1,0,-3,0,-4,0,2,0,0,0,-6]];

E[57,1] = [x, [1,1,1,-1,-2,1,0,-3,1,-2,0,-1,6,0,-2,-1,-6]];
E[57,2] = [x, [1,-2,1,2,1,-2,3,0,1,-2,-3,2,-6,-6,1,-4,3]];
E[57,3] = [x, [1,-2,-1,2,-3,2,-5,0,1,6,1,-2,2,10,3,-4,-1]];

E[58,1] = [x, [1,-1,-3,1,-3,3,-2,-1,6,3,-1,-3,3,2,9,1,-4]];
E[58,2] = [x, [1,1,-1,1,1,-1,-2,1,-2,1,-3,-1,-1,-2,-1,1,8]];

E[59,1] = [x^5-9*x^3+2*x^2+16*x-8, [4,4*x,-x^4+5*x^2-2*x,4*x^2-8,3*x^4+2*x^3-23*x^2-12*x+28,-4*x^3+16*x-8,-2*x^4-2*x^3+14*x^2+6*x-12,4*x^3-16*x,2*x^3+4*x^2-10*x-8,2*x^4+4*x^3-18*x^2-20*x+24,-2*x^4-4*x^3+18*x^2+24*x-32,-2*x^4+6*x^2-4*x,-2*x^4-4*x^3+18*x^2+24*x-24,-2*x^4-4*x^3+10*x^2+20*x-16,x^4+2*x^3-9*x^2-8*x+8,4*x^4-24*x^2+16,4*x^4-32*x^2+36]];

E[61,1] = [x, [1,-1,-2,-1,-3,2,1,3,1,3,-5,2,1,-1,6,-1,4]];
E[61,2] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,x^2-2*x-2,-x^2+1,x^2-x-3,x^2-x-1,-2*x^2+2*x+5,-x^2+x-1,x+4,x^2-2*x-5,-2*x^2+2*x+1,-1,3*x^2-2*x-7,-2*x^2+2*x+3,-x^2+2*x+1]];

E[62,1] = [x, [1,1,0,1,-2,0,0,1,-3,-2,0,0,2,0,0,1,-6]];
E[62,2] = [x^2-2*x-2, [1,-1,x,1,-2*x+2,-x,2,-1,2*x-1,2*x-2,x-4,x,-3*x+2,-2,-2*x-4,1,2*x-2]];

E[63,1] = [x, [1,1,0,-1,2,0,-1,-3,0,2,-4,0,-2,-1,0,-1,6]];
E[63,2] = [x^2-3, [1,x,0,1,-2*x,0,1,-x,0,-6,2*x,0,2,x,0,-5,2*x]];

E[64,1] = [x, [1,0,0,0,2,0,0,0,-3,0,0,0,-6,0,0,0,2]];

E[65,1] = [x, [1,-1,-2,-1,-1,2,-4,3,1,1,2,2,-1,4,2,-1,2]];
E[65,2] = [x^2+2*x-1, [1,x,x+1,-2*x-1,1,-x+1,-2*x,x-2,-1,x,-x+1,x-3,-1,4*x-2,x+1,3,-2*x-4]];
E[65,3] = [x^2-3, [1,x,-x+1,1,-1,x-3,2,-x,-2*x+1,-x,x-3,-x+1,1,2*x,x-1,-5,2*x]];

E[66,1] = [x, [1,-1,1,1,0,-1,2,-1,1,0,-1,1,-4,-2,0,1,-6]];
E[66,2] = [x, [1,1,1,1,-4,1,-2,1,1,-4,1,1,4,-2,-4,1,-2]];
E[66,3] = [x, [1,1,-1,1,2,-1,-4,1,1,2,-1,-1,-6,-4,-2,1,2]];

E[67,1] = [x, [1,2,-2,2,2,-4,-2,0,1,4,-4,-4,2,-4,-4,-4,3]];
E[67,2] = [x^2+x-1, [1,x,x+1,-x-1,-2*x+1,1,-x,-2*x-1,x-1,3*x-2,1,-x-2,x,x-1,x-1,3*x,-2*x+2]];
E[67,3] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,-3,1,3*x+4,4*x+3,3*x+5,-3*x,-2*x-3,3*x+6,-3*x-8,-5*x-3,3*x+9,-3*x+2,-2*x-6]];

E[68,1] = [x^2-2*x-2, [1,0,x,0,-2*x+2,0,-x,0,2*x-1,0,x-4,0,2*x,0,-2*x-4,0,-1]];

E[69,1] = [x, [1,1,1,-1,0,1,-2,-3,1,0,4,-1,-6,-2,0,-1,4]];
E[69,2] = [x^2-5, [1,x,-1,3,-x-1,-x,-x+1,x,1,-x-5,4,-3,2*x,x-5,x+1,-1,-x-5]];

E[70,1] = [x, [1,1,0,1,-1,0,-1,1,-3,-1,4,0,-6,-1,0,1,2]];

E[71,1] = [x^3-5*x+3, [1,x,-x^2+3,x^2-2,-x-1,-2*x+3,2*x^2+2*x-6,x-3,-x^2-3*x+6,-x^2-x,-2*x^2-2*x+6,3*x-6,4,2*x^2+4*x-6,x^2+2*x-6,-x^2-3*x+4,2*x^2+2*x-6]];
E[71,2] = [x^3+x^2-4*x-3, [1,x,-x,x^2-2,-x^2+x+5,-x^2,-2*x,-x^2+3,x^2-3,2*x^2+x-3,2*x^2-6,x^2-2*x-3,-2*x^2+4,-2*x^2,-2*x^2-x+3,-x^2-x+1,2*x^2+2*x-6]];

E[72,1] = [x, [1,0,0,0,2,0,0,0,0,0,-4,0,-2,0,0,0,-2]];

E[73,1] = [x, [1,1,0,-1,2,0,2,-3,-3,2,-2,0,-6,2,0,-1,2]];
E[73,2] = [x^2+3*x+1, [1,x,-x-3,-3*x-3,x,1,-3,4*x+3,3*x+5,-3*x-1,-x-3,3*x+6,3*x+5,-3*x,1,-3*x+2,-6*x-9]];
E[73,3] = [x^2-x-3, [1,x,-x+1,x+1,-x,-3,-1,3,-x+1,-x-3,x+3,-x-2,x-1,-x,3,x-2,2*x-3]];

E[74,1] = [x^2+x-1, [1,1,x,1,-3*x-1,x,2*x,1,-x-2,-3*x-1,-x-3,x,3*x+2,2*x,2*x-3,1,4*x+2]];
E[74,2] = [x^2-3*x-1, [1,-1,x,1,-x+1,-x,-2*x+4,-1,3*x-2,x-1,-x+1,x,x-2,2*x-4,-2*x-1,1,-6]];

E[75,1] = [x, [1,-2,1,2,0,-2,3,0,1,0,2,2,-1,-6,0,-4,-2]];
E[75,2] = [x, [1,1,1,-1,0,1,0,-3,1,0,-4,-1,2,0,0,-1,-2]];
E[75,3] = [x, [1,2,-1,2,0,-2,-3,0,1,0,2,-2,1,-6,0,-4,2]];

E[76,1] = [x, [1,0,2,0,-1,0,-3,0,1,0,5,0,-4,0,-2,0,-3]];

E[77,1] = [x, [1,1,2,-1,-2,2,-1,-3,1,-2,1,-2,4,-1,-4,-1,4]];
E[77,2] = [x^2-5, [1,x,-x+1,3,-2,x-5,1,x,-2*x+3,-2*x,-1,-3*x+3,x+1,x,2*x-2,-1,-x-1]];
E[77,3] = [x, [1,0,-3,-2,-1,0,-1,0,6,0,-1,6,-4,0,3,4,2]];
E[77,4] = [x, [1,0,1,-2,3,0,1,0,-2,0,-1,-2,-4,0,3,4,-6]];

E[78,1] = [x, [1,-1,-1,1,2,1,4,-1,1,-2,-4,-1,1,-4,-2,1,2]];

E[79,1] = [x, [1,-1,-1,-1,-3,1,-1,3,-2,3,-2,1,3,1,3,-1,-6]];
E[79,2] = [x^5-6*x^3+8*x-1, [1,x,-x^4+x^3+3*x^2-3*x+1,x^2-2,x^4-4*x^2-x+3,x^4-3*x^3-3*x^2+9*x-1,x^4-x^3-5*x^2+3*x+3,x^3-4*x,-x^4+x^3+5*x^2-5*x-2,2*x^3-x^2-5*x+1,-x^4-2*x^3+6*x^2+7*x-6,-x^4+x^3+3*x^2-3*x-1,x^3+x^2-2*x-3,-x^4+x^3+3*x^2-5*x+1,-x^4+3*x^3+x^2-9*x+3,x^4-6*x^2+4,-2*x^3+6*x+2]];

E[80,1] = [x, [1,0,2,0,-1,0,-2,0,1,0,0,0,2,0,-2,0,-6]];
E[80,2] = [x, [1,0,0,0,1,0,4,0,-3,0,-4,0,-2,0,0,0,2]];

E[81,1] = [x^2-3, [1,x,0,1,-x,0,2,-x,0,-3,-2*x,0,-1,2*x,0,-5,3*x]];

E[82,1] = [x, [1,-1,-2,1,-2,2,-4,-1,1,2,-2,-2,4,4,4,1,-2]];
E[82,2] = [x^2-2, [1,1,x,1,-2*x,x,-x-2,1,-1,-2*x,3*x,x,0,-x-2,-4,1,4*x+2]];

E[83,1] = [x, [1,-1,-1,-1,-2,1,-3,3,-2,2,3,1,-6,3,2,-1,5]];
E[83,2] = [x^6-x^5-9*x^4+7*x^3+20*x^2-12*x-8, [4,4*x,2*x^4-2*x^3-14*x^2+6*x+16,4*x^2-8,-2*x^5-2*x^4+18*x^3+14*x^2-32*x-8,2*x^5-2*x^4-14*x^3+6*x^2+16*x,3*x^5-x^4-25*x^3+3*x^2+38*x,4*x^3-16*x,-x^5+x^4+9*x^3-7*x^2-20*x+12,-4*x^5+28*x^3+8*x^2-32*x-16,-x^5+x^4+5*x^3+x^2-16,-4*x^3+4*x^2+12*x-16,4*x^3-20*x+8,2*x^5+2*x^4-18*x^3-22*x^2+36*x+24,4*x^4-28*x^2+24,4*x^4-24*x^2+16,x^5-3*x^4-7*x^3+17*x^2+14*x-16]];

E[84,1] = [x, [1,0,1,0,0,0,1,0,1,0,-6,0,2,0,0,0,0]];
E[84,2] = [x, [1,0,-1,0,4,0,-1,0,1,0,2,0,-6,0,-4,0,-4]];

E[85,1] = [x, [1,1,2,-1,-1,2,-2,-3,1,-1,2,-2,2,-2,-2,-1,1]];
E[85,2] = [x^2+2*x-1, [1,x,-x-3,-2*x-1,-1,-x-1,x-1,x-2,4*x+7,-x,x-3,3*x+5,-2*x-2,-3*x+1,x+3,3,-1]];
E[85,3] = [x^2-3, [1,x,-x+1,1,1,x-3,x-1,-x,-2*x+1,x,-x+3,-x+1,-4,-x+3,-x+1,-5,-1]];

E[86,1] = [x^2-x-1, [1,1,x,1,-x-1,x,-4*x+2,1,x-2,-x-1,4*x-4,x,4*x-2,-4*x+2,-2*x-1,1,-x]];
E[86,2] = [x^2+x-5, [1,-1,x,1,-x+1,-x,2,-1,-x+2,x-1,0,x,2,-2,2*x-5,1,x-4]];

E[87,1] = [x^2-x-1, [1,x,1,x-1,-2*x+2,x,-2*x-1,-2*x+1,1,-2,2*x+1,x-1,4*x-3,-3*x-2,-2*x+2,-3*x,3]];
E[87,2] = [x^3-2*x^2-4*x+7, [1,x,-1,x^2-2,-2*x^2+8,-x,x^2-x-2,2*x^2-7,1,-4*x^2+14,x^2-x-6,-x^2+2,-x^2-x+6,x^2+2*x-7,2*x^2-8,2*x^2+x-10,3*x^2-x-10]];

E[88,1] = [x, [1,0,-3,0,-3,0,-2,0,6,0,-1,0,0,0,9,0,-6]];
E[88,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-2*x,0,x+1,0,-1,0,2*x-2,0,x-4,0,2]];

E[89,1] = [x, [1,-1,-1,-1,-1,1,-4,3,-2,1,-2,1,2,4,1,-1,3]];
E[89,2] = [x, [1,1,2,-1,-2,2,2,-3,1,-2,-4,-2,2,2,-4,-1,6]];
E[89,3] = [x^5+x^4-10*x^3-10*x^2+21*x+17, [2,2*x,-x^4+x^3+7*x^2-5*x-8,2*x^2-4,-2*x^2+8,2*x^4-3*x^3-15*x^2+13*x+17,x^4-8*x^2-2*x+13,2*x^3-8*x,2*x^2-2*x-8,-2*x^3+8*x,-2*x^3+10*x+4,-3*x^4+3*x^3+19*x^2-15*x-18,-2*x^4+2*x^3+16*x^2-10*x-22,-x^4+2*x^3+8*x^2-8*x-17,x^4-x^3-5*x^2+5*x+2,2*x^4-12*x^2+8,2*x^4-2*x^3-14*x^2+8*x+8]];

E[90,1] = [x, [1,-1,0,1,1,0,2,-1,0,-1,6,0,-4,-2,0,1,-6]];
E[90,2] = [x, [1,1,0,1,1,0,-4,1,0,1,0,0,2,-4,0,1,-6]];
E[90,3] = [x, [1,1,0,1,-1,0,2,1,0,-1,-6,0,-4,2,0,1,6]];

E[91,1] = [x, [1,-2,0,2,-3,0,-1,0,-3,6,-6,0,-1,2,0,-4,4]];
E[91,2] = [x^2-2, [1,x,-x,0,x+3,-2,1,-2*x,-1,3*x+2,-3*x,0,-1,x,-3*x-2,-4,-x]];
E[91,3] = [x^3-x^2-4*x+2, [1,x,-x^2+x+2,x^2-2,-x+1,-2*x+2,-1,x^2-2,-2*x+3,-x^2+x,x^2-x-2,-4,1,-x,-x^2+3*x,-x^2+2*x+2,x^2+x-2]];
E[91,4] = [x, [1,0,-2,-2,-3,0,1,0,1,0,0,4,1,0,6,4,-6]];

E[92,1] = [x, [1,0,-3,0,-2,0,-4,0,6,0,2,0,-5,0,6,0,4]];
E[92,2] = [x, [1,0,1,0,0,0,2,0,-2,0,0,0,-1,0,0,0,-6]];

E[93,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-2*x-5,-x,2*x+1,4*x+3,1,x+2,2*x,3*x+3,2*x+2,-5*x-2,2*x+5,-3*x+2,-4*x-8]];
E[93,2] = [x^3-4*x+1, [1,x,1,x^2-2,-x^2-x+2,x,-x^2-x+4,-1,1,-x^2-2*x+1,2*x^2-6,x^2-2,2*x^2-4,-x^2+1,-x^2-x+2,-2*x^2-x+4,2*x^2+2*x-6]];

E[94,1] = [x, [1,1,0,1,0,0,0,1,-3,0,2,0,-4,0,0,1,-2]];
E[94,2] = [x^2-8, [2,-2,2*x,2,-x+4,-2*x,-2*x-4,-2,10,x-4,-x+8,2*x,-x-4,2*x+4,4*x-8,2,0]];

E[95,1] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,2*x^2-2*x-4,x^2-x-1,-2*x^2+2*x+5,x,-2*x-2,x^2-2*x-5,x^2-2*x+1,2*x-2,-x^2+3,-2*x^2+2*x+3,-2*x^2+4*x+4]];
E[95,2] = [x^4+2*x^3-6*x^2-8*x+9, [1,x,-x^3+5*x-2,x^2-2,-1,2*x^3-x^2-10*x+9,-2*x^2-2*x+8,x^3-4*x,-2*x+1,-x,2*x^2+2*x-6,-3*x^3+2*x^2+15*x-14,x^3+2*x^2-3*x-4,-2*x^3-2*x^2+8*x,x^3-5*x+2,-2*x^3+8*x-5,2*x^3-10*x+6]];

E[96,1] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,-2,0,2,0,-6]];
E[96,2] = [x, [1,0,-1,0,2,0,4,0,1,0,-4,0,-2,0,-2,0,-6]];

E[97,1] = [x^3+4*x^2+3*x-1, [1,x,-x^2-3*x-2,x^2-2,2*x^2+5*x-1,x^2+x-1,-x^2-3*x-3,-4*x^2-7*x+1,2*x^2+7*x+3,-3*x^2-7*x+2,x-1,-x^2+2*x+5,-x-2,x^2-1,-1,7*x^2+13*x,x^2+4*x+1]];
E[97,2] = [x^4-3*x^3-x^2+6*x-1, [1,x,-x^2+x+2,x^2-2,-x+1,-x^3+x^2+2*x,x^3-x^2-4*x+2,x^3-4*x,x^3-2*x^2-2*x+2,-x^2+x,-2*x^3+4*x^2+3*x-3,-2*x^3+3*x^2+4*x-5,-3*x^3+4*x^2+8*x-5,2*x^3-3*x^2-4*x+1,x^3-2*x^2-x+2,3*x^3-5*x^2-6*x+5,2*x^3-3*x^2-4*x+3]];

E[98,1] = [x, [1,-1,2,1,0,-2,0,-1,1,0,0,2,4,0,0,1,-6]];
E[98,2] = [x^2-2, [1,1,x,1,-2*x,x,0,1,-1,-2*x,-2,x,0,0,-4,1,x]];

E[99,1] = [x, [1,1,0,-1,4,0,-2,-3,0,4,1,0,-2,-2,0,-1,-2]];
E[99,2] = [x, [1,2,0,2,-1,0,-2,0,0,-2,-1,0,4,-4,0,-4,2]];
E[99,3] = [x, [1,-1,0,-1,2,0,4,3,0,-2,-1,0,-2,-4,0,-1,2]];
E[99,4] = [x, [1,-1,0,-1,-4,0,-2,3,0,4,-1,0,-2,2,0,-1,2]];

E[100,1] = [x, [1,0,2,0,0,0,-2,0,1,0,0,0,-2,0,0,0,6]];

E[101,1] = [x^7-13*x^5+2*x^4+47*x^3-16*x^2-43*x+14, [4,4*x,x^6+x^5-10*x^4-10*x^3+19*x^2+17*x+2,4*x^2-8,-2*x^6-3*x^5+22*x^4+28*x^3-58*x^2-45*x+30,x^6+3*x^5-12*x^4-28*x^3+33*x^2+45*x-14,-x^5-2*x^4+10*x^3+16*x^2-21*x-14,4*x^3-16*x,x^6+2*x^5-10*x^4-20*x^3+21*x^2+34*x-4,-3*x^6-4*x^5+32*x^4+36*x^3-77*x^2-56*x+28,-x^6+12*x^4-35*x^2+20,x^6-x^5-10*x^4+6*x^3+23*x^2-5*x-18,3*x^6+4*x^5-34*x^4-36*x^3+91*x^2+48*x-40,-x^6-2*x^5+10*x^4+16*x^3-21*x^2-14*x,-3*x^6-3*x^5+34*x^4+30*x^3-93*x^2-55*x+50,4*x^4-24*x^2+16,3*x^6+3*x^5-32*x^4-28*x^3+79*x^2+45*x-42]];
E[101,2] = [x, [1,0,-2,-2,-1,0,-2,0,1,0,-2,4,1,0,2,4,3]];

E[102,1] = [x, [1,1,1,1,-2,1,0,1,1,-2,-4,1,-2,0,-2,1,1]];
E[102,2] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,-1]];
E[102,3] = [x, [1,-1,-1,1,-4,1,-2,-1,1,4,0,-1,-6,2,4,1,-1]];

E[103,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,-x-3,-x,-1,4*x+3,-2,1,x,3*x+3,3*x+3,-x,x+3,-3*x+2,x-3]];
E[103,2] = [x^6-4*x^5-x^4+17*x^3-9*x^2-16*x+11, [1,x,-x^5+3*x^4+3*x^3-11*x^2-x+8,x^2-2,2*x^5-5*x^4-9*x^3+19*x^2+9*x-13,-x^5+2*x^4+6*x^3-10*x^2-8*x+11,-x^4+2*x^3+4*x^2-5*x-3,x^3-4*x,-x^5+3*x^4+5*x^3-15*x^2-7*x+17,3*x^5-7*x^4-15*x^3+27*x^2+19*x-22,-x^5+2*x^4+4*x^3-4*x^2-4*x-1,-x^4+x^3+5*x^2-3*x-5,2*x^5-4*x^4-11*x^3+15*x^2+14*x-11,-x^5+2*x^4+4*x^3-5*x^2-3*x,x^4-3*x^3-x^2+7*x-5,x^4-6*x^2+4,-3*x^5+7*x^4+16*x^3-30*x^2-21*x+30]];

E[104,1] = [x, [1,0,1,0,-1,0,5,0,-2,0,-2,0,-1,0,-1,0,-3]];
E[104,2] = [x^2-x-4, [1,0,x,0,-x+2,0,-x,0,x+1,0,-2*x,0,1,0,x-4,0,3*x-2]];

E[105,1] = [x, [1,1,1,-1,1,1,1,-3,1,1,0,-1,-6,1,1,-1,2]];
E[105,2] = [x^2-5, [1,x,-1,3,-1,-x,1,x,1,-x,-2*x+2,-3,-2*x,x,1,-1,-2]];

E[106,1] = [x, [1,1,1,1,0,1,-4,1,-2,0,0,1,5,-4,0,1,-3]];
E[106,2] = [x, [1,1,-2,1,3,-2,2,1,1,3,-3,-2,-4,2,-6,1,3]];
E[106,3] = [x, [1,-1,2,1,1,-2,-2,-1,1,-1,5,2,-4,2,2,1,3]];
E[106,4] = [x, [1,-1,-1,1,-4,1,0,-1,-2,4,-4,-1,1,0,4,1,5]];

E[107,1] = [x^2+x-1, [1,x,-x-2,-x-1,-x-2,-x-1,2*x-1,-2*x-1,3*x+2,-x-1,2*x+3,2*x+3,-6,-3*x+2,3*x+5,3*x,x-1]];
E[107,2] = [x^7+x^6-10*x^5-7*x^4+29*x^3+12*x^2-20*x-8, [4,4*x,-x^6-x^5+10*x^4+3*x^3-29*x^2+8*x+16,4*x^2-8,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x,-4*x^4+20*x^2-4*x-8,-2*x^6-2*x^5+16*x^4+14*x^3-30*x^2-24*x+8,4*x^3-16*x,x^6-x^5-8*x^4+9*x^3+15*x^2-18*x-4,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16,2*x^5-2*x^4-16*x^3+10*x^2+22*x,2*x^6-2*x^5-20*x^4+14*x^3+54*x^2-24*x-32,2*x^6-22*x^4+2*x^3+68*x^2-14*x-32,-4*x^5+28*x^3-32*x-16,-2*x^6+2*x^5+24*x^4-22*x^3-78*x^2+56*x+40,4*x^4-24*x^2+16,4*x^5+4*x^4-28*x^3-20*x^2+40*x+16]];

E[108,1] = [x, [1,0,0,0,0,0,5,0,0,0,0,0,-7,0,0,0,0]];

E[109,1] = [x, [1,1,0,-1,3,0,2,-3,-3,3,1,0,0,2,0,-1,-8]];
E[109,2] = [x^3+2*x^2-x-1, [1,x,-x-2,x^2-2,-2*x^2-3*x,-x^2-2*x,3*x^2+5*x-3,-2*x^2-3*x+1,x^2+4*x+1,x^2-2*x-2,x^2+2*x-5,x+3,-2*x^2-x+3,-x^2+3,3*x^2+8*x+2,-x^2-x+2,-x^2-3*x+1]];
E[109,3] = [x^4+x^3-5*x^2-4*x+3, [1,x,-x^3+4*x+1,x^2-2,-x,x^3-x^2-3*x+3,x^3-x^2-4*x+2,x^3-4*x,-x^3-x^2+3*x+4,-x^2,x^3+x^2-5*x,2*x^2-x-5,2*x^2+x-7,-2*x^3+x^2+6*x-3,-x^3+x^2+3*x-3,-x^3-x^2+4*x+1,x^3-x^2-2*x+6]];

E[110,1] = [x, [1,1,1,1,-1,1,-1,1,-2,-1,-1,1,2,-1,-1,1,-3]];
E[110,2] = [x, [1,1,-1,1,1,-1,3,1,-2,1,1,-1,-6,3,-1,1,-7]];
E[110,3] = [x, [1,-1,1,1,-1,-1,5,-1,-2,1,1,1,2,-5,-1,1,3]];
E[110,4] = [x^2+x-8, [1,-1,x,1,1,-x,-x,-1,-x+5,-1,-1,x,2,x,x,1,-x-2]];

E[111,1] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+5,-x,-2*x^2+2*x+4,3*x^2-3*x-5,1,-3*x^2+4*x+5,2*x^2-4*x-2,-x^2+2,2*x^2-4*x-4,-4*x^2+2*x+10,x^2-5,4*x^2-2*x-11,-x^2+4*x+1]];
E[111,2] = [x^4-6*x^2+2*x+5, [1,x,1,x^2-2,-x^3-2*x^2+3*x+4,x,2*x^3+2*x^2-8*x-2,x^3-4*x,1,-2*x^3-3*x^2+6*x+5,2*x^2-6,x^2-2,-2*x^3-4*x^2+6*x+10,2*x^3+4*x^2-6*x-10,-x^3-2*x^2+3*x+4,-2*x-1,-x^3+3*x-2]];

E[112,1] = [x, [1,0,-2,0,-4,0,-1,0,1,0,0,0,0,0,8,0,-2]];
E[112,2] = [x, [1,0,2,0,0,0,-1,0,1,0,0,0,-4,0,0,0,6]];
E[112,3] = [x, [1,0,0,0,2,0,1,0,-3,0,4,0,2,0,0,0,-6]];

E[113,1] = [x, [1,-1,2,-1,2,-2,0,3,1,-2,0,-2,2,0,4,-1,-6]];
E[113,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x-1,x^2-2,2*x^2+2*x-3,-2*x-1,-x^2-x-2,-2*x^2-3*x+1,3*x^2+7*x,-2*x^2-x+2,-3*x^2-4*x+4,3*x+2,x^2+4*x-2,x^2-3*x-1,-x^2+1,-x^2-x+2,-x^2-5*x-2]];
E[113,3] = [x^3+2*x^2-5*x-9, [1,x,x^2-5,x^2-2,-1,-2*x^2+9,-x^2-x+6,-2*x^2+x+9,-x^2-x+4,-x,x^2-4,2*x^2-x-8,x^2-2,x^2+x-9,-x^2+5,3*x^2-x-14,x^2-x-2]];
E[113,4] = [x^2-2*x-2, [1,1,x,-1,-2*x+2,x,4,-3,2*x-1,-2*x+2,-2*x,-x,2*x-4,4,-2*x-4,-1,-2]];

E[114,1] = [x, [1,-1,-1,1,0,1,4,-1,1,0,4,-1,0,-4,0,1,-2]];
E[114,2] = [x, [1,1,1,1,0,1,-4,1,1,0,0,1,-4,-4,0,1,6]];
E[114,3] = [x, [1,1,-1,1,2,-1,0,1,1,2,-4,-1,2,0,-2,1,-6]];

E[115,1] = [x, [1,2,0,2,-1,0,1,0,-3,-2,2,0,-2,2,0,-4,3]];
E[115,2] = [x^2+3*x+1, [1,x,-1,-3*x-3,-1,-x,-2*x-4,4*x+3,-2,-x,2*x+2,3*x+3,2*x-1,2*x+2,1,-3*x+2,-4*x-8]];
E[115,3] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-x^2+x+2,x^2-2,1,-x^3+x^2+2*x,x^3-2*x^2-4*x+3,x^3-4*x,x^2-x-1,x,-2*x+2,-x^3+3*x-2,-2*x^3+3*x^2+7*x-4,-2*x-2,-x^2+x+2,2*x^3-2*x^2-5*x+2,-x^3+2*x^2+2*x-3]];

E[116,1] = [x, [1,0,-3,0,3,0,4,0,6,0,-1,0,-3,0,-9,0,2]];
E[116,2] = [x, [1,0,1,0,3,0,-4,0,-2,0,3,0,5,0,3,0,-6]];
E[116,3] = [x, [1,0,2,0,-2,0,4,0,1,0,-6,0,2,0,-4,0,2]];

E[117,1] = [x, [1,-1,0,-1,-2,0,-4,3,0,2,-4,0,1,4,0,-1,-2]];
E[117,2] = [x^2-2*x-1, [1,x,0,2*x-1,-2*x+2,0,-2*x+2,x+2,0,-2*x-2,2,0,-1,-2*x-2,0,3,4*x-6]];
E[117,3] = [x^2-3, [1,x,0,1,0,0,2,-x,0,0,-2*x,0,1,2*x,0,-5,-4*x]];

E[118,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-6,3,-1,1,-2]];
E[118,2] = [x, [1,1,2,1,-2,2,-3,1,1,-2,-1,2,-3,-3,-4,1,7]];
E[118,3] = [x, [1,-1,2,1,2,-2,-3,-1,1,-2,1,2,3,3,4,1,-1]];
E[118,4] = [x, [1,-1,-1,1,-3,1,-1,-1,-2,3,-2,-1,-2,1,3,1,-2]];

E[119,1] = [x^4+x^3-5*x^2-x+3, [1,x,-x^3-x^2+4*x+1,x^2-2,x^3+x^2-4*x,-x^2+3,1,x^3-4*x,-x^3-3*x^2+2*x+7,x^2+x-3,-2*x,x^3+2*x^2-5*x-2,2*x^3+4*x^2-6*x-4,x,2*x^2+2*x-9,-x^3-x^2+x+1,-1]];
E[119,2] = [x^5-2*x^4-8*x^3+14*x^2+14*x-17, [1,x,-x^4+6*x^2+x-4,x^2-2,2*x^4+x^3-15*x^2-6*x+18,-2*x^4-2*x^3+15*x^2+10*x-17,-1,x^3-4*x,2*x^4+x^3-13*x^2-8*x+13,5*x^4+x^3-34*x^2-10*x+34,-2*x^4-2*x^3+14*x^2+12*x-14,-4*x^4-x^3+26*x^2+9*x-26,-2*x^4+14*x^2-14,-x,-x^4-x^3+7*x^2+3*x-4,x^4-6*x^2+4,1]];

E[120,1] = [x, [1,0,1,0,1,0,0,0,1,0,-4,0,6,0,1,0,-6]];
E[120,2] = [x, [1,0,1,0,-1,0,4,0,1,0,0,0,-6,0,-1,0,-2]];

E[121,1] = [x, [1,1,2,-1,1,2,-2,-3,1,1,0,-2,1,-2,2,-1,-5]];
E[121,2] = [x, [1,2,-1,2,1,-2,2,0,-2,2,0,-2,-4,4,-1,-4,2]];
E[121,3] = [x, [1,-1,2,-1,1,-2,2,3,1,-1,0,-2,-1,-2,2,-1,5]];
E[121,4] = [x, [1,0,-1,-2,-3,0,0,0,-2,0,0,2,0,0,3,4,0]];

E[122,1] = [x^3+x^2-5*x+2, [1,1,x,1,-x^2-3*x+3,x,2*x^2+3*x-5,1,x^2-3,-x^2-3*x+3,-x^2-x+1,x,-x^2-x+3,2*x^2+3*x-5,-2*x^2-2*x+2,1,-2*x^2-4*x+4]];
E[122,2] = [x, [1,-1,-2,1,1,2,-5,-1,1,-1,-3,-2,-3,5,-2,1,0]];
E[122,3] = [x^2-x-3, [1,-1,x,1,0,-x,-x+3,-1,x,0,-2*x+2,x,-2*x+4,x-3,0,1,2*x-2]];

E[123,1] = [x, [1,-2,1,2,-4,-2,-2,0,1,8,-3,2,-6,4,-4,-4,3]];
E[123,2] = [x^2-2, [1,x,1,0,-x+2,x,x-2,-2*x,1,2*x-2,-x+1,0,-3*x+2,-2*x+2,-x+2,-4,x+1]];
E[123,3] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4,-x,-x^2-x+4,x^2-2,1,2,-x-1,-x^2+2,x^2-x,-2*x^2+2,x^2-x-4,-x^2+2*x+2,2*x^2-x-5]];
E[123,4] = [x, [1,0,-1,-2,-2,0,-4,0,1,0,5,2,-4,0,2,4,-5]];

E[124,1] = [x, [1,0,-2,0,-3,0,-1,0,1,0,-6,0,2,0,6,0,6]];
E[124,2] = [x, [1,0,0,0,1,0,3,0,-3,0,6,0,-4,0,0,0,0]];

E[125,1] = [x^2-x-1, [1,x,-x+2,x-1,0,x-1,3,-2*x+1,-3*x+2,0,-3,2*x-3,3*x,3*x,0,-3*x,-2*x-1]];
E[125,2] = [x^2+x-1, [1,x,-x-2,-x-1,0,-x-1,-3,-2*x-1,3*x+2,0,-3,2*x+3,3*x,-3*x,0,3*x,-2*x+1]];
E[125,3] = [x^4-8*x^2+11, [2,2*x,-x^3+5*x,2*x^2-4,0,-3*x^2+11,x^3-7*x,2*x^3-8*x,-x^2+5,0,4,-x^3+x,-4*x,x^2-11,0,4*x^2-14,-2*x^3+10*x]];

E[126,1] = [x, [1,-1,0,1,2,0,-1,-1,0,-2,4,0,6,1,0,1,-2]];
E[126,2] = [x, [1,1,0,1,0,0,1,1,0,0,0,0,-4,1,0,1,-6]];

E[127,1] = [x^3+3*x^2-3, [1,x,-x^2-2*x,x^2-2,x^2+x-4,x^2-3,x^2+x-3,-3*x^2-4*x+3,x^2+3*x,-2*x^2-4*x+3,x^2+4*x+1,-x^2+x+3,-3*x^2-4*x+4,-2*x^2-3*x+3,2*x^2+5*x,3*x^2+3*x-5,-x-7]];
E[127,2] = [x^7-2*x^6-8*x^5+15*x^4+17*x^3-28*x^2-11*x+15, [1,x,x^6-2*x^5-6*x^4+12*x^3+4*x^2-11*x+4,x^2-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+9,2*x^5-3*x^4-13*x^3+17*x^2+15*x-15,-x^5+x^4+7*x^3-7*x^2-9*x+8,x^3-4*x,x^5-3*x^4-7*x^3+19*x^2+9*x-17,-x^6+9*x^4+x^3-23*x^2-2*x+15,x^6-2*x^5-6*x^4+13*x^3+3*x^2-15*x+6,x^5-x^4-7*x^3+7*x^2+7*x-8,-2*x^6+6*x^5+11*x^4-38*x^3-2*x^2+39*x-13,-x^6+x^5+7*x^4-7*x^3-9*x^2+8*x,-x^5+4*x^4+6*x^3-24*x^2-8*x+21,x^4-6*x^2+4,x^6-x^5-9*x^4+6*x^3+24*x^2-6*x-15]];

E[128,1] = [x, [1,0,-2,0,-2,0,-4,0,1,0,2,0,-2,0,4,0,-2]];
E[128,2] = [x, [1,0,-2,0,2,0,4,0,1,0,2,0,2,0,-4,0,-2]];
E[128,3] = [x, [1,0,2,0,-2,0,4,0,1,0,-2,0,-2,0,-4,0,-2]];
E[128,4] = [x, [1,0,2,0,2,0,-4,0,1,0,-2,0,2,0,4,0,-2]];

E[129,1] = [x, [1,1,1,-1,2,1,0,-3,1,2,0,-1,-2,0,2,-1,-6]];
E[129,2] = [x^2-2*x-1, [1,x,-1,2*x-1,-x+2,-x,-2*x+3,x+2,1,-1,-x+4,-2*x+1,-5,-x-2,x-2,3,-2*x]];
E[129,3] = [x^3+2*x^2-5*x-8, [1,x,1,x^2-2,-x-2,x,-x^2+6,-2*x^2+x+8,1,-x^2-2*x,x^2-x-5,x^2-2,3,2*x^2+x-8,-x-2,3*x^2-2*x-12,-x^2+5]];
E[129,4] = [x, [1,0,-1,-2,-2,0,-2,0,1,0,-5,2,3,0,2,4,-3]];

E[130,1] = [x, [1,-1,-2,1,1,2,-4,-1,1,-1,-6,-2,1,4,-2,1,-6]];
E[130,2] = [x, [1,1,2,1,-1,2,-4,1,1,-1,-2,2,-1,-4,-2,1,2]];
E[130,3] = [x, [1,1,0,1,1,0,0,1,-3,1,0,0,1,0,0,1,2]];

E[131,1] = [x^10-18*x^8+2*x^7+111*x^6-18*x^5-270*x^4+28*x^3+232*x^2+16*x-32, [16,16*x,2*x^8-32*x^6+162*x^4-268*x^2+80,16*x^2-32,-x^9+18*x^7+2*x^6-107*x^5-18*x^4+234*x^3+28*x^2-144*x+16,2*x^9-32*x^7+162*x^5-268*x^3+80*x,-2*x^9-4*x^8+28*x^7+56*x^6-114*x^5-252*x^4+88*x^3+376*x^2+120*x-48,16*x^3-64*x,3*x^9-50*x^7+10*x^6+273*x^5-90*x^4-522*x^3+156*x^2+248*x+16,4*x^7+4*x^6-36*x^5-36*x^4+56*x^3+88*x^2+32*x-32,-x^9+18*x^7-6*x^6-107*x^5+62*x^4+234*x^3-140*x^2-176*x+32,-4*x^7+4*x^6+36*x^5-52*x^4-56*x^3+152*x^2-32*x-96,x^9+2*x^8-14*x^7-30*x^6+55*x^5+136*x^4-34*x^3-168*x^2-80*x+16,-4*x^9-8*x^8+60*x^7+108*x^6-288*x^5-452*x^4+432*x^3+584*x^2-16*x-64,-2*x^9+2*x^8+36*x^7-40*x^6-218*x^5+242*x^4+488*x^3-436*x^2-328*x+80,16*x^4-96*x^2+64,2*x^9+4*x^8-28*x^7-52*x^6+118*x^5+200*x^4-124*x^3-192*x^2-64*x-64]];
E[131,2] = [x, [1,0,-1,-2,-2,0,-1,0,-2,0,0,2,-3,0,2,4,4]];

E[132,1] = [x, [1,0,1,0,2,0,-2,0,1,0,1,0,-2,0,2,0,4]];
E[132,2] = [x, [1,0,-1,0,2,0,2,0,1,0,-1,0,6,0,-2,0,-4]];

E[133,1] = [x^2-x-1, [1,x,-x+2,x-1,1,x-1,1,-2*x+1,-3*x+2,x,x-1,2*x-3,-1,x,-x+2,-3*x,3*x-1]];
E[133,2] = [x^2+3*x+1, [1,x,x,-3*x-3,-2*x-3,-3*x-1,-1,4*x+3,-3*x-4,3*x+2,x-3,6*x+3,1,-x,3*x+2,-3*x+2,3*x+3]];
E[133,3] = [x^3-2*x^2-4*x+7, [1,x,-x^2+5,x^2-2,x^2-x-4,-2*x^2+x+7,-1,2*x^2-7,-2*x^2+x+8,x^2-7,-x+3,-x^2-x+4,x^2-x-4,-x,3*x^2-2*x-13,2*x^2+x-10,-2*x^2-x+11]];
E[133,4] = [x^2+x-3, [1,x,-x-2,-x+1,-3,-x-3,1,-3,3*x+4,-3*x,-x-3,1,2*x-1,x,3*x+6,-x-2,x-3]];

E[134,1] = [x^3-3*x^2+1, [1,1,x,1,-x^2+x+1,x,2*x^2-6*x,1,x^2-3,-x^2+x+1,-3*x^2+6*x+2,x,3*x^2-8*x-2,2*x^2-6*x,-2*x^2+x+1,1,-x^2+5*x-3]];
E[134,2] = [x^3-x^2-8*x+11, [1,-1,x,1,x^2+x-5,-x,-2*x^2-2*x+12,-1,x^2-3,-x^2-x+5,-x^2-2*x+6,x,x^2-2,2*x^2+2*x-12,2*x^2+3*x-11,1,-x^2-x+5]];

E[135,1] = [x, [1,-2,0,2,-1,0,-3,0,0,2,-2,0,-5,6,0,-4,-8]];
E[135,2] = [x, [1,2,0,2,1,0,-3,0,0,2,2,0,-5,-6,0,-4,8]];
E[135,3] = [x^2-x-3, [1,x,0,x+1,-1,0,-2*x+2,3,0,-x,-2*x,0,2*x+2,-6,0,x-2,-2*x+3]];
E[135,4] = [x^2+x-3, [1,x,0,-x+1,1,0,2*x+2,-3,0,x,-2*x,0,-2*x+2,6,0,-x-2,-2*x-3]];

E[136,1] = [x, [1,0,-2,0,-2,0,-2,0,1,0,-6,0,2,0,4,0,1]];
E[136,2] = [x, [1,0,2,0,0,0,0,0,1,0,2,0,-6,0,0,0,-1]];
E[136,3] = [x^2+2*x-4, [1,0,x,0,2,0,-x,0,-2*x+1,0,-x,0,2*x+2,0,2*x,0,1]];

E[137,1] = [x^4+3*x^3-4*x-1, [1,x,x^3+x^2-3*x-2,x^2-2,-2*x^3-3*x^2+3*x+1,-2*x^3-3*x^2+2*x+1,-x^3-2*x^2+2*x-1,x^3-4*x,2*x^2+3*x-1,3*x^3+3*x^2-7*x-2,4*x^3+9*x^2-4*x-8,x^3-x+2,x^2+3*x-2,x^3+2*x^2-5*x-1,4*x+1,-3*x^3-6*x^2+4*x+5,-x^3-5*x^2-2*x+5]];
E[137,2] = [x^7-10*x^5+28*x^3+3*x^2-19*x-7, [2,2*x,-x^6+x^5+11*x^4-9*x^3-33*x^2+18*x+21,2*x^2-4,2*x^6-2*x^5-20*x^4+16*x^3+52*x^2-26*x-26,x^6+x^5-9*x^4-5*x^3+21*x^2+2*x-7,-2*x^6+18*x^4-2*x^3-42*x^2+6*x+22,2*x^3-8*x,-4*x^6+2*x^5+38*x^4-20*x^3-96*x^2+40*x+50,-2*x^6+16*x^4-4*x^3-32*x^2+12*x+14,4*x^6-2*x^5-38*x^4+20*x^3+94*x^2-42*x-44,3*x^6-x^5-27*x^4+11*x^3+65*x^2-24*x-35,2*x^6-18*x^4+4*x^3+44*x^2-16*x-20,-2*x^5-2*x^4+14*x^3+12*x^2-16*x-14,2*x^6-20*x^4+2*x^3+54*x^2-10*x-28,2*x^4-12*x^2+8,2*x^5+2*x^4-14*x^3-10*x^2+18*x+6]];

E[138,1] = [x, [1,-1,1,1,0,-1,2,-1,1,0,0,1,2,-2,0,1,0]];
E[138,2] = [x, [1,-1,-1,1,-2,1,-2,-1,1,2,-6,-1,-2,2,2,1,0]];
E[138,3] = [x, [1,1,-1,1,2,-1,0,1,1,2,0,-1,-2,0,-2,1,2]];
E[138,4] = [x^2+2*x-4, [1,1,1,1,x,1,-2*x-2,1,1,x,-x-4,1,2*x+2,-2*x-2,x,1,-4]];

E[139,1] = [x, [1,1,2,-1,-1,2,3,-3,1,-1,5,-2,-7,3,-2,-1,-6]];
E[139,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+x-4,-x-1,2*x^2+3*x-2,-2*x^2-3*x+1,x^2+3*x-1,-x^2-3*x+1,-3*x^2-4*x+1,x^2+3*x,-3*x^2-5*x+3,-x^2+2,3*x^2+6*x-1,-x^2-x+2,x^2+3*x-1]];
E[139,3] = [x^7-x^6-11*x^5+8*x^4+35*x^3-10*x^2-32*x-8, [4,4*x,2*x^6-2*x^5-18*x^4+16*x^3+38*x^2-24*x-16,4*x^2-8,-x^6-x^5+9*x^4+6*x^3-19*x^2-4*x+12,4*x^5-32*x^3-4*x^2+48*x+16,-x^6+x^5+11*x^4-8*x^3-35*x^2+14*x+24,4*x^3-16*x,-4*x^5-4*x^4+36*x^3+28*x^2-72*x-28,-2*x^6-2*x^5+14*x^4+16*x^3-14*x^2-20*x-8,-2*x^6+4*x^5+20*x^4-34*x^3-50*x^2+54*x+28,4*x^5+4*x^4-36*x^3-28*x^2+64*x+32,2*x^5+2*x^4-18*x^3-16*x^2+34*x+28,4*x^2-8*x-8,4*x^6-36*x^4+76*x^2-4*x-24,4*x^4-24*x^2+16,2*x^6+2*x^5-18*x^4-16*x^3+34*x^2+24*x+8]];

E[140,1] = [x, [1,0,3,0,-1,0,-1,0,6,0,-5,0,-3,0,-3,0,-1]];
E[140,2] = [x, [1,0,1,0,1,0,1,0,-2,0,3,0,-1,0,1,0,-3]];

E[141,1] = [x, [1,-2,1,2,-3,-2,-3,0,1,6,-5,2,2,6,-3,-4,-6]];
E[141,2] = [x, [1,2,1,2,-1,2,-3,0,1,-2,1,2,-2,-6,-1,-4,2]];
E[141,3] = [x^2+x-4, [1,x,-1,-x+2,x+1,-x,x+1,x-4,1,4,-x+3,x-2,-2*x-4,4,-x-1,-3*x,-2*x]];
E[141,4] = [x, [1,0,-1,-2,-1,0,-3,0,1,0,-3,2,-4,0,1,4,8]];
E[141,5] = [x, [1,-1,1,-1,2,-1,0,3,1,-2,4,-1,-2,0,2,-1,2]];
E[141,6] = [x, [1,-1,-1,-1,0,1,4,3,1,0,0,1,6,-4,0,-1,-6]];

E[142,1] = [x, [1,1,-3,1,-4,-3,-3,1,6,-4,0,-3,1,-3,12,1,0]];
E[142,2] = [x, [1,1,1,1,0,1,-1,1,-2,0,0,1,-1,-1,0,1,0]];
E[142,3] = [x, [1,-1,3,1,2,-3,-3,-1,6,-2,-6,3,-5,3,6,1,6]];
E[142,4] = [x, [1,-1,-1,1,-2,1,-1,-1,-2,2,-2,-1,-3,1,2,1,-6]];
E[142,5] = [x, [1,-1,0,1,2,0,0,-1,-3,-2,6,0,4,0,0,1,6]];

E[143,1] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-3,x^2-2,-2*x^2+2*x+4,-x^2+2*x+1,x^3-x^2-4*x+2,x^3-4*x,x^3-3*x^2-2*x+5,-2*x^3+2*x^2+4*x,1,x^3-4*x^2+x+6,-1,2*x^3-3*x^2-3*x-1,-2*x^3+6*x^2+2*x-10,3*x^3-5*x^2-5*x+3,-4*x^2+6*x+8]];
E[143,2] = [x^6-10*x^4+2*x^3+24*x^2-7*x-12, [1,x,-x^5-x^4+8*x^3+6*x^2-11*x-5,x^2-2,x^5+2*x^4-8*x^3-14*x^2+12*x+15,-x^5-2*x^4+8*x^3+13*x^2-12*x-12,2*x^5+2*x^4-17*x^3-13*x^2+26*x+14,x^3-4*x,-3*x^5-4*x^4+25*x^3+27*x^2-38*x-26,2*x^5+2*x^4-16*x^3-12*x^2+22*x+12,-1,-x^3+3*x-2,1,2*x^5+3*x^4-17*x^3-22*x^2+28*x+24,3*x^5+4*x^4-24*x^3-28*x^2+30*x+33,x^4-6*x^2+4,-2*x]];
E[143,3] = [x, [1,0,-1,-2,-1,0,-2,0,-2,0,-1,2,-1,0,1,4,-4]];

E[144,1] = [x, [1,0,0,0,2,0,0,0,0,0,4,0,-2,0,0,0,-2]];
E[144,2] = [x, [1,0,0,0,0,0,4,0,0,0,0,0,2,0,0,0,0]];

E[145,1] = [x, [1,-1,0,-1,-1,0,-2,3,-3,1,-6,0,2,2,0,-1,-2]];
E[145,2] = [x^2+2*x-1, [1,x,-2,-2*x-1,1,-2*x,-2*x-4,x-2,1,x,2*x,4*x+2,-2,-2,-2,3,2*x+2]];
E[145,3] = [x^3-x^2-3*x+1, [1,x,-x^2+3,x^2-2,1,-x^2+1,x^2-1,x^2-x-1,-2*x^2+2*x+5,x,x^2-2*x-1,x^2-2*x-5,-2*x,x^2+2*x-1,-x^2+3,-2*x^2+2*x+3,3*x^2-4*x-7]];
E[145,4] = [x^3-3*x^2-x+5, [1,x,-x^2+2*x+1,x^2-2,-1,-x^2+5,-x^2+3,3*x^2-3*x-5,-2*x+3,-x,x^2-2*x+1,-x^2+3,2*x-4,-3*x^2+2*x+5,x^2-2*x-1,4*x^2-2*x-11,-3*x^2+2*x+9]];

E[146,1] = [x^3-8*x+4, [2,-2,2*x,2,-x^2+4,-2*x,x^2,-2,2*x^2-6,x^2-4,-2*x^2-4*x+12,2*x,-x^2+8,-x^2,-4*x+4,2,2*x^2+4*x-12]];
E[146,2] = [x^4-8*x^2+4*x+4, [2,2,2*x,2,-x^3-x^2+4*x+2,2*x,2*x^3+x^2-14*x+2,2,2*x^2-6,-x^3-x^2+4*x+2,2*x^2-8,2*x,-3*x^2-2*x+10,2*x^3+x^2-14*x+2,-x^3-4*x^2+6*x+4,2,-2*x^3-2*x^2+12*x]];

E[147,1] = [x, [1,-1,-1,-1,2,1,0,3,1,-2,4,1,2,0,-2,-1,6]];
E[147,2] = [x, [1,2,1,2,-2,2,0,0,1,-4,-2,2,1,0,-2,-4,0]];
E[147,3] = [x, [1,2,-1,2,2,-2,0,0,1,4,-2,-2,-1,0,-2,-4,0]];
E[147,4] = [x^2-2*x-7, [2,-x-1,2,2*x,-x+5,-x-1,0,-x-5,2,-x+1,-4,2*x,x+7,0,-x+5,6,3*x+1]];
E[147,5] = [x^2-2*x-7, [2,-x-1,-2,2*x,x-5,x+1,0,-x-5,2,x-1,-4,-2*x,-x-7,0,-x+5,6,-3*x-1]];

E[148,1] = [x, [1,0,-1,0,-4,0,-3,0,-2,0,5,0,0,0,4,0,-6]];
E[148,2] = [x^2+x-4, [1,0,x,0,2,0,-x,0,-x+1,0,-x,0,2,0,2*x,0,-2*x+2]];

E[149,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x,x^2-2,x^2-x-3,-2*x-1,x^2+x-3,-x^2-2*x+1,2*x^2+3*x-2,-2*x^2-x+1,-2*x^2+x+2,x,-2*x^2-x+2,-x+1,x^2+4*x+1,-3*x^2-x+3,4*x^2+3*x-4]];
E[149,2] = [x^9+x^8-15*x^7-12*x^6+75*x^5+48*x^4-137*x^3-76*x^2+68*x+39, [4,4*x,-3*x^8-x^7+46*x^6+5*x^5-233*x^4+13*x^3+418*x^2-49*x-176,4*x^2-8,-x^8-x^7+14*x^6+9*x^5-63*x^4-19*x^3+92*x^2+3*x-26,2*x^8+x^7-31*x^6-8*x^5+157*x^4+7*x^3-277*x^2+28*x+117,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-474*x^2+56*x+202,4*x^3-16*x,-3*x^8+47*x^6-7*x^5-242*x^4+56*x^3+439*x^2-93*x-185,-x^7-3*x^6+12*x^5+29*x^4-45*x^3-73*x^2+42*x+39,3*x^8-49*x^6+3*x^5+258*x^4-30*x^3-471*x^2+63*x+207,5*x^8+x^7-76*x^6-3*x^5+377*x^4-29*x^3-656*x^2+79*x+274,4*x^8+2*x^7-58*x^6-12*x^5+278*x^4-6*x^3-470*x^2+56*x+190,-2*x^8+2*x^7+36*x^6-22*x^5-198*x^4+74*x^3+360*x^2-70*x-156,-7*x^8-3*x^7+104*x^6+21*x^5-503*x^4-9*x^3+844*x^2-77*x-338,4*x^4-24*x^2+16,-x^8-2*x^7+11*x^6+19*x^5-40*x^4-50*x^3+59*x^2+29*x-25]];

E[150,1] = [x, [1,-1,-1,1,0,1,2,-1,1,0,2,-1,6,-2,0,1,2]];
E[150,2] = [x, [1,1,1,1,0,1,-2,1,1,0,2,1,-6,-2,0,1,-2]];
E[150,3] = [x, [1,1,-1,1,0,-1,4,1,1,0,0,-1,-2,4,0,1,-6]];

E[151,1] = [x^3+2*x^2-x-1, [1,x,-x-1,x^2-2,-x^2-x-1,-x^2-x,-1,-2*x^2-3*x+1,x^2+2*x-2,x^2-2*x-1,2*x^2+4*x-3,x^2+x+1,3*x^2+5*x-3,-x,3*x+2,-x^2-x+2,-3*x^2-5*x]];
E[151,2] = [x^3-5*x+3, [1,x,2,x^2-2,-x^2-2*x+5,2*x,-2,x-3,1,-2*x^2+3,2*x^2+x-7,2*x^2-4,-2*x^2+6,-2*x,-2*x^2-4*x+10,-x^2-3*x+4,-x+3]];
E[151,3] = [x^6-x^5-7*x^4+3*x^3+13*x^2+3*x-1, [1,x,-x^5+x^4+7*x^3-4*x^2-12*x-1,x^2-2,x^5-x^4-6*x^3+3*x^2+9*x+2,-x^3+x^2+2*x-1,-x^4+3*x^2+3*x+3,x^3-4*x,-x^5+3*x^4+4*x^3-13*x^2-4*x+9,x^4-4*x^2-x+1,x^3-5*x,2*x^5-3*x^4-13*x^3+10*x^2+23*x+2,2*x^5-3*x^4-11*x^3+12*x^2+13*x-4,-x^5+3*x^3+3*x^2+3*x,-x^5+7*x^3+3*x^2-13*x-10,x^4-6*x^2+4,-x^4-2*x^3+6*x^2+8*x]];

E[152,1] = [x, [1,0,-2,0,-1,0,-3,0,1,0,-3,0,-4,0,2,0,5]];
E[152,2] = [x, [1,0,1,0,0,0,3,0,-2,0,2,0,1,0,0,0,-5]];
E[152,3] = [x^3-x^2-10*x+8, [2,0,2*x,0,-x^2-x+8,0,x^2-x-4,0,2*x^2-6,0,-x^2-x+4,0,-2*x+4,0,-2*x^2-2*x+8,0,-x^2+x+8]];

E[153,1] = [x, [1,-2,0,2,-1,0,-2,0,0,2,-3,0,-5,4,0,-4,-1]];
E[153,2] = [x, [1,1,0,-1,2,0,4,-3,0,2,0,0,-2,4,0,-1,-1]];
E[153,3] = [x, [1,2,0,2,1,0,-2,0,0,2,3,0,-5,-4,0,-4,1]];
E[153,4] = [x^2-x-4, [1,x,0,x+2,-x-1,0,0,x+4,0,-2*x-4,-x+1,0,-x+3,0,0,3*x,-1]];
E[153,5] = [x, [1,0,0,-2,-3,0,-4,0,0,0,3,0,-1,0,0,4,1]];

E[154,1] = [x, [1,-1,2,1,2,-2,-1,-1,1,-2,1,2,-4,1,4,1,0]];
E[154,2] = [x, [1,-1,0,1,-4,0,-1,-1,-3,4,-1,0,2,1,0,1,-4]];
E[154,3] = [x^2+2*x-4, [1,1,x,1,-x,x,1,1,-2*x+1,-x,1,x,-x-2,1,2*x-4,1,2*x]];
E[154,4] = [x, [1,1,0,1,2,0,-1,1,-3,2,-1,0,2,-1,0,1,2]];

E[155,1] = [x, [1,-2,-1,2,1,2,-2,0,-2,-2,2,-2,-6,4,-1,-4,-7]];
E[155,2] = [x, [1,-1,2,-1,-1,-2,4,3,1,1,4,-2,0,-4,-2,-1,-8]];
E[155,3] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-x^3+x^2+4*x-2,2*x^2-4,2,-2*x^2+2*x+4,-2*x^2-2*x+8,2*x^3-8*x,-2*x,2*x,-2*x^2+2*x+4,-4*x+4,2*x^3-10*x+4,-2*x^3-2*x^2+8*x,-x^3+x^2+4*x-2,2*x^3-8*x,x^3+x^2-6*x+2]];
E[155,4] = [x^4+x^3-8*x^2-4*x+12, [2,2*x,-x^3-x^2+6*x+2,2*x^2-4,-2,-2*x^2-2*x+12,2*x^2+2*x-8,2*x^3-8*x,-4*x^2-2*x+20,-2*x,2*x^2-2*x-12,-4,-2*x^2-2*x+16,2*x^3+2*x^2-8*x,x^3+x^2-6*x-2,-2*x^3+4*x^2+8*x-16,-x^3+x^2+4*x-6]];
E[155,5] = [x, [1,0,-1,-2,-1,0,0,0,-2,0,-4,2,-6,0,1,4,5]];

E[156,1] = [x, [1,0,1,0,0,0,2,0,1,0,0,0,1,0,0,0,-6]];
E[156,2] = [x, [1,0,-1,0,-4,0,-2,0,1,0,-4,0,1,0,4,0,2]];

E[157,1] = [x^5+5*x^4+5*x^3-6*x^2-7*x+1, [1,x,-x^4-3*x^3+3*x-1,x^2-2,2*x^4+7*x^3+x^2-10*x-2,2*x^4+5*x^3-3*x^2-8*x+1,-x^4-5*x^3-4*x^2+6*x+2,x^3-4*x,2*x^4+6*x^3+x^2-5*x-2,-3*x^4-9*x^3+2*x^2+12*x-2,-x^4-2*x^3+4*x^2+5*x-6,-3*x^4-7*x^3+4*x^2+9*x,x^3+3*x^2+x-3,x^3-5*x+1,-x^4-4*x^3-x^2+8*x+1,x^4-6*x^2+4,x^4+x^3-3*x^2+3*x]];
E[157,2] = [x^7-5*x^6+2*x^5+21*x^4-22*x^3-21*x^2+27*x-1, [1,x,x^4-3*x^3-2*x^2+7*x+1,x^2-2,x^6-4*x^5-2*x^4+18*x^3-2*x^2-20*x+3,x^5-3*x^4-2*x^3+7*x^2+x,-x^6+3*x^5+4*x^4-13*x^3-5*x^2+13*x+2,x^3-4*x,-2*x^6+7*x^5+7*x^4-35*x^3-3*x^2+42*x-3,x^6-4*x^5-3*x^4+20*x^3+x^2-24*x+1,-x^6+4*x^5+x^4-15*x^3+3*x^2+13*x+1,x^6-3*x^5-4*x^4+13*x^3+5*x^2-14*x-2,x^6-3*x^5-5*x^4+17*x^3+4*x^2-22*x+3,-2*x^6+6*x^5+8*x^4-27*x^3-8*x^2+29*x-1,3*x^6-11*x^5-8*x^4+50*x^3-57*x+5,x^4-6*x^2+4,x^6-3*x^5-4*x^4+13*x^3+6*x^2-16*x-2]];

E[158,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,2,-1,-1,3,-1,1,-2]];
E[158,2] = [x, [1,1,2,1,-2,2,0,1,1,-2,-4,2,2,0,-4,1,-2]];
E[158,3] = [x, [1,1,-3,1,-3,-3,-3,1,6,-3,-2,-3,-5,-3,9,1,6]];
E[158,4] = [x, [1,-1,-1,1,-1,1,-3,-1,-2,1,4,-1,-7,3,1,1,-4]];
E[158,5] = [x, [1,-1,1,1,3,-1,-1,-1,-2,-3,0,1,5,1,3,1,0]];
E[158,6] = [x^2-6, [1,-1,x,1,-2,-x,4,-1,3,2,0,x,-2*x+2,-4,-2*x,1,-2*x+2]];

E[159,1] = [x^4-3*x^3-x^2+7*x-3, [1,x,1,x^2-2,-x^3+x^2+2*x,x,x^3-3*x^2-2*x+5,x^3-4*x,1,-2*x^3+x^2+7*x-3,4*x^3-6*x^2-12*x+12,x^2-2,-3*x^3+5*x^2+8*x-10,-x^2-2*x+3,-x^3+x^2+2*x,3*x^3-5*x^2-7*x+7,-4*x^3+8*x^2+10*x-12]];
E[159,2] = [x^5-10*x^3+22*x+5, [3,3*x,-3,3*x^2-6,-3*x^3-3*x^2+18*x+12,-3*x,x^4+4*x^3-6*x^2-21*x+4,3*x^3-12*x,3,-3*x^4-3*x^3+18*x^2+12*x,-2*x^4-2*x^3+12*x^2+6*x-2,-3*x^2+6,2*x^4-x^3-15*x^2+6*x+20,4*x^4+4*x^3-21*x^2-18*x-5,3*x^3+3*x^2-18*x-12,3*x^4-18*x^2+12,-6*x]];

E[160,1] = [x, [1,0,-2,0,-1,0,-2,0,1,0,-4,0,-6,0,2,0,2]];
E[160,2] = [x, [1,0,2,0,-1,0,2,0,1,0,4,0,-6,0,-2,0,2]];
E[160,3] = [x^2-8, [1,0,x,0,1,0,-x,0,5,0,-2*x,0,-2,0,x,0,2]];

E[161,1] = [x, [1,-1,0,-1,2,0,1,3,-3,-2,4,0,6,-1,0,-1,-2]];
E[161,2] = [x^2+x-1, [1,x,-1,-x-1,-2*x-2,-x,-1,-2*x-1,-2,-2,4*x+2,x+1,2*x-1,-x,2*x+2,3*x,0]];
E[161,3] = [x^3+x^2-5*x-1, [2,2*x,-x^2+5,2*x^2-4,-x^2+5,x^2-1,-2,-2*x^2+2*x+2,-2*x^2-2*x+6,x^2-1,-2*x+2,x^2+4*x-9,2*x^2-6,-2*x,-2*x^2-2*x+12,-8*x+6,x^2-1]];
E[161,4] = [x^5-2*x^4-9*x^3+17*x^2+16*x-27, [2,2*x,x^4-x^3-8*x^2+5*x+11,2*x^2-4,-x^4-x^3+10*x^2+5*x-21,x^4+x^3-12*x^2-5*x+27,2,2*x^3-8*x,-2*x^2-2*x+14,-3*x^4+x^3+22*x^2-5*x-27,-2*x^4+16*x^2+2*x-24,x^4-x^3-6*x^2+x+5,2*x^4-18*x^2+28,2*x,2*x^3-16*x+6,2*x^4-12*x^2+8,x^4+x^3-6*x^2-5*x-3]];

E[162,1] = [x, [1,1,0,1,3,0,-4,1,0,3,0,0,-1,-4,0,1,3]];
E[162,2] = [x, [1,1,0,1,0,0,2,1,0,0,-3,0,2,2,0,1,-3]];
E[162,3] = [x, [1,-1,0,1,-3,0,-4,-1,0,3,0,0,-1,4,0,1,-3]];
E[162,4] = [x, [1,-1,0,1,0,0,2,-1,0,0,3,0,2,-2,0,1,3]];

E[163,1] = [x^5+5*x^4+3*x^3-15*x^2-16*x+3, [1,x,-2*x^4-5*x^3+6*x^2+13*x-3,x^2-2,2*x^4+5*x^3-7*x^2-15*x+2,5*x^4+12*x^3-17*x^2-35*x+6,3*x^4+8*x^3-8*x^2-22*x-1,x^3-4*x,2*x^2+3*x-3,-5*x^4-13*x^3+15*x^2+34*x-6,-x^4-4*x^3+x^2+13*x+3,-9*x^4-22*x^3+28*x^2+60*x-9,-x^4-3*x^3+2*x^2+8*x-2,-7*x^4-17*x^3+23*x^2+47*x-9,5*x^4+13*x^3-14*x^2-32*x+6,x^4-6*x^2+4,-x^4-2*x^3+4*x^2+6*x-6]];
E[163,2] = [x^7-3*x^6-5*x^5+19*x^4-23*x^2+4*x+6, [1,x,x^5-x^4-6*x^3+5*x^2+5*x-2,x^2-2,-x^6+x^5+7*x^4-6*x^3-11*x^2+6*x+6,x^6-x^5-6*x^4+5*x^3+5*x^2-2*x,x^6-2*x^5-7*x^4+12*x^3+11*x^2-11*x-4,x^3-4*x,-x^6+x^5+7*x^4-5*x^3-12*x^2+2*x+7,-2*x^6+2*x^5+13*x^4-11*x^3-17*x^2+10*x+6,x^6-2*x^5-7*x^4+12*x^3+12*x^2-12*x-6,2*x^6-3*x^5-12*x^4+17*x^3+11*x^2-14*x-2,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+8,x^6-2*x^5-7*x^4+11*x^3+12*x^2-8*x-6,2*x^5-x^4-13*x^3+4*x^2+14*x,x^4-6*x^2+4,x^6-x^5-6*x^4+5*x^3+6*x^2-3*x]];
E[163,3] = [x, [1,0,0,-2,-4,0,2,0,-3,0,-6,0,4,0,0,4,0]];

E[164,1] = [x^4-2*x^3-10*x^2+22*x-2, [3,0,3*x,0,-2*x^3-x^2+16*x+2,0,3*x^3-27*x+12,0,3*x^2-9,0,x^3+2*x^2-11*x-4,0,2*x^3-2*x^2-22*x+22,0,-5*x^3-4*x^2+46*x-4,0,-2*x^3-4*x^2+16*x+14]];

E[165,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1,-x,-2*x-4,x-2,1,-x,-1,2*x+1,4*x+4,-2,1,3,-2*x-6]];
E[165,2] = [x^2-3, [1,x,1,1,-1,x,2,-x,1,-x,-1,1,-2*x+2,2*x,-1,-5,0]];
E[165,3] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,1,x,-x^2-2*x+3,-x^2+x+1,1,x,1,x^2-2,-x^2+3,-x^2-2*x-1,1,-4*x+3,x^2-2*x-5]];

E[166,1] = [x^3-x^2-6*x+4, [2,2,2*x,2,-x^2-x+4,2*x,x^2-3*x-2,2,2*x^2-6,-x^2-x+4,-2*x+4,2*x,-x^2+x-2,x^2-3*x-2,-2*x^2-2*x+4,2,3*x^2+x-16]];
E[166,2] = [x, [1,-1,-1,1,-2,1,1,-1,-2,2,-5,-1,-2,-1,2,1,-3]];
E[166,3] = [x^2+2*x-4, [2,-2,2*x,2,x+4,-2*x,x-2,-2,-4*x+2,-x-4,-2*x+4,2*x,-x+2,-x+2,2*x+4,2,x+8]];

E[167,1] = [x^2+x-1, [1,x,-x-1,-x-1,-1,-1,x-2,-2*x-1,x-1,-x,0,x+2,-x-3,-3*x+1,x+1,3*x,x-2]];
E[167,2] = [x^12-2*x^11-17*x^10+33*x^9+103*x^8-189*x^7-277*x^6+447*x^5+363*x^4-433*x^3-205*x^2+120*x+9, [933,933*x,544*x^11+157*x^10-10187*x^9-3189*x^8+68788*x^7+22911*x^6-200347*x^5-70068*x^4+230499*x^3+80543*x^2-60181*x-3441,933*x^2-1866,-779*x^11+631*x^10+13207*x^9-8871*x^8-78341*x^7+37635*x^6+193997*x^5-40677*x^4-192843*x^3-12787*x^2+42281*x+3612,1245*x^11-939*x^10-21141*x^9+12756*x^8+125727*x^7-49659*x^6-313236*x^5+33027*x^4+316095*x^3+51339*x^2-68721*x-4896,-294*x^11-102*x^10+5406*x^9+2262*x^8-35598*x^7-17565*x^6+100383*x^5+56706*x^4-111492*x^3-64902*x^2+25050*x+6336,933*x^3-3732*x,-972*x^11+234*x^10+17454*x^9-2061*x^8-112398*x^7-3006*x^6+312990*x^5+58266*x^4-357315*x^3-99834*x^2+98508*x+5277,-927*x^11-36*x^10+16836*x^9+1896*x^8-109596*x^7-21786*x^6+307536*x^5+89934*x^4-350094*x^3-117414*x^2+97092*x+7011,-623*x^11+628*x^10+10567*x^9-9024*x^8-62594*x^7+39396*x^6+154004*x^5-45156*x^4-149088*x^3-12775*x^2+24248*x+5829,463*x^11-290*x^10-7955*x^9+3870*x^8+48070*x^7-14193*x^6-122794*x^5+4296*x^4+129426*x^3+25418*x^2-33934*x-4323,652*x^11-491*x^10-11297*x^9+6681*x^8+69355*x^7-25893*x^6-182461*x^5+15825*x^4+202299*x^3+30887*x^2-59101*x-2265,-690*x^11+408*x^10+11964*x^9-5316*x^8-73131*x^7+18945*x^6+188124*x^5-4770*x^4-192204*x^3-35220*x^2+41616*x+2646,2158*x^11-2063*x^10-36209*x^9+29139*x^8+211147*x^7-123831*x^6-508297*x^5+133815*x^4+484143*x^3+35309*x^2-83227*x-4941,933*x^4-5598*x^2+3732,7*x^11+580*x^10-884*x^9-9606*x^8+12088*x^7+54510*x^6-54838*x^5-124284*x^4+78894*x^3+107774*x^2-19834*x-9081]];

E[168,1] = [x, [1,0,1,0,2,0,-1,0,1,0,0,0,-2,0,2,0,6]];
E[168,2] = [x, [1,0,-1,0,2,0,1,0,1,0,0,0,6,0,-2,0,-2]];

E[169,1] = [x^2-3, [1,x,2,1,-x,2*x,0,-x,1,-3,0,2,0,0,-2*x,-5,3]];
E[169,2] = [x^3-2*x^2-x+1, [1,x,-x^2+2*x,x^2-2,-x^2+2*x+2,-x+1,-x^2+3,2*x^2-3*x-1,x^2-3*x-1,x+1,x^2-2*x+2,x^2-3*x,0,-2*x^2+2*x+1,-x^2+x+2,-x^2+x+2,-x^2-x+2]];
E[169,3] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x,x^2-2,x^2+2*x-2,-x-1,x^2-3,-2*x^2-3*x+1,x^2+3*x-1,-x+1,-x^2-2*x-2,x^2+3*x,0,-2*x^2-2*x+1,x^2+x-2,-x^2-x+2,-x^2+x+2]];

E[170,1] = [x, [1,1,1,1,-1,1,2,1,-2,-1,0,1,-1,2,-1,1,-1]];
E[170,2] = [x^2+x-4, [1,1,x,1,1,x,-2*x,1,-x+1,1,-4,x,-x+2,-2*x,x,1,1]];
E[170,3] = [x, [1,-1,3,1,-1,-3,2,-1,6,1,-4,3,-3,-2,-3,1,1]];
E[170,4] = [x, [1,-1,1,1,1,-1,2,-1,-2,-1,0,1,5,-2,1,1,-1]];
E[170,5] = [x, [1,-1,-2,1,1,2,-2,-1,1,-1,-2,-2,-6,2,-2,1,1]];
E[170,6] = [x, [1,-1,-2,1,-1,2,2,-1,1,1,6,-2,2,-2,2,1,1]];

E[171,1] = [x, [1,-1,0,-1,2,0,0,3,0,-2,0,0,6,0,0,-1,6]];
E[171,2] = [x^4-9*x^2+12, [2,2*x,0,2*x^2-4,-x^3+5*x,0,-2*x^2+10,2*x^3-8*x,0,-4*x^2+12,x^3-9*x,0,4,-2*x^3+10*x,0,6*x^2-16,-x^3+5*x]];
E[171,3] = [x, [1,0,0,-2,-3,0,-1,0,0,0,-3,0,-4,0,0,4,3]];
E[171,4] = [x, [1,2,0,2,3,0,-5,0,0,6,-1,0,2,-10,0,-4,1]];
E[171,5] = [x, [1,2,0,2,-1,0,3,0,0,-2,3,0,-6,6,0,-4,-3]];

E[172,1] = [x, [1,0,-2,0,0,0,-4,0,1,0,-3,0,-1,0,0,0,-3]];
E[172,2] = [x^2-4*x+2, [1,0,x,0,-x+2,0,-x+2,0,4*x-5,0,-2*x+5,0,-2*x+1,0,-2*x+2,0,2*x-3]];

E[173,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^2-x,x^2-2,x^2-2,-x^3-x^2,x^3+x^2-3*x-3,x^3-4*x,x^3+4*x^2+x-4,x^3-2*x,-3*x^3-4*x^2+6*x+2,-x^2+x+1,-4*x^3-5*x^2+10*x+3,-2*x-1,-x^2+x+1,-x^3-3*x^2+x+3,4*x^3+5*x^2-7*x-3]];
E[173,2] = [x^10-x^9-16*x^8+16*x^7+85*x^6-80*x^5-175*x^4+136*x^3+138*x^2-71*x-25, [116,116*x,9*x^9-22*x^8-138*x^7+324*x^6+645*x^5-1439*x^4-940*x^3+1860*x^2+392*x-303,116*x^2-232,-14*x^9+60*x^8+176*x^7-852*x^6-462*x^5+3566*x^4-716*x^3-4092*x^2+1504*x+742,-13*x^9+6*x^8+180*x^7-120*x^6-719*x^5+635*x^4+636*x^3-850*x^2+336*x+225,-2*x^9-37*x^8+79*x^7+537*x^6-849*x^5-2316*x^4+3125*x^3+2767*x^2-2913*x-387,116*x^3-464*x,36*x^9-59*x^8-523*x^7+861*x^6+2261*x^5-3610*x^4-2745*x^3+3641*x^2+611*x+151,46*x^9-48*x^8-628*x^7+728*x^6+2446*x^5-3166*x^4-2188*x^3+3436*x^2-252*x-350,23*x^9+5*x^8-343*x^7-71*x^6+1600*x^5+389*x^4-2399*x^3-921*x^2+715*x+550,-25*x^9+16*x^8+364*x^7-262*x^6-1695*x^5+1239*x^4+2798*x^3-1590*x^2-1482*x+281,-25*x^9-13*x^8+393*x^7+173*x^6-2014*x^5-791*x^4+3755*x^3+1455*x^2-2265*x-560,-39*x^9+47*x^8+569*x^7-679*x^6-2476*x^5+2775*x^4+3039*x^3-2637*x^2-529*x-50,-44*x^9+114*x^8+578*x^7-1642*x^6-1858*x^5+6932*x^4-502*x^3-7798*x^2+3194*x+1114,116*x^4-696*x^2+464,-10*x^9+18*x^8+134*x^7-302*x^6-504*x^5+1470*x^4+342*x^3-1854*x^2+254*x+124]];

E[174,1] = [x, [1,1,1,1,-1,1,1,1,1,-1,-2,1,0,1,-1,1,-3]];
E[174,2] = [x, [1,1,-1,1,1,-1,1,1,1,1,6,-1,-4,1,-1,1,-7]];
E[174,3] = [x, [1,-1,-1,1,3,1,-3,-1,1,-3,6,-1,0,3,-3,1,7]];
E[174,4] = [x, [1,-1,1,1,-3,-1,5,-1,1,3,6,1,-4,-5,-3,1,3]];
E[174,5] = [x, [1,-1,1,1,2,-1,0,-1,1,-2,-4,1,6,0,2,1,-2]];

E[175,1] = [x, [1,2,1,2,0,2,-1,0,-2,0,-3,2,1,-2,0,-4,7]];
E[175,2] = [x, [1,-2,-1,2,0,2,1,0,-2,0,-3,-2,-1,-2,0,-4,-7]];
E[175,3] = [x^2+x-1, [1,x,2*x+2,-x-1,0,2,-1,-2*x-1,4*x+5,0,-2*x+1,-2*x-4,-2*x,-x,0,3*x,-4*x]];
E[175,4] = [x^2-x-1, [1,x,2*x-2,x-1,0,2,1,-2*x+1,-4*x+5,0,2*x+1,-2*x+4,-2*x,x,0,-3*x,-4*x]];
E[175,5] = [x^2-x-4, [1,x,-x+1,x+2,0,-4,1,x+4,-x+2,0,-x+1,-2*x-2,x-3,x,0,3*x,-x+3]];
E[175,6] = [x, [1,0,-1,-2,0,0,-1,0,-2,0,-3,2,-5,0,0,4,-3]];

E[176,1] = [x, [1,0,3,0,-3,0,2,0,6,0,1,0,0,0,-9,0,-6]];
E[176,2] = [x, [1,0,1,0,1,0,2,0,-2,0,-1,0,4,0,1,0,-2]];
E[176,3] = [x, [1,0,-1,0,-3,0,-2,0,-2,0,1,0,-4,0,3,0,6]];
E[176,4] = [x^2+x-4, [1,0,x,0,x+2,0,-2*x,0,-x+1,0,1,0,-2*x-2,0,x+4,0,2]];

E[177,1] = [x^2+x-1, [1,x,-1,-x-1,-2*x-1,-x,x-3,-2*x-1,1,x-2,2*x+1,x+1,-2*x-5,-4*x+1,2*x+1,3*x,3*x]];
E[177,2] = [x^2+3*x+1, [1,x,1,-3*x-3,-3,x,-x-5,4*x+3,1,-3*x,-4*x-7,-3*x-3,6*x+9,-2*x+1,-3,-3*x+2,x]];
E[177,3] = [x^2-x-1, [1,x,1,x-1,1,x,-x+1,-2*x+1,1,x,-2*x+3,x-1,-1,-1,1,-3*x,-3*x+2]];
E[177,4] = [x^3-4*x-1, [1,x,-1,x^2-2,-x^2+x+2,-x,x+3,1,1,x^2-2*x-1,-x^2-x+2,-x^2+2,-x^2-x+4,x^2+3*x,x^2-x-2,-2*x^2+x+4,3*x^2-2*x-7]];

E[178,1] = [x, [1,-1,2,1,2,-2,0,-1,1,-2,0,2,-4,0,4,1,2]];
E[178,2] = [x^2+2*x-1, [1,-1,x,1,-2*x-3,-x,-2,-1,-2*x-2,2*x+3,2*x,x,-2,2,x-2,1,2*x-1]];
E[178,3] = [x, [1,1,1,1,3,1,-4,1,-2,3,-6,1,2,-4,3,1,3]];
E[178,4] = [x^3-x^2-8*x+4, [2,2,2*x,2,-2*x,2*x,-x^2-x+6,2,2*x^2-6,-2*x,4,2*x,x^2-3*x-6,-x^2-x+6,-2*x^2,2,-2*x^2+8]];

E[179,1] = [x, [1,2,0,2,3,0,-4,0,-3,6,4,0,-1,-8,0,-4,1]];
E[179,2] = [x^3+x^2-2*x-1, [1,x,-x-1,x^2-2,-x^2-x,-x^2-x,x-1,-x^2-2*x+1,x^2+2*x-2,-2*x-1,2*x^2+x-4,1,-x^2-2,x^2-x,x^2+3*x+1,-3*x^2-x+3,5*x^2+2*x-7]];
E[179,3] = [x^11+3*x^10-14*x^9-45*x^8+59*x^7+225*x^6-58*x^5-427*x^4-76*x^3+240*x^2+56*x-16, [136,136*x,-42*x^10-68*x^9+690*x^8+942*x^7-3876*x^6-4112*x^5+8482*x^4+5986*x^3-5790*x^2-1244*x+360,136*x^2-272,-3*x^10-17*x^9+42*x^8+247*x^7-221*x^6-1151*x^5+618*x^4+1841*x^3-892*x^2-628*x+424,58*x^10+102*x^9-948*x^8-1398*x^7+5338*x^6+6046*x^5-11948*x^4-8982*x^3+8836*x^2+2712*x-672,14*x^10+34*x^9-196*x^8-518*x^7+850*x^6+2606*x^5-1116*x^4-4738*x^3-144*x^2+2160*x+288,136*x^3-544*x,-96*x^10-170*x^9+1514*x^8+2396*x^7-8058*x^6-10890*x^5+16410*x^4+17636*x^3-10082*x^2-6564*x+920,-8*x^10+112*x^8-44*x^7-476*x^6+444*x^5+560*x^4-1120*x^3+92*x^2+592*x-48,40*x^10+68*x^9-628*x^8-936*x^7+3332*x^6+4036*x^5-6812*x^4-5688*x^3+4164*x^2+984*x-32,12*x^10-168*x^8+32*x^7+748*x^6-360*x^5-1180*x^4+1272*x^3+372*x^2-1432*x+208,-17*x^10-17*x^9+272*x^8+221*x^7-1513*x^6-867*x^5+3468*x^4+1003*x^3-2754*x^2-136*x+408,-8*x^10+112*x^8+24*x^7-544*x^6-304*x^5+1240*x^4+920*x^3-1200*x^2-496*x+224,140*x^10+238*x^9-2266*x^8-3344*x^7+12546*x^6+15146*x^5-27310*x^4-24600*x^3+19402*x^2+9360*x-2016,136*x^4-816*x^2+544,39*x^10+51*x^9-648*x^8-695*x^7+3723*x^6+3029*x^5-8476*x^4-4689*x^3+5986*x^2+1500*x+64]];

E[180,1] = [x, [1,0,0,0,1,0,2,0,0,0,0,0,2,0,0,0,6]];

E[181,1] = [x^5+3*x^4-x^3-7*x^2-2*x+1, [1,x,-x^4-2*x^3+2*x^2+3*x-1,x^2-2,2*x^4+5*x^3-4*x^2-11*x-1,x^4+x^3-4*x^2-3*x+1,-2*x^3-2*x^2+5*x+1,x^3-4*x,x^4+3*x^3-4*x-2,-x^4-2*x^3+3*x^2+3*x-2,-x^4-3*x^3+x^2+6*x-3,x^3-3*x+1,-2*x^4-3*x^3+8*x^2+8*x-5,-2*x^4-2*x^3+5*x^2+x,-x^4-3*x^3+3*x^2+9*x-2,x^4-6*x^2+4,2*x^4+4*x^3-5*x^2-8*x]];
E[181,2] = [x^9-3*x^8-9*x^7+29*x^6+23*x^5-84*x^4-23*x^3+89*x^2+8*x-27, [4,4*x,2*x^8-8*x^7-10*x^6+64*x^5-14*x^4-118*x^3+48*x^2+50*x-14,4*x^2-8,x^7-x^6-10*x^5+8*x^4+25*x^3-18*x^2-10*x+15,-2*x^8+8*x^7+6*x^6-60*x^5+50*x^4+94*x^3-128*x^2-30*x+54,x^8-3*x^7-4*x^6+20*x^5-19*x^4-20*x^3+58*x^2-x-22,4*x^3-16*x,-4*x^7+8*x^6+36*x^5-64*x^4-84*x^3+120*x^2+52*x-44,x^8-x^7-10*x^6+8*x^5+25*x^4-18*x^3-10*x^2+15*x,-2*x^8+2*x^7+24*x^6-16*x^5-94*x^4+32*x^3+140*x^2-18*x-48,-2*x^8+4*x^7+18*x^6-32*x^5-46*x^4+62*x^3+52*x^2-30*x-26,-2*x^8+7*x^7+11*x^6-58*x^5+14*x^4+121*x^3-82*x^2-72*x+47,5*x^7-9*x^6-42*x^5+64*x^4+81*x^3-90*x^2-30*x+27,10*x^7-26*x^6-76*x^5+204*x^4+118*x^3-368*x^2-40*x+150,4*x^4-24*x^2+16,6*x^8-18*x^7-40*x^6+140*x^5+26*x^4-244*x^3+68*x^2+90*x-48]];

E[182,1] = [x, [1,-1,3,1,0,-3,1,-1,6,0,-5,3,-1,-1,0,1,-4]];
E[182,2] = [x, [1,-1,1,1,4,-1,-1,-1,-2,-4,-1,1,1,1,4,1,4]];
E[182,3] = [x, [1,1,1,1,0,1,1,1,-2,0,-3,1,1,1,0,1,0]];
E[182,4] = [x, [1,1,3,1,-4,3,-1,1,6,-4,1,3,-1,-1,-12,1,0]];
E[182,5] = [x, [1,1,0,1,2,0,-1,1,-3,2,4,0,-1,-1,0,1,-6]];

E[183,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-1,-x,-x-2,x-2,1,-x,-x-2,2*x+1,-3,-1,1,3,-6]];
E[183,2] = [x^3-x^2-3*x+1, [1,x,-1,x^2-2,2,-x,-2*x^2+2*x+4,x^2-x-1,1,2*x,-x^2+3,-x^2+2,2*x^2-2*x-2,-2*x+2,-2,-2*x^2+2*x+3,-x^2-2*x+7]];
E[183,3] = [x^6-11*x^4+2*x^3+31*x^2-10*x-17, [2,2*x,2,2*x^2-4,x^5+2*x^4-10*x^3-16*x^2+21*x+20,2*x,-2*x^5-3*x^4+18*x^3+22*x^2-34*x-23,2*x^3-8*x,2,2*x^5+x^4-18*x^3-10*x^2+30*x+17,-x^4+6*x^2-2*x-5,2*x^2-4,-x^5+10*x^3-21*x+2,-3*x^5-4*x^4+26*x^3+28*x^2-43*x-34,x^5+2*x^4-10*x^3-16*x^2+21*x+20,2*x^4-12*x^2+8,2*x^5+2*x^4-18*x^3-12*x^2+32*x+10]];

E[184,1] = [x, [1,0,3,0,0,0,-2,0,6,0,0,0,-5,0,0,0,-6]];
E[184,2] = [x^2+x-4, [1,0,x,0,2,0,0,0,-x+1,0,-2*x,0,-x+2,0,2*x,0,2*x+2]];
E[184,3] = [x, [1,0,0,0,0,0,4,0,-3,0,6,0,-2,0,0,0,6]];
E[184,4] = [x, [1,0,-1,0,-2,0,-4,0,-2,0,-2,0,7,0,2,0,-4]];
E[184,5] = [x, [1,0,-1,0,-4,0,2,0,-2,0,-4,0,-5,0,4,0,-2]];

E[185,1] = [x, [1,-2,1,2,-1,-2,-5,0,-2,2,3,2,-2,10,-1,-4,-4]];
E[185,2] = [x, [1,1,-2,-1,-1,-2,-2,-3,1,-1,0,2,-2,-2,2,-1,2]];
E[185,3] = [x^5-2*x^4-8*x^3+14*x^2+11*x-12, [2,2*x,-x^3+5*x+2,2*x^2-4,-2,-x^4+5*x^2+2*x,x^4-7*x^2-2*x+10,2*x^3-8*x,x^4-x^3-7*x^2+5*x+8,-2*x,-2*x^2+6,-2*x^4-x^3+16*x^2+x-16,-x^4+x^3+5*x^2-5*x+4,2*x^4+x^3-16*x^2-x+12,x^3-5*x-2,2*x^4-12*x^2+8,-x^4+x^3+9*x^2-9*x-12]];
E[185,4] = [x^5-8*x^3+2*x^2+11*x-2, [2,2*x,-x^4+7*x^2-2*x-6,2*x^2-4,2,-x^3+5*x-2,-x^3-2*x^2+5*x+8,2*x^3-8*x,x^4+x^3-9*x^2-5*x+14,2*x,2*x^4+2*x^3-12*x^2-6*x+10,x^4-9*x^2+2*x+12,-x^4-x^3+7*x^2+x-6,-x^4-2*x^3+5*x^2+8*x,-x^4+7*x^2-2*x-6,2*x^4-12*x^2+8,-x^4-x^3+7*x^2+5*x-10]];
E[185,5] = [x, [1,0,-1,-2,1,0,-3,0,-2,0,-5,2,4,0,-1,4,-4]];

E[186,1] = [x, [1,-1,1,1,3,-1,-2,-1,1,-3,5,1,-7,2,3,1,-1]];
E[186,2] = [x, [1,-1,-1,1,-1,1,2,-1,1,1,3,-1,3,-2,1,1,1]];
E[186,3] = [x, [1,1,1,1,1,1,-2,1,1,1,-3,1,-1,-2,1,1,3]];
E[186,4] = [x^2-3*x-2, [1,1,-1,1,x,-1,-2*x+4,1,1,x,x-2,-1,x,-2*x+4,-x,1,-3*x+4]];

E[187,1] = [x^2+2*x-2, [1,x,-x-1,-2*x,x-1,x-2,-2,2*x-4,0,-3*x+2,1,-2*x+4,-x-6,-2*x,2*x-1,-4*x+4,1]];
E[187,2] = [x^3+2*x^2-2*x-2, [1,x,-x^2-x+1,x^2-2,-x-3,x^2-x-2,2*x^2+2*x-4,-2*x^2-2*x+2,x^2-2,-x^2-3*x,-1,-x^2+2*x,3*x+2,-2*x^2+4,2*x^2+4*x-1,-2*x,-1]];
E[187,3] = [x^4-x^3-6*x^2+2*x+2, [1,x,-x^3+x^2+5*x-1,x^2-2,-x+1,-x^2+x+2,0,x^3-4*x,-x^2+6,-x^2+x,-1,x^3-x^2-8*x+2,x^3-2*x^2-5*x+4,0,-x^3+2*x^2+4*x-3,x^3-2*x+2,1]];
E[187,4] = [x, [1,0,1,-2,3,0,2,0,-2,0,1,-2,2,0,3,4,-1]];
E[187,5] = [x^2+x-4, [1,2,x,2,-x,2*x,-x+1,0,-x+1,-2*x,1,2*x,0,-2*x+2,x-4,-4,-1]];
E[187,6] = [x, [1,2,0,2,4,0,-5,0,-3,8,-1,0,4,-10,0,-4,1]];

E[188,1] = [x^2+3*x+1, [1,0,x,0,-2*x-4,0,-x-5,0,-3*x-4,0,4*x+4,0,4*x+4,0,2*x+2,0,3*x+6]];
E[188,2] = [x^2-x-3, [1,0,x,0,0,0,-x+3,0,x,0,-2*x+2,0,2,0,0,0,-x-2]];

E[189,1] = [x, [1,-2,0,2,-1,0,-1,0,0,2,-4,0,-2,2,0,-4,3]];
E[189,2] = [x, [1,2,0,2,1,0,-1,0,0,2,4,0,-2,-2,0,-4,-3]];
E[189,3] = [x^2-7, [1,x,0,5,-x,0,-1,3*x,0,-7,-x,0,-2,-x,0,11,0]];
E[189,4] = [x^2-3, [1,x,0,1,x,0,1,-x,0,3,-x,0,2,x,0,-5,-4*x]];
E[189,5] = [x, [1,0,0,-2,3,0,1,0,0,0,6,0,-4,0,0,4,3]];
E[189,6] = [x, [1,0,0,-2,-3,0,1,0,0,0,-6,0,-4,0,0,4,-3]];

E[190,1] = [x, [1,1,-3,1,-1,-3,-5,1,6,-1,-4,-3,-1,-5,3,1,-3]];
E[190,2] = [x, [1,1,1,1,1,1,-1,1,-2,1,0,1,-1,-1,1,1,-3]];
E[190,3] = [x, [1,-1,-1,1,-1,1,-1,-1,-2,1,0,-1,-3,1,1,1,-7]];
E[190,4] = [x^2+x-4, [1,-1,x,1,1,-x,x,-1,-x+1,-1,4,x,-3*x-2,-x,x,1,x+6]];

E[191,1] = [x^2+x-1, [1,x,-1,-x-1,-x-1,-x,-x-1,-2*x-1,-2,-1,x,x+1,3*x-2,-1,x+1,3*x,0]];
E[191,2] = [x^14-23*x^12+x^11+205*x^10-13*x^9-895*x^8+35*x^7+1993*x^6+103*x^5-2135*x^4-465*x^3+853*x^2+374*x+41, [114035,114035*x,-145153*x^13+32777*x^12+3364061*x^11-874037*x^10-30238352*x^9+8179107*x^8+133274007*x^7-31876833*x^6-300314067*x^5+43961084*x^4+328052329*x^3+4557079*x^2-138909015*x-29013772,114035*x^2-228070,-44318*x^13-468*x^12+996676*x^11-67192*x^10-8645332*x^9+1110732*x^8+36541877*x^7-5434583*x^6-78444822*x^5+7801444*x^4+81404284*x^3+2785164*x^2-33114860*x-6986182,32777*x^13+25542*x^12-728884*x^11-481987*x^10+6292118*x^9+3362072*x^8-26796478*x^7-11024138*x^6+58911843*x^5+18150674*x^4-62939066*x^3-15093506*x^2+25273450*x+5951273,148787*x^13-73368*x^12-3418414*x^11+1764598*x^10+30273378*x^9-15485288*x^8-130230738*x^7+59339692*x^6+282975218*x^5-90112966*x^4-296004726*x^3+24031844*x^2+122955660*x+24473743,114035*x^3-456140*x,34542*x^13+21737*x^12-802949*x^11-412297*x^10+7331993*x^9+2916102*x^8-33454383*x^7-9948713*x^6+79726068*x^5+18237999*x^4-92932081*x^3-19074881*x^2+40503985*x+10072718,-468*x^13-22638*x^12-22874*x^11+439858*x^10+534598*x^9-3122733*x^8-3883453*x^7+9880952*x^6+12366198*x^5-13214646*x^4-17822706*x^3+4688394*x^2+9588750*x+1817038,-317749*x^13+87501*x^12+7255723*x^11-2329051*x^10-63902811*x^9+21925031*x^8+273703901*x^7-87350029*x^6-592597121*x^5+131174117*x^4+615896407*x^3-20228013*x^2-251185785*x-50606546,315848*x^13-40567*x^12-7242886*x^11+1320907*x^10+64264877*x^9-13819277*x^8-278719347*x^7+57340948*x^6+615402777*x^5-80882339*x^4-655956859*x^3-11799489*x^2+271510705*x+56683687,169418*x^13-44707*x^12-3873501*x^11+1208972*x^10+34207957*x^9-11502337*x^8-147297467*x^7+46178043*x^6+321976277*x^5-69816889*x^4-339639974*x^3+10698151*x^2+140483715*x+28321417,-73368*x^13+3687*x^12+1615811*x^11-227957*x^10-13551057*x^9+2933627*x^8+54132147*x^7-13557273*x^6-105438027*x^5+21655519*x^4+93217799*x^3-3959651*x^2-31172595*x-6100267,101858*x^13-58322*x^12-2292531*x^11+1387757*x^10+19694912*x^9-12095462*x^8-80836142*x^7+46393178*x^6+162965222*x^5-72409694*x^4-152342989*x^3+26703391*x^2+56663100*x+10449012,114035*x^4-684210*x^2+456140,303228*x^13-86692*x^12-6907461*x^11+2286332*x^10+60603762*x^9-21383092*x^8-257968172*x^7+84810468*x^6+552823792*x^5-127305184*x^4-565213084*x^3+21919331*x^2+225661240*x+45171892]];

E[192,1] = [x, [1,0,1,0,-2,0,4,0,1,0,4,0,2,0,-2,0,-6]];
E[192,2] = [x, [1,0,1,0,2,0,0,0,1,0,-4,0,2,0,2,0,2]];
E[192,3] = [x, [1,0,-1,0,-2,0,-4,0,1,0,-4,0,2,0,2,0,-6]];
E[192,4] = [x, [1,0,-1,0,2,0,0,0,1,0,4,0,2,0,-2,0,2]];

E[193,1] = [x^2+3*x+1, [1,x,-1,-3*x-3,2*x+3,-x,-3*x-5,4*x+3,-2,-3*x-2,-3*x-3,3*x+3,-3,4*x+3,-2*x-3,-3*x+2,2*x]];
E[193,2] = [x^8-2*x^7-9*x^6+18*x^5+21*x^4-44*x^3-11*x^2+27*x+1, [7,7*x,-x^7+4*x^6+8*x^5-34*x^4-16*x^3+69*x^2+6*x-18,7*x^2-14,-8*x^7+4*x^6+78*x^5-27*x^4-212*x^3+41*x^2+160*x+10,2*x^7-x^6-16*x^5+5*x^4+25*x^3-5*x^2+9*x+1,15*x^7-11*x^6-148*x^5+83*x^4+408*x^3-146*x^2-307*x+18,7*x^3-28*x,-5*x^7+6*x^6+47*x^5-44*x^4-122*x^3+58*x^2+86*x+29,-12*x^7+6*x^6+117*x^5-44*x^4-311*x^3+72*x^2+226*x+8,3*x^7-5*x^6-31*x^5+39*x^4+97*x^3-67*x^2-95*x+19,5*x^7-6*x^6-47*x^5+51*x^4+115*x^3-107*x^2-65*x+34,-4*x^7+2*x^6+39*x^5-17*x^4-99*x^3+38*x^2+52*x-9,19*x^7-13*x^6-187*x^5+93*x^4+514*x^3-142*x^2-387*x-15,-11*x^7+9*x^6+109*x^5-66*x^4-309*x^3+108*x^2+248*x-2,7*x^4-42*x^2+28,23*x^7-15*x^6-219*x^5+110*x^4+564*x^3-187*x^2-383*x+15]];
E[193,3] = [x^5+2*x^4-5*x^3-7*x^2+7*x+1, [1,x,x^4-5*x^2+x+1,x^2-2,-x^4+5*x^2-2*x-4,-2*x^4+8*x^2-6*x-1,-x^4-x^3+3*x^2+x-1,x^3-4*x,-x^4+x^3+7*x^2-4*x-3,2*x^4-9*x^2+3*x+1,x^4+3*x^3-3*x^2-8*x+1,2*x^4-2*x^3-10*x^2+11*x,-x^4-4*x^3+3*x^2+13*x-4,x^4-2*x^3-6*x^2+6*x+1,-x^3+7*x-2,x^4-6*x^2+4,2*x^4+2*x^3-7*x^2-2*x-1]];

E[194,1] = [x^4-2*x^3-9*x^2+18*x+1, [2,-2,2*x,2,-x^3-x^2+9*x+2,-2*x,x^3-8*x+5,-2,2*x^2-6,x^3+x^2-9*x-2,-2*x+2,2*x,2*x^3-16*x+6,-x^3+8*x-5,-3*x^3+20*x+1,2,2*x^3-2*x^2-18*x+12]];
E[194,2] = [x^4-2*x^3-9*x^2+18*x-7, [2,2,2*x,2,x^3-x^2-11*x+8,2*x,-x^3+8*x-1,2,2*x^2-6,x^3-x^2-11*x+8,-4*x^3+4*x^2+38*x-34,2*x,2*x^3-2*x^2-22*x+20,-x^3+8*x-1,x^3-2*x^2-10*x+7,2,2*x^3-2*x^2-18*x+12]];
E[194,3] = [x, [1,1,0,1,4,0,-4,1,-3,4,4,0,-4,-4,0,1,6]];

E[195,1] = [x, [1,-1,1,-1,1,-1,0,3,1,-1,4,-1,1,0,1,-1,2]];
E[195,2] = [x^3-7*x-2, [1,x,-1,x^2-2,-1,-x,-x^2+5,3*x+2,1,-x,-x^2+5,-x^2+2,1,-2*x-2,1,x^2+2*x+4,x^2-2*x-5]];
E[195,3] = [x, [1,2,-1,2,1,-2,3,0,1,2,-1,-2,-1,6,-1,-4,-1]];
E[195,4] = [x, [1,2,1,2,1,2,-3,0,1,2,-5,2,1,-6,1,-4,5]];
E[195,5] = [x, [1,2,1,2,-1,2,-1,0,1,-2,5,2,-1,-2,-1,-4,-7]];

E[196,1] = [x, [1,0,1,0,3,0,0,0,-2,0,-3,0,2,0,3,0,3]];
E[196,2] = [x, [1,0,-1,0,-3,0,0,0,-2,0,-3,0,-2,0,3,0,-3]];
E[196,3] = [x^2-8, [2,0,2*x,0,-x,0,0,0,10,0,8,0,-3*x,0,-8,0,-x]];

E[197,1] = [x, [1,-2,0,2,0,0,-3,0,-3,0,4,0,-2,6,0,-4,-8]];
E[197,2] = [x^5-5*x^3+x^2+3*x-1, [1,x,-x^4+4*x^2-x-2,x^2-2,3*x^4+x^3-14*x^2-3*x+5,-x^3+x-1,-2*x^4-2*x^3+9*x^2+6*x-6,x^3-4*x,2*x^4+x^3-7*x^2-2*x+2,x^4+x^3-6*x^2-4*x+3,-3*x^4-2*x^3+15*x^2+7*x-10,x^4-7*x^2+x+4,2*x^4+3*x^3-9*x^2-9*x+3,-2*x^4-x^3+8*x^2-2,-3*x^4-x^3+15*x^2+6*x-8,x^4-6*x^2+4,-3*x^4-x^3+14*x^2-4]];
E[197,3] = [x^10-15*x^8+x^7+78*x^6-7*x^5-165*x^4+15*x^3+123*x^2-9*x-26, [4,4*x,x^8+2*x^7-10*x^6-17*x^5+30*x^4+36*x^3-27*x^2-7*x+10,4*x^2-8,-2*x^8+20*x^6-6*x^5-52*x^4+28*x^3+22*x^2-18*x+4,x^9+2*x^8-10*x^7-17*x^6+30*x^5+36*x^4-27*x^3-7*x^2+10*x,-4*x^7-4*x^6+40*x^5+32*x^4-108*x^3-72*x^2+56*x+36,4*x^3-16*x,-x^9-2*x^8+14*x^7+25*x^6-66*x^5-104*x^4+111*x^3+159*x^2-38*x-52,-2*x^9+20*x^7-6*x^6-52*x^5+28*x^4+22*x^3-18*x^2+4*x,-2*x^9+x^8+26*x^7-12*x^6-109*x^5+30*x^4+170*x^3+3*x^2-75*x-6,2*x^9+3*x^8-22*x^7-28*x^6+77*x^5+78*x^4-94*x^3-59*x^2+23*x+6,2*x^9+2*x^8-28*x^7-22*x^6+134*x^5+80*x^4-242*x^3-108*x^2+106*x+44,-4*x^8-4*x^7+40*x^6+32*x^5-108*x^4-72*x^3+56*x^2+36*x,2*x^9-4*x^8-24*x^7+46*x^6+80*x^5-144*x^4-70*x^3+114*x^2+4*x-16,4*x^4-24*x^2+16,-2*x^9+2*x^8+28*x^7-22*x^6-126*x^5+64*x^4+210*x^3-44*x^2-98*x+4]];

E[198,1] = [x, [1,1,0,1,0,0,2,1,0,0,1,0,-4,2,0,1,6]];
E[198,2] = [x, [1,1,0,1,0,0,2,1,0,0,-1,0,2,2,0,1,-6]];
E[198,3] = [x, [1,-1,0,1,-2,0,-4,-1,0,2,1,0,-6,4,0,1,-2]];
E[198,4] = [x, [1,-1,0,1,4,0,-2,-1,0,-4,-1,0,4,2,0,1,2]];
E[198,5] = [x, [1,-1,0,1,0,0,2,-1,0,0,1,0,2,-2,0,1,6]];

E[199,1] = [x^2+x-1, [1,x,2,-x-1,3,2*x,0,-2*x-1,1,3*x,2*x-2,-2*x-2,-4*x-1,0,6,3*x,-2*x]];
E[199,2] = [x^4+3*x^3-4*x-1, [1,x,-x^3-2*x^2+x+1,x^2-2,x^3+x^2-3*x-2,x^3+x^2-3*x-1,2*x^3+5*x^2-2*x-6,x^3-4*x,x^3+2*x^2-x-3,-2*x^3-3*x^2+2*x+1,-2*x^3-4*x^2+3*x+2,x^2+x-1,-2*x^3-3*x^2+5*x+3,-x^3-2*x^2+2*x+2,x^2+3*x,-3*x^3-6*x^2+4*x+5,-2*x^3-3*x^2+4*x-1]];
E[199,3] = [x^10-5*x^9-4*x^8+51*x^7-32*x^6-154*x^5+151*x^4+168*x^3-168*x^2-54*x+27, [9,9*x,-2*x^9+7*x^8+23*x^7-81*x^6-89*x^5+287*x^4+151*x^3-321*x^2-105*x+27,9*x^2-18,4*x^9-14*x^8-37*x^7+144*x^6+97*x^5-430*x^4-122*x^3+408*x^2+111*x-36,-3*x^9+15*x^8+21*x^7-153*x^6-21*x^5+453*x^4+15*x^3-441*x^2-81*x+54,7*x^9-29*x^8-58*x^7+306*x^6+109*x^5-964*x^4-74*x^3+1011*x^2+120*x-126,9*x^3-36*x,-24*x^9+78*x^8+225*x^7-813*x^6-582*x^5+2511*x^4+585*x^3-2580*x^2-369*x+396,6*x^9-21*x^8-60*x^7+225*x^6+186*x^5-726*x^4-264*x^3+783*x^2+180*x-108,11*x^9-34*x^8-104*x^7+351*x^6+278*x^5-1070*x^4-313*x^3+1086*x^2+204*x-126,4*x^9-5*x^8-46*x^7+45*x^6+169*x^5-106*x^4-239*x^3+57*x^2+102*x+27,-3*x^9+12*x^8+27*x^7-132*x^6-66*x^5+450*x^4+72*x^3-543*x^2-54*x+117,6*x^9-30*x^8-51*x^7+333*x^6+114*x^5-1131*x^4-165*x^3+1296*x^2+252*x-189,14*x^9-46*x^8-140*x^7+501*x^6+416*x^5-1664*x^4-493*x^3+1872*x^2+258*x-333,9*x^4-54*x^2+36,-17*x^9+55*x^8+164*x^7-576*x^6-473*x^5+1796*x^4+658*x^3-1869*x^2-546*x+261]];

E[200,1] = [x, [1,0,2,0,0,0,2,0,1,0,-4,0,4,0,0,0,0]];
E[200,2] = [x, [1,0,-3,0,0,0,2,0,6,0,1,0,4,0,0,0,5]];
E[200,3] = [x, [1,0,3,0,0,0,-2,0,6,0,1,0,-4,0,0,0,-5]];
E[200,4] = [x, [1,0,-2,0,0,0,-2,0,1,0,-4,0,-4,0,0,0,0]];
E[200,5] = [x, [1,0,0,0,0,0,4,0,-3,0,4,0,2,0,0,0,-2]];

E[201,1] = [x, [1,-1,1,-1,-1,-1,-5,3,1,1,-4,-1,-4,5,-1,-1,6]];
E[201,2] = [x, [1,-2,-1,2,0,2,0,0,1,0,-6,-2,4,0,0,-4,-7]];
E[201,3] = [x, [1,1,-1,-1,-3,-1,-3,-3,1,-3,0,1,4,-3,3,-1,2]];
E[201,4] = [x^3-3*x^2-x+5, [1,x,-1,x^2-2,-x^2+x+3,-x,-x^2+2*x+2,3*x^2-3*x-5,1,-2*x^2+2*x+5,-x^2+7,-x^2+2,-x^2+1,-x^2+x+5,x^2-x-3,4*x^2-2*x-11,3*x^2-4*x-7]];
E[201,5] = [x^5-8*x^3+13*x+2, [2,2*x,2,2*x^2-4,x^4-x^3-7*x^2+5*x+6,2*x,-x^4-x^3+5*x^2+3*x+2,2*x^3-8*x,2,-x^4+x^3+5*x^2-7*x-2,2*x^3-10*x,2*x^2-4,2*x^3-10*x+4,-x^4-3*x^3+3*x^2+15*x+2,x^4-x^3-7*x^2+5*x+6,2*x^4-12*x^2+8,-2*x^4-2*x^3+12*x^2+6*x-10]];

E[202,1] = [x^4+x^3-8*x^2+x+8, [1,1,x,1,x^3+2*x^2-5*x-2,x,-x^3-2*x^2+4*x+3,1,x^2-3,x^3+2*x^2-5*x-2,-3*x^3-8*x^2+11*x+16,x,-x^2-2*x+4,-x^3-2*x^2+4*x+3,x^3+3*x^2-3*x-8,1,3*x^3+9*x^2-11*x-19]];
E[202,2] = [x^3+3*x^2-1, [1,-1,x,1,x^2+x-3,-x,-3*x^2-8*x,-1,x^2-3,-x^2-x+3,x^2+3*x-3,x,3*x^2+10*x,3*x^2+8*x,-2*x^2-3*x+1,1,-2*x^2-5*x-2]];
E[202,3] = [x, [1,-1,0,1,2,0,1,-1,-3,-2,4,0,0,-1,0,1,5]];

E[203,1] = [x, [1,-2,-1,2,-4,2,1,0,-2,8,2,-2,4,-2,4,-4,-2]];
E[203,2] = [x, [1,1,2,-1,2,2,1,-3,1,2,-4,-2,-2,1,4,-1,4]];
E[203,3] = [x^5-2*x^4-8*x^3+14*x^2+9*x-6, [2,2*x,-x^4+x^3+7*x^2-7*x-4,2*x^2-4,x^4-x^3-7*x^2+5*x+6,-x^4-x^3+7*x^2+5*x-6,2,2*x^3-8*x,x^4+x^3-9*x^2-5*x+14,x^4+x^3-9*x^2-3*x+6,-x^4-x^3+5*x^2+7*x+6,-x^4-3*x^3+5*x^2+17*x+2,x^4+x^3-7*x^2-9*x+10,2*x,-x^4+x^3+9*x^2-7*x-18,2*x^4-12*x^2+8,-2*x^3+10*x]];
E[203,4] = [x^3+x^2-3*x-1, [1,x,-x^2-x+1,x^2-2,x^2-4,-2*x-1,-1,-x^2-x+1,x^2+2*x-1,-x^2-x+1,x^2-x-1,x-2,-5,-x,2*x^2+3*x-4,-2*x^2-2*x+3,-3*x^2-2*x+7]];
E[203,5] = [x^2-2*x-1, [1,2,x,2,-2*x+2,2*x,-1,0,2*x-2,-4*x+4,-2*x,2*x,2*x+2,-2,-2*x-2,-4,-2*x+2]];
E[203,6] = [x, [1,-1,-1,-1,1,1,1,3,-2,-1,-5,1,-5,-1,-1,-1,-4]];
E[203,7] = [x^2+x-4, [1,-1,x,-1,x+2,-x,-1,3,-x+1,-x-2,x,-x,-x+2,1,x+4,-1,-2*x+2]];

E[204,1] = [x, [1,0,1,0,1,0,0,0,1,0,5,0,-5,0,1,0,1]];
E[204,2] = [x, [1,0,-1,0,-1,0,4,0,1,0,3,0,3,0,1,0,-1]];

E[205,1] = [x, [1,1,2,-1,1,2,2,-3,1,1,0,-2,-4,2,2,-1,4]];
E[205,2] = [x^2+x-1, [1,x,-1,-x-1,-1,-x,-3*x,-2*x-1,-2,-x,2*x-3,x+1,3*x,3*x-3,1,3*x,2*x+1]];
E[205,3] = [x^3-2*x^2-4*x+7, [1,x,-x^2+x+4,x^2-2,-1,-x^2+7,x^2-7,2*x^2-7,-3*x^2+x+13,-x,-x^2-x+6,x-1,-x^2+3,2*x^2-3*x-7,x^2-x-4,2*x^2+x-10,3*x^2-x-10]];
E[205,4] = [x^3-4*x-1, [1,x,x^2-x-2,x^2-2,1,-x^2+2*x+1,-x^2+3,1,x^2-3*x-1,x,-x^2+x+4,-x+3,-x^2+2*x+3,-x-1,x^2-x-2,-2*x^2+x+4,-x^2-x+2]];
E[205,5] = [x^2+x-3, [1,x,-3,-x+1,1,-3*x,-x-2,-3,6,x,-3,3*x-3,-3*x-2,-x-3,-3,-x-2,2*x-1]];
E[205,6] = [x, [1,-1,2,-1,-1,-2,2,3,1,1,6,-2,2,-2,-2,-1,2]];
E[205,7] = [x, [1,-1,0,-1,1,0,-4,3,-3,-1,0,0,-2,4,0,-1,-6]];

E[206,1] = [x^4-2*x^3-5*x^2+12*x-5, [1,1,x,1,-x^3+5*x-2,x,2*x^3-x^2-12*x+9,1,x^2-3,-x^3+5*x-2,-2*x^3+2*x^2+10*x-10,x,2*x^3-10*x+4,2*x^3-x^2-12*x+9,-2*x^3+10*x-5,1,2*x^3-3*x^2-12*x+12]];
E[206,2] = [x, [1,-1,2,1,4,-2,0,-1,1,-4,-6,2,-2,0,8,1,2]];
E[206,3] = [x^2+3*x-1, [1,-1,x,1,x-1,-x,x+4,-1,-3*x-2,-x+1,0,x,2*x+6,-x-4,-4*x+1,1,-x+1]];
E[206,4] = [x^2-x-7, [1,-1,x,1,-x+1,-x,x-2,-1,x+4,x-1,4,x,-2*x+2,-x+2,-7,1,-x-1]];

E[207,1] = [x, [1,-1,0,-1,0,0,-2,3,0,0,-4,0,-6,2,0,-1,-4]];
E[207,2] = [x^2+2*x-1, [1,x,0,-2*x-1,-x-3,0,x-1,x-2,0,-x-1,-2*x-2,0,0,-3*x+1,0,3,x-5]];
E[207,3] = [x^2-2*x-1, [1,x,0,2*x-1,-x+3,0,-x-1,x+2,0,x-1,-2*x+2,0,0,-3*x-1,0,3,x+5]];
E[207,4] = [x^2-5, [1,x,0,3,-x+1,0,x+1,x,0,x-5,-4,0,-2*x,x+5,0,-1,-x+5]];
E[207,5] = [x^2-x-1, [1,x,0,x-1,2*x,0,-2*x+2,-2*x+1,0,2*x+2,-2*x+4,0,3,-2,0,-3*x,-2*x-2]];

E[208,1] = [x, [1,0,3,0,-1,0,-1,0,6,0,2,0,-1,0,-3,0,-3]];
E[208,2] = [x^2+x-4, [1,0,x,0,x+2,0,-x,0,-x+1,0,-2*x,0,1,0,x+4,0,-3*x-2]];
E[208,3] = [x, [1,0,0,0,2,0,2,0,-3,0,2,0,-1,0,0,0,6]];
E[208,4] = [x, [1,0,-1,0,-3,0,1,0,-2,0,-6,0,1,0,3,0,-3]];
E[208,5] = [x, [1,0,-1,0,-1,0,-5,0,-2,0,2,0,-1,0,1,0,-3]];

E[209,1] = [x^2-2, [1,x,-x-1,0,-1,-x-2,-x-2,-2*x,2*x,-x,-1,0,3*x-2,-2*x-2,x+1,-4,x+2]];
E[209,2] = [x^5-2*x^4-6*x^3+10*x^2+5*x-4, [2,2*x,x^4-2*x^3-5*x^2+8*x+2,2*x^2-4,-x^3+7*x-2,x^3-2*x^2-3*x+4,-x^3+3*x+4,2*x^3-8*x,x^3-2*x^2-7*x+8,-x^4+7*x^2-2*x,2,-x^4+2*x^3+7*x^2-12*x-4,-x^4+7*x^2-4,-x^4+3*x^2+4*x,-x^4+4*x^3+x^2-16*x+10,2*x^4-12*x^2+8,2*x^4-2*x^3-10*x^2+6*x]];
E[209,3] = [x^7+x^6-14*x^5-10*x^4+59*x^3+27*x^2-66*x-30, [4,4*x,-2*x^4+14*x^2-4*x-8,4*x^2-8,2*x^5-18*x^3+28*x+12,-2*x^5+14*x^3-4*x^2-8*x,-x^6+12*x^4-37*x^2+26,4*x^3-16*x,x^6-12*x^4+4*x^3+41*x^2-20*x-26,2*x^6-18*x^4+28*x^2+12*x,-4,-2*x^6+18*x^4-4*x^3-36*x^2+8*x+16,-x^6-2*x^5+10*x^4+18*x^3-27*x^2-36*x+14,x^6-2*x^5-10*x^4+22*x^3+27*x^2-40*x-30,x^6+2*x^5-10*x^4-18*x^3+23*x^2+28*x+6,4*x^4-24*x^2+16,4*x^4-4*x^3-36*x^2+28*x+48]];
E[209,4] = [x, [1,0,1,-2,-3,0,-4,0,-2,0,1,-2,2,0,-3,4,0]];

E[210,1] = [x, [1,-1,1,1,1,-1,1,-1,1,-1,0,1,2,-1,1,1,-6]];
E[210,2] = [x, [1,-1,-1,1,-1,1,-1,-1,1,1,-4,-1,-2,1,1,1,-6]];
E[210,3] = [x, [1,1,-1,1,1,-1,1,1,1,1,4,-1,-2,1,-1,1,2]];
E[210,4] = [x, [1,1,1,1,1,1,-1,1,1,1,-4,1,-2,-1,1,1,2]];
E[210,5] = [x, [1,1,1,1,-1,1,1,1,1,-1,0,1,2,1,-1,1,-6]];

E[211,1] = [x^2-x-1, [1,x,x+1,x-1,-2*x+2,2*x+1,-x+1,-2*x+1,3*x-1,-2,-3,x,-2*x+5,-1,-2*x,-3*x,-x+6]];
E[211,2] = [x^3+2*x^2-x-1, [1,x,-x^2-x+1,x^2-2,x^2+x-4,x^2-1,-x^2-4*x,-2*x^2-3*x+1,-x-2,-x^2-3*x+1,3*x^2+7*x-2,2*x-1,2*x^2+3*x-3,-2*x^2-x-1,3*x^2+4*x-4,-x^2-x+2,x^2+3*x+2]];
E[211,3] = [x^3-4*x+1, [1,x,-x-1,x^2-2,-x^2-x+1,-x^2-x,x-1,-1,x^2+2*x-2,-x^2-3*x+1,-3,-x^2-2*x+3,2*x^2-5,x^2-x,2*x^2+4*x-2,-2*x^2-x+4,-x^2-3]];
E[211,4] = [x^9+x^8-14*x^7-11*x^6+66*x^5+36*x^4-123*x^3-38*x^2+72*x+8, [116,116*x,18*x^8+30*x^7-232*x^6-314*x^5+940*x^4+888*x^3-1274*x^2-644*x+248,116*x^2-232,7*x^8+31*x^7-58*x^6-309*x^5+82*x^4+732*x^3+91*x^2-186*x+32,12*x^8+20*x^7-116*x^6-248*x^5+240*x^4+940*x^3+40*x^2-1048*x-144,-26*x^8-82*x^7+232*x^6+866*x^5-404*x^4-2520*x^3-222*x^2+2000*x+312,116*x^3-464*x,-28*x^8-8*x^7+348*x^6+76*x^5-1256*x^4-260*x^3+1144*x^2+280*x+452,24*x^8+40*x^7-232*x^6-380*x^5+480*x^4+952*x^3+80*x^2-472*x-56,12*x^8-38*x^7-174*x^6+448*x^5+762*x^4-1496*x^3-1120*x^2+1330*x+668,-28*x^8-8*x^7+348*x^6+76*x^5-1372*x^4-260*x^3+1956*x^2+280*x-592,3*x^8+5*x^7-33*x^5-172*x^4+32*x^3+271*x^2+28*x+196,-56*x^8-132*x^7+580*x^6+1312*x^5-1584*x^4-3420*x^3+1012*x^2+2184*x+208,22*x^8+114*x^7-232*x^6-1286*x^5+672*x^4+4140*x^3-410*x^2-3816*x-264,116*x^4-696*x^2+464,-20*x^8-72*x^7+232*x^6+800*x^5-864*x^4-2456*x^3+1364*x^2+1824*x-688]];

E[212,1] = [x, [1,0,-1,0,-2,0,-2,0,-2,0,2,0,-7,0,2,0,-3]];
E[212,2] = [x, [1,0,2,0,2,0,0,0,1,0,-4,0,-2,0,4,0,2]];
E[212,3] = [x^3+3*x^2-3*x-7, [1,0,x,0,-x^2-2*x+3,0,x^2+2*x-1,0,x^2-3,0,-x^2+7,0,5,0,x^2-7,0,-2*x-1]];

E[213,1] = [x, [1,1,1,-1,2,1,2,-3,1,2,0,-1,-2,2,2,-1,0]];
E[213,2] = [x^2+x-1, [1,x,-1,-x-1,-x,-x,-3,-2*x-1,1,x-1,-2*x-3,x+1,3*x-1,-3*x,x,3*x,2*x+1]];
E[213,3] = [x^2+3*x+1, [1,x,1,-3*x-3,-x-4,x,2*x+1,4*x+3,1,-x+1,-2*x-7,-3*x-3,-3*x-5,-5*x-2,-x-4,-3*x+2,2*x+1]];
E[213,4] = [x^2-x-3, [1,x,1,x+1,-x,x,-1,3,1,-x-3,3,x+1,-x-1,-x,-x,x-2,3]];
E[213,5] = [x^4-3*x^3-2*x^2+7*x+1, [1,x,-1,x^2-2,-x^2+2*x+1,-x,-x^2+x+4,x^3-4*x,1,-x^3+2*x^2+x,-x^3+x^2+3*x+1,-x^2+2,-x^3+2*x^2+x,-x^3+x^2+4*x,x^2-2*x-1,3*x^3-4*x^2-7*x+3,2*x^3-5*x^2-5*x+6]];

E[214,1] = [x, [1,1,-2,1,-3,-2,-4,1,1,-3,-2,-2,4,-4,6,1,-2]];
E[214,2] = [x, [1,1,1,1,0,1,2,1,-2,0,-3,1,-1,2,0,1,6]];
E[214,3] = [x^2-2*x-2, [1,1,x,1,-x+1,x,-x,1,2*x-1,-x+1,-x+4,x,-x,-x,-x-2,1,x-4]];
E[214,4] = [x, [1,-1,1,1,-4,-1,-2,-1,-2,4,-3,1,-1,2,-4,1,6]];
E[214,5] = [x, [1,-1,-2,1,-1,2,4,-1,1,1,-6,-2,-4,-4,2,1,-6]];
E[214,6] = [x^2+2*x-2, [1,-1,x,1,x+3,-x,x,-1,-2*x-1,-x-3,-x,x,-x,-x,x+2,1,-x+4]];

E[215,1] = [x^5-2*x^4-7*x^3+13*x^2+5*x-4, [1,x,-x^3+5*x,x^2-2,1,-x^4+5*x^2,x^4-x^3-6*x^2+6*x+2,x^3-4*x,x^4+x^3-6*x^2-6*x+5,x,x^3-6*x-1,-2*x^4+13*x^2-5*x-4,-x^4+5*x^2+x+3,x^4+x^3-7*x^2-3*x+4,-x^3+5*x,x^4-6*x^2+4,x^4-7*x^2+x+1]];
E[215,2] = [x^6-3*x^5-5*x^4+17*x^3+3*x^2-17*x-3, [1,x,x^5-2*x^4-6*x^3+9*x^2+6*x-2,x^2-2,-1,x^5-x^4-8*x^3+3*x^2+15*x+3,-2*x^5+3*x^4+13*x^3-12*x^2-16*x+2,x^3-4*x,2*x^5-3*x^4-13*x^3+10*x^2+16*x+7,-x,-3*x^5+3*x^4+23*x^3-9*x^2-38*x-9,x^4-2*x^3-6*x^2+8*x+7,-2*x+2,-3*x^5+3*x^4+22*x^3-10*x^2-32*x-6,-x^5+2*x^4+6*x^3-9*x^2-6*x+2,x^4-6*x^2+4,4*x^5-4*x^4-30*x^3+12*x^2+48*x+12]];
E[215,3] = [x^3+2*x^2-3*x-3, [1,x,x+1,x^2-2,1,x^2+x,-x^2-2*x+1,-2*x^2-x+3,x^2+2*x-2,x,-x^2+x+7,-x^2+x+1,-2*x-2,-2*x-3,x+1,x^2-3*x-2,-2*x+2]];
E[215,4] = [x, [1,0,0,-2,-1,0,-2,0,-3,0,-1,0,-1,0,0,4,-3]];

E[216,1] = [x, [1,0,0,0,-1,0,3,0,0,0,5,0,4,0,0,0,-8]];
E[216,2] = [x, [1,0,0,0,4,0,-3,0,0,0,4,0,1,0,0,0,-4]];
E[216,3] = [x, [1,0,0,0,-4,0,-3,0,0,0,-4,0,1,0,0,0,4]];
E[216,4] = [x, [1,0,0,0,1,0,3,0,0,0,-5,0,4,0,0,0,8]];

E[217,1] = [x^4-5*x^2+x+1, [1,x,-x^3+5*x,x^2-2,-x+1,x+1,1,x^3-4*x,-x^3-x^2+5*x+2,-x^2+x,-x^2-2*x+3,2*x^3+x^2-9*x,x^3-x^2-5*x+3,x,-x^3+4*x-1,-x^2-x+3,2*x^2+x-3]];
E[217,2] = [x^5-3*x^4-5*x^3+16*x^2+6*x-19, [1,x,-x^3+2*x^2+3*x-4,x^2-2,x^4-2*x^3-5*x^2+6*x+6,-x^4+2*x^3+3*x^2-4*x,-1,x^3-4*x,-x^3+3*x^2+x-6,x^4-10*x^2+19,-x^4+2*x^3+4*x^2-5*x-2,-x^4+8*x^2-11,-x^4+x^3+6*x^2-2*x-8,-x,x^4-x^3-7*x^2+x+14,x^4-6*x^2+4,2*x^3-4*x^2-7*x+9]];
E[217,3] = [x^3+3*x^2-3, [1,-x^2-2*x,x,x^2+3*x+1,x^2-3,x^2-3,-1,x^2-x-6,x^2-3,3*x+3,x^2+3*x-2,x+3,-3*x^2-4*x+4,x^2+2*x,-3*x^2-3*x+3,3*x+4,-x^2-2*x-1]];
E[217,4] = [x^3+3*x^2-1, [1,-x^2-2*x,x,x^2+x-1,x^2+2*x-3,x^2-1,1,x^2+5*x,x^2-3,2*x^2+5*x-1,-3*x^2-9*x,-2*x^2-x+1,3*x^2+6*x-4,-x^2-2*x,-x^2-3*x+1,-3*x-2,-x^2-2*x-3]];

E[218,1] = [x, [1,1,-2,1,-3,-2,-4,1,1,-3,3,-2,-4,-4,6,1,-6]];
E[218,2] = [x^2+2*x-2, [1,1,x,1,-x-1,x,x+4,1,-2*x-1,-x-1,1,x,-2*x,x+4,x-2,1,-x]];
E[218,3] = [x^2-3*x+1, [1,1,x,1,-2*x+4,x,-2,1,3*x-4,-2*x+4,-2*x,x,3*x-3,-2,-2*x+2,1,-4*x+4]];
E[218,4] = [x^2+4*x+2, [1,-1,x,1,-x-1,-x,-x-4,-1,-4*x-5,x+1,2*x+3,x,2*x,x+4,3*x+2,1,x]];
E[218,5] = [x^3-3*x^2-3*x+8, [1,-1,x,1,-x^2+x+3,-x,2,-1,x^2-3,x^2-x-3,x^2-x-3,x,x^2-2*x,-2,-2*x^2+8,1,0]];

E[219,1] = [x, [1,-2,-1,2,-1,2,2,0,1,2,-4,-2,-2,-4,1,-4,-3]];
E[219,2] = [x, [1,1,-1,-1,-4,-1,2,-3,1,-4,-4,1,-2,2,4,-1,0]];
E[219,3] = [x^4-x^3-6*x^2+4*x+4, [2,2*x,-2,2*x^2-4,-x^3+x^2+4*x+2,-2*x,-2*x^2+2*x+4,2*x^3-8*x,2,-2*x^2+6*x+4,-2*x^2-2*x+8,-2*x^2+4,-2*x^3+10*x+4,-2*x^3+2*x^2+4*x,x^3-x^2-4*x-2,2*x^3-8*x,3*x^3-x^2-14*x+6]];
E[219,4] = [x^6+x^5-9*x^4-5*x^3+20*x^2+4*x-4, [2,2*x,2,2*x^2-4,-x^5-x^4+7*x^3+3*x^2-10*x+2,2*x,x^5+2*x^4-7*x^3-10*x^2+10*x+8,2*x^3-8*x,2,-2*x^4-2*x^3+10*x^2+6*x-4,x^5-11*x^3+26*x,2*x^2-4,2*x^3-10*x+4,x^5+2*x^4-5*x^3-10*x^2+4*x+4,-x^5-x^4+7*x^3+3*x^2-10*x+2,2*x^4-12*x^2+8,-x^5-x^4+9*x^3+3*x^2-20*x+2]];
E[219,5] = [x, [1,0,1,-2,-3,0,-4,0,1,0,0,-2,-4,0,-3,4,3]];

E[220,1] = [x, [1,0,-2,0,1,0,-4,0,1,0,-1,0,-4,0,-2,0,0]];
E[220,2] = [x, [1,0,2,0,1,0,0,0,1,0,1,0,0,0,2,0,-4]];

E[221,1] = [x, [1,1,2,-1,2,2,2,-3,1,2,-6,-2,-1,2,4,-1,1]];
E[221,2] = [x, [1,-1,0,-1,4,0,-2,3,-3,-4,6,0,-1,2,0,-1,1]];
E[221,3] = [x^2-5, [1,x,-x+1,3,x-1,x-5,2,x,-2*x+3,-x+5,2,-3*x+3,-1,2*x,2*x-6,-1,1]];
E[221,4] = [x^2+x-1, [1,x,x-1,-x-1,-2*x-1,-2*x+1,-x-1,-2*x-1,-3*x-1,x-2,3*x,x,-1,-1,3*x-1,3*x,-1]];
E[221,5] = [x^3-4*x+1, [1,x,-x-1,x^2-2,-x^2-x+2,-x^2-x,x-3,-1,x^2+2*x-2,-x^2-2*x+1,x^2-5,-x^2-2*x+3,1,x^2-3*x,2*x^2+3*x-3,-2*x^2-x+4,1]];
E[221,6] = [x^6-x^5-9*x^4+6*x^3+19*x^2-5*x-3, [2,2*x,-x^5+x^4+8*x^3-5*x^2-13*x+2,2*x^2-4,x^4-x^3-6*x^2+3*x+3,-x^4+x^3+6*x^2-3*x-3,-2*x^3+10*x+4,2*x^3-8*x,-2*x^2+8,x^5-x^4-6*x^3+3*x^2+3*x,-2*x^2+6,x^5-x^4-10*x^3+7*x^2+23*x-4,2,-2*x^4+10*x^2+4*x,2*x^3-14*x,2*x^4-12*x^2+8,-2]];
E[221,7] = [x^2+x-5, [1,x,x+1,-x+3,-1,5,-x-3,2*x-5,x+3,-x,x+2,3*x-2,-1,-2*x-5,-x-1,-5*x+4,1]];

E[222,1] = [x, [1,1,1,1,0,1,-1,1,1,0,3,1,-1,-1,0,1,-3]];
E[222,2] = [x, [1,1,-1,1,0,-1,3,1,1,0,1,-1,1,3,0,1,-3]];
E[222,3] = [x, [1,-1,1,1,4,-1,-1,-1,1,-4,-1,1,-3,1,4,1,3]];
E[222,4] = [x, [1,-1,-1,1,-4,1,3,-1,1,4,5,-1,3,-3,4,1,3]];
E[222,5] = [x, [1,-1,-1,1,2,1,0,-1,1,-2,-4,-1,6,0,-2,1,6]];

E[223,1] = [x^2+2*x-1, [1,x,x,-2*x-1,-x-3,-2*x+1,-x-1,x-2,-2*x-2,-x-1,-x,3*x-2,x+3,x-1,-x-1,3,2*x-1]];
E[223,2] = [x^4+4*x^3+2*x^2-5*x-3, [1,x,-x-1,x^2-2,-x^3-3*x^2+x+3,-x^2-x,2*x^3+5*x^2-2*x-6,x^3-4*x,x^2+2*x-2,x^3+3*x^2-2*x-3,-2*x^3-6*x^2+x+4,-x^3-x^2+2*x+2,x^3+4*x^2-8,-3*x^3-6*x^2+4*x+6,x,-4*x^3-8*x^2+5*x+7,x^3+x^2-4*x-5]];
E[223,3] = [x^12-7*x^11+6*x^10+57*x^9-122*x^8-105*x^7+430*x^6-73*x^5-499*x^4+242*x^3+143*x^2-52*x-19, [1,x,2*x^11-11*x^10-2*x^9+98*x^8-103*x^7-245*x^6+397*x^5+123*x^4-412*x^3+129*x^2+41*x-18,x^2-2,4*x^11-21*x^10-10*x^9+196*x^8-152*x^7-550*x^6+654*x^5+468*x^4-731*x^3+20*x^2+114*x+4,3*x^11-14*x^10-16*x^9+141*x^8-35*x^7-463*x^6+269*x^5+586*x^4-355*x^3-245*x^2+86*x+38,-9*x^11+45*x^10+34*x^9-435*x^8+235*x^7+1320*x^6-1172*x^5-1412*x^4+1388*x^3+350*x^2-263*x-61,x^3-4*x,-x^9+3*x^8+9*x^7-29*x^6-23*x^5+87*x^4+13*x^3-88*x^2+10*x+17,7*x^11-34*x^10-32*x^9+336*x^8-130*x^7-1066*x^6+760*x^5+1265*x^4-948*x^3-458*x^2+212*x+76,-12*x^11+60*x^10+45*x^9-578*x^8+315*x^7+1739*x^6-1559*x^5-1813*x^4+1827*x^3+390*x^2-327*x-68,3*x^11-12*x^10-26*x^9+135*x^8+58*x^7-531*x^6+11*x^5+896*x^4-147*x^3-601*x^2+112*x+93,x^11-7*x^10+6*x^9+56*x^8-119*x^7-96*x^6+400*x^5-95*x^4-403*x^3+248*x^2+36*x-31,-18*x^11+88*x^10+78*x^9-863*x^8+375*x^7+2698*x^6-2069*x^5-3103*x^4+2528*x^3+1024*x^2-529*x-171,2*x^11-9*x^10-12*x^9+91*x^8-9*x^7-300*x^6+128*x^5+380*x^4-165*x^3-158*x^2+25*x+23,x^4-6*x^2+4,14*x^11-66*x^10-73*x^9+663*x^8-176*x^7-2169*x^6+1282*x^5+2737*x^4-1683*x^3-1153*x^2+418*x+185]];

E[224,1] = [x, [1,0,-2,0,0,0,-1,0,1,0,-4,0,-4,0,0,0,-2]];
E[224,2] = [x, [1,0,2,0,0,0,1,0,1,0,4,0,-4,0,0,0,-2]];
E[224,3] = [x^2-2*x-4, [1,0,x,0,-x+2,0,-1,0,2*x+1,0,-2*x+4,0,x+2,0,-4,0,-2*x+2]];
E[224,4] = [x^2+2*x-4, [1,0,x,0,x+2,0,1,0,-2*x+1,0,-2*x-4,0,-x+2,0,4,0,2*x+2]];

E[225,1] = [x, [1,-1,0,-1,0,0,0,3,0,0,4,0,2,0,0,-1,2]];
E[225,2] = [x, [1,2,0,2,0,0,3,0,0,0,-2,0,-1,6,0,-4,2]];
E[225,3] = [x, [1,-2,0,2,0,0,-3,0,0,0,-2,0,1,6,0,-4,-2]];
E[225,4] = [x^2-5, [1,x,0,3,0,0,0,x,0,0,0,0,0,0,0,-1,-2*x]];
E[225,5] = [x, [1,0,0,-2,0,0,-5,0,0,0,0,0,-5,0,0,4,0]];
E[225,6] = [x, [1,0,0,-2,0,0,5,0,0,0,0,0,5,0,0,4,0]];

E[226,1] = [x^2-2, [1,-1,x,1,-x-2,-x,-2*x-2,-1,-1,x+2,-4,x,2,2*x+2,-2*x-2,1,2*x-2]];
E[226,2] = [x^2-2*x-2, [1,-1,x,1,2,-x,0,-1,2*x-1,-2,-2*x+4,x,-2*x,0,2*x,1,-2]];
E[226,3] = [x, [1,1,-2,1,-4,-2,0,1,1,-4,-4,-2,-2,0,8,1,-2]];
E[226,4] = [x^4-2*x^3-6*x^2+12*x-4, [2,2,2*x,2,x^3-2*x^2-8*x+12,2*x,-2*x^3+2*x^2+12*x-12,2,2*x^2-6,x^3-2*x^2-8*x+12,2*x^2-8,2*x,4*x^3-4*x^2-28*x+24,-2*x^3+2*x^2+12*x-12,-2*x^2+4,2,-4*x^3+4*x^2+24*x-20]];

E[227,1] = [x^2-5, [2,2*x,-x+3,6,-4,3*x-5,x+7,2*x,-3*x+1,-4*x,-x+1,-3*x+9,-2*x-2,7*x+5,2*x-6,-2,-8]];
E[227,2] = [x^3+2*x^2-x-1, [1,x,-x^2-2*x+1,x^2-2,x^2+x-3,-1,x^2+3*x-2,-2*x^2-3*x+1,-x^2-x,-x^2-2*x+1,x^2-x-3,2*x^2+3*x-2,-3,x^2-x+1,3*x^2+5*x-4,-x^2-x+2,x+3]];
E[227,3] = [x^10-17*x^8-3*x^7+98*x^6+40*x^5-218*x^4-148*x^3+136*x^2+144*x+32, [16,16*x,x^9-21*x^7-3*x^6+150*x^5+36*x^4-418*x^3-132*x^2+368*x+160,16*x^2-32,-12*x^9+12*x^8+196*x^7-152*x^6-1076*x^5+496*x^4+2312*x^3-168*x^2-1616*x-480,-4*x^8+52*x^6-4*x^5-200*x^4+16*x^3+232*x^2+16*x-32,13*x^9-8*x^8-213*x^7+97*x^6+1178*x^5-256*x^4-2562*x^3-212*x^2+1816*x+672,16*x^3-64*x,-5*x^9+4*x^8+81*x^7-45*x^6-434*x^5+100*x^4+882*x^3+124*x^2-560*x-224,12*x^9-8*x^8-188*x^7+100*x^6+976*x^5-304*x^4-1944*x^3+16*x^2+1248*x+384,2*x^9-4*x^8-30*x^7+54*x^6+140*x^5-204*x^4-212*x^3+176*x^2+56*x+16,-6*x^9+94*x^7+2*x^6-500*x^5-56*x^4+1068*x^3+280*x^2-768*x-320,-4*x^8+52*x^6-4*x^5-200*x^4+16*x^3+232*x^2+16*x,-8*x^9+8*x^8+136*x^7-96*x^6-776*x^5+272*x^4+1712*x^3+48*x^2-1200*x-416,20*x^9-12*x^8-332*x^7+144*x^6+1860*x^5-384*x^4-4056*x^3-248*x^2+2752*x+928,16*x^4-96*x^2+64,-18*x^9+16*x^8+298*x^7-202*x^6-1660*x^5+648*x^4+3604*x^3-152*x^2-2512*x-736]];
E[227,4] = [x^2-2, [1,x,-2,0,-x,-2*x,-2*x-1,-2*x,1,-2,2*x+1,0,2*x-4,-x-4,2*x,-4,x-4]];
E[227,5] = [x^2+x-7, [1,1,x,-1,2,x,-x+1,-3,-x+4,2,x+3,-x,-2*x,-x+1,2*x,-1,-4]];

E[228,1] = [x^2-3*x-6, [1,0,1,0,x,0,-x+2,0,1,0,-x,0,2,0,x,0,-x]];
E[228,2] = [x, [1,0,-1,0,-3,0,1,0,1,0,-5,0,-6,0,3,0,-5]];
E[228,3] = [x, [1,0,-1,0,2,0,0,0,1,0,2,0,2,0,-2,0,6]];

E[229,1] = [x, [1,-1,1,-1,-3,-1,2,3,-2,3,-3,-1,-6,-2,-3,-1,-7]];
E[229,2] = [x^6+4*x^5-12*x^3-3*x^2+9*x-1, [1,x,x^4+2*x^3-3*x^2-4*x+1,x^2-2,-x^5-4*x^4-x^3+8*x^2+3*x-2,x^5+2*x^4-3*x^3-4*x^2+x,x^5+2*x^4-3*x^3-2*x^2+4*x-4,x^3-4*x,-2*x^4-5*x^3+5*x^2+10*x-4,-x^4-4*x^3+7*x-1,x^4+3*x^3-2*x^2-6*x-1,-2*x^5-5*x^4+4*x^3+10*x^2-x-1,x^5+5*x^4+4*x^3-11*x^2-12*x+5,-2*x^5-3*x^4+10*x^3+7*x^2-13*x+1,2*x^5+7*x^4+x^3-12*x^2-5*x,x^4-6*x^2+4,-x^4-4*x^3+x^2+10*x-1]];
E[229,3] = [x^11-5*x^10-4*x^9+50*x^8-26*x^7-165*x^6+152*x^5+193*x^4-207*x^3-50*x^2+52*x+1, [4,4*x,x^9-x^8-13*x^7+11*x^6+55*x^5-40*x^4-83*x^3+53*x^2+32*x-11,4*x^2-8,-x^9+x^8+11*x^7-5*x^6-43*x^5+65*x^3+15*x^2-24*x-3,x^10-x^9-13*x^8+11*x^7+55*x^6-40*x^5-83*x^4+53*x^3+32*x^2-11*x,-x^10+3*x^9+9*x^8-31*x^7-21*x^6+106*x^5-3*x^4-131*x^3+26*x^2+41*x+6,4*x^3-16*x,-2*x^10+5*x^9+23*x^8-53*x^7-97*x^6+189*x^5+178*x^4-247*x^3-125*x^2+74*x+23,-x^10+x^9+11*x^8-5*x^7-43*x^6+65*x^4+15*x^3-24*x^2-3*x,2*x^10-7*x^9-17*x^8+71*x^7+39*x^6-235*x^5-2*x^4+265*x^3-49*x^2-54*x+23,4*x^10-11*x^9-37*x^8+107*x^7+103*x^6-345*x^5-60*x^4+405*x^3-67*x^2-116*x+21,2*x^10-6*x^9-18*x^8+58*x^7+50*x^6-184*x^5-38*x^4+210*x^3-12*x^2-62*x+8,-2*x^10+5*x^9+19*x^8-47*x^7-59*x^6+149*x^5+62*x^4-181*x^3-9*x^2+58*x+1,-x^9+x^8+13*x^7-11*x^6-55*x^5+40*x^4+79*x^3-49*x^2-20*x+7,4*x^4-24*x^2+16,-2*x^10+10*x^9+10*x^8-100*x^7+24*x^6+328*x^5-178*x^4-372*x^3+216*x^2+78*x-30]];

E[230,1] = [x^2-3*x-1, [1,-1,x,1,1,-x,-x+3,-1,3*x-2,-1,-x-2,x,-x+3,x-3,x,1,-3*x+6]];
E[230,2] = [x^2+x-5, [1,-1,x,1,-1,-x,x+1,-1,-x+2,1,x+2,x,-x+3,-x-1,-x,1,-x-2]];
E[230,3] = [x^2-x-1, [1,1,x,1,1,x,-x+1,1,x-2,1,-3*x+2,x,-5*x+1,-x+1,x,1,5*x-2]];
E[230,4] = [x^3-x^2-9*x+12, [1,1,x,1,-1,x,-x^2-2*x+8,1,x^2-3,-1,2*x^2+x-12,x,-x^2+6,-x^2-2*x+8,-x,1,-x-2]];

E[231,1] = [x, [1,-1,-1,-1,-2,1,1,3,1,2,-1,1,6,-1,2,-1,2]];
E[231,2] = [x^2+x-5, [1,x,-1,-x+3,3,-x,1,2*x-5,1,3*x,-1,x-3,1,x,-3,-5*x+4,2*x+4]];
E[231,3] = [x^3-2*x^2-4*x+7, [1,x,1,x^2-2,-x^2-x+6,x,-1,2*x^2-7,1,-3*x^2+2*x+7,-1,x^2-2,-3*x^2+x+10,-x,-x^2-x+6,2*x^2+x-10,4*x^2-2*x-12]];
E[231,4] = [x^3-6*x-1, [1,x,-1,x^2-2,-x^2+x+4,-x,-1,2*x+1,1,x^2-2*x-1,1,-x^2+2,-x^2+x+4,-x,x^2-x-4,x+4,-2*x]];
E[231,5] = [x^2-x-1, [1,x,1,x-1,1,x,1,-2*x+1,1,x,1,x-1,-4*x+1,x,1,-3*x,-2*x+4]];

E[232,1] = [x, [1,0,1,0,1,0,2,0,-2,0,3,0,-1,0,1,0,0]];
E[232,2] = [x, [1,0,-1,0,-3,0,2,0,-2,0,-3,0,-5,0,3,0,-4]];
E[232,3] = [x^2+2*x-1, [1,0,x,0,-2*x-3,0,-4,0,-2*x-2,0,-x-2,0,4*x+3,0,x-2,0,4*x+2]];
E[232,4] = [x^3-2*x^2-5*x+8, [1,0,x,0,-x^2+6,0,0,0,x^2-3,0,2*x^2-x-8,0,x^2-2*x-2,0,-2*x^2+x+8,0,2]];

E[233,1] = [x, [1,1,-2,-1,2,-2,4,-3,1,2,6,2,6,4,-4,-1,-6]];
E[233,2] = [x^7+2*x^6-6*x^5-10*x^4+10*x^3+8*x^2-7*x+1, [1,x,x^5+x^4-5*x^3-4*x^2+3*x,x^2-2,-x^5-2*x^4+4*x^3+8*x^2-x-3,x^6+x^5-5*x^4-4*x^3+3*x^2,-x^6-3*x^5+5*x^4+16*x^3-6*x^2-16*x+3,x^3-4*x,-x^6-4*x^5+3*x^4+19*x^3+4*x^2-11*x-1,-x^6-2*x^5+4*x^4+8*x^3-x^2-3*x,-x^6-2*x^5+7*x^4+11*x^3-13*x^2-11*x+5,-x^6-x^5+4*x^4+3*x^3+x-1,6*x^6+14*x^5-29*x^4-68*x^3+25*x^2+52*x-16,-x^6-x^5+6*x^4+4*x^3-8*x^2-4*x+1,2*x^6+6*x^5-7*x^4-27*x^3-x^2+16*x-4,x^4-6*x^2+4,5*x^6+13*x^5-24*x^4-65*x^3+22*x^2+53*x-17]];
E[233,3] = [x^11+2*x^10-16*x^9-30*x^8+91*x^7+158*x^6-213*x^5-349*x^4+152*x^3+290*x^2+41*x-19, [4,4*x,7*x^10-2*x^9-107*x^8+32*x^7+556*x^6-130*x^5-1147*x^4+31*x^3+883*x^2+203*x-64,4*x^2-8,54*x^10-18*x^9-818*x^8+290*x^7+4184*x^6-1240*x^5-8386*x^4+732*x^3+6200*x^2+1176*x-438,-16*x^10+5*x^9+242*x^8-81*x^7-1236*x^6+344*x^5+2474*x^4-181*x^3-1827*x^2-351*x+133,4*x^10-2*x^9-60*x^8+30*x^7+300*x^6-124*x^5-572*x^4+86*x^3+390*x^2+82*x-10,4*x^3-16*x,-8*x^10+2*x^9+120*x^8-34*x^7-604*x^6+144*x^5+1176*x^4-46*x^3-834*x^2-190*x+62,-126*x^10+46*x^9+1910*x^8-730*x^7-9772*x^6+3116*x^5+19578*x^4-2008*x^3-14484*x^2-2652*x+1026,9*x^10-3*x^9-135*x^8+49*x^7+680*x^6-214*x^5-1331*x^4+150*x^3+968*x^2+148*x-81,23*x^10-10*x^9-347*x^8+156*x^7+1760*x^6-674*x^5-3471*x^4+543*x^3+2523*x^2+383*x-176,-4*x^10+60*x^8-4*x^7-304*x^6+24*x^5+600*x^4+12*x^3-416*x^2-80*x+28,-10*x^10+4*x^9+150*x^8-64*x^7-756*x^6+280*x^5+1482*x^4-218*x^3-1078*x^2-174*x+76,-34*x^10+14*x^9+514*x^8-218*x^7-2616*x^6+924*x^5+5194*x^4-632*x^3-3824*x^2-700*x+282,4*x^4-24*x^2+16,-42*x^10+16*x^9+638*x^8-252*x^7-3276*x^6+1072*x^5+6610*x^4-698*x^3-4954*x^2-910*x+368]];

E[234,1] = [x, [1,-1,0,1,1,0,1,-1,0,-1,2,0,-1,-1,0,1,3]];
E[234,2] = [x, [1,-1,0,1,-2,0,-2,-1,0,2,-4,0,-1,2,0,1,0]];
E[234,3] = [x, [1,1,0,1,-2,0,4,1,0,-2,4,0,1,4,0,1,-2]];
E[234,4] = [x, [1,1,0,1,3,0,-1,1,0,3,-6,0,1,-1,0,1,3]];
E[234,5] = [x, [1,1,0,1,2,0,-2,1,0,2,4,0,-1,-2,0,1,0]];

E[235,1] = [x, [1,2,2,2,-1,4,-2,0,1,-2,0,4,3,-4,-2,-4,0]];
E[235,2] = [x^5+4*x^4-12*x^2-4*x+7, [1,x,x^4+2*x^3-4*x^2-5*x+3,x^2-2,-1,-2*x^4-4*x^3+7*x^2+7*x-7,-2*x^4-5*x^3+5*x^2+10*x-5,x^3-4*x,-2*x^4-3*x^3+9*x^2+6*x-8,-x,x^4+3*x^3+x^2-3*x-5,2*x^4+3*x^3-9*x^2-5*x+8,x^4+x^3-5*x^2-3*x+1,3*x^4+5*x^3-14*x^2-13*x+14,-x^4-2*x^3+4*x^2+5*x-3,x^4-6*x^2+4,x^3+x^2-2*x-2]];
E[235,3] = [x^7-x^6-10*x^5+8*x^4+28*x^3-17*x^2-19*x+2, [2,2*x,x^6-10*x^4+24*x^2-3*x-6,2*x^2-4,2,x^6-8*x^4-4*x^3+14*x^2+13*x-2,-x^6+8*x^4+2*x^3-14*x^2-3*x+2,2*x^3-8*x,x^6-8*x^4-2*x^3+10*x^2+3*x+12,2*x,-3*x^6+26*x^4+6*x^3-50*x^2-15*x+6,-x^6+2*x^5+8*x^4-14*x^3-18*x^2+23*x+10,-x^6-2*x^5+10*x^4+18*x^3-22*x^2-33*x+4,-x^6-2*x^5+10*x^4+14*x^3-20*x^2-17*x+2,x^6-10*x^4+24*x^2-3*x-6,2*x^4-12*x^2+8,2*x^6-16*x^4-6*x^3+26*x^2+18*x+4]];
E[235,4] = [x, [1,-1,-1,-1,1,1,1,3,-2,-1,-3,1,-3,-1,-1,-1,-6]];
E[235,5] = [x, [1,-1,-1,-1,-1,1,1,3,-2,1,3,1,3,-1,1,-1,6]];

E[236,1] = [x, [1,0,1,0,3,0,-1,0,-2,0,6,0,-4,0,3,0,-6]];
E[236,2] = [x, [1,0,-1,0,-1,0,-3,0,-2,0,-2,0,0,0,1,0,2]];
E[236,3] = [x^3-9*x+1, [3,0,3*x,0,-x^2+x+2,0,-x^2-2*x+14,0,3*x^2-9,0,2*x^2-2*x-10,0,-2*x^2+2*x+16,0,x^2-7*x+1,0,3]];

E[237,1] = [x^2-2*x-1, [1,x,-1,2*x-1,0,-x,1,x+2,1,0,-x+4,-2*x+1,-2*x+1,x,0,3,-x+2]];
E[237,2] = [x^7-2*x^6-11*x^5+22*x^4+30*x^3-65*x^2-2*x+23, [2,2*x,2,2*x^2-4,-2*x^6+24*x^4-2*x^3-74*x^2+18*x+32,2*x,3*x^6-x^5-34*x^4+8*x^3+98*x^2-25*x-37,2*x^3-8*x,2,-4*x^6+2*x^5+42*x^4-14*x^3-112*x^2+28*x+46,x^6+x^5-12*x^4-8*x^3+34*x^2+7*x-7,2*x^2-4,5*x^6-x^5-56*x^4+8*x^3+158*x^2-33*x-57,5*x^6-x^5-58*x^4+8*x^3+170*x^2-31*x-69,-2*x^6+24*x^4-2*x^3-74*x^2+18*x+32,2*x^4-12*x^2+8,-5*x^6+x^5+54*x^4-4*x^3-146*x^2+11*x+53]];
E[237,3] = [x^4+3*x^3-x^2-5*x+1, [1,x,-1,x^2-2,-x^3-3*x^2+2,-x,2*x^3+4*x^2-4*x-4,x^3-4*x,1,-x^2-3*x+1,-x^3-x^2+2*x-3,-x^2+2,-x^3+x^2+6*x-5,-2*x^3-2*x^2+6*x-2,x^3+3*x^2-2,-3*x^3-5*x^2+5*x+3,2*x^3+4*x^2-2*x-4]];

E[238,1] = [x, [1,1,-2,1,-4,-2,1,1,1,-4,-6,-2,-2,1,8,1,-1]];
E[238,2] = [x, [1,1,2,1,0,2,-1,1,1,0,-2,2,-2,-1,0,1,-1]];
E[238,3] = [x, [1,1,0,1,2,0,1,1,-3,2,0,0,-2,1,0,1,1]];
E[238,4] = [x, [1,-1,2,1,4,-2,1,-1,1,-4,-4,2,-4,-1,8,1,-1]];
E[238,5] = [x^2-2*x-4, [1,-1,x,1,-x+2,-x,-1,-1,2*x+1,x-2,x+2,x,-2*x+4,1,-4,1,1]];
E[238,6] = [x, [1,-1,0,1,-2,0,-1,-1,-3,2,-2,0,0,1,0,1,-1]];

E[239,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x+1,x^2-2,x^2-3,-x-1,-1,-x^2-2*x+1,x-1,-x^2-x+1,x^2-2,x^2+x-2,x^2-4,-x,2*x^2+2*x-3,-3*x^2-x+3,-x^2+1]];
E[239,2] = [x^17-28*x^15+x^14+319*x^13-17*x^12-1903*x^11+91*x^10+6377*x^9-125*x^8-11967*x^7-233*x^6+11733*x^5+503*x^4-5015*x^3-94*x^2+609*x+49, [11107271,11107271*x,16771351*x^16-20065815*x^15-442373694*x^14+548454202*x^13+4613893796*x^12-5855599700*x^11-24126751696*x^10+30789210039*x^9+66289587616*x^8-82906055202*x^7-91822850183*x^6+108744026520*x^5+54627655140*x^4-59185678764*x^3-7102994828*x^2+7384450585*x+608340411,11107271*x^2-22214542,22511799*x^16-28856065*x^15-595209258*x^14+783888478*x^13+6223382488*x^12-8326382581*x^11-32632212856*x^10+43603144382*x^9+89969920460*x^8-117052738164*x^7-125297104388*x^6+153180936380*x^5+75340597103*x^4-83236570496*x^3-10250253852*x^2+10451957825*x+928678597,-20065815*x^16+27224134*x^15+531682851*x^14-736167173*x^13-5570486733*x^12+7789129257*x^11+29263017098*x^10-40661317711*x^9-80809636327*x^8+108879907234*x^7+112651751303*x^6-142150606143*x^5-67621668317*x^4+77005330437*x^3+8960957579*x^2-9605412348*x-821796199,25677032*x^16-33662356*x^15-678381095*x^14+913041769*x^13+7082868525*x^12-9683160111*x^11-37044681867*x^10+50622978623*x^9+101679821355*x^8-135617406635*x^7-140464578889*x^6+176959976663*x^5+83052116143*x^4-95724702685*x^3-10472865097*x^2+11880604573*x+996582489,11107271*x^3-44429084*x,-40326507*x^16+49086639*x^15+1062414857*x^14-1340855037*x^13-11062061824*x^12+14306805063*x^11+57702618949*x^10-75176687453*x^9-157967980023*x^8+202279847143*x^7+217699265401*x^6-265111857765*x^5-128705356679*x^4+144216800690*x^3+16680675317*x^2-17999251300*x-1513124109,-28856065*x^16+35121114*x^15+761376679*x^14-957881393*x^13-7943681998*x^12+10207740641*x^11+41554570673*x^10-53587821763*x^9-114238763289*x^8+144101594245*x^7+158426185547*x^6-188790340564*x^5-94560005393*x^4+102646418133*x^3+12568066931*x^2-12781006994*x-1103078151,11795867*x^16-13526758*x^15-310257157*x^14+372521827*x^13+3225743447*x^12-4005866463*x^11-16804920021*x^10+21217950985*x^9+45950313234*x^8-57627409134*x^7-63241803565*x^6+76509429271*x^5+37396414775*x^4-42451276279*x^3-5056555641*x^2+5464612926*x+531361649,-6318568*x^16+9971661*x^15+168646030*x^14-266400152*x^13-1779777190*x^12+2788970553*x^11+9418174846*x^10-14428354150*x^9-26207494873*x^8+38336253602*x^7+36819759328*x^6-49677513962*x^5-22156874898*x^4+26702252882*x^3+2714390698*x^2-3370616034*x-233455887,12932667*x^16-15955359*x^15-341270909*x^14+433764071*x^13+3560780261*x^12-4604482467*x^11-18627365653*x^10+24045707357*x^9+51216405527*x^8-64145365971*x^7-71086180147*x^6+82910826763*x^5+42558283977*x^4-44016310883*x^3-5687517959*x^2+5215960508*x+473705456,-33662356*x^16+40575801*x^15+887364737*x^14-1108104683*x^13-9246650567*x^12+11818710029*x^11+48286368711*x^10-62062611709*x^9-132407777635*x^8+166812463055*x^7+182942725119*x^6-218216500313*x^5-108640249781*x^4+118297450383*x^3+14294245581*x^2-14640729999*x-1258174568,-36280233*x^16+47293925*x^15+959572236*x^14-1281596277*x^13-10034246150*x^12+13578645544*x^11+52603913191*x^10-70908674270*x^9-144950764154*x^8+189684933246*x^7+201718786246*x^6-247013229219*x^5-121377536570*x^4+133344739412*x^3+16781354739*x^2-16683671513*x-1507459723,11107271*x^4-66643626*x^2+44429084,21279582*x^16-28251293*x^15-563055080*x^14+764328658*x^13+5888803376*x^12-8085603784*x^11-30866495077*x^10+42159265316*x^9+85012631900*x^8-112598812800*x^7-118266415576*x^6+146376439975*x^5+71289580280*x^4-78898734658*x^3-10026490116*x^2+9892317506*x+921516169]];

E[240,1] = [x, [1,0,1,0,1,0,0,0,1,0,4,0,-2,0,1,0,2]];
E[240,2] = [x, [1,0,-1,0,1,0,0,0,1,0,4,0,6,0,-1,0,-6]];
E[240,3] = [x, [1,0,-1,0,-1,0,4,0,1,0,0,0,2,0,1,0,6]];
E[240,4] = [x, [1,0,-1,0,-1,0,-4,0,1,0,0,0,-6,0,1,0,-2]];

E[241,1] = [x^7+4*x^6-14*x^4-10*x^3+6*x^2+3*x-1, [1,x,-x^6-3*x^5+3*x^4+11*x^3-x^2-6*x+1,x^2-2,x^6+2*x^5-6*x^4-9*x^3+10*x^2+8*x-4,x^6+3*x^5-3*x^4-11*x^3+4*x-1,2*x^6+9*x^5+3*x^4-29*x^3-28*x^2+4*x+3,x^3-4*x,-x^5-2*x^4+5*x^3+7*x^2-5*x-2,-2*x^6-6*x^5+5*x^4+20*x^3+2*x^2-7*x+1,-2*x^6-8*x^5-2*x^4+23*x^3+26*x^2+3*x-8,x^6+3*x^5-3*x^4-12*x^3+8*x-1,2*x^6+7*x^5-x^4-21*x^3-15*x^2+2*x+1,x^6+3*x^5-x^4-8*x^3-8*x^2-3*x+2,x^6+5*x^5+2*x^4-18*x^3-14*x^2+11*x-1,x^4-6*x^2+4,-5*x^6-21*x^5-4*x^4+68*x^3+60*x^2-12*x-10]];
E[241,2] = [x^12-3*x^11-14*x^10+44*x^9+65*x^8-219*x^7-123*x^6+444*x^5+105*x^4-328*x^3-45*x^2+18*x-1, [16,16*x,22*x^11-60*x^10-316*x^9+864*x^8+1546*x^7-4172*x^6-3262*x^5+8050*x^4+3308*x^3-5500*x^2-1482*x+186,16*x^2-32,22*x^11-68*x^10-300*x^9+984*x^8+1338*x^7-4796*x^6-2446*x^5+9434*x^4+2356*x^3-6708*x^2-1474*x+234,6*x^11-8*x^10-104*x^9+116*x^8+646*x^7-556*x^6-1718*x^5+998*x^4+1716*x^3-492*x^2-210*x+22,-15*x^11+28*x^10+244*x^9-410*x^8-1415*x^7+2022*x^6+3567*x^5-3951*x^4-3618*x^3+2566*x^2+813*x-71,16*x^3-64*x,-24*x^11+80*x^10+320*x^9-1168*x^8-1368*x^7+5776*x^6+2344*x^5-11624*x^4-2384*x^3+8512*x^2+2008*x-216,-2*x^11+8*x^10+16*x^9-92*x^8+22*x^7+260*x^6-334*x^5+46*x^4+508*x^3-484*x^2-162*x+22,-20*x^11+62*x^10+270*x^9-890*x^8-1178*x^7+4280*x^6+2040*x^5-8238*x^4-1772*x^3+5688*x^2+1040*x-170,-34*x^11+100*x^10+484*x^9-1472*x^8-2334*x^7+7364*x^6+4858*x^5-15014*x^4-5140*x^3+11060*x^2+2878*x-366,14*x^11-40*x^10-200*x^9+580*x^8+974*x^7-2828*x^6-2078*x^5+5518*x^4+2276*x^3-3788*x^2-1226*x+94,-17*x^11+34*x^10+250*x^9-440*x^8-1263*x^7+1722*x^6+2709*x^5-2043*x^4-2354*x^3+138*x^2+199*x-15,14*x^11-32*x^10-224*x^9+492*x^8+1270*x^7-2620*x^6-3118*x^5+5766*x^4+3140*x^3-4508*x^2-922*x+230,16*x^4-96*x^2+64,-26*x^11+56*x^10+424*x^9-860*x^8-2474*x^7+4564*x^6+6346*x^5-9962*x^4-6860*x^3+7636*x^2+2254*x-266]];

E[242,1] = [x, [1,1,-2,1,-3,-2,-2,1,1,-3,0,-2,-5,-2,6,1,-3]];
E[242,2] = [x^2+2*x-2, [1,1,x,1,-x-1,x,x+4,1,-2*x-1,-x-1,0,x,3,x+4,x-2,1,-3*x-3]];
E[242,3] = [x^2-3*x+1, [1,1,x,1,-2*x+4,x,-2,1,3*x-4,-2*x+4,0,x,-2*x+2,-2,-2*x+2,1,x-1]];
E[242,4] = [x, [1,-1,-2,1,-3,2,2,-1,1,3,0,-2,5,-2,6,1,3]];
E[242,5] = [x^2-3*x+1, [1,-1,x,1,-2*x+4,-x,2,-1,3*x-4,2*x-4,0,x,2*x-2,-2,-2*x+2,1,-x+1]];
E[242,6] = [x^2+2*x-2, [1,-1,x,1,-x-1,-x,-x-4,-1,-2*x-1,x+1,0,x,-3,x+4,x-2,1,3*x+3]];

E[243,1] = [x^2-6, [1,x,0,4,-x,0,2,2*x,0,-6,x,0,-1,2*x,0,4,-3*x]];
E[243,2] = [x^2-3, [1,x,0,1,2*x,0,-1,-x,0,6,-2*x,0,5,-x,0,-5,0]];
E[243,3] = [x^3-3*x^2+3, [1,x,0,x^2-2,-x+3,0,-2*x^2+3*x+2,3*x^2-4*x-3,0,-x^2+3*x,-3*x^2+4*x+6,0,x^2-3*x-1,-3*x^2+2*x+6,0,3*x^2-3*x-5,3]];
E[243,4] = [x^3+3*x^2-3, [1,x,0,x^2-2,-x-3,0,-2*x^2-3*x+2,-3*x^2-4*x+3,0,-x^2-3*x,3*x^2+4*x-6,0,x^2+3*x-1,3*x^2+2*x-6,0,3*x^2+3*x-5,-3]];
E[243,5] = [x, [1,0,0,-2,0,0,5,0,0,0,0,0,2,0,0,4,0]];
E[243,6] = [x, [1,0,0,-2,0,0,-4,0,0,0,0,0,-7,0,0,4,0]];

E[244,1] = [x^4-12*x^2+4*x+16, [4,0,4*x,0,x^3-8*x+8,0,-x^3-2*x^2+8*x+8,0,4*x^2-12,0,-x^3-2*x^2+4*x+8,0,x^3-12*x+8,0,4*x^2+4*x-16,0,-2*x^3-4*x^2+12*x+24]];
E[244,2] = [x, [1,0,0,0,-3,0,-3,0,-3,0,-1,0,1,0,0,0,-2]];

E[245,1] = [x^2+x-4, [1,x,x+1,-x+2,-1,4,0,x-4,x+2,-x,x+1,2*x-2,-x-3,0,-x-1,-3*x,x+3]];
E[245,2] = [x, [1,0,-1,-2,1,0,0,0,-2,0,-3,2,-5,0,-1,4,-3]];
E[245,3] = [x, [1,-2,-3,2,1,6,0,0,6,-2,1,-6,-3,0,-3,-4,3]];
E[245,4] = [x, [1,-2,3,2,-1,-6,0,0,6,2,1,6,3,0,-3,-4,-3]];
E[245,5] = [x^2+2*x-1, [1,-x-1,x,0,-1,x-1,0,2*x+2,-2*x-2,x+1,2*x-1,0,-x-4,0,-x,-4,-3*x-2]];
E[245,6] = [x^2-2*x-1, [1,x-1,x,0,1,x+1,0,-2*x+2,2*x-2,x-1,-2*x-1,0,-x+4,0,x,-4,-3*x+2]];
E[245,7] = [x^2+2*x-1, [1,x+2,x,2*x+3,-1,1,0,x+4,-2*x-2,-x-2,-2*x,-x+2,2*x+4,0,-x,3,-2*x-4]];
E[245,8] = [x^2-2*x-1, [1,-x+2,x,-2*x+3,1,-1,0,-x+4,2*x-2,-x+2,2*x,-x-2,2*x-4,0,x,3,-2*x+4]];

E[246,1] = [x, [1,1,-1,1,1,-1,2,1,1,1,2,-1,-7,2,-1,1,7]];
E[246,2] = [x, [1,1,1,1,1,1,-2,1,1,1,2,1,-1,-2,1,1,-7]];
E[246,3] = [x, [1,1,1,1,-2,1,4,1,1,-2,-4,1,2,4,-2,1,2]];
E[246,4] = [x, [1,-1,1,1,3,-1,2,-1,1,-3,-6,1,-1,-2,3,1,3]];
E[246,5] = [x, [1,-1,1,1,-2,-1,2,-1,1,2,4,1,4,-2,-2,1,-2]];
E[246,6] = [x, [1,-1,-1,1,-2,1,2,-1,1,2,-4,-1,-4,-2,2,1,-2]];
E[246,7] = [x, [1,-1,-1,1,3,1,-2,-1,1,-3,2,-1,1,2,-3,1,5]];

E[247,1] = [x^2-x-1, [1,x,2*x-2,x-1,2*x,2,-2,-2*x+1,-4*x+5,2*x+2,2*x-4,-2*x+4,1,-2*x,4,-3*x,-4*x+5]];
E[247,2] = [x^3+3*x^2-3, [1,x,-x^2-x+1,x^2-2,-x^2-2*x,2*x^2+x-3,2*x^2+3*x-4,-3*x^2-4*x+3,2*x^2+x-5,x^2-3,x^2-3,-3*x^2-x+4,1,-3*x^2-4*x+6,x^2+x,3*x^2+3*x-5,x^2+4*x-3]];
E[247,3] = [x^5-4*x^4+12*x^2-5*x-5, [1,x,-x^2+x+3,x^2-2,x^3-2*x^2-2*x+3,-x^3+x^2+3*x,-x^4+2*x^3+3*x^2-4*x-1,x^3-4*x,x^4-2*x^3-5*x^2+6*x+6,x^4-2*x^3-2*x^2+3*x,x^4-4*x^3+9*x-2,-x^4+x^3+5*x^2-2*x-6,-1,-2*x^4+3*x^3+8*x^2-6*x-5,-x^4+3*x^3+x^2-8*x+4,x^4-6*x^2+4,x^3-6*x+2]];
E[247,4] = [x^5-9*x^3-x^2+19*x+4, [1,x,x^3-5*x,x^2-2,-x^3+4*x+1,x^4-5*x^2,-x^3-x^2+5*x+5,x^3-4*x,-x^4+x^3+6*x^2-4*x-3,-x^4+4*x^2+x,-x^2+5,2*x^3+x^2-9*x-4,1,-x^4-x^3+5*x^2+5*x,-x^2-x,x^4-6*x^2+4,x^2+1]];
E[247,5] = [x^4+3*x^3-2*x^2-9*x-4, [1,x,-x^3-2*x^2+3*x+4,x^2-2,x^3+2*x^2-4*x-7,x^3+x^2-5*x-4,x^3+x^2-5*x-3,x^3-4*x,x+1,-x^3-2*x^2+2*x+4,x^2+2*x-3,x^2-x-4,-1,-2*x^3-3*x^2+6*x+4,2*x^3+5*x^2-5*x-12,-3*x^3-4*x^2+9*x+8,x^2-7]];

E[248,1] = [x^3-2*x^2-6*x+8, [2,0,2*x,0,-x^2+2*x+2,0,-x^2-2*x+10,0,2*x^2-6,0,2*x^2-2*x-4,0,2*x^2-2*x-8,0,-4*x+8,0,-2*x^2+8]];
E[248,2] = [x, [1,0,0,0,-3,0,-3,0,-3,0,2,0,-4,0,0,0,0]];
E[248,3] = [x, [1,0,-2,0,1,0,-3,0,1,0,-2,0,-2,0,-2,0,-6]];
E[248,4] = [x, [1,0,-2,0,2,0,0,0,1,0,2,0,4,0,-4,0,6]];
E[248,5] = [x^2-3*x-6, [1,0,2,0,x,0,-x+2,0,1,0,-2,0,-2*x+4,0,2*x,0,-2]];

E[249,1] = [x, [1,-1,-1,-1,1,1,0,3,1,-1,-3,1,-6,0,-1,-1,-4]];
E[249,2] = [x, [1,1,-1,-1,-1,-1,-4,-3,1,-1,-3,1,2,-4,1,-1,4]];
E[249,3] = [x^2+2*x-1, [1,x,1,-2*x-1,-x-4,x,-2,x-2,1,-2*x-1,2*x-1,-2*x-1,0,-2*x,-x-4,3,-4*x-4]];
E[249,4] = [x^4-2*x^3-4*x^2+8*x-1, [1,x,1,x^2-2,-x+2,x,-x^2+3,x^3-4*x,1,-x^2+2*x,-2*x^3+x^2+8*x-2,x^2-2,-x^3+5*x-2,-x^3+3*x,-x+2,2*x^3-2*x^2-8*x+5,2*x^3-2*x^2-8*x+6]];
E[249,5] = [x^5+3*x^4-4*x^3-14*x^2-3*x+1, [2,2*x,-2,2*x^2-4,-x^4-4*x^3+4*x^2+20*x+1,-2*x,2*x^4+4*x^3-10*x^2-16*x+4,2*x^3-8*x,2,-x^4+6*x^2-2*x+1,-x^4-4*x^3+2*x^2+18*x+9,-2*x^2+4,2*x^3-10*x+4,-2*x^4-2*x^3+12*x^2+10*x-2,x^4+4*x^3-4*x^2-20*x-1,2*x^4-12*x^2+8,4*x^4+8*x^3-20*x^2-36*x]];

E[250,1] = [x^2-3*x+1, [1,1,x,1,0,x,-3*x+5,1,3*x-4,0,-2*x,x,2*x-4,-3*x+5,0,1,-2*x+6]];
E[250,2] = [x^2+2*x-4, [2,2,2*x,2,0,2*x,-x,2,-4*x+2,0,x+10,2*x,-x+2,-x,0,2,-4*x-8]];
E[250,3] = [x^2+3*x+1, [1,-1,x,1,0,-x,-3*x-5,-1,-3*x-4,0,2*x,x,2*x+4,3*x+5,0,1,-2*x-6]];
E[250,4] = [x^2-2*x-4, [2,-2,2*x,2,0,-2*x,-x,-2,4*x+2,0,-x+10,2*x,-x-2,x,0,2,-4*x+8]];

E[251,1] = [x^17-2*x^16-28*x^15+54*x^14+317*x^13-582*x^12-1867*x^11+3178*x^10+6186*x^9-9216*x^8-11921*x^7+13680*x^6+13752*x^5-9400*x^4-8800*x^3+1920*x^2+2240*x+256, [1216,1216*x,69*x^16-212*x^15-1752*x^14+5638*x^13+17157*x^12-59424*x^11-79979*x^10+313888*x^9+174414*x^8-866052*x^7-146661*x^6+1198330*x^5+54216*x^4-779784*x^3-55216*x^2+183520*x+27776,1216*x^2-2432,-84*x^16-74*x^15+2612*x^14+2296*x^13-33136*x^12-28594*x^11+219544*x^10+183446*x^9-803772*x^8-647068*x^7+1566132*x^6+1239522*x^5-1389248*x^4-1175400*x^3+341824*x^2+380672*x+47552,-74*x^16+180*x^15+1912*x^14-4716*x^13-19266*x^12+48844*x^11+94606*x^10-252420*x^9-230148*x^8+675888*x^7+254410*x^6-894672*x^5-131184*x^4+551984*x^3+51040*x^2-126784*x-17664,448*x^16-340*x^15-12816*x^14+8072*x^13+147896*x^12-71572*x^11-879872*x^10+274228*x^9+2861024*x^8-290704*x^7-4969792*x^6-740316*x^5+4144616*x^4+1646328*x^3-1095792*x^2-693056*x-71616,1216*x^3-4864*x,-85*x^16+178*x^15+2264*x^14-4694*x^13-23617*x^12+48558*x^11+120979*x^10-246626*x^9-312422*x^8+626264*x^7+384541*x^6-723064*x^5-234500*x^4+335368*x^3+66416*x^2-42336*x-1984,-242*x^16+260*x^15+6832*x^14-6508*x^13-77482*x^12+62716*x^11+450398*x^10-284148*x^9-1421212*x^8+564768*x^7+2388642*x^6-234080*x^5-1965000*x^4-397376*x^3+541952*x^2+235712*x+21504,-256*x^16-88*x^15+7736*x^14+3248*x^13-95152*x^12-46632*x^11+609944*x^10+339448*x^9-2159944*x^8-1345632*x^7+4095184*x^6+2852888*x^5-3615816*x^4-2873504*x^3+933728*x^2+950528*x+103808,-106*x^16+264*x^15+2784*x^14-7084*x^13-28538*x^12+75296*x^11+142710*x^10-400160*x^9-354924*x^8+1104360*x^7+410970*x^6-1510196*x^5-252048*x^4+959408*x^3+125728*x^2-218944*x-36608,-277*x^16+188*x^15+8028*x^14-4462*x^13-94069*x^12+39424*x^11+569887*x^10-148752*x^9-1893354*x^8+138780*x^7+3370429*x^6+485374*x^5-2882636*x^4-1019480*x^3+801824*x^2+424320*x+38784,556*x^16-272*x^15-16120*x^14+5880*x^13+189164*x^12-43456*x^11-1149516*x^10+89696*x^9+3838064*x^8+370816*x^7-6868956*x^6-2016280*x^5+5857528*x^4+2846608*x^3-1553216*x^2-1075136*x-114688,-518*x^16+728*x^15+14296*x^14-18420*x^13-157814*x^12+181168*x^11+887506*x^10-858816*x^9-2687196*x^8+1939128*x^7+4299814*x^6-1658092*x^5-3389960*x^4+78784*x^3+919072*x^2+229408*x+24704,1216*x^4-7296*x^2+4864,323*x^16-418*x^15-8968*x^14+10450*x^13+99807*x^12-100966*x^11-567701*x^10+464322*x^9+1746746*x^8-981160*x^7-2855947*x^6+650332*x^5+2300900*x^4+260528*x^3-639008*x^2-230432*x-13376]];
E[251,2] = [x^4+2*x^3-2*x^2-3*x+1, [1,-x^2-x+1,x,x^2+x-2,x^3+2*x^2-2*x-3,-x^3-x^2+x,-x^3-x^2+x-1,2*x^2+2*x-3,x^2-3,x^3+2*x^2-x-2,-x^3-2*x^2+x+1,x^3+x^2-2*x,-x^2-1,x^3+2*x^2+x-1,-1,-3*x^2-3*x+3,-3*x^3-4*x^2+6*x+3]];

E[252,1] = [x, [1,0,0,0,-4,0,-1,0,0,0,-2,0,-6,0,0,0,4]];
E[252,2] = [x, [1,0,0,0,0,0,1,0,0,0,6,0,2,0,0,0,0]];

E[253,1] = [x^3+x^2-4*x+1, [1,x,-x^2-x+1,x^2-2,x^2+2*x-4,-3*x+1,-x^2-3*x+1,-x^2-1,2*x^2+x-3,x^2-1,1,-x^2+3*x-2,x^2+x-3,-2*x^2-3*x+1,x^2-x-2,-x^2-5*x+5,x^2-6]];
E[253,2] = [x^3-3*x^2+3, [1,x,-x^2+x+3,x^2-2,x^2-2*x,-2*x^2+3*x+3,-x^2+x+3,3*x^2-4*x-3,-2*x^2+3*x+3,x^2-3,-1,-x^2+x,x^2-3*x-1,-2*x^2+3*x+3,x^2-3*x,3*x^2-3*x-5,-x^2+2*x+2]];
E[253,3] = [x^5+4*x^4-14*x^2-13*x-1, [1,x,-x^4-3*x^3+3*x^2+10*x+1,x^2-2,2*x^4+5*x^3-8*x^2-18*x-1,x^4+3*x^3-4*x^2-12*x-1,-2*x^4-4*x^3+9*x^2+13*x-3,x^3-4*x,4*x^4+11*x^3-13*x^2-37*x-6,-3*x^4-8*x^3+10*x^2+25*x+2,-1,x^4+2*x^3-4*x^2-8*x-1,-x^4-3*x^3+3*x^2+10*x-1,4*x^4+9*x^3-15*x^2-29*x-2,-5*x^4-13*x^3+19*x^2+48*x+4,x^4-6*x^2+4,-x^3-2*x^2+6*x+5]];
E[253,4] = [x^6-3*x^5-4*x^4+16*x^3-3*x^2-10*x+1, [1,x,x^4-x^3-5*x^2+4*x+3,x^2-2,-x^3+4*x+1,x^5-x^4-5*x^3+4*x^2+3*x,-x^5+6*x^3+x^2-6*x-2,x^3-4*x,2*x^4-x^3-11*x^2+3*x+8,-x^4+4*x^2+x,1,2*x^5-3*x^4-10*x^3+16*x^2+2*x-7,-2*x^5+3*x^4+11*x^3-15*x^2-6*x+5,-3*x^5+2*x^4+17*x^3-9*x^2-12*x+1,-x^5+x^4+5*x^3-5*x^2-3*x+5,x^4-6*x^2+4,2*x^5-4*x^4-9*x^3+20*x^2-2*x-7]];

E[254,1] = [x, [1,1,0,1,2,0,0,1,-3,2,4,0,-2,0,0,1,2]];
E[254,2] = [x, [1,1,-2,1,-3,-2,-1,1,1,-3,-3,-2,-4,-1,6,1,3]];
E[254,3] = [x, [1,1,-2,1,0,-2,4,1,1,0,0,-2,6,4,0,1,-6]];
E[254,4] = [x^2+x-4, [1,1,2,1,x,2,-x,1,1,x,-x-4,2,-2*x-2,-x,2*x,1,-x-2]];
E[254,5] = [x^5+2*x^4-10*x^3-16*x^2+10*x+16, [2,-2,2*x,2,-5*x^4-4*x^3+54*x^2+14*x-62,-2*x,3*x^4+2*x^3-34*x^2-4*x+46,-2,2*x^2-6,5*x^4+4*x^3-54*x^2-14*x+62,x^4+2*x^3-10*x^2-12*x+10,2*x,4,-3*x^4-2*x^3+34*x^2+4*x-46,6*x^4+4*x^3-66*x^2-12*x+80,2,3*x^4+2*x^3-34*x^2-8*x+46]];
E[254,6] = [x, [1,-1,0,1,-1,0,-3,-1,-3,1,1,0,-2,3,0,1,-1]];

E[255,1] = [x^2-3*x+1, [1,x,-1,3*x-3,1,-x,-2*x+3,4*x-3,1,x,-4*x+7,-3*x+3,-2*x+6,-3*x+2,-1,3*x+2,-1]];
E[255,2] = [x^2-x-3, [1,x,-1,x+1,-1,-x,2*x-1,3,1,-x,5,-x-1,-2*x-2,x+6,1,x-2,1]];
E[255,3] = [x^4-x^3-8*x^2+7*x+9, [1,x,1,x^2-2,-1,x,-x^3-x^2+5*x+5,x^3-4*x,1,-x,x^3+x^2-7*x-3,x^2-2,-2*x^2+8,-2*x^3-3*x^2+12*x+9,-1,x^3+2*x^2-7*x-5,-1]];
E[255,4] = [x^3-4*x+1, [1,x,1,x^2-2,1,x,-x^2-x+4,-1,1,x,-x^2+x+2,x^2-2,2*x^2-4,-x^2+1,1,-2*x^2-x+4,1]];

E[256,1] = [x, [1,0,-2,0,0,0,0,0,1,0,-6,0,0,0,0,0,-6]];
E[256,2] = [x, [1,0,2,0,0,0,0,0,1,0,6,0,0,0,0,0,-6]];
E[256,3] = [x^2-8, [1,0,x,0,0,0,0,0,5,0,-x,0,0,0,0,0,6]];
E[256,4] = [x, [1,0,0,0,4,0,0,0,-3,0,0,0,4,0,0,0,-2]];
E[256,5] = [x, [1,0,0,0,-4,0,0,0,-3,0,0,0,-4,0,0,0,-2]];

E[257,1] = [x^7+3*x^6-3*x^5-11*x^4+3*x^3+10*x^2-x-1, [1,x,x^4+2*x^3-3*x^2-4*x+1,x^2-2,-x^5-4*x^4-x^3+9*x^2+4*x-3,x^5+2*x^4-3*x^3-4*x^2+x,x^6+4*x^5-12*x^3-4*x^2+8*x-1,x^3-4*x,-2*x^6-6*x^5+3*x^4+15*x^3+x^2-6*x-1,-x^6-4*x^5-x^4+9*x^3+4*x^2-3*x,-x^6-2*x^5+6*x^4+9*x^3-9*x^2-7*x,x^6+2*x^5-5*x^4-8*x^3+7*x^2+8*x-2,x^6+2*x^5-5*x^4-5*x^3+11*x^2-6,x^6+3*x^5-x^4-7*x^3-2*x^2+1,3*x^6+10*x^5-3*x^4-26*x^3-2*x^2+13*x-3,x^4-6*x^2+4,2*x^6+8*x^5+x^4-22*x^3-9*x^2+14*x]];
E[257,2] = [x^14-2*x^13-21*x^12+42*x^11+163*x^10-327*x^9-568*x^8+1153*x^7+830*x^6-1755*x^5-318*x^4+825*x^3+10*x^2-96*x-1, [144512,144512*x,1755*x^13-14949*x^12-30294*x^11+309516*x^10+155093*x^9-2369214*x^8-43698*x^7+8189141*x^6-1591687*x^5-12184782*x^4+3306652*x^3+5567751*x^2-838701*x-479015,144512*x^2-289024,12490*x^13-15606*x^12-265620*x^11+321640*x^10+2120086*x^9-2441540*x^8-7878108*x^7+8330454*x^6+13591118*x^5-12194276*x^4-9321848*x^3+5480882*x^2+2084890*x-429682,-11439*x^13+6561*x^12+235806*x^11-130972*x^10-1795329*x^9+953142*x^8+6165626*x^7-3048337*x^6-9104757*x^5+3864742*x^4+4119876*x^3-856251*x^2-310535*x+1755,3085*x^13-803*x^12-58810*x^11+10804*x^10+376483*x^9-26178*x^8-778222*x^7-168493*x^6-729569*x^5+869518*x^4+3466132*x^3-1185999*x^2-1265867*x+477775,144512*x^3-578048*x,-23224*x^13+39784*x^12+503152*x^11-827584*x^10-4085320*x^9+6346160*x^8+15292976*x^7-21801256*x^6-25688840*x^5+31479792*x^4+15122208*x^3-12461368*x^2-1970872*x+1073816,9374*x^13-3330*x^12-202940*x^11+84216*x^10+1642690*x^9-783788*x^8-6070516*x^7+3224418*x^6+9725674*x^5-5350028*x^4-4823368*x^3+1959990*x^2+769358*x+12490,29228*x^13-44052*x^12-625688*x^11+921136*x^10+5022804*x^9-7103928*x^8-18666632*x^7+24498708*x^6+31518180*x^5-35086520*x^4-19362128*x^3+12578588*x^2+2794444*x-382876,-19827*x^13+25485*x^12+410054*x^11-549804*x^10-3097597*x^9+4406702*x^8+10228226*x^7-15988669*x^6-13027329*x^5+24851838*x^4+1967620*x^3-11331647*x^2+581013*x+946591,860*x^13-3620*x^12-17624*x^11+71696*x^10+117892*x^9-509752*x^8-176424*x^7+1535108*x^6-1008268*x^5-1615768*x^4+3332368*x^3-184116*x^2-1697700*x+305748,5367*x^13+5975*x^12-118766*x^11-126372*x^10+982617*x^9+974058*x^8-3725498*x^7-3290119*x^6+6283693*x^5+4447162*x^4-3731124*x^3-1296717*x^2+773935*x+3085,-13110*x^13+28298*x^12+270764*x^11-590936*x^10-2042922*x^9+4580988*x^8+6716452*x^7-16130922*x^6-8234802*x^5+24631068*x^4-175928*x^3-11683150*x^2+1996506*x+1487182,144512*x^4-867072*x^2+578048,8160*x^13-16704*x^12-171424*x^11+362688*x^10+1321088*x^9-2937056*x^8-4489440*x^7+10826848*x^6+6031232*x^5-17281920*x^4-1129184*x^3+8482304*x^2-928768*x-868864]];

E[258,1] = [x, [1,-1,1,1,-3,-1,-3,-1,1,3,-5,1,-3,3,-3,1,0]];
E[258,2] = [x, [1,-1,-1,1,1,1,-5,-1,1,-1,1,-1,-3,5,-1,1,0]];
E[258,3] = [x, [1,-1,-1,1,-2,1,2,-1,1,2,0,-1,2,-2,2,1,6]];
E[258,4] = [x, [1,1,1,1,-1,1,1,1,1,-1,5,1,-7,1,-1,1,4]];
E[258,5] = [x, [1,1,1,1,2,1,-2,1,1,2,-4,1,2,-2,2,1,-2]];
E[258,6] = [x, [1,1,-1,1,-2,-1,4,1,1,-2,4,-1,6,4,2,1,-6]];
E[258,7] = [x, [1,1,-1,1,3,-1,-1,1,1,3,-1,-1,1,-1,-3,1,4]];

E[259,1] = [x, [1,1,0,-1,4,0,1,-3,-3,4,4,0,4,1,0,-1,0]];
E[259,2] = [x^2-x-4, [1,x,0,x+2,-x+1,0,1,x+4,-3,-4,x-1,0,-x+1,x,0,3*x,-2*x+2]];
E[259,3] = [x^3-x^2-2*x+1, [1,x,-x^2+1,x^2-2,x^2-2*x-3,-x^2-x+1,-1,x^2-2*x-1,x^2+x-3,-x^2-x-1,x^2-2,-x-1,-3*x^2+x+5,-x,3*x^2+x-4,-3*x^2+x+3,3*x^2+2*x-8]];
E[259,4] = [x^3+3*x^2-3, [1,x,-x^2-2*x+1,x^2-2,x^2+2*x-3,x^2+x-3,1,-3*x^2-4*x+3,-x^2-x+1,-x^2-3*x+3,x^2-6,x+1,3*x^2+3*x-7,x,3*x^2+5*x-6,3*x^2+3*x-5,-x^2-2*x]];
E[259,5] = [x^4-9*x^2+x+17, [1,x,-x^2+5,x^2-2,x^2-3,-x^3+5*x,-1,x^3-4*x,-x^2-x+5,x^3-3*x,-x^3-2*x^2+4*x+9,-2*x^2+x+7,x^3-5*x+2,-x,-x^2+x+2,3*x^2-x-13,x^3+2*x^2-6*x-5]];
E[259,6] = [x^4-x^3-6*x^2+5*x+4, [1,x,-x^3+4*x,x^2-2,x^2-3,-x^3-2*x^2+5*x+4,1,x^3-4*x,x^2+x+1,x^3-3*x,x^3-6*x+3,-x^3-x^2+x+4,-x^2+x+1,x,-x^2-3*x+4,x^3-5*x,-x^2+2*x+2]];
E[259,7] = [x^2-8, [2,0,2*x,-4,x+6,0,-2,0,10,0,-2*x-6,-4*x,-3*x+2,0,6*x+8,8,-2*x]];

E[260,1] = [x, [1,0,2,0,-1,0,2,0,1,0,4,0,-1,0,-2,0,2]];
E[260,2] = [x^3-2*x^2-8*x+12, [1,0,x,0,1,0,-x^2+6,0,x^2-3,0,x^2-x-6,0,1,0,x,0,-2*x+2]];

E[261,1] = [x^2-2*x-1, [1,x,0,2*x-1,1,0,-2*x+2,x+2,0,x,x-2,0,-2*x+1,-2*x-2,0,3,-2*x+4]];
E[261,2] = [x^2-x-1, [1,x,0,x-1,2,0,2*x-1,-2*x+1,0,2*x,-2*x+5,0,-4*x+1,x+2,0,-3*x,4*x-1]];
E[261,3] = [x^3+2*x^2-4*x-7, [1,x,0,x^2-2,2*x^2-8,0,x^2+x-2,-2*x^2+7,0,-4*x^2+14,-x^2-x+6,0,-x^2+x+6,-x^2+2*x+7,0,2*x^2-x-10,-3*x^2-x+10]];
E[261,4] = [x^2+2*x-4, [2,-x-2,0,x,2*x,0,-2*x-6,2*x+2,0,-4,-2*x-6,0,4*x+2,3*x+10,0,-3*x-6,-6]];
E[261,5] = [x^2-5, [2,-x-1,0,x-1,-4,0,2*x,2*x,0,2*x+2,2*x-8,0,-4*x-2,-x-5,0,-3*x-3,-4*x-2]];

E[262,1] = [x, [1,1,-2,1,-2,-2,-3,1,1,-2,-6,-2,4,-3,4,1,-4]];
E[262,2] = [x^2+2*x-2, [1,1,x,1,x+2,x,-x+1,1,-2*x-1,x+2,-2*x-2,x,-x-4,-x+1,2,1,-x]];
E[262,3] = [x^2-3*x+1, [1,1,x,1,-x+1,x,-x+1,1,3*x-4,-x+1,-x+4,x,-3*x+6,-x+1,-2*x+1,1,2*x-4]];
E[262,4] = [x^2-2, [1,-1,x,1,-x+2,-x,x+1,-1,-1,x-2,2*x+2,x,-3*x,-x-1,2*x-2,1,-x+4]];
E[262,5] = [x^2+x-3, [1,-1,x,1,-x-3,-x,-x+1,-1,-x,x+3,-x-4,x,x-2,x-1,-2*x-3,1,2*x]];
E[262,6] = [x, [1,-1,0,1,0,0,-5,-1,-3,0,2,0,-2,5,0,1,-6]];

E[263,1] = [x^5+2*x^4-3*x^3-6*x^2+1, [1,x,-x^4-x^3+3*x^2+2*x-1,x^2-2,x^4+x^3-4*x^2-3*x+1,x^4-4*x^2-x+1,x^4+2*x^3-3*x^2-6*x-1,x^3-4*x,x^4+x^3-2*x^2-2*x-2,-x^4-x^3+3*x^2+x-1,-x^3+x^2+3*x-2,x^3-x^2-3*x+1,-x^3-x^2+4*x-1,-x-1,x^2+2*x-1,x^4-6*x^2+4,-4*x^4-5*x^3+14*x^2+12*x-6]];
E[263,2] = [x^17-x^16-26*x^15+24*x^14+274*x^13-225*x^12-1505*x^11+1041*x^10+4613*x^9-2467*x^8-7815*x^7+2761*x^6+6709*x^5-974*x^4-2284*x^3-239*x^2+135*x+19, [668441,668441*x,85010*x^16-176339*x^15-2241538*x^14+4190472*x^13+23933223*x^12-39391493*x^11-132842471*x^10+186205893*x^9+408643734*x^8-465256935*x^7-683138027*x^6+586757546*x^5+555506577*x^4-303194375*x^3-158959094*x^2+17326687*x+6750715,668441*x^2-1336882,143848*x^16-199927*x^15-3606981*x^14+4857661*x^13+36214213*x^12-46276983*x^11-186415557*x^10+219401931*x^9+523834133*x^8-543663031*x^7-789092227*x^6+674003695*x^5+572350237*x^4-346151879*x^3-145298876*x^2+28757148*x+6281260,-91329*x^16-31278*x^15+2150232*x^14+640483*x^13-20264243*x^12-4902421*x^11+97710483*x^10+16492604*x^9-255537265*x^8-18784877*x^7+352044936*x^6-14825513*x^5-220394635*x^4+35203746*x^3+37644077*x^2-4725635*x-1615190,-43514*x^16+387440*x^15+1361549*x^14-9030537*x^13-16703058*x^12+83027396*x^11+103963774*x^10-382002286*x^9-350947554*x^8+922397046*x^7+629731852*x^6-1116987852*x^5-539197064*x^4+560122572*x^3+159965080*x^2-45325035*x-6004853,668441*x^3-2673764*x,42054*x^16-262455*x^15-1209902*x^14+6116298*x^13+14043018*x^12-56453950*x^11-84463769*x^10+262318806*x^9+280220078*x^8-644775138*x^7-501512106*x^6+801919566*x^5+434439282*x^4-416801437*x^3-135528601*x^2+35976810*x+9629069,-56079*x^16+133067*x^15+1405309*x^14-3200139*x^13-13911183*x^12+30075683*x^11+69656163*x^10-139736691*x^9-188790015*x^8+335079893*x^7+276839367*x^6-392725995*x^5-206043927*x^4+183249956*x^3+63136820*x^2-13138220*x-2733112,-47976*x^16-59269*x^15+1131843*x^14+1309592*x^13-10511458*x^12-11592732*x^11+48829796*x^10+52587277*x^9-120312720*x^8-129264310*x^7+158327476*x^6+165877480*x^5-115340775*x^4-92636576*x^3+50139863*x^2+9500135*x-3596410,-292627*x^16+128356*x^15+7315455*x^14-3621041*x^13-73317892*x^12+39043324*x^11+377251035*x^10-206648374*x^9-1061380988*x^8+568822671*x^7+1603609910*x^6-781183466*x^5-1164763854*x^4+435437391*x^3+291364922*x^2-23939149*x-11766179,81195*x^16-58067*x^15-2131430*x^14+1449193*x^13+22632202*x^12-14341944*x^11-124620842*x^10+71906730*x^9+378754518*x^8-193643585*x^7-622117679*x^6+271133268*x^5+494039702*x^4-164894323*x^3-139152381*x^2+15752546*x+8602445,343926*x^16+230185*x^15-7986201*x^14-4780222*x^13+73236746*x^12+38475204*x^11-336704212*x^10-150217472*x^9+815048008*x^8+289669942*x^7-996845698*x^6-247261638*x^5+517739936*x^4+60579104*x^3-55724881*x^2-130463*x+826766,33901*x^16+195128*x^15-734373*x^14-4348962*x^13+5964676*x^12+38079778*x^11-21329382*x^10-165695826*x^9+24034258*x^8+373508124*x^7+41245074*x^6-413682388*x^5-118411148*x^4+187871331*x^3+74098916*x^2-21479655*x-4189942,668441*x^4-4010646*x^2+2673764,-163352*x^16-181517*x^15+3926005*x^14+3879384*x^13-37768822*x^12-31928283*x^11+185718644*x^10+125556894*x^9-494068580*x^8-234706784*x^7+687597052*x^6+170902912*x^5-422743240*x^4-10753004*x^3+54574006*x^2+56457*x+1613950]];

E[264,1] = [x, [1,0,-1,0,2,0,0,0,1,0,1,0,2,0,-2,0,6]];
E[264,2] = [x, [1,0,1,0,-2,0,4,0,1,0,-1,0,6,0,-2,0,6]];
E[264,3] = [x, [1,0,1,0,4,0,-2,0,1,0,-1,0,0,0,4,0,-6]];
E[264,4] = [x, [1,0,1,0,0,0,2,0,1,0,1,0,0,0,0,0,-2]];

E[265,1] = [x, [1,-1,0,-1,-1,0,2,3,-3,1,0,0,-6,-2,0,-1,-6]];
E[265,2] = [x^2+2*x-1, [1,x,x,-2*x-1,-1,-2*x+1,-2*x-4,x-2,-2*x-2,-x,2,3*x-2,-2*x-1,-2,-x,3,2*x+3]];
E[265,3] = [x^2+x-5, [1,x,-x-1,-x+3,-1,-5,-3,2*x-5,x+3,-x,-5,-3*x+2,2*x+1,-3*x,x+1,-5*x+4,-x-2]];
E[265,4] = [x^2-3, [1,x,2,1,-1,2*x,x+1,-x,1,-x,-2*x+2,2,-2*x,x+3,-2,-5,2]];
E[265,5] = [x^2+x-3, [1,x,x+1,-x+1,1,3,-1,-3,x+1,x,3,x-2,2*x-1,-x,x+1,-x-2,-3*x]];
E[265,6] = [x^2+x-1, [1,x,-x-1,-x-1,1,-1,2*x-1,-2*x-1,x-1,x,-5,x+2,-4*x-1,-3*x+2,-x-1,3*x,-x]];
E[265,7] = [x^2-3*x+1, [1,x,x-3,3*x-3,-1,-1,-2*x+5,4*x-3,-3*x+5,-x,3,-3*x+6,1,-x+2,-x+3,3*x+2,-3*x+6]];
E[265,8] = [x^4+2*x^3-5*x^2-4*x+4, [2,-x^3-2*x^2+3*x+4,2*x,-2*x^3-4*x^2+6*x+6,2,-2*x^2+4,x^3+4*x^2-x-6,-x^3-2*x^2+3*x+8,2*x^2-6,-x^3-2*x^2+3*x+4,2*x^3+4*x^2-10*x-4,-4*x^2-2*x+8,2*x^3+2*x^2-10*x,x^3+4*x^2-5*x-10,2*x,6,2*x^2+8*x-4]];

E[266,1] = [x^2-3*x+1, [1,-1,x,1,-3*x+5,-x,1,-1,3*x-4,3*x-5,x+2,x,2*x,-1,-4*x+3,1,4*x-8]];
E[266,2] = [x^2-x-7, [1,-1,x,1,x-1,-x,-1,-1,x+4,-x+1,-x+2,x,-2*x,1,7,1,-4]];
E[266,3] = [x^2-x-3, [1,1,x,1,-x+1,x,1,1,x,-x+1,-x-2,x,-2*x+4,1,-3,1,0]];
E[266,4] = [x^3+x^2-7*x+4, [1,1,x,1,-x^2-2*x+6,x,-1,1,x^2-3,-x^2-2*x+6,2*x^2+3*x-8,x,2*x^2+4*x-10,-1,-x^2-x+4,1,-2*x^2-6*x+10]];

E[267,1] = [x^3-2*x^2-3*x+5, [1,x,1,x^2-2,-x^2+5,x,-x^2+2,2*x^2-x-5,1,-2*x^2+2*x+5,x^2-x-4,x^2-2,x^2+x-3,-2*x^2-x+5,-x^2+5,x^2+x-6,x^2-2*x]];
E[267,2] = [x^3+4*x^2+3*x-1, [1,x,1,x^2-2,x^2+2*x-3,x,-3*x^2-8*x-2,-4*x^2-7*x+1,1,-2*x^2-6*x+1,x^2+3*x-2,x^2-2,x^2+3*x-3,4*x^2+7*x-3,x^2+2*x-3,7*x^2+13*x,x^2+2*x-2]];
E[267,3] = [x^3-3*x+1, [1,x,-1,x^2-2,-x^2-2*x+1,-x,-x^2,-x-1,1,-2*x^2-2*x+1,3*x^2+x-4,-x^2+2,x^2+x-7,-3*x+1,x^2+2*x-1,-3*x^2-x+4,3*x^2+4*x-8]];
E[267,4] = [x^4-x^3-7*x^2+6*x+7, [1,x,-1,x^2-2,x^2-3,-x,-x^3-x^2+5*x+5,x^3-4*x,1,x^3-3*x,-x^2+x+2,-x^2+2,-x^3-x^2+4*x+6,-2*x^3-2*x^2+11*x+7,-x^2+3,x^3+x^2-6*x-3,x^3+x^2-5*x-3]];
E[267,5] = [x, [1,0,-1,-2,4,0,-2,0,1,0,2,2,6,0,-4,4,4]];
E[267,6] = [x, [1,0,1,-2,0,0,2,0,1,0,6,-2,2,0,0,4,0]];

E[268,1] = [x, [1,0,2,0,2,0,2,0,1,0,-4,0,-6,0,4,0,3]];
E[268,2] = [x^2+3*x+1, [1,0,x,0,-2*x-3,0,x-1,0,-3*x-4,0,-2*x-5,0,3*x+3,0,3*x+2,0,2*x]];
E[268,3] = [x^2-x-5, [1,0,x,0,-1,0,-x+1,0,x+2,0,5,0,x+1,0,-x,0,-2*x+4]];

E[269,1] = [x^5+x^4-5*x^3-4*x^2+5*x+3, [1,x,x^4-5*x^2+3,x^2-2,-x^4+5*x^2-x-5,-x^4+4*x^2-2*x-3,-x^4-x^3+3*x^2+2*x-1,x^3-4*x,-x^4+x^3+5*x^2-3*x-3,x^4-5*x^2+3,x^4-4*x^2,-x^4-x^3+4*x^2+2*x-3,2*x^3+3*x^2-5*x-7,-2*x^3-2*x^2+4*x+3,-x^3+x^2+5*x-3,x^4-6*x^2+4,-x^3+x^2+4*x-1]];
E[269,2] = [x^16-x^15-28*x^14+27*x^13+314*x^12-283*x^11-1803*x^10+1435*x^9+5637*x^8-3547*x^7-9470*x^6+3701*x^5+7860*x^4-1001*x^3-2363*x^2-43*x+172, [10928,10928*x,288*x^15-991*x^14-9143*x^13+26463*x^12+117138*x^11-279911*x^10-773187*x^9+1484672*x^8+2775556*x^7-4097871*x^6-5203557*x^5+5451909*x^4+4295866*x^3-2720323*x^2-840769*x+319364,10928*x^2-21856,1120*x^15-363*x^14-30851*x^13+11845*x^12+338516*x^11-148583*x^10-1882165*x^9+909702*x^8+5570852*x^7-2841689*x^6-8410593*x^5+4298529*x^4+5560648*x^3-2654109*x^2-976295*x+372588,-703*x^15-1079*x^14+18687*x^13+26706*x^12-198407*x^11-253923*x^10+1071392*x^9+1152100*x^8-3076335*x^7-2476197*x^6+4386021*x^5+2032186*x^4-2432035*x^3-160225*x^2+331748*x-49536,2287*x^15-2664*x^14-60436*x^13+72055*x^12+624789*x^11-755238*x^10-3183057*x^9+3825352*x^8+8282669*x^7-9493010*x^6-10480586*x^5+10399189*x^4+5962023*x^3-4229736*x^2-999017*x+468724,10928*x^3-43712*x,-2720*x^15+3516*x^14+71704*x^13-94432*x^12-737028*x^11+982472*x^10+3710880*x^9-4936788*x^8-9436676*x^7+12138196*x^6+11451984*x^5-13135476*x^4-6227944*x^3+5272592*x^2+1083352*x-540720,757*x^15+509*x^14-18395*x^13-13164*x^12+168377*x^11+137195*x^10-697498*x^9-742588*x^8+1130951*x^7+2195807*x^6+153409*x^5-3242552*x^4-1532989*x^3+1670265*x^2+420748*x-192640,-2324*x^15+3434*x^14+62462*x^13-92110*x^12-659460*x^11+960182*x^10+3455310*x^9-4862404*x^8-9371664*x^7+12177902*x^6+12680662*x^5-13678438*x^4-7926504*x^3+5702802*x^2+1445006*x-588232,-2358*x^15+985*x^14+63973*x^13-30591*x^12-687148*x^11+363705*x^10+3707279*x^9-2082868*x^8-10520850*x^7+5924353*x^6+15041103*x^5-7810273*x^4-9455660*x^3+4111205*x^2+1601773*x-517812,12*x^15+784*x^14+672*x^13-20668*x^12-21244*x^11+214780*x^10+219384*x^9-1111988*x^8-1065828*x^7+2966872*x^6+2540200*x^5-3756520*x^4-2618972*x^3+1751044*x^2+673552*x-201952,-377*x^15+3600*x^14+10306*x^13-93329*x^12-108017*x^11+940404*x^10+543507*x^9-4609150*x^8-1381021*x^7+11177304*x^6+1935002*x^5-12013797*x^4-1940449*x^3+4405164*x^2+567065*x-393364,878*x^15+446*x^14-23230*x^13-10064*x^12+241482*x^11+86786*x^10-1244696*x^9-361664*x^8+3293918*x^7+751366*x^6-4184962*x^5-656688*x^4+2172058*x^3-5462*x^2-400776*x+45856,10928*x^4-65568*x^2+43712,1164*x^15-4546*x^14-31802*x^13+119334*x^12+340760*x^11-1220410*x^10-1811982*x^9+6091616*x^8+5036836*x^7-15141674*x^6-7322806*x^5+16959682*x^4+5573480*x^3-6817610*x^2-1264786*x+709416]];
E[269,3] = [x, [1,0,0,-2,1,0,-4,0,-3,0,-3,0,2,0,0,4,-4]];

E[270,1] = [x, [1,1,0,1,1,0,2,1,0,1,-3,0,-1,2,0,1,-3]];
E[270,2] = [x, [1,1,0,1,-1,0,2,1,0,-1,3,0,5,2,0,1,-3]];
E[270,3] = [x, [1,-1,0,1,1,0,2,-1,0,-1,-3,0,5,-2,0,1,3]];
E[270,4] = [x, [1,-1,0,1,-1,0,2,-1,0,1,3,0,-1,-2,0,1,3]];

E[271,1] = [x^6+4*x^5+x^4-9*x^3-4*x^2+5*x+1, [1,x,-x^5-3*x^4+x^3+5*x^2-x-1,x^2-2,x^5+4*x^4+2*x^3-6*x^2-4*x,x^5+2*x^4-4*x^3-5*x^2+4*x+1,x^5+2*x^4-5*x^3-7*x^2+5*x+2,x^3-4*x,x^3+2*x^2-2*x-3,x^4+3*x^3-5*x-1,x^5+3*x^4-x^3-4*x^2+3*x-2,x^4+2*x^3-2*x^2-2*x+1,-x^5-5*x^4-4*x^3+9*x^2+7*x-4,-2*x^5-6*x^4+2*x^3+9*x^2-3*x-1,x^5+3*x^4-x^3-5*x^2+x,x^4-6*x^2+4,x^4+2*x^3-2*x^2-2*x-1]];
E[271,2] = [x^16-5*x^15-12*x^14+91*x^13+11*x^12-620*x^11+381*x^10+1953*x^9-1863*x^8-2853*x^7+3137*x^6+1830*x^5-1758*x^4-831*x^3+308*x^2+204*x+27, [763,763*x,4966*x^15-26858*x^14-49243*x^13+474081*x^12-128875*x^11-3063997*x^10+3087453*x^9+8695891*x^8-12699519*x^7-9799739*x^6+19637291*x^5+2259965*x^4-9934421*x^3-760516*x^2+1897494*x+406918,763*x^2-1526,-2931*x^15+15816*x^14+29560*x^13-280031*x^12+67017*x^11+1819457*x^10-1760793*x^9-5219351*x^8+7304808*x^7+6055573*x^6-11326071*x^5-1666627*x^4+5719679*x^3+533915*x^2-1063246*x-229968,-2028*x^15+10349*x^14+22175*x^13-183501*x^12+14923*x^11+1195407*x^10-1002707*x^9-3447861*x^8+4368259*x^7+4058949*x^6-6827815*x^5-1204193*x^4+3366230*x^3+367966*x^2-606146*x-134082,4747*x^15-25342*x^14-48836*x^13+449248*x^12-91214*x^11-2925197*x^10+2735429*x^9+8428341*x^8-11474001*x^7-9899208*x^6+17856212*x^5+2928854*x^4-9026661*x^3-966229*x^2+1684731*x+377795,763*x^3-3052*x,-711*x^15+4117*x^14+6631*x^13-73473*x^12+26518*x^11+483904*x^10-502266*x^9-1426970*x^8+2039086*x^7+1785758*x^6-3224758*x^5-727467*x^4+1783369*x^3+299893*x^2-373803*x-96515,1161*x^15-5612*x^14-13310*x^13+99258*x^12+2237*x^11-644082*x^10+504892*x^9+1844355*x^8-2306570*x^7-2131524*x^6+3697103*x^5+566981*x^4-1901746*x^3-160498*x^2+367956*x+79137,7251*x^15-38561*x^14-74756*x^13+683219*x^12-136608*x^11-4444746*x^10+4161832*x^9+12784879*x^8-17486784*x^7-14949252*x^6+27259040*x^5+4317273*x^4-13844110*x^3-1421394*x^2+2608957*x+583200,-9723*x^15+51555*x^14+99533*x^13-910931*x^12+195797*x^11+5897955*x^10-5662083*x^9-16801687*x^8+23672103*x^7+19133499*x^6-36767535*x^5-4718924*x^4+18551540*x^3+1539510*x^2-3515358*x-759080,-5580*x^15+29983*x^14+56725*x^13-531848*x^12+121076*x^11+3466885*x^10-3325823*x^9-10012231*x^8+13922349*x^7+11833721*x^6-21864055*x^5-3620923*x^4+11420752*x^3+1218208*x^2-2212377*x-498223,-1607*x^15+8128*x^14+17271*x^13-143431*x^12+17943*x^11+926822*x^10-842550*x^9-2630340*x^8+3643983*x^7+2964873*x^6-5758156*x^5-681435*x^4+2978528*x^3+222655*x^2-590593*x-128169,7319*x^15-39516*x^14-73656*x^13+700239*x^12-172244*x^11-4556343*x^10+4452023*x^9+13109473*x^8-18533221*x^7-15335651*x^6+29041283*x^5+4437222*x^4-15156687*x^3-1487261*x^2+2952512*x+659007,763*x^4-4578*x^2+3052,-5031*x^15+26862*x^14+51827*x^13-477424*x^12+97635*x^11+3122927*x^10-2930010*x^9-9083295*x^8+12392737*x^7+10944961*x^6-19647573*x^5-3696284*x^4+10483865*x^3+1294955*x^2-2085085*x-491712]];

E[272,1] = [x, [1,0,-2,0,0,0,0,0,1,0,-2,0,-6,0,0,0,-1]];
E[272,2] = [x^2-2*x-4, [1,0,x,0,2,0,-x,0,2*x+1,0,-x,0,-2*x+2,0,2*x,0,1]];
E[272,3] = [x^2+2*x-2, [1,0,x,0,2*x+2,0,-x,0,-2*x-1,0,x+4,0,-2*x,0,-2*x+4,0,-1]];
E[272,4] = [x, [1,0,0,0,-2,0,-4,0,-3,0,0,0,-2,0,0,0,1]];
E[272,5] = [x, [1,0,2,0,-2,0,2,0,1,0,6,0,2,0,-4,0,1]];
E[272,6] = [x, [1,0,2,0,0,0,4,0,1,0,-6,0,2,0,0,0,-1]];

E[273,1] = [x, [1,-2,-1,2,-1,2,1,0,1,2,-2,-2,1,-2,1,-4,-4]];
E[273,2] = [x, [1,2,1,2,1,2,-1,0,1,2,-2,2,-1,-2,1,-4,0]];
E[273,3] = [x^2-2*x-1, [1,x,-1,2*x-1,0,-x,1,x+2,1,0,2,-2*x+1,-1,x,0,3,-2*x+4]];
E[273,4] = [x^3+2*x^2-3*x-2, [1,x,-1,x^2-2,-x^2-2*x+1,-x,-1,-2*x^2-x+2,1,-2*x-2,2*x^2+2*x-6,-x^2+2,-1,-x,x^2+2*x-1,x^2-4*x,-2*x-4]];
E[273,5] = [x^4-x^3-7*x^2+5*x+6, [1,x,1,x^2-2,-x^2+3,x,1,x^3-4*x,1,-x^3+3*x,-x^3+5*x,x^2-2,1,x,-x^2+3,x^3+x^2-5*x-2,-2*x]];

E[274,1] = [x^3-2*x^2-4*x+4, [2,-2,2*x,2,-x^2+2*x+6,-2*x,-2*x^2+2*x+8,-2,2*x^2-6,x^2-2*x-6,2*x^2-4*x-2,2*x,2*x^2-2*x-12,2*x^2-2*x-8,2*x+4,2,-4*x^2+18]];
E[274,2] = [x, [1,-1,0,1,-3,0,2,-1,-3,3,-1,0,-2,-2,0,1,-7]];
E[274,3] = [x, [1,-1,0,1,0,0,-4,-1,-3,0,-4,0,4,4,0,1,2]];
E[274,4] = [x, [1,1,-2,1,-3,-2,0,1,1,-3,-3,-2,-6,0,6,1,1]];
E[274,5] = [x^5-2*x^4-10*x^3+20*x^2-8, [4,4,4*x,4,2*x^4-2*x^3-22*x^2+16*x+20,4*x,-2*x^4+2*x^3+20*x^2-20*x-8,4,4*x^2-12,2*x^4-2*x^3-22*x^2+16*x+20,-3*x^4+2*x^3+32*x^2-20*x-20,4*x,2*x^3-20*x+8,-2*x^4+2*x^3+20*x^2-20*x-8,2*x^4-2*x^3-24*x^2+20*x+16,4,-x^4+2*x^3+12*x^2-20*x-4]];

E[275,1] = [x, [1,-1,0,-1,0,0,0,3,-3,0,-1,0,-2,0,0,-1,-6]];
E[275,2] = [x, [1,2,1,2,0,2,2,0,-2,0,1,2,-4,4,0,-4,2]];
E[275,3] = [x^2+x-3, [1,x,-x-1,-x+1,0,-3,x-2,-3,x+1,0,-1,-x+2,-5,-3*x+3,0,-x-2,-3*x-3]];
E[275,4] = [x^2-x-3, [1,x,-x+1,x+1,0,-3,x+2,3,-x+1,0,-1,-x-2,5,3*x+3,0,x-2,-3*x+3]];
E[275,5] = [x^2+2*x-1, [1,x,-2*x-2,-2*x-1,0,2*x-2,2,x-2,5,0,1,-2*x+6,2*x+6,2*x,0,3,2*x-2]];
E[275,6] = [x^2+x-1, [1,x,x-1,-x-1,0,-2*x+1,-3*x-2,-2*x-1,-3*x-1,0,1,x,2*x-3,x-3,0,3*x,-x-1]];
E[275,7] = [x^2-x-1, [1,x,x+1,x-1,0,2*x+1,-3*x+2,-2*x+1,3*x-1,0,1,x,2*x+3,-x-3,0,-3*x,-x+1]];
E[275,8] = [x^4-7*x^2+4, [2,2*x,-x^3+7*x,2*x^2-4,0,4,-2*x^3+10*x,2*x^3-8*x,-2*x^2+8,0,-2,2*x^3-10*x,0,-4*x^2+8,0,2*x^2,2*x^3-14*x]];

E[276,1] = [x^2-4*x+2, [1,0,1,0,x,0,x-2,0,1,0,-4*x+8,0,-4*x+8,0,x,0,3*x-4]];
E[276,2] = [x^2-10, [1,0,-1,0,x,0,-x+2,0,1,0,0,0,4,0,-x,0,-x+4]];

E[277,1] = [x, [1,1,-2,-1,2,-2,-4,-3,1,2,1,2,-5,-4,-4,-1,2]];
E[277,2] = [x^3+x^2-3*x-1, [1,x,2,x^2-2,x^2-1,2*x,-x^2-2*x+3,-x^2-x+1,1,-x^2+2*x+1,x+4,2*x^2-4,2*x+1,-x^2-1,2*x^2-2,-2*x^2-2*x+3,-3*x^2-2*x+5]];
E[277,3] = [x^9+6*x^8+4*x^7-37*x^6-69*x^5+24*x^4+119*x^3+34*x^2-52*x-25, [1,x,-6*x^8-26*x^7+19*x^6+189*x^5+101*x^4-302*x^3-213*x^2+131*x+95,x^2-2,8*x^8+34*x^7-27*x^6-247*x^5-122*x^4+394*x^3+260*x^2-171*x-117,10*x^8+43*x^7-33*x^6-313*x^5-158*x^4+501*x^3+335*x^2-217*x-150,-6*x^8-24*x^7+25*x^6+175*x^5+55*x^4-281*x^3-129*x^2+118*x+58,x^3-4*x,10*x^8+43*x^7-33*x^6-313*x^5-158*x^4+502*x^3+337*x^2-219*x-153,-14*x^8-59*x^7+49*x^6+430*x^5+202*x^4-692*x^3-443*x^2+299*x+200,5*x^8+20*x^7-22*x^6-149*x^5-40*x^4+253*x^3+111*x^2-113*x-59,-5*x^8-21*x^7+19*x^6+154*x^5+59*x^4-251*x^3-131*x^2+108*x+60,8*x^8+34*x^7-26*x^6-244*x^5-127*x^4+375*x^3+258*x^2-152*x-111,12*x^8+49*x^7-47*x^6-359*x^5-137*x^4+585*x^3+322*x^2-254*x-150,-6*x^8-25*x^7+21*x^6+181*x^5+87*x^4-286*x^3-190*x^2+124*x+85,x^4-6*x^2+4,-7*x^8-28*x^7+30*x^6+208*x^5+63*x^4-352*x^3-170*x^2+160*x+83]];
E[277,4] = [x^9-4*x^8-6*x^7+37*x^6-3*x^5-100*x^4+49*x^3+64*x^2-20*x-1, [1,x,2*x^8-4*x^7-19*x^6+33*x^5+55*x^4-74*x^3-43*x^2+27*x+1,x^2-2,-2*x^8+4*x^7+19*x^6-33*x^5-54*x^4+72*x^3+38*x^2-19*x+3,4*x^8-7*x^7-41*x^6+61*x^5+126*x^4-141*x^3-101*x^2+41*x+2,-2*x^8+4*x^7+19*x^6-33*x^5-55*x^4+73*x^3+43*x^2-22*x,x^3-4*x,2*x^8-5*x^7-17*x^6+41*x^5+42*x^4-94*x^3-23*x^2+43*x-1,-4*x^8+7*x^7+41*x^6-60*x^5-128*x^4+136*x^3+109*x^2-37*x-2,-x^8+2*x^7+10*x^6-19*x^5-28*x^4+51*x^3+15*x^2-29*x+1,5*x^8-9*x^7-49*x^6+72*x^5+149*x^4-149*x^3-129*x^2+28*x+2,-2*x^8+4*x^7+20*x^6-36*x^5-59*x^4+89*x^3+42*x^2-38*x+1,-4*x^8+7*x^7+41*x^6-61*x^5-127*x^4+141*x^3+106*x^2-40*x-2,-2*x^8+3*x^7+21*x^6-23*x^5-71*x^4+42*x^3+74*x^2+4*x-1,x^4-6*x^2+4,x^8-2*x^7-10*x^6+18*x^5+29*x^4-44*x^3-18*x^2+16*x-1]];

E[278,1] = [x, [1,-1,-2,1,3,2,-1,-1,1,-3,-3,-2,5,1,-6,1,6]];
E[278,2] = [x^2-2, [1,-1,x,1,-x-1,-x,-x-3,-1,-1,x+1,-2*x+1,x,-x-5,x+3,-x-2,1,5*x]];
E[278,3] = [x^3-3*x^2+3, [1,-1,x,1,-2*x^2+4*x+2,-x,-x^2+x+5,-1,x^2-3,2*x^2-4*x-2,2*x^2-4*x-2,x,4*x^2-6*x-6,x^2-x-5,-2*x^2+2*x+6,1,-2*x+2]];
E[278,4] = [x, [1,1,-2,1,-1,-2,-5,1,1,-1,-3,-2,1,-5,2,1,2]];
E[278,5] = [x^5-x^4-10*x^3+11*x^2+12*x-2, [5,5,5*x,5,x^4+2*x^3-9*x^2-11*x+9,5*x,-2*x^4-4*x^3+13*x^2+17*x+7,5,5*x^2-15,x^4+2*x^3-9*x^2-11*x+9,5*x^3+5*x^2-40*x-5,5*x,3*x^4-4*x^3-27*x^2+37*x+17,-2*x^4-4*x^3+13*x^2+17*x+7,3*x^4+x^3-22*x^2-3*x+2,5,-7*x^4+x^3+58*x^2-33*x-28]];

E[279,1] = [x^2-3*x+1, [1,x,0,3*x-3,-2*x+5,0,-2*x+1,4*x-3,0,-x+2,2*x,0,-2*x+2,-5*x+2,0,3*x+2,-4*x+8]];
E[279,2] = [x^2+x-1, [1,x,0,-x-1,-1,0,-2*x-3,-2*x-1,0,-x,-2,0,2*x,-x-2,0,3*x,-2*x-4]];
E[279,3] = [x^3-4*x-1, [1,x,0,x^2-2,x^2-x-2,0,-x^2+x+4,1,0,-x^2+2*x+1,-2*x^2+6,0,2*x^2-4,x^2-1,0,-2*x^2+x+4,-2*x^2+2*x+6]];
E[279,4] = [x^6-12*x^4+40*x^2-27, [3,3*x,0,3*x^2-6,-x^5+6*x^3-x,0,3*x^4-21*x^2+24,3*x^3-12*x,0,-6*x^4+39*x^2-27,2*x^5-18*x^3+32*x,0,-6*x^2+24,3*x^5-21*x^3+24*x,0,3*x^4-18*x^2+12,-2*x^5+18*x^3-38*x]];

E[280,1] = [x, [1,0,-1,0,-1,0,-1,0,-2,0,-5,0,1,0,1,0,3]];
E[280,2] = [x, [1,0,-3,0,1,0,1,0,6,0,-5,0,-5,0,-3,0,-7]];
E[280,3] = [x^2-x-4, [1,0,x,0,1,0,1,0,x+1,0,-x,0,-3*x+2,0,x,0,-x+6]];
E[280,4] = [x^2+x-8, [1,0,x,0,-1,0,-1,0,-x+5,0,x+4,0,x+2,0,-x,0,-x+2]];

E[281,1] = [x^7+2*x^6-5*x^5-9*x^4+7*x^3+10*x^2-2*x-1, [1,x,x^6+x^5-6*x^4-4*x^3+9*x^2+3*x-2,x^2-2,-x^6-x^5+7*x^4+5*x^3-13*x^2-6*x+3,-x^6-x^5+5*x^4+2*x^3-7*x^2+1,-x^6-x^5+5*x^4+3*x^3-6*x^2-2*x-1,x^3-4*x,x^4+3*x^3-2*x^2-7*x,x^6+2*x^5-4*x^4-6*x^3+4*x^2+x-1,-x^6-2*x^5+2*x^4+4*x^3+3*x^2+2*x-4,-x^6-2*x^5+5*x^4+8*x^3-8*x^2-7*x+3,x^4-3*x^2+2*x-1,x^6-6*x^4+x^3+8*x^2-3*x-1,x^5-7*x^3+2*x^2+12*x-5,x^4-6*x^2+4,2*x^6+5*x^5-8*x^4-21*x^3+8*x^2+19*x-2]];
E[281,2] = [x^16+x^15-27*x^14-24*x^13+294*x^12+229*x^11-1650*x^10-1115*x^9+5054*x^8+2991*x^7-8223*x^6-4526*x^5+6338*x^4+3707*x^3-1604*x^2-1215*x-167, [151856,151856*x,-13665*x^15-8906*x^14+360823*x^13+192549*x^12-3808793*x^11-1574100*x^10+20441178*x^9+6015201*x^8-58521373*x^7-10993746*x^6+85533697*x^5+10360255*x^4-55824393*x^3-7925840*x^2+12598702*x+2953595,151856*x^2-303712,-10194*x^15-1168*x^14+285374*x^13-1198*x^12-3217674*x^11+348084*x^10+18597684*x^9-3500742*x^8-57916554*x^7+13206700*x^6+93511350*x^5-18522278*x^4-69687682*x^3+3996688*x^2+19128176*x+3252394,4759*x^15-8132*x^14-135411*x^13+208717*x^12+1555185*x^11-2106072*x^10-9221274*x^9+10541537*x^8+29878269*x^7-26833598*x^6-51487535*x^5+30784377*x^4+42730315*x^3-9319958*x^2-13649380*x-2282055,4792*x^15+14172*x^14-121576*x^13-336696*x^12+1221836*x^11+3109924*x^10-6117484*x^9-14031580*x^8+15612656*x^7+31763952*x^6-18079592*x^5-33023892*x^4+5868588*x^3+11832816*x^2+1486588*x+267048,151856*x^3-607424*x,-4843*x^15-19306*x^14+117451*x^13+458291*x^12-1101831*x^11-4208066*x^10+4887608*x^9+18715513*x^8-9503777*x^7-41194734*x^6+2873867*x^5+40752581*x^4+10907739*x^3-13244582*x^2-6857718*x-475745,9026*x^15+10136*x^14-245854*x^13-220638*x^12+2682510*x^11+1777584*x^10-14867052*x^9-6396078*x^8+43696954*x^7+9686088*x^6-64660322*x^5-5078110*x^4+41785846*x^3+2777000*x^2-9133316*x-1702398,-12727*x^15+3264*x^14+346247*x^13-99493*x^12-3793561*x^11+1152216*x^10+21413582*x^9-6451005*x^8-66041481*x^7+17804670*x^6+108659163*x^5-20422589*x^4-86268599*x^3+2125594*x^2+25974928*x+5250719,14439*x^15+10894*x^14-398713*x^13-229059*x^12+4421703*x^11+1779276*x^10-25034534*x^9-6204119*x^8+75974979*x^7+9633214*x^6-118743783*x^5-8152737*x^4+84687215*x^3+9835736*x^2-21697274*x-5112437,14760*x^15+5244*x^14-407364*x^13-67624*x^12+4521684*x^11-46192*x^10-25642280*x^9+4124376*x^8+77812596*x^7-20621240*x^6-120693968*x^5+34275388*x^4+84158176*x^3-12798612*x^2-21553652*x-2672236,9380*x^15+7808*x^14-221688*x^13-187012*x^12+2012556*x^11+1789316*x^10-8688500*x^9-8606112*x^8+17431080*x^7+21325024*x^6-11335300*x^5-24503108*x^4-5931128*x^3+9172956*x^2+6089328*x+800264,-3707*x^15-6186*x^14+109957*x^13+120711*x^12-1283403*x^11-765776*x^10+7342006*x^9+1194587*x^8-20653287*x^7+4612250*x^6+23719231*x^5-15391871*x^4-2615603*x^3+11122272*x^2-5339322*x-2017859,151856*x^4-911136*x^2+607424,-12825*x^15-274*x^14+331621*x^13-23651*x^12-3407013*x^11+540150*x^10+17670560*x^9-4198049*x^8-48509991*x^7+14448538*x^6+67546421*x^5-20784153*x^4-42201483*x^3+7759658*x^2+9892710*x+1356261]];

E[282,1] = [x^2-6, [1,-1,1,1,x,-1,2,-1,1,-x,-x,1,-x+2,-2,x,1,-2*x]];
E[282,2] = [x^2+2*x-2, [1,-1,-1,1,x,1,-2*x-2,-1,1,-x,-x-4,-1,3*x+2,2*x+2,-x,1,-4]];
E[282,3] = [x, [1,1,-1,1,-4,-1,-4,1,1,-4,0,-1,-2,-4,4,1,-6]];
E[282,4] = [x, [1,1,-1,1,2,-1,0,1,1,2,0,-1,2,0,-2,1,2]];
E[282,5] = [x^3-2*x^2-8*x-4, [1,1,1,1,x,1,x^2-4*x-4,1,1,x,-2*x^2+5*x+8,1,-2*x^2+5*x+10,x^2-4*x-4,x,1,x^2-2*x-6]];

E[283,1] = [x^9+6*x^8+5*x^7-29*x^6-50*x^5+27*x^4+83*x^3+19*x^2-13*x+1, [5,5*x,x^8+2*x^7-13*x^6-22*x^5+53*x^4+65*x^3-77*x^2-53*x+14,5*x^2-10,5*x^7+20*x^6-15*x^5-115*x^4-20*x^3+170*x^2+60*x-25,-4*x^8-18*x^7+7*x^6+103*x^5+38*x^4-160*x^3-72*x^2+27*x-1,3*x^8+16*x^7+11*x^6-66*x^5-111*x^4+30*x^3+169*x^2+76*x-23,5*x^3-20*x,-7*x^8-34*x^7+x^6+189*x^5+144*x^4-260*x^3-251*x^2-9*x+2,5*x^8+20*x^7-15*x^6-115*x^5-20*x^4+170*x^3+60*x^2-25*x,-3*x^8-21*x^7-31*x^6+76*x^5+216*x^4+15*x^3-309*x^2-176*x+28,4*x^8+23*x^7+13*x^6-118*x^5-158*x^4+130*x^3+257*x^2+53*x-24,2*x^8+14*x^7+19*x^6-64*x^5-169*x^4+10*x^3+291*x^2+164*x-42,-2*x^8-4*x^7+21*x^6+39*x^5-51*x^4-80*x^3+19*x^2+16*x-3,x^8+12*x^7+32*x^6-37*x^5-197*x^4-40*x^3+298*x^2+147*x-46,5*x^4-30*x^2+20,-2*x^8-19*x^7-39*x^6+79*x^5+284*x^4+5*x^3-461*x^2-199*x+42]];
E[283,2] = [x^14-6*x^13-4*x^12+83*x^11-77*x^10-394*x^9+617*x^8+724*x^7-1566*x^6-370*x^5+1489*x^4-153*x^3-410*x^2+120*x-8, [188,188*x,34*x^13-164*x^12-340*x^11+2422*x^10+530*x^9-13060*x^8+3490*x^7+31376*x^6-11056*x^5-32908*x^4+8394*x^3+11574*x^2-2104*x-408,188*x^2-376,-38*x^13+128*x^12+568*x^11-1966*x^10-3346*x^9+11124*x^8+10686*x^7-28056*x^6-21428*x^5+29536*x^4+23242*x^3-8302*x^2-6208*x+1208,40*x^13-204*x^12-400*x^11+3148*x^10+336*x^9-17488*x^8+6760*x^7+42188*x^6-20328*x^5-42232*x^4+16776*x^3+11836*x^2-4488*x+272,-39*x^13+260*x^12+108*x^11-3685*x^10+3705*x^9+18348*x^8-27647*x^7-37942*x^6+68446*x^5+30526*x^4-63131*x^3-6403*x^2+16248*x-1788,188*x^3-752*x,180*x^13-824*x^12-1800*x^11+12004*x^10+2264*x^9-62716*x^8+24592*x^7+141248*x^6-81324*x^5-130636*x^4+75680*x^3+33428*x^2-21512*x+2540,-100*x^13+416*x^12+1188*x^11-6272*x^10-3848*x^9+34132*x^8-544*x^7-80936*x^6+15476*x^5+79824*x^4-14116*x^3-21788*x^2+5768*x-304,3*x^13+74*x^12-312*x^11-1047*x^10+4321*x^9+5118*x^8-22993*x^7-10104*x^6+54114*x^5+7558*x^4-53525*x^3-1279*x^2+15822*x-1728,-32*x^13+88*x^12+508*x^11-1428*x^10-2788*x^9+8200*x^8+6248*x^7-20440*x^6-5320*x^5+23032*x^4+1168*x^3-11236*x^2-320*x+1136,-158*x^13+646*x^12+1956*x^11-9718*x^10-7644*x^9+53342*x^8+9018*x^7-129522*x^6-112*x^5+132920*x^4+1490*x^3-39392*x^2+2462*x+956,26*x^13-48*x^12-448*x^11+702*x^10+2982*x^9-3584*x^8-9706*x^7+7372*x^6+16096*x^5-5060*x^4-12370*x^3+258*x^2+2892*x-312,-52*x^13+284*x^12+332*x^11-4036*x^10+2308*x^9+19764*x^8-23452*x^7-38056*x^6+61432*x^5+22528*x^4-58168*x^3+4372*x^2+17528*x-3136,188*x^4-1128*x^2+752,-228*x^13+956*x^12+2656*x^11-14240*x^10-8232*x^9+76520*x^8-3188*x^7-179240*x^6+38376*x^5+176276*x^4-32756*x^3-52256*x^2+9188*x+856]];

E[284,1] = [x^3-x^2-4*x+1, [1,0,x,0,-x^2+x+3,0,2,0,x^2-3,0,-2*x+2,0,2*x^2-2*x-4,0,-x+1,0,0]];
E[284,2] = [x^3+3*x^2-3, [1,0,x,0,-x^2-3*x-1,0,2*x^2+2*x-6,0,x^2-3,0,2*x,0,-4*x^2-6*x+4,0,-x-3,0,4*x^2+6*x-6]];

E[285,1] = [x, [1,-1,1,-1,-1,-1,-2,3,1,1,-6,-1,0,2,-1,-1,-6]];
E[285,2] = [x^2-3, [1,x,1,1,1,x,x-1,-x,1,x,-x+3,1,-x-1,-x+3,1,-5,0]];
E[285,3] = [x^2-7, [1,x,-1,5,1,-x,-x-1,3*x,1,x,x+3,-5,-x-3,-x-7,-1,11,-4]];
E[285,4] = [x, [1,1,-1,-1,1,-1,4,-3,1,1,4,1,2,4,-1,-1,2]];
E[285,5] = [x, [1,1,-1,-1,-1,-1,-2,-3,1,-1,-2,1,-4,-2,1,-1,2]];
E[285,6] = [x^2-2*x-7, [2,x+1,-2,2*x,-2,-x-1,x+3,x+5,2,-x-1,-x+1,-2*x,-x+9,3*x+5,2,6,-2*x-6]];
E[285,7] = [x^2-2*x-7, [2,x+1,2,2*x,-2,x+1,-x+1,x+5,2,-x-1,-3*x+7,2*x,-x-3,-x-3,-2,6,-2*x+10]];

E[286,1] = [x, [1,1,-1,1,1,-1,3,1,-2,1,1,-1,1,3,-1,1,3]];
E[286,2] = [x, [1,1,-1,1,-3,-1,-5,1,-2,-3,-1,-1,1,-5,3,1,7]];
E[286,3] = [x, [1,1,2,1,1,2,-3,1,1,1,1,2,1,-3,2,1,-6]];
E[286,4] = [x, [1,1,2,1,-1,2,1,1,1,-1,-1,2,-1,1,-2,1,2]];
E[286,5] = [x, [1,-1,-2,1,3,2,-1,-1,1,-3,-1,-2,1,1,-6,1,6]];
E[286,6] = [x, [1,-1,-1,1,-1,1,1,-1,-2,1,-1,-1,-1,-1,1,1,-1]];
E[286,7] = [x^3-x^2-10*x+8, [2,-2,2*x,2,-x^2+x+8,-2*x,-x^2+x+4,-2,2*x^2-6,x^2-x-8,2,2*x,-2,x^2-x-4,-2*x+8,2,2*x^2-12]];

E[287,1] = [x^3-4*x^2+3*x+1, [1,x,-x+3,x^2-2,-2*x^2+4*x+2,-x^2+3*x,-1,4*x^2-7*x-1,x^2-6*x+6,-4*x^2+8*x+2,2*x^2-6*x,-x^2+5*x-5,-x^2+5*x-1,-x,-2*x^2+4*x+4,7*x^2-13*x,-x^2-2*x+7]];
E[287,2] = [x^3-x^2-4*x+3, [1,x,x^2-x-3,x^2-2,2,x-3,1,x^2-3,-2*x^2-x+9,2*x,-2,-x^2-x+6,-x^2+6,x,2*x^2-2*x-6,-x^2+x+1,-2*x^2+x+6]];
E[287,3] = [x^5+x^4-6*x^3-4*x^2+6*x+3, [1,x,x+1,x^2-2,x^4-7*x^2+x+6,x^2+x,1,x^3-4*x,x^2+2*x-2,-x^4-x^3+5*x^2-3,-x^4-x^3+3*x^2+2*x+3,x^3+x^2-2*x-2,-x^4-x^3+6*x^2+3*x-4,x,-x^3-2*x^2+x+3,x^4-6*x^2+4,x^4+2*x^3-4*x^2-7*x+3]];
E[287,4] = [x^6+x^5-10*x^4-10*x^3+23*x^2+24*x+5, [1,x,-x^3+5*x,x^2-2,x^5-9*x^3-x^2+19*x+6,-x^4+5*x^2,-1,x^3-4*x,-x^5+10*x^3+2*x^2-24*x-8,-x^5+x^4+9*x^3-4*x^2-18*x-5,x^5+x^4-11*x^3-8*x^2+30*x+15,-x^5+7*x^3-10*x,x^5+x^4-10*x^3-8*x^2+22*x+14,-x,-2*x^5-x^4+20*x^3+7*x^2-47*x-15,x^4-6*x^2+4,x^3+x^2-5*x-3]];
E[287,5] = [x^2+x-1, [1,-x-1,x,x,-x,-1,-1,2*x+1,-x-2,1,-1,-x+1,2*x-3,x+1,x-1,-3*x-3,2*x-1]];
E[287,6] = [x^2+3*x+1, [1,x+1,x,-x-2,-x-2,-2*x-1,1,-2*x-3,-3*x-4,-1,-2*x-3,x+1,-3,x+1,x+1,3*x+3,4*x+3]];

E[288,1] = [x, [1,0,0,0,-4,0,0,0,0,0,0,0,-6,0,0,0,-8]];
E[288,2] = [x, [1,0,0,0,4,0,0,0,0,0,0,0,-6,0,0,0,8]];
E[288,3] = [x, [1,0,0,0,2,0,0,0,0,0,0,0,6,0,0,0,-2]];
E[288,4] = [x, [1,0,0,0,-2,0,4,0,0,0,4,0,-2,0,0,0,6]];
E[288,5] = [x, [1,0,0,0,-2,0,-4,0,0,0,-4,0,-2,0,0,0,6]];

E[289,1] = [x, [1,-1,0,-1,2,0,-4,3,-3,-2,0,0,-2,4,0,-1,0]];
E[289,2] = [x^4-8*x^2+8, [4,-2*x^2+12,4*x,-4*x^2+20,x^3-4*x,-2*x^3+12*x,2*x^3-12*x,-2*x^2+20,4*x^2-12,x^3-8*x,-2*x^3+12*x,-4*x^3+20*x,-2*x^2+8,4*x^3-28*x,4*x^2-8,12,0]];
E[289,3] = [x^2+x-3, [1,-x-1,x,x+2,-x-1,-3,x-1,-3,-x,x+4,-3,x+3,-x-2,x-2,-3,x-1,0]];
E[289,4] = [x^2-x-3, [1,x-1,x,-x+2,-x+1,3,x+1,-3,x,x-4,3,x-3,x-2,x+2,-3,-x-1,0]];
E[289,5] = [x^3+3*x^2-3, [1,-x^2-x+2,x,-x-1,x^2+x-4,2*x^2+2*x-3,-x-1,x^2+x-3,x^2-3,2*x^2+3*x-5,-2*x^2-4*x,-x^2-x,3*x^2+5*x-2,-x^2-x+1,-2*x^2-4*x+3,x^2+4*x-1,0]];
E[289,6] = [x^3-3*x^2+3, [1,-x^2+x+2,x,x-1,-x^2+x+4,-2*x^2+2*x+3,-x+1,x^2-x-3,x^2-3,-2*x^2+3*x+5,2*x^2-4*x,x^2-x,3*x^2-5*x-2,x^2-x-1,-2*x^2+4*x+3,x^2-4*x-1,0]];

E[290,1] = [x, [1,-1,0,1,-1,0,-2,-1,-3,1,2,0,-6,2,0,1,2]];
E[290,2] = [x^2+x-3, [1,-1,-x,1,1,x,-x+1,-1,-x,-1,2*x+2,-x,x,x-1,-x,1,-x-1]];
E[290,3] = [x^2+x-3, [1,-1,-x,1,-1,x,x+3,-1,-x,1,-2*x-2,-x,-x+4,-x-3,x,1,3*x+3]];
E[290,4] = [x^3+x^2-7*x+4, [1,1,x,1,1,x,-x^2-2*x+4,1,x^2-3,1,2*x^2+4*x-8,x,-2*x^2-5*x+10,-x^2-2*x+4,x,1,x^2+2*x-6]];
E[290,5] = [x^3-3*x^2-3*x+8, [1,1,x,1,-1,x,-x^2+6,1,x^2-3,-1,-2*x+2,x,2*x^2-3*x-6,-x^2+6,-x,1,x^2-2*x-2]];

E[291,1] = [x, [1,-2,-1,2,3,2,-2,0,1,-6,0,-2,-4,4,-3,-4,6]];
E[291,2] = [x, [1,2,-1,2,1,-2,2,0,1,2,4,-2,0,4,-1,-4,2]];
E[291,3] = [x^2-3*x+1, [1,x,-1,3*x-3,3,-x,-3*x+3,4*x-3,1,3*x,-x-2,-3*x+3,-x+5,-6*x+3,-3,3*x+2,-5*x+7]];
E[291,4] = [x^2+x-3, [1,x,-1,-x+1,-3,-x,-x+1,-3,1,-3*x,-x-2,x-1,x-1,2*x-3,3,-x-2,-3*x+1]];
E[291,5] = [x^2+x-1, [1,x,1,-x-1,-2*x-3,x,x-3,-2*x-1,1,-x-2,3*x+2,-x-1,-x-5,-4*x+1,-2*x-3,3*x,x+1]];
E[291,6] = [x^7-11*x^5+x^4+34*x^3-5*x^2-24*x-4, [2,2*x,2,2*x^2-4,-x^6+9*x^4-x^3-20*x^2+5*x+8,2*x,x^6+x^5-10*x^4-7*x^3+25*x^2+6*x-4,2*x^3-8*x,2,-2*x^5+14*x^3-16*x-4,2*x^4-2*x^3-14*x^2+10*x+12,2*x^2-4,2*x^3-10*x+4,x^6+x^5-8*x^4-9*x^3+11*x^2+20*x+4,-x^6+9*x^4-x^3-20*x^2+5*x+8,2*x^4-12*x^2+8,-2*x^5-2*x^4+18*x^3+14*x^2-36*x-16]];
E[291,7] = [x, [1,-1,-1,-1,-2,1,-4,3,1,2,4,1,6,4,2,-1,2]];
E[291,8] = [x, [1,-1,-1,-1,0,1,2,3,1,0,-4,1,-2,-2,0,-1,-8]];

E[292,1] = [x^2+x-1, [1,0,x,0,-x-3,0,-2*x-1,0,-x-2,0,-x-4,0,5*x+2,0,-2*x-1,0,-2*x-5]];
E[292,2] = [x^4-3*x^3-5*x^2+16*x-8, [2,0,2*x,0,2*x^3-4*x^2-14*x+20,0,-x^3+x^2+7*x-4,0,2*x^2-6,0,-3*x^3+5*x^2+21*x-20,0,-2*x+4,0,2*x^3-4*x^2-12*x+16,0,-2*x^3+4*x^2+12*x-12]];

E[293,1] = [x^16-3*x^15-22*x^14+69*x^13+184*x^12-621*x^11-716*x^10+2758*x^9+1234*x^8-6287*x^7-554*x^6+7023*x^5-572*x^4-3385*x^3+508*x^2+526*x-111, [67432,67432*x,-2308*x^15+8786*x^14+33126*x^13-145760*x^12-149046*x^11+870734*x^10+172440*x^9-2295808*x^8+261430*x^7+2796062*x^6-640906*x^5-1846248*x^4+657848*x^3+967234*x^2-305920*x-147736,67432*x^2-134864,1522*x^15-1426*x^14-35562*x^13+24540*x^12+326046*x^11-131438*x^10-1478570*x^9+89386*x^8+3430670*x^7+1238432*x^6-3765022*x^5-3387130*x^4+1394650*x^3+2554328*x^2+156890*x-347604,1862*x^15-17650*x^14+13492*x^13+275626*x^12-562534*x^11-1480088*x^10+4069656*x^9+3109502*x^8-11714334*x^7-1919538*x^6+14362836*x^5-662328*x^4-6845346*x^3+866544*x^2+1066272*x-256188,1188*x^15-958*x^14-25144*x^13+1898*x^12+230106*x^11+137804*x^10-1195282*x^9-1115872*x^8+3686970*x^7+3006412*x^6-6238444*x^5-2612618*x^4+4885612*x^3-107882*x^2-1153630*x+433656,67432*x^3-269728*x,-6493*x^15+15609*x^14+114805*x^13-244782*x^12-789151*x^11+1292555*x^10+2819513*x^9-2376333*x^8-6046011*x^7-249220*x^6+7703439*x^5+3916345*x^4-4410473*x^3-2023944*x^2+589083*x+206578,3140*x^15-2078*x^14-80478*x^13+45998*x^12+813724*x^11-388818*x^10-4108290*x^9+1552522*x^8+10807246*x^7-2921834*x^6-14076136*x^5+2265234*x^4+7706298*x^3-616286*x^2-1148176*x+168942,-466*x^15+1511*x^14+8529*x^13-16297*x^12-99030*x^11+18855*x^10+844103*x^9+245827*x^8-4050371*x^7-567485*x^6+9271094*x^5-340967*x^4-8679221*x^3+1068839*x^2+2305394*x-303691,-7448*x^15+36884*x^14+80896*x^13-613622*x^12-25694*x^11+3661380*x^10-2370774*x^9-9420426*x^8+9263996*x^7+9802260*x^6-12457342*x^5-2087786*x^4+5853718*x^3-1814092*x^2-623760*x+502154,-1246*x^15+1544*x^14+23420*x^13-18650*x^12-164798*x^11+24332*x^10+522812*x^9+503296*x^8-622660*x^7-2584218*x^6-350602*x^5+4895752*x^4+1377320*x^3-3847658*x^2-942054*x+823826,2606*x^15+992*x^14-80074*x^13+11514*x^12+875552*x^11-344674*x^10-4392376*x^9+2220978*x^8+10475368*x^7-5580292*x^6-10955942*x^5+5565148*x^4+3913498*x^3-1757134*x^2-191232*x+131868,6286*x^15-3054*x^14-185774*x^13+151860*x^12+2008426*x^11-1975050*x^10-10240894*x^9+10719054*x^8+25994482*x^7-26569784*x^6-31968826*x^5+28899986*x^4+17238182*x^3-11870600*x^2-3169514*x+1514004,67432*x^4-404592*x^2+269728,5121*x^15-20349*x^14-59089*x^13+317628*x^12+58193*x^11-1662399*x^10+1575357*x^9+2934123*x^8-7273265*x^7+1163200*x^6+12534279*x^5-7704035*x^4-9352905*x^3+5809332*x^2+2408533*x-918380]];
E[293,2] = [x^8+3*x^7-4*x^6-15*x^5+4*x^4+21*x^3-2*x^2-8*x+1, [1,x,x^5+x^4-5*x^3-3*x^2+5*x,x^2-2,-x^6-3*x^5+3*x^4+12*x^3-x^2-10*x,x^6+x^5-5*x^4-3*x^3+5*x^2,x^6+2*x^5-4*x^4-6*x^3+4*x^2+x-2,x^3-4*x,x^7+2*x^6-7*x^5-10*x^4+18*x^3+12*x^2-15*x-1,-x^7-3*x^6+3*x^5+12*x^4-x^3-10*x^2,-2*x^7-4*x^6+10*x^5+17*x^4-16*x^3-17*x^2+9*x+1,x^7+x^6-7*x^5-5*x^4+15*x^3+6*x^2-10*x,x^7+3*x^6-4*x^5-15*x^4+2*x^3+19*x^2+4*x-6,x^7+2*x^6-4*x^5-6*x^4+4*x^3+x^2-2*x,-x^7-2*x^6+7*x^5+11*x^4-16*x^3-13*x^2+12*x-2,x^4-6*x^2+4,2*x^7+7*x^6-3*x^5-29*x^4-12*x^3+30*x^2+14*x-9]];

E[294,1] = [x, [1,1,-1,1,1,-1,0,1,1,1,5,-1,0,0,-1,1,-4]];
E[294,2] = [x, [1,1,1,1,-1,1,0,1,1,-1,5,1,0,0,-1,1,4]];
E[294,3] = [x, [1,1,1,1,2,1,0,1,1,2,-4,1,-6,0,2,1,-2]];
E[294,4] = [x, [1,-1,1,1,3,-1,0,-1,1,-3,3,1,-4,0,3,1,0]];
E[294,5] = [x, [1,-1,1,1,-4,-1,0,-1,1,4,-4,1,-4,0,-4,1,0]];
E[294,6] = [x, [1,-1,-1,1,4,1,0,-1,1,-4,-4,-1,4,0,-4,1,0]];
E[294,7] = [x, [1,-1,-1,1,-3,1,0,-1,1,3,3,-1,4,0,3,1,0]];

E[295,1] = [x^3+x^2-2*x-1, [1,x,-x^2-x+1,x^2-2,-1,-x-1,2*x^2+x-3,-x^2-2*x+1,x-1,-x,-x^2-2*x-2,x^2+x-2,2*x^2-3,-x^2+x+2,x^2+x-1,-3*x^2-x+3,-x^2-2*x-3]];
E[295,2] = [x^3+3*x^2-3, [1,x,x^2+x-3,x^2-2,1,-2*x^2-3*x+3,-2*x^2-3*x+1,-3*x^2-4*x+3,-2*x^2-3*x+3,x,-x^2+4,x^2+x,2*x^2+2*x-7,3*x^2+x-6,x^2+x-3,3*x^2+3*x-5,-x^2-2*x-5]];
E[295,3] = [x^6-2*x^5-6*x^4+11*x^3+8*x^2-11*x-3, [1,x,-x^5+x^4+6*x^3-4*x^2-7*x+1,x^2-2,1,-x^5+7*x^3+x^2-10*x-3,x^5-7*x^3-x^2+10*x+3,x^3-4*x,-x^3-x^2+5*x+4,x,x^4-x^3-5*x^2+3*x+4,-x^4+6*x^2-5,-x^4+x^3+4*x^2-3*x+1,2*x^5-x^4-12*x^3+2*x^2+14*x+3,-x^5+x^4+6*x^3-4*x^2-7*x+1,x^4-6*x^2+4,x^5-x^4-7*x^3+5*x^2+10*x]];
E[295,4] = [x^7-x^6-10*x^5+7*x^4+27*x^3-11*x^2-10*x-1, [1,x,x^5-3*x^4-4*x^3+14*x^2-x-3,x^2-2,-1,x^6-3*x^5-4*x^4+14*x^3-x^2-3*x,x^6-x^5-10*x^4+8*x^3+25*x^2-15*x-4,x^3-4*x,-x^6+2*x^5+8*x^4-14*x^3-17*x^2+22*x+7,-x,-x^6+2*x^5+5*x^4-8*x^3-3*x^2-2*x+3,-2*x^6+4*x^5+13*x^4-20*x^3-20*x^2+12*x+7,-2*x^6+4*x^5+15*x^4-23*x^3-30*x^2+23*x+7,x^4-2*x^3-4*x^2+6*x+1,-x^5+3*x^4+4*x^3-14*x^2+x+3,x^4-6*x^2+4,x^6-x^5-9*x^4+6*x^3+21*x^2-9*x-1]];

E[296,1] = [x^3-2*x^2-4*x+7, [1,0,x,0,x-1,0,x^2-x-1,0,x^2-3,0,-3*x^2+12,0,-3*x^2+13,0,x^2-x,0,2*x^2-2*x-8]];
E[296,2] = [x^4-2*x^3-8*x^2+15*x+4, [1,0,x,0,x^3-7*x+2,0,-x^3-x^2+7*x+4,0,x^2-3,0,x^2-4,0,-x^3-x^2+6*x+6,0,2*x^3+x^2-13*x-4,0,2]];
E[296,3] = [x, [1,0,-1,0,-2,0,1,0,-2,0,1,0,-6,0,2,0,-4]];
E[296,4] = [x, [1,0,-1,0,0,0,-3,0,-2,0,-3,0,0,0,0,0,2]];

E[297,1] = [x, [1,-2,0,2,-2,0,1,0,0,4,1,0,-5,-2,0,-4,-2]];
E[297,2] = [x, [1,1,0,-1,-2,0,-5,-3,0,-2,1,0,-2,-5,0,-1,7]];
E[297,3] = [x, [1,-1,0,-1,2,0,-5,3,0,-2,-1,0,-2,5,0,-1,-7]];
E[297,4] = [x, [1,2,0,2,2,0,1,0,0,4,-1,0,-5,2,0,-4,2]];
E[297,5] = [x^2+2*x-2, [1,x,0,-2*x,-x-2,0,x-1,2*x-4,0,-2,-1,0,-x-3,-3*x+2,0,-4*x+4,-3*x-4]];
E[297,6] = [x^2-2*x-2, [1,x,0,2*x,-x+2,0,-x-1,2*x+4,0,-2,1,0,x-3,-3*x-2,0,4*x+4,-3*x+4]];
E[297,7] = [x^3+x^2-5*x-3, [1,x,0,x^2-2,x^2-3,0,-x+2,-x^2+x+3,0,-x^2+2*x+3,1,0,-x^2+5,-x^2+2*x,0,-2*x+1,-x^2-x+3]];
E[297,8] = [x^3-x^2-5*x+3, [1,x,0,x^2-2,-x^2+3,0,x+2,x^2+x-3,0,-x^2-2*x+3,-1,0,-x^2+5,x^2+2*x,0,2*x+1,x^2-x-3]];

E[298,1] = [x, [1,1,-2,1,-2,-2,-2,1,1,-2,0,-2,-5,-2,4,1,-7]];
E[298,2] = [x^5-x^4-10*x^3+11*x^2+12*x-2, [5,5,5*x,5,2*x^4-x^3-18*x^2+13*x+18,5*x,-3*x^4-x^3+22*x^2-7*x-2,5,5*x^2-15,2*x^4-x^3-18*x^2+13*x+18,-x^4+3*x^3+9*x^2-29*x-4,5*x,3*x^4+6*x^3-17*x^2-33*x-3,-3*x^4-x^3+22*x^2-7*x-2,x^4+2*x^3-9*x^2-6*x+4,5,-2*x^4+x^3+18*x^2-18*x-3]];
E[298,3] = [x^2-2*x-2, [1,-1,x,1,-x+2,-x,-x+2,-1,2*x-1,x-2,x+2,x,x-3,x-2,-2,1,5]];
E[298,4] = [x^3+5*x^2+4*x-5, [1,-1,x,1,-x^2-3*x+1,-x,2*x^2+4*x-6,-1,x^2-3,x^2+3*x-1,-3*x^2-8*x+2,x,0,-2*x^2-4*x+6,2*x^2+5*x-5,1,x^2+4*x-2]];
E[298,5] = [x, [1,-1,0,1,-4,0,4,-1,-3,4,2,0,-5,-4,0,1,-7]];

E[299,1] = [x^2+x-1, [1,x,x,-x-1,-x-1,-x+1,-2*x-3,-2*x-1,-x-2,-1,-x,-1,1,-x-2,-1,3*x,3*x]];
E[299,2] = [x^2-5, [1,x,0,3,x+1,0,-x+1,x,-3,x+5,-x-3,0,1,x-5,0,-1,2]];
E[299,3] = [x^2+x-5, [1,x,x,-x+3,-x+1,-x+5,1,2*x-5,-x+2,2*x-5,x+2,4*x-5,1,x,2*x-5,-5*x+4,x+2]];
E[299,4] = [x^2-x-1, [1,x,-x,x-1,-x-1,-x-1,-1,-2*x+1,x-2,-2*x-1,x-2,-1,-1,-x,2*x+1,-3*x,3*x-2]];
E[299,5] = [x^10-x^9-19*x^8+18*x^7+127*x^6-109*x^5-357*x^4+252*x^3+400*x^2-192*x-128, [32,32*x,-6*x^9-6*x^8+94*x^7+88*x^6-466*x^5-390*x^4+794*x^3+564*x^2-368*x-224,32*x^2-64,7*x^9+9*x^8-117*x^7-130*x^6+649*x^5+565*x^4-1379*x^3-796*x^2+976*x+352,-12*x^9-20*x^8+196*x^7+296*x^6-1044*x^5-1348*x^4+2076*x^3+2032*x^2-1376*x-768,-6*x^9+2*x^8+102*x^7-32*x^6-578*x^5+146*x^4+1234*x^3-116*x^2-800*x-128,32*x^3-128*x,10*x^9+6*x^8-174*x^7-92*x^6+1014*x^5+462*x^4-2274*x^3-920*x^2+1664*x+640,16*x^9+16*x^8-256*x^7-240*x^6+1328*x^5+1120*x^4-2560*x^3-1824*x^2+1696*x+896,7*x^9+13*x^8-105*x^7-190*x^6+481*x^5+849*x^4-711*x^3-1248*x^2+336*x+480,-20*x^9-20*x^8+324*x^7+304*x^6-1724*x^5-1428*x^4+3468*x^3+2296*x^2-2336*x-1088,-32,-4*x^9-12*x^8+76*x^7+184*x^6-508*x^5-908*x^4+1396*x^3+1600*x^2-1280*x-768,-3*x^9-x^8+45*x^7+6*x^6-181*x^5+43*x^4+51*x^3-272*x^2+336*x+288,32*x^4-192*x^2+128,10*x^9+6*x^8-174*x^7-92*x^6+1014*x^5+462*x^4-2242*x^3-952*x^2+1504*x+704]];
E[299,6] = [x^2-x-4, [1,x,-x+1,x+2,-x+1,-4,2*x,x+4,-x+2,-4,-x+3,-2*x-2,1,2*x+8,-x+5,3*x,-6]];
E[299,7] = [x^3+x^2-9*x-5, [2,0,2*x,-4,-x^2+7,0,2*x+2,0,2*x^2-6,0,-x^2-2*x+9,-4*x,2,0,x^2-2*x-5,8,-2*x^2+14]];

E[300,1] = [x, [1,0,1,0,0,0,-1,0,1,0,6,0,5,0,0,0,-6]];
E[300,2] = [x, [1,0,1,0,0,0,4,0,1,0,-4,0,0,0,0,0,4]];
E[300,3] = [x, [1,0,-1,0,0,0,-4,0,1,0,-4,0,0,0,0,0,-4]];
E[300,4] = [x, [1,0,-1,0,0,0,1,0,1,0,6,0,-5,0,0,0,6]];

E[301,1] = [x^4+4*x^3+2*x^2-5*x-3, [1,x,-x^3-2*x^2+2*x+1,x^2-2,-x^2-2*x,2*x^3+4*x^2-4*x-3,1,x^3-4*x,3*x^3+7*x^2-6*x-8,-x^3-2*x^2,-x^3-3*x^2+x,-2*x^3-4*x^2+3*x+4,3*x^3+8*x^2-2*x-7,x,x,-4*x^3-8*x^2+5*x+7,x^3+3*x^2-3*x-6]];
E[301,2] = [x^5-6*x^3+x^2+5*x-2, [1,x,x^4+x^3-6*x^2-5*x+4,x^2-2,-2*x^4-2*x^3+11*x^2+8*x-8,x^4-6*x^2-x+2,-1,x^3-4*x,-3*x^4-x^3+17*x^2+5*x-9,-2*x^4-x^3+10*x^2+2*x-4,3*x^4+x^3-17*x^2-4*x+7,-2*x^4-2*x^3+10*x^2+7*x-6,-2*x^4-x^3+12*x^2+2*x-9,-x,4*x^4+2*x^3-20*x^2-5*x+6,x^4-6*x^2+4,5*x^4+3*x^3-27*x^2-10*x+13]];
E[301,3] = [x^5-x^4-6*x^3+5*x^2+6*x-1, [1,x,-x^3+4*x+1,x^2-2,x^4-5*x^2+x+3,-x^4+4*x^2+x,-1,x^3-4*x,-x^4-x^3+5*x^2+3*x-1,x^4+x^3-4*x^2-3*x+1,x^4-x^3-5*x^2+4*x+5,-x^4+6*x^2-2*x-3,-x^3-2*x^2+4*x+5,-x,x^4-6*x^2+5,x^4-6*x^2+4,-x^4+x^3+7*x^2-6*x-7]];
E[301,4] = [x^7-4*x^6-3*x^5+25*x^4-13*x^3-23*x^2+11*x+2, [1,x,-x^5+x^4+7*x^3-5*x^2-8*x+2,x^2-2,x^6-2*x^5-6*x^4+11*x^3+4*x^2-6*x,-x^6+x^5+7*x^4-5*x^3-8*x^2+2*x,1,x^3-4*x,x^4-x^3-7*x^2+5*x+7,2*x^6-3*x^5-14*x^4+17*x^3+17*x^2-11*x-2,-x^6+3*x^5+5*x^4-18*x^3+x^2+13*x+1,-3*x^6+6*x^5+18*x^4-35*x^3-11*x^2+27*x-2,x^6-x^5-8*x^4+6*x^3+14*x^2-7*x-3,x,x^6-2*x^5-6*x^4+11*x^3+3*x^2-5*x+2,x^4-6*x^2+4,-x^6+x^5+7*x^4-4*x^3-9*x^2-3*x+3]];

E[302,1] = [x, [1,1,-3,1,0,-3,-2,1,6,0,-6,-3,-2,-2,0,1,-5]];
E[302,2] = [x, [1,1,-1,1,-4,-1,-2,1,-2,-4,2,-1,-6,-2,4,1,3]];
E[302,3] = [x^4-2*x^3-4*x^2+8*x-1, [1,1,x,1,-x^2+3,x,x^3-5*x+2,1,x^2-3,-x^2+3,-2*x^3+x^2+8*x-3,x,-x^3+2*x^2+3*x-4,x^3-5*x+2,-x^3+3*x,1,-1]];
E[302,4] = [x, [1,-1,2,1,2,-2,4,-1,1,-2,-4,2,0,-4,4,1,-6]];
E[302,5] = [x^2+2*x-1, [1,-1,x,1,0,-x,-2*x-4,-1,-2*x-2,0,-2*x,x,2*x-2,2*x+4,0,1,-5]];
E[302,6] = [x^4-10*x^2-6*x+9, [3,-3,3*x,3,2*x^3-3*x^2-14*x+3,-3*x,-x^3+7*x+6,-3,3*x^2-9,-2*x^3+3*x^2+14*x-3,-3*x^2+6*x+15,3*x,x^3-7*x+6,x^3-7*x-6,-3*x^3+6*x^2+15*x-18,3,9]];

E[303,1] = [x, [1,-2,1,2,-1,-2,-2,0,1,2,-6,2,1,4,-1,-4,-5]];
E[303,2] = [x^2-2, [1,x,-1,0,-x-1,-x,-x-2,-2*x,1,-x-2,2,0,2*x-3,-2*x-2,x+1,-4,-x-3]];
E[303,3] = [x^7-12*x^5+40*x^3+x^2-24*x-4, [1,x,-1,x^2-2,x^6+x^5-8*x^4-6*x^3+14*x^2+3*x-3,-x,-x^6-2*x^5+8*x^4+12*x^3-14*x^2-5*x+4,x^3-4*x,1,x^6+4*x^5-6*x^4-26*x^3+2*x^2+21*x+4,-x^3-x^2+6*x+2,-x^2+2,-x^6-3*x^5+5*x^4+20*x^3+4*x^2-18*x-3,-2*x^6-4*x^5+12*x^4+26*x^3-4*x^2-20*x-4,-x^6-x^5+8*x^4+6*x^3-14*x^2-3*x+3,x^4-6*x^2+4,x^6+3*x^5-6*x^4-20*x^3+2*x^2+17*x+5]];
E[303,4] = [x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-6, [1,x,1,x^2-2,x^4-x^3-5*x^2+3*x+5,x,-x^5+x^4+5*x^3-5*x^2-3*x+4,x^3-4*x,1,x^5-x^4-5*x^3+3*x^2+5*x,-2*x^4+x^3+11*x^2-4*x-8,x^2-2,2*x^5-2*x^4-11*x^3+9*x^2+10*x-5,-2*x^4+10*x^2-6,x^4-x^3-5*x^2+3*x+5,x^4-6*x^2+4,-x^4+x^3+3*x^2-3*x+3]];
E[303,5] = [x, [1,0,1,-2,-3,0,0,0,1,0,-2,-2,-3,0,-3,4,-7]];

E[304,1] = [x, [1,0,-2,0,-1,0,3,0,1,0,-5,0,-4,0,2,0,-3]];
E[304,2] = [x, [1,0,1,0,-4,0,-3,0,-2,0,-2,0,-1,0,-4,0,3]];
E[304,3] = [x^3+x^2-10*x-8, [2,0,2*x,0,-x^2+x+8,0,-x^2-x+4,0,2*x^2-6,0,x^2-x-4,0,2*x+4,0,2*x^2-2*x-8,0,-x^2-x+8]];
E[304,4] = [x, [1,0,-1,0,0,0,-3,0,-2,0,-2,0,1,0,0,0,-5]];
E[304,5] = [x, [1,0,-1,0,0,0,1,0,-2,0,6,0,5,0,0,0,3]];
E[304,6] = [x, [1,0,2,0,-1,0,3,0,1,0,3,0,-4,0,-2,0,5]];
E[304,7] = [x, [1,0,2,0,3,0,1,0,1,0,-3,0,-4,0,6,0,-3]];

E[305,1] = [x^3-3*x+1, [1,x,-x,x^2-2,-1,-x^2,-2*x^2-x+2,-x-1,x^2-3,-x,-x^2+x,-x+1,3*x^2+4*x-7,-x^2-4*x+2,x,-3*x^2-x+4,3*x^2-x-6]];
E[305,2] = [x^4+3*x^3-x^2-6*x-1, [1,x,-x^3-2*x^2+2*x+1,x^2-2,1,x^3+x^2-5*x-1,x^3+2*x^2-2*x-5,x^3-4*x,3*x^3+5*x^2-7*x-4,x,x^2-x-4,x-1,-x^2-2*x+1,-x^3-x^2+x+1,-x^3-2*x^2+2*x+1,-3*x^3-5*x^2+6*x+5,-2*x^3-x^2+7*x-2]];
E[305,3] = [x^7-2*x^6-9*x^5+17*x^4+19*x^3-36*x^2+5*x+1, [2,2*x,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^2-4,2,-x^5+2*x^4+4*x^3-9*x^2+5*x+1,2*x^4-4*x^3-10*x^2+16*x+4,2*x^3-8*x,-2*x^6+4*x^5+16*x^4-28*x^3-32*x^2+44*x+4,2*x,2*x^6-3*x^5-20*x^4+26*x^3+49*x^2-55*x-1,x^6-2*x^5-12*x^4+21*x^3+35*x^2-53*x,2*x^6-2*x^5-20*x^4+18*x^3+50*x^2-44*x-4,2*x^5-4*x^4-10*x^3+16*x^2+4*x,-x^6+2*x^5+8*x^4-15*x^3-15*x^2+27*x,2*x^4-12*x^2+8,-2*x^5+2*x^4+14*x^3-10*x^2-20*x+8]];
E[305,4] = [x^7+2*x^6-11*x^5-19*x^4+35*x^3+48*x^2-25*x-27, [2,2*x,-x^5+8*x^3-x^2-11*x-1,2*x^2-4,-2,-x^6+8*x^4-x^3-11*x^2-x,2*x^4-14*x^2+4*x+16,2*x^3-8*x,-2*x^3-2*x^2+10*x+8,-2*x,x^6-10*x^4+x^3+25*x^2-3*x-12,2*x^6-x^5-20*x^4+8*x^3+49*x^2-3*x-25,-2*x^2+10,2*x^5-14*x^3+4*x^2+16*x,x^5-8*x^3+x^2+11*x+1,2*x^4-12*x^2+8,2*x^4+2*x^3-12*x^2-6*x+6]];

E[306,1] = [x, [1,1,0,1,4,0,-2,1,0,4,0,0,-6,-2,0,1,1]];
E[306,2] = [x^2-6, [1,1,0,1,x,0,-x+2,1,0,x,-2*x,0,2*x+2,-x+2,0,1,-1]];
E[306,3] = [x, [1,1,0,1,0,0,2,1,0,0,0,0,2,2,0,1,1]];
E[306,4] = [x, [1,-1,0,1,2,0,0,-1,0,-2,4,0,-2,0,0,1,-1]];
E[306,5] = [x^2-6, [1,-1,0,1,x,0,x+2,-1,0,-x,-2*x,0,-2*x+2,-x-2,0,1,1]];
E[306,6] = [x, [1,-1,0,1,0,0,-4,-1,0,0,-6,0,2,4,0,1,1]];

E[307,1] = [x, [1,1,2,-1,0,2,3,-3,1,0,5,-2,0,3,0,-1,-5]];
E[307,2] = [x^9-3*x^8-11*x^7+30*x^6+46*x^5-87*x^4-91*x^3+50*x^2+62*x+13, [1,x,-x^8+2*x^7+11*x^6-18*x^5-38*x^4+44*x^3+39*x^2-24*x-13,x^2-2,x^7-x^6-11*x^5+5*x^4+36*x^3+3*x^2-24*x-9,-x^8+12*x^6+8*x^5-43*x^4-52*x^3+26*x^2+49*x+13,x^7-x^6-12*x^5+5*x^4+44*x^3+5*x^2-36*x-13,x^3-4*x,x^7-x^6-12*x^5+7*x^4+41*x^3-6*x^2-26*x-3,x^8-x^7-11*x^6+5*x^5+36*x^4+3*x^3-24*x^2-9*x,x^8-2*x^7-10*x^6+15*x^5+31*x^4-26*x^3-23*x^2+6*x+3,-x^8-3*x^7+16*x^6+39*x^5-63*x^4-153*x^3+21*x^2+123*x+39,x^8-x^7-12*x^6+6*x^5+45*x^4-2*x^3-45*x^2-8*x+6,x^8-x^7-12*x^6+5*x^5+44*x^4+5*x^3-36*x^2-13*x,x^8-2*x^7-10*x^6+15*x^5+32*x^4-29*x^3-29*x^2+19*x+13,x^4-6*x^2+4,-x^8+3*x^7+9*x^6-27*x^5-26*x^4+71*x^3+27*x^2-47*x-14]];
E[307,3] = [x^2+x-3, [1,x,-x-2,-x+1,3,-x-3,-x+2,-3,3*x+4,3*x,-x+3,1,2*x-1,3*x-3,-3*x-6,-x-2,x+6]];
E[307,4] = [x^10+7*x^9+10*x^8-28*x^7-73*x^6+16*x^5+128*x^4+26*x^3-69*x^2-18*x-1, [1,x,x^9+6*x^8+5*x^7-29*x^6-48*x^5+37*x^4+91*x^3-7*x^2-52*x-6,x^2-2,-x^9-6*x^8-4*x^7+34*x^6+50*x^5-57*x^4-111*x^3+22*x^2+69*x+7,-x^9-5*x^8-x^7+25*x^6+21*x^5-37*x^4-33*x^3+17*x^2+12*x+1,-x^9-8*x^8-16*x^7+22*x^6+95*x^5+21*x^4-143*x^3-56*x^2+71*x+9,x^3-4*x,x^8+5*x^7-27*x^5-14*x^4+47*x^3+17*x^2-29*x-2,x^9+6*x^8+6*x^7-23*x^6-41*x^5+17*x^4+48*x^3-11*x-1,2*x^8+10*x^7+3*x^6-46*x^5-42*x^4+58*x^3+50*x^2-23*x-6,-3*x^8-13*x^7+6*x^6+75*x^5+21*x^4-139*x^3-43*x^2+87*x+11,x^9+7*x^8+8*x^7-35*x^6-67*x^5+49*x^4+129*x^3-12*x^2-75*x-12,-x^9-6*x^8-6*x^7+22*x^6+37*x^5-15*x^4-30*x^3+2*x^2-9*x-1,-2*x^9-12*x^8-10*x^7+57*x^6+92*x^5-73*x^4-165*x^3+22*x^2+88*x+4,x^4-6*x^2+4,-x^9-7*x^8-10*x^7+24*x^6+58*x^5-10*x^4-68*x^3-6*x^2+20*x-2]];
E[307,5] = [x, [1,0,0,-2,4,0,0,0,-3,0,3,0,6,0,0,4,-1]];
E[307,6] = [x, [1,2,2,2,0,4,-3,0,1,0,1,4,6,-6,0,-4,2]];
E[307,7] = [x, [1,2,0,2,2,0,3,0,-3,4,-4,0,0,6,0,-4,3]];

E[308,1] = [x, [1,0,-1,0,-1,0,-1,0,-2,0,1,0,-4,0,1,0,-6]];
E[308,2] = [x^2-6, [1,0,x,0,2,0,-1,0,3,0,-1,0,-x+2,0,2*x,0,-x+2]];
E[308,3] = [x^3+x^2-6*x-2, [1,0,x,0,-x^2+4,0,1,0,x^2-3,0,1,0,x^2+x,0,x^2-2*x-2,0,-x^2-3*x+4]];

E[309,1] = [x, [1,-1,1,-1,-1,-1,-2,3,1,1,-2,-1,-5,2,-1,-1,0]];
E[309,2] = [x^3-x^2-3*x+1, [1,x,-1,x^2-2,x,-x,-x^2+2*x+1,x^2-x-1,1,x^2,-x^2+5,-x^2+2,-2*x^2+2*x+3,x^2-2*x+1,-x,-2*x^2+2*x+3,-2*x+2]];
E[309,3] = [x^8+x^7-13*x^6-11*x^5+52*x^4+35*x^3-59*x^2-27*x+1, [2,2*x,2,2*x^2-4,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,2*x,2*x^6-16*x^4+2*x^3+26*x^2-6*x,2*x^3-8*x,2,x^7-2*x^6-11*x^5+16*x^4+32*x^3-25*x^2-20*x+1,-2*x^6-2*x^5+16*x^4+12*x^3-28*x^2-10*x+6,2*x^2-4,x^7-11*x^5-2*x^4+36*x^3+15*x^2-36*x-11,2*x^7-16*x^5+2*x^4+26*x^3-6*x^2,-x^7+11*x^5-36*x^3-3*x^2+34*x+7,2*x^4-12*x^2+8,-2*x^5+14*x^3-2*x^2-16*x+2]];
E[309,4] = [x^5+2*x^4-4*x^3-6*x^2+4*x+1, [1,x,-1,x^2-2,x^4+x^3-5*x^2-3*x+3,-x,-2*x^4-3*x^3+7*x^2+6*x-4,x^3-4*x,1,-x^4-x^3+3*x^2-x-1,2*x^3+2*x^2-6*x-4,-x^2+2,2*x^4+3*x^3-5*x^2-6*x-1,x^4-x^3-6*x^2+4*x+2,-x^4-x^3+5*x^2+3*x-3,x^4-6*x^2+4,-3*x^3-x^2+10*x-4]];

E[310,1] = [x^2-6, [1,-1,x,1,1,-x,-2,-1,3,-1,x+2,x,x+2,2,x,1,-2*x]];
E[310,2] = [x^2+2*x-2, [1,-1,x,1,-1,-x,-2*x-2,-1,-2*x-1,1,-x-2,x,x-2,2*x+2,-x,1,-4]];
E[310,3] = [x, [1,1,2,1,-1,2,0,1,1,-1,2,2,0,0,-2,1,2]];
E[310,4] = [x, [1,1,-2,1,-1,-2,-4,1,1,-1,0,-2,-4,-4,2,1,0]];
E[310,5] = [x^3-2*x^2-4*x+4, [1,1,x,1,1,x,-x^2+4,1,x^2-3,1,x^2-3*x-2,x,-x-2,-x^2+4,x,1,-x^2+4]];

E[311,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^3-x^2+2*x,x^2-2,x^3+x^2-3*x-1,-x^2-x+1,x^3-3*x,x^3-4*x,x^3+x^2-2*x-2,-1,-1,x^3+x^2-3*x,x^2+x-3,-x^3+x-1,x^2+x-2,-x^3-3*x^2+x+3,-3*x^3-3*x^2+7*x]];
E[311,2] = [x^22-2*x^21-35*x^20+70*x^19+517*x^18-1033*x^17-4195*x^16+8357*x^15+20417*x^14-40403*x^13-61287*x^12+119701*x^11+113017*x^10-215615*x^9-124399*x^8+228609*x^7+76453*x^6-133295*x^5-23503*x^4+36742*x^3+3587*x^2-3200*x-473, [106341562018576649119,106341562018576649119*x,-1333218028123436678*x^21+1367946423136236257*x^20+49328489263264063408*x^19-48698618113739814119*x^18-780071490285978038489*x^17+731764058773877640305*x^16+6883435129930837071209*x^15-6029718454604453812991*x^14-37117408682963362048611*x^13+29643589741202443321628*x^12+125904278451589035925849*x^11-88764078616540344648331*x^10-266400248133720180154691*x^9+159042733994278329421197*x^8+336261615438596631255820*x^7-162008001244132052237259*x^6-230084343080867524283273*x^5+85032171085335940948597*x^4+71086649415902837709445*x^3-17051195074052769029465*x^2-6284781941061791629214*x-87513220437116449887,106341562018576649119*x^2-212683124037153298238,-21242974024529590*x^21-1434491652110563978*x^20+3209217338769634321*x^19+48282217898366329351*x^18-94578303848943192367*x^17-676590780104692901915*x^16+1270815302353166006692*x^15+5102603103564094427213*x^14-9439579417621543494677*x^13-22357866355125222974699*x^12+41280678241435124160901*x^11+57441564627509462184517*x^10-106882614769975285857639*x^9-83882843771650414225579*x^8+158593036380613931304765*x^7+66319079553842412941717*x^6-126427357236440356717803*x^5-28369596568106140688094*x^4+47782658911006380501745*x^3+8238984211089590694971*x^2-6439892278957108980653*x-1313955819411519890238,-1298489633110637099*x^21+2665858278943779678*x^20+44626643854900753341*x^19-90797769746161275963*x^18-645450164277632448069*x^17+1290585501953020206999*x^16+5111984606423106505055*x^15-9897096202767155393885*x^14-24222418249068768779606*x^13+44195345161987972241263*x^12+70823452567863149144947*x^11-115723946249293737117165*x^10-128419071139556469905773*x^9+170410625958069231949298*x^8+142777638947138683283643*x^7-128155825176746419940139*x^6-92679125973377551045413*x^5+39752026100917705466411*x^4+31933901715258541393611*x^3-1502528874183024265228*x^2-4353810910432113819487*x-630612127302385548694,504418815307781939*x^21-1021065885099576655*x^20-16604493185137817773*x^19+33056103831567470983*x^18+226015020692329680027*x^17-435479859114799908685*x^16-1641199345467818455453*x^15+2956466065705411278227*x^14+6861291586789371631471*x^13-10597470554231302540041*x^12-16835996047441621774817*x^11+16674122550262725807072*x^10+24918511100968457522896*x^9+4438859628397342489851*x^8-26019738542206463779319*x^7-47775179818655449476697*x^6+24030985031406062666739*x^5+52435121331955185077307*x^4-16943596953875463472297*x^3-19178717695756638586794*x^2+5034806783502259963324*x+1702627579036366605456,106341562018576649119*x^3-425366248074306596476*x,2046403089845571866*x^21-3320501250721280963*x^20-69436507984912614568*x^19+114229840938650420436*x^18+984593027842667859606*x^17-1647333477805559999578*x^16-7554077366172048872258*x^15+12913841625992631704837*x^14+33934916106603120681242*x^13-59748486152308080949246*x^12-90354129204143133078118*x^11+166314229434478003793370*x^10+138283868513786033925878*x^9-274038136524740361292930*x^8-113182368936346686594406*x^7+255694038610765851693374*x^6+42269138950209474008131*x^5-122382397121220694901858*x^4-3796040728454798420212*x^3+23868564658330153413544*x^2-540233279487050585897*x-580743841078344429161,-1476977600159623158*x^21+2465713247911098671*x^20+49769226080083400651*x^19-83595686278261394337*x^18-698534772272031968385*x^17+1181701026320264376642*x^16+5280130637487088210843*x^15-9005861616962722855647*x^14-23216146234638291999469*x^13+39978760092393779178571*x^12+59984369861219678637107*x^11-104481797574645025184609*x^10-88463147615949361773429*x^9+155950431654936474838355*x^8+71175414602616097982027*x^7-124803268143342995973533*x^6-31201178790705812387144*x^5+47283385292507861547975*x^4+9019493562698856890751*x^3-6363693731131121341323*x^2-1381933336290014578238*x-10047926713602496070,-949531404212230610*x^21+1404606076267666588*x^20+31860596932911204463*x^19-46971051976902102427*x^18-443194299396015920727*x^17+654211796697056201475*x^16+3289263238009343513027*x^15-4909640949988760976063*x^14-13911354804136965503755*x^13+21492498277511827879899*x^12+32809246067622506014675*x^11-55848212667582391995663*x^10-37152948138636735453445*x^9+85393270687204170694965*x^8+5583375858342452495631*x^7-76499001320510405514675*x^6+25817695878266203276277*x^5+39666285577392711382787*x^4-19730812320902394420787*x^3-10921342107175992074971*x^2+3730720089149782086801*x+1218984835905548181194,2735315068969378836*x^21-3556386150244017638*x^20-98560473954944805849*x^19+123266212268046560352*x^18+1509388691521688160710*x^17-1798707522023771405860*x^16-12812488598723235299960*x^15+14348281499360016496659*x^14+65967285881345625627588*x^13-68044261058993353384722*x^12-212101995579495437581464*x^11+195860488958789092408572*x^10+423237279982359574157795*x^9-336838640910748120037252*x^8-503832639518150045886488*x^7+330610304435094091558952*x^6+326838536617170381921752*x^5-168648842302412644241380*x^4-95966721606237671392660*x^3+34406261551641279513556*x^2+7783784928867158992934*x-439159155587098448053,321226424163746048*x^21+3801901583102434231*x^20-18552232937067380885*x^19-129228358922459727636*x^18+415822499184604316188*x^17+1838181668057575308290*x^16-4909941181790293676126*x^15-14192061774488959599914*x^14+33996329744624815911691*x^13+64611826293534390239510*x^12-143009619717835957566812*x^11-177164866440755054595842*x^10+363135701598845915429974*x^9+289742407609106508486970*x^8-534122568544790467437490*x^7-275603753317877822408499*x^6+420748487273236095304854*x^5+145078038418898400990846*x^4-153245015674186693664582*x^3-38930610655526174141722*x^2+18299352733124579928085*x+4161012749318365661141,-12228254484012777*x^21+1050165350634550092*x^20-2253213239977264747*x^19-34769506821793582436*x^18+85584777098138834302*x^17+474837584748326778652*x^16-1258961973821722385996*x^15-3437427365349612217092*x^14+9782562840649011141376*x^13+14078319886326409920676*x^12-43705314060894080073167*x^11-32089390148671133877067*x^10+113199122490984745267336*x^9+36729457663266301650342*x^8-163089860767352170769548*x^7-14533346655319789915628*x^6+119671627318405978636312*x^5-5088241537696664559980*x^4-37712073807795162589532*x^3+3225456492993246148131*x^2+3316767788021268810256*x+238590099640580857147,-3742303588968530107*x^21+3342400388448693194*x^20+133746740179511662120*x^19-113314885334183648100*x^18-2030356591407612687132*x^17+1601516699860616206053*x^16+17075571556833547170124*x^15-12186624276226513165584*x^14-87078358215154879522920*x^13+53795495238609565759988*x^12+277365657525005451628137*x^11-138266908354537623105784*x^10-549017649597967552746466*x^9+196895002163903242319749*x^8+650546317324946249637884*x^7-137489413085018415956440*x^6-422988250481854722664560*x^5+32138160482011131466836*x^4+126213526087593167637433*x^3+5730202195059084526405*x^2-10657578977563476319208*x-1870253588648265690674,106341562018576649119*x^4-638049372111459894714*x^2+425366248074306596476,4452381647471694094*x^21-9068371874454525600*x^20-153992947179709981857*x^19+309305459277894660434*x^18+2241142934119782305766*x^17-4414101082400495089032*x^16-17849102933154097864728*x^15+34138690020226395806430*x^14+84888616078482178708090*x^13-154986667317321532177050*x^12-247940630886815257914596*x^11+419002856056921869273834*x^10+444151988255289405124854*x^9-657580637032014020631760*x^8-476755702015183905849788*x^7+565228902091487119925104*x^6+285426523932612121998880*x^5-239125370165520923828736*x^4-80207143469841117045912*x^3+39063917958108087392762*x^2+6022433751456583734384*x-598516936521015541253]];

E[312,1] = [x, [1,0,1,0,-4,0,-4,0,1,0,-2,0,-1,0,-4,0,-6]];
E[312,2] = [x, [1,0,1,0,2,0,0,0,1,0,0,0,1,0,2,0,2]];
E[312,3] = [x, [1,0,1,0,0,0,0,0,1,0,6,0,-1,0,0,0,2]];
E[312,4] = [x, [1,0,-1,0,-2,0,4,0,1,0,0,0,1,0,2,0,2]];
E[312,5] = [x, [1,0,-1,0,4,0,0,0,1,0,-2,0,-1,0,-4,0,2]];
E[312,6] = [x, [1,0,-1,0,0,0,-4,0,1,0,-2,0,-1,0,0,0,-6]];

E[313,1] = [x^2-x-1, [1,x,-x+2,x-1,x+1,x-1,2*x,-2*x+1,-3*x+2,2*x+1,-2*x+1,2*x-3,-3*x+5,2*x+2,1,-3*x,2*x+1]];
E[313,2] = [x^11+8*x^10+16*x^9-26*x^8-121*x^7-62*x^6+190*x^5+196*x^4-76*x^3-122*x^2+2*x+17, [13,13*x,-29*x^10-184*x^9-159*x^8+1023*x^7+1831*x^6-1251*x^5-3525*x^4+133*x^3+2052*x^2+138*x-290,13*x^2-26,3*x^10+15*x^9-10*x^8-126*x^7-37*x^6+341*x^5+132*x^4-302*x^3-76*x^2+31*x+4,48*x^10+305*x^9+269*x^8-1678*x^7-3049*x^6+1985*x^5+5817*x^4-152*x^3-3400*x^2-232*x+493,73*x^10+482*x^9+502*x^8-2559*x^7-5238*x^6+2582*x^5+9959*x^4+577*x^3-5875*x^2-602*x+834,13*x^3-52*x,-52*x^10-351*x^9-390*x^8+1846*x^7+3939*x^6-1794*x^5-7488*x^4-507*x^3+4524*x^2+455*x-715,-9*x^10-58*x^9-48*x^8+326*x^7+527*x^6-438*x^5-890*x^4+152*x^3+397*x^2-2*x-51,-8*x^10-66*x^9-125*x^8+271*x^7+1013*x^6+135*x^5-1860*x^4-850*x^3+1117*x^2+368*x-197,-21*x^10-131*x^9-112*x^8+713*x^7+1299*x^6-801*x^5-2510*x^4-18*x^3+1520*x^2+121*x-236,73*x^10+482*x^9+502*x^8-2546*x^7-5199*x^6+2517*x^5+9751*x^4+655*x^3-5641*x^2-641*x+795,-102*x^10-666*x^9-661*x^8+3595*x^7+7108*x^6-3911*x^5-13731*x^4-327*x^3+8304*x^2+688*x-1241,130*x^10+858*x^9+884*x^8-4589*x^7-9295*x^6+4797*x^5+17823*x^4+754*x^3-10738*x^2-1001*x+1599,13*x^4-78*x^2+52,-39*x^10-260*x^9-273*x^8+1391*x^7+2821*x^6-1482*x^5-5304*x^4-78*x^3+3016*x^2+143*x-403]];
E[313,3] = [x^12-6*x^11-2*x^10+69*x^9-68*x^8-268*x^7+399*x^6+368*x^5-701*x^4-57*x^3+262*x^2-22*x-19, [2,2*x,2*x^10-6*x^9-24*x^8+70*x^7+108*x^6-278*x^5-224*x^4+400*x^3+200*x^2-94*x-34,2*x^2-4,2*x^11-8*x^10-18*x^9+94*x^8+36*x^7-380*x^6+68*x^5+580*x^4-226*x^3-210*x^2+66*x+16,2*x^11-6*x^10-24*x^9+70*x^8+108*x^7-278*x^6-224*x^5+400*x^4+200*x^3-94*x^2-34*x,-3*x^11+11*x^10+31*x^9-134*x^8-94*x^7+566*x^6+27*x^5-919*x^4+198*x^3+387*x^2-69*x-33,2*x^3-8*x,-6*x^11+24*x^10+56*x^9-290*x^8-122*x^7+1216*x^6-188*x^5-1962*x^4+712*x^3+824*x^2-212*x-74,4*x^11-14*x^10-44*x^9+172*x^8+156*x^7-730*x^6-156*x^5+1176*x^4-96*x^3-458*x^2+60*x+38,2*x^11-10*x^10-14*x^9+126*x^8-22*x^7-558*x^6+344*x^5+982*x^4-688*x^3-520*x^2+190*x+64,6*x^11-24*x^10-56*x^9+292*x^8+118*x^7-1238*x^6+220*x^5+2050*x^4-780*x^3-958*x^2+232*x+106,-2*x^11+4*x^10+30*x^9-44*x^8-184*x^7+154*x^6+552*x^5-144*x^4-710*x^3-104*x^2+160*x+28,-7*x^11+25*x^10+73*x^9-298*x^8-238*x^7+1224*x^6+185*x^5-1905*x^4+216*x^3+717*x^2-99*x-57,-2*x^11+8*x^10+18*x^9-94*x^8-36*x^7+380*x^6-70*x^5-576*x^4+238*x^3+192*x^2-84*x-6,2*x^4-12*x^2+8,2*x^11-8*x^10-18*x^9+94*x^8+38*x^7-386*x^6+54*x^5+626*x^4-204*x^3-302*x^2+72*x+36]];

E[314,1] = [x^7+x^6-17*x^5-6*x^4+84*x^3-19*x^2-73*x+4, [15,15,15*x,15,-5*x^5+55*x^3-20*x^2-95*x+20,15*x,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,15,15*x^2-45,-5*x^5+55*x^3-20*x^2-95*x+20,-x^6-2*x^5+20*x^4+6*x^3-123*x^2+86*x+74,15*x,-x^6+3*x^5+15*x^4-24*x^3-38*x^2-29*x+49,x^6+7*x^5-15*x^4-71*x^3+78*x^2+84*x+1,-5*x^6+55*x^4-20*x^3-95*x^2+20*x,15,x^6-3*x^5-20*x^4+34*x^3+88*x^2-91*x-39]];
E[314,2] = [x^6-3*x^5-9*x^4+26*x^3+20*x^2-43*x-25, [13,-13,13*x,13,-5*x^5+8*x^4+51*x^3-56*x^2-103*x+24,-13*x,-2*x^5-2*x^4+23*x^3+14*x^2-49*x-6,-13,13*x^2-39,5*x^5-8*x^4-51*x^3+56*x^2+103*x-24,5*x^5+5*x^4-64*x^3-61*x^2+181*x+171,13*x,8*x^5-18*x^4-66*x^3+126*x^2+92*x-80,2*x^5+2*x^4-23*x^3-14*x^2+49*x+6,-7*x^5+6*x^4+74*x^3-3*x^2-191*x-125,13,8*x^5-5*x^4-92*x^3-4*x^2+248*x+154]];
E[314,3] = [x, [1,-1,0,1,0,0,-3,-1,-3,0,-2,0,-1,3,0,1,3]];

E[315,1] = [x, [1,-1,0,-1,-1,0,1,3,0,1,0,0,-6,-1,0,-1,-2]];
E[315,2] = [x^2+2*x-1, [1,x,0,-2*x-1,-1,0,-1,x-2,0,-x,-2*x-4,0,2*x,-x,0,3,-4*x-6]];
E[315,3] = [x^2-2*x-1, [1,x,0,2*x-1,1,0,-1,x+2,0,x,-2*x+4,0,-2*x,-x,0,3,-4*x+6]];
E[315,4] = [x^2-x-4, [1,x,0,x+2,-1,0,-1,x+4,0,-x,x-1,0,-x+3,-x,0,3*x,-x+3]];
E[315,5] = [x^2-5, [1,x,0,3,1,0,1,x,0,x,-2*x-2,0,2*x,x,0,-1,2]];
E[315,6] = [x, [1,0,0,-2,1,0,1,0,0,0,3,0,5,0,0,4,-3]];

E[316,1] = [x, [1,0,-3,0,1,0,1,0,6,0,-6,0,-1,0,-3,0,-4]];
E[316,2] = [x, [1,0,-1,0,1,0,3,0,-2,0,2,0,-1,0,-1,0,4]];
E[316,3] = [x^2-3*x-1, [1,0,2,0,x,0,0,0,1,0,-x+3,0,-3*x+5,0,2*x,0,-2*x]];
E[316,4] = [x^2+5*x+3, [1,0,0,0,x,0,-2*x-6,0,-3,0,-x-5,0,x+1,0,0,0,2*x+6]];

E[317,1] = [x^11+3*x^10-10*x^9-32*x^8+31*x^7+109*x^6-42*x^5-147*x^4+35*x^3+68*x^2-19*x-1, [1046,1046*x,113*x^10-308*x^9-2162*x^8+4042*x^7+12971*x^6-18250*x^5-28022*x^4+33587*x^3+17524*x^2-20784*x+1175,1046*x^2-2092,468*x^10+1668*x^9-3900*x^8-17176*x^7+7206*x^6+54916*x^5+4*x^4-67560*x^3-3466*x^2+26704*x-1928,-647*x^10-1032*x^9+7658*x^8+9468*x^7-30567*x^6-23276*x^5+50198*x^4+13569*x^3-28468*x^2+3322*x+113,-500*x^10-1192*x^9+4864*x^8+10644*x^7-14082*x^6-24144*x^5+15346*x^4+10090*x^3-4218*x^2+6748*x-3644,1046*x^3-4184*x,-385*x^10+170*x^9+6172*x^8-3080*x^7-33761*x^6+18312*x^5+73248*x^4-41445*x^3-54596*x^2+28982*x+2717,264*x^10+780*x^9-2200*x^8-7302*x^7+3904*x^6+19660*x^5+1236*x^4-19846*x^3-5120*x^2+6964*x+468,14*x^10+184*x^9+232*x^8-1980*x^7-3660*x^6+6542*x^5+12570*x^4-8002*x^3-9844*x^2+4062*x-3446,683*x^10+1804*x^9-6912*x^8-18594*x^7+21305*x^6+59524*x^5-25496*x^4-72997*x^3+12270*x^2+29388*x-2997,118*x^10+206*x^9-1332*x^8-1148*x^7+5612*x^6-2988*x^5-11952*x^4+19522*x^3+8330*x^2-19408*x+1588,308*x^10-136*x^9-5356*x^8+1418*x^7+30356*x^6-5654*x^5-63410*x^4+13282*x^3+40748*x^2-13144*x-500,-836*x^10-2470*x^9+7664*x^8+24692*x^7-18290*x^6-74460*x^5+7592*x^4+82894*x^3+13424*x^2-27980*x-7758,1046*x^4-6276*x^2+4184,-1354*x^10-3002*x^9+14770*x^8+29962*x^7-51276*x^6-88486*x^5+67594*x^4+87134*x^3-27150*x^2-17190*x-546]];
E[317,2] = [x^15-x^14-22*x^13+22*x^12+188*x^11-184*x^10-786*x^9+723*x^8+1666*x^7-1315*x^6-1715*x^5+910*x^4+829*x^3-168*x^2-129*x+1, [9028,9028*x,-2929*x^14+6610*x^13+62146*x^12-141208*x^11-497546*x^10+1147126*x^9+1838946*x^8-4378801*x^7-3005667*x^6+7741472*x^5+1592783*x^4-5224775*x^3-153144*x^2+994572*x-29861,9028*x^2-18056,13774*x^14-21574*x^13-289662*x^12+465758*x^11+2307270*x^10-3819202*x^9-8563554*x^8+14681512*x^7+14433530*x^6-25983162*x^5-8822896*x^4+17245030*x^3+1692098*x^2-3153974*x+11572,3681*x^14-2292*x^13-76770*x^12+53106*x^11+608190*x^10-463248*x^9-2261134*x^8+1874047*x^7+3889837*x^6-3430452*x^5-2559385*x^4+2274997*x^3+502500*x^2-407702*x+2929,-12950*x^14+18574*x^13+274022*x^12-405890*x^11-2198614*x^10+3368554*x^9+8232426*x^8-13095188*x^7-14043794*x^6+23391474*x^5+8768112*x^4-15603122*x^3-1681650*x^2+2858842*x-8140,9028*x^3-36112*x,-2215*x^14+2126*x^13+46052*x^12-48728*x^11-363032*x^10+423434*x^9+1338856*x^8-1723911*x^7-2272699*x^6+3244722*x^5+1468925*x^4-2355755*x^3-318822*x^2+517324*x+23731,-7800*x^14+13366*x^13+162730*x^12-282242*x^11-1284786*x^10+2262810*x^9+4722910*x^8-8513954*x^7-7870352*x^6+14799514*x^5+4710690*x^4-9726548*x^3-839942*x^2+1788418*x-13774,186*x^14-3482*x^13-5634*x^12+71166*x^11+61822*x^10-554614*x^9-316222*x^8+2050324*x^7+785234*x^6-3600106*x^5-898688*x^4+2559630*x^3+429786*x^2-492842*x-12592,7247*x^14-9008*x^13-152168*x^12+198578*x^11+1209148*x^10-1662120*x^9-4465208*x^8+6514893*x^7+7421397*x^6-11729414*x^5-4260279*x^4+7900501*x^3+516994*x^2-1511366*x+56041,-8688*x^14+10332*x^13+182784*x^12-226372*x^11-1460388*x^10+1879712*x^9+5467128*x^8-7288292*x^7-9426572*x^6+12901488*x^5+6170340*x^4-8384040*x^3-1335076*x^2+1474732*x+25520,5624*x^14-10878*x^13-120990*x^12+235986*x^11+985754*x^10-1946274*x^9-3732338*x^8+7530906*x^7+6362224*x^6-13441138*x^5-3818622*x^4+9053900*x^3+683242*x^2-1678690*x+12950,7016*x^14-9416*x^13-148156*x^12+209284*x^11+1183552*x^10-1763348*x^9-4389844*x^8+6933420*x^7+7323796*x^6-12428956*x^5-4280748*x^4+8151372*x^3+701900*x^2-1422548*x+41756,9028*x^4-54168*x^2+36112,-5324*x^14+6718*x^13+110738*x^12-146830*x^11-869150*x^10+1217734*x^9+3153282*x^8-4727170*x^7-5078244*x^6+8421990*x^5+2666758*x^4-5587712*x^3-207002*x^2+1019786*x-41414]];

E[318,1] = [x^2-x-4, [1,1,1,1,x,1,-x+1,1,1,x,-1,1,-2*x,-x+1,x,1,-x-2]];
E[318,2] = [x, [1,1,-1,1,-3,-1,-4,1,1,-3,-5,-1,-2,-4,3,1,5]];
E[318,3] = [x, [1,1,-1,1,0,-1,1,1,1,0,5,-1,0,1,0,1,2]];
E[318,4] = [x, [1,-1,-1,1,-1,1,0,-1,1,1,-1,-1,-2,0,1,1,-7]];
E[318,5] = [x, [1,-1,-1,1,4,1,1,-1,1,-4,-1,-1,-4,-1,-4,1,6]];
E[318,6] = [x^2-x-10, [1,-1,1,1,x,-1,0,-1,1,-x,-x+2,1,6,0,x,1,-x-4]];
E[318,7] = [x, [1,-1,1,1,0,-1,5,-1,1,0,-3,1,-4,-5,0,1,6]];

E[319,1] = [x, [1,2,-3,2,1,-6,4,0,6,2,-1,-6,6,8,-3,-4,4]];
E[319,2] = [x^3-3*x-1, [1,x,-x,x^2-2,-2*x^2+x+2,-x^2,2*x^2-2*x-5,-x+1,x^2-3,x^2-4*x-2,1,-x-1,x^2+x-4,-2*x^2+x+2,-x^2+4*x+2,-3*x^2+x+4,-x^2+x-2]];
E[319,3] = [x^4+2*x^3-3*x^2-3*x+2, [1,x,-x^3-2*x^2+2*x+1,x^2-2,x^3+2*x^2-2*x-3,-x^2-2*x+2,x^3+2*x^2-3*x-2,x^3-4*x,x^3+x^2-3*x,x^2-2,-1,x^3+2*x^2-2*x-2,-2*x^3-5*x^2+x+4,x-2,x^3+3*x^2-x-5,-2*x^3-3*x^2+3*x+2,3*x^2+5*x-6]];
E[319,4] = [x^7-3*x^6-4*x^5+15*x^4+x^3-14*x^2+1, [1,x,-x^4+x^3+5*x^2-3*x-3,x^2-2,x^5-x^4-6*x^3+4*x^2+7*x-1,-x^5+x^4+5*x^3-3*x^2-3*x,x^6-3*x^5-4*x^4+14*x^3+2*x^2-11*x-1,x^3-4*x,-2*x^6+5*x^5+9*x^4-23*x^3-7*x^2+17*x+5,x^6-x^5-6*x^4+4*x^3+7*x^2-x,1,-x^6+x^5+7*x^4-5*x^3-13*x^2+6*x+6,x^5-2*x^4-4*x^3+6*x^2+2*x+1,-x^4+x^3+3*x^2-x-1,2*x^6-5*x^5-9*x^4+23*x^3+5*x^2-17*x,x^4-6*x^2+4,x^6-3*x^5-4*x^4+15*x^3+x^2-15*x+3]];
E[319,5] = [x^8-13*x^6-x^5+50*x^4+7*x^3-54*x^2-5*x+1, [9,9*x,-x^7-x^6+16*x^5+10*x^4-78*x^3-25*x^2+113*x+14,9*x^2-18,4*x^7-2*x^6-49*x^5+17*x^4+168*x^3-26*x^2-143*x+13,-x^7+3*x^6+9*x^5-28*x^4-18*x^3+59*x^2+9*x+1,-2*x^7-3*x^6+27*x^5+34*x^4-108*x^3-98*x^2+117*x+29,9*x^3-36*x,-3*x^7+x^6+41*x^5-8*x^4-174*x^3+9*x^2+217*x+20,-2*x^7+3*x^6+21*x^5-32*x^4-54*x^3+73*x^2+33*x-4,-9,5*x^7-2*x^6-61*x^5+12*x^4+222*x^3+5*x^2-230*x-27,6*x^7-2*x^6-73*x^5+16*x^4+258*x^3-18*x^2-254*x-13,-3*x^7+x^6+32*x^5-8*x^4-84*x^3+9*x^2+19*x+2,-x^7+x^6+17*x^5-18*x^4-84*x^3+71*x^2+115*x-15,9*x^4-54*x^2+36,3*x^6-3*x^5-24*x^4+27*x^3+27*x^2-51*x+33]];

E[320,1] = [x^2-8, [1,0,x,0,-1,0,x,0,5,0,-2*x,0,2,0,-x,0,2]];
E[320,2] = [x, [1,0,-2,0,1,0,-2,0,1,0,0,0,-2,0,-2,0,-6]];
E[320,3] = [x, [1,0,-2,0,1,0,2,0,1,0,-4,0,6,0,-2,0,2]];
E[320,4] = [x, [1,0,2,0,1,0,-2,0,1,0,4,0,6,0,2,0,2]];
E[320,5] = [x, [1,0,2,0,1,0,2,0,1,0,0,0,-2,0,2,0,-6]];
E[320,6] = [x, [1,0,0,0,-1,0,-4,0,-3,0,-4,0,2,0,0,0,2]];
E[320,7] = [x, [1,0,0,0,-1,0,4,0,-3,0,4,0,2,0,0,0,2]];

E[321,1] = [x^6-3*x^5-5*x^4+18*x^3+x^2-19*x+3, [2,2*x,2,2*x^2-4,x^5-x^4-8*x^3+5*x^2+13*x,2*x,-x^5+x^4+6*x^3-5*x^2-5*x+4,2*x^3-8*x,2,2*x^5-3*x^4-13*x^3+12*x^2+19*x-3,-2*x^5+3*x^4+13*x^3-14*x^2-19*x+9,2*x^2-4,x^4+x^3-8*x^2-5*x+7,-2*x^5+x^4+13*x^3-4*x^2-15*x+3,x^5-x^4-8*x^3+5*x^2+13*x,2*x^4-12*x^2+8,-x^5-x^4+10*x^3+5*x^2-21*x]];
E[321,2] = [x^7-14*x^5-x^4+55*x^3+8*x^2-46*x-19, [4,4*x,-4,4*x^2-8,-x^6+x^5+11*x^4-10*x^3-31*x^2+25*x+13,-4*x,2*x^6-28*x^4+4*x^3+104*x^2-28*x-54,4*x^3-16*x,4,x^6-3*x^5-11*x^4+24*x^3+33*x^2-33*x-19,-3*x^6+x^5+41*x^4-16*x^3-151*x^2+67*x+93,-4*x^2+8,-2*x^6+2*x^5+28*x^4-22*x^3-110*x^2+60*x+84,6*x^4-6*x^3-44*x^2+38*x+38,x^6-x^5-11*x^4+10*x^3+31*x^2-25*x-13,4*x^4-24*x^2+16,4*x^6-2*x^5-54*x^4+24*x^3+194*x^2-78*x-112]];
E[321,3] = [x^2+x-1, [1,-x-1,1,x,-3,-x-1,2*x,2*x+1,1,3*x+3,-2,x,-1,-2,-3,-3*x-3,-4*x-5]];
E[321,4] = [x^2+x-1, [1,-x-1,-1,x,1,x+1,-2,2*x+1,1,-x-1,2*x-2,-x,-1,2*x+2,-1,-3*x-3,4*x+3]];

E[322,1] = [x, [1,-1,2,1,0,-2,1,-1,1,0,4,2,0,-1,0,1,6]];
E[322,2] = [x^2+2*x-4, [1,-1,x,1,-x-2,-x,-1,-1,-2*x+1,x+2,0,x,-2*x-4,1,-4,1,x-4]];
E[322,3] = [x, [1,-1,0,1,-2,0,1,-1,-3,2,-4,0,4,-1,0,1,-8]];
E[322,4] = [x, [1,1,-2,1,-2,-2,-1,1,1,-2,-2,-2,-4,-1,4,1,-6]];
E[322,5] = [x, [1,1,2,1,-2,2,1,1,1,-2,6,2,-4,1,-4,1,-2]];
E[322,6] = [x^2+2*x-2, [1,1,x,1,x+2,x,1,1,-2*x-1,x+2,-2*x-2,x,-2*x,1,2,1,-x]];
E[322,7] = [x^3-2*x^2-6*x+8, [1,1,x,1,-x+2,x,-1,1,x^2-3,-x+2,-x^2+4,x,-x^2+6,-1,-x^2+2*x,1,x^2-x-2]];

E[323,1] = [x^2+x-4, [1,x,x+1,-x+2,2,4,-2*x,x-4,x+2,2*x,-2,2*x-2,2,2*x-8,2*x+2,-3*x,-1]];
E[323,2] = [x^4-6*x^2-x+7, [1,x,x^3-2*x^2-4*x+5,x^2-2,-x^3+x^2+3*x-4,-2*x^3+2*x^2+6*x-7,-x^3+2*x^2+3*x-8,x^3-4*x,3*x^3-3*x^2-10*x+8,x^3-3*x^2-5*x+7,-2*x^3+4*x^2+7*x-11,-2*x^2-x+4,-2*x^3+x^2+7*x-4,2*x^3-3*x^2-9*x+7,-2*x^3+5*x^2+9*x-13,x-3,1]];
E[323,3] = [x^5+3*x^4-2*x^3-7*x^2+2*x+1, [1,x,-x^3-2*x^2+2*x+1,x^2-2,x^4+3*x^3-x^2-6*x-1,-x^4-2*x^3+2*x^2+x,x^3+2*x^2-x-2,x^3-4*x,-x^4-x^3+5*x^2+x-3,x^3+x^2-3*x-1,-2*x^4-6*x^3+2*x^2+9*x-1,x^4+2*x^3-2*x^2-2*x-1,-x^2-x-2,x^4+2*x^3-x^2-2*x,x^4+4*x^3+x^2-8*x-2,x^4-6*x^2+4,-1]];
E[323,4] = [x^6-2*x^5-9*x^4+15*x^3+23*x^2-23*x-21, [2,2*x,x^5-x^4-8*x^3+5*x^2+12*x-1,2*x^2-4,-2*x^4+2*x^3+14*x^2-8*x-18,x^5+x^4-10*x^3-11*x^2+22*x+21,x^5-x^4-8*x^3+5*x^2+14*x+1,2*x^3-8*x,-2*x^5+18*x^3+4*x^2-34*x-16,-2*x^5+2*x^4+14*x^3-8*x^2-18*x,x^5-x^4-10*x^3+5*x^2+22*x+3,x^5+x^4-10*x^3-11*x^2+20*x+23,-2*x^5+2*x^4+16*x^3-8*x^2-26*x-2,x^5+x^4-10*x^3-9*x^2+24*x+21,2*x^5-16*x^3-8*x^2+24*x+30,2*x^4-12*x^2+8,-2]];
E[323,5] = [x^7-x^6-10*x^5+9*x^4+26*x^3-19*x^2-12*x+8, [2,2*x,x^6-x^5-10*x^4+7*x^3+26*x^2-7*x-10,2*x^2-4,2*x^6-20*x^4+52*x^2+2*x-20,-2*x^4+12*x^2+2*x-8,-2*x^3+10*x,2*x^3-8*x,-2*x^6+20*x^4-52*x^2-4*x+24,2*x^6-18*x^4+40*x^2+4*x-16,-2*x^6+22*x^4+2*x^3-66*x^2-12*x+36,-2*x^6+20*x^4-2*x^3-50*x^2+6*x+20,-2*x^2-2*x+12,-2*x^4+10*x^2,2*x^4-14*x^2+12,2*x^4-12*x^2+8,2]];
E[323,6] = [x, [1,0,3,-2,-2,0,4,0,6,0,-2,-6,6,0,-6,4,-1]];

E[324,1] = [x, [1,0,0,0,3,0,-1,0,0,0,3,0,-1,0,0,0,6]];
E[324,2] = [x, [1,0,0,0,3,0,2,0,0,0,-6,0,5,0,0,0,-3]];
E[324,3] = [x, [1,0,0,0,-3,0,-1,0,0,0,-3,0,-1,0,0,0,-6]];
E[324,4] = [x, [1,0,0,0,-3,0,2,0,0,0,6,0,5,0,0,0,3]];

E[325,1] = [x, [1,1,2,-1,0,2,4,-3,1,0,2,-2,1,4,0,-1,-2]];
E[325,2] = [x, [1,-2,-1,2,0,2,-2,0,-2,0,2,-2,1,4,0,-4,-2]];
E[325,3] = [x, [1,2,1,2,0,2,2,0,-2,0,2,2,-1,4,0,-4,2]];
E[325,4] = [x^2+2*x-1, [1,x,-2*x-2,-2*x-1,0,2*x-2,x,x-2,5,0,-x+4,-2*x+6,-1,-2*x+1,0,3,-2*x-1]];
E[325,5] = [x^3+3*x^2-x-5, [1,x,x^2+x-4,x^2-2,0,-2*x^2-3*x+5,-x^2-2*x+1,-3*x^2-3*x+5,-3*x^2-4*x+8,0,x-1,x^2+x-2,1,x^2-5,0,4*x^2+2*x-11,-2*x-4]];
E[325,6] = [x^3-3*x^2-x+5, [1,x,-x^2+x+4,x^2-2,0,-2*x^2+3*x+5,x^2-2*x-1,3*x^2-3*x-5,-3*x^2+4*x+8,0,-x-1,-x^2+x+2,-1,x^2-5,0,4*x^2-2*x-11,-2*x+4]];
E[325,7] = [x^2-3, [1,x,-x-1,1,0,-x-3,-2,-x,2*x+1,0,-x-3,-x-1,-1,-2*x,0,-5,2*x]];
E[325,8] = [x^2-8, [2,-x+2,2*x,-2*x+2,0,2*x-8,-x+2,-x+6,10,0,-x+10,2*x-16,2,-2*x+6,0,6,2*x-2]];
E[325,9] = [x^2-2, [1,x+1,x,2*x+1,0,x+2,-2*x-2,x+3,-1,0,x+2,x+4,1,-4*x-6,0,3,-2*x+2]];
E[325,10] = [x, [1,0,1,-2,0,0,-4,0,-2,0,-6,-2,1,0,0,4,6]];
E[325,11] = [x, [1,0,-1,-2,0,0,4,0,-2,0,-6,2,-1,0,0,4,-6]];

E[326,1] = [x, [1,-1,-2,1,-3,2,-1,-1,1,3,0,-2,5,1,6,1,0]];
E[326,2] = [x^5-3*x^4-8*x^3+27*x^2-5*x-17, [13,-13,13*x,13,-7*x^4+10*x^3+68*x^2-84*x-32,-13*x,4*x^4-2*x^3-50*x^2+22*x+100,-13,13*x^2-39,7*x^4-10*x^3-68*x^2+84*x+32,-3*x^4-5*x^3+31*x^2+42*x-49,13*x,6*x^4-3*x^3-62*x^2+33*x+72,-4*x^4+2*x^3+50*x^2-22*x-100,-11*x^4+12*x^3+105*x^2-67*x-119,13,8*x^4-4*x^3-74*x^2+18*x+70]];
E[326,3] = [x, [1,-1,0,1,-1,0,-1,-1,-3,1,0,0,-5,1,0,1,6]];
E[326,4] = [x, [1,1,-2,1,-1,-2,-3,1,1,-1,-4,-2,-1,-3,2,1,0]];
E[326,5] = [x^6-5*x^5+29*x^3-25*x^2-35*x+36, [1,1,x,1,x^5-2*x^4-6*x^3+9*x^2+7*x-7,x,-3*x^5+7*x^4+18*x^3-37*x^2-23*x+41,1,x^2-3,x^5-2*x^4-6*x^3+9*x^2+7*x-7,3*x^5-8*x^4-17*x^3+44*x^2+19*x-48,x,x^5-3*x^4-7*x^3+19*x^2+12*x-23,-3*x^5+7*x^4+18*x^3-37*x^2-23*x+41,3*x^5-6*x^4-20*x^3+32*x^2+28*x-36,1,2*x^2-2*x-6]];

E[327,1] = [x, [1,-1,1,-1,-1,-1,-2,3,1,1,-1,-1,-4,2,-1,-1,-4]];
E[327,2] = [x^3+3*x^2-x-5, [1,x,-1,x^2-2,-1,-x,-x^2-2*x+1,-3*x^2-3*x+5,1,-x,x^2+x-3,-x^2+2,-x^2-2*x+1,x^2-5,1,4*x^2+2*x-11,2*x^2+2*x-8]];
E[327,3] = [x^9-3*x^8-11*x^7+35*x^6+34*x^5-122*x^4-29*x^3+127*x^2+9*x-5, [6,6*x,6,6*x^2-12,-x^8-x^7+16*x^6+14*x^5-80*x^4-60*x^3+125*x^2+85*x-2,6*x,-2*x^8+4*x^7+26*x^6-44*x^5-106*x^4+132*x^3+136*x^2-88*x+2,6*x^3-24*x,6,-4*x^8+5*x^7+49*x^6-46*x^5-182*x^4+96*x^3+212*x^2+7*x-5,18*x^8-21*x^7-237*x^6+198*x^5+978*x^4-432*x^3-1302*x^2-15*x+69,6*x^2-12,-8*x^8+10*x^7+104*x^6-92*x^5-424*x^4+180*x^3+556*x^2+62*x-4,-2*x^8+4*x^7+26*x^6-38*x^5-112*x^4+78*x^3+166*x^2+20*x-10,-x^8-x^7+16*x^6+14*x^5-80*x^4-60*x^3+125*x^2+85*x-2,6*x^4-36*x^2+24,-14*x^8+16*x^7+182*x^6-146*x^5-736*x^4+288*x^3+946*x^2+86*x-22]];
E[327,4] = [x^6-4*x^5-2*x^4+20*x^3-8*x^2-16*x+1, [2,2*x,-2,2*x^2-4,x^5-x^4-9*x^3+5*x^2+19*x+1,-2*x,-2*x^5+4*x^4+10*x^3-16*x^2-6*x+2,2*x^3-8*x,2,3*x^5-7*x^4-15*x^3+27*x^2+17*x-1,-x^5+x^4+9*x^3-5*x^2-19*x+3,-2*x^2+4,2*x^5-2*x^4-14*x^3+6*x^2+22*x+6,-4*x^5+6*x^4+24*x^3-22*x^2-30*x+2,-x^5+x^4+9*x^3-5*x^2-19*x-1,2*x^4-12*x^2+8,-2*x^4+2*x^3+10*x^2-8*x+2]];

E[328,1] = [x, [1,0,2,0,2,0,-2,0,1,0,2,0,6,0,4,0,-6]];
E[328,2] = [x^2-2*x-2, [1,0,x,0,0,0,-x+2,0,2*x-1,0,-x+4,0,0,0,0,0,2]];
E[328,3] = [x^3+2*x^2-6*x-10, [1,0,x,0,-x^2+6,0,x+2,0,x^2-3,0,-x-2,0,-2*x-2,0,2*x^2-10,0,6]];
E[328,4] = [x^3+4*x^2+2*x-2, [1,0,x,0,-x^2-4*x-2,0,2*x^2+5*x-2,0,x^2-3,0,-2*x^2-5*x-2,0,2*x+2,0,-2,0,-2]];
E[328,5] = [x, [1,0,0,0,-2,0,-2,0,-3,0,0,0,-4,0,0,0,-2]];

E[329,1] = [x^3-x^2-5*x+1, [2,2*x,2*x^2-2*x-6,2*x^2-4,x^2-4*x-3,4*x-2,-2,2*x^2+2*x-2,-2*x^2+14,-3*x^2+2*x-1,-x^2-2*x+5,2*x+12,-2*x-2,-2*x,-x^2-6*x+13,8*x+6,4*x-8]];
E[329,2] = [x^5-x^4-11*x^3+12*x^2+28*x-33, [1,x,-x^2+5,x^2-2,x-1,-x^3+5*x,-1,x^3-4*x,x^4-10*x^2+22,x^2-x,-x^4+10*x^2+x-20,-x^4+7*x^2-10,x^3-2*x^2-6*x+11,-x,-x^3+x^2+5*x-5,x^4-6*x^2+4,-x^4-x^3+9*x^2+5*x-18]];
E[329,3] = [x^6-12*x^4+5*x^3+36*x^2-29*x+3, [2,2*x,-2*x^3+12*x-4,2*x^2-4,x^5+x^4-9*x^3-4*x^2+20*x-3,-2*x^4+12*x^2-4*x,2,2*x^3-8*x,-2*x^3+10*x-4,x^5+3*x^4-9*x^3-16*x^2+26*x-3,-x^5-x^4+9*x^3+2*x^2-22*x+15,-2*x^5+16*x^3-4*x^2-24*x+8,-2*x^5-2*x^4+20*x^3+8*x^2-52*x+16,2*x,x^5+x^4-11*x^3-6*x^2+32*x-3,2*x^4-12*x^2+8,2*x^4+2*x^3-14*x^2-6*x+12]];
E[329,4] = [x^3+2*x^2-x-1, [1,-x^2-x+1,x,-x-1,x^2+x-2,x^2-1,-1,2*x^2+3*x-2,x^2-3,x^2+2*x-2,-x-2,-x^2-x,2*x^2+x-3,x^2+x-1,-x^2-x+1,x^2+4*x-1,-4*x^2-7*x+5]];
E[329,5] = [x^3+4*x^2+3*x-1, [1,-x^2-3*x-1,x,x+1,x^2+x-2,x^2+2*x-1,1,2*x^2+5*x,x^2-3,x^2+4*x+2,3*x+4,x^2+x,-x-5,-x^2-3*x-1,-3*x^2-5*x+1,x^2-5,2*x^2+5*x-3]];
E[329,6] = [x, [1,-1,-1,-1,3,1,-1,3,-2,-3,3,1,-6,1,-3,-1,6]];
E[329,7] = [x^2-x-4, [1,-1,x,-1,x-2,-x,1,3,x+1,-x+2,x-4,-x,2,-1,-x+4,-1,2]];

E[330,1] = [x, [1,-1,-1,1,1,1,-4,-1,1,-1,1,-1,-2,4,-1,1,-2]];
E[330,2] = [x, [1,-1,-1,1,-1,1,0,-1,1,1,1,-1,2,0,1,1,-2]];
E[330,3] = [x, [1,1,1,1,1,1,0,1,1,1,-1,1,-2,0,1,1,2]];
E[330,4] = [x, [1,1,-1,1,1,-1,0,1,1,1,1,-1,6,0,-1,1,2]];
E[330,5] = [x, [1,1,-1,1,-1,-1,4,1,1,-1,-1,-1,2,4,1,1,2]];

E[331,1] = [x, [1,-1,-2,-1,1,2,2,3,1,-1,0,2,-4,-2,-2,-1,1]];
E[331,2] = [x^7+2*x^6-6*x^5-8*x^4+11*x^3+3*x^2-5*x+1, [1,x,-x^6-3*x^5+4*x^4+13*x^3-4*x^2-9*x+3,x^2-2,4*x^6+10*x^5-19*x^4-42*x^3+23*x^2+25*x-11,-x^6-2*x^5+5*x^4+7*x^3-6*x^2-2*x+1,-5*x^6-11*x^5+27*x^4+45*x^3-41*x^2-24*x+13,x^3-4*x,x^6+2*x^5-6*x^4-7*x^3+11*x^2-2*x-3,2*x^6+5*x^5-10*x^4-21*x^3+13*x^2+9*x-4,8*x^6+20*x^5-38*x^4-82*x^3+48*x^2+45*x-20,2*x^6+5*x^5-9*x^4-21*x^3+9*x^2+14*x-5,-7*x^6-17*x^5+34*x^4+70*x^3-42*x^2-38*x+14,-x^6-3*x^5+5*x^4+14*x^3-9*x^2-12*x+5,-x^6-x^5+7*x^4+2*x^3-11*x^2+6*x-2,x^4-6*x^2+4,-x^6-4*x^5+14*x^3+12*x^2-x-7]];
E[331,3] = [x^16-3*x^15-19*x^14+60*x^13+136*x^12-465*x^11-448*x^10+1747*x^9+657*x^8-3241*x^7-375*x^6+2695*x^5+230*x^4-855*x^3-110*x^2+56*x+8, [41780,41780*x,-4276*x^15+23524*x^14+68316*x^13-474080*x^12-338312*x^11+3693332*x^10+175008*x^9-13891412*x^8+2998032*x^7+25579616*x^6-7116248*x^5-20655908*x^4+3524776*x^3+6029232*x^2-256088*x-281880,41780*x^2-83560,-193*x^15+3141*x^14+8817*x^13-69654*x^12-125856*x^11+604449*x^10+805006*x^9-2602543*x^8-2497031*x^7+5769595*x^6+3522077*x^5-6042977*x^4-1713460*x^3+2150027*x^2+178468*x-59228,10696*x^15-12928*x^14-217520*x^13+243224*x^12+1704992*x^11-1740640*x^10-6421240*x^9+5807364*x^8+11721100*x^7-8719748*x^6-9132088*x^5+4508256*x^4+2373252*x^3-726448*x^2-42424*x+34208,-23356*x^15+39592*x^14+459344*x^13-766808*x^12-3437532*x^11+5710908*x^10+12062132*x^9-20278796*x^8-19412092*x^7+34278420*x^6+11297844*x^5-23979964*x^4-1130080*x^3+6429904*x^2-345324*x-367976,41780*x^3-167120*x,7952*x^15-14380*x^14-159704*x^13+280092*x^12+1240024*x^11-2100508*x^10-4662872*x^9+7549320*x^8+8688392*x^7-13137008*x^6-7425232*x^5+10001620*x^4+2691792*x^3-3205952*x^2-210560*x+338804,2562*x^15+5150*x^14-58074*x^13-99608*x^12+514704*x^11+718542*x^10-2265372*x^9-2370230*x^8+5144082*x^7+3449702*x^6-5522842*x^5-1669070*x^4+1985012*x^3+157238*x^2-48420*x+1544,-12112*x^15+22508*x^14+232592*x^13-432100*x^12-1678904*x^11+3174684*x^10+5546136*x^9-11032744*x^8-7935856*x^7+17955172*x^6+3457104*x^5-11571036*x^4-613268*x^3+2719444*x^2+301764*x-94160,27712*x^15-61344*x^14-535168*x^13+1198496*x^12+3909624*x^11-9016096*x^10-13228564*x^9+32476652*x^8+19949924*x^7-56280320*x^6-10084968*x^5+41224988*x^4+1369080*x^3-10924328*x^2-52592*x+478192,23422*x^15-52962*x^14-446946*x^13+1033904*x^12+3195904*x^11-7762122*x^10-10333148*x^9+27829426*x^8+13646878*x^7-47719814*x^6-2499590*x^5+34125514*x^4-3771524*x^3-8847430*x^2+1183884*x+504608,-30476*x^15+15580*x^14+634552*x^13-261116*x^12-5149632*x^11+1598644*x^10+20524136*x^9-4067200*x^8-41418376*x^7+2539344*x^6+38964456*x^5+4241800*x^4-13539476*x^3-2914484*x^2+939960*x+186848,38*x^15+14838*x^14-14638*x^13-300480*x^12+260956*x^11+2336874*x^10-1804544*x^9-8688534*x^8+5831214*x^7+15532982*x^6-8358126*x^5-11657606*x^4+3637812*x^3+2738234*x^2-137056*x+51320,41780*x^4-250680*x^2+167120,-2326*x^15-9532*x^14+59740*x^13+203506*x^12-602612*x^11-1694270*x^10+3036530*x^9+6933086*x^8-7939160*x^7-14349052*x^6+9918308*x^5+13617084*x^4-4508002*x^3-4212002*x^2+609614*x+167212]];
E[331,4] = [x^3+2*x^2-4*x-7, [1,x,-x-1,x^2-2,-x^2+2,-x^2-x,x^2-3,-2*x^2+7,x^2+2*x-2,2*x^2-2*x-7,-x-3,x^2-2*x-5,-2*x^2-x+3,-2*x^2+x+7,-x^2+2*x+5,2*x^2-x-10,2*x^2-9]];

E[332,1] = [x^2-7, [1,0,x,0,x-1,0,-x,0,4,0,x+2,0,-x-3,0,-x+7,0,3]];
E[332,2] = [x^2+2*x-1, [1,0,x,0,-x-1,0,-x-4,0,-2*x-2,0,-x-4,0,x+1,0,x-1,0,2*x+1]];
E[332,3] = [x^3-4*x^2+3*x+1, [1,0,x,0,-2*x^2+4*x+2,0,-x^2+3*x+2,0,x^2-3,0,3*x^2-10*x+2,0,4*x^2-10*x+2,0,-4*x^2+8*x+2,0,3*x^2-7*x-2]];

E[333,1] = [x, [1,1,0,-1,-2,0,-4,-3,0,-2,4,0,-2,-4,0,-1,-6]];
E[333,2] = [x, [1,-1,0,-1,2,0,-4,3,0,-2,-4,0,-2,4,0,-1,6]];
E[333,3] = [x, [1,2,0,2,2,0,-1,0,0,4,5,0,-2,-2,0,-4,0]];
E[333,4] = [x^4-6*x^2-2*x+5, [1,x,0,x^2-2,-x^3+2*x^2+3*x-4,0,-2*x^3+2*x^2+8*x-2,x^3-4*x,0,2*x^3-3*x^2-6*x+5,-2*x^2+6,0,2*x^3-4*x^2-6*x+10,2*x^3-4*x^2-6*x+10,0,2*x-1,-x^3+3*x+2]];
E[333,5] = [x^4-6*x^2+3, [1,x,0,x^2-2,-x^3+5*x,0,2,x^3-4*x,0,-x^2+3,0,0,2,2*x,0,1,x^3-5*x]];
E[333,6] = [x^3+3*x^2-x-5, [1,x,0,x^2-2,x^2-5,0,-2*x^2-2*x+4,-3*x^2-3*x+5,0,-3*x^2-4*x+5,-2*x^2-4*x+2,0,2*x^2+4*x-4,4*x^2+2*x-10,0,4*x^2+2*x-11,x^2+4*x-1]];
E[333,7] = [x, [1,0,0,-2,0,0,-1,0,0,0,-3,0,-4,0,0,4,-6]];

E[334,1] = [x^2+3*x+1, [1,1,x,1,-2*x-5,x,-3,1,-3*x-4,-2*x-5,x-3,x,4*x+7,-3,x+2,1,-5*x-7]];
E[334,2] = [x^3-x^2-7*x+8, [1,1,x,1,-1,x,1,1,x^2-3,-1,-x^2-2*x+8,x,-x^2-x+6,1,-x,1,-x^2+6]];
E[334,3] = [x, [1,1,0,1,3,0,1,1,-3,3,0,0,-2,1,0,1,-2]];
E[334,4] = [x^2+x-1, [1,-1,x,1,-1,-x,-2*x-1,-1,-x-2,1,-x-3,x,-2*x-1,2*x+1,-x,1,3*x-1]];
E[334,5] = [x^2-8, [2,-2,2*x,2,-x+2,-2*x,-6,-2,10,x-2,2*x,2*x,2*x+8,6,2*x-8,2,2*x+4]];
E[334,6] = [x^3+x^2-5*x-4, [1,-1,x,1,-x^2+x+4,-x,-x^2+x+4,-1,x^2-3,x^2-x-4,x^2,x,-x^2-x,x^2-x-4,2*x^2-x-4,1,-x^2-2*x+6]];

E[335,1] = [x^2-x-1, [1,x,2*x-1,x-1,-1,x+2,2*x-1,-2*x+1,2,-x,2*x-4,-x+3,6,x+2,-2*x+1,-3*x,-6*x+2]];
E[335,2] = [x^2-2, [1,x,-x,0,-1,-2,-2,-2*x,-1,-x,x,0,-2,-2*x,x,-4,x-3]];
E[335,3] = [x^7-2*x^6-12*x^5+21*x^4+42*x^3-52*x^2-39*x-6, [1,x,-2*x^6+x^5+23*x^4-8*x^3-66*x^2+12*x+10,x^2-2,-1,-3*x^6-x^5+34*x^4+18*x^3-92*x^2-68*x-12,2*x^6+2*x^5-23*x^4-26*x^3+61*x^2+81*x+20,x^3-4*x,3*x^5-36*x^3-5*x^2+105*x+31,-x,-2*x^5+22*x^3+2*x^2-58*x-12,-3*x^6-4*x^5+35*x^4+50*x^3-92*x^2-153*x-38,3*x^6-4*x^5-34*x^4+39*x^3+100*x^2-90*x-34,6*x^6+x^5-68*x^4-23*x^3+185*x^2+98*x+12,2*x^6-x^5-23*x^4+8*x^3+66*x^2-12*x-10,x^4-6*x^2+4,-3*x^6+4*x^5+34*x^4-41*x^3-100*x^2+100*x+39]];
E[335,4] = [x^11-18*x^9+2*x^8+114*x^7-24*x^6-306*x^5+86*x^4+332*x^3-109*x^2-114*x+46, [5261,5261*x,43*x^10-84*x^9-1344*x^8+1488*x^7+13496*x^6-9411*x^5-54847*x^4+24218*x^3+84666*x^2-17145*x-28424,5261*x^2-10522,5261,-84*x^10-570*x^9+1402*x^8+8594*x^7-8379*x^6-41689*x^5+20520*x^4+70390*x^3-12458*x^2-23522*x-1978,2136*x^10+966*x^9-37154*x^8-11851*x^7+223588*x^6+42464*x^5-550354*x^4-52284*x^3+499421*x^2+31446*x-115048,5261*x^3-21044*x,-2405*x^10-1664*x^9+41769*x^8+23464*x^7-251736*x^6-108264*x^5+628092*x^4+195152*x^3-607584*x^2-115666*x+188255,5261*x,-1271*x^10+770*x^9+22842*x^8-13640*x^7-141250*x^6+78376*x^5+351072*x^4-160620*x^3-307876*x^2+86139*x+57128,-656*x^10+58*x^9+11450*x^8-1779*x^7-70697*x^6+13638*x^5+187308*x^4-33006*x^3-202010*x^2+22736*x+60712,1936*x^10+1112*x^9-34818*x^8-16692*x^7+219421*x^6+85502*x^5-576654*x^4-176549*x^3+579238*x^2+109722*x-156334,966*x^10+1294*x^9-16123*x^8-19916*x^7+93728*x^6+103262*x^5-235980*x^4-209731*x^3+264270*x^2+128456*x-98256,43*x^10-84*x^9-1344*x^8+1488*x^7+13496*x^6-9411*x^5-54847*x^4+24218*x^3+84666*x^2-17145*x-28424,5261*x^4-31566*x^2+21044,-1169*x^10-41*x^9+20388*x^8-2280*x^7-123184*x^6+27912*x^5+306614*x^4-76990*x^3-293500*x^2+41799*x+82077]];
E[335,5] = [x, [1,0,0,-2,1,0,-2,0,-3,0,-2,0,-2,0,0,4,-3]];

E[336,1] = [x, [1,0,1,0,-2,0,1,0,1,0,4,0,6,0,-2,0,2]];
E[336,2] = [x, [1,0,1,0,4,0,1,0,1,0,-2,0,-6,0,4,0,-4]];
E[336,3] = [x, [1,0,1,0,2,0,-1,0,1,0,0,0,6,0,2,0,-2]];
E[336,4] = [x, [1,0,-1,0,-2,0,1,0,1,0,-4,0,-2,0,2,0,-6]];
E[336,5] = [x, [1,0,-1,0,2,0,1,0,1,0,0,0,-2,0,-2,0,6]];
E[336,6] = [x, [1,0,-1,0,0,0,-1,0,1,0,6,0,2,0,0,0,0]];

E[337,1] = [x^15-3*x^14-18*x^13+56*x^12+123*x^11-402*x^10-400*x^9+1395*x^8+643*x^7-2406*x^6-496*x^5+1843*x^4+200*x^3-388*x^2-69*x+1, [3236,3236*x,-3898*x^14+5280*x^13+79908*x^12-90208*x^11-644046*x^10+562758*x^9+2571518*x^8-1535848*x^7-5214430*x^6+1653582*x^5+4746334*x^4-273200*x^3-1150808*x^2-141708*x+9182,3236*x^2-6472,1942*x^14-3816*x^13-37056*x^12+66196*x^11+274450*x^10-425482*x^9-996046*x^8+1239704*x^7+1830210*x^6-1595610*x^5-1522558*x^4+706972*x^3+341584*x^2-43748*x-7070,-6414*x^14+9744*x^13+128080*x^12-164592*x^11-1004238*x^10+1012318*x^9+3901862*x^8-2708016*x^7-7725006*x^6+2812926*x^5+6910814*x^4-371208*x^3-1654132*x^2-259780*x+3898,1698*x^14-2740*x^13-33120*x^12+46028*x^11+251758*x^10-279222*x^9-941098*x^8+723344*x^7+1780042*x^6-685038*x^5-1500650*x^4-2620*x^3+299316*x^2+97624*x+14694,3236*x^3-12944*x,-2424*x^14+3740*x^13+48916*x^12-64976*x^11-387232*x^10+416216*x^9+1516836*x^8-1193332*x^7-3018916*x^6+1451808*x^5+2693820*x^4-501476*x^3-619108*x^2-15836*x+6032,2010*x^14-2100*x^13-42556*x^12+35584*x^11+355202*x^10-219246*x^9-1469386*x^8+581504*x^7+3076842*x^6-559326*x^5-2872134*x^4-46816*x^3+709748*x^2+126928*x-1942,6103*x^14-8598*x^13-123912*x^12+144748*x^11+989877*x^10-882049*x^9-3925325*x^8+2302144*x^7+7937621*x^6-2195013*x^5-7252033*x^4-48388*x^3+1777296*x^2+346008*x+9625,-1702*x^14+2068*x^13+34776*x^12-34900*x^11-278018*x^10+210746*x^9+1096478*x^8-529108*x^7-2190298*x^6+422306*x^5+1957126*x^4+175068*x^3-446796*x^2-155252*x-11950,3188*x^14-4828*x^13-64264*x^12+81760*x^11+510060*x^10-504584*x^9-2012168*x^8+1356796*x^7+4056828*x^6-1424760*x^5-3709292*x^4+211912*x^3+919356*x^2+114228*x+568,2354*x^14-2556*x^13-49060*x^12+42904*x^11+403374*x^10-261898*x^9-1645366*x^8+688228*x^7+3400350*x^6-658442*x^5-3132034*x^4-40284*x^3+756448*x^2+131856*x-1698,-652*x^14+488*x^13+14284*x^12-8004*x^11-122120*x^10+44680*x^9+510056*x^8-87928*x^7-1051488*x^6-13036*x^5+903084*x^4+179108*x^3-118728*x^2-80156*x-15476,3236*x^4-19416*x^2+12944,1188*x^14-1048*x^13-25848*x^12+18356*x^11+220508*x^10-117384*x^9-924760*x^8+326916*x^7+1936052*x^6-344516*x^5-1751828*x^4-884*x^3+358260*x^2+84448*x+10212]];
E[337,2] = [x^12+6*x^11+x^10-54*x^9-76*x^8+135*x^7+289*x^6-97*x^5-392*x^4-28*x^3+201*x^2+36*x-27, [27,27*x,-41*x^11-207*x^10+148*x^9+2037*x^8+1208*x^7-6366*x^6-5621*x^5+8552*x^4+7303*x^3-5185*x^2-2844*x+1116,27*x^2-54,76*x^11+360*x^10-356*x^9-3552*x^8-1393*x^7+11103*x^6+7618*x^5-14677*x^4-9914*x^3+8360*x^2+3798*x-1638,39*x^11+189*x^10-177*x^9-1908*x^8-831*x^7+6228*x^6+4575*x^5-8769*x^4-6333*x^3+5397*x^2+2592*x-1107,-49*x^11-198*x^10+356*x^9+2013*x^8-362*x^7-6567*x^6-976*x^5+8845*x^4+1571*x^3-4607*x^2-612*x+612,27*x^3-108*x,33*x^11+171*x^10-102*x^9-1674*x^8-1131*x^7+5211*x^6+4947*x^5-7089*x^4-6240*x^3+4476*x^2+2286*x-999,-96*x^11-432*x^10+552*x^9+4383*x^8+843*x^7-14346*x^6-7305*x^5+19878*x^4+10488*x^3-11478*x^2-4374*x+2052,54*x^11+234*x^10-351*x^9-2412*x^8-81*x^7+8055*x^6+2889*x^5-11187*x^4-4257*x^3+6147*x^2+1683*x-999,37*x^11+198*x^10-98*x^9-1941*x^8-1453*x^7+6036*x^6+6256*x^5-8149*x^4-8117*x^3+5123*x^2+3177*x-1179,-45*x^11-198*x^10+279*x^9+2016*x^8+180*x^7-6579*x^6-2637*x^5+8784*x^4+3609*x^3-4419*x^2-1314*x+513,96*x^11+405*x^10-633*x^9-4086*x^8+48*x^7+13185*x^6+4092*x^5-17637*x^4-5979*x^3+9237*x^2+2376*x-1323,-27*x^11-126*x^10+135*x^9+1251*x^8+405*x^7-3978*x^6-2403*x^5+5490*x^4+3123*x^3-3339*x^2-1143*x+567,27*x^4-162*x^2+108,29*x^11+126*x^10-187*x^9-1317*x^8-107*x^7+4512*x^6+2018*x^5-6560*x^4-3319*x^3+4027*x^2+1602*x-846]];

E[338,1] = [x, [1,-1,-1,1,3,1,3,-1,-2,-3,0,-1,0,-3,-3,1,-3]];
E[338,2] = [x, [1,-1,-3,1,1,3,-1,-1,6,-1,2,-3,0,1,-3,1,-3]];
E[338,3] = [x^3-3*x^2-4*x+13, [1,-1,x,1,2*x^2-12,-x,-4*x^2+2*x+22,-1,x^2-3,-2*x^2+12,3*x^2-x-17,x,0,4*x^2-2*x-22,6*x^2-4*x-26,1,-5*x^2+x+29]];
E[338,4] = [x, [1,-1,0,1,1,0,-4,-1,-3,-1,-4,0,0,4,0,1,3]];
E[338,5] = [x, [1,1,1,1,3,1,1,1,-2,3,-6,1,0,1,3,1,-3]];
E[338,6] = [x, [1,1,-1,1,-3,-1,-3,1,-2,-3,0,-1,0,-3,3,1,-3]];
E[338,7] = [x^3-3*x^2-4*x+13, [1,1,x,1,-2*x^2+12,x,4*x^2-2*x-22,1,x^2-3,-2*x^2+12,-3*x^2+x+17,x,0,4*x^2-2*x-22,-6*x^2+4*x+26,1,-5*x^2+x+29]];
E[338,8] = [x, [1,1,0,1,-1,0,4,1,-3,-1,4,0,0,4,0,1,3]];

E[339,1] = [x, [1,-2,1,2,-3,-2,1,0,1,6,-2,2,-2,-2,-3,-4,-2]];
E[339,2] = [x^2+2*x-1, [1,x,-1,-2*x-1,-2*x-1,-x,3,x-2,1,3*x-2,2*x+4,2*x+1,5,3*x,2*x+1,3,2*x-1]];
E[339,3] = [x^2-2, [1,x,-1,0,-x-1,-x,-1,-2*x,1,-x-2,-x,0,-2*x-4,-x,x+1,-4,4*x+2]];
E[339,4] = [x^5-7*x^3-4*x^2+6*x+2, [1,x,1,x^2-2,-x^4+x^3+5*x^2-x-1,x,-x^4+2*x^3+3*x^2-4*x+1,x^3-4*x,1,x^4-2*x^3-5*x^2+5*x+2,2*x^4-3*x^3-10*x^2+5*x+6,x^2-2,-2*x^3+3*x^2+8*x-2,2*x^4-4*x^3-8*x^2+7*x+2,-x^4+x^3+5*x^2-x-1,x^4-6*x^2+4,-x^4+2*x^3+4*x^2-4*x+2]];
E[339,5] = [x^5-x^4-10*x^3+6*x^2+22*x+4, [2,2*x,-2,2*x^2-4,-2*x^3-2*x^2+14*x+10,-2*x,x^4+x^3-6*x^2-6*x-4,2*x^3-8*x,2,-2*x^4-2*x^3+14*x^2+10*x,-2*x^3+14*x+4,-2*x^2+4,-x^4+x^3+6*x^2-6*x-2,2*x^4+4*x^3-12*x^2-26*x-4,2*x^3+2*x^2-14*x-10,2*x^4-12*x^2+8,-x^4-x^3+4*x^2+6*x+10]];
E[339,6] = [x, [1,0,1,-2,-1,0,-3,0,1,0,-4,-2,-2,0,-1,4,-2]];
E[339,7] = [x, [1,2,-1,2,2,-2,3,0,1,4,-6,-2,5,6,-2,-4,3]];
E[339,8] = [x^2-3*x-2, [1,2,1,2,x,2,-x+1,0,1,2*x,-2*x+2,2,-3,-2*x+2,x,-4,-3]];

E[340,1] = [x^3-8*x+4, [1,0,x,0,1,0,x,0,x^2-3,0,-x^2-x+6,0,-x^2-2*x+6,0,x,0,1]];
E[340,2] = [x, [1,0,0,0,-1,0,-4,0,-3,0,2,0,-6,0,0,0,1]];

E[341,1] = [x^2-x-1, [1,x,-1,x-1,-x-1,-x,-3*x+2,-2*x+1,-2,-2*x-1,1,-x+1,4*x-3,-x-3,x+1,-3*x,2*x-3]];
E[341,2] = [x^8-x^7-14*x^6+11*x^5+60*x^4-31*x^3-74*x^2+5*x+3, [4,4*x,x^7-x^6-13*x^5+10*x^4+51*x^3-25*x^2-55*x+4,4*x^2-8,-2*x^4+2*x^3+12*x^2-10*x-6,x^6-x^5-9*x^4+6*x^3+19*x^2-x-3,-x^6+x^5+9*x^4-6*x^3-19*x^2+x+11,4*x^3-16*x,x^7-x^6-13*x^5+12*x^4+49*x^3-41*x^2-45*x+22,-2*x^5+2*x^4+12*x^3-10*x^2-6*x,-4,-x^7+x^6+17*x^5-14*x^4-83*x^3+49*x^2+107*x-8,2*x^5-2*x^4-20*x^3+10*x^2+46*x+8,-x^7+x^6+9*x^5-6*x^4-19*x^3+x^2+11*x,-x^7+x^6+13*x^5-10*x^4-55*x^3+25*x^2+75*x,4*x^4-24*x^2+16,-x^6-x^5+11*x^4+14*x^3-29*x^2-41*x+3]];
E[341,3] = [x^11-x^10-20*x^9+20*x^8+141*x^7-135*x^6-421*x^5+347*x^4+530*x^3-288*x^2-239*x+17, [88,88*x,-7*x^10+2*x^9+132*x^8-30*x^7-867*x^6+134*x^5+2301*x^4-138*x^3-2058*x^2-136*x+171,88*x^2-176,-x^10-6*x^9+22*x^8+90*x^7-171*x^6-402*x^5+555*x^4+458*x^3-668*x^2+188*x+191,-5*x^10-8*x^9+110*x^8+120*x^7-811*x^6-646*x^5+2291*x^4+1652*x^3-2152*x^2-1502*x+119,13*x^10+12*x^9-242*x^8-224*x^7+1563*x^6+1442*x^5-4091*x^4-3732*x^3+3712*x^2+3254*x-107,88*x^3-352*x,-9*x^10-10*x^9+176*x^8+194*x^7-1209*x^6-1286*x^5+3411*x^4+3330*x^3-3306*x^2-2796*x+201,-7*x^10+2*x^9+110*x^8-30*x^7-537*x^6+134*x^5+805*x^4-138*x^3-100*x^2-48*x+17,88,x^10+6*x^9-44*x^8-46*x^7+413*x^6-82*x^5-1215*x^4+774*x^3+1174*x^2-804*x-257,3*x^10+18*x^9-66*x^8-314*x^7+513*x^6+1866*x^5-1621*x^4-4366*x^3+1608*x^2+3308*x+219,25*x^10+18*x^9-484*x^8-270*x^7+3197*x^6+1382*x^5-8243*x^4-3178*x^3+6998*x^2+3000*x-221,-10*x^10-16*x^9+198*x^8+284*x^7-1380*x^6-1688*x^5+3966*x^4+3876*x^3-4062*x^2-3048*x+568,88*x^4-528*x^2+352,-11*x^10+198*x^8-1177*x^6-22*x^5+2497*x^4+220*x^3-1232*x^2-374*x-275]];
E[341,4] = [x^4+2*x^3-5*x^2-6*x+4, [2,-x^2-x+2,2*x,x^2+x-4,x^3+x^2-6*x-2,-x^3-x^2+2*x,-x^3-x^2+4*x-2,2*x^2+2*x-6,2*x^2-6,x^3+2*x^2-3*x-2,-2,x^3+x^2-4*x,-2*x-4,x^2+3*x-2,-x^3-x^2+4*x-4,-3*x^2-3*x+6,-2*x^3-2*x^2+6*x]];

E[342,1] = [x, [1,1,0,1,2,0,0,1,0,2,2,0,-4,0,0,1,0]];
E[342,2] = [x, [1,1,0,1,0,0,-1,1,0,0,6,0,5,-1,0,1,-3]];
E[342,3] = [x, [1,1,0,1,0,0,4,1,0,0,-4,0,0,4,0,1,2]];
E[342,4] = [x, [1,-1,0,1,4,0,3,-1,0,-4,-2,0,-1,-3,0,1,-3]];
E[342,5] = [x, [1,-1,0,1,0,0,-4,-1,0,0,0,0,-4,4,0,1,-6]];
E[342,6] = [x, [1,-1,0,1,-2,0,0,-1,0,2,4,0,2,0,0,1,6]];
E[342,7] = [x, [1,-1,0,1,-2,0,0,-1,0,2,-2,0,-4,0,0,1,0]];

E[343,1] = [x^3-3*x^2-4*x+13, [1,x,0,x^2-2,0,0,0,3*x^2-13,-3,0,-8*x^2+3*x+44,0,0,0,0,7*x^2-x-35,0]];
E[343,2] = [x^3+4*x^2+3*x-1, [1,x,0,x^2-2,0,0,0,-4*x^2-7*x+1,-3,0,-x^2-4*x-5,0,0,0,0,7*x^2+13*x,0]];
E[343,3] = [x^6-20*x^4+124*x^2-232, [4,-x^4+14*x^2-40,4*x,-2*x^4+26*x^2-72,x^5-14*x^3+44*x,-x^5+14*x^3-40*x,0,-x^4+10*x^2-12,4*x^2-12,x^5-12*x^3+24*x,2*x^2-12,-2*x^5+26*x^3-72*x,x^5-16*x^3+56*x,0,6*x^4-80*x^2+232,x^4-12*x^2+32,-x^5+14*x^3-48*x]];
E[343,4] = [x^6-5*x^5-x^4+34*x^3-28*x^2-49*x+49, [7,-9*x^5+24*x^4+65*x^3-159*x^2-105*x+203,7*x,-4*x^5+13*x^4+25*x^3-80*x^2-35*x+91,-7*x^5+21*x^4+49*x^3-140*x^2-84*x+196,-21*x^5+56*x^4+147*x^3-357*x^2-238*x+441,0,16*x^5-45*x^4-114*x^3+292*x^2+189*x-364,7*x^2-21,-14*x^2+14*x+49,19*x^5-53*x^4-131*x^3+338*x^2+210*x-413,-7*x^5+21*x^4+56*x^3-147*x^2-105*x+196,-7*x^5+14*x^4+56*x^3-84*x^2-105*x+98,0,-14*x^5+42*x^4+98*x^3-280*x^2-147*x+343,16*x^5-45*x^4-107*x^3+285*x^2+154*x-350,7*x^5-21*x^4-49*x^3+140*x^2+77*x-147]];
E[343,5] = [x^6+5*x^5-x^4-34*x^3-28*x^2+49*x+49, [7,9*x^5+24*x^4-65*x^3-159*x^2+105*x+203,7*x,4*x^5+13*x^4-25*x^3-80*x^2+35*x+91,-7*x^5-21*x^4+49*x^3+140*x^2-84*x-196,-21*x^5-56*x^4+147*x^3+357*x^2-238*x-441,0,-16*x^5-45*x^4+114*x^3+292*x^2-189*x-364,7*x^2-21,14*x^2+14*x-49,-19*x^5-53*x^4+131*x^3+338*x^2-210*x-413,-7*x^5-21*x^4+56*x^3+147*x^2-105*x-196,-7*x^5-14*x^4+56*x^3+84*x^2-105*x-98,0,14*x^5+42*x^4-98*x^3-280*x^2+147*x+343,-16*x^5-45*x^4+107*x^3+285*x^2-154*x-350,7*x^5+21*x^4-49*x^3-140*x^2+77*x+147]];

E[344,1] = [x^2+2*x-2, [1,0,x,0,-x-2,0,-x-2,0,-2*x-1,0,-3,0,-3,0,-2,0,2*x+5]];
E[344,2] = [x^3-3*x^2-x+4, [1,0,x,0,-x^2+2*x+2,0,2,0,x^2-3,0,-x^2-x+5,0,3*x^2-5*x-5,0,-x^2+x+4,0,-x^2+1]];
E[344,3] = [x^5+x^4-13*x^3-8*x^2+42*x+8, [2,0,2*x,0,2*x^3-14*x+4,0,-2*x^3-2*x^2+14*x+8,0,2*x^2-6,0,-x^4+x^3+9*x^2-8*x-8,0,x^4-x^3-9*x^2+8*x+12,0,2*x^4-14*x^2+4*x,0,-x^4-x^3+7*x^2+4*x+4]];
E[344,4] = [x, [1,0,0,0,-2,0,-2,0,-3,0,1,0,-1,0,0,0,-7]];

E[345,1] = [x, [1,-1,1,-1,-1,-1,4,3,1,1,-4,-1,-2,-4,-1,-1,6]];
E[345,2] = [x, [1,2,-1,2,1,-2,3,0,1,2,2,-2,-2,6,-1,-4,5]];
E[345,3] = [x, [1,1,1,-1,-1,1,4,-3,1,-1,4,-1,6,4,-1,-1,-2]];
E[345,4] = [x, [1,-2,1,2,1,-2,-5,0,1,-2,-2,2,-6,10,1,-4,1]];
E[345,5] = [x^2+2*x-2, [1,x,-1,-2*x,1,-x,-3,2*x-4,1,x,x,2*x,-3*x-2,-3*x,-1,-4*x+4,-x-5]];
E[345,6] = [x^2-6, [1,x,1,4,-1,x,-1,2*x,1,-x,-x,4,-x+2,-x,-1,4,x-3]];
E[345,7] = [x^3+x^2-4*x-2, [1,x,1,x^2-2,1,x,x^2-1,-x^2+2,1,x,-x^2-x+2,x^2-2,-x^2-x+4,-x^2+3*x+2,1,-x^2-2*x+2,-x-1]];
E[345,8] = [x^2-2, [1,x,-1,0,-1,-x,-2*x-1,-2*x,1,-x,-x-4,0,-x+2,-x-4,1,-4,5*x+1]];
E[345,9] = [x, [1,0,1,-2,-1,0,-3,0,1,0,-4,-2,0,0,-1,4,-3]];
E[345,10] = [x, [1,0,-1,-2,-1,0,1,0,1,0,4,2,0,0,1,4,5]];

E[346,1] = [x^3-x^2-6*x+4, [2,-2,2*x,2,-x^2+x+4,-2*x,-x^2+x+2,-2,2*x^2-6,x^2-x-4,8,2*x,-2*x^2+2*x+8,x^2-x-2,-2*x+4,2,2*x^2+2*x-8]];
E[346,2] = [x^4+2*x^3-5*x^2-5*x-1, [1,-1,x,1,-3*x^3-5*x^2+16*x+7,-x,5*x^3+8*x^2-29*x-14,-1,x^2-3,3*x^3+5*x^2-16*x-7,3*x^3+4*x^2-18*x-9,x,-3*x^3-4*x^2+17*x+6,-5*x^3-8*x^2+29*x+14,x^3+x^2-8*x-3,1,-2*x^3-4*x^2+10*x+6]];
E[346,3] = [x, [1,1,-1,1,-3,-1,-2,1,-2,-3,-4,-1,0,-2,3,1,-2]];
E[346,4] = [x, [1,1,1,1,-1,1,4,1,-2,-1,4,1,-6,4,-1,1,-4]];
E[346,5] = [x^5+3*x^4-8*x^3-21*x^2+18*x+28, [2,2,2*x,2,-x^4-x^3+6*x^2+x,2*x,x^4+x^3-8*x^2-3*x+10,2,2*x^2-6,-x^4-x^3+6*x^2+x,2*x^2-8,2*x,2*x^3+4*x^2-10*x-8,x^4+x^3-8*x^2-3*x+10,2*x^4-2*x^3-20*x^2+18*x+28,2,2*x^4+2*x^3-16*x^2-6*x+24]];

E[347,1] = [x, [1,-2,1,2,0,-2,-2,0,-2,0,-3,2,-2,4,0,-4,4]];
E[347,2] = [x^7+2*x^6-7*x^5-15*x^4+6*x^3+22*x^2+9*x+1, [1,x,-x^6-3*x^5+7*x^4+23*x^3-7*x^2-35*x-8,x^2-2,-x^6-x^5+8*x^4+7*x^3-13*x^2-10*x-1,-x^6+8*x^4-x^3-13*x^2+x+1,7*x^6+13*x^5-52*x^4-98*x^3+64*x^2+147*x+31,x^3-4*x,x^5-7*x^3+x^2+8*x,x^6+x^5-8*x^4-7*x^3+12*x^2+8*x+1,x^6+x^5-8*x^4-7*x^3+14*x^2+8*x-3,4*x^6+7*x^5-30*x^4-53*x^3+37*x^2+80*x+17,-7*x^6-12*x^5+52*x^4+89*x^3-65*x^2-130*x-30,-x^6-3*x^5+7*x^4+22*x^3-7*x^2-32*x-7,-4*x^6-4*x^5+31*x^4+29*x^3-44*x^2-41*x-7,x^4-6*x^2+4,9*x^6+17*x^5-66*x^4-128*x^3+78*x^2+192*x+41]];
E[347,3] = [x^19-30*x^17+x^16+374*x^15-21*x^14-2509*x^13+166*x^12+9794*x^11-586*x^10-22435*x^9+749*x^8+28885*x^7+329*x^6-18752*x^5-878*x^4+4788*x^3-64*x^2-352*x+32, [4704816,4704816*x,2368973*x^18+4202164*x^17-63214018*x^16-110092731*x^15+679595698*x^14+1165084067*x^13-3751578757*x^12-6367003458*x^11+11162952046*x^10+19024606398*x^9-16906363175*x^8-30144731499*x^7+10241331209*x^6+22186663277*x^5-341241168*x^4-5287650274*x^3-157668644*x^2+330801672*x-13694144,4704816*x^2-9409632,-3922172*x^18-7142908*x^17+104986096*x^16+187075956*x^15-1134802396*x^14-1979205548*x^13+6325871704*x^12+10819031484*x^11-19184640592*x^10-32397813168*x^9+30341413484*x^8+51731713176*x^7-21098505200*x^6-39018148856*x^5+3930099180*x^4+10149008056*x^3-623105848*x^2-698144832*x+75070112,4202164*x^18+7855172*x^17-112461704*x^16-206400204*x^15+1214832500*x^14+2192174500*x^13-6760252976*x^12-12038769516*x^11+20412824576*x^10+36241546080*x^9-31919092276*x^8-58186453896*x^7+21407271160*x^6+44081740528*x^5-3207691980*x^4-11500311368*x^3+482415944*x^2+820184352*x-75807136,3056604*x^18+5303328*x^17-81846744*x^16-138324396*x^15+884979888*x^14+1455704076*x^13-4935117996*x^12-7901616024*x^11+14974825104*x^10+23432584392*x^9-23697190500*x^8-36884053908*x^7+16442205420*x^6+27135707892*x^5-2885528304*x^4-6609446688*x^3+304762272*x^2+412217616*x-32774592,4704816*x^3-18819264*x,378554*x^18+351232*x^17-10331896*x^16-9029766*x^15+114449596*x^14+94076522*x^13-660015034*x^12-509934624*x^11+2109583648*x^10+1539697956*x^9-3661686182*x^8-2585158662*x^7+3100407686*x^6+2279854910*x^5-957333588*x^4-918943432*x^3+3912664*x^2+124720584*x+10814704,-7142908*x^18-12679064*x^17+190998128*x^16+332089932*x^15-2061571160*x^14-3514857844*x^13+11470112036*x^12+19229111976*x^11-34696205960*x^10-57652515336*x^9+54669420004*x^8+92193433020*x^7-37727754268*x^6-69618470164*x^5+6705341040*x^4+18156253688*x^3-949163840*x^2-1305534432*x+125509504,522269*x^18+1343230*x^17-13168378*x^16-35177031*x^15+130777636*x^14+371742047*x^13-639471631*x^12-2025630492*x^11+1529425474*x^10+6017450538*x^9-1284114683*x^8-9406630665*x^7-968651485*x^6+6656149319*x^5+1728263658*x^4-1352879674*x^3-246137528*x^2+53041152*x+8554960,3117226*x^18+5198888*x^17-84174332*x^16-136591374*x^15+921228548*x^14+1452808366*x^13-5233171226*x^12-8009162724*x^11+16378110092*x^10+24307244268*x^9-27521148382*x^8-39682772982*x^7+22216566154*x^6+31217960794*x^5-7128329040*x^4-9062244740*x^3+1404460136*x^2+741751248*x-107080960,642419*x^18+869182*x^17-17423578*x^16-22259289*x^15+192152584*x^14+229515917*x^13-1107152677*x^12-1218306492*x^11+3563084866*x^10+3532903590*x^9-6350978021*x^8-5474311683*x^7+5887629269*x^6+4077327977*x^5-2662071762*x^4-1118908690*x^3+683162752*x^2+102727512*x-41997008,5303328*x^18+9851376*x^17-141381000*x^16-258190008*x^15+1519892760*x^14+2733901440*x^13-8409012288*x^12-14961554472*x^11+25223754336*x^10+44877720240*x^9-39173450304*x^8-71847801120*x^7+26130085176*x^6+54431909904*x^5-3925748376*x^4-14330257680*x^3+607840272*x^2+1043150016*x-97811328,-10986860*x^18-19144396*x^17+295266856*x^16+501467484*x^15-3208371316*x^14-5306908748*x^13+18018598312*x^12+29024900964*x^11-55291287952*x^10-87006922176*x^9+89367459260*x^8+139263665112*x^7-65529708536*x^6-105736604072*x^5+15160807620*x^4+28194166360*x^3-2414165560*x^2-2108790240*x+232838144,4704816*x^4-28228896*x^2+18819264,-8992950*x^18-16236336*x^17+240399876*x^16+425439330*x^15-2593395180*x^14-4504088298*x^13+14412885582*x^12+24641924412*x^11-43489557588*x^10-73852713156*x^9+68103195666*x^8+117945254226*x^7-46088780190*x^6-88714114254*x^5+7265323440*x^4+22768213356*x^3-941636184*x^2-1564153488*x+144966336]];
E[347,4] = [x^2+x-1, [1,1,x,-1,-2*x-2,x,-2,-3,-x-2,-2*x-2,-x+1,-x,x-3,-2,-2,-1,6*x+2]];

E[348,1] = [x, [1,0,1,0,-4,0,-3,0,1,0,-1,0,-3,0,-4,0,-5]];
E[348,2] = [x, [1,0,1,0,2,0,1,0,1,0,1,0,-3,0,2,0,-3]];
E[348,3] = [x, [1,0,-1,0,-2,0,1,0,1,0,3,0,5,0,2,0,-1]];
E[348,4] = [x, [1,0,-1,0,0,0,-3,0,1,0,-3,0,-3,0,0,0,1]];

E[349,1] = [x^11+5*x^10-x^9-35*x^8-24*x^7+80*x^6+66*x^5-77*x^4-56*x^3+31*x^2+15*x-4, [2,2*x,-3*x^10-13*x^9+10*x^8+91*x^7+14*x^6-205*x^5-35*x^4+181*x^3-11*x^2-51*x+14,2*x^2-4,x^9+6*x^8+4*x^7-33*x^6-49*x^5+44*x^4+87*x^3-14*x^2-39*x,2*x^10+7*x^9-14*x^8-58*x^7+35*x^6+163*x^5-50*x^4-179*x^3+42*x^2+59*x-12,5*x^10+21*x^9-22*x^8-159*x^7+4*x^6+401*x^5+27*x^4-399*x^3+27*x^2+125*x-28,2*x^3-8*x,9*x^10+40*x^9-28*x^8-283*x^7-59*x^6+650*x^5+153*x^4-590*x^3-21*x^2+170*x-28,x^10+6*x^9+4*x^8-33*x^7-49*x^6+44*x^5+87*x^4-14*x^3-39*x^2,-4*x^10-18*x^9+12*x^8+128*x^7+30*x^6-296*x^5-78*x^4+270*x^3+20*x^2-80*x+4,3*x^10+14*x^9-8*x^8-99*x^7-25*x^6+228*x^5+45*x^4-208*x^3+19*x^2+60*x-20,x^10+6*x^9+6*x^8-29*x^7-65*x^6+20*x^5+133*x^4+22*x^3-93*x^2-10*x+16,-4*x^10-17*x^9+16*x^8+124*x^7+x^6-303*x^5-14*x^4+307*x^3-30*x^2-103*x+20,-5*x^10-25*x^9+4*x^8+165*x^7+106*x^6-339*x^5-221*x^4+273*x^3+105*x^2-73*x-8,2*x^4-12*x^2+8,x^10+2*x^9-14*x^8-27*x^7+61*x^6+106*x^5-99*x^4-132*x^3+53*x^2+38*x-6]];
E[349,2] = [x^17-5*x^16-14*x^15+102*x^14+26*x^13-792*x^12+474*x^11+2887*x^10-3021*x^9-4835*x^8+6673*x^7+2880*x^6-5373*x^5-164*x^4+1075*x^3+75*x^2-41*x-4, [13854332,13854332*x,2860032*x^16-15887372*x^15-33177138*x^14+317730102*x^13-66092796*x^12-2386732742*x^11+2451331270*x^10+8163042720*x^9-12663967038*x^8-11641298456*x^7+25913718850*x^6+2710729868*x^5-19542794682*x^4+3782795730*x^3+3257805434*x^2-347417714*x-106918476,13854332*x^2-27708664,954477*x^16-6048190*x^15-9436362*x^14+122225562*x^13-56644828*x^12-933243792*x^11+1102309566*x^10+3290717187*x^9-5364723646*x^8-5084510469*x^7+10918796292*x^6+2175158294*x^5-8563127797*x^4+550576315*x^3+1738656858*x^2+84175177*x-60860676,-1587212*x^16+6863310*x^15+26006838*x^14-140453628*x^13-121587398*x^12+1095676102*x^11-93869664*x^10-4023810366*x^9+2186956264*x^8+6828725314*x^7-5526162292*x^6-4175842746*x^5+4251840978*x^4+183271034*x^3-561920114*x^2+10342836*x+11440128,5811026*x^16-27261015*x^15-86394221*x^14+554333223*x^13+258068317*x^12-4278239417*x^11+1871113733*x^10+15393324859*x^9-13989342058*x^8-24888265058*x^7+31554547335*x^6+12622965207*x^5-24549976441*x^4+1865309308*x^3+4093560537*x^2-260015547*x-112652660,13854332*x^3-55417328*x,-1262212*x^16+4889798*x^15+24600816*x^14-105883362*x^13-176900350*x^12+896698344*x^11+550365686*x^10-3744380562*x^9-542535994*x^8+7963663486*x^7-619328162*x^6-7991220274*x^5+1370106520*x^4+3098323828*x^3-695778676*x^2-267921274*x+51746304,-1275805*x^16+3926316*x^15+24868908*x^14-81461230*x^13-177298008*x^12+649887468*x^11+535142088*x^10-2481248629*x^9-469614174*x^8+4549571271*x^7-573735466*x^6-3434722876*x^5+707110543*x^4+712594083*x^3+12589402*x^2-21727119*x+3817908,1694339*x^16-6118499*x^15-31509881*x^14+126344463*x^13+207627961*x^12-999938265*x^11-523641917*x^10+3765213472*x^9+77601280*x^8-6714025959*x^7+1333064643*x^6+4674545327*x^5-774357768*x^4-580301749*x^3-446523973*x^2-6612702*x+71981144,-6792814*x^16+35560614*x^15+87796272*x^14-715780090*x^13-29210210*x^12+5431934308*x^11-4344191862*x^10-18934096628*x^9+24482489370*x^8+28347900296*x^7-51432109886*x^6-9697708834*x^5+39008557630*x^4-6421258674*x^3-6386227132*x^2+641199864*x+207488104,-614158*x^16+5697632*x^15-2464558*x^14-107435424*x^13+213007884*x^12+722820650*x^11-2105494716*x^10-1891171978*x^9+8676598150*x^8+382280688*x^7-16158158420*x^6+5442045732*x^5+11450109528*x^4-5326166838*x^3-1527077622*x^2+450314466*x+27767680,1794115*x^16-5039857*x^15-38391429*x^14+106981641*x^13+324093175*x^12-883312591*x^11-1383107203*x^10+3565767488*x^9+3208045652*x^8-7222429163*x^7-4112789673*x^6+6672666257*x^5+2818317572*x^4-2153292413*x^3-695842497*x^2+125599406*x+23244104,-12229852*x^16+59606760*x^15+173444210*x^14-1208746886*x^13-368712860*x^12+9292404086*x^11-5333795690*x^10-33230327796*x^9+34790398138*x^8+53115560792*x^7-76249481662*x^6-26008566996*x^5+59017658094*x^4-4395326698*x^3-9839615658*x^2+381537074*x+287208080,13854332*x^4-83125992*x^2+55417328,5397346*x^16-28026303*x^15-70719525*x^14+566848915*x^13+41370511*x^12-4340118953*x^11+3328381171*x^10+15411437581*x^9-19122257860*x^8-24253550180*x^7+40761786819*x^6+11134012511*x^5-31818363241*x^4+2644871768*x^3+5784664491*x^2-242863527*x-151626912]];

E[350,1] = [x, [1,1,-3,1,0,-3,-1,1,6,0,-5,-3,-6,-1,0,1,-1]];
E[350,2] = [x, [1,1,1,1,0,1,1,1,-2,0,3,1,2,1,0,1,3]];
E[350,3] = [x, [1,1,2,1,0,2,-1,1,1,0,0,2,4,-1,0,1,-6]];
E[350,4] = [x^2-6, [1,1,x,1,0,x,1,1,3,0,-2*x,x,-x-2,1,0,1,-2]];
E[350,5] = [x, [1,-1,3,1,0,-3,1,-1,6,0,-5,3,6,-1,0,1,1]];
E[350,6] = [x, [1,-1,-1,1,0,1,-1,-1,-2,0,3,-1,-2,1,0,1,-3]];
E[350,7] = [x^2-6, [1,-1,x,1,0,-x,-1,-1,3,0,2*x,x,-x+2,1,0,1,2]];
E[350,8] = [x, [1,-1,0,1,0,0,1,-1,-3,0,4,0,6,-1,0,1,-2]];

E[351,1] = [x^2-x-1, [1,x,0,x-1,x+1,0,2*x-1,-2*x+1,0,2*x+1,-3*x+4,0,-1,x+2,0,-3*x,x+3]];
E[351,2] = [x^2+x-1, [1,x,0,-x-1,x-1,0,-2*x-1,-2*x-1,0,-2*x+1,-3*x-4,0,-1,x-2,0,3*x,x-3]];
E[351,3] = [x^2+x-3, [1,x,0,-x+1,-x-3,0,-1,-3,0,-2*x-3,x,0,1,-x,0,-x-2,-x-3]];
E[351,4] = [x^2-x-3, [1,x,0,x+1,-x+3,0,-1,3,0,2*x-3,x,0,1,-x,0,x-2,-x+3]];
E[351,5] = [x^4-9*x^2+19, [1,x,0,x^2-2,x^3-4*x,0,-4*x^2+18,x^3-4*x,0,5*x^2-19,-2*x^3+10*x,0,-1,-4*x^3+18*x,0,3*x^2-15,-2*x]];
E[351,6] = [x^4-7*x^2+3, [1,x,0,x^2-2,-x^3+6*x,0,2,x^3-4*x,0,-x^2+3,-2*x,0,1,2*x,0,x^2+1,2*x]];

E[352,1] = [x, [1,0,3,0,1,0,0,0,6,0,-1,0,-6,0,3,0,-4]];
E[352,2] = [x, [1,0,-3,0,1,0,0,0,6,0,1,0,-6,0,-3,0,-4]];
E[352,3] = [x^2+x-4, [1,0,x,0,x+2,0,0,0,-x+1,0,-1,0,2,0,x+4,0,-2*x+2]];
E[352,4] = [x^2-x-4, [1,0,x,0,-x+2,0,0,0,x+1,0,1,0,2,0,x-4,0,2*x+2]];
E[352,5] = [x, [1,0,1,0,1,0,4,0,-2,0,1,0,-2,0,1,0,0]];
E[352,6] = [x, [1,0,1,0,-3,0,-4,0,-2,0,1,0,-2,0,-3,0,-8]];
E[352,7] = [x, [1,0,-1,0,1,0,-4,0,-2,0,-1,0,-2,0,-1,0,0]];
E[352,8] = [x, [1,0,-1,0,-3,0,4,0,-2,0,-1,0,-2,0,3,0,-8]];

E[353,1] = [x, [1,-1,2,-1,2,-2,-2,3,1,-2,4,-2,2,2,4,-1,2]];
E[353,2] = [x^11+5*x^10-x^9-36*x^8-28*x^7+82*x^6+87*x^5-65*x^4-71*x^3+21*x^2+14*x-4, [2,2*x,-5*x^10-21*x^9+19*x^8+154*x^7+30*x^6-354*x^5-153*x^4+259*x^3+99*x^2-39*x-6,2*x^2-4,6*x^10+28*x^9-12*x^8-198*x^7-116*x^6+426*x^5+372*x^4-264*x^3-268*x^2+16*x+34,4*x^10+14*x^9-26*x^8-110*x^7+56*x^6+282*x^5-66*x^4-256*x^3+66*x^2+64*x-20,-4*x^9-16*x^8+18*x^7+118*x^6+2*x^5-274*x^4-68*x^3+206*x^2+36*x-38,2*x^3-8*x,x^10+5*x^9-x^8-36*x^7-26*x^6+84*x^5+73*x^4-69*x^3-41*x^2+13*x-2,-2*x^10-6*x^9+18*x^8+52*x^7-66*x^6-150*x^5+126*x^4+158*x^3-110*x^2-50*x+24,5*x^10+25*x^9-x^8-166*x^7-160*x^6+312*x^5+445*x^4-117*x^3-305*x^2-29*x+38,4*x^10+20*x^9-4*x^8-140*x^7-106*x^6+294*x^5+310*x^4-168*x^3-218*x^2+2*x+28,5*x^10+23*x^9-11*x^8-164*x^7-92*x^6+356*x^5+303*x^4-223*x^3-215*x^2+17*x+24,-4*x^10-16*x^9+18*x^8+118*x^7+2*x^6-274*x^5-68*x^4+206*x^3+36*x^2-38*x,x^10-x^9-25*x^8-8*x^7+150*x^6+76*x^5-329*x^4-143*x^3+245*x^2+61*x-46,2*x^4-12*x^2+8,-10*x^10-52*x^9-2*x^8+350*x^7+352*x^6-676*x^5-972*x^4+278*x^3+686*x^2+62*x-98]];
E[353,3] = [x^3-x^2-6*x+4, [2,2*x,-x^2+x+6,2*x^2-4,-2*x+2,4,-2*x+2,2*x^2+4*x-8,-3*x^2+x+14,-2*x^2+2*x,x^2-x-2,2*x^2+2*x-12,-x^2-x+12,-2*x^2+2*x,-x^2+x+2,2*x^2+4*x,2*x-10]];
E[353,4] = [x^14-4*x^13-14*x^12+71*x^11+47*x^10-452*x^9+101*x^8+1251*x^7-740*x^6-1488*x^5+1096*x^4+600*x^3-410*x^2-42*x-1, [8,8*x,x^13-7*x^12-9*x^11+130*x^10-55*x^9-855*x^8+810*x^7+2405*x^6-2763*x^5-2871*x^4+3453*x^3+1145*x^2-1245*x-75,8*x^2-16,14*x^13-50*x^12-206*x^11+884*x^10+830*x^9-5586*x^8+356*x^7+15238*x^6-7554*x^5-17602*x^4+12230*x^3+6526*x^2-4694*x-242,-3*x^13+5*x^12+59*x^11-102*x^10-403*x^9+709*x^8+1154*x^7-2023*x^6-1383*x^5+2357*x^4+545*x^3-835*x^2-33*x+1,3*x^13-13*x^12-39*x^11+226*x^10+99*x^9-1409*x^8+506*x^7+3815*x^6-2637*x^5-4409*x^4+3663*x^3+1667*x^2-1371*x-53,8*x^3-32*x,-14*x^13+48*x^12+210*x^11-846*x^10-908*x^9+5338*x^8+162*x^7-14572*x^6+6162*x^5+16856*x^4-10754*x^3-6236*x^2+4262*x+220,6*x^13-10*x^12-110*x^11+172*x^10+742*x^9-1058*x^8-2276*x^7+2806*x^6+3230*x^5-3114*x^4-1874*x^3+1046*x^2+346*x+14,-4*x^13+12*x^12+60*x^11-200*x^10-284*x^9+1196*x^8+328*x^7-3108*x^6+764*x^5+3412*x^4-1772*x^3-1172*x^2+764*x+36,-9*x^13+31*x^12+129*x^11-522*x^10-537*x^9+3167*x^8+110*x^7-8413*x^6+3419*x^5+9575*x^4-5941*x^3-3553*x^2+2365*x+147,10*x^13-30*x^12-162*x^11+540*x^10+834*x^9-3470*x^8-1148*x^7+9610*x^6-1854*x^5-11246*x^4+4978*x^3+4186*x^2-2146*x-118,-x^13+3*x^12+13*x^11-42*x^10-53*x^9+203*x^8+62*x^7-417*x^6+55*x^5+375*x^4-133*x^3-141*x^2+73*x+3,-18*x^13+82*x^12+234*x^11-1464*x^10-510*x^9+9358*x^8-4024*x^7-25910*x^6+19438*x^5+30554*x^4-26762*x^3-11734*x^2+9850*x+522,8*x^4-48*x^2+32,-4*x^12+8*x^11+68*x^10-132*x^9-416*x^8+780*x^7+1108*x^6-2000*x^5-1236*x^4+2168*x^3+404*x^2-720*x+4]];

E[354,1] = [x, [1,-1,-1,1,2,1,0,-1,1,-2,4,-1,-6,0,-2,1,2]];
E[354,2] = [x, [1,-1,-1,1,0,1,-1,-1,1,0,-5,-1,1,1,0,1,1]];
E[354,3] = [x^2-2*x-10, [1,-1,1,1,x,-1,4,-1,1,-x,-2,1,-x,-4,x,1,-2*x+2]];
E[354,4] = [x, [1,-1,1,1,0,-1,-1,-1,1,0,3,1,5,1,0,1,-3]];
E[354,5] = [x, [1,1,-1,1,-4,-1,-1,1,1,-4,-3,-1,-1,-1,4,1,-7]];
E[354,6] = [x, [1,1,-1,1,4,-1,0,1,1,4,-4,-1,0,0,-4,1,-2]];
E[354,7] = [x, [1,1,-1,1,0,-1,0,1,1,0,4,-1,4,0,0,1,6]];
E[354,8] = [x^3-2*x^2-6*x+8, [2,2,2,2,2*x,2,-x^2-2*x+6,2,2,2*x,3*x^2-2*x-14,2,-x^2+6,-x^2-2*x+6,2*x,2,-x^2+2*x+2]];

E[355,1] = [x^4+2*x^3-2*x^2-3*x+1, [1,x,-x^3-x^2+2*x,x^2-2,-1,x^3-3*x+1,x^3-4*x+1,x^3-4*x,x^3+x^2-3*x-2,-x,x^3+x^2-x-2,x^2-1,2*x^3+5*x^2-2*x-6,-2*x^3-2*x^2+4*x-1,x^3+x^2-2*x,-2*x^3-4*x^2+3*x+3,-x^3-4*x^2+4]];
E[355,2] = [x^6-3*x^5-6*x^4+21*x^3+4*x^2-35*x+16, [1,x,-x^3+x^2+4*x-2,x^2-2,1,-x^4+x^3+4*x^2-2*x,x^3-2*x^2-4*x+7,x^3-4*x,x^5-x^4-9*x^3+8*x^2+19*x-15,x,-x^5+2*x^4+7*x^3-12*x^2-12*x+16,-x^5+x^4+6*x^3-4*x^2-8*x+4,x^4-2*x^3-3*x^2+7*x-3,x^4-2*x^3-4*x^2+7*x,-x^3+x^2+4*x-2,x^4-6*x^2+4,x^5-2*x^4-7*x^3+11*x^2+11*x-10]];
E[355,3] = [x^8-4*x^7-5*x^6+31*x^5-3*x^4-57*x^3+5*x^2+32*x+8, [2,2*x,2*x^7-6*x^6-12*x^5+42*x^4+6*x^3-56*x^2+4*x+12,2*x^2-4,-2,2*x^7-2*x^6-20*x^5+12*x^4+58*x^3-6*x^2-52*x-16,-x^7-2*x^6+15*x^5+17*x^4-61*x^3-35*x^2+61*x+26,2*x^3-8*x,2*x^6-4*x^5-14*x^4+24*x^3+16*x^2-16*x+2,-2*x,-2*x^7+24*x^5+2*x^4-84*x^3-10*x^2+78*x+24,2*x^7+2*x^6-26*x^5-20*x^4+96*x^3+50*x^2-88*x-40,3*x^7-6*x^6-21*x^5+39*x^4+25*x^3-45*x^2-5*x+10,-6*x^7+10*x^6+48*x^5-64*x^4-92*x^3+66*x^2+58*x+8,-2*x^7+6*x^6+12*x^5-42*x^4-6*x^3+56*x^2-4*x-12,2*x^4-12*x^2+8,2*x^7-6*x^6-10*x^5+42*x^4-10*x^3-60*x^2+26*x+24]];
E[355,4] = [x^4+4*x^3+2*x^2-5*x-3, [1,x,-x^3-3*x^2+2,x^2-2,1,x^3+2*x^2-3*x-3,x^3+4*x^2+2*x-5,x^3-4*x,x^3+3*x^2+x-2,x,x^3+x^2-5*x-2,x^2+2*x-1,2*x^3+5*x^2-4*x-10,3,-x^3-3*x^2+2,-4*x^3-8*x^2+5*x+7,-3*x^3-8*x^2+2*x+4]];
E[355,5] = [x, [1,0,-2,-2,1,0,-1,0,1,0,0,4,5,0,-2,4,6]];

E[356,1] = [x, [1,0,-1,0,-1,0,0,0,-2,0,0,0,-4,0,1,0,-1]];
E[356,2] = [x^7-x^6-18*x^5+18*x^4+93*x^3-95*x^2-126*x+134, [73,0,73*x,0,-46*x^6-6*x^5+799*x^4+126*x^3-3888*x^2-552*x+4734,0,28*x^6+10*x^5-480*x^4-137*x^3+2246*x^2+409*x-2488,0,73*x^2-219,0,37*x^6+8*x^5-676*x^4-168*x^3+3505*x^2+736*x-4414,0,-x^6-16*x^5+38*x^4+190*x^3-367*x^2-450*x+944,0,-52*x^6-29*x^5+954*x^4+390*x^3-4922*x^2-1062*x+6164,0,9*x^6-2*x^5-196*x^4+42*x^3+1186*x^2-184*x-1488]];

E[357,1] = [x, [1,-2,1,2,-3,-2,1,0,1,6,-3,2,1,-2,-3,-4,-1]];
E[357,2] = [x, [1,2,1,2,1,2,-1,0,1,2,1,2,1,-2,1,-4,-1]];
E[357,3] = [x^2+2*x-2, [1,x,1,-2*x,-x-3,x,-1,2*x-4,1,-x-2,-5,-2*x,3*x+1,-x,-x-3,-4*x+4,1]];
E[357,4] = [x^2-2, [1,x,-1,0,-x-1,-x,-1,-2*x,1,-x-2,1,0,-x-3,-x,x+1,-4,-1]];
E[357,5] = [x^3-x^2-4*x+2, [1,x,1,x^2-2,-x+1,x,1,x^2-2,1,-x^2+x,-x^2+5,x^2-2,-2*x^2+x+5,x,-x+1,-x^2+2*x+2,1]];
E[357,6] = [x^4-2*x^3-5*x^2+8*x+2, [1,x,-1,x^2-2,-x^3+x^2+5*x-3,-x,1,x^3-4*x,1,-x^3+5*x+2,-x^2+2*x+3,-x^2+2,x^3-x^2-5*x+3,x,x^3-x^2-5*x+3,2*x^3-x^2-8*x+2,-1]];
E[357,7] = [x, [1,0,-1,-2,1,0,1,0,1,0,-5,2,-5,0,-1,4,1]];
E[357,8] = [x, [1,0,-1,-2,1,0,-1,0,1,0,3,2,3,0,-1,4,1]];

E[358,1] = [x, [1,-1,2,1,0,-2,-2,-1,1,0,5,2,6,2,0,1,3]];
E[358,2] = [x^2-x-5, [1,-1,x,1,3,-x,1,-1,x+2,-3,-1,x,-x-1,-1,3*x,1,-2*x+1]];
E[358,3] = [x^4+2*x^3-7*x^2-8*x-1, [2,-2,2*x,2,x^3+x^2-9*x-6,-2*x,-2*x^3-3*x^2+13*x+7,-2,2*x^2-6,-x^3-x^2+9*x+6,2*x^3+3*x^2-17*x-11,2*x,-2*x^3-4*x^2+14*x+8,2*x^3+3*x^2-13*x-7,-x^3-2*x^2+2*x+1,2,-x^3-2*x^2+8*x-1]];
E[358,4] = [x, [1,1,-2,1,0,-2,2,1,1,0,3,-2,2,2,0,1,3]];
E[358,5] = [x^2+3*x+1, [1,1,x,1,-2*x-5,x,-3,1,-3*x-4,-2*x-5,2*x+3,x,3*x+3,-3,x+2,1,-2*x-7]];
E[358,6] = [x^2-x-11, [3,3,-x+5,3,3*x,-x+5,6,3,-3*x+3,3*x,-2*x-2,-x+5,-x-16,6,4*x-11,3,-3*x+9]];
E[358,7] = [x^2-3*x+1, [1,1,x,1,1,x,-2*x+1,1,3*x-4,1,-2*x+5,x,-x+3,-2*x+1,x,1,-2*x+1]];

E[359,1] = [x, [1,-1,0,-1,1,0,-1,3,-3,-1,-2,0,0,1,0,-1,-3]];
E[359,2] = [x, [1,1,-2,-1,1,-2,1,-3,1,1,-2,2,-6,1,-2,-1,-3]];
E[359,3] = [x^4+2*x^3-3*x^2-5*x+1, [1,x,-x^3-x^2+3*x+1,x^2-2,-x-2,x^3-4*x+1,x^3+x^2-3*x-2,x^3-4*x,x^3-4*x,-x^2-2*x,x^3+x^2-3*x-1,x^2-3,x^3-3*x,-x^3+3*x-1,x^3+2*x^2-2*x-3,-2*x^3-3*x^2+5*x+3,-x^3+x^2+4*x-3]];
E[359,4] = [x^24-x^23-39*x^22+38*x^21+658*x^20-619*x^19-6300*x^18+5654*x^17+37740*x^16-31780*x^15-147096*x^14+113400*x^13+376092*x^12-255412*x^11-621508*x^10+349080*x^9+638532*x^8-266744*x^7-378124*x^6+98609*x^5+110695*x^4-14509*x^3-11972*x^2+780*x+381, [235747603462801695253721,235747603462801695253721*x,-1602259971281292311414*x^23+2535070199865138113860*x^22+58364780315011524436024*x^21-87316532202790041766744*x^20-914060976817924221583118*x^19+1264665868878600575782134*x^18+8088919438943353164191194*x^17-10018516587867869759577110*x^16-44752146629281025763159134*x^15+47225317260747136454940921*x^14+161849990574404999407680046*x^13-134535096935674829898945662*x^12-388545929698346391432449898*x^11+222408874791265956416071774*x^10+613906725607214891686644074*x^9-183651607254654342889069074*x^8-613267952857175869139934302*x^7+28535102178044191495017546*x^6+351940465805991912886831381*x^5+51026380098522174374104544*x^4-93412339482037596682677712*x^3-21883690704068331298381066*x^2+6227221811979044886354542*x+1026953395498779305597052,235747603462801695253721*x^2-471495206925603390507442,2845845013662546464739*x^23-2447792018482001570617*x^22-101596799773264261973636*x^21+76404212950225242413899*x^20+1547314517788223949714671*x^19-958236983994120443104695*x^18-13158464440448911424043463*x^17+6045500883849570828566849*x^16+68676383557081059207753001*x^15-18699558052070012014843887*x^14-227537807635293992915686339*x^13+14267359498739287105320709*x^12+477170573176822561669772612*x^11+73651738052628121096722953*x^10-607737947281787201499665289*x^9-210728066092986939219944726*x^8+422157970536179111909121713*x^7+191589646943914323560838765*x^6-123363657169095027209115171*x^5-38101634714152134188816408*x^4+10517562601958539988713856*x^3-10255503074075539732514609*x^2-1342706028625085600442226*x+969740879854942598224584,932810228583845802446*x^23-4123358564958875709122*x^22-26430653294100933933012*x^21+140226084285166119327294*x^20+272866946655480635016868*x^19-2005318380128788397717006*x^18-959338710243443030842354*x^17+15717144686874946069605226*x^16-3694504626572333201795999*x^15-73836042161187974432073698*x^14+47161183807623718215401938*x^13+214051227420777396551864190*x^12-186827548993631475426800794*x^11-381910664623878530195648238*x^10+375665303520219177179330046*x^9+409826311125010273051869946*x^8-398858131601412844820798470*x^7-253912483574775461074275955*x^6+209023633606599127910327670*x^5+83949828038945055729295018*x^4-45130880627388601444686792*x^3-12955034564200586665893866*x^2+2276716173098187308499972*x+610461049058172370648734,-3140151164664093291007*x^23+458407022175633631052*x^22+119861803682872242733257*x^21-13204876435189221365070*x^20-1971607964340997034402034*x^19+133775356305913808218979*x^18+18310581440368569048285533*x^17-352867661979863664045897*x^16-105662090233093338945990217*x^15-3726267360428420153376431*x^14+392794100154810843180147811*x^13+37512623181767439350164961*x^12-943599597386818461978694935*x^11-152026494955699155837468431*x^10+1430721336441804888988900597*x^9+330558417519231746815222453*x^8-1298840875371663911768671473*x^7-391342160018673505469509525*x^6+644841998130504491198834599*x^5+231650733011752018906928272*x^4-151714295960640239955706559*x^3-57209110453375976111844952*x^2+11761368072815550434303905*x+3282214419272575620760487,235747603462801695253721*x^3-942990413851206781014884*x,1020541915733600957441*x^23-2111084623659865856472*x^22-43874606576155702988638*x^21+83406862356444210304215*x^20+820552854791265341778069*x^19-1410974895562028103209242*x^18-8766639794331279423084458*x^17+13331312553110673035894152*x^16+59076868311595713795168624*x^15-76870467519961733349220140*x^14-261565609971363799965707060*x^13+276956212877748614818792024*x^12+768028149443960697220443880*x^11-609927424859313852484462691*x^10-1471172306505939352063662181*x^9+755227825243987446888297244*x^8+1750450114388555887627064142*x^7-407240326602452929693923332*x^6-1160573132262310587085555684*x^5-20155600072975976615392391*x^4+333105407362160016235537624*x^3+61591261126113385160726088*x^2-21806572329301854914049885*x-4585925636218244537466024,398052995180544894122*x^23+9391155759575050151185*x^22-31737897568951523246183*x^21-325251501201731624083591*x^20+803341079462995818568746*x^19+4770359145625131303812237*x^18-10044906823398466883067457*x^17-38725807258543444371496859*x^16+71741396482125714634561533*x^15+191074610494411941861561605*x^14-308451465050593481996081891*x^13-593128969701551863346847376*x^12+800514704682206438748640421*x^11+1160977495469594726707341123*x^10-1204155643462308659131034846*x^9-1395005137727794007313601435*x^8+950701729268316617751178581*x^7+952718642777041692223854465*x^6-318727565666402178530264459*x^5-304503251185417040925569749*x^4+31034862229154346924383542*x^3+32727750474942920675413082*x^2-1250018230801843644271836*x-1084266950205430203065559,-4975284508894749084208*x^23-1885966507969865227747*x^22+202871705177743937677709*x^21+57657250969201435183432*x^20-3572612192677847926059913*x^19-713445715874446701682734*x^18+35574947430300041328981156*x^17+4544314139729983484447578*x^16-220318208812274214800729346*x^15-15580417016815457449090158*x^14+879668055335024691681716618*x^13+27557935985880445312401597*x^12-2272637286075763627424768130*x^11-28381090590019355374659958*x^10+3717217345612673115843299966*x^9+61193565040696548170447242*x^8-3661787458291825325700175535*x^7-154254833078233761269112182*x^6+1977285409091483549444642116*x^5+159607236095480214549743126*x^4-481041123485813689228832701*x^3-56130468072617860810445281*x^2+29473816041248689534163004*x+3991312265997797979503931,13971606187554716152*x^23+4878805220938776134662*x^22-11950265031043070037702*x^21-166289119347109819459112*x^20+400213105000460597163304*x^19+2388033992077584373003178*x^18-5734803223424824425806846*x^17-18861729477590934266953819*x^16+45312960161768696695978450*x^15+89923202669898827462116912*x^14-215429433649440716260872302*x^13-268579819610837551162430502*x^12+633432120875871476763589310*x^11+510596573484376101333795066*x^10-1143612534683468403039267882*x^9-627184097970204386970109594*x^8+1221444953752945641933248473*x^7+504671364123548855124383882*x^6-711914587403463220777765358*x^5-250441069077521761294655850*x^4+187403788006397625447150572*x^3+57211701637840651852145616*x^2-12571574553195317127968230*x-2409307488088003861926030,969380424784224618619*x^23+2508674814477409255825*x^22-47373563549591843668231*x^21-76650330316937868506021*x^20+958664243632398123401039*x^19+934340141759355758848092*x^18-10598593469475775120973006*x^17-5634251907961684292013102*x^16+70648362996302155076127230*x^15+15726708240508670322130004*x^14-294320866160295633335209924*x^13-3101983071604815217852166*x^12+766121724422905387651600722*x^11-96123344447668685089673852*x^10-1208216440193682290415559912*x^9+237982646258405001874239702*x^8+1080645208142704411800453810*x^7-229895213862721708873530460*x^6-486411162012764409954826960*x^5+92450869102871749010500757*x^4+86734285593739853642787003*x^3-15179139862623490132348579*x^2-1912808202391911782131331*x+1349430867283171232987307,-2681744142488459659955*x^23-2604091739027395616016*x^22+106120867822046323693196*x^21+94611502007976351080572*x^20-1809978214621159938914354*x^19-1472370897015218685058567*x^18+17401547023030919803307681*x^17+12847214721329541856613963*x^16-103520271373453304941578891*x^15-69109575562618623553817861*x^14+393605765254675618550358761*x^13+237386134434029712022709709*x^12-954058784224884551480148315*x^11-520907733606246404118277959*x^10+1426722386080173432839946013*x^9+706246128103628905524610251*x^8-1228958642285832406285880733*x^7-542524520856941120369896269*x^6+541297899208113594239837535*x^5+195884737211851566892313306*x^4-102769563701487305671065515*x^3-25832521670542974445631899*x^2+5731532327710568387745947*x+1196397593737019543873667,7289115994171112958134*x^23+5899643539784037852960*x^22-285754168008140590512487*x^21-222185176654475201454324*x^20+4834934408009279264750202*x^19+3610009668921118677008682*x^18-46223299865222273908610126*x^17-33137062886595799938828673*x^16+274468496169943384967550354*x^15+188964522823478861782983394*x^14-1047659898119320505990955891*x^13-693104702498090186987703750*x^12+2571468913610532830005145700*x^11+1635175871989956128476478822*x^10-3945134369729032687160527810*x^9-2403992179082744485356257898*x^8+3557242478861874897863681302*x^7+2045710871692040247492109369*x^6-1693081776591704644480222002*x^5-877847677641056244690531592*x^4+359409965720832640326190835*x^3+158974264192318796880456639*x^2-20056843142518963754714952*x-7590815894046902343416682,235747603462801695253721*x^4-1414485620776810171522326*x^2+942990413851206781014884,1226935539412935380411*x^23+710339093451040861244*x^22-53936798745757011839379*x^21-12422068485146042073209*x^20+1009109126046267040560237*x^19-44348423639775077021227*x^18-10514610885417698190710975*x^17+2695673163918660344924097*x^16+67047179365905847495827254*x^15-27808323279642558383678363*x^14-270824395838042963324240285*x^13+141377440654221924821349709*x^12+694441823910634342861030869*x^11-399316425890190401687222595*x^10-1106490195196526962611380283*x^9+622421069816417762037766937*x^8+1051672008818011258645565537*x^7-489970795730752991059191391*x^6-560533574306131466613261535*x^5+155297492049293841296665619*x^4+147448491194926860391712833*x^3-8680229969247209005954480*x^2-13114194300286676686841648*x+137342117541324040006980]];

E[360,1] = [x, [1,0,0,0,1,0,4,0,0,0,0,0,-6,0,0,0,2]];
E[360,2] = [x, [1,0,0,0,1,0,2,0,0,0,-2,0,4,0,0,0,2]];
E[360,3] = [x, [1,0,0,0,-1,0,-4,0,0,0,-4,0,-2,0,0,0,-2]];
E[360,4] = [x, [1,0,0,0,-1,0,2,0,0,0,2,0,4,0,0,0,-2]];
E[360,5] = [x, [1,0,0,0,-1,0,0,0,0,0,4,0,6,0,0,0,6]];

E[361,1] = [x^2+x-1, [1,x,-x-2,-x-1,-2*x,-x-1,3,-2*x-1,3*x+2,2*x-2,x,2*x+3,1,3*x,2*x+2,3*x,2*x+4]];
E[361,2] = [x^2-x-1, [1,x,-x+2,x-1,2*x,x-1,3,-2*x+1,-3*x+2,2*x+2,-x,2*x-3,-1,3*x,2*x-2,-3*x,-2*x+4]];
E[361,3] = [x^3+3*x^2-3, [1,x,x^2+2*x-2,x^2-2,-x^2-2*x,-x^2-2*x+3,-x-1,-3*x^2-4*x+3,-3*x^2-5*x+4,x^2-3,x^2+3*x,-x^2-x+1,-x^2-4*x-1,-x^2-x,x^2+x-3,3*x^2+3*x-5,x^2+x]];
E[361,4] = [x^3-3*x^2+3, [1,x,-x^2+2*x+2,x^2-2,-x^2+2*x,-x^2+2*x+3,x-1,3*x^2-4*x-3,-3*x^2+5*x+4,-x^2+3,x^2-3*x,x^2-x-1,x^2-4*x+1,x^2-x,-x^2+x+3,3*x^2-3*x-5,x^2-x]];
E[361,5] = [x^4-5*x^2+5, [1,x,-x,x^2-2,-2*x^2+4,-x^2,2*x^2-7,x^3-4*x,x^2-3,-2*x^3+4*x,x^2-5,-x^3+2*x,-x^3+4*x,2*x^3-7*x,2*x^3-4*x,-x^2-1,-4*x^2+8]];
E[361,6] = [x^2-x-1, [1,-2*x+1,2,3,x,-4*x+2,2*x-2,-2*x+1,1,-x-2,2*x+2,6,-3*x+3,2*x-6,2*x,-1,x-1]];
E[361,7] = [x^2-x-1, [1,2*x-1,-2,3,x,-4*x+2,2*x-2,2*x-1,1,x+2,2*x+2,-6,3*x-3,-2*x+6,-2*x,-1,x-1]];
E[361,8] = [x, [1,0,2,-2,3,0,-1,0,1,0,3,-4,4,0,6,4,-3]];
E[361,9] = [x, [1,0,0,-2,-1,0,3,0,-3,0,-5,0,0,0,0,4,-7]];

E[362,1] = [x, [1,1,-1,1,-2,-1,-4,1,-2,-2,-1,-1,-4,-4,2,1,2]];
E[362,2] = [x^2-2*x-1, [1,1,x,1,-x+3,x,-2*x+2,1,2*x-2,-x+3,x-6,x,x+3,-2*x+2,x-1,1,3*x-1]];
E[362,3] = [x^5-13*x^3+3*x^2+38*x-28, [2,2,2*x,2,-x^4+9*x^2+x-10,2*x,x^4-9*x^2-x+12,2,2*x^2-6,-x^4+9*x^2+x-10,-2*x^2-2*x+12,2*x,x^4+2*x^3-13*x^2-19*x+32,x^4-9*x^2-x+12,-4*x^3+4*x^2+28*x-28,2,-4*x]];
E[362,4] = [x, [1,-1,-1,1,2,1,-4,-1,-2,-2,-1,-1,4,4,-2,1,-6]];
E[362,5] = [x^2+2*x-4, [2,-2,2*x,2,-x-2,-2*x,-x-4,-2,-4*x+2,x+2,-2*x-4,2*x,-x-8,x+4,-4,2,8]];
E[362,6] = [x^5-4*x^4-2*x^3+17*x^2-x-17, [1,-1,x,1,x^4-3*x^3-3*x^2+8*x+3,-x,-x^3+2*x^2+3*x-2,-1,x^2-3,-x^4+3*x^3+3*x^2-8*x-3,x^3-3*x^2-2*x+7,x,-x^4+3*x^3+3*x^2-8*x-1,x^3-2*x^2-3*x+2,x^4-x^3-9*x^2+4*x+17,1,-x^4+3*x^3+3*x^2-8*x-3]];

E[363,1] = [x, [1,2,-1,2,4,-2,-1,0,1,8,0,-2,2,-2,-4,-4,-4]];
E[363,2] = [x, [1,-2,-1,2,4,2,1,0,1,-8,0,-2,-2,-2,-4,-4,4]];
E[363,3] = [x, [1,-1,-1,-1,-2,1,-4,3,1,2,0,1,2,4,2,-1,2]];
E[363,4] = [x^2-3, [1,x,-1,1,-3,-x,-2*x,-x,1,-3*x,0,-1,-x,-6,3,-5,x]];
E[363,5] = [x^2+3*x+1, [1,x,-1,-3*x-3,x+2,-x,-1,4*x+3,1,-x-1,0,3*x+3,-2*x-5,-x,-x-2,-3*x+2,-3*x-9]];
E[363,6] = [x^2-x-1, [1,x,1,x-1,x-2,x,3,-2*x+1,1,-x+1,0,x-1,2*x+3,3*x,x-2,-3*x,-x+1]];
E[363,7] = [x^2+x-1, [1,x,1,-x-1,-x-2,x,-3,-2*x-1,1,-x-1,0,-x-1,2*x-3,-3*x,-x-2,3*x,-x-1]];
E[363,8] = [x^2-3*x+1, [1,x,-1,3*x-3,-x+2,-x,1,4*x-3,1,-x+1,0,-3*x+3,-2*x+5,x,x-2,3*x+2,-3*x+9]];
E[363,9] = [x^2-5, [1,x,1,3,2,x,-2*x,x,1,2*x,0,3,0,-10,2,-1,2*x]];
E[363,10] = [x^4-7*x^2+4, [2,2*x,2,2*x^2-4,-2*x^2+8,2*x,-x^3+7*x,2*x^3-8*x,2,-2*x^3+8*x,0,2*x^2-4,2*x^3-16*x,4,-2*x^2+8,2*x^2,-2*x^3+8*x]];

E[364,1] = [x, [1,0,-2,0,1,0,-1,0,1,0,-4,0,1,0,-2,0,-2]];
E[364,2] = [x^2-2*x-2, [1,0,x,0,-x+1,0,1,0,2*x-1,0,-x+4,0,1,0,-x-2,0,3*x]];
E[364,3] = [x^2-6, [1,0,x,0,x-1,0,-1,0,3,0,-x+4,0,-1,0,-x+6,0,-x]];
E[364,4] = [x, [1,0,0,0,-3,0,1,0,-3,0,-2,0,-1,0,0,0,-4]];

E[365,1] = [x^2-3, [1,x,2,1,1,2*x,-x+3,-x,1,x,-x-3,2,2*x,3*x-3,2,-5,-2*x]];
E[365,2] = [x^3+x^2-2*x-1, [1,x,x^2-3,x^2-2,1,-x^2-x+1,-3*x^2-2*x+4,-x^2-2*x+1,-3*x^2-x+5,x,-3,-2*x^2-x+5,3*x^2+x-5,x^2-2*x-3,x^2-3,-3*x^2-x+3,x^2+2*x]];
E[365,3] = [x^8-2*x^7-11*x^6+19*x^5+36*x^4-46*x^3-41*x^2+25*x+3, [4,4*x,-2*x^5+2*x^4+18*x^3-12*x^2-32*x+10,4*x^2-8,-4,-2*x^6+2*x^5+18*x^4-12*x^3-32*x^2+10*x,2*x^7-2*x^6-20*x^5+14*x^4+46*x^3-18*x^2-12*x+14,4*x^3-16*x,-x^7-x^6+10*x^5+15*x^4-19*x^3-53*x^2-10*x+31,-4*x,-x^7+5*x^6+6*x^5-45*x^4-x^3+87*x^2+4*x-15,-2*x^7+2*x^6+22*x^5-16*x^4-68*x^3+34*x^2+64*x-20,2*x^6-2*x^5-18*x^4+12*x^3+32*x^2-10*x+8,2*x^7+2*x^6-24*x^5-26*x^4+74*x^3+70*x^2-36*x-6,2*x^5-2*x^4-18*x^3+12*x^2+32*x-10,4*x^4-24*x^2+16,-3*x^7+5*x^6+30*x^5-43*x^4-77*x^3+85*x^2+54*x-27]];
E[365,4] = [x^5+x^4-5*x^3-4*x^2+4*x+1, [1,x,-x^2+1,x^2-2,-1,-x^3+x,x^3-4*x-1,x^3-4*x,x^4-2*x^2-2,-x,-2*x^4-x^3+9*x^2+2*x-4,-x^4+3*x^2-2,-x^3+3*x-2,x^4-4*x^2-x,x^2-1,x^4-6*x^2+4,3*x^4+x^3-13*x^2-5*x+4]];
E[365,5] = [x^7+x^6-12*x^5-9*x^4+39*x^3+19*x^2-16*x-3, [2,2*x,-x^5-x^4+5*x^3+4*x^2+4*x+1,2*x^2-4,2,-x^6-x^5+5*x^4+4*x^3+4*x^2+x,2*x^5+4*x^4-12*x^3-22*x^2+6*x+6,2*x^3-8*x,x^6+x^5-9*x^4-8*x^3+20*x^2+15*x-4,2*x,-x^5-3*x^4+5*x^3+16*x^2+2*x+3,-5*x^5-3*x^4+33*x^3+12*x^2-24*x-5,-x^6-x^5+13*x^4+8*x^3-44*x^2-11*x+12,2*x^6+4*x^5-12*x^4-22*x^3+6*x^2+6*x,-x^5-x^4+5*x^3+4*x^2+4*x+1,2*x^4-12*x^2+8,x^6+x^5-9*x^4-6*x^3+18*x^2+5*x]];

E[366,1] = [x, [1,1,1,1,1,1,-2,1,1,1,2,1,4,-2,1,1,-7]];
E[366,2] = [x, [1,1,1,1,1,1,1,1,1,1,-1,1,-5,1,1,1,2]];
E[366,3] = [x, [1,1,-1,1,-1,-1,2,1,1,-1,2,-1,4,2,1,1,1]];
E[366,4] = [x, [1,1,-1,1,-3,-1,-3,1,1,-3,-1,-1,-5,-3,3,1,2]];
E[366,5] = [x, [1,-1,1,1,-3,-1,-1,-1,1,3,-3,1,-1,1,-3,1,-6]];
E[366,6] = [x, [1,-1,1,1,1,-1,-2,-1,1,-1,6,1,0,2,1,1,3]];
E[366,7] = [x, [1,-1,-1,1,-2,1,4,-1,1,2,-4,-1,-2,-4,2,1,6]];
E[366,8] = [x^2-17, [2,-2,-2,2,2*x,2,x-3,-2,2,-2*x,-x+3,-2,-x+7,-x+3,-2*x,2,-x-3]];

E[367,1] = [x^11+8*x^10+16*x^9-26*x^8-121*x^7-61*x^6+197*x^5+212*x^4-66*x^3-132*x^2-12*x+13, [1,x,-8*x^10-54*x^9-61*x^8+282*x^7+616*x^6-269*x^5-1230*x^4-177*x^3+729*x^2+149*x-83,x^2-2,24*x^10+162*x^9+181*x^8-852*x^7-1836*x^6+844*x^5+3668*x^4+472*x^3-2173*x^2-426*x+246,10*x^10+67*x^9+74*x^8-352*x^7-757*x^6+346*x^5+1519*x^4+201*x^3-907*x^2-179*x+104,-17*x^10-114*x^9-124*x^8+605*x^7+1275*x^6-627*x^5-2555*x^4-279*x^3+1515*x^2+278*x-171,x^3-4*x,-22*x^10-148*x^9-163*x^8+782*x^7+1665*x^6-792*x^5-3331*x^4-402*x^3+1975*x^2+381*x-225,-30*x^10-203*x^9-228*x^8+1068*x^7+2308*x^6-1060*x^5-4616*x^4-589*x^3+2742*x^2+534*x-312,19*x^10+127*x^9+138*x^8-671*x^7-1419*x^6+680*x^5+2837*x^4+340*x^3-1673*x^2-321*x+184,3*x^10+22*x^9+30*x^8-111*x^7-276*x^6+87*x^5+541*x^4+107*x^3-317*x^2-74*x+36,-11*x^10-75*x^9-86*x^8+393*x^7+861*x^6-383*x^5-1716*x^4-227*x^3+1013*x^2+196*x-114,22*x^10+148*x^9+163*x^8-782*x^7-1664*x^6+794*x^5+3325*x^4+393*x^3-1966*x^2-375*x+221,27*x^10+182*x^9+203*x^8-957*x^7-2063*x^6+946*x^5+4129*x^4+537*x^3-2454*x^2-483*x+278,x^4-6*x^2+4,-6*x^10-40*x^9-43*x^8+211*x^7+441*x^6-214*x^5-871*x^4-104*x^3+505*x^2+101*x-60]];
E[367,2] = [x^19-9*x^18+11*x^17+123*x^16-372*x^15-469*x^14+2884*x^13-550*x^12-10042*x^11+8029*x^10+17059*x^9-20350*x^8-12836*x^7+20779*x^6+2682*x^5-7739*x^4+63*x^3+899*x^2-27*x-29, [23610721,23610721*x,6827828*x^18-49682236*x^17-6832536*x^16+803001118*x^15-1171782712*x^14-4794282730*x^13+10991047449*x^12+12384298965*x^11-42478188938*x^10-9593322662*x^9+80448498286*x^8-13480943176*x^7-72276385698*x^6+24824130950*x^5+25244646700*x^4-9251148553*x^3-3069626859*x^2+818237984*x+127146744,23610721*x^2-47221442,-1297203*x^18+14414733*x^17-31674448*x^16-177259634*x^15+783001630*x^14+404568652*x^13-5772832937*x^12+3265357555*x^11+19924295543*x^10-21018429365*x^9-34798304039*x^8+47067197132*x^7+29544729494*x^6-45508663466*x^5-10825879428*x^4+15709586993*x^3+2047419967*x^2-1129150019*x-90300556,11768216*x^18-81938644*x^17-36821726*x^16+1368169304*x^15-1592031398*x^14-8700408503*x^13+16139604365*x^12+26086859838*x^11-64413953674*x^10-36027419566*x^9+125465356624*x^8+15365614510*x^7-117051307062*x^6+6932412004*x^5+43589412339*x^4-3499780023*x^3-5319979388*x^2+311498100*x+198007012,8668353*x^18-60265860*x^17-26834309*x^16+1000305143*x^15-1164221951*x^14-6298924244*x^13+11696035826*x^12+18538529455*x^11-46108329149*x^10-24448968422*x^9+88157892897*x^8+7995092958*x^7-79686807986*x^6+7666753393*x^5+27565886842*x^4-3370653759*x^3-2607470846*x^2+357675480*x+59087112,23610721*x^3-94442884*x,-11974543*x^18+77330724*x^17+75505497*x^16-1346624966*x^15+938496490*x^14+9222401258*x^13-11581736952*x^12-31920227329*x^11+48022091052*x^10+60499444336*x^9-92896694559*x^8-65083005790*x^7+80862765537*x^6+41027206637*x^5-21456418463*x^4-14152101199*x^3-1500545220*x^2+1224538925*x+299545693,2739906*x^18-17405215*x^17-17703665*x^16+300442114*x^15-203819555*x^14-2031699485*x^13+2551895905*x^12+6897783017*x^11-10603186478*x^10-12669318062*x^9+20669116082*x^8+12893831786*x^7-18554082329*x^6-7346780982*x^5+5670532976*x^4+2129143756*x^3+37035478*x^2-125325037*x-37618887,-30077634*x^18+201937607*x^17+143148399*x^16-3459315443*x^15+3250881584*x^14+22960525766*x^13-36028052556*x^12-74577894502*x^11+148691174127*x^10+123316420009*x^9-297147330507*x^8-98029311857*x^7+285049889325*x^6+34291926406*x^5-110318025294*x^4-8686684870*x^3+13659113660*x^2+560413723*x-430003319,10319644*x^18-66907630*x^17-65656192*x^16+1179742718*x^15-837549775*x^14-8211365119*x^13+10577283740*x^12+28993873468*x^11-45558047954*x^10-56101994796*x^9+93951813538*x^8+60967399866*x^7-93046576864*x^6-37621204873*x^5+37085150201*x^4+12440920110*x^3-4128874366*x^2-1120727124*x+86984776,-21308366*x^18+148805851*x^17+65861276*x^16-2489910668*x^15+2907770481*x^14+15894527391*x^13-29526537008*x^12-48033484574*x^11+118495883636*x^10+67667537788*x^9-233461068532*x^8-31591358547*x^7+223324379110*x^6-10402461182*x^5-88626492334*x^4+6879048324*x^3+12217451249*x^2-859979683*x-450724169,17749317*x^18-122186192*x^17-65902276*x^16+2060405365*x^15-2233466687*x^14-13303494226*x^13+23306123605*x^12+40939271677*x^11-94047174659*x^10-59715540930*x^9+184396076508*x^8+31580171122*x^7-172452953594*x^6+4317364096*x^5+63713730108*x^4-3153577085*x^3-7435173867*x^2+293132643*x+251382237,17502477*x^18-118599255*x^17-78570946*x^16+2026197169*x^15-1964555767*x^14-13393129733*x^13+21318240824*x^12+43229977276*x^11-86623248290*x^10-70870182774*x^9+168440613942*x^8+56108241843*x^7-151144835070*x^6-20870462094*x^5+46171644060*x^4+6410688189*x^3-566078737*x^2-337495643*x-281370258,23610721*x^4-141664326*x^2+94442884,24624306*x^18-172529162*x^17-69456351*x^16+2864980227*x^15-3458884632*x^14-18031565302*x^13+34596501862*x^12+52865265147*x^11-137373773108*x^10-68509691335*x^9+266707582936*x^8+18956989439*x^7-248540472141*x^6+25774243432*x^5+93328638376*x^4-10097506778*x^3-12023094797*x^2+618292246*x+508424885]];

E[368,1] = [x, [1,0,-1,0,0,0,-2,0,-2,0,0,0,-1,0,0,0,-6]];
E[368,2] = [x, [1,0,-3,0,0,0,2,0,6,0,0,0,-5,0,0,0,-6]];
E[368,3] = [x, [1,0,3,0,-2,0,4,0,6,0,-2,0,-5,0,-6,0,4]];
E[368,4] = [x^2-5, [1,0,x,0,x-1,0,-x-1,0,2,0,x+3,0,3,0,-x+5,0,-x+3]];
E[368,5] = [x^2-x-4, [1,0,x,0,2,0,0,0,x+1,0,-2*x,0,x+2,0,2*x,0,-2*x+2]];
E[368,6] = [x, [1,0,1,0,-2,0,4,0,-2,0,2,0,7,0,-2,0,-4]];
E[368,7] = [x, [1,0,1,0,-4,0,-2,0,-2,0,4,0,-5,0,-4,0,-2]];
E[368,8] = [x, [1,0,0,0,4,0,4,0,-3,0,-2,0,-2,0,0,0,-2]];
E[368,9] = [x, [1,0,0,0,0,0,-4,0,-3,0,-6,0,-2,0,0,0,6]];

E[369,1] = [x, [1,2,0,2,4,0,-2,0,0,8,3,0,-6,-4,0,-4,-3]];
E[369,2] = [x^3-x^2-5*x+1, [2,2*x,0,2*x^2-4,-2*x+2,0,x^2-2*x+1,2*x^2+2*x-2,0,-2*x^2+2*x,-3*x^2+2*x+9,0,-2*x^2+6,-x^2+6*x-1,0,8*x+6,4]];
E[369,3] = [x^3+2*x^2-2*x-2, [1,x,0,x^2-2,-x-2,0,-x^2-x+2,-2*x^2-2*x+2,0,-x^2-2*x,x-3,0,-x^2-3*x,x^2-2,0,-2*x,3*x^2+3*x-7]];
E[369,4] = [x^3-2*x^2-2*x+2, [1,x,0,x^2-2,-x+2,0,-x^2+x+2,2*x^2-2*x-2,0,-x^2+2*x,x+3,0,-x^2+3*x,-x^2+2,0,2*x,-3*x^2+3*x+7]];
E[369,5] = [x^3+x^2-4*x-2, [1,x,0,x^2-2,x^2+x-4,0,-x^2+x+4,-x^2+2,0,2,-x+1,0,x^2+x,2*x^2-2,0,-x^2-2*x+2,-2*x^2-x+5]];
E[369,6] = [x^2-2, [1,x,0,0,-x-2,0,-x-2,-2*x,0,-2*x-2,-x-1,0,3*x+2,-2*x-2,0,-4,x-1]];
E[369,7] = [x, [1,0,0,-2,2,0,-4,0,0,0,-5,0,-4,0,0,4,5]];

E[370,1] = [x, [1,-1,-2,1,-1,2,-1,-1,1,1,3,-2,-4,1,2,1,3]];
E[370,2] = [x, [1,-1,2,1,1,-2,1,-1,1,-1,3,2,0,-1,2,1,3]];
E[370,3] = [x^2+2*x-2, [1,-1,x,1,1,-x,-x-4,-1,-2*x-1,-1,-2*x-4,x,-2*x-4,x+4,x,1,2*x+4]];
E[370,4] = [x, [1,-1,0,1,-1,0,0,-1,-3,1,-4,0,2,0,0,1,-2]];
E[370,5] = [x, [1,1,-2,1,1,-2,2,1,1,1,0,-2,2,2,-2,1,6]];
E[370,6] = [x^3-10*x+4, [2,2,2*x,2,-2,2*x,-x^2+6,2,2*x^2-6,-2,-x^2-2*x+14,2*x,-4*x,-x^2+6,-2*x,2,x^2+2*x-6]];
E[370,7] = [x^2+3*x-6, [1,1,2,1,1,2,x,1,1,1,-x-2,2,-2*x-2,x,2,1,-x-4]];

E[371,1] = [x, [1,1,-1,-1,0,-1,-1,-3,-2,0,0,1,1,-1,0,-1,-7]];
E[371,2] = [x, [1,2,0,2,3,0,1,0,-3,6,3,0,-6,2,0,-4,6]];
E[371,3] = [x^2+x-1, [1,x,x,-x-1,-x-2,-x+1,1,-2*x-1,-x-2,-x-1,-2*x-1,-1,-x-2,x,-x-1,3*x,3]];
E[371,4] = [x^3-4*x-1, [1,x,-x,x^2-2,-x^2+1,-x^2,-1,1,x^2-3,-3*x-1,x^2-x-4,-2*x-1,x-4,-x,3*x+1,-2*x^2+x+4,1]];
E[371,5] = [x^9-15*x^7+x^6+74*x^5-9*x^4-132*x^3+24*x^2+64*x-16, [8,8*x,x^8-15*x^6-3*x^5+70*x^4+23*x^3-104*x^2-28*x+32,8*x^2-16,x^8-11*x^6+5*x^5+34*x^4-37*x^3-24*x^2+56*x,-4*x^6-4*x^5+32*x^4+28*x^3-52*x^2-32*x+16,-8,8*x^3-32*x,-8*x^3+40*x+8,4*x^7+4*x^6-40*x^5-28*x^4+108*x^3+32*x^2-64*x+16,-2*x^7+22*x^5-2*x^4-68*x^3+2*x^2+48*x+16,-2*x^8-4*x^7+26*x^6+38*x^5-112*x^4-98*x^3+176*x^2+72*x-64,8*x^4+8*x^3-56*x^2-40*x+64,-8*x,2*x^8+2*x^7-30*x^6-28*x^5+142*x^4+114*x^3-218*x^2-120*x+72,8*x^4-48*x^2+32,-2*x^8-4*x^7+22*x^6+42*x^5-72*x^4-126*x^3+68*x^2+104*x]];
E[371,6] = [x^11+x^10-20*x^9-19*x^8+140*x^7+125*x^6-396*x^5-333*x^4+359*x^3+298*x^2-4*x-24, [8,8*x,6*x^10+3*x^9-121*x^8-53*x^7+860*x^6+313*x^5-2513*x^4-715*x^3+2520*x^2+508*x-304,8*x^2-16,-4*x^10-2*x^9+80*x^8+36*x^7-562*x^6-218*x^5+1612*x^4+516*x^3-1558*x^2-388*x+168,-3*x^10-x^9+61*x^8+20*x^7-437*x^6-137*x^5+1283*x^4+366*x^3-1280*x^2-280*x+144,8,8*x^3-32*x,x^10+x^9-21*x^8-18*x^7+155*x^6+109*x^5-467*x^4-252*x^3+476*x^2+168*x-40,2*x^10-40*x^8-2*x^7+282*x^6+28*x^5-816*x^4-122*x^3+804*x^2+152*x-96,24*x^10+12*x^9-486*x^8-214*x^7+3466*x^6+1280*x^5-10130*x^4-2974*x^3+10054*x^2+2168*x-1152,-10*x^10-5*x^9+205*x^8+89*x^7-1482*x^6-531*x^5+4393*x^4+1227*x^3-4426*x^2-884*x+536,-13*x^10-7*x^9+263*x^8+124*x^7-1875*x^6-735*x^5+5485*x^4+1682*x^3-5460*x^2-1184*x+640,8*x,8*x^10+4*x^9-162*x^8-74*x^7+1158*x^6+464*x^5-3406*x^4-1138*x^3+3418*x^2+856*x-360,8*x^4-48*x^2+32,-13*x^10-7*x^9+263*x^8+124*x^7-1875*x^6-735*x^5+5485*x^4+1690*x^3-5460*x^2-1240*x+624]];

E[372,1] = [x, [1,0,1,0,-3,0,-5,0,1,0,2,0,-4,0,-3,0,-4]];
E[372,2] = [x, [1,0,1,0,-2,0,4,0,1,0,0,0,2,0,-2,0,0]];
E[372,3] = [x, [1,0,1,0,3,0,-1,0,1,0,0,0,2,0,3,0,0]];
E[372,4] = [x, [1,0,-1,0,-1,0,-1,0,1,0,0,0,-6,0,1,0,-8]];
E[372,5] = [x^2-3*x-2, [1,0,-1,0,x,0,x-2,0,1,0,-2*x+4,0,-2*x+6,0,-x,0,4]];

E[373,1] = [x, [1,-2,1,2,2,-2,-4,0,-2,-4,-6,2,-1,8,2,-4,-1]];
E[373,2] = [x^12+4*x^11-8*x^10-43*x^9+14*x^8+161*x^7+17*x^6-260*x^5-53*x^4+177*x^3+18*x^2-42*x+7, [839,839*x,-183*x^11-627*x^10+1810*x^9+6913*x^8-5772*x^7-26330*x^6+5697*x^5+41863*x^4+3312*x^3-26479*x^2-5280*x+3976,839*x^2-1678,580*x^11+2111*x^10-5081*x^9-22286*x^8+12352*x^7+80296*x^6-1895*x^5-119660*x^4-23756*x^3+67656*x^2+16982*x-9704,105*x^11+346*x^10-956*x^9-3210*x^8+3133*x^7+8808*x^6-5717*x^5-6387*x^4+5912*x^3-1986*x^2-3710*x+1281,-810*x^11-2789*x^10+7255*x^9+27999*x^8-20693*x^7-92638*x^6+22768*x^5+119028*x^4-6893*x^3-49642*x^2-745*x+1864,839*x^3-3356*x,-30*x^11-818*x^10-2124*x^9+7749*x^8+23316*x^7-24810*x^6-77712*x^5+35265*x^4+93837*x^3-22565*x^2-31661*x+7185,-209*x^11-441*x^10+2654*x^9+4232*x^8-13084*x^7-11755*x^6+31140*x^5+6984*x^4-35004*x^3+6542*x^2+14656*x-4060,1369*x^11+4663*x^10-12816*x^9-47965*x^8+40305*x^7+164796*x^6-56744*x^5-223651*x^4+41188*x^3+101083*x^2-18447*x-4441,292*x^11+1138*x^10-2315*x^9-12163*x^8+3447*x^7+45158*x^6+9519*x^5-72249*x^4-27195*x^3+47358*x^2+16251*x-8687,-818*x^11-2280*x^10+9709*x^9+25367*x^8-43337*x^7-95898*x^6+91650*x^5+142695*x^4-89933*x^3-66007*x^2+32818*x-3771,451*x^11+775*x^10-6831*x^9-9353*x^8+37772*x^7+36538*x^6-91572*x^5-49823*x^4+93728*x^3+13835*x^2-32156*x+5670,-108*x^11+579*x^10+3764*x^9-6167*x^8-31341*x^7+23949*x^6+98458*x^5-42524*x^4-120113*x^3+34548*x^2+43249*x-14406,839*x^4-5034*x^2+3356,-181*x^11-964*x^10+777*x^9+10088*x^8+3245*x^7-37261*x^6-16977*x^5+61326*x^4+18199*x^3-41475*x^2-4232*x+4336]];
E[373,3] = [x^17-4*x^16-18*x^15+85*x^14+111*x^13-713*x^12-211*x^11+3017*x^10-469*x^9-6832*x^8+2513*x^7+8146*x^6-3634*x^5-4743*x^4+2092*x^3+1142*x^2-417*x-62, [5322596,5322596*x,43848*x^16-531482*x^15+1957488*x^14+3114922*x^13-36176894*x^12+39893664*x^11+195095004*x^10-404134138*x^9-384378238*x^8+1276815024*x^7+147787258*x^6-1693228714*x^5+230426202*x^4+919745778*x^3-113227628*x^2-162802298*x-3259832,5322596*x^2-10645192,-815598*x^16+2995556*x^15+14337798*x^14-59094098*x^13-91944496*x^12+455722560*x^11+256202922*x^10-1758635766*x^9-247643432*x^8+3591672946*x^7-126593478*x^6-3750966442*x^5+260056638*x^4+1770048476*x^3-21180542*x^2-286942728*x-23639688,-356090*x^16+2746752*x^15-612158*x^14-41044022*x^13+71157288*x^12+204346932*x^11-536423554*x^10-363813526*x^9+1576384560*x^8+37597234*x^7-2050414522*x^6+389769834*x^5+1127716842*x^4-204957644*x^3-212876714*x^2+15024784*x+2718576,-531128*x^16+3066150*x^15+4836484*x^14-53478198*x^13+15447046*x^12+352747392*x^11-296106500*x^10-1135910830*x^9+1153990454*x^8+1942127048*x^7-1879107726*x^6-1766875866*x^5+1264703714*x^4+744148026*x^3-226603836*x^2-89710950*x-19287716,5322596*x^3-21290384*x,389312*x^16-653832*x^15-11884188*x^14+23095116*x^13+130062284*x^12-272374884*x^11-673282204*x^10+1465776688*x^9+1809486996*x^8-3927804944*x^7-2635593824*x^6+5211833768*x^5+2098880252*x^4-3110726632*x^3-791890480*x^2+641342944*x+99193592,-266836*x^16-342966*x^15+10231732*x^14-1413118*x^13-125798814*x^12+84111744*x^11+702023400*x^10-630158894*x^9-1980492590*x^8+1923004296*x^7+2892894866*x^6-2703826494*x^5-2098332838*x^4+1685050474*x^3+644470188*x^2-363744054*x-50567076,597252*x^16-3344217*x^15-5250854*x^14+56732533*x^13-19121565*x^12-358261124*x^11+329489036*x^10+1078781059*x^9-1219660959*x^8-1679214202*x^7+1854259197*x^6+1379889043*x^5-1125253243*x^4-562428377*x^3+160294206*x^2+102871355*x+30325506,1234696*x^16-5958814*x^15-14691348*x^14+104453434*x^13+22808550*x^12-691345872*x^11+320319996*x^10+2217646626*x^9-1626453170*x^8-3709190400*x^7+2994904458*x^6+3220143210*x^5-2354744918*x^4-1307427990*x^3+648134820*x^2+179833642*x-15557916,1070361*x^16-5987948*x^15-7913485*x^14+95474451*x^13-55392622*x^12-539305172*x^11+685775097*x^10+1306878505*x^9-2326658268*x^8-1263561145*x^7+3337708399*x^6+201908005*x^5-2028216973*x^4+250770824*x^3+375128761*x^2-77837540*x+22504960,941638*x^16-4723820*x^15-8332318*x^14+74402254*x^13-25946872*x^12-408174508*x^11+466502346*x^10+904891422*x^9-1686539448*x^8-544383062*x^7+2559692822*x^6-665415438*x^5-1774992078*x^4+884515940*x^3+516837226*x^2-240768092*x-32929936,544528*x^16-3262560*x^15-1802756*x^14+46189372*x^13-59209376*x^12-203196740*x^11+481116120*x^10+222313668*x^9-1305898876*x^8+400316920*x^7+1364045392*x^6-757077024*x^5-428186796*x^4+177555828*x^3-30567852*x^2+33145144*x+23501456,5322596*x^4-31935576*x^2+21290384,-1026627*x^16+4955668*x^15+12090187*x^14-84158317*x^13-25671906*x^12+536584268*x^11-137455367*x^10-1673422987*x^9+574305568*x^8+2871108483*x^7-492874097*x^6-2883720219*x^5-225312925*x^4+1540001836*x^3+299275065*x^2-294757448*x-45061288]];

E[374,1] = [x^4-x^3-10*x^2+13*x-4, [1,1,x,1,2*x^3-x^2-20*x+14,x,-x^3+9*x-4,1,x^2-3,2*x^3-x^2-20*x+14,1,x,-6*x^3+2*x^2+61*x-38,-x^3+9*x-4,x^3-12*x+8,1,1]];
E[374,2] = [x^3-3*x^2-2*x+7, [1,1,x,1,-x^2+4,x,x^2-x-1,1,x^2-3,-x^2+4,-1,x,-x,x^2-x-1,-3*x^2+2*x+7,1,-1]];
E[374,3] = [x^3+x^2-6*x-5, [1,-1,x,1,-x^2+4,-x,-x^2+x+5,-1,x^2-3,x^2-4,-1,x,x+4,x^2-x-5,x^2-2*x-5,1,1]];
E[374,4] = [x^4-x^3-10*x^2+9*x+16, [1,-1,x,1,x^2-4,-x,-x^3-2*x^2+7*x+10,-1,x^2-3,-x^2+4,1,x,2*x^3+2*x^2-13*x-10,x^3+2*x^2-7*x-10,x^3-4*x,1,-1]];
E[374,5] = [x, [1,-1,0,1,0,0,-2,-1,-3,0,-1,0,-2,2,0,1,-1]];

E[375,1] = [x^2-x-1, [1,x,1,x-1,0,x,x,-2*x+1,1,0,2*x+1,x-1,-2*x+5,x+1,0,-3*x,-x+6]];
E[375,2] = [x^2-3*x+1, [1,x,-1,3*x-3,0,-x,-x+4,4*x-3,1,0,-2*x-1,-3*x+3,3,x+1,0,3*x+2,-x+6]];
E[375,3] = [x^2+x-1, [1,x,-1,-x-1,0,-x,x,-2*x-1,1,0,-2*x+1,x+1,-2*x-5,-x+1,0,3*x,-x-6]];
E[375,4] = [x^2+3*x+1, [1,x,1,-3*x-3,0,x,-x-4,4*x+3,1,0,2*x-1,-3*x-3,-3,-x+1,0,-3*x+2,-x-6]];
E[375,5] = [x^4-3*x^3-3*x^2+11*x-1, [1,x,1,x^2-2,0,x,-2*x^3+10*x+2,x^3-4*x,1,0,2*x^3-2*x^2-10*x+6,x^2-2,4*x^3-2*x^2-18*x-2,-6*x^3+4*x^2+24*x-2,0,3*x^3-3*x^2-11*x+5,-3*x^3+3*x^2+12*x-4]];
E[375,6] = [x^4+3*x^3-3*x^2-11*x-1, [1,x,-1,x^2-2,0,-x,-2*x^3+10*x-2,x^3-4*x,1,0,-2*x^3-2*x^2+10*x+6,-x^2+2,4*x^3+2*x^2-18*x+2,6*x^3+4*x^2-24*x-2,0,-3*x^3-3*x^2+11*x+5,-3*x^3-3*x^2+12*x+4]];

E[376,1] = [x^4+x^3-9*x^2-4*x+16, [2,0,2*x,0,x^3+x^2-5*x,0,-2*x^2+8,0,2*x^2-6,0,-x^3-x^2+5*x+4,0,-x^3-x^2+5*x+8,0,4*x^2+4*x-16,0,-4*x^2-2*x+20]];
E[376,2] = [x^4-3*x^3-5*x^2+16*x-8, [2,0,2*x,0,x^3-3*x^2-5*x+12,0,2*x^3-4*x^2-14*x+20,0,2*x^2-6,0,-3*x^3+5*x^2+19*x-16,0,-3*x^3+5*x^2+23*x-28,0,-4*x+8,0,-2*x^3+6*x^2+12*x-24]];
E[376,3] = [x^2+2*x-4, [2,0,-x-2,0,2*x,0,-x-4,0,x-2,0,2*x-4,0,-2*x,0,-4,0,3*x-2]];
E[376,4] = [x^2-x-11, [3,0,-x-1,0,-6,0,3*x,0,x-5,0,-6,0,2*x-10,0,2*x+2,0,-5*x-5]];

E[377,1] = [x, [1,1,0,-1,-2,0,0,-3,-3,-2,-4,0,1,0,0,-1,2]];
E[377,2] = [x^2-3, [1,x,x+1,1,-2*x,x+3,x+3,-x,2*x+1,-6,2,x+1,-1,3*x+3,-2*x-6,-5,-2*x-4]];
E[377,3] = [x^5+x^4-5*x^3-3*x^2+6*x+1, [1,x,x^3-3*x,x^2-2,-x^3-2*x^2+2*x+3,x^4-3*x^2,-x^4-x^3+4*x^2+2*x-5,x^3-4*x,-2*x^3+5*x-2,-x^4-2*x^3+2*x^2+3*x,x^3+3*x^2-2*x-5,-x^4+3*x^2-1,-1,-x^3-x^2+x+1,x^4+x^3-3*x^2-2*x+1,x^4-6*x^2+4,2*x^4+x^3-5*x^2-2]];
E[377,4] = [x^7-3*x^6-8*x^5+26*x^4+9*x^3-36*x^2-14*x+3, [1,x,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+8*x+1,x^2-2,-x^6+2*x^5+8*x^4-15*x^3-7*x^2+9*x,-x^6+11*x^4+2*x^3-28*x^2-13*x+3,4*x^6-3*x^5-40*x^4+16*x^3+83*x^2+28*x-6,x^3-4*x,-x^6+2*x^5+8*x^4-14*x^3-7*x^2+2*x+1,-x^6+11*x^4+2*x^3-27*x^2-14*x+3,-5*x^6+5*x^5+49*x^4-32*x^3-97*x^2-13*x+11,-x^6-x^5+12*x^4+11*x^3-35*x^2-27*x+1,-1,9*x^6-8*x^5-88*x^4+47*x^3+172*x^2+50*x-12,-x^6+11*x^4+3*x^3-28*x^2-19*x+6,x^4-6*x^2+4,3*x^6-2*x^5-30*x^4+9*x^3+62*x^2+29*x-1]];
E[377,5] = [x^5+3*x^4-3*x^3-13*x^2-8*x-1, [1,x,-2*x^4-5*x^3+8*x^2+21*x+6,x^2-2,2*x^4+5*x^3-8*x^2-22*x-7,x^4+2*x^3-5*x^2-10*x-2,x^4+3*x^3-4*x^2-14*x-7,x^3-4*x,2*x^4+4*x^3-10*x^2-15*x+2,-x^4-2*x^3+4*x^2+9*x+2,-x^3-x^2+4*x+1,3*x^4+8*x^3-13*x^2-36*x-11,1,-x^3-x^2+x+1,-x^4-x^3+7*x^2+4*x-9,x^4-6*x^2+4,-2*x^4-3*x^3+11*x^2+12*x-2]];
E[377,6] = [x^9-x^8-13*x^7+13*x^6+51*x^5-50*x^4-59*x^3+45*x^2+20*x-3, [4,4*x,3*x^8-37*x^6+133*x^4-x^3-124*x^2-17*x+7,4*x^2-8,2*x^8-26*x^6+102*x^4-2*x^3-116*x^2-2*x+18,3*x^8+2*x^7-39*x^6-20*x^5+149*x^4+53*x^3-152*x^2-53*x+9,-x^8-2*x^7+13*x^6+24*x^5-51*x^4-83*x^3+60*x^2+75*x+5,4*x^3-16*x,-2*x^8+26*x^6-102*x^4-2*x^3+116*x^2+22*x-14,2*x^8-26*x^6+98*x^4+2*x^3-92*x^2-22*x+6,-2*x^8+26*x^6-4*x^5-98*x^4+30*x^3+92*x^2-22*x-6,-x^8+15*x^6-4*x^5-63*x^4+27*x^3+60*x^2-17*x-5,4,-3*x^8+37*x^6-133*x^4+x^3+120*x^2+25*x-3,-2*x^8+26*x^6-98*x^4-6*x^3+88*x^2+42*x+6,4*x^4-24*x^2+16,-2*x^8+26*x^6-102*x^4+2*x^3+112*x^2+2*x-6]];

E[378,1] = [x, [1,1,0,1,3,0,1,1,0,3,-3,0,-4,1,0,1,6]];
E[378,2] = [x, [1,1,0,1,1,0,-1,1,0,1,5,0,0,-1,0,1,2]];
E[378,3] = [x, [1,1,0,1,4,0,-1,1,0,4,-4,0,3,-1,0,1,-7]];
E[378,4] = [x, [1,1,0,1,0,0,1,1,0,0,0,0,5,1,0,1,3]];
E[378,5] = [x, [1,-1,0,1,-4,0,-1,-1,0,4,4,0,3,1,0,1,7]];
E[378,6] = [x, [1,-1,0,1,-1,0,-1,-1,0,1,-5,0,0,1,0,1,-2]];
E[378,7] = [x, [1,-1,0,1,-3,0,1,-1,0,3,3,0,-4,-1,0,1,-6]];
E[378,8] = [x, [1,-1,0,1,0,0,1,-1,0,0,0,0,5,-1,0,1,-3]];

E[379,1] = [x^13+5*x^12-5*x^11-56*x^10-27*x^9+210*x^8+184*x^7-347*x^6-346*x^5+252*x^4+246*x^3-60*x^2-48*x-1, [1,x,-2*x^12-5*x^11+23*x^10+54*x^9-91*x^8-187*x^7+164*x^6+262*x^5-121*x^4-154*x^3+20*x^2+33*x+2,x^2-2,x^12+x^11-12*x^10-x^9+52*x^8-62*x^7-105*x^6+246*x^5+67*x^4-255*x^3+4*x^2+46*x+1,5*x^12+13*x^11-58*x^10-145*x^9+233*x^8+532*x^7-432*x^6-813*x^5+350*x^4+512*x^3-87*x^2-94*x-2,4*x^12+13*x^11-46*x^10-162*x^9+180*x^8+704*x^7-321*x^6-1330*x^5+286*x^4+1020*x^3-99*x^2-203*x-8,x^3-4*x,-8*x^12-22*x^11+91*x^10+247*x^9-357*x^8-917*x^7+659*x^6+1428*x^5-565*x^4-909*x^3+170*x^2+158*x+2,-4*x^12-7*x^11+55*x^10+79*x^9-272*x^8-289*x^7+593*x^6+413*x^5-507*x^4-242*x^3+106*x^2+49*x+1,-3*x^11-4*x^10+42*x^9+39*x^8-213*x^7-103*x^6+478*x^5+49*x^4-413*x^3+38*x^2+83*x-3,-8*x^12-23*x^11+89*x^10+260*x^9-336*x^8-978*x^7+594*x^6+1556*x^5-506*x^4-1009*x^3+166*x^2+172*x+1,9*x^12+31*x^11-85*x^10-341*x^9+229*x^8+1234*x^7-239*x^6-1902*x^5+145*x^4+1200*x^3-77*x^2-200*x-8,-7*x^12-26*x^11+62*x^10+288*x^9-136*x^8-1057*x^7+58*x^6+1670*x^5+12*x^4-1083*x^3+37*x^2+184*x+4,5*x^12+13*x^11-58*x^10-145*x^9+234*x^8+533*x^7-443*x^6-820*x^5+385*x^4+522*x^3-117*x^2-97*x-2,x^4-6*x^2+4,2*x^12-41*x^10-15*x^9+270*x^8+139*x^7-693*x^6-354*x^5+688*x^4+322*x^3-204*x^2-74*x+4]];
E[379,2] = [x^18-3*x^17-22*x^16+69*x^15+190*x^14-638*x^13-807*x^12+3041*x^11+1680*x^10-7967*x^9-1220*x^8+11334*x^7-1006*x^6-8079*x^5+1938*x^4+2287*x^3-752*x^2-68*x+24, [3586350380,3586350380*x,479293866*x^17-968565754*x^16-11674794408*x^15+21840155982*x^14+116768755868*x^13-196061121776*x^12-619584674826*x^11+892987096902*x^10+1875177503828*x^9-2177146395770*x^8-3215718600940*x^7+2760644600164*x^6+2872141071020*x^5-1651593106674*x^4-1063573502048*x^3+370551691350*x^2+62657409348*x-13968787336,3586350380*x^2-7172700760,-587362301*x^17+1362705089*x^16+13963930728*x^15-31159994897*x^14-135139583288*x^13+285168273186*x^12+685645325291*x^11-1335062480207*x^10-1951520223498*x^9+3390633934555*x^8+3068824758890*x^7-4575815442434*x^6-2392760910710*x^5+2998847142899*x^4+657622348228*x^3-745847896095*x^2+31577025842*x+23737234776,469315844*x^17-1130329356*x^16-11231120772*x^15+25702921328*x^14+109728364732*x^13-232794524964*x^12-564545549604*x^11+1069963808948*x^10+1641387834652*x^9-2630980084420*x^8-2671672077080*x^7+3354310700216*x^6+2220622036740*x^5-1992445014356*x^4-725593380192*x^3+423086396580*x^2+18623195552*x-11503052784,691320342*x^17-1405484498*x^16-16480353036*x^15+31625442934*x^14+160169810516*x^13-283509825412*x^12-818708114142*x^11+1291416145694*x^10+2364341428896*x^9-3157941949810*x^8-3836518958600*x^7+4035502310368*x^6+3233440367140*x^5-2441617111418*x^4-1150474854916*x^3+544233780470*x^2+82796873556*x-16333066832,3586350380*x^3-14345401520*x,16619336*x^17+45425936*x^16-498432928*x^15-1066165728*x^14+5957784028*x^13+9999029564*x^12-36367490476*x^11-47362200388*x^10+119099099688*x^9+115727520820*x^8-193778198340*x^7-122719811736*x^6+100095712560*x^5+1879829396*x^4+67593053892*x^3+58305823240*x^2-50152856872*x-1601316436,-399381814*x^17+1041960106*x^16+9368003872*x^15-23540746098*x^14-89568874852*x^13+211643948384*x^12+451106277134*x^11-964751557818*x^10-1288881517512*x^9+2352242751670*x^8+2081348877100*x^7-2983647385516*x^6-1746452886880*x^5+1795930487566*x^4+597449686292*x^3-410119424510*x^2-16203401692*x+14096695224,-530944032*x^17+1140700488*x^16+12432268816*x^15-25641643244*x^14-117711222616*x^13+229638299072*x^12+579229512512*x^11-1045727566964*x^10-1583374241356*x^9+2563089611620*x^8+2374548622760*x^7-3307731036408*x^6-1775196176480*x^5+2063521948148*x^4+481003854236*x^3-510186498000*x^2+25845088184*x+25330936392,-680969556*x^17+1030959304*x^16+16669716908*x^15-23121957592*x^14-166908528228*x^13+206314580056*x^12+881943676996*x^11-933036977072*x^10-2642295762928*x^9+2255186044140*x^8+4466522126200*x^7-2828535424524*x^6-3945124452720*x^5+1668058727484*x^4+1476908065448*x^3-369554672460*x^2-104904394088*x+16673994416,-121059516*x^17-26379736*x^16+3482330288*x^15+921370588*x^14-41102946468*x^13-12890600784*x^12+255715301396*x^11+93186394528*x^10-894418193288*x^9-372180676940*x^8+1730621792600*x^7+809379277796*x^6-1692869143400*x^5-875096935936*x^4+685588242388*x^3+375450023020*x^2-65258112128*x-17026651904,668476528*x^17-1271305512*x^16-16075660664*x^15+28818945536*x^14+157552552784*x^13-260812598148*x^12-810889014328*x^11+1202923254336*x^10+2349807214904*x^9-2993108141360*x^8-3799922445860*x^7+3928908631192*x^6+3143559931600*x^5-2490253677712*x^4-1036815841684*x^3+602669770740*x^2+30676716424*x-16591688208,1140274898*x^17-2313768682*x^16-27487269424*x^15+52523359506*x^14+270919955744*x^13-476422212648*x^12-1409043713738*x^11+2205643862926*x^10+4153643486304*x^9-5519846412070*x^8-6887724582880*x^7+7295545129872*x^6+5880907506260*x^5-4625378340482*x^4-1984853726304*x^3+1081917734810*x^2+28767907624*x-18908160048,3586350380*x^4-21518102280*x^2+14345401520,-292216702*x^17+377003858*x^16+7608220276*x^15-8469245614*x^14-81831994276*x^13+75177446492*x^12+468634635402*x^11-334208674514*x^10-1530030285916*x^9+778432823010*x^8+2813159919780*x^7-914188549968*x^6-2664171151420*x^5+497056744498*x^4+1037828158476*x^3-102828250130*x^2-66802052016*x+5629285152]];

E[380,1] = [x, [1,0,2,0,-1,0,2,0,1,0,0,0,6,0,-2,0,2]];
E[380,2] = [x^2+4*x+2, [1,0,x,0,1,0,-2*x-6,0,-4*x-5,0,-2,0,3*x+4,0,x,0,-2*x-6]];
E[380,3] = [x^2-2*x-2, [1,0,x,0,1,0,2,0,2*x-1,0,-2*x+2,0,-x,0,x,0,-2*x+2]];
E[380,4] = [x, [1,0,0,0,-1,0,-2,0,-3,0,-4,0,-4,0,0,0,6]];

E[381,1] = [x, [1,2,1,2,3,2,-4,0,1,6,6,2,-7,-8,3,-4,-2]];
E[381,2] = [x^5-2*x^4-6*x^3+10*x^2+5*x-4, [2,2*x,-2,2*x^2-4,x^4-2*x^3-5*x^2+8*x+2,-2*x,-x^3+7*x,2*x^3-8*x,2,x^3-2*x^2-3*x+4,-x^4+7*x^2,-2*x^2+4,-x^3+7*x-2,-x^4+7*x^2,-x^4+2*x^3+5*x^2-8*x-2,2*x^4-12*x^2+8,-2*x^4+2*x^3+10*x^2-6*x]];
E[381,3] = [x^5+x^4-5*x^3-3*x^2+5*x+2, [1,x,-1,x^2-2,-x^4-x^3+3*x^2+x-1,-x,2*x^4+2*x^3-8*x^2-4*x+4,x^3-4*x,1,-2*x^3-2*x^2+4*x+2,-x^3-x^2+2*x-2,-x^2+2,-x^4+6*x^2-x-5,2*x^3+2*x^2-6*x-4,x^4+x^3-3*x^2-x+1,x^4-6*x^2+4,-x^4-2*x^3+4*x^2+5*x-4]];
E[381,4] = [x^9+2*x^8-14*x^7-26*x^6+59*x^5+99*x^4-66*x^3-102*x^2-24*x-1, [12,12*x,12,12*x^2-24,2*x^8+6*x^7-28*x^6-80*x^5+116*x^4+314*x^3-118*x^2-340*x-64,12*x,-9*x^8-15*x^7+129*x^6+195*x^5-570*x^4-741*x^3+741*x^2+753*x+93,12*x^3-48*x,12,2*x^8-28*x^6-2*x^5+116*x^4+14*x^3-136*x^2-16*x+2,5*x^8+9*x^7-73*x^6-113*x^5+338*x^4+401*x^3-499*x^2-349*x+17,12*x^2-24,4*x^8+6*x^7-62*x^6-76*x^5+304*x^4+268*x^3-470*x^2-218*x+52,3*x^8+3*x^7-39*x^6-39*x^5+150*x^4+147*x^3-165*x^2-123*x-9,2*x^8+6*x^7-28*x^6-80*x^5+116*x^4+314*x^3-118*x^2-340*x-64,12*x^4-72*x^2+48,8*x^8+12*x^7-112*x^6-152*x^5+476*x^4+560*x^3-580*x^2-556*x-64]];
E[381,5] = [x, [1,0,1,-2,-1,0,-2,0,1,0,-4,-2,-3,0,-1,4,0]];

E[382,1] = [x^3+5*x^2+6*x+1, [1,1,x,1,x^2+2*x-3,x,-3*x^2-11*x-7,1,x^2-3,x^2+2*x-3,3*x^2+12*x+6,x,-2*x^2-6*x-5,-3*x^2-11*x-7,-3*x^2-9*x-1,1,2*x^2+7*x]];
E[382,2] = [x^4-3*x^3-2*x^2+9*x-4, [1,1,x,1,x^3-2*x^2-4*x+6,x,-x^3+2*x^2+3*x-4,1,x^2-3,x^3-2*x^2-4*x+6,-x^2+4,x,-x^3+x^2+4*x-2,-x^3+2*x^2+3*x-4,x^3-2*x^2-3*x+4,1,-2*x^3+4*x^2+7*x-10]];
E[382,3] = [x^3+x^2-4*x+1, [1,-1,x,1,-x^2-2*x+1,-x,x^2+x-3,-1,x^2-3,x^2+2*x-1,x^2-4,x,-1,-x^2-x+3,-x^2-3*x+1,1,x-4]];
E[382,4] = [x^5-3*x^4-8*x^3+25*x^2+8*x-32, [12,-12,12*x,12,6*x^4-6*x^3-48*x^2+30*x+72,-12*x,4*x^4-8*x^3-40*x^2+48*x+80,-12,12*x^2-36,-6*x^4+6*x^3+48*x^2-30*x-72,-7*x^4+5*x^3+52*x^2-15*x-32,12*x,-2*x^4+10*x^3+20*x^2-66*x-40,-4*x^4+8*x^3+40*x^2-48*x-80,12*x^4-120*x^2+24*x+192,12,-14*x^4+10*x^3+128*x^2-66*x-160]];

E[383,1] = [x^2+x-1, [1,x,x-1,-x-1,x+1,-2*x+1,-2*x-3,-2*x-1,-3*x-1,1,-x+2,x,0,-x-2,-x,3*x,-2*x-6]];
E[383,2] = [x^24-5*x^23-26*x^22+160*x^21+244*x^20-2173*x^19-711*x^18+16368*x^17-4007*x^16-75111*x^15+42025*x^14+217575*x^13-160547*x^12-399209*x^11+331301*x^10+452295*x^9-388291*x^8-296126*x^7+247918*x^6+96139*x^5-75925*x^4-9553*x^3+8302*x^2-342*x-49, [171261395095631272311751,171261395095631272311751*x,1084096506569374761529*x^23-4676875943116968677282*x^22-31583475280793780500313*x^21+152566634472831118219863*x^20+372951514300544040527356*x^19-2120956637059806820309931*x^18-2237731450385977579008227*x^17+16431900607176618615705457*x^16+6639912945399504566900223*x^15-77962372918852004962730187*x^14-4380780678721158671743857*x^13+234627743402340948897499420*x^12-31477807299921149814988089*x^11-448553612782604426400687115*x^10+103564802957874038494431159*x^9+528715210308935946866134213*x^8-141619619359403870741784233*x^7-356295368351683988050858160*x^6+94637141308415036342531354*x^5+115154983522165788227142836*x^4-27506282984830510686812638*x^3-9892974265624022859872873*x^2+2311496093947297524326116*x-389483847462182006318744,171261395095631272311751*x^2-342522790191262544623502,1610980210331729423845*x^23-8446847331575999174002*x^22-39970741358661123724722*x^21+267656685633220429785018*x^20+335473799924255861905797*x^19-3591725690932758179304004*x^18-429234804791023809832334*x^17+26664821150880028634189110*x^16-11179077743671649715676360*x^15-120306200079762732123826154*x^14+85204117927300822187283972*x^13+342184255162149946289579744*x^12-292904552013233378168312504*x^11-617741442439761706388305102*x^10+555855261588572105838398752*x^9+695093550349174674477524824*x^8-588920867521043088632965786*x^7-462229800092140980767054919*x^6+322234199382349937387872098*x^5+158957241591136791549689730*x^4-74981843769039390084313492*x^3-18197112748073666970506467*x^2+5608668948767292210169994*x-190592589254782134167054,743606589729905130363*x^23-3396966109990036700559*x^22-20888806578268843624777*x^21+108431966697616598714280*x^20+234785071715444536492586*x^19-1466938834215152123561108*x^18-1312591012350907481001215*x^17+10983887647222989236346926*x^16+3465199786080302750474532*x^15-49939936367299133025000082*x^14-1244554014490764842172755*x^13+142570634540272260024208274*x^12-15772530491550897225456554*x^11-255597453765066389374888070*x^10+38383780870140589100375158*x^9+279325297272925224787072706*x^8-35266206247321317418321506*x^7-174129896407251215786215268*x^6+10931029477092668028506305*x^5+54803744276449268082276687*x^4+463399661633214237013664*x^3-6688673103591651745887642*x^2-18722842215455837875826*x+53120728821899363314921,446531884989395433970*x^23-1593549021570861503999*x^22-12324863612854668810134*x^21+45950555491051309168523*x^20+139195026798951411090031*x^19-542829681477573917280408*x^18-840704363542814124475319*x^17+3372141754473724405768217*x^16+3068186246744384406610697*x^15-11726493340444607794824513*x^14-7710184518579787894752955*x^13+22192215717407365795462739*x^12+15029144633734287397588633*x^11-18971162620638082394430297*x^10-19452174270076326628604898*x^9-1347394326315319506380746*x^8+5049088090739986366317955*x^7+14556980890289587298803049*x^6+20263949941059083048246016*x^5-10634268531414157056296795*x^4-19542055240564648377459924*x^3+3322181134719463911820304*x^2+4194889044207177979046011*x-280547494148786284298744,171261395095631272311751*x^3-685045580382525089247004*x,-836736174118434533860*x^23+3513324598730809895132*x^22+22614491558652228043048*x^21-110086577392819107275814*x^20-231643413859537576759501*x^19+1455273318164115105387729*x^18+963771262240875659567082*x^17-10583956543975518354385266*x^16+663784204431916485533948*x^15+46395328971067344270296500*x^14-23677101163947723454879524*x^13-126650340483236424391014760*x^12+105538401054522896501169236*x^11+215627479518066032071473803*x^10-237590203436199652618251928*x^9-223697483091466102280610496*x^8+300981704372948829993933987*x^7+134369309945221587277800804*x^6-208006659729331548549631494*x^5-41837838410981195271980028*x^4+69141396184126828754668938*x^3+4101350752845981718060677*x^2-8368841429926009652616897*x+771176019757819726013989,-391946279917352054777*x^23+1914744109963841295248*x^22+9899851980143721969818*x^21-57605371396686117512383*x^20-91065693881910141288819*x^19+716172124754835810521461*x^18+296297068170281424694150*x^17-4723880040872409914329445*x^16+696134498463796630595641*x^15+17502674588109893150197847*x^14-8324764100776083103496131*x^13-34266512185105214358269289*x^12+25376356346557665175433503*x^11+22135906925459815989126407*x^10-33544743882814885280449451*x^9+36608249328874461081233109*x^8+14823325672552726598469551*x^7-77156792402671757912932612*x^6+4079215150054656470655275*x^5+47331828700397166421118133*x^4-2807418798774655784515182*x^3-7765688757406725466591196*x^2+360362642678669328787936*x+78938030306254741768405,-1063257354607501573315*x^23+5131096048107555838560*x^22+30211796504430793120076*x^21-167301722115100105716386*x^20-347029667276054017403976*x^19+2330984801480687044787544*x^18+2035822258628456818778006*x^17-18191411666119987190263022*x^16-6208446107465990545705752*x^15+87727259461401532569263480*x^14+7950633626153276854814930*x^13-272419022391613160588296698*x^12+2550633406569999292070108*x^11+550317817450757613971893174*x^10-11249909037064520615287860*x^9-710475595977838981554158714*x^8-12502582572788195620320368*x^7+554161125525934628748267765*x^6+39714610005936667929152072*x^5-229721966347444087351006912*x^4-25055356367985381871077926*x^3+37217134448461737218517720*x^2+3118260173142557083581708*x-1023687666442773290860992,-1847126174479260571802*x^23+7798716640942627119225*x^22+52621862902419338856826*x^21-251788205124314551755712*x^20-596984743333156356337021*x^19+3458026547066668707306740*x^18+3287997887295857220581796*x^17-26418969823225204623571841*x^16-7366727696895237912105235*x^15+123430124889813981979782544*x^14-10458007862769531371033737*x^13-365644210134865716056066833*x^12+104212603914261607442170975*x^11+689133399651242142307357125*x^10-264133851144710293139322697*x^9-803960880532378618176810299*x^8+329310587301914412331226936*x^7+539168307667802024020888391*x^6-205960132270424153930754478*x^5-173388237057455315194461233*x^4+55427566617759153338095373*x^3+13593803781094917489596294*x^2-4315558005385068130753165*x+815404417821129364025275,536200684636879460234*x^23-2340569815602960002914*x^22-18595743201303365159783*x^21+87760148293617451018312*x^20+268172600976935021849649*x^19-1410700359693895406866430*x^18-2059277577649944868493615*x^17+12706896985716606835947834*x^16+8837891379785681812956640*x^15-70406150344068089041458938*x^14-19247366008346513354464238*x^13+248202339205881445876888714*x^12+8066957563125602564194918*x^11-557242319060247759769802454*x^10+52788439765439568352253268*x^9+775583290634458769021955758*x^8-111175694875439734695408398*x^7-626809585090777056997607422*x^6+86175589473873005637504256*x^5+255415007910874927176503003*x^4-26306320918998983689607774*x^3-37134685094063345880893051*x^2+2994215997131283169380060*x+876517934786259523266137,639110403376115665851*x^23-715034603130387526914*x^22-25494546107251960266677*x^21+30241246861538925201351*x^20+427484104604382360736402*x^19-523220193315353970922649*x^18-3936692139032700057452743*x^17+4857439509896891910528487*x^16+21812963072993872646096157*x^15-26475686985259131007342205*x^14-74961959159160345750560011*x^13+86718499173126756135170223*x^12+159288384654093479405299433*x^11-167388634298948023298299868*x^10-203311533247593927313841896*x^9+178433400245157328817963225*x^8+146786681864659299578603269*x^7-90439341921741854150728444*x^6-53563397422409644682738625*x^5+14360878127255199946712326*x^4+7587900232023158492535714*x^3+487781335025217086227071*x^2-127833589482413045881004*x+21880062364480376264530,-1477948770651052805814*x^23+8852702834213908052510*x^22+34615944380366988152449*x^21-282427410372804906617973*x^20-243290357734021921847468*x^19+3826652257352251756948876*x^18-467403228131684326962444*x^17-28808700307919558089728017*x^16+16680597934386424235822367*x^15+132661797127833401250892157*x^14-107820601739410957311158293*x^13-388645894710467235330032013*x^12+357589188605218450419483713*x^11+731089907447442757216757031*x^10-686302570815213604238966879*x^9-867694068909280499081336531*x^8+769172758705752397122765643*x^7+614295374828003007007304995*x^6-478260546472869732185126453*x^5-226015758646583783091051304*x^4+144310296136631811544920430*x^3+27996851060943853589240873*x^2-14323226709723486163104103*x+911013983710553875929999,171261395095631272311751*x^4-1027568370573787633870506*x^2+685045580382525089247004,-236072408492509350533*x^23+957273679878209951326*x^22+6496885385971073849556*x^21-25563577181397870695742*x^20-80918948446961447471655*x^19+265048639137375850243127*x^18+674713065554221792427067*x^17-1265918904311554387301808*x^16-4548035197315011894114756*x^15+1935773371551244576449578*x^14+24051276644302979448747602*x^13+6906981569451948205548370*x^12-88001702791682992838968565*x^11-37299052000407271135626662*x^10+203127117402030506127863540*x^9+72237055090330074159917650*x^8-277516003667203907214900574*x^7-71074867489570841349260336*x^6+207305253184521406099556236*x^5+35575234747817049925559792*x^4-72530604733306541748063956*x^3-6545039607978097844701347*x^2+7759186747822006817842683*x-3216082085952832826483]];
E[383,3] = [x^6+3*x^5-3*x^4-12*x^3-x^2+8*x+3, [1,x,x^5+2*x^4-5*x^3-8*x^2+5*x+5,x^2-2,-x^5-2*x^4+5*x^3+8*x^2-6*x-6,-x^5-2*x^4+4*x^3+6*x^2-3*x-3,-x^5-2*x^4+5*x^3+7*x^2-6*x-4,x^3-4*x,x^5+2*x^4-4*x^3-6*x^2+3*x+1,x^5+2*x^4-4*x^3-7*x^2+2*x+3,x^5+3*x^4-4*x^3-12*x^2+4*x+5,-x^5-3*x^4+4*x^3+12*x^2-5*x-7,-2*x^5-5*x^4+8*x^3+18*x^2-7*x-11,x^5+2*x^4-5*x^3-7*x^2+4*x+3,-x^5-2*x^4+5*x^3+8*x^2-5*x-6,x^4-6*x^2+4,-2*x^5-5*x^4+8*x^3+19*x^2-6*x-10]];

E[384,1] = [x, [1,0,1,0,4,0,2,0,1,0,-4,0,-2,0,4,0,-2]];
E[384,2] = [x, [1,0,1,0,-4,0,-2,0,1,0,-4,0,2,0,-4,0,-2]];
E[384,3] = [x, [1,0,1,0,0,0,-2,0,1,0,4,0,6,0,0,0,6]];
E[384,4] = [x, [1,0,1,0,0,0,2,0,1,0,4,0,-6,0,0,0,6]];
E[384,5] = [x, [1,0,-1,0,-4,0,2,0,1,0,4,0,2,0,4,0,-2]];
E[384,6] = [x, [1,0,-1,0,4,0,-2,0,1,0,4,0,-2,0,-4,0,-2]];
E[384,7] = [x, [1,0,-1,0,0,0,2,0,1,0,-4,0,6,0,0,0,6]];
E[384,8] = [x, [1,0,-1,0,0,0,-2,0,1,0,-4,0,-6,0,0,0,6]];

E[385,1] = [x^2-3, [1,x,x+1,1,-1,x+3,1,-x,2*x+1,-x,-1,x+1,x-1,x,-x-1,-5,-3*x+3]];
E[385,2] = [x^2-2*x-1, [1,x,x-1,2*x-1,-1,x+1,-1,x+2,-1,-x,1,x+3,-x+3,-x,-x+1,3,-x-1]];
E[385,3] = [x^4-2*x^3-6*x^2+8*x+7, [1,x,-x^2+x+4,x^2-2,1,-x^3+x^2+4*x,-1,x^3-4*x,-x^2+6,x,-1,-x^3+6*x-1,x^3-2*x^2-4*x+3,-x,-x^2+x+4,2*x^3-8*x-3,-x^2+x+2]];
E[385,4] = [x^3-x^2-3*x+1, [1,x,x^2-x-2,x^2-2,1,x-1,1,x^2-x-1,-x^2+2,x,1,-x^2+x+4,x^2-x-2,x,x^2-x-2,-2*x^2+2*x+3,-x^2+x+4]];
E[385,5] = [x, [1,-1,-2,-1,1,2,1,3,1,-1,-1,2,4,-1,-2,-1,-4]];
E[385,6] = [x, [1,-1,0,-1,1,0,-1,3,-3,-1,1,0,-6,1,0,-1,6]];
E[385,7] = [x^3+4*x^2+2*x-2, [1,-x^2-3*x-1,x,x^2+4*x+3,-1,x^2+x-2,1,-3*x-7,x^2-3,x^2+3*x+1,1,x+2,-x-4,-x^2-3*x-1,-x,2*x^2+10*x+7,-x-6]];
E[385,8] = [x^3+2*x^2-2*x-2, [1,-x^2-x+1,x,x^2-1,-1,x^2-x-2,-1,3*x-1,x^2-3,x^2+x-1,-1,-2*x^2+x+2,2*x^2+x-4,x^2+x-1,-x,2*x^2-2*x-5,-3*x-2]];

E[386,1] = [x^2+x-1, [1,-1,x,1,-x,-x,-2,-1,-x-2,x,-2,x,-3*x-3,2,x-1,1,-2*x+2]];
E[386,2] = [x^6-x^5-12*x^4+7*x^3+40*x^2-13*x-37, [2,-2,2*x,2,-x^5+11*x^3+4*x^2-23*x-12,-2*x,2*x^4-2*x^3-18*x^2+8*x+32,-2,2*x^2-6,x^5-11*x^3-4*x^2+23*x+12,-2*x^4+2*x^3+16*x^2-6*x-22,2*x,x^5-x^4-9*x^3+x^2+17*x+13,-2*x^4+2*x^3+18*x^2-8*x-32,-x^5-x^4+11*x^3+17*x^2-25*x-37,2,2*x^4-4*x^3-16*x^2+18*x+24]];
E[386,3] = [x^2+3*x+1, [1,1,x,1,-x-4,x,-2*x-4,1,-3*x-4,-x-4,2*x+2,x,3*x+1,-2*x-4,-x+1,1,2*x]];
E[386,4] = [x^7-3*x^6-10*x^5+33*x^4+14*x^3-91*x^2+45*x+16, [2,2,2*x,2,-6*x^6+9*x^5+74*x^4-89*x^3-220*x^2+229*x+72,2*x,8*x^6-12*x^5-98*x^4+118*x^3+286*x^2-304*x-80,2,2*x^2-6,-6*x^6+9*x^5+74*x^4-89*x^3-220*x^2+229*x+72,6*x^6-10*x^5-74*x^4+100*x^3+224*x^2-252*x-76,2*x,-7*x^6+12*x^5+85*x^4-120*x^3-249*x^2+300*x+72,8*x^6-12*x^5-98*x^4+118*x^3+286*x^2-304*x-80,-9*x^6+14*x^5+109*x^4-136*x^3-317*x^2+342*x+96,2,-8*x^6+12*x^5+98*x^4-116*x^3-288*x^2+290*x+92]];

E[387,1] = [x, [1,2,0,2,4,0,0,0,0,8,-3,0,-5,0,0,-4,3]];
E[387,2] = [x, [1,1,0,-1,-1,0,-3,-3,0,-1,-3,0,-5,-3,0,-1,6]];
E[387,3] = [x^2+2*x-1, [1,x,0,-2*x-1,-x-2,0,2*x+3,x-2,0,-1,-x-4,0,-5,-x+2,0,3,-2*x]];
E[387,4] = [x^2-2, [1,x,0,0,-x-2,0,-x-2,-2*x,0,-2*x-2,2*x+1,0,-2*x+1,-2*x-2,0,-4,2*x-5]];
E[387,5] = [x^3-2*x^2-5*x+8, [1,x,0,x^2-2,-x+2,0,-x^2+6,2*x^2+x-8,0,-x^2+2*x,-x^2-x+5,0,3,-2*x^2+x+8,0,3*x^2+2*x-12,x^2-5]];
E[387,6] = [x, [1,-1,0,-1,1,0,-3,3,0,-1,3,0,-5,3,0,-1,-6]];
E[387,7] = [x, [1,-1,0,-1,-2,0,0,3,0,2,0,0,-2,0,0,-1,6]];
E[387,8] = [x^4-9*x^2+4, [2,x^3-7*x,0,6,2*x,0,-2*x^2+8,x^3-7*x,0,2*x^2-4,2*x,0,2*x^2-4,2*x^3-24*x,0,-2,-4*x]];
E[387,9] = [x, [1,0,0,-2,2,0,-2,0,0,0,5,0,3,0,0,4,3]];
E[387,10] = [x^2-12, [2,0,0,-4,2*x,0,4,0,0,0,-3*x,0,10,0,0,8,x]];

E[388,1] = [x^3+2*x^2-x-1, [1,0,x,0,-x^2-2*x-1,0,2*x^2+x-3,0,x^2-3,0,-3*x^2-4*x+1,0,x^2+2*x-2,0,-2*x-1,0,3*x^2+7*x-5]];
E[388,2] = [x^5-2*x^4-9*x^3+15*x^2+20*x-24, [2,0,2*x,0,-2*x^3+2*x^2+10*x-4,0,x^4-9*x^2-x+16,0,2*x^2-6,0,2*x^3-2*x^2-10*x+8,0,-2*x^4+16*x^2+2*x-20,0,-2*x^4+2*x^3+10*x^2-4*x,0,2*x^3-2*x^2-12*x+12]];

E[389,1] = [x, [1,-2,-2,2,-3,4,-5,0,1,6,-4,-4,-3,10,6,-4,-6]];
E[389,2] = [x^2-2, [1,x,x-2,0,-1,-2*x+2,-2*x-1,-2*x,-4*x+3,-x,-2,0,2*x+1,-x-4,-x+2,-4,-2*x+4]];
E[389,3] = [x^3-4*x-2, [1,x,-x,x^2-2,-x^2+1,-x^2,-1,2,x^2-3,-3*x-2,x^2-4,-2*x-2,-3,-x,3*x+2,-2*x^2+2*x+4,x^2-2*x-2]];
E[389,4] = [x^20-3*x^19-29*x^18+91*x^17+338*x^16-1130*x^15-2023*x^14+7432*x^13+6558*x^12-28021*x^11-10909*x^10+61267*x^9+6954*x^8-74752*x^7+1407*x^6+46330*x^5-1087*x^4-12558*x^3-942*x^2+960*x+148, [1097385680,1097385680*x,-20146763*x^19+102331615*x^18+479539092*x^17-3014444212*x^16-3813583550*x^15+36114755350*x^14+6349339639*x^13-227515736964*x^12+71555185319*x^11+816654992625*x^10-446376673498*x^9-1698789732650*x^8+1063778499268*x^7+1996558922610*x^6-1167579836501*x^5-1238356001958*x^4+523532113822*x^3+352838824320*x^2-58584308844*x-25674258672,1097385680*x^2-2194771360,252247073*x^19-891959550*x^18-6876716517*x^17+26496463622*x^16+72786773940*x^15-320412453470*x^14-367946611589*x^13+2037515640679*x^12+816602908511*x^11-7362417623180*x^10-19595857657*x^9+15268061830300*x^8-3231235704008*x^7-17434580927450*x^6+5304122556631*x^5+9907751136883*x^4-2818638584772*x^3-2368140320390*x^2+353306303764*x+151286932412,41891326*x^19-104717035*x^18-1181088779*x^17+2996022344*x^16+13348913160*x^15-34407561910*x^14-77784994348*x^13+203677657073*x^12+252122546602*x^11-666157711065*x^10-464458003929*x^9+1203879089170*x^8+490548094834*x^7-1139233340960*x^6-304956472168*x^5+501632582441*x^4+99835774566*x^3-77562559590*x^2-6333366192*x+2981720924,-159101236*x^19+516706400*x^18+4512193704*x^17-15646321044*x^16-50668745300*x^15+193752009060*x^14+282950187088*x^13-1268379445768*x^12-784998694372*x^11+4743027395180*x^10+752149464944*x^9-10213827131600*x^8+1055773731396*x^7+12096883825640*x^6-2839062341272*x^5-7054539249956*x^4+1716959712984*x^3+1707856760760*x^2-221621032128*x-107600864064,1097385680*x^3-4389542720*x,148715477*x^19-478438985*x^18-4164160338*x^17+14346727738*x^16+45919110160*x^15-175521826220*x^14-249293216111*x^13+1132190598166*x^12+655267936759*x^11-4160635197645*x^10-499805889248*x^9+8787596475350*x^8-1216020744502*x^7-10199823546070*x^6+2693474094149*x^5+5828296023562*x^4-1542830990598*x^3-1372282605400*x^2+187503437836*x+85617734928,-135218331*x^19+438448600*x^18+3541979979*x^17-12472736734*x^16-35373260980*x^15+142349217090*x^14+162815394143*x^13-837633396223*x^12-294202390647*x^11+2732167461700*x^10-186359591191*x^9-4985361849650*x^8+1421392273446*x^7+4949210924920*x^6-1778855755207*x^5-2544446016421*x^4+799578422344*x^3+590923046530*x^2-90870257668*x-37332566804,119230440*x^19-405194270*x^18-3244131570*x^17+11986978620*x^16+34244606780*x^15-144185598440*x^14-172337287840*x^13+910789875570*x^12+378261398220*x^11-3265053058850*x^10+10089259710*x^9+6713601305840*x^8-1550254551620*x^7-7611246716620*x^6+2514671973220*x^5+4322373249530*x^4-1326643919820*x^3-1054988821980*x^2+160418756880*x+71974942360,61250469*x^19-170903555*x^18-1775166506*x^17+5218533396*x^16+20556803570*x^15-65268352550*x^14-120357357037*x^13+432430704622*x^12+364568764143*x^11-1640775513845*x^10-469923433876*x^9+3596815279130*x^8-135329938344*x^7-4357015413070*x^6+895967121863*x^5+2622083649844*x^4-598555515326*x^3-672549385740*x^2+79934665652*x+45148601096,-439672887*x^19+1500122740*x^18+12101299333*x^17-44642948078*x^16-130071286320*x^15+541001728270*x^14+676736498991*x^13-3448581869471*x^12-1621748439689*x^11+12492163689210*x^10+633899235433*x^9-25955036674980*x^8+4661172648592*x^7+29632922544830*x^6-8441184290969*x^5-16753315901627*x^4+4581807570248*x^3+3966568769470*x^2-559343700236*x-251060260748,39402692*x^19-101742140*x^18-1168108568*x^17+3107472468*x^16+13967612380*x^15-38911613340*x^14-85939059816*x^13+258387211316*x^12+284851661224*x^11-983485918580*x^10-466171705588*x^9+2162163726540*x^8+203748232168*x^7-2615206902220*x^6+316621013924*x^5+1544016669452*x^4-290136560928*x^3-371494396440*x^2+45136322496*x+23546982928,-407009862*x^19+1333624420*x^18+11377185878*x^17-40035934028*x^16-125041301320*x^15+490451825680*x^14+673885143546*x^13-3168065719026*x^12-1734777714514*x^11+11656834981180*x^10+1137385676658*x^9-24635463305620*x^8+3836057593992*x^7+28574828370820*x^6-7956677853474*x^5-16298595541862*x^4+4518856719408*x^3+3860362460540*x^2-563359127976*x-244485002488,1097385680*x^4-6584314080*x^2+4389542720,-96200111*x^19+304992360*x^18+2853118449*x^17-9591526594*x^16-33874592080*x^15+124117547990*x^14+203135935283*x^13-853928410103*x^12-622919458457*x^11+3367387067570*x^10+754599107669*x^9-7633700939160*x^8+537147483696*x^7+9418359271570*x^6-2104972582597*x^5-5575654493331*x^4+1341853243024*x^3+1327115008430*x^2-173182776828*x-79596899164]];
E[389,5] = [x^6+3*x^5-2*x^4-8*x^3+2*x^2+4*x-1, [1,x,x^5+3*x^4-2*x^3-8*x^2+x+2,x^2-2,-x^5-2*x^4+4*x^3+6*x^2-4*x-2,-x^2-2*x+1,-2*x^5-8*x^4-2*x^3+17*x^2+7*x-6,x^3-4*x,x^4+3*x^3-x^2-4*x+1,x^5+2*x^4-2*x^3-2*x^2+2*x-1,2*x^5+5*x^4-4*x^3-11*x^2+3,-2*x^5-6*x^4+3*x^3+14*x^2-x-4,2*x^4+5*x^3-5*x^2-11*x+3,-2*x^5-6*x^4+x^3+11*x^2+2*x-2,-x^5-5*x^4-4*x^3+10*x^2+8*x-7,x^4-6*x^2+4,x^3+5*x^2+2*x-9]];

E[390,1] = [x, [1,-1,1,1,1,-1,2,-1,1,-1,0,1,1,-2,1,1,0]];
E[390,2] = [x, [1,-1,1,1,-1,-1,4,-1,1,1,0,1,-1,-4,-1,1,-2]];
E[390,3] = [x, [1,-1,-1,1,1,1,-2,-1,1,-1,4,-1,-1,2,-1,1,4]];
E[390,4] = [x, [1,-1,-1,1,-1,1,0,-1,1,1,0,-1,-1,0,1,1,-6]];
E[390,5] = [x, [1,1,-1,1,-1,-1,2,1,1,-1,4,-1,-1,2,1,1,8]];
E[390,6] = [x, [1,1,-1,1,1,-1,0,1,1,1,4,-1,1,0,-1,1,-6]];
E[390,7] = [x, [1,1,1,1,-1,1,2,1,1,-1,0,1,1,2,-1,1,0]];
E[390,8] = [x^2-8, [1,1,1,1,1,1,x,1,1,1,-2*x,1,-1,x,1,1,-x-2]];

E[391,1] = [x^3+x^2-4*x-3, [1,x,-2,x^2-2,-x^2+2,-2*x,-x,-x^2+3,1,x^2-2*x-3,-x^2-x+3,-2*x^2+4,2*x^2-x-6,-x^2,2*x^2-4,-x^2-x+1,-1]];
E[391,2] = [x^3+x^2-4*x+1, [1,x,0,x^2-2,-x^2-2*x+2,0,-x-2,-x^2-1,-3,-x^2-2*x+1,x^2+3*x-3,0,2*x^2+3*x-6,-x^2-2*x,0,-x^2-5*x+5,1]];
E[391,3] = [x^9-2*x^8-12*x^7+23*x^6+43*x^5-79*x^4-43*x^3+78*x^2+11*x-21, [4,4*x,-x^8+x^7+14*x^6-10*x^5-66*x^4+28*x^3+114*x^2-19*x-47,4*x^2-8,-x^8+x^7+13*x^6-11*x^5-55*x^4+35*x^3+85*x^2-26*x-36,-x^8+2*x^7+13*x^6-23*x^5-51*x^4+71*x^3+59*x^2-36*x-21,-x^7+x^6+13*x^5-11*x^4-47*x^3+31*x^2+33*x-10,4*x^3-16*x,2*x^8-4*x^7-22*x^6+42*x^5+66*x^4-122*x^3-34*x^2+68*x+10,-x^8+x^7+12*x^6-12*x^5-44*x^4+42*x^3+52*x^2-25*x-21,x^8-15*x^6+x^5+73*x^4-9*x^3-125*x^2+18*x+57,2*x^8-x^7-28*x^6+12*x^5+124*x^4-40*x^3-186*x^2+28*x+73,-4*x^8+6*x^7+48*x^6-64*x^5-172*x^4+188*x^3+172*x^2-104*x-46,-x^8+x^7+13*x^6-11*x^5-47*x^4+31*x^3+33*x^2-10*x,4*x^8-5*x^7-50*x^6+54*x^5+190*x^4-162*x^3-220*x^2+96*x+87,4*x^4-24*x^2+16,-4]];
E[391,4] = [x^2+x-1, [1,x,1,-x-1,-2*x-2,x,2*x,-2*x-1,-2,-2,-4,-x-1,-1,-2*x+2,-2*x-2,3*x,-1]];
E[391,5] = [x^12-4*x^11-12*x^10+62*x^9+27*x^8-321*x^7+108*x^6+625*x^5-362*x^4-372*x^3+116*x^2+97*x+13, [14,14*x,-9*x^11+24*x^10+133*x^9-362*x^8-623*x^7+1776*x^6+920*x^5-3003*x^4-60*x^3+867*x^2+98*x+9,14*x^2-28,-x^11-9*x^10+42*x^9+141*x^8-483*x^7-736*x^6+2168*x^5+1435*x^4-3677*x^3-886*x^2+1407*x+379,-12*x^11+25*x^10+196*x^9-380*x^8-1113*x^7+1892*x^6+2622*x^5-3318*x^4-2481*x^3+1142*x^2+882*x+117,3*x^11-x^10-63*x^9+18*x^8+490*x^7-116*x^6-1702*x^5+301*x^4+2435*x^3-191*x^2-840*x-164,14*x^3-56*x,-8*x^11+26*x^10+112*x^9-398*x^8-462*x^7+2008*x^6+376*x^5-3640*x^4+698*x^3+1536*x^2-182*x-104,-13*x^11+30*x^10+203*x^9-456*x^8-1057*x^7+2276*x^6+2060*x^5-4039*x^4-1258*x^3+1523*x^2+476*x+13,26*x^11-39*x^10-462*x^9+590*x^8+2975*x^7-2928*x^6-8460*x^5+5124*x^4+10195*x^3-1590*x^2-3584*x-635,-5*x^11+4*x^10+98*x^9-65*x^8-714*x^7+366*x^6+2342*x^5-819*x^4-3202*x^3+540*x^2+1085*x+138,30*x^11-80*x^10-448*x^9+1216*x^8+2142*x^7-6060*x^6-3356*x^5+10696*x^4+606*x^3-4024*x^2-308*x+194,11*x^11-27*x^10-168*x^9+409*x^8+847*x^7-2026*x^6-1574*x^5+3521*x^4+925*x^3-1188*x^2-455*x-39,-7*x^11-14*x^10+182*x^9+217*x^8-1666*x^7-1106*x^6+6510*x^5+2051*x^4-9968*x^3-1232*x^2+3311*x+798,14*x^4-84*x^2+56,14]];

E[392,1] = [x, [1,0,-3,0,1,0,0,0,6,0,-1,0,-2,0,-3,0,-3]];
E[392,2] = [x, [1,0,-2,0,4,0,0,0,1,0,0,0,0,0,-8,0,2]];
E[392,3] = [x, [1,0,1,0,1,0,0,0,-2,0,3,0,6,0,1,0,5]];
E[392,4] = [x, [1,0,3,0,-1,0,0,0,6,0,-1,0,2,0,-3,0,3]];
E[392,5] = [x, [1,0,-1,0,-1,0,0,0,-2,0,3,0,-6,0,1,0,-5]];
E[392,6] = [x^2-8, [1,0,x,0,x,0,0,0,5,0,-4,0,-x,0,8,0,-2*x]];
E[392,7] = [x^2-2, [1,0,x,0,2*x,0,0,0,-1,0,6,0,-4*x,0,4,0,x]];
E[392,8] = [x, [1,0,0,0,-2,0,0,0,-3,0,-4,0,-2,0,0,0,6]];

E[393,1] = [x^2+2*x-1, [1,x,-1,-2*x-1,-2*x-2,-x,4,x-2,1,2*x-2,1,2*x+1,5,4*x,2*x+2,3,3*x]];
E[393,2] = [x^4+x^3-4*x^2-2*x+3, [1,x,-1,x^2-2,-x^3-x^2+2*x+1,-x,x^3-3*x-1,x^3-4*x,1,-2*x^2-x+3,2*x^3+x^2-7*x,-x^2+2,-2*x^3-2*x^2+5*x,-x^3+x^2+x-3,x^3+x^2-2*x-1,-x^3-2*x^2+2*x+1,3*x^2+x-8]];
E[393,3] = [x^6-x^5-7*x^4+5*x^3+13*x^2-4*x-5, [1,x,1,x^2-2,-x^4+5*x^2-2,x,x^5-x^4-5*x^3+4*x^2+4*x-1,x^3-4*x,1,-x^5+5*x^3-2*x,x^4-x^3-5*x^2+3*x+5,x^2-2,-x^5+2*x^4+5*x^3-10*x^2-4*x+7,2*x^4-x^3-9*x^2+3*x+5,-x^4+5*x^2-2,x^4-6*x^2+4,x^5+x^4-6*x^3-5*x^2+6*x+4]];
E[393,4] = [x^5-2*x^4-7*x^3+12*x^2+9*x-9, [3,3*x,-3,3*x^2-6,x^4-2*x^3-7*x^2+12*x+6,-3*x,x^4-2*x^3-4*x^2+9*x,3*x^3-12*x,3,-3*x+9,-2*x^4-2*x^3+11*x^2+15*x-6,-3*x^2+6,-3*x^4+3*x^3+18*x^2-9*x-15,3*x^3-3*x^2-9*x+9,-x^4+2*x^3+7*x^2-12*x-6,3*x^4-18*x^2+12,2*x^4-4*x^3-11*x^2+15*x+12]];
E[393,5] = [x^4+3*x^3-4*x-1, [1,x,1,x^2-2,-x^3-3*x^2+1,x,x^3+2*x^2-3*x-5,x^3-4*x,1,-3*x-1,3*x^2+5*x-4,x^2-2,4*x^3+8*x^2-5*x-8,-x^3-3*x^2-x+1,-x^3-3*x^2+1,-3*x^3-6*x^2+4*x+5,-3*x^2-3*x+2]];

E[394,1] = [x^4+3*x^3-2*x^2-7*x+1, [2,-2,2*x,2,x^3-6*x-1,-2*x,-2*x^3-2*x^2+6*x,-2,2*x^2-6,-x^3+6*x+1,x^3+4*x^2-11,2*x,2*x^3+2*x^2-10*x,2*x^3+2*x^2-6*x,-3*x^3-4*x^2+6*x-1,2,-x^3-4*x^2-2*x+1]];
E[394,2] = [x^4-2*x^3-7*x^2+8*x-1, [2,-2,-x^2+x+5,2,2*x,x^2-x-5,-2*x^3+3*x^2+17*x-9,-2,-x^2+x+7,-2*x,x^3-x^2-9*x+8,-x^2+x+5,3*x^3-5*x^2-23*x+12,2*x^3-3*x^2-17*x+9,-x^3+x^2+5*x,2,-x^3+x^2+5*x+4]];
E[394,3] = [x^2+x-5, [1,1,x,1,0,x,2,1,-x+2,0,x-1,x,-2*x-2,2,0,1,-2*x+2]];
E[394,4] = [x^2-5, [2,2,2*x,2,-x+5,2*x,-6,2,4,-x+5,-3*x+3,2*x,6,-6,5*x-5,2,x-1]];
E[394,5] = [x^2+5*x+5, [1,1,-1,1,x,-1,-2*x-7,1,-2,x,x,-1,-4*x-11,-2*x-7,-x,1,5*x+10]];
E[394,6] = [x^2-3*x-5, [1,1,0,1,x,0,2,1,-3,x,-2*x+4,0,-x+3,2,0,1,2]];

E[395,1] = [x, [1,-2,-1,2,1,2,3,0,-2,-2,-3,-2,4,-6,-1,-4,-2]];
E[395,2] = [x^3+2*x^2-x-1, [1,x,x^2+x-2,x^2-2,1,-x^2-x+1,-2*x^2-3*x+1,-2*x^2-3*x+1,-2*x^2-3*x+1,x,-x^2-x+2,-x^2-2*x+3,-x^2-x-2,x^2-x-2,x^2+x-2,-x^2-x+2,2*x^2+3*x-6]];
E[395,3] = [x^3-3*x+1, [1,x,-x^2-x+2,x^2-2,-1,-x^2-x+1,2*x^2+x-5,-x-1,x-1,-x,x^2-x-4,x^2-3,-x^2-x,x^2+x-2,x^2+x-2,-3*x^2-x+4,-x+2]];
E[395,4] = [x^4-x^3-7*x^2+6*x-1, [1,x,2*x^3-x^2-15*x+6,x^2-2,1,x^3-x^2-6*x+2,-x+1,x^3-4*x,-x^3+6*x+2,x,2*x^3-x^2-15*x+4,-4*x^3+3*x^2+26*x-11,-x^2-x+6,-x^2+x,2*x^3-x^2-15*x+6,x^3+x^2-6*x+5,-3*x^3+2*x^2+22*x-7]];
E[395,5] = [x^11-21*x^9+x^8+159*x^7-18*x^6-511*x^5+105*x^4+604*x^3-208*x^2-128*x+48, [32,32*x,x^10+2*x^9-25*x^8-33*x^7+221*x^6+176*x^5-823*x^4-317*x^3+1138*x^2+100*x-280,32*x^2-64,-32,2*x^10-4*x^9-34*x^8+62*x^7+194*x^6-312*x^5-422*x^4+534*x^3+308*x^2-152*x-48,7*x^10+2*x^9-143*x^8-43*x^7+1055*x^6+300*x^5-3305*x^4-727*x^3+3778*x^2+284*x-728,32*x^3-128*x,-8*x^10-4*x^9+168*x^8+76*x^7-1260*x^6-476*x^5+3936*x^4+1028*x^3-4324*x^2-272*x+848,-32*x,-2*x^10+34*x^8-2*x^7-198*x^6+28*x^5+486*x^4-114*x^3-560*x^2+136*x+192,-6*x^10+4*x^9+110*x^8-58*x^7-718*x^6+248*x^5+1970*x^4-266*x^3-2012*x^2+8*x+464,4*x^10+8*x^9-84*x^8-132*x^7+628*x^6+720*x^5-1964*x^4-1412*x^3+2216*x^2+624*x-416,2*x^10+4*x^9-50*x^8-58*x^7+426*x^6+272*x^5-1462*x^4-450*x^3+1740*x^2+168*x-336,-x^10-2*x^9+25*x^8+33*x^7-221*x^6-176*x^5+823*x^4+317*x^3-1138*x^2-100*x+280,32*x^4-192*x^2+128,4*x^10+4*x^9-76*x^8-64*x^7+512*x^6+316*x^5-1452*x^4-448*x^3+1524*x^2-80*x-240]];
E[395,6] = [x, [1,-1,2,-1,1,-2,2,3,1,-1,4,-2,-6,-2,2,-1,0]];
E[395,7] = [x, [1,-1,0,-1,1,0,-4,3,-3,-1,4,0,6,4,0,-1,6]];
E[395,8] = [x^3-x^2-5*x+3, [1,2,x,2,1,2*x,-x^2-x+5,0,x^2-3,2,x^2-2*x-2,2*x,0,-2*x^2-2*x+10,x,-4,x^2-2*x-3]];

E[396,1] = [x, [1,0,0,0,3,0,2,0,0,0,1,0,-4,0,0,0,-6]];
E[396,2] = [x, [1,0,0,0,-2,0,-2,0,0,0,-1,0,-2,0,0,0,-4]];
E[396,3] = [x, [1,0,0,0,-2,0,2,0,0,0,1,0,6,0,0,0,4]];

E[397,1] = [x^2-2*x-1, [1,x,-x+3,2*x-1,x-1,x-1,-2*x+1,x+2,-4*x+7,x+1,x+1,3*x-5,3*x-1,-3*x-2,2*x-4,3,-3*x+1]];
E[397,2] = [x^2+2*x-1, [1,x,0,-2*x-1,-2,0,x+4,x-2,-3,-2*x,-2*x-2,0,-2*x-6,2*x+1,0,3,2*x-2]];
E[397,3] = [x^5-6*x^3+x^2+7*x-1, [1,x,x+1,x^2-2,-x^3+4*x-1,x^2+x,-x^3-x^2+3*x+2,x^3-4*x,x^2+2*x-2,-x^4+4*x^2-x,x^4+x^3-5*x^2-4*x+5,x^3+x^2-2*x-2,x^4-6*x^2+x+6,-x^4-x^3+3*x^2+2*x,-x^4-x^3+4*x^2+3*x-1,x^4-6*x^2+4,x^4+2*x^3-4*x^2-7*x+6]];
E[397,4] = [x^13+7*x^12+5*x^11-63*x^10-124*x^9+157*x^8+526*x^7+2*x^6-794*x^5-328*x^4+408*x^3+203*x^2-66*x-23, [1325,1325*x,-356*x^12-1860*x^11+1790*x^10+20873*x^9+7163*x^8-83228*x^7-54465*x^6+141118*x^5+90693*x^4-99828*x^3-42657*x^2+25211*x+3304,1325*x^2-2650,-905*x^12-5175*x^11+1625*x^10+52165*x^9+45115*x^8-177365*x^7-223075*x^6+226040*x^5+335240*x^4-85665*x^3-149660*x^2+10230*x+13595,632*x^12+3570*x^11-1555*x^10-36981*x^9-27336*x^8+132791*x^7+141830*x^6-191971*x^5-216596*x^4+102591*x^3+97479*x^2-20192*x-8188,804*x^12+4290*x^11-3060*x^10-44907*x^9-22817*x^8+163102*x^7+133635*x^6-238237*x^5-200387*x^4+129027*x^3+81063*x^2-26224*x-8236,1325*x^3-5300*x,1530*x^12+8500*x^11-4775*x^10-90965*x^9-61565*x^8+335615*x^7+345325*x^6-495890*x^5-544615*x^4+278790*x^3+247160*x^2-65705*x-18145,1160*x^12+6150*x^11-4850*x^10-67105*x^9-35280*x^8+252955*x^7+227850*x^6-383330*x^5-382505*x^4+219580*x^3+193945*x^2-46135*x-20815,1136*x^12+6635*x^11-1990*x^10-68988*x^9-59853*x^8+247493*x^7+302115*x^6-357708*x^5-470183*x^4+202518*x^3+225817*x^2-51641*x-23674,-142*x^12-995*x^11-745*x^10+9286*x^9+19241*x^8-24146*x^7-84305*x^6+2976*x^5+128501*x^4+39279*x^3-63174*x^2-16898*x+7928,-496*x^12-2785*x^11+1690*x^10+30868*x^9+19508*x^8-121273*x^7-116140*x^6+205338*x^5+198013*x^4-157398*x^3-105837*x^2+52276*x+8489,-1338*x^12-7080*x^11+5745*x^10+76879*x^9+36874*x^8-289269*x^7-239845*x^6+437989*x^5+392739*x^4-246969*x^3-189436*x^2+44828*x+18492,1940*x^12+10925*x^11-5050*x^10-113895*x^9-82670*x^8+411920*x^7+441050*x^6-601245*x^5-703695*x^4+331545*x^3+358555*x^2-69915*x-45160,1325*x^4-7950*x^2+5300,-1552*x^12-9270*x^11+1655*x^10+95091*x^9+95021*x^8-324501*x^7-461755*x^6+401231*x^5+695456*x^4-133001*x^3-308044*x^2+16712*x+25793]];
E[397,5] = [x^10-7*x^9+8*x^8+43*x^7-105*x^6-26*x^5+234*x^4-119*x^3-82*x^2+47*x+3, [11,11*x,23*x^9-107*x^8-72*x^7+841*x^6-418*x^5-1753*x^4+1294*x^3+699*x^2-407*x-52,11*x^2-22,-57*x^9+280*x^8+122*x^7-2166*x^6+1485*x^5+4342*x^4-4161*x^3-1409*x^2+1375*x+60,54*x^9-256*x^8-148*x^7+1997*x^6-1155*x^5-4088*x^4+3436*x^3+1479*x^2-1133*x-69,11*x^9-55*x^8-22*x^7+429*x^6-297*x^5-891*x^4+825*x^3+385*x^2-286*x-44,11*x^3-44*x,26*x^9-131*x^8-46*x^7+1010*x^6-748*x^5-2007*x^4+2019*x^3+618*x^2-638*x-10,-119*x^9+578*x^8+285*x^7-4500*x^6+2860*x^5+9177*x^4-8192*x^3-3299*x^2+2739*x+171,35*x^9-170*x^8-89*x^7+1330*x^6-792*x^5-2736*x^4+2269*x^3+1002*x^2-693*x-27,76*x^9-366*x^8-181*x^7+2833*x^6-1848*x^5-5694*x^4+5317*x^3+1897*x^2-1793*x-58,5*x^9-29*x^8+3*x^7+223*x^6-242*x^5-438*x^4+607*x^3+118*x^2-220*x+4,22*x^9-110*x^8-44*x^7+858*x^6-605*x^5-1749*x^4+1694*x^3+616*x^2-561*x-33,-38*x^9+183*x^8+96*x^7-1433*x^6+891*x^5+2968*x^4-2642*x^3-1174*x^2+957*x+117,11*x^4-66*x^2+44,-38*x^9+183*x^8+96*x^7-1422*x^6+869*x^5+2880*x^4-2510*x^3-976*x^2+825*x+18]];

E[398,1] = [x^2+3*x+1, [1,1,x,1,-2*x-4,x,x-2,1,-3*x-4,-2*x-4,-x-5,x,-2,x-2,2*x+2,1,4*x+8]];
E[398,2] = [x^6-3*x^5-6*x^4+21*x^3+2*x^2-21*x-5, [1,1,x,1,x^5-x^4-7*x^3+5*x^2+7*x+3,x,-x^5+x^4+7*x^3-6*x^2-7*x+2,1,x^2-3,x^5-x^4-7*x^3+5*x^2+7*x+3,-x^4+x^3+7*x^2-7*x-5,x,-2*x^5+3*x^4+14*x^3-17*x^2-14*x+1,-x^5+x^4+7*x^3-6*x^2-7*x+2,2*x^5-x^4-16*x^3+5*x^2+24*x+5,1,x^5-x^4-9*x^3+5*x^2+17*x+3]];
E[398,3] = [x, [1,-1,2,1,-2,-2,0,-1,1,2,2,2,6,0,-4,1,6]];
E[398,4] = [x^2+x-1, [1,-1,x,1,0,-x,-x-2,-1,-x-2,0,-3*x-1,x,-2*x-4,x+2,0,1,2*x]];
E[398,5] = [x^6-x^5-14*x^4+5*x^3+54*x^2+9*x-27, [9,-9,9*x,9,3*x^5-9*x^4-27*x^3+63*x^2+69*x-45,-9*x,x^5-x^4-5*x^3-4*x^2-9*x+36,-9,9*x^2-27,-3*x^5+9*x^4+27*x^3-63*x^2-69*x+45,-3*x^4+3*x^3+15*x^2+3*x+9,9*x,3*x^4-12*x^3-15*x^2+60*x+9,-x^5+x^4+5*x^3+4*x^2+9*x-36,-6*x^5+15*x^4+48*x^3-93*x^2-72*x+81,9,x^5-7*x^4+x^3+53*x^2-39*x-63]];

E[399,1] = [x, [1,1,-1,-1,0,-1,-1,-3,1,0,-2,1,-4,-1,0,-1,-4]];
E[399,2] = [x^3-x^2-7*x+9, [1,x,1,x^2-2,-x^2+5,x,-1,x^2+3*x-9,1,-x^2-2*x+9,-2*x^2-2*x+12,x^2-2,2*x^2+2*x-10,-x,-x^2+5,2*x^2-2*x-5,x^2-1]];
E[399,3] = [x^5-3*x^4-4*x^3+14*x^2-3*x-1, [1,x,-1,x^2-2,x^4-3*x^3-4*x^2+13*x-1,-x,1,x^3-4*x,1,-x^2+2*x+1,-2*x^4+4*x^3+10*x^2-18*x+2,-x^2+2,x^4-4*x^3-4*x^2+20*x-3,x,-x^4+3*x^3+4*x^2-13*x+1,x^4-6*x^2+4,x^4-x^3-6*x^2+3*x+5]];
E[399,4] = [x^5-x^4-8*x^3+6*x^2+13*x-3, [1,x,1,x^2-2,-x^3+5*x,x,1,x^3-4*x,1,-x^4+5*x^2,x^4-6*x^2+3,x^2-2,-2*x+2,x,-x^3+5*x,x^4-6*x^2+4,x^3-2*x^2-5*x+6]];
E[399,5] = [x^3-x^2-3*x+1, [1,x,-1,x^2-2,x^2-1,-x,-1,x^2-x-1,1,x^2+2*x-1,-2*x^2+2*x+4,-x^2+2,-2*x^2+2*x+6,-x,-x^2+1,-2*x^2+2*x+3,-x^2+5]];
E[399,6] = [x, [1,-1,-1,-1,0,1,1,3,1,0,-2,1,0,-1,0,-1,-4]];
E[399,7] = [x, [1,-1,1,-1,4,-1,-1,3,1,-4,-2,-1,4,1,4,-1,0]];

E[400,1] = [x, [1,0,-1,0,0,0,-2,0,-2,0,3,0,-4,0,0,0,-3]];
E[400,2] = [x, [1,0,2,0,0,0,2,0,1,0,4,0,-4,0,0,0,0]];
E[400,3] = [x, [1,0,-3,0,0,0,2,0,6,0,-1,0,-4,0,0,0,-5]];
E[400,4] = [x, [1,0,3,0,0,0,-2,0,6,0,-1,0,4,0,0,0,5]];
E[400,5] = [x, [1,0,1,0,0,0,2,0,-2,0,3,0,4,0,0,0,3]];
E[400,6] = [x, [1,0,0,0,0,0,-4,0,-3,0,-4,0,2,0,0,0,-2]];
E[400,7] = [x, [1,0,-2,0,0,0,2,0,1,0,0,0,-2,0,0,0,6]];
E[400,8] = [x, [1,0,-2,0,0,0,-2,0,1,0,4,0,4,0,0,0,0]];

E[401,1] = [x^12+3*x^11-10*x^10-34*x^9+29*x^8+129*x^7-24*x^6-203*x^5+x^4+130*x^3-5*x^2-22*x+4, [2,2*x,-4*x^11-8*x^10+42*x^9+86*x^8-132*x^7-302*x^6+126*x^5+422*x^4+10*x^3-228*x^2-34*x+26,2*x^2-4,11*x^11+23*x^10-120*x^9-248*x^8+417*x^7+863*x^6-548*x^5-1151*x^4+231*x^3+530*x^2+25*x-46,4*x^11+2*x^10-50*x^9-16*x^8+214*x^7+30*x^6-390*x^5+14*x^4+292*x^3-54*x^2-62*x+16,-4*x^11-8*x^10+46*x^9+86*x^8-178*x^7-294*x^6+290*x^5+366*x^4-188*x^3-128*x^2+10*x+2,2*x^3-8*x,-8*x^11-16*x^10+90*x^9+172*x^8-334*x^7-594*x^6+508*x^5+776*x^4-306*x^3-332*x^2+24*x+20,-10*x^11-10*x^10+126*x^9+98*x^8-556*x^7-284*x^6+1082*x^5+220*x^4-900*x^3+80*x^2+196*x-44,-11*x^11-11*x^10+140*x^9+106*x^8-629*x^7-289*x^6+1260*x^5+151*x^4-1093*x^3+202*x^2+253*x-72,-2*x^11+6*x^10+36*x^9-74*x^8-222*x^7+310*x^6+574*x^5-556*x^4-594*x^3+414*x^2+172*x-68,11*x^11+15*x^10-130*x^9-152*x^8+521*x^7+473*x^6-892*x^5-487*x^4+643*x^3+82*x^2-111*x+14,4*x^11+6*x^10-50*x^9-62*x^8+222*x^7+194*x^6-446*x^5-184*x^4+392*x^3-10*x^2-86*x+16,9*x^11+15*x^10-102*x^9-158*x^8+379*x^7+533*x^6-566*x^5-681*x^4+323*x^3+298*x^2-31*x-26,2*x^4-12*x^2+8,x^11-9*x^10-24*x^9+108*x^8+171*x^7-435*x^6-478*x^5+733*x^4+521*x^3-502*x^2-167*x+78]];
E[401,2] = [x^21-35*x^19+521*x^17+2*x^16-4305*x^15-51*x^14+21617*x^13+519*x^12-67876*x^11-2749*x^10+132085*x^9+8292*x^8-152221*x^7-14353*x^6+93934*x^5+12831*x^4-24699*x^3-4111*x^2+1058*x-44, [2056085485264,2056085485264*x,-18286877149*x^20-11127199047*x^19+671572664904*x^18+329074794244*x^17-10577086239965*x^16-4006759400165*x^15+93133967532384*x^14+26143714096043*x^13-500633401464048*x^12-100786701349185*x^11+1682873453689943*x^10+245328747827630*x^9-3480210083621745*x^8-413112998448921*x^7+4180416582284798*x^6+521232062879477*x^5-2588114268141401*x^4-432724747315370*x^3+634884906799859*x^2+141291794379294*x-13174803927996,2056085485264*x^2-4112170970528,-11558616560*x^20+77610706560*x^19+283666114112*x^18-2464706175388*x^17-2180532836116*x^16+32493081708008*x^15-655542769400*x^14-230516536198200*x^13+103391507300528*x^12+955484402213296*x^11-643750072751116*x^10-2359122820599800*x^9+1839908471122876*x^8+3413196282552900*x^7-2694039963675884*x^6-2782917599515820*x^5+1916660988176096*x^4+1210103936451908*x^3-545729026560984*x^2-225557627625912*x+19165879147664,-11127199047*x^20+31531964689*x^19+329074794244*x^18-1049623245336*x^17-3970185645867*x^16+14408961405939*x^15+25211083361444*x^14-105325978134115*x^13-91295812108854*x^12+441633380324419*x^11+195058122545029*x^10-1064787915396080*x^9-261478213129413*x^8+1396769855786869*x^7+258760515159880*x^6-870354750027235*x^5-198085826616551*x^4+183217328096708*x^3+66114442419755*x^2+6172712095646*x-804622594556,23576454762*x^20-35112211870*x^19-703668017428*x^18+1111062583356*x^17+8442221219790*x^16-14481346633350*x^15-51183010312864*x^14+100445979825570*x^13+156320096184948*x^12-400865755519414*x^11-161684963736438*x^10+933918765555928*x^9-316460839664574*x^8-1247646999012534*x^7+1017608063013536*x^6+942727211455542*x^5-929985654087206*x^4-429175032382256*x^3+278858459257082*x^2+105922794706644*x-2288060752952,2056085485264*x^3-8224341941056*x,-47033871267*x^20+1902648503*x^19+1598556316866*x^18-21946617698*x^17-23007342201413*x^16-498995858173*x^15+183027927604228*x^14+12003773477549*x^13-881757667429068*x^12-102088799997141*x^11+2652675799389601*x^10+444891306658078*x^9-4958878738984533*x^8-1066244018822523*x^7+5537341302072654*x^6+1391522485441553*x^5-3351986725303963*x^4-913889733937538*x^3+857595315935787*x^2+236798542587198*x-21214116945164,77610706560*x^20-120885465488*x^19-2464706175388*x^18+3841506391644*x^17+32516198941128*x^16-50415387060200*x^15-231106025642760*x^14+353254121478048*x^13+961483324207936*x^12-1428302730377676*x^11-2390897457523240*x^10+3366628339450476*x^9+3509040331068420*x^8-4453504135055644*x^7-2948818423001500*x^6+3002408076123136*x^5+1358412545533268*x^4-831215296976424*x^3-273075100304072*x^2+31394895468144*x-508579128640,-131745636950*x^20+49009784442*x^19+4407126988000*x^18-1506056851360*x^17-62039189651382*x^16+18848500024390*x^15+478428220552992*x^14-123327414514462*x^13-2206188018699356*x^12+450464521411446*x^11+6240122773073962*x^10-901244576806296*x^9-10701636511022362*x^8+845991977164818*x^7+10628896926857992*x^6-51662554561934*x^5-5535140273553462*x^4-464385073762248*x^3+1186574651062142*x^2+213412469242820*x-22307849634392,68105718987*x^20-38122774307*x^19-2392768575144*x^18+1168935469132*x^17+35585388283963*x^16-14677989735561*x^15-292161400350280*x^14+96953421498059*x^13+1448675199557908*x^12-358638237270773*x^11-4461123492956169*x^10+717600377338322*x^9+8449456757528083*x^8-608806854075665*x^7-9390896602518422*x^6-195327637094607*x^5+5502218955351567*x^4+656733247788642*x^3-1309341016786289*x^2-271615634761418*x+25860011097924,23688569844*x^20-35104829496*x^19-763419030372*x^18+1131088216252*x^17+10351054074216*x^16-14983810289028*x^15-77341142549048*x^14+105068136569756*x^13+352115309086892*x^12-417668563488300*x^11-1025939301436156*x^10+929947657191100*x^9+1957031666952172*x^8-1044896736645924*x^7-2407243006919388*x^6+387850273086732*x^5+1720086010506284*x^4+149990069865452*x^3-519644437146444*x^2-94690355292768*x+18636115727136,-35112211870*x^20+121507899242*x^19+1111062583356*x^18-3841111711212*x^17-14528499542874*x^16+50313627437546*x^15+101648379018432*x^14-353332126405206*x^13-413101935540892*x^12+1438590479689074*x^11+998730439696666*x^10-3430556866903344*x^9-1443142961899038*x^8+4606439583339938*x^7+1281120066654528*x^6-3144616355700914*x^5-731684523433478*x^4+861173315423720*x^3+202845600233226*x^2-27231949891148*x+1037364009528,100050176293*x^20+1580618343*x^19-3346587951888*x^18-97960082812*x^17+47117199939497*x^16+2303483764521*x^15-363374104058688*x^14-27131329046091*x^13+1674369776375752*x^12+176505028889377*x^11-4722346994917575*x^10-656669383305698*x^9+8040424697669873*x^8+1402471263189629*x^7-7860847279491498*x^6-1687972928128345*x^5+3957362824777805*x^4+1058265130873234*x^3-786376579593279*x^2-256321507556446*x+14486492619916,2056085485264*x^4-12336512911584*x^2+8224341941056,37417326900*x^20-117045060632*x^19-1241889733004*x^18+3697349401884*x^17+17394718616552*x^16-48285152349372*x^15-134639956831240*x^14+336554856648780*x^13+635408574175948*x^12-1347613193077332*x^11-1907118748044404*x^10+3098004673239660*x^9+3673094243193628*x^8-3820688059200972*x^7-4401625084299604*x^6+2057742973632268*x^5+2945933898810556*x^4-103378605345340*x^3-798682879282212*x^2-169257320644432*x+11726507765440]];

E[402,1] = [x, [1,-1,1,1,-3,-1,-1,-1,1,3,0,1,-4,1,-3,1,-6]];
E[402,2] = [x, [1,-1,1,1,2,-1,0,-1,1,-2,4,1,-2,0,2,1,2]];
E[402,3] = [x, [1,-1,-1,1,1,1,-3,-1,1,-1,0,-1,-4,3,-1,1,2]];
E[402,4] = [x^2-12, [2,-2,-2,2,2*x,2,x+6,-2,2,-2*x,-4,-2,-x-2,-x-6,-2*x,2,-2*x]];
E[402,5] = [x^3-3*x^2-4*x+4, [2,2,2,2,2*x,2,x^2-3*x-2,2,2,2*x,-4*x+4,2,-3*x^2+7*x+6,x^2-3*x-2,2*x,2,-2*x^2+2*x+8]];
E[402,6] = [x, [1,1,-1,1,2,-1,2,1,1,2,-4,-1,0,2,-2,1,6]];
E[402,7] = [x^2-x-10, [1,1,-1,1,x,-1,-x,1,1,x,4,-1,4,-x,-x,1,-2]];

E[403,1] = [x^2-3*x+1, [1,x,-2,3*x-3,2*x-3,-2*x,1,4*x-3,1,3*x-2,-4*x+6,-6*x+6,1,x,-4*x+6,3*x+2,-2*x+6]];
E[403,2] = [x^7-2*x^6-9*x^5+17*x^4+20*x^3-37*x^2+x+4, [1,x,x^5-3*x^4-3*x^3+13*x^2-6*x,x^2-2,-x^5+2*x^4+5*x^3-9*x^2-2*x+4,x^6-3*x^5-3*x^4+13*x^3-6*x^2,x^4-2*x^3-5*x^2+8*x+2,x^3-4*x,x^6-2*x^5-7*x^4+12*x^3+11*x^2-15*x+1,-x^6+2*x^5+5*x^4-9*x^3-2*x^2+4*x,-x^6+3*x^5+3*x^4-14*x^3+7*x^2+5*x-1,-x^6+4*x^5+2*x^4-20*x^3+11*x^2+11*x-4,-1,x^5-2*x^4-5*x^3+8*x^2+2*x,x^5-4*x^4+16*x^2-19*x+4,x^4-6*x^2+4,-x^5+4*x^4+x^3-17*x^2+14*x]];
E[403,3] = [x^8+x^7-11*x^6-10*x^5+37*x^4+33*x^3-36*x^2-33*x-4, [1,x,-x^5-x^4+7*x^3+5*x^2-10*x-4,x^2-2,-x^7+10*x^5-x^4-29*x^3+25*x+8,-x^6-x^5+7*x^4+5*x^3-10*x^2-4*x,2*x^6+2*x^5-15*x^4-10*x^3+25*x^2+10*x-2,x^3-4*x,-x^6-2*x^5+7*x^4+12*x^3-11*x^2-15*x+1,x^7-x^6-11*x^5+8*x^4+33*x^3-11*x^2-25*x-4,x^6+x^5-7*x^4-4*x^3+11*x^2+x-3,-x^7-x^6+9*x^5+7*x^4-24*x^3-14*x^2+20*x+8,1,2*x^7+2*x^6-15*x^5-10*x^4+25*x^3+10*x^2-2*x,-x^5-2*x^4+6*x^3+12*x^2-7*x-12,x^4-6*x^2+4,x^7-10*x^5+x^4+27*x^3-2*x^2-17*x]];
E[403,4] = [x^6+2*x^5-7*x^4-13*x^3+6*x^2+7*x-3, [1,x,-x^5-3*x^4+5*x^3+19*x^2+6*x-8,x^2-2,3*x^5+8*x^4-17*x^3-51*x^2-8*x+18,-x^5-2*x^4+6*x^3+12*x^2-x-3,-2*x^5-5*x^4+12*x^3+31*x^2-10,x^3-4*x,-2*x^5-4*x^4+13*x^3+25*x^2-4*x-8,2*x^5+4*x^4-12*x^3-26*x^2-3*x+9,5*x^5+12*x^4-29*x^3-75*x^2-8*x+24,2*x^5+5*x^4-11*x^3-33*x^2-8*x+13,1,-x^5-2*x^4+5*x^3+12*x^2+4*x-6,3*x^5+8*x^4-16*x^3-50*x^2-11*x+18,x^4-6*x^2+4,-3*x^5-8*x^4+17*x^3+51*x^2+6*x-24]];
E[403,5] = [x^8+5*x^7-30*x^5-24*x^4+54*x^3+54*x^2-28*x-29, [1,x,-x^7-3*x^6+6*x^5+19*x^4-12*x^3-36*x^2+8*x+19,x^2-2,-x^5-2*x^4+5*x^3+7*x^2-6*x-6,2*x^7+6*x^6-11*x^5-36*x^4+18*x^3+62*x^2-9*x-29,x^4+2*x^3-3*x^2-4*x,x^3-4*x,x^7+3*x^6-5*x^5-18*x^4+6*x^3+34*x^2-2*x-19,-x^6-2*x^5+5*x^4+7*x^3-6*x^2-6*x,2*x^7+7*x^6-9*x^5-43*x^4+8*x^3+77*x^2+x-37,-2*x^7-5*x^6+12*x^5+28*x^4-22*x^3-45*x^2+11*x+20,-1,x^5+2*x^4-3*x^3-4*x^2,2*x^7+5*x^6-13*x^5-29*x^4+29*x^3+50*x^2-20*x-27,x^4-6*x^2+4,-x^6-x^5+9*x^4+4*x^3-25*x^2-x+17]];

E[404,1] = [x, [1,0,-2,0,3,0,2,0,1,0,-6,0,5,0,-6,0,3]];
E[404,2] = [x^7-2*x^6-17*x^5+36*x^4+64*x^3-148*x^2+11*x+58, [1,0,x,0,8*x^6+8*x^5-113*x^4-52*x^3+368*x^2-72*x-154,0,-18*x^6-17*x^5+256*x^4+105*x^3-844*x^2+189*x+360,0,x^2-3,0,-2*x^6-2*x^5+28*x^4+13*x^3-90*x^2+17*x+40,0,20*x^6+18*x^5-286*x^4-106*x^3+951*x^2-232*x-406,0,24*x^6+23*x^5-340*x^4-144*x^3+1112*x^2-242*x-464,0,21*x^6+20*x^5-298*x^4-124*x^3+977*x^2-220*x-406]];
E[404,3] = [x, [1,0,0,0,-1,0,-2,0,-3,0,-2,0,-3,0,0,0,-1]];

E[405,1] = [x, [1,-2,0,2,-1,0,0,0,0,2,-5,0,4,0,0,-4,4]];
E[405,2] = [x, [1,1,0,-1,-1,0,-3,-3,0,-1,-2,0,-2,-3,0,-1,4]];
E[405,3] = [x, [1,-1,0,-1,1,0,-3,3,0,-1,2,0,-2,3,0,-1,-4]];
E[405,4] = [x, [1,2,0,2,1,0,0,0,0,2,5,0,4,0,0,-4,-4]];
E[405,5] = [x^2+2*x-2, [1,x,0,-2*x,1,0,-x-4,2*x-4,0,x,-x-5,0,2*x,-2*x-2,0,-4*x+4,-x-2]];
E[405,6] = [x^2-2*x-2, [1,x,0,2*x,-1,0,x-4,2*x+4,0,-x,-x+5,0,-2*x,-2*x+2,0,4*x+4,-x+2]];
E[405,7] = [x^3+x^2-5*x-3, [1,x,0,x^2-2,-1,0,x+2,-x^2+x+3,0,-x,x^2-3,0,-x^2+5,x^2+2*x,0,-2*x+1,x^2-3]];
E[405,8] = [x^3-x^2-5*x+3, [1,x,0,x^2-2,1,0,-x+2,x^2+x-3,0,x,-x^2+3,0,-x^2+5,-x^2+2*x,0,2*x+1,-x^2+3]];
E[405,9] = [x, [1,0,0,-2,1,0,2,0,0,0,3,0,-4,0,0,4,6]];
E[405,10] = [x, [1,0,0,-2,-1,0,2,0,0,0,-3,0,-4,0,0,4,-6]];

E[406,1] = [x, [1,-1,1,1,-3,-1,1,-1,-2,3,-3,1,-1,-1,-3,1,0]];
E[406,2] = [x, [1,-1,2,1,2,-2,1,-1,1,-2,4,2,-2,-1,4,1,-4]];
E[406,3] = [x^3-x^2-8*x+4, [2,-2,2*x,2,x^2-x-2,-2*x,-2,-2,2*x^2-6,-x^2+x+2,-2*x^2+12,2*x,-x^2+x+10,2,6*x-4,2,-x^2+3*x+10]];
E[406,4] = [x, [1,-1,0,1,0,0,-1,-1,-3,0,-4,0,0,1,0,1,-4]];
E[406,5] = [x, [1,1,-1,1,-3,-1,-1,1,-2,-3,-1,-1,-1,-1,3,1,-4]];
E[406,6] = [x^4-x^3-10*x^2+4*x+8, [4,4,4*x,4,x^3-3*x^2-8*x+12,4*x,4,4,4*x^2-12,x^3-3*x^2-8*x+12,-4*x+8,4*x,-3*x^3+x^2+24*x-4,4,-2*x^3+2*x^2+8*x-8,4,-x^3+3*x^2+4*x-12]];
E[406,7] = [x^2-2*x-2, [1,1,2,1,x,2,-1,1,1,x,-2*x+2,2,-x,-1,2*x,1,-3*x+2]];

E[407,1] = [x^4-x^3-4*x^2+2*x+3, [1,x,-x^3+x^2+2*x-2,x^2-2,x^3-x^2-3*x,-2*x^2+3,-x^2+2,x^3-4*x,2*x^3-x^2-5*x+1,x^2-2*x-3,1,-2*x^2-x+4,-x^3+x^2+2*x-4,-x^3+2*x,x^2+x-3,x^3-2*x^2-2*x+1,-x^3-x^2+3*x]];
E[407,2] = [x^4+x^3-4*x^2+1, [1,x,x^3+x^2-4*x,x^2-2,-x^3-x^2+3*x,-1,-2*x^3-3*x^2+6*x,x^3-4*x,-x^2-x+1,-x^2+1,-1,-2*x^3-2*x^2+7*x,x^3+x^2-2*x-2,-x^3-2*x^2+2,x^2+x-3,-x^3-2*x^2+3,x^3+3*x^2-x-6]];
E[407,3] = [x^12-x^11-18*x^10+18*x^9+111*x^8-104*x^7-274*x^6+212*x^5+255*x^4-129*x^3-78*x^2+4*x+1, [249,249*x,-370*x^11+52*x^10+6619*x^9-934*x^8-40324*x^7+3261*x^6+94670*x^5+5092*x^4-67508*x^3-10735*x^2+3599*x-198,249*x^2-498,142*x^11+11*x^10-2512*x^9-188*x^8+15010*x^7+2112*x^6-33614*x^5-10396*x^4+19526*x^3+11563*x^2+2806*x-492,-318*x^11-41*x^10+5726*x^9+746*x^8-35219*x^7-6710*x^6+83532*x^5+26842*x^4-58465*x^3-25261*x^2+1282*x+370,-239*x^11+113*x^10+4256*x^9-2135*x^8-25856*x^7+12234*x^6+61468*x^5-22588*x^4-49207*x^3+12121*x^2+8362*x-459,249*x^3-996*x,30*x^11+7*x^10-595*x^9-97*x^8+4270*x^7+514*x^6-13302*x^5-1364*x^4+16802*x^3+1337*x^2-6371*x+34,153*x^11+44*x^10-2744*x^9-752*x^8+16880*x^7+5294*x^6-40500*x^5-16684*x^4+29881*x^3+13882*x^2-1060*x-142,249,381*x^11-102*x^10-6768*x^9+1947*x^8+40866*x^7-10122*x^6-95082*x^5+12441*x^4+68733*x^3-2052*x^2-5556*x+714,350*x^11+54*x^10-6250*x^9-855*x^8+38086*x^7+6716*x^6-89371*x^5-25320*x^4+61757*x^3+21768*x^2-320*x+1199,-126*x^11-46*x^10+2167*x^9+673*x^8-12622*x^7-4018*x^6+28080*x^5+11738*x^4-18710*x^3-10280*x^2+497*x+239,-614*x^11-348*x^10+11071*x^9+6174*x^8-68524*x^7-41252*x^6+164248*x^5+116472*x^4-113816*x^3-92364*x^2-2761*x+2104,249*x^4-1494*x^2+996,471*x^11+85*x^10-8470*x^9-1498*x^8+52099*x^7+12004*x^6-124032*x^5-43526*x^4+88595*x^3+39143*x^2-3587*x-512]];
E[407,4] = [x^11-2*x^10-16*x^9+32*x^8+89*x^7-179*x^6-201*x^5+407*x^4+168*x^3-333*x^2-51*x+75, [59,59*x,10*x^10-x^9-156*x^8+831*x^6+78*x^5-1732*x^4-330*x^3+1171*x^2+305*x-196,59*x^2-118,-83*x^10+26*x^9+1342*x^8-354*x^7-7564*x^6+1630*x^5+17420*x^4-2512*x^3-14457*x^2+448*x+3090,19*x^10+4*x^9-320*x^8-59*x^7+1868*x^6+278*x^5-4400*x^4-509*x^3+3635*x^2+314*x-750,61*x^10-12*x^9-987*x^8+177*x^7+5547*x^6-893*x^5-12701*x^4+1409*x^3+10512*x^2-57*x-2234,59*x^3-236*x,31*x^10-9*x^9-519*x^8+118*x^7+3054*x^6-478*x^5-7446*x^4+452*x^3+6763*x^2+385*x-1528,-140*x^10+14*x^9+2302*x^8-177*x^7-13227*x^6+737*x^5+31269*x^4-513*x^3-27191*x^2-1143*x+6225,-59,22*x^10-14*x^9-355*x^8+177*x^7+2017*x^6-737*x^5-4778*x^4+1103*x^3+4299*x^2-391*x-1033,100*x^10-10*x^9-1619*x^8+118*x^7+9136*x^6-459*x^5-21096*x^4+181*x^3+17610*x^2+1044*x-3671,110*x^10-11*x^9-1775*x^8+118*x^7+10026*x^6-440*x^5-23418*x^4+264*x^3+20256*x^2+877*x-4575,-48*x^10-7*x^9+796*x^8+118*x^7-4626*x^6-634*x^5+11122*x^4+1348*x^3-10034*x^2-815*x+2640,59*x^4-354*x^2+236,-x^10+6*x^9-8*x^8-118*x^7+265*x^6+771*x^5-1467*x^4-1855*x^3+2532*x^2+1238*x-771]];

E[408,1] = [x, [1,0,-1,0,3,0,0,0,1,0,-1,0,3,0,-3,0,-1]];
E[408,2] = [x^2+x-4, [1,0,-1,0,x,0,-2*x-2,0,1,0,x-4,0,-x-2,0,-x,0,-1]];
E[408,3] = [x, [1,0,1,0,-3,0,-4,0,1,0,1,0,-5,0,-3,0,1]];
E[408,4] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,6,0,2,0,1]];
E[408,5] = [x^2+x-14, [1,0,1,0,x,0,4,0,1,0,-x-2,0,-x,0,x,0,1]];
E[408,6] = [x, [1,0,1,0,0,0,2,0,1,0,0,0,2,0,0,0,-1]];

E[409,1] = [x^13+6*x^12+2*x^11-47*x^10-64*x^9+117*x^8+226*x^7-94*x^6-278*x^5+9*x^4+134*x^3+15*x^2-22*x-4, [2,2*x,x^12+4*x^11-10*x^10-51*x^9+28*x^8+237*x^7+2*x^6-482*x^5-90*x^4+397*x^3+68*x^2-97*x-14,2*x^2-4,6*x^12+38*x^11+28*x^10-256*x^9-474*x^8+416*x^7+1392*x^6+204*x^5-1234*x^4-568*x^3+268*x^2+182*x+18,-2*x^12-12*x^11-4*x^10+92*x^9+120*x^8-224*x^7-388*x^6+188*x^5+388*x^4-66*x^3-112*x^2+8*x+4,-11*x^12-66*x^11-28*x^10+483*x^9+698*x^8-1029*x^7-2176*x^6+438*x^5+2042*x^4+277*x^3-490*x^2-141*x-18,2*x^3-8*x,-5*x^12-28*x^11+229*x^9+230*x^8-629*x^7-834*x^6+684*x^5+940*x^4-331*x^3-336*x^2+55*x+26,2*x^12+16*x^11+26*x^10-90*x^9-286*x^8+36*x^7+768*x^6+434*x^5-622*x^4-536*x^3+92*x^2+150*x+24,2*x^12+12*x^11+4*x^10-92*x^9-120*x^8+222*x^7+382*x^6-180*x^5-360*x^4+62*x^3+84*x^2-14*x-2,-2*x^12-8*x^11+18*x^10+94*x^9-46*x^8-410*x^7-4*x^6+796*x^5+132*x^4-638*x^3-98*x^2+154*x+20,5*x^12+34*x^11+36*x^10-213*x^9-492*x^8+243*x^7+1394*x^6+530*x^5-1204*x^4-855*x^3+236*x^2+263*x+28,-6*x^11-34*x^10-6*x^9+258*x^8+310*x^7-596*x^6-1016*x^5+376*x^4+984*x^3+24*x^2-260*x-44,3*x^12+20*x^11+20*x^10-127*x^9-286*x^8+155*x^7+830*x^6+282*x^5-754*x^4-469*x^3+178*x^2+139*x+6,2*x^4-12*x^2+8,-x^12-6*x^11+55*x^9+52*x^8-189*x^7-222*x^6+304*x^5+340*x^4-229*x^3-192*x^2+65*x+28]];
E[409,2] = [x^20-5*x^19-19*x^18+126*x^17+100*x^16-1283*x^15+247*x^14+6767*x^13-4554*x^12-19689*x^11+18771*x^10+31011*x^9-35515*x^8-23548*x^7+31466*x^6+5354*x^5-10552*x^4+1129*x^3+523*x^2-54*x-4, [325701783112,325701783112*x,11812328750*x^19-63096638684*x^18-215373165502*x^17+1597444230542*x^16+963041912526*x^15-16403787944064*x^14+4996875974310*x^13+87889886949412*x^12-63677701703656*x^11-263662135334682*x^10+245697889289408*x^9+442423956371606*x^8-444892572187184*x^7-388864831608768*x^6+373223863936896*x^5+143835668304216*x^4-112155750438332*x^3-4652447369642*x^2+3548691409488*x-352521223808,325701783112*x^2-651403566224,-5121572214*x^19+18153465318*x^18+120597791866*x^17-458758295362*x^16-1103708506020*x^15+4694022447154*x^14+4783694846104*x^13-24961450776400*x^12-8497952428330*x^11+73709427228846*x^10-4905578894040*x^9-119950803496510*x^8+43634043310246*x^7+100969563351864*x^6-65739948763678*x^5-39764792698316*x^4+39383915369886*x^3+8221074565878*x^2-7583998094308*x-271903185440,-4034994934*x^19+9061080748*x^18+109090808042*x^17-218190962474*x^16-1248570157814*x^15+2079230773060*x^14+7955858298162*x^13-9884356576156*x^12-31089194575932*x^11+23968666323158*x^10+76111829505356*x^9-25377716630934*x^8-110708114203768*x^7+1537127489396*x^6+80592460176716*x^5+12487942531668*x^4-17988566528392*x^3-2629156526762*x^2+285344528692*x+47249315000,51934969206*x^19-229150310572*x^18-1093095993136*x^17+5816561741690*x^16+7886811254274*x^15-59804709613002*x^14-14821293031496*x^13+319789029900358*x^12-88758138375552*x^11-950111179520540*x^10+535437552685180*x^9+1550902221863446*x^8-1123470735395472*x^7-1270779290661282*x^6+1030886650558296*x^5+389464198137794*x^4-340469892402536*x^3+6112349490516*x^2+12237282329188*x-113122401560,325701783112*x^3-1302807132448*x,-56865811412*x^19+261738126916*x^18+1169562051124*x^17-6657754726184*x^16-7960620768464*x^15+68721752281924*x^14+9512172932548*x^13-370067855031436*x^12+131546560604048*x^11+1113674744578268*x^10-681618112465596*x^9-1862864266291052*x^8+1367703214925748*x^7+1608045616854536*x^6-1215317001228480*x^5-573495443963456*x^4+384122469035664*x^3+30617506610420*x^2-12477974478668*x-779296981752,-7454395752*x^19+23287919800*x^18+186559803602*x^17-591551284620*x^16-1876954703408*x^15+6048723182962*x^14+9696228395738*x^13-31821592290886*x^12-27129208092600*x^11+91231453134954*x^10+38874272431844*x^9-138258593869964*x^8-19633219143408*x^7+95415442522046*x^6-12343895064560*x^5-14658914632242*x^4+14003329595484*x^3-4905415826386*x^2-548468084996*x-20486288856,10914238563*x^19-59346754394*x^18-205434567225*x^17+1520932471077*x^16+1066479838551*x^15-15892046171990*x^14+2622590359827*x^13+87379047739510*x^12-46938867796610*x^11-272921271717275*x^10+187096082407446*x^9+489467605119575*x^8-337688518356184*x^7-484968445142494*x^6+280543300583650*x^5+235089950690766*x^4-88275976805160*x^3-39745436607747*x^2+7799354812062*x+1741481490484,-34738551422*x^19+158619181664*x^18+720964730214*x^17-4039959125498*x^16-5023751552314*x^15+41760077934988*x^14+7426702193602*x^13-225244335404192*x^12+71879054474944*x^11+679176990080834*x^10-391644267311476*x^9-1138858872027990*x^8+796306211157932*x^7+985287273987496*x^6-712356422465488*x^5-348237169680392*x^4+226237853630388*x^3+11700541618458*x^2-7268023230412*x+688902467880,64098806850*x^19-271279045136*x^18-1384328601342*x^17+6879531046354*x^16+10679781065742*x^15-70714857632048*x^14-28635905414990*x^13+378626502416784*x^12-50408214080212*x^11-1130773786894706*x^10+472319344601784*x^9+1874146684813890*x^8-1057581767561876*x^7-1605939301658212*x^6+990525470300772*x^5+580288080854548*x^4-335063952468752*x^3-41288723692506*x^2+15458037449288*x+1259787998296,30524535458*x^19-106331578222*x^18-727244378266*x^17+2693314333674*x^16+6827855878296*x^15-27649230425378*x^14-31654906716644*x^13+147753711388572*x^12+72436429176394*x^11-439433754280646*x^10-59653108183820*x^9+720999695955618*x^8-47814635798394*x^7-603299090477700*x^6+111404373008870*x^5+207547902659176*x^4-52522230743058*x^3-14924706565550*x^2+2691365935564*x+207739876824,-48646359750*x^19+203181645776*x^18+1064907909958*x^17-5169628402534*x^16-8461722904338*x^15+53345881798388*x^14+25390368856910*x^13-286989374713356*x^12+18202798965716*x^11+862370288559306*x^10-294605698077176*x^9-1441632041943078*x^8+682694728835036*x^7+1252789142929704*x^6-624039675088636*x^5-467949452555128*x^4+187633381571264*x^3+40390283241962*x^2-1576681834728*x-391947704064,325701783112*x^4-1954210698672*x^2+1302807132448,60257895318*x^19-269724511986*x^18-1262793377008*x^17+6862825177466*x^16+9015462223216*x^15-70828699491140*x^14-15865506069630*x^13+381119841835838*x^12-109555888114518*x^11-1145023150355684*x^10+637786390086048*x^9+1909978941936554*x^8-1321001939331162*x^7-1642775814733378*x^6+1194970343507006*x^5+585353183047866*x^4-385256665848770*x^3-33267879899576*x^2+14124483790932*x+1417623150448]];

E[410,1] = [x, [1,1,-2,1,-1,-2,-2,1,1,-1,2,-2,-6,-2,2,1,-6]];
E[410,2] = [x^2-6, [1,1,x,1,1,x,-2,1,3,1,-2*x,x,4,-2,x,1,-x+2]];
E[410,3] = [x^3-8*x+4, [1,1,x,1,-1,x,2,1,x^2-3,-1,-x^2+4,x,-x^2-2*x+8,2,-x,1,x^2-x-6]];
E[410,4] = [x, [1,1,0,1,1,0,4,1,-3,1,0,0,-2,4,0,1,2]];
E[410,5] = [x, [1,-1,-2,1,1,2,2,-1,1,-1,0,-2,-4,-2,-2,1,0]];
E[410,6] = [x^2+2*x-4, [1,-1,x,1,-1,-x,-x-2,-1,-2*x+1,1,-x,x,-4,x+2,-x,1,-2*x-2]];
E[410,7] = [x^2-2*x-2, [1,-1,x,1,-1,-x,2,-1,2*x-1,1,0,x,-2*x+4,-2,-x,1,x+2]];
E[410,8] = [x, [1,-1,0,1,1,0,-2,-1,-3,-1,-6,0,-2,2,0,1,8]];
E[410,9] = [x^2-2*x-16, [1,-1,2,1,1,-2,x,-1,1,-1,-x+2,2,4,-x,2,1,-x-2]];

E[411,1] = [x^3+3*x^2-3, [1,x,1,x^2-2,-x^2-2*x-1,x,x^2+x-3,-3*x^2-4*x+3,1,x^2-x-3,x^2+2*x-4,x^2-2,-2*x^2-3*x+2,-2*x^2-3*x+3,-x^2-2*x-1,3*x^2+3*x-5,3*x^2+4*x-7]];
E[411,2] = [x^3-x^2-2*x+1, [1,x,-1,x^2-2,-x^2+1,-x,-x^2-x+1,x^2-2*x-1,1,-x^2-x+1,x^2-2*x-2,-x^2+2,x-4,-2*x^2-x+1,x^2-1,-3*x^2+x+3,3*x^2-2*x-3]];
E[411,3] = [x^5+x^4-7*x^3-10*x^2+1, [1,x,1,x^2-2,-x^4-x^3+7*x^2+9*x+1,x,-x^4+6*x^2+4*x,x^3-4*x,1,-x^2+x+1,x^4+x^3-7*x^2-11*x,x^2-2,2*x^4-x^3-13*x^2-3*x+5,x^4-x^3-6*x^2+1,-x^4-x^3+7*x^2+9*x+1,x^4-6*x^2+4,2*x^4-13*x^2-10*x+3]];
E[411,4] = [x^9-16*x^7+x^6+82*x^5-9*x^4-141*x^3+18*x^2+52*x+8, [16,16*x,-16,16*x^2-32,-2*x^8+32*x^6-10*x^5-172*x^4+90*x^3+330*x^2-164*x-96,-16*x,3*x^8-2*x^7-44*x^6+35*x^5+204*x^4-179*x^3-309*x^2+252*x+84,16*x^3-64*x,16,-8*x^6-8*x^5+72*x^4+48*x^3-128*x^2+8*x+16,2*x^8+4*x^7-24*x^6-46*x^5+88*x^4+142*x^3-110*x^2-72*x+24,-16*x^2+32,-6*x^8-4*x^7+88*x^6+42*x^5-400*x^4-106*x^3+546*x^2-56,-2*x^8+4*x^7+32*x^6-42*x^5-152*x^4+114*x^3+198*x^2-72*x-24,2*x^8-32*x^6+10*x^5+172*x^4-90*x^3-330*x^2+164*x+96,16*x^4-96*x^2+64,-4*x^8+64*x^6-4*x^5-328*x^4+36*x^3+548*x^2-72*x-128]];
E[411,5] = [x^3-2*x^2-3*x+5, [1,2,1,2,x,2,-x^2-x+4,0,1,2*x,2*x^2-2*x-4,2,2*x^2-6,-2*x^2-2*x+8,x,-4,-4*x^2+2*x+12]];

E[412,1] = [x^2+2*x-4, [2,0,2*x,0,-2*x-4,0,-x-4,0,-4*x+2,0,-4,0,-x-2,0,-8,0,x-8]];
E[412,2] = [x^4-2*x^3-5*x^2+6*x+4, [2,0,2*x,0,x^3-3*x^2-2*x+8,0,x^3-2*x^2-3*x+6,0,2*x^2-6,0,-x^3+x^2+2*x+4,0,-2*x^3+3*x^2+7*x-4,0,-x^3+3*x^2+2*x-4,0,-2*x^3+3*x^2+9*x-6]];
E[412,3] = [x^2+x-5, [1,0,-1,0,x,0,-2*x-1,0,-2,0,x-1,0,-x-4,0,-x,0,x+4]];

E[413,1] = [x^2-5, [2,2*x,x-1,6,2*x+2,-x+5,-2,2*x,-x-3,2*x+10,x-5,3*x-3,-3*x+1,-2*x,4,-2,-12]];
E[413,2] = [x^5-4*x^4-3*x^3+29*x^2-35*x+11, [1,x,-x^3+x^2+7*x-6,x^2-2,x^4-2*x^3-7*x^2+15*x-5,-x^4+x^3+7*x^2-6*x,-1,x^3-4*x,-2*x^4+3*x^3+14*x^2-25*x+11,2*x^4-4*x^3-14*x^2+30*x-11,x^4-x^3-8*x^2+9*x+4,-3*x^4+6*x^3+21*x^2-49*x+23,x^4-3*x^3-6*x^2+22*x-12,-x,4*x^4-8*x^3-27*x^2+61*x-25,x^4-6*x^2+4,x^4-8*x^2+9]];
E[413,3] = [x^5-5*x^3-x^2+5*x+1, [1,x,x^3-x^2-3*x,x^2-2,-x^4+3*x^2+x-1,x^4-x^3-3*x^2,1,x^3-4*x,-3*x^3+2*x^2+9*x-1,-2*x^3+4*x+1,3*x^4-3*x^3-10*x^2+5*x+4,-x^4+3*x^2+x-1,-x^4+x^3+4*x^2-4*x-6,x,2*x^4-5*x^2-3*x-1,x^4-6*x^2+4,-3*x^4+4*x^3+12*x^2-10*x-9]];
E[413,4] = [x^5+2*x^4-3*x^3-5*x^2+x+1, [1,x,-x^3-x^2+3*x,x^2-2,x^4+2*x^3-3*x^2-5*x+1,-x^4-x^3+3*x^2,-1,x^3-4*x,-2*x^4-x^3+8*x^2-x-3,-1,x^4+x^3-4*x^2-3*x,x^4+2*x^3-3*x^2-5*x+1,x^4+3*x^3-2*x^2-6*x,-x,x^2+x-3,x^4-6*x^2+4,-3*x^4-4*x^3+12*x^2+8*x-7]];
E[413,5] = [x^9-13*x^7+x^6+54*x^5-7*x^4-75*x^3+9*x^2+17*x-3, [8,8*x,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+229*x^2+6*x-25,8*x^2-16,-2*x^8-2*x^7+24*x^6+22*x^5-94*x^4-72*x^3+134*x^2+68*x-30,x^8+x^7-8*x^6-7*x^5+7*x^4+4*x^3+33*x^2+26*x-9,8,8*x^3-32*x,-3*x^8+x^7+40*x^6-11*x^5-169*x^4+28*x^3+221*x^2+6*x-1,-2*x^8-2*x^7+24*x^6+14*x^5-86*x^4-16*x^3+86*x^2+4*x-6,x^8+x^7-16*x^6-15*x^5+79*x^4+68*x^3-119*x^2-94*x+15,7*x^8+3*x^7-88*x^6-25*x^5+349*x^4+52*x^3-441*x^2-38*x+53,-3*x^8-3*x^7+32*x^6+29*x^5-93*x^4-76*x^3+53*x^2+50*x+19,8*x,8*x^5-72*x^3+144*x,8*x^4-48*x^2+32,4*x^8+4*x^7-48*x^6-44*x^5+180*x^4+144*x^3-220*x^2-136*x+36]];
E[413,6] = [x^3-3*x^2-x+4, [1,-1,x,-1,2*x-2,-x,-1,3,x^2-3,-2*x+2,x,-x,-3*x^2+4*x+6,1,2*x^2-2*x,-1,2]];

E[414,1] = [x, [1,1,0,1,-4,0,-4,1,0,-4,-2,0,-2,-4,0,1,2]];
E[414,2] = [x, [1,1,0,1,2,0,-2,1,0,2,6,0,-2,-2,0,1,0]];
E[414,3] = [x^2-2*x-6, [1,1,0,1,x,0,2,1,0,x,-x,0,-2*x+2,2,0,1,-2*x]];
E[414,4] = [x, [1,1,0,1,0,0,2,1,0,0,0,0,2,2,0,1,0]];
E[414,5] = [x, [1,-1,0,1,-2,0,0,-1,0,2,0,0,-2,0,0,1,-2]];
E[414,6] = [x^2+2*x-6, [1,-1,0,1,x,0,2,-1,0,-x,-x,0,2*x+2,-2,0,1,-2*x]];
E[414,7] = [x^2-2*x-4, [1,-1,0,1,x,0,2*x-2,-1,0,-x,-x+4,0,-2*x+2,-2*x+2,0,1,4]];

E[415,1] = [x, [1,1,3,-1,1,3,1,-3,6,1,3,-3,-6,1,3,-1,-7]];
E[415,2] = [x^2+x-1, [1,x,-x-1,-x-1,1,-1,2*x+1,-2*x-1,x-1,x,-2,x+2,-x-2,-x+2,-x-1,3*x,-x-4]];
E[415,3] = [x^6-2*x^5-5*x^4+9*x^3+5*x^2-6*x-1, [1,x,-x^4+x^3+5*x^2-3*x-3,x^2-2,-1,-x^5+x^4+5*x^3-3*x^2-3*x,x^5-x^4-5*x^3+3*x^2+5*x,x^3-4*x,-x^5+6*x^3-6*x+2,-x,2*x^5-3*x^4-10*x^3+12*x^2+9*x-4,-x^5+2*x^4+4*x^3-8*x^2+5,-x^3+x^2+2*x,x^5-6*x^3+6*x+1,x^4-x^3-5*x^2+3*x+3,x^4-6*x^2+4,-x^5+2*x^4+4*x^3-8*x^2-2*x+7]];
E[415,4] = [x^7+3*x^6-6*x^5-19*x^4+9*x^3+28*x^2-4*x-8, [4,4*x,-x^6-x^5+8*x^4+3*x^3-19*x^2+2*x+8,4*x^2-8,-4,2*x^6+2*x^5-16*x^4-10*x^3+30*x^2+4*x-8,-x^6-3*x^5+6*x^4+19*x^3-9*x^2-28*x,4*x^3-16*x,2*x^6+4*x^5-14*x^4-18*x^3+32*x^2+6*x-20,-4*x,4*x^6+10*x^5-22*x^4-52*x^3+22*x^2+42*x,-2*x^6-2*x^5+12*x^4+6*x^3-14*x^2-4*x,-4*x^5-8*x^4+20*x^3+32*x^2-16*x-16,-4*x-8,x^6+x^5-8*x^4-3*x^3+19*x^2-2*x-8,4*x^4-24*x^2+16,-x^6-3*x^5+6*x^4+15*x^3-9*x^2-8*x-16]];
E[415,5] = [x^11-20*x^9-x^8+146*x^7+15*x^6-464*x^5-76*x^4+567*x^3+136*x^2-100*x-8, [4,4*x,-4*x^10-7*x^9+65*x^8+119*x^7-332*x^6-656*x^5+483*x^4+1195*x^3+213*x^2-186*x-24,4*x^2-8,4,-7*x^10-15*x^9+115*x^8+252*x^7-596*x^6-1373*x^5+891*x^4+2481*x^3+358*x^2-424*x-32,x^9-x^8-15*x^7+14*x^6+72*x^5-61*x^4-115*x^3+83*x^2+28*x-16,4*x^3-16*x,7*x^10+11*x^9-113*x^8-190*x^7+574*x^6+1065*x^5-839*x^4-1979*x^3-324*x^2+334*x+36,4*x,3*x^10+9*x^9-51*x^8-148*x^7+274*x^6+789*x^5-425*x^4-1401*x^3-182*x^2+266*x+24,-7*x^10-11*x^9+115*x^8+188*x^7-604*x^6-1045*x^5+983*x^4+1937*x^3+102*x^2-360*x-8,-4*x^3-4*x^2+24*x+16,x^10-x^9-15*x^8+14*x^7+72*x^6-61*x^5-115*x^4+83*x^3+28*x^2-16*x,-4*x^10-7*x^9+65*x^8+119*x^7-332*x^6-656*x^5+483*x^4+1195*x^3+213*x^2-186*x-24,4*x^4-24*x^2+16,6*x^10+11*x^9-99*x^8-187*x^7+522*x^6+1034*x^5-847*x^4-1913*x^3-117*x^2+384*x+16]];

E[416,1] = [x, [1,0,1,0,1,0,3,0,-2,0,2,0,1,0,1,0,-3]];
E[416,2] = [x, [1,0,-1,0,1,0,-3,0,-2,0,-2,0,1,0,-1,0,-3]];
E[416,3] = [x^2+x-4, [1,0,x,0,-x-2,0,-x-2,0,-x+1,0,-2,0,-1,0,-x-4,0,x+2]];
E[416,4] = [x^2-5, [1,0,x,0,3,0,x,0,2,0,-2*x,0,-1,0,3*x,0,-3]];
E[416,5] = [x^2-x-4, [1,0,x,0,x-2,0,-x+2,0,x+1,0,2,0,-1,0,-x+4,0,-x+2]];
E[416,6] = [x^4-13*x^2+32, [2,0,2*x,0,-2*x^2+12,0,x^3-7*x,0,2*x^2-6,0,-x^3+9*x,0,2,0,-2*x^3+12*x,0,-2*x^2+20]];

E[417,1] = [x, [1,1,-1,-1,2,-1,0,-3,1,2,5,1,5,0,-2,-1,-3]];
E[417,2] = [x^2+x-1, [1,x,1,-x-1,-1,x,-x-4,-2*x-1,1,-x,-2*x-1,-x-1,2*x-2,-3*x-1,-1,3*x,-3*x-4]];
E[417,3] = [x^7-14*x^5+2*x^4+57*x^3-14*x^2-56*x+8, [4,4*x,4,4*x^2-8,-2*x^3+14*x-4,4*x,x^6-10*x^4+21*x^2+4,4*x^3-16*x,4,-2*x^4+14*x^2-4*x,-x^6-2*x^5+12*x^4+16*x^3-39*x^2-22*x+16,4*x^2-8,-x^6+10*x^4-2*x^3-25*x^2+6*x+16,4*x^5-2*x^4-36*x^3+14*x^2+60*x-8,-2*x^3+14*x-4,4*x^4-24*x^2+16,2*x^4-14*x^2+16]];
E[417,4] = [x^7+3*x^6-6*x^5-19*x^4+9*x^3+30*x^2-8, [4,4*x,-4,4*x^2-8,2*x^6+4*x^5-14*x^4-22*x^3+24*x^2+22*x-4,-4*x,-3*x^6-7*x^5+20*x^4+37*x^3-41*x^2-40*x+12,4*x^3-16*x,4,-2*x^6-2*x^5+16*x^4+6*x^3-38*x^2-4*x+16,-x^6+x^5+14*x^4-x^3-37*x^2-6*x+8,-4*x^2+8,x^6-x^5-18*x^4+x^3+65*x^2-2*x-40,2*x^6+2*x^5-20*x^4-14*x^3+50*x^2+12*x-24,-2*x^6-4*x^5+14*x^4+22*x^3-24*x^2-22*x+4,4*x^4-24*x^2+16,2*x^6+6*x^5-8*x^4-34*x^3-2*x^2+48*x]];
E[417,5] = [x^3-2*x^2-4*x+7, [1,x^2-4,-1,x,-x^2+x+4,-x^2+4,x+1,1,1,2*x^2-x-9,1,-x,x^2-x-5,3*x^2-11,x^2-x-4,x^2-2*x-4,x^2]];
E[417,6] = [x^3-2*x^2-4*x+7, [1,x^2-4,1,x,-x^2-x+6,x^2-4,x+1,1,1,-x-3,x^2-x-2,x,2*x,3*x^2-11,-x^2-x+6,x^2-2*x-4,-x-3]];

E[418,1] = [x^2-x-4, [1,-1,x,1,2,-x,-x+2,-1,x+1,-2,1,x,x-2,x-2,2*x,1,-x+2]];
E[418,2] = [x^2+3*x-1, [1,-1,x,1,-x-2,-x,x+1,-1,-3*x-2,x+2,1,x,-x-3,-x-1,x-1,1,-2*x-4]];
E[418,3] = [x^3-6*x-3, [1,-1,x,1,-x^2+3,-x,x^2-2*x-6,-1,x^2-3,x^2-3,-1,x,x^2-2*x-4,-x^2+2*x+6,-3*x-3,1,-x^2+x+1]];
E[418,4] = [x, [1,1,3,1,-2,3,1,1,6,-2,1,3,-7,1,-6,1,-3]];
E[418,5] = [x, [1,1,-1,1,-2,-1,-3,1,-2,-2,-1,-1,1,-3,2,1,-7]];
E[418,6] = [x^2+x-5, [1,1,x,1,x+2,x,-x-3,1,-x+2,x+2,1,x,-x+3,-x-3,x+5,1,-2*x-4]];
E[418,7] = [x^3-x^2-5*x+4, [1,1,x,1,-x+2,x,-x^2+4,1,x^2-3,-x+2,-1,x,x^2-2,-x^2+4,-x^2+2*x,1,2*x^2-6]];
E[418,8] = [x, [1,1,0,1,2,0,2,1,-3,2,1,0,-2,2,0,1,6]];

E[419,1] = [x^9+2*x^8-7*x^7-13*x^6+15*x^5+25*x^4-9*x^3-15*x^2-x+1, [1,x,x^8+x^7-8*x^6-5*x^5+21*x^4+5*x^3-19*x^2+3,x^2-2,x^8+2*x^7-7*x^6-13*x^5+15*x^4+24*x^3-10*x^2-12*x,-x^8-x^7+8*x^6+6*x^5-20*x^4-10*x^3+15*x^2+4*x-1,-2*x^8-3*x^7+15*x^6+17*x^5-37*x^4-24*x^3+32*x^2+6*x-6,x^3-4*x,-4*x^8-6*x^7+30*x^6+35*x^5-72*x^4-54*x^3+55*x^2+21*x-5,-x^4-x^3+3*x^2+x-1,x^5-5*x^3+x^2+4*x-1,-x^8-x^7+9*x^6+5*x^5-27*x^4-4*x^3+27*x^2-2*x-5,2*x^8+3*x^7-16*x^6-18*x^5+42*x^4+29*x^3-36*x^2-13*x+2,x^8+x^7-9*x^6-7*x^5+26*x^4+14*x^3-24*x^2-8*x+2,x^8+2*x^7-7*x^6-13*x^5+15*x^4+25*x^3-8*x^2-14*x-3,x^4-6*x^2+4,-3*x^8-4*x^7+24*x^6+25*x^5-61*x^4-43*x^3+50*x^2+20*x-7]];
E[419,2] = [x^26-2*x^25-43*x^24+85*x^23+807*x^22-1571*x^21-8689*x^20+16575*x^19+59362*x^18-110217*x^17-268789*x^16+481513*x^15+817911*x^14-1398615*x^13-1658267*x^12+2674771*x^11+2166607*x^10-3262315*x^9-1701132*x^8+2384864*x^7+697992*x^6-932912*x^5-104448*x^4+158080*x^3-4736*x^2-6656*x+512, [618506107859120384,618506107859120384*x,11600552657805477*x^25-2891839316330590*x^24-489898657622267755*x^23+107914954606597717*x^22+8985089110311196755*x^21-1677761853489598063*x^20-93908850339439447893*x^19+13918818822044869947*x^18+617042949329544908962*x^17-64913077960712591713*x^16-2653463884228242370997*x^15+158054791007502082829*x^14+7542124894930787266803*x^13-114826826055616751971*x^12-13997662661670064334423*x^11-303774076907980503369*x^10+16402726266989189697963*x^9+721388016885671188593*x^8-11432624304846526332780*x^7-525686749144280326660*x^6+4272834868233016475744*x^5+99655118161125418016*x^4-701435265347009788032*x^3+22235921273339580352*x^2+29490143079012905216*x-2407322228952341760,618506107859120384*x^2-1237012215718240768,-15339110851698681*x^25+6639531907836972*x^24+647804819296844439*x^23-261094882733415019*x^22-11883707853507702469*x^21+4379051822405265577*x^20+124269331201630752739*x^19-40851748330058436361*x^18-817414218000152567460*x^17+232298733292163357085*x^16+3522271328534996747539*x^15-833773198676597351211*x^14-10047619638821988328637*x^13+1911697358637588946733*x^12+18759839398286226300949*x^11-2833518240599129473281*x^10-22190495513779505976209*x^9+2802903817103605614913*x^8+15677495473237869454006*x^7-1900167214487228029696*x^6-5965979606213229963592*x^5+817510334469492688304*x^4+1004933506667967447328*x^3-167822538010875269056*x^2-45942578295517062784*x+5926487262909015296,20309265999280364*x^25+8925106663367756*x^24-878132021306867828*x^23-376556884537823184*x^22+16546706371922806304*x^21+6888351704232341760*x^20-178360341481080911328*x^19-71589057543103816712*x^18+1213665034324633666796*x^17+464637064110633986356*x^16-5427762120910386563872*x^15-1946094729967548231744*x^14+16109880129440990462384*x^13+5239150992531050593936*x^12-31332595909978994024136*x^11-8731112325280761408576*x^10+38566044960734345887848*x^9+8301447039031420367184*x^8-28191427162848881426788*x^7-3824258082493944026440*x^6+10921949899259748577040*x^5+510219258655456673664*x^4-1811579442872550223808*x^3+84430360466379644288*x^2+74805956261400913152*x-5939482960796404224,-17727678992674814*x^25-14259644555576112*x^24+770335035062133510*x^23+592023319249849670*x^22-14592715455178710410*x^21-10633938140316177350*x^20+158159259974228054990*x^19+108275595940779084238*x^18-1081901590680449845828*x^17-687424061028519424030*x^16+4860423654465312402778*x^15+2817036901074656089498*x^14-14467208844675297686482*x^13-7447266442784377800782*x^12+28130760180610370635178*x^11+12308575035040808416734*x^10-34428882337197772341026*x^9-11865292281889236531790*x^8+24783269436305599926200*x^7+5852320396775314221492*x^6-9284019269468865104048*x^5-1083835583291007281648*x^4+1442792435086610272608*x^3-26927368905834914496*x^2-54131742720255498112*x+5161698889933190656,618506107859120384*x^3-2474024431436481536*x,40202336893944748*x^25+10262831133417156*x^24-1723847966251088300*x^23-448137176653977832*x^22+32176229694900216528*x^21+8519430768921241120*x^20-343120486025987877664*x^19-92406193941480265928*x^18+2306486987495479558460*x^17+628190050671051832460*x^16-10173979389266362252776*x^15-2762288149001290024432*x^14+29731051798444807865616*x^13+7813937787949324253040*x^12-56814688548640041767272*x^11-13686564326348936391536*x^10+68536364062546689149128*x^9+13710709477160915311616*x^8-48961631400926581794916*x^7-6731207189774809424080*x^6+18495503143659237902800*x^5+1004691700187521521472*x^4-2991603841715846122272*x^3+153993930064240297472*x^2+123249211185488861312*x-11699082669028956160,-24038689795560390*x^25-11776947326198844*x^24+1042729539660972866*x^23+494954603813133098*x^22-19718691325613362274*x^21-9012202988779086470*x^20+213394014036847201214*x^19+93146080378384534062*x^18-1458332047449510166692*x^17-600712938182240019770*x^16+6552208084857389633142*x^15+2498407857001731546754*x^14-19541813165210961780082*x^13-6676501936427590344878*x^12+38195090631309803203770*x^11+11043329431286818169158*x^10-47238107601055776891602*x^9-10416356848134011152886*x^8+34681526047738295134688*x^7+4740597055385635784960*x^6-13492530248410427200768*x^5-597205943570256385760*x^4+2256984105425652223424*x^3-118588607289162016000*x^2-96170634565997405440*x+7853624756069724672,5249902847679014*x^25+6917718088872328*x^24-230380773360000282*x^23-283862362388010622*x^22+4413852175563515006*x^21+5031840124852382250*x^20-48463187025905528690*x^19-50490118550430917450*x^18+336458731664342574856*x^17+315647847658478612770*x^16-1537192827915222088306*x^15-1274873574684252159902*x^14+4664506684904028843662*x^13+3336615517159105505106*x^12-9276772430138878447294*x^11-5522197277259583650522*x^10+11672088285548826378726*x^9+5467579222671958927322*x^8-8716559235904037622164*x^7-2934998705974986714880*x^6+3459604942913529381680*x^5+709610706918514645280*x^4-610372869305135855104*x^3-43162625676360346112*x^2+37117178825641774848*x+648509827150374400,26342533346317530*x^25+950095294849004*x^24-1123047179232118614*x^23-58701198709642878*x^22+20824030368479400094*x^21+1462394493645367594*x^20-220397440802296954226*x^19-19771251568737040866*x^18+1468977536094228047420*x^17+160971333691608378750*x^16-6418342560622549400482*x^15-817401515311415502878*x^14+18559745268252982356190*x^13+2575243342960890848994*x^12-35058422728101771236374*x^11-4828604764352524710362*x^10+41751217613495361653918*x^9+4914539091267580368074*x^8-29393846820908657371376*x^7-2202381795821390598728*x^6+10911307484110066662144*x^5+110372535898034399232*x^4-1723187878005840720768*x^3+126518797487313556352*x^2+70258705372387888128*x-5583699733726862848,18286899019576087*x^25-11788688795972058*x^24-766111264106621881*x^23+471168870486082791*x^22+13922639055892491201*x^21-8069778480182433605*x^20-144001763638989605479*x^19+77397866044694049257*x^18+935158897724266202646*x^17-456656313606355035067*x^16-3970050046577309300871*x^15+1719687671324427722719*x^14+11130371603133618637169*x^13-4174582169576353238401*x^12-20361915844234980816541*x^11+6503610407720369451005*x^10+23492863605680564906457*x^9-6410159455082569400069*x^8-16063927449310590557540*x^7+3863882041663703356292*x^6+5827932526690339834448*x^5-1314269616726142142368*x^4-898562678453915239744*x^3+206067029758566883968*x^2+30927202682115827200*x-5315451360460872960,-49715002540925740*x^25+8044838377116508*x^24+2098876033627208860*x^23-286478508090135512*x^22-38484121837808310144*x^21+4123457206876596144*x^20+402111875244364126288*x^19-29551110317287537160*x^18-2641315656564159398668*x^17+95418545703241822532*x^16+11353144795874483803080*x^15+32454807902352107072*x^14-32241464197124262783392*x^13-1266464879535515152160*x^12+59726056701956613334328*x^11+3980031062084428395072*x^10-69698565374877172366200*x^9-5373852583861291763248*x^8+48130423829961741836788*x^7+3089758845986213669440*x^6-17622200047705253360016*x^5-408828180340288700064*x^4+2775464126256199682624*x^3-138090030429563417216*x^2-112833732485310371328*x+9076571644249504768,-56110868636157519*x^25-14167050658728546*x^24+2407770031756704689*x^23+618221407508875301*x^22-44982109639487794205*x^21-11749028630797762783*x^20+480205810005185838667*x^19+127457838917084090611*x^18-3232372836488555689970*x^17-867274255430576753949*x^16+14282381679608955347771*x^15+3821479708161349032477*x^14-41827237966022560798509*x^13-10852780589386765537107*x^12+80152307457955451848481*x^11+19150351687869219672983*x^10-97035244065625835334989*x^9-19476787402060323353439*x^8+69632512720701113191952*x^7+9935997843508556577444*x^6-26437729258757557281008*x^5-1774851444980065756688*x^4+4284540355658002950400*x^3-108172364952047016576*x^2-172098305506650080512*x+12633914603585896704,618506107859120384*x^4-3711036647154722304*x^2+2474024431436481536,-18904130629746402*x^25+2279233293432972*x^24+806669579577781574*x^23-83053748156933762*x^22-14983133123929132742*x^21+1247601037128211870*x^20+159048780086388019786*x^19-9817957271781678662*x^18-1065366632901847193388*x^17+42112591244009138786*x^16+4693204859976506413634*x^15-90338943647614407130*x^14-13754234639710549337286*x^13+71648045394752226918*x^12+26553261083954394397758*x^11-84354359911168543742*x^10-32764561573389843092038*x^9+605821687463066963214*x^8+24453505219636649741408*x^7-1267776446190032801024*x^6-10020235007700979701584*x^5+962414379233324717312*x^4+1878915913399942568448*x^3-254493993656384578688*x^2-99559743680226512384*x+11658337048862910464]];

E[420,1] = [x, [1,0,1,0,1,0,-1,0,1,0,2,0,4,0,1,0,2]];
E[420,2] = [x, [1,0,1,0,-1,0,1,0,1,0,6,0,-4,0,-1,0,6]];
E[420,3] = [x, [1,0,-1,0,1,0,1,0,1,0,-2,0,4,0,-1,0,2]];
E[420,4] = [x, [1,0,-1,0,-1,0,-1,0,1,0,2,0,4,0,1,0,6]];

E[421,1] = [x^19-4*x^18-20*x^17+93*x^16+145*x^15-874*x^14-402*x^13+4263*x^12-159*x^11-11551*x^10+3133*x^9+17375*x^8-5935*x^7-14018*x^6+4016*x^5+5896*x^4-1088*x^3-1185*x^2+101*x+89, [18235058,18235058*x,2861102*x^18-4909510*x^17-77100930*x^16+123043292*x^15+866376364*x^14-1268952028*x^13-5250245152*x^12+6943683190*x^11+18512299508*x^10-21631533850*x^9-38164461826*x^8+38069710030*x^7+43922664732*x^6-34928343146*x^5-25767235658*x^4+13753078464*x^3+7205220666*x^2-1747943046*x-730080762,18235058*x^2-36470116,1756218*x^18-3976489*x^17-42864974*x^16+93225979*x^15+430254627*x^14-886208792*x^13-2297447469*x^12+4392300162*x^11+7059201980*x^10-12170815053*x^9-12628043807*x^8+18853961126*x^7+12727252072*x^6-15616138215*x^5-6676576296*x^4+6319228471*x^3+1617841080*x^2-881163033*x-131854079,6534898*x^18-19878890*x^17-143039194*x^16+451516574*x^15+1231651120*x^14-4100082148*x^13-5253194636*x^12+18967214726*x^11+11417055352*x^10-47128294392*x^9-11641937220*x^8+60903305102*x^7+5178584690*x^6-37257421290*x^5-3115978928*x^4+10318099642*x^3+1642462824*x^2-1019052064*x-254638078,-6246956*x^18+21827722*x^17+125839974*x^16-487308416*x^15-931167526*x^14+4314403664*x^13+2803818188*x^12-19181059750*x^11-784994748*x^10+44509257454*x^9-13492403466*x^8-50261891802*x^7+25597957088*x^6+22356038990*x^5-14311648076*x^4-3164102160*x^3+2886706532*x^2+51137386*x-186916038,18235058*x^3-72940232*x,2718294*x^18-15017332*x^17-42743478*x^16+344113184*x^15+132800058*x^14-3167203988*x^13+1248289136*x^12+14966520700*x^11-11046680250*x^10-38506963834*x^9+34041552738*x^8+52803900224*x^7-47160710850*x^6-35563221560*x^5+27565460644*x^4+10453199092*x^3-6687016332*x^2-919809446*x+589457394,3048383*x^18-7740614*x^17-70102295*x^16+175603017*x^15+648725740*x^14-1591447833*x^13-3094457172*x^12+7338440642*x^11+8115259065*x^10-18130274801*x^9-11660326624*x^8+23150405902*x^7+9002525709*x^6-13729547784*x^5-4035432857*x^4+3528606264*x^3+1199955297*x^2-309232097*x-156303402,-5022772*x^18+23036924*x^17+87662730*x^16-518385508*x^15-444085022*x^14+4646048398*x^13-481362340*x^12-21078461512*x^11+11819149282*x^10+50768480936*x^9-40974685058*x^8-62140671722*x^7+57658390954*x^6+34463965750*x^5-31929773698*x^4-8667117950*x^3+6950162522*x^2+782356424*x-466472406,538498*x^18-2522214*x^17-2027080*x^16+38004326*x^15-121334024*x^14-88261584*x^13+1609434856*x^12-1431262246*x^11-8668286610*x^10+11147295046*x^9+23688376004*x^8-32176215740*x^7-33496550590*x^6+40496556996*x^5+23322812350*x^4-18753725080*x^3-7685639266*x^2+2581223316*x+878555602,-6138980*x^18+23834470*x^17+116729826*x^16-535672826*x^15-747008406*x^14+4789156366*x^13+1088482778*x^12-21616317754*x^11+7947824214*x^10+51456700478*x^9-39069107686*x^8-61035507408*x^7+68092742696*x^6+30423694524*x^5-51163203172*x^4-5193989718*x^3+16468789200*x^2+64622708*x-1758528026,-3160102*x^18+900854*x^17+93658492*x^16-25358906*x^15-1145435880*x^14+292541876*x^13+7449713678*x^12-1778260752*x^11-27649331302*x^10+6079309682*x^9+58278968698*x^8-11477726772*x^7-65213790218*x^6+10776127220*x^5+33667950416*x^4-3909981596*x^3-7351505474*x^2+444026518*x+555979084,14107310*x^18-60052292*x^17-256141428*x^16+1348726150*x^15+1463077474*x^14-12051233754*x^13-486613238*x^12+54391400978*x^11-25506135088*x^10-129715997348*x^9+99168248134*x^8+155297942932*x^7-148585645292*x^6-81043493514*x^5+89986837374*x^4+17574530090*x^3-23098467786*x^2-1268787226*x+2137785300,18235058*x^4-109410348*x^2+72940232,-13264226*x^18+57597521*x^17+241452738*x^16-1301780639*x^15-1391464565*x^14+11741852682*x^13+623168701*x^12-53793610836*x^11+23063410922*x^10+131654576719*x^9-90325301861*x^8-165800017930*x^7+134350195484*x^6+96861536419*x^5-79148494462*x^4-25464584337*x^3+19004714496*x^2+2463637405*x-1542912925]];
E[421,2] = [x^15+6*x^14-2*x^13-71*x^12-74*x^11+296*x^10+488*x^9-494*x^8-1157*x^7+205*x^6+1137*x^5+203*x^4-374*x^3-127*x^2+3*x+3, [24617,24617*x,-25193*x^14-139169*x^13+111469*x^12+1714563*x^11+1101947*x^10-7699217*x^9-8792218*x^8+15213141*x^7+21912927*x^6-12318890*x^5-22124776*x^4+1991679*x^3+7618866*x^2+844015*x-229186,24617*x^2-49234,22400*x^14+122208*x^13-106252*x^12-1516251*x^11-900656*x^10+6884713*x^9+7511320*x^8-13885777*x^7-18990607*x^6+11807197*x^5+19349004*x^4-2528241*x^3-6727668*x^2-555389*x+212047,11989*x^14+61083*x^13-74140*x^12-762335*x^11-242089*x^10+3501966*x^9+2767799*x^8-7235374*x^7-7154325*x^6+6519665*x^5+7105858*x^4-1803316*x^3-2355496*x^2-153607*x+75579,-9732*x^14-52251*x^13+49908*x^12+654805*x^11+351986*x^10-3026606*x^9-3132051*x^8+6356091*x^7+8147248*x^6-6082602*x^5-8594613*x^4+2265940*x^3+3152696*x^2-229332*x-135633,24617*x^3-98468*x,58149*x^14+329799*x^13-218189*x^12-4033630*x^11-3056740*x^10+17897494*x^9+22842829*x^8-34610615*x^7-56549697*x^6+26768283*x^5+57714804*x^4-3338244*x^3-20461510*x^2-2100883*x+670184,-12192*x^14-61452*x^13+74149*x^12+756944*x^11+254313*x^10-3419880*x^9-2820177*x^8+6926193*x^7+7215197*x^6-6119796*x^5-7075441*x^4+1649932*x^3+2289411*x^2+144847*x-67200,15431*x^14+87106*x^13-62166*x^12-1066618*x^11-729237*x^10+4759078*x^9+5469436*x^8-9377862*x^7-13019022*x^6+7761488*x^5+12265003*x^4-1665986*x^3-3686252*x^2-271133*x-1979,39535*x^14+228176*x^13-134054*x^12-2784029*x^11-2250672*x^10+12315601*x^9+16271628*x^8-23709334*x^7-39763934*x^6+18112145*x^5+40012469*x^4-1854968*x^3-13868736*x^2-1648418*x+422405,20552*x^14+123942*x^13-45052*x^12-1495721*x^11-1499873*x^10+6485166*x^9+10133695*x^8-11956949*x^7-24682389*x^6+8005410*x^5+25309884*x^4+535357*x^3-9036331*x^2-1313376*x+200892,6141*x^14+30444*x^13-36167*x^12-368182*x^11-145934*x^10+1617165*x^9+1548483*x^8-3112676*x^7-4087542*x^6+2470671*x^5+4241536*x^4-487072*x^3-1465296*x^2-106437*x+29196,-23241*x^14-144837*x^13+35955*x^12+1750637*x^11+1890261*x^10-7620757*x^9-12363344*x^8+14233123*x^7+29705016*x^6-10087296*x^5-30001720*x^4+194220*x^3+10568443*x^2+1264641*x-374270,24617*x^4-147702*x^2+98468,-22369*x^14-143737*x^13+12512*x^12+1712070*x^11+2095321*x^10-7260440*x^9-13200156*x^8+12769687*x^7+31439211*x^6-7278221*x^5-31704107*x^4-2007574*x^3+11119222*x^2+1615379*x-339807]];

E[422,1] = [x^3+5*x^2+6*x+1, [1,1,x,1,x^2+2*x-2,x,-2*x^2-7*x-6,1,x^2-3,x^2+2*x-2,-3*x^2-11*x-7,x,2*x^2+9*x+4,-2*x^2-7*x-6,-3*x^2-8*x-1,1,2*x^2+9*x+4]];
E[422,2] = [x^6-4*x^5-4*x^4+28*x^3-15*x^2-33*x+28, [1,1,x,1,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,x,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,1,x^2-3,-4*x^5+10*x^4+31*x^3-66*x^2-38*x+77,2*x^5-6*x^4-14*x^3+41*x^2+13*x-47,x,6*x^5-15*x^4-46*x^3+97*x^2+54*x-107,3*x^5-7*x^4-24*x^3+45*x^2+31*x-50,-6*x^5+15*x^4+46*x^3-98*x^2-55*x+112,1,x^5-3*x^4-8*x^3+23*x^2+11*x-32]];
E[422,3] = [x^2-3*x+1, [1,-1,x,1,-2*x+4,-x,4,-1,3*x-4,2*x-4,-2*x+4,x,0,-4,-2*x+2,1,-2]];
E[422,4] = [x^3+x^2-6*x-5, [1,-1,x,1,x^2-4,-x,-x,-1,x^2-3,-x^2+4,-x^2+x+3,x,x+4,x,-x^2+2*x+5,1,x+2]];
E[422,5] = [x^3+x^2-8*x-3, [3,-3,3*x,3,-x^2-2*x,-3*x,-3*x-6,-3,3*x^2-9,x^2+2*x,x^2-x+3,3*x,-2*x^2-x,3*x+6,-x^2-8*x-3,3,2*x^2+x-18]];
E[422,6] = [x, [1,-1,0,1,1,0,-2,-1,-3,-1,-3,0,-7,2,0,1,4]];

E[423,1] = [x^2-x-4, [1,x,0,x+2,x-1,0,-x+1,x+4,0,4,-x-3,0,2*x-4,-4,0,3*x,-2*x]];
E[423,2] = [x^3+2*x^2-3*x-2, [1,x,0,x^2-2,-x-1,0,-x^2-2*x+1,-2*x^2-x+2,0,-x^2-x,x^2+2*x-5,0,2*x,-2*x-2,0,x^2-4*x,-4]];
E[423,3] = [x^3-2*x^2-3*x+2, [1,x,0,x^2-2,-x+1,0,-x^2+2*x+1,2*x^2-x-2,0,-x^2+x,-x^2+2*x+5,0,-2*x,-2*x+2,0,x^2+4*x,4]];
E[423,4] = [x^4+x^3-5*x^2-5*x-1, [1,x,0,x^2-2,-4*x^3-2*x^2+20*x+10,0,-3*x^3-x^2+16*x+7,x^3-4*x,0,2*x^3-10*x-4,2*x^3+2*x^2-10*x-6,0,4*x^3+2*x^2-22*x-8,2*x^3+x^2-8*x-3,0,-x^3-x^2+5*x+5,x^3-x^2-6*x]];
E[423,5] = [x, [1,0,0,-2,1,0,-3,0,0,0,3,0,-4,0,0,4,-8]];
E[423,6] = [x, [1,2,0,2,3,0,-3,0,0,6,5,0,2,-6,0,-4,6]];
E[423,7] = [x, [1,2,0,2,3,0,1,0,0,6,-3,0,0,2,0,-4,0]];
E[423,8] = [x, [1,-2,0,2,-3,0,1,0,0,6,3,0,0,-2,0,-4,0]];
E[423,9] = [x, [1,-2,0,2,1,0,-3,0,0,-2,-1,0,-2,6,0,-4,-2]];
E[423,10] = [x, [1,1,0,-1,-2,0,0,-3,0,-2,-4,0,-2,0,0,-1,-2]];
E[423,11] = [x, [1,1,0,-1,0,0,4,-3,0,0,0,0,6,4,0,-1,6]];

E[424,1] = [x^3-2*x^2-3*x+2, [1,0,x,0,-x^2+2*x+3,0,2,0,x^2-3,0,-x^2+5,0,x^2-2*x-4,0,2,0,2*x^2-4*x-5]];
E[424,2] = [x^3+x^2-3*x-1, [1,0,x,0,-x^2-2*x+1,0,x^2-5,0,x^2-3,0,x^2+2*x-3,0,2*x^2-5,0,-x^2-2*x-1,0,-4*x^2-2*x+7]];
E[424,3] = [x^5-x^4-13*x^3+9*x^2+42*x-16, [2,0,2*x,0,x^4-x^3-7*x^2+5*x+4,0,-2*x^3+14*x,0,2*x^2-6,0,-x^4+x^3+7*x^2-5*x,0,2*x^3-2*x^2-14*x+12,0,6*x^3-4*x^2-38*x+16,0,-x^4+x^3+5*x^2-5*x+12]];
E[424,4] = [x^2+2*x-1, [1,0,x,0,-2,0,-2*x,0,-2*x-2,0,-2*x-4,0,2*x-1,0,-2*x,0,-3]];

E[425,1] = [x^2-3, [1,x,-x-1,1,0,-x-3,x+1,-x,2*x+1,0,x+3,-x-1,4,x+3,0,-5,1]];
E[425,2] = [x^2-2*x-1, [1,x,-x+3,2*x-1,0,x-1,x+1,x+2,-4*x+7,0,-x-3,3*x-5,-2*x+2,3*x+1,0,3,1]];
E[425,3] = [x^5-x^4-10*x^3+6*x^2+21*x+3, [2,2*x,-x^3-x^2+7*x+5,2*x^2-4,0,-x^4-x^3+7*x^2+5*x,x^4-x^3-7*x^2+5*x+4,2*x^3-8*x,2*x+2,0,x^4-8*x^2-2*x+9,-2*x^4-x^3+13*x^2+7*x-7,-2*x^3+12*x+4,3*x^3-x^2-17*x-3,0,2*x^4-12*x^2+8,-2]];
E[425,4] = [x^5+x^4-10*x^3-6*x^2+21*x-3, [2,2*x,-x^3+x^2+7*x-5,2*x^2-4,0,-x^4+x^3+7*x^2-5*x,-x^4-x^3+7*x^2+5*x-4,2*x^3-8*x,-2*x+2,0,x^4-8*x^2+2*x+9,2*x^4-x^3-13*x^2+7*x+7,-2*x^3+12*x-4,-3*x^3-x^2+17*x-3,0,2*x^4-12*x^2+8,2]];
E[425,5] = [x^4+2*x^3-4*x^2-8*x-1, [1,x,-x^3-x^2+4*x+2,x^2-2,0,x^3-6*x-1,-x-3,x^3-4*x,2*x^3+x^2-8*x-2,0,x^2-x-4,-x-3,3*x^3+2*x^2-13*x-8,-x^2-3*x,0,-2*x^3-2*x^2+8*x+5,1]];
E[425,6] = [x^4-2*x^3-4*x^2+8*x-1, [1,x,-x^3+x^2+4*x-2,x^2-2,0,-x^3+6*x-1,-x+3,x^3-4*x,-2*x^3+x^2+8*x-2,0,x^2+x-4,-x+3,3*x^3-2*x^2-13*x+8,-x^2+3*x,0,2*x^3-2*x^2-8*x+5,-1]];
E[425,7] = [x, [1,-1,-2,-1,0,2,2,3,1,0,2,2,-2,-2,0,-1,-1]];
E[425,8] = [x, [1,-1,1,-1,0,-1,-1,3,-2,0,-4,-1,1,1,0,-1,-1]];
E[425,9] = [x, [1,1,-1,-1,0,-1,1,-3,-2,0,-4,1,-1,1,0,-1,1]];
E[425,10] = [x, [1,1,0,-1,0,0,-4,-3,-3,0,0,0,2,-4,0,-1,-1]];

E[426,1] = [x, [1,-1,-1,1,-2,1,2,-1,1,2,-2,-1,0,-2,2,1,0]];
E[426,2] = [x^2-2*x-7, [2,-2,-2,2,2*x,2,3*x-5,-2,2,-2*x,-x+11,-2,-2*x-6,-3*x+5,-2*x,2,-2*x+2]];
E[426,3] = [x, [1,-1,1,1,3,-1,-1,-1,1,-3,3,1,2,1,3,1,-6]];
E[426,4] = [x^2+3*x-2, [1,-1,1,1,x,-1,x+4,-1,1,-x,-x-2,1,2,-x-4,x,1,-2*x]];
E[426,5] = [x^3-4*x^2-3*x+10, [2,2,-2,2,2*x,-2,x^2-3*x-2,2,2,2*x,-x^2-x+10,-2,-2*x^2+6*x+8,x^2-3*x-2,-2*x,2,2*x^2-6*x]];
E[426,6] = [x, [1,1,1,1,1,1,3,1,1,1,-3,1,-6,3,1,1,-2]];
E[426,7] = [x^3-x^2-12*x+4, [2,2,2,2,2*x,2,-2*x,2,2,2*x,x^2-x-6,2,-x^2-x+14,-2*x,2*x,2,-2*x^2+2*x+12]];

E[427,1] = [x, [1,1,1,-1,-4,1,1,-3,-2,-4,-3,-1,-4,1,-4,-1,5]];
E[427,2] = [x, [1,-1,1,-1,0,-1,-1,3,-2,0,-5,-1,4,1,0,-1,-5]];
E[427,3] = [x^6+5*x^5+2*x^4-18*x^3-12*x^2+18*x+5, [1,x,x^5+3*x^4-3*x^3-9*x^2+4*x+3,x^2-2,-x^5-3*x^4+2*x^3+7*x^2-2*x-2,-2*x^5-5*x^4+9*x^3+16*x^2-15*x-5,-1,x^3-4*x,x^5+2*x^4-5*x^3-6*x^2+6*x+1,2*x^5+4*x^4-11*x^3-14*x^2+16*x+5,-x^5-3*x^4+3*x^3+9*x^2-4*x-4,3*x^5+7*x^4-14*x^3-21*x^2+23*x+4,-x^5-2*x^4+8*x^3+12*x^2-14*x-10,-x,-2*x^5-5*x^4+9*x^3+16*x^2-14*x-6,x^4-6*x^2+4,-x^4-4*x^3-x^2+9*x+2]];
E[427,4] = [x^7-4*x^6-3*x^5+26*x^4-12*x^3-38*x^2+23*x+11, [1,x,-2*x^6+5*x^5+13*x^4-31*x^3-21*x^2+38*x+13,x^2-2,x^6-2*x^5-7*x^4+12*x^3+13*x^2-14*x-7,-3*x^6+7*x^5+21*x^4-45*x^3-38*x^2+59*x+22,1,x^3-4*x,x^6-2*x^5-8*x^4+13*x^3+18*x^2-18*x-10,2*x^6-4*x^5-14*x^4+25*x^3+24*x^2-30*x-11,-x^6+2*x^5+7*x^4-13*x^3-13*x^2+18*x+9,-x^6+2*x^5+7*x^4-12*x^3-13*x^2+15*x+7,x^6-4*x^5-6*x^4+26*x^3+10*x^2-34*x-9,x,-4*x^6+10*x^5+27*x^4-63*x^3-48*x^2+80*x+30,x^4-6*x^2+4,4*x^6-10*x^5-27*x^4+64*x^3+47*x^2-83*x-28]];
E[427,5] = [x^9-5*x^8-3*x^7+45*x^6-32*x^5-108*x^4+123*x^3+30*x^2-43*x+4, [16,16*x,-5*x^8+18*x^7+37*x^6-170*x^5-30*x^4+434*x^3-161*x^2-161*x+28,16*x^2-32,2*x^8-4*x^7-18*x^6+20*x^5+60*x^4+12*x^3-86*x^2-86*x+40,-7*x^8+22*x^7+55*x^6-190*x^5-106*x^4+454*x^3-11*x^2-187*x+20,-16,16*x^3-64*x,x^8-10*x^7+15*x^6+82*x^5-170*x^4-202*x^3+381*x^2+141*x-60,6*x^8-12*x^7-70*x^6+124*x^5+228*x^4-332*x^3-146*x^2+126*x-8,-x^8+10*x^7-15*x^6-82*x^5+186*x^4+170*x^3-461*x^2-13*x+108,-3*x^8-2*x^7+51*x^6+10*x^5-242*x^4-18*x^3+345*x^2+41*x-28,2*x^8-4*x^7-18*x^6+20*x^5+76*x^4-20*x^3-166*x^2+42*x+72,-16*x,16*x^4-48*x^3-64*x^2+192*x,16*x^4-96*x^2+64,-5*x^8+18*x^7+37*x^6-154*x^5-62*x^4+354*x^3-33*x^2-145*x+44]];
E[427,6] = [x^6+5*x^5+2*x^4-22*x^3-30*x^2+9, [3,3*x,-x^5-5*x^4+x^3+25*x^2+12*x-15,3*x^2-6,3*x^5+9*x^4-12*x^3-45*x^2-6*x+18,3*x^4+3*x^3-18*x^2-15*x+9,3,3*x^3-12*x,x^5+8*x^4+5*x^3-40*x^2-36*x+21,-6*x^5-18*x^4+21*x^3+84*x^2+18*x-27,-5*x^5-13*x^4+23*x^3+59*x^2-6*x-18,5*x^5+13*x^4-20*x^3-65*x^2-15*x+30,-3*x^5-12*x^4+6*x^3+60*x^2+30*x-30,3*x,3*x^4+3*x^3-12*x^2-6*x,3*x^4-18*x^2+12,6*x^5+21*x^4-18*x^3-99*x^2-39*x+18]];
E[427,7] = [x, [1,0,2,-2,4,0,1,0,1,0,-2,-4,2,0,8,4,5]];

E[428,1] = [x, [1,0,-1,0,2,0,-4,0,-2,0,-5,0,1,0,-2,0,2]];
E[428,2] = [x, [1,0,1,0,2,0,4,0,-2,0,-3,0,5,0,2,0,-6]];
E[428,3] = [x^2+3*x-1, [1,0,x,0,-x-2,0,-1,0,-3*x-2,0,1,0,-2,0,x-1,0,x-3]];
E[428,4] = [x^5-5*x^4-2*x^3+32*x^2-10*x-43, [3,0,3*x,0,-2*x^4+5*x^3+12*x^2-19*x-17,0,x^4-x^3-9*x^2+2*x+19,0,3*x^2-9,0,-3*x^2+3*x+18,0,3*x^4-9*x^3-18*x^2+39*x+27,0,-5*x^4+8*x^3+45*x^2-37*x-86,0,3*x^4-6*x^3-27*x^2+27*x+66]];

E[429,1] = [x^2-3, [1,x,-1,1,-x-1,-x,-2,-x,1,-x-3,-1,-1,-1,-2*x,x+1,-5,-x+5]];
E[429,2] = [x^3-x^2-3*x+1, [1,x,1,x^2-2,-x^2+x+2,x,-x^2+2*x+1,x^2-x-1,1,-x+1,1,x^2-2,1,x^2-2*x+1,-x^2+x+2,-2*x^2+2*x+3,2*x^2-3*x-1]];
E[429,3] = [x^3+x^2-5*x-3, [1,x,-1,x^2-2,x^2+x-4,-x,x^2-3,-x^2+x+3,1,x+3,1,-x^2+2,-1,-x^2+2*x+3,-x^2-x+4,-2*x+1,-x-1]];
E[429,4] = [x^3-3*x^2-x+5, [1,x,1,x^2-2,-x^2+x+4,x,-x^2+3,3*x^2-3*x-5,1,-2*x^2+3*x+5,-1,x^2-2,-1,-3*x^2+2*x+5,-x^2+x+4,4*x^2-2*x-11,-x+1]];
E[429,5] = [x^4+2*x^3-6*x^2-12*x-1, [1,x,-1,x^2-2,x^3-6*x-1,-x,x^3-5*x,x^3-4*x,1,-2*x^3+11*x+1,-1,-x^2+2,1,-2*x^3+x^2+12*x+1,-x^3+6*x+1,-2*x^3+12*x+5,-x^3-x^2+8*x+4]];
E[429,6] = [x^2+2*x-1, [1,x,1,-2*x-1,x-1,x,-2*x-4,x-2,1,-3*x+1,1,-2*x-1,-1,-2,x-1,3,-x-5]];
E[429,7] = [x, [1,-1,-1,-1,0,1,0,3,1,0,1,1,1,0,0,-1,-4]];
E[429,8] = [x, [1,-1,1,-1,-2,-1,0,3,1,2,-1,-1,1,0,-2,-1,-6]];

E[430,1] = [x^2-2, [1,1,x,1,1,x,1,1,-1,1,-x+2,x,-2*x+1,1,x,1,x]];
E[430,2] = [x^2-6, [1,1,x,1,-1,x,1,1,3,-1,-x+2,x,-1,1,-x,1,-x]];
E[430,3] = [x, [1,1,-2,1,1,-2,-5,1,1,1,-2,-2,-5,-5,-2,1,2]];
E[430,4] = [x, [1,1,-2,1,-1,-2,-1,1,1,-1,-6,-2,5,-1,2,1,-6]];
E[430,5] = [x^2-2*x-2, [1,-1,x,1,1,-x,-2*x+3,-1,2*x-1,-1,-x+2,x,2*x-1,2*x-3,x,1,x+4]];
E[430,6] = [x^3+2*x^2-6*x-8, [2,-2,2*x,2,-2,-2*x,x^2+2*x-8,-2,2*x^2-6,2,-2*x^2+2*x+16,2*x,-3*x^2-2*x+12,-x^2-2*x+8,-2*x,2,2*x^2+2*x-4]];
E[430,7] = [x, [1,-1,0,1,1,0,-3,-1,-3,-1,0,0,-3,3,0,1,-4]];
E[430,8] = [x, [1,-1,0,1,-1,0,1,-1,-3,1,-4,0,-1,-1,0,1,0]];

E[431,1] = [x^4+x^3-3*x^2-x+1, [1,x,-x^3-x^2+3*x,x^2-2,x^3+x^2-3*x-2,-x+1,-x^2-x+2,x^3-4*x,x^3-4*x,-x-1,-x^3-2*x^2+2,2*x^3+x^2-5*x,2*x^3+3*x^2-4*x-4,-x^3-x^2+2*x,x^3+2*x^2-2*x-3,-x^3-3*x^2+x+3,-x^3+2*x^2+3*x-4]];
E[431,2] = [x^24-x^23-40*x^22+40*x^21+692*x^20-687*x^19-6790*x^18+6631*x^17+41657*x^16-39533*x^15-166175*x^14+150668*x^13+434546*x^12-367120*x^11-733353*x^10+555013*x^9+766426*x^8-486022*x^7-458392*x^6+216189*x^5+133642*x^4-39443*x^3-11021*x^2+2767*x+13, [3739222839496792400,3739222839496792400*x,7935096512256799*x^23+810620141708163*x^22-347056827413606066*x^21-23895258075624573*x^20+6643058587402330834*x^19+252660572416622679*x^18-73061583647644979333*x^17-758983487655886210*x^16+509534382412117002413*x^15-6650597706161081198*x^14-2345291193955692024574*x^13+72258602694291551120*x^12+7184575795215946444514*x^11-293971286954165816598*x^10-14402977230229462788321*x^9+590485552799907048989*x^8+18032974552918244244406*x^7-515734288981752615025*x^6-12801662575745517106358*x^5+27385716846365639607*x^4+4165925951152361601299*x^3+138803431432890603680*x^2-321943156993297734389*x+10917761056369362926,3739222839496792400*x^2-7478445678993584800,-6003837216916642*x^23-25519417413591614*x^22+287562107923492403*x^21+1002408111908591174*x^20-6011501607761727132*x^19-16932298038253081847*x^18+71928844431916175609*x^17+160827436846257916510*x^16-543060246362583052439*x^15-942558898465922137941*x^14+2689980717810505381012*x^13+3517749072355698182560*x^12-8804726807274501644302*x^11-8320124430544179870646*x^10+18689228698024334454698*x^9+11998378247655425125968*x^8-24465019598760262751343*x^7-9709914382292721658750*x^6+17796031658323038626364*x^5+3820952747901107923889*x^4-5722288875361777878787*x^3-651551490728019157710*x^2+432741984388948972677*x+13141980820492227997,8745716653964962*x^23-29652966923334106*x^22-341299118565896533*x^21+1151971800920625926*x^20+5704071876337043592*x^19-19182278329421314123*x^18-53376608460430720379*x^17+178982067001035526470*x^16+307047572712886953669*x^15-1026676531031418450749*x^14-1123306518614415840612*x^13+3736411346200803466260*x^12+2619161344625550232282*x^11-8583750397676402471274*x^10-3813596167757275734398*x^9+11951310273415314814032*x^8+3340897188098321348553*x^7-9164277815299098499150*x^6-1688094863041919479404*x^5+3105463783061338469341*x^4+451787443165835526637*x^3-234490458331715552610*x^2-11038650993045199907*x-103156254659338387,-143150520486373692*x^23+243352793885647876*x^22+5525725862722532978*x^21-9598993897319374536*x^20-91221690741440240992*x^19+162328065917404749838*x^18+840535066727456971654*x^17-1538648140726313503460*x^16-4728215687348435290574*x^15+8968316948233314064834*x^14+16658188289896411025032*x^13-33165496138812343316320*x^12-36110700346697339209292*x^11+77378252899513210812124*x^10+44774500963538149918228*x^9-109233484657811697272352*x^8-25718535426184754729938*x^7+84669827426659596449000*x^6+1260478077435543950064*x^5-29026165351366834049466*x^4+2761249926099770742718*x^3+2556838898063913309020*x^2-399745417757493770358*x+5073182238849510902,3739222839496792400*x^3-14956891357987169600*x,34710677557254954*x^23-45437716117336442*x^22-1365048373449729261*x^21+1796242652260830102*x^20+23097022670077719324*x^19-30461595267189805851*x^18-220099642809166571563*x^17+289821021040911981910*x^16+1298739296626790041833*x^15-1698159508100251360333*x^14-4915759482022420347324*x^13+6327969513906895380400*x^12+11965460145504538640634*x^11-14936604419492682979678*x^10-18298593960580544437946*x^9+21492355675734960727364*x^8+16734476667729751055121*x^7-17258057985710288689950*x^6-8497331767635338783068*x^5+6413087485031861979677*x^4+2176928128674512924649*x^3-739400738708113787950*x^2-145593396630496150659*x+29287179901976449941,-31523254630508256*x^23+47408619246826723*x^22+1242561600585256854*x^21-1856846253655410868*x^20-21056934206274814901*x^19+31162789729052176429*x^18+200638881431632169612*x^17-292958399417486496645*x^16-1179908595162287746127*x^15+1692293068289382396662*x^14+4422335218154094799416*x^13-6195783360012242529770*x^12-10524253149618617481686*x^11+14286296663486864294072*x^10+15330585952927981352314*x^9-19863522655947708489851*x^8-12627911354132981836874*x^7+15043920708786185266700*x^6+5118916311989099841227*x^5-4919924062018604008623*x^4-888360842074862268116*x^3+366573694421310661195*x^2+29754598399700576411*x+78049883819916346,269806514115488964*x^23-356762590862336942*x^22-10527353746325305226*x^21+14143848584044171712*x^20+176330047365078878014*x^19-240329092973587773996*x^18-1657517977748366357518*x^17+2288176195402201058070*x^16+9592693908245268150408*x^15-13391576685572816456078*x^14-35263368959942088196144*x^13+49695851963616972646140*x^12+81880554999090756686864*x^11-116221809574712873284508*x^10-115279064269599249960576*x^9+164069302222744687963234*x^8+89830908505094842301946*x^7-126395907128745967727400*x^6-32425830968176529312738*x^5+42146693441308637443572*x^4+4275346203916624577594*x^3-3140553862510670021290*x^2+41952117615319893836*x-16390902062883514834,-36777443293882742*x^23+6908307309285621*x^22+1496256789589239578*x^21-300173532055460966*x^20-26460088162952046897*x^19+5501486475158126243*x^18+267112387163883822114*x^17-55754778966019695945*x^16-1700000879374455612829*x^15+343314141770533882134*x^14+7109294097292594620792*x^13-1325772049876891247210*x^12-19742174490104678510862*x^11+3188043951486222676384*x^10+35903278296607184936168*x^9-4543018549733242715237*x^8-40979616221542228226798*x^7+3352340263365892611750*x^6+26818061196848341512239*x^5-771779055596081204181*x^4-8221385058654098759042*x^3-192258970615478561065*x^2+619583759750415080537*x-21949216429240270358,-158631533291772680*x^23+290744998255858560*x^22+6112792361735046370*x^21-11478337979386589820*x^20-100574602374895331460*x^19+194362901784224784050*x^18+920946327366157859170*x^17-1845608885338950301460*x^16-5120906533996035327090*x^15+10782914145051188462110*x^14+17643843085048449396840*x^13-39996429301057841552440*x^12-36493838340613339355900*x^11+93675373366701854087620*x^10+40133696180499841548760*x^9-132934545471878090488740*x^8-13273579906718470600930*x^7+103973414065699214477500*x^6-11754920931175464058740*x^5-36584457312627922284030*x^4+7900055403858478345610*x^3+3781047969907171061940*x^2-837097369742211893850*x-16144406880598239030,100202273399274184*x^23-200294956732414702*x^22-3872973077864426856*x^21+7838469435130353872*x^20+63983658343266023434*x^19-131456967375020397026*x^18-589417039381169551808*x^17+1235005544552433597070*x^16+3309147421845502898998*x^15-7129849451926737243068*x^14-11597293518171391890064*x^13+26094785728574403154540*x^12+24824833818555701005084*x^11-60205362686705456231048*x^10-29783084831107975354356*x^9+83995745388104688534854*x^8+15095525158831281915776*x^7-64358575309354265473200*x^6+1921402522061808050322*x^5+21892171784939723688982*x^4-3089447081480124224536*x^3-1977407304037818229890*x^2+401170672424645516666*x+1860956766322857996,66810993771158523*x^23-60172503549828834*x^22-2687510804726645232*x^21+2409099918390541319*x^20+46787703365113052333*x^19-41357569776061639632*x^18-462226863155712512221*x^17+398160026230238323385*x^16+2855563193251295139866*x^15-2359302446530452768296*x^14-11463360238535074430478*x^13+8881342421174525109110*x^12+30104869897953058473688*x^11-21125180716118205309726*x^10-50798513904951759890087*x^9+30439976535692693825158*x^8+52659050630612372489892*x^7-24043279606756429376925*x^6-30859708130040992665091*x^5+8234216591935009433584*x^4+8684106323545207904403*x^3-590310298556199654585*x^2-632039508659278533138*x+34029300149331720732,3739222839496792400*x^4-22435337036980754400*x^2+14956891357987169600,-117788546736358508*x^23+104968331082715364*x^22+4691548439132116722*x^21-4205960498737084324*x^20-80719060505631733068*x^19+72216031487268940622*x^18+786222735298969904566*x^17-694841248458781555060*x^16-4774765657591048575186*x^15+4111427484784206282166*x^14+18774785832777732634688*x^13-15439608804187081639560*x^12-48084064604830520181948*x^11+36591508567067124128396*x^10+78715753917838710572652*x^9-52446283416925327777568*x^8-78703079224992023715882*x^7+41066093617126950074300*x^6+44226617562089334640036*x^5-13761128252699472094714*x^4-11832955818329700074738*x^3+809685272284116030260*x^2+708537343307704495998*x-13622784891118521622]];
E[431,3] = [x^3-5*x+1, [1,x,x^2-3,x^2-2,x^2+x-3,2*x-1,-2*x,x-1,-x^2-x+6,x^2+2*x-1,-4,-x+6,2*x^2-4,-2*x^2,-x^2+x+8,-x^2-x+4,-2*x^2-2*x+6]];
E[431,4] = [x^3-x^2-4*x+3, [1,x,-x,x^2-2,-x^2+2,-x^2,-2,x^2-3,x^2-3,-x^2-2*x+3,0,-x^2-2*x+3,-2,-2*x,x^2+2*x-3,-x^2+x+1,-2]];
E[431,5] = [x, [1,-1,1,-1,1,-1,-2,3,-2,-1,-5,-1,-2,2,1,-1,-2]];
E[431,6] = [x, [1,-1,3,-1,-3,-3,2,3,6,3,1,-3,-2,-2,-9,-1,6]];

E[432,1] = [x, [1,0,0,0,-3,0,1,0,0,0,-3,0,-4,0,0,0,0]];
E[432,2] = [x, [1,0,0,0,-4,0,3,0,0,0,4,0,1,0,0,0,4]];
E[432,3] = [x, [1,0,0,0,3,0,1,0,0,0,3,0,-4,0,0,0,0]];
E[432,4] = [x, [1,0,0,0,-1,0,-3,0,0,0,-5,0,4,0,0,0,-8]];
E[432,5] = [x, [1,0,0,0,1,0,-3,0,0,0,5,0,4,0,0,0,8]];
E[432,6] = [x, [1,0,0,0,4,0,3,0,0,0,-4,0,1,0,0,0,-4]];
E[432,7] = [x, [1,0,0,0,0,0,1,0,0,0,0,0,5,0,0,0,0]];
E[432,8] = [x, [1,0,0,0,0,0,-5,0,0,0,0,0,-7,0,0,0,0]];

E[433,1] = [x, [1,-1,-2,-1,-4,2,-3,3,1,4,-4,2,-5,3,8,-1,-3]];
E[433,2] = [x^15+10*x^14+29*x^13-22*x^12-251*x^11-272*x^10+583*x^9+1252*x^8-186*x^7-1821*x^6-675*x^5+899*x^4+482*x^3-93*x^2-27*x-1, [4,4*x,14*x^14+120*x^13+236*x^12-632*x^11-2582*x^10-184*x^9+8120*x^8+5872*x^7-10040*x^6-10414*x^5+4226*x^4+5312*x^3-274*x^2-306*x-24,4*x^2-8,-22*x^14-190*x^13-380*x^12+992*x^11+4146*x^10+378*x^9-13104*x^8-9612*x^7+16484*x^6+16966*x^5-7456*x^4-8630*x^3+858*x^2+424*x+26,-20*x^14-170*x^13-324*x^12+932*x^11+3624*x^10-42*x^9-11656*x^8-7436*x^7+15080*x^6+13676*x^5-7274*x^4-7022*x^3+996*x^2+354*x+14,31*x^14+267*x^13+526*x^12-1432*x^11-5825*x^10-227*x^9+18758*x^8+12654*x^7-24540*x^6-22843*x^5+12418*x^4+11653*x^3-2129*x^2-486*x-9,4*x^3-16*x,-44*x^14-380*x^13-760*x^12+1984*x^11+8292*x^10+760*x^9-26196*x^8-19260*x^7+32864*x^6+34060*x^5-14620*x^4-17484*x^3+1456*x^2+1008*x+60,30*x^14+258*x^13+508*x^12-1376*x^11-5606*x^10-278*x^9+17932*x^8+12392*x^7-23096*x^6-22306*x^5+11148*x^4+11462*x^3-1622*x^2-568*x-22,14*x^14+124*x^13+268*x^12-584*x^11-2794*x^10-788*x^9+8460*x^8+7948*x^7-9740*x^6-13354*x^5+3226*x^4+6960*x^3+206*x^2-562*x-44,2*x^14+16*x^13+20*x^12-132*x^11-318*x^10+372*x^9+1364*x^8-384*x^7-2664*x^6+54*x^5+2506*x^4+12*x^3-958*x^2+86*x+28,8*x^14+68*x^13+128*x^12-388*x^11-1476*x^10+128*x^9+4976*x^8+2708*x^7-7120*x^6-5224*x^5+4456*x^4+2648*x^3-1188*x^2+20*x+12,-43*x^14-373*x^13-750*x^12+1956*x^11+8205*x^10+685*x^9-26158*x^8-18774*x^7+33608*x^6+33343*x^5-16216*x^4-17071*x^3+2397*x^2+828*x+31,26*x^14+226*x^13+460*x^12-1160*x^11-4982*x^10-634*x^9+15672*x^8+12060*x^7-19524*x^6-21138*x^5+8524*x^4+10918*x^3-774*x^2-684*x-54,4*x^4-24*x^2+16,-42*x^14-360*x^13-704*x^12+1928*x^11+7790*x^10+324*x^9-24932*x^8-17112*x^7+32108*x^6+30930*x^5-15490*x^4-15956*x^3+2266*x^2+818*x+16]];
E[433,3] = [x^16-7*x^15-5*x^14+129*x^13-125*x^12-929*x^11+1471*x^10+3333*x^9-6394*x^8-6443*x^7+13118*x^6+7162*x^5-12217*x^4-4691*x^3+3598*x^2+1114*x-3, [197716,197716*x,13456*x^15-56746*x^14-215630*x^13+1035152*x^12+1403792*x^11-7574942*x^10-5201414*x^9+28343416*x^8+13348668*x^7-56176856*x^6-24111798*x^5+52615312*x^4+24553850*x^3-14782282*x^2-7861136*x-325058,197716*x^2-395432,31748*x^15-160070*x^14-478458*x^13+3174656*x^12+2402040*x^11-25188026*x^10-4027502*x^9+101560912*x^8+2012332*x^7-216201984*x^6-20242790*x^5+219968308*x^4+56350086*x^3-66664682*x^2-21379484*x-165534,37446*x^15-148350*x^14-700672*x^13+3085792*x^12+4925682*x^11-24995190*x^10-16505432*x^9+99386332*x^8+30520152*x^7-200627606*x^6-43756560*x^5+188945802*x^4+48339814*x^3-56275824*x^2-15315042*x+40368,55708*x^15-260584*x^14-903966*x^13+5228748*x^12+5197644*x^11-41731712*x^10-12258514*x^9+167843236*x^8+12912160*x^7-352756556*x^6-29636272*x^5+352119146*x^4+68844982*x^3-107855832*x^2-26381794*x+358910,197716*x^3-790864*x,-88392*x^15+439236*x^14+1302268*x^13-8572504*x^12-6098912*x^11+66608004*x^10+6346200*x^9-261659892*x^8+16219636*x^7+540770856*x^6+1472948*x^5-535837780*x^4-90427548*x^3+162423872*x^2+40281088*x-95828,62166*x^15-319718*x^14-920836*x^13+6370540*x^12+4305866*x^11-50728810*x^10-4255172*x^9+205009044*x^8-11649620*x^7-436713054*x^6-7410868*x^5+444215402*x^4+82265186*x^3-135608788*x^2-35532806*x+95244,-137646*x^15+639498*x^14+2223664*x^13-12711724*x^12-12851958*x^11+100461254*x^10+31736612*x^9-399971212*x^8-41110804*x^7+832227506*x^6+92794744*x^5-823715946*x^4-182406258*x^3+252268332*x^2+68027714*x-380856,86860*x^15-399950*x^14-1313482*x^13+7536128*x^12+6984560*x^11-56438614*x^10-15018358*x^9+213263044*x^8+13939636*x^7-422619476*x^6-31018854*x^5+400586972*x^4+70275662*x^3-120481186*x^2-25952204*x+762454,-182691*x^15+854108*x^14+2938339*x^13-17018914*x^12-16723251*x^11+134875698*x^10+39072321*x^9-538770184*x^8-42272078*x^7+1125412803*x^6+102144287*x^5-1117812989*x^4-230831428*x^3+340584749*x^2+87448217*x-555115,129372*x^15-625426*x^14-1957584*x^13+12161144*x^12+10021020*x^11-94204982*x^10-17831528*x^9+369109112*x^8+6170088*x^7-760413816*x^6-46861550*x^5+749429618*x^4+153470396*x^3-226819178*x^2-61699802*x+167124,32672*x^15-182216*x^14-394260*x^13+3384680*x^12+1085272*x^11-25474704*x^10+3009252*x^9+99781516*x^8-14755512*x^7-212971044*x^6-2336464*x^5+223428732*x^4+51607124*x^3-72399696*x^2-23180116*x+452988,197716*x^4-1186296*x^2+790864,43733*x^15-208842*x^14-734087*x^13+4365890*x^12+4283369*x^11-36242176*x^10-9511945*x^9+151411644*x^8+6134930*x^7-330347305*x^6-17025899*x^5+342265579*x^4+59305810*x^3-108729889*x^2-24124475*x+1553055]];
E[433,4] = [x^3-8*x+4, [2,2,2*x,-2,2*x,2*x,-x^2+10,-6,2*x^2-6,2*x,-2*x+4,-2*x,-2*x^2-4*x+14,-x^2+10,2*x^2,-2,-2*x^2-2*x+10]];

E[434,1] = [x^2-2*x-1, [1,-1,x,1,2*x-3,-x,1,-1,2*x-2,-2*x+3,0,x,-2*x+6,-1,x+2,1,-2*x+2]];
E[434,2] = [x^3+2*x^2-5*x-8, [1,-1,x,1,-x^2+4,-x,-1,-1,x^2-3,x^2-4,-2*x^2+10,x,2*x+2,1,2*x^2-x-8,1,2*x-2]];
E[434,3] = [x, [1,-1,0,1,0,0,-1,-1,-3,0,-2,0,-2,1,0,1,2]];
E[434,4] = [x, [1,1,2,1,2,2,-1,1,1,2,-6,2,4,-1,4,1,2]];
E[434,5] = [x, [1,1,-2,1,-2,-2,1,1,1,-2,-2,-2,-4,1,4,1,-2]];
E[434,6] = [x, [1,1,-3,1,-3,-3,-1,1,6,-3,4,-3,4,-1,9,1,2]];
E[434,7] = [x, [1,1,1,1,3,1,1,1,-2,3,0,1,-4,1,3,1,-6]];
E[434,8] = [x^2-x-4, [1,1,x,1,-x+2,x,-1,1,x+1,-x+2,4,x,-2*x-2,-1,x-4,1,2]];
E[434,9] = [x^3-x^2-8*x+4, [1,1,x,1,-x,x,1,1,x^2-3,-x,-x^2+x+4,x,4,1,-x^2,1,-x^2-x+8]];

E[435,1] = [x, [1,-1,1,-1,1,-1,-4,3,1,-1,0,-1,6,4,1,-1,2]];
E[435,2] = [x, [1,1,1,-1,1,1,4,-3,1,1,-4,-1,6,4,1,-1,6]];
E[435,3] = [x^2+x-5, [1,x,1,-x+3,1,x,1,2*x-5,1,x,5,-x+3,-2*x-1,x,1,-5*x+4,-3]];
E[435,4] = [x^2-5, [1,x,1,3,-1,x,2,x,1,-x,-2,3,2,2*x,-1,-1,-2*x]];
E[435,5] = [x^2-x-4, [1,x,1,x+2,1,x,-2*x+2,x+4,1,x,-x-3,x+2,-2,-8,1,3*x,2*x-4]];
E[435,6] = [x^2+x-1, [1,x,1,-x-1,-1,x,-3,-2*x-1,1,-x,-4*x-3,-x-1,-2*x-5,-3*x,-1,3*x,4*x+1]];
E[435,7] = [x^3-x^2-5*x+4, [1,x,-1,x^2-2,1,-x,-x^2+x+2,x^2+x-4,1,x,3,-x^2+2,x^2+x-2,-3*x+4,-1,x,-x^2+x+4]];
E[435,8] = [x^4+3*x^3-2*x^2-7*x+1, [1,x,-1,x^2-2,-1,-x,-x^3-3*x^2+x+5,x^3-4*x,1,-x,x^3+3*x^2-x-5,-x^2+2,x^3+x^2-5*x-3,-x^2-2*x+1,1,-3*x^3-4*x^2+7*x+3,-x^3-x^2+3*x-3]];
E[435,9] = [x, [1,0,1,-2,-1,0,2,0,1,0,3,-2,2,0,-1,4,0]];
E[435,10] = [x, [1,0,-1,-2,-1,0,-2,0,1,0,1,2,6,0,1,4,4]];

E[436,1] = [x^2-8, [2,0,2*x,0,2*x+2,0,-4,0,10,0,-x-6,0,0,0,2*x+16,0,-2*x+8]];
E[436,2] = [x^3-3*x-1, [1,0,x,0,-x-2,0,-x^2-x+1,0,x^2-3,0,3*x^2-2*x-7,0,-2*x^2+x+3,0,-x^2-2*x,0,x^2+x-5]];
E[436,3] = [x^4-7*x^2-x+8, [1,0,x,0,-x+2,0,x^3-x^2-4*x+4,0,x^2-3,0,-x^3+x^2+5*x-2,0,-x^3+4*x+2,0,-x^2+2*x,0,x^3-3*x^2-4*x+10]];

E[437,1] = [x, [1,2,2,2,1,4,-3,0,1,2,5,4,-2,-6,2,-4,3]];
E[437,2] = [x^2-2, [1,x,x-2,0,-x-1,-2*x+2,x-1,-2*x,-4*x+3,-x-2,x+1,0,-4*x,-x+2,x,-4,x-3]];
E[437,3] = [x^8-13*x^6+47*x^4-2*x^3-37*x^2-2*x+2, [10,10*x,-3*x^7+x^6+37*x^5-9*x^4-128*x^3+22*x^2+102*x+12,10*x^2-20,x^7+3*x^6-14*x^5-32*x^4+51*x^3+81*x^2-34*x-24,x^7-2*x^6-9*x^5+13*x^4+16*x^3-9*x^2+6*x+6,-5*x^7+65*x^5-5*x^4-230*x^3+45*x^2+160*x,10*x^3-40*x,-5*x^7+65*x^5+5*x^4-240*x^3-25*x^2+210*x+40,3*x^7-x^6-32*x^5+4*x^4+83*x^3+3*x^2-22*x-2,-2*x^7-x^6+23*x^5+19*x^4-67*x^3-82*x^2+28*x+58,4*x^7+2*x^6-61*x^5-13*x^4+249*x^3-x^2-196*x-26,3*x^7-x^6-42*x^5+14*x^4+163*x^3-47*x^2-132*x-2,-5*x^5+5*x^4+35*x^3-25*x^2-10*x+10,8*x^7+4*x^6-102*x^5-46*x^4+348*x^3+118*x^2-222*x-52,10*x^4-60*x^2+40,3*x^7-x^6-42*x^5+14*x^4+173*x^3-57*x^2-182*x+8]];
E[437,4] = [x^12-2*x^11-19*x^10+35*x^9+137*x^8-219*x^7-483*x^6+605*x^5+866*x^4-707*x^3-682*x^2+236*x+96, [244,244*x,-47*x^11+91*x^10+782*x^9-1403*x^8-4548*x^7+7137*x^6+11294*x^5-13993*x^4-10833*x^3+8828*x^2+1196*x-560,244*x^2-488,-24*x^11+88*x^10+350*x^9-1464*x^8-1580*x^7+8418*x^6+2198*x^5-20176*x^4+480*x^3+18242*x^2-1632*x-2700,-3*x^11-111*x^10+242*x^9+1891*x^8-3156*x^7-11407*x^6+14442*x^5+29869*x^4-24401*x^3-30858*x^2+10532*x+4512,5*x^11+63*x^10-200*x^9-1037*x^8+2210*x^7+5917*x^6-9308*x^5-14239*x^4+14601*x^3+13244*x^2-5516*x-1420,244*x^3-976*x,-56*x^11+124*x^10+898*x^9-1952*x^8-4866*x^7+10370*x^6+10456*x^5-22474*x^4-6932*x^3+18368*x^2-1368*x-2396,40*x^11-106*x^10-624*x^9+1708*x^8+3162*x^7-9394*x^6-5656*x^5+21264*x^4+1274*x^3-18000*x^2+2964*x+2304,14*x^11+30*x^10-316*x^9-610*x^8+2650*x^7+4514*x^6-9934*x^5-14420*x^4+15214*x^3+17246*x^2-5392*x-2268,-23*x^11+3*x^10+432*x^9+61*x^8-2968*x^7-1281*x^6+9096*x^5+6183*x^4-11313*x^3-9170*x^2+2828*x+1408,-26*x^11+14*x^10+430*x^9-122*x^8-2464*x^7-244*x^6+5970*x^5+3722*x^4-5946*x^3-7210*x^2+1892*x+2504,73*x^11-105*x^10-1212*x^9+1525*x^8+7012*x^7-6893*x^6-17264*x^5+10271*x^4+16779*x^3-2106*x^2-2600*x-480,-2*x^11+48*x^10-42*x^9-854*x^8+946*x^7+5490*x^6-5134*x^5-15630*x^4+9800*x^3+17370*x^2-5016*x-1872,244*x^4-1464*x^2+976,26*x^11-14*x^10-430*x^9+122*x^8+2464*x^7+244*x^6-5970*x^5-3722*x^4+5702*x^3+6966*x^2-672*x-1284]];
E[437,5] = [x^2-5, [2,2*x,-x-1,6,-2*x-2,-x-5,-x-5,2*x,x-3,-2*x-10,-x-7,-3*x-3,4*x,-5*x-5,2*x+6,-2,2*x+6]];
E[437,6] = [x^5+x^4-7*x^3-2*x^2+12*x-4, [1,x,-x^2-x+2,x^2-2,x^2+x-3,-x^3-x^2+2*x,-x^2-x+1,x^3-4*x,x^4+2*x^3-3*x^2-4*x+1,x^3+x^2-3*x,-x^4-x^3+6*x^2+x-7,-x^4-x^3+4*x^2+2*x-4,-x^4-2*x^3+5*x^2+6*x-8,-x^3-x^2+x,-x^4-2*x^3+4*x^2+5*x-6,x^4-6*x^2+4,2*x^4+2*x^3-11*x^2-5*x+11]];
E[437,7] = [x, [1,0,2,-2,-1,0,-5,0,1,0,-1,-4,0,0,-2,4,-7]];
E[437,8] = [x^2+3*x+1, [1,-1,x,-1,2*x+4,-x,-3*x-4,3,-3*x-4,-2*x-4,-3*x-7,-x,4*x+6,3*x+4,-2*x-2,-1,-2*x-2]];

E[438,1] = [x, [1,1,1,1,0,1,-2,1,1,0,4,1,4,-2,0,1,-2]];
E[438,2] = [x, [1,1,1,1,0,1,2,1,1,0,0,1,-4,2,0,1,6]];
E[438,3] = [x, [1,1,-1,1,-2,-1,-4,1,1,-2,0,-1,-2,-4,2,1,-6]];
E[438,4] = [x^2+2*x-4, [1,1,-1,1,x,-1,2,1,1,x,-x,-1,-x+2,2,-x,1,-2*x]];
E[438,5] = [x^2-8, [1,-1,-1,1,x,1,x,-1,1,-x,-2,-1,-x+4,-x,-x,1,2]];
E[438,6] = [x, [1,-1,-1,1,0,1,-2,-1,1,0,4,-1,-6,2,0,1,0]];
E[438,7] = [x, [1,-1,1,1,-4,-1,0,-1,1,4,2,1,0,0,-4,1,-6]];
E[438,8] = [x, [1,-1,1,1,2,-1,-2,-1,1,-2,2,1,4,2,2,1,4]];
E[438,9] = [x, [1,-1,1,1,0,-1,-4,-1,1,0,-6,1,-4,4,0,1,-6]];

E[439,1] = [x^25-4*x^24-31*x^23+138*x^22+389*x^21-2034*x^20-2453*x^19+16766*x^18+7126*x^17-84887*x^16+1717*x^15+272618*x^14-79978*x^13-552928*x^12+255108*x^11+682589*x^10-376568*x^9-476301*x^8+270078*x^7+167567*x^6-81530*x^5-24739*x^4+6834*x^3+740*x^2-187*x+5, [85318433382171922788,85318433382171922788*x,-14104854800347166937*x^24+33510873812971511061*x^23+484148117403082974750*x^22-1149082882909004027256*x^21-7080042312862245012693*x^20+16810580920659368742651*x^19+57638120517021604055754*x^18-137318911927711238618760*x^17-285944681635255256274966*x^16+687756559323051763328817*x^15+886885051987253317450746*x^14-2180957653216587483309444*x^13-1688039930226035353114434*x^12+4361220272931106505358762*x^11+1834341928592508975147570*x^10-5305037882042007445080951*x^9-947225074811594302297281*x^8+3648355703208006728121546*x^7+112307378654131377023160*x^6-1257447637119504859251255*x^5+35126129648781223841997*x^4+177340840768659511495854*x^3-1644010741415690969856*x^2-6483292438416736809084*x+229585419895110846579,85318433382171922788*x^2-170636866764343845576,4942101066828663015*x^24+158907989149996689*x^23-191233689295905215670*x^22-19715673922500817440*x^21+3218613469814067757527*x^20+551625274506480529191*x^19-30933379144687527103530*x^18-7252480398507708074412*x^17+187210660148093639661762*x^16+54232792042075623535737*x^15-741326018985822462372306*x^14-248013628703629928590176*x^13+1930995994120811340119058*x^12+708463649438786515964094*x^11-3238213890513106629231714*x^10-1248689221718416603050807*x^9+3317106448950463562031615*x^8+1301838008543970620662290*x^7-1874173684937629165187496*x^6-740217812895087517044495*x^5+468660148061304425373357*x^4+186431031210382443413286*x^3-24257358148018998700008*x^2-7505552696107022217648*x+625500068385750135183,-22908545388417156687*x^24+46897618592320799703*x^23+797387079538905010050*x^22-1593253795527197074200*x^21-11878693743246768807207*x^20+23038911691770003559293*x^19+99163083654909362246982*x^18-185433486327981344681904*x^17-509562250114018196452302*x^16+911103087679449403081575*x^15+1664279652744456472721622*x^14-2816118007448201070401820*x^13-3437748882115251814782774*x^12+5432603226999474038111766*x^11+4322780851272164887278942*x^10-6258662037268726261429497*x^9-3069800743052149231138491*x^8+3921718353422293529034246*x^7+1106060567210268862881024*x^6-1114842682223523296531613*x^5-171599162137129051358589*x^4+94748566964156847877602*x^3+3954300113840166724296*x^2-2408022427769809370640*x+70524274001735834685,9130396703536748424*x^24-4235367008024855556*x^23-346939245595324829892*x^22+128618463514959884748*x^21+5724173814083725594452*x^20-1574399926696324136820*x^19-53832651300685470869304*x^18+9662048562626032478532*x^17+318194033090530752846996*x^16-27750671116962139004580*x^15-1227978124798010399947272*x^14+2358912096725809304328*x^13+3109725848104674265480080*x^12+224977869267702701881548*x^11-5056000234343023381932144*x^10-665886800890041109206288*x^9+5008015972454929482024060*x^8+871550429641667795412732*x^7-2731881526062549847752012*x^6-552949423659424316226084*x^5+656599000729024096289232*x^4+143104616988955033488000*x^3-30056052941746793860212*x^2-3482191995965298555420*x+330527046481044200148,85318433382171922788*x^3-341273733528687691152*x,-19263247937221014411*x^24+2534131959621160227*x^23+739939507945944539190*x^22-45788654588011685592*x^21-12335593368925830066771*x^20-84550450292643745119*x^19+117107715623104790105286*x^18+8473077558954649144452*x^17-697706306145542947801902*x^16-92095843566023538882177*x^15+2708280319259697687916074*x^14+495129464280051749930688*x^13-6879058366035817626143586*x^12-1524414549266564895319518*x^11+11177812223521368550320258*x^10+2743721067082346898360111*x^9-11015966226947709073942971*x^8-2797585515609375305592882*x^7+5947477313696352249639516*x^6+1510478646214182857378067*x^5-1403792111122003024847301*x^4-355067559898697409357570*x^3+60981589877859239582880*x^2+9908710118969286016332*x-610245625956419966547,19927312256464648749*x^24-38028556224216662205*x^23-701725621144856313510*x^22+1296136154817717844692*x^21+10603858844435981101701*x^20-18810405227756816727735*x^19-90111746884957072183902*x^18+151993247945872587016872*x^17+473752925301960340890042*x^16-749811606517567276769061*x^15-1595319337340326382413446*x^14+2326255353243634150732728*x^13+3441089708118225499522014*x^12-4498983409469633193662334*x^11-4622113046823926861796642*x^10+5178143563483999536264135*x^9+3655765688775529643369805*x^8-3208926456864580814952666*x^7-1568350862360366092479000*x^6+871589648039845320986307*x^5+308693669502656737741371*x^4-58031676838726081744518*x^3-11162707485560232848748*x^2+1549672967882710118988*x-24710505334143315075,-10727931432544606354*x^24+50177498903325598374*x^23+326995030093594871176*x^22-1743340206399597113984*x^21-4001198936133337568890*x^20+25912591779446198372834*x^19+24138917484204404400280*x^18-215744910758742766180972*x^17-62030742939924433515740*x^16+1105308410717138024183670*x^15-70220996572767570263404*x^14-3598852388181576917301504*x^13+944422146768466318803628*x^12+7414101056894976842304836*x^11-2724755391543660473158876*x^10-9309475992164043293886702*x^9+3764510784285791235520718*x^8+6605641243783858716795044*x^7-2506832966927804986710904*x^6-2352003450741874279780446*x^5+660295465333834244944886*x^4+344413321560756147938016*x^3-30648985814330548099044*x^2-10116559856461707304400*x+543336788741847858482,-16526853360653493171*x^24+20200424872030130631*x^23+599829233268204599106*x^22-669103821334486801452*x^21-9396985002546003116679*x^20+9347259975803339408469*x^19+83374944620177496220830*x^18-71678131820735060663220*x^17-461645241436607264057862*x^16+328100506530265204095567*x^15+1655393715276800716393254*x^14-908013218756904205676772*x^13-3858093097075176868288902*x^12+1444493502358275884668614*x^11+5709775193680534354098006*x^10-1086350098793606200286805*x^9-5095194574002998013545979*x^8-3556717792815749650482*x^7+2499258785569111643992596*x^6+475562406584229882452811*x^5-542238196697457639086085*x^4-194170382239036007468454*x^3+17832322642490268517452*x^2+8753211163201201152384*x-344628112848135909723,19840072560899042517*x^24-29500326610383613485*x^23-706347722643922265766*x^22+980134957737720610848*x^21+10816801945196520064569*x^20-13765813545873322326159*x^19-93407804621768143567686*x^18+106555831522820798144880*x^17+500532858381226056061602*x^16-496014138388171091756493*x^15-1723331194009663284156762*x^14+1417152124176471416414436*x^13+3811241705460297121719954*x^12-2413859501317960168526586*x^11-5254607659025026223213814*x^10+2209011676758918924941523*x^9+4244332735813595300474217*x^8-741450078605971348539066*x^7-1808261224207651249979256*x^6-214709470386155066462073*x^5+311748409959499744694127*x^4+149415109274184005764470*x^3+4282125268147533431856*x^2-5384714266726887503832*x-24629248531167376263,32286219806122138140*x^24-63896947785685628748*x^23-1131376281573111397764*x^22+2172449496407930457516*x^21+16996826968297422157596*x^20-31435788186909826985232*x^19-143418182568871091598252*x^18+253130826181127883577572*x^17+747301313856161824463508*x^16-1243655015937982996991280*x^15-2486751576428055472549704*x^14+3839956715660136330934752*x^13+5273429857760869934467020*x^12-7385237476588876198881936*x^11-6898195156360486679196024*x^10+8446231198312355762552892*x^9+5220367509932924606512356*x^8-5197800806960347788609084*x^7-2082902608080966639390492*x^6+1401000243968375195297952*x^5+368981501037750652749336*x^4-92453184013716932589828*x^3-10238685556582492389180*x^2+2037911230042416155436*x-45651983517683742120,42340274890309236804*x^24-118785160792299904008*x^23-1418732291048647334892*x^22+4079229560809380432108*x^21+20097342941506158667800*x^20-59788489372932245839620*x^19-156644619533813126724852*x^18+489486304479751381329156*x^17+729770608520340524651640*x^16-2457849113465562099944472*x^15-2049124811105884263069348*x^14+7814008325317755297099420*x^13+3239880747367915050343932*x^12-15651266893463643935460732*x^11-2135035626162992222299284*x^10+19011198593571893118988656*x^9-832596085268989777974972*x^8-12952087683027857097235776*x^7+1808753899130729055479064*x^6+4346216739039971575205916*x^5-647681006299676125369080*x^4-571660798021583733133488*x^3+34402179398674079993088*x^2+15249776143931599244700*x-379901776210773078756,85318433382171922788*x^4-511910600293031536728*x^2+341273733528687691152,-18008324666718759096*x^24+54238054644415050360*x^23+602974895988419799408*x^22-1871761430243141826888*x^21-8545102903090104847992*x^20+27597678453970900966524*x^19+66802584199712555660832*x^18-227574723962802487119084*x^17-313958262798229077470616*x^16+1152728447238972269008920*x^15+901841709882532902004896*x^14-3703667895483848976259344*x^13-1519276549663638476918904*x^12+7513845190505685404139072*x^11+1289926268720395110702960*x^10-9269528090973382461024792*x^9-231051932672995245581520*x^8+6435183299915305816633368*x^7-303077719815820637097696*x^6-2208277658030370543819672*x^5+111832689597861275371836*x^4+296265496048863408131208*x^3+1657668086298786156996*x^2-8154392257941760155048*x+291011664050178811536]];
E[439,2] = [x^9+x^8-12*x^7-6*x^6+49*x^5-x^4-72*x^3+30*x^2+18*x-9, [9,9*x,x^8+x^7-15*x^6-9*x^5+76*x^4+17*x^3-138*x^2+6*x+45,9*x^2-18,-7*x^8-10*x^7+84*x^6+81*x^5-343*x^4-158*x^3+501*x^2+30*x-144,-3*x^7-3*x^6+27*x^5+18*x^4-66*x^3-24*x^2+27*x+9,3*x^8+6*x^7-33*x^6-54*x^5+120*x^4+135*x^3-156*x^2-90*x+45,9*x^3-36*x,12*x^8+21*x^7-126*x^6-162*x^5+444*x^4+294*x^3-576*x^2-54*x+126,-3*x^8+39*x^6-165*x^4-3*x^3+240*x^2-18*x-63,8*x^8+14*x^7-87*x^6-108*x^5+320*x^4+187*x^3-426*x^2-6*x+72,-5*x^8-5*x^7+57*x^6+36*x^5-218*x^4-58*x^3+303*x^2-3*x-90,12*x^8+15*x^7-141*x^6-117*x^5+561*x^4+216*x^3-804*x^2-36*x+216,3*x^8+3*x^7-36*x^6-27*x^5+138*x^4+60*x^3-180*x^2-9*x+27,-18*x^8-33*x^7+192*x^6+261*x^5-702*x^4-492*x^3+987*x^2+90*x-270,9*x^4-54*x^2+36,-28*x^8-49*x^7+300*x^6+387*x^5-1093*x^4-740*x^3+1500*x^2+174*x-414]];
E[439,3] = [x^2-x-1, [1,-1,x,-1,-x+1,-x,-2,3,x-2,x-1,-2*x+2,-x,-3*x,2,-1,-1,4*x-4]];

E[440,1] = [x, [1,0,3,0,1,0,1,0,6,0,-1,0,-6,0,3,0,3]];
E[440,2] = [x^2+x-4, [1,0,x,0,1,0,x,0,-x+1,0,1,0,2,0,x,0,x+2]];
E[440,3] = [x^2-5*x+2, [1,0,x-2,0,-1,0,x,0,x-1,0,-1,0,-2*x+8,0,-x+2,0,-3*x+6]];
E[440,4] = [x^2-3*x-2, [1,0,-x+2,0,-1,0,x,0,-x+3,0,1,0,-2*x+4,0,x-2,0,x+2]];
E[440,5] = [x, [1,0,0,0,1,0,4,0,-3,0,-1,0,6,0,0,0,-6]];
E[440,6] = [x, [1,0,0,0,-1,0,-2,0,-3,0,1,0,-4,0,0,0,-4]];
E[440,7] = [x, [1,0,0,0,-1,0,-2,0,-3,0,-1,0,0,0,0,0,0]];

E[441,1] = [x, [1,1,0,-1,-2,0,0,-3,0,-2,-4,0,2,0,0,-1,-6]];
E[441,2] = [x, [1,-1,0,-1,0,0,0,3,0,0,-4,0,0,0,0,-1,0]];
E[441,3] = [x^2-7, [1,x,0,5,0,0,0,3*x,0,0,-2*x,0,0,0,0,11,0]];
E[441,4] = [x^2-3, [1,x,0,1,2*x,0,0,-x,0,6,2*x,0,-2,0,0,-5,-2*x]];
E[441,5] = [x, [1,-2,0,2,2,0,0,0,0,-4,2,0,1,0,0,-4,0]];
E[441,6] = [x, [1,-2,0,2,-2,0,0,0,0,4,2,0,-1,0,0,-4,0]];
E[441,7] = [x^2+4*x+2, [1,x+3,0,2*x+5,x,0,0,x+5,0,-x-2,2,0,x+6,0,0,3,-3*x-8]];
E[441,8] = [x^2-4*x+2, [1,-x+3,0,-2*x+5,x,0,0,-x+5,0,-x+2,2,0,x-6,0,0,3,-3*x+8]];
E[441,9] = [x, [1,0,0,-2,0,0,0,0,0,0,0,0,-7,0,0,4,0]];
E[441,10] = [x, [1,0,0,-2,0,0,0,0,0,0,0,0,7,0,0,4,0]];

E[442,1] = [x^3-2*x^2-6*x+8, [1,1,x,1,-x+2,x,0,1,x^2-3,-x+2,-x^2+4,x,1,0,-x^2+2*x,1,1]];
E[442,2] = [x, [1,1,2,1,-2,2,2,1,1,-2,4,2,-1,2,-4,1,-1]];
E[442,3] = [x, [1,1,2,1,4,2,-4,1,1,4,-2,2,-1,-4,8,1,-1]];
E[442,4] = [x, [1,1,0,1,-4,0,-2,1,-3,-4,-2,0,-1,-2,0,1,1]];
E[442,5] = [x, [1,1,0,1,2,0,4,1,-3,2,-2,0,-1,4,0,1,-1]];
E[442,6] = [x, [1,-1,2,1,2,-2,2,-1,1,-2,2,2,-1,-2,4,1,1]];
E[442,7] = [x^2+4*x+2, [1,-1,x,1,-x-2,-x,2*x+4,-1,-4*x-5,x+2,-2*x-6,x,1,-2*x-4,2*x+2,1,1]];
E[442,8] = [x^3+2*x^2-4*x-4, [1,-1,x,1,-x^2-x+2,-x,x^2-4,-1,x^2-3,x^2+x-2,-2*x-2,x,-1,-x^2+4,x^2-2*x-4,1,-1]];
E[442,9] = [x^2-2*x-4, [1,-1,x,1,2,-x,-x,-1,2*x+1,-2,-x+2,x,1,x,2*x,1,-1]];

E[443,1] = [x, [1,-1,-2,-1,0,2,1,3,1,0,3,2,3,-1,0,-1,-5]];
E[443,2] = [x, [1,1,-2,-1,4,-2,-1,-3,1,4,5,2,3,-1,-8,-1,3]];
E[443,3] = [x^12+3*x^11-13*x^10-39*x^9+64*x^8+181*x^7-159*x^6-357*x^5+226*x^4+264*x^3-156*x^2-20*x+6, [10173,10173*x,-2859*x^11-7221*x^10+36354*x^9+86829*x^8-164967*x^7-356721*x^6+323694*x^5+578376*x^4-267246*x^3-319599*x^2+68826*x+23565,10173*x^2-20346,1928*x^11+5446*x^10-23676*x^9-68382*x^8+101843*x^7+301935*x^6-193308*x^5-552888*x^4+197453*x^3+360922*x^2-126538*x-16482,1356*x^11-813*x^10-24672*x^9+18009*x^8+160758*x^7-130887*x^6-442287*x^5+378888*x^4+435177*x^3-377178*x^2-33615*x+17154,2606*x^11+10126*x^10-25839*x^9-125502*x^8+70319*x^7+546768*x^6-12618*x^5-994170*x^4-88522*x^3+670810*x^2-16183*x-58770,10173*x^3-40692*x,3468*x^11+8994*x^10-42123*x^9-104556*x^8+173292*x^7+399060*x^6-257001*x^5-534699*x^4+18342*x^3+144486*x^2+168714*x+4080,-338*x^11+1388*x^10+6810*x^9-21549*x^8-47033*x^7+113244*x^6+135408*x^5-238275*x^4-148070*x^3+174230*x^2+22078*x-11568,-2324*x^11-6649*x^10+23769*x^9+74196*x^8-67316*x^7-276045*x^6+12330*x^5+390384*x^4+116590*x^3-173890*x^2-59543*x-10314,837*x^11+7398*x^10-1815*x^9-99684*x^8-46389*x^7+486759*x^6+215592*x^5-1028031*x^4-200670*x^3+817119*x^2-93378*x-55266,-1705*x^11-8288*x^10+14247*x^9+104721*x^8-15523*x^7-461043*x^6-104967*x^5+819498*x^4+202298*x^3-485564*x^2-26056*x-24945,2308*x^11+8039*x^10-23868*x^9-96465*x^8+75082*x^7+401736*x^6-63828*x^5-677478*x^4-17174*x^3+390353*x^2-6650*x-15636,3715*x^11+4067*x^10-56490*x^9-39900*x^8+319174*x^7+107367*x^6-803565*x^5-20562*x^4+818311*x^3-116650*x^2-184694*x-39114,10173*x^4-61038*x^2+40692,-1439*x^11-3421*x^10+22251*x^9+51492*x^8-126830*x^7-278262*x^6+331551*x^5+630555*x^4-402674*x^3-504637*x^2+188080*x+32616]];
E[443,4] = [x^22-x^21-35*x^20+33*x^19+523*x^18-456*x^17-4360*x^16+3428*x^15+22226*x^14-15227*x^13-71363*x^12+40569*x^11+143034*x^10-62774*x^9-170342*x^8+51992*x^7+107186*x^6-20952*x^5-26926*x^4+5536*x^3+1736*x^2-512*x+32, [2212095231072,2212095231072*x,194653117720*x^21-146264520510*x^20-6824916808190*x^19+4779423817126*x^18+102276756870038*x^17-64862839372318*x^16-856132545884564*x^15+472964535877632*x^14+4388081755893464*x^13-1994820019271268*x^12-14184263152221902*x^11+4840089307767646*x^10+28644144619952830*x^9-6174379376324104*x^8-34336809401774196*x^7+2993230296472604*x^6+21611850496843240*x^5+352308009411604*x^4-5311329869641560*x^3+10235896895956*x^2+363845506465992*x-32718757780688,2212095231072*x^2-4424190462144,-17950769828*x^21+11157979128*x^20+552506074144*x^19-470517931016*x^18-7156135615888*x^17+7962357750692*x^16+50949722224408*x^15-71706216289392*x^14-219357938578936*x^13+377936066966292*x^12+595892442632992*x^11-1195025045294456*x^10-1043026698605612*x^9+2216662765179176*x^8+1174922602134000*x^7-2242152111291880*x^6-787958608742744*x^5+1078256154114568*x^4+236218288661640*x^3-222404691446360*x^2-32835974372112*x+11815219982176,48388597210*x^21-12057687990*x^20-1644129067634*x^19+473176302478*x^18+23898982308002*x^17-7444952625364*x^16-194306351666528*x^15+61721561448744*x^14+969163004251172*x^13-293232712369542*x^12-3056793025015034*x^11+802130579990350*x^10+6044775435431176*x^9-1179208023113956*x^8-7127174600025636*x^7+747761420907320*x^6+4430680131881044*x^5-70100021912840*x^4-1067363762801964*x^3+25927694104072*x^2+66943638491952*x-6228899767040,-154757040826*x^21+202467465270*x^20+5572652818514*x^19-6470627359294*x^18-85675078612274*x^17+86410658426932*x^16+734991604084160*x^15-624724007957592*x^14-3856108347384452*x^13+2642498413558998*x^12+12737462483610554*x^11-6568583303037790*x^10-26219323889696248*x^9+9045504528544708*x^8+31912674182409828*x^7-5839408295438168*x^6-20262013255238548*x^5+1157822432186504*x^4+4949069887804236*x^3-327275746702504*x^2-322471260428016*x+43528885303808,2212095231072*x^3-8848380924288*x,433118793903*x^21-358836039645*x^20-15193107271863*x^19+11765977323465*x^18+227818748985159*x^17-160588972950354*x^16-1908566562138408*x^15+1181517898974180*x^14+9793040830867926*x^13-5055913131365553*x^12-31701197504161395*x^11+12583941535867161*x^10+64131912057881400*x^9-16949187942603798*x^8-77014900877862222*x^7+9873065386438860*x^6+48488557903019742*x^5-849297104048820*x^4-11816880180898290*x^3+399648211283412*x^2+795414026309064*x-83502265055424,-6792790700*x^21-75770869836*x^20+121857473308*x^19+2232117004156*x^18-223193290876*x^17-27315634225672*x^16-10170977319008*x^15+179615871618192*x^14+104599694795336*x^13-685128344602572*x^12-466780264142324*x^11+1524543712972540*x^10+1089821139996304*x^9-1882847431907176*x^8-1308855686394504*x^7+1136112606041264*x^6+702151624678312*x^5-247124139727088*x^4-123029229678552*x^3-1673437950704*x^2+2624425830240*x+574424634496,176247187256*x^21-268271604876*x^20-6408598681900*x^19+8532060486380*x^18+99353513788252*x^17-113560407654356*x^16-858394670422120*x^15+820115398488480*x^14+4530661003688704*x^13-3478473494921616*x^12-15046203546088156*x^11+8735061279819068*x^10+31151832504000164*x^9-12360924618956048*x^8-38254734607345224*x^7+8623833525047080*x^6+24772594817550560*x^5-2290030002489256*x^4-6441381003888096*x^3+549326735542616*x^2+495772826062320*x-63803174883424,-352975326220*x^21+342000875736*x^20+12526186210928*x^19-10967101667080*x^18-189933266037680*x^17+146393610913708*x^16+1608110541981992*x^15-1052251029093552*x^14-8332583054439800*x^13+4386002476224732*x^12+27207579884221664*x^11-10556617793439256*x^10-55429951461759076*x^9+13464194578568392*x^8+66905560278313392*x^7-6742360641615224*x^6-42279963126855400*x^5-469068413148712*x^4+10380708159232632*x^3-37530760056520*x^2-709144950927504*x+63889080450656,-84319011885*x^21+16112152683*x^20+2856555337281*x^19-572531491767*x^18-41120392481601*x^17+8355392130450*x^16+327954235808760*x^15-66192380504892*x^14-1583922300497970*x^13+316705096110267*x^12+4756607615530941*x^11-966820015456311*x^10-8788538777775636*x^9+1938390791016810*x^8+9586204702421922*x^7-2510761128446076*x^6-5769985984762746*x^5+1836672173033604*x^4+1759432198883670*x^3-489068064315444*x^2-162485704377144*x+36142926886176,47710424444*x^21+156156389604*x^20-1363645012036*x^19-4737146260276*x^18+15841447810276*x^17+60250906082800*x^16-94216872006064*x^15-416478357985776*x^14+286012952901496*x^13+1693535779144716*x^12-290244913767796*x^11-4083805312190164*x^10-669213952266616*x^9+5551050334027336*x^8+2206719771187224*x^7-3674225077262912*x^6-2084647087199848*x^5+782081806523360*x^4+529459231310232*x^3-53813037554080*x^2-35706719599104*x+4952225306432,-19333971116*x^21+16913371056*x^20+593324556712*x^19-746589903776*x^18-7741141770232*x^17+13024676862644*x^16+56625562328440*x^15-119500346552112*x^14-259491420075208*x^13+633337469699724*x^12+792047250047464*x^11-1975312133435312*x^10-1651507664768780*x^9+3487819565322488*x^8+2253304739016096*x^7-3091977889214152*x^6-1682593197257480*x^5+1007228313099496*x^4+401356144698552*x^3-69291811665656*x^2-5908963683216*x+2692434880672,2212095231072*x^4-13272571386432*x^2+8848380924288,-738921666940*x^21+427791027888*x^20+25709325831920*x^19-14135164016152*x^18-382155291015248*x^17+193232516294092*x^16+3170797589249888*x^15-1413361225577472*x^14-16091844838340792*x^13+5945932948815132*x^12+51424286020275368*x^11-14249526636762184*x^10-102437750282401396*x^9+17523483932642464*x^8+120738925180288128*x^7-7233932650900472*x^6-74345513489103544*x^5-2242337397476344*x^4+17687803731163080*x^3+50671686384296*x^2-1170713511051744*x+105327799925696]];
E[443,5] = [x, [1,0,1,-2,-2,0,2,0,-2,0,-2,-2,-3,0,-2,4,-2]];

E[444,1] = [x, [1,0,1,0,-2,0,-4,0,1,0,-4,0,-6,0,-2,0,6]];
E[444,2] = [x^2-6, [1,0,1,0,x,0,2,0,1,0,0,0,-2*x+2,0,x,0,-x]];
E[444,3] = [x^2+2*x-2, [1,0,-1,0,x,0,-2*x-2,0,1,0,-4,0,2*x+2,0,-x,0,-x-4]];
E[444,4] = [x, [1,0,-1,0,0,0,0,0,1,0,4,0,-2,0,0,0,0]];

E[445,1] = [x^2-3, [1,x,x+1,1,1,x+3,-x-1,-x,2*x+1,x,0,x+1,2,-x-3,x+1,-5,0]];
E[445,2] = [x^4-x^3-5*x^2+7*x-1, [1,x,x^3-5*x+2,x^2-2,-1,x^3-5*x+1,-4*x^3-2*x^2+16*x-3,x^3-4*x,-2*x^3-x^2+9*x-3,-x,-x^3+5*x-6,-x^3+4*x-3,5*x^3+3*x^2-21*x+2,-6*x^3-4*x^2+25*x-4,-x^3+5*x-2,x^3-x^2-7*x+5,x^3+3*x^2-3*x-7]];
E[445,3] = [x^7+4*x^6-3*x^5-24*x^4-8*x^3+29*x^2+6*x-9, [3,3*x,2*x^6+5*x^5-12*x^4-27*x^3+14*x^2+19*x-9,3*x^2-6,3,-3*x^6-6*x^5+21*x^4+30*x^3-39*x^2-21*x+18,-x^6-4*x^5+3*x^4+21*x^3+5*x^2-14*x-6,3*x^3-12*x,-2*x^6-5*x^5+12*x^4+30*x^3-11*x^2-31*x+6,3*x,-x^6-x^5+12*x^4+9*x^3-40*x^2-20*x+21,2*x^6+2*x^5-18*x^4-9*x^3+38*x^2-2*x-9,-5*x^6-17*x^5+15*x^4+84*x^3+40*x^2-37*x-30,-3*x^4-3*x^3+15*x^2-9,2*x^6+5*x^5-12*x^4-27*x^3+14*x^2+19*x-9,3*x^4-18*x^2+12,-x^6+5*x^5+24*x^4-27*x^3-97*x^2+16*x+42]];
E[445,4] = [x^2-2*x-1, [1,x,-x+1,2*x-1,1,-x-1,x-1,x+2,-1,x,4,-x-3,-2*x+4,x+1,-x+1,3,2*x+2]];
E[445,5] = [x^8-x^7-11*x^6+9*x^5+34*x^4-19*x^3-27*x^2+11*x-1, [2,2*x,2*x^7-x^6-23*x^5+8*x^4+76*x^3-12*x^2-65*x+9,2*x^2-4,-2,x^7-x^6-10*x^5+8*x^4+26*x^3-11*x^2-13*x+2,6*x^7-5*x^6-67*x^5+42*x^4+212*x^3-74*x^2-173*x+33,2*x^3-8*x,-6*x^7+6*x^6+66*x^5-52*x^4-204*x^3+96*x^2+164*x-32,-2*x,-2*x^3+10*x+4,-4*x^7+3*x^6+45*x^5-24*x^4-144*x^3+38*x^2+121*x-17,2*x^7-2*x^6-24*x^5+18*x^4+84*x^3-38*x^2-78*x+18,x^7-x^6-12*x^5+8*x^4+40*x^3-11*x^2-33*x+6,-2*x^7+x^6+23*x^5-8*x^4-76*x^3+12*x^2+65*x-9,2*x^4-12*x^2+8,8*x^7-6*x^6-90*x^5+52*x^4+290*x^3-98*x^2-252*x+52]];
E[445,6] = [x^4-x^3-5*x^2+5*x+1, [1,x,x^3-5*x+2,x^2-2,1,x^3-3*x-1,3,x^3-4*x,-x^2-x+5,x,-x^3+3*x,-x^3+2*x^2+4*x-5,-x^3-x^2+5*x,3*x,x^3-5*x+2,x^3-x^2-5*x+3,-x^3+x^2+3*x-3]];
E[445,7] = [x^2+2*x-4, [1,-1,x,-1,-1,-x,-x,3,-2*x+1,1,2*x,-x,-2*x,x,-x,-1,-2]];

E[446,1] = [x, [1,1,2,1,0,2,0,1,1,0,-2,2,4,0,0,1,-2]];
E[446,2] = [x, [1,1,-1,1,-2,-1,-2,1,-2,-2,-3,-1,0,-2,2,1,1]];
E[446,3] = [x^7-x^6-14*x^5+12*x^4+50*x^3-36*x^2-38*x+18, [239,239,239*x,239,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,239*x,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,239,239*x^2-717,-6*x^6+37*x^5+92*x^4-388*x^3-526*x^2+703*x+858,36*x^6+17*x^5-552*x^4-301*x^3+2200*x^2+801*x-1324,239*x,64*x^6-76*x^5-822*x^4+713*x^3+2424*x^2-1205*x-1026,-41*x^6-26*x^5+549*x^4+376*x^3-1762*x^2-972*x+1322,31*x^6+8*x^5-316*x^4-226*x^3+487*x^2+630*x+108,239,42*x^6-20*x^5-644*x^4+326*x^3+2487*x^2-1336*x-1704]];
E[446,4] = [x, [1,-1,-1,1,0,1,0,-1,-2,0,1,-1,-2,0,0,1,1]];
E[446,5] = [x, [1,-1,-3,1,-4,3,-4,-1,6,4,-5,-3,-6,4,12,1,1]];
E[446,6] = [x^8-4*x^7-12*x^6+54*x^5+34*x^4-204*x^3+6*x^2+160*x+34, [33,-33,33*x,33,-x^7+19*x^5+2*x^4-116*x^3+2*x^2+221*x-10,-33*x,4*x^6-2*x^5-75*x^4+46*x^3+342*x^2-212*x-184,-33,33*x^2-99,x^7-19*x^5-2*x^4+116*x^3-2*x^2-221*x+10,2*x^7-6*x^6-35*x^5+92*x^4+163*x^3-352*x^2-91*x+164,33*x,-2*x^7+4*x^6+36*x^5-38*x^4-219*x^3+16*x^2+395*x+258,-4*x^6+2*x^5+75*x^4-46*x^3-342*x^2+212*x+184,-4*x^7+7*x^6+56*x^5-82*x^4-202*x^3+227*x^2+150*x+34,33,-7*x^6+20*x^5+90*x^4-196*x^3-351*x^2+404*x+322]];

E[447,1] = [x^3+x^2-2*x-1, [1,x,-1,x^2-2,0,-x,-2*x^2-x+2,-x^2-2*x+1,1,0,x^2-x-1,-x^2+2,2*x^2-6,x^2-2*x-2,0,-3*x^2-x+3,-2*x^2-2*x]];
E[447,2] = [x^3+3*x^2-3, [1,x,1,x^2-2,-2,x,-x-2,-3*x^2-4*x+3,1,-2*x,-x^2-3*x-3,x^2-2,-2*x^2-2*x+4,-x^2-2*x,-2,3*x^2+3*x-5,2*x^2+4*x-4]];
E[447,3] = [x^10-3*x^9-12*x^8+37*x^7+44*x^6-142*x^5-50*x^4+181*x^3-5*x^2-30*x+1, [647,647*x,-647,647*x^2-1294,-135*x^9+358*x^8+1898*x^7-4732*x^6-8776*x^5+19642*x^4+14058*x^3-26097*x^2-2602*x+2962,-647*x,29*x^9-144*x^8-355*x^7+1860*x^6+1636*x^5-7579*x^4-4357*x^3+10667*x^2+5572*x-1983,647*x^3-2588*x,647,-47*x^9+278*x^8+263*x^7-2836*x^6+472*x^5+7308*x^4-1662*x^3-3277*x^2-1088*x+135,-51*x^9+164*x^8+602*x^7-2334*x^6-2007*x^5+10986*x^4+1170*x^3-17666*x^2+2784*x+2528,-647*x^2+1294,270*x^9-716*x^8-3149*x^7+8170*x^6+11082*x^5-27638*x^4-12588*x^3+28902*x^2+1322*x-1395,-57*x^9-7*x^8+787*x^7+360*x^6-3461*x^5-2907*x^4+5418*x^3+5717*x^2-1113*x-29,135*x^9-358*x^8-1898*x^7+4732*x^6+8776*x^5-19642*x^4-14058*x^3+26097*x^2+2602*x-2962,647*x^4-3882*x^2+2588,-55*x^9+50*x^8+941*x^7-538*x^6-5780*x^5+1724*x^4+14354*x^3-2293*x^2-10166*x+2333]];
E[447,4] = [x^9-4*x^8-6*x^7+37*x^6-3*x^5-101*x^4+49*x^3+72*x^2-21*x-13, [1,x,1,x^2-2,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,x,-4*x^8+9*x^7+39*x^6-77*x^5-120*x^4+178*x^3+117*x^2-63*x-26,x^3-4*x,1,4*x^8-9*x^7-39*x^6+77*x^5+119*x^4-177*x^3-113*x^2+61*x+26,-2*x^8+4*x^7+21*x^6-34*x^5-73*x^4+77*x^3+88*x^2-25*x-19,x^2-2,6*x^8-13*x^7-60*x^6+112*x^5+192*x^4-262*x^3-202*x^2+98*x+49,-7*x^8+15*x^7+71*x^6-132*x^5-226*x^4+313*x^3+225*x^2-110*x-52,2*x^8-4*x^7-21*x^6+35*x^5+71*x^4-83*x^3-79*x^2+31*x+19,x^4-6*x^2+4,2*x^8-5*x^7-19*x^6+43*x^5+57*x^4-99*x^3-55*x^2+31*x+16]];

E[448,1] = [x^2-2*x-4, [1,0,x,0,x-2,0,1,0,2*x+1,0,-2*x+4,0,-x-2,0,4,0,-2*x+2]];
E[448,2] = [x^2+2*x-4, [1,0,x,0,-x-2,0,-1,0,-2*x+1,0,-2*x-4,0,x-2,0,-4,0,2*x+2]];
E[448,3] = [x, [1,0,0,0,-2,0,1,0,-3,0,-4,0,-2,0,0,0,-6]];
E[448,4] = [x, [1,0,0,0,-2,0,-1,0,-3,0,4,0,-2,0,0,0,-6]];
E[448,5] = [x, [1,0,2,0,4,0,-1,0,1,0,0,0,0,0,8,0,-2]];
E[448,6] = [x, [1,0,2,0,0,0,1,0,1,0,0,0,4,0,0,0,6]];
E[448,7] = [x, [1,0,2,0,0,0,-1,0,1,0,4,0,4,0,0,0,-2]];
E[448,8] = [x, [1,0,-2,0,4,0,1,0,1,0,0,0,0,0,-8,0,-2]];
E[448,9] = [x, [1,0,-2,0,0,0,-1,0,1,0,0,0,4,0,0,0,6]];
E[448,10] = [x, [1,0,-2,0,0,0,1,0,1,0,-4,0,4,0,0,0,-2]];

E[449,1] = [x^14+3*x^13-13*x^12-42*x^11+59*x^10+214*x^9-117*x^8-503*x^7+109*x^6+576*x^5-50*x^4-309*x^3+14*x^2+62*x-3, [581,581*x,1367*x^13+2544*x^12-21440*x^11-35460*x^10+130273*x^9+176883*x^8-397316*x^7-387181*x^6+642243*x^5+359615*x^4-504323*x^3-105389*x^2+145130*x-6416,581*x^2-1162,-689*x^13-1037*x^12+11692*x^11+15082*x^10-77477*x^9-79331*x^8+255690*x^7+183819*x^6-436275*x^5-177694*x^4+352434*x^3+49678*x^2-102958*x+5809,-1557*x^13-3669*x^12+21954*x^11+49620*x^10-115655*x^9-237377*x^8+300420*x^7+493240*x^6-427777*x^5-435973*x^4+317014*x^3+125992*x^2-91170*x+4101,291*x^13+1035*x^12-3099*x^11-13492*x^10+8490*x^9+60837*x^8+3319*x^7-115074*x^6-33397*x^5+87935*x^4+28887*x^3-19559*x^2-5371*x-1821,581*x^3-2324*x,-1968*x^13-3855*x^12+30362*x^11+53402*x^10-181116*x^9-264285*x^8+544017*x^7+573960*x^6-875063*x^5-532198*x^4+692696*x^3+159175*x^2-202779*x+7793,1030*x^13+2735*x^12-13856*x^11-36826*x^10+68115*x^9+175077*x^8-162748*x^7-361174*x^6+219170*x^5+317984*x^4-163223*x^3-93312*x^2+48527*x-2067,-1275*x^13-2672*x^12+18861*x^11+36126*x^10-106601*x^9-172354*x^8+302097*x^7+354412*x^6-462525*x^5-303487*x^4+350578*x^3+81426*x^2-98052*x+3684,-1732*x^13-3375*x^12+27106*x^11+47128*x^10-164725*x^9-235515*x^8+504701*x^7+516298*x^6-823627*x^5-480066*x^4+653525*x^3+141406*x^2-189625*x+8161,-1506*x^13-3260*x^12+21920*x^11+44015*x^10-121175*x^9-209776*x^8+335676*x^7+432049*x^6-510370*x^5-373914*x^4+397996*x^3+102307*x^2-118436*x+5441,162*x^13+684*x^12-1270*x^11-8679*x^10-1437*x^9+37366*x^8+31299*x^7-65116*x^6-79681*x^5+43437*x^4+70360*x^3-9445*x^2-19863*x+873,1716*x^13+3953*x^12-24965*x^11-54039*x^10+138227*x^9+262388*x^8-384900*x^7-555816*x^6+589729*x^5+502588*x^4-461227*x^3-150551*x^2+136069*x-5665,581*x^4-3486*x^2+2324,948*x^13+1485*x^12-15738*x^11-20899*x^10+102110*x^9+105021*x^8-331157*x^7-228612*x^6+555590*x^5+202026*x^4-434544*x^3-46857*x^2+120038*x-9610]];
E[449,2] = [x^23-38*x^21+x^20+623*x^19-31*x^18-5771*x^17+398*x^16+33229*x^15-2753*x^14-123306*x^13+11230*x^12+296022*x^11-28009*x^10-450008*x^9+43215*x^8+412760*x^7-40559*x^6-210040*x^5+21311*x^4+50781*x^3-5664*x^2-3789*x+621, [3032489168928,3032489168928*x,21524408778*x^22-68857014861*x^21-905187870690*x^20+2476178523237*x^19+16350143582679*x^18-38065891453842*x^17-166180217327610*x^16+326678595433845*x^15+1046204683911930*x^14-1714106003240328*x^13-4233207429286713*x^12+5658933624403962*x^11+11058411115680687*x^10-11642305534076838*x^9-18247365545250282*x^8+14218428350735820*x^7+18053248104022479*x^6-9197369544320502*x^5-9716165505386580*x^4+2337567882270684*x^3+2344341230439507*x^2-11158803770049*x-121750048806273,3032489168928*x^2-6064978337856,72415240034*x^22-37700679936*x^21-2783536667992*x^20+1306527179348*x^19+46269072177460*x^18-19212911056322*x^17-435830429794372*x^16+156060552305554*x^15+2561515980216128*x^14-763149365908666*x^13-9750612599359908*x^12+2293588459644632*x^11+24167111717249490*x^10-4131128082634628*x^9-38230119042097708*x^8+4072330683982602*x^7+36784887184180684*x^6-1582353740653942*x^5-19649944067785166*x^4-386298777411344*x^3+4803951573725220*x^2+333082604559342*x-279869246271342,-68857014861*x^22-87260337126*x^21+2454654114459*x^20+2940436913985*x^19-37398634781724*x^18-41962854269772*x^17+318111880740201*x^16+330970104627768*x^15-1654849305874494*x^14-1579118680506645*x^13+5417214513827022*x^12+4686712580399571*x^11-11039428368613836*x^10-8561209399880058*x^9+13288251025394550*x^8+9168833136815199*x^7-8324361048693600*x^6-5195178685655460*x^5+1878861206802726*x^4+1251310228283889*x^3+110755447548543*x^2-40194063946431*x-13366657851138,-25625913704*x^22-57198642432*x^21+1051357992136*x^20+2167935492496*x^19-18500106572608*x^18-35339943660784*x^17+182502864204592*x^16+323801011875200*x^15-1107121963405736*x^14-1827863002061312*x^13+4261749349319160*x^12+6547296199422112*x^11-10370590298158080*x^10-14750659541175688*x^9+15431887476069640*x^8+19957178927272752*x^7-13181769711402856*x^6-14686310238011432*x^5+5912226625575344*x^4+4841953240834400*x^3-1227873193773480*x^2-429552099529248*x+104856987162168,3032489168928*x^3-12129956675712*x,-290335962*x^22+73834605342*x^21+186545127156*x^20-2417972461122*x^19-6151853081310*x^18+33201900791058*x^17+87959898254040*x^16-248094110535900*x^15-701645164156884*x^14+1093412609616966*x^13+3413409727402890*x^12-2865903793533588*x^11-10435784238701064*x^10+4212255487503288*x^9+19939587159608160*x^8-2769256096366806*x^7-22892393084023518*x^6-255528809195610*x^5+14433417136178850*x^4+1195930395192072*x^3-4039211822873886*x^2-413057153028852*x+253329874917624,-37700679936*x^22-31757546700*x^21+1234111939314*x^20+1154377636278*x^19-16968038615268*x^18-17922079558158*x^17+127239286772022*x^16+155229969126342*x^15-563790210095064*x^14-821379011727504*x^13+1480365314062812*x^12+2730607531904742*x^11-2102849624522322*x^10-5642681704877436*x^9+942906085913292*x^8+6894772707746844*x^7+1354735979885064*x^6-4439847051043806*x^5-1929539957775918*x^4+1126633269558666*x^3+743242524111918*x^2-5487901782516*x-44969864061114,305397351640*x^22+100181480664*x^21-11472625923572*x^20-3684992254412*x^19+185704715768936*x^18+58530340957844*x^17-1695268961853692*x^16-526222825425940*x^15+9591799279462432*x^14+2943286479049864*x^13-34807413870669576*x^12-10565473056180140*x^11+81046188976434684*x^10+24137162584524152*x^9-117811448795453672*x^8-33536341018673856*x^7+100906542446473712*x^6+25926976342164916*x^5-46235884874519740*x^4-9666599699037460*x^3+9582033417225588*x^2+1254161216916672*x-574602277709988,-130309154682*x^22-24198420537*x^21+4819669670226*x^20+546928430205*x^19-76797708895821*x^18-3130169114946*x^17+690735631197666*x^16-20156749926015*x^15-3861091410242838*x^14+354943445857212*x^13+13926391715862027*x^12-1974104364238818*x^11-32606647760483181*x^10+5586654549979338*x^9+48639220124533878*x^8-8339796296138880*x^7-44094446559447717*x^6+5810872894039290*x^5+22151053082759820*x^4-1067752245336384*x^3-5118882656998149*x^2-251948279619369*x+286260303841227,14056820424*x^22-89611549128*x^21-568673722260*x^20+3111738136812*x^19+9778219139160*x^18-45986628078252*x^17-93081276817524*x^16+377645945225868*x^15+534837861916488*x^14-1887992961935904*x^13-1891423022514336*x^12+5922105616690812*x^11+3987132723093276*x^10-11595715849514304*x^9-4454076156306768*x^8+13669098933510072*x^7+1601222610149640*x^6-8949191280392052*x^5+1028837468245428*x^4+2690022242049732*x^3-739170065792124*x^2-223418156702472*x+73677385959444,-57198642432*x^22+77573271384*x^21+2193561406200*x^20-2535162335016*x^19-36134346985608*x^18+34615716218808*x^17+334000125529392*x^16-255598476935520*x^15-1898411142488424*x^14+1101920434133736*x^13+6835075210318032*x^12-2784756071672592*x^11-15468415758111024*x^10+3900021301960008*x^9+21064602787991112*x^8-2604417570939816*x^7-15725671671931968*x^6+529759711187184*x^5+5388067087780344*x^4+73436330029344*x^3-574697274748704*x^2+7760400137712*x+15913692410184,-339058107877*x^22+43245408867*x^21+12757045770935*x^20-1577182713982*x^19-206746911805403*x^18+24022308501982*x^17+1888747178195657*x^16-196688958112973*x^15-10687776002708716*x^14+926340103149077*x^13+38760612603642723*x^12-2470588610007925*x^11-90112851264492051*x^10+3295752108507760*x^9+130605977081321396*x^8-1040429132118603*x^7-111196921000211927*x^6-2141088028557790*x^5+50280032410656622*x^4+2374966195861579*x^3-10131464180055690*x^2-679899042824712*x+549578508113403,3032489168928*x^4-18194935013568*x^2+12129956675712,176005436494*x^22+131108672820*x^21-6478847524286*x^20-4421040509378*x^19+102836411353208*x^18+63322233000812*x^17-922613896917290*x^16-504134904756364*x^15+5153571112600324*x^14+2453664470213518*x^13-18612966055998756*x^12-7569698347242854*x^11+43722310842119148*x^10+14859070722807908*x^9-65535113295027260*x^8-18150742267369506*x^7+59805432772189784*x^6+13119105804385180*x^5-30370578721822960*x^4-5105021425947394*x^3+7115854322271258*x^2+825942701313402*x-424871315639712]];

E[450,1] = [x, [1,1,0,1,0,0,-2,1,0,0,6,0,4,-2,0,1,6]];
E[450,2] = [x, [1,1,0,1,0,0,2,1,0,0,3,0,-4,2,0,1,3]];
E[450,3] = [x, [1,1,0,1,0,0,2,1,0,0,-2,0,6,2,0,1,-2]];
E[450,4] = [x, [1,-1,0,1,0,0,4,-1,0,0,0,0,-2,-4,0,1,6]];
E[450,5] = [x, [1,-1,0,1,0,0,-2,-1,0,0,3,0,4,2,0,1,-3]];
E[450,6] = [x, [1,-1,0,1,0,0,-2,-1,0,0,-2,0,-6,2,0,1,2]];
E[450,7] = [x, [1,-1,0,1,0,0,-2,-1,0,0,-6,0,4,2,0,1,-6]];

E[451,1] = [x^5+2*x^4-3*x^3-4*x^2+2*x+1, [1,x,-x^4-x^3+4*x^2+x-2,x^2-2,-x^3-3*x^2+x+2,x^4+x^3-3*x^2+1,2*x^4+3*x^3-6*x^2-4*x+1,x^3-4*x,x^3+x^2-4*x-1,-x^4-3*x^3+x^2+2*x,1,x^4+2*x^3-4*x^2-3*x+3,x^4+3*x^3-5*x-3,-x^4+4*x^2-3*x-2,-2*x^3-2*x^2+4*x-1,x^4-6*x^2+4,-x^4-4*x^3+x^2+8*x-1]];
E[451,2] = [x^5+2*x^4-5*x^3-10*x^2+4*x+9, [1,x,-x^4-x^3+6*x^2+3*x-8,x^2-2,-2*x^4-x^3+11*x^2+3*x-12,x^4+x^3-7*x^2-4*x+9,2*x^4+x^3-12*x^2-4*x+13,x^3-4*x,4*x^4+3*x^3-23*x^2-10*x+25,3*x^4+x^3-17*x^2-4*x+18,-1,x^4-6*x^2-x+7,3*x^4+x^3-18*x^2-3*x+21,-3*x^4-2*x^3+16*x^2+5*x-18,2*x^4+2*x^3-12*x^2-6*x+15,x^4-6*x^2+4,-3*x^4+19*x^2-25]];
E[451,3] = [x^10-4*x^9-6*x^8+38*x^7-7*x^6-105*x^5+74*x^4+77*x^3-74*x^2+8, [4,4*x,14*x^9-48*x^8-112*x^7+468*x^6+178*x^5-1370*x^4+216*x^3+1210*x^2-296*x-176,4*x^2-8,x^9-4*x^8-6*x^7+38*x^6-7*x^5-105*x^4+70*x^3+81*x^2-54*x-8,8*x^9-28*x^8-64*x^7+276*x^6+100*x^5-820*x^4+132*x^3+740*x^2-176*x-112,10*x^9-34*x^8-80*x^7+332*x^6+126*x^5-976*x^4+158*x^3+874*x^2-210*x-132,4*x^3-16*x,4*x^9-12*x^8-36*x^7+116*x^6+88*x^5-332*x^4-40*x^3+276*x^2-8*x-28,-4*x^4+4*x^3+20*x^2-8*x-8,4,-24*x^9+80*x^8+196*x^7-780*x^6-336*x^5+2280*x^4-308*x^3-2004*x^2+480*x+288,10*x^9-32*x^8-84*x^7+308*x^6+162*x^5-878*x^4+72*x^3+730*x^2-160*x-92,6*x^9-20*x^8-48*x^7+196*x^6+74*x^5-582*x^4+104*x^3+530*x^2-132*x-80,-28*x^9+92*x^8+232*x^7-896*x^6-424*x^5+2616*x^4-272*x^3-2308*x^2+500*x+352,4*x^4-24*x^2+16,-3*x^9+12*x^8+22*x^7-122*x^6-19*x^5+383*x^4-98*x^3-383*x^2+94*x+72]];
E[451,4] = [x^12-3*x^11-16*x^10+48*x^9+93*x^8-270*x^7-251*x^6+633*x^5+359*x^4-582*x^3-248*x^2+136*x+32, [232,232*x,-11*x^11-15*x^10+216*x^9+288*x^8-1559*x^7-1766*x^6+4841*x^5+3869*x^4-5605*x^3-2238*x^2+1504*x-248,232*x^2-464,59*x^11-83*x^10-974*x^9+1176*x^8+5599*x^7-5476*x^6-13121*x^5+9213*x^4+11403*x^3-4716*x^2-1940*x+824,-48*x^11+40*x^10+816*x^9-536*x^8-4736*x^7+2080*x^6+10832*x^5-1656*x^4-8640*x^3-1224*x^2+1248*x+352,-7*x^11+x^10+148*x^9+4*x^8-1203*x^7-122*x^6+4557*x^5+353*x^4-7553*x^3+126*x^2+3836*x-432,232*x^3-928*x,-3*x^11-99*x^10+196*x^9+1576*x^8-2239*x^7-8570*x^6+8913*x^5+18297*x^4-11937*x^3-13634*x^2+3616*x+1936,94*x^11-30*x^10-1656*x^9+112*x^8+10454*x^7+1688*x^6-28134*x^5-9778*x^4+29622*x^3+12692*x^2-7200*x-1888,-232,-82*x^11+78*x^10+1336*x^9-848*x^8-7762*x^7+2316*x^6+19046*x^5+854*x^4-17950*x^3-6180*x^2+3872*x+2032,-49*x^11+123*x^10+688*x^9-1712*x^8-3085*x^7+7846*x^6+4291*x^5-13073*x^4+489*x^3+6566*x^2-2496*x-240,-20*x^11+36*x^10+340*x^9-552*x^8-2012*x^7+2800*x^6+4784*x^5-5040*x^4-3948*x^3+2100*x^2+520*x+224,41*x^11-39*x^10-668*x^9+424*x^8+3765*x^7-810*x^6-8595*x^5-3443*x^4+7235*x^3+9238*x^2-776*x-2872,232*x^4-1392*x^2+928,-8*x^11+142*x^10-38*x^9-2216*x^8+1376*x^7+11966*x^6-6624*x^5-25854*x^4+8942*x^3+19574*x^2-1764*x-1952]];
E[451,5] = [x, [1,0,1,-2,-3,0,4,0,-2,0,-1,-2,-6,0,-3,4,2]];

E[452,1] = [x^3+3*x^2-1, [1,0,x,0,-1,0,-x^2-4*x-1,0,x^2-3,0,2*x^2+3*x-3,0,x-3,0,-x,0,-3*x^2-6*x+1]];
E[452,2] = [x^7-3*x^6-12*x^5+33*x^4+40*x^3-98*x^2-16*x+58, [1,0,x,0,x^6-2*x^5-13*x^4+16*x^3+52*x^2-22*x-44,0,-3*x^6+5*x^5+44*x^4-46*x^3-188*x^2+82*x+156,0,x^2-3,0,4*x^6-7*x^5-58*x^4+64*x^3+246*x^2-112*x-200,0,-2*x^6+4*x^5+27*x^4-34*x^3-111*x^2+52*x+96,0,x^6-x^5-17*x^4+12*x^3+76*x^2-28*x-58,0,3*x^6-5*x^5-44*x^4+46*x^3+188*x^2-82*x-154]];

E[453,1] = [x^2-3, [1,x,-1,1,2,-x,1,-x,1,2*x,x+2,-1,2*x,x,-2,-5,0]];
E[453,2] = [x^2+3*x+1, [1,x,1,-3*x-3,x+3,x,-2*x-5,4*x+3,1,-1,2*x+6,-3*x-3,-2*x+1,x+2,x+3,-3*x+2,-1]];
E[453,3] = [x^2+x-1, [1,x,1,-x-1,-x-1,x,-3,-2*x-1,1,-1,2*x-2,-x-1,-1,-3*x,-x-1,3*x,-2*x-1]];
E[453,4] = [x^2-3*x+1, [1,x,-1,3*x-3,x-3,-x,1,4*x-3,1,-1,-2*x+6,-3*x+3,-1,x,-x+3,3*x+2,-4*x+9]];
E[453,5] = [x^3+x^2-2*x-1, [1,x,-1,x^2-2,-2*x^2-x+2,-x,2*x^2+2*x-2,-x^2-2*x+1,1,x^2-2*x-2,-x^2-3*x+1,-x^2+2,-2*x-2,2*x+2,2*x^2+x-2,-3*x^2-x+3,-x^2-x-5]];
E[453,6] = [x^9-6*x^8+3*x^7+42*x^6-68*x^5-62*x^4+168*x^3-15*x^2-98*x+31, [2,2*x,2,2*x^2-4,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-246*x^3+76*x^2+148*x-54,2*x,-3*x^8+11*x^7+16*x^6-86*x^5+6*x^4+180*x^3-76*x^2-99*x+47,2*x^3-8*x,2,10*x^8-36*x^7-56*x^6+282*x^5+2*x^4-596*x^3+208*x^2+338*x-124,-15*x^8+55*x^7+84*x^6-436*x^5-2*x^4+940*x^3-318*x^2-543*x+195,2*x^2-4,4*x^8-16*x^7-20*x^6+128*x^5-16*x^4-280*x^3+108*x^2+164*x-52,-7*x^8+25*x^7+40*x^6-198*x^5-6*x^4+428*x^3-144*x^2-247*x+93,4*x^8-14*x^7-24*x^6+112*x^5+10*x^4-246*x^3+76*x^2+148*x-54,2*x^4-12*x^2+8,6*x^8-24*x^7-28*x^6+190*x^5-40*x^4-412*x^3+198*x^2+246*x-100]];
E[453,7] = [x^5+3*x^4-6*x^3-18*x^2+8*x+19, [1,x,-1,x^2-2,-x^4-x^3+6*x^2+2*x-6,-x,x^4+x^3-7*x^2-4*x+7,x^3-4*x,1,2*x^4-16*x^2+2*x+19,x^4-7*x^2+2*x+3,-x^2+2,-x^4+x^3+9*x^2-6*x-11,-2*x^4-x^3+14*x^2-x-19,x^4+x^3-6*x^2-2*x+6,x^4-6*x^2+4,2*x^4+x^3-14*x^2+18]];

E[454,1] = [x^2+3*x+1, [1,1,x,1,-2*x-4,x,x-1,1,-3*x-4,-2*x-4,x-3,x,-2*x-2,x-1,2*x+2,1,2*x]];
E[454,2] = [x^7-4*x^6-9*x^5+48*x^4-11*x^3-92*x^2+28*x+56, [4,4,4*x,4,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,4*x,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,4,4*x^2-12,-x^6+4*x^5+9*x^4-44*x^3+7*x^2+48*x+4,8*x^6-20*x^5-104*x^4+232*x^3+280*x^2-360*x-312,4*x,5*x^6-14*x^5-57*x^4+158*x^3+85*x^2-206*x-92,-6*x^6+14*x^5+78*x^4-162*x^3-210*x^2+246*x+236,4*x^4-4*x^3-44*x^2+32*x+56,4,10*x^6-28*x^5-118*x^4+316*x^3+218*x^2-416*x-256]];
E[454,3] = [x^4+2*x^3-3*x^2-2*x+1, [1,-1,x,1,-x^3-3*x^2+x+2,-x,x^3+3*x^2-2*x-3,-1,x^2-3,x^3+3*x^2-x-2,x^3+2*x^2-3*x-4,x,3*x^3+6*x^2-8*x-5,-x^3-3*x^2+2*x+3,-x^3-2*x^2+1,1,-2*x^3-3*x^2+5*x-1]];
E[454,4] = [x^5+x^4-11*x^3-8*x^2+28*x+8, [4,-4,4*x,4,x^4-3*x^3-7*x^2+20*x+4,-4*x,2*x^4-16*x^2+2*x+12,-4,4*x^2-12,-x^4+3*x^3+7*x^2-20*x-4,-4*x^2+24,4*x,-x^4-3*x^3+9*x^2+22*x-12,-2*x^4+16*x^2-2*x-12,-4*x^4+4*x^3+28*x^2-24*x-8,4,2*x^4+2*x^3-14*x^2-8*x+16]];

E[455,1] = [x, [1,1,0,-1,-1,0,-1,-3,-3,-1,0,0,-1,-1,0,-1,-2]];
E[455,2] = [x, [1,-1,0,-1,1,0,-1,3,-3,-1,0,0,1,1,0,-1,-6]];
E[455,3] = [x^4-3*x^3-x^2+5*x+1, [1,x,-x^3+3*x^2-2,x^2-2,1,-x^2+3*x+1,-1,x^3-4*x,-x^3+3*x^2-2*x,x,-2*x^3+2*x^2+6*x,x^3-3*x^2+x+4,-1,-x,-x^3+3*x^2-2,3*x^3-5*x^2-5*x+3,-x^3+x^2+2*x+5]];
E[455,4] = [x^6-3*x^5-6*x^4+20*x^3+6*x^2-31*x+9, [1,x,-x^3+x^2+4*x-2,x^2-2,1,-x^4+x^3+4*x^2-2*x,1,x^3-4*x,x^5-x^4-8*x^3+6*x^2+15*x-8,x,-x^5+2*x^4+6*x^3-10*x^2-8*x+9,-x^5+x^4+6*x^3-4*x^2-8*x+4,1,x,-x^3+x^2+4*x-2,x^4-6*x^2+4,x^5-x^4-6*x^3+2*x^2+7*x+3]];
E[455,5] = [x^4+x^3-5*x^2-3*x+1, [1,x,x^3+x^2-4*x-2,x^2-2,-1,x^2+x-1,-1,x^3-4*x,-x^3-x^2+6*x+4,-x,2*x^3+2*x^2-10*x-4,-x^3-x^2+7*x+4,1,-x,-x^3-x^2+4*x+2,-x^3-x^2+3*x+3,x^3-x^2-6*x+3]];
E[455,6] = [x^7-15*x^5+2*x^4+66*x^3-17*x^2-72*x+19, [14,14*x,-x^6-5*x^5+18*x^4+46*x^3-88*x^2-73*x+71,14*x^2-28,-14,-5*x^6+3*x^5+48*x^4-22*x^3-90*x^2-x+19,14,14*x^3-56*x,-2*x^6+4*x^5+22*x^4-48*x^3-64*x^2+120*x+86,-14*x,3*x^6+x^5-26*x^4-12*x^3+26*x^2+51*x+53,5*x^6-17*x^5-48*x^4+148*x^3+90*x^2-195*x-47,-14,14*x,x^6+5*x^5-18*x^4-46*x^3+88*x^2+73*x-71,14*x^4-84*x^2+56,2*x^6-4*x^5-22*x^4+20*x^3+64*x^2+48*x-72]];

E[456,1] = [x, [1,0,1,0,-3,0,-3,0,1,0,-1,0,-2,0,-3,0,-5]];
E[456,2] = [x, [1,0,1,0,2,0,0,0,1,0,0,0,2,0,2,0,2]];
E[456,3] = [x^2-x-4, [1,0,1,0,x,0,x,0,1,0,-x+4,0,-2*x,0,x,0,-3*x+2]];
E[456,4] = [x, [1,0,-1,0,4,0,4,0,1,0,-4,0,-4,0,-4,0,6]];
E[456,5] = [x, [1,0,-1,0,1,0,-3,0,1,0,-5,0,-2,0,-1,0,-1]];
E[456,6] = [x^2+x-10, [1,0,-1,0,x,0,-x-2,0,1,0,x+2,0,6,0,-x,0,-x]];

E[457,1] = [x^15+10*x^14+27*x^13-43*x^12-324*x^11-310*x^10+917*x^9+1910*x^8-330*x^7-3170*x^6-1281*x^5+1917*x^4+1110*x^3-506*x^2-232*x+79, [3,3*x,-22*x^14-176*x^13-248*x^12+1409*x^11+4334*x^10-1464*x^9-17000*x^8-9601*x^7+24824*x^6+23065*x^5-14540*x^4-15932*x^3+4537*x^2+3510*x-1043,3*x^2-6,-8*x^14-79*x^13-184*x^12+502*x^11+2524*x^10+765*x^9-9145*x^8-9500*x^7+12118*x^6+18116*x^5-5953*x^4-11923*x^3+1877*x^2+2634*x-661,44*x^14+346*x^13+463*x^12-2794*x^11-8284*x^10+3174*x^9+32419*x^8+17564*x^7-46675*x^6-42722*x^5+26242*x^4+28957*x^3-7622*x^2-6147*x+1738,15*x^14+153*x^13+369*x^12-978*x^11-5046*x^10-1464*x^9+18663*x^8+18642*x^7-26172*x^6-36324*x^5+15006*x^4+24831*x^3-5496*x^2-5775*x+1638,3*x^3-12*x,31*x^14+245*x^13+335*x^12-1961*x^11-5915*x^10+2061*x^9+23006*x^8+13096*x^7-32771*x^6-31183*x^5+17993*x^4+21041*x^3-5134*x^2-4485*x+1235,x^14+32*x^13+158*x^12-68*x^11-1715*x^10-1809*x^9+5780*x^8+9478*x^7-7244*x^6-16201*x^5+3413*x^4+10757*x^3-1414*x^2-2517*x+632,-7*x^14-77*x^13-206*x^12+455*x^11+2684*x^10+1119*x^9-9638*x^8-10615*x^7+12791*x^6+19645*x^5-6359*x^4-12755*x^3+1999*x^2+2763*x-680,-50*x^14-373*x^13-406*x^12+3154*x^11+8146*x^10-5001*x^9-32476*x^8-12953*x^7+47110*x^6+36476*x^5-26311*x^4-24598*x^3+7043*x^2+4926*x-1390,33*x^14+255*x^13+315*x^12-2118*x^11-5901*x^10+2991*x^9+23439*x^8+10494*x^7-34413*x^6-27606*x^5+19995*x^4+18678*x^3-5751*x^2-3825*x+1125,3*x^14-36*x^13-333*x^12-186*x^11+3186*x^10+4908*x^9-10008*x^8-21222*x^7+11226*x^6+34221*x^5-3924*x^4-22146*x^3+1815*x^2+5118*x-1185,-7*x^14-38*x^13+25*x^12+413*x^11+263*x^10-1530*x^9-1427*x^8+2549*x^7+2051*x^6-2480*x^5-635*x^4+1741*x^3-374*x^2-549*x+181,3*x^4-18*x^2+12,53*x^14+445*x^13+736*x^12-3337*x^11-11770*x^10+1284*x^9+44569*x^8+32813*x^7-61669*x^6-70244*x^5+32200*x^4+46633*x^3-9203*x^2-9990*x+2569]];
E[457,2] = [x^2-x-1, [1,x,-x+1,x-1,-2,-1,-x,-2*x+1,-x-1,-2*x,-5,x-2,x+4,-x-1,2*x-2,-3*x,6*x-3]];
E[457,3] = [x^20-6*x^19-12*x^18+130*x^17-25*x^16-1135*x^15+1068*x^14+5145*x^13-6910*x^12-12965*x^11+21043*x^10+17930*x^9-33307*x^8-12486*x^7+25549*x^6+3888*x^5-7077*x^4-927*x^3+255*x^2+6*x-1, [141335001074,141335001074*x,44910231344*x^19-262132953782*x^18-563277420572*x^17+5654100777618*x^16-473601547870*x^15-49145361624864*x^14+40936673953584*x^13+222077953664738*x^12-270620374380398*x^11-560219751788428*x^10+819915782213548*x^9+784177139072470*x^8-1279159638790676*x^7-568426102864896*x^6+960623957509494*x^5+195146259448128*x^4-256480160792170*x^3-44219181634722*x^2+6522543544288*x+271817263110,141335001074*x^2-282670002148,28269732272*x^19-181716809048*x^18-300832245364*x^17+3963907016606*x^16-1645333444716*x^15-34890755875230*x^14+39551782913484*x^13+159677427659620*x^12-244248864879272*x^11-406820865283386*x^10+737410175813690*x^9+570192093781662*x^8-1167685979967860*x^7-406298485161842*x^6+894032612012266*x^5+137008689693482*x^4-240633807259142*x^3-38487704445738*x^2+5619931590802*x+390073936886,7328434282*x^19-24354644444*x^18-184229297102*x^17+649154235730*x^16+1827750950576*x^15-7027453121808*x^14-8985186600142*x^13+39709324206642*x^12+22041397586532*x^11-125130215958244*x^10-21063308925450*x^9+216665436583932*x^8-7676954303712*x^7-186787543098362*x^6+20535279982656*x^5+61349546429318*x^4-2587397178834*x^3-4929565448432*x^2+2355875046*x+44910231344,28412209168*x^19-147859835320*x^18-435251926208*x^17+3247622629562*x^16+1436648948070*x^15-28926184952564*x^14+10400689721198*x^13+135098424956624*x^12-98689765501488*x^11-356413952662390*x^10+327384605324462*x^9+530287321025626*x^8-526564120403620*x^7-416819831794398*x^6+393404686132240*x^5+153037773103314*x^4-96981879065262*x^3-28208799812468*x^2+44405963740*x+126681165202,141335001074*x^3-565340004296*x,48601650942*x^19-267786267644*x^18-675971307790*x^17+5827187704810*x^16+921068956168*x^15-51264110944702*x^14+31840710604600*x^13+235616736830582*x^12-236710614490850*x^11-609542592589586*x^10+747002352955672*x^9+889043259737778*x^8-1193246388411476*x^7-695808825584154*x^6+912548212641866*x^5+276099532585680*x^4-247413052983682*x^3-64477888895508*x^2+5976880985198*x+940985446530,-12098415416*x^19+38404541900*x^18+288841821246*x^17-938590137916*x^16-2804609746510*x^15+9359708846988*x^14+14229655120180*x^13-48905014879752*x^12-40303786376906*x^11+142530199613994*x^10+63315794144702*x^9-226106007184356*x^8-53322608013650*x^7+171769222194938*x^6+27095970619946*x^5-40568911970198*x^4-12281662629594*x^3-1588850138558*x^2+220455543254*x+28269732272,-24595468169*x^19+113970680785*x^18+445417497035*x^17-2581228633099*x^16-2733464669600*x^15+23910472380145*x^14+4112562606153*x^13-117414593764540*x^12+24752728806900*x^11+330424742426235*x^10-124173939309914*x^9-535441799567240*x^8+219725078787495*x^7+473758827059255*x^6-159870598577262*x^5-204048720337364*x^4+29709262547955*x^3+38571711168796*x^2+3216976978289*x-459481756199,-70204501440*x^19+427977821846*x^18+823012620214*x^17-9297239747610*x^16+2237522884002*x^15+81478768836410*x^14-79868818081416*x^13-371475028854324*x^12+511123683268682*x^11+945163952055280*x^10-1554564954519424*x^9-1331943071818078*x^8+2463034564928042*x^7+970153318241630*x^6-1888391321078086*x^5-341016586661376*x^4+514824214715322*x^3+86571968402580*x^2-13044147462924*x-536306091938,-49254150648*x^19+290846669692*x^18+622619925336*x^17-6349761375246*x^16+514717515088*x^15+56127754441040*x^14-45989076720716*x^13-259808028529570*x^12+308349689625552*x^11+679563477563104*x^10-949541813653834*x^9-1009282450144502*x^8+1509234092282816*x^7+816024457540128*x^6-1156158382814502*x^5-344287215870826*x^4+311880604779356*x^3+85884472545566*x^2-4349695918588*x-857474794850,22613419688*x^19-94305416192*x^18-445964562278*x^17+2146954177270*x^16+3321672453116*x^15-19943549670226*x^14-11082391212736*x^13+97638599849392*x^12+11950339200730*x^11-270493512197762*x^10+20856410643386*x^9+419761330354956*x^8-62064988122750*x^7-332498845900992*x^6+42571103858130*x^5+104091325216674*x^4-1870681913732*x^3-7200707374100*x^2-43792089806*x+28412209168,47613662618*x^19-337197562394*x^18-358632845282*x^17+7174868062318*x^16-5852411671526*x^15-61230106901520*x^14+92285312205636*x^13+270009337448640*x^12-522129997594702*x^11-660281463481396*x^10+1509977995768522*x^9+894181789495826*x^8-2334545352391020*x^7-647362766237328*x^6+1777897209925694*x^5+269639495598524*x^4-493801129716728*x^3-91819937506164*x^2+12369289335572*x+1411024712926,141335001074*x^4-848010006444*x^2+565340004296,-37002869054*x^19+191152811002*x^18+590006360640*x^17-4311407923556*x^16-2147454391264*x^15+39560349663828*x^14-13582971421280*x^13-190565238561650*x^12+142292368821040*x^11+516887920243316*x^10-501991348916042*x^9-781336152102034*x^8+856195885284834*x^7+604736025654644*x^6-681149646253820*x^5-202899001098022*x^4+186897957959648*x^3+36886276500736*x^2-7272530836376*x-465501326450]];

E[458,1] = [x, [1,1,-1,1,-1,-1,-4,1,-2,-1,-1,-1,-2,-4,1,1,-3]];
E[458,2] = [x^9-2*x^8-20*x^7+41*x^6+112*x^5-241*x^4-160*x^3+385*x^2+28*x-112, [145364,145364,145364*x,145364,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,145364*x,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,145364,145364*x^2-436092,-737*x^8-8626*x^7+10728*x^6+163547*x^5-48152*x^4-827039*x^3+216284*x^2+956203*x-64284,7074*x^8+5084*x^7-131768*x^6-102930*x^5+647584*x^4+607898*x^3-783280*x^2-1236226*x+157064,145364*x,-30432*x^8+14624*x^7+613588*x^6-303624*x^5-3560656*x^4+1743800*x^3+6114780*x^2-1892808*x-2012192,9607*x^8+3370*x^7-194280*x^6-43925*x^5+1165344*x^4+61617*x^3-2384808*x^2+27859*x+1451960,-10100*x^8-4012*x^7+193764*x^6+34392*x^5-1004656*x^4+98364*x^3+1239948*x^2-43648*x-82544,145364,-9643*x^8-9314*x^7+203088*x^6+157633*x^5-1274796*x^4-657633*x^3+2509376*x^2+601685*x-717432]];
E[458,3] = [x, [1,-1,-3,1,1,3,-2,-1,6,-1,1,-3,2,2,-3,1,1]];
E[458,4] = [x^7-4*x^6-6*x^5+31*x^4+12*x^3-77*x^2-10*x+59, [1,-1,x,1,x^6-5*x^5+x^4+24*x^3-22*x^2-27*x+31,-x,x^6-5*x^5+26*x^3-16*x^2-33*x+23,-1,x^2-3,-x^6+5*x^5-x^4-24*x^3+22*x^2+27*x-31,-x^5+4*x^4+3*x^3-20*x^2-x+24,x,-x^6+6*x^5-4*x^4-30*x^3+37*x^2+38*x-44,-x^6+5*x^5-26*x^3+16*x^2+33*x-23,-x^6+7*x^5-7*x^4-34*x^3+50*x^2+41*x-59,1,x^6-7*x^5+7*x^4+37*x^3-58*x^2-48*x+77]];
E[458,5] = [x^2-x-3, [1,-1,0,1,x,0,-x-1,-1,-3,-x,-2*x,0,-4,x+1,0,1,-x-1]];

E[459,1] = [x, [1,1,0,-1,-1,0,-2,-3,0,-1,0,0,-5,-2,0,-1,-1]];
E[459,2] = [x, [1,-1,0,-1,1,0,-2,3,0,-1,0,0,-5,2,0,-1,1]];
E[459,3] = [x^2-x-1, [1,x,0,x-1,-x-1,0,-3*x,-2*x+1,0,-2*x-1,2*x-5,0,2*x,-3*x-3,0,-3*x,-1]];
E[459,4] = [x^2+x-1, [1,x,0,-x-1,-x+1,0,3*x,-2*x-1,0,2*x-1,2*x+5,0,-2*x,-3*x+3,0,3*x,1]];
E[459,5] = [x^3+x^2-7*x-9, [1,x,0,x^2-2,x^2-6,0,x^2-2*x-7,-x^2+3*x+9,0,-x^2+x+9,2*x^2-2*x-12,0,-2*x^2+2*x+11,-3*x^2+9,0,2*x^2+2*x-5,1]];
E[459,6] = [x^3-x^2-7*x+9, [1,x,0,x^2-2,-x^2+6,0,x^2+2*x-7,x^2+3*x-9,0,-x^2-x+9,-2*x^2-2*x+12,0,-2*x^2-2*x+11,3*x^2-9,0,2*x^2-2*x-5,-1]];
E[459,7] = [x^2-x-3, [1,x,0,x+1,-x+3,0,-x+2,3,0,2*x-3,3,0,2*x-4,x-3,0,x-2,-1]];
E[459,8] = [x^2+x-3, [1,x,0,-x+1,-x-3,0,x+2,-3,0,-2*x-3,-3,0,-2*x-4,x+3,0,-x-2,1]];
E[459,9] = [x, [1,-2,0,2,-4,0,1,0,0,8,6,0,1,-2,0,-4,-1]];
E[459,10] = [x, [1,-2,0,2,2,0,4,0,0,-4,-3,0,7,-8,0,-4,-1]];
E[459,11] = [x, [1,2,0,2,-2,0,4,0,0,-4,3,0,7,8,0,-4,1]];
E[459,12] = [x, [1,2,0,2,4,0,1,0,0,8,-6,0,1,2,0,-4,1]];
E[459,13] = [x, [1,0,0,-2,-3,0,2,0,0,0,3,0,2,0,0,4,-1]];
E[459,14] = [x, [1,0,0,-2,3,0,2,0,0,0,-3,0,2,0,0,4,1]];

E[460,1] = [x, [1,0,3,0,-1,0,2,0,6,0,0,0,-3,0,-3,0,4]];
E[460,2] = [x, [1,0,1,0,-1,0,-4,0,-2,0,-6,0,-1,0,-1,0,0]];
E[460,3] = [x, [1,0,-1,0,1,0,-2,0,-2,0,-4,0,1,0,-1,0,0]];
E[460,4] = [x^2-x-4, [1,0,x,0,1,0,-x+1,0,x+1,0,2,0,x-2,0,x,0,-x+1]];
E[460,5] = [x, [1,0,0,0,-1,0,-1,0,-3,0,6,0,6,0,0,0,7]];

E[461,1] = [x^2+x-1, [1,x,x-1,-x-1,2*x+1,-2*x+1,-2*x-2,-2*x-1,-3*x-1,-x+2,-2*x-1,x,-1,-2,-3*x+1,3*x,-3*x+3]];
E[461,2] = [x^3+2*x^2-x-1, [1,x,2*x^2+3*x-2,x^2-2,-2*x^2-4*x+1,-x^2+2,-1,-2*x^2-3*x+1,-3*x^2-4*x+5,-x-2,-x^2-3*x-3,-2*x^2-5*x+3,-2*x^2-x+2,-x,2*x^2+x-8,-x^2-x+2,2*x^2+5*x+1]];
E[461,3] = [x^7-8*x^5+x^4+18*x^3-2*x^2-12*x+1, [1,x,x^5-6*x^3+x^2+6*x-1,x^2-2,-x^5+6*x^3-x^2-7*x,x^6-6*x^4+x^3+6*x^2-x,-2*x^5+12*x^3-4*x^2-13*x+5,x^3-4*x,-2*x^6+12*x^4-3*x^3-12*x^2+4*x-3,-x^6+6*x^4-x^3-7*x^2,x^6+2*x^5-6*x^4-11*x^3+8*x^2+13*x-1,-x^2+1,-x^6+2*x^5+6*x^4-14*x^3-2*x^2+16*x-7,-2*x^6+12*x^4-4*x^3-13*x^2+5*x,x^6-x^5-6*x^4+8*x^3+5*x^2-9*x+1,x^4-6*x^2+4,2*x^6-2*x^5-13*x^4+15*x^3+16*x^2-18*x-4]];
E[461,4] = [x^26-3*x^25-41*x^24+126*x^23+726*x^22-2303*x^21-7266*x^20+24054*x^19+45144*x^18-158550*x^17-179824*x^16+687620*x^15+456511*x^14-1985932*x^13-703693*x^12+3785104*x^11+571532*x^10-4624305*x^9-111938*x^8+3430214*x^7-156745*x^6-1399829*x^5+108715*x^4+249906*x^3-21297*x^2-6102*x+223, [79452970167808,79452970167808*x,-18411620439*x^25+504124605276*x^24-470141107935*x^23-20612532444589*x^22+36754184162415*x^21+364237934953392*x^20-753510909479226*x^19-3641958132508816*x^18+8073693987022900*x^17+22652375835053178*x^16-52457925400371350*x^15-90693691656790686*x^14+217656635876641153*x^13+233496124711315187*x^12-582246532910211218*x^11-373820503413376726*x^10+983354853923556414*x^9+343467078638191121*x^8-992645198412472247*x^7-150194664903861945*x^6+537972502717940624*x^5+13620998787985797*x^4-124835163766573768*x^3+5764216701847466*x^2+4325996849510437*x-48453363884879,79452970167808*x^2-158905940335616,-533667583320*x^25+1070948233227*x^24+22722271687947*x^23-44162634567320*x^22-422227565561867*x^21+789640228287734*x^20+4499008951511820*x^19-8027279296218828*x^18-30381371911163382*x^17+51127779851991152*x^16+135691366785720340*x^15-212009684413759972*x^14-406181818081007652*x^13+576100090591804269*x^12+808845880412822488*x^11-1006850664071936146*x^10-1042522792793858504*x^9+1079791855264038202*x^8+823928140449728253*x^7-649619966109323688*x^6-358732742406467765*x^5+183920627873384021*x^4+65182043250006016*x^3-15397912298726654*x^2-176881129779974*x+94898764459539,448889743959*x^25-1225017545934*x^24-18292668269275*x^23+50121020601129*x^22+321835973082375*x^21-887289743589000*x^20-3199085014469110*x^19+8904868180121116*x^18+19733213414449728*x^17-55768776634194086*x^16-78033493210525506*x^15+226061743134869482*x^14+196931898509651039*x^13-595202661331792445*x^12-304130605243236070*x^11+993877684176298962*x^10+258326130184021226*x^9-994706158381173029*x^8-87038866711317999*x^7+535086573272229569*x^6-12152121439519134*x^5-122833544450547883*x^4+10365391119276200*x^3+3933884569021054*x^2-160801071803657*x+4105791357897,269972620418*x^25-451039652138*x^24-11836077626848*x^23+18814326551762*x^22+228175655318140*x^21-342244902905008*x^20-2545541849355908*x^19+3565652828834684*x^18+18199800199959460*x^17-23496224908060992*x^16-87244939871805972*x^15+102039058403139616*x^14+285004277019395610*x^13-294976334222686348*x^12-631779940206416580*x^11+559435644228653752*x^10+927431139777785660*x^9-667012407680284634*x^8-855711999953356524*x^7+458523735016735974*x^6+447015235744728338*x^5-152932740100850684*x^4-103663011059705176*x^3+17310643536509428*x^2+3915305332877942*x-270231480525444,79452970167808*x^3-317811880671232*x,-221164430577*x^25+1393132452858*x^24+7284297020557*x^23-57517955298179*x^22-88281865594749*x^21+1029120036920564*x^20+341085241908042*x^19-10457217049487624*x^18+2558112265784144*x^17+66433359867953838*x^16-37530529716622554*x^15-273639041890329866*x^14+205867848746380815*x^13+732721351234874679*x^12-629056743742682662*x^11-1241704206606630790*x^10+1128840037363391226*x^9+1246293507094846147*x^8-1148816961260830863*x^7-638954685874027687*x^6+595071062288668566*x^5+102944372558794205*x^4-123854049420627848*x^3+15293183051786882*x^2+2127384435621311*x-195726918313523,-530054516733*x^25+841900771827*x^24+23079480931000*x^23-34784900071547*x^22-439396216098226*x^21+621380291108700*x^20+4809560752960452*x^19-6289482529765302*x^18-33485215483394848*x^17+39725127282784660*x^16+154950819228738428*x^15-162556695952011132*x^14-483727440486049971*x^13+433307737703621728*x^12+1013136640222929134*x^11-737514691563812264*x^10-1388049818620554398*x^9+764190458508054093*x^8+1180974049541106792*x^7-442382467753961165*x^6-563122731617868259*x^5+123199714570639816*x^4+117968818778441266*x^3-11542399651746014*x^2-3161540828959101*x+119007871080360,-654486464095*x^25+2148325256257*x^24+25986288436292*x^23-88816208595081*x^22-440641598708662*x^21+1590810325100560*x^20+4149154426094600*x^19-16180963527196262*x^18-23534114177737764*x^17+102941930070078088*x^16+80752701751371896*x^15-425253926000341200*x^14-153557123852975485*x^13+1146465620589004060*x^12+97130412475095698*x^11-1975015197652364888*x^10+180897908371518422*x^9+2066518903949019575*x^8-392900640666124672*x^7-1194265712543343851*x^6+264312392250545123*x^5+317579627757854744*x^4-62864656642058582*x^3-23236863618643070*x^2+1892099576957565*x+418100735784124,158474926821*x^25-896437977508*x^24-5498804921835*x^23+37167083857319*x^22+72994968423747*x^21-665928004769800*x^20-385703902110218*x^19+6752451078182264*x^18-744695703540436*x^17-42617095562948646*x^16+22312028194524602*x^15+173396175918765362*x^14-139051426085089963*x^13-455242284070125857*x^12+459276384578534662*x^11+749412283866399490*x^10-885612778789962362*x^9-723725203828417699*x^8+980589085912596837*x^7+358598431285058211*x^6-570409668490046120*x^5-65677654971198079*x^4+141423971748350736*x^3-2129229598403766*x^2-5908762690025159*x-3195685133099,1022359648668*x^25-2950964621426*x^24-41522351658258*x^23+121964201300020*x^22+726732038273022*x^21-2183905296776552*x^20-7168431140696444*x^19+22205254398126148*x^18+43735317536480736*x^17-141175111399302284*x^16-170357642167441012*x^15+582406158674304532*x^14+421695483196446664*x^13-1565404080393564638*x^12-638943030719293264*x^11+2677541310497012588*x^10+549642142303336232*x^9-2751095740044755168*x^8-245368560916246714*x^7+1508542351271317112*x^6+70216016272270074*x^5-330482871980866466*x^4-20729424600336756*x^3-750573007734768*x^2+2933087190075164*x+341170943020614,358878209116*x^25-767200189710*x^24-15202223620906*x^23+32175532894672*x^22+279502041917646*x^21-583920789398720*x^20-2928268582699888*x^19+6012156223809268*x^18+19307934059212908*x^17-38697383377759540*x^16-83599514848685544*x^15+161758806099754012*x^14+241170931789273228*x^13-441802097026612906*x^12-462438801205999720*x^11+773133148085045284*x^10+581423330781774856*x^9-825491804769006440*x^8-467540127157773478*x^7+489332094132147748*x^6+224982763166257838*x^5-133013084488448046*x^4-50157134141671280*x^3+9664912229920088*x^2+1377141449265192*x-60203894353214,63881722636*x^25-579723611756*x^24-2046063831316*x^23+24768103205780*x^22+22874797419472*x^21-459401010008076*x^20-51046493810908*x^19+4852816216298572*x^18-1182317070222140*x^17-32188663801023404*x^16+13071876666707676*x^15+139388297046570940*x^14-64537482354947920*x^13-396929629522448612*x^12+178520458046245952*x^11+730481557907336784*x^10-279581661124849304*x^9-831552413730695076*x^8+226554652687081696*x^7+540343806551437432*x^6-74667033889272168*x^5-173462925090104568*x^4+7539781448649716*x^3+19851215664409884*x^2-1994487195944784*x+138597589075748,79452970167808*x^4-476717821006848*x^2+317811880671232,-292931793370*x^25+1363761679523*x^24+10730239086177*x^23-56641692675482*x^22-159790030772685*x^21+1019168651686482*x^20+1184295334019056*x^19-10414313136039776*x^18-3679374510762790*x^17+66572218234817200*x^16-7445724076367592*x^15-276442923322350492*x^14+110913117880207706*x^13+749823533249269627*x^12-438622857904484916*x^11-1302044948647220342*x^10+905161108754393692*x^9+1379046608511070832*x^8-1026505322535081365*x^7-814706293476830174*x^6+594964629034538111*x^5+226592473836418915*x^4-143089736018793760*x^3-18251140757849622*x^2+5091620426255384*x+148846416186893]];

E[462,1] = [x, [1,1,-1,1,-4,-1,1,1,1,-4,-1,-1,-6,1,4,1,-4]];
E[462,2] = [x, [1,1,1,1,2,1,-1,1,1,2,1,1,-2,-1,2,1,-2]];
E[462,3] = [x, [1,1,1,1,0,1,1,1,1,0,-1,1,2,1,0,1,0]];
E[462,4] = [x^2-12, [1,-1,1,1,x,-1,1,-1,1,-x,1,1,2,-1,x,1,-x]];
E[462,5] = [x, [1,-1,1,1,0,-1,-1,-1,1,0,-1,1,6,1,0,1,4]];
E[462,6] = [x, [1,-1,-1,1,-2,1,1,-1,1,2,1,-1,2,-1,2,1,-6]];
E[462,7] = [x, [1,-1,-1,1,2,1,-1,-1,1,-2,1,-1,2,1,-2,1,6]];
E[462,8] = [x, [1,-1,-1,1,0,1,-1,-1,1,0,-1,-1,-2,1,0,1,-4]];

E[463,1] = [x^22-8*x^21-x^20+161*x^19-281*x^18-1216*x^17+3523*x^16+3859*x^15-19383*x^14-1030*x^13+56835*x^12-26406*x^11-90387*x^10+71356*x^9+71796*x^8-76057*x^7-22452*x^6+32959*x^5+1404*x^4-4772*x^3-174*x^2+237*x+25, [2192028849037,2192028849037*x,88081079557*x^21-274019422929*x^20-2628417572230*x^19+8497220344229*x^18+32189971934528*x^17-109880752912386*x^16-208266773801349*x^15+771496154587641*x^14+755393757720071*x^13-3202984347030693*x^12-1452100823408494*x^11+8005041723954874*x^10+999239360848340*x^9-11686683734002023*x^8+993848469210485*x^7+9112869445104238*x^6-1892870464522139*x^5-3089704075101813*x^4+771221864284476*x^3+257495674539470*x^2-57299624398580*x-4959079589235,2192028849037*x^2-4384057698074,-97598814399*x^21-229142941029*x^20+6158276837549*x^19-2974529732687*x^18-107461690992292*x^17+138090235403933*x^16+872349945365154*x^15-1503806189886096*x^14-3795322820045360*x^13+7940622433385189*x^12+8965478486377590*x^11-23099866942251974*x^10-10123163282652780*x^9+37400061934068795*x^8+1939259022320828*x^7-31536458444330130*x^6+5092393651938517*x^5+11711403309945568*x^4-2812510092495637*x^3-1367124790224856*x^2+225193380521624*x+56904893671196,430629213527*x^21-2540336492673*x^20-5683833464448*x^19+56940755290045*x^18-2774160171074*x^17-518576417080660*x^16+431591268577178*x^15+2462669322773402*x^14-3112260835086983*x^13-6458188980030589*x^12+10330910710737016*x^11+8960623898766899*x^10-17971797246871315*x^9-5330020718663887*x^8+15812052112970987*x^7+84725933691625*x^6-5992768376220976*x^5+647556028586448*x^4+677818586185474*x^3-41973516555662*x^2-25834295444244*x-2202026988925,-222625289944*x^21+1982976056150*x^20-901430985342*x^19-38899721488001*x^18+88315032444433*x^17+278295627293925*x^16-1026555612083387*x^15-739309575040831*x^14+5523724445972888*x^13-823645537379160*x^12-16093317475926696*x^11+9581679579189143*x^10+25700475951367957*x^9-22473039772819819*x^8-20833485990737514*x^7+22689966688318300*x^6+6991023755631008*x^5-9312805842636427*x^4-617237644097082*x^3+1114215736056160*x^2+21782425702458*x-26555072225671,2192028849037*x^3-8768115396148*x,369272468869*x^21-1855224922259*x^20-7102733399471*x^19+46307786660108*x^18+45326792887290*x^17-486706617496632*x^16-32769601682534*x^15+2809061182051202*x^14-1002429998841825*x^13-9711761338400229*x^12+5672434184167208*x^11+20533509475459321*x^10-14614003142882626*x^9-25912528986154729*x^8+20242035462709085*x^7+18103762679351239*x^6-14625527512237569*x^5-5981237764257899*x^4+4629089661456092*x^3+725836169225037*x^2-374427795331522*x-47872611360836,-1009933456221*x^21+6060678023150*x^20+12738879385552*x^19-134886957838411*x^18+19410077094749*x^17+1216190568492831*x^16-1127172365120355*x^15-5687080639541177*x^14+7840095654554219*x^13+14512507102744755*x^12-25677061235271968*x^11-18944827319735193*x^10+44364322934323839*x^9+8946463500911432*x^8-38959531471074873*x^7+2901105071052169*x^6+14928162633722209*x^5-2675481357079441*x^4-1832866332536884*x^3+208211186816198*x^2+80035812683759*x+2439970359975,-377503382094*x^21+3076480403503*x^20+264598916261*x^19-62513375389721*x^18+109084437083606*x^17+482375572081841*x^16-1363387321551088*x^15-1635812937585184*x^14+7518281570385921*x^13+1244080279270289*x^12-22160897233422553*x^11+7367200619029801*x^10+35571494323123671*x^9-21980826006363710*x^8-28767100539855269*x^7+23077657560880722*x^6+9419865419517220*x^5-8944235223660024*x^4-713138500460331*x^3+801702390083506*x^2+44460554853556*x-5346927633707,728535056429*x^21-4705165405063*x^20-7133712943342*x^19+101238208141555*x^18-59311237300884*x^17-865753944853671*x^16+1217404735375407*x^15+3691632901531576*x^14-7525428405537921*x^13-7737931946008643*x^12+23236020557977849*x^11+4941402028283886*x^10-38056477600793179*x^9+8267964566590541*x^8+30849395088493694*x^7-14550020164321248*x^6-9759811291005667*x^5+6252623320597192*x^4+470545361826230*x^3-465896161369486*x^2+10338098202336*x-847571159705,-185526721264*x^21+880112226622*x^20+3478976124052*x^19-20528968497307*x^18-23280988978840*x^17+198754862672365*x^16+53710403893317*x^15-1039476970694517*x^14+90359649147676*x^13+3199445832292557*x^12-704435592600010*x^11-5940627969286164*x^10+1288720310058817*x^9+6649399195956646*x^8-761357837048641*x^7-4500790243338669*x^6-143120577976740*x^5+1841178995753636*x^4+161930939692913*x^3-368335078525329*x^2+4468507737272*x+18152844079943,201973736598*x^21-1124056275286*x^20-3057049807017*x^19+25757325970169*x^18+7583274722021*x^17-242246715610675*x^16+119801418853065*x^15+1208578450988336*x^14-1052949586021480*x^13-3440409121959456*x^12+3703036172927879*x^11+5578043869199629*x^10-6587389583575755*x^9-4849880673918090*x^8+5757755011047492*x^7+1992640745808320*x^6-1975298911372131*x^5-304671737015706*x^4+51847852443392*x^3-16954374747798*x^2+26207121491057*x+5565632248600,410254152297*x^21-4517947087352*x^20+6844855768989*x^19+82323394084014*x^18-276736004988484*x^17-492626579528454*x^16+2902891977807382*x^15+388236124621915*x^14-14793684845925254*x^13+8138498983915339*x^12+40931639892670296*x^11-38924963488624024*x^10-60581477665788866*x^9+77318650524794117*x^8+41508341636651695*x^7-72284456621445952*x^6-6608310439915212*x^5+28142743752201906*x^4-2651530609530534*x^3-3267380944892560*x^2+320850309008581*x+115396266946445,2192028849037*x^4-13152173094222*x^2+8768115396148,942220397459*x^21-6508692032108*x^20-7043861092395*x^19+138022374248054*x^18-126980759363803*x^17-1151457961648849*x^16+2050054929501081*x^15+4675777484018986*x^14-12119511022402491*x^13-8579410915247792*x^12+36881899270311071*x^11+890728920926339*x^10-60324016294552892*x^9+20852330365885051*x^8+49513176455522328*x^7-28051921511621284*x^6-16518783274273842*x^5+11731627332128855*x^4+1277918674900624*x^3-1090672087820580*x^2-50655474734857*x+22010586320984]];
E[463,2] = [x^16+9*x^15+17*x^14-70*x^13-282*x^12+7*x^11+1223*x^10+1073*x^9-2045*x^8-2946*x^7+1137*x^6+2847*x^5+88*x^4-954*x^3-47*x^2+118*x-9, [27157,27157*x,16567*x^15+123555*x^14+102271*x^13-1241603*x^12-2734229*x^11+3506452*x^10+13535438*x^9-203986*x^8-26549731*x^7-10979775*x^6+21686537*x^5+12171527*x^4-6229152*x^3-2631590*x^2+913821*x-7771,27157*x^2-54314,83122*x^15+552227*x^14+87178*x^13-6186401*x^12-8887931*x^11+23320843*x^10+49292191*x^9-33481162*x^8-105111955*x^7+10919259*x^6+97009640*x^5+8696311*x^4-35462726*x^3-1670331*x^2+4828811*x-430872,-25548*x^15-179368*x^14-81913*x^13+1937665*x^12+3390483*x^11-6726003*x^10-17980377*x^9+7329784*x^8+37826607*x^7+2849858*x^6-34994722*x^5-7687048*x^4+13173328*x^3+1692470*x^2-1962677*x+149103,-100601*x^15-682759*x^14-206583*x^13+7436061*x^12+11817341*x^11-26290788*x^10-63030099*x^9+30652400*x^8+129342031*x^7+5968668*x^6-111675910*x^5-24976422*x^4+35430488*x^3+4720443*x^2-4565284*x+330669,27157*x^3-108628*x,-12000*x^15-88944*x^14-65364*x^13+933587*x^12+1947848*x^11-2964489*x^10-10209437*x^9+1785704*x^8+21974134*x^7+5509798*x^6-21588843*x^5-7577537*x^4+9415384*x^3+1793506*x^2-1857614*x+138673,-195871*x^15-1325896*x^14-367861*x^13+14552473*x^12+22738989*x^11-52366015*x^10-122671068*x^9+64872535*x^8+255796671*x^7+2499926*x^6-227952023*x^5-42777462*x^4+77628057*x^3+8735545*x^2-10239268*x+748098,51912*x^15+357832*x^14+159146*x^13-3738178*x^12-6545388*x^11+11919997*x^10+33076029*x^9-8494259*x^8-63003655*x^7-15977128*x^6+46393421*x^5+21152721*x^4-8688081*x^3-3003299*x^2+593608*x-175870,17430*x^15+105293*x^14-55237*x^13-1330847*x^12-1078709*x^11+6251923*x^10+7671912*x^9-14011081*x^8-19315088*x^7+16012904*x^6+21675034*x^5-8921502*x^4-10222018*x^3+2099747*x^2+1336125*x-214390,-178593*x^15-1226292*x^14-462163*x^13+13173181*x^12+21987011*x^11-45123967*x^10-115304471*x^9+46716958*x^8+233410957*x^7+24575881*x^6-197951075*x^5-53985991*x^4+60659504*x^3+10180859*x^2-7530115*x+452346,222650*x^15+1503634*x^14+393991*x^13-16552141*x^12-25586581*x^11+60004924*x^10+138597273*x^9-76387014*x^8-290401878*x^7+2707427*x^6+261434625*x^5+44283376*x^4-91252911*x^3-9293531*x^2+12201587*x-905409,5281*x^15+33820*x^14+5655*x^13-350950*x^12-519147*x^11+1112629*x^10+2617991*x^9-841458*x^8-4740047*x^7-1142204*x^6+3230522*x^5+1330061*x^4-606644*x^3+83122*x^2+153376*x-115095,27157*x^4-162942*x^2+108628,-101253*x^15-664997*x^14-44694*x^13+7617746*x^12+10288033*x^11-30017111*x^10-59206352*x^9+48027286*x^8+131480063*x^7-25919185*x^6-129162684*x^5-2426140*x^4+52168763*x^3+1087840*x^2-7273051*x+539102]];

E[464,1] = [x, [1,0,-2,0,-2,0,-4,0,1,0,6,0,2,0,4,0,2]];
E[464,2] = [x^2-2*x-1, [1,0,x,0,2*x-3,0,4,0,2*x-2,0,-x+2,0,-4*x+3,0,x+2,0,-4*x+2]];
E[464,3] = [x^2+2*x-1, [1,0,x,0,-1,0,-2*x-2,0,-2*x-2,0,-x-2,0,2*x+1,0,-x,0,-2*x-4]];
E[464,4] = [x^3+2*x^2-5*x-8, [1,0,x,0,-x^2+6,0,0,0,x^2-3,0,-2*x^2-x+8,0,x^2+2*x-2,0,2*x^2+x-8,0,2]];
E[464,5] = [x, [1,0,-1,0,3,0,4,0,-2,0,-3,0,5,0,-3,0,-6]];
E[464,6] = [x, [1,0,-1,0,1,0,-2,0,-2,0,-3,0,-1,0,-1,0,0]];
E[464,7] = [x, [1,0,1,0,1,0,2,0,-2,0,3,0,-1,0,1,0,8]];
E[464,8] = [x, [1,0,1,0,-3,0,-2,0,-2,0,3,0,-5,0,-3,0,-4]];
E[464,9] = [x, [1,0,3,0,-3,0,2,0,6,0,1,0,3,0,-9,0,-4]];
E[464,10] = [x, [1,0,3,0,3,0,-4,0,6,0,1,0,-3,0,9,0,2]];

E[465,1] = [x, [1,-1,1,-1,1,-1,-4,3,1,-1,-4,-1,2,4,1,-1,-6]];
E[465,2] = [x, [1,1,-1,-1,1,-1,-2,-3,1,1,-4,1,0,-2,-1,-1,2]];
E[465,3] = [x^2-3, [1,x,-1,1,-1,-x,-x-3,-x,1,-x,-2*x+2,-1,x-3,-3*x-3,1,-5,-2*x+2]];
E[465,4] = [x^3-x^2-3*x+1, [1,x,1,x^2-2,1,x,-x+1,x^2-x-1,1,x,2,x^2-2,-2*x^2+3*x+3,-x^2+x,1,-2*x^2+2*x+3,-x^2-2*x+3]];
E[465,5] = [x^3-x^2-5*x+3, [1,x,-1,x^2-2,-1,-x,-x+3,x^2+x-3,1,-x,2*x,-x^2+2,x+1,-x^2+3*x,1,2*x+1,-x^2+5]];
E[465,6] = [x^3-3*x^2-x+5, [1,x,1,x^2-2,-1,x,-2*x^2+3*x+5,3*x^2-3*x-5,1,-x,-2*x^2+2*x+6,x^2-2,-x-1,-3*x^2+3*x+10,-1,4*x^2-2*x-11,-x^2+5]];
E[465,7] = [x^4-2*x^3-6*x^2+12*x-1, [1,x,-1,x^2-2,1,-x,-x^3+x^2+6*x-4,x^3-4*x,1,x,x^3-x^2-7*x+7,-x^2+2,-2*x^3+11*x-1,-x^3+8*x-1,-1,2*x^3-12*x+5,x^3-5*x-2]];
E[465,8] = [x^2+2*x-1, [1,x,1,-2*x-1,-1,x,-x-3,x-2,1,-x,2*x+2,-2*x-1,-x-5,-x-1,-1,3,-4]];

E[466,1] = [x, [1,-1,2,1,0,-2,0,-1,1,0,2,2,2,0,0,1,6]];
E[466,2] = [x^3+2*x^2-3*x-5, [1,-1,x,1,x^2+x-1,-x,2*x^2+x-5,-1,x^2-3,-x^2-x+1,-x^2+6,x,-2*x^2+5,-2*x^2-x+5,-x^2+2*x+5,1,-x-2]];
E[466,3] = [x^5-8*x^3+x^2+5*x-1, [5,-5,5*x,5,5*x^4-40*x^2+15,-5*x,-7*x^4-x^3+53*x^2-3*x-24,-5,5*x^2-15,-5*x^4+40*x^2-15,-4*x^4+3*x^3+31*x^2-21*x-23,5*x,4*x^4+2*x^3-26*x^2-14*x+3,7*x^4+x^3-53*x^2+3*x+24,-5*x^2-10*x+5,5,-7*x^4-6*x^3+53*x^2+32*x-34]];
E[466,4] = [x, [1,1,1,1,0,1,2,1,-2,0,0,1,5,2,0,1,0]];
E[466,5] = [x^3+4*x^2+3*x-1, [1,1,x,1,-x^2-3*x-3,x,2*x^2+3*x-3,1,x^2-3,-x^2-3*x-3,-3*x^2-8*x-4,x,2*x^2+6*x-1,2*x^2+3*x-3,x^2-1,1,-2*x^2-3*x]];
E[466,6] = [x^6-x^5-13*x^4+10*x^3+43*x^2-12*x-36, [12,12,12*x,12,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,12,12*x^2-36,3*x^5-9*x^4-33*x^3+84*x^2+57*x-78,12*x^4-120*x^2+12*x+192,12*x,2*x^5-2*x^4-26*x^3+20*x^2+62*x-12,-2*x^5+2*x^4+26*x^3-20*x^2-74*x+12,-6*x^5+6*x^4+54*x^3-72*x^2-42*x+108,12,-6*x^5+6*x^4+66*x^3-60*x^2-138*x+84]];

E[467,1] = [x^12+5*x^11-3*x^10-46*x^9-28*x^8+144*x^7+140*x^6-182*x^5-197*x^4+102*x^3+104*x^2-22*x-17, [7,7*x,-3*x^11-10*x^10+28*x^9+103*x^8-97*x^7-387*x^6+155*x^5+633*x^4-114*x^3-417*x^2+40*x+81,7*x^2-14,7*x^6+21*x^5-21*x^4-91*x^3-21*x^2+56*x+14,5*x^11+19*x^10-35*x^9-181*x^8+45*x^7+575*x^6+87*x^5-705*x^4-111*x^3+352*x^2+15*x-51,x^11+x^10-21*x^9-25*x^8+149*x^7+192*x^6-425*x^5-554*x^4+458*x^3+545*x^2-172*x-146,7*x^3-28*x,2*x^11+9*x^10-7*x^9-71*x^8-17*x^7+195*x^6+67*x^5-233*x^4-22*x^3+124*x^2-29*x-26,7*x^7+21*x^6-21*x^5-91*x^4-21*x^3+56*x^2+14*x,4*x^11+11*x^10-49*x^9-135*x^8+204*x^7+544*x^6-377*x^5-858*x^4+355*x^3+528*x^2-128*x-108,-7*x^9-21*x^8+49*x^7+161*x^6-105*x^5-392*x^4+70*x^3+329*x^2-21*x-77,-2*x^11-16*x^10-21*x^9+113*x^8+276*x^7-188*x^6-830*x^5-103*x^4+792*x^3+247*x^2-237*x-93,-4*x^11-18*x^10+21*x^9+177*x^8+48*x^7-565*x^6-372*x^5+655*x^4+443*x^3-276*x^2-124*x+17,x^11+x^10-21*x^9-32*x^8+121*x^7+213*x^6-250*x^5-498*x^4+157*x^3+377*x^2-39*x-76,7*x^4-42*x^2+28,3*x^11+17*x^10-152*x^8-176*x^7+429*x^6+678*x^5-423*x^4-719*x^3+200*x^2+205*x-32]];
E[467,2] = [x^26-5*x^25-30*x^24+181*x^23+338*x^22-2813*x^21-1420*x^20+24571*x^19-4052*x^18-132574*x^17+73889*x^16+457016*x^15-370842*x^14-1004824*x^13+992642*x^12+1361654*x^11-1526411*x^10-1049992*x^9+1309411*x^8+383566*x^7-569750*x^6-29300*x^5+105328*x^4-5888*x^3-6944*x^2+448*x+128, [381903588083879883328,381903588083879883328*x,-20726664122746789758*x^25+102778462327042983682*x^24+640153010816021075224*x^23-3765809513089141432278*x^22-7677447890317148997240*x^21+59461731520805704997726*x^20+40061535265894884290324*x^19-530542007455243196843242*x^18-11527246293851209886860*x^17+2947350451173392159305252*x^16-992730836429716106045326*x^15-10589080411897002482950676*x^14+5695514056373752791385564*x^13+24743057003540198961273776*x^12-15695402348202127164605804*x^11-36847120901086292021901676*x^10+23805980521862210254536594*x^9+33259062196480090519536028*x^8-19262717446456768567248154*x^7-16469187859084251587795336*x^6+7346633828024843920804236*x^5+3609035880998649253393464*x^4-1080326063539033556669520*x^3-300888846260465911745552*x^2+41531258985286248796160*x+7039335801804030371136,381903588083879883328*x^2-763807176167759766656,-8058368862605944686*x^25+31526904926750379830*x^24+274406064850633782012*x^23-1157303006041918757006*x^22-3916420393510693166364*x^21+18304118609602370546014*x^20+30191440294675798373192*x^19-163514294072893514753346*x^18-133561611836019204324504*x^17+908705485847998920781020*x^16+319320078111164427277938*x^15-3261241658203985895339024*x^14-251935760295304413897612*x^13+7595378649383836076177520*x^12-591430778348156292039404*x^11-11240226050300107625115540*x^10+1646046477772035904126890*x^9+10057930850163735238764016*x^8-1457462230288188869070402*x^7-4965450784958197934020276*x^6+458178453523417960433900*x^5+1135462311935475033779112*x^4-34841624497326374429200*x^3-103822965048946753923616*x^2+437762421203378668032*x+2432275187103422265600,-854858286690965108*x^25+18353087133617382484*x^24-14283306871972486080*x^23-671835416828734059036*x^22+1157625343518985408472*x^21+10629672211594442833964*x^20-21267143295231825699424*x^19-95511689319221201986276*x^18+199533681764359253928160*x^17+538741648935921442383536*x^16-1116663281175755614908548*x^15-1990803520233912216050672*x^14+3916407453065278689481184*x^13+4878754979929491714354832*x^12-8624575791691634760761944*x^11-7831427588403839846761944*x^10+11496230680908943247954092*x^9+7877004549173228156564384*x^8-8519144208178756427478308*x^7-4462383055910139543816264*x^6+3001744622202168313484064*x^5+1102772015181640314961104*x^4-422927444615199009840656*x^3-102394696683067459283392*x^2+16324881328794592182720*x+2653013007711589089024,-24058256997224544661*x^25+104771983448012659849*x^24+784333362494501976086*x^23-3836511191260278131057*x^22-10415344940842674245250*x^21+60511751116108371014929*x^20+70016145652973210491908*x^19-538910129304975291308647*x^18-219873487785124462474596*x^17+2984759138576149340221398*x^16-34470232451786793377853*x^15-10671387665225809701179128*x^14+2760834414023047466529970*x^13+24745061813036102631105216*x^12-9828187273475540420936842*x^11-36422639972186583307713886*x^10+16532879257118188567265383*x^9+32347517433522199406636728*x^8-14211645013372546337052079*x^7-15772655990921798295371358*x^6+5716698157709467264934382*x^5+3521348028969990003223228*x^4-875909821600665258887008*x^3-318650287250925588745072*x^2+35062660754863801224448*x+8649689834881649024256,381903588083879883328*x^3-1527614352335519533312*x,-15705487395827785742*x^25+71562098235327577156*x^24+503807440903564599994*x^23-2623033998968858331950*x^22-6497493056378429175910*x^21+41422519397068974495838*x^20+40940285394840844958050*x^19-369457289722389746112478*x^18-101140545687825824325878*x^17+2049986515286177113653712*x^16-255804695037844172899786*x^15-7345244109976296742604618*x^14+2624142628155480503056936*x^13+17073339910339039081741692*x^12-8267238371116477273843732*x^11-25182709435650858851785544*x^10+13377060161726919351718470*x^9+22356684909022932807917822*x^8-11368554929111113510868270*x^7-10786691755771822823537746*x^6+4614369963457881947778108*x^5+2290966490790569959529460*x^4-750550388453021039192544*x^3-182733795424993519745152*x^2+37770664330650353039040*x+4591172750657198444032,-8764939386279343600*x^25+32654998972455441432*x^24+301261758089757231160*x^23-1192691717949883862496*x^22-4364073000908151855704*x^21+18748556509775356919072*x^20+34487887250197152126360*x^19-166214122467298492192176*x^18-159624707743121590020744*x^17+914744895000255074181792*x^16+421561845908732521277952*x^15-3240317386041818153143224*x^14-501863784615319686987744*x^13+7407644606166733852961008*x^12-267515855057272619644896*x^11-10654336396167166729975056*x^10+1596708011378394166021504*x^9+9094254600465523768169544*x^8-1874534473803886154590000*x^7-4133077205946319024414600*x^6+899352104261120854479312*x^5+813930251063232567457808*x^4-151270640911970556234784*x^3-55519550960732301231552*x^2+6042424437550885484928*x+1031471214413560919808,44317055841213078648*x^25-199550151005291725416*x^24-1426238931731031023704*x^23+7305959658787816505952*x^22+18516638146574011738368*x^21-115229334797147078995952*x^20-118629025154666973440880*x^19+1026377101677353480534432*x^18+315278756829911460079584*x^17-5687307455186091080268984*x^16+543195390094840369383912*x^15+20353713046406868538757088*x^14-6717908054281864464840168*x^13-47277614400523930998276496*x^12+21627055051176995310685344*x^11+69771265968619052356437776*x^10-35104755555680518239431736*x^9-62156441334593413562099008*x^8+29659220504599503494751248*x^7+30310461155552647412848720*x^6-11854951294075678444467192*x^5-6644923907730394965261280*x^4+1875986815149911782811760*x^3+578471378739307795522688*x^2-85640755008970213366400*x-15934506191920550910464,55532123945656136460*x^25-245485980126787406684*x^24-1797412088569711524936*x^23+8978186470598814479532*x^22+23579851631767055979640*x^21-141404505103944406148236*x^20-154630036888727266898256*x^19+1257153810897173856997028*x^18+448464159023855853929264*x^17-6948199559577231212654040*x^16+385342067375878105837708*x^15+24777550920106232772801600*x^14-7371255255883976192097288*x^13-57262121559354539696574160*x^12+24723398313506313885618296*x^11+83885607390835284550290056*x^10-40632550856710412188187940*x^9-73917907757104634153518976*x^8+34390946410596304313295172*x^7+35453064831528494118791736*x^6-13615542988668092804311768*x^5-7550958692991911543732160*x^4+2053224024802963251499744*x^3+612166437906944353963872*x^2-80026528450423356134912*x-13969249742911617208448,23079244919120542168*x^25-107108435331080017368*x^24-733084753322465821132*x^23+3919789062918253824068*x^22+9293909489485208164616*x^21-61798227077776454407092*x^20-56372099408589970836360*x^19+550291944901552254240660*x^18+117201137690159939892544*x^17-3049112951364034751555988*x^16+534498762335794613527512*x^15+10917386208035296269753416*x^14-4356289706587765449438620*x^13-25398436400449297248572000*x^12+13118632329339314854383496*x^11+37624277781046533787028528*x^10-20742938547657296289763744*x^9-33799839849399652900245768*x^8+17309342878004982243053820*x^7+16776729686695747942543984*x^6-6894639368751473814353780*x^5-3805656312552043450979080*x^4+1102031885525087180295816*x^3+335627452873010533868656*x^2-49398713393035069200896*x-7393100561297406823168,-15519301538110063456*x^25+62585652577765636256*x^24+518033325237364452584*x^23-2283654075780778149832*x^22-7164125817084273116464*x^21+35853420716914357073288*x^20+52225303373828995556784*x^19-317357545137878317440968*x^18-204740224573897443666016*x^17+1743170318816137587078776*x^16+323620714617762801612448*x^15-6160977727341697124644592*x^14+570747784056946766660552*x^13+14053049068763426040447520*x^12-3663618098887793171884592*x^11-20189908864272325873276288*x^10+7086540052492405308944016*x^9+17290501339620241912052592*x^8-6544726587524368597930232*x^7-7990493766459217055670368*x^6+2816441098951310844655928*x^5+1658098271403001581166800*x^4-460305304450583707709040*x^3-131997875833863436901536*x^2+19427788969638245032384*x+3079456895644741716608,-77467057704449747512*x^25+371738617586947204224*x^24+2425115064941618711496*x^23-13608898753882324078088*x^22-29885869643696499119112*x^21+214639705807724762780040*x^20+168473342635978882917048*x^19-1912191997663909431519112*x^18-208778624636129754890888*x^17+10600965466183691810312272*x^16-2807085652345961107865224*x^15-37978481467014535180862040*x^14+18155487634632282385934672*x^13+88394265011409947131016240*x^12-51807734254469903621312624*x^11-130925089913796317656649088*x^10+79933827403479464182802008*x^9+117337613752539352406929224*x^8-65540541666360747084948776*x^7-57649021553877363854396312*x^6+25512638317575158225960096*x^5+12594229827562227612324016*x^4-3925597143110319218620640*x^3-1056610116143552649670336*x^2+167630737429313903077568*x+27262939252619784818944,381903588083879883328*x^4-2291421528503279299968*x^2+1527614352335519533312,-35300160168077187046*x^25+142228939772882367186*x^24+1177041155158221423008*x^23-5183937805341667751318*x^22-16245657881481123012072*x^21+81256965790410037772854*x^20+117949991301461094427860*x^19-717547087548040694366482*x^18-457669338184750087849884*x^17+3927333351315916640158788*x^16+688569231069270084859218*x^15-13804748486109379524442732*x^14+1478003750000016728032428*x^13+31214116013619674042100536*x^12-8764209654518435599103612*x^11-44192599917136821873707452*x^10+16744398091577402254271386*x^9+36864548114635929768254452*x^8-15381733775341924418188802*x^7-16172931543644485004469032*x^6+6573253380378129794464188*x^5+2970856527074865808369424*x^4-1052842334837041582012288*x^3-187750925295686057840224*x^2+43983803979738531693856*x+4333837847835243682496]];
E[467,3] = [x, [1,0,-3,-2,2,0,1,0,6,0,4,6,-6,0,-6,4,-7]];

E[468,1] = [x, [1,0,0,0,-2,0,-2,0,0,0,2,0,-1,0,0,0,-6]];
E[468,2] = [x, [1,0,0,0,-4,0,4,0,0,0,4,0,-1,0,0,0,0]];
E[468,3] = [x, [1,0,0,0,0,0,2,0,0,0,0,0,1,0,0,0,6]];
E[468,4] = [x, [1,0,0,0,4,0,-2,0,0,0,4,0,1,0,0,0,-2]];
E[468,5] = [x, [1,0,0,0,4,0,4,0,0,0,-4,0,-1,0,0,0,0]];

E[469,1] = [x, [1,-1,-3,-1,1,3,-1,3,6,-1,0,3,3,1,-3,-1,0]];
E[469,2] = [x^2-x-4, [1,x,-x,x+2,x-2,-x-4,1,x+4,x+1,-x+4,4,-3*x-4,x-4,x,x-4,3*x,-x+5]];
E[469,3] = [x^3+3*x^2-3, [1,x,-x-2,x^2-2,x^2+2*x,-x^2-2*x,1,-3*x^2-4*x+3,x^2+4*x+1,-x^2+3,-3*x^2-4*x+3,x^2+2*x+1,-2*x^2-3*x+2,x,-x^2-4*x-3,3*x^2+3*x-5,x^2+3*x-3]];
E[469,4] = [x^5-2*x^4-5*x^3+9*x^2+3*x-4, [1,x,-x,x^2-2,-x^2+2,-x^2,-1,x^3-4*x,x^2-3,-x^3+2*x,-x^4+6*x^2+x-8,-x^3+2*x,2*x^4-2*x^3-10*x^2+7*x+4,-x,x^3-2*x,x^4-6*x^2+4,-x^4+x^3+5*x^2-4*x-3]];
E[469,5] = [x^9+x^8-13*x^7-10*x^6+53*x^5+28*x^4-69*x^3-12*x^2+12*x+1, [4,4*x,2*x^6-20*x^4+6*x^3+48*x^2-22*x-6,4*x^2-8,-x^8-2*x^7+13*x^6+21*x^5-56*x^4-62*x^3+81*x^2+39*x-9,2*x^7-20*x^5+6*x^4+48*x^3-22*x^2-6*x,-4,4*x^3-16*x,-2*x^8+28*x^6-2*x^5-120*x^4+14*x^3+158*x^2-36*x-12,-x^8+11*x^6-3*x^5-34*x^4+12*x^3+27*x^2+3*x+1,-2*x^7-2*x^6+20*x^5+14*x^4-54*x^3-26*x^2+32*x+18,2*x^8-24*x^6+6*x^5+88*x^4-34*x^3-102*x^2+44*x+12,x^8-2*x^7-13*x^6+19*x^5+40*x^4-34*x^3-13*x^2-19*x+5,-4*x,4*x^8+4*x^7-50*x^6-40*x^5+188*x^4+110*x^3-200*x^2-34*x+10,4*x^4-24*x^2+16,2*x^8+4*x^7-26*x^6-42*x^5+112*x^4+120*x^3-162*x^2-58*x+26]];
E[469,6] = [x^3+x^2-3*x-1, [1,x,-x^2+2,x^2-2,-3,x^2-x-1,1,-x^2-x+1,-2*x,-3*x,-4,2*x-3,-2*x+1,x,3*x^2-6,-2*x^2-2*x+3,3*x^2+2*x-3]];
E[469,7] = [x^7-x^6-12*x^5+9*x^4+43*x^3-17*x^2-44*x-11, [4,4*x,x^6-12*x^4+x^3+36*x^2-5*x-9,4*x^2-8,-x^6-2*x^5+10*x^4+21*x^3-20*x^2-51*x-9,x^6-8*x^4-7*x^3+12*x^2+35*x+11,4,4*x^3-16*x,3*x^6-32*x^4-5*x^3+84*x^2+17*x-11,-3*x^6-2*x^5+30*x^4+23*x^3-68*x^2-53*x-11,2*x^6-20*x^4-6*x^3+48*x^2+26*x-2,-x^6+4*x^5+8*x^4-33*x^3-20*x^2+65*x+29,-x^6+2*x^5+10*x^4-15*x^3-28*x^2+21*x+15,4*x,-x^6-4*x^5+8*x^4+47*x^3-4*x^2-127*x-43,4*x^4-24*x^2+16,-2*x^6+4*x^5+20*x^4-34*x^3-56*x^2+62*x+38]];
E[469,8] = [x, [1,1,1,-1,-3,1,-1,-3,-2,-3,0,-1,-1,-1,-3,-1,-8]];
E[469,9] = [x^2+x-4, [1,1,x,-1,x,x,1,-3,-x+1,x,4,-x,-x+4,1,-x+4,-1,2*x+2]];

E[470,1] = [x, [1,-1,-1,1,1,1,-1,-1,-2,-1,1,-1,-5,1,-1,1,0]];
E[470,2] = [x^2-x-5, [1,-1,x,1,1,-x,4,-1,x+2,-1,x-3,x,-2*x+2,-4,x,1,-4]];
E[470,3] = [x^3-6*x-1, [1,-1,x,1,-1,-x,-x^2+x+5,-1,x^2-3,1,-x^2+4,x,x^2+x-3,x^2-x-5,-x,1,0]];
E[470,4] = [x, [1,-1,1,1,1,-1,-1,-1,-2,-1,3,1,5,1,1,1,6]];
E[470,5] = [x, [1,-1,1,1,-1,-1,-1,-1,-2,1,-3,1,-5,1,-1,1,2]];
E[470,6] = [x, [1,1,-3,1,1,-3,-3,1,6,1,-1,-3,-1,-3,-3,1,-8]];
E[470,7] = [x, [1,1,-1,1,-1,-1,-3,1,-2,-1,-5,-1,-1,-3,1,1,2]];
E[470,8] = [x, [1,1,1,1,-1,1,5,1,-2,-1,-3,1,5,5,-1,1,0]];
E[470,9] = [x^3-2*x^2-4*x+7, [1,1,x,1,1,x,-x^2-x+5,1,x^2-3,1,x^2-4,x,-x^2+x+3,-x^2-x+5,x,1,2*x^2-2*x-6]];
E[470,10] = [x^3-3*x^2-5*x+12, [1,1,x,1,-1,x,0,1,x^2-3,-1,-x^2+8,x,-2*x+2,0,-x,1,-2*x^2+2*x+10]];

E[471,1] = [x, [1,-1,-1,-1,-2,1,3,3,1,2,0,1,1,-3,2,-1,-3]];
E[471,2] = [x^3-4*x+1, [1,x,-1,x^2-2,-x^2-x+2,-x,-1,-1,1,-x^2-2*x+1,-x^2+1,-x^2+2,2*x^2-x-6,-x,x^2+x-2,-2*x^2-x+4,-3]];
E[471,3] = [x^12+x^11-20*x^10-17*x^9+149*x^8+106*x^7-500*x^6-294*x^5+711*x^4+349*x^3-290*x^2-173*x-15, [2,2*x,2,2*x^2-4,2*x^11-42*x^9+2*x^8+324*x^7-28*x^6-1106*x^5+128*x^4+1552*x^3-200*x^2-570*x-50,2*x,x^11+x^10-19*x^9-14*x^8+136*x^7+64*x^6-444*x^5-98*x^4+615*x^3+19*x^2-219*x-32,2*x^3-8*x,2,-2*x^11-2*x^10+36*x^9+26*x^8-240*x^7-106*x^6+716*x^5+130*x^4-898*x^3+10*x^2+296*x+30,2*x^10+6*x^9-28*x^8-84*x^7+132*x^6+388*x^5-240*x^4-644*x^3+150*x^2+274*x+36,2*x^2-4,-2*x^11-3*x^10+35*x^9+41*x^8-230*x^7-180*x^6+696*x^5+256*x^4-924*x^3-33*x^2+317*x+37,x^10+3*x^9-13*x^8-42*x^7+56*x^6+196*x^5-96*x^4-330*x^3+71*x^2+141*x+15,2*x^11-42*x^9+2*x^8+324*x^7-28*x^6-1106*x^5+128*x^4+1552*x^3-200*x^2-570*x-50,2*x^4-12*x^2+8,-2*x^11+x^10+45*x^9-15*x^8-366*x^7+80*x^6+1300*x^5-188*x^4-1876*x^3+195*x^2+723*x+89]];
E[471,4] = [x^2+x-1, [1,x,1,-x-1,-1,x,-3,-2*x-1,1,-x,-3*x-2,-x-1,-x-2,-3*x,-1,3*x,2*x-1]];
E[471,5] = [x^9-2*x^8-11*x^7+19*x^6+39*x^5-53*x^4-49*x^3+45*x^2+14*x-1, [59,59*x,-59,59*x^2-118,-8*x^8+41*x^7+41*x^6-376*x^5+37*x^4+950*x^3-143*x^2-599*x-47,-59*x,-31*x^8+63*x^7+299*x^6-513*x^5-867*x^4+1041*x^3+825*x^2-411*x-160,59*x^3-236*x,59,25*x^8-47*x^7-224*x^6+349*x^5+526*x^4-535*x^3-239*x^2+65*x-8,15*x^8-40*x^7-158*x^6+410*x^5+528*x^4-1324*x^3-580*x^2+1396*x+125,-59*x^2+118,17*x^8-6*x^7-242*x^6+32*x^5+1094*x^4+2*x^3-1562*x^2+56*x+299,x^8-42*x^7+76*x^6+342*x^5-602*x^4-694*x^3+984*x^2+274*x-31,8*x^8-41*x^7-41*x^6+376*x^5-37*x^4-950*x^3+143*x^2+599*x+47,59*x^4-354*x^2+236,-45*x^8+61*x^7+533*x^6-581*x^5-1997*x^4+1671*x^3+2389*x^2-1533*x-198]];

E[472,1] = [x, [1,0,-3,0,-1,0,3,0,6,0,-4,0,6,0,3,0,-6]];
E[472,2] = [x, [1,0,2,0,2,0,1,0,1,0,1,0,-1,0,4,0,-1]];
E[472,3] = [x, [1,0,3,0,-3,0,3,0,6,0,6,0,-6,0,-9,0,-2]];
E[472,4] = [x^4+x^3-5*x^2+1, [1,0,x,0,x^3+x^2-6*x-1,0,-2*x^3-3*x^2+8*x,0,x^2-3,0,2*x^2+2*x-6,0,2*x^3+2*x^2-8*x-2,0,-x^2-x-1,0,-3*x^3-4*x^2+11*x+2]];
E[472,5] = [x^6+x^5-15*x^4-16*x^3+51*x^2+30*x-56, [2,0,2*x,0,2*x^4-24*x^2-8*x+44,0,x^5+3*x^4-13*x^3-40*x^2+15*x+60,0,2*x^2-6,0,-x^5-3*x^4+13*x^3+38*x^2-15*x-52,0,-x^5-3*x^4+13*x^3+38*x^2-15*x-48,0,2*x^5-24*x^3-8*x^2+44*x,0,-x^5-3*x^4+11*x^3+42*x^2-x-64]];
E[472,6] = [x, [1,0,-1,0,-1,0,1,0,-2,0,4,0,2,0,1,0,2]];
E[472,7] = [x, [1,0,-1,0,-1,0,1,0,-2,0,0,0,-2,0,1,0,-6]];

E[473,1] = [x, [1,-2,1,2,-1,-2,0,0,-2,2,-1,2,-2,0,-1,-4,6]];
E[473,2] = [x^5+3*x^4-4*x^3-13*x^2+3*x+9, [3,3*x,-2*x^4-3*x^3+11*x^2+8*x-12,3*x^2-6,x^4-7*x^2-x+3,3*x^4+3*x^3-18*x^2-6*x+18,2*x^4+3*x^3-11*x^2-8*x+6,3*x^3-12*x,3*x^3-18*x+6,-3*x^4-3*x^3+12*x^2-9,3,-2*x^4+11*x^2-7*x-3,-x^4-3*x^3-2*x^2+7*x+9,-3*x^4-3*x^3+18*x^2-18,2*x^4+3*x^3-11*x^2-5*x+9,3*x^4-18*x^2+12,3*x^4+6*x^3-9*x^2-12*x-9]];
E[473,3] = [x^5-x^4-6*x^3+5*x^2+x-1, [1,x,2*x^4-x^3-13*x^2+4*x+4,x^2-2,-5*x^4+2*x^3+31*x^2-7*x-9,x^4-x^3-6*x^2+2*x+2,x^3-x^2-6*x,x^3-4*x,6*x^4-3*x^3-36*x^2+10*x+8,-3*x^4+x^3+18*x^2-4*x-5,-1,-4*x^4+2*x^3+23*x^2-7*x-7,3*x^4-x^3-18*x^2+3*x+3,x^4-x^3-6*x^2,-10*x^4+5*x^3+63*x^2-17*x-19,x^4-6*x^2+4,7*x^4-4*x^3-43*x^2+14*x+11]];
E[473,4] = [x^9-4*x^8-5*x^7+36*x^6-20*x^5-65*x^4+66*x^3+4*x^2-8*x+1, [1,x,x^8-3*x^7-7*x^6+27*x^5-2*x^4-49*x^3+33*x^2+4*x-3,x^2-2,-5*x^8+18*x^7+31*x^6-165*x^5+45*x^4+320*x^3-224*x^2-69*x+21,x^8-2*x^7-9*x^6+18*x^5+16*x^4-33*x^3+5*x-1,2*x^8-8*x^7-11*x^6+74*x^5-31*x^4-148*x^3+115*x^2+40*x-9,x^3-4*x,x^7-2*x^6-10*x^5+18*x^4+25*x^3-33*x^2-16*x+3,-2*x^8+6*x^7+15*x^6-55*x^5-5*x^4+106*x^3-49*x^2-19*x+5,1,2*x^7-4*x^6-18*x^5+36*x^4+32*x^3-65*x^2-x+5,4*x^8-14*x^7-26*x^6+128*x^5-25*x^4-245*x^3+158*x^2+43*x-13,-x^7+2*x^6+9*x^5-18*x^4-17*x^3+32*x^2+7*x-2,3*x^8-14*x^7-12*x^6+129*x^5-87*x^4-254*x^3+246*x^2+61*x-22,x^4-6*x^2+4,-x^8+14*x^6-61*x^4-x^3+81*x^2+7*x-3]];
E[473,5] = [x^11+x^10-17*x^9-15*x^8+102*x^7+77*x^6-255*x^5-150*x^4+248*x^3+59*x^2-93*x+18, [18,18*x,-19*x^10-22*x^9+311*x^8+336*x^7-1758*x^6-1769*x^5+3930*x^4+3606*x^3-2930*x^2-1829*x+816,18*x^2-36,-14*x^10-20*x^9+232*x^8+312*x^7-1338*x^6-1672*x^5+3090*x^4+3432*x^3-2428*x^2-1756*x+750,-3*x^10-12*x^9+51*x^8+180*x^7-306*x^6-915*x^5+756*x^4+1782*x^3-708*x^2-951*x+342,-6*x^10-6*x^9+102*x^8+90*x^7-594*x^6-462*x^5+1332*x^4+900*x^3-894*x^2-354*x+180,18*x^3-72*x,-11*x^10-8*x^9+181*x^8+114*x^7-1032*x^6-559*x^5+2352*x^4+1074*x^3-1846*x^2-481*x+426,-6*x^10-6*x^9+102*x^8+90*x^7-594*x^6-480*x^5+1332*x^4+1044*x^3-930*x^2-552*x+252,-18,29*x^10+44*x^9-487*x^8-672*x^7+2832*x^6+3529*x^5-6528*x^4-7176*x^3+5086*x^2+3721*x-1578,6*x^10+6*x^9-102*x^8-90*x^7+612*x^6+462*x^5-1512*x^4-918*x^3+1344*x^2+480*x-324,18*x^7-198*x^5+594*x^3-378*x+108,-8*x^10-14*x^9+130*x^8+222*x^7-744*x^6-1210*x^5+1776*x^4+2532*x^3-1660*x^2-1402*x+714,18*x^4-108*x^2+72,20*x^10+26*x^9-334*x^8-402*x^7+1932*x^6+2152*x^5-4440*x^4-4494*x^3+3466*x^2+2398*x-1056]];
E[473,6] = [x^2+2*x-4, [2,-x,2*x,-x-2,-2*x,2*x-4,2*x-2,2*x+2,-4*x+2,-2*x+4,2,-4,-12,3*x-4,4*x-8,3*x,-4]];
E[473,7] = [x^2+x-1, [1,x+1,-2,x,-2*x,-2*x-2,2*x+1,-2*x-1,1,-2,-1,-2*x,-4*x-2,x+3,4*x,-3*x-3,-2*x-4]];

E[474,1] = [x, [1,-1,1,1,-2,-1,-1,-1,1,2,-5,1,-1,1,-2,1,-1]];
E[474,2] = [x^2-3*x+1, [1,-1,1,1,x,-1,3*x-5,-1,1,-x,4,1,-4*x+4,-3*x+5,x,1,x+2]];
E[474,3] = [x, [1,-1,-1,1,2,1,-3,-1,1,-2,-5,-1,-1,3,-2,1,5]];
E[474,4] = [x^2+x-7, [1,-1,-1,1,x,1,x+1,-1,1,-x,0,-1,0,-x-1,-x,1,-x-2]];
E[474,5] = [x^3-3*x^2-x+2, [1,1,1,1,x,1,-x+1,1,1,x,-x^2+x+3,1,x^2-x-3,-x+1,x,1,3*x^2-8*x-3]];
E[474,6] = [x^4-x^3-19*x^2+20*x-4, [4,4,-4,4,4*x,-4,3*x^3-x^2-59*x+30,4,4,4*x,-5*x^3+3*x^2+93*x-50,-4,-x^3-x^2+17*x+14,3*x^3-x^2-59*x+30,-4*x,4,-x^3-x^2+21*x+6]];

E[475,1] = [x, [1,1,0,-1,0,0,-2,-3,-3,0,-4,0,2,-2,0,-1,-4]];
E[475,2] = [x, [1,-1,0,-1,0,0,2,3,-3,0,-4,0,-2,-2,0,-1,4]];
E[475,3] = [x^3+2*x^2-3*x-5, [1,x,-x^2-x+2,x^2-2,0,x^2-x-5,x^2+x-4,-2*x^2-x+5,x+1,0,-x^2-x+3,-x^2+1,3*x^2-11,-x^2-x+5,0,x^2-x-6,-x^2-x-2]];
E[475,4] = [x^3+x^2-3*x-1, [1,x,x^2-3,x^2-2,0,-x^2+1,-2*x^2-2*x+4,-x^2-x+1,-2*x^2-2*x+5,0,2*x-2,-x^2-2*x+5,-x^2-2*x-1,-2*x-2,0,-2*x^2-2*x+3,2*x^2+4*x-4]];
E[475,5] = [x^3+4*x^2+3*x-1, [1,x,x^2+3*x,x^2-2,0,-x^2-3*x+1,x^2+x-2,-4*x^2-7*x+1,-2*x^2-5*x-1,0,-3*x^2-7*x+1,-x^2-2*x-1,-x^2-2*x-1,-3*x^2-5*x+1,0,7*x^2+13*x,-x^2-5*x-4]];
E[475,6] = [x^3-2*x^2-3*x+5, [1,x,x^2-x-2,x^2-2,0,x^2+x-5,-x^2+x+4,2*x^2-x-5,-x+1,0,-x^2+x+3,x^2-1,-3*x^2+11,-x^2+x+5,0,x^2+x-6,x^2-x+2]];
E[475,7] = [x^3-4*x^2+3*x+1, [1,x,-x^2+3*x,x^2-2,0,-x^2+3*x+1,-x^2+x+2,4*x^2-7*x-1,-2*x^2+5*x-1,0,-3*x^2+7*x+1,x^2-2*x+1,x^2-2*x+1,-3*x^2+5*x+1,0,7*x^2-13*x,x^2-5*x+4]];
E[475,8] = [x^4-2*x^3-6*x^2+8*x+9, [1,x,-x^3+5*x+2,x^2-2,0,-2*x^3-x^2+10*x+9,2*x^2-2*x-8,x^3-4*x,2*x+1,0,2*x^2-2*x-6,-3*x^3-2*x^2+15*x+14,x^3-2*x^2-3*x+4,2*x^3-2*x^2-8*x,0,2*x^3-8*x-5,2*x^3-10*x-6]];
E[475,9] = [x^6-10*x^4+27*x^2-16, [4,4*x,-2*x^5+16*x^3-26*x,4*x^2-8,0,-4*x^4+28*x^2-32,-x^5+10*x^3-19*x,4*x^3-16*x,-8*x^2+36,0,4*x^4-24*x^2+20,-4*x^3+20*x,-4*x^3+20*x,8*x^2-16,0,4*x^4-24*x^2+16,-x^5+2*x^3+13*x]];
E[475,10] = [x, [1,0,2,-2,0,0,1,0,1,0,3,-4,4,0,0,4,3]];

E[476,1] = [x^2+x-1, [1,0,x,0,-x-1,0,-1,0,-x-2,0,-2*x-4,0,-2*x-2,0,-1,0,1]];
E[476,2] = [x^2-x-3, [1,0,x,0,x-1,0,1,0,x,0,0,0,-2*x+4,0,3,0,1]];
E[476,3] = [x^2+3*x-1, [1,0,x,0,-x-3,0,1,0,-3*x-2,0,2*x+4,0,-2*x-6,0,-1,0,-1]];
E[476,4] = [x^2+x-3, [1,0,x,0,x+1,0,-1,0,-x,0,4,0,2*x,0,3,0,-1]];

E[477,1] = [x, [1,1,0,-1,0,0,-4,-3,0,0,0,0,-3,-4,0,-1,3]];
E[477,2] = [x^4+3*x^3-x^2-7*x-3, [1,x,0,x^2-2,-x^3-x^2+2*x,0,-x^3-3*x^2+2*x+5,x^3-4*x,0,2*x^3+x^2-7*x-3,4*x^3+6*x^2-12*x-12,0,3*x^3+5*x^2-8*x-10,x^2-2*x-3,0,-3*x^3-5*x^2+7*x+7,-4*x^3-8*x^2+10*x+12]];
E[477,3] = [x^4+3*x^3-x^2-5*x+1, [1,x,0,x^2-2,-x^3-3*x^2+2,0,x^3+3*x^2-3,x^3-4*x,0,-x^2-3*x+1,2*x^2+2*x-6,0,x^3-x^2-6*x+2,x^2+2*x-1,0,-3*x^3-5*x^2+5*x+3,2*x^3+4*x^2-4*x-6]];
E[477,4] = [x^4-3*x^3-x^2+5*x+1, [1,x,0,x^2-2,-x^3+3*x^2-2,0,-x^3+3*x^2-3,x^3-4*x,0,-x^2+3*x+1,-2*x^2+2*x+6,0,-x^3-x^2+6*x+2,-x^2+2*x+1,0,3*x^3-5*x^2-5*x+3,2*x^3-4*x^2-4*x+6]];
E[477,5] = [x^5-10*x^3+22*x-5, [3,3*x,0,3*x^2-6,-3*x^3+3*x^2+18*x-12,0,x^4-4*x^3-6*x^2+21*x+4,3*x^3-12*x,0,-3*x^4+3*x^3+18*x^2-12*x,2*x^4-2*x^3-12*x^2+6*x+2,0,2*x^4+x^3-15*x^2-6*x+20,-4*x^4+4*x^3+21*x^2-18*x+5,0,3*x^4-18*x^2+12,-6*x]];
E[477,6] = [x^3-x^2-3*x+1, [1,x,0,x^2-2,-x^2+3,0,x^2-1,x^2-x-1,0,-x^2+1,-x^2+2*x+3,0,1,x^2+2*x-1,0,-2*x^2+2*x+3,2*x+1]];

E[478,1] = [x^4+6*x^3+10*x^2+3*x-1, [1,1,x,1,-x^3-4*x^2-4*x-3,x,2*x^3+7*x^2+2*x-4,1,x^2-3,-x^3-4*x^2-4*x-3,x^3+8*x^2+15*x+1,x,-3*x^3-15*x^2-16*x,2*x^3+7*x^2+2*x-4,2*x^3+6*x^2-1,1,-3*x^2-9*x-5]];
E[478,2] = [x^5-2*x^4-6*x^3+11*x^2+7*x-12, [1,1,x,1,-x^4+x^3+6*x^2-3*x-6,x,-x^2+4,1,x^2-3,-x^4+x^3+6*x^2-3*x-6,x^4-x^3-6*x^2+2*x+8,x,2*x^4-x^3-13*x^2+2*x+16,-x^2+4,-x^4+8*x^2+x-12,1,x^4-2*x^3-5*x^2+6*x+6]];
E[478,3] = [x^4+2*x^3-4*x^2-5*x-1, [1,-1,x,1,-x^3-2*x^2+4*x+3,-x,2*x^3+3*x^2-10*x-6,-1,x^2-3,x^3+2*x^2-4*x-3,-3*x^3-4*x^2+13*x+5,x,3*x^3+5*x^2-14*x-10,-2*x^3-3*x^2+10*x+6,-2*x-1,1,-x^2-x-1]];
E[478,4] = [x^6-2*x^5-12*x^4+19*x^3+35*x^2-32*x-32, [124,-124,124*x,124,16*x^5-68*x^4-132*x^3+632*x^2+68*x-696,-124*x,38*x^5-84*x^4-360*x^3+726*x^2+394*x-816,-124,124*x^2-372,-16*x^5+68*x^4+132*x^3-632*x^2-68*x+696,22*x^5-16*x^4-228*x^3-30*x^2+450*x+624,124*x,-41*x^5+58*x^4+408*x^3-519*x^2-523*x+776,-38*x^5+84*x^4+360*x^3-726*x^2-394*x+816,-36*x^5+60*x^4+328*x^3-492*x^2-184*x+512,124,-56*x^5+52*x^4+648*x^3-228*x^2-1416*x+80]];

E[479,1] = [x^8+2*x^7-6*x^6-11*x^5+10*x^4+17*x^3-4*x^2-7*x-1, [1,x,-x^6-x^5+6*x^4+3*x^3-9*x^2-x+2,x^2-2,x^7+2*x^6-6*x^5-10*x^4+11*x^3+12*x^2-7*x-3,-x^7-x^6+6*x^5+3*x^4-9*x^3-x^2+2*x,x^6+2*x^5-5*x^4-9*x^3+5*x^2+8*x,x^3-4*x,-2*x^7-2*x^6+14*x^5+9*x^4-27*x^3-11*x^2+13*x+3,x^5+x^4-5*x^3-3*x^2+4*x+1,x^7+x^6-7*x^5-5*x^4+14*x^3+9*x^2-9*x-6,x^7+2*x^6-6*x^5-11*x^4+10*x^3+16*x^2-5*x-5,x^7+x^6-8*x^5-6*x^4+19*x^3+11*x^2-13*x-6,x^7+2*x^6-5*x^5-9*x^4+5*x^3+8*x^2,x^6+x^5-6*x^4-3*x^3+9*x^2+x-3,x^4-6*x^2+4,-3*x^7-4*x^6+20*x^5+19*x^4-39*x^3-23*x^2+22*x+5]];
E[479,2] = [x^32-3*x^31-49*x^30+150*x^29+1068*x^28-3349*x^27-13663*x^26+44102*x^25+114017*x^24-381227*x^23-652363*x^22+2278423*x^21+2617329*x^20-9659993*x^19-7391907*x^18+29333039*x^17+14485613*x^16-63589225*x^15-18892591*x^14+96842403*x^13+14744217*x^12-100301909*x^11-4507611*x^10+66698107*x^9-2210691*x^8-25684834*x^7+2153748*x^6+4689118*x^5-470371*x^4-268239*x^3+38414*x^2-242*x-7, [129898672517437825926381972477387781975273791,129898672517437825926381972477387781975273791*x,594648971532753466112437954971735874053255*x^31-1581786056233368506203882485282172715624889*x^30-29423407168504859402794049874143934460430130*x^29+79050272045494830678253891725500988089866665*x^28+648819969543095147878911912532805997578713920*x^27-1763900618132356022964033999573659030577089127*x^26-8417533322879146179223112757858714856596350040*x^25+23212456078760365877107024247317186507554645870*x^24+71450963574026732023449102145328861552856917796*x^23-200495464833753224046291138499745450092497787776*x^22-417488891368385633906168484420705836021480604432*x^21+1197205401603988579127350649533192400001284360520*x^20+1719756517273359216716428959680191883056419225657*x^19-5070941465837958606180169691829187963581408975816*x^18-5025900501951919662095041375183093632702280234662*x^17+15382696102385344280713070431732036719856710811044*x^16+10321592803713633762273534207948116133819869191308*x^15-33315862483743991666637028308379249779720495067144*x^14-14456491567042921977141729337427336137087535760540*x^13+50701755657048090525879105937183763598019309314852*x^12+12901684707992272202390803852488172673884318917408*x^11-52499443454245183681719272880917577507045482865528*x^10-6128064376644340693430482136279738492337985299300*x^9+34928792994661263891188389904509193646352926388056*x^8+406040222502678205058506645275819727550962236996*x^7-13476058509323921707022703261266022222351356263392*x^6+843963432125332466007464154660850080442455466293*x^5+2475101478587315915012846529695654097968657831412*x^4-239930175269313944123889803004559822089709551543*x^3-147134381451772915577178165975600393292654162464*x^2+20030204393299159954687327665177083713630512069*x-102839837509540903795424056603393626549815952,129898672517437825926381972477387781975273791*x^2-259797345034875651852763944954775563950547582,1030105604896516974940885442342379089765492*x^31-3338000639463150696895674393852488296302298*x^30-50429320795341699118544069525986004391479670*x^29+167417895026252911878166801688436684356500752*x^28+1098050266656135760968703369933055954488731774*x^27-3750686606524400969987598660826590583610644712*x^26-14032365504015299710711177186834310656280776876*x^25+49576635850813876832395740605289511049252826381*x^24+116973049242727452048649425619293532752323463715*x^23-430281124355003654108277871348250363553314021193*x^22-668641510061650817104793525941426808819109264827*x^21+2582581511958197675263990515497397986261997292647*x^20+2681178546685931842640869978038473068025229412365*x^19-10997779365948658490927696482207501028395154681617*x^18-7575360009401530379828330698820606453620559620879*x^17+33541872167500848056578240102548625243280723287302*x^16+14883032656579732150049775217028269497541680049933*x^15-73017443321641907979369233529520666070507300508769*x^14-19559326970243750803920705123344846233497369900903*x^13+111618646580675719044440386587130698610355461542303*x^12+15616553331399372175515584917552044111846720744381*x^11-115964646863067456762011068730668892524304436220009*x^10-5371010664578784005059237228169897864834237463640*x^9+77286029066713307088989388520670730962035104264283*x^8-1601787848097641684775938620818224565657311285681*x^7-29795466629630781985081882843302958989415910209093*x^6+1869294067690646598011248460941001048571044983943*x^5+5432979658478713378478506089123610568263759019401*x^4-396715575562450542816245018067676245145734487975*x^3-305141344630307815215516650185743233364727682527*x^2+36452793386099847468612147715736971557064166397*x-123662975306465908677471551590750265568588037,202160858364891892133431379633034906534876*x^31-285607563399939563284590080528876631820635*x^30-10147073684418189238611801520259393018121585*x^29+13734867946114446070828176622992084089837580*x^28+227578787530835335046520711626684411627261868*x^27-292844424827135571728872979079887609406726975*x^26-3012752863777127485383714442846309009942006140*x^25+3650871786776780077707263833316452400926942461*x^24+26200778636763781579355245760264501965202456109*x^23-29561904352363984492660122801479306016477012867*x^22-157656492062582171392948573147374965366755056345*x^21+163364519260509120009827839431973399556487369762*x^20+673363436625639147191718166132095777621915951399*x^19-630310606736158586664248468761834423136906227377*x^18-2060165370894802918148250486534135571446506180901*x^17+1707737931242150227760143505716124324067675870993*x^16+4497404763070863359516664108858331356023599110231*x^15-3222031759303967638047079041269913708571876826835*x^14-6885479687662348339028453810684935526603254856913*x^13+4134051232886532490526872245348670080158457641073*x^12+7144983575376644995725062646803571704279561298267*x^11-3447618131424614309293929573631637177360918475495*x^10-4733167736070280796199870847056827656989599300229*x^9+1720625352029392497812078220390241478697626586201*x^8+1797401612765576632999890947482488394551405571278*x^7-436760601015392246125266865983616114827994383447*x^6-313277717508405952497376308845502080300193147678*x^5+39775456119518836484883750313450552724594056062*x^4+12373664023201341419356078628063065827516905481*x^3-2812641199160031692555863937107178152251225501*x^2+41065213601385435003785928499766454971071758*x+4162542800729274262787065684802151118372785,801259027329361249903787877108751888497997*x^31-2212110193254191442802527666239733105916901*x^30-38912160137035182208359356847431734545984195*x^29+109308403057909805293783630602394447904488314*x^28+838922593063401282233262658657021453847213694*x^27-2407400330763162442595579841868396639326211612*x^26-10588805793362244253541032310976507625896290234*x^25+31205457777143207229633011990029425874778666151*x^24+86886880376627200447687605316234650040507671377*x^23-264868631365608835111195229024943123140389733811*x^22-486608425792975444768795347514913448373766793757*x^21+1550099270558319148843593434674105002104996569233*x^20+1898874497587453171819366395991249431386548589235*x^19-6415984060960419007288556905381262029055561200499*x^18-5167404468041688881062643019244196132953086213461*x^17+18957851307780560573855684297265636157520954419137*x^16+9608999515095219701688777193349392605176163258875*x^15-39854561477787729525402137329919501863095510200240*x^14-11535498217446552726951736301160224070727646711841*x^13+58656452231539747369597943023435646048854997832789*x^12+7566743958906623404845947513582557784699698569348*x^11-58514850555939360596044895634248498542612755411623*x^10-600388715741708152656566734762718212390091573291*x^9+37377480309128049725261550637212223571623128260045*x^8-2848576115404549775316459164417928949081019662081*x^7-13823819526421297117043941059239772280333274608604*x^6+1852473852914895531094578031397640531934689841552*x^5+2448147884104325259927377151077273906620910937614*x^4-386656205343345219491166592482106050304815697577*x^3-142586949470931281851176912019996895122419404519*x^2+26264561685819637328456736982793740621828351767*x-299607432643559930105134127554890294037485245,129898672517437825926381972477387781975273791*x^3-519594690069751303705527889909551127901095164*x,-41513034583277795232374278658474609686851*x^31+430637232345330534696929423430546704092416*x^30+1627226136792821053600457774694462669279987*x^29-21776922999001820546320999936295953978037460*x^28-24408626111261261912190945812648765775607215*x^27+492433883232393567446990357515723480839043704*x^26+132801208594813941830678251244649444341297538*x^25-6577548617106493444464125240855516360511234771*x^24+832060442360555723803598279265193042856340075*x^23+57758091280103478275495919716215593942301046319*x^22-19536062268626048874224911389260945702489739363*x^21-351151157188081076578106625252241233836470517205*x^20+160179158412932198867456540825291829327907937541*x^19+1516197705124837877467001656185219907651335238719*x^18-788040175655061467766564919969247112226422133095*x^17-4691555412462068205367402437218321848607467506261*x^16+2578521061712317159128128304548827951509597811845*x^15+10361217169247638515600639821608331133207984609915*x^14-5782364192683313195018084484942726898931196309528*x^13-16050264266659593817380018332509350010201895998698*x^12+8881045445869236848104329618281559109806651599919*x^11+16851867638900600570543673535063546427193066745887*x^10-9113920011027359780013272659415110564481439403551*x^9-11296544820028967940659131733059145676122805769713*x^8+5908199456518392387501218702517116395729315840953*x^7+4356071812330757052222487229754871603129711472586*x^6-2158845997449280296868354208244068920768388397675*x^5-800870948343291000686647842490461845115282849822*x^4+347194071198550388202226356132723457526589415065*x^3+53314325263028364011109086258559124579001134080*x^2-16441598319510303100550805542684131001294341143*x+258809855275191491089451903349220726458768360,-247683824773599772073018066825351027005822*x^31+45853844587632653559317148790571007029438*x^30+12902054291775365637033985337079820891676952*x^29-2102519373344368268162282488604913380813682*x^28-300862935725965620910573314421963011986012004*x^27+41967375685811717906140611889614847185140320*x^26+4146918463667685203552810827105908432415098197*x^25-476501510758723883185509860257503925468637649*x^24-37577054917119177302488936820392210299284802509*x^23+3361272665455686218567323881374641317576392769*x^22+235565209333060779668253483299347593421235713531*x^21-14946726072264034864182775882063652611595998503*x^20-1046966433387538788617567695378215417914130320061*x^19+39084822172267722856024988628121936670609052365*x^18+3325744284952724666475224727787368050405045597114*x^17-38678485082117796874589178077247496093497816663*x^16-7513826238116188343533907437186595096114232485069*x^15-97963090126258271805307283316196123605643631131*x^14+11860744458728448860874257402976758820512509785027*x^13+428452759888863352803607783515018516081827584617*x^12-12643088220347056724535096713418838219143226295781*x^11-727695308785590227128977658527524113637318304028*x^10+8579935210025693967065892612576399798293713940639*x^9+675457341696644323073102358599091806675453989291*x^8-3337375165394156305543080443722380903718149260765*x^7-349293818644017043733733678733013231253203880073*x^6+602692924657567493977651225497998615620774703345*x^5+87816227918329043203674208332350949686349749557*x^4-28826847278470998374348480017265808705121873939*x^3-3117683320394955606767025666403178797187443291*x^2+125622581078491199258222725456105474154661027*x+7210739234275618824586198096396653628358444,-956304044143028931596094345135445327497241*x^31+2331245075463355755349987836841899595729424*x^30+47351712461231795255939229145279937139678072*x^29-115566759347927660322101816546275985909087316*x^28-1045507507816105158452365242965762851795617855*x^27+2554655298488908201998720926277036795601511323*x^26+13593740407953540162903028911140577880439566280*x^25-33254631740580342800722913706923212663859085732*x^24-115803750482275172926833809732753748328886711678*x^23+283626766808937186615566758148171860442942294934*x^22+680584373506038024065652701047650214609979398267*x^21-1668969146150841886044935897867003905143072210930*x^20-2829958231750084227897714712811540808085729268088*x^19+6950449995215933843532581719371999561173425210130*x^18+8398555939473694993943996038473372118602195963746*x^17-20677188896003719627975717763336506552348997085522*x^16-17702657815135331176778451207749223519228495391622*x^15+43794751692383590285004897380157632521457878214238*x^14+25983353642407554530996612495407280327937573584190*x^13-64980637118723143575828153766442905930206672388530*x^12-25486802574597939058939695773677489946315162710146*x^11+65390351803930844379326723769330215262387361009142*x^10+15414212021849981067117240232980653967790576555262*x^9-42142292571114409038888888882275745996808608513398*x^8-4797467941599280614177966052784425261466944289918*x^7+15693912695705604401177461098407058257445146404211*x^6+370164994518558540680057428906624526954488574798*x^5-2762836233555288364550385371199489076196913354521*x^4+84569877836460012207836518908116591195347822094*x^3+151104398651229620543507538484533030872331879641*x^2-17715469440990741584489823914643021673839941769*x+194899180751749453867592062818400877172578636,-868422931370770819109171851573243660322517*x^31+2922380487928250488334101052323662833337117*x^30+42257553528390381056401569426324717030466440*x^29-146429553293858867108491785272398844731719030*x^28-913447649249302920731835113754465702578855091*x^27+3277172180327102482763426496227164979198182902*x^26+11570240256926610209284898644457776666118541189*x^25-43273908108946829040236248345989611988293792523*x^24-95394653948544807177206682528774030808619675607*x^23+375216701650420246127475398963661485550051831195*x^22+537734352598968308271835683995746780747536798078*x^21-2250168843845662142208684952357840641266673235845*x^20-2116951164604029896331404194886758423367188262823*x^19+9576071824854567225916445246253328512575807419263*x^18+5829546592455139449216490393482692987723363772153*x^17-29196411399721461938192108082025967755245207250845*x^16-11009965057972992533045649435620671871711414898351*x^15+63565587693122466271538639288046222610724374781091*x^14+13469291050373594775392039480934983822615734015125*x^13-97239231303357767295189054443482802522283987143529*x^12-8973867528331883354470287180910861936044918432027*x^11+101176981681355115274030143669357371465181945372063*x^10+493007542884669419724978057027935532575438505069*x^9-67613269186417409927464541311463565327591955645518*x^8+3943627042379011021150810679730226920623886413145*x^7+26203435756757768278649436646664652700522843263858*x^6-2596107527985411234986976043010346983021321555892*x^5-4842738688041477924411642729293874868088082598347*x^4+531275135826408092809203241913398116321176480949*x^3+286544020903918259444946484862477150140648670022*x^2-40007323316073286797215577870798170828761211361*x+207094801027636050835782132864218497445376036,523697566910146234052116426222823745694146*x^31-1357281271470483926544928376733973356564225*x^30-26178692602154239188292804879193702695085625*x^29+68523613278727837170532287647988996944023314*x^28+583659711364844374448111043656043883114427355*x^27-1546550473379539231075525435983756075782333778*x^26-7660620390519926756951488848507693399337682019*x^25+20613356990179752196093207194416595226016176236*x^24+65799282263357658818177488272544132109395782654*x^23-180588417218085293873409628789112383727276772558*x^22-388828726846473045390239872468684947709456017228*x^21+1095344259536073275555602333217683931484172737768*x^20+1616829592450604597126231481331101408852849932460*x^19-4719591055685067833874882736939173471691212188322*x^18-4749199776246477732778507471964529372491786067960*x^17+14584736354288518647955652749362642623998652481762*x^16+9714658515684562688604223365700923779383775457312*x^15-32222236780296127346493396440036274574174156366506*x^14-13285854399199421953452242700758919002350806411300*x^13+50088820965474652938135952270886254957089563959776*x^12+10980384430358504762201144521386093354691177360602*x^11-53051774774926748169235129748277271041841297175682*x^10-3771619912726112198793128903972265965694332174586*x^9+36168209024417964252458266481575075690508822576166*x^8-1469078509350459447953091610505950973191530413742*x^7-14337012203452779183410212902902426209020498944868*x^6+1681184211249554004798132109495033829320223002089*x^5+2717506677358800265271635530561564782141551499385*x^4-411176243358792305179198495135554429413150505786*x^3-167846834425024671384319372362858331373528055723*x^2+32563839580491765770804451500210353374306375768*x-270564919542355318786930428566634758647016061,191666888733892306908835965086522559577090*x^31+349532202103519036926249130897107990417658*x^30-10880451041494382191784550963918335370211236*x^29-16822048124356532663982794095125563068647102*x^28+276016151762868383332205758568813435253580341*x^27+358796297038818503894421453960369426651842777*x^26-4131667846136282613623840966220749911759997543*x^25-4470270142384581182592577068073914030368452572*x^24+40592943846081566105876112001595033056036168508*x^23+36103317052688648302189423359383259862452023154*x^22-275507726266526098245944651651648801942275249498*x^21-198283991153476579030064824613923040184025400778*x^20+1324172534228019361253284660974141452571870333522*x^19+755427744887407847629915916071126712898477296818*x^18-4545510989973658814660871749692590229114443003746*x^17-1997728667554330901613781228539546164624972558286*x^16+11096879094340172101011058339821271443778533082085*x^15+3602360870944891658729317411813687879142614928386*x^14-18939397400478268526168393798044579164079092334002*x^13-4247193013246409335126730068478212658474573264001*x^12+21852959488678744519931094770816716481091486364650*x^11+3011375289697421240383496441759339996474253181876*x^10-16064980030401611162475032895490160523868344931634*x^9-1077239995018776824405404438584505127945494176154*x^8+6756385581534809912767366535510919922924287668894*x^7+126763825322338397836794698650420369585905798796*x^6-1309050243608274505498972851655162531269039759032*x^5-9767195399406239012671984938585315760124350690*x^4+72341970760869250461765244347777602696394812764*x^3-4515002590010445725347370528461854422933704991*x^2-105702748029854507628417461294572337020969971*x+5608813191305528749326515139761263219485979,-716404463557204141405857559826693534807852*x^31+1862556125044944243995783858214091244831254*x^30+35341178263787428038728833159475719336512579*x^29-92929979375154496152838691406876805522035489*x^28-776245484901603296325272378012665965095021877*x^27+2069836384332067311119235173349239697257303465*x^26+10018482769197907632835941458612085151176439159*x^25-27183760481590196594958125626058824324438620552*x^24-84456486767385435463038514266451953004226400352*x^23+234282718880565346623150402004417462320755180409*x^22+488980728210746500424995913033166341987913440522*x^21-1395672446254023931096137268247729062156410633138*x^20-1989874453091859616958568508737605442440211542166*x^19+5897055941937892359029515569042045941666517693886*x^18+5722361768524839187909653131386773953244187448998*x^17-17844098061911573910604974974789716025161668020634*x^16-11506630011609053246155024501424582556581571812479*x^15+38552318014638066847873005548247520487943397239130*x^14+15686122843477483174980982033893007234785166859664*x^13-58535259963300736117702596707472677638416769641102*x^12-13540770022200794411105984919534273802532109232914*x^11+60480465358822383690928383898802161137282684320467*x^10+6205845359054505242748836137892857451571911744410*x^9-40151753147397560940975192188531045000007658258462*x^8-454516347997283185037487076110637629375262305778*x^7+15437651662109547542487536884575554572179757212082*x^6-720810600541664234735342130925443877586838124880*x^5-2792125406331161953974722043418789520002694611285*x^4+200251986589338847408232439825504943805489638108*x^3+141858268947070638056614838910940606993971425125*x^2-22071098740339638898005637183507291511923715679*x+1107019067255675476009371661207648302953403829,129898672517437825926381972477387781975273791*x^4-779392035104626955558291834864326691851642746*x^2+519594690069751303705527889909551127901095164,546341469637104480040564832693580609993995*x^31-1927541973194342135581991787760521187606144*x^30-26847640909953210697464951892311110094450543*x^29+97875960056062476300902540196164721856207425*x^28+586310554414802258720907620208147867379063077*x^27-2223568789906913532648354983223751374344115860*x^26-7502220327242902501918289794804224821567471854*x^25+29858462526706825162713608830065759456720955524*x^24+62419865798116496014597236244093784149704785842*x^23-263782849684866849883386325255881427402752607260*x^22-354062815504205747348433232825461242988594557864*x^21+1614944351054983890428921929014435450336562761012*x^20+1393725077852437855864768481263625186956776191358*x^19-7029907733648827721926376863132472647432310603626*x^18-3785512677368408882453085930024620450584460151928*x^17+21963236901126711384999518432055674478088902232914*x^16+6833631826375179447479478489720179517668262824986*x^15-49076126175668518042258688364051247849360545354580*x^14-7296672131450930816860974152842050224581563585840*x^13+77138694543894719270605240978559520491663798408610*x^12+2432092605684844897252580851816236772353435952230*x^11-82510493994811302297558599182218800805612070326160*x^10+4338787262690796036589693094320527231105130710260*x^9+56644175288851160642187962729510480688011915775772*x^8-6264539118221500374626994196467031177900767867722*x^7-22481398192063753708343413827121387580887092844495*x^6+3221921904743465933202722249205086892275606300588*x^5+4218056608736638465215814887867191548562966580169*x^4-601875573108186782053958307337762906487948068309*x^3-250336484672717028506506376318238685155596117479*x^2+42698469012309622091221930347401519216421164640*x+160295152295101303767758979822411276420410510]];

E[480,1] = [x, [1,0,1,0,1,0,4,0,1,0,0,0,-2,0,1,0,-6]];
E[480,2] = [x, [1,0,1,0,1,0,0,0,1,0,0,0,2,0,1,0,6]];
E[480,3] = [x, [1,0,1,0,-1,0,4,0,1,0,-4,0,6,0,-1,0,2]];
E[480,4] = [x, [1,0,1,0,-1,0,0,0,1,0,4,0,2,0,-1,0,-2]];
E[480,5] = [x, [1,0,-1,0,1,0,-4,0,1,0,0,0,-2,0,-1,0,-6]];
E[480,6] = [x, [1,0,-1,0,1,0,0,0,1,0,0,0,2,0,-1,0,6]];
E[480,7] = [x, [1,0,-1,0,-1,0,-4,0,1,0,4,0,6,0,1,0,2]];
E[480,8] = [x, [1,0,-1,0,-1,0,0,0,1,0,-4,0,2,0,1,0,-2]];

E[481,1] = [x, [1,1,0,-1,-2,0,2,-3,-3,-2,-2,0,-1,2,0,-1,-6]];
E[481,2] = [x^7+x^6-8*x^5-7*x^4+17*x^3+12*x^2-9*x-6, [1,x,-2*x^6-x^5+16*x^4+5*x^3-33*x^2-2*x+13,x^2-2,x^6+x^5-8*x^4-6*x^3+16*x^2+5*x-6,x^6-9*x^4+x^3+22*x^2-5*x-12,x^4-6*x^2+5,x^3-4*x,3*x^6+2*x^5-23*x^4-11*x^3+43*x^2+8*x-14,x^4-x^3-7*x^2+3*x+6,3*x^6-26*x^4+2*x^3+61*x^2-9*x-33,3*x^6+x^5-24*x^4-5*x^3+49*x^2+x-20,1,x^5-6*x^3+5*x,x^6-x^5-9*x^4+8*x^3+24*x^2-13*x-18,x^4-6*x^2+4,x^6-10*x^4+2*x^3+28*x^2-8*x-18]];
E[481,3] = [x^11-3*x^10-14*x^9+45*x^8+64*x^7-237*x^6-99*x^5+529*x^4-7*x^3-460*x^2+67*x+110, [172,172*x,-26*x^10+68*x^9+324*x^8-794*x^7-1374*x^6+2736*x^5+2806*x^4-2884*x^3-3150*x^2+574*x+1072,172*x^2-344,-8*x^10+54*x^9-26*x^8-542*x^7+1112*x^6+1166*x^5-4978*x^4+912*x^3+6956*x^2-2238*x-2700,-10*x^10-40*x^9+376*x^8+290*x^7-3426*x^6+232*x^5+10870*x^4-3332*x^3-11386*x^2+2814*x+2860,23*x^10+6*x^9-538*x^8+107*x^7+4113*x^6-1686*x^5-12273*x^4+5548*x^3+13047*x^2-4477*x-3482,172*x^3-688*x,-44*x^10+168*x^9+416*x^8-1992*x^7-764*x^6+7144*x^5-676*x^4-8744*x^3+160*x^2+3472*x+1576,30*x^10-138*x^9-182*x^8+1624*x^7-730*x^6-5770*x^5+5144*x^4+6900*x^3-5918*x^2-2164*x+880,-7*x^10-28*x^9+160*x^8+375*x^7-1177*x^6-1592*x^5+3395*x^4+2260*x^3-3739*x^2-421*x+1486,-18*x^10+100*x^9+92*x^8-1198*x^7+610*x^6+4408*x^5-3654*x^4-5688*x^3+4514*x^2+2382*x-1044,-172,75*x^10-216*x^9-928*x^8+2641*x^7+3765*x^6-9996*x^5-6619*x^4+13208*x^3+6103*x^2-5023*x-2530,-168*x^10+360*x^9+2464*x^8-4760*x^7-12940*x^6+20788*x^5+30740*x^4-35544*x^3-32288*x^2+20340*x+11240,172*x^4-1032*x^2+688,110*x^10-248*x^9-1556*x^8+3174*x^7+7758*x^6-13044*x^5-17402*x^4+19968*x^3+17746*x^2-9454*x-6348]];
E[481,4] = [x^11-3*x^10-12*x^9+39*x^8+38*x^7-149*x^6-23*x^5+175*x^4-5*x^3-48*x^2+5*x+2, [8,8*x,-10*x^10+20*x^9+128*x^8-258*x^7-482*x^6+960*x^5+586*x^4-1040*x^3-278*x^2+202*x+20,8*x^2-16,-2*x^10+10*x^9+22*x^8-128*x^7-54*x^6+474*x^5-500*x^3-26*x^2+72*x+8,-10*x^10+8*x^9+132*x^8-102*x^7-530*x^6+356*x^5+710*x^4-328*x^3-278*x^2+70*x+20,3*x^10-2*x^9-44*x^8+27*x^7+215*x^6-104*x^5-423*x^4+108*x^3+321*x^2+17*x-42,8*x^3-32*x,-8*x^10+24*x^9+104*x^8-312*x^7-408*x^6+1192*x^5+592*x^4-1376*x^3-464*x^2+296*x+64,4*x^10-2*x^9-50*x^8+22*x^7+176*x^6-46*x^5-150*x^4-36*x^3-24*x^2+18*x+4,3*x^10-4*x^9-38*x^8+53*x^7+139*x^6-206*x^5-145*x^4+256*x^3+29*x^2-97*x+2,-2*x^10-28*x^9+32*x^8+366*x^7-170*x^6-1440*x^5+250*x^4+1752*x^3+146*x^2-334*x-20,8,7*x^10-8*x^9-90*x^8+101*x^7+343*x^6-354*x^5-417*x^4+336*x^3+161*x^2-57*x-6,12*x^9-4*x^8-156*x^7+48*x^6+604*x^5-124*x^4-712*x^3-8*x^2+132*x+24,8*x^4-48*x^2+32,2*x^10+4*x^9-32*x^8-54*x^7+178*x^6+232*x^5-402*x^4-360*x^3+318*x^2+166*x-44]];
E[481,5] = [x^7+5*x^6+2*x^5-21*x^4-25*x^3+8*x^2+13*x-2, [1,x,-4*x^6-15*x^5+10*x^4+69*x^3+15*x^2-42*x+5,x^2-2,-3*x^6-11*x^5+10*x^4+54*x^3-41*x+8,5*x^6+18*x^5-15*x^4-85*x^3-10*x^2+57*x-8,8*x^6+30*x^5-21*x^4-140*x^3-26*x^2+88*x-13,x^3-4*x,-x^6-4*x^5+x^4+17*x^3+11*x^2-6*x-2,4*x^6+16*x^5-9*x^4-75*x^3-17*x^2+47*x-6,9*x^6+34*x^5-24*x^4-160*x^3-27*x^2+105*x-15,x^6+5*x^5-23*x^3-13*x^2+11*x,-1,-10*x^6-37*x^5+28*x^4+174*x^3+24*x^2-117*x+16,3*x^6+11*x^5-7*x^4-48*x^3-14*x^2+21*x-4,x^4-6*x^2+4,-x^6-4*x^5+2*x^4+18*x^3+6*x^2-8*x]];

E[482,1] = [x, [1,-1,-2,1,-1,2,1,-1,1,1,4,-2,-2,-1,2,1,4]];
E[482,2] = [x^3+2*x^2-5*x-2, [2,-2,2*x,2,-x^2-3*x+4,-2*x,-6,-2,2*x^2-6,x^2+3*x-4,2*x^2+4*x-8,2*x,-x^2-5*x-2,6,-x^2-x-2,2,-x^2-3*x-2]];
E[482,3] = [x^6-2*x^5-10*x^4+16*x^3+26*x^2-30*x-13, [2,-2,2*x,2,x^5-x^4-9*x^3+3*x^2+17*x+1,-2*x,-x^4+x^3+8*x^2-3*x-7,-2,2*x^2-6,-x^5+x^4+9*x^3-3*x^2-17*x-1,-2*x^2+2*x+6,2*x,x^3-2*x^2-4*x+9,x^4-x^3-8*x^2+3*x+7,x^5+x^4-13*x^3-9*x^2+31*x+13,2,-x^5+x^4+9*x^3-5*x^2-15*x+5]];
E[482,4] = [x^9-4*x^8-12*x^7+58*x^6+24*x^5-252*x^4+97*x^3+336*x^2-244*x-16, [16,16,16*x,16,15*x^8-39*x^7-237*x^6+547*x^5+1149*x^4-2273*x^3-1744*x^2+2868*x+240,16*x,4*x^8-12*x^7-60*x^6+172*x^5+268*x^4-732*x^3-360*x^2+920*x+32,16,16*x^2-48,15*x^8-39*x^7-237*x^6+547*x^5+1149*x^4-2273*x^3-1744*x^2+2868*x+240,26*x^8-66*x^7-406*x^6+906*x^5+1926*x^4-3646*x^3-2808*x^2+4440*x+320,16*x,-91*x^8+239*x^7+1421*x^6-3331*x^5-6757*x^4+13697*x^3+9900*x^2-17044*x-976,4*x^8-12*x^7-60*x^6+172*x^5+268*x^4-732*x^3-360*x^2+920*x+32,21*x^8-57*x^7-323*x^6+789*x^5+1507*x^4-3199*x^3-2172*x^2+3900*x+240,16,-31*x^8+83*x^7+481*x^6-1159*x^5-2273*x^4+4773*x^3+3356*x^2-5924*x-432]];
E[482,5] = [x^2+3*x+1, [1,1,-1,1,x,-1,-2*x-5,1,-2,x,-3,-1,x-2,-2*x-5,-x,1,-5*x-7]];

E[483,1] = [x^2+3*x+1, [1,x,1,-3*x-3,x-1,x,1,4*x+3,1,-4*x-1,-4*x-7,-3*x-3,x-2,x,x-1,-3*x+2,-1]];
E[483,2] = [x^2-x-1, [1,x,-1,x-1,-x-1,-x,1,-2*x+1,1,-2*x-1,-2*x+1,-x+1,-3*x-2,x,x+1,-3*x,4*x-3]];
E[483,3] = [x^2+x-3, [1,x,1,-x+1,-x-3,x,-1,-3,1,-2*x-3,-5,-x+1,-x,-x,-x-3,-x-2,2*x-1]];
E[483,4] = [x^3-6*x-1, [1,x,1,x^2-2,-x+1,x,-1,2*x+1,1,-x^2+x,x^2-x-2,x^2-2,-x^2+7,-x,-x+1,x+4,-x^2-x+6]];
E[483,5] = [x^4-6*x^2+x+2, [1,x,-1,x^2-2,x^3-5*x+2,-x,1,x^3-4*x,1,x^2+x-2,-x^3-x^2+5*x+1,-x^2+2,-x^3+x^2+6*x-2,x,-x^3+5*x-2,-x+2,-x^2-x+6]];
E[483,6] = [x^4-2*x^3-4*x^2+5*x+2, [1,x,-1,x^2-2,-x^3+2*x^2+3*x-2,-x,-1,x^3-4*x,1,-x^2+3*x+2,-x^3+x^2+5*x-1,-x^2+2,-x^3+x^2+2*x+2,-x,x^3-2*x^2-3*x+2,2*x^3-2*x^2-5*x+2,-x^2+3*x+2]];
E[483,7] = [x, [1,2,1,2,4,2,-1,0,1,8,-5,2,-2,-2,4,-4,0]];
E[483,8] = [x, [1,2,1,2,0,2,1,0,1,0,1,2,2,2,0,-4,4]];
E[483,9] = [x^2+x-1, [1,-x-1,1,x,-x+2,-x-1,1,2*x+1,1,-2*x-1,1,x,-x-1,-x-1,-x+2,-3*x-3,4*x+1]];
E[483,10] = [x^2+x-1, [1,-x-1,-1,x,-x,x+1,-1,2*x+1,1,1,2*x+1,-x,x-3,x+1,x,-3*x-3,6*x+3]];

E[484,1] = [x, [1,0,1,0,-3,0,-2,0,-2,0,0,0,4,0,-3,0,-6]];
E[484,2] = [x^2-x-8, [1,0,x,0,-x+2,0,0,0,x+5,0,0,0,0,0,x-8,0,0]];
E[484,3] = [x^2-12, [2,0,4,0,6,0,2*x,0,2,0,0,0,-3*x,0,12,0,-3*x]];
E[484,4] = [x^2-x-11, [3,0,-x-4,0,-x-1,0,3*x,0,3*x,0,0,0,x-11,0,2*x+5,0,x-11]];
E[484,5] = [x^2+x-11, [3,0,x-4,0,x-1,0,3*x,0,-3*x,0,0,0,x+11,0,-2*x+5,0,x+11]];

E[485,1] = [x^2-5, [2,2*x,x+1,6,-2,x+5,8,2*x,x-3,-2*x,-2*x-6,3*x+3,-x+5,8*x,-x-1,-2,-3*x-7]];
E[485,2] = [x^3+2*x^2-5*x-8, [1,x,2,x^2-2,1,2*x,-x+1,-2*x^2+x+8,1,x,x^2-3,2*x^2-4,-x^2-2*x+3,-x^2+x,2,3*x^2-2*x-12,-2]];
E[485,3] = [x^4+x^3-4*x^2-2*x+3, [1,x,-x^3-x^2+2*x,x^2-2,1,-2*x^2-2*x+3,x^3+2*x^2-2*x-4,x^3-4*x,2*x^3+3*x^2-3*x-3,x,-x^2-x-2,-x,2*x^3-6*x+1,x^3+2*x^2-2*x-3,-x^3-x^2+2*x,-x^3-2*x^2+2*x+1,-x^2-3*x+3]];
E[485,4] = [x^7-2*x^6-10*x^5+18*x^4+26*x^3-35*x^2-21*x+7, [4,4*x,x^6+x^5-11*x^4-11*x^3+29*x^2+24*x-1,4*x^2-8,-4,3*x^6-x^5-29*x^4+3*x^3+59*x^2+20*x-7,-2*x^6+2*x^5+18*x^4-14*x^3-34*x^2+12*x+10,4*x^3-16*x,2*x^5-4*x^4-18*x^3+28*x^2+30*x-10,-4*x,-4*x^2+4*x+16,3*x^6-x^5-29*x^4+3*x^3+67*x^2+8*x-19,-2*x^6+22*x^4-58*x^2+2*x+20,-2*x^6-2*x^5+22*x^4+18*x^3-58*x^2-32*x+14,-x^6-x^5+11*x^4+11*x^3-29*x^2-24*x+1,4*x^4-24*x^2+16,x^6-3*x^5-7*x^4+25*x^3+5*x^2-40*x+11]];
E[485,5] = [x^6+x^5-9*x^4-9*x^3+17*x^2+14*x+1, [4,4*x,-x^5-2*x^4+11*x^3+12*x^2-25*x-7,4*x^2-8,4,-x^5+2*x^4+3*x^3-8*x^2+7*x+1,4*x^4-8*x^3-24*x^2+40*x+20,4*x^3-16*x,-5*x^5+2*x^4+39*x^3-4*x^2-65*x-11,4*x,-2*x^5-4*x^4+22*x^3+28*x^2-54*x-22,5*x^5-2*x^4-39*x^3+65*x+15,3*x^5-2*x^4-21*x^3+8*x^2+27*x+1,4*x^5-8*x^4-24*x^3+40*x^2+20*x,-x^5-2*x^4+11*x^3+12*x^2-25*x-7,4*x^4-24*x^2+16,-3*x^5-2*x^4+25*x^3+12*x^2-39*x+3]];
E[485,6] = [x^7+x^6-9*x^5-7*x^4+23*x^3+12*x^2-15*x-8, [1,x,x^6-9*x^4+x^3+22*x^2-5*x-12,x^2-2,-1,-x^6+8*x^4-x^3-17*x^2+3*x+8,-x^6+10*x^4-2*x^3-29*x^2+9*x+17,x^3-4*x,-x^6+9*x^4-22*x^2+13,-x,x^5+2*x^4-7*x^3-11*x^2+10*x+9,-x^6-x^5+10*x^4+4*x^3-29*x^2+3*x+16,-x^5-3*x^4+8*x^3+18*x^2-15*x-17,x^6+x^5-9*x^4-6*x^3+21*x^2+2*x-8,-x^6+9*x^4-x^3-22*x^2+5*x+12,x^4-6*x^2+4,-2*x^6-2*x^5+15*x^4+11*x^3-27*x^2-7*x+6]];
E[485,7] = [x^2-x-7, [1,1,x,-1,1,x,0,-3,x+4,1,-2*x+2,-x,x+3,0,x,-1,-x]];
E[485,8] = [x, [1,0,-2,-2,-1,0,-1,0,1,0,-3,4,5,0,2,4,-6]];
E[485,9] = [x, [1,0,0,-2,1,0,-1,0,-3,0,1,0,1,0,0,4,-6]];

E[486,1] = [x, [1,1,0,1,3,0,2,1,0,3,0,0,-4,2,0,1,-6]];
E[486,2] = [x, [1,1,0,1,-3,0,-4,1,0,-3,-6,0,2,-4,0,1,0]];
E[486,3] = [x^3-9*x+9, [1,1,0,1,x,0,x^2+x-4,1,0,x,-x^2-2*x+6,0,-2*x^2-4*x+14,x^2+x-4,0,1,2*x^2+2*x-12]];
E[486,4] = [x, [1,1,0,1,0,0,-1,1,0,0,6,0,-1,-1,0,1,6]];
E[486,5] = [x, [1,-1,0,1,3,0,-4,-1,0,-3,6,0,2,4,0,1,0]];
E[486,6] = [x, [1,-1,0,1,-3,0,2,-1,0,3,0,0,-4,-2,0,1,6]];
E[486,7] = [x^3-9*x-9, [1,-1,0,1,x,0,x^2-x-4,-1,0,-x,x^2-2*x-6,0,-2*x^2+4*x+14,-x^2+x+4,0,1,-2*x^2+2*x+12]];
E[486,8] = [x, [1,-1,0,1,0,0,-1,-1,0,0,-6,0,-1,1,0,1,-6]];

E[487,1] = [x^3-5*x+3, [1,x,2,x^2-2,2,2*x,2,x-3,1,2*x,-2*x^2-4*x+8,2*x^2-4,-2,2*x,4,-x^2-3*x+4,2*x^2-6]];
E[487,2] = [x^16-7*x^15-5*x^14+131*x^13-132*x^12-977*x^11+1666*x^10+3671*x^9-8191*x^8-7212*x^7+20571*x^6+6937*x^5-27100*x^4-2748*x^3+17207*x^2+360*x-3825, [105,105*x,-49*x^15+343*x^14+35*x^13-4949*x^12+6573*x^11+26873*x^10-52969*x^9-67949*x^8+172984*x^7+81648*x^6-268884*x^5-47593*x^4+190750*x^3+18207*x^2-45248*x-3885,105*x^2-210,129*x^15-828*x^14-660*x^13+13209*x^12-9363*x^11-84483*x^10+98889*x^9+282354*x^8-365829*x^7-546483*x^6+634089*x^5+638208*x^4-498120*x^3-412452*x^2+125283*x+95715,-210*x^14+1470*x^13+105*x^12-21000*x^11+28665*x^10+111930*x^9-228375*x^8-271740*x^7+739095*x^6+292320*x^5-1137150*x^4-116445*x^3+797895*x^2+13755*x-187425,-18*x^15-219*x^14+2490*x^13-1953*x^12-32694*x^11+61656*x^10+165312*x^9-428433*x^8-374502*x^7+1329951*x^6+347292*x^5-2022366*x^4-80220*x^3+1423389*x^2-5631*x-335940,105*x^3-420*x,14*x^15-413*x^14+2240*x^13+1309*x^12-33663*x^11+39137*x^10+181664*x^9-344981*x^8-441539*x^7+1148007*x^6+471219*x^5-1787422*x^4-183470*x^3+1263213*x^2+21553*x-297465,75*x^15-15*x^14-3690*x^13+7665*x^12+41550*x^11-116025*x^10-191205*x^9+690810*x^8+383865*x^7-2019570*x^6-256665*x^5+2997780*x^4-57960*x^3-2094420*x^2+49275*x+493425,-105*x^4+105*x^3+630*x^2-315*x-630,-112*x^15+784*x^14+35*x^13-11102*x^12+15519*x^11+58184*x^10-122437*x^9-135842*x^8+393127*x^7+129024*x^6-599382*x^5-21259*x^4+416395*x^3-22659*x^2-96929*x+7770,146*x^15-557*x^14-3175*x^13+13636*x^12+24828*x^11-129682*x^10-83734*x^9+622486*x^8+92914*x^7-1618407*x^6+94761*x^5+2251292*x^4-229775*x^3-1519143*x^2+78247*x+351765,-345*x^15+2400*x^14+405*x^13-35070*x^12+44070*x^11+195300*x^10-362355*x^9-521940*x^8+1200135*x^7+717570*x^6-1897500*x^5-568020*x^4+1373925*x^3+304095*x^2-329460*x-68850,-3*x^15+576*x^14-4065*x^13+357*x^12+57621*x^11-88494*x^10-300573*x^9+686082*x^8+698133*x^7-2208864*x^6-674703*x^5+3410739*x^4+185640*x^3-2417466*x^2+24*x+572715,105*x^4-630*x^2+420,17*x^15-359*x^14+1370*x^13+3262*x^12-22929*x^11+791*x^10+136787*x^9-96458*x^8-386717*x^7+382011*x^6+540912*x^5-595696*x^4-352100*x^3+390504*x^2+79489*x-85620]];
E[487,3] = [x^17+8*x^16+7*x^15-97*x^14-239*x^13+327*x^12+1500*x^11+70*x^10-3964*x^9-2280*x^8+4849*x^7+4192*x^6-2492*x^5-2765*x^4+364*x^3+588*x^2-16, [5519352,5519352*x,2051597*x^16+13920102*x^15-2246177*x^14-194312419*x^13-255697165*x^12+952370821*x^11+1901029026*x^10-2003022582*x^9-5536487624*x^8+1594388824*x^7+7559117149*x^6+107542198*x^5-4681743608*x^4-536428025*x^3+1069616470*x^2+92469512*x-34062360,5519352*x^2-11038704,736053*x^16+4692384*x^15-2218797*x^14-66658917*x^13-70577955*x^12+337626027*x^11+564150852*x^10-762967482*x^9-1670123196*x^8+765596016*x^7+2281928013*x^6-292458072*x^5-1411614108*x^4+84133839*x^3+334608300*x^2-58014204*x-17128440,-2492674*x^16-16607356*x^15+4692490*x^14+234634518*x^13+281498602*x^12-1176366474*x^11-2146634372*x^10+2596042884*x^9+6272029984*x^8-2389076704*x^7-8492752426*x^6+430836116*x^5+5136237680*x^4+322835162*x^3-1113869524*x^2-34062360*x+32825552,-1411976*x^16-10307270*x^15-2064364*x^14+141770598*x^13+233510978*x^12-677085258*x^11-1660368046*x^10+1361252940*x^9+4887212636*x^8-1005912848*x^7-6948657248*x^6-31718870*x^5+4636074004*x^4+179868376*x^3-1221204986*x^2+12928764*x+54587344,5519352*x^3-22077408*x,-3296382*x^16-21482870*x^15+7269918*x^14+299978612*x^13+350142904*x^12-1470411320*x^11-2666398882*x^10+3085528764*x^9+7663626588*x^8-2403723232*x^7-10112156326*x^6-306717454*x^5+5906867600*x^4+912860078*x^3-1234910674*x^2-144540592*x+40086256,-1196040*x^16-7371168*x^15+4738224*x^14+105338712*x^13+96936696*x^12-539928648*x^11-814491192*x^10+1247590896*x^9+2443796856*x^8-1287192984*x^7-3377992248*x^6+422629968*x^5+2119320384*x^4+66685008*x^3-490813368*x^2-17128440*x+11776848,-339010*x^16-1596970*x^15+3914278*x^14+25194036*x^13-10805468*x^12-145870500*x^11-18152114*x^10+373777536*x^9+121342036*x^8-340018192*x^7-193902754*x^6-171058954*x^5+189147476*x^4+370729586*x^3-108076054*x^2-117373836*x+7201952,-769158*x^16-5698996*x^15-2662506*x^14+74374354*x^13+150132254*x^12-312365014*x^11-1031527988*x^10+397115412*x^9+3000601824*x^8+405446152*x^7-4238108774*x^6-1290590324*x^5+2794078768*x^4+866319862*x^3-707602988*x^2-152113472*x+28241936,-3420975*x^16-24158160*x^15-2098689*x^14+328300671*x^13+510201897*x^12-1524299409*x^11-3603715740*x^10+2815435110*x^9+10256680788*x^8-1262263032*x^7-13711638039*x^6-1652873712*x^5+8201153076*x^4+1337888715*x^3-1711146516*x^2-85413372*x+22225320,988538*x^16+7819468*x^15+4808926*x^14-103951286*x^13-215369106*x^12+457595954*x^11+1460091260*x^10-709860228*x^9-4225218128*x^8-101985624*x^7+5887284522*x^6+1117429812*x^5-3724245264*x^4-707245722*x^3+843170652*x^2+54587344*x-22591616,-1645188*x^16-9896100*x^15+9082428*x^14+147342504*x^13+96842040*x^12-810862968*x^11-929642604*x^10+2124567912*x^9+2878923384*x^8-2789181768*x^7-3999814020*x^6+1693645692*x^5+2473927632*x^4-338932956*x^3-538954260*x^2-23152824*x-231624,5519352*x^4-33116112*x^2+22077408,2552694*x^16+16171118*x^15-8361378*x^14-229675076*x^13-231078076*x^12+1165509428*x^11+1853077822*x^10-2650138032*x^9-5435908716*x^8+2664096424*x^7+7341110302*x^6-852322586*x^5-4486247804*x^4-59961758*x^3+1026339418*x^2-21371204*x-52968976]];
E[487,4] = [x^2-3*x-1, [1,0,x,-2,x-1,0,-1,0,3*x-2,0,-2*x+5,-2*x,-x+3,0,2*x+1,4,3]];
E[487,5] = [x^2+x-3, [1,0,x,-2,-x+1,0,2*x+1,0,-x,0,-1,-2*x,x+5,0,2*x-3,4,2*x+5]];

E[488,1] = [x^3+2*x^2-4*x-4, [2,0,2*x,0,-2*x-2,0,-x^2-2*x-2,0,2*x^2-6,0,x^2-6,0,-2*x^2-4*x+2,0,-2*x^2-2*x,0,2*x]];
E[488,2] = [x^4-x^3-7*x^2+4*x+8, [2,0,2*x,0,-2*x^2+2*x+6,0,x^3-x^2-5*x+6,0,2*x^2-6,0,-x^3-x^2+5*x+6,0,2*x^2+2*x-6,0,-2*x^3+2*x^2+6*x,0,2*x^3-2*x^2-10*x+4]];
E[488,3] = [x^6-3*x^5-9*x^4+26*x^3+16*x^2-52*x+16, [4,0,4*x,0,x^5-3*x^4-9*x^3+22*x^2+20*x-24,0,x^5-x^4-11*x^3+4*x^2+28*x,0,4*x^2-12,0,-x^5+x^4+15*x^3-12*x^2-48*x+32,0,-x^5+3*x^4+5*x^3-18*x^2+24,0,-4*x^3+4*x^2+28*x-16,0,-2*x^5+2*x^4+26*x^3-20*x^2-76*x+56]];
E[488,4] = [x^2+2*x-1, [1,0,0,0,-1,0,x,0,-3,0,-3*x-4,0,-2*x-5,0,0,0,4*x+2]];

E[489,1] = [x^4+2*x^3-2*x^2-3*x+1, [1,x,1,x^2-2,-x^3-x^2+x-1,x,-x^2-x-1,x^3-4*x,1,x^3-x^2-4*x+1,2*x^3+x^2-5*x-1,x^2-2,2*x^3+4*x^2-2*x-7,-x^3-x^2-x,-x^3-x^2+x-1,-2*x^3-4*x^2+3*x+3,3*x^3+7*x^2-2*x-6]];
E[489,2] = [x^5+2*x^4-4*x^3-7*x^2+3*x+4, [1,x,-1,x^2-2,x^4+x^3-5*x^2-2*x+4,-x,-x^4-2*x^3+3*x^2+4*x-2,x^3-4*x,1,-x^4-x^3+5*x^2+x-4,-x^4+5*x^2-2*x-6,-x^2+2,-x^4+6*x^2-x-4,-x^3-3*x^2+x+4,-x^4-x^3+5*x^2+2*x-4,x^4-6*x^2+4,2*x^4+x^3-9*x^2-2*x+4]];
E[489,3] = [x^8-4*x^7-6*x^6+35*x^5-86*x^3+36*x^2+39*x-19, [2,2*x,-2,2*x^2-4,-x^7+2*x^6+11*x^5-19*x^4-35*x^3+49*x^2+25*x-22,-2*x,-x^6+4*x^5+x^4-19*x^3+15*x^2+13*x-9,2*x^3-8*x,2,-2*x^7+5*x^6+16*x^5-35*x^4-37*x^3+61*x^2+17*x-19,2*x^7-4*x^6-18*x^5+28*x^4+46*x^3-48*x^2-18*x+20,-2*x^2+4,2*x^7-4*x^6-20*x^5+34*x^4+54*x^3-76*x^2-16*x+26,-x^7+4*x^6+x^5-19*x^4+15*x^3+13*x^2-9*x,x^7-2*x^6-11*x^5+19*x^4+35*x^3-49*x^2-25*x+22,2*x^4-12*x^2+8,x^7-6*x^6-x^5+43*x^4-13*x^3-87*x^2-x+36]];
E[489,4] = [x^10-x^9-16*x^8+15*x^7+87*x^6-72*x^5-188*x^4+125*x^3+132*x^2-55*x+4, [68,68*x,68,68*x^2-136,-21*x^9+16*x^8+322*x^7-227*x^6-1656*x^5+972*x^4+3344*x^3-1369*x^2-2201*x+380,68*x,6*x^9+10*x^8-92*x^7-144*x^6+478*x^5+650*x^4-970*x^3-896*x^2+590*x+144,68*x^3-272*x,68,-5*x^9-14*x^8+88*x^7+171*x^6-540*x^5-604*x^4+1256*x^3+571*x^2-775*x+84,4*x^9-16*x^8-84*x^7+244*x^6+636*x^5-1176*x^4-2052*x^3+1828*x^2+2320*x-312,68*x^2-136,18*x^9-4*x^8-276*x^7+78*x^6+1400*x^5-464*x^4-2672*x^3+950*x^2+1498*x-248,16*x^9+4*x^8-234*x^7-44*x^6+1082*x^5+158*x^4-1646*x^3-202*x^2+474*x-24,-21*x^9+16*x^8+322*x^7-227*x^6-1656*x^5+972*x^4+3344*x^3-1369*x^2-2201*x+380,68*x^4-408*x^2+272,-18*x^9+4*x^8+310*x^7-78*x^6-1842*x^5+498*x^4+4338*x^3-1188*x^2-3232*x+656]];

E[490,1] = [x, [1,1,3,1,-1,3,0,1,6,-1,-2,3,0,0,-3,1,-4]];
E[490,2] = [x, [1,1,-3,1,1,-3,0,1,6,1,-2,-3,0,0,-3,1,4]];
E[490,3] = [x, [1,1,0,1,1,0,0,1,-3,1,4,0,6,0,0,1,-2]];
E[490,4] = [x, [1,1,2,1,1,2,0,1,1,1,-4,2,2,0,2,1,8]];
E[490,5] = [x, [1,1,2,1,1,2,0,1,1,1,3,2,-5,0,2,1,-6]];
E[490,6] = [x, [1,1,-2,1,-1,-2,0,1,1,-1,3,-2,5,0,2,1,6]];
E[490,7] = [x, [1,1,-2,1,-1,-2,0,1,1,-1,-4,-2,-2,0,2,1,-8]];
E[490,8] = [x, [1,-1,1,1,-1,-1,0,-1,-2,1,-6,1,-4,0,-1,1,0]];
E[490,9] = [x, [1,-1,-1,1,1,1,0,-1,-2,-1,-6,-1,4,0,-1,1,0]];
E[490,10] = [x, [1,-1,-2,1,1,2,0,-1,1,-1,3,-2,-1,0,-2,1,-6]];
E[490,11] = [x, [1,-1,2,1,-1,-2,0,-1,1,1,3,2,1,0,-2,1,6]];
E[490,12] = [x^2-4*x+2, [1,-1,x,1,1,-x,0,-1,4*x-5,-1,-2*x+6,x,-2*x+2,0,x,1,-x+6]];
E[490,13] = [x^2+4*x+2, [1,-1,x,1,-1,-x,0,-1,-4*x-5,1,2*x+6,x,-2*x-2,0,-x,1,-x-6]];

E[491,1] = [x^2-x-1, [1,x,-x,x-1,x-1,-x-1,-3*x+2,-2*x+1,x-2,1,x-2,-1,2*x-5,-x-3,-1,-3*x,-4*x+2]];
E[491,2] = [x^10+3*x^9-7*x^8-25*x^7+10*x^6+60*x^5+3*x^4-45*x^3-2*x^2+7*x-1, [1,x,-4*x^9-14*x^8+23*x^7+115*x^6-267*x^4-100*x^3+184*x^2+61*x-21,x^2-2,6*x^9+19*x^8-38*x^7-155*x^6+27*x^5+355*x^4+95*x^3-238*x^2-66*x+25,-2*x^9-5*x^8+15*x^7+40*x^6-27*x^5-88*x^4+4*x^3+53*x^2+7*x-4,4*x^9+14*x^8-23*x^7-115*x^6+267*x^4+100*x^3-184*x^2-61*x+20,x^3-4*x,-7*x^9-22*x^8+45*x^7+180*x^6-37*x^5-414*x^4-97*x^3+277*x^2+64*x-27,x^9+4*x^8-5*x^7-33*x^6-5*x^5+77*x^4+32*x^3-54*x^2-17*x+6,3*x^9+11*x^8-17*x^7-92*x^6-2*x^5+221*x^4+79*x^3-162*x^2-47*x+19,9*x^9+29*x^8-56*x^7-237*x^6+32*x^5+544*x^4+163*x^3-365*x^2-112*x+40,6*x^9+19*x^8-38*x^7-155*x^6+27*x^5+354*x^4+95*x^3-233*x^2-66*x+22,2*x^9+5*x^8-15*x^7-40*x^6+27*x^5+88*x^4-4*x^3-53*x^2-8*x+4,5*x^9+18*x^8-28*x^7-148*x^6-5*x^5+344*x^4+132*x^3-236*x^2-76*x+24,x^4-6*x^2+4,-4*x^9-11*x^8+28*x^7+89*x^6-38*x^5-201*x^4-26*x^3+132*x^2+32*x-16]];
E[491,3] = [x^29-49*x^27+x^26+1068*x^25-39*x^24-13655*x^23+658*x^22+113723*x^21-6306*x^20-647801*x^19+37953*x^18+2578721*x^17-150115*x^16-7201417*x^15+398246*x^14+13959112*x^13-711934*x^12-18310154*x^11+839798*x^10+15574775*x^9-585854*x^8-8065060*x^7+132680*x^6+2339280*x^5+83968*x^4-350400*x^3-36608*x^2+20992*x+3584, [218089520041081175482624,218089520041081175482624*x,23108313731491005958945*x^28-9981842486334607566910*x^27-1128237043944943824602305*x^26+510789038220329400741103*x^25+24471880384502393132410990*x^24-11486392256760376002059439*x^23-310884227120062146619354149*x^22+149766715477660862260499460*x^21+2567387872825066096992801631*x^20-1257688190655496496524786316*x^19-14462925102759462326803330109*x^18+7144730506518246130810302047*x^17+56723385490790397675247041219*x^16-28062356711339419523041158657*x^15-155202108078989193851145985279*x^14+76514158289883811784043645316*x^13+292132076853842447611199133796*x^12-143159334624825542567833630254*x^11-366360632124233473386432661494*x^10+178277749863027786360727279810*x^9+289372922052299143129515027651*x^8-138970224201005011180870635536*x^7-131401909543740814609592458672*x^6+59997758211192002838953316016*x^5+30319771986827009564622345392*x^4-11176018925226785392202265408*x^3-3700107503755496414409611264*x^2+728543486713669302051447680*x+201730184636947130027650304,218089520041081175482624*x^2-436179040082162350965248,46390173195350031769459*x^28-18412823254089043170496*x^27-2265767449072243036297399*x^26+945847363434923118382099*x^25+49167822868374442228745528*x^24-21330737248031017375519769*x^23-624974105843270153900174245*x^22+278698782978840352696560962*x^21+5164987186501287486885159437*x^20-2343770840467763165567736462*x^19-29122846557622810688666145047*x^18+13327490858026602210543250555*x^17+114356044958796382283112755879*x^16-52383951831533553402571383693*x^15-313395683406478584247391816415*x^14+142939366313600867083641094030*x^13+591242890882944504771408684108*x^12-267781901969083277381573666098*x^11-744068501108395377625613923934*x^10+334253472008185370232750906266*x^9+591174263418013248190082402749*x^8-261606917893371009932114249682*x^7-271379953187294336122543211544*x^6+113644049320779709744370725840*x^5+63859247586642509813021225664*x^4-21362812285130508432843254752*x^3-7853940927405133735461184000*x^2+1405045188434636900608639872*x+421067491012283833177122048,-9981842486334607566910*x^28+4070328898115467386000*x^27+487680724488838394782158*x^26-207798680730001231742270*x^25-10585168021232226769660584*x^24+4659796883447539750039826*x^23+134561445042339780339513650*x^22-60558889661285573676300604*x^21-1111967164264714212947679146*x^20+506663640814142824407199836*x^19+6267700675466967981650462462*x^18-2866508403193820702209568126*x^17-24593452195536647163514129982*x^16+11210495268303571808701839786*x^15+67311364779572444624917634846*x^14-30439462655178431562381523044*x^13-126707740396710224731458080624*x^12+56756150979681495336767966036*x^11+158871434207949102538417186700*x^10-70533864945083689204712584724*x^9-125432126168156079375798871506*x^8+54968027199558037909656503028*x^7+56931747145297776168320493416*x^6-23737044158975270855018514208*x^5-13116377812632622180562959168*x^4+4397045627758952073604716736*x^3+1574492635796092048196506240*x^2-283359537214512067062523136*x-82820196413663765356858880,122247595971465671432246*x^28-48760435784370168206636*x^27-5970926879777518181330326*x^26+2503072584595807367644146*x^25+129572004412119556067333212*x^24-56416130231909287705042138*x^23-1646961958332751926094630230*x^22+736728310945855329812997312*x^21+13610163099699073550251980650*x^20-6192773574906593286123790976*x^19-76731138009324923723727377486*x^18+35199358134645855063862051442*x^17+301228390488020776299841463274*x^16-138298447550223127268350834078*x^15-825197165629785019062919672146*x^14+377241520635302637151616248608*x^13+1555761055152132423408676560120*x^12-706499031984816275870478101700*x^11-1955719213783248932135663119508*x^10+881595571493697633110016810652*x^9+1550880350904764511923463344882*x^8-689677804932327889062031139368*x^7-709518944026161957718118268112*x^6+299277359006524052638878412304*x^5+165986792457215946123979227168*x^4-56070939281519099393707346176*x^3-20342697727588942968314437632*x^2+3673366909488089961957919744*x+1091884314822162864115159040,218089520041081175482624*x^3-872358080164324701930496*x,24841243178926503202444*x^28-11176523988005397095868*x^27-1213095209861859168158368*x^26+570049642744493994012072*x^25+26317587929157282179891864*x^24-12782972576126404116351832*x^23-334390892754855403261037712*x^22+166259692753141069485183288*x^21+2761938228744034047522652216*x^20-1393048207827500259433439844*x^19-15560728200721555768962814496*x^18+7896812838930126131331868944*x^17+61032739405359572891095810804*x^16-30950254254828326523341134708*x^15-166987709709489973062494727516*x^14+84197597810898350670319358768*x^13+314253283836762035663008744540*x^12-157134577815305187539828735312*x^11-393899770870144743986000189504*x^10+195092976141984308650158909400*x^9+310765755680092627874874258324*x^8-151515344709609781004391167652*x^7-140760186415071136363204803380*x^6+65094782922795623121298817256*x^5+32310064094206976121808051232*x^4-12030251948227649132615476736*x^3-3925771550990207455791752192*x^2+777276072923407168055305216*x+213370432476817360384924672,-18412823254089043170496*x^28+7351037499908520406092*x^27+899457190239573086612640*x^26-376882104259391701036684*x^25-19521520493412366136510868*x^24+8483709139234529911788400*x^23+248174049016300031792256940*x^22-110642479793504176033026420*x^21-2051234408297885865229528008*x^20+928754028498135241621164612*x^19+11566844614743482454796973128*x^18-5271268853689846991458326060*x^17-45420090982313583383499045908*x^16+20679298475459455487730306988*x^15+124464665399245498331581125116*x^14-56322732450344467902027676300*x^13-234755160405424947863815642392*x^12+105342714185135787978072862752*x^11+295295097339076804252822776984*x^10-131342246310594542862093393976*x^9-234429049366182412419849616696*x^8+102759577043595391100049790996*x^7+107489001141220667529198905720*x^6-44660356765775912504638823856*x^5-25258102347997659900461188064*x^4+8401175760245517396557249600*x^3+3103296648770010863624994944*x^2-552755024704504033727361280*x-166262380732134513861741056,-16097261626748421286548*x^28+5855803596556808722882*x^27+786785217621709386772828*x^26-302312087872755267416606*x^25-17089339047017015895493286*x^24+6844140086030346780048404*x^23+217481994056291579271008582*x^22-89690660585977571150126078*x^21-1800100385300200814782948184*x^20+756030342595384571464191158*x^19+10170207253577463742960089000*x^18-4307151242591622566425919598*x^17-40041420503032683922999605882*x^16+16958121136303004506185554158*x^15+110134581093267849846398794238*x^14-46360796691363567653388088122*x^13-208860160850086602536034886196*x^12+87080790768812962873507791760*x^11+264931306733195445082126161644*x^10-109153636973700850254209825052*x^9-213245397579944665046750788000*x^8+86029790226898629890219009862*x^7+100208343155619717269229048476*x^6-37828581041207293637822208240*x^5-24619533501711753131778641040*x^4+7287898065695094850303598464*x^3+3150061830686756942158846144*x^2-495465547887336739111017344*x-171093257177145864839633920,-42146298564866544531890*x^28+18534127631111839137388*x^27+2058657249646221025029250*x^26-946138322267524689682910*x^25-44673255742524296209891644*x^24+21232170404961466017476478*x^23+567777616934846891341434474*x^22-276335522146605361136972136*x^21-4691057603554815404895337886*x^20+2316829512287915858248170184*x^19+26438182670208961312384027322*x^18-13142526370369873865585011966*x^17-103734699998113343156698937302*x^16+51552668029838973050325640690*x^15+283939982345612768265002087374*x^14-140398399743374591797001187336*x^13-534614415776669542389170805496*x^12+262421030329070627594397043068*x^11+670570130659722088333628622444*x^10-326522675084109564529332735876*x^9-529625719253029323530878043414*x^8+254368036984470008426478599888*x^7+240391165789593234096144021936*x^6-109761569743583807069348366400*x^5-55404342996002522727461675168*x^4+20428892879038016341155773056*x^3+6751440180556743447947258112*x^2-1330368332367866287415179520*x-367685445802871026535495168,-136514578125992580164467*x^28+54139844454979574896516*x^27+6667633629029924516861847*x^26-2780859707090495317624031*x^25-144689733432800912293281220*x^24+62707652342394643793032241*x^23+1839136998369782425658048593*x^22-819219714568427681319919470*x^21-15198769203286378828615267053*x^20+6888489069238819297808147106*x^19+85693296516396691284855907983*x^18-39164516305054810907522365591*x^17-336453201082426920907716984611*x^16+153911131907951599633548062137*x^15+921884666860285647665663517019*x^14-419897657363463015877875310666*x^13-1738646635270213717619696397388*x^12+786475621479155222904548341034*x^11+2186887734488042127172979102598*x^10-981473795540122022568741475810*x^9-1735945695215242621960061794837*x^8+767895126334986073205796158590*x^7+795643171570497193877084307152*x^6-333321026995329846212984011608*x^5-186734669972169716510734880992*x^4+62513051763298172886309436736*x^3+22923327233838491920574052800*x^2-4097756469658087870037839488*x-1227275489171285429808086272,-48760435784370168206636*x^28+19205322824299718849728*x^27+2380824988624341696211900*x^26-988428085405781022305516*x^25-51648473989022126519184544*x^24+22328964657611817312688900*x^23+656289392796630918010579444*x^22-292200256963917002037331208*x^21-5421880234710530762072047700*x^20+2460976908586509695753013560*x^19+30559695124740818435994019004*x^18-14014052443113151401591374092*x^17-119947249680966558001299225788*x^16+55158750208259382105671020436*x^15+328556904530050319366410008092*x^14-150706828744305688269245765432*x^13-619466811994466834545033477936*x^12+282653094584067117502161706376*x^11+778932284892052705172559484344*x^10-353098450641719740857695849768*x^9-618058561842060839590764091284*x^8+276415252339466970323231656648*x^7+283057547973029987353248013024*x^6-119984563846914269744045195712*x^5-66335825420051128892530178304*x^4+22492859900812628301544560768*x^3+8148606902811505261749581312*x^2-1474337219810844510590548992*x-438135383961732966413169664,72560550775804587184092*x^28-28123213315126409984320*x^27-3544927256231149834376788*x^26+1446763004229825941476492*x^25+76953219094828499978611800*x^24-32665675304220516807952172*x^23-978611404371583419444885764*x^22+427207732178128762144918768*x^21+8092570685011782714100697004*x^20-3595621977373980902905555112*x^19-45668216945778752907250779412*x^18+20461088655939679571088442300*x^17+179531277798402967038991888228*x^16-80483354252201073868925891900*x^15-492817975106515493019915850644*x^14+219812486558744653732017346320*x^13+932002779179760572804418533272*x^12-412321336113885929456064747352*x^11-1177407478244927815651203951592*x^10+515716411955476063246043393176*x^9+941554822655912376239833980052*x^8-405045442929231767596676396280*x^7-437433401003046731034002455096*x^6+177132421234094659681245033856*x^5+105312223419866592515581486576*x^4-33803720759817290739967497216*x^3-13253731962888168815023874752*x^2+2265758950556222761335222656*x+719495512932966346360514304,218089520041081175482624*x^4-1308537120246487052895744*x^2+872358080164324701930496,-197836398187632289160043*x^28+78048430500210638582226*x^27+9662901233725006150116995*x^26-4011195271744174030233277*x^25-209694656625433235898631002*x^24+90497702085041795275285101*x^23+2665535897724601838873940799*x^22-1182836129225935374611896956*x^21-22029732819335024828928215965*x^20+9950594146621663575282574316*x^19+124219966901452797838881034919*x^18-56600544266778234463852155581*x^17-487789384745612643304607467361*x^16+222541472218161001102288871611*x^15+1336831121827775508154564505973*x^14-607458404309660619161430553180*x^13-2522027345929515257150597144916*x^12+1138464533994129244578332868618*x^11+3173818178499661040616745205170*x^10-1421729170232028719230067248342*x^9-2521477076267504922045951804833*x^8+1113312312186993402792089488888*x^7+1157455563351399970523720158024*x^6-483865890448496428482782175216*x^5-272482135549625874646389110944*x^4+90972118377733818846536037696*x^3+33587497651673233219184106944*x^2-5984131387511198829679776896*x-1806222483402287391327923968]];

E[492,1] = [x, [1,0,1,0,-2,0,-4,0,1,0,-5,0,4,0,-2,0,-5]];
E[492,2] = [x^2-2*x-2, [1,0,1,0,x,0,x,0,1,0,-x+3,0,-x,0,x,0,-3*x+5]];
E[492,3] = [x^2+4*x-2, [1,0,-1,0,x,0,x+4,0,1,0,-x-3,0,-x,0,-x,0,-x-1]];
E[492,4] = [x, [1,0,-1,0,0,0,-2,0,1,0,-1,0,-2,0,0,0,-1]];

E[493,1] = [x^4-2*x^3-6*x^2+12*x-1, [2,2*x,-x^3-x^2+5*x+5,2*x^2-4,x^3-x^2-7*x+7,-3*x^3-x^2+17*x-1,-x^3+x^2+7*x-5,2*x^3-8*x,x^3-x^2-3*x+9,x^3-x^2-5*x+1,-x^3+x^2+5*x+3,-5*x^3+x^2+25*x-13,2*x^3-14*x+2,-x^3+x^2+7*x-1,3*x^3-3*x^2-19*x+19,4*x^3-24*x+10,2]];
E[493,2] = [x^5+2*x^4-5*x^3-7*x^2+7*x+3, [1,x,-x^2-x+2,x^2-2,-x^4-x^3+4*x^2+x-2,-x^3-x^2+2*x,x^4+2*x^3-2*x^2-3*x-2,x^3-4*x,x^4+2*x^3-3*x^2-4*x+1,x^4-x^3-6*x^2+5*x+3,-x^3+3*x-5,-x^4-x^3+4*x^2+2*x-4,-x^3-x^2+3*x-1,3*x^3+4*x^2-9*x-3,2*x^2+x-4,x^4-6*x^2+4,1]];
E[493,3] = [x^6-5*x^5+3*x^4+16*x^3-20*x^2+1, [1,x,x^2-x-2,x^2-2,x^5-5*x^4+2*x^3+17*x^2-16*x-1,x^3-x^2-2*x,-x^4+2*x^3+4*x^2-7*x,x^3-4*x,x^4-2*x^3-3*x^2+4*x+1,-x^4+x^3+4*x^2-x-1,x^5-2*x^4-6*x^3+7*x^2+10*x,x^4-x^3-4*x^2+2*x+4,-x^3+x^2+5*x-3,-x^5+2*x^4+4*x^3-7*x^2,-3*x^5+12*x^4-x^3-39*x^2+32*x+3,x^4-6*x^2+4,1]];
E[493,4] = [x^10+5*x^9-3*x^8-44*x^7-25*x^6+119*x^5+98*x^4-116*x^3-94*x^2+28*x+11, [22,22*x,5*x^9+23*x^8-22*x^7-187*x^6-15*x^5+436*x^4+x^3-334*x^2+119*x+22,22*x^2-44,7*x^9+19*x^8-88*x^7-231*x^6+353*x^5+870*x^4-465*x^3-1000*x^2+127*x+132,-2*x^9-7*x^8+33*x^7+110*x^6-159*x^5-489*x^4+246*x^3+589*x^2-118*x-55,-9*x^9-26*x^8+99*x^7+275*x^6-380*x^5-919*x^4+601*x^3+973*x^2-333*x-121,22*x^3-88*x,-23*x^9-97*x^8+132*x^7+825*x^6-107*x^5-2076*x^4+57*x^3+1730*x^2-257*x-198,-16*x^9-67*x^8+77*x^7+528*x^6+37*x^5-1151*x^4-188*x^3+785*x^2-64*x-77,15*x^9+47*x^8-154*x^7-473*x^6+571*x^5+1484*x^4-965*x^3-1464*x^2+577*x+110,-7*x^9-19*x^8+66*x^7+165*x^6-221*x^5-430*x^4+355*x^3+362*x^2-237*x-22,-7*x^9-19*x^8+88*x^7+209*x^6-397*x^5-694*x^4+751*x^3+648*x^2-501*x-22,19*x^9+72*x^8-121*x^7-605*x^6+152*x^5+1483*x^4-71*x^3-1179*x^2+131*x+99,-18*x^9-63*x^8+165*x^7+638*x^6-485*x^5-2025*x^4+586*x^3+2045*x^2-314*x-253,22*x^4-132*x^2+88,-22]];
E[493,5] = [x^8-3*x^7-10*x^6+29*x^5+37*x^4-88*x^3-65*x^2+80*x+51, [2,2*x,-2*x^2+2*x+8,2*x^2-4,2*x^6-4*x^5-16*x^4+24*x^3+42*x^2-32*x-36,-2*x^3+2*x^2+8*x,-x^7+2*x^6+8*x^5-11*x^4-22*x^3+10*x^2+21*x+7,2*x^3-8*x,2*x^4-4*x^3-14*x^2+16*x+26,2*x^7-4*x^6-16*x^5+24*x^4+42*x^3-32*x^2-36*x,-2*x^5+4*x^4+12*x^3-18*x^2-16*x+12,-2*x^4+2*x^3+12*x^2-4*x-16,-x^7+2*x^6+8*x^5-13*x^4-20*x^3+20*x^2+17*x+1,-x^7-2*x^6+18*x^5+15*x^4-78*x^3-44*x^2+87*x+51,2*x^5-8*x^4-6*x^3+42*x^2-4*x-42,2*x^4-12*x^2+8,-2]];
E[493,6] = [x, [1,-1,-3,-1,1,3,-2,3,6,-1,3,3,1,2,-3,-1,1]];
E[493,7] = [x, [1,-1,0,-1,-2,0,-5,3,-3,2,0,0,7,5,0,-1,1]];
E[493,8] = [x^2+x-4, [1,1,x,-1,x+2,x,x+3,-3,-x+1,x+2,-x,-x,-2*x-1,x+3,x+4,-1,-1]];

E[494,1] = [x, [1,1,-1,1,-1,-1,-3,1,-2,-1,-4,-1,1,-3,1,1,-3]];
E[494,2] = [x^3-5*x^2+6*x-1, [1,1,x,1,x^2-4*x+4,x,-2*x^2+6*x-2,1,x^2-3,x^2-4*x+4,x^2-7*x+7,x,-1,-2*x^2+6*x-2,x^2-2*x+1,1,-4*x^2+13*x-6]];
E[494,3] = [x^4-2*x^3-5*x^2+7*x+5, [1,1,x,1,-x^2+4,x,x^3-x^2-4*x+3,1,x^2-3,-x^2+4,-x^3+2*x^2+3*x-4,x,1,x^3-x^2-4*x+3,-x^3+4*x,1,-2*x^3+2*x^2+7*x-4]];
E[494,4] = [x, [1,-1,3,1,-3,-3,3,-1,6,3,0,3,-1,-3,-9,1,5]];
E[494,5] = [x, [1,-1,-1,1,1,1,-1,-1,-2,-1,0,-1,-1,1,-1,1,-3]];
E[494,6] = [x^3+x^2-6*x-7, [1,-1,x,1,x^2-4,-x,-2*x^2+2*x+10,-1,x^2-3,-x^2+4,x^2-x-5,x,1,2*x^2-2*x-10,-x^2+2*x+7,1,-x-2]];
E[494,7] = [x^3+3*x^2-6*x-17, [3,-3,3*x,3,5*x^2+4*x-28,-3*x,2*x^2-2*x-22,-3,3*x^2-9,-5*x^2-4*x+28,x^2+5*x-5,3*x,-3,-2*x^2+2*x+22,-11*x^2+2*x+85,3,3*x+6]];
E[494,8] = [x, [1,-1,0,1,2,0,4,-1,-3,-2,4,0,-1,-4,0,1,2]];

E[495,1] = [x, [1,-1,0,-1,-1,0,0,3,0,1,1,0,2,0,0,-1,-6]];
E[495,2] = [x^2-2*x-1, [1,x,0,2*x-1,1,0,2*x-4,x+2,0,x,1,0,-4*x+4,2,0,3,-2*x+6]];
E[495,3] = [x^2+2*x-1, [1,x,0,-2*x-1,1,0,-2,x-2,0,x,-1,0,-2*x-6,-2*x,0,3,2*x-2]];
E[495,4] = [x^3-x^2-5*x+1, [1,x,0,x^2-2,-1,0,-x^2+2*x+3,x^2+x-1,0,-x,-1,0,-x^2+3,x^2-2*x+1,0,4*x+3,-x^2-2*x+5]];
E[495,5] = [x^4-2*x^3-6*x^2+10*x+3, [1,x,0,x^2-2,1,0,-x^3+5*x+2,x^3-4*x,0,x,-1,0,x^3-7*x+2,-2*x^3-x^2+12*x+3,0,2*x^3-10*x+1,-x^3+2*x^2+5*x-6]];
E[495,6] = [x^4+2*x^3-6*x^2-10*x+3, [1,x,0,x^2-2,-1,0,x^3-5*x+2,x^3-4*x,0,-x,1,0,-x^3+7*x+2,-2*x^3+x^2+12*x-3,0,-2*x^3+10*x+1,-x^3-2*x^2+5*x+6]];
E[495,7] = [x^2-3, [1,x,0,1,1,0,2,-x,0,x,1,0,2*x+2,2*x,0,-5,0]];

E[496,1] = [x^2-2*x-4, [1,0,x,0,1,0,-x+3,0,2*x+1,0,-2,0,-x,0,x,0,-x+4]];
E[496,2] = [x^2+2*x-2, [1,0,x,0,2*x+2,0,-2,0,-2*x-1,0,x+4,0,3*x+2,0,-2*x+4,0,-2*x-2]];
E[496,3] = [x^3+2*x^2-6*x-8, [2,0,2*x,0,-x^2-2*x+2,0,x^2-2*x-10,0,2*x^2-6,0,-2*x^2-2*x+4,0,2*x^2+2*x-8,0,-4*x-8,0,-2*x^2+8]];
E[496,4] = [x^2-3*x-6, [1,0,-2,0,x,0,x-2,0,1,0,2,0,-2*x+4,0,-2*x,0,-2]];
E[496,5] = [x, [1,0,2,0,2,0,0,0,1,0,-2,0,4,0,4,0,6]];
E[496,6] = [x, [1,0,2,0,-3,0,1,0,1,0,6,0,2,0,-6,0,6]];
E[496,7] = [x, [1,0,2,0,1,0,3,0,1,0,2,0,-2,0,2,0,-6]];
E[496,8] = [x, [1,0,0,0,-2,0,0,0,-3,0,0,0,2,0,0,0,-6]];
E[496,9] = [x, [1,0,0,0,1,0,-3,0,-3,0,-6,0,-4,0,0,0,0]];
E[496,10] = [x, [1,0,0,0,-3,0,3,0,-3,0,-2,0,-4,0,0,0,0]];

E[497,1] = [x, [1,1,-1,-1,0,-1,1,-3,-2,0,1,1,-3,1,0,-1,-2]];
E[497,2] = [x^8-12*x^6+42*x^4+4*x^3-44*x^2-8*x+1, [4,4*x,x^7-x^6-11*x^5+9*x^4+31*x^3-11*x^2-21*x-5,4*x^2-8,2*x^7-22*x^5+66*x^3+8*x^2-54*x-8,-x^7+x^6+9*x^5-11*x^4-15*x^3+23*x^2+3*x-1,-4,4*x^3-16*x,-x^7-x^6+11*x^5+7*x^4-35*x^3-7*x^2+33*x-3,2*x^6-18*x^4+34*x^2+8*x-2,3*x^7-x^6-33*x^5+11*x^4+97*x^3-19*x^2-75*x+1,-x^7-x^6+11*x^5+9*x^4-35*x^3-19*x^2+33*x+11,-x^7-x^6+13*x^5+11*x^4-51*x^3-31*x^2+59*x+17,-4*x,4*x^5-36*x^3+64*x+16,4*x^4-24*x^2+16,2*x^7-2*x^6-24*x^5+20*x^4+82*x^3-38*x^2-88*x]];
E[497,3] = [x^9+2*x^8-9*x^7-16*x^6+26*x^5+36*x^4-28*x^3-19*x^2+10*x+1, [2,2*x,-x^8-3*x^7+8*x^6+24*x^5-20*x^4-52*x^3+18*x^2+21*x-5,2*x^2-4,2*x^8+4*x^7-16*x^6-30*x^5+36*x^4+60*x^3-22*x^2-22*x+4,-x^8-x^7+8*x^6+6*x^5-16*x^4-10*x^3+2*x^2+5*x+1,-2,2*x^3-8*x,2*x^7-18*x^5+6*x^4+46*x^3-26*x^2-28*x+14,2*x^7+2*x^6-16*x^5-12*x^4+34*x^3+16*x^2-16*x-2,-2*x^6-2*x^5+14*x^4+10*x^3-22*x^2-10*x+2,3*x^8+5*x^7-26*x^6-38*x^5+66*x^4+78*x^3-50*x^2-31*x+11,3*x^8+5*x^7-24*x^6-36*x^5+50*x^4+70*x^3-14*x^2-31*x-5,-2*x,-2*x^8-2*x^7+18*x^6+14*x^5-48*x^4-28*x^3+42*x^2+16*x-18,2*x^4-12*x^2+8,-2*x^8+20*x^6-4*x^5-60*x^4+16*x^3+52*x^2-6*x-8]];
E[497,4] = [x^15-2*x^14-24*x^13+46*x^12+224*x^11-406*x^10-1026*x^9+1731*x^8+2373*x^7-3662*x^6-2504*x^5+3488*x^4+818*x^3-1062*x^2-54*x+27, [72372,72372*x,-866*x^14-383*x^13+26388*x^12+7771*x^11-313168*x^10-56773*x^9+1828902*x^8+185805*x^7-5426691*x^6-322238*x^5+7457797*x^4+520604*x^3-3456883*x^2-510510*x+262029,72372*x^2-144744,-8102*x^14+8242*x^13+195732*x^12-177716*x^11-1848742*x^10+1411070*x^9+8654340*x^8-5016378*x^7-20874822*x^6+7489972*x^5+23985568*x^4-3035254*x^3-9531742*x^2-270624*x+362736,-2115*x^14+5604*x^13+47607*x^12-119184*x^11-408369*x^10+940386*x^9+1684851*x^8-3371673*x^7-3493530*x^6+5289333*x^5+3541212*x^4-2748495*x^3-1430202*x^2+215265*x+23382,72372,72372*x^3-289488*x,13937*x^14-17800*x^13-335799*x^12+391298*x^11+3150661*x^10-3223748*x^9-14537817*x^8+12326343*x^7+34027662*x^6-21672421*x^5-36710998*x^4+14541211*x^3+12409348*x^2-1910571*x-45366,-7962*x^14+1284*x^13+194976*x^12-33894*x^11-1878342*x^10+341688*x^9+9008184*x^8-1648776*x^7-22179552*x^6+3698160*x^5+25224522*x^4-2904306*x^3-8874948*x^2-74772*x+218754,-6147*x^14+10590*x^13+148989*x^12-222900*x^11-1401375*x^10+1718682*x^9+6446199*x^8-5891439*x^7-14949336*x^6+8446827*x^5+16102512*x^4-3284769*x^3-5900418*x^2-446079*x+240264,3106*x^14-2387*x^13-74670*x^12+49849*x^11+708032*x^10-371593*x^9-3368412*x^8+1153755*x^7+8397585*x^6-1110272*x^5-10286969*x^4-741340*x^3+4882901*x^2+930192*x-466953,-11269*x^14+15470*x^13+292443*x^12-342700*x^11-2985863*x^10+2859376*x^9+15126351*x^8-11163771*x^7-39062160*x^6+20381369*x^5+46294160*x^4-14590109*x^3-16872236*x^2+2201145*x+381426,72372*x,17686*x^14-21386*x^13-442890*x^12+463018*x^11+4350830*x^10-3732634*x^9-21184794*x^8+13797744*x^7+52707462*x^6-22845206*x^5-60692210*x^4+13138922*x^3+21860414*x^2-431346*x-235098,72372*x^4-434232*x^2+289488,8920*x^14-9092*x^13-229098*x^12+189388*x^11+2321972*x^10-1428604*x^9-11743902*x^8+4613184*x^7+30566472*x^6-5199794*x^5-37062908*x^4-1333912*x^3+14242412*x^2+2548098*x-147888]];
E[497,5] = [x^2+2*x-1, [1,-1,x,-1,0,-x,1,3,-2*x-2,0,-1,-x,-3*x-4,-1,0,-1,-2*x-2]];

E[498,1] = [x^3-12*x-7, [3,-3,-3,3,3*x,3,-3*x-3,-3,3,-3*x,x^2-5*x-11,-3,-2*x^2+x+13,3*x+3,-3*x,3,-x^2+2*x-1]];
E[498,2] = [x, [1,-1,1,1,2,-1,4,-1,1,-2,0,1,0,-4,2,1,-2]];
E[498,3] = [x, [1,-1,1,1,-1,-1,-4,-1,1,1,3,1,-6,4,-1,1,-4]];
E[498,4] = [x^2+3*x-3, [1,-1,1,1,x,-1,-x-1,-1,1,-x,0,1,x+5,x+1,x,1,-x]];
E[498,5] = [x^2+5*x+5, [1,1,-1,1,x,-1,-3*x-9,1,1,x,4*x+8,-1,x-1,-3*x-9,-x,1,-3*x-12]];
E[498,6] = [x^2-3*x-2, [1,1,-1,1,x,-1,0,1,1,x,-x+2,-1,2,0,-x,1,-2*x+6]];
E[498,7] = [x^4-2*x^3-8*x^2+11*x+14, [1,1,1,1,x,1,x^3-7*x-2,1,1,x,-x^3+x^2+5*x-2,1,-x^3-2*x^2+7*x+14,x^3-7*x-2,x,1,-x^3+x^2+6*x-2]];

E[499,1] = [x^23-4*x^22-26*x^21+117*x^20+268*x^19-1447*x^18-1325*x^17+9859*x^16+2497*x^15-40388*x^14+4836*x^13+101760*x^12-34790*x^11-154579*x^10+72287*x^9+132753*x^8-68227*x^7-57242*x^6+26996*x^5+11011*x^4-4109*x^3-660*x^2+172*x-8, [1119607386952032,1119607386952032*x,-1457220813884701*x^22+5678233870539797*x^21+38437919915831625*x^20-166420599356069454*x^19-406681494577556230*x^18+2063684757695578313*x^17+2131320620170786716*x^16-14111945429885894323*x^15-5011697631105030798*x^14+58110228579945169322*x^13-1386215547524391782*x^12-147550524156892878178*x^11+36311241947456395416*x^10+226941728109628150159*x^9-83217251219482502334*x^8-199211856198510302535*x^7+80053816115117614858*x^6+89612966582794171600*x^5-30701716179028214388*x^4-18557784237638262739*x^3+4241876611931525928*x^2+1323901622217419244*x-132135308640627640,1119607386952032*x^2-2239214773904064,-2669299034009443*x^22+10457495983542707*x^21+70287487152318975*x^20-306581239536635514*x^19-741332329244062138*x^18+3803111167777157687*x^17+3858768611727027372*x^16-26018662896792560269*x^15-8867121953871642714*x^14+107205568310326744214*x^13-3839872149215350490*x^12-272438750437583145790*x^11+69831790413756282120*x^10+419530473282001245505*x^9-157521313152629333226*x^8-368949337944836427273*x^7+151014001499112057262*x^6+166469319538234442224*x^5-58075577940860841372*x^4-34610376869306388733*x^3+8070016244657771712*x^2+2481490402420987188*x-249416707239496456,-150649384999007*x^22+550178754829399*x^21+4074235868440563*x^20-16146316456456362*x^19-44913759995584034*x^18+200503041773557891*x^17+254794574203372836*x^16-1373017258834932401*x^15-744005651230134666*x^14+5660904308422022254*x^13+736265864014295582*x^12-14385470167592352374*x^11+1685991920144954280*x^10+22120869753800878853*x^9-5761421492874590682*x^8-19367988353793880269*x^7+6198732754406116958*x^6+8637416912603173808*x^5-2512325855953820028*x^4-1745843712320710481*x^3+362135885053516584*x^2+118506671347540932*x-11657766511077608,-1225881961572763*x^22+4776317291129747*x^21+32372534338808367*x^20-140083568331710322*x^19-343188304508644474*x^18+1738693868573746271*x^17+1806075829688760036*x^16-11904478541535297685*x^15-4304317433997715794*x^14+49106151212210937878*x^13-811494103871559482*x^12-125003752592003195614*x^11+29682267677250926232*x^10+192999968555897188873*x^9-68774689431354133458*x^8-170446140935914778913*x^7+66426073859650791286*x^6+77403560066123769280*x^5-25549653637028142204*x^4-16165585363396827589*x^3+3541310809360522968*x^2+1156257576137245428*x-111587295488866120,1119607386952032*x^3-4478429547808128*x,-1878052014713387*x^22+7359998939669395*x^21+49418871352476207*x^20-215691753406194978*x^19-520624834489055258*x^18+2674317390958207759*x^17+2703512127482358516*x^16-18283951921763635109*x^15-6164841502637703810*x^14+75266545037680235062*x^13-2981181137614972666*x^12-191019634796318309150*x^11+49750786033095861240*x^10+293565055542018503033*x^9-111564629471758953186*x^8-257344279396983385809*x^7+106587475208014893158*x^6+115494360654824498432*x^5-40784824415810114364*x^4-23851070899790968949*x^3+5618018260672611432*x^2+1694144174698458324*x-171193853661180968,-219700152495065*x^22+885712268073457*x^21+5726747442469317*x^20-25960188129531414*x^19-59364534434506334*x^18+321947391664515397*x^17+297956279506538268*x^16-2201882265950063543*x^15-602081075246639670*x^14+9068857979254315858*x^13-810880736782226110*x^12-23033122979432239850*x^11+6912897903855556008*x^10+35434306118811272915*x^9-14591883282980840694*x^8-31104263694250210299*x^7+13673304233465906018*x^6+13984818781258081856*x^5-5218725205828411860*x^4-2898133486087029575*x^3+719753039974754808*x^2+209702726610127740*x-21354392272075544,2706898388728627*x^22-10632800155311995*x^21-71236612895815767*x^20+311782540183784274*x^19+750611797469920714*x^18-3868570634169574199*x^17-3899287888954831188*x^16+26474339569528721533*x^15+8902527685940585682*x^14-109122576991624873670*x^13+4235572536682656554*x^12+277432481484373396462*x^11-71594575643498722104*x^10-427444938579805797457*x^9+160757442867470582898*x^8+376122255001415644233*x^7-153807076503228058966*x^6-169741223318777836672*x^5+59036232029084796732*x^4+35202364092552182605*x^3-8178067465372166952*x^2-2494635541855639092*x+253864727850696328,2862022842602773*x^22-11199115882613213*x^21-75396178243235793*x^20+328301473896288750*x^19+795876370835107222*x^18-4072185376311468065*x^17-4150406212471295820*x^16+27856056722884174459*x^15+9599872209292189134*x^14-114755650870020845210*x^13+3717042344955383510*x^12+291545948129815257106*x^11-73788845424873415032*x^10-448754885618707671991*x^9+167065671891944300670*x^8+394344089561099471439*x^7-160093687413745214602*x^6-177671328224108970256*x^5+61316389023959784372*x^4+36858686037369122299*x^3-8464675146614855544*x^2-2633549316726086892*x+263065422201263224,1516890087388158*x^22-5874265831022382*x^21-40091828831580006*x^20+172148023488703284*x^19+425615538079460868*x^18-2134460251617988422*x^17-2245884937746335208*x^16+14594142233147063010*x^15+5394740170295746548*x^14-60088753281065085948*x^13+757503089712384708*x^12+152560118976710998092*x^11-36211954798818605232*x^10-234637786347018178506*x^9+84499537923143251668*x^8+205973252668286251578*x^7-81841319504364756732*x^6-92641254912870528768*x^5+31507973261234371800*x^4+19145051140261085538*x^3-4341252027952591920*x^2-1354627250253825192*x+131726969918816784,-127210555161305*x^22+499603337916529*x^21+3344621172302949*x^20-14651938807143990*x^19-35157329822041790*x^18+181782230604849061*x^17+181491717610572732*x^16-1243290175950526583*x^15-404769451789814166*x^14+5116871062294322386*x^13-258004182358832734*x^12-12966165765865498538*x^11+3504360817941057096*x^10+19840639924856185523*x^9-7706632891245772374*x^8-17212174732574109915*x^7+7231624821775669634*x^6+7544255797590167744*x^5-2667399084519134196*x^4-1495838170741960199*x^3+347175481499221848*x^2+99264401901649116*x-9807055692582104,-2556556085520331*x^22+10008993960068579*x^21+67302325239435903*x^20-293322761645378322*x^19-709631143539055930*x^18+3636934677264694415*x^17+3692346723882735012*x^16-24866883539357345605*x^15-8480877444217064754*x^14+102379388103847030166*x^13-3664107599746376090*x^12-259894609046490396766*x^11+66638940659869438488*x^10+399586097494166720281*x^9-150039591858056669490*x^8-350526833564681835057*x^7+143306679225778106038*x^6+157458022211335359616*x^5-54622944790899116028*x^4-32513010850025240629*x^3+7467249785726871480*x^2+2302007006456187156*x-225470583636938440,1119607386952032*x^4-6717644321712192*x^2+4478429547808128,-446364555743144*x^22+1756179434986120*x^21+11767429109901480*x^20-51570323835504144*x^19-124373386676785904*x^18+641133152422668904*x^17+650268958267026144*x^16-4399482477979666520*x^15-1516034372154617520*x^14+18204231708051665104*x^13-513408407887755952*x^12-46547500856878395248*x^11+11390630890913207520*x^10+72349902580909769336*x^9-26012586334756978512*x^8-64570089987417013368*x^7+25146896459118710672*x^6+29810661201368251040*x^5-9818784085568440800*x^4-6336986864203578200*x^3+1418267794406042400*x^2+460870908735919680*x-47147210724264896]];
E[499,2] = [x^2+x-1, [1,x,2*x+1,-x-1,-x-3,-x+2,-1,-2*x-1,2,-2*x-1,-4*x-3,-x-3,-6*x-3,-x,-5*x-5,3*x,5*x+3]];
E[499,3] = [x^16+5*x^15-11*x^14-85*x^13+9*x^12+548*x^11+293*x^10-1718*x^9-1408*x^8+2735*x^7+2662*x^6-2058*x^5-2241*x^4+585*x^3+738*x^2-54*x-81, [1404,1404*x,-2275*x^15-12194*x^14+19643*x^13+197470*x^12+66339*x^11-1173341*x^10-1178684*x^9+3176966*x^8+4567186*x^7-3672695*x^6-7546981*x^5+661245*x^4+5162508*x^3+1342809*x^2-911313*x-341523,1404*x^2-2808,833*x^15+5278*x^14-4093*x^13-83750*x^12-76281*x^11+479947*x^10+758908*x^9-1206658*x^8-2656382*x^7+1105621*x^6+4215899*x^5+400089*x^4-2824884*x^3-1011987*x^2+496035*x+220833,-819*x^15-5382*x^14+4095*x^13+86814*x^12+73359*x^11-512109*x^10-731484*x^9+1363986*x^8+2549430*x^7-1490931*x^6-4020705*x^5+64233*x^4+2673684*x^3+767637*x^2-464373*x-184275,3479*x^15+18538*x^14-31483*x^13-302906*x^12-76923*x^11+1827553*x^10+1644712*x^9-5091538*x^8-6493898*x^7+6316195*x^6+10786625*x^5-1998417*x^4-7387668*x^3-1454157*x^2+1302201*x+420579,1404*x^3-5616*x,3913*x^15+20930*x^14-34229*x^13-339430*x^12-106197*x^11+2021591*x^10+1973504*x^9-5496218*x^8-7678606*x^7+6414629*x^6+12694903*x^5-1265823*x^4-8679060*x^3-2244411*x^2+1526967*x+580905,1113*x^15+5070*x^14-12945*x^13-83778*x^12+23463*x^11+514839*x^10+224436*x^9-1483518*x^8-1172634*x^7+1998453*x^6+2114403*x^5-958131*x^4-1499292*x^3-118719*x^2+265815*x+67473,1725*x^15+10062*x^14-11097*x^13-159390*x^12-114009*x^11+910299*x^10+1295916*x^9-2270718*x^8-4680594*x^7+2020641*x^6+7538067*x^5+888117*x^4-5088420*x^3-2013003*x^2+882711*x+440289,3263*x^15+19474*x^14-22087*x^13-314210*x^12-195975*x^11+1855165*x^10+2314312*x^9-4957654*x^8-8385338*x^7+5504863*x^6+13472693*x^5-484185*x^4-9078264*x^3-2545569*x^2+1594125*x+616707,-5062*x^15-29120*x^14+37118*x^13+469372*x^12+257502*x^11-2765282*x^10-3308444*x^9+7353440*x^8+12198568*x^7-8045282*x^6-19751974*x^5+445206*x^4+13350816*x^3+3992310*x^2-2330298*x-960606,1143*x^15+6786*x^14-7191*x^13-108234*x^12-78939*x^11+625365*x^10+885384*x^9-1595466*x^8-3198870*x^7+1525527*x^6+5161365*x^5+408771*x^4-3489372*x^3-1265301*x^2+608445*x+281799,-2233*x^15-12506*x^14+17309*x^13+201514*x^12+97821*x^11-1187927*x^10-1359896*x^9+3172526*x^8+5081710*x^7-3544433*x^6-8266651*x^5+390471*x^4+5592960*x^3+1558395*x^2-979191*x-386289,1404*x^4-8424*x^2+5616,528*x^15+1872*x^14-7056*x^13-29880*x^12+25140*x^11+171912*x^10+29904*x^9-431532*x^8-369936*x^7+392784*x^6+798660*x^5+137184*x^4-619920*x^3-340668*x^2+109620*x+69228]];

E[500,1] = [x^2-x-1, [1,0,x,0,0,0,-2*x+3,0,x-2,0,2*x-1,0,x+4,0,0,0,-2*x+5]];
E[500,2] = [x^2+x-1, [1,0,x,0,0,0,-2*x-3,0,-x-2,0,-2*x-1,0,x-4,0,0,0,-2*x-5]];
E[500,3] = [x^4-13*x^2+31, [3,0,3*x,0,0,0,-x^3+11*x,0,3*x^2-9,0,-4*x^2+26,0,2*x^3-16*x,0,0,0,-6*x]];

E[501,1] = [x, [1,1,-1,-1,-4,-1,4,-3,1,-4,4,1,6,4,4,-1,0]];
E[501,2] = [x^5-5*x^3+4*x+1, [1,x,-1,x^2-2,x^4-x^3-5*x^2+3*x+3,-x,-x^4+x^3+4*x^2-4*x-2,x^3-4*x,1,-x^4+3*x^2-x-1,-3*x^4+x^3+13*x^2-5*x-7,-x^2+2,3*x^4-2*x^3-14*x^2+8*x+6,x^4-x^3-4*x^2+2*x+1,-x^4+x^3+5*x^2-3*x-3,x^4-6*x^2+4,2*x^3+2*x^2-8*x-3]];
E[501,3] = [x^8-3*x^7-8*x^6+28*x^5+9*x^4-64*x^3+17*x^2+23*x+1, [14,14*x,14,14*x^2-28,-3*x^7+38*x^5+2*x^4-147*x^3-11*x^2+168*x+29,14*x,8*x^7-14*x^6-78*x^5+116*x^4+196*x^3-204*x^2-98*x+2,14*x^3-56*x,14,-9*x^7+14*x^6+86*x^5-120*x^4-203*x^3+219*x^2+98*x+3,-4*x^7+14*x^6+32*x^5-128*x^4-42*x^3+270*x^2-56*x-22,14*x^2-28,-2*x^7+30*x^5+6*x^4-140*x^3-54*x^2+196*x+80,10*x^7-14*x^6-108*x^5+124*x^4+308*x^3-234*x^2-182*x-8,-3*x^7+38*x^5+2*x^4-147*x^3-11*x^2+168*x+29,14*x^4-84*x^2+56,19*x^7-28*x^6-194*x^5+244*x^4+525*x^3-467*x^2-322*x+31]];
E[501,4] = [x^5+4*x^4+x^3-8*x^2-2*x+3, [1,x,1,x^2-2,x^4+3*x^3-x^2-5*x-1,x,-x^4-5*x^3-4*x^2+6*x+2,x^3-4*x,1,-x^4-2*x^3+3*x^2+x-3,-x^4-x^3+5*x^2+x-7,x^2-2,-x^4+8*x^2+2*x-6,-x^4-3*x^3-2*x^2+3,x^4+3*x^3-x^2-5*x-1,x^4-6*x^2+4,2*x^4+6*x^3+2*x^2-4*x-7]];
E[501,5] = [x^8+3*x^7-10*x^6-34*x^5+17*x^4+100*x^3+43*x^2-21*x-7, [26,26*x,-26,26*x^2-52,-13*x^7+156*x^5-26*x^4-481*x^3+117*x^2+182*x-39,-26*x,-20*x^7-6*x^6+250*x^5+44*x^4-828*x^3-92*x^2+418*x-30,26*x^3-104*x,26,39*x^7+26*x^6-468*x^5-260*x^4+1417*x^3+741*x^2-312*x-91,-12*x^7-14*x^6+124*x^5+120*x^4-294*x^3-258*x^2-56*x+34,-26*x^2+52,-38*x^7-40*x^6+462*x^5+458*x^4-1412*x^3-1402*x^2+256*x+216,54*x^7+50*x^6-636*x^5-488*x^4+1908*x^3+1278*x^2-450*x-140,13*x^7-156*x^5+26*x^4+481*x^3-117*x^2-182*x+39,26*x^4-156*x^2+104,-15*x^7-24*x^6+168*x^5+228*x^4-517*x^3-563*x^2+320*x+127]];

E[502,1] = [x^6-x^5-16*x^4+9*x^3+74*x^2-8*x-88, [4,4,4*x,4,-2*x^5+6*x^4+24*x^3-66*x^2-60*x+128,4*x,-4*x^5+10*x^4+46*x^3-108*x^2-106*x+216,4,4*x^2-12,-2*x^5+6*x^4+24*x^3-66*x^2-60*x+128,5*x^5-15*x^4-58*x^3+161*x^2+136*x-304,4*x,10*x^5-26*x^4-116*x^3+274*x^2+272*x-512,-4*x^5+10*x^4+46*x^3-108*x^2-106*x+216,4*x^5-8*x^4-48*x^3+88*x^2+112*x-176,4,-7*x^5+19*x^4+80*x^3-199*x^2-186*x+372]];
E[502,2] = [x^2+3*x+1, [1,1,-1,1,x,-1,-2*x-5,1,-2,x,-3,-1,-1,-2*x-5,-x,1,5*x+8]];
E[502,3] = [x^2-5*x+3, [1,1,1,1,x,1,-1,1,-2,x,3,1,-2*x+5,-1,x,1,-3*x+6]];
E[502,4] = [x^5+x^4-7*x^3-4*x^2+6*x-1, [2,-2,2*x,2,x^4+2*x^3-7*x^2-11*x+3,-2*x,-2*x^4-4*x^3+12*x^2+18*x-6,-2,2*x^2-6,-x^4-2*x^3+7*x^2+11*x-3,2*x^3+2*x^2-12*x-6,2*x,4*x^4+4*x^3-26*x^2-18*x+10,2*x^4+4*x^3-12*x^2-18*x+6,x^4-7*x^2-3*x+1,2,-7*x^4-10*x^3+45*x^2+47*x-27]];
E[502,5] = [x^5-2*x^4-9*x^3+14*x^2+16*x-8, [4,-4,4*x,4,-2*x^3+2*x^2+12*x,-4*x,2*x^4-2*x^3-14*x^2+10*x+8,-4,4*x^2-12,2*x^3-2*x^2-12*x,x^4-9*x^2+16,4*x,-2*x^4+14*x^2,-2*x^4+2*x^3+14*x^2-10*x-8,-2*x^4+2*x^3+12*x^2,4,-x^4+3*x^2+2*x+20]];

E[503,1] = [x, [1,-1,1,-1,-4,-1,-3,3,-2,4,5,-1,1,3,-4,-1,0]];
E[503,2] = [x^3-5*x+3, [1,x,x^2+x-3,x^2-2,0,x^2+2*x-3,x^2-3,x-3,x,0,-x^2-x+7,3,-x^2-2*x+5,2*x-3,0,-x^2-3*x+4,2*x+4]];
E[503,3] = [x^26-4*x^25-36*x^24+154*x^23+554*x^22-2577*x^21-4772*x^20+24652*x^19+25321*x^18-149131*x^17-86017*x^16+595540*x^15+189834*x^14-1589003*x^13-278156*x^12+2799707*x^11+297701*x^10-3137915*x^9-283355*x^8+2081504*x^7+236065*x^6-725019*x^5-120174*x^4+115872*x^3+24760*x^2-6437*x-1583, [116875561486138537008,116875561486138537008*x,13869722385573969633*x^25-61052736635516533857*x^24-473086327088511003459*x^23+2319829787620598891868*x^22+6695444046787267747275*x^21-38210384636112124945821*x^20-50059980369659776043955*x^19+358640275191785922883968*x^18+201484335524761708653366*x^17-2120516374949472352526478*x^16-318821930359435572930195*x^15+8237898833199218058564237*x^14-716397544262575629777465*x^13-21257589392541493775666283*x^12+4656901961287630542579222*x^11+35942209541525631742810026*x^10-10051247135322287776786122*x^9-38221193730295320749191863*x^8+10941036609734175158053290*x^7+23615544262491636442362600*x^6-5822352865301784430831608*x^5-7446580104443019521534301*x^4+1195817622624064126719183*x^3+1091509292843352084643545*x^2-76522497988196420226780*x-57277359592893926086248,116875561486138537008*x^2-233751122972277074016,15202743444561341914*x^25-65858178376416131360*x^24-523964474609903758246*x^23+2511735907886829223496*x^22+7531497402026519324184*x^21-41549607021883143532140*x^20-57792261207488679019658*x^19+391905727699772938678704*x^18+245540911089999157866934*x^17-2330070804484681575968792*x^16-477068716602494299070510*x^15+9107276013556164597860208*x^14-369408050685277396885566*x^13-23653685923868940134714198*x^12+4255106156829184478869452*x^11+40255936142082043997352914*x^10-9973291089887838273498420*x^9-43066359434781069608918486*x^8+11282443112815569902501058*x^7+26724414289499369715657806*x^6-6144308233956282983917108*x^5-8428241672012231497675946*x^4+1266033737470866120393164*x^3+1228305851908854252945934*x^2-79673872985458058877408*x-63643939110704057560382,-5573847093220655325*x^25+26223678792151903329*x^24+183892540242207568386*x^23-988382154820711429407*x^22-2468110048488005201580*x^21+16126334854299207044721*x^20+16723878942616423491252*x^19-149710905000356776423827*x^18-52110805866440687187555*x^17+874209980080480572991566*x^16-22075636305503816672583*x^15-3349342423605624581088387*x^14+781441087302700693079616*x^13+8514848461169343639815970*x^12-2888949309422510056487505*x^11-14180277359230044110499855*x^10+5300816189233022171743332*x^9+14871091796298487323412005*x^8-5254338361970123644605432*x^7-9096508880252303572245753*x^6+2609232149823434367813726*x^5+2862597640588030353395325*x^4-515603179417874924671431*x^3-419936824255007908339860*x^2+32002043403045716441373*x+21955770536363593929039,4310088413033015367*x^25-20956043591871232800*x^24-139210993178999944689*x^23+784536976743965748984*x^22+1806492367625929849872*x^21-12702865850416625239062*x^20-11472224962104205645131*x^19+116937108366853984917684*x^18+28975917763788938078337*x^17-676797644679958042615560*x^16+68095202375533550617647*x^15+2571020555659924020060996*x^14-734644276830045591911661*x^13-6493525619312545504586193*x^12+2386452943309265286008214*x^11+10797709344932959425009255*x^10-4054333034137966740227106*x^9-11429361374389509156021333*x^8+3750033811150034337850563*x^7+7209626546839349067098649*x^6-1748599007621687384668266*x^5-2428378018953122687817927*x^4+344265726237375587138862*x^3+383163133054329726404325*x^2-21620948640086052053268*x-21321035464929777770901,116875561486138537008*x^3-467502245944554148032*x,4012072187867977098*x^25-18726417301012059201*x^24-131399439634108448847*x^23+703153366723472084733*x^22+1736742721760872031934*x^21-11413335778495438395963*x^20-11322609066490732756563*x^19+105192592967835592943505*x^18+30150077134585812201840*x^17-607936272729527055647538*x^16+63667621984347293456556*x^15+2294232974724861199235139*x^14-765528478439019428345889*x^13-5701110018076552881610119*x^12+2645528200873940064111033*x^11+9160534096742732199701526*x^10-4820841996258449144303838*x^9-9050029438086805938883968*x^8+4839267982632054934426641*x^7+4965752034013076851696746*x^6-2437681171760332746285768*x^5-1259628733547658812917158*x^4+468033359350337295426417*x^3+142480611458684614190649*x^2-27907426077166454143935*x-5629490991008127586488,-5047204598170763704*x^25+23334289394304550658*x^24+170513417424382568740*x^23-890822466260464096172*x^22-2372137165248565419762*x^21+14755230509958044593950*x^20+17127696304446737814776*x^19-139407755669738580737460*x^18-62870471853804094992058*x^17+830625666268338648346028*x^16+53434182582103034396648*x^15-3255405649740135177787842*x^14+503519017769365850657544*x^13+8483840462394589100300036*x^12-2307291098860456888666284*x^11-14499163016077194322638134*x^10+4638557261059633603150824*x^9+15590216481549248940542528*x^8-4920157001328841723700850*x^7-9733143865196656162845518*x^6+2594036177420188055470420*x^5+3093008228177580823566200*x^4-533266436499357557313074*x^3-456093800672796884668048*x^2+34216120441937300340036*x+24065942872740604249862,14853732577611402404*x^25-65630572789638753133*x^24-506875831102275401393*x^23+2498684927469663823033*x^22+7169606606664580932486*x^21-41247489451858515480303*x^20-53420746697720119578445*x^19+388085456305914428830269*x^18+212135931512903517784586*x^17-2300451808237134617491258*x^16-308012594114205359344102*x^15+8958952850562703977040311*x^14-945116692504545427774923*x^13-23164637022259209691186369*x^12+5566170581763070783510281*x^11+39198959380623224517482896*x^10-11912038945670492019095022*x^9-41611064268381082577213530*x^8+13030860292944411023891655*x^7+25526086746138722707751116*x^6-6993143899875568352640032*x^5-7910599711981700426518120*x^4+1437094263485662584972517*x^3+1141466681685040415657663*x^2-91256649185754769794843*x-59369293003606024434766,-23811154351878657237*x^25+105339518157297044400*x^24+816162951712291497561*x^23-4019858334084959935266*x^22-11628357198504957222354*x^21+66546249885991706171994*x^20+87815534281038370735983*x^19-628255974002572319471166*x^18-359992081828132393587741*x^17+3739511508175879779289848*x^16+607750335009875637022503*x^15-14636250890001285541082808*x^14+1090783797025593925979925*x^13+38075830463598592892264361*x^12-7888942557985783937668524*x^11-64924263040319359002968895*x^10+17483327665419570222836874*x^9+69608671655520979064162919*x^8-19376597079793486946743533*x^7-43306066161098704517615349*x^6+10466158325511852911982366*x^5+13707725528887465085370621*x^4-2165719259117472387959826*x^3-2013008088255515026998717*x^2+139121912773695076055574*x+105731319237219554793021,17487708470192165849*x^25-76578383587253860063*x^24-606051255821889850445*x^23+2933957834937819405682*x^22+8790583580132979787467*x^21-48808426613663070963807*x^20-68582444854337023717681*x^19+463598037871568673136806*x^18+302332766910986484357266*x^17-2780369604267469982562658*x^16-667343525805950031619879*x^15+10986429824478929782797819*x^14+39174897963695191224309*x^13-28933259090430317325257965*x^12+3695281265356489985358252*x^11+50144174439283116278507686*x^10-9477116111324945388450318*x^9-54998256755904755135220799*x^8+10983774736101440034574860*x^7+35400399024295810699553896*x^6-6043627496759165350297268*x^5-11806098948611377732610941*x^4+1277624288760806705290969*x^3+1809191701031039279170847*x^2-83252918356186461839466*x-97373094833209769787580,-3715689939739171332*x^25+15952189690188608523*x^24+120783361136881382466*x^23-581296613194360663446*x^22-1595768010030544638303*x^21+9095516944889343686193*x^20+10684808808764090090400*x^19-80159830942620044029470*x^18-34029849555931427919483*x^17+438836077399394433440886*x^16+4190502162242048397816*x^15-1552845600629755031090739*x^14+355217799262155012622908*x^13+3585329895924876708431466*x^12-1269275355654464929088214*x^11-5337450664786308447998373*x^10+2095329708192985259318472*x^9+4971318913425004407166848*x^8-1761839725242524551373319*x^7-2766060028844326157279121*x^6+696517972175661080549046*x^5+862226291185205175852720*x^4-116255431540631830200699*x^3-128338737746783512540188*x^2+6423003649763742146478*x+6822869957831263325961,-9125370264407953166*x^25+39152855436091545634*x^24+320172914391389108090*x^23-1508410046797673856112*x^22-4722259680566829724542*x^21+25250188457879435948202*x^20+37744005079539466202026*x^19-241476724579957819578144*x^18-173183611805727949617920*x^17+1458695478486765278477380*x^16+419588091441759918344506*x^15-5805260483558747895050202*x^14-212325236266376513502330*x^13+15384849937064623827926266*x^12-1666469705057523562429596*x^11-26770646904023459321729128*x^10+4889456083592074387123332*x^9+29338041247294489900549354*x^8-6012901023229200952597992*x^7-18688143771292293968372668*x^6+3421269630608686968296912*x^5+6062314459818582735403630*x^4-705661134292625657869294*x^3-900195029542696444853366*x^2+42084090321336902957160*x+46941624240878322568708,116875561486138537008*x^4-701253368916831222048*x^2+467502245944554148032,9217424926365738744*x^25-43002171316463282064*x^24-311025879812787399174*x^23+1643862447776465624790*x^22+4312915406688521740554*x^21-27266253159890743706520*x^20-30865345265469877400634*x^19+257957144271447954923430*x^18+109851119277749776578210*x^17-1538598689586935595263448*x^16-60887950523533007730660*x^15+6032302221045688560581580*x^14-1093654271033644816704678*x^13-15703663329595662402660246*x^12+4747207693078475759316246*x^11+26733312953494506945728946*x^10-9501220035533149401700356*x^9-28475297437878601147293996*x^8+10159074069244535610013212*x^7+17416173406116728000081994*x^6-5422106243978100938411868*x^5-5303905826790408485376000*x^4+1119567911626268247115008*x^3+742641612648258976904742*x^2-71411218794149396475978*x-36671697189312468936582]];
E[503,4] = [x^10+4*x^9-4*x^8-31*x^7-13*x^6+66*x^5+56*x^4-37*x^3-46*x^2-8*x+1, [17,17*x,20*x^9+61*x^8-132*x^7-481*x^6+157*x^5+1085*x^4+153*x^3-774*x^2-234*x+30,17*x^2-34,-2*x^9-18*x^8-14*x^7+145*x^6+190*x^5-338*x^4-442*x^3+244*x^2+275*x+14,-19*x^9-52*x^8+139*x^7+417*x^6-235*x^5-967*x^4-34*x^3+686*x^2+190*x-20,10*x^9+39*x^8-49*x^7-317*x^6-66*x^5+738*x^4+442*x^3-506*x^2-389*x-19,17*x^3-68*x,-38*x^9-121*x^8+244*x^7+953*x^6-266*x^5-2138*x^4-289*x^3+1508*x^2+380*x-91,-10*x^9-22*x^8+83*x^7+164*x^6-206*x^5-330*x^4+170*x^3+183*x^2-2*x+2,-40*x^9-105*x^8+298*x^7+809*x^6-569*x^5-1728*x^4+204*x^3+1072*x^2+179*x-26,-16*x^9-59*x^8+92*x^7+480*x^6-27*x^5-1140*x^4-323*x^3+864*x^2+296*x-41,-15*x^9-33*x^8+133*x^7+280*x^6-343*x^5-716*x^4+221*x^3+589*x^2+82*x-82,-x^9-9*x^8-7*x^7+64*x^6+78*x^5-118*x^4-136*x^3+71*x^2+61*x-10,-11*x^9-31*x^8+76*x^7+245*x^6-94*x^5-550*x^4-136*x^3+373*x^2+212*x-8,17*x^4-102*x^2+68,26*x^9+81*x^8-175*x^7-644*x^6+233*x^5+1453*x^4+153*x^3-962*x^2-328*x-46]];
E[503,5] = [x, [1,1,3,-1,-2,3,3,-3,6,-2,3,-3,5,3,-6,-1,-8]];
E[503,6] = [x, [1,1,1,-1,-2,1,-3,-3,-2,-2,1,-1,1,-3,-2,-1,0]];

E[504,1] = [x, [1,0,0,0,4,0,1,0,0,0,0,0,0,0,0,0,2]];
E[504,2] = [x, [1,0,0,0,2,0,1,0,0,0,6,0,-6,0,0,0,-2]];
E[504,3] = [x, [1,0,0,0,2,0,-1,0,0,0,2,0,2,0,0,0,6]];
E[504,4] = [x, [1,0,0,0,-2,0,1,0,0,0,-6,0,-6,0,0,0,2]];
E[504,5] = [x, [1,0,0,0,-2,0,1,0,0,0,0,0,6,0,0,0,2]];
E[504,6] = [x, [1,0,0,0,-2,0,-1,0,0,0,-2,0,2,0,0,0,-6]];
E[504,7] = [x, [1,0,0,0,-2,0,-1,0,0,0,4,0,2,0,0,0,6]];
E[504,8] = [x, [1,0,0,0,-2,0,-1,0,0,0,0,0,-2,0,0,0,-6]];

E[505,1] = [x, [1,1,0,-1,-1,0,0,-3,-3,-1,-2,0,2,0,0,-1,-6]];
E[505,2] = [x^6+3*x^5-4*x^4-17*x^3-5*x^2+13*x+5, [1,x,-2*x^5-3*x^4+12*x^3+15*x^2-11*x-7,x^2-2,-1,3*x^5+4*x^4-19*x^3-21*x^2+19*x+10,3*x^5+5*x^4-18*x^3-26*x^2+15*x+13,x^3-4*x,-2*x^5-3*x^4+13*x^3+16*x^2-14*x-9,-x,x^5+2*x^4-6*x^3-12*x^2+5*x+8,-x^5-x^4+6*x^3+4*x^2-7*x-1,x^5+x^4-6*x^3-3*x^2+5*x-4,-4*x^5-6*x^4+25*x^3+30*x^2-26*x-15,2*x^5+3*x^4-12*x^3-15*x^2+11*x+7,x^4-6*x^2+4,2*x^5+x^4-14*x^3-5*x^2+19*x+3]];
E[505,3] = [x^8+5*x^7+x^6-26*x^5-27*x^4+30*x^3+46*x^2+9*x-1, [1,x,x^7+3*x^6-6*x^5-18*x^4+11*x^3+26*x^2-4*x-3,x^2-2,1,-2*x^7-7*x^6+8*x^5+38*x^4-4*x^3-50*x^2-12*x+1,x^7+4*x^6-2*x^5-20*x^4-8*x^3+22*x^2+17*x+2,x^3-4*x,-4*x^7-13*x^6+21*x^5+77*x^4-28*x^3-111*x^2-5*x+8,x,2*x^7+8*x^6-5*x^5-42*x^4-8*x^3+56*x^2+19*x-6,x^7+4*x^6-2*x^5-22*x^4-12*x^3+28*x^2+27*x+4,x^7+4*x^6-4*x^5-26*x^4-4*x^3+39*x^2+21*x+1,-x^7-3*x^6+6*x^5+19*x^4-8*x^3-29*x^2-7*x+1,x^7+3*x^6-6*x^5-18*x^4+11*x^3+26*x^2-4*x-3,x^4-6*x^2+4,-4*x^7-15*x^6+13*x^5+81*x^4+9*x^3-104*x^2-44*x-4]];
E[505,4] = [x^9-2*x^8-10*x^7+19*x^6+31*x^5-57*x^4-28*x^3+57*x^2-6*x-7, [1,x,3*x^8-4*x^7-32*x^6+34*x^5+111*x^4-85*x^3-134*x^2+61*x+26,x^2-2,1,2*x^8-2*x^7-23*x^6+18*x^5+86*x^4-50*x^3-110*x^2+44*x+21,4*x^8-5*x^7-44*x^6+44*x^5+158*x^4-116*x^3-198*x^2+89*x+40,x^3-4*x,x^6-x^5-9*x^4+6*x^3+21*x^2-7*x-6,x,-2*x^8+2*x^7+22*x^6-17*x^5-78*x^4+44*x^3+94*x^2-35*x-16,-4*x^8+5*x^7+44*x^6-44*x^5-158*x^4+116*x^3+198*x^2-89*x-38,-5*x^8+6*x^7+55*x^6-52*x^5-197*x^4+134*x^3+245*x^2-100*x-48,3*x^8-4*x^7-32*x^6+34*x^5+112*x^4-86*x^3-139*x^2+64*x+28,3*x^8-4*x^7-32*x^6+34*x^5+111*x^4-85*x^3-134*x^2+61*x+26,x^4-6*x^2+4,x^8-x^7-12*x^6+9*x^5+48*x^4-25*x^3-68*x^2+21*x+17]];
E[505,5] = [x^9-2*x^8-12*x^7+21*x^6+47*x^5-61*x^4-72*x^3+43*x^2+34*x-1, [13,13*x,-5*x^8-2*x^7+50*x^6+28*x^5-121*x^4-105*x^3+4*x^2+65*x+38,13*x^2-26,-13,-12*x^8-10*x^7+133*x^6+114*x^5-410*x^4-356*x^3+280*x^2+208*x-5,26*x^8+13*x^7-286*x^6-156*x^5+884*x^4+520*x^3-650*x^2-325*x+26,13*x^3-52*x,-14*x^8-16*x^7+153*x^6+185*x^5-461*x^4-606*x^3+279*x^2+455*x+70,-13*x,-8*x^8+2*x^7+80*x^6-15*x^5-204*x^4+14*x^3+74*x^2+13*x+40,-24*x^8-7*x^7+266*x^6+98*x^5-846*x^4-374*x^3+716*x^2+273*x-88,-23*x^8-4*x^7+243*x^6+56*x^5-697*x^4-210*x^3+411*x^2+130*x+24,65*x^8+26*x^7-702*x^6-338*x^5+2106*x^4+1222*x^3-1443*x^2-858*x+26,5*x^8+2*x^7-50*x^6-28*x^5+121*x^4+105*x^3-4*x^2-65*x-38,13*x^4-78*x^2+52,25*x^8+23*x^7-276*x^6-257*x^5+852*x^4+785*x^3-592*x^2-455*x+5]];

E[506,1] = [x^3-3*x^2-6*x+17, [3,-3,3*x,3,-x^2+2*x+8,-3*x,-4*x^2+2*x+26,-3,3*x^2-9,x^2-2*x-8,-3,3*x,-3*x^2+3*x+15,4*x^2-2*x-26,-x^2+2*x+17,3,7*x^2+x-53]];
E[506,2] = [x^3-3*x^2-2*x+5, [1,-1,x,1,-x^2+2*x,-x,2*x-2,-1,x^2-3,x^2-2*x,1,x,-x^2+x+5,-2*x+2,-x^2-2*x+5,1,-x^2+x+3]];
E[506,3] = [x, [1,-1,-2,1,3,2,5,-1,1,-3,1,-2,-1,-5,-6,1,-3]];
E[506,4] = [x, [1,-1,-2,1,1,2,-1,-1,1,-1,-1,-2,3,1,-2,1,3]];
E[506,5] = [x, [1,-1,0,1,-1,0,1,-1,-3,1,1,0,-7,-1,0,1,3]];
E[506,6] = [x, [1,-1,0,1,-3,0,3,-1,-3,3,-1,0,5,-3,0,1,5]];
E[506,7] = [x, [1,1,-2,1,-1,-2,-1,1,1,-1,1,-2,-3,-1,2,1,-5]];
E[506,8] = [x^4+x^3-6*x^2-3*x+8, [1,1,x,1,-x^3+4*x-1,x,x^3+x^2-4*x-1,1,x^2-3,-x^3+4*x-1,1,x,-3*x^2-x+11,x^3+x^2-4*x-1,x^3-2*x^2-4*x+8,1,-2*x^3-3*x^2+5*x+9]];
E[506,9] = [x^5-x^4-12*x^3+13*x^2+22*x-8, [2,2,2*x,2,-x^4-x^3+8*x^2+3*x,2*x,x^4+x^3-10*x^2-3*x+12,2,2*x^2-6,-x^4-x^3+8*x^2+3*x,-2,2*x,x^4+3*x^3-6*x^2-21*x,x^4+x^3-10*x^2-3*x+12,-2*x^4-4*x^3+16*x^2+22*x-8,2,x^4-x^3-10*x^2+11*x+8]];
E[506,10] = [x, [1,1,0,1,-3,0,-3,1,-3,-3,-1,0,-1,-3,0,1,-1]];

E[507,1] = [x, [1,1,-1,-1,-1,-1,2,-3,1,-1,-2,1,0,2,1,-1,-7]];
E[507,2] = [x^2-2*x-1, [1,x,1,2*x-1,-2*x+2,x,2*x-2,x+2,1,-2*x-2,2,2*x-1,0,2*x+2,-2*x+2,3,-4*x+6]];
E[507,3] = [x^2-x-4, [1,x,1,x+2,x-2,x,-x-1,x+4,1,-x+4,-2,x+2,0,-2*x-4,x-2,3*x,x]];
E[507,4] = [x^2-3, [1,x,-1,1,0,-x,2*x,-x,1,0,2*x,-1,0,6,0,-5,6]];
E[507,5] = [x^2+x-4, [1,x,1,-x+2,x+2,x,-x+1,x-4,1,x+4,2,-x+2,0,2*x-4,x+2,-3*x,-x]];
E[507,6] = [x^3+3*x^2-4*x-13, [1,x,-1,x^2-2,3*x^2+x-18,-x,-x^2-x+4,-3*x^2+13,1,-8*x^2-6*x+39,-4*x^2-3*x+18,-x^2+2,0,2*x^2-13,-3*x^2-x+18,7*x^2+x-35,-5*x^2-2*x+26]];
E[507,7] = [x^3-3*x^2-4*x+13, [1,x,-1,x^2-2,-3*x^2+x+18,-x,x^2-x-4,3*x^2-13,1,-8*x^2+6*x+39,4*x^2-3*x-18,-x^2+2,0,2*x^2-13,3*x^2-x-18,7*x^2-x-35,-5*x^2+2*x+26]];
E[507,8] = [x^3-x^2-2*x+1, [1,x,1,x^2-2,x^2-x,x,x^2-x+2,x^2-2*x-1,1,2*x-1,-4*x^2+x+6,x^2-2,0,4*x-1,x^2-x,-3*x^2+x+3,x^2-4]];
E[507,9] = [x^3+x^2-2*x-1, [1,x,1,x^2-2,-x^2-x,x,-x^2-x-2,-x^2-2*x+1,1,-2*x-1,4*x^2+x-6,x^2-2,0,-4*x-1,-x^2-x,-3*x^2-x+3,x^2-4]];
E[507,10] = [x, [1,-1,-1,-1,-2,1,4,3,1,2,-4,1,0,-4,2,-1,2]];
E[507,11] = [x, [1,-1,-1,-1,1,1,-2,3,1,-1,2,1,0,2,-1,-1,-7]];
E[507,12] = [x^2-12, [2,0,-2,-4,2*x,0,x,0,2,0,-2*x,4,0,0,-2*x,8,0]];

E[508,1] = [x^2+2*x-4, [2,0,2*x,0,-4,0,-4*x-4,0,-4*x+2,0,3*x+4,0,-3*x-8,0,-4*x,0,x+2]];
E[508,2] = [x^3+3*x^2-1, [1,0,x,0,-x^2-4*x-1,0,x^2+4*x,0,x^2-3,0,2*x^2+3*x-5,0,-2*x^2-5*x,0,-x^2-x-1,0,-x^2-3*x-2]];
E[508,3] = [x^3-x^2-6*x-3, [1,0,x,0,-x^2+2*x+5,0,-x^2+2*x+6,0,x^2-3,0,-x+1,0,-x-2,0,x^2-x-3,0,x^2-3*x-4]];
E[508,4] = [x^2-2*x-4, [2,0,4,0,2*x,0,-2*x,0,2,0,x+4,0,-x+8,0,4*x,0,-5*x+2]];

E[509,1] = [x^28-3*x^27-44*x^26+135*x^25+847*x^24-2674*x^23-9369*x^22+30699*x^21+65714*x^20-226429*x^19-303558*x^18+1123948*x^17+922806*x^16-3822074*x^15-1752519*x^14+8879314*x^13+1675588*x^12-13751763*x^11+382971*x^10+13397267*x^9-2958134*x^8-7169500*x^7+3056380*x^6+1305763*x^5-1072947*x^4+245723*x^3-24485*x^2+1114*x-19, [9909303641155904,9909303641155904*x,28033241225634825*x^27-82219657601187787*x^26-1239024286544431679*x^25+3701674303579743622*x^24+23994116865022277586*x^23-73364039336132508006*x^22-267587095156064323527*x^21+842881333781189798445*x^20+1898830276788767510627*x^19-6222751143886919796666*x^18-8926685077756292451529*x^17+30926838295446951435976*x^16+27933785911245880620041*x^15-105351191565815072136576*x^14-56129305749612222224906*x^13+245387624668756537273088*x^12+63186340130919972143678*x^11-381715845448688301446567*x^10-14311451080842979602047*x^9+375099709570728001238852*x^8-58526544688879041966547*x^7-205131050615152375551650*x^6+72489091285337089631261*x^5+41395514200257040858203*x^4-27467529451829034785330*x^3+5126558302028879768468*x^2-355862483108874587717*x+8216555284058390406,9909303641155904*x^2-19818607282311808,34717738602430005*x^27-101971636257063744*x^26-1533921080826671704*x^25+4590109077182729377*x^24+29692165399898151742*x^23-90952824667187784790*x^22-330960934204728913393*x^21+1044702446267151293170*x^20+2347043125333089066114*x^19-7710540566433381622611*x^18-11024996720990947030193*x^17+38308498394559019300417*x^16+34463775851792255810245*x^15-130447385139183864004829*x^14-69143450980051305628040*x^13+303712084391277703296814*x^12+77590747156735620798502*x^11-472212768696172449281809*x^10-17042417053203255075088*x^9+463770391694737478351587*x^8-72762408911310758161279*x^7-253460501169507854590253*x^6+89674060679329347616249*x^5+51108906427204264821164*x^4-33919003056591226345985*x^3+6326389216514367079620*x^2-438813488298953897287*x+10132005377921661935,1880066075716688*x^27-5561672616499379*x^26-82813261880957753*x^25+249961546909580811*x^24+1596847701215014044*x^23-4943658113091648102*x^22-17711138604573694230*x^21+56653862887400620577*x^20+124787633592347993259*x^19-416970437785036244179*x^18-581067113622858853124*x^17+2064542708782710301091*x^16+1793930858411925990474*x^15-7000517870103904350731*x^14-3528326611399923236962*x^13+16214177532140966991578*x^12+3790644008071336499908*x^11-25047369506265574167122*x^10-469108004508993784423*x^9+24399539310873005450003*x^8-4146727647963497714150*x^7-13191146531868676802239*x^6+4790745037748434861728*x^5+2610652621492173793945*x^4-1761853831657786335007*x^3+330531428300794102408*x^2-23012475441298804644*x+532631583287061675,75811512224826277*x^27-222312140277948918*x^26-3351172625090922548*x^25+10010016654852980143*x^24+64905800754204531156*x^23-198415737631107079960*x^22-723954965632945060911*x^21+2279940725489704678066*x^20+5138110136738696906660*x^19-16834964614795743740319*x^18-24158775116439431846581*x^17+83684734224533943734523*x^16+75607103328531943086959*x^15-285126926057547839131057*x^14-151917739937939006010496*x^13+664268470303755039177474*x^12+170919903979956436895130*x^11-1033524855269886977274041*x^10-38337233565436360860774*x^9+1015777207323203431520839*x^8-159113421231735290058323*x^7-555494725155015147047363*x^6+196801646809532969453123*x^5+111976885712535784455932*x^4-74532586569709024949779*x^3+13967511156578878430682*x^2-977754273512585083013*x+22849553651199835679,9909303641155904*x^3-39637214564623616*x,-12265304234032183*x^27+35522298207594318*x^26+544168003254677906*x^25-1602604515206468561*x^24-10586342964521639150*x^23+31839213949921120830*x^22+118720958876584999767*x^21-366832777480413042900*x^20-848272370505393447328*x^19+2717080832104426991319*x^18+4022604175633203133143*x^17-13554808494522291957197*x^16-12732912767128000214343*x^15+46374205695188295002729*x^14+26023279723285666614068*x^13-108550902878099266100118*x^12-30318057464905462785362*x^11+169809740128856364041887*x^10+9090587858859501131934*x^9-167948299837041991932767*x^8+24349783608017124614569*x^7+92558612494721005314497*x^6-32043096596762728690355*x^5-18896918664277482115234*x^4+12401227424735091024437*x^3-2313951164868596842156*x^2+162148388928699820705*x-3805397343496147191,2181579550226271*x^27-6340582319751484*x^26-96785634145321298*x^25+286240803639937507*x^24+1882408355710048580*x^23-5690441238562196548*x^22-21097411088847430325*x^21+65601650813003717544*x^20+150562267576241979534*x^19-486149426314499572403*x^18-712434472164979959323*x^17+2426038363038232616215*x^16+2246380911960194925541*x^15-8299954442259275695445*x^14-4557618029619474119756*x^13+19418120967367133580562*x^12+5217344460396203567006*x^11-30338304123514476519943*x^10-1352421998224147444748*x^9+29937314051649922249391*x^8-4551674259385933742753*x^7-16436541230365671065651*x^6+5775767916479454202349*x^5+3331290423670240228750*x^4-2204557666090541038995*x^3+411250341381544775138*x^2-28543555425185363635*x+659637033446170095,-77347326909426356*x^27+227395110190519862*x^26+3416833015758945158*x^25-10236267384805741042*x^24-66123480060483998996*x^23+202838853703390920008*x^22+736768491355085594564*x^21-2329924267333568793054*x^20-5221926405012450590606*x^19+17196635258054119563998*x^18+24507423678971922609964*x^17-85438570632121971177938*x^16-76491949717881978111532*x^15+290922664040234510003294*x^14+153006274491947724251508*x^13-677262975955538703744596*x^12-170344440338408007552560*x^11+1052760484849221974230936*x^10+33938743127805269542326*x^9-1033409608537027123522502*x^8+166109138229877859337288*x^7+564067840774970156026402*x^6-201953945448416486923168*x^5-113131366115776031977598*x^4+76001670154383988997482*x^3-14354045446311285070580*x^2+1017118492355909880192*x-24122604317610565958,-55987956840618965*x^27+164348960652952093*x^26+2474201199776691289*x^25-7398916872076507936*x^24-47904595156669779562*x^23+146631279131080971654*x^22+534111904741102662719*x^21-1684521696069678038863*x^20-3788929509904117318281*x^19+12435144271963387116112*x^18+17804816358625675159925*x^17-61794681987549790868006*x^16-55682338026316881019901*x^15+210468908039179155373262*x^14+111779092004329163649358*x^13-490134821485119711858812*x^12-125565826670509569933534*x^11+762242572107784313388663*x^10+27834694278540279162401*x^9-748784659408595391051662*x^8+117341076575740201746855*x^7+409306649915554215095588*x^6-144822450668408055141521*x^5-82535670976429874811877*x^4+54803614855635531947644*x^3-10230095661635135235900*x^2+710163204192687846677*x-16397389312678163740,61849248632433622*x^27-181407963647072006*x^26-2734197600269184070*x^25+8169354474741236876*x^24+52959999882470257128*x^23-161956366818262734964*x^22-590743397569407434126*x^21+1861335943471152007018*x^20+4192691827224321068218*x^19-13746871416328020740380*x^18-19711547872012512318958*x^17+68350171251910607753236*x^16+61668193058640766884870*x^15-232939492295848525746984*x^14-123793175537866671686276*x^13+542831891067809272851392*x^12+138842721173496739524780*x^11-844798330512785435953314*x^10-29880796100796617050438*x^9+830427882781074292209012*x^8-131718023331024492058094*x^7-454043239256435466466716*x^6+161970141373459964673578*x^5+91292163313783597678622*x^4-61222712482506198860924*x^3+11565590159260210941756*x^2-820381892685468371550*x+19492452429590062948,5122396396529913*x^27-15466087198566360*x^26-224537495498567252*x^25+693449899776674537*x^24+4304246058078384738*x^23-13676907598547671698*x^22-47396888300237199557*x^21+156232422396462939882*x^20+330960286759445334514*x^19-1145584088495616853015*x^18-1523463317535100647073*x^17+5647784978388905713697*x^16+4630283717642828707441*x^15-19056624345198683868733*x^14-8885751555316069756504*x^13+43891043834184225069254*x^12+9017093517526700202310*x^11-67370844213690304989741*x^10+110136373441769935880*x^9+65147190671938964028795*x^8-11964088259123154095863*x^7-34907142924181567044137*x^6+12985018075309950521581*x^5+6809148037381654478540*x^4-4661121061842108832589*x^3+878490603312286309332*x^2-61604470967256636899*x+1440418732271699263,9450125704750860*x^27-27897073250730678*x^26-416960407046441074*x^25+1254744355789833498*x^24+8058056618066278852*x^23-24839670752190494304*x^22-89645771072755487284*x^21+285007392534138710626*x^20+634275429161846716170*x^19-2100927933976179575566*x^18-2971232489722860178908*x^17+10423345210110595472118*x^16+9256348682235971382776*x^15-35436625842245691036390*x^14-18485510709508960712840*x^13+82357578389436314943032*x^12+20571798477799464175820*x^11-127799521343361076069876*x^10-4188105071313155875626*x^9+125254003038024696388214*x^8-19806232438860285217620*x^7-68318048907754710216778*x^6+24125712646532718562220*x^5+13772839893583501758318*x^4-9088386356444998633002*x^3+1677873358102716793864*x^2-114067214665650938712*x+2592674206534020786,9909303641155904*x^4-59455821846935424*x^2+39637214564623616,-94689434864863265*x^27+278811802116418966*x^26+4180561437475369030*x^25-12545719831424795171*x^24-80850149401109180222*x^23+248484798463822600402*x^22+900171243965822625657*x^21-2852668914344234338168*x^20-6374494407338147255548*x^19+21041444508681888353773*x^18+29887387249784496407573*x^17-104463916511183294837295*x^16-93185686531776009420929*x^15+355406787451866326192871*x^14+186205877646163056801464*x^13-826605225494270271104462*x^12-207164011273522570638002*x^11+1283597426599050664716093*x^10+41564791677988476894570*x^9-1258717255895587783120085*x^8+200865439150144746356371*x^7+686550403961614562412367*x^6-244209957985442590156609*x^5-137956453562808465046870*x^4+91882559374989740275899*x^3-17170336546856479109320*x^2+1194833414337947891019*x-27705992451602754365]];
E[509,2] = [x^14+3*x^13-11*x^12-36*x^11+43*x^10+161*x^9-70*x^8-337*x^7+29*x^6+336*x^5+40*x^4-139*x^3-36*x^2+12*x+3, [1,x,-x^12-3*x^11+9*x^10+32*x^9-22*x^8-119*x^7-4*x^6+183*x^5+66*x^4-99*x^3-55*x^2+3*x+4,x^2-2,2*x^12+7*x^11-17*x^10-76*x^9+34*x^8+290*x^7+43*x^6-465*x^5-185*x^4+278*x^3+140*x^2-26*x-11,-x^13-3*x^12+9*x^11+32*x^10-22*x^9-119*x^8-4*x^7+183*x^6+66*x^5-99*x^4-55*x^3+3*x^2+4*x,x^13+3*x^12-11*x^11-34*x^10+46*x^9+139*x^8-99*x^7-252*x^6+123*x^5+199*x^4-82*x^3-58*x^2+20*x+4,x^3-4*x,-2*x^12-5*x^11+20*x^10+53*x^9-65*x^8-197*x^7+67*x^6+311*x^5+26*x^4-193*x^3-59*x^2+27*x+7,2*x^13+7*x^12-17*x^11-76*x^10+34*x^9+290*x^8+43*x^7-465*x^6-185*x^5+278*x^4+140*x^3-26*x^2-11*x,x^12+x^11-13*x^10-10*x^9+64*x^8+34*x^7-149*x^6-47*x^5+165*x^4+24*x^3-73*x^2-4*x+5,2*x^11+3*x^10-22*x^9-30*x^8+84*x^7+103*x^6-129*x^5-147*x^4+62*x^3+78*x^2+6*x-5,-4*x^13-14*x^12+34*x^11+151*x^10-70*x^9-571*x^8-69*x^7+904*x^6+327*x^5-529*x^4-248*x^3+47*x^2+18*x-2,2*x^11+3*x^10-22*x^9-29*x^8+85*x^7+94*x^6-137*x^5-122*x^4+81*x^3+56*x^2-8*x-3,x^13+5*x^12-3*x^11-50*x^10-42*x^9+164*x^8+244*x^7-183*x^6-447*x^5-15*x^4+284*x^3+97*x^2-29*x-11,x^4-6*x^2+4,x^13+3*x^12-10*x^11-32*x^10+34*x^9+117*x^8-46*x^7-167*x^6+19*x^5+62*x^4-x^3+24*x^2+8*x-5]];

E[510,1] = [x, [1,-1,1,1,1,-1,-2,-1,1,-1,4,1,0,2,1,1,1]];
E[510,2] = [x, [1,-1,-1,1,-1,1,2,-1,1,1,-4,-1,4,-2,1,1,1]];
E[510,3] = [x^2-24, [1,-1,-1,1,1,1,x,-1,1,-1,0,-1,-x+2,-x,-1,1,-1]];
E[510,4] = [x, [1,1,1,1,1,1,2,1,1,1,0,1,-4,2,1,1,-1]];
E[510,5] = [x, [1,1,1,1,-1,1,0,1,1,-1,4,1,2,0,-1,1,1]];
E[510,6] = [x, [1,1,-1,1,1,-1,0,1,1,1,4,-1,-2,0,-1,1,1]];
E[510,7] = [x, [1,1,-1,1,-1,-1,-4,1,1,-1,-4,-1,-2,-4,1,1,1]];
E[510,8] = [x, [1,1,-1,1,-1,-1,2,1,1,-1,0,-1,4,2,1,1,-1]];

E[511,1] = [x^3-5*x+1, [1,x,2,x^2-2,-x+1,2*x,1,x-1,1,-x^2+x,2,2*x^2-4,-x^2-2*x+5,x,-2*x+2,-x^2-x+4,x^2+x+1]];
E[511,2] = [x^3-x^2-4*x-1, [1,x,0,x^2-2,x^2-x-3,0,-1,x^2+1,-3,x+1,-2*x^2+4*x+6,0,-3*x+2,-x,0,-x^2+5*x+5,x^2-4*x]];
E[511,3] = [x^6+3*x^5-3*x^4-12*x^3+11*x+3, [1,x,-x^5-2*x^4+4*x^3+5*x^2-4*x-2,x^2-2,x^4+2*x^3-3*x^2-4*x,x^5+x^4-7*x^3-4*x^2+9*x+3,1,x^3-4*x,x^5+2*x^4-3*x^3-3*x^2+2*x-2,x^5+2*x^4-3*x^3-4*x^2,2*x^5+3*x^4-11*x^3-10*x^2+14*x+6,-x^2+1,-x^4-2*x^3+4*x^2+3*x-4,x,2*x^5+3*x^4-10*x^3-8*x^2+10*x+3,x^4-6*x^2+4,x^5+2*x^4-5*x^3-9*x^2+4*x+6]];
E[511,4] = [x^6+3*x^5-3*x^4-12*x^3+7*x-1, [1,x,x^5+2*x^4-4*x^3-7*x^2+2*x+2,x^2-2,-2*x^5-3*x^4+8*x^3+9*x^2-4*x-2,-x^5-x^4+5*x^3+2*x^2-5*x+1,-1,x^3-4*x,x^5+2*x^4-3*x^3-7*x^2-2*x+2,3*x^5+2*x^4-15*x^3-4*x^2+12*x-2,-3*x^4-3*x^3+12*x^2+6*x-6,-2*x^4-2*x^3+9*x^2+4*x-5,2*x^5+x^4-10*x^3+9*x-4,-x,-2*x^5-3*x^4+8*x^3+10*x^2-2*x-5,x^4-6*x^2+4,-x^5+7*x^3-x^2-10*x]];
E[511,5] = [x^9-2*x^8-10*x^7+18*x^6+33*x^5-50*x^4-40*x^3+45*x^2+17*x-11, [1,x,-x^8+2*x^7+9*x^6-17*x^5-23*x^4+41*x^3+11*x^2-22*x+3,x^2-2,x^8-3*x^7-7*x^6+26*x^5+7*x^4-65*x^3+24*x^2+38*x-18,-x^7+x^6+10*x^5-9*x^4-29*x^3+23*x^2+20*x-11,1,x^3-4*x,-2*x^8+5*x^7+16*x^6-41*x^5-33*x^4+95*x^3-50*x+17,-x^8+3*x^7+8*x^6-26*x^5-15*x^4+64*x^3-7*x^2-35*x+11,x^7-x^6-11*x^5+9*x^4+35*x^3-21*x^2-27*x+8,x^8-3*x^7-8*x^6+25*x^5+17*x^4-59*x^3-2*x^2+33*x-6,x^8-2*x^7-9*x^6+16*x^5+24*x^4-35*x^3-16*x^2+17*x+1,x,x^8-4*x^7-6*x^6+35*x^5+x^4-91*x^3+32*x^2+63*x-21,x^4-6*x^2+4,-x^8+4*x^7+6*x^6-34*x^5+82*x^3-39*x^2-45*x+28]];
E[511,6] = [x^10-4*x^9-9*x^8+50*x^7+4*x^6-194*x^5+123*x^4+224*x^3-231*x^2+11*x+27, [31,31*x,-3*x^9+10*x^8+44*x^7-131*x^6-213*x^5+533*x^4+348*x^3-688*x^2-86*x+106,31*x^2-62,-9*x^9+30*x^8+101*x^7-393*x^6-298*x^5+1661*x^4-10*x^3-2343*x^2+610*x+473,-2*x^9+17*x^8+19*x^7-201*x^6-49*x^5+717*x^4-16*x^3-779*x^2+139*x+81,-31,31*x^3-124*x,-11*x^9+16*x^8+151*x^7-191*x^6-657*x^5+704*x^4+873*x^3-797*x^2+36*x+151,-6*x^9+20*x^8+57*x^7-262*x^6-85*x^5+1097*x^4-327*x^3-1469*x^2+572*x+243,-x^9-7*x^8+25*x^7+101*x^6-195*x^5-463*x^4+550*x^3+680*x^2-411*x-99,15*x^9-19*x^8-189*x^7+221*x^6+755*x^5-836*x^4-1027*x^3+1053*x^2+275*x-158,-9*x^9+30*x^8+101*x^7-393*x^6-298*x^5+1661*x^4-10*x^3-2312*x^2+641*x+349,-31*x,49*x^9-153*x^8-574*x^7+1933*x^6+1867*x^5-7724*x^4-569*x^3+9987*x^2-2925*x-1411,31*x^4-186*x^2+124,20*x^9-46*x^8-252*x^7+553*x^6+986*x^5-2055*x^4-1111*x^3+2365*x^2-181*x-221]];

E[512,1] = [x^2+4*x+2, [1,0,x,0,0,0,0,0,-4*x-5,0,-3*x-8,0,0,0,0,0,4*x+8]];
E[512,2] = [x^2-4*x+2, [1,0,x,0,0,0,0,0,4*x-5,0,-3*x+8,0,0,0,0,0,-4*x+8]];
E[512,3] = [x^4-36*x^2+36, [12,0,x^3-30*x,0,-x^3+42*x,0,-2*x^2+36,0,36,0,x^3-30*x,0,x^3-42*x,0,6*x^2-108,0,48]];
E[512,4] = [x^2-8, [2,0,-x,0,-4,0,2*x,0,-2,0,3*x,0,-12,0,2*x,0,0]];
E[512,5] = [x^2-8, [2,0,x,0,4,0,2*x,0,-2,0,-3*x,0,12,0,2*x,0,0]];
E[512,6] = [x^2-2, [1,0,x,0,-2*x,0,-4,0,-1,0,x,0,2*x,0,-4,0,-4]];
E[512,7] = [x^2-2, [1,0,x,0,2*x,0,4,0,-1,0,x,0,-2*x,0,4,0,-4]];

E[513,1] = [x, [1,1,0,-1,0,0,-2,-3,0,0,-5,0,-4,-2,0,-1,2]];
E[513,2] = [x, [1,-1,0,-1,0,0,-2,3,0,0,5,0,-4,2,0,-1,-2]];
E[513,3] = [x^2-3, [1,x,0,1,-2*x,0,-4,-x,0,-6,3*x,0,-4,-4*x,0,-5,-2*x]];
E[513,4] = [x^3-3*x^2+3, [1,x,0,x^2-2,x,0,-x^2+3*x-1,3*x^2-4*x-3,0,x^2,-3*x^2+3*x+6,0,-3*x^2+3*x+5,-x+3,0,3*x^2-3*x-5,-2*x+3]];
E[513,5] = [x^3-x^2-4*x+1, [1,x,0,x^2-2,-x+2,0,-x^2+x+3,x^2-1,0,-x^2+2*x,x^2-x,0,x^2-x-3,-x+1,0,-x^2+3*x+3,-2*x^2+4*x+7]];
E[513,6] = [x^3+3*x^2-3, [1,x,0,x^2-2,x,0,-x^2-3*x-1,-3*x^2-4*x+3,0,x^2,3*x^2+3*x-6,0,-3*x^2-3*x+5,-x-3,0,3*x^2+3*x-5,-2*x-3]];
E[513,7] = [x^3+x^2-4*x-1, [1,x,0,x^2-2,-x-2,0,-x^2-x+3,-x^2+1,0,-x^2-2*x,-x^2-x,0,x^2+x-3,-x-1,0,-x^2-3*x+3,2*x^2+4*x-7]];
E[513,8] = [x^4-8*x^2+13, [1,x,0,x^2-2,-x^3+5*x,0,x^2-1,x^3-4*x,0,-3*x^2+13,-x^3+4*x,0,2*x^2-8,x^3-x,0,2*x^2-9,0]];
E[513,9] = [x^4-6*x^2+3, [1,x,0,x^2-2,x^3-5*x,0,-x^2+5,x^3-4*x,0,x^2-3,-x^3+6*x,0,2,-x^3+5*x,0,1,-2*x^3+10*x]];

E[514,1] = [x^2-6, [1,-1,x,1,x,-x,-2,-1,3,-x,0,x,2*x-2,2,6,1,0]];
E[514,2] = [x^3-2*x^2-4*x+4, [2,-2,2*x,2,x^2-2*x,-2*x,x^2,-2,2*x^2-6,-x^2+2*x,-2*x+8,2*x,-2*x^2+4,-x^2,4*x-4,2,-4*x^2+8*x+12]];
E[514,3] = [x^5-8*x^3+6*x-2, [1,-1,x,1,x^4+x^3-8*x^2-8*x+4,-x,x^4-8*x^2-x+4,-1,x^2-3,-x^4-x^3+8*x^2+8*x-4,-7*x^4-4*x^3+54*x^2+30*x-30,x,-3*x^4-2*x^3+24*x^2+14*x-14,-x^4+8*x^2+x-4,x^4-8*x^2-2*x+2,1,2*x^4+2*x^3-15*x^2-14*x+6]];
E[514,4] = [x, [1,1,-2,1,-2,-2,2,1,1,-2,-4,-2,-2,2,4,1,-2]];
E[514,5] = [x^9-2*x^8-20*x^7+40*x^6+116*x^5-226*x^4-204*x^3+376*x^2+96*x-176, [5912,5912,5912*x,5912,197*x^8-38*x^7-4984*x^6+704*x^5+41260*x^4-3122*x^3-123316*x^2+2448*x+94880,5912*x,155*x^8-330*x^7-2676*x^6+6736*x^5+10436*x^4-36758*x^3+1348*x^2+43040*x-7456,5912,5912*x^2-17736,197*x^8-38*x^7-4984*x^6+704*x^5+41260*x^4-3122*x^3-123316*x^2+2448*x+94880,-1090*x^8+938*x^7+23300*x^6-18000*x^5-153296*x^4+88188*x^3+339996*x^2-88120*x-186336,5912*x,886*x^8-456*x^7-18424*x^6+8448*x^5+116752*x^4-34508*x^3-250096*x^2+5728*x+157168,155*x^8-330*x^7-2676*x^6+6736*x^5+10436*x^4-36758*x^3+1348*x^2+43040*x-7456,356*x^8-1044*x^7-7176*x^6+18408*x^5+41400*x^4-83128*x^3-71624*x^2+75968*x+34672,5912,-470*x^8+1096*x^7+9640*x^6-20616*x^5-58344*x^4+100780*x^3+111864*x^2-99232*x-50624]];
E[514,6] = [x, [1,1,0,1,-2,0,-4,1,-3,-2,-4,0,-2,-4,0,1,2]];

E[515,1] = [x^4+x^3-3*x^2-x+1, [1,x,x^3+x^2-3*x-1,x^2-2,1,-1,-2*x^3-3*x^2+4*x+2,x^3-4*x,-x^3-2*x^2+2*x+1,x,-2*x^3-2*x^2+5*x-1,-2*x^3-2*x^2+5*x+2,-x^3+2*x-4,-x^3-2*x^2+2,x^3+x^2-3*x-1,-x^3-3*x^2+x+3,x^3+3*x^2+x-4]];
E[515,2] = [x^9-x^8-14*x^7+12*x^6+64*x^5-45*x^4-107*x^3+64*x^2+52*x-24, [4,4*x,x^8+x^7-12*x^6-12*x^5+44*x^4+43*x^3-53*x^2-42*x+16,4*x^2-8,-4,2*x^8+2*x^7-24*x^6-20*x^5+88*x^4+54*x^3-106*x^2-36*x+24,-4*x^6-4*x^5+36*x^4+28*x^3-72*x^2-24*x+32,4*x^3-16*x,2*x^7+2*x^6-20*x^5-16*x^4+52*x^3+22*x^2-34*x+4,-4*x,-2*x^8-2*x^7+24*x^6+20*x^5-88*x^4-54*x^3+106*x^2+40*x-24,2*x^8+2*x^7-20*x^6-16*x^5+56*x^4+22*x^3-58*x^2+4*x+16,-2*x^8-2*x^7+24*x^6+20*x^5-92*x^4-54*x^3+134*x^2+40*x-40,-4*x^7-4*x^6+36*x^5+28*x^4-72*x^3-24*x^2+32*x,-x^8-x^7+12*x^6+12*x^5-44*x^4-43*x^3+53*x^2+42*x-16,4*x^4-24*x^2+16,4*x^6+4*x^5-36*x^4-32*x^3+72*x^2+44*x-24]];
E[515,3] = [x^14+x^13-22*x^12-18*x^11+188*x^10+120*x^9-778*x^8-354*x^7+1574*x^6+400*x^5-1345*x^4-43*x^3+284*x^2+20*x-8, [4,4*x,-3*x^13+3*x^12+60*x^11-68*x^10-432*x^9+536*x^8+1320*x^7-1758*x^6-1492*x^5+2192*x^4+187*x^3-551*x^2-22*x+24,4*x^2-8,4,6*x^13-6*x^12-122*x^11+132*x^10+896*x^9-1014*x^8-2820*x^7+3230*x^6+3392*x^5-3848*x^4-680*x^3+830*x^2+84*x-24,-4*x^13+4*x^12+82*x^11-88*x^10-610*x^9+680*x^8+1968*x^7-2202*x^6-2524*x^5+2746*x^4+748*x^3-760*x^2-96*x+32,4*x^3-16*x,-2*x^13+2*x^12+40*x^11-44*x^10-286*x^9+336*x^8+852*x^7-1054*x^6-864*x^5+1206*x^4-98*x^3-198*x^2+70*x+12,4*x,2*x^13-42*x^11+4*x^10+330*x^9-50*x^8-1190*x^7+198*x^6+1936*x^5-306*x^4-1148*x^3+202*x^2+136*x-8,-6*x^13+4*x^12+120*x^11-96*x^10-870*x^9+776*x^8+2714*x^7-2536*x^6-3264*x^5+3006*x^4+714*x^3-518*x^2-100*x,-4*x^13+2*x^12+82*x^11-50*x^10-620*x^9+416*x^8+2096*x^7-1406*x^6-3042*x^5+1812*x^4+1444*x^3-562*x^2-208*x+24,8*x^13-6*x^12-160*x^11+142*x^10+1160*x^9-1144*x^8-3618*x^7+3772*x^6+4346*x^5-4632*x^4-932*x^3+1040*x^2+112*x-32,-3*x^13+3*x^12+60*x^11-68*x^10-432*x^9+536*x^8+1320*x^7-1758*x^6-1492*x^5+2192*x^4+187*x^3-551*x^2-22*x+24,4*x^4-24*x^2+16,2*x^13-2*x^12-40*x^11+44*x^10+286*x^9-336*x^8-854*x^7+1048*x^6+884*x^5-1150*x^4+38*x^3+68*x^2-20*x+24]];
E[515,4] = [x^8+3*x^7-13*x^6-37*x^5+43*x^4+98*x^3-68*x^2-72*x+48, [8,3*x^7+11*x^6-33*x^5-129*x^4+55*x^3+284*x^2-8*x-144,8*x,-2*x^7-6*x^6+22*x^5+70*x^4-34*x^3-152*x^2-12*x+80,-8,2*x^7+6*x^6-18*x^5-74*x^4-10*x^3+196*x^2+72*x-144,-3*x^7-9*x^6+35*x^5+107*x^4-77*x^3-250*x^2+40*x+120,-7*x^7-29*x^6+67*x^5+347*x^4-21*x^3-830*x^2-148*x+504,8*x^2-24,-3*x^7-11*x^6+33*x^5+129*x^4-55*x^3-284*x^2+8*x+144,-4*x^7-16*x^6+40*x^5+184*x^4-32*x^3-380*x^2-48*x+192,-4*x^6-4*x^5+52*x^4+44*x^3-148*x^2-64*x+96,9*x^7+31*x^6-93*x^5-365*x^4+99*x^3+826*x^2+72*x-480,x^7+9*x^6+x^5-111*x^4-111*x^3+304*x^2+204*x-264,-8*x,6*x^7+24*x^6-56*x^5-288*x^4+698*x^2+168*x-448,-15*x^7-53*x^6+159*x^5+623*x^4-209*x^3-1402*x^2-64*x+760]];

E[516,1] = [x, [1,0,1,0,3,0,5,0,1,0,-3,0,-1,0,3,0,-6]];
E[516,2] = [x^2-x-14, [1,0,1,0,x,0,-x,0,1,0,5,0,-1,0,x,0,x-1]];
E[516,3] = [x, [1,0,1,0,0,0,0,0,1,0,-2,0,6,0,0,0,6]];
E[516,4] = [x, [1,0,-1,0,-2,0,2,0,1,0,-3,0,-1,0,2,0,-3]];
E[516,5] = [x, [1,0,-1,0,3,0,-1,0,1,0,-1,0,7,0,-3,0,-2]];
E[516,6] = [x^2+x-8, [1,0,-1,0,x,0,x,0,1,0,-x+2,0,-x-2,0,-x,0,6]];

E[517,1] = [x^2+2*x-2, [1,x,-1,-2*x,x+1,-x,-x,2*x-4,-2,-x+2,1,2*x,-x-4,2*x-2,-x-1,-4*x+4,2*x+2]];
E[517,2] = [x^3-x^2-5*x+1, [2,2*x,-x^2+2*x+3,2*x^2-4,-x^2+5,x^2-2*x+1,-x^2+7,2*x^2+2*x-2,-2*x,-x^2+1,-2,x^2+2*x-7,4*x+2,-x^2+2*x+1,-2*x^2+2*x+8,8*x+6,-3*x^2+7]];
E[517,3] = [x^10+6*x^9+3*x^8-40*x^7-56*x^6+79*x^5+148*x^4-41*x^3-112*x^2-8*x+4, [4,4*x,2*x^9+8*x^8-8*x^7-56*x^6-8*x^5+118*x^4+52*x^3-72*x^2-40*x-4,4*x^2-8,-x^9-5*x^8+2*x^7+38*x^6+18*x^5-93*x^4-47*x^3+72*x^2+16*x,-4*x^9-14*x^8+24*x^7+104*x^6-40*x^5-244*x^4+10*x^3+184*x^2+12*x-8,2*x^9+8*x^8-12*x^7-68*x^6+16*x^5+190*x^4+4*x^3-180*x^2-4*x+16,4*x^3-16*x,-3*x^9-13*x^8+10*x^7+94*x^6+30*x^5-207*x^4-127*x^3+132*x^2+100*x+4,x^9+5*x^8-2*x^7-38*x^6-14*x^5+101*x^4+31*x^3-96*x^2-8*x+4,-4,6*x^9+20*x^8-40*x^7-152*x^6+88*x^5+366*x^4-84*x^3-292*x^2+40*x+24,-x^9-3*x^8+6*x^7+22*x^6+2*x^5-45*x^4-69*x^3+24*x^2+96*x-4,-4*x^9-18*x^8+12*x^7+128*x^6+32*x^5-292*x^4-98*x^3+220*x^2+32*x-8,-5*x^9-19*x^8+26*x^7+138*x^6-30*x^5-317*x^4-x^3+240*x^2-8*x-16,4*x^4-24*x^2+16,-3*x^9-11*x^8+18*x^7+86*x^6-30*x^5-223*x^4+11*x^3+208*x^2+4*x-36]];
E[517,4] = [x^2-2, [1,x,3,0,x-1,3*x,x,-2*x,6,-x+2,-1,0,-x,2,3*x-3,-4,-4*x+2]];
E[517,5] = [x^10-3*x^9-13*x^8+41*x^7+54*x^6-189*x^5-75*x^4+345*x^3+x^2-206*x+36, [428,428*x,-42*x^9+98*x^8+540*x^7-1148*x^6-2320*x^5+3966*x^4+4082*x^3-3708*x^2-2728*x-300,428*x^2-856,76*x^9-106*x^8-1130*x^7+1364*x^6+5584*x^5-5648*x^4-10250*x^3+8330*x^2+5344*x-2820,-28*x^9-6*x^8+574*x^7-52*x^6-3972*x^5+932*x^4+10782*x^3-2686*x^2-8952*x+1512,-47*x^9+74*x^8+589*x^7-714*x^6-2372*x^5+1595*x^4+3768*x^3-7*x^2-2370*x-244,428*x^3-1712*x,-14*x^9+104*x^8-34*x^7-1096*x^6+1652*x^5+3034*x^4-6700*x^3-1450*x^2+6652*x-528,122*x^9-142*x^8-1752*x^7+1480*x^6+8716*x^5-4550*x^4-17890*x^3+5268*x^2+12836*x-2736,428,-6*x^9+14*x^8+16*x^7-164*x^6+280*x^5+750*x^4-1190*x^3-1508*x^2+1200*x+1608,-111*x^9+152*x^8+1687*x^7-1750*x^6-8944*x^5+6171*x^4+18966*x^3-7889*x^2-12254*x+3212,-67*x^9-22*x^8+1213*x^7+166*x^6-7288*x^5+243*x^4+16208*x^3-2323*x^2-9926*x+1692,32*x^9+68*x^8-656*x^7-980*x^6+4356*x^5+4560*x^4-10916*x^3-7080*x^2+8580*x+2124,428*x^4-2568*x^2+1712,-108*x^9+38*x^8+1786*x^7-384*x^6-9940*x^5+1088*x^4+20738*x^3-822*x^2-12212*x-160]];
E[517,6] = [x, [1,0,3,-2,3,0,-2,0,6,0,1,-6,-2,0,9,4,4]];
E[517,7] = [x, [1,2,-1,2,3,-2,4,0,-2,6,-1,-2,0,8,-3,-4,0]];
E[517,8] = [x, [1,2,-1,2,-3,-2,-2,0,-2,-6,1,-2,0,-4,3,-4,-6]];
E[517,9] = [x^2-4*x+2, [1,x-1,x,2*x-3,-x,3*x-2,-2*x+3,x+1,4*x-5,-3*x+2,1,5*x-4,-x+3,-3*x+1,-4*x+2,3,-x+4]];
E[517,10] = [x^2-2, [1,x+1,x,2*x+1,x,x+2,-3,x+3,-1,x+2,-1,x+4,-x-1,-3*x-3,2,3,x+4]];
E[517,11] = [x^3+4*x^2-2*x-14, [1,-1,x,-1,x^2+x-6,-x,-2*x^2-3*x+9,3,x^2-3,-x^2-x+6,1,-x,x^2+2*x-5,2*x^2+3*x-9,-3*x^2-4*x+14,-1,-x^2-3*x+4]];

E[518,1] = [x^2-2, [1,-1,x,1,2*x,-x,-1,-1,-1,-2*x,2*x,x,4,1,4,1,-x]];
E[518,2] = [x^3+x^2-5*x+2, [1,-1,x,1,-x^2-2*x+2,-x,-1,-1,x^2-3,x^2+2*x-2,3*x^2+4*x-8,x,-x-4,1,-x^2-3*x+2,1,2*x]];
E[518,3] = [x^3-x^2-7*x+8, [1,-1,x,1,x^2-4,-x,1,-1,x^2-3,-x^2+4,-x^2+4,x,-x+4,-1,x^2+3*x-8,1,2*x]];
E[518,4] = [x^2+3*x+1, [1,1,x,1,-x-3,x,-1,1,-3*x-4,-x-3,-x-3,x,-3*x-8,-1,1,1,2*x]];
E[518,5] = [x^2-2*x-2, [1,1,x,1,0,x,-1,1,2*x-1,0,-2*x+4,x,-2*x+4,-1,0,1,-x+4]];
E[518,6] = [x^5-x^4-11*x^3+12*x^2+24*x-28, [1,1,x,1,-x^2+4,x,1,1,x^2-3,-x^2+4,x^4+x^3-10*x^2-6*x+20,x,-2*x^4-x^3+21*x^2+6*x-40,1,-x^3+4*x,1,2*x^4+x^3-21*x^2-7*x+40]];

E[519,1] = [x^3+2*x^2-x-1, [1,x,1,x^2-2,-x^2-2*x-1,x,x^2+2*x-1,-2*x^2-3*x+1,1,-2*x-1,-3,x^2-2,-x^2-3*x-1,1,-x^2-2*x-1,-x^2-x+2,-x^2-2*x-2]];
E[519,2] = [x^3-3*x-1, [1,x,-1,x^2-2,-x^2+1,-x,-x^2+1,-x+1,1,-2*x-1,2*x^2-2*x-3,-x^2+2,x^2-x-3,-2*x-1,x^2-1,-3*x^2+x+4,x^2-2*x-4]];
E[519,3] = [x^11-3*x^10-12*x^9+39*x^8+43*x^7-165*x^6-45*x^5+271*x^4-29*x^3-134*x^2+60*x-7, [17,17*x,17,17*x^2-34,-3*x^10+15*x^9+40*x^8-214*x^7-194*x^6+1019*x^5+477*x^4-1852*x^3-510*x^2+895*x-117,17*x,-18*x^10+39*x^9+240*x^8-502*x^7-1062*x^6+2102*x^5+1876*x^4-3462*x^3-952*x^2+1868*x-345,17*x^3-68*x,17,6*x^10+4*x^9-97*x^8-65*x^7+524*x^6+342*x^5-1039*x^4-597*x^3+493*x^2+63*x-21,-9*x^10+11*x^9+120*x^8-115*x^7-514*x^6+320*x^5+768*x^4-286*x^3-85*x^2+271*x-79,17*x^2-34,35*x^10-90*x^9-444*x^8+1148*x^7+1827*x^6-4720*x^5-2998*x^4+7491*x^3+1428*x^2-3619*x+736,-15*x^10+24*x^9+200*x^8-288*x^7-868*x^6+1066*x^5+1416*x^4-1474*x^3-544*x^2+735*x-126,-3*x^10+15*x^9+40*x^8-214*x^7-194*x^6+1019*x^5+477*x^4-1852*x^3-510*x^2+895*x-117,17*x^4-102*x^2+68,47*x^10-116*x^9-621*x^8+1511*x^7+2722*x^6-6399*x^5-4821*x^4+10462*x^3+2567*x^2-5210*x+1051]];
E[519,4] = [x^12+2*x^11-19*x^10-37*x^9+128*x^8+244*x^7-352*x^6-664*x^5+316*x^4+597*x^3-24*x^2-27*x+1, [757,757*x,-757,757*x^2-1514,266*x^11+203*x^10-5325*x^9-3714*x^8+38044*x^7+24304*x^6-112895*x^5-65179*x^4+116762*x^3+53710*x^2-16239*x-2217,-757*x,282*x^11+16*x^10-5577*x^9+468*x^8+39342*x^7-8578*x^6-114990*x^5+39880*x^4+113654*x^3-56006*x^2+70*x+985,757*x^3-3028*x,757,-329*x^11-271*x^10+6128*x^9+3996*x^8-40600*x^7-19263*x^6+111445*x^5+32706*x^4-105092*x^3-9855*x^2+4965*x-266,386*x^11+693*x^10-7215*x^9-12470*x^8+47779*x^7+79732*x^6-128986*x^5-209482*x^4+111620*x^3+179361*x^2+477*x-4697,-757*x^2+1514,-286*x^11-537*x^10+5640*x^9+10220*x^8-39288*x^7-69121*x^6+110404*x^5+191046*x^4-96223*x^3-168646*x^2-173*x+5406,-548*x^11-219*x^10+10902*x^9+3246*x^8-77386*x^7-15726*x^6+227128*x^5+24542*x^4-224360*x^3+6838*x^2+8599*x-282,-266*x^11-203*x^10+5325*x^9+3714*x^8-38044*x^7-24304*x^6+112895*x^5+65179*x^4-116762*x^3-53710*x^2+16239*x+2217,757*x^4-4542*x^2+3028,421*x^11+142*x^10-8334*x^9-1524*x^8+59040*x^7+2409*x^6-174778*x^5+15556*x^4+182603*x^3-41907*x^2-19250*x+3916]];

E[520,1] = [x, [1,0,2,0,1,0,0,0,1,0,2,0,1,0,2,0,2]];
E[520,2] = [x^2-2*x-4, [1,0,x,0,-1,0,0,0,2*x+1,0,-x+4,0,-1,0,-x,0,2]];
E[520,3] = [x^2-6, [1,0,x,0,1,0,2,0,3,0,x-2,0,-1,0,x,0,-2*x+2]];
E[520,4] = [x^2+4*x+2, [1,0,x,0,1,0,-2,0,-4*x-5,0,-3*x-6,0,-1,0,x,0,2*x+2]];
E[520,5] = [x, [1,0,0,0,-1,0,0,0,-3,0,-4,0,-1,0,0,0,-6]];
E[520,6] = [x^2-2*x-2, [1,0,x-2,0,-1,0,2*x-2,0,-2*x+3,0,x,0,1,0,-x+2,0,2*x+2]];
E[520,7] = [x^2+6*x+6, [1,0,x+2,0,-1,0,-2*x-6,0,-2*x-5,0,x,0,1,0,-x-2,0,-2*x-6]];

E[521,1] = [x^14+2*x^13-13*x^12-25*x^11+63*x^10+115*x^9-142*x^8-242*x^7+151*x^6+238*x^5-65*x^4-104*x^3+2*x^2+17*x+3, [1,x,4*x^12+9*x^11-48*x^10-109*x^9+203*x^8+475*x^7-353*x^6-903*x^5+199*x^4+714*x^3+40*x^2-179*x-42,x^2-2,-11*x^13-30*x^12+121*x^11+363*x^10-426*x^9-1575*x^8+398*x^7+2954*x^6+540*x^5-2237*x^4-979*x^3+451*x^2+338*x+52,4*x^13+9*x^12-48*x^11-109*x^10+203*x^9+475*x^8-353*x^7-903*x^6+199*x^5+714*x^4+40*x^3-179*x^2-42*x,11*x^13+23*x^12-137*x^11-279*x^10+620*x^9+1219*x^8-1244*x^7-2329*x^6+1067*x^5+1867*x^4-286*x^3-501*x^2-25*x+17,x^3-4*x,6*x^13+19*x^12-60*x^11-230*x^10+160*x^9+999*x^8+96*x^7-1879*x^6-882*x^5+1433*x^4+987*x^3-289*x^2-293*x-42,-8*x^13-22*x^12+88*x^11+267*x^10-310*x^9-1164*x^8+292*x^7+2201*x^6+381*x^5-1694*x^4-693*x^3+360*x^2+239*x+33,21*x^13+50*x^12-248*x^11-606*x^10+1020*x^9+2640*x^8-1665*x^7-5003*x^6+698*x^5+3912*x^4+499*x^3-935*x^2-305*x-22,x^13-4*x^12-27*x^11+47*x^10+233*x^9-191*x^8-885*x^7+301*x^6+1568*x^5-98*x^4-1191*x^3-130*x^2+290*x+72,-19*x^13-54*x^12+204*x^11+653*x^10-676*x^9-2830*x^8+431*x^7+5294*x^6+1411*x^5-3976*x^4-2064*x^3+760*x^2+679*x+111,x^13+6*x^12-4*x^11-73*x^10-46*x^9+318*x^8+333*x^7-594*x^6-751*x^5+429*x^4+643*x^3-47*x^2-170*x-33,-18*x^13-50*x^12+197*x^11+606*x^10-687*x^9-2637*x^8+619*x^7+4975*x^6+916*x^5-3823*x^4-1599*x^3+818*x^2+545*x+72,x^4-6*x^2+4,x^13-17*x^11+112*x^9+2*x^8-360*x^7-19*x^6+582*x^5+60*x^4-434*x^3-73*x^2+112*x+27]];
E[521,2] = [x^29-x^28-50*x^27+49*x^26+1112*x^25-1061*x^24-14511*x^23+13387*x^22+123412*x^21-109286*x^20-718385*x^19+606113*x^18+2924033*x^17-2333576*x^16-8348401*x^15+6263323*x^14+16508066*x^13-11605772*x^12-21923563*x^11+14498124*x^10+18478199*x^9-11710480*x^8-8913548*x^7+5683110*x^6+1973213*x^5-1428489*x^4-75206*x^3+126742*x^2-12580*x-647, [15952071500184876491392,15952071500184876491392*x,-20360845873524849930*x^28-66851853991782391784*x^27+1032562803481907643698*x^26+3144177844074969540214*x^25-23167023861041150061788*x^24-65049816152970746742474*x^23+302531552546116420909002*x^22+778469161295049987587274*x^21-2546110068775120763881686*x^20-5960044620212032336088362*x^19+14453892516105226820840312*x^18+30478604265298192841974410*x^17-56352206066565378140042222*x^16-105472617536097983357313288*x^15+150989320230402123466562742*x^14+244714737382719821058530486*x^13-274717315437413719549942276*x^12-368562816160853338278973032*x^11+332366090091863684188513484*x^10+337875668454755386565476244*x^9-260573264860820513332677654*x^8-166849272872033173306446590*x^7+127694280573551521933837080*x^6+33638168362263454728271304*x^5-35221086402812636959530724*x^4-236913046438715480345014*x^3+3796422315573595115530098*x^2-257265044755173372356572*x-49675262155498752400088,15952071500184876491392*x^2-31904143000369752982784,53265030254508563606*x^28+2958551576371109354*x^27-2713915506211991637026*x^26-89847273498722183712*x^25+61489124235390383451846*x^24+757538315778826432478*x^23-816752061167809746591488*x^22+5661886336317389722504*x^21+7059988066432207993685892*x^20-174638114460058888548076*x^19-41680809364520013861968026*x^18+1714580527812369986858234*x^17+171613653444810469661119008*x^16-9637314630864900652064174*x^15-494257288441873824944251586*x^14+34556216416114667082405048*x^13+983750206434202537828657306*x^12-81523383507647055974982924*x^11-1315252760169964619128479148*x^10+126632527610877769323271704*x^9+1123350034603063034341444694*x^8-126740495853675015619518784*x^7-562871026095283868401730030*x^6+76938176272780081454083800*x^5+142236263177515843682222932*x^4-24102563062808163099799266*x^3-13226214370601296222285352*x^2+2378488591225212217977974*x+128923122987773021739900,-87212699865307241714*x^28+14520509805665147198*x^27+4141859291877687186784*x^26-525763249681516939628*x^25-86652673624780612518204*x^24+7075318075397323574772*x^23+1051039805003927153600184*x^22-33337357831671984320526*x^21-8185200022346069085538342*x^20-173033746746922496122738*x^19+42819577640237960207596500*x^18+3183579175535109375325468*x^17-152986198806254608557562968*x^16-18991185820978607213899188*x^15+372241291641823104696647876*x^14+61400872058562155734593104*x^13-604866151096123582900768992*x^12-114016197149648395317387106*x^11+633069736674006977932007564*x^10+115658496998500495118998416*x^9-405284551257028457914712990*x^8-53793096440714157110014560*x^7+149351095154551264613953604*x^6+4955199365822952745394366*x^5-29322157407464354832000784*x^4+2265164540809285251694518*x^3+2323309282947113157471488*x^2-305814703244441364519488*x-13173467280170577904710,213032943495878292446*x^28+168274189956997511752*x^27-10333870706687367416940*x^26-8046977972462056931862*x^25+221657993608789508895282*x^24+170191708804493119789388*x^23-2768285661118019194986310*x^22-2092003479121850087533276*x^21+22309400605390497636450060*x^20+16515085904050900484384104*x^19-121516327333856243129092094*x^18-87329227014234806976179080*x^17+455652344741587183839804990*x^16+312997090344687556383846254*x^15-1176397701876037519251355720*x^14-752339372911243038652304622*x^13+2060860162002612119050006510*x^12+1172244366013912998088077766*x^11-2380866902649863308341093180*x^10-1107324794093808142521305212*x^9+1737730980870478358755335166*x^8+556920442076894563446640974*x^7-752125513079625622076544466*x^6-106863673209772489082284222*x^5+171121766170218484738098600*x^4-5236547878322109869752702*x^3-14692756882198375673928186*x^2+1967446962182598246061986*x+131880975868947107816978,15952071500184876491392*x^3-63808286000739505965568*x,-248463958037188143938*x^28-130252422294244454098*x^27+12209211126434670149648*x^26+6171517992175846650968*x^25-265910880265596321431484*x^24-129349027306753826124364*x^23+3382340861384603176745668*x^22+1575199982813603850454234*x^21-27873360483255890751751750*x^20-12307220949848538748001462*x^19+156077544896827003806377024*x^18+64261793047092399745112932*x^17-605933374338820479868848144*x^16-226392675477823533604253492*x^15+1635024653050471259675535992*x^14+529955129415030613940458044*x^13-3030259967047008002918868028*x^12-787669096412695828708511578*x^11+3757004042955110541667442924*x^10+670866880305714879199925416*x^9-2980198949795922642213730542*x^8-241310076166022126209870928*x^7+1403086286696703383027284940*x^6-33934060413872340506418470*x^5-339625684632024184324423516*x^4+40028951593680281883096178*x^3+29963168190424403586547772*x^2-4777285584827654071027604*x-189022542500828361180326,56223581830879672960*x^28-50663993486563456726*x^27-2699833755969641800406*x^26+2258410592376860721974*x^25+57271735415812412418444*x^24-43823207144635980104822*x^23-707397073680788751271018*x^22+486444152662797141942220*x^21+5646483981934163993697240*x^20-3416010605134879395871716*x^19-30570046754838579026065244*x^18+15864947234629030894576010*x^17+114660681610330175173370882*x^16-49579456600104278027357580*x^15-299059872672644673048017690*x^14+104447571500778372255611310*x^13+536658413199281305283750908*x^12-147493513688340090872830970*x^11-645610485882738944898403440*x^10+139108205819233148825619100*x^9+497018575641142428317272096*x^8-88090622200269570288595942*x^7-225772849816920081460810860*x^6+37133013033926237363536854*x^5+51985946740424520417172068*x^4-9220364505280725187732516*x^3-4372427873291712150573678*x^2+798997203589490751903380*x+34462474574667040653082,-504721515923198414990*x^28-504657538961507643268*x^27+24515371775014459041680*x^26+23972263379355074681506*x^25-526663002500628216667570*x^24-503082279819751689515400*x^23+6589131182047039314060922*x^22+6131469839050764322122444*x^21-53205846397466642498078852*x^20-47979380715694812948268280*x^19+290434048686060106382106694*x^18+251545283892511328108089692*x^17-1091682106871161574716339706*x^16-894752416452313873871618566*x^15+2826430687451115152706431300*x^14+2138734938428543772688514386*x^13-4969086617441656556943736254*x^12-3326577913905889652374339306*x^11+5769625480420929261539481588*x^10+3161203175355231058951537060*x^9-4244327152516152009685443462*x^8-1630950943956316700430151578*x^7+1860007178485242737706509170*x^6+349002930162455363083389866*x^5-430250569254812591676646832*x^4-845484154533602769383794*x^3+37288752847301802681215622*x^2-3994905761225546203247466*x-288330733755746893113294,-31970498312592394656*x^28-85071993404110115348*x^27+1682533436754722616962*x^26+4039492937291101187336*x^25-39123308759611359760206*x^24-84404050435604737426722*x^23+529115950172963218686788*x^22+1020955370841128253695278*x^21-4611940726676648186315570*x^20-7912628512076717958938666*x^19+27136545296785623930642526*x^18+41069405088402935669200774*x^17-109804236988732062823804008*x^16-144900064054211770621124862*x^15+305663540556233657895323242*x^14+345417379553119831474835160*x^13-576752276416007513499075762*x^12-541817750901441173583153354*x^11+715346853836780815209515984*x^10+530497735271881177486727608*x^9-553949144237756278391621972*x^8-294324945560392022538494488*x^7+245206004950246147334970746*x^6+75490739007331234055663690*x^5-51875045071458317238034180*x^4-3761782930245752302181568*x^3+3154852671937138833736104*x^2-595779142075388933953686*x+42923907498143719411218,211797840782490304308*x^28+265800890973126012164*x^27-10343125644998825001628*x^26-12584135646355124407552*x^25+223458625110941240228492*x^24+262956424886427854400508*x^23-2811846366059304753465040*x^22-3188885313909296566261728*x^21+22834414221717629980250136*x^20+24821955350232690627864688*x^19-125315001296528547740449652*x^18-129488701437716131483247556*x^17+473233639233326852238612472*x^16+458815732863173495432459284*x^15-1229390277619882105305959444*x^14-1095093001203827611066822080*x^13+2163767086335033062197264212*x^12+1708645518601344636418661584*x^11-2504598029672284165339608008*x^10-1643721433003830414803445496*x^9+1821938813064539391063629044*x^8+876456013986447561412935904*x^7-776814828913864068905196332*x^6-207553788306026520399457440*x^5+168810948790401898115154128*x^4+8210411151456293101012044*x^3-12275293835159155188162968*x^2+1455685420435849860396668*x-29816468712819203303016,381307133452875804198*x^28+317776468106547205360*x^27-18485592203760093261716*x^26-15234639558627152304670*x^25+396219661853619988074594*x^24+323035381950670706697596*x^23-4943875493701172788507878*x^22-3981421017322834190895692*x^21+39796604166941455552637660*x^20+31523343779430283989727616*x^19-216451263495352086445501478*x^18-167263012127496307255949728*x^17+810125654496025238556813150*x^16+602086736637896313283123126*x^15-2086633507666677952930062680*x^14-1455901729401617460615862926*x^13+3644656136715959399965676078*x^12+2289574255157464676431211918*x^11-4195902824982045115311676516*x^10-2198734142602116408842049588*x^9+3051638466226507389569675054*x^8+1146753854352173339798913942*x^7-1317553324720633371665071282*x^6-249237607364114008334150398*x^5+299078668543161576228141392*x^4+1328598666352647187765690*x^3-25032774362372008295128946*x^2+2811835405047096026787658*x+137832314441833255212562,116974468197127943947*x^28+63198844401096333260*x^27-5901543592016830598800*x^26-2844104993852312891983*x^25+132330851285513970785999*x^24+56015253783825723791672*x^23-1738332982597337249525207*x^22-632934200493802097179352*x^21+14846666230816797856605016*x^20+4513792212753754575368154*x^19-86512666189508244812402941*x^18-21000680708744047873180934*x^17+351181513836793806531500271*x^16+63209070676260359138411309*x^15-996253361599089717273964186*x^14-115172726515831219585448387*x^13+1952642255948725486844997645*x^12+97080683090195490641411245*x^11-2573971853459140133061585674*x^10+43643414950087985369421402*x^9+2176391887282883427796871563*x^8-179473680730746554232908121*x^7-1088507493518579680927967399*x^6+155270285290669228076838159*x^5+277245590123001351096706872*x^4-52504541171405927573724575*x^3-25456408498744690582875473*x^2+5061285520444107187311431*x+170271798466730791001999,15952071500184876491392*x^4-95712429001109258948352*x^2+63808286000739505965568,508179025090391121866*x^28+341210975652811515656*x^27-24685864503128680626388*x^26-16269687588944093142282*x^25+530716124692487227960398*x^24+343543080476158248936628*x^23-6651273036828424736941106*x^22-4221754650004988924731420*x^21+53878301417013782348759244*x^20+33368236190882390560005928*x^19-295649950784788527476225650*x^18-176947077946465036466846504*x^17+1120324354480629306847732138*x^16+637262067922338197962326090*x^15-2935372213685156608842671984*x^14-1543337627181074995735938346*x^13+5247621193006585936704753898*x^12+2433075629340165386924623634*x^11-6227512599111857176023280140*x^10-2342798025762407757757767188*x^9+4695408668898302058471832738*x^8+1220137039267459540021639018*x^7-2097396436126908126825199614*x^6-255165798498828006434550258*x^5+485468704200376254580850592*x^4-6312182956137478524348970*x^3-41508167973822715173495566*x^2+3988987276665022726657534*x+330329761101184968123718]];

E[522,1] = [x, [1,-1,0,1,3,0,-5,-1,0,-3,-4,0,-6,5,0,1,-1]];
E[522,2] = [x, [1,-1,0,1,-3,0,-1,-1,0,3,0,0,2,1,0,1,3]];
E[522,3] = [x, [1,-1,0,1,2,0,4,-1,0,-2,0,0,2,-4,0,1,-2]];
E[522,4] = [x, [1,-1,0,1,1,0,1,-1,0,-1,2,0,0,-1,0,1,3]];
E[522,5] = [x, [1,-1,0,1,-1,0,-2,-1,0,1,3,0,-1,2,0,1,-8]];
E[522,6] = [x, [1,-1,0,1,-1,0,1,-1,0,1,-6,0,-4,-1,0,1,7]];
E[522,7] = [x, [1,1,0,1,-3,0,-3,1,0,-3,-6,0,0,-3,0,1,-7]];
E[522,8] = [x, [1,1,0,1,-3,0,-5,1,0,-3,4,0,-6,-5,0,1,1]];
E[522,9] = [x, [1,1,0,1,-2,0,4,1,0,-2,0,0,2,4,0,1,2]];
E[522,10] = [x, [1,1,0,1,-2,0,0,1,0,-2,4,0,6,0,0,1,2]];
E[522,11] = [x, [1,1,0,1,3,0,-2,1,0,3,1,0,3,-2,0,1,4]];
E[522,12] = [x, [1,1,0,1,3,0,5,1,0,3,-6,0,-4,5,0,1,-3]];
E[522,13] = [x, [1,1,0,1,3,0,-1,1,0,3,0,0,2,-1,0,1,-3]];

E[523,1] = [x^2+3*x+1, [1,x,x,-3*x-3,2*x+3,-3*x-1,-1,4*x+3,-3*x-4,-3*x-2,0,6*x+3,-3*x-5,-x,-3*x-2,-3*x+2,2*x+3]];
E[523,2] = [x^15+6*x^14-2*x^13-71*x^12-72*x^11+308*x^10+492*x^9-587*x^8-1283*x^7+418*x^6+1526*x^5+33*x^4-774*x^3-85*x^2+141*x+8, [839,839*x,-1534*x^14-7830*x^13+8691*x^12+92524*x^11+26054*x^10-413837*x^9-270741*x^8+894231*x^7+648304*x^6-992240*x^5-607298*x^4+552048*x^3+197512*x^2-123068*x-6078,839*x^2-1678,-129*x^14-222*x^13+3803*x^12+10173*x^11-25053*x^10-90319*x^9+45636*x^8+310226*x^7+42325*x^6-455476*x^5-165092*x^4+260557*x^3+82453*x^2-53846*x-6406,1374*x^14+5623*x^13-16390*x^12-84394*x^11+58635*x^10+483987*x^9-6227*x^8-1319818*x^7-351028*x^6+1733586*x^5+602670*x^4-989804*x^3-253458*x^2+210216*x+12272,1112*x^14+6655*x^13-985*x^12-69508*x^11-72226*x^10+257909*x^9+377476*x^8-426151*x^7-707895*x^6+355093*x^5+537746*x^4-200163*x^3-160133*x^2+52433*x+7040,839*x^3-3356*x,1687*x^14+9264*x^13-5592*x^12-101819*x^11-68533*x^10+408475*x^9+433779*x^8-754637*x^7-892449*x^6+693924*x^5+737175*x^4-351437*x^3-217122*x^2+83130*x+4759,552*x^14+3545*x^13+1014*x^12-34341*x^11-50587*x^10+109104*x^9+234503*x^8-123182*x^7-401554*x^6+31762*x^5+264814*x^4-17393*x^3-64811*x^2+11783*x+1032,1639*x^14+6840*x^13-17718*x^12-96024*x^11+54785*x^10+515937*x^9+21465*x^8-1318677*x^7-379739*x^6+1614208*x^5+573524*x^4-840849*x^3-213602*x^2+160789*x+7624,447*x^14+2018*x^13-4222*x^12-27485*x^11+8687*x^10+145439*x^9+28202*x^8-376648*x^7-137354*x^6+490426*x^5+179450*x^4-294078*x^3-68018*x^2+64674*x+1164,-460*x^14-3933*x^13-7557*x^12+24842*x^11+105780*x^10+20667*x^9-386851*x^8-400189*x^7+506903*x^6+834066*x^5-165584*x^4-550852*x^3-13810*x^2+111696*x+3335,-17*x^14+1239*x^13+9444*x^12+7838*x^11-84587*x^10-169628*x^9+226593*x^8+718801*x^7-109723*x^6-1159166*x^5-236859*x^4+700555*x^3+146953*x^2-149752*x-8896,1720*x^14+8833*x^13-10155*x^12-107114*x^11-27569*x^10+497256*x^9+314420*x^8-1130769*x^7-792821*x^6+1335460*x^5+783876*x^4-787895*x^3-263170*x^2+184063*x+5988,839*x^4-5034*x^2+3356,465*x^14+2927*x^13+535*x^12-28924*x^11-40284*x^10+94863*x^9+196034*x^8-111437*x^7-357517*x^6+19889*x^5+259382*x^4+9848*x^3-60109*x^2+6921*x-5259]];
E[523,3] = [x^26-9*x^25-x^24+231*x^23-464*x^22-2306*x^21+7763*x^20+10298*x^19-60057*x^18-8015*x^17+266789*x^16-125796*x^15-723565*x^14+622138*x^13+1202991*x^12-1407289*x^11-1178824*x^10+1766306*x^9+617378*x^8-1241966*x^7-135947*x^6+462396*x^5+400*x^4-78680*x^3+2576*x^2+4032*x-384, [2289319313352398368,2289319313352398368*x,-1744909191643757133*x^25+11842261468743696353*x^24+27932964963353956025*x^23-341107522027278616991*x^22+55047669686791966524*x^21+4141463138046402331202*x^20-4379456151064972346943*x^19-27612164057801918067518*x^18+43633685146094949655525*x^17+110232397387482890243879*x^16-221064941075420536512189*x^15-268523807059819992958056*x^14+665822016008650607159697*x^13+385294664150165990970242*x^12-1239369031825255832360291*x^11-284376143295439765981303*x^10+1415563617518896195053268*x^9+50634927472652889399678*x^8-953376915002879509531554*x^7+54129624312540498576302*x^6+350855636594130228756167*x^5-27469989575361515133904*x^4-60018055224157140665976*x^3+3436572036936460541128*x^2+2985177272377650490800*x-301244445920913429440,2289319313352398368*x^2-4578638626704796736,-2576743165335174717*x^25+17419887820216244697*x^24+41670420333354569225*x^23-502426369513402114719*x^22+68999240474027926652*x^21+6111440058499571815322*x^20-6315171769756522772015*x^19-40858611679434054923894*x^18+63391623505511946490653*x^17+163815012862079032096831*x^16-322094618435161661582877*x^15-401956229795525987868232*x^14+971783635556864974039401*x^13+584942930106700055547498*x^12-1811296127560778547221643*x^11-447689048994828058421695*x^10+2071375696174178056207060*x^9+102524512313806795258246*x^8-1396944068781497644510258*x^7+65278324236967609151422*x^6+514937043669906766115687*x^5-37157905168949119516072*x^4-88342406865752624689184*x^3+4868996499690741664536*x^2+4444039429872671130448*x-445626917166976771776,-3861921256050117844*x^25+26188055771710198892*x^24+61966501242429280732*x^23-754590195235911343188*x^22+117702542115898382504*x^21+9166273903665514276536*x^20-9643089202254507111884*x^19-61160326176454172481056*x^18+96246950216458176822884*x^17+244457637254025785243748*x^16-488026403731838065260924*x^15-596733203243064522779448*x^14+1470868978821029766180596*x^13+859741021539459204824512*x^12-2739967654694591097923740*x^11-641377215411364163498324*x^10+3132678502128170975960376*x^9+123891631915759981725720*x^8-2112988264796489972867176*x^7+113640466717736377796216*x^6+779369041003945208136764*x^5-59320091547499637812776*x^4-133852883161594350683312*x^3+7480063350051968865408*x^2+6734229414786715330816*x-670045129591202739072,-1010856949982350235*x^25+6881960575147077751*x^24+16075275097067895335*x^23-198172927208714072945*x^22+35222669023147598348*x^21+2405041116460955373630*x^20-2581913167601783799713*x^19-16024607469077192337842*x^18+25618753818262503130843*x^17+63906906844810289861249*x^16-129686417147518271240115*x^15-155405406173986090598792*x^14+390716072244887127559631*x^13+222269160381454366845902*x^12-728041537599090704331141*x^11-162858143302509819493705*x^10+832982972559961069019532*x^9+27789349645545840593082*x^8-562321092870789936420390*x^7+31329569146319815994314*x^6+207410901651489884106257*x^5-15189716393445342305912*x^4-35462850024069453510656*x^3+1713498919860014138992*x^2+1734769809690093824928*x-166604506905095527744,2289319313352398368*x^3-9157277253409593472*x,6694105284300753162*x^25-45406362978081143870*x^24-107371997487777410550*x^23+1308469846625996685434*x^22-205504622143575276876*x^21-15896387728760198305732*x^20+16739386566901964399846*x^19+106084212768153067130872*x^18-167055836147807993300978*x^17-424130194754778085695346*x^16+847208508733390726030654*x^15+1035785899824277923393652*x^14-2554254045543453762577058*x^13-1493657700489954169084616*x^12+4760589412622149868683518*x^11+1117159238973529486140042*x^10-5447251147062971347085020*x^9-220445356800126781186556*x^8+3678723076206590377433164*x^7-193105020014518374112212*x^6-1359478370426715678742518*x^5+101260999721372587923300*x^4+234120753462121353254144*x^3-12697330553001351696880*x^2-11802047617765814275392*x+1169156656970249458144,-5770800667800327756*x^25+39093677168019394508*x^24+92801301679023244908*x^23-1126609588241493142036*x^22+169470319236658917920*x^21+13688085422740438556056*x^20-14323310562812425688228*x^19-91359840775022641488216*x^18+143162416391917606740076*x^17+365352113901444265990836*x^16-726100213022029626567964*x^15-892657532868880720066704*x^14+2188032769501994983632444*x^13+1288502709648948620756904*x^12-4073911361396200750733908*x^11-966150988958893944385748*x^10+4653841425704317908943648*x^9+193880473146801851921768*x^8-3134949077841697993422200*x^7+164636540572085768863688*x^6+1154317827509374328925860*x^5-87311709599618554802384*x^4-197869155748880805069024*x^3+11081729823776081201440*x^2+9943801525464447687168*x-989469375488707091328,4936627440152066964*x^25-33421194869567823474*x^24-79521138045414039950*x^23+963360940550369239906*x^22-141111138840134253882*x^21-11708373723322278152920*x^20+12205961037125332998624*x^19+78182078979348691641790*x^18-122153927046689703176216*x^17-312868453792344967870670*x^16+619868992919827878455486*x^15+765279325995742464348890*x^14-1868539190693313186464340*x^13-1106925114288952537160690*x^12+3480011725438216237991040*x^11+834167019780120934614146*x^10-3976481475123401477755570*x^9-172838731054474146245088*x^8+2679443777346348919893540*x^7-137844838780253134338348*x^6-986938383486085130531064*x^5+74406558580858548233378*x^4+169322347157811014492272*x^3-9580312233686205498648*x^2-8553805133133592472448*x+853140678249590201856,-5079417149453347438*x^25+34420057048891770182*x^24+81647684984957966726*x^23-992013876636799063130*x^22+150588147840358595224*x^21+12054079232369753048684*x^20-12631348779520114229658*x^19-80464126542539914399188*x^18+126236968094594191413038*x^17+321826911473551043734234*x^16-640417567418304074058894*x^15-786434460693233765697152*x^14+1930744955918666205735590*x^13+1135299530742064235407180*x^12-3597478454266366789342658*x^11-851094674022973609412474*x^10+4114099082966827040183448*x^9+170007101475913902626500*x^8-2775980597968045261381980*x^7+146093183382618840445892*x^6+1024705576376790195269114*x^5-77368135508451273277904*x^4-176339790627657021768560*x^3+9809394496498897814704*x^2+8930866830047571426336*x-880488870481418393216,-1050448379824518768*x^25+7134594344229074008*x^24+16812806055495187524*x^23-205574594728194018188*x^22+33261173055378779604*x^21+2497158183730590798324*x^20-2638447954403929192864*x^19-16661942539983801895472*x^18+26285263652386739720196*x^17+66600972309558263401992*x^16-133176868686294922280324*x^15-162600059356884663415884*x^14+401167085181558528380804*x^13+234352975567838102405664*x^12-746976826443546630341076*x^11-174997789715583312038208*x^10+853855787201114369086580*x^9+33919931214210610707484*x^8-576250229542690404987920*x^7+31212826921806295997104*x^6+213163546388607156581160*x^5-16633319565641021040568*x^4-36930891181126946558164*x^3+2255401792451304633456*x^2+1906378465867348133376*x-196793379230452957792,-2215751974694074364*x^25+15064418147085545100*x^24+35335028237208831340*x^23-433814955768662910692*x^22+74004989801655731720*x^21+5265369335111201074592*x^20-5614802598158949617812*x^19-35090282026827504932552*x^18+55804888390701752727724*x^17+139999097681322965605300*x^16-282567167053965820760852*x^15-340704636769092120228144*x^14+851161681529573777348332*x^13+488010275517126787221744*x^12-1585426009586221499356620*x^11-358639460646032964404108*x^10+1813272045541070954774992*x^9+61759749195413486963440*x^8-1224120393595459775967696*x^7+69987931872239316708712*x^6+452226493850593476957148*x^5-35058507244076513416656*x^4-77820725904751302350808*x^3+4338737312844628030288*x^2+3909170715423740619776*x-388169068793222490240,4374162009095279294*x^25-29622336252289734250*x^24-70406385868446597426*x^23+853724940417899331358*x^22-126369538697122480628*x^21-10373807282215524202732*x^20+10827565264945231195090*x^19+69252530927193680502936*x^18-108280059647202642110102*x^17-277038718389883560076582*x^16+549183153953692075805354*x^15+677319745422619371630380*x^14-1654534126851387508498822*x^13-979025175682981535992008*x^12+3079245106731995748283642*x^11+736945735794714120240270*x^10-3515148505304816126681028*x^9-152199727028274290705044*x^8+2365464126847164022456740*x^7-121517010602830662856252*x^6-869754734016816950132386*x^5+65165297086253585229564*x^4+148829474822692264102528*x^3-8280798862299687906704*x^2-7458768702244760016128*x+748388012661918569664,2289319313352398368*x^4-13735915880114390208*x^2+9157277253409593472,2830206872176003244*x^25-19211361818877581258*x^24-45318380420980382418*x^23+553473286671892424086*x^22-88992797445270376766*x^21-6721774038389083200444*x^20+7100553453394636931672*x^19+44836165919651607245382*x^18-70760930733981744140628*x^17-179130106733448131685934*x^16+358555120552169157066642*x^15+436960596015145591451326*x^14-1080081772270483674163144*x^13-628776121002208366621474*x^12+2010784287378316914652228*x^11+467759877617055211577554*x^10-2296978262882371141966518*x^9-88787775055181210712148*x^8+1547072800263629365127380*x^7-83899501515080118748260*x^6-569131808106763356229768*x^5+43236488414925733051386*x^4+97197193298204922337252*x^3-5286355346675476069400*x^2-4800474676701864867168*x+471189245650661402016]];

E[524,1] = [x, [1,0,1,0,-2,0,-3,0,-2,0,0,0,1,0,-2,0,-4]];
E[524,2] = [x^2+3*x+1, [1,0,x,0,-x-1,0,x+1,0,-3*x-4,0,-x-4,0,-3*x-6,0,2*x+1,0,2*x+4]];
E[524,3] = [x^4-3*x^3-2*x^2+6*x+3, [1,0,x,0,-x^3+2*x^2+x,0,-x^3+3*x^2+x-2,0,x^2-3,0,x^3-2*x^2-3*x+5,0,x^3-2*x^2-2*x+1,0,-x^3-x^2+6*x+3,0,2*x^3-8*x^2+4*x+12]];
E[524,4] = [x^4-x^3-12*x^2+7*x+29, [2,0,2*x,0,2*x-2,0,-2*x^2+12,0,2*x^2-6,0,2*x^2-14,0,-4*x^2+2*x+24,0,2*x^2-2*x,0,x^3-8*x-5]];

E[525,1] = [x^2-x-3, [1,x,1,x+1,0,x,1,3,1,0,-3,x+1,-2*x+2,x,0,x-2,2*x]];
E[525,2] = [x^2-5, [1,x,1,3,0,x,-1,x,1,0,2*x+2,3,-2*x,-x,0,-1,2]];
E[525,3] = [x^2+x-3, [1,x,-1,-x+1,0,-x,-1,-3,1,0,-3,x-1,-2*x-2,-x,0,-x-2,2*x]];
E[525,4] = [x^2+3*x+1, [1,x,-1,-3*x-3,0,-x,1,4*x+3,1,0,4*x+5,3*x+3,-2*x-6,x,0,-3*x+2,-6*x-8]];
E[525,5] = [x^2-3*x+1, [1,x,1,3*x-3,0,x,-1,4*x-3,1,0,-4*x+5,3*x-3,-2*x+6,-x,0,3*x+2,-6*x+8]];
E[525,6] = [x^3+x^2-5*x-1, [1,x,1,x^2-2,0,x,1,-x^2+x+1,1,0,2,x^2-2,x^2+2*x-1,x,0,-4*x+3,-x^2-2*x+3]];
E[525,7] = [x^3-x^2-5*x+1, [1,x,-1,x^2-2,0,-x,-1,x^2+x-1,1,0,2,-x^2+2,-x^2+2*x+1,-x,0,4*x+3,x^2-2*x-3]];
E[525,8] = [x, [1,-1,1,-1,0,-1,-1,3,1,0,-6,-1,-2,1,0,-1,4]];
E[525,9] = [x, [1,-1,-1,-1,0,1,-1,3,1,0,0,1,6,1,0,-1,-2]];
E[525,10] = [x, [1,1,-1,-1,0,-1,1,-3,1,0,-6,1,2,1,0,-1,-4]];
E[525,11] = [x, [1,1,-1,-1,0,-1,1,-3,1,0,4,1,2,1,0,-1,6]];

E[526,1] = [x^4+5*x^3+6*x^2-1, [1,1,x,1,x^3+3*x^2-x-4,x,-x^3-2*x^2+2*x-1,1,x^2-3,x^3+3*x^2-x-4,-3*x^3-14*x^2-13*x+1,x,-x^3-5*x^2-6*x-3,-x^3-2*x^2+2*x-1,-2*x^3-7*x^2-4*x+1,1,4*x^3+17*x^2+14*x-4]];
E[526,2] = [x^6-3*x^5-6*x^4+20*x^3+3*x^2-32*x+16, [2,2,2*x,2,x^5-x^4-10*x^3+6*x^2+21*x-10,2*x,-2*x^5+4*x^4+16*x^3-24*x^2-30*x+36,2,2*x^2-6,x^5-x^4-10*x^3+6*x^2+21*x-10,2*x^5-4*x^4-16*x^3+24*x^2+28*x-32,2*x,-2*x^4+4*x^3+10*x^2-12*x-4,-2*x^5+4*x^4+16*x^3-24*x^2-30*x+36,2*x^5-4*x^4-14*x^3+18*x^2+22*x-16,2,-4*x^5+6*x^4+34*x^3-34*x^2-64*x+54]];
E[526,3] = [x^2-8, [2,-2,2*x,2,-x+6,-2*x,-2*x+4,-2,10,x-6,0,2*x,-4,2*x-4,6*x-8,2,6]];
E[526,4] = [x^5+3*x^4-4*x^3-10*x^2+7*x+4, [1,-1,x,1,x^3+3*x^2-x-4,-x,-x^4-4*x^3+10*x,-1,x^2-3,-x^3-3*x^2+x+4,-x^4-4*x^3-2*x^2+7*x+8,x,x^4+6*x^3+5*x^2-12*x-6,x^4+4*x^3-10*x,x^4+3*x^3-x^2-4*x,1,2*x^4+6*x^3-3*x^2-10*x+2]];
E[526,5] = [x^4-x^3-4*x^2+2*x+3, [1,-1,x,1,x^3-x^2-3*x,-x,-x^3+2*x+1,-1,x^2-3,-x^3+x^2+3*x,-x^3+2*x^2+x-5,x,-x^3+x^2+2*x-1,x^3-2*x-1,x^2-2*x-3,1,x^2-2*x-4]];

E[527,1] = [x^5+2*x^4-5*x^3-7*x^2+7*x+1, [1,x,-x^4-x^3+4*x^2+2*x-2,x^2-2,x^3-5*x+1,x^4-x^3-5*x^2+5*x+1,x^3-4*x+1,x^3-4*x,x^4-5*x^2+x+2,x^4-5*x^2+x,2*x^4+x^3-8*x^2+x+1,-x^4+2*x^3+4*x^2-10*x+3,x^4-4*x^2+3*x-3,x^4-4*x^2+x,x^3+2*x^2-3*x-4,x^4-6*x^2+4,1]];
E[527,2] = [x^7+x^6-8*x^5-8*x^4+15*x^3+13*x^2-8*x-5, [1,x,-x^6+8*x^4-15*x^2+x+6,x^2-2,-x^6+7*x^4-9*x^2+2*x+1,x^6-8*x^4+14*x^2-2*x-5,x^6+x^5-7*x^4-7*x^3+8*x^2+6*x-2,x^3-4*x,2*x^6-x^5-15*x^4+7*x^3+24*x^2-12*x-7,x^6-x^5-8*x^4+6*x^3+15*x^2-7*x-5,2*x^6-x^5-16*x^4+6*x^3+31*x^2-8*x-14,x^6-8*x^4-x^3+15*x^2+x-7,-x^6+x^5+8*x^4-6*x^3-16*x^2+5*x+6,x^5+x^4-7*x^3-7*x^2+6*x+5,3*x^6-23*x^4+39*x^2-4*x-14,x^4-6*x^2+4,-1]];
E[527,3] = [x^2-x-1, [1,x,2*x-1,x-1,0,x+2,2*x,-2*x+1,2,0,2*x-5,-x+3,2*x-2,2*x+2,0,-3*x,-1]];
E[527,4] = [x^11+2*x^10-17*x^9-34*x^8+101*x^7+202*x^6-238*x^5-469*x^4+182*x^3+295*x^2-83*x-3, [13,13*x,-5*x^10-x^9+79*x^8+7*x^7-437*x^6+21*x^5+978*x^4-211*x^3-720*x^2+289*x+4,13*x^2-26,7*x^10+4*x^9-121*x^8-54*x^7+734*x^6+241*x^5-1780*x^4-352*x^3+1333*x^2-77*x-42,9*x^10-6*x^9-163*x^8+68*x^7+1031*x^6-212*x^5-2556*x^4+190*x^3+1764*x^2-411*x-15,7*x^10+4*x^9-108*x^8-54*x^7+578*x^6+228*x^5-1234*x^4-274*x^3+852*x^2-77*x-16,13*x^3-52*x,-7*x^10-4*x^9+108*x^8+41*x^7-578*x^6-85*x^5+1234*x^4-168*x^3-852*x^2+376*x-23,-10*x^10-2*x^9+184*x^8+27*x^7-1173*x^6-114*x^5+2931*x^4+59*x^3-2142*x^2+539*x+21,10*x^10+2*x^9-171*x^8-27*x^7+1017*x^6+114*x^5-2372*x^4-85*x^3+1583*x^2-357*x+57,-14*x^10-8*x^9+216*x^8+108*x^7-1156*x^6-456*x^5+2455*x^4+548*x^3-1626*x^2+154*x+19,-8*x^10+x^9+142*x^8+6*x^7-876*x^6-164*x^5+2090*x^4+562*x^3-1308*x^2-68*x+35,-10*x^10+11*x^9+184*x^8-129*x^7-1186*x^6+432*x^5+3009*x^4-422*x^3-2142*x^2+565*x+21,11*x^10+10*x^9-179*x^8-135*x^7+1016*x^6+583*x^5-2279*x^4-776*x^3+1519*x^2-134*x+12,13*x^4-78*x^2+52,-13]];
E[527,5] = [x^16-3*x^15-22*x^14+70*x^13+179*x^12-631*x^11-642*x^10+2789*x^9+792*x^8-6335*x^7+903*x^6+6928*x^5-3096*x^4-2631*x^3+2063*x^2-344*x-11, [7121412,7121412*x,3893501*x^15-9863252*x^14-90461907*x^13+231499103*x^12+808373819*x^11-2105046931*x^10-3495865340*x^9+9433580994*x^8+7441538148*x^7-21951450889*x^6-6289172672*x^5+25272409501*x^4-1264122919*x^3-11447976029*x^2+3425180013*x+108896486,7121412*x^2-14242824,-2015909*x^15+4841258*x^14+46991907*x^13-112886345*x^12-422441153*x^11+1017321721*x^10+1848003758*x^9-4504755078*x^8-4032639756*x^7+10326542689*x^6+3680892074*x^5-11695757197*x^4+191643925*x^3+5229310079*x^2-1577146599*x-33940676,1817251*x^15-4804885*x^14-41045967*x^13+111437140*x^12+351752200*x^11-996237698*x^10-1425393295*x^9+4357885356*x^8+2713877946*x^7-9805004075*x^6-1701765427*x^5+10790156177*x^4-1204174898*x^3-4607112550*x^2+1448260830*x+42828511,5855855*x^15-14719502*x^14-136104273*x^13+344176271*x^12+1217628851*x^11-3112173919*x^10-5282899754*x^9+13830886746*x^8+11355312996*x^7-31793859067*x^6-9990483398*x^5+36008147959*x^4-1066579819*x^3-16026711317*x^2+4621404321*x+157786748,7121412*x^3-28485648*x,1685279*x^15-4222736*x^14-39902949*x^13+100591709*x^12+365397077*x^11-932977849*x^10-1629629228*x^9+4290652854*x^8+3598197552*x^7-10309383907*x^6-3164722520*x^5+12308016871*x^4-667086661*x^3-5768505887*x^2+1879123239*x+40659278,-1206469*x^15+2641909*x^14+28227285*x^13-61593442*x^12-254716858*x^11+553790180*x^10+1117615123*x^9-2436039828*x^8-2444240826*x^7+5501257901*x^6+2270460355*x^5-6049610339*x^4-74546500*x^3+2581673668*x^2-727413372*x-22174999,4506657*x^15-11423724*x^14-104268303*x^13+266837451*x^12+925829115*x^11-2410313691*x^10-3964022124*x^9+10702454994*x^8+8297362872*x^7-24594100221*x^6-6746577036*x^5+27860004381*x^4-1695866979*x^3-12379496505*x^2+3794338701*x+103253550,-7140134*x^15+18660059*x^14+165153384*x^13-436533935*x^12-1466299955*x^11+3951375709*x^10+6281302997*x^9-17592546834*x^8-13175795286*x^7+40560158698*x^6+10778586593*x^5-46122784804*x^4+2702320669*x^3+20595224075*x^2-6182397171*x-197803211,-1341124*x^15+3464056*x^14+31236516*x^13-81402412*x^12-280543444*x^11+740987780*x^10+1226123836*x^9-3321458496*x^8-2671322976*x^7+7712763500*x^6+2411920984*x^5-8816062796*x^4+216683036*x^3+3919419004*x^2-1122358356*x-1026508,2848063*x^15-7275463*x^14-65733579*x^13+169430806*x^12+582870586*x^11-1523440844*x^10-2501092849*x^9+6717475836*x^8+5302982358*x^7-15278320463*x^6-4561215481*x^5+17063147261*x^4-619956812*x^3-7459224544*x^2+2172200868*x+64414405,-9881040*x^15+25641462*x^14+227616372*x^13-598508166*x^12-2008619166*x^11+5399487726*x^10+8522590134*x^9-23923233684*x^8-17581169124*x^7+54778132536*x^6+13777646538*x^5-61724274972*x^4+4383330234*x^3+27262352982*x^2-8385909210*x-237192978,7121412*x^4-42728472*x^2+28485648,7121412]];

E[528,1] = [x, [1,0,1,0,-2,0,-4,0,1,0,-1,0,-2,0,-2,0,-2]];
E[528,2] = [x, [1,0,1,0,2,0,-2,0,1,0,1,0,6,0,2,0,-4]];
E[528,3] = [x, [1,0,1,0,2,0,4,0,1,0,1,0,-6,0,2,0,2]];
E[528,4] = [x, [1,0,1,0,2,0,0,0,1,0,-1,0,2,0,2,0,6]];
E[528,5] = [x, [1,0,-1,0,4,0,2,0,1,0,1,0,0,0,-4,0,-6]];
E[528,6] = [x, [1,0,-1,0,2,0,2,0,1,0,-1,0,-2,0,-2,0,4]];
E[528,7] = [x, [1,0,-1,0,-4,0,2,0,1,0,-1,0,4,0,4,0,-2]];
E[528,8] = [x, [1,0,-1,0,-2,0,-4,0,1,0,1,0,6,0,2,0,6]];
E[528,9] = [x, [1,0,-1,0,0,0,-2,0,1,0,-1,0,0,0,0,0,-2]];
E[528,10] = [x, [1,0,-1,0,0,0,-2,0,1,0,1,0,-4,0,0,0,-6]];

E[529,1] = [x^2+x-1, [1,x,-2*x-1,-x-1,-2*x,x-2,-2*x-2,-2*x-1,2,2*x-2,2*x+4,x+3,3,-2,-2*x+4,3*x,2*x-2]];
E[529,2] = [x^3-6*x-3, [1,x,-x^2+x+4,x^2-2,0,x^2-2*x-3,0,2*x+3,-x^2-x+7,0,0,x-5,-x^2+3*x+4,0,0,3*x+4,0]];
E[529,3] = [x^2+2*x-7, [2,x+3,x+1,2*x+4,2*x,x+5,-x-5,x+7,-2,x+7,x+1,x+9,-6,-3*x-11,-x+7,6,-2*x-2]];
E[529,4] = [x^2-2*x-7, [2,-x+3,-x+1,-2*x+4,2*x,-x+5,-x+5,-x+7,-2,x-7,x-1,-x+9,-6,-3*x+11,-x-7,6,-2*x+2]];
E[529,5] = [x^4-14*x^2+36, [6,-3*x^2+18,-6,3*x^2-12,6*x,3*x^2-18,x^3-14*x,-18,-12,-3*x^3+18*x,-6*x,-3*x^2+12,6*x^2-54,3*x^3-24*x,-6*x,3*x^2-30,-3*x^3+30*x]];
E[529,6] = [x^2-6*x+6, [1,-x+3,-x+4,1,x-3,-x+6,x,x-3,-2*x+7,-3,-x+6,-x+4,1,-3*x+6,x-6,-5,2*x-6]];
E[529,7] = [x^2+6*x+6, [1,x+3,x+4,1,x+3,x+6,x,-x-3,2*x+7,3,-x-6,x+4,1,-3*x-6,x+6,-5,2*x+6]];
E[529,8] = [x^5+7*x^4+13*x^3-6*x^2-35*x-23, [1,-3*x^4-17*x^3-16*x^2+40*x+51,2*x^4+12*x^3+13*x^2-28*x-39,2*x^4+10*x^3+6*x^2-25*x-23,x,x^3+4*x^2-x-11,3*x^4+16*x^3+13*x^2-38*x-46,-5*x^4-28*x^3-26*x^2+66*x+82,-3*x^4-16*x^3-14*x^2+36*x+46,4*x^4+23*x^3+22*x^2-54*x-69,-2*x^4-10*x^3-7*x^2+23*x+23,10*x^4+55*x^3+49*x^2-129*x-161,x^4+4*x^3+x^2-8*x-6,x^4+6*x^3+7*x^2-13*x-23,-2*x^4-13*x^3-16*x^2+31*x+46,4*x^4+24*x^3+25*x^2-56*x-73,-3*x^4-17*x^3-16*x^2+39*x+46]];
E[529,9] = [x^5-7*x^4+13*x^3+6*x^2-35*x+23, [1,-3*x^4+17*x^3-16*x^2-40*x+51,2*x^4-12*x^3+13*x^2+28*x-39,2*x^4-10*x^3+6*x^2+25*x-23,x,-x^3+4*x^2+x-11,-3*x^4+16*x^3-13*x^2-38*x+46,-5*x^4+28*x^3-26*x^2-66*x+82,-3*x^4+16*x^3-14*x^2-36*x+46,-4*x^4+23*x^3-22*x^2-54*x+69,2*x^4-10*x^3+7*x^2+23*x-23,10*x^4-55*x^3+49*x^2+129*x-161,x^4-4*x^3+x^2+8*x-6,-x^4+6*x^3-7*x^2-13*x+23,2*x^4-13*x^3+16*x^2+31*x-46,4*x^4-24*x^3+25*x^2+56*x-73,3*x^4-17*x^3+16*x^2+39*x-46]];
E[529,10] = [x^4-4*x^2+1, [1,-1,-x^2+1,-1,x,x^2-1,x^3-5*x,3,2*x^2-3,-x,-3*x^3+11*x,x^2-1,2*x^2-5,-x^3+5*x,-x^3+x,-1,x^3-x]];

E[530,1] = [x, [1,-1,1,1,-1,-1,2,-1,-2,1,0,1,5,-2,-1,1,3]];
E[530,2] = [x, [1,-1,-3,1,1,3,-2,-1,6,-1,0,-3,1,2,-3,1,3]];
E[530,3] = [x^3-3*x^2-2*x+7, [1,-1,x,1,1,-x,-x^2+6,-1,x^2-3,-1,-x^2+x+3,x,x^2-x-1,x^2-6,x,1,0]];
E[530,4] = [x^3+x^2-10*x-13, [1,-1,x,1,-1,-x,x^2-6,-1,x^2-3,1,-x^2+x+7,x,-x^2+x+5,-x^2+6,-x,1,-4]];
E[530,5] = [x, [1,-1,0,1,1,0,-2,-1,-3,-1,0,0,-2,2,0,1,-6]];
E[530,6] = [x, [1,1,-1,1,-1,-1,-2,1,-2,-1,-4,-1,-3,-2,1,1,-1]];
E[530,7] = [x^4-x^3-10*x^2+9*x+16, [1,1,x,1,-1,x,-x^2+6,1,x^2-3,-1,x^3+2*x^2-7*x-8,x,-x^3-2*x^2+7*x+10,-x^2+6,-x,1,-2*x^3-2*x^2+12*x+10]];
E[530,8] = [x^5-4*x^4-3*x^3+23*x^2-19*x+4, [1,1,x,1,1,x,-x^4+3*x^3+5*x^2-17*x+8,1,x^2-3,1,x^3-2*x^2-7*x+8,x,x^4-4*x^3-4*x^2+22*x-10,-x^4+3*x^3+5*x^2-17*x+8,x,1,3*x^4-9*x^3-16*x^2+51*x-18]];

E[531,1] = [x^2-3*x+1, [1,x,0,3*x-3,3,0,x-5,4*x-3,0,3*x,-4*x+7,0,-6*x+9,-2*x-1,0,3*x+2,x]];
E[531,2] = [x^2-x-1, [1,x,0,x-1,-2*x+1,0,-x-3,-2*x+1,0,-x-2,2*x-1,0,2*x-5,-4*x-1,0,-3*x,3*x]];
E[531,3] = [x^2+x-1, [1,x,0,-x-1,-1,0,x+1,-2*x-1,0,-x,-2*x-3,0,-1,1,0,3*x,-3*x-2]];
E[531,4] = [x^3-4*x+1, [1,x,0,x^2-2,x^2+x-2,0,-x+3,-1,0,x^2+2*x-1,x^2-x-2,0,-x^2+x+4,-x^2+3*x,0,-2*x^2-x+4,-3*x^2-2*x+7]];
E[531,5] = [x^5+3*x^4-3*x^3-11*x^2+x+5, [1,x,0,x^2-2,-x^3-x^2+3*x-1,0,x^4+2*x^3-4*x^2-6*x+3,x^3-4*x,0,-x^4-x^3+3*x^2-x,-x^4-x^3+3*x^2-1,0,-2*x^4-2*x^3+9*x^2+3*x-6,-x^4-x^3+5*x^2+2*x-5,0,x^4-6*x^2+4,2*x^4+3*x^3-7*x^2-6*x]];
E[531,6] = [x^5-3*x^4-3*x^3+11*x^2+x-5, [1,x,0,x^2-2,-x^3+x^2+3*x+1,0,x^4-2*x^3-4*x^2+6*x+3,x^3-4*x,0,-x^4+x^3+3*x^2+x,x^4-x^3-3*x^2+1,0,-2*x^4+2*x^3+9*x^2-3*x-6,x^4-x^3-5*x^2+2*x+5,0,x^4-6*x^2+4,-2*x^4+3*x^3+7*x^2-6*x]];
E[531,7] = [x^5-9*x^3-2*x^2+16*x+8, [4,4*x,0,4*x^2-8,-3*x^4+2*x^3+23*x^2-12*x-28,0,-2*x^4+2*x^3+14*x^2-6*x-12,4*x^3-16*x,0,2*x^4-4*x^3-18*x^2+20*x+24,2*x^4-4*x^3-18*x^2+24*x+32,0,-2*x^4+4*x^3+18*x^2-24*x-24,2*x^4-4*x^3-10*x^2+20*x+16,0,4*x^4-24*x^2+16,-4*x^4+32*x^2-36]];

E[532,1] = [x^2+3*x+1, [1,0,x,0,-1,0,1,0,-3*x-4,0,-5*x-7,0,2*x+3,0,-x,0,x-5]];
E[532,2] = [x^2+x-5, [1,0,x,0,3,0,1,0,-x+2,0,x-1,0,-1,0,3*x,0,-x+1]];
E[532,3] = [x^2-x-1, [1,0,x,0,-2*x-1,0,-1,0,x-2,0,-x-1,0,4*x-3,0,-3*x-2,0,-3*x-1]];
E[532,4] = [x^3+x^2-7*x-8, [1,0,x,0,-x^2+x+6,0,-1,0,x^2-3,0,-x^2+4,0,-x^2+x+8,0,2*x^2-x-8,0,x^2-2]];
E[532,5] = [x, [1,0,0,0,-2,0,1,0,-3,0,4,0,4,0,0,0,6]];

E[533,1] = [x^2-2*x-1, [1,x,x,2*x-1,-2*x+2,2*x+1,-2*x+4,x+2,2*x-2,-2*x-2,2*x-2,3*x+2,-1,-2,-2*x-2,3,-2*x+4]];
E[533,2] = [x^13-21*x^11+166*x^9+x^8-613*x^7-16*x^6+1074*x^5+72*x^4-822*x^3-76*x^2+215*x+27, [328,328*x,-10*x^12+30*x^11+202*x^10-606*x^9-1482*x^8+4436*x^7+4794*x^6-14140*x^5-6942*x^4+18548*x^3+5302*x^2-7848*x-1484,328*x^2-656,-20*x^12-22*x^11+404*x^10+428*x^9-2964*x^8-3100*x^7+9506*x^6+10342*x^5-12654*x^4-15630*x^3+5602*x^2+7510*x-426,30*x^12-8*x^11-606*x^10+178*x^9+4446*x^8-1336*x^7-14300*x^6+3798*x^5+19268*x^4-2918*x^3-8608*x^2+666*x+270,-33*x^12+58*x^11+642*x^10-1188*x^9-4456*x^8+8743*x^7+12983*x^6-27269*x^5-14397*x^4+32205*x^3+5951*x^2-10425*x-994,328*x^3-1312*x,-57*x^12+48*x^11+1176*x^10-986*x^9-8882*x^8+7237*x^7+29671*x^6-22419*x^5-42013*x^4+26651*x^3+21267*x^2-10515*x-2030,-22*x^12-16*x^11+428*x^10+356*x^9-3080*x^8-2754*x^7+10022*x^6+8826*x^5-14190*x^4-10838*x^3+5990*x^2+3874*x+540,13*x^12+2*x^11-238*x^10-24*x^9+1492*x^8+129*x^7-3395*x^6-683*x^5+513*x^4+2267*x^3+4325*x^2-1663*x-990,12*x^12-36*x^11-226*x^10+678*x^9+1598*x^8-4782*x^7-5310*x^6+15328*x^5+8806*x^4-21044*x^3-7658*x^2+9516*x+2158,328,58*x^12-51*x^11-1188*x^10+1022*x^9+8776*x^8-7246*x^7-27797*x^6+21045*x^5+34581*x^4-21175*x^3-12933*x^2+6101*x+891,23*x^12+13*x^11-522*x^10-238*x^9+4532*x^8+1515*x^7-18562*x^6-3804*x^5+35048*x^4+2702*x^3-23650*x^2+896*x+2175,328*x^4-1968*x^2+1312,88*x^12-18*x^11-1712*x^10+380*x^9+11992*x^8-2760*x^7-35906*x^6+7418*x^5+41754*x^4-3798*x^3-12890*x^2-982*x-438]];
E[533,3] = [x^7+2*x^6-6*x^5-12*x^4+9*x^3+19*x^2-x-5, [1,x,x^6+x^5-6*x^4-5*x^3+9*x^2+6*x-3,x^2-2,-x^5+5*x^3-x^2-5*x+1,-x^6+7*x^4-13*x^2-2*x+5,x^6-8*x^4+17*x^2-8,x^3-4*x,-3*x^6-2*x^5+19*x^4+9*x^3-32*x^2-10*x+11,-x^6+5*x^4-x^3-5*x^2+x,-x^6+x^5+8*x^4-4*x^3-16*x^2+x+5,-x^5+6*x^3-x^2-8*x+1,1,-2*x^6-2*x^5+12*x^4+8*x^3-19*x^2-7*x+5,-x^6+x^5+6*x^4-6*x^3-6*x^2+6*x-3,x^4-6*x^2+4,x^6-9*x^4-x^3+20*x^2+2*x-7]];
E[533,4] = [x^11+2*x^10-14*x^9-26*x^8+64*x^7+103*x^6-117*x^5-149*x^4+65*x^3+71*x^2+5*x-1, [112,112*x,21*x^10+49*x^9-301*x^8-637*x^7+1463*x^6+2520*x^5-3087*x^4-3612*x^3+2345*x^2+1638*x-175,112*x^2-224,32*x^10+66*x^9-436*x^8-854*x^7+1880*x^6+3326*x^5-3026*x^4-4552*x^3+1120*x^2+1866*x+246,7*x^10-7*x^9-91*x^8+119*x^7+357*x^6-630*x^5-483*x^4+980*x^3+147*x^2-280*x+21,-53*x^10-115*x^9+737*x^8+1491*x^7-3343*x^6-5846*x^5+6113*x^4+8164*x^3-3577*x^2-3616*x-71,112*x^3-448*x,-126*x^10-224*x^9+1778*x^8+2828*x^7-8274*x^6-10598*x^5+15764*x^4+14000*x^3-9926*x^2-6006*x+252,2*x^10+12*x^9-22*x^8-168*x^7+30*x^6+718*x^5+216*x^4-960*x^3-406*x^2+86*x+32,35*x^10+21*x^9-567*x^8-245*x^7+3129*x^6+714*x^5-6839*x^4-252*x^3+4655*x^2-112*x-399,-63*x^10-91*x^9+903*x^8+1183*x^7-4277*x^6-4704*x^5+8197*x^4+6916*x^3-5467*x^2-3290*x+357,-112,-9*x^10-5*x^9+113*x^8+49*x^7-387*x^6-88*x^5+267*x^4-132*x^3+147*x^2+194*x-53,4*x^10+10*x^9-16*x^8-70*x^7-220*x^6-118*x^5+1118*x^4+936*x^3-1372*x^2-906*x+22,112*x^4-672*x^2+448,2*x^10+26*x^9+62*x^8-322*x^7-922*x^6+1264*x^5+3002*x^4-2248*x^3-2198*x^2+1052*x-38]];
E[533,5] = [x^8-x^7-10*x^6+8*x^5+31*x^4-22*x^3-28*x^2+22*x-3, [1,x,x^7-x^6-9*x^5+6*x^4+24*x^3-10*x^2-17*x+6,x^2-2,x^7-2*x^6-7*x^5+12*x^4+14*x^3-18*x^2-6*x+4,x^6-2*x^5-7*x^4+12*x^3+11*x^2-16*x+3,x^6-2*x^5-6*x^4+10*x^3+9*x^2-10*x,x^3-4*x,x^7-x^6-8*x^5+5*x^4+18*x^3-7*x^2-9*x+6,-x^7+3*x^6+4*x^5-17*x^4+4*x^3+22*x^2-18*x+3,-x^6+x^5+8*x^4-6*x^3-16*x^2+9*x+3,-x^7+11*x^5-37*x^3+4*x^2+37*x-12,-1,x^7-2*x^6-6*x^5+10*x^4+9*x^3-10*x^2,x^7-3*x^6-5*x^5+18*x^4+3*x^3-27*x^2+7*x+6,x^4-6*x^2+4,-3*x^6+6*x^5+19*x^4-35*x^3-26*x^2+48*x-9]];

E[534,1] = [x, [1,1,-1,1,-2,-1,-2,1,1,-2,-4,-1,0,-2,2,1,-2]];
E[534,2] = [x^2-x-1, [1,1,-1,1,x,-1,2*x,1,1,x,-3*x+3,-1,-3*x+1,2*x,-x,1,2*x+2]];
E[534,3] = [x^4-x^3-13*x^2+16*x-4, [4,4,4,4,4*x,4,-3*x^3+x^2+37*x-18,4,4,4*x,4*x^3-52*x+24,4,-x^3-x^2+7*x+2,-3*x^3+x^2+37*x-18,4*x,4,6*x^3-2*x^2-82*x+44]];
E[534,4] = [x^4-3*x^3-13*x^2+32*x+12, [8,-8,8,8,8*x,-8,-x^3-3*x^2+11*x+34,-8,8,-8*x,2*x^3-2*x^2-22*x+12,8,-x^3+5*x^2+11*x-14,x^3+3*x^2-11*x-34,8*x,8,-4*x^3+4*x^2+44*x-24]];
E[534,5] = [x^2-3*x-1, [1,-1,-1,1,x,1,2*x-4,-1,1,-x,x+1,-1,-x+1,-2*x+4,-x,1,-2*x+6]];
E[534,6] = [x^2-4*x+2, [1,-1,-1,1,-2,1,x,-1,1,2,-2*x+2,-1,-3*x+6,-x,2,1,4*x-8]];

E[535,1] = [x^3+2*x^2-x-1, [1,x,0,x^2-2,1,0,-x-1,-2*x^2-3*x+1,-3,x,-3*x^2-4*x+1,0,2*x^2+4*x-2,-x^2-x,0,-x^2-x+2,-x^2-4*x-3]];
E[535,2] = [x^8+4*x^7-4*x^6-27*x^5-3*x^4+49*x^3+14*x^2-24*x-8, [4,4*x,-2*x^7-6*x^6+12*x^5+38*x^4-20*x^3-60*x^2+14*x+20,4*x^2-8,-4,2*x^7+4*x^6-16*x^5-26*x^4+38*x^3+42*x^2-28*x-16,2*x^7+8*x^6-8*x^5-50*x^4-2*x^3+70*x^2+8*x-16,4*x^3-16*x,x^7+2*x^6-8*x^5-11*x^4+23*x^3+11*x^2-28*x,-4*x,x^7+4*x^6-4*x^5-27*x^4+x^3+53*x^2-6*x-32,4*x^6+4*x^5-32*x^4-16*x^3+64*x^2+4*x-24,x^7+4*x^6-19*x^4-23*x^3+13*x^2+22*x,4*x^5+4*x^4-28*x^3-20*x^2+32*x+16,2*x^7+6*x^6-12*x^5-38*x^4+20*x^3+60*x^2-14*x-20,4*x^4-24*x^2+16,-4*x^6-12*x^5+16*x^4+60*x^3+4*x^2-48*x-24]];
E[535,3] = [x^9-5*x^8+31*x^6-29*x^5-47*x^4+59*x^3+2*x^2-8*x-1, [1,x,x^8-4*x^7-3*x^6+25*x^5-9*x^4-39*x^3+25*x^2+4*x-1,x^2-2,-1,x^8-3*x^7-6*x^6+20*x^5+8*x^4-34*x^3+2*x^2+7*x+1,x^8-6*x^7+3*x^6+36*x^5-47*x^4-49*x^3+84*x^2-10*x-7,x^3-4*x,-2*x^3+2*x^2+8*x-1,-x,x^8-5*x^7+30*x^5-27*x^4-41*x^3+50*x^2-7*x-1,2*x^7-5*x^6-13*x^5+31*x^4+21*x^3-45*x^2+x+3,-x^8+5*x^7-30*x^5+28*x^4+40*x^3-56*x^2+11*x+7,-x^8+3*x^7+5*x^6-18*x^5-2*x^4+25*x^3-12*x^2+x+1,-x^8+4*x^7+3*x^6-25*x^5+9*x^4+39*x^3-25*x^2-4*x+1,x^4-6*x^2+4,-2*x^8+10*x^7-x^6-59*x^5+64*x^4+74*x^3-125*x^2+27*x+13]];
E[535,4] = [x^15-4*x^14-18*x^13+85*x^12+103*x^11-685*x^10-108*x^9+2595*x^8-846*x^7-4594*x^6+2565*x^5+3187*x^4-1951*x^3-470*x^2+136*x+24, [3425404,3425404*x,182728*x^14-793904*x^13-3032442*x^12+16649166*x^11+13393358*x^10-131655728*x^9+23747122*x^8+483724480*x^7-317244088*x^6-805612798*x^5+745118806*x^4+467633878*x^3-518190552*x^2-1115262*x+26049796,3425404*x^2-6850808,3425404,-62992*x^14+256662*x^13+1117286*x^12-5427626*x^11-6487048*x^10+43481746*x^9+9545320*x^8-162656200*x^7+33839634*x^6+276421486*x^5-114720258*x^4-161688224*x^3+84766898*x^2+1198788*x-4385472,-142106*x^14+371016*x^13+2876760*x^12-7552670*x^11-21936522*x^10+58429630*x^9+78411924*x^8-215536846*x^7-132371756*x^6+387294676*x^5+93736218*x^4-306905530*x^3-20644386*x^2+81708480*x+1530464,3425404*x^3-13701616*x,198517*x^14-660272*x^13-3744228*x^12+14281667*x^11+23206445*x^10-117229277*x^9-36531986*x^8+452059655*x^7-135858546*x^6-812252296*x^5+488218299*x^4+563183193*x^3-387956119*x^2-67376572*x+30824128,3425404*x,455253*x^14-1701562*x^13-8461512*x^12+35975803*x^11+52532931*x^10-287182099*x^9-94054500*x^8+1067397319*x^7-219136888*x^6-1809032536*x^5+884471359*x^4+1096482651*x^3-696818877*x^2-33401050*x+29781240,-360762*x^14+1571238*x^13+5991578*x^12-33297204*x^11-26454490*x^10+266053640*x^9-46686204*x^8-986900558*x^7+621524414*x^6+1658079818*x^5-1451170332*x^4-973398250*x^3+1007973652*x^2+6411964*x-50587784,65165*x^14-477782*x^13-488252*x^12+9704795*x^11-6387949*x^10-74192835*x^9+85498040*x^8+263302319*x^7-352289404*x^6-420678300*x^5+589800523*x^4+219795207*x^3-329390333*x^2+18156578*x+10920344,-197408*x^14+318852*x^13+4526340*x^12-7299604*x^11-38912980*x^10+63064476*x^9+153228224*x^8-252593432*x^7-265540288*x^6+458238108*x^5+145986292*x^4-297893192*x^3+14918660*x^2+20856880*x+3410544,182728*x^14-793904*x^13-3032442*x^12+16649166*x^11+13393358*x^10-131655728*x^9+23747122*x^8+483724480*x^7-317244088*x^6-805612798*x^5+745118806*x^4+467633878*x^3-518190552*x^2-1115262*x+26049796,3425404*x^4-20552424*x^2+13701616,-216256*x^14+1123884*x^13+3323260*x^12-23488328*x^11-11266048*x^10+185876492*x^9-56290744*x^8-690409688*x^7+450973388*x^6+1190667820*x^5-968582412*x^4-769107452*x^3+645877228*x^2+53797368*x-23632632]];

E[536,1] = [x^2+x-1, [1,0,x,0,-1,0,-x-1,0,-x-2,0,-4*x-1,0,-x-3,0,-x,0,2*x-4]];
E[536,2] = [x^3+3*x^2-x-2, [1,0,x,0,-x^2-3*x,0,x^2+2*x-2,0,x^2-3,0,x^2+3*x-2,0,-x^2-4*x-2,0,-x-2,0,x^2+3*x+1]];
E[536,3] = [x^3-3*x^2-7*x+20, [1,0,x,0,x^2-x-6,0,-x^2+8,0,x^2-3,0,-x^2+x+8,0,-x^2+6,0,2*x^2+x-20,0,2*x^2-14]];
E[536,4] = [x^4+3*x^3-2*x^2-7*x-2, [1,0,x,0,-x^3-2*x^2+5*x+4,0,2*x^3+4*x^2-6*x-6,0,x^2-3,0,-2*x^3-5*x^2+6*x+8,0,-x^2+6,0,x^3+3*x^2-3*x-2,0,-x^2-3*x+5]];
E[536,5] = [x^5-4*x^4-2*x^3+16*x^2-x-15, [1,0,x,0,-x^4+3*x^3+3*x^2-6*x-3,0,x^3-3*x^2-2*x+7,0,x^2-3,0,-x^4+2*x^3+6*x^2-5*x-7,0,2*x^4-6*x^3-7*x^2+14*x+10,0,-x^4+x^3+10*x^2-4*x-15,0,2*x^4-4*x^3-15*x^2+13*x+23]];

E[537,1] = [x, [1,-2,1,2,1,-2,-2,0,1,-2,2,2,-1,4,1,-4,3]];
E[537,2] = [x^2-x-4, [1,x,1,x+2,-x+1,x,-x+2,x+4,1,-4,2,x+2,-1,x-4,-x+1,3*x,-x-1]];
E[537,3] = [x^6+2*x^5-6*x^4-10*x^3+8*x^2+8*x-4, [2,2*x,-2,2*x^2-4,-x^5-2*x^4+4*x^3+8*x^2-2,-2*x,x^5+3*x^4-4*x^3-16*x^2-2*x+8,2*x^3-8*x,2,-2*x^4-2*x^3+8*x^2+6*x-4,3*x^5+5*x^4-16*x^3-20*x^2+10*x+4,-2*x^2+4,-2*x^5-4*x^4+12*x^3+18*x^2-12*x-10,x^5+2*x^4-6*x^3-10*x^2+4,x^5+2*x^4-4*x^3-8*x^2+2,2*x^4-12*x^2+8,-2*x^5-2*x^4+14*x^3+8*x^2-20*x-2]];
E[537,4] = [x^8-2*x^7-13*x^6+22*x^5+54*x^4-66*x^3-72*x^2+32*x+12, [4,4*x,-4,4*x^2-8,2*x^6-2*x^5-20*x^4+12*x^3+52*x^2-8*x-20,-4*x,-x^7+x^6+12*x^5-10*x^4-42*x^3+28*x^2+36*x-4,4*x^3-16*x,4,2*x^7-2*x^6-20*x^5+12*x^4+52*x^3-8*x^2-20*x,-2*x^5+2*x^4+16*x^3-8*x^2-24*x-8,-4*x^2+8,-x^7+x^6+10*x^5-4*x^4-30*x^3-8*x^2+28*x+8,-x^7-x^6+12*x^5+12*x^4-38*x^3-36*x^2+28*x+12,-2*x^6+2*x^5+20*x^4-12*x^3-52*x^2+8*x+20,4*x^4-24*x^2+16,-4*x^3+24*x+4]];
E[537,5] = [x^2-4*x-4, [1,2,1,2,1,2,x,0,1,2,-x,2,-2*x+3,2*x,1,-4,3]];
E[537,6] = [x, [1,1,-1,-1,0,-1,-1,-3,1,0,6,1,7,-1,0,-1,-2]];
E[537,7] = [x, [1,1,1,-1,4,1,1,-3,1,4,2,-1,-1,1,4,-1,-6]];
E[537,8] = [x^6+10*x^5+22*x^4-28*x^3-72*x^2-36*x-4, [10,-2*x^5-21*x^4-47*x^3+70*x^2+154*x+34,10,3*x^5+29*x^4+58*x^3-100*x^2-206*x-36,6*x^5+58*x^4+106*x^3-230*x^2-312*x-82,-2*x^5-21*x^4-47*x^3+70*x^2+154*x+34,10*x,-2*x^5-16*x^4-22*x^3+60*x^2+104*x-16,10,-7*x^5-61*x^4-77*x^3+300*x^2+174*x-26,-9*x^5-82*x^4-124*x^3+370*x^2+318*x-12,3*x^5+29*x^4+58*x^3-100*x^2-206*x-36,-7*x^5-61*x^4-102*x^3+200*x^2+334*x+94,-x^5-3*x^4+14*x^3+10*x^2-38*x-8,6*x^5+58*x^4+106*x^3-230*x^2-312*x-82,4*x^5+42*x^4+94*x^3-140*x^2-308*x-68,-4*x^5-42*x^4-84*x^3+180*x^2+248*x-2]];
E[537,9] = [x, [1,0,1,-2,-3,0,2,0,1,0,6,-2,-1,0,-3,4,3]];
E[537,10] = [x, [1,0,1,-2,1,0,0,0,1,0,0,-2,3,0,1,4,3]];

E[538,1] = [x^2-x-3, [1,1,x,1,-x+1,x,-1,1,x,-x+1,3,x,5,-1,-3,1,-2*x-1]];
E[538,2] = [x^2+x-1, [1,1,x,1,-x-3,x,-2*x-3,1,-x-2,-x-3,2*x-1,x,-1,-2*x-3,-2*x-1,1,2*x-1]];
E[538,3] = [x^7-x^6-16*x^5+19*x^4+63*x^3-87*x^2-10*x+12, [182,182,182*x,182,4*x^6-40*x^5-68*x^4+506*x^3+248*x^2-1306*x+248,182*x,25*x^6+23*x^5-334*x^4-159*x^3+913*x^2-291*x+640,182,182*x^2-546,4*x^6-40*x^5-68*x^4+506*x^3+248*x^2-1306*x+248,-47*x^6+15*x^5+708*x^4-349*x^3-2641*x^2+1741*x+726,182*x,18*x^6+2*x^5-306*x^4+2*x^3+1298*x^2-326*x-704,25*x^6+23*x^5-334*x^4-159*x^3+913*x^2-291*x+640,-36*x^6-4*x^5+430*x^4-4*x^3-958*x^2+288*x-48,182,-4*x^6+40*x^5+68*x^4-688*x^3-248*x^2+2580*x-248]];
E[538,4] = [x^4-3*x^3-3*x^2+10*x-4, [2,-2,2*x,2,-2*x^3+4*x^2+10*x-8,-2*x,-x^3+3*x^2+3*x-8,-2,2*x^2-6,2*x^3-4*x^2-10*x+8,-x^3+x^2+5*x+2,2*x,-2*x^2+2*x+8,x^3-3*x^2-3*x+8,-2*x^3+4*x^2+12*x-8,2,6*x^3-12*x^2-28*x+32]];
E[538,5] = [x^7+4*x^6-6*x^5-30*x^4+31*x^2+2*x-3, [179,-179,179*x,179,-74*x^6-262*x^5+516*x^4+1891*x^3-506*x^2-1689*x+62,-179*x,90*x^6+338*x^5-555*x^4-2445*x^3+x^2+2030*x+181,-179,179*x^2-537,74*x^6+262*x^5-516*x^4-1891*x^3+506*x^2+1689*x-62,38*x^6+91*x^5-473*x^4-734*x^3+1687*x^2+519*x-1101,179*x,25*x^6+74*x^5-184*x^4-351*x^3+408*x^2-530*x-437,-90*x^6-338*x^5+555*x^4+2445*x^3-x^2-2030*x-181,34*x^6+72*x^5-329*x^4-506*x^3+605*x^2+210*x-222,179,-38*x^6-91*x^5+473*x^4+734*x^3-1687*x^2-877*x+385]];

E[539,1] = [x, [1,-2,1,2,-1,-2,0,0,-2,2,1,2,-4,0,-1,-4,2]];
E[539,2] = [x, [1,1,-2,-1,2,-2,0,-3,1,2,1,2,-4,0,-4,-1,-4]];
E[539,3] = [x^2-5, [1,x,x-1,3,2,-x+5,0,x,-2*x+3,2*x,-1,3*x-3,-x-1,0,2*x-2,-1,x+1]];
E[539,4] = [x^2-2, [1,-1,x,-1,-x,-x,0,3,-1,x,-1,-x,0,0,-2,-1,0]];
E[539,5] = [x^4-7*x^2+8, [1,x^2-3,x,x^2-1,-x^3+4*x,x^3-3*x,0,x^2+1,x^2-3,-4*x,-1,x^3-x,-x^3+7*x,0,-3*x^2+8,3*x^2-9,-x^3+5*x]];
E[539,6] = [x^3+3*x^2-1, [1,-x^2-2*x+1,x,-x^2-3*x,x^2+3*x-2,x^2+x-1,0,x^2+2*x,x^2-3,3*x^2+6*x-4,1,-1,2*x^2+5*x-2,0,-2*x+1,2*x^2+7*x-1,-3*x^2-10*x]];
E[539,7] = [x^3-3*x^2+1, [1,-x^2+2*x+1,x,-x^2+3*x,-x^2+3*x+2,-x^2+x+1,0,x^2-2*x,x^2-3,-3*x^2+6*x+4,1,1,-2*x^2+5*x+2,0,2*x+1,2*x^2-7*x-1,3*x^2-10*x]];
E[539,8] = [x^3+x^2-4*x-3, [1,x^2-3,x,-x^2-x+4,-x^2-x+2,-x^2+x+3,0,x^2-6,x^2-3,x^2-6,-1,-3,-x-4,0,-2*x-3,-2*x^2+x+7,-x^2+2]];
E[539,9] = [x^3-x^2-4*x+3, [1,x^2-3,x,-x^2+x+4,x^2-x-2,x^2+x-3,0,x^2-6,x^2-3,-x^2+6,-1,3,-x+4,0,2*x-3,-2*x^2-x+7,x^2-2]];
E[539,10] = [x^10-26*x^8+245*x^6-1038*x^4+1884*x^2-968, [88,22*x^8-484*x^6+3454*x^4-9020*x^2+5544,88*x,-110*x^8+2376*x^6-16478*x^4+41360*x^2-23584,-71*x^9+1516*x^7-10355*x^5+25672*x^3-14876*x,22*x^9-484*x^7+3454*x^5-9020*x^3+5544*x,0,264*x^8-5676*x^6+39160*x^4-98252*x^2+57728,88*x^2-264,103*x^9-2216*x^7+15291*x^5-38252*x^3+22100*x,88,-110*x^9+2376*x^7-16478*x^5+41360*x^3-23584*x,31*x^9-652*x^7+4339*x^5-10288*x^3+5252*x,0,-330*x^8+7040*x^6-48026*x^4+118888*x^2-68728,-352*x^8+7568*x^6-52184*x^4+130416*x^2-74712,-61*x^9+1300*x^7-8873*x^5+22112*x^3-13196*x]];
E[539,11] = [x, [1,0,-1,-2,-3,0,0,0,-2,0,-1,2,4,0,3,4,6]];
E[539,12] = [x, [1,0,3,-2,1,0,0,0,6,0,-1,-6,4,0,3,4,-2]];

E[540,1] = [x, [1,0,0,0,1,0,-4,0,0,0,-6,0,-4,0,0,0,3]];
E[540,2] = [x, [1,0,0,0,1,0,-1,0,0,0,6,0,-1,0,0,0,0]];
E[540,3] = [x, [1,0,0,0,1,0,2,0,0,0,0,0,2,0,0,0,-3]];
E[540,4] = [x, [1,0,0,0,-1,0,-1,0,0,0,-6,0,-1,0,0,0,0]];
E[540,5] = [x, [1,0,0,0,-1,0,2,0,0,0,0,0,2,0,0,0,3]];
E[540,6] = [x, [1,0,0,0,-1,0,-4,0,0,0,6,0,-4,0,0,0,-3]];

E[541,1] = [x^24-3*x^23-31*x^22+97*x^21+402*x^20-1333*x^19-2825*x^18+10187*x^17+11576*x^16-47520*x^15-27272*x^14+139733*x^13+31933*x^12-258608*x^11-4817*x^10+293651*x^9-26127*x^8-196645*x^7+21140*x^6+74903*x^5-4562*x^4-14861*x^3-379*x^2+1179*x+153, [49952994319061080,49952994319061080*x,14338980713544416*x^23-52122589585273516*x^22-411082568998233348*x^21+1649408690740288656*x^20+4708802476712262704*x^19-22026063624950931280*x^18-26450156899068647420*x^17+161851818356888760052*x^16+63034109394496084000*x^15-714156087033690377540*x^14+61203884872826035208*x^13+1933658128273605968604*x^12-758675579298118991004*x^11-3144529708125276747976*x^10+1888011050748107656236*x^9+2881150802489953596308*x^8-2131076250981584275416*x^7-1345785464317451409152*x^6+1087961161743352203636*x^5+322583665897540683040*x^4-240988356316047549392*x^3-43803723603144737840*x^2+18619098647422293436*x+3284289084493868956,49952994319061080*x^2-99905988638122160,45167585389775419*x^23-166091077005862014*x^22-1287594507075157057*x^21+5253462976261314784*x^20+14595121948137837166*x^19-70100654466263917105*x^18-80052652390866997920*x^17+514464063335512301263*x^16+173804438793932389365*x^15-2265210598381310955955*x^14+305821612417581679267*x^13+6110562567096488857526*x^12-2708272285514998844261*x^11-9868409320708365399899*x^10+6492008263013162942374*x^9+8914614181658761751297*x^8-7249911849041455581374*x^7-4034640411589558805273*x^6+3706901269514284030259*x^5+917751838675318761370*x^4-830369306608999194568*x^3-123892810479978852175*x^2+65363769205706182744*x+10648682253081180039,-9105647444640268*x^23+33425833121643548*x^22+258527561526480304*x^21-1055467770132592528*x^20-2912202333796224752*x^19+14057463616694327780*x^18+15780621828011794260*x^17-102953931345494075616*x^16-32767723526059729220*x^15+452256566892609348360*x^14-69970663772095912324*x^13-1216562250423732827132*x^12+563645416243017584952*x^11+1957081920845251108108*x^10-1329505223023077706508*x^9-1756441701878809318584*x^8+1473903398097490275168*x^7+784835109459023249396*x^6-751449006489076708608*x^5-175573926300857923600*x^4+169287868780838828336*x^3+24053572337855627100*x^2-13621369176774997508*x-2193864049172295648,47112189255010052*x^23-169890395253967572*x^22-1349865196748096976*x^21+5372841860017530672*x^20+15441025262461204088*x^19-71679032801379685140*x^18-86430536739594798660*x^17+525902003169843261344*x^16+203148029304467101660*x^15-2314674590937533313080*x^14+220179935236649745796*x^13+6240366355143266827828*x^12-2546654335545702123368*x^11-10068170285894374388212*x^10+6289150751073698470572*x^9+9077166202000910832136*x^8-7071293442207201130832*x^7-4087879624436693195324*x^6+3598841756075528783632*x^5+917831101285816608920*x^4-797858751221479532944*x^3-120479410695957353900*x^2+62351316050334800892*x+10094435423665924952,49952994319061080*x^3-199811977276244320*x,28634862003130800*x^23-108894863294032160*x^22-809142261046849720*x^21+3442824879579712320*x^20+9029688998342099040*x^19-45912386576311302880*x^18-47821930464601758920*x^17+336653966451921142760*x^16+89114559451716390800*x^15-1480320270341962594680*x^14+284408595687533165000*x^13+3984566575643659249360*x^12-1953286346682136245680*x^11-6410436644951496756920*x^10+4478634384283192855400*x^9+5748486481580059130480*x^8-4893675135510688900480*x^7-2562373968097751935720*x^6+2454004554989302266960*x^5+569913096594928517760*x^4-535752370267096037720*x^3-75544134220278786160*x^2+40840717027514725880*x+6477985679959356520,-30588320836535757*x^23+112600640007880932*x^22+872207193453099141*x^21-3562247378551881272*x^20-9892263141693283578*x^19+47545776335248560755*x^18+54341870969870107910*x^17-349055529678107860979*x^16-118846940659183045075*x^15+1537632001167536906235*x^14-200839642172999765601*x^13-4150608789766697299188*x^12+1812289601770676156853*x^11+6709580521835711135697*x^10-4348892435634179813472*x^9-6069818345562793209161*x^8+4847339417382828463982*x^7+2752058514374431672599*x^6-2465435809775029447987*x^5-624314782060843733090*x^4+547342675997473649584*x^3+82482284068431066545*x^2-42603900921464038962*x-6910640564635639107,-10191973395750317*x^23+39671238069785492*x^22+284226050210429021*x^21-1249512512363835912*x^20-3095469057424406218*x^19+16579785838967772475*x^18+15449123146037213750*x^17-120740544464383528779*x^16-20211130392364675595*x^15+525711661241675263235*x^14-152005588067556507601*x^13-1393790960519391868068*x^12+833564597302530263373*x^11+2185484273447411286017*x^10-1822706367876641484152*x^9-1863889541914057150561*x^8+1958695254634367748102*x^7+740119863962912152879*x^6-982453181099046047147*x^5-133334668396898928370*x^4+219527652244576171344*x^3+18493059137666183305*x^2-17730605420745487322*x-2514726681156003267,-22569070639366088*x^23+80497669913179028*x^22+649945169993980164*x^21-2550549442531414328*x^20-7497969380435674872*x^19+34109295046804899720*x^18+42705612971193629340*x^17-251064385420681506956*x^16-106512018465688355000*x^15+1110012293185055453860*x^14-66610585787466329104*x^13-3012900200454496674212*x^12+1119639805077958663172*x^11+4915692289486643618488*x^10-2858581325608965292588*x^9-4526301457668533199484*x^8+3256407569670906299368*x^7+2132615309125521375216*x^6-1669455939241672336868*x^5-517419426656691440360*x^4+370711258295151703136*x^3+70535037647995816600*x^2-28696503006786006548*x-5175414109957776908,-13006838876655528*x^23+50289276815251348*x^22+361733909028189124*x^21-1584018825065051688*x^20-3915927738429019912*x^19+21014654939463861840*x^18+19216153065732496900*x^17-152949292683105912356*x^16-21881170793174989920*x^15+665080173628162307900*x^14-211842924850548108384*x^13-1758459586397516890412*x^12+1111473848220636370372*x^11+2741292115319792750008*x^10-2395783564921959765148*x^9-2306805793159451047164*x^8+2543275035705673039808*x^7+883770298587328438896*x^6-1250394198680047542068*x^5-146264467060875856920*x^4+268576595782132438856*x^3+18376706976464448720*x^2-20090771422990105188*x-2547237251428923268,-28553827488937416*x^23+110612670157214636*x^22+802959502281555628*x^21-3498074818052836816*x^20-8878484524451285824*x^19+46661397905808598240*x^18+45970131229055861620*x^17-342222673511529260292*x^16-75903357539455642040*x^15+1505023560599283883940*x^14-342761186027052768288*x^13-4051087875025938113884*x^12+2115418752965265139404*x^11+6516090166715081891056*x^10-4757375284922045947716*x^9-5840393273541553502228*x^8+5176496831614758480216*x^7+2602890075224616284352*x^6-2611013210482201316036*x^5-582932943840123675720*x^4+579654833822747028872*x^3+80206835777983610600*x^2-45450835707990926356*x-7208164956016537956,33515123423048218*x^23-129342128076881468*x^22-936147327089718454*x^21+4081894255927437848*x^20+10221554947921247452*x^19-54308763238620650230*x^18-51296067742605248680*x^17+397004760687491944986*x^16+69509920860180992750*x^15-1738318998653576603370*x^14+489217675112009522394*x^13+4649715405790680476092*x^12-2721634984198111928062*x^11-7404254862268536304618*x^10+5984385661620531413348*x^9+6516026910402448598014*x^8-6467793438181632597348*x^7-2797777645425334510846*x^6+3272413828172477634098*x^5+597937800795582879020*x^4-736243738114097958816*x^3-86630452889843001810*x^2+59254888958607763408*x+9202022709695718618,49952994319061080*x^4-299717965914366480*x^2+199811977276244320,-57338787998458386*x^23+208417162378979296*x^22+1641884623777523098*x^21-6594330007760694856*x^20-18760234362521139924*x^19+88025590214957465750*x^18+104739142758325533380*x^17-646302278344986943582*x^16-243744186103525865030*x^15+2847271078595346835790*x^14-284455508978350949938*x^13-7686179176304480356384*x^12+3147831223760623273474*x^11+12424737537822177436346*x^10-7740784218273772931056*x^9-11236586758202563248458*x^8+8692636064124864515676*x^7+5084100505457287988862*x^6-4418215555786826436246*x^5-1139309875201254157820*x^4+971835351954820203872*x^3+144073698218947172730*x^2-73708664561699893596*x-11462270400452201886]];
E[541,2] = [x^20+5*x^19-15*x^18-105*x^17+53*x^16+888*x^15+248*x^14-3950*x^13-2525*x^12+10014*x^11+8292*x^10-14513*x^9-13426*x^8+11322*x^7+10779*x^6-4166*x^5-3649*x^4+669*x^3+389*x^2-45*x-9, [1654285911,1654285911*x,-45001332*x^19-644057679*x^18-1247599797*x^17+10973963649*x^16+35237545038*x^15-66053062806*x^14-301226091186*x^13+152645392440*x^12+1262903560236*x^11+37811653266*x^10-2901374251197*x^9-822066795321*x^8+3685384216026*x^7+1479346964172*x^6-2419357312344*x^5-1057012253571*x^4+679847332578*x^3+274876356036*x^2-48545667558*x-13739064636,1654285911*x^2-3308571822,587977450*x^19+3295490846*x^18-6440766846*x^17-63590523654*x^16-11327793070*x^15+479134207380*x^14+429956365655*x^13-1824851482790*x^12-2378833489103*x^11+3724605525885*x^10+6158844147483*x^9-3835063216826*x^8-8325118124245*x^7+1380934636671*x^6+5614844066433*x^5+442163614207*x^4-1544794811089*x^3-297472974900*x^2+100085947697*x+18194856135,-419051019*x^19-1922619777*x^18+6248823789*x^17+37622615634*x^16-26091879990*x^15-290065760850*x^14-25109868960*x^13+1149275196936*x^12+488454991914*x^11-2528223206253*x^10-1475171126637*x^9+3081196332594*x^8+1988852045076*x^7-1934287954716*x^6-1244487802683*x^5+515637472110*x^4+304982247144*x^3-31040149410*x^2-15764124576*x-405011988,-268528042*x^19-1515751550*x^18+2896134678*x^17+29210679840*x^16+5876649664*x^15-220134924324*x^14-199554048641*x^13+843155477312*x^12+1085243354648*x^11-1760411739633*x^10-2761572808398*x^9+1963959039392*x^8+3639917443084*x^7-1025182419060*x^6-2344558654581*x^5+136929297287*x^4+573124374202*x^3+34370036265*x^2-20142780008*x-4156923027,1654285911*x^3-6617143644*x,-487050042*x^19-1982566104*x^18+9362599599*x^17+44758187634*x^16-63729191616*x^15-407753865909*x^14+147191534232*x^13+1938165000939*x^12+291689731356*x^11-5152623763812*x^10-2307221525406*x^9+7546575292476*x^8+4874542601187*x^7-5468934273348*x^6-4401321503673*x^5+1423915701942*x^4+1455078708975*x^3-41853681816*x^2-119490787755*x+1750197786,355603596*x^19+2378894904*x^18-1852891404*x^17-42490597920*x^16-42989768220*x^15+284137958055*x^14+497659444710*x^13-894190427853*x^12-2163400658415*x^11+1283335132083*x^10+4698253515024*x^9-430932880545*x^8-5276146052229*x^7-722964867117*x^6+2891677670907*x^5+600734903961*x^4-690829888950*x^3-128637280353*x^2+44653841385*x+5291797050,-127388508*x^19-588424425*x^18+2008019214*x^17+11369816076*x^16-12131358987*x^15-88097173398*x^14+47482799007*x^13+368240933712*x^12-193096480200*x^11-945811741806*x^10+664049947518*x^9+1603556041746*x^8-1313390944527*x^7-1789326279831*x^6+1230131900577*x^5+1135302629835*x^4-417515345316*x^3-266871199644*x^2+33210154038*x+7656012855,262637982*x^19+1251173862*x^18-3882541767*x^17-25830103281*x^16+11576453946*x^15+210920909364*x^14+96475854258*x^13-874939615941*x^12-857653422459*x^11+1923976616379*x^10+2802257396241*x^9-1993193345376*x^8-4560560749650*x^7+313769202774*x^6+3608585551644*x^5+889889585955*x^4-1110389682855*x^3-402505990257*x^2+77829027273*x+23706670101,313526574*x^19+1791969495*x^18-4316185452*x^17-39646474692*x^16+3476080299*x^15+353027024943*x^14+237210992712*x^13-1634355702396*x^12-1719932484021*x^11+4196975330901*x^10+5452335190641*x^9-5803120033362*x^8-8842781865825*x^7+3666045153570*x^6+6987734921094*x^5-446422414701*x^4-2117867643906*x^3-191017663566*x^2+133208046693*x+12476408256,-173111340*x^19-1131785952*x^18+1015235430*x^17+20108635890*x^16+18317976972*x^15-132959094225*x^14-217530288588*x^13+407210048598*x^12+928628072955*x^11-534938284134*x^10-1933188434154*x^9+34659951192*x^8+2015092072464*x^7+549905110137*x^6-981758525685*x^5-406734451056*x^4+214015296363*x^3+84314628330*x^2-16240684917*x-2416752378,346798726*x^19+2005416542*x^18-4802546361*x^17-44563357083*x^16+4375499303*x^15+398916666333*x^14+259324834544*x^13-1857485171465*x^12-1902232815704*x^11+4795148826096*x^10+6092229895122*x^9-6652304783531*x^8-10014735760480*x^7+4205568632793*x^6+8070956099490*x^5-534010466597*x^4-2536245568219*x^3-172896880665*x^2+183006831896*x+4167663603,1654285911*x^4-9925715466*x^2+6617143644,-643882597*x^19-2884534406*x^18+10604072601*x^17+60031027632*x^16-54898119773*x^15-500353902849*x^14+25214865037*x^13+2173745718917*x^12+756785040587*x^11-5298073388742*x^10-3002844811290*x^9+7157589093107*x^8+5034568046914*x^7-4836504974460*x^6-3912125672130*x^5+1210443639386*x^4+1152122292343*x^3-41894766633*x^2-72729830975*x-1895372976]];

E[542,1] = [x, [1,1,2,1,2,2,0,1,1,2,-4,2,0,0,4,1,-2]];
E[542,2] = [x, [1,1,-1,1,0,-1,-5,1,-2,0,0,-1,-1,-5,0,1,-6]];
E[542,3] = [x^3-3*x^2-x+5, [1,1,x,1,-x^2+5,x,x^2-2*x,1,x^2-3,-x^2+5,-x^2+2*x+3,x,2*x^2-3*x-6,x^2-2*x,-3*x^2+4*x+5,1,-2*x^2+4*x]];
E[542,4] = [x^2+4*x+2, [1,1,-x-3,1,x,-x-3,x+1,1,2*x+4,x,-x-6,-x-3,2*x+1,x+1,x+2,1,-2*x]];
E[542,5] = [x^4+4*x^3-2*x^2-8*x+4, [2,2,x^3+4*x^2-6,2,2*x,x^3+4*x^2-6,-2*x^2-6*x+6,2,-2*x^3-8*x^2+8,2*x,2*x^2+6*x,x^3+4*x^2-6,3*x^3+14*x^2+2*x-14,-2*x^2-6*x+6,2*x^2+2*x-4,2,-2*x^2-4*x+12]];
E[542,6] = [x^3-x^2-5*x-1, [1,-1,x,1,x-1,-x,-x^2+3*x+3,-1,x^2-3,-x+1,-x^2+x,x,5,x^2-3*x-3,x^2-x,1,x^2-4*x-3]];
E[542,7] = [x^6-16*x^4+2*x^3+69*x^2-8*x-82, [61,-61,61*x,61,-13*x^5+3*x^4+151*x^3-89*x^2-304*x+268,-61*x,15*x^5+20*x^4-193*x^3-207*x^2+454*x+526,-61,61*x^2-183,13*x^5-3*x^4-151*x^3+89*x^2+304*x-268,-x^5+19*x^4+21*x^3-279*x^2-14*x+762,61*x,-16*x^5-x^4+214*x^3-11*x^2-529*x-8,-15*x^5-20*x^4+193*x^3+207*x^2-454*x-526,3*x^5-57*x^4-63*x^3+593*x^2+164*x-1066,61,-12*x^5-16*x^4+130*x^3+190*x^2-168*x-372]];
E[542,8] = [x^3+x^2-3*x-1, [1,-1,x,1,-x^2-x+2,-x,-x-2,-1,x^2-3,x^2+x-2,2*x^2+x-3,x,x^2+2*x-4,x+2,-x-1,1,x^2-2*x-5]];

E[543,1] = [x^3+2*x^2-x-1, [1,x,1,x^2-2,-x-1,x,-x^2-x-1,-2*x^2-3*x+1,1,-x^2-x,x^2+x-2,x^2-2,x^2+3*x-3,x^2-2*x-1,-x-1,-x^2-x+2,x-3]];
E[543,2] = [x^5+x^4-6*x^3-8*x^2+1, [1,x,1,x^2-2,-x^4+5*x^2+2*x+1,x,-2*x^4-2*x^3+13*x^2+15*x-1,x^3-4*x,1,x^4-x^3-6*x^2+x+1,x^4+x^3-6*x^2-9*x-1,x^2-2,x^4+x^3-6*x^2-7*x+2,x^3-x^2-x+2,-x^4+5*x^2+2*x+1,x^4-6*x^2+4,x^4-7*x^2+7]];
E[543,3] = [x^7+4*x^6-3*x^5-23*x^4-5*x^3+32*x^2+15*x-1, [2,2*x,-2,2*x^2-4,-x^5-2*x^4+4*x^3+5*x^2-3*x-1,-2*x,x^6+4*x^5-2*x^4-19*x^3-5*x^2+19*x+6,2*x^3-8*x,2,-x^6-2*x^5+4*x^4+5*x^3-3*x^2-x,-2*x^6-6*x^5+10*x^4+32*x^3-12*x^2-38*x-4,-2*x^2+4,x^5+2*x^4-4*x^3-7*x^2-x+1,x^5+4*x^4-13*x^2-9*x+1,x^5+2*x^4-4*x^3-5*x^2+3*x+1,2*x^4-12*x^2+8,-2*x^4-2*x^3+10*x^2+2*x-12]];
E[543,4] = [x^8-3*x^7-12*x^6+43*x^5+24*x^4-169*x^3+84*x^2+113*x-73, [4,4*x,4,4*x^2-8,-x^7+2*x^6+14*x^5-27*x^4-55*x^3+100*x^2+46*x-67,4*x,2*x^7-3*x^6-29*x^5+43*x^4+116*x^3-169*x^2-85*x+105,4*x^3-16*x,4,-x^7+2*x^6+16*x^5-31*x^4-69*x^3+130*x^2+46*x-73,-4*x^7+4*x^6+56*x^5-60*x^4-220*x^3+240*x^2+176*x-136,4*x^2-8,5*x^7-5*x^6-71*x^5+78*x^4+279*x^3-329*x^2-205*x+212,3*x^7-5*x^6-43*x^5+68*x^4+169*x^3-253*x^2-121*x+146,-x^7+2*x^6+14*x^5-27*x^4-55*x^3+100*x^2+46*x-67,4*x^4-24*x^2+16,-8*x^7+10*x^6+114*x^5-146*x^4-452*x^3+578*x^2+338*x-338]];
E[543,5] = [x^8-3*x^7-6*x^6+21*x^5+5*x^4-35*x^3+10*x^2+4*x-1, [1,x,-1,x^2-2,-x^7+2*x^6+8*x^5-14*x^4-18*x^3+24*x^2+9*x-4,-x,x^7-3*x^6-6*x^5+20*x^4+6*x^3-30*x^2+7*x+1,x^3-4*x,1,-x^7+2*x^6+7*x^5-13*x^4-11*x^3+19*x^2-1,x^7-2*x^6-7*x^5+13*x^4+11*x^3-19*x^2+2*x+1,-x^2+2,-2*x^7+6*x^6+13*x^5-42*x^4-19*x^3+70*x^2-x-7,-x^5+x^4+5*x^3-3*x^2-3*x+1,x^7-2*x^6-8*x^5+14*x^4+18*x^3-24*x^2-9*x+4,x^4-6*x^2+4,x^7-2*x^6-8*x^5+14*x^4+18*x^3-24*x^2-9*x+8]];

E[544,1] = [x^2-2, [1,0,x,0,-2,0,-3*x,0,-1,0,x,0,-4,0,-2*x,0,-1]];
E[544,2] = [x^2-10, [1,0,x,0,-2,0,x,0,7,0,x,0,-4,0,-2*x,0,-1]];
E[544,3] = [x^3+2*x^2-4*x-4, [1,0,x,0,-x^2-2*x+2,0,x^2+x-4,0,x^2-3,0,-x-4,0,x^2-6,0,-2*x-4,0,1]];
E[544,4] = [x^3-2*x^2-4*x+4, [1,0,x,0,-x^2+2*x+2,0,-x^2+x+4,0,x^2-3,0,-x+4,0,x^2-6,0,-2*x+4,0,1]];
E[544,5] = [x, [1,0,-2,0,2,0,-2,0,1,0,2,0,2,0,-4,0,1]];
E[544,6] = [x, [1,0,-2,0,4,0,4,0,1,0,-2,0,2,0,-8,0,-1]];
E[544,7] = [x, [1,0,2,0,2,0,2,0,1,0,-2,0,2,0,4,0,1]];
E[544,8] = [x, [1,0,2,0,4,0,-4,0,1,0,2,0,2,0,8,0,-1]];
E[544,9] = [x, [1,0,0,0,0,0,2,0,-3,0,4,0,2,0,0,0,-1]];
E[544,10] = [x, [1,0,0,0,0,0,-2,0,-3,0,-4,0,2,0,0,0,-1]];

E[545,1] = [x, [1,1,0,-1,1,0,-4,-3,-3,1,4,0,-6,-4,0,-1,-2]];
E[545,2] = [x^2-2*x-1, [1,x,-x-1,2*x-1,-1,-3*x-1,-x+3,x+2,4*x-1,-x,3*x-3,-5*x-1,2,x-1,x+1,3,-2*x+2]];
E[545,3] = [x^5-x^4-4*x^3+3*x^2+3*x-1, [1,x,-x^2+2,x^2-2,-1,-x^3+2*x,-x^4+x^3+4*x^2-3*x-4,x^3-4*x,x^4-4*x^2+1,-x,x^4-3*x^2-2*x,-x^4+4*x^2-4,2*x^4-3*x^3-6*x^2+6*x+2,-x-1,x^2-2,x^4-6*x^2+4,x^4-2*x^2-2]];
E[545,4] = [x^11+3*x^10-17*x^9-52*x^8+98*x^7+305*x^6-228*x^5-681*x^4+257*x^3+460*x^2-215*x-3, [4,4*x,5*x^10+9*x^9-82*x^8-149*x^7+432*x^6+804*x^5-746*x^4-1481*x^3+165*x^2+541*x-2,4*x^2-8,-4,-6*x^10+3*x^9+111*x^8-58*x^7-721*x^6+394*x^5+1924*x^4-1120*x^3-1759*x^2+1073*x+15,-2*x^10+15*x^9+49*x^8-258*x^7-433*x^6+1492*x^5+1622*x^4-3258*x^3-2085*x^2+2057*x+17,4*x^3-16*x,-8*x^10-5*x^9+139*x^8+78*x^7-817*x^6-374*x^5+1834*x^4+454*x^3-1233*x^2+231*x+13,-4*x,-x^10+5*x^9+22*x^8-87*x^7-178*x^6+510*x^5+624*x^4-1137*x^3-773*x^2+749*x+18,11*x^10-9*x^9-206*x^8+165*x^7+1360*x^6-1052*x^5-3714*x^4+2745*x^3+3503*x^2-2357*x-14,-x^10-17*x^9+2*x^8+291*x^7+146*x^6-1662*x^5-1038*x^4+3499*x^3+1799*x^2-1995*x-52,21*x^10+15*x^9-362*x^8-237*x^7+2102*x^6+1166*x^5-4620*x^4-1571*x^3+2977*x^2-413*x-6,-5*x^10-9*x^9+82*x^8+149*x^7-432*x^6-804*x^5+746*x^4+1481*x^3-165*x^2-541*x+2,4*x^4-24*x^2+16,2*x^10+18*x^9-20*x^8-306*x^7-32*x^6+1732*x^5+740*x^4-3594*x^3-1522*x^2+1990*x+24]];
E[545,5] = [x^5+3*x^4-2*x^3-11*x^2-7*x-1, [1,x,-2*x^4-4*x^3+7*x^2+14*x+2,x^2-2,1,2*x^4+3*x^3-8*x^2-12*x-2,-x^4-3*x^3+2*x^2+11*x+4,x^3-4*x,5*x^4+12*x^3-16*x^2-44*x-11,x,3*x^4+6*x^3-11*x^2-22*x-6,x^4+4*x^3-4*x^2-16*x-2,2*x^4+5*x^3-6*x^2-18*x-6,-3*x-1,-2*x^4-4*x^3+7*x^2+14*x+2,x^4-6*x^2+4,-x^4-4*x^3+2*x^2+14*x+4]];
E[545,6] = [x^13-3*x^12-18*x^11+57*x^10+113*x^9-391*x^8-300*x^7+1206*x^6+323*x^5-1685*x^4-114*x^3+921*x^2-5*x-89, [1384,1384*x,171*x^12-67*x^11-3707*x^10+1164*x^9+30150*x^8-6981*x^7-114336*x^6+17671*x^5+201379*x^4-17740*x^3-136413*x^2+4857*x+16660,1384*x^2-2768,1384,446*x^12-629*x^11-8583*x^10+10827*x^9+59880*x^8-63036*x^7-188555*x^6+146146*x^5+270395*x^4-116919*x^3-152634*x^2+17515*x+15219,-27*x^12+220*x^11+212*x^10-3835*x^9+1686*x^8+22445*x^7-19579*x^6-49919*x^5+55022*x^4+29179*x^3-44365*x^2+7182*x+5027,1384*x^3-5536*x,68*x^12+202*x^11-1982*x^10-3592*x^9+20858*x^8+21796*x^7-97804*x^6-52404*x^5+201134*x^4+40218*x^3-144370*x^2+596*x+16224,1384*x,-517*x^12+586*x^11+10108*x^10-9987*x^9-72016*x^8+57497*x^7+232495*x^6-132889*x^5-341336*x^4+112025*x^3+193849*x^2-26136*x-17871,367*x^12-421*x^11-7181*x^10+7154*x^9+51050*x^8-40793*x^7-163058*x^6+90995*x^5+231833*x^4-66310*x^3-120425*x^2+7735*x+6374,-600*x^12+314*x^11+12400*x^10-5104*x^9-94936*x^8+27026*x^7+334146*x^6-53396*x^5-536622*x^4+29928*x^3+321030*x^2+440*x-26266,139*x^12-274*x^11-2296*x^10+4737*x^9+11888*x^8-27679*x^7-17357*x^6+63743*x^5-16316*x^4-47443*x^3+32049*x^2+4892*x-2403,171*x^12-67*x^11-3707*x^10+1164*x^9+30150*x^8-6981*x^7-114336*x^6+17671*x^5+201379*x^4-17740*x^3-136413*x^2+4857*x+16660,1384*x^4-8304*x^2+5536,164*x^12-42*x^11-3274*x^10+394*x^9+23744*x^8+1196*x^7-76822*x^6-19004*x^5+109454*x^4+48190*x^3-59480*x^2-26670*x+7846]];

E[546,1] = [x, [1,-1,1,1,-2,-1,-1,-1,1,2,-4,1,1,1,-2,1,-2]];
E[546,2] = [x, [1,-1,1,1,3,-1,1,-1,1,-3,3,1,1,-1,3,1,-3]];
E[546,3] = [x, [1,-1,1,1,1,-1,-1,-1,1,-1,3,1,-1,1,1,1,5]];
E[546,4] = [x, [1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,1,1,1,1,-1]];
E[546,5] = [x^2+x-14, [1,-1,-1,1,x,1,1,-1,1,-x,x+2,-1,-1,-1,-x,1,-x-4]];
E[546,6] = [x, [1,1,-1,1,3,-1,-1,1,1,3,1,-1,-1,-1,-3,1,7]];
E[546,7] = [x^2+x-10, [1,1,-1,1,x,-1,1,1,1,x,-x+2,-1,1,1,-x,1,-x]];
E[546,8] = [x, [1,1,1,1,-1,1,1,1,1,-1,5,1,-1,1,-1,1,-3]];
E[546,9] = [x, [1,1,1,1,2,1,1,1,1,2,-4,1,-1,1,2,1,6]];
E[546,10] = [x^2-3*x-2, [1,1,1,1,x,1,-1,1,1,x,-x+2,1,1,-1,x,1,-3*x+4]];

E[547,1] = [x^2+2*x-1, [1,x,-x-1,-2*x-1,x+1,x-1,2,x-2,-1,-x+1,x-4,-x+3,3,2*x,-2,3,-x-7]];
E[547,2] = [x^18+4*x^17-18*x^16-84*x^15+116*x^14+708*x^13-282*x^12-3104*x^11-137*x^10+7703*x^9+2068*x^8-11068*x^7-4274*x^6+9021*x^5+4048*x^4-3834*x^3-1851*x^2+654*x+328, [4676065726,4676065726*x,1371473540*x^17+5336948844*x^16-23821223560*x^15-107084377398*x^14+145292621256*x^13+843852198404*x^12-318795585166*x^11-3339977889520*x^10-211400897092*x^9+7060812439990*x^8+2040738926278*x^7-7808524549546*x^6-3261276103804*x^5+4005197233532*x^4+2110478212760*x^3-577346846784*x^2-483467152802*x-88712628616,4676065726*x^2-9352131452,146061652*x^17+512240810*x^16-2713595148*x^15-10226930472*x^14+19645038116*x^13+80777449594*x^12-74354253196*x^11-327765974924*x^10+184525050422*x^9+755446890154*x^8-382841638904*x^7-1058637238194*x^6+616674563322*x^5+946230543064*x^4-540145841346*x^3-504026830080*x^2+168283404434*x+109957940840,-148945316*x^17+865300160*x^16+8119399962*x^15-13798309384*x^14-127151067916*x^13+67959953114*x^12+917075978640*x^11-23509022112*x^10-3503648238630*x^9-795468354442*x^8+7370944591174*x^7+2600401806156*x^6-8366865570808*x^5-3441246677160*x^4+4680882705576*x^3+2055130369738*x^2-985656323776*x-449843321120,-6657250298*x^17-27049374946*x^16+112815760410*x^15+544566604678*x^14-649068758836*x^13-4317415604628*x^12+1110772319298*x^11+17285368210098*x^10+2698589500416*x^9-37391423406446*x^8-13191668333010*x^7+43468473345504*x^6+18923561382898*x^5-25264883009108*x^4-11346574031308*x^3+5894329027166*x^2+2396983919258*x-172122980420,4676065726*x^3-18704262904*x,2629541144*x^17+12079977818*x^16-39542676110*x^15-240892045164*x^14+154319080602*x^13+1883160185482*x^12+380597017068*x^11-7376075194178*x^10-4395574170482*x^9+15380195692676*x^8+12528626034342*x^7-16684380336976*x^6-16089966405504*x^5+8240919905574*x^4+9486297679098*x^3-929337595970*x^2-2059015636120*x-293602085754,-72005798*x^17-84485412*x^16+2042248296*x^15+2701886484*x^14-22634200022*x^13-33164867332*x^12+125609392884*x^11+204535496746*x^10-369666015202*x^9-684897135240*x^8+557973126142*x^7+1240942063970*x^6-371391619628*x^5-1131403408642*x^4+55973543688*x^3+438643522286*x^2+14433620432*x-47908221856,2840406701*x^17+6607455210*x^16-69030013218*x^15-151742485304*x^14+696289738336*x^13+1421503967662*x^12-3784720812518*x^11-7031520331216*x^10+12028279332069*x^9+19878564304515*x^8-22652910890138*x^7-32501116615062*x^6+24398603216324*x^5+29659617668849*x^4-13582909279930*x^3-13684137354812*x^2+2951453589433*x+2432340883546,-1281865656*x^17-5235513414*x^16+21332731192*x^15+104295343536*x^14-117172005670*x^13-812630997280*x^12+151755887356*x^11+3155902032118*x^10+774659208890*x^9-6442661375318*x^8-3129602803888*x^7+6613591247700*x^6+4424941226084*x^5-2726581122320*x^4-2736882397326*x^3-106660410124*x^2+614501221148*x+226279320880,5374516066*x^17+22177439286*x^16-89733243046*x^15-445790906690*x^14+495591461088*x^13+3525408392672*x^12-655633732070*x^11-14052941134882*x^10-3240151127136*x^9+30152424619184*x^8+13258807792994*x^7-34474653600400*x^6-18824175654810*x^5+19266180757662*x^4+11570842276548*x^3-3930603936474*x^2-2545164034588*x-94146348138,-420373754*x^17-7014744954*x^16-14642420354*x^15+123172275732*x^14+395917606356*x^13-766572264738*x^12-3378736714894*x^11+1786546209590*x^10+13889375639048*x^9+575525283254*x^8-30213972952760*x^7-9529526390754*x^6+34790171929150*x^5+15601975174996*x^4-19629568615366*x^3-9925586382340*x^2+4181718714472*x+2183578097744,-1966823688*x^17-10933701056*x^16+21041046722*x^15+210059944586*x^14+56714711532*x^13-1546998215794*x^12-1653030025050*x^11+5458315957562*x^10+8787565110522*x^9-9199742688746*x^8-21331381885940*x^7+5309167908352*x^6+26012111459368*x^5+3318001578744*x^4-15189921590788*x^3-4969355770448*x^2+3315933114644*x+1441149358224,4676065726*x^4-28056394356*x^2+18704262904,475307888*x^17+4573825008*x^16+2714167022*x^15-82750236092*x^14-167869218022*x^13+549181486302*x^12+1590870294628*x^11-1558970162504*x^10-6726150785038*x^9+1214335864988*x^8+14635244818244*x^7+2763901188860*x^6-16626333833514*x^5-6208344482346*x^4+9233991946632*x^3+4268869369760*x^2-1959419042850*x-974946583820]];
E[547,3] = [x^25-4*x^24-30*x^23+134*x^22+365*x^21-1926*x^20-2226*x^19+15560*x^18+6033*x^17-77601*x^16+4782*x^15+246402*x^14-87059*x^13-493902*x^12+275826*x^11+594258*x^10-427359*x^9-378617*x^8+334926*x^7+87006*x^6-111411*x^5+8810*x^4+6600*x^3-872*x^2-68*x+8, [82363019746262248,82363019746262248*x,1267024328573747*x^24-4947994882951318*x^23-35918485819972927*x^22+159313677383566104*x^21+397781874301196968*x^20-2182728349815687922*x^19-1971682755790405618*x^18+16636969843901254196*x^17+1445392193863119469*x^16-77215318997393542181*x^15+33808775346347162369*x^14+223675996619907467417*x^13-189354632907202302672*x^12-395675448845816828713*x^11+493541338716805953792*x^10+391257892115425422615*x^9-705670755776520491491*x^8-158504280686041932146*x^7+533323594802102598331*x^6-30791942944692876772*x^5-175573769714824213136*x^4+34020227908376188906*x^3+11685624335650478232*x^2-1067363413253340084*x-131063012567737960,82363019746262248*x^2-164726039492524496,11785533627369470*x^24-43057886496434883*x^23-367630433961200894*x^22+1450822729150348477*x^21+4772870406187645800*x^20-21007391559605773918*x^19-33014462252399032184*x^18+171366392659741237338*x^17+126047720110836080686*x^16-865993142169542607103*x^15-219401382369109513891*x^14+2802602286513262823601*x^13-140145297995456398703*x^12-5787029926740956340812*x^11+1436483781213464314105*x^10+7334034142181771052638*x^9-2760486252400162528231*x^8-5215465510192379797745*x^7+2352618481027906589208*x^6+1707163877814800941949*x^5-807507551645502724944*x^4-139223524930958011866*x^3+43391875909010779952*x^2+3981967343605140288*x-288695980804593776,120102431343670*x^24+2092244037239483*x^23-10467582645315994*x^22-64682005628220687*x^21+257560507017348800*x^20+848713399614755204*x^19-3077928708706249124*x^18-6198565580422296182*x^17+21107035924257798766*x^16+27749865007107504215*x^15-88521331989320940877*x^14-79048761885900462599*x^13+230110401085413962081*x^12+144063086263623613770*x^11-361681451334152322111*x^10-164196505741572547318*x^9+321212669525564435753*x^8+108964204530211810609*x^7-141030661676580308254*x^6-34413322244094486119*x^5+22857743573641477836*x^4+3323263767063748032*x^3+37481801262967300*x^2-44905358224723164*x-10136194628589976,3437748349049986*x^24-16612019124718226*x^23-96558907449539516*x^22+557486939286874156*x^21+1036999235853342810*x^20-8030890654815814550*x^19-4566994573827312500*x^18+65066178362297117800*x^17-3743025870240802790*x^16-325675658533546804676*x^15+135946847018327668478*x^14+1038917689315354746500*x^13-669765796593928355850*x^12-2095295556006108055322*x^11+1673891578728932548324*x^10+2543137867389877716576*x^9-2331830500786075505026*x^8-1645051798932270496120*x^7+1719610156878385975582*x^6+397399760092500044880*x^5-552277484466151729818*x^4+27594829817815085490*x^3+33941648285683504528*x^2-1973433744969514828*x-450060637020739544,82363019746262248*x^3-329452078985048992*x,-6868836512790839*x^24+32122334999819819*x^23+199131738057132547*x^22-1086285384866136035*x^21-2279904904803556120*x^20+15801933817610092980*x^19+12115697719324057046*x^18-129641195130292738442*x^17-16714430485587447885*x^16+659604278233722836480*x^15-150517667704476432046*x^14-2151200734288050851526*x^13+949896530011307337113*x^12+4478048790609755385663*x^11-2548029984411004465263*x^10-5715207130851955703451*x^9+3649440915761497451734*x^8+4072263407267658794481*x^7-2706447824921754833137*x^6-1308558589007494787151*x^5+851246357977276283072*x^4+87648872399528130852*x^3-40685658051273869600*x^2-461676158864841732*x+185979851681364400,4084248013042997*x^24-14064425140116794*x^23-128438776917160503*x^22+471150632197789250*x^21+1691546206707825302*x^20-6779864397874591964*x^19-12016510582127715862*x^18+54945595736916068176*x^17+48576052847955634367*x^16-275759804175190319431*x^15-101376770337829323339*x^14+885891474069702290027*x^13+33868702884079631128*x^12-1814272817089347118115*x^11+330386499848444549378*x^10+2276167613058826801499*x^9-753262124798633174755*x^8-1594663154652440520012*x^7+681751739031892835129*x^6+505530535313357297226*x^5-243054076188083042566*x^4-34392646031627722048*x^3+14258952666671318128*x^2+512720305856530184*x-94284269018955760,4048214394965249*x^24-23987763770542591*x^23-105231910205185558*x^22+807746032993245227*x^21+946997697292682131*x^20-11691051465032712560*x^19-1602728954194129704*x^18+95339330890666357174*x^17-33354438382368620015*x^16-481514608278340536418*x^15+295562645709011847217*x^14+1555609101072311331937*x^13-1187066700197518827464*x^12-3196085841715915548838*x^11+2699819327814806135889*x^10+3995770594405052968348*x^9-3535391027234277861648*x^8-2735601130150468568036*x^7+2477639149529612903984*x^6+786354110360408518733*x^5-750983540456275709949*x^4-14530079257161527920*x^3+34894426405336696326*x^2-589929618864890836*x+71708347445864440,38605105466669*x^24+3031480060896742*x^23-8938759788326613*x^22-104904235190222958*x^21+284466933780269688*x^20+1554876003096136140*x^19-4123993900548990146*x^18-12891481731841070736*x^17+34179149394081400947*x^16+65334976178780713545*x^15-176259791866537762677*x^14-206785594584052406223*x^13+582091183123529519454*x^12+396542073129682213895*x^11-1222651013820611101762*x^10-409976259748686941947*x^9+1565778538331299097981*x^8+135752472775293537618*x^7-1111510143989787034801*x^6+97822361441456849750*x^5+353412700776574441604*x^4-68795650062357632512*x^3-23311424709393999388*x^2+2132757597209459752*x+261165205684726560,-31062273406848943*x^24+113506515436402599*x^23+965372397758825119*x^22-3814884930293510423*x^21-12464296826838961776*x^20+55071404786495029100*x^19+85404383188173669970*x^18-447598087974195654874*x^17-319410800328524161845*x^16+2251588693934592836348*x^15+514128822212349431178*x^14-7243283835741019657542*x^13+579477398006684113685*x^12+14831648218964069301319*x^11-4236398526666083415743*x^10-18553901995501581785699*x^9+7884990253150637256938*x^8+12884775885984860743109*x^7-6679059572874317819253*x^6-3974780858825368751495*x^5+2311919545077898957712*x^4+223099864804660674348*x^3-137371991823583916756*x^2-2172035161818595108*x+1376390729844485992,-2861025728518282*x^24+6573543021960064*x^23+96828660514176032*x^22-217778911549902080*x^21-1409787334545541514*x^20+3085433251157956336*x^19+11574814051079335640*x^18-24482961660059368328*x^17-58902948898918841090*x^16+119507534413170635426*x^15+191849620612740096128*x^14-370478863073985624676*x^13-397384770913621869950*x^12+725671202603871109888*x^11+500228408980131136188*x^10-862677804084422538052*x^9-343461832260011946758*x^8+568218853324470364546*x^7+98295027235056962964*x^6-169274503150143739572*x^5-2691733137315291170*x^4+11252509181953596928*x^3+1024282815402072964*x^2-216293749285340496*x-27501986792399888,36321996533074817*x^24-134491308394673417*x^23-1121733080416894663*x^22+4514641554946751613*x^21+14341862185023613406*x^20-65088620594008068992*x^19-96590669381934790158*x^18+528323613953878572446*x^17+347615506917093891215*x^16-2654459605260970564772*x^15-474667030784011579344*x^14+8531525471769478043924*x^13-1073588967829348577629*x^12-17465712125750482072959*x^11+5745627549243350384573*x^10+21878607353222979638955*x^9-10194927351132818538578*x^8-15272670175038848601105*x^7+8484028343466570287829*x^6+4793036094062778970877*x^5-2914135798363909590186*x^4-302862807435356859656*x^3+176143462761408194684*x^2+3863500472093900260*x-1651823300556797848,82363019746262248*x^4-494178118477573488*x^2+329452078985048992,-11095134939536626*x^24+46255284507182211*x^23+332469641693433960*x^22-1557262591015044669*x^21-4045548525355981090*x^20+22530787854975862254*x^19+24792903918473088796*x^18-183659173194562317018*x^17-69238185642197540982*x^16+927487423384728135283*x^15-32354478449345039919*x^14-2999586559601441733939*x^13+865249616420886351953*x^12+6188485716613306899662*x^11-2775615052529613571133*x^10-7830681536740538167820*x^9+4280135488239154098379*x^8+5547176110422441763187*x^7-3324295848977650554890*x^6-1792484145050299346793*x^5+1098884723870567694054*x^4+134334428068446002642*x^3-66413997946079688332*x^2-2865388712700666488*x+706195545708623616]];

E[548,1] = [x^4+3*x^3-2*x^2-4*x-1, [1,0,x,0,-x^3-3*x^2+2*x+2,0,x^3+3*x^2-3*x-4,0,x^2-3,0,x^3+2*x^2-6*x-3,0,3*x^3+7*x^2-10*x-9,0,-2*x-1,0,x^2+3*x-3]];
E[548,2] = [x^8-3*x^7-14*x^6+42*x^5+55*x^4-170*x^3-46*x^2+198*x-54, [75,0,75*x,0,-x^7-6*x^6+35*x^5+48*x^4-298*x^3+38*x^2+688*x-306,0,11*x^7-24*x^6-160*x^5+297*x^4+698*x^3-958*x^2-908*x+726,0,75*x^2-225,0,-8*x^7+12*x^6+130*x^5-141*x^4-614*x^3+364*x^2+764*x-138,0,4*x^7+9*x^6-65*x^5-117*x^4+262*x^3+358*x^2-142*x+84,0,-9*x^7+21*x^6+90*x^5-243*x^4-132*x^3+642*x^2-108*x-54,0,-15*x^7+15*x^6+225*x^5-180*x^4-960*x^3+525*x^2+1050*x-210]];

E[549,1] = [x, [1,-1,0,-1,0,0,-2,3,0,0,4,0,-2,2,0,-1,-2]];
E[549,2] = [x^2-3, [1,x,0,1,x,0,-1,-x,0,3,3*x,0,5,-x,0,-5,2*x]];
E[549,3] = [x^2-2*x-1, [1,x,0,2*x-1,1,0,x-2,x+2,0,x,-x+2,0,-3,1,0,3,6]];
E[549,4] = [x^6-11*x^4-2*x^3+31*x^2+10*x-17, [2,2*x,0,2*x^2-4,x^5-2*x^4-10*x^3+16*x^2+21*x-20,0,2*x^5-3*x^4-18*x^3+22*x^2+34*x-23,2*x^3-8*x,0,-2*x^5+x^4+18*x^3-10*x^2-30*x+17,x^4-6*x^2-2*x+5,0,x^5-10*x^3+21*x+2,-3*x^5+4*x^4+26*x^3-28*x^2-43*x+34,0,2*x^4-12*x^2+8,2*x^5-2*x^4-18*x^3+12*x^2+32*x-10]];
E[549,5] = [x^6-13*x^4+41*x^2-1, [2,2*x,0,2*x^2-4,-x^5+14*x^3-47*x,0,-x^4+6*x^2+5,2*x^3-8*x,0,x^4-6*x^2-1,x^5-12*x^3+33*x,0,-x^4+6*x^2+1,-x^5+6*x^3+5*x,0,2*x^4-12*x^2+8,-2*x^3+10*x]];
E[549,6] = [x, [1,1,0,-1,3,0,1,-3,0,3,5,0,1,1,0,-1,-4]];
E[549,7] = [x, [1,1,0,-1,0,0,-2,-3,0,0,-4,0,-2,-2,0,-1,2]];
E[549,8] = [x^3-x^2-9*x+13, [2,x^2-7,0,-2*x^2-2*x+14,2*x,0,-x^2-2*x+5,x^2+2*x-9,0,x^2+2*x-13,x^2-15,0,2*x^2+4*x-20,2,0,2*x^2+4*x-16,-2*x+2]];
E[549,9] = [x^3-16*x-16, [4,x^2-2*x-12,0,-x^2+12,-8,0,4*x,2*x-4,0,-2*x^2+4*x+24,-x^2+8,0,-4*x+8,-2*x^2+4*x+16,0,4*x-4,-3*x^2+4*x+16]];

E[550,1] = [x, [1,-1,-1,1,0,1,1,-1,-2,0,-1,-1,-2,-1,0,1,3]];
E[550,2] = [x, [1,-1,3,1,0,-3,1,-1,6,0,-1,3,0,-1,0,1,5]];
E[550,3] = [x, [1,-1,1,1,0,-1,-3,-1,-2,0,1,1,-4,3,0,1,-3]];
E[550,4] = [x, [1,-1,1,1,0,-1,-3,-1,-2,0,1,1,6,3,0,1,7]];
E[550,5] = [x, [1,-1,-2,1,0,2,-4,-1,1,0,-1,-2,5,4,0,1,0]];
E[550,6] = [x, [1,-1,-2,1,0,2,0,-1,1,0,1,-2,2,0,0,1,-6]];
E[550,7] = [x, [1,-1,-2,1,0,2,0,-1,1,0,1,-2,-3,0,0,1,4]];
E[550,8] = [x, [1,1,-3,1,0,-3,-1,1,6,0,-1,-3,0,-1,0,1,-5]];
E[550,9] = [x^2-x-8, [1,1,x,1,0,x,-x,1,x+5,0,-1,x,-2,-x,0,1,-x+2]];
E[550,10] = [x, [1,1,-1,1,0,-1,3,1,-2,0,1,-1,4,3,0,1,3]];
E[550,11] = [x, [1,1,-1,1,0,-1,-5,1,-2,0,1,-1,-2,-5,0,1,-3]];
E[550,12] = [x, [1,1,2,1,0,2,4,1,1,0,-1,2,-5,4,0,1,0]];
E[550,13] = [x, [1,1,2,1,0,2,0,1,1,0,1,2,3,0,0,1,-4]];
E[550,14] = [x, [1,1,2,1,0,2,0,1,1,0,1,2,-2,0,0,1,6]];

E[551,1] = [x, [1,2,-2,2,-1,-4,-1,0,1,-2,-3,-4,-2,-2,2,-4,-1]];
E[551,2] = [x, [1,1,1,-1,-1,1,-4,-3,-2,-1,1,-1,-1,-4,-1,-1,0]];
E[551,3] = [x, [1,-2,-2,2,-1,4,-1,0,1,2,1,-4,2,2,2,-4,3]];
E[551,4] = [x^16-3*x^15-22*x^14+68*x^13+190*x^12-608*x^11-832*x^10+2760*x^9+1972*x^8-6728*x^7-2502*x^6+8420*x^5+1642*x^4-4511*x^3-577*x^2+572*x-18, [1076564,1076564*x,-175043*x^15-27242*x^14+4357720*x^13+527324*x^12-43147554*x^11-4216614*x^10+216741266*x^9+18726050*x^8-581102490*x^7-52393714*x^6+790075832*x^5+92973548*x^4-445099562*x^3-80778601*x^2+46890558*x+2165018,1076564*x^2-2153128,-250424*x^15+202628*x^14+5729144*x^13-3999652*x^12-51801004*x^11+29041692*x^10+237456220*x^9-96612356*x^8-581867144*x^7+141633920*x^6+725009604*x^5-53871940*x^4-375316148*x^3-35081812*x^2+33314856*x-645492,-552371*x^15+506774*x^14+12430248*x^13-9889384*x^12-110642758*x^11+71105490*x^10+501844730*x^9-235917694*x^8-1230083018*x^7+352118246*x^6+1566835608*x^5-157678956*x^4-870397574*x^3-54109253*x^2+102289614*x-3150774,351129*x^15-209822*x^14-8108480*x^13+4039952*x^12+74166838*x^11-27927466*x^10-344871338*x^9+83833658*x^8+861709274*x^7-90728046*x^6-1107675120*x^5-32149968*x^4+609306026*x^3+86479283*x^2-65266538*x-182522,1076564*x^3-4306256*x,257496*x^15-304028*x^14-5716604*x^13+6000708*x^12+50214356*x^11-44387244*x^10-225513752*x^9+157265228*x^8+550287020*x^7-276801460*x^6-702560884*x^5+220488160*x^4+395222684*x^3-57905668*x^2-51064624*x+10545356,-548644*x^15+219816*x^14+13029180*x^13-4220444*x^12-123216100*x^11+29103452*x^10+594557884*x^9-88031016*x^8-1543218752*x^7+98448756*x^6+2054698140*x^5+35880060*x^4-1164744476*x^3-111179792*x^2+142597036*x-4507632,498051*x^15-361194*x^14-11476796*x^13+7306524*x^12+104703574*x^11-55281002*x^10-485384962*x^9+198432918*x^8+1208699210*x^7-342894878*x^6-1550987208*x^5+238299892*x^4+866694666*x^3-21116739*x^2-119322690*x+9055482,-800253*x^15+332570*x^14+18956404*x^13-6746916*x^12-178440970*x^11+50705286*x^10+855143734*x^9-178259506*x^8-2202028862*x^7+289590794*x^6+2913133200*x^5-149351488*x^4-1655655710*x^3-54871251*x^2+219024322*x-14272714,111164*x^15-121536*x^14-2524132*x^13+2314084*x^12+22795036*x^11-15786948*x^10-105928132*x^9+45955972*x^8+270555364*x^7-43710636*x^6-370350628*x^5-31164708*x^4+233385428*x^3+52905912*x^2-31583284*x-1642616,843565*x^15-383642*x^14-19836820*x^13+7452328*x^12+185558966*x^11-52732010*x^10-885282382*x^9+169282886*x^8+2271667866*x^7-229150362*x^6-2988656148*x^5+32752208*x^4+1670422202*x^3+137334895*x^2-201028310*x+6320322,149343*x^15+94930*x^14-3704864*x^13-2046220*x^12+36487966*x^11+17093486*x^10-181363462*x^9-70017542*x^8+475806930*x^7+148348674*x^6-620014852*x^5-159932920*x^4+321922234*x^3+77142753*x^2-28865598*x+2182038,1076564*x^4-6459384*x^2+4306256,-140517*x^15+23914*x^14+3128952*x^13-354544*x^12-27047910*x^11+1119274*x^10+115167258*x^9+4176450*x^8-250779706*x^7-29450266*x^6+258036260*x^5+55114768*x^4-96275538*x^3-38221999*x^2+7303566*x+5494890]];
E[551,5] = [x^3-4*x+2, [1,x,0,x^2-2,-x^2-2*x+3,0,-1,-2,-3,-2*x^2-x+2,x^2+x-5,0,x^2+x-4,-x,0,-2*x^2-2*x+4,-x^2+x+1]];
E[551,6] = [x^18-2*x^17-29*x^16+56*x^15+342*x^14-632*x^13-2112*x^12+3692*x^11+7332*x^10-11948*x^9-14282*x^8+21322*x^7+14618*x^6-19599*x^5-6476*x^4+7481*x^3+560*x^2-346*x+6, [6089315118808,6089315118808*x,185841444913*x^17-354789495379*x^16-5387257119962*x^15+9665884814314*x^14+63472096723948*x^13-104958390057220*x^12-391027758426388*x^11+580087831776488*x^10+1349911247183964*x^9-1731490973024200*x^8-2599101930314418*x^7+2746364122843852*x^6+2606022475146862*x^5-2136965370903373*x^4-1122064494683119*x^3+645898162019440*x^2+99893394876464*x-15471695571466,6089315118808*x^2-12178630237616,142064443299*x^17-104462857985*x^16-4245022901822*x^15+2712716593438*x^14+51790909977516*x^13-27581080307276*x^12-332403282445188*x^11+138297673633176*x^10+1205334850718164*x^9-352314548549240*x^8-2463775677264494*x^7+420022962074892*x^6+2655773885163498*x^5-189707589751479*x^4-1251669973628725*x^3+31898292357832*x^2+127296069579680*x-6453048695142,16893394447*x^17+2144782515*x^16-741236100814*x^15-85677436298*x^14+12493403127796*x^13+1469373229868*x^12-106038782842308*x^11-12678226918152*x^10+488942610796324*x^9+55085585933048*x^8-1216147165591134*x^7-110607766591372*x^6+1505341107946514*x^5+81444702573469*x^4-744381687374713*x^3-4177814274816*x^2+48829444368432*x-1115048669478,180869342332*x^17-401468034012*x^16-5024619901112*x^15+11047839069656*x^14+56130773312536*x^13-121742803339248*x^12-324169405282656*x^11+687427527882848*x^10+1041419136598112*x^9-2116574216720600*x^8-1885987981725464*x^7+3511553840697552*x^6+1884078223694752*x^5-2921579499341388*x^4-920044116897116*x^3+985680897621312*x^2+128637022429008*x-30299933556544,6089315118808*x^3-24357260475232*x,-80753076117*x^17-39689431705*x^16+2432935465450*x^15+1155228753182*x^14-29960310448028*x^13-13411430468476*x^12+194165503697004*x^11+79687956624632*x^10-708791278340228*x^9-260625042838024*x^8+1436249940632314*x^7+474528861816836*x^6-1449356180551382*x^5-457632576897127*x^4+501657202207459*x^3+176353699141728*x^2+62651964177408*x+10352775901306,179666028613*x^17-125154046151*x^16-5242892231306*x^15+3204870369258*x^14+62203647857692*x^13-32363178197700*x^12-386204251026732*x^11+163718352449896*x^10+1345071419987212*x^9-434811298068176*x^8-2609075097946386*x^7+579075853018716*x^6+2594613434465622*x^5-331660638824401*x^4-1030885807961987*x^3+47739981332240*x^2+42701248686312*x-852386659794,-698981763*x^17-173160247455*x^16+219908457486*x^15+4850975652778*x^14-5649252870060*x^13-54276281831476*x^12+59837093574132*x^11+309179712189048*x^10-323944079367684*x^9-946732937246824*x^8+936236909461510*x^7+1513459827111612*x^6-1380220295493610*x^5-1134449148608089*x^4+887508157676821*x^3+313879772845608*x^2-141090582735304*x-18970876764074,-335751318417*x^17+458251328907*x^16+9742806714594*x^15-12615907401706*x^14-114798194927524*x^13+139556846344196*x^12+707006877636300*x^11-795095420842056*x^10-2442894631582124*x^9+2488106239949320*x^8+4727395137638530*x^7-4234334777767436*x^6-4799506609953502*x^5+3638950676870805*x^4+2113571691233415*x^3-1252427180560768*x^2-195056723943744*x+30842030776250,84847308647*x^17+73528222715*x^16-2700408232038*x^15-2174498038370*x^14+35265903882532*x^13+26086327699220*x^12-243160968734388*x^11-162988091140600*x^10+946557021836884*x^9+566143061524712*x^8-2051253257100462*x^7-1078839739970636*x^6+2246886937747618*x^5+1037789491292085*x^4-942391148394169*x^3-417945173648200*x^2+2611591416344*x+41592021838778,-39729349348*x^17+220591026516*x^16+919155899064*x^15-5726541765008*x^14-7433378985424*x^13+57826645722528*x^12+19657915993104*x^11-284714881380112*x^10+44452685462136*x^9+697187965460160*x^8-344942276505352*x^7-759869822514424*x^6+623278741023480*x^5+251265744044916*x^4-367402652364380*x^3+27350190723088*x^2+32280858890328*x-1085216053992,145055209011*x^17-215183603945*x^16-3843536502806*x^15+5619941822942*x^14+39843106202708*x^13-57720870491436*x^12-202771179020468*x^11+294509927429896*x^10+515382335919292*x^9-772205605578016*x^8-567958284832006*x^7+958571864776068*x^6+130738992304450*x^5-419193812377375*x^4+17743020295875*x^3-23176669197904*x^2+130485839978272*x+6864457281762,6089315118808*x^4-36535890712848*x^2+24357260475232,-29679773598*x^17+170196466474*x^16+596650719172*x^15-4184518106964*x^14-3195604495136*x^13+38098139301080*x^12-9428313936168*x^11-148015862877808*x^10+153795255629000*x^9+144992679309392*x^8-555890330373700*x^7+531760723630488*x^6+774017824378556*x^5-1356371587846906*x^4-302388321842078*x^3+863129002877768*x^2-68125378765688*x-35860108311196]];
E[551,7] = [x, [1,-1,1,-1,-1,-1,2,3,-2,1,-3,-1,-5,-2,-1,-1,2]];
E[551,8] = [x^2-5, [1,-1,x,-1,-1,-x,-x-1,3,2,1,-x,-x,1,x+1,-x,-1,-x-1]];

E[552,1] = [x, [1,0,-1,0,-2,0,2,0,1,0,-2,0,-2,0,2,0,-4]];
E[552,2] = [x, [1,0,-1,0,4,0,2,0,1,0,0,0,2,0,-4,0,-4]];
E[552,3] = [x, [1,0,-1,0,2,0,-4,0,1,0,-4,0,-2,0,-2,0,-2]];
E[552,4] = [x, [1,0,-1,0,0,0,-2,0,1,0,0,0,2,0,0,0,8]];
E[552,5] = [x, [1,0,1,0,-2,0,-4,0,1,0,0,0,-2,0,-2,0,-2]];
E[552,6] = [x^2-2*x-4, [1,0,1,0,x,0,2,0,1,0,x,0,-2*x+2,0,x,0,-2*x]];
E[552,7] = [x^3-16*x+16, [2,0,2,0,2*x,0,-x^2-2*x+12,0,2,0,x^2-8,0,4,0,2*x,0,x^2+2*x-8]];

E[553,1] = [x^8-3*x^7-7*x^6+24*x^5+6*x^4-40*x^3+6*x^2+8*x+1, [3,3*x,-5*x^7+17*x^6+30*x^5-135*x^4+9*x^3+218*x^2-89*x-29,3*x^2-6,-4*x^7+13*x^6+24*x^5-102*x^4+6*x^3+160*x^2-64*x-19,2*x^7-5*x^6-15*x^5+39*x^4+18*x^3-59*x^2+11*x+5,-3,3*x^3-12*x,2*x^7-5*x^6-15*x^5+39*x^4+18*x^3-62*x^2+11*x+11,x^7-4*x^6-6*x^5+30*x^4-40*x^2+13*x+4,-9*x^7+27*x^6+60*x^5-213*x^4-30*x^3+339*x^2-96*x-42,11*x^7-35*x^6-69*x^5+276*x^4+3*x^3-437*x^2+167*x+56,-11*x^7+35*x^6+72*x^5-276*x^4-27*x^3+437*x^2-131*x-53,-3*x,-2*x^7+8*x^6+9*x^5-63*x^4+24*x^3+98*x^2-53*x-5,3*x^4-18*x^2+12,-x^7+x^6+9*x^5-6*x^4-18*x^3+x^2-x+11]];
E[553,2] = [x^11+5*x^10-4*x^9-49*x^8-24*x^7+154*x^6+125*x^5-183*x^4-154*x^3+67*x^2+32*x-11, [1,x,x^10+5*x^9-3*x^8-47*x^7-35*x^6+134*x^5+163*x^4-119*x^3-195*x^2-3*x+31,x^2-2,-2*x^10-10*x^9+7*x^8+95*x^7+58*x^6-276*x^5-280*x^4+256*x^3+330*x^2-6*x-50,x^9+2*x^8-11*x^7-20*x^6+38*x^5+64*x^4-41*x^3-70*x^2-x+11,-1,x^3-4*x,4*x^10+21*x^9-10*x^8-194*x^7-146*x^6+539*x^5+613*x^4-470*x^3-674*x^2+100,-x^9-3*x^8+10*x^7+32*x^6-30*x^5-110*x^4+22*x^3+128*x^2+14*x-22,-2*x^10-12*x^9+111*x^7+125*x^6-308*x^5-479*x^4+262*x^3+531*x^2+14*x-82,-x^10-8*x^9-5*x^8+74*x^7+108*x^6-204*x^5-367*x^4+168*x^3+389*x^2+17*x-62,-4*x^10-21*x^9+9*x^8+193*x^7+159*x^6-529*x^5-667*x^4+438*x^3+748*x^2+31*x-116,-x,-5*x^10-27*x^9+8*x^8+247*x^7+231*x^6-673*x^5-933*x^4+556*x^3+1039*x^2+35*x-164,x^4-6*x^2+4,2*x^10+12*x^9-111*x^7-125*x^6+307*x^5+478*x^4-254*x^3-527*x^2-27*x+79]];
E[553,3] = [x^13-7*x^12+3*x^11+78*x^10-144*x^9-249*x^8+769*x^7+79*x^6-1451*x^5+654*x^4+878*x^3-686*x^2+56*x+27, [5,5*x,-x^10+3*x^9+9*x^8-31*x^7-13*x^6+88*x^5-51*x^4-35*x^3+93*x^2-61*x+3,5*x^2-10,3*x^12-14*x^11-23*x^10+181*x^9-32*x^8-805*x^7+615*x^6+1428*x^5-1555*x^4-767*x^3+1219*x^2-181*x-67,-x^11+3*x^10+9*x^9-31*x^8-13*x^7+88*x^6-51*x^5-35*x^4+93*x^3-61*x^2+3*x,5,5*x^3-20*x,2*x^11-6*x^10-23*x^9+72*x^8+86*x^7-286*x^6-123*x^5+435*x^4+74*x^3-228*x^2-16*x+30,7*x^12-32*x^11-53*x^10+400*x^9-58*x^8-1692*x^7+1191*x^6+2798*x^5-2729*x^4-1415*x^3+1877*x^2-235*x-81,-3*x^12+12*x^11+29*x^10-153*x^9-55*x^8+669*x^7-164*x^6-1180*x^5+570*x^4+723*x^3-456*x^2-13*x+37,-x^12+3*x^11+11*x^10-37*x^9-31*x^8+150*x^7-25*x^6-211*x^5+195*x^4+9*x^3-183*x^2+122*x-6,-6*x^12+27*x^11+47*x^10-337*x^9+26*x^8+1425*x^7-893*x^6-2376*x^5+2048*x^4+1292*x^3-1373*x^2+93*x+65,5*x,-6*x^12+30*x^11+35*x^10-365*x^9+176*x^8+1471*x^7-1531*x^6-2199*x^5+3135*x^4+778*x^3-2021*x^2+421*x+84,5*x^4-30*x^2+20,-4*x^12+18*x^11+34*x^10-236*x^9+1071*x^7-629*x^6-1957*x^5+1708*x^4+1108*x^3-1335*x^2+233*x+37]];
E[553,4] = [x^7+6*x^6+7*x^5-17*x^4-35*x^3-3*x^2+15*x+3, [1,x,x^6+3*x^5-4*x^4-12*x^3+5*x^2+6*x-2,x^2-2,x^6+4*x^5-14*x^3-10*x^2+6*x+3,-3*x^6-11*x^5+5*x^4+40*x^3+9*x^2-17*x-3,1,x^3-4*x,x^6+5*x^5+3*x^4-16*x^3-20*x^2+3*x+7,-2*x^6-7*x^5+3*x^4+25*x^3+9*x^2-12*x-3,-5*x^6-19*x^5+6*x^4+69*x^3+24*x^2-31*x-9,5*x^6+20*x^5-3*x^4-72*x^3-36*x^2+30*x+13,3*x^6+13*x^5+x^4-46*x^3-30*x^2+18*x+8,x,-4*x^6-15*x^5+5*x^4+54*x^3+20*x^2-21*x-9,x^4-6*x^2+4,-x^6-4*x^5+x^4+17*x^3+8*x^2-14*x-6]];

E[554,1] = [x^3+2*x^2-x-1, [1,1,x,1,-x-3,x,-x^2-3*x-2,1,x^2-3,-x-3,x^2+2*x-1,x,3*x^2+6*x-4,-x^2-3*x-2,-x^2-3*x,1,-5*x^2-6*x+4]];
E[554,2] = [x^9+x^8-17*x^7-9*x^6+94*x^5+12*x^4-194*x^3+46*x^2+119*x-54, [1037,1037,1037*x,1037,-162*x^8-203*x^7+2581*x^6+2028*x^5-12948*x^4-5413*x^3+22575*x^2+3312*x-9222,1037*x,267*x^8+469*x^7-3889*x^6-5186*x^5+17077*x^4+16046*x^3-25051*x^2-11335*x+13010,1037,1037*x^2-3111,-162*x^8-203*x^7+2581*x^6+2028*x^5-12948*x^4-5413*x^3+22575*x^2+3312*x-9222,-293*x^8-604*x^7+4124*x^6+7163*x^5-16697*x^4-24417*x^3+18573*x^2+19356*x-4773,1037*x,312*x^8+583*x^7-4894*x^6-7132*x^5+24476*x^4+25788*x^3-43593*x^2-25736*x+24559,267*x^8+469*x^7-3889*x^6-5186*x^5+17077*x^4+16046*x^3-25051*x^2-11335*x+13010,-41*x^8-173*x^7+570*x^6+2280*x^5-3469*x^4-8853*x^3+10764*x^2+10056*x-8748,1037,-849*x^8-1736*x^7+12739*x^6+20883*x^5-60022*x^4-71250*x^3+100047*x^2+56072*x-51902]];
E[554,3] = [x^4+2*x^3-5*x^2-7*x-2, [1,-1,x,1,3*x^3+4*x^2-18*x-10,-x,-2*x^3-3*x^2+11*x+6,-1,x^2-3,-3*x^3-4*x^2+18*x+10,-6*x^3-9*x^2+34*x+21,x,-x^3-x^2+5*x+1,2*x^3+3*x^2-11*x-6,-2*x^3-3*x^2+11*x+6,1,x^2-2]];
E[554,4] = [x^8-3*x^7-13*x^6+37*x^5+54*x^4-146*x^3-60*x^2+182*x-49, [77,-77,77*x,77,5*x^7-x^6-114*x^5+66*x^4+655*x^3-359*x^2-1028*x+434,-77*x,6*x^7-32*x^6-29*x^5+341*x^4-138*x^3-939*x^2+599*x+259,-77,77*x^2-231,-5*x^7+x^6+114*x^5-66*x^4-655*x^3+359*x^2+1028*x-434,-7*x^7+63*x^6-56*x^5-539*x^4+777*x^3+1057*x^2-1610*x+378,77*x,-x^7-46*x^6+146*x^5+418*x^4-1132*x^3-883*x^2+2146*x-287,-6*x^7+32*x^6+29*x^5-341*x^4+138*x^3+939*x^2-599*x-259,14*x^7-49*x^6-119*x^5+385*x^4+371*x^3-728*x^2-476*x+245,77,x^7+46*x^6-146*x^5-418*x^4+1132*x^3+729*x^2-1992*x+903]];

E[555,1] = [x^2+x-1, [1,x,1,-x-1,-1,x,-1,-2*x-1,1,-x,-x-5,-x-1,-2*x-3,-x,-1,3*x,x]];
E[555,2] = [x^2+3*x+1, [1,x,1,-3*x-3,1,x,-2*x-5,4*x+3,1,x,3*x+3,-3*x-3,-5,x+2,1,-3*x+2,x-4]];
E[555,3] = [x^2-x-1, [1,x,-1,x-1,-1,-x,-2*x+1,-2*x+1,1,-x,-x+1,-x+1,2*x-3,-x-2,1,-3*x,-3*x]];
E[555,4] = [x^3-2*x^2-4*x+7, [1,x,1,x^2-2,1,x,-x^2+x+2,2*x^2-7,1,x,-2*x^2+x+7,x^2-2,-x^2-x+6,-x^2-2*x+7,1,2*x^2+x-10,x^2-2*x-1]];
E[555,5] = [x^5+3*x^4-4*x^3-13*x^2+x+4, [1,x,-1,x^2-2,-1,-x,-x^4-2*x^3+5*x^2+8*x-2,x^3-4*x,1,-x,x^3+2*x^2-3*x-4,-x^2+2,-x^3-x^2+5*x+3,x^4+x^3-5*x^2-x+4,1,x^4-6*x^2+4,x^4+x^3-5*x^2-x+2]];
E[555,6] = [x^2+x-3, [1,x,-1,-x+1,1,-x,-3,-3,1,x,-x+1,x-1,-5,-3*x,-1,-x-2,-3*x-4]];
E[555,7] = [x^2-x-3, [1,x,1,x+1,-1,x,1,3,1,-x,-x+1,x+1,2*x-1,x,-1,x-2,x+4]];
E[555,8] = [x^3-x^2-5*x+4, [1,x,-1,x^2-2,1,-x,x^2-x-2,x^2+x-4,1,x,-x^2+4,-x^2+2,5,3*x-4,-1,x,-2*x^2-x+10]];
E[555,9] = [x, [1,0,1,-2,-1,0,-2,0,1,0,4,-2,5,0,-1,4,-2]];
E[555,10] = [x, [1,0,1,-2,1,0,2,0,1,0,0,-2,-1,0,1,4,6]];

E[556,1] = [x^3+2*x^2-3*x-3, [1,0,x,0,-x^2-2*x+2,0,x^2+x-4,0,x^2-3,0,-x-5,0,x^2-3,0,-x-3,0,-x^2-2*x-1]];
E[556,2] = [x^7-4*x^6-9*x^5+43*x^4+14*x^3-120*x^2+24*x+64, [8,0,8*x,0,-2*x^6+4*x^5+22*x^4-34*x^3-68*x^2+68*x+56,0,2*x^5-4*x^4-18*x^3+26*x^2+32*x-24,0,8*x^2-24,0,x^6-2*x^5-9*x^4+17*x^3+12*x^2-36*x+24,0,x^6-2*x^5-9*x^4+17*x^3+4*x^2-28*x+40,0,-4*x^6+4*x^5+52*x^4-40*x^3-172*x^2+104*x+128,0,4*x^6-8*x^5-52*x^4+76*x^3+200*x^2-152*x-176]];
E[556,3] = [x, [1,0,0,0,-1,0,-1,0,-3,0,1,0,-3,0,0,0,2]];

E[557,1] = [x, [1,2,2,2,0,4,5,0,1,0,-6,4,-4,10,0,-4,-1]];
E[557,2] = [x, [1,1,-1,-1,0,-1,2,-3,-2,0,-3,1,2,2,0,-1,-2]];
E[557,3] = [x^18+6*x^17-6*x^16-98*x^15-83*x^14+588*x^13+978*x^12-1507*x^11-3913*x^10+1062*x^9+7268*x^8+2007*x^7-6225*x^6-3695*x^5+2078*x^4+1980*x^3-23*x^2-339*x-72, [6291,6291*x,-2265*x^17-13176*x^16+19098*x^15+236469*x^14+130791*x^13-1608966*x^12-2155581*x^11+5036325*x^10+9998097*x^9-6536061*x^8-21167499*x^7+326340*x^6+21203217*x^5+5548350*x^4-9629058*x^3-3687993*x^2+1582401*x+677772,6291*x^2-12582,2138*x^17+7110*x^16-47874*x^15-189958*x^14+319865*x^13+1804170*x^12-347748*x^11-7839983*x^10-3775289*x^9+16127058*x^8+13951771*x^7-14533215*x^6-17111505*x^5+4693961*x^4+8440111*x^3+218109*x^2-1412800*x-253932,414*x^17+5508*x^16+14499*x^15-57204*x^14-277146*x^13+59589*x^12+1622970*x^11+1135152*x^10-4130631*x^9-4705479*x^8+4872195*x^7+7103592*x^6-2820825*x^5-4922388*x^4+796707*x^3+1530306*x^2-90063*x-163080,-2628*x^17-11988*x^16+41715*x^15+255627*x^14-148266*x^13-2088045*x^12-792801*x^11+8156601*x^10+7049115*x^9-15492924*x^8-18383319*x^7+12981222*x^6+19837170*x^5-3730950*x^4-8970633*x^3-329859*x^2+1367379*x+217647,6291*x^3-25164*x,18228*x^17+102195*x^16-153378*x^15-1745844*x^14-798333*x^13+11321361*x^12+13497372*x^11-34289904*x^10-59428677*x^9+46188729*x^8+119145696*x^7-13898961*x^6-113976738*x^5-20384637*x^4+49464168*x^3+15789159*x^2-7716642*x-2984697,-5718*x^17-35046*x^16+19566*x^15+497319*x^14+547026*x^13-2438712*x^12-4618017*x^11+4590705*x^10+13856502*x^9-1587213*x^8-18824181*x^7-3802455*x^6+12593871*x^5+3997347*x^4-4015131*x^3-1363626*x^2+470850*x+153936,-25443*x^17-130626*x^16+270999*x^15+2303037*x^14+170361*x^13-15615990*x^12-12837123*x^11+50761305*x^10+64355481*x^9-79095366*x^8-136470060*x^7+47211741*x^6+134464806*x^5+4129074*x^4-59181750*x^3-12472434*x^2+9234477*x+2830896,7554*x^17+43335*x^16-54828*x^15-715722*x^14-445425*x^13+4436010*x^12+6070212*x^11-12583299*x^10-25141341*x^9+14935365*x^8+48607692*x^7-896355*x^6-45799092*x^5-11160285*x^4+19968702*x^3+7295445*x^2-3187536*x-1325736,20464*x^17+112797*x^16-186180*x^15-1962776*x^14-702776*x^13+13043904*x^12+14253441*x^11-40943818*x^10-65272948*x^9+59042202*x^8+133967420*x^7-25539951*x^6-130048044*x^5-15976385*x^4+56831450*x^3+15369063*x^2-8844812*x-3067806,3780*x^17+25947*x^16-1917*x^15-366390*x^14-542781*x^13+1777383*x^12+4196205*x^11-3234249*x^10-12701988*x^9+716985*x^8+18255618*x^7+3477870*x^6-13441410*x^5-3509649*x^4+4873581*x^3+1306935*x^2-673245*x-189216,-19256*x^17-104931*x^16+173478*x^15+1793461*x^14+613309*x^13-11683767*x^12-12450792*x^11+35967854*x^10+55778504*x^9-51317427*x^8-111969547*x^7+23356977*x^6+106801860*x^5+11352247*x^4-46056700*x^3-11877195*x^2+7071055*x+2398488,6291*x^4-37746*x^2+25164,33826*x^17+181161*x^16-319785*x^15-3117137*x^14-841640*x^13+20483547*x^12+20506218*x^11-63786778*x^10-94401571*x^9+92549427*x^8+192590075*x^7-43902399*x^6-186338706*x^5-19384958*x^4+81627974*x^3+21470505*x^2-12806966*x-4423467]];
E[557,4] = [x^26-x^25-40*x^24+36*x^23+701*x^22-557*x^21-7078*x^20+4855*x^19+45533*x^18-26248*x^17-194780*x^16+91281*x^15+561051*x^14-204613*x^13-1077249*x^12+286983*x^11+1332859*x^10-233167*x^9-994145*x^8+90493*x^7+396290*x^6-6446*x^5-68301*x^4-2616*x^3+3093*x^2+320*x+1, [134328034543571734744,134328034543571734744*x,-7289644533446713544*x^25+12913017213035936776*x^24+276708990803792551884*x^23-466258305772507944162*x^22-4567780607048198726114*x^21+7243323863524765427576*x^20+43084850004881314425720*x^19-63460564641484022717628*x^18-256553996024911727592556*x^17+345245573411490144692416*x^16+1005781738275212951452458*x^15-1209753925629329655260642*x^14-2628055216453211650894892*x^13+2738623283894837658587012*x^12+4537105313021784255719600*x^11-3904193717270906588926184*x^10-5029532670488860984654594*x^9+3300173175818611860453446*x^8+3395762017848448993472938*x^7-1480262422781969833596798*x^6-1270873487802230462590276*x^5+295360775861155117658376*x^4+212532439757103260683740*x^3-18119942479886243901114*x^2-9263617602603319247276*x-267686049503749914442,134328034543571734744*x^2-268656069087143469488,-3377597374369695264*x^25+2302433360278970250*x^24+137090298311871070998*x^23-83977769725718727570*x^22-2439287445268952547846*x^21+1326856734808578045900*x^20+25015378073941919729332*x^19-11963265356388911765816*x^18-163455512119504375443942*x^17+68279935889174167159370*x^16+709975532718745077734246*x^15-258674216224579294109354*x^14-2074411339878720923192468*x^13+662165905061999844993160*x^12+4031450720603236236414418*x^11-1137533133008659310301938*x^10-5026088347422966774027124*x^9+1262661977041723511051144*x^8+3741685952646884596896070*x^7-829839219637575771677658*x^6-1457661554744600718839908*x^5+272528932961244703739998*x^4+233927436666109758252832*x^3-36688803303207029894192*x^2-6710875393336388900272*x+506629050662406551634,5623372679589223232*x^25-14876790534075989876*x^24-203831102568426256578*x^23+542260210897947468230*x^22+3182991858394945983568*x^21-8511254002854524038712*x^20-28069340431600228461508*x^19+75365388516517480206396*x^18+153906983697580807589504*x^17-414095223949537912647862*x^16-544347882971780196250778*x^15+1461807138681600429679852*x^14+1247067246972705260208540*x^13-3315656970989154462840856*x^12-1812189660128768395928432*x^11+4686535652716392182887702*x^10+1600468628888442003539598*x^9-3851201646854934042726942*x^8-820600620016776384859606*x^7+1617939744357367647761484*x^6+248371727198557602153752*x^5-285357571521840721085004*x^4-37189652579382846532218*x^3+13283252939347365744316*x^2+2065000201199198419638*x+7289644533446713544,-1561270703357136566*x^25+7366797462836972452*x^24+49867292445155471448*x^23-269571228198175546460*x^22-642801743243576354910*x^21+4249819998819348356296*x^20+4087565461372335336620*x^19-37811007056695081120462*x^18-10684704219703598950728*x^17+208779015973971209393628*x^16-20222026886352209968056*x^15-740583654459567728613546*x^14+240258338105878274221812*x^13+1687356935876129847728154*x^12-781338574860564081487028*x^11-2395357566925198031229466*x^10+1298730218487673881043692*x^9+1980846800104521059244862*x^8-1132223156241036786984936*x^7-849822372454161434449826*x^6+457683310456722232284482*x^5+166966137021144142607866*x^4-67744792402060150523416*x^3-12966561198866166367120*x^2+1112657372093756155874*x+547597056975916322166,134328034543571734744*x^3-537312138174286938976*x,-10041471929670809203*x^25+19218652180978964893*x^24+379982334251627993143*x^23-697042193548572254113*x^22-6250238721734047288634*x^21+10885640756303080853186*x^20+58713468811782159011324*x^19-95961886357727174711259*x^18-347960311842454181643145*x^17+525851924063038633777195*x^16+1356483095624246204018297*x^15-1858435071408193854530406*x^14-3520249709113360900892212*x^13+4251258472013132339791705*x^12+6025567922360134841800529*x^11-6144752225624619097736562*x^10-6608025401934436285076740*x^9+5305928196093854049744179*x^8+4404845680860270495721957*x^7-2482074074453433400915114*x^6-1626701528961241557563901*x^5+550188663746956961563462*x^4+266097807102831082201238*x^3-44984506502064555743638*x^2-10471124351494022160597*x-14605206116473470320,-1075164014090725014*x^25+1986403337083260438*x^24+37615735751590301934*x^23-71591685835796167782*x^22-554465002715342216148*x^21+1108743858153216650740*x^20+4434969896175958740904*x^19-9663370872329040988230*x^18-20375239993281594130102*x^17+52087116139015834212326*x^16+49636249705260859283830*x^15-179406955391229025630004*x^14-28934426499906612059672*x^13+392937326660856382965682*x^12-168220105719921054353426*x^11-524227288617949114147348*x^10+475117730052064775430056*x^9+383864410904123898666790*x^8-524190300438738938152506*x^7-119153491255634182669348*x^6+250756940286057648068254*x^5+3234158399285202026368*x^4-45524598034558152704816*x^3+3736033285589078551280*x^2+1587460210460709036114*x+3377597374369695264,-1356682141524754912*x^25-4802187618956768429*x^24+70415496611454120625*x^23+174433559831164644915*x^22-1540297801221337258915*x^21-2726365201377027833562*x^20+18863967312516170804774*x^19+23997882653740804269652*x^18-143910908019468810408293*x^17-130619084727576428938809*x^16+716380510339710015592859*x^15+453807862838313517304219*x^14-2360378736089306478474230*x^13-1000813321855686232523876*x^12+5095192454389117635870475*x^11+1343971091127861276574349*x^10-6946851359915524124131208*x^9-1002449307839488772844246*x^8+5555030278916959950858719*x^7+352010582067348813937711*x^6-2272366350364258774937758*x^5-55337760414614828592659*x^4+377585009050579057229076*x^3+2533437012966916251626*x^2-13202244960101127441244*x-652795887431369001227,5325871212406660444*x^25-4722229810929200850*x^24-213599187174849671890*x^23+173524221547916386260*x^22+3756525793773070753740*x^21-2753756332517237280564*x^20-38105785852650827436404*x^19+24779084760812751602104*x^18+246615054194143473930786*x^17-139518499264371584506650*x^16-1063063419434409359065256*x^15+511576232975151287192992*x^14+3091068616006058572118144*x^13-1231663632203632575653688*x^12-6001487335033730379340554*x^11+1913693177085642693611678*x^10+7519048631704568339917990*x^9-1830499139103771775789858*x^8-5682460155233597917117768*x^7+980410213568083994738068*x^6+2292637664375252337049020*x^5-243829226913069545880138*x^4-397070883645053747648252*x^3+20911793463002218765290*x^2+16735045592271533773856*x+529748726327910605652,2189170322493481496*x^25+7610628952067583672*x^24-111593837283249054320*x^23-274551688000736718904*x^22+2402336659389160100808*x^21+4245773434904077985848*x^20-28970698620178439448016*x^19-36749385613039414086560*x^18+217571217609320439919696*x^17+194634431429228168135232*x^16-1065425646712406242972104*x^15-645438286322188571414688*x^14+3450136277172800315065840*x^13+1305785635562054759388272*x^12-7312870770486184709068232*x^11-1453723722860313292502472*x^10+9781853700944751465805472*x^9+588610474608404516690096*x^8-7668272876494014033688712*x^7+283247449314483149290880*x^6+3074698027934237553709144*x^5-260206526779784661108872*x^4-504653926995712178899296*x^3+48903306621414185933640*x^2+17604290531678037236704*x+82668402980590056656,5805526759479835886*x^25-12583535689129991192*x^24-213365482877318630084*x^23+451649019809776377856*x^22+3380192217049423289034*x^21-6963108576989477277528*x^20-30231037791896183092532*x^19+60404634716256900308950*x^18+167798782552253088809260*x^17-324326334486255270293536*x^16-598069303386424945732500*x^15+1116210827495103101712678*x^14+1367900653450116063549196*x^13-2463215878781336090073962*x^12-1947299416663656908109088*x^11+3379683926893563567265886*x^10+1616809994014847597560340*x^9-2684352619630017318391006*x^8-708538302695264075182788*x^7+1076399277490121882024622*x^6+156902186067304040303430*x^5-174381142712055935117782*x^4-17050845358848435623776*x^3+5941667657577379554512*x^2+1047203682050200023286*x+1561270703357136566,-16730524213350370736*x^25+21979822006340713756*x^24+651662868831914334624*x^23-794491708841553972800*x^22-11083440289899502048844*x^21+12365433554924840331368*x^20+108214584607658204938552*x^19-108700375710535184492496*x^18-670551705776595890890636*x^17+594903808032068143238664*x^16+2751733637709632542076056*x^15-2106352114220500176596236*x^14-7572410646761741773566504*x^13+4853789093996322018503168*x^12+13838443226596609868510596*x^11-7129741705015660594306152*x^10-16253612717327517078121508*x^9+6334092606765155814618252*x^8+11507178862482205625368912*x^7-3074990182969285340536388*x^6-4372834813892192643832416*x^5+676434395484930968904844*x^4+720071537275693461622572*x^3-47391497707192638851920*x^2-29655067292117873970348*x-1030442201297384650140,134328034543571734744*x^4-805968207261430408464*x^2+537312138174286938976,4110446406155271556*x^25-11418204598358408176*x^24-144776428885462679338*x^23+413011461648455686172*x^22+2163720734462266575810*x^21-6427435522944724470340*x^20-17795945506839080486408*x^19+56386589941656077967896*x^18+86776211075213890708708*x^17-306783067379254561716494*x^16-246793685194183504773164*x^15+1072193189289136631884882*x^14+341269258432794324624608*x^13-2408511301358856909339224*x^12+56386731006532727372708*x^11+3375437979949241534313254*x^10-909774094155215042076288*x^9-2760896906901236627678120*x^8+1218129122942235330219320*x^7+1176681772713461503820286*x^6-630800787713410836705208*x^5-236329986535679528407092*x^4+122804933490480067695474*x^3+21534695566528399322862*x^2-5155294921396021811730*x-691866076854913863386]];

E[558,1] = [x^2-12, [2,2,0,2,2*x,0,4,2,0,2*x,-x+6,0,-3*x-2,4,0,2,-2*x]];
E[558,2] = [x, [1,1,0,1,1,0,2,1,0,1,-3,0,3,2,0,1,-1]];
E[558,3] = [x, [1,1,0,1,1,0,0,1,0,1,3,0,-1,0,0,1,3]];
E[558,4] = [x, [1,1,0,1,-3,0,-2,1,0,-3,-5,0,-7,-2,0,1,1]];
E[558,5] = [x, [1,1,0,1,-3,0,-4,1,0,-3,-3,0,5,-4,0,1,-3]];
E[558,6] = [x, [1,-1,0,1,3,0,-4,-1,0,-3,3,0,5,4,0,1,3]];
E[558,7] = [x, [1,-1,0,1,2,0,0,-1,0,-2,0,0,2,0,0,1,6]];
E[558,8] = [x^2+3*x-2, [1,-1,0,1,x,0,2*x+4,-1,0,-x,x+2,0,-x,-2*x-4,0,1,-3*x-4]];
E[558,9] = [x, [1,-1,0,1,-1,0,-2,-1,0,1,3,0,-1,2,0,1,-3]];
E[558,10] = [x, [1,-1,0,1,-1,0,0,-1,0,1,-3,0,-1,0,0,1,-3]];

E[559,1] = [x^3+3*x^2-3, [1,x,x+1,x^2-2,-x^2-2*x,x^2+x,x^2-4,-3*x^2-4*x+3,x^2+2*x-2,x^2-3,-3*x^2-5*x+3,-2*x^2-2*x+1,1,-3*x^2-4*x+3,-2*x-3,3*x^2+3*x-5,x^2+x]];
E[559,2] = [x^15-2*x^14-22*x^13+43*x^12+187*x^11-354*x^10-769*x^9+1395*x^8+1553*x^7-2684*x^6-1328*x^5+2265*x^4+241*x^3-606*x^2+33*x+13, [3493,3493*x,-5210*x^14-485*x^13+112388*x^12+9807*x^11-928511*x^10-70057*x^9+3663291*x^8+177186*x^7-7017688*x^6+50017*x^5+5906504*x^4-485711*x^3-1624691*x^2+146755*x+33331,3493*x^2-6986,-4430*x^14-580*x^13+95475*x^12+11872*x^11-788020*x^10-89001*x^9+3106438*x^8+272894*x^7-5951796*x^6-216637*x^5+5033727*x^4-164247*x^3-1427910*x^2+57351*x+40724,-10905*x^14-2232*x^13+233837*x^12+45759*x^11-1914397*x^10-343199*x^9+7445136*x^8+1073442*x^7-13933623*x^6-1012376*x^5+11314939*x^4-369081*x^3-3010505*x^2+205261*x+67730,5741*x^14+2234*x^13-122330*x^12-46354*x^11+992192*x^10+356430*x^9-3801134*x^8-1203889*x^7+6932831*x^6+1580326*x^5-5392402*x^4-450232*x^3+1368660*x^2-6153*x-30676,3493*x^3-13972*x,7894*x^14+1412*x^13-168956*x^12-28854*x^11+1380740*x^10+213877*x^9-5360703*x^8-641856*x^7+10018842*x^6+472306*x^5-8137190*x^4+487856*x^3+2189112*x^2-194159*x-51348,-9440*x^14-1985*x^13+202362*x^12+40390*x^11-1657221*x^10-300232*x^9+6452744*x^8+927994*x^7-12106757*x^6-849313*x^5+9869703*x^4-360280*x^3-2627229*x^2+186914*x+57590,-1606*x^14-297*x^13+34707*x^12+6272*x^11-287288*x^10-48893*x^9+1136488*x^8+161626*x^7-2190596*x^6-173247*x^5+1883213*x^4-36872*x^3-565030*x^2+42623*x+19914,-13622*x^14-5103*x^13+289898*x^12+105224*x^11-2346547*x^10-800695*x^9+8959335*x^8+2647470*x^7-16246020*x^6-3266935*x^5+12517736*x^4+589022*x^3-3153787*x^2+134085*x+75103,-3493,13716*x^14+3972*x^13-293217*x^12-81375*x^11+2388744*x^10+613695*x^9-9212584*x^8-1982942*x^7+16989170*x^6+2231646*x^5-13453597*x^4-14921*x^3+3472893*x^2-220129*x-74633,10891*x^14+2995*x^13-233417*x^12-61425*x^11+1909896*x^10+463949*x^9-7423471*x^8-1502094*x^7+13893247*x^6+1699139*x^5-11333335*x^4-45137*x^3+3110948*x^2-120505*x-85265,3493*x^4-20958*x^2+13972,5258*x^14+2360*x^13-111333*x^12-48909*x^11+894542*x^10+376114*x^9-3376794*x^8-1276374*x^7+6011414*x^6+1711618*x^5-4500623*x^4-552187*x^3+1105166*x^2+15246*x-15626]];
E[559,3] = [x^7+2*x^6-6*x^5-9*x^4+11*x^3+10*x^2-5*x-1, [1,x,-x^6-2*x^5+5*x^4+7*x^3-7*x^2-5*x+1,x^2-2,x^6+3*x^5-2*x^4-9*x^3-x^2+4*x,-x^5-2*x^4+4*x^3+5*x^2-4*x-1,-x^5-4*x^4-x^3+10*x^2+7*x-2,x^3-4*x,x^6+2*x^5-5*x^4-7*x^3+6*x^2+4*x,x^6+4*x^5-12*x^3-6*x^2+5*x+1,x^4+2*x^3-4*x^2-4*x+2,x^6+2*x^5-6*x^4-9*x^3+10*x^2+9*x-2,-1,-x^6-4*x^5-x^4+10*x^3+7*x^2-2*x,-1,x^4-6*x^2+4,-x^5-3*x^4+3*x^3+9*x^2-3*x-5]];
E[559,4] = [x^14-7*x^13+3*x^12+78*x^11-145*x^10-243*x^9+758*x^8+83*x^7-1422*x^6+532*x^5+1004*x^4-525*x^3-224*x^2+82*x+23, [1471,1471*x,-1963*x^13+10940*x^12+10027*x^11-140569*x^10+83093*x^9+616701*x^8-627484*x^7-1139092*x^6+1283819*x^5+898190*x^4-899391*x^3-291733*x^2+144509*x+41169,1471*x^2-2942,2498*x^13-14345*x^12-10146*x^11+180010*x^10-138201*x^9-754700*x^8+931786*x^7+1270602*x^6-1846577*x^5-820275*x^4+1257011*x^3+185312*x^2-188043*x-35070,-2801*x^13+15916*x^12+12545*x^11-201542*x^10+139692*x^9+860470*x^8-976163*x^7-1507567*x^6+1942506*x^5+1071461*x^4-1322308*x^3-295203*x^2+202135*x+45149,-643*x^13+3295*x^12+4688*x^11-43999*x^10+9485*x^9+206998*x^8-131482*x^7-434977*x^6+302634*x^5+430706*x^4-239751*x^3-187668*x^2+54805*x+23855,1471*x^3-5884*x,-314*x^13+1696*x^12+2088*x^11-23440*x^10+8871*x^9+116625*x^8-94332*x^7-267288*x^6+233860*x^5+298182*x^4-206126*x^3-145388*x^2+46417*x+19368,3141*x^13-17640*x^12-14834*x^11+224009*x^10-147686*x^9-961698*x^8+1063268*x^7+1705579*x^6-2149211*x^5-1250981*x^4+1496762*x^3+371509*x^2-239906*x-57454,-3091*x^13+17473*x^12+14108*x^11-221354*x^10+151183*x^9+945254*x^8-1067548*x^7-1652664*x^6+2136595*x^5+1156915*x^4-1466694*x^3-299890*x^2+230847*x+49198,235*x^13-932*x^12-3118*x^11+14685*x^10+13641*x^9-86407*x^8-20116*x^7+237668*x^6-6045*x^5-306484*x^4+33054*x^3+158177*x^2-14187*x-17915,1471,-1206*x^13+6617*x^12+6155*x^11-83750*x^10+50749*x^9+355912*x^8-381608*x^7-611712*x^6+772782*x^5+405821*x^4-525243*x^3-89227*x^2+76581*x+14789,720*x^13-4170*x^12-2511*x^11+51471*x^10-44964*x^9-209433*x^8+289937*x^7+333915*x^6-567955*x^5-196285*x^4+381200*x^3+34564*x^2-53075*x-3560,1471*x^4-8826*x^2+5884,940*x^13-5199*x^12-5117*x^11+67566*x^10-36638*x^9-301498*x^8+293170*x^7+568212*x^6-621406*x^5-447777*x^4+463191*x^3+129626*x^2-89110*x-15762]];
E[559,5] = [x^4+x^3-5*x^2-3*x+1, [1,x,-x,x^2-2,-x^3-x^2+5*x+1,-x^2,x^3-5*x+1,x^3-4*x,x^2-3,-2*x+1,x^3+x^2-5*x-5,-x^3+2*x,1,-x^3+4*x-1,2*x-1,-x^3-x^2+3*x+3,-5]];

E[560,1] = [x, [1,0,3,0,1,0,-1,0,6,0,5,0,-5,0,3,0,-7]];
E[560,2] = [x, [1,0,1,0,-1,0,1,0,-2,0,5,0,1,0,-1,0,3]];
E[560,3] = [x, [1,0,-3,0,-1,0,1,0,6,0,5,0,-3,0,3,0,-1]];
E[560,4] = [x^2+x-4, [1,0,x,0,1,0,-1,0,-x+1,0,-x,0,3*x+2,0,x,0,x+6]];
E[560,5] = [x^2-x-8, [1,0,x,0,-1,0,1,0,x+5,0,x-4,0,-x+2,0,-x,0,x+2]];
E[560,6] = [x^2-x-4, [1,0,x,0,1,0,1,0,x+1,0,-x,0,x+2,0,x,0,-x-2]];
E[560,7] = [x, [1,0,0,0,-1,0,1,0,-3,0,-4,0,-6,0,0,0,2]];
E[560,8] = [x, [1,0,-1,0,-1,0,-1,0,-2,0,3,0,5,0,1,0,3]];
E[560,9] = [x, [1,0,-1,0,1,0,-1,0,-2,0,-3,0,-1,0,-1,0,-3]];

E[561,1] = [x, [1,-2,1,2,0,-2,-3,0,1,0,1,2,-4,6,0,-4,-1]];
E[561,2] = [x, [1,-1,1,-1,2,-1,0,3,1,-2,1,-1,-2,0,2,-1,1]];
E[561,3] = [x^2-x-4, [1,x,-1,x+2,2,-x,-x+1,x+4,1,2*x,1,-x-2,-2,-4,-2,3*x,-1]];
E[561,4] = [x^2-2, [1,x,1,0,-x-2,x,-3,-2*x,1,-2*x-2,-1,0,-3*x,-3*x,-x-2,-4,1]];
E[561,5] = [x^3+2*x^2-2*x-2, [1,x,-1,x^2-2,x,-x,-x^2-2*x+1,-2*x^2-2*x+2,1,x^2,-1,-x^2+2,x^2-x-2,-x-2,-x,-2*x,-1]];
E[561,6] = [x^3-4*x-2, [1,x,-1,x^2-2,-2*x^2+x+4,-x,x^2-2*x-5,2,1,x^2-4*x-4,1,-x^2+2,x^2-x-2,-2*x^2-x+2,2*x^2-x-4,-2*x^2+2*x+4,1]];
E[561,7] = [x^6+x^5-11*x^4-9*x^3+32*x^2+20*x-18, [2,2*x,2,2*x^2-4,-x^5+9*x^3-2*x^2-16*x+6,2*x,-2*x^2+10,2*x^3-8*x,2,x^5-2*x^4-11*x^3+16*x^2+26*x-18,-2,2*x^2-4,2*x^4+2*x^3-14*x^2-10*x+16,-2*x^3+10*x,-x^5+9*x^3-2*x^2-16*x+6,2*x^4-12*x^2+8,-2]];
E[561,8] = [x^3-x^2-4*x+2, [1,x,-1,x^2-2,-x^2+x+4,-x,-x^2+2*x+3,x^2-2,1,2,-1,-x^2+2,x^2+x-6,x^2-x+2,x^2-x-4,-x^2+2*x+2,1]];
E[561,9] = [x^4-x^3-6*x^2+6*x+2, [1,x,1,x^2-2,-x^3+5*x-2,x,x^2-1,x^3-4*x,1,-x^3-x^2+4*x+2,1,x^2-2,-x^2-x+6,x^3-x,-x^3+5*x-2,x^3-6*x+2,1]];
E[561,10] = [x, [1,0,-1,-2,-2,0,-3,0,1,0,1,2,2,0,2,4,-1]];
E[561,11] = [x, [1,0,1,-2,-2,0,1,0,1,0,1,-2,-6,0,-2,4,-1]];

E[562,1] = [x, [1,-1,2,1,2,-2,4,-1,1,-2,2,2,-2,-4,4,1,2]];
E[562,2] = [x^3-x^2-4*x-1, [1,-1,x,1,-x^2+2*x+2,-x,-1,-1,x^2-3,x^2-2*x-2,-x^2+x+4,x,-x^2+2*x+3,1,x^2-2*x-1,1,x^2-2*x+2]];
E[562,3] = [x^7+5*x^6-x^5-28*x^4-9*x^3+32*x^2-12*x+1, [1,-1,x,1,-x^6-5*x^5-x^4+23*x^3+20*x^2-13*x-1,-x,x^6+5*x^5+x^4-23*x^3-21*x^2+11*x+2,-1,x^2-3,x^6+5*x^5+x^4-23*x^3-20*x^2+13*x+1,-x^6-5*x^5+x^4+28*x^3+11*x^2-30*x+4,x,5*x^6+26*x^5+3*x^4-132*x^3-87*x^2+112*x-18,-x^6-5*x^5-x^4+23*x^3+21*x^2-11*x-2,-2*x^5-5*x^4+11*x^3+19*x^2-13*x+1,1,-2*x^6-10*x^5+52*x^3+31*x^2-50*x+4]];
E[562,4] = [x^3+5*x^2+6*x+1, [1,1,x,1,-x^2-4*x-4,x,2*x^2+6*x+1,1,x^2-3,-x^2-4*x-4,-3*x^2-11*x-6,x,x^2+4*x-1,2*x^2+6*x+1,x^2+2*x+1,1,x^2+6*x+2]];
E[562,5] = [x^9-5*x^8-9*x^7+74*x^6-27*x^5-310*x^4+350*x^3+243*x^2-456*x+140, [3014,3014,3014*x,3014,-592*x^8+1910*x^7+8176*x^6-27596*x^5-27402*x^4+117924*x^3-11872*x^2-125242*x+60392,3014*x,572*x^8-1540*x^7-8470*x^6+22550*x^5+31262*x^4-97526*x^3+2266*x^2+100870*x-44748,3014,3014*x^2-9042,-592*x^8+1910*x^7+8176*x^6-27596*x^5-27402*x^4+117924*x^3-11872*x^2-125242*x+60392,1168*x^8-3524*x^7-17190*x^6+51758*x^5+66934*x^4-224352*x^3-19506*x^2+238220*x-80540,3014*x,-535*x^8+1609*x^7+7959*x^6-24216*x^5-29361*x^4+106356*x^3-7552*x^2-112445*x+61318,572*x^8-1540*x^7-8470*x^6+22550*x^5+31262*x^4-97526*x^3+2266*x^2+100870*x-44748,-1050*x^8+2848*x^7+16212*x^6-43386*x^5-65596*x^4+195328*x^3+18614*x^2-209560*x+82880,3014,-1382*x^8+2962*x^7+22182*x^6-41552*x^5-100982*x^4+171652*x^3+98466*x^2-168666*x+36348]];

E[563,1] = [x, [1,-1,-1,-1,-4,1,-5,3,-2,4,-4,1,2,5,4,-1,-3]];
E[563,2] = [x^9+2*x^8-8*x^7-15*x^6+18*x^5+31*x^4-15*x^3-22*x^2+4*x+5, [1,x,x^8+2*x^7-7*x^6-13*x^5+11*x^4+18*x^3-4*x^2-4*x-1,x^2-2,-2*x^8-4*x^7+14*x^6+27*x^5-21*x^4-43*x^3+3*x^2+16*x+3,x^7+2*x^6-7*x^5-13*x^4+11*x^3+18*x^2-5*x-5,2*x^8+2*x^7-19*x^6-14*x^5+55*x^4+26*x^3-56*x^2-12*x+15,x^3-4*x,-x^8+11*x^6-2*x^5-39*x^4+10*x^3+51*x^2-9*x-17,-2*x^7-3*x^6+15*x^5+19*x^4-27*x^3-28*x^2+11*x+10,-x^8+13*x^6-54*x^4+77*x^2-4*x-27,-x^8-2*x^7+7*x^6+13*x^5-11*x^4-18*x^3+3*x^2+3*x+2,-x^8-3*x^7+5*x^6+21*x^5+4*x^4-35*x^3-26*x^2+13*x+13,-2*x^8-3*x^7+16*x^6+19*x^5-36*x^4-26*x^3+32*x^2+7*x-10,-x^8-4*x^7+3*x^6+28*x^5+17*x^4-46*x^3-43*x^2+18*x+17,x^4-6*x^2+4,5*x^8+7*x^7-42*x^6-46*x^5+102*x^4+70*x^3-91*x^2-22*x+23]];
E[563,3] = [x^31-5*x^30-40*x^29+233*x^28+650*x^27-4804*x^26-5046*x^25+57710*x^24+10034*x^23-447489*x^22+163153*x^21+2342476*x^20-1745428*x^19-8396607*x^18+8854751*x^17+20387988*x^16-27682203*x^15-32062270*x^14+56150683*x^13+28712111*x^12-73374682*x^11-7360185*x^10+58781075*x^9-10788006*x^8-25769684*x^7+10398304*x^6+4640992*x^5-3106816*x^4+10432*x^3+288640*x^2-60160*x+3584, [2631911679996889539986252032,2631911679996889539986252032*x,17192143702637709746166338*x^30-65641278624154817144882190*x^29-760959303723648375211307708*x^28+3100601735600156862888150354*x^27+14633424831615213363983521648*x^26-65043179346956320143210586912*x^25-159208432418104209281334396284*x^24+799151076780116657357245514580*x^23+1060838757978064875531045225564*x^22-6385866426461410448739450924762*x^21-4269517445203031932471088476970*x^20+34843868057598776291705967418180*x^19+8390824021470703265153166872184*x^18-132589101888635704287647471601886*x^17+7297825668765423467046779965242*x^16+352837522619796332158808069379292*x^15-95040776191162034710835186037334*x^14-647888436649324903621100367300096*x^13+279685146165466038488184409578350*x^12+794566194164717980945406222989986*x^11-447409089104409897864071526411456*x^10-611372740240479034558341458559402*x^9+419201741635054054222477402913386*x^8+260277202683464011711042935881944*x^7-220045206088204584661817353879280*x^6-43320170525980989563218434414768*x^5+56321723622732471620889243855888*x^4-2609280874774651761018543960896*x^3-5194509996730017814402879917504*x^2+1053355128893072255341067342720*x-51479989969646691320557647104,2631911679996889539986252032*x^2-5263823359993779079972504064,2188411649690456376779452*x^30-11200228985578684106479304*x^29-81517470580249922437731932*x^28+483264325220713633026902852*x^27+1239087509578300788858532252*x^26-9103875469181685783261296880*x^25-9530771338086657047006127272*x^24+98390511553523509027793190128*x^23+34820505101274594717989167648*x^22-674748203899364425340601678564*x^21-18760199919650467255807034424*x^20+3073096441454479351323008222908*x^19-166700524498058677310129726376*x^18-9506563841420288602019747567668*x^17-1004945359187775022726298303512*x^16+20383523267253739872863244713476*x^15+11788208658897086666784639951204*x^14-31842557393505040717034115288500*x^13-44742433804356491381795168885164*x^12+40665597733208365711676669009888*x^11+89880695899741546588886951896716*x^10-47063083799542930631544470678556*x^9-102540539215907528970578491836800*x^8+44833914144260275804249454498540*x^7+64020005271436442855798183809472*x^6-27976084545348625107425370602848*x^5-18962580499561667296507521531008*x^4+9019962458653914483084400404416*x^3+1645934254025678779565616424704*x^2-1061721020109074324818948316416*x+101271344459038903901519636480,20319439889033731585949500*x^30-73273555618139985364654188*x^29-905167747114429507968606400*x^28+3458531424900702028975401948*x^27+17547879000515237477372500840*x^26-72456875294594325902179054736*x^25-193007536299105572094013851400*x^24+888332788065798095938012190072*x^23+1307428766888235647862777500520*x^22-7074467266719482190687365020684*x^21-5428315954381195483654771354708*x^20+38398473020078235711984785874848*x^19+11766572269938007830981025213280*x^18-144934325974309539545529347606596*x^17+2324303116143137506485724231348*x^16+380875635790426681937619854245280*x^15-96669283376554941557883773432836*x^14-685665464971790265314812100730504*x^13+300943455846633065927696501870468*x^12+814058987974934615969184243443060*x^11-484835382042480502850254170106872*x^10-591370946760470860195157073539964*x^9+445746152100381840278943867223972*x^8+222990904411359161980609387817912*x^7-222089307157693497367618851505520*x^6-23466877764059518209390761471408*x^5+50803546254879427081726973598912*x^4-5373858439835934402474887155520*x^3-3908985229436276285792384457600*x^2+982799375181037927008809246976*x-61616643030253551730260155392,14946496531606702666076951*x^30-63933465760193524145165743*x^29-659515276518444780391448188*x^28+3079267378302203031450522063*x^27+12501406328616722646723434314*x^26-65905612885559748479618747172*x^25-130944516039439370360733206026*x^24+826269866293882637073870664106*x^23+792732796609484024058240572406*x^22-6732824897740903763025712933151*x^21-2353980010065038661283766393245*x^20+37391518981568078909573094739032*x^19-1965609422689828581281378491932*x^18-144274444627004572656538070628937*x^17+48836206040938053439065678068237*x^16+386664470241447752016613222487032*x^15-215079410048263962046739254203149*x^14-706410806899827990662432719396542*x^13+521110443167630366486775476764725*x^12+842298176534718809279051085575493*x^11-770624461303725810224662777337690*x^10-598484581903671523575295516514183*x^9+688880605631695164852767480329521*x^8+199047620933396858958542015141714*x^7-345383031232408605960689422716276*x^6+3510483746014435368944453622816*x^5+82190444220721229818327585022160*x^4-15789881677896651543890733910560*x^3-6438440495797576482825977562496*x^2+2307684722820698633651588303872*x-182456323915628390823876107008,2631911679996889539986252032*x^3-10527646719987558159945008128*x,-10287793981366075679158917*x^30+42793485752441366752704779*x^29+431046939481559027759644566*x^28-1993334792737993770072210189*x^27-7614464094696602356210573336*x^26+41117659835782880268506032384*x^25+71467537124921696879478563742*x^24-494896103895809613005433305666*x^23-344711733885661117765617943262*x^22+3854256309403451924074646916873*x^21+259974244287166788241399217577*x^20-20348086210624546844946204471074*x^19+7343092418206273556108872668252*x^18+74101225436963555554148822227195*x^17-50651944375472870359391123895913*x^16-185387562823347707886676684512350*x^15+177387407380083436499643627952255*x^14+309895219460719530694714825202072*x^13-382053669874948848765836473922987*x^12-323113236946272571511787750752893*x^11+519551491550242731806280109705272*x^10+173690310810553053926155276528489*x^9-431366996055558059317055386220889*x^8-7110428889605202223459378698676*x^7+199390309767263708687897104424840*x^6-37302879839734828117895360214064*x^5-42134828280058576502230689196048*x^4+13334714638092314697829666153344*x^3+2641395413635140662169188756544*x^2-1330572191115070240803802225152*x+114291542924268440422862841856,-258170737126402222582044*x^30+6018995407368332633446148*x^29-26635589157162702762709464*x^28-183380062720495856048111548*x^27+1409254095931266650787190528*x^26+1511953846251385830222987520*x^25-27902724750112728476148984792*x^24+12861982608280555433384146280*x^23+304541936808968208248058517464*x^22-375806125801597496496504966580*x^21-2053205326065822140329815380244*x^20+3653014444397855215499275619080*x^19+8868668735252145244441236551696*x^18-20382785602695993315470527679964*x^17-24233787185695488451439701309100*x^16+72368264193193187251437916443960*x^15+38322887790015788058490405187540*x^14-167623242619632355519666739050880*x^13-22168320466397133419072779333284*x^12+250454704780874181669951426530980*x^11-30955969201665978964017999759936*x^10-231177728527235972038279718307700*x^9+68442512151590817339684443351252*x^8+120414681945878201501189599542640*x^7-50731854155971496411916653452256*x^6-29118981458481877817489944027392*x^5+15818954786498619401764830349248*x^4+1623104743696107938643053181440*x^3-1693384158675727653412569341696*x^2+232926189304416759528571468800*x-7843267352490595654377555968,-10584784594991488425098182*x^30+35745731088567381305920260*x^29+489852744101376030596544874*x^28-1728953375380081699674130726*x^27-9929293511303697583328639262*x^26+37155187035780672663443478604*x^25+115304957006201110719605901396*x^24-467534350332958188850417586536*x^23-839065729224117883902508103368*x^22+3821180121280280936412629329138*x^21+3892782012365173158674169305716*x^20-21263550740862003279027393326506*x^19-10828815857255275044580389151616*x^18+82083539647063229273960534164986*x^17+12450778521974513413021992853804*x^16-219618691111598429806584002170886*x^15+24631538975737079695706283766970*x^14+399377226922576323432892116265146*x^13-126385547549596866179550418565182*x^12-472271393933613126176840690030832*x^11+229780905343605520501672597795662*x^10+331924585814426601934646695980426*x^9-217117693731566231556537228778832*x^8-111102987765065525265452448221010*x^7+102668579620414092709948403661796*x^6+3145417249472134301305565800704*x^5-18923736089955882636411479344592*x^4+4643249126816974042576358857536*x^3+724437146916769532430650248960*x^2-515864503934529896497108424448*x+53280196644464652293714502144,-6060643578246746927239364*x^30+38892405695229389759137980*x^29+246020538203139319871783864*x^28-1860960398557001779270974868*x^27-4109135730906706091244700032*x^26+39610716074871277775108499424*x^25+34114776905869864675535337640*x^24-494758646518562129585130811640*x^23-103418946171796428084499666312*x^22+4028239322326105004381711721316*x^21-660292363019879853601678133212*x^20-22455044518623176697830245737080*x^19+8898377191088907794868991995536*x^18+87578926216553222287362746360620*x^17-47992512171445216166033080291204*x^16-239857468761618374265733905442920*x^15+155903455381503345323099346709164*x^14+455769901198594634580159607962160*x^13-328725317907761645047172660108140*x^12-583035330095951122348666385527844*x^11+453002068128016671245917699940448*x^10+474093112506056455512060278630276*x^9-396206339419213715912732696311860*x^8-219018167527227192478967268311408*x^7+205335821336450643829138916639152*x^6+43141529337354970187624900524448*x^5-54888544727012655813320093075296*x^4+1097604123190627348340078280192*x^3+5506816239070377270846105401984*x^2-945909397092128770201672920832*x+30135107376996488637072286208,-14212235995658261658369444*x^30+65280059632438054484087412*x^29+613284837886233235823167712*x^28-3129750643294819859374912412*x^27-11235878443512444407774647072*x^26+66616362802475268407939020320*x^25+110925548372246560997654744896*x^24-829524480148228761870656471512*x^23-588523743225970987158277334280*x^22+6702038116193566974626956651540*x^21+939416159476410892613386889644*x^20-36815303295346487794903997469248*x^19+8769021870157122592284189185896*x^18+139998880167893921136067724307092*x^17-71579672031905173658173721131340*x^16-367695359309242055523154489851248*x^15+266811912937405888178260265584852*x^14+651986415117193772560960140504032*x^13-596619477143570781551157154958940*x^12-740653566136424442436537857756404*x^11+830531081802946806960543231326824*x^10+479613935783504999398203889585820*x^9-695950547586117707556888512421764*x^8-120894937881219687891201890544008*x^7+317907954211074814318015207507880*x^6-23923257171381300224029989528632*x^5-63739836064585557953036210859808*x^4+13277283068328809828735660949152*x^3+3759484398841100803911834918656*x^2-1217747980415414936790971895552*x+94105972990174937784098518272,10799016897839989185219012*x^30-61655415254176673748370148*x^29-403266313562158689745407520*x^28+2786183583072365913773416164*x^27+5897356452278851128214925432*x^26-55524494540951948707708911280*x^25-36292448545140173785430178104*x^24+642759650411342369506824446072*x^23-44432111308751993685604207112*x^22-4792545758686267021362219179748*x^21+2379709572196136475151822868356*x^20+24122424125479395239763981938096*x^19-18774587224240011803637681323680*x^18-83511299068802928600081869875964*x^17+81935478313008677341068338422444*x^16+198672541078468697316244116999904*x^15-227192199549390355972953675657772*x^14-318145545539217075591366252442808*x^13+413152709058112153986653733921932*x^12+326069968717018946967285689816892*x^11-488475602329187844712975932918248*x^10-189690527979918295064601732172804*x^9+360290515195349156960396158991420*x^8+39783461294192134026071124237208*x^7-151907730924577667390534170268288*x^6+12823873389506775598685784046768*x^5+30646132890443558006319794687456*x^4-6594362347615297605038492315328*x^3-2006472036062260023884862832768*x^2+716724907425830841567313265152*x-53568243569278422355219792384,17885038982411583832885966*x^30-65767976696626812492104702*x^29-793719477258593006691303488*x^28+3133550505948738793523619078*x^27+15214375458640415113947575572*x^26-66271669399932367806779966928*x^25-163003174799245366835100434916*x^24+819926285515951322954235423860*x^23+1039473652022228923079714502428*x^22-6582769967898550525426678026414*x^21-3662499643930822419156108973738*x^20+35947072060931881680802607304600*x^19+2995808811578942401645401625248*x^18-136004973930761714823537938692530*x^17+34926627946651372822706884498202*x^16+355940412776746738944932303611752*x^15-185091026364427359385354557971826*x^14-630671608121643466325804121808284*x^13+469458799827038311120259488445378*x^12+719928168584950861411608082724826*x^11-699277068362891582538698490686508*x^10-475097281422757065780149535791110*x^9+614769225345715296879486008217554*x^8+130444523756261405194021461252332*x^7-294773319977016694580641020307776*x^6+16758439133049599651499665123088*x^5+64092412612913866570467043898208*x^4-12374685184567094067338122320064*x^3-4611808841438971451752263342592*x^2+1301102125847967799595288562432*x-68089636691287432219963478528,2631911679996889539986252032*x^4-15791470079981337239917512192*x^2+10527646719987558159945008128,-6785340779270335823485847*x^30+12563995001927469751351597*x^29+355963458639004738441795778*x^28-676652059161645097405744059*x^27-8289325357804211420826800540*x^26+16179457680787187473507162700*x^25+112935304287747966851724195322*x^24-226596370612711851780576765982*x^23-998722859068417164558528772138*x^22+2065050548366099211837521519571*x^21+6011050961765069078487388250375*x^20-12867575247868608715641805037798*x^19-25095737928812848603004435344640*x^18+56071506631305836895456840446705*x^17+72599101891779943984519503387249*x^16-171809336261983662462874455673930*x^15-142352952055871591369442698572375*x^14+367079472325387826473481768660692*x^13+178727498303426885351371687068003*x^12-534405073338819628080633003727427*x^11-122799192282792425604962768983056*x^10+507737813783648528943423648011951*x^9+15279000999592188519517066374313*x^8-290917115651128418675647733992020*x^7+38508994322031444493206982642852*x^6+85208614660203706995633071444192*x^5-23489706532910260900241093537568*x^4-7439639136907043107657947495136*x^3+3496378780988256665320147649728*x^2-487636391844702812444758135936*x+36314200603067778210880450304]];
E[563,4] = [x^3+x^2-5*x-1, [2,-x^2+3,2*x,-2*x,-4,x^2-2*x-1,2*x,x^2+2*x-5,2*x^2-6,2*x^2-6,-4*x-4,-2*x^2,-2*x^2-4*x+2,x^2-2*x-1,-4*x,2*x^2+4*x-8,2*x^2-8]];
E[563,5] = [x^3-x^2-3*x+1, [1,-x,x,x^2-2,-x+1,-x^2,-x^2+x-1,-x^2+x+1,x^2-3,x^2-x,2,x^2+x-1,-x^2+2*x-1,4*x-1,-x^2+x,-2*x^2+2*x+3,-5]];

E[564,1] = [x, [1,0,1,0,-3,0,-1,0,1,0,-3,0,-4,0,-3,0,0]];
E[564,2] = [x^3-5*x^2+4*x+2, [1,0,1,0,x,0,x^2-4*x+2,0,1,0,x^2-4*x+2,0,-2*x^2+8*x-2,0,x,0,-2*x^2+4*x+6]];
E[564,3] = [x, [1,0,-1,0,-1,0,-1,0,1,0,3,0,-2,0,1,0,-6]];
E[564,4] = [x^3-3*x^2-12*x+34, [1,0,-1,0,x,0,x^2-10,0,1,0,-x^2+10,0,2,0,-x,0,2]];

E[565,1] = [x, [1,1,-2,-1,-1,-2,1,-3,1,-1,4,2,4,1,2,-1,1]];
E[565,2] = [x^6+3*x^5-2*x^4-9*x^3-x^2+4*x+1, [1,x,-2*x^5-5*x^4+6*x^3+14*x^2-4*x-5,x^2-2,1,x^5+2*x^4-4*x^3-6*x^2+3*x+2,2*x^5+5*x^4-7*x^3-15*x^2+6*x+4,x^3-4*x,2*x^5+6*x^4-4*x^3-18*x^2-x+7,x,x^5+3*x^4-x^3-7*x^2-2*x-2,3*x^5+8*x^4-9*x^3-24*x^2+6*x+9,2*x^5+4*x^4-7*x^3-10*x^2+4*x+2,-x^5-3*x^4+3*x^3+8*x^2-4*x-2,-2*x^5-5*x^4+6*x^3+14*x^2-4*x-5,x^4-6*x^2+4,3*x^5+8*x^4-8*x^3-24*x^2+3*x+10]];
E[565,3] = [x^8-5*x^7-x^6+34*x^5-23*x^4-67*x^3+52*x^2+30*x-5, [2,2*x,-2*x^4+4*x^3+8*x^2-12*x-2,2*x^2-4,-2,-2*x^5+4*x^4+8*x^3-12*x^2-2*x,-x^7+2*x^6+11*x^5-19*x^4-34*x^3+41*x^2+29*x-3,2*x^3-8*x,2*x^7-6*x^6-12*x^5+34*x^4+30*x^3-48*x^2-36*x+6,-2*x,2*x^5-6*x^4-6*x^3+22*x^2-4,-2*x^6+4*x^5+12*x^4-20*x^3-18*x^2+24*x+4,2*x^6-6*x^5-8*x^4+28*x^3+6*x^2-28*x-2,-3*x^7+10*x^6+15*x^5-57*x^4-26*x^3+81*x^2+27*x-5,2*x^4-4*x^3-8*x^2+12*x+2,2*x^4-12*x^2+8,-x^7+4*x^6+3*x^5-21*x^4-2*x^3+25*x^2+11*x+7]];
E[565,4] = [x^10+5*x^9-4*x^8-49*x^7-24*x^6+153*x^5+127*x^4-165*x^3-145*x^2+56*x+41, [2,2*x,-3*x^9-9*x^8+29*x^7+88*x^6-91*x^5-269*x^4+104*x^3+272*x^2-47*x-68,2*x^2-4,-2,6*x^9+17*x^8-59*x^7-163*x^6+190*x^5+485*x^4-223*x^3-482*x^2+100*x+123,2*x^9+4*x^8-22*x^7-36*x^6+78*x^5+96*x^4-86*x^3-90*x^2+20*x+26,2*x^3-8*x,-3*x^9-6*x^8+32*x^7+51*x^6-111*x^5-124*x^4+123*x^3+104*x^2-37*x-31,-2*x,6*x^9+18*x^8-58*x^7-176*x^6+184*x^5+540*x^4-222*x^3-554*x^2+110*x+140,-7*x^9-17*x^8+73*x^7+158*x^6-251*x^5-447*x^4+300*x^3+426*x^2-119*x-110,x^9+6*x^8-4*x^7-61*x^6-15*x^5+196*x^4+57*x^3-196*x^2-23*x+43,-6*x^9-14*x^8+62*x^7+126*x^6-210*x^5-340*x^4+240*x^3+310*x^2-86*x-82,3*x^9+9*x^8-29*x^7-88*x^6+91*x^5+269*x^4-104*x^3-272*x^2+47*x+68,2*x^4-12*x^2+8,-2*x^8-2*x^7+26*x^6+14*x^5-110*x^4-14*x^3+152*x^2-10*x-54]];
E[565,5] = [x^12-5*x^11-7*x^10+66*x^9-26*x^8-280*x^7+269*x^6+398*x^5-472*x^4-115*x^3+146*x^2-24*x+1, [4,4*x,-4*x^11+15*x^10+43*x^9-200*x^8-95*x^7+864*x^6-223*x^5-1283*x^4+649*x^3+447*x^2-214*x+17,4*x^2-8,4,-5*x^11+15*x^10+64*x^9-199*x^8-256*x^7+853*x^6+309*x^5-1239*x^4-13*x^3+370*x^2-79*x+4,-5*x^11+25*x^10+36*x^9-333*x^8+116*x^7+1441*x^6-1279*x^5-2171*x^4+2241*x^3+844*x^2-657*x+50,4*x^3-16*x,4*x^10-10*x^9-56*x^8+132*x^7+266*x^6-558*x^5-496*x^4+770*x^3+340*x^2-150*x+2,4*x,8*x^11-30*x^10-86*x^9+400*x^8+190*x^7-1728*x^6+450*x^5+2562*x^4-1334*x^3-874*x^2+500*x-26,-2*x^11-x^10+45*x^9+14*x^8-357*x^7-74*x^6+1197*x^5+193*x^4-1503*x^3-243*x^2+312*x-29,-4*x^10+10*x^9+56*x^8-132*x^7-266*x^6+558*x^5+496*x^4-774*x^3-340*x^2+170*x+2,x^10-3*x^9-14*x^8+41*x^7+66*x^6-181*x^5-119*x^4+269*x^3+73*x^2-70*x+5,-4*x^11+15*x^10+43*x^9-200*x^8-95*x^7+864*x^6-223*x^5-1283*x^4+649*x^3+447*x^2-214*x+17,4*x^4-24*x^2+16,-x^10+3*x^9+14*x^8-41*x^7-70*x^6+185*x^5+155*x^4-293*x^3-149*x^2+90*x+7]];

E[566,1] = [x^2-x-3, [1,-1,x,1,-x,-x,-x-2,-1,x,x,0,x,-2,x+2,-x-3,1,-2]];
E[566,2] = [x^5+3*x^4-7*x^3-21*x^2+7*x+27, [1,-1,x,1,x^4+x^3-9*x^2-3*x+16,-x,x^4+x^3-10*x^2-4*x+21,-1,x^2-3,-x^4-x^3+9*x^2+3*x-16,-x^4-2*x^3+8*x^2+9*x-12,x,2*x^4+3*x^3-18*x^2-12*x+31,-x^4-x^3+10*x^2+4*x-21,-2*x^4-2*x^3+18*x^2+9*x-27,1,2*x^4+3*x^3-16*x^2-12*x+21]];
E[566,3] = [x^4-x^3-8*x^2+6*x-1, [1,-1,x,1,3*x^3-2*x^2-25*x+9,-x,-3*x^3+2*x^2+26*x-11,-1,x^2-3,-3*x^3+2*x^2+25*x-9,2*x^3-2*x^2-16*x+10,x,2,3*x^3-2*x^2-26*x+11,x^3-x^2-9*x+3,1,2*x^3-2*x^2-16*x+10]];
E[566,4] = [x, [1,-1,0,1,0,0,1,-1,-3,0,-3,0,-5,-1,0,1,4]];
E[566,5] = [x, [1,1,1,1,-2,1,3,1,-2,-2,0,1,4,3,-2,1,8]];
E[566,6] = [x^2+3*x+1, [1,1,x,1,-x-2,x,-x-4,1,-3*x-4,-x-2,2*x,x,0,-x-4,x+1,1,0]];
E[566,7] = [x^9-3*x^8-19*x^7+57*x^6+116*x^5-351*x^4-265*x^3+828*x^2+197*x-652, [6703,6703,6703*x,6703,-207*x^8-61*x^7+4833*x^6+627*x^5-37878*x^4+222*x^3+109599*x^2-4883*x-88180,6703*x,341*x^8-450*x^7-6213*x^6+6933*x^5+32866*x^4-27372*x^3-46390*x^2+20349*x+7155,6703,6703*x^2-20109,-207*x^8-61*x^7+4833*x^6+627*x^5-37878*x^4+222*x^3+109599*x^2-4883*x-88180,932*x^8-1053*x^7-20303*x^6+17966*x^5+154125*x^4-89790*x^3-482580*x^2+126578*x+513435,6703*x,-1377*x^8+2800*x^7+27487*x^6-45373*x^5-182901*x^4+206064*x^3+479312*x^2-253973*x-426591,341*x^8-450*x^7-6213*x^6+6933*x^5+32866*x^4-27372*x^3-46390*x^2+20349*x+7155,-682*x^8+900*x^7+12426*x^6-13866*x^5-72435*x^4+54744*x^3+166513*x^2-47401*x-134964,6703,1064*x^8-2957*x^7-20762*x^6+49624*x^5+133981*x^4-237689*x^3-341179*x^2+306787*x+301060]];

E[567,1] = [x, [1,1,0,-1,-1,0,-1,-3,0,-1,2,0,-5,-1,0,-1,-3]];
E[567,2] = [x, [1,-1,0,-1,1,0,-1,3,0,-1,-2,0,-5,1,0,-1,3]];
E[567,3] = [x^3-6*x-3, [1,x,0,x^2-2,-x^2+x+3,0,1,2*x+3,0,x^2-3*x-3,x^2-x-6,0,-x^2+3*x+5,x,0,3*x+4,-x^2-x+3]];
E[567,4] = [x^3-3*x^2+3, [1,x,0,x^2-2,-x^2+x+3,0,1,3*x^2-4*x-3,0,-2*x^2+3*x+3,x^2-x,0,-4*x^2+6*x+5,x,0,3*x^2-3*x-5,-x^2+2*x+3]];
E[567,5] = [x^3+x^2-4*x-1, [1,x,0,x^2-2,-x^2-x+1,0,-1,-x^2+1,0,-3*x-1,x^2-x-4,0,1,-x,0,-x^2-3*x+3,x^2-7]];
E[567,6] = [x^3-x^2-4*x+1, [1,x,0,x^2-2,x^2-x-1,0,-1,x^2-1,0,3*x-1,-x^2-x+4,0,1,-x,0,-x^2+3*x+3,-x^2+7]];
E[567,7] = [x^3-6*x+3, [1,x,0,x^2-2,x^2+x-3,0,1,2*x-3,0,x^2+3*x-3,-x^2-x+6,0,-x^2-3*x+5,x,0,-3*x+4,x^2-x-3]];
E[567,8] = [x^3+3*x^2-3, [1,x,0,x^2-2,x^2+x-3,0,1,-3*x^2-4*x+3,0,-2*x^2-3*x+3,-x^2-x,0,-4*x^2-6*x+5,x,0,3*x^2+3*x-5,x^2+2*x-3]];
E[567,9] = [x^4-5*x^2+1, [1,x,0,x^2-2,-2*x^3+10*x,0,-1,x^3-4*x,0,2,-x^3+6*x,0,4,-x,0,-x^2+3,2*x^3-8*x]];

E[568,1] = [x, [1,0,-1,0,2,0,5,0,-2,0,2,0,-1,0,-2,0,-2]];
E[568,2] = [x^4+2*x^3-5*x^2-5*x-1, [1,0,x,0,-x^3-2*x^2+5*x+2,0,3*x^3+5*x^2-18*x-9,0,x^2-3,0,-6*x^3-10*x^2+32*x+16,0,3*x^3+5*x^2-16*x-11,0,-3*x-1,0,4*x^3+6*x^2-22*x-12]];
E[568,3] = [x^4+4*x^3+x^2-5*x+1, [1,0,x,0,x^3+4*x^2+x-4,0,-x^3-5*x^2-4*x+3,0,x^2-3,0,-2*x^3-6*x^2+2,0,-x^3-5*x^2-4*x+5,0,x-1,0,2*x^3+8*x^2+4*x-8]];
E[568,4] = [x^4-5*x^3+2*x^2+17*x-16, [1,0,x,0,-x^3+2*x^2+5*x-6,0,0,0,x^2-3,0,2,0,2*x^3-6*x^2-6*x+16,0,-3*x^3+7*x^2+11*x-16,0,2*x^3-4*x^2-10*x+14]];
E[568,5] = [x^5-2*x^4-9*x^3+15*x^2+19*x-28, [1,0,x,0,-x^3+2*x^2+5*x-6,0,x^4-x^3-8*x^2+3*x+12,0,x^2-3,0,0,0,-x^4+x^3+8*x^2-3*x-10,0,-x^4+2*x^3+5*x^2-6*x,0,-2*x^2+10]];

E[569,1] = [x^31-53*x^29+1260*x^27+4*x^26-17750*x^25-160*x^24+164884*x^23+2756*x^22-1063367*x^21-26739*x^20+4881497*x^19+160306*x^18-16085855*x^17-611602*x^16+37872670*x^15+1464757*x^14-62581486*x^13-2043005*x^12+70114271*x^11+1238201*x^10-50129555*x^9+450969*x^8+20481249*x^7-1061301*x^6-3789930*x^5+449436*x^4+156552*x^3-18419*x^2-1828*x+173, [2298001006263229332621759037301632,2298001006263229332621759037301632*x,34938771829879644742611717742868*x^30+3499948610297406752899827112624*x^29-1844475596578230736289593366779576*x^28-194751831021874103970201305842696*x^27+43651268320585474827302029335101328*x^26+5016029328846736993120522076438848*x^25-611699332353811359765513807894725048*x^24-78130823040669918661709629924413312*x^23+5647341851698052789393575875027325792*x^22+809350775361255180551159859224785048*x^21-36157163046283803828382832710469733116*x^20-5807356725791890047353201028345690516*x^19+164553305315015726880293017823344410584*x^18+29323240833183176273165338940469506188*x^17-536625081894102141971860248106068773556*x^16-104256930069870845091510614667458193332*x^15+1247458483118488768585150749402284516756*x^14+257902177548767732109711071115829625216*x^13-2029007613374280413217237964809911903276*x^12-432452018144075816622986755917155404348*x^11+2228001122810509280845847775830782670072*x^10+469164328776609554884249583901101924672*x^9-1551138271772695159322695352399829810268*x^8-302568947722931176128086687250322686700*x^7+610250502032479452924269506462579767256*x^6+97088497491537313262187635123981902120*x^5-106381764656848495793137285709296854688*x^4-9163162438656540657730547821522451208*x^3+4142281916707183204808205129556130368*x^2+228218949363142119550959586355651076*x-34786980327211259576049815045993528,2298001006263229332621759037301632*x^2-4596002012526458665243518074603264,42637382117786733305204049413332*x^30+9312225222133864472550272199968*x^29-2259126016822898452598754394695944*x^28-492905045321559761869029739976960*x^27+53686612275479699325259805681000056*x^26+11867323053318118442855359866101312*x^25-755861332060390845781816439607476792*x^24-171184376035191972934657075866683592*x^23+7015085932249952469239007660515327272*x^22+1639091860948709950372153257097643944*x^21-45178823022836040833343655067676374972*x^20-10907813392048524900592916095080283532*x^19+206959137668486369741083489953433370640*x^18+51398226706946190885323213700974978884*x^17-679820971142742752371502628808514823252*x^16-171720338087650070894764240375137484772*x^15+1593053533873354497447067778937394495524*x^14+401632053244589931522391710535737977560*x^13-2614174736647607771308721177597110464636*x^12-639514573602292944959275642033506896972*x^11+2898756214033402069921178958124989736304*x^10+659824283475643389993728649305554647696*x^9-2039996869048721750216447119588061268380*x^8-403385881982131795269835719324527017892*x^7+812262572255560884529739708429879379216*x^6+120760602945954471914571583714512604640*x^5-143555400407463973708956869534278316048*x^4-9519627101068702130193019338353296728*x^3+5599916652084347857543506432920553816*x^2+219545785873766024376969547777130732*x-49521131449558497067183332050150408,3499948610297406752899827112624*x^30+7279310405390435068827673592428*x^29-194751831021874103970201305842696*x^28-371584185062877548388735020912352*x^27+4876274241527218414150075205467376*x^26+8463867626552334415844182041181952*x^25-72540619547889175502891755085554432*x^24-113502602699822554347214593287721520*x^23+713059520198106879640521965125440840*x^22+995573938139824362633961750610583440*x^21-4873128905832738226580506307619143064*x^20-6000204556226269291831854503312502812*x^19+23722346076222489943056224915981308580*x^18+25394935639426490809304164806633158584*x^17-82888307341172794607639802872484638796*x^16-75766092599839156469017774806500100804*x^15+206725366939548713315457359269939522140*x^14+157512646754526955927490852551333438572*x^13-361071932601772553015607303509887366008*x^12-221705393676838028021355449768172599156*x^11+425903106558080748884303012380165024204*x^10+200326812305707135182519595835747453472*x^9-318325250716280169638017550989106125792*x^8-105339183569471191080701994946817714876*x^7+134169050973360410107166193776205453388*x^6+26033734864367266206229141715930864552*x^5-24865904294790328672270987797006073656*x^4-1327452690804134938937144506525340768*x^3+871756187697695296065124815461536768*x^2+29081094577808731013444404987969176*x-6044407526569178540471827169516164,9372080454288461779834530556646*x^30+5073843423053366290728725566622*x^29-496734273679352335513428503319756*x^28-266614832320786891145820717172716*x^27+11809391887275512641533602851379908*x^26+6319076539890277744960242831275004*x^25-166335921283951750656669486514862272*x^24-89161793206914883256272180823317792*x^23+1544238446910719588573537248947042584*x^22+832206776486262513122791644386608176*x^21-9945859118431745638151889191144030666*x^20-5398347285430494442225538114332886132*x^19+45542834941586249231253271728903055582*x^18+24883844019384593440762534951055198702*x^17-149434162015792200534784848012686809428*x^16-81922635705433220189535086126484795908*x^15+349429411416013777523817667072113225324*x^14+190964437926636953559346331985540716230*x^13-571379850578986152506449499621224261898*x^12-308093290717599623304331161393137390224*x^11+630202735455886751503754576745329776598*x^10+330139844842339341841911111525895297880*x^9-440341856132438137340404848971777373522*x^8-218636175284428814282355024696806833244*x^7+174275070655732187957330029598604882142*x^6+77987796291274827359312957986741278108*x^5-31490721664686544337451402975102503496*x^4-10850634388639133144526271373036562704*x^3+1824503925557682054475499141828159680*x^2+250463521172734256251671289175473166*x-20942705265972100059341433237584178,2298001006263229332621759037301632*x^3-9192004025052917330487036149206528*x,-244411312172025178102221824246*x^30-6855670743553546897558221330528*x^29+17685798081100764362486741126038*x^28+346743698900484695750190987967490*x^27-553339968952673508753933440167690*x^26-7818293982230849843280044558491262*x^25+9960441639115363022228010968154994*x^24+103721792308057861596785799636478850*x^23-115354382896037856482481044373072978*x^22-899964367106712247962150637848566922*x^21+908069035240582581788576196288199804*x^20+5369996905086021642804157876002934140*x^19-4993538083420894923511609576211375784*x^18-22554489593811744279599262692494664780*x^17+19373363111990701491413358731087774292*x^16+67097044181838225441373402099992622218*x^15-52805196936304355653482910913575131948*x^14-140290295494216422721058860255849320652*x^13+99217549896481163513141636037485148372*x^12+201608921173701158812449971482490834812*x^11-123660063936035478002725155396961493404*x^10-191033379069626685817328410877621144354*x^9+95283251672730365965272153611525255392*x^8+110944781186071900370458000839099145028*x^7-39645066422215739472043405587110163028*x^6-34358825853962996847786303756228583170*x^5+6500209867249074554841686536919618786*x^4+4064526385791126696205864946302810422*x^3-83541006372998435538271239152381610*x^2-80669160131676289406618942945214300*x-2161129791049780228862409162077102,9312225222133864472550272199968*x^30+655235419798412577060224210652*x^29-492905045321559761869029739976960*x^28-36489192931584639297296579798264*x^27+11696773524846971509634543668447984*x^26+952200530323670385555437479166208*x^25-164362394896346095605824427960550472*x^24-15136180859195265056256822952506216*x^23+1521583235832089713383010896914500952*x^22+160362087608484401211259344830233872*x^21-9767732431601025438745065017817199184*x^20-1175115227343215528070161645598547364*x^19+44563198529172270816099173355721379292*x^18+6037775183567560499680455467178795608*x^17-145643229909647469231834833345844806908*x^16-21737968737483583398934467157421940916*x^15+339178649325886989406460942729214037236*x^14+54135995433313030016639767906634306716*x^13-552406188748744059883077243061822554312*x^12-90732750503650869244623472738761124668*x^11+607030634300017739028491690117917551964*x^10+97396122880884775277111061700282958880*x^9-422614019558407960601750284284407936600*x^8-61004267606976529190737423412877232452*x^7+166011699224943649758117946560931269572*x^6+18037293202199500446435113458791030712*x^5-28682401570558300399950706490483577480*x^4-1075050793219400814852797910835397448*x^3+1004883727101279865125522933921292840*x^2+28420003061755651414729670277420488*x-7376267106377104861800300548506436,1156408807670327500389490617286*x^30+7262320067401157534909273151388*x^29-64237664262358947471089907327892*x^28-367883131610390202413184950607360*x^27+1615730979563907381619369285912012*x^26+8314795298568457523143487241568304*x^25-24278041622618989668868049243749808*x^24-110661767909321239763933486227595728*x^23+242135700000907965077218970117674968*x^22+963932752736587406492815964985359280*x^21-1684636928895094550610831430675002498*x^20-5777052067399383554022883975226574206*x^19+8367023003136391395625173330315068996*x^18+24374789888444277632880141808842530230*x^17-29854961602178946194955142083813839166*x^16-72812915255032127269731115028964463206*x^15+75991104755345388260551126291836559882*x^14+152675345203708533879204394136231397988*x^13-135087553693504291276164251640380922826*x^12-219435514374009062817918236921518927946*x^11+161145796283136598732818604414482179360*x^10+206867424984989838935132095009093003468*x^9-120150972935579640878708782180776576134*x^8-118298710235336725591035786124995798274*x^7+48924653131945886679348780893637827992*x^6+35227628598975835747186742537230501600*x^5-7915068933889366838448596301356332920*x^4-3697468239306352916438007476183664640*x^3+59216719946356808565105091511764624*x^2+46147340425088551367692473462737598*x+4388278007465821436676288390043084,-62598233254368854416395761893308*x^30-16254451896706359572310123098872*x^29+3317367008093583924190451712646800*x^28+855842654596234113436695655246528*x^27-78852668809059804865771475937471200*x^26-20448590372803679625160867989356128*x^25+1110456053785447750264276994839748416*x^24+292235639619169101918806131336371848*x^23-10308755623626260869164181922966459888*x^22-2770100602669126061071995568799068152*x^21+66407706662232080724099599394791416556*x^20+18252070886485309865702379621879971484*x^19-304272737752527299038212230525171965528*x^18-85235123154843555250803032294685317652*x^17+999624646758320242039589761467372509956*x^16+282686828344538115690131893311394322724*x^15-2342530893709023979865967938315241387308*x^14-657844302743261400692123455890447337176*x^13+3843460245582303451896328591141877602516*x^12+1045410797497766614460228010186809175796*x^11-4260009073184530285848023274656496036096*x^10-1081203041912421861229653426058533972816*x^9+2995358991651081916338740227719688973004*x^8+667623627444517610602916737126247639412*x^7-1190752770240534391558050531794773706136*x^6-205778339041240504421628616276022801576*x^5+209863073719275231345941140213879088544*x^4+18650157110171496989546246724370926736*x^3-8191017185383489743621303938536870104*x^2-456084400193229758098090115918941644*x+68968469544841067783847960001503104,47705088857962761879950061986856*x^30+8001929699547727910468821551918*x^29-2525792000409494490830520723981480*x^28-426720992099940217281133806192488*x^27+59972169381696702393551697261671528*x^26+10404706259039740515825728032387600*x^25-843511773311885027857373274189537064*x^24-152592766123233004153534448739623468*x^23+7819522916636106453387923038864597960*x^22+1488911626840354031918110139180673804*x^21-50292862087441560354546294951431857808*x^20-10105248093831598692223622959025492614*x^19+230036154084365824364349584976815175318*x^18+48545315795501116428015500353044613648*x^17-754302864465891685725039963409444377998*x^16-165177100718085670774357524157452505730*x^15+1763974520173828963991859697945904762950*x^14+392912083033669040572097322972237608674*x^13-2887512513476019139268047996829256021772*x^12-635428378492136757091209324054727987418*x^11+3191768784753804142223489675538695736806*x^10+665046994640411681819640756336074483816*x^9-2236202685471294718401001617880996713684*x^8-411853187315923106010857221584734440482*x^7+883609583914769979720200204706521484922*x^6+124540172938291442732300576717307700684*x^5-153247039429219840914534863368524966532*x^4-9841528460340323834587033624850160424*x^3+5369433560253876265285784660844527596*x^2+315211272141416901318049140465826768*x-39713053361864241090677941144911022,5073843423053366290728725566622*x^30-14009602063861182198383817518*x^29-266614832320786891145820717172716*x^28+570514872050798942094350005948*x^27+6281588218073123897840904709048420*x^26+18506779668445935393430865604228*x^25-87662260334228729371498655934254432*x^24-1067666714179143532699487354976480*x^23+806377322754243512457567678172491800*x^22+20101958003613099285416063284956416*x^21-5147747226163275262694542601778728738*x^20-206947679781514081623649679772723480*x^19+23381443290079427286684380695641505026*x^18+1323765220226123828675334514590032902*x^17-76190652555429488388064727568978989016*x^16-5516298842703220271468163304657039496*x^15+177236617476654749148101244510979591208*x^14+15138871161940858329800256726089594058*x^13-288946083489086024445820316293256828994*x^12-26913853349897569900706033861128718468*x^11+318535325451758914177658215956125664034*x^10+29476366465240293317208141466788899008*x^9-222862693034818827602745223107406923218*x^8-17676842776582915582444169530170448712*x^7+87934394649491626134713125101040234554*x^6+4028807211434925615796879417446871284*x^5-15062784739692722253007983448293314360*x^4+357285986277914785918843714124115088*x^3+423087871060273433774443507498335840*x^2-3810542195532791925803911380035290*x-1621369918591903887911373786299758,-22596765684735619354464915595723*x^30-18507209996309551359989697551329*x^29+1219292882255466044727926598756908*x^28+953205398017259468013249815390844*x^27-29557802059779914961454895202330888*x^26-21999104378660980422580842642298940*x^25+425194189139486264466461890273857758*x^24+300252179554788195074229451693845778*x^23-4038050862751076685333609280515631886*x^22-2692832337537769585251690947301276958*x^21+26647492364987309540786968010952419379*x^20+16673175763348698161651578758781003618*x^19-125225565537136383321714386160892299517*x^18-72851089701804117494267147924355129381*x^17+422364399220945865697514243496132994726*x^16+225558392973521256156396947613616420072*x^15-1016862888624269898642458442610149353826*x^14-489553012155682126618556679681688373285*x^13+1714534566345452679038438451925208297883*x^12+725024710614766926477118378978935192208*x^11-1951968084701808869359344772354841498533*x^10-697380744600927756490495331105943523002*x^9+1406992216550390720362756993771708322635*x^8+398254856583595423818531347540550009470*x^7-570263505270554301455675805079694568601*x^6-111708068969925485185725645430512843524*x^5+100633391356803698301734978260439490810*x^4+8355102700299972969732952226169505306*x^3-3334265778835887146638207082003502018*x^2-176945959574888196364693601645543229*x+27015600669370406656401316925890045,2298001006263229332621759037301632*x^4-13788006037579375995730554223809792*x^2+9192004025052917330487036149206528,64092517338532107108563407005994*x^30+10928981490208307391222254116320*x^29-3391567933863114335541424776770444*x^28-580957126400788227885730772945844*x^27+80481650699019263635333692961443940*x^26+14118294590941866058686377319295908*x^25-1131269820745216301996406744437159616*x^24-206377478771600119394980558260659964*x^23+10480155751837691783634868236095153464*x^22+2007510489548551638324715947587345652*x^21-67358556579360231457151075878266817838*x^20-13586451624044213697612794335114170130*x^19+307873214361082387037794152362514141144*x^18+65099213306953021291575216125815604130*x^17-1008807093545936386971523538632832139346*x^16-220955823440487284538292159205720712086*x^15+2357486775559991326645823954897561135962*x^14+524280116423677987076958685578673857876*x^13-3856564028308400312019612907785205934730*x^12-845494815014782357236635219824041209850*x^11+4260690669608844671823513975854193278256*x^10+881665072806288106307590967319421120112*x^9-2984199336255417806771850617085308332010*x^8-542801967885731685528361990721530503614*x^7+1179274034079739934003252175038113133372*x^6+161935651361023732840946384332928577856*x^5-204665830292294603794318308304267768876*x^4-11809571960447514061057786625538437488*x^3+7140983406159747736162582320363965340*x^2+247401636943682470315656712084973794*x-40657480202867198210657305435721236]];
E[569,2] = [x^16+3*x^15-13*x^14-43*x^13+60*x^12+236*x^11-110*x^10-630*x^9+22*x^8+846*x^7+159*x^6-522*x^5-144*x^4+113*x^3+23*x^2-7*x-1, [1,x,5*x^15+8*x^14-78*x^13-110*x^12+479*x^11+567*x^10-1475*x^9-1382*x^8+2370*x^7+1639*x^6-1870*x^5-855*x^4+606*x^3+148*x^2-54*x-8,x^2-2,-x^15-2*x^14+15*x^13+28*x^12-89*x^11-150*x^10+270*x^9+395*x^8-445*x^7-543*x^6+387*x^5+377*x^4-155*x^3-114*x^2+18*x+8,-7*x^15-13*x^14+105*x^13+179*x^12-613*x^11-925*x^10+1768*x^9+2260*x^8-2591*x^7-2665*x^6+1755*x^5+1326*x^4-417*x^3-169*x^2+27*x+5,3*x^15+6*x^14-44*x^13-82*x^12+251*x^11+421*x^10-710*x^9-1027*x^8+1028*x^7+1225*x^6-692*x^5-641*x^4+156*x^3+102*x^2-4*x-5,x^3-4*x,-11*x^15-16*x^14+174*x^13+217*x^12-1086*x^11-1094*x^10+3404*x^9+2571*x^8-5572*x^7-2865*x^6+4475*x^5+1323*x^4-1455*x^3-170*x^2+114*x+11,x^15+2*x^14-15*x^13-29*x^12+86*x^11+160*x^10-235*x^9-423*x^8+303*x^7+546*x^6-145*x^5-299*x^4-x^3+41*x^2+x-1,9*x^15+18*x^14-131*x^13-245*x^12+737*x^11+1248*x^10-2034*x^9-2997*x^8+2819*x^7+3458*x^6-1749*x^5-1666*x^4+332*x^3+195*x^2-14*x-7,-2*x^15-2*x^14+34*x^13+27*x^12-231*x^11-136*x^10+800*x^9+327*x^8-1483*x^7-410*x^6+1412*x^5+285*x^4-590*x^3-108*x^2+64*x+9,-9*x^15-17*x^14+134*x^13+232*x^12-778*x^11-1185*x^10+2244*x^9+2852*x^8-3326*x^7-3294*x^6+2334*x^5+1582*x^4-612*x^3-176*x^2+45*x+2,-3*x^15-5*x^14+47*x^13+71*x^12-287*x^11-380*x^10+863*x^9+962*x^8-1313*x^7-1169*x^6+925*x^5+588*x^4-237*x^3-73*x^2+16*x+3,-6*x^15-12*x^14+89*x^13+168*x^12-510*x^11-888*x^10+1426*x^9+2235*x^8-1979*x^7-2738*x^6+1198*x^5+1435*x^4-208*x^3-201*x^2+12*x+3,x^4-6*x^2+4,-20*x^15-35*x^14+303*x^13+476*x^12-1797*x^11-2418*x^10+5314*x^9+5776*x^8-8120*x^7-6630*x^6+5951*x^5+3221*x^4-1677*x^3-431*x^2+117*x+17]];

E[570,1] = [x, [1,-1,1,1,-1,-1,4,-1,1,1,0,1,2,-4,-1,1,-2]];
E[570,2] = [x, [1,-1,1,1,1,-1,-4,-1,1,-1,-4,1,-6,4,1,1,-6]];
E[570,3] = [x, [1,-1,1,1,1,-1,2,-1,1,-1,0,1,2,-2,1,1,0]];
E[570,4] = [x, [1,-1,-1,1,1,1,-2,-1,1,-1,-2,-1,0,2,-1,1,-2]];
E[570,5] = [x, [1,-1,-1,1,-1,1,2,-1,1,1,-6,-1,0,-2,1,1,2]];
E[570,6] = [x, [1,-1,-1,1,-1,1,-2,-1,1,1,4,-1,-6,2,1,1,4]];
E[570,7] = [x, [1,1,-1,1,-1,-1,0,1,1,-1,4,-1,2,0,1,1,2]];
E[570,8] = [x, [1,1,-1,1,1,-1,4,1,1,1,0,-1,-6,4,-1,1,2]];
E[570,9] = [x, [1,1,-1,1,1,-1,-2,1,1,1,0,-1,6,-2,-1,1,8]];
E[570,10] = [x, [1,1,1,1,1,1,-2,1,1,1,2,1,4,-2,1,1,-2]];
E[570,11] = [x, [1,1,1,1,1,1,4,1,1,1,-4,1,-2,4,1,1,-2]];
E[570,12] = [x, [1,1,1,1,-1,1,2,1,1,-1,6,1,-4,2,-1,1,-6]];
E[570,13] = [x, [1,1,1,1,-1,1,2,1,1,-1,-4,1,6,2,-1,1,4]];

E[571,1] = [x, [1,-2,-2,2,-2,4,-4,0,1,4,-3,-4,-5,8,4,-4,-2]];
E[571,2] = [x^2-5, [2,2*x,4,6,-x+1,4*x,4,2*x,2,x-5,-3*x+5,12,-x-9,4*x,-2*x+2,-2,0]];
E[571,3] = [x^3+2*x^2-2*x-2, [1,x,x^2+x-2,x^2-2,-x^2-2*x,-x^2+2,x^2+2*x,-2*x^2-2*x+2,-x^2-2*x+1,-2*x-2,-3*x^2-4*x+5,-2*x+2,x^2+2*x-3,2*x+2,-2,-2*x,-3*x^2-4*x+4]];
E[571,4] = [x^6+x^5-10*x^4-11*x^3+22*x^2+25*x+1, [4,4*x,x^4-9*x^2-2*x+11,4*x^2-8,-2*x^4+2*x^3+12*x^2-10*x-14,x^5-9*x^3-2*x^2+11*x,-x^5+7*x^3+2*x^2-7*x-6,4*x^3-16*x,x^5-11*x^3-4*x^2+33*x+20,-2*x^5+2*x^4+12*x^3-10*x^2-14*x,x^5-11*x^3+2*x^2+23*x-14,-x^5-x^4+9*x^3+7*x^2-21*x-23,x^4-2*x^3-5*x^2+2*x-3,x^5-3*x^4-9*x^3+15*x^2+19*x+1,-3*x^5+29*x^3+12*x^2-59*x-40,4*x^4-24*x^2+16,-x^5+11*x^3+4*x^2-25*x-24]];
E[571,5] = [x^18-29*x^16-2*x^15+344*x^14+53*x^13-2152*x^12-547*x^11+7628*x^10+2794*x^9-15277*x^8-7417*x^7+16118*x^6+9851*x^5-7336*x^4-5644*x^3+544*x^2+848*x+96, [9503920240,9503920240*x,951728076*x^17-763269512*x^16-27027409200*x^15+19592002388*x^14+312529091028*x^13-195724728108*x^12-1897176549156*x^11+956845922060*x^10+6501735153948*x^9-2337140515192*x^8-12589837138088*x^7+2473497449784*x^6+12991789189260*x^5-338416234344*x^4-6143789639088*x^3-756693605848*x^2+835902748320*x+140976634688,9503920240*x^2-19007840480,-244936631*x^17+609376372*x^16+6336344275*x^15-16274839918*x^14-63995235068*x^13+172885665713*x^12+315914567416*x^11-932328633395*x^10-765414837228*x^9+2700892881802*x^8+716282387743*x^7-4095628429869*x^6+202016683190*x^5+2916636327719*x^4-555569101432*x^3-778718391832*x^2+140390472600*x+49313888032,-763269512*x^17+572705004*x^16+21495458540*x^15-14865367116*x^14-246166316136*x^13+150942270396*x^12+1477441179632*x^11-758046609780*x^10-4996268759536*x^9+1949712678964*x^8+9532464589476*x^7-2348163939708*x^6-9713889511020*x^5+838087526448*x^4+4614859655096*x^3+318162674976*x^2-666088773760*x-91365895296,322166588*x^17+95888164*x^16-9533430520*x^15-2974419936*x^14+115672882444*x^13+37915843876*x^12-741713560928*x^11-252899150660*x^10+2698926480424*x^9+933674242864*x^8-5557198411104*x^7-1865750335708*x^6+6065418559240*x^5+1846194702688*x^4-2973105106284*x^3-737963663784*x^2+410185403280*x+53934030944,9503920240*x^3-38015680960*x,-1236189652*x^17+1458548304*x^16+34178335540*x^15-37822829776*x^14-381651732696*x^13+385169163916*x^12+2213727863712*x^11-1953949971660*x^10-7153626629616*x^9+5166939194104*x^8+12861647019276*x^7-6771353344828*x^6-12129340694400*x^5+3607662389068*x^4+5192985174816*x^3-307787537984*x^2-605692032640*x-30123872336,609376372*x^17-766818024*x^16-16764713180*x^15+20262965996*x^14+185867307156*x^13-211189062496*x^12-1066308970552*x^11+1102961784040*x^10+3385245828816*x^9-3025614524044*x^8-5912323421996*x^7+4149905301648*x^6+5329507079700*x^5-2352424226448*x^4-2161140737196*x^3+273635999864*x^2+257020151120*x+23513916576,1899933580*x^17-1661523980*x^16-53614504820*x^15+43067260960*x^14+615220511800*x^13-436366174100*x^12-3701577962960*x^11+2181995435280*x^10+12569194003480*x^9-5560280850460*x^8-24168199039440*x^7+6551853600300*x^6+24954920769860*x^5-2136685782420*x^4-12024943399460*x^3-985063801020*x^2+1724467592560*x+229192539680,-1330751148*x^17+887181716*x^16+37662912260*x^15-22785608784*x^14-433662627524*x^13+226334646024*x^12+2618798065468*x^11-1087740766120*x^10-8921182612404*x^9+2546277285036*x^8+17170340365964*x^7-2358506416172*x^6-17626522889360*x^5-307653016248*x^4+8297848827424*x^3+1262517052464*x^2-1115918845760*x-208679396224,382747842*x^17-571408294*x^16-10407506450*x^15+15053321186*x^14+113571703216*x^13-156774807066*x^12-637442791202*x^11+822065122170*x^10+1960682581566*x^9-2289337667804*x^8-3255634141906*x^7+3280224089908*x^6+2660629187390*x^5-2113466436058*x^4-851576240726*x^3+403961451724*x^2+34027754120*x+8240095776,95888164*x^17-190599468*x^16-2330086760*x^15+4847576172*x^14+20841014712*x^13-48411063552*x^12-76674027024*x^11+241439747160*x^10+33540795992*x^9-635459446228*x^8+523759247488*x^7+872737493856*x^6-1327468355700*x^5-609691016716*x^4+1080344558888*x^3+234926779408*x^2-219263235680*x-30927992448,3875358702*x^17-3587598124*x^16-109233868070*x^15+92715409976*x^14+1251669310096*x^13-936985946906*x^12-7516588292812*x^11+4677740142110*x^10+25449316017676*x^9-11935534620324*x^8-48681837078886*x^7+14242864911998*x^6+49761612526440*x^5-5154047017798*x^4-23522622286436*x^3-1625814686616*x^2+3287513344240*x+477317374016,9503920240*x^4-57023521440*x^2+38015680960,-3231404566*x^17+2760503432*x^16+91471770270*x^15-71510236548*x^14-1053990997768*x^13+723940273778*x^12+6376524707736*x^11-3615585754550*x^10-21809324915408*x^9+9197666810772*x^8+42324181520038*x^7-10820041081314*x^6-44197013608900*x^5+3574823777734*x^4+21572813787768*x^3+1516039599768*x^2-3166529312880*x-355131979968]];
E[571,6] = [x^4-2*x^3-4*x^2+6*x+2, [1,x,x,x^2-2,-x^2+4,x^2,-x^3+2*x^2+2*x-4,x^3-4*x,x^2-3,-x^3+4*x,-x^2+5,x^3-2*x,-x^2+2*x+5,-2*x^2+2*x+2,-x^3+4*x,2*x^3-2*x^2-6*x+2,-2]];
E[571,7] = [x^10+x^9-10*x^8-7*x^7+34*x^6+16*x^5-47*x^4-13*x^3+24*x^2+2*x-2, [1,x,-2*x^9+x^8+20*x^7-15*x^6-59*x^5+52*x^4+52*x^3-49*x^2-3*x+4,x^2-2,-x^9-x^8+9*x^7+6*x^6-25*x^5-10*x^4+22*x^3+3*x^2-2*x,3*x^9-29*x^7+9*x^6+84*x^5-42*x^4-75*x^3+45*x^2+8*x-4,-2*x^9+19*x^7-6*x^6-54*x^5+27*x^4+49*x^3-29*x^2-10*x+4,x^3-4*x,7*x^9-x^8-68*x^7+30*x^6+197*x^5-121*x^4-175*x^3+123*x^2+16*x-13,-x^8-x^7+9*x^6+6*x^5-25*x^4-10*x^3+22*x^2+2*x-2,2*x^8+2*x^7-17*x^6-10*x^5+44*x^4+11*x^3-35*x^2+3,x^9-x^8-10*x^7+12*x^6+28*x^5-38*x^4-20*x^3+34*x^2-4*x-2,3*x^9-2*x^8-30*x^7+26*x^6+86*x^5-83*x^4-68*x^3+73*x^2-4*x-7,2*x^9-x^8-20*x^7+14*x^6+59*x^5-45*x^4-55*x^3+38*x^2+8*x-4,9*x^9-2*x^8-89*x^7+44*x^6+264*x^5-168*x^4-245*x^3+166*x^2+30*x-16,x^4-6*x^2+4,-4*x^9+2*x^8+40*x^7-29*x^6-118*x^5+96*x^4+105*x^3-83*x^2-8*x+4]];
E[571,8] = [x, [1,0,2,-2,-2,0,2,0,1,0,5,-4,3,0,-4,4,0]];
E[571,9] = [x^2-x-9, [1,1,-2,-1,x,-2,2,-3,1,x,-x+1,2,x+3,2,-2*x,-1,4]];

E[572,1] = [x, [1,0,1,0,3,0,2,0,-2,0,1,0,1,0,3,0,0]];
E[572,2] = [x^2+3*x-1, [1,0,x,0,0,0,-x-3,0,-3*x-2,0,-1,0,1,0,0,0,-2*x-4]];
E[572,3] = [x^3+2*x^2-4*x-7, [1,0,x,0,x^2-x-5,0,-2*x^2-x+5,0,x^2-3,0,1,0,-1,0,-3*x^2-x+7,0,-2*x^2+6]];
E[572,4] = [x^2-3*x-3, [1,0,x-1,0,-2,0,x,0,x+1,0,1,0,1,0,-2*x+2,0,0]];
E[572,5] = [x^2-5*x+1, [1,0,-x+3,0,2,0,x,0,-x+5,0,-1,0,-1,0,-2*x+6,0,-4]];

E[573,1] = [x, [1,-2,1,2,-2,-2,-2,0,1,4,-1,2,7,4,-2,-4,-4]];
E[573,2] = [x, [1,2,1,2,2,2,2,0,1,4,-3,2,-1,4,2,-4,0]];
E[573,3] = [x, [1,-1,1,-1,2,-1,2,3,1,-2,0,-1,2,-2,2,-1,-6]];
E[573,4] = [x^6+x^5-7*x^4-5*x^3+12*x^2+7*x-2, [1,x,-1,x^2-2,-x^3-x^2+3*x+2,-x,x^4+2*x^3-4*x^2-6*x,x^3-4*x,1,-x^4-x^3+3*x^2+2*x,-x^5-3*x^4+3*x^3+11*x^2-x-5,-x^2+2,x^5-7*x^3+x^2+10*x-1,x^5+2*x^4-4*x^3-6*x^2,x^3+x^2-3*x-2,x^4-6*x^2+4,2*x^5+4*x^4-6*x^3-11*x^2-3*x]];
E[573,5] = [x^7-3*x^6-6*x^5+20*x^4+5*x^3-28*x^2+6*x+1, [4,4*x,4,4*x^2-8,-2*x^6+4*x^5+16*x^4-28*x^3-30*x^2+42*x+2,4*x,-x^6+4*x^5+6*x^4-30*x^3-7*x^2+51*x-1,4*x^3-16*x,4,-2*x^6+4*x^5+12*x^4-20*x^3-14*x^2+14*x+2,2*x^6-4*x^5-16*x^4+24*x^3+34*x^2-26*x-2,4*x^2-8,4*x^6-12*x^5-24*x^4+76*x^3+24*x^2-92*x+8,x^6-10*x^4-2*x^3+23*x^2+5*x+1,-2*x^6+4*x^5+16*x^4-28*x^3-30*x^2+42*x+2,4*x^4-24*x^2+16,-4*x^2-4*x+24]];
E[573,6] = [x^10-3*x^9-13*x^8+41*x^7+51*x^6-178*x^5-57*x^4+273*x^3-24*x^2-109*x+34, [8,8*x,-8,8*x^2-16,26*x^9-20*x^8-374*x^7+236*x^6+1722*x^5-858*x^4-2764*x^3+1270*x^2+1182*x-564,-8*x,-9*x^9+6*x^8+127*x^7-66*x^6-565*x^5+209*x^4+842*x^3-263*x^2-299*x+114,8*x^3-32*x,8,58*x^9-36*x^8-830*x^7+396*x^6+3770*x^5-1282*x^4-5828*x^3+1806*x^2+2270*x-884,-22*x^9+12*x^8+314*x^7-124*x^6-1414*x^5+358*x^4+2124*x^3-490*x^2-746*x+276,-8*x^2+16,-44*x^9+28*x^8+632*x^7-312*x^6-2892*x^5+1032*x^4+4544*x^3-1460*x^2-1824*x+712,-21*x^9+10*x^8+303*x^7-106*x^6-1393*x^5+329*x^4+2194*x^3-515*x^2-867*x+306,-26*x^9+20*x^8+374*x^7-236*x^6-1722*x^5+858*x^4+2764*x^3-1270*x^2-1182*x+564,8*x^4-48*x^2+32,-12*x^9+8*x^8+172*x^7-88*x^6-780*x^5+284*x^4+1184*x^3-388*x^2-404*x+168]];
E[573,7] = [x^5+3*x^4-x^3-5*x^2+1, [1,x,1,x^2-2,-2*x^4-5*x^3+3*x^2+5*x-2,x,3*x^4+8*x^3-4*x^2-10*x,x^3-4*x,1,x^4+x^3-5*x^2-2*x+2,-2*x^3-4*x^2+3*x,x^2-2,x^4+2*x^3-4*x^2-4*x,-x^4-x^3+5*x^2-3,-2*x^4-5*x^3+3*x^2+5*x-2,x^4-6*x^2+4,-x^2-x-2]];

E[574,1] = [x, [1,1,-3,1,-1,-3,1,1,6,-1,-2,-3,0,1,3,1,-3]];
E[574,2] = [x^3-x^2-8*x+4, [2,2,2*x,2,-x^2+x+6,2*x,-2,2,2*x^2-6,-x^2+x+6,-x^2-x+10,2*x,0,-2,-2*x+4,2,-2*x-4]];
E[574,3] = [x, [1,1,0,1,-4,0,1,1,-3,-4,-2,0,-6,1,0,1,-6]];
E[574,4] = [x^2-2*x-2, [1,1,2,1,x,2,1,1,1,x,-x,2,-2*x,1,2*x,1,0]];
E[574,5] = [x, [1,1,-1,1,1,-1,1,1,-2,1,2,-1,4,1,-1,1,3]];
E[574,6] = [x, [1,1,-1,1,-1,-1,-1,1,-2,-1,-6,-1,-4,-1,1,1,7]];
E[574,7] = [x, [1,-1,-1,1,1,1,-1,-1,-2,-1,0,-1,2,1,-1,1,-5]];
E[574,8] = [x, [1,-1,-2,1,4,2,1,-1,1,-4,4,-2,4,-1,-8,1,-2]];
E[574,9] = [x, [1,-1,1,1,-3,-1,1,-1,-2,3,0,1,2,-1,-3,1,-3]];
E[574,10] = [x, [1,-1,3,1,-1,-3,1,-1,6,1,4,3,-6,-1,-3,1,3]];
E[574,11] = [x^4+x^3-10*x^2-4*x+8, [4,-4,4*x,4,-x^3+x^2+12*x-4,-4*x,-4,-4,4*x^2-12,x^3-x^2-12*x+4,x^3-x^2-8*x+12,4*x,-2*x^3-2*x^2+20*x,4,2*x^3+2*x^2-8*x+8,4,-2*x^3-6*x^2+12*x+24]];
E[574,12] = [x, [1,-1,2,1,-2,-2,-1,-1,1,2,-6,2,-4,1,-4,1,-2]];
E[574,13] = [x, [1,-1,2,1,2,-2,1,-1,1,-2,-2,2,4,-1,4,1,6]];

E[575,1] = [x, [1,2,2,2,0,4,1,0,1,0,0,4,2,2,0,-4,-5]];
E[575,2] = [x, [1,1,0,-1,0,0,-1,-3,-3,0,-1,0,-1,-1,0,-1,0]];
E[575,3] = [x, [1,-1,0,-1,0,0,1,3,-3,0,-1,0,1,-1,0,-1,0]];
E[575,4] = [x^2-3*x+1, [1,x,1,3*x-3,0,x,-2*x+4,4*x-3,-2,0,-2*x+2,3*x-3,2*x+1,-2*x+2,0,3*x+2,-4*x+8]];
E[575,5] = [x^2-x-1, [1,x,-2*x+1,x-1,0,-x-2,2*x-2,-2*x+1,2,0,2*x-4,x-3,-3,2,0,-3*x,-2*x-2]];
E[575,6] = [x^4-5*x^2+2*x+1, [1,x,-x^3+4*x-2,x^2-2,0,-x^2+1,-x^2-x+1,x^3-4*x,2*x^3-10*x+4,0,2*x^3+x^2-9*x+1,x^3-7*x+4,x^3-4*x-2,-x^3-x^2+x,0,-x^2-2*x+3,-x^3+6*x-5]];
E[575,7] = [x^4-5*x^2-2*x+1, [1,x,-x^3+4*x+2,x^2-2,0,-x^2+1,x^2-x-1,x^3-4*x,-2*x^3+10*x+4,0,-2*x^3+x^2+9*x+1,x^3-7*x-4,x^3-4*x+2,x^3-x^2-x,0,-x^2+2*x+3,-x^3+6*x+5]];
E[575,8] = [x^4+2*x^3-4*x^2-5*x+2, [1,x,x^2+x-2,x^2-2,0,x^3+x^2-2*x,x^3+2*x^2-4*x-3,x^3-4*x,x^2+x-1,0,2*x+2,-x^3+3*x+2,-2*x^3-3*x^2+7*x+4,2*x-2,0,-2*x^3-2*x^2+5*x+2,-x^3-2*x^2+2*x+3]];
E[575,9] = [x^7+x^6-12*x^5-9*x^4+43*x^3+14*x^2-49*x+9, [5,5*x,x^6-2*x^5-11*x^4+19*x^3+31*x^2-39*x-7,5*x^2-10,0,-3*x^6+x^5+28*x^4-12*x^3-53*x^2+42*x-9,-x^6+2*x^5+6*x^4-19*x^3+4*x^2+44*x-23,5*x^3-20*x,-2*x^6-x^5+17*x^4+12*x^3-32*x^2-32*x+29,0,3*x^6+4*x^5-28*x^4-33*x^3+58*x^2+48*x-21,2*x^6-4*x^5-17*x^4+38*x^3+22*x^2-78*x+41,x^6+3*x^5-11*x^4-31*x^3+36*x^2+66*x-47,3*x^6-6*x^5-28*x^4+47*x^3+58*x^2-72*x+9,0,5*x^4-30*x^2+20,-2*x^6-6*x^5+22*x^4+52*x^3-62*x^2-82*x+54]];
E[575,10] = [x^7-x^6-12*x^5+9*x^4+43*x^3-14*x^2-49*x-9, [5,5*x,-x^6-2*x^5+11*x^4+19*x^3-31*x^2-39*x+7,5*x^2-10,0,-3*x^6-x^5+28*x^4+12*x^3-53*x^2-42*x-9,x^6+2*x^5-6*x^4-19*x^3-4*x^2+44*x+23,5*x^3-20*x,-2*x^6+x^5+17*x^4-12*x^3-32*x^2+32*x+29,0,3*x^6-4*x^5-28*x^4+33*x^3+58*x^2-48*x-21,-2*x^6-4*x^5+17*x^4+38*x^3-22*x^2-78*x-41,-x^6+3*x^5+11*x^4-31*x^3-36*x^2+66*x+47,3*x^6+6*x^5-28*x^4-47*x^3+58*x^2+72*x+9,0,5*x^4-30*x^2+20,2*x^6-6*x^5-22*x^4+52*x^3+62*x^2-82*x-54]];
E[575,11] = [x, [1,-2,-2,2,0,4,-1,0,1,0,0,-4,-2,2,0,-4,5]];
E[575,12] = [x, [1,-2,0,2,0,0,-1,0,-3,0,2,0,2,2,0,-4,-3]];

E[576,1] = [x, [1,0,0,0,4,0,0,0,0,0,0,0,6,0,0,0,-8]];
E[576,2] = [x, [1,0,0,0,-4,0,0,0,0,0,0,0,6,0,0,0,8]];
E[576,3] = [x, [1,0,0,0,2,0,4,0,0,0,-4,0,2,0,0,0,6]];
E[576,4] = [x, [1,0,0,0,2,0,-4,0,0,0,4,0,2,0,0,0,6]];
E[576,5] = [x, [1,0,0,0,0,0,4,0,0,0,0,0,-2,0,0,0,0]];
E[576,6] = [x, [1,0,0,0,0,0,-4,0,0,0,0,0,-2,0,0,0,0]];
E[576,7] = [x, [1,0,0,0,-2,0,0,0,0,0,-4,0,2,0,0,0,-2]];
E[576,8] = [x, [1,0,0,0,-2,0,0,0,0,0,4,0,2,0,0,0,-2]];
E[576,9] = [x, [1,0,0,0,-2,0,0,0,0,0,0,0,-6,0,0,0,-2]];

E[577,1] = [x^3-x^2-4*x+3, [1,x,-x^2+x+3,x^2-2,0,-x+3,2,x^2-3,-2*x^2-x+9,0,x,x^2+x-6,2*x,2*x,0,-x^2+x+1,x^2-2]];
E[577,2] = [x^22+13*x^21+52*x^20-26*x^19-717*x^18-1318*x^17+2675*x^16+10732*x^15+933*x^14-35021*x^13-30176*x^12+54896*x^11+82861*x^10-34515*x^9-103516*x^8-9063*x^7+63170*x^6+22635*x^5-15588*x^4-9056*x^3+257*x^2+732*x+80, [7313369884,7313369884*x,3748515653*x^21+44109287893*x^20+140914165256*x^19-267364709078*x^18-2349214860709*x^17-2078161037478*x^16+12423097597767*x^15+24925669350132*x^14-26236018799519*x^13-98126137826369*x^12+4828477205948*x^11+196041090738104*x^10+74386678382413*x^9-212669088147639*x^8-131920121006564*x^7+118122974383097*x^6+94964266969258*x^5-25149592224681*x^4-28432755228792*x^3-945869938512*x^2+2142466997693*x+242460930636,7313369884*x^2-14626739768,937997626*x^21+10527973822*x^20+31095470276*x^19-68706787660*x^18-523100932418*x^17-403062995180*x^16+2693644131986*x^15+5191708339056*x^14-5118461470426*x^13-20006794660410*x^12-1823601096644*x^11+37731941963608*x^10+22570895685118*x^9-36815071067862*x^8-36314338883048*x^7+16561099268710*x^6+25611704858772*x^5-1402136395418*x^4-7789138717716*x^3-928678341272*x^2+677429330370*x+91387801548,-4621415596*x^21-54008648700*x^20-169903302100*x^19+338470862492*x^18+2862382593176*x^17+2395818225992*x^16-15303400637864*x^15-29733383903768*x^14+33150628857344*x^13+117943685550876*x^12-9737424548984*x^11-236219077140820*x^10-83289070384344*x^9+256111225329384*x^8+152095771746236*x^7-141829466830752*x^6-109997244030336*x^5+29999106770172*x^4+33000687815056*x^3+1179098474872*x^2-2501452527360*x-299881252240,3049267078*x^21+34475968154*x^20+98246399072*x^19-266743106244*x^18-1789357162666*x^17-802682714028*x^16+10584702172278*x^15+14983591656640*x^14-29263034895214*x^13-64888432249186*x^12+38380261130460*x^11+138968835666084*x^10-14997668374610*x^9-163329510402814*x^8-15728548736740*x^7+102519213831950*x^6+17884792320824*x^5-29179150763138*x^4-5742152250776*x^3+2210416573840*x^2+304824606118*x+20688309260,7313369884*x^3-29253479536*x,-9750976195*x^21-113584517651*x^20-354332446684*x^19+722514779110*x^18+5975510795279*x^17+4778062768762*x^16-32106576942797*x^15-60301540727948*x^14+71557586345977*x^13+239150778180015*x^12-33254613094660*x^11-479167133445928*x^10-139693063639331*x^9+522299055812757*x^8+270525736640060*x^7-294061179346355*x^6-196714901736890*x^5+66045726298875*x^4+58810671010724*x^3+712913162176*x^2-4431590849367*x-505524343748,-1665995316*x^21-17680406276*x^20-44318849384*x^19+149443365424*x^18+833217875888*x^17+184500482436*x^16-4874882183176*x^15-5993613255484*x^14+12842820199736*x^13+26481415265532*x^12-13760375713288*x^11-55152525602868*x^10-4440083006472*x^9+60783423369968*x^8+25062171753148*x^7-33641605175648*x^6-22633712659928*x^5+6832368276372*x^4+7565828159784*x^3+436363940488*x^2-595226460684*x-75039810080,-6494061672*x^21-75299818992*x^20-231236354544*x^19+501772508012*x^18+3977595690708*x^17+2921827268240*x^16-21910096837912*x^15-39255096017616*x^14+51463152353552*x^13+159300100231008*x^12-33807845862316*x^11-325627037136012*x^10-74025112282152*x^9+362929778621436*x^8+162472043191716*x^7-210951336948840*x^6-121763346795272*x^5+51270612251460*x^4+36904310536084*x^3-1132705927328*x^2-2803308095492*x-258898588108,-1427277258*x^21-17808266894*x^20-63514273516*x^19+83557029000*x^18+1003222191882*x^17+1215208156392*x^16-4982546923030*x^15-12388929091852*x^14+8569127562398*x^13+47059014078858*x^12+7821199005300*x^11-92436134160396*x^10-52170290731382*x^9+99043491205978*x^8+80126885635828*x^7-54308369597210*x^6-55323685152884*x^5+11261245953970*x^4+16193069295080*x^3+577991157836*x^2-1201939031354*x-115208613592,-1454403243*x^21-16607978231*x^20-51361938092*x^19+98683789086*x^18+842970613027*x^17+790963732218*x^16-4207636573709*x^15-9236471559928*x^14+7041374574573*x^13+35469495805955*x^12+8330608976628*x^11-68167059001396*x^10-50375226452935*x^9+68836174805233*x^8+79305794800760*x^7-32272472250735*x^6-57207048054538*x^5+2409343365659*x^4+17524975945220*x^3+2419439559944*x^2-1355932128343*x-241678389948,-5164503860*x^21-60315488984*x^20-187462162216*x^19+396967332260*x^18+3216251294776*x^17+2427912738628*x^16-17741142624456*x^15-32108001078988*x^14+41899950089452*x^13+130394944476188*x^12-28423729847804*x^11-267662987724768*x^10-58084057205644*x^9+299919382109508*x^8+130154721359864*x^7-174737408996436*x^6-98199311073668*x^5+41789822961088*x^4+29824579232208*x^3-478837032928*x^2-2211375191836*x-243941366240,7875545417*x^21+92869925525*x^20+299108318460*x^19-544224525766*x^18-4908250903073*x^17-4513179410398*x^16+25425582546143*x^15+52134674389100*x^14-51483925550151*x^13-200606004689157*x^12+2633662368088*x^11+390852080050684*x^10+159575061701489*x^9-410955493344935*x^8-267952760399500*x^7+218084378893005*x^6+187021058467826*x^5-41512301971009*x^4-55016416182388*x^3-3285548358364*x^2+4162911793793*x+531934072772,7313369884*x^4-43880219304*x^2+29253479536,-8483062046*x^21-96209616194*x^20-279654896328*x^19+705856598568*x^18+4972767555422*x^17+2763266408616*x^16-28400440203262*x^15-44376425022164*x^14+72547642041922*x^13+185878710237790*x^12-72715009721800*x^11-386422444506968*x^10-30163620708246*x^9+437259904622490*x^8+130010729905600*x^7-259602782397658*x^6-105405085076256*x^5+66478544364198*x^4+32039764066708*x^3-2882863607968*x^2-2180491103186*x-198281083616]];
E[577,3] = [x^2-3*x+1, [1,x,1,3*x-3,2*x-3,x,-3*x+4,4*x-3,-2,3*x-2,-3*x+6,3*x-3,-3*x+5,-5*x+3,2*x-3,3*x+2,-x+3]];
E[577,4] = [x^18-8*x^17+2*x^16+136*x^15-265*x^14-830*x^13+2626*x^12+1878*x^11-11525*x^10+1214*x^9+26264*x^8-13076*x^7-31167*x^6+21957*x^5+17488*x^4-13889*x^3-3523*x^2+2770*x-117, [7282855064,7282855064*x,2049217236*x^17-12185517172*x^16-20742959860*x^15+235198140484*x^14-62313118856*x^13-1812541907736*x^12+1663335397912*x^11+7151103405240*x^10-8878779057220*x^9-15368794314708*x^8+21948171300844*x^7+17667537213308*x^6-26943714855064*x^5-9912745425132*x^4+14938264338596*x^3+2125886379480*x^2-2719947253540*x+107453654076,7282855064*x^2-14565710128,323990442*x^17-2592841494*x^16-498564010*x^15+48233327774*x^14-63533055172*x^13-354433155104*x^12+676088051036*x^11+1315236017784*x^10-3025442149106*x^9-2615383653438*x^8+6908096044362*x^7+2749620413338*x^6-8076000635796*x^5-1466677312218*x^4+4303568371646*x^3+389800301052*x^2-732307467954*x+8744579466,4208220716*x^17-24841394332*x^16-43495403612*x^15+480729448684*x^14-111691601856*x^13-3717909063824*x^12+3302673436032*x^11+14738449587680*x^10-17856544039212*x^9-31872470185460*x^8+44463101791244*x^7+36924238739348*x^6-54907408275984*x^5-20898446684572*x^4+30587464570284*x^3+4499445068888*x^2-5568878089644*x+239758416612,252361525*x^17-2118789947*x^16+230657895*x^15+39052750463*x^14-63098818390*x^13-281738679636*x^12+647652811166*x^11+1009274573820*x^10-2912247881725*x^9-1880374011263*x^8+6769137270001*x^7+1773745494901*x^6-8098920058870*x^5-870242647445*x^4+4396944411795*x^3+313688642006*x^2-738492261961*x+3297107329,7282855064*x^3-29131420256*x,-380116200*x^17+2556244832*x^16+2752841240*x^15-49490355664*x^14+34506107056*x^13+382961823992*x^12-502894060984*x^11-1517814124400*x^10+2498201825760*x^9+3270303937976*x^8-6113567330056*x^7-3735116912656*x^6+7610523275376*x^5+2030934565432*x^4-4369577269048*x^3-390476973744*x^2+864723173768*x-46033913040,-917958*x^17-1146544894*x^16+4170627662*x^15+22324411958*x^14-85521088244*x^13-174710849656*x^12+706781967708*x^11+708547694944*x^10-3008708050026*x^9-1601188924326*x^8+6986119432930*x^7+2021809470018*x^6-8580535447212*x^5-1362376478050*x^4+4889703549990*x^3+409110859212*x^2-888708944874*x+37906881714,-3156999390*x^17+19609194178*x^16+28597245678*x^15-377476899410*x^14+163798405540*x^13+2900429533976*x^12-3115387562380*x^11-11410934383768*x^10+16016378245158*x^9+24489520706162*x^8-39252424736902*x^7-28268717772310*x^6+48242899241580*x^5+16222282683758*x^4-26831076080130*x^3-3741911642316*x^2+4804519785478*x-191633310246,4725936924*x^17-27540810700*x^16-50102648972*x^15+533090606916*x^14-100459631832*x^13-4123030348712*x^12+3508740287208*x^11+16340992902208*x^10-19223692020244*x^9-35324018464364*x^8+48054590220076*x^7+40915132352972*x^6-59410919235656*x^5-23180408460860*x^4+33070893916220*x^3+5004910733864*x^2-5977118459628*x+277454515620,-1560008634*x^17+10335329542*x^16+11637365026*x^15-199197384822*x^14+133644444564*x^13+1532895045616*x^12-1988062178004*x^11-6044943757376*x^10+9878176098818*x^9+13037505222510*x^8-24058581607874*x^7-15242064642162*x^6+29604428365492*x^5+9057209888410*x^4-16439624454422*x^3-2278895378668*x^2+2880907203698*x-94680338898,-99897747*x^17-274065155*x^16+4731583063*x^15+3776985735*x^14-72278613886*x^13-15048553484*x^12+535339629870*x^11-3781306100*x^10-2186740902613*x^9+141114177401*x^8+5073624795801*x^7-233568409195*x^6-6411344651870*x^5-16353937405*x^4+3818737862731*x^3+150577390614*x^2-695744316921*x+29526298425,-1605335192*x^17+10015446224*x^16+14555846696*x^15-193634250424*x^14+84618867736*x^13+1495288843824*x^12-1609192267408*x^11-5914191317440*x^10+8312860235848*x^9+12753118421816*x^8-20506443987968*x^7-14755444055808*x^6+25437538678888*x^5+8446100943320*x^4-14364371488584*x^3-1937675062992*x^2+2643773212864*x-82509605640,7282855064*x^4-43697130384*x^2+29131420256,-3493281080*x^17+21646009096*x^16+31685396744*x^15-416086129712*x^14+180271849344*x^13+3189258605416*x^12-3437685730128*x^11-12492617488040*x^10+17668425709880*x^9+26591175334272*x^8-43242070590136*x^7-30187071378592*x^6+52986701696296*x^5+16710721018704*x^4-29305515787336*x^3-3564828165336*x^2+5214783156680*x-230851984120]];
E[577,5] = [x^2-x-3, [1,0,x,-2,3,0,-1,0,x,0,3,-2*x,-x,0,3*x,4,2*x-2]];

E[578,1] = [x, [1,1,2,1,0,2,4,1,1,0,-6,2,2,4,0,1,0]];
E[578,2] = [x^2-2, [1,1,x,1,2*x,x,-2*x,1,-1,2*x,-x,x,6,-2*x,4,1,0]];
E[578,3] = [x^2-8, [1,1,x,1,-x,x,0,1,5,-x,x,x,2,0,-8,1,0]];
E[578,4] = [x^3-3*x^2+1, [1,1,x,1,x^2-3*x+2,x,-x^2+x+3,1,x^2-3,x^2-3*x+2,-x^2+2*x+3,x,x^2-4*x-3,-x^2+x+3,2*x-1,1,0]];
E[578,5] = [x^3+3*x^2-1, [1,1,x,1,-x^2-3*x-2,x,x^2+x-3,1,x^2-3,-x^2-3*x-2,x^2+2*x-3,x,x^2+4*x-3,x^2+x-3,-2*x-1,1,0]];
E[578,6] = [x^3-3*x^2-6*x+17, [3,-3,3*x,3,3*x^2-3*x-18,-3*x,-x^2-x+17,-3,3*x^2-9,-3*x^2+3*x+18,-3*x^2+21,3*x,-x^2+2*x+5,x^2+x-17,6*x^2-51,3,0]];
E[578,7] = [x^3+3*x^2-6*x-17, [3,-3,3*x,3,-3*x^2-3*x+18,-3*x,x^2-x-17,-3,3*x^2-9,3*x^2+3*x-18,3*x^2-21,3*x,-x^2-2*x+5,-x^2+x+17,6*x^2-51,3,0]];
E[578,8] = [x^4-4*x^2+2, [1,-1,x,1,2*x,-x,-2*x^3+6*x,-1,x^2-3,-2*x,x^3-x,x,-2*x^2+6,2*x^3-6*x,2*x^2,1,0]];
E[578,9] = [x^2-2, [1,-1,0,1,x,0,0,-1,-3,-x,-4*x,0,-4,0,0,1,0]];

E[579,1] = [x, [1,2,-1,2,2,-2,1,0,1,4,-1,-2,6,2,-2,-4,7]];
E[579,2] = [x^3-3*x+1, [1,x,1,x^2-2,-x^2-x,x,-3,-x-1,1,-x^2-3*x+1,-2*x+1,x^2-2,-x^2+1,-3*x,-x^2-x,-3*x^2-x+4,4*x^2+x-8]];
E[579,3] = [x^3-5*x+3, [1,x,-1,x^2-2,-x^2-x+2,-x,1,x-3,1,-x^2-3*x+3,-3,-x^2+2,x^2-5,x,x^2+x-2,-x^2-3*x+4,-x]];
E[579,4] = [x^10-2*x^9-15*x^8+25*x^7+77*x^6-92*x^5-157*x^4+105*x^3+86*x^2-36*x-8, [8,8*x,-8,8*x^2-16,-x^9-x^8+18*x^7+15*x^6-108*x^5-74*x^4+235*x^3+136*x^2-116*x-32,-8*x,2*x^9-4*x^8-26*x^7+46*x^6+106*x^5-148*x^4-154*x^3+138*x^2+40*x-32,8*x^3-32*x,8,-3*x^9+3*x^8+40*x^7-31*x^6-166*x^5+78*x^4+241*x^3-30*x^2-68*x-8,2*x^9-2*x^8-30*x^7+22*x^6+152*x^5-62*x^4-304*x^3+34*x^2+172*x-8,-8*x^2+16,4*x^7-48*x^5-4*x^4+148*x^3+20*x^2-72*x+16,4*x^8-4*x^7-48*x^6+36*x^5+160*x^4-72*x^3-132*x^2+40*x+16,x^9+x^8-18*x^7-15*x^6+108*x^5+74*x^4-235*x^3-136*x^2+116*x+32,8*x^4-48*x^2+32,-x^9+x^8+20*x^7-17*x^6-130*x^5+86*x^4+291*x^3-122*x^2-128*x+40]];
E[579,5] = [x^13-2*x^12-20*x^11+39*x^10+148*x^9-275*x^8-508*x^7+865*x^6+823*x^5-1187*x^4-556*x^3+576*x^2+64*x-48, [8,8*x,8,8*x^2-16,-10*x^12+3*x^11+205*x^10-41*x^9-1550*x^8+108*x^7+5285*x^6+359*x^5-7754*x^4-1305*x^3+3608*x^2+276*x-304,8*x,-2*x^12+42*x^10+4*x^9-326*x^8-66*x^7+1140*x^6+336*x^5-1700*x^4-554*x^3+766*x^2+104*x-48,8*x^3-32*x,8,-17*x^12+5*x^11+349*x^10-70*x^9-2642*x^8+205*x^7+9009*x^6+476*x^5-13175*x^4-1952*x^3+6036*x^2+336*x-480,21*x^12-7*x^11-431*x^10+98*x^9+3258*x^8-299*x^7-11073*x^6-564*x^5+16071*x^4+2520*x^3-7198*x^2-452*x+568,8*x^2-16,10*x^12-2*x^11-206*x^10+24*x^9+1568*x^8-10*x^7-5394*x^6-580*x^5+8018*x^4+1456*x^3-3820*x^2-264*x+336,-4*x^12+2*x^11+82*x^10-30*x^9-616*x^8+124*x^7+2066*x^6-54*x^5-2928*x^4-346*x^3+1256*x^2+80*x-96,-10*x^12+3*x^11+205*x^10-41*x^9-1550*x^8+108*x^7+5285*x^6+359*x^5-7754*x^4-1305*x^3+3608*x^2+276*x-304,8*x^4-48*x^2+32,8*x^12-x^11-165*x^10+7*x^9+1256*x^8+82*x^7-4307*x^6-753*x^5+6330*x^4+1521*x^3-2914*x^2-272*x+264]];
E[579,6] = [x, [1,-1,1,-1,0,-1,0,3,1,0,-6,-1,-6,0,0,-1,4]];
E[579,7] = [x^2+4*x+2, [1,-1,-1,-1,x,1,-2*x-2,3,1,-x,x+2,1,2*x+6,2*x+2,-x,-1,-x-4]];

E[580,1] = [x^3-2*x^2-4*x+4, [1,0,x,0,1,0,-x^2+x+4,0,x^2-3,0,-x^2+x+4,0,x^2-2*x-2,0,x,0,x^2-x]];
E[580,2] = [x^3-2*x^2-8*x+12, [1,0,x,0,-1,0,x-2,0,x^2-3,0,x+2,0,-x^2+6,0,-x,0,-x^2-x+8]];
E[580,3] = [x, [1,0,0,0,1,0,-2,0,-3,0,-4,0,-6,0,0,0,-4]];
E[580,4] = [x, [1,0,0,0,-1,0,0,0,-3,0,-2,0,-2,0,0,0,0]];

E[581,1] = [x^7-8*x^5+14*x^3+4*x^2-3*x-1, [1,x,4*x^6-2*x^5-31*x^4+15*x^3+48*x^2-6*x-9,x^2-2,-2*x^6+x^5+16*x^4-8*x^3-27*x^2+5*x+5,-2*x^6+x^5+15*x^4-8*x^3-22*x^2+3*x+4,1,x^3-4*x,x^6-8*x^4+2*x^3+15*x^2-5*x-4,x^6-8*x^4+x^3+13*x^2-x-2,-9*x^6+3*x^5+70*x^4-24*x^3-112*x^2+4*x+19,-7*x^6+3*x^5+54*x^4-24*x^3-85*x^2+10*x+16,-8*x^6+4*x^5+62*x^4-31*x^3-98*x^2+16*x+18,x,-5*x^6+3*x^5+38*x^4-22*x^3-55*x^2+10*x+9,x^4-6*x^2+4,3*x^6-23*x^4+2*x^3+37*x^2+3*x-7]];
E[581,2] = [x^14-x^13-25*x^12+23*x^11+243*x^10-197*x^9-1158*x^8+771*x^7+2788*x^6-1328*x^5-3074*x^4+678*x^3+1064*x^2+222*x+9, [120552,120552*x,-28076*x^13+39224*x^12+696476*x^11-918928*x^10-6677976*x^9+8119024*x^8+31071852*x^7-33521868*x^6-71599628*x^5+64058980*x^4+72021184*x^3-44712672*x^2-18683464*x-559104,120552*x^2-241104,-34252*x^13+44662*x^12+836896*x^11-1046168*x^10-7883004*x^9+9214910*x^8+35940108*x^7-37775538*x^6-81033358*x^5+71267144*x^4+79944200*x^3-48723126*x^2-20700686*x-819708,11148*x^13-5424*x^12-273180*x^11+144492*x^10+2588052*x^9-1440156*x^8-11875272*x^7+6676260*x^6+26774052*x^5-14284440*x^4-25677144*x^3+11189400*x^2+5673768*x+252684,-120552,120552*x^3-482208*x,60282*x^13-76824*x^12-1483008*x^11+1789704*x^10+14085474*x^9-15667896*x^8-64878258*x^7+63772422*x^6+148209120*x^5-119266836*x^4-149164446*x^3+80458878*x^2+40980612*x+2369424,10410*x^13-19404*x^12-258372*x^11+440232*x^10+2467266*x^9-3723708*x^8-11367246*x^7+14461218*x^6+25780488*x^5-25346448*x^4-25500270*x^3+15743442*x^2+6784236*x+308268,-41588*x^13+54752*x^12+1019540*x^11-1278976*x^10-9632844*x^9+11231392*x^8+43978560*x^7-45906636*x^6-98764508*x^5+86504740*x^4+95532388*x^3-59600988*x^2-22597132*x-327948,61876*x^13-72928*x^12-1504864*x^11+1716944*x^10+14111952*x^9-15203936*x^8-64062552*x^7+62737164*x^6+143719360*x^5-119526152*x^4-140411312*x^3+83237640*x^2+35144756*x+1017876,-80625*x^13+96000*x^12+1985403*x^11-2248266*x^10-18881661*x^9+19805940*x^8+87081144*x^7-81269781*x^6-198978327*x^5+153672861*x^4+199508181*x^3-105203169*x^2-53679435*x-2873769,-120552*x,94075*x^13-121360*x^12-2324293*x^11+2840450*x^10+22194735*x^9-25027712*x^8-102852060*x^7+102812223*x^6+236137345*x^5-194833535*x^4-237256451*x^3+133832967*x^2+63261761*x+3343887,120552*x^4-723312*x^2+482208,-215066*x^13+277292*x^12+5302838*x^11-6494260*x^10-50522634*x^9+57253852*x^8+233605776*x^7-235268886*x^6-535456346*x^5+445817170*x^4+537422290*x^3-306596166*x^2-141349546*x-6070410]];
E[581,3] = [x^7+2*x^6-6*x^5-10*x^4+12*x^3+12*x^2-9*x-1, [1,x,-x^4-x^3+4*x^2+2*x-3,x^2-2,x^5+2*x^4-4*x^3-7*x^2+3*x+3,-x^5-x^4+4*x^3+2*x^2-3*x,-1,x^3-4*x,-x^6-2*x^5+6*x^4+10*x^3-11*x^2-11*x+6,x^6+2*x^5-4*x^4-7*x^3+3*x^2+3*x,x^6+x^5-6*x^4-4*x^3+8*x^2+2*x-1,-x^6-x^5+6*x^4+4*x^3-11*x^2-4*x+6,-2*x^5-2*x^4+11*x^3+6*x^2-14*x,-x,x^6+3*x^5-4*x^4-14*x^3+5*x^2+14*x-7,x^4-6*x^2+4,-x^6-4*x^5+3*x^4+18*x^3-x^2-17*x+1]];
E[581,4] = [x^13-21*x^11+2*x^10+165*x^9-30*x^8-598*x^7+159*x^6+995*x^5-359*x^4-629*x^3+271*x^2+39*x-3, [28,28*x,16*x^12+22*x^11-312*x^10-398*x^9+2208*x^8+2572*x^7-6788*x^6-6898*x^5+8522*x^4+6330*x^3-3554*x^2-932*x+4,28*x^2-56,-x^12-2*x^11+18*x^10+42*x^9-107*x^8-326*x^7+209*x^6+1127*x^5+42*x^4-1630*x^3-243*x^2+781*x+18,22*x^12+24*x^11-430*x^10-432*x^9+3052*x^8+2780*x^7-9442*x^6-7398*x^5+12074*x^4+6510*x^3-5268*x^2-620*x+48,28,28*x^3-112*x,20*x^12+25*x^11-396*x^10-450*x^9+2870*x^8+2883*x^7-9192*x^6-7589*x^5+12475*x^4+6524*x^3-5946*x^2-409*x+85,-2*x^12-3*x^11+44*x^10+58*x^9-356*x^8-389*x^7+1286*x^6+1037*x^5-1989*x^4-872*x^3+1052*x^2+57*x-3,4*x^11+4*x^10-76*x^9-64*x^8+520*x^7+364*x^6-1536*x^5-872*x^4+1880*x^3+692*x^2-784*x+12,-8*x^12-12*x^11+148*x^10+218*x^9-976*x^8-1430*x^7+2680*x^6+3980*x^5-2636*x^4-4090*x^3+526*x^2+1054*x+58,-15*x^12-14*x^11+300*x^10+242*x^9-2211*x^8-1466*x^7+7307*x^6+3481*x^5-10572*x^4-2020*x^3+5633*x^2-843*x-130,28*x,-19*x^12-20*x^11+374*x^10+358*x^9-2685*x^8-2300*x^7+8479*x^6+6171*x^5-11316*x^4-5654*x^3+5399*x^2+769*x-192,28*x^4-168*x^2+112,-4*x^11-4*x^10+76*x^9+64*x^8-520*x^7-364*x^6+1508*x^5+844*x^4-1656*x^3-552*x^2+476*x-12]];

E[582,1] = [x, [1,1,1,1,-2,1,0,1,1,-2,4,1,2,0,-2,1,6]];
E[582,2] = [x^2+2*x-4, [1,1,1,1,2,1,0,1,1,2,0,1,x,0,2,1,-x-4]];
E[582,3] = [x, [1,1,-1,1,-2,-1,-2,1,1,-2,0,-1,-4,-2,2,1,-4]];
E[582,4] = [x^2-12, [2,2,-2,2,2*x,-2,8,2,2,2*x,-4,-2,-3*x-2,8,-2*x,2,-x+2]];
E[582,5] = [x, [1,1,-1,1,0,-1,-2,1,1,0,4,-1,2,-2,0,1,4]];
E[582,6] = [x^3-2*x^2-12*x+8, [4,-4,-4,4,4*x,4,-2*x^2+4*x+16,-4,4,-4*x,4*x-8,-4,x^2+4,2*x^2-4*x-16,-4*x,4,x^2-4*x-4]];
E[582,7] = [x, [1,-1,-1,1,0,1,-2,-1,1,0,4,-1,-4,2,0,1,-2]];
E[582,8] = [x^2-8, [2,-2,2,2,4,-2,2*x,-2,2,-4,2*x+4,2,-3*x,-2*x,4,2,-x+8]];
E[582,9] = [x^2+2*x-4, [1,-1,1,1,-2,-1,x,-1,1,2,-2*x-4,1,-2*x-4,-x,-2,1,2*x]];

E[583,1] = [x, [1,1,-1,-1,4,-1,4,-3,-2,4,1,1,1,4,-4,-1,1]];
E[583,2] = [x^2-2, [1,x,x-1,0,-x-3,-x+2,x+2,-2*x,-2*x,-3*x-2,-1,0,-x,2*x+2,-2*x+1,-4,-4*x-2]];
E[583,3] = [x^2+2*x-2, [1,x,x+1,-2*x,-x-1,-x+2,-x-2,2*x-4,0,x-2,-1,2*x-4,-x-4,-2,-3,-4*x+4,2*x+2]];
E[583,4] = [x^6+2*x^5-8*x^4-16*x^3+10*x^2+20*x-1, [2,2*x,-2*x,2*x^2-4,x^5-9*x^3-x^2+16*x+1,-2*x^2,-x^5+9*x^3-x^2-16*x+1,2*x^3-8*x,2*x^2-6,-2*x^5-x^4+15*x^3+6*x^2-19*x+1,-2,-2*x^3+4*x,-x^5+x^4+8*x^3-7*x^2-13*x+6,2*x^5+x^4-17*x^3-6*x^2+21*x-1,2*x^5+x^4-15*x^3-6*x^2+19*x-1,2*x^4-12*x^2+8,-x^5+9*x^3-x^2-16*x-5]];
E[583,5] = [x^12-x^11-19*x^10+17*x^9+130*x^8-104*x^7-379*x^6+277*x^5+411*x^4-295*x^3-70*x^2+76*x-12, [236,236*x,88*x^11-74*x^10-1606*x^9+1034*x^8+10572*x^7-4622*x^6-30078*x^5+7402*x^4+33524*x^3-3876*x^2-8316*x+1412,236*x^2-472,-225*x^11+153*x^10+4298*x^9-2393*x^8-29624*x^7+13125*x^6+87528*x^5-30743*x^4-98853*x^3+29222*x^2+23888*x-7464,14*x^11+66*x^10-462*x^9-868*x^8+4530*x^7+3274*x^6-16974*x^5-2644*x^4+22084*x^3-2156*x^2-5276*x+1056,223*x^11-95*x^10-4350*x^9+1455*x^8+30612*x^7-7895*x^6-92200*x^5+18933*x^4+105863*x^3-19710*x^2-26000*x+6268,236*x^3-944*x,-70*x^11+24*x^10+1366*x^9-380*x^8-9552*x^7+2156*x^6+28230*x^5-5424*x^4-31006*x^3+5824*x^2+6792*x-1504,-72*x^11+23*x^10+1432*x^9-374*x^8-10275*x^7+2253*x^6+31582*x^5-6378*x^4-37153*x^3+8138*x^2+9636*x-2700,236,-96*x^11-48*x^10+2106*x^9+642*x^8-16414*x^7-2424*x^6+53634*x^5+1526*x^4-65074*x^3+3456*x^2+16624*x-2656,-145*x^11+134*x^10+2720*x^9-2161*x^8-18463*x^7+12372*x^6+54220*x^5-30579*x^4-62482*x^3+30236*x^2+17272*x-6824,128*x^11-113*x^10-2336*x^9+1622*x^8+15297*x^7-7683*x^6-42838*x^5+14210*x^4+46075*x^3-10390*x^2-10680*x+2676,340*x^11-243*x^10-6500*x^9+3818*x^8+44971*x^7-21033*x^6-134302*x^5+49490*x^4+156037*x^3-47522*x^2-41216*x+13104,236*x^4-1416*x^2+944,-9*x^11+25*x^10+120*x^9-327*x^8-510*x^7+1233*x^6+1042*x^5-989*x^4-2439*x^3-974*x^2+3004*x+636]];
E[583,6] = [x^10-3*x^9-10*x^8+30*x^7+34*x^6-92*x^5-53*x^4+95*x^3+32*x^2-28*x-8, [2,2*x,x^9-3*x^8-10*x^7+28*x^6+36*x^5-72*x^4-63*x^3+39*x^2+28*x+2,2*x^2-4,x^9-2*x^8-12*x^7+19*x^6+51*x^5-50*x^4-88*x^3+27*x^2+36*x+6,-2*x^7+2*x^6+20*x^5-10*x^4-56*x^3-4*x^2+30*x+8,x^8-2*x^7-11*x^6+19*x^5+40*x^4-51*x^3-56*x^2+34*x+20,2*x^3-8*x,-2*x^4+12*x^2+4*x-4,x^9-2*x^8-11*x^7+17*x^6+42*x^5-35*x^4-68*x^3+4*x^2+34*x+8,-2,-2*x^9+4*x^8+22*x^7-36*x^6-82*x^5+88*x^4+122*x^3-48*x^2-48*x-4,-x^9+x^8+15*x^7-8*x^6-81*x^5+5*x^4+175*x^3+56*x^2-98*x-36,x^9-2*x^8-11*x^7+19*x^6+40*x^5-51*x^4-56*x^3+34*x^2+20*x,x^9-4*x^8-7*x^7+37*x^6+10*x^5-97*x^4-6*x^3+66*x^2+8*x-2,2*x^4-12*x^2+8,2*x^9-5*x^8-20*x^7+45*x^6+67*x^5-110*x^4-97*x^3+60*x^2+40*x+8]];
E[583,7] = [x, [1,2,1,2,3,2,0,0,-2,6,-1,2,4,0,3,-4,0]];
E[583,8] = [x, [1,2,3,2,-3,6,2,0,6,-6,1,6,0,4,-9,-4,6]];
E[583,9] = [x^8+8*x^7+17*x^6-10*x^5-58*x^4-16*x^3+45*x^2+10*x-1, [2,x^6+6*x^5+6*x^4-16*x^3-18*x^2+12*x+3,2*x,-2*x^4-8*x^3+16*x+2,-x^7-7*x^6-11*x^5+16*x^4+41*x^3-5*x^2-31*x-4,x^7+6*x^6+6*x^5-16*x^4-18*x^3+12*x^2+3*x,-x^6-7*x^5-10*x^4+17*x^3+29*x^2-14*x-8,2*x^4+8*x^3-2*x^2-20*x,2*x^2-6,-2*x^6-12*x^5-13*x^4+29*x^3+40*x^2-17*x-11,2,-2*x^5-8*x^4+16*x^2+2*x,3*x^7+21*x^6+33*x^5-45*x^4-112*x^3+11*x^2+68*x+7,-x^7-8*x^6-16*x^5+15*x^4+61*x^3+6*x^2-52*x-13,x^7+6*x^6+6*x^5-17*x^4-21*x^3+14*x^2+6*x-1,-2*x^6-12*x^5-12*x^4+32*x^3+38*x^2-20*x-8,-x^7-7*x^6-11*x^5+14*x^4+33*x^3-7*x^2-17*x]];

E[584,1] = [x^2-x-1, [1,0,x,0,-x-1,0,-2*x-1,0,x-2,0,x,0,x-2,0,-2*x-1,0,2*x-3]];
E[584,2] = [x^3+3*x^2-x-4, [1,0,x,0,-x^2-2*x+2,0,x^2+x-4,0,x^2-3,0,-x-4,0,-x-2,0,x^2+x-4,0,x^2+x-2]];
E[584,3] = [x^6-5*x^5-x^4+28*x^3-8*x^2-40*x-4, [2,0,2*x,0,-x^4+3*x^3+3*x^2-8*x-2,0,-x^5+2*x^4+10*x^3-11*x^2-26*x+2,0,2*x^2-6,0,2*x^5-6*x^4-12*x^3+26*x^2+24*x,0,-x^5+4*x^4+4*x^3-19*x^2-6*x+10,0,-x^5+3*x^4+3*x^3-8*x^2-2*x,0,2*x^5-4*x^4-18*x^3+14*x^2+52*x+16]];
E[584,4] = [x^7+3*x^6-13*x^5-36*x^4+52*x^3+124*x^2-64*x-128, [8,0,8*x,0,-x^6+x^5+21*x^4-12*x^3-120*x^2+36*x+176,0,-4*x^4-4*x^3+36*x^2+16*x-48,0,8*x^2-24,0,-x^6-3*x^5+13*x^4+28*x^3-60*x^2-44*x+80,0,-x^6-3*x^5+9*x^4+32*x^3-8*x^2-76*x-16,0,4*x^6+8*x^5-48*x^4-68*x^3+160*x^2+112*x-128,0,2*x^6+6*x^5-18*x^4-56*x^3+16*x^2+104*x+80]];

E[585,1] = [x, [1,-1,0,-1,-1,0,2,3,0,1,-4,0,-1,-2,0,-1,-4]];
E[585,2] = [x^2-3, [1,x,0,1,1,0,2,-x,0,x,x+3,0,1,2*x,0,-5,2*x]];
E[585,3] = [x^2-2*x-1, [1,x,0,2*x-1,-1,0,2*x,x+2,0,-x,-x-1,0,-1,4*x+2,0,3,-2*x+4]];
E[585,4] = [x^2+x-4, [1,x,0,-x+2,-1,0,-x-3,x-4,0,-x,-x-1,0,-1,-2*x-4,0,-3*x,x+1]];
E[585,5] = [x^2-x-4, [1,x,0,x+2,1,0,x-3,x+4,0,x,-x+1,0,-1,-2*x+4,0,3*x,x-1]];
E[585,6] = [x^3-7*x+2, [1,x,0,x^2-2,1,0,-x^2+5,3*x-2,0,x,x^2-5,0,1,-2*x+2,0,x^2-2*x+4,-x^2-2*x+5]];
E[585,7] = [x, [1,0,0,-2,1,0,-1,0,0,0,-3,0,1,0,0,4,-3]];
E[585,8] = [x, [1,0,0,-2,-1,0,-1,0,0,0,3,0,1,0,0,4,3]];
E[585,9] = [x, [1,1,0,-1,-1,0,0,-3,0,-1,-4,0,1,0,0,-1,-2]];
E[585,10] = [x, [1,1,0,-1,1,0,-4,-3,0,1,-2,0,-1,-4,0,-1,-2]];
E[585,11] = [x, [1,1,0,-1,1,0,2,-3,0,1,4,0,-1,2,0,-1,4]];
E[585,12] = [x, [1,-2,0,2,1,0,-1,0,0,-2,-5,0,-1,2,0,-4,7]];
E[585,13] = [x, [1,-2,0,2,-1,0,3,0,0,2,1,0,-1,-6,0,-4,1]];
E[585,14] = [x, [1,-2,0,2,-1,0,-3,0,0,2,5,0,1,6,0,-4,-5]];

E[586,1] = [x^10+x^9-24*x^8-19*x^7+200*x^6+126*x^5-681*x^4-352*x^3+804*x^2+328*x-16, [2744,2744,2744*x,2744,797*x^9-621*x^8-17888*x^7+16793*x^6+127102*x^5-126464*x^4-305283*x^3+257032*x^2+164028*x+248,2744*x,-145*x^9+255*x^8+3226*x^7-6097*x^6-21832*x^5+43068*x^4+44539*x^3-88030*x^2-9472*x+12160,2744,2744*x^2-8232,797*x^9-621*x^8-17888*x^7+16793*x^6+127102*x^5-126464*x^4-305283*x^3+257032*x^2+164028*x+248,-1186*x^9+832*x^8+26500*x^7-23366*x^6-187290*x^5+180090*x^4+444636*x^3-374328*x^2-226256*x+15248,2744*x,1383*x^9-1415*x^8-31110*x^7+36267*x^6+219298*x^5-266062*x^4-505299*x^3+540670*x^2+214268*x-22496,-145*x^9+255*x^8+3226*x^7-6097*x^6-21832*x^5+43068*x^4+44539*x^3-88030*x^2-9472*x+12160,-1418*x^9+1240*x^8+31936*x^7-32298*x^6-226886*x^5+237474*x^4+537576*x^3-476760*x^2-261168*x+12752,2744,-559*x^9+439*x^8+12820*x^7-11403*x^6-93614*x^5+83232*x^4+235073*x^3-162028*x^2-145576*x-4784]];
E[586,2] = [x, [1,1,-1,1,-2,-1,-1,1,-2,-2,0,-1,0,-1,2,1,-2]];
E[586,3] = [x, [1,1,-1,1,0,-1,-3,1,-2,0,-4,-1,-4,-3,0,1,-2]];
E[586,4] = [x, [1,-1,2,1,3,-2,0,-1,1,-3,2,2,-1,0,6,1,1]];
E[586,5] = [x^3-7*x+7, [1,-1,x,1,-2,-x,-3*x^2-5*x+14,-1,x^2-3,2,4*x^2+6*x-21,x,6*x^2+8*x-28,3*x^2+5*x-14,-2*x,1,-4*x^2-8*x+19]];
E[586,6] = [x^5-11*x^3-6*x^2+16*x+8, [4,-4,4*x,4,x^4-2*x^3-9*x^2+10*x+8,-4*x,-2*x^3+2*x^2+16*x-4,-4,4*x^2-12,-x^4+2*x^3+9*x^2-10*x-8,8,4*x,2*x^4-2*x^3-22*x^2+10*x+28,2*x^3-2*x^2-16*x+4,-2*x^4+2*x^3+16*x^2-8*x-8,4,-x^4+2*x^3+7*x^2-4*x+4]];
E[586,7] = [x^3-2*x^2-12*x+18, [3,-3,-3,3,3*x,3,-3*x+3,-3,-6,-3*x,x^2-2*x-12,-3,-2*x^2-2*x+18,3*x-3,-3*x,3,x^2+4*x-18]];

E[587,1] = [x^5+3*x^4-3*x^3-11*x^2+2*x+9, [1,x,-x^2-x+2,x^2-2,x^2+x-2,-x^3-x^2+2*x,-x^4-2*x^3+3*x^2+3*x-3,x^3-4*x,x^4+2*x^3-3*x^2-4*x+1,x^3+x^2-2*x,2*x^4+5*x^3-4*x^2-9*x+1,-x^4-x^3+4*x^2+2*x-4,-x^3-3*x^2+2*x+2,x^4-8*x^2-x+9,-x^4-2*x^3+3*x^2+4*x-4,x^4-6*x^2+4,-2*x^4-3*x^3+9*x^2+5*x-9]];
E[587,2] = [x^13+3*x^12-11*x^11-36*x^10+37*x^9+146*x^8-32*x^7-233*x^6-22*x^5+141*x^4+30*x^3-21*x^2-3*x+1, [37,37*x,-25*x^12-132*x^11+162*x^10+1629*x^9+356*x^8-6895*x^7-3865*x^6+11650*x^5+6466*x^4-6988*x^3-3077*x^2+498*x+170,37*x^2-74,29*x^12+88*x^11-293*x^10-1012*x^9+737*x^8+3795*x^7+591*x^6-5152*x^5-3435*x^4+2303*x^3+2631*x^2-147*x-212,-57*x^12-113*x^11+729*x^10+1281*x^9-3245*x^8-4665*x^7+5825*x^6+5916*x^5-3463*x^4-2327*x^3-27*x^2+95*x+25,68*x^12+214*x^11-747*x^10-2609*x^9+2523*x^8+10829*x^7-2341*x^6-17776*x^5-828*x^4+10487*x^3+1261*x^2-841*x-11,37*x^3-148*x,-106*x^12-203*x^11+1381*x^10+2316*x^9-6339*x^8-8574*x^7+12058*x^6+11471*x^5-8301*x^4-5514*x^3+830*x^2+781*x+40,x^12+26*x^11+32*x^10-336*x^9-439*x^8+1519*x^7+1605*x^6-2797*x^5-1786*x^4+1761*x^3+462*x^2-125*x-29,112*x^12+322*x^11-1263*x^10-3851*x^9+4519*x^8+15505*x^7-5129*x^6-24257*x^5+64*x^4+13675*x^3+1831*x^2-1198*x-140,108*x^12+366*x^11-1095*x^10-4394*x^9+2945*x^8+17791*x^7+365*x^6-28017*x^5-7222*x^4+15659*x^3+5052*x^2-1142*x-283,192*x^12+441*x^11-2366*x^10-5127*x^9+10025*x^8+19624*x^7-17107*x^6-27867*x^5+10771*x^4+13659*x^3-1317*x^2-1060*x+56,10*x^12+x^11-161*x^10+7*x^9+901*x^8-165*x^7-1932*x^6+668*x^5+899*x^4-779*x^3+587*x^2+193*x-68,-79*x^12-93*x^11+1172*x^10+1014*x^9-6426*x^8-3414*x^7+15803*x^6+3588*x^5-16785*x^4-1109*x^3+6681*x^2+255*x-632,37*x^4-222*x^2+148,-69*x^12-129*x^11+863*x^10+1391*x^9-3638*x^8-4541*x^7+5509*x^6+4108*x^5-790*x^4+36*x^3-2611*x^2-440*x+225]];
E[587,3] = [x^31-6*x^30-32*x^29+251*x^28+351*x^27-4616*x^26-325*x^25+49109*x^24-30233*x^23-334486*x^22+353972*x^21+1522925*x^20-2131423*x^19-4689049*x^18+8056051*x^17+9613950*x^16-20122858*x^15-12435554*x^14+33409695*x^13+8703458*x^12-36081141*x^11-1266619*x^10+24223815*x^9-2264825*x^8-9506257*x^7+1294446*x^6+2092064*x^5-240856*x^4-233280*x^3+12384*x^2+9536*x+256, [6259416829782536344271104,6259416829782536344271104*x,28726812763294098351236*x^30-22218616624954407273190*x^29-1570282848179362409328120*x^28+1582734978872642614978372*x^27+37367251207071643993746850*x^26-44406797436756623617192246*x^25-512684622314876327735451672*x^24+684401680498232097249023370*x^23+4515505941938204035240214114*x^22-6597893929217701942787213654*x^21-26844311577571230153527112448*x^20+42357168141936171959645489924*x^19+110050397854802547692335349838*x^18-186629971141433525262346082894*x^17-311633294667125901281774072306*x^16+570007754728384264839968616746*x^15+599255788376214753445130494656*x^14-1199285773455135742589050870020*x^13-750714785338796150913238018752*x^12+1699338595744272380762093889262*x^11+562445704803945186354191594908*x^10-1553380316912156869514395442958*x^9-205654376418812255733842523278*x^8+852760360518000094620748114766*x^7+12369164021143026107244543110*x^6-251687606349848378686007927166*x^5+6669080372130416022779142520*x^4+34676244643139045030674657656*x^3-506162567915936592074098912*x^2-1554889933097099402043164000*x-50652131092818130547314816,6259416829782536344271104*x^2-12518833659565072688542208,336102107959294844707722*x^30-1981500848205626702770744*x^29-10695507406143299435433192*x^28+82003300071237821212514942*x^27+116767133543814680988850946*x^26-1487211620708009172708063812*x^25-117697215265798233574672050*x^24+15533237866953429547955986990*x^23-9642595760892576528120258358*x^22-103166558728137743259641720192*x^21+111473553200589761745727415504*x^20+453113777640937292378220306754*x^19-656695361060426672817330386946*x^18-1320512279740846974104910794950*x^17+2405691455614371640845552611162*x^16+2465535761187758184832887894744*x^15-5744904930741562734463340811116*x^14-2619218284440090312223748368204*x^13+8916145822578288676736877770830*x^12+843286159216913029697782296272*x^11-8643563903444578893422572555226*x^10+1253888125631863425175155354286*x^9+4805628249293597110063932155146*x^8-1442501450755029913992725592638*x^7-1317275577104347970714519345486*x^6+500148229103531861707763394376*x^5+157579035431597161803114274552*x^4-65052357411630479130366007232*x^3-6123141963131798267178675872*x^2+2371817954180910611923189248*x+76421119781073874925087232,150142259954810182834226*x^30-651024839753951262088568*x^29-5627695024714176071181864*x^28+27284139927155415472463014*x^27+88196170278608934372113130*x^26-503348408166805745771299972*x^25-726343367494377778681825354*x^24+5384003672210874510693132102*x^23+3010822764725487838324311042*x^22-37012798945019968735110821840*x^21-1391613185603492771910595376*x^20+171279387295181144682421838666*x^19-51928538480522096682581268330*x^18-543057963355674085598347201342*x^17+293829613162712967996103274546*x^16+1177321362404569506805086647144*x^15-842051942089302764660944625276*x^14-1710468838082559172128035651772*x^13+1449315987385078254114242115174*x^12+1598941886596959173433005235184*x^11-1516994390056726061954851251874*x^10-901527374336487284785988408618*x^9+917821564234627650919086188466*x^8+285453628939896891617370226762*x^7-288872914224043371120371962422*x^6-53429250444697688550301048584*x^5+41595269858055008383159955672*x^4+6195228313505310671302235168*x^3-1910642782357733516024870624*x^2-324591017603590652424701312*x-7354064067403289177916416,657179402960677798133722*x^30-4169745417635921435737146*x^29-19432663907959734989290000*x^28+170861425250545312014808390*x^27+166046798018023154831487740*x^26-3057546320682540220280604030*x^25+923174489508737599569588626*x^24+31341053124651464807957201672*x^23-31239289648501042670121426492*x^22-202476755206301715740228741730*x^21+303397438114615227457627403568*x^20+851118755302174878306059384978*x^19-1680073520293076407675719571500*x^18-2294306923374743712413453220412*x^17+5956716592646574119272258379720*x^16+3610386727945659050023123192038*x^15-13919052034249368548276277876484*x^14-1980178783425214324772096624512*x^13+21215896758882538125556969938586*x^12-3547184418322207199046357576006*x^11-20164254118351306521537360484602*x^10+7806699594926070990321317774464*x^9+10877987944535837485851321144084*x^8-6026319846362588245278405770976*x^7-2798646475271779570924914722696*x^6+1960128244043600663998066017726*x^5+292822490815727027342609845712*x^4-263052670282852008309878610600*x^3-8470915762567307530277290848*x^2+10684633653109575602974500512*x+279011903719517566138267776,6259416829782536344271104*x^3-25037667319130145377084416*x,-63594818022983014566066*x^30-94069203802851053168838*x^29+4037357900817466908977336*x^28+2244897055927483131535122*x^27-106931486290244170750158724*x^26-1013242909026463697962682*x^25+1596608620272669940775309342*x^24-558241274814948415835218256*x^23-15122516245048784226540686788*x^22+9117974370234425306880574634*x^21+96174043172610736146356566632*x^20-76175976909445695356602207050*x^19-421665365723068106346031215548*x^18+396988788801076104405072387500*x^17+1282538045558064668596138639992*x^16-1369938290577053604830375651758*x^15-2674888727295345742449376728404*x^14+3175591962203229437407746792976*x^13+3700551930618098777992819282222*x^12-4877688503623535157585210003370*x^11-3174668101311192860735821482070*x^10+4760374272055964440758710105560*x^9+1471097550683897542978494922876*x^8-2721699521561699703834574935552*x^7-261227982633658202257115624840*x^6+794635142615610494367093611258*x^5+3380028877714053129370964584*x^4-104219024303763936658186776184*x^3+1314955508066857527018999456*x^2+4381172617035288614376881056*x+111671402325819219002221696,35111799550142365475588*x^30+59760048554135595213912*x^29-2358329026545184809123280*x^28-1204706349897809503559476*x^27+64235709632095830462780940*x^26-8464030179027409044662400*x^25-972400552819580980795532708*x^24+518779269040784511928300868*x^23+9254890954734952167265380700*x^22-7497182157977753025154356280*x^21-58744525122971808998287220096*x^20+59680402192497422974136561460*x^19+255486973483576558176988341428*x^18-301964267313213552156935914660*x^17-765733099627504487444916027156*x^16+1018430061223997205722200498360*x^15+1560397628601550531060742779784*x^14-2312923093198824500020478393960*x^13-2081964421118275360832398406404*x^12+3483383644231960659049848715576*x^11+1679601441513157502084005486204*x^10-3336047035022388738589654644284*x^9-681288994096119967327559113988*x^8+1877797439398454361852175871068*x^7+65082199864054487155231482364*x^6-545568084954157048195501443656*x^5+15899851903013439986557082800*x^4+72282757781612503106238712288*x^3-1790470550786996744937240000*x^2-3128648581718761764207749760*x-86042139637579480245176832,-1304670744637295636720094*x^30+8278436839650550802419984*x^29+38247051389975491985647464*x^28-338299092202112104978864538*x^27-315463213942360353876552878*x^26+6030699000984609416875402148*x^25-2100148617620464293365333386*x^24-61470685026109683914752856050*x^23+64946335951118982249493616618*x^22+393666088736791258672752166200*x^21-622946256334381758065230290592*x^20-1630317101691840924612410830182*x^19+3433019662557194970418759001742*x^18+4267454542470725531211228108058*x^17-12140474818822544222613926937078*x^16-6208994962359661197664618402864*x^15+28316438179898561309476016239860*x^14+1730480998935880315411317553428*x^13-43076464187029304484480839936890*x^12+10448036641463924089835574359400*x^11+40812961602801137595872515733310*x^10-18897977341027700535269461957298*x^9-21871542164400353888018095327574*x^8+13985773997020849773450868421106*x^7+5533785817488107639714481281474*x^6-4520876301202795533549795289568*x^5-560820680268020626638383042936*x^4+611659647755644857184237286208*x^3+16045705530104360199410675488*x^2-25289750398952145580067267200*x-714524484410785228353780224,192375094448321638214316*x^30-778705472910341405940252*x^29-7261001625143215600271472*x^28+32330767076725274967343060*x^27+114973761370454770203993544*x^26-588733538135551222026317412*x^25-963963327280146102641969188*x^24+6181270348942799901453418960*x^23+4176673134348262009897667768*x^22-41341981367892158924532813740*x^21-3687390791355692703337567488*x^20+183373791375266943725202235420*x^19-59134345166436447974373309944*x^18-542464148005628509711053761192*x^17+357127771646273952109527739056*x^16+1039223925323660431786285479140*x^15-1041878233484909090633406169880*x^14-1168319577405572252093382365856*x^13+1793614603732779150989474319180*x^12+501632469942889011598448901468*x^11-1836245744782675938523067096540*x^10+387563869231711160855410782192*x^9+1036808325679674375422581173768*x^8-567102725568809576122727439872*x^7-272518626316447962693822643600*x^6+230863265627651755414273627540*x^5+29019731732920240022464287584*x^4-36237945666377704125805944656*x^3-1171627629052086772495558272*x^2+1670669211197725611401232448*x+62867843637204854289067776,495686821527040662570980*x^30-3300083928811804010912760*x^29-13870992585405730620068032*x^28+134491222721545458593794476*x^27+91851448871238477492271676*x^26-2388491046031888118943328352*x^25+1321514705761216350593192556*x^24+24213088840709615102228043348*x^23-30360537619810216265811112324*x^22-153756072163493860401192684120*x^21+276408136514034050852631102800*x^20+627591012185863977664682438420*x^19-1491364175990444045502130062396*x^18-1595017585929300060183645695844*x^17+5215545545214978979715244471148*x^16+2127160005611730318741906995768*x^15-12082393436050987460080313098152*x^14+94637904668645205572780297208*x^13+18292869000940727824439756146332*x^12-5354491640011504684927750498008*x^11-17257870471610277111460528620724*x^10+8689403869956971371721011118516*x^9+9196155101059972675291682071772*x^8-6233973895851664946638958929444*x^7-2300116528332350940840554344036*x^6+1992169134233890133527939894136*x^5+228236664735629252649521849152*x^4-269136771076019529629466491232*x^3-6456387476889296500054329280*x^2+11294545990954208725771909632*x+344191982502217329076036096,-226668999871854646934814*x^30+1597076986781954550989104*x^29+5909395107415184683244168*x^28-64623172421174752313448682*x^27-24006196616051504095343278*x^26+1136757795470957883963048276*x^25-932370175344461180591752026*x^24-11370784758790870799144609266*x^23+17340554572403558246327395162*x^22+70774330489818185896637559784*x^21-149716186951715357416739191872*x^20-279346225696419653144147425094*x^19+787239498898619556247677789966*x^18+662445806245802782939289127898*x^17-2707703193148149267344573429862*x^16-694724227946869632678725059008*x^15+6192211169780054310520902527476*x^14-740266654315804103362251296204*x^13-9266917750455542066635685386682*x^12+3547528582168726568494999852200*x^11+8639095513124721742315654600382*x^10-5041404334594073770747305845346*x^9-4537923505052171151120198842326*x^8+3448669824378984472328366975858*x^7+1109444994598763130915062109714*x^6-1082038879659800409732217136496*x^5-104767068003354996562582864568*x^4+144835895360099609218357377312*x^3+2546123926844541750886487264*x^2-5987850882913505916864905216*x-168237927157933516322232832,35571550022349826885300*x^30-154130531124417949502480*x^29-1158235467816914347919488*x^28+5974178751325861276453884*x^27+13155946095606732945106724*x^26-97601492383518046500613528*x^25-20806825390036886091598196*x^24+850039907451491777732257180*x^23-1007323080791411364933741916*x^22-3881292588377362558382982576*x^21+12271266244096072607653863888*x^20+4218946719626598544715226020*x^19-74310638656205700408569651844*x^18+54799763813759570834793182404*x^17+276813872725198475314623174660*x^16-359847820872846335757671793760*x^15-661704365031699300970208917416*x^14+1124598365611344271286811737576*x^13+994461124903923098141059707228*x^12-2083655587542541942917601347872*x^11-859243599543692141206138844068*x^10+2323874765191761573492797407932*x^9+321353055692339662623462512164*x^8-1465795098391448130244705784716*x^7+22612124137830925862931456596*x^6+457340949464217434754799318912*x^5-26063653473180961919500513952*x^4-63109972906323771749662225984*x^3+2286420953293449520104507200*x^2+2731784136650460245079522432*x+67572890951235298919895552,6259416829782536344271104*x^4-37556500978695218065626624*x^2+25037667319130145377084416,-185749185915255355498563*x^30+813469497427835127701982*x^29+7047474857055481760322844*x^28-34486876590602512808785105*x^27-112299093275188573206192361*x^26+645120522127563401019189656*x^25+948828470456667225730932691*x^24-7017639444889178586415824563*x^23-4149828805460158589333042445*x^22+49245921510232166176410839090*x^21+3687807052835782813778481584*x^20-233731349816428360759992674151*x^19+60671814041942316301151055449*x^18+764729609271376669304937156395*x^17-374340146331198946652387760585*x^16-1724591975215540409717795000354*x^15+1126691476128373619524684820922*x^14+2634423685860652242716480052622*x^13-2032256725889345075606150581549*x^12-2627147092077475714728463357994*x^11+2242156183151607393569099527395*x^10+1610179433761552834992346493797*x^9-1444373662344197155541282762845*x^8-561914482073375086551751980101*x^7+489912620657950899906483077019*x^6+110082195008759330232758021806*x^5-76057449091915771620493490516*x^4-12050023365610137959142961368*x^3+3625788932739284313299630256*x^2+588680113020033801895767072*x+52598420818061136040643968]];

E[588,1] = [x, [1,0,1,0,-4,0,0,0,1,0,2,0,6,0,-4,0,4]];
E[588,2] = [x, [1,0,1,0,2,0,0,0,1,0,2,0,3,0,2,0,-8]];
E[588,3] = [x, [1,0,1,0,2,0,0,0,1,0,2,0,-4,0,2,0,6]];
E[588,4] = [x, [1,0,-1,0,0,0,0,0,1,0,-6,0,-2,0,0,0,0]];
E[588,5] = [x, [1,0,-1,0,-2,0,0,0,1,0,2,0,4,0,2,0,-6]];
E[588,6] = [x, [1,0,-1,0,-2,0,0,0,1,0,2,0,-3,0,2,0,8]];

E[589,1] = [x^9-14*x^7+64*x^5+2*x^4-106*x^3-5*x^2+49*x-7, [16,16*x,-10*x^8+14*x^7+130*x^6-166*x^5-494*x^4+550*x^3+482*x^2-436*x+66,16*x^2-32,-8*x^8+8*x^7+104*x^6-104*x^5-408*x^4+376*x^3+456*x^2-320*x-8,14*x^8-10*x^7-166*x^6+146*x^5+570*x^4-578*x^3-486*x^2+556*x-70,10*x^8-14*x^7-130*x^6+166*x^5+494*x^4-550*x^3-498*x^2+452*x-2,16*x^3-64*x,-16*x^8+16*x^7+208*x^6-192*x^5-800*x^4+640*x^3+832*x^2-496*x+16,8*x^8-8*x^7-104*x^6+104*x^5+392*x^4-392*x^3-360*x^2+384*x-56,-x^8+3*x^7+5*x^6-47*x^5+29*x^4+199*x^3-155*x^2-202*x+125,10*x^8+2*x^7-114*x^6+6*x^5+382*x^4-102*x^3-338*x^2+116*x-34,-15*x^8+13*x^7+187*x^6-177*x^5-685*x^4+665*x^3+651*x^2-582*x+83,-14*x^8+10*x^7+166*x^6-146*x^5-570*x^4+562*x^3+502*x^2-492*x+70,-32*x^8+32*x^7+400*x^6-416*x^5-1472*x^4+1504*x^3+1424*x^2-1312*x+128,16*x^4-96*x^2+64,14*x^8-26*x^7-182*x^6+322*x^5+682*x^4-1138*x^3-614*x^2+1004*x-118]];
E[589,2] = [x^10-13*x^8+53*x^6-4*x^5-77*x^4+13*x^3+38*x^2-10*x-2, [1,x,-4*x^9+4*x^8+47*x^7-47*x^6-153*x^5+169*x^4+98*x^3-147*x^2+31*x+4,x^2-2,11*x^9-11*x^8-130*x^7+129*x^6+430*x^5-463*x^4-301*x^3+404*x^2-62*x-15,4*x^9-5*x^8-47*x^7+59*x^6+153*x^5-210*x^4-95*x^3+183*x^2-36*x-8,-15*x^9+17*x^8+177*x^7-200*x^6-583*x^5+714*x^4+392*x^3-624*x^2+104*x+27,x^3-4*x,-8*x^9+8*x^8+95*x^7-94*x^6-318*x^5+339*x^4+236*x^3-303*x^2+32*x+17,-11*x^9+13*x^8+129*x^7-153*x^6-419*x^5+546*x^4+261*x^3-480*x^2+95*x+22,29*x^9-33*x^8-341*x^7+389*x^6+1113*x^5-1394*x^4-712*x^3+1230*x^2-235*x-59,3*x^9-3*x^8-35*x^7+35*x^6+112*x^5-125*x^4-65*x^3+106*x^2-30*x,-8*x^9+7*x^8+95*x^7-82*x^6-318*x^5+298*x^4+239*x^3-267*x^2+27*x+14,17*x^9-18*x^8-200*x^7+212*x^6+654*x^5-763*x^4-429*x^3+674*x^2-123*x-30,17*x^9-17*x^8-201*x^7+200*x^6+665*x^5-721*x^4-465*x^3+637*x^2-95*x-30,x^4-6*x^2+4,-13*x^9+14*x^8+153*x^7-165*x^6-501*x^5+594*x^4+331*x^3-527*x^2+91*x+23]];
E[589,3] = [x^3-x^2-4*x+2, [1,x,x^2-x-2,x^2-2,x^2-3,2*x-2,x^2-2*x-3,x^2-2,-2*x+3,x^2+x-2,-x+3,4,-x^2+x,-x^2+x-2,-x^2+x+6,-x^2+2*x+2,x-1]];
E[589,4] = [x^14-23*x^12+204*x^10-880*x^8+x^7+1913*x^6-12*x^5-1943*x^4+37*x^3+730*x^2-26*x-18, [2890168,2890168*x,-72118*x^13+242406*x^12+1291172*x^11-4653652*x^10-7810180*x^9+31680212*x^8+18369044*x^7-91165754*x^6-18628316*x^5+104232180*x^4+26485246*x^3-35466724*x^2-22357224*x+838604,2890168*x^2-5780336,-35740*x^13-203880*x^12+1045840*x^11+3878056*x^10-11726632*x^9-25911824*x^8+62710320*x^7+71578788*x^6-161471012*x^5-73841884*x^4+177140040*x^3+18044424*x^2-56355224*x+3649208,242406*x^13-367542*x^12-4653652*x^11+6901892*x^10+31680212*x^9-45094796*x^8-91093636*x^7+119333418*x^6+103366764*x^5-113640028*x^4-32798358*x^3+30288916*x^2-1036464*x-1298124,32042*x^13-263194*x^12-412804*x^11+5189180*x^10+236124*x^9-36620644*x^8+15271532*x^7+110369806*x^6-65839556*x^5-130544300*x^4+87741150*x^3+35309988*x^2-33938112*x+7769236,2890168*x^3-11560672*x,358248*x^13-220624*x^12-7546144*x^11+4287160*x^10+59056096*x^9-29766040*x^8-211771320*x^7+89592624*x^6+344629672*x^5-118458408*x^4-202900760*x^3+69238264*x^2+10078688*x-5446040,-203880*x^13+223820*x^12+3878056*x^11-4435672*x^10-25911824*x^9+31259120*x^8+71614528*x^7-93100392*x^6-74270764*x^5+107697220*x^4+19366804*x^3-30265024*x^2+2719968*x-643320,237067*x^13-109103*x^12-4543918*x^11+2410238*x^10+30567766*x^9-20064182*x^8-83501922*x^7+77970077*x^6+72516890*x^5-140635962*x^4+23176841*x^3+94183254*x^2-31286824*x-4175582,-223306*x^13+436874*x^12+4319548*x^11-8463308*x^10-29474436*x^9+58863220*x^8+82352924*x^7-178024406*x^6-73474524*x^5+229732140*x^4-31650598*x^3-107059396*x^2+49718880*x+2686100,4863*x^13-271667*x^12-272094*x^11+5905742*x^10+4149198*x^9-47940054*x^8-26785522*x^7+178948985*x^6+80233442*x^5-302140626*x^4-106587563*x^3+180904982*x^2+48392472*x-8728094,-263194*x^13+324162*x^12+5189180*x^11-6300444*x^10-36620644*x^9+43468492*x^8+110337764*x^7-127135902*x^6-130159796*x^5+149998756*x^4+34124434*x^3-57328772*x^2+8602328*x+576756,-441144*x^13+782832*x^12+8876952*x^11-16145528*x^10-65198720*x^9+122602640*x^8+214818512*x^7-420911344*x^6-320008968*x^5+646012720*x^4+188040976*x^3-357774440*x^2-9754936*x+19512832,2890168*x^4-17341008*x^2+11560672,-209846*x^13+373758*x^12+4247524*x^11-6821780*x^10-31433596*x^9+42330532*x^8+104556228*x^7-100545786*x^6-157408452*x^5+72743140*x^4+94437950*x^3-15713908*x^2-13032232*x+10561284]];
E[589,5] = [x^9+4*x^8-5*x^7-34*x^6-7*x^5+90*x^4+61*x^3-69*x^2-64*x-6, [1,x,-2*x^8-5*x^7+17*x^6+41*x^5-45*x^4-104*x^3+31*x^2+79*x+10,x^2-2,7*x^8+17*x^7-61*x^6-139*x^5+169*x^4+348*x^3-133*x^2-256*x-27,3*x^8+7*x^7-27*x^6-59*x^5+76*x^4+153*x^3-59*x^2-118*x-12,-5*x^8-12*x^7+44*x^6+98*x^5-124*x^4-245*x^3+101*x^2+180*x+17,x^3-4*x,6*x^8+15*x^7-52*x^6-124*x^5+143*x^4+316*x^3-111*x^2-240*x-23,-11*x^8-26*x^7+99*x^6+218*x^5-282*x^4-560*x^3+227*x^2+421*x+42,-9*x^8-22*x^7+79*x^6+182*x^5-220*x^4-461*x^3+173*x^2+341*x+33,-x^8-2*x^7+9*x^6+15*x^5-27*x^4-34*x^3+27*x^2+22*x-2,-7*x^8-17*x^7+62*x^6+142*x^5-174*x^4-363*x^3+141*x^2+271*x+20,8*x^8+19*x^7-72*x^6-159*x^5+205*x^4+406*x^3-165*x^2-303*x-30,-11*x^8-26*x^7+98*x^6+214*x^5-279*x^4-538*x^3+230*x^2+395*x+36,x^4-6*x^2+4,14*x^8+34*x^7-123*x^6-282*x^5+340*x^4+716*x^3-260*x^2-533*x-57]];

E[590,1] = [x, [1,1,-2,1,1,-2,-3,1,1,1,-5,-2,1,-3,-2,1,3]];
E[590,2] = [x^2+4*x+2, [1,1,x,1,-1,x,-2*x-5,1,-4*x-5,-1,x+1,x,x-1,-2*x-5,-x,1,-x-5]];
E[590,3] = [x^3-3*x^2-3*x+8, [1,1,x,1,-1,x,-x^2+x+5,1,x^2-3,-1,-x+1,x,x^2-x-1,-x^2+x+5,-x,1,-x^2-x+5]];
E[590,4] = [x^4-3*x^3-3*x^2+12*x-6, [1,1,x,1,1,x,-x^3+2*x^2+4*x-5,1,x^2-3,1,2*x^3-4*x^2-9*x+13,x,-x^2-x+5,-x^3+2*x^2+4*x-5,x,1,-x^2+x+1]];
E[590,5] = [x, [1,-1,-2,1,-1,2,5,-1,1,1,-3,-2,-1,-5,2,1,3]];
E[590,6] = [x^2-3*x+1, [1,-1,x,1,-1,-x,2*x-2,-1,3*x-4,1,x-1,x,-2*x+6,-2*x+2,-x,1,-4*x+6]];
E[590,7] = [x^2+2*x-2, [1,-1,x,1,-1,-x,-1,-1,-2*x-1,1,-x+3,x,-x-3,1,-x,1,x-1]];
E[590,8] = [x^2-x-3, [1,-1,x,1,1,-x,2*x-2,-1,x,-1,-3*x+1,x,2*x+2,-2*x+2,x,1,6]];
E[590,9] = [x^2-10, [1,-1,x,1,1,-x,-1,-1,7,-1,x-1,x,-x-3,1,x,1,x-1]];
E[590,10] = [x, [1,-1,0,1,1,0,1,-1,-3,-1,-5,0,-7,-1,0,1,1]];
E[590,11] = [x, [1,-1,0,1,1,0,4,-1,-3,-1,4,0,2,-4,0,1,-6]];

E[591,1] = [x^3+2*x^2-2*x-2, [1,x,1,x^2-2,-2,x,-x^2-2*x+1,-2*x^2-2*x+2,1,-2*x,-x-4,x^2-2,x^2+x-2,-x-2,-2,-2*x,-2]];
E[591,2] = [x^2-2, [1,x,-1,0,0,-x,-1,-2*x,1,0,-x-2,0,-x-2,-x,0,-4,0]];
E[591,3] = [x^14-24*x^12+220*x^10-958*x^8+4*x^7+2002*x^6-28*x^5-1792*x^4+15*x^3+520*x^2-40*x-26, [4218661,4218661*x,-4218661,4218661*x^2-8437322,-87900*x^13+165334*x^12+1750432*x^11-4146352*x^10-12291918*x^9+38560284*x^8+34173428*x^7-164306453*x^6-21470581*x^5+315968754*x^4-34702944*x^3-217400772*x^2+10013322*x+21275402,-4218661*x,-429001*x^13+24910*x^12+10366275*x^11-67950*x^10-95274680*x^9-3652319*x^8+413054010*x^7+29321418*x^6-846115080*x^5-75131988*x^4+706163417*x^3+83787269*x^2-142673030*x-4591061,4218661*x^3-16874644*x,4218661,165334*x^13-359168*x^12-4146352*x^11+7046082*x^10+38560284*x^9-50034772*x^8-163954853*x^7+154505219*x^6+313507554*x^5-192219744*x^4-216082272*x^3+55721322*x^2+17759402*x-2285400,456488*x^13+407071*x^12-10729160*x^11-8607812*x^10+96022564*x^9+67641852*x^8-404927857*x^7-240388854*x^6+802458234*x^5+376192725*x^4-641853476*x^3-228322390*x^2+131847123*x+13220960,-4218661*x^2+8437322,-227251*x^13-66605*x^12+4980820*x^11+1040322*x^10-40554988*x^9-5350216*x^8+148853346*x^7+10167808*x^6-230591680*x^5-11201600*x^4+85329470*x^3+36446471*x^2+44413335*x-14432610,24910*x^13+70251*x^12-67950*x^11-894460*x^10-3652319*x^9+2071052*x^8+31037422*x^7+12744922*x^6-87144016*x^5-62606375*x^4+90222284*x^3+80407490*x^2-21751101*x-11154026,87900*x^13-165334*x^12-1750432*x^11+4146352*x^10+12291918*x^9-38560284*x^8-34173428*x^7+164306453*x^6+21470581*x^5-315968754*x^4+34702944*x^3+217400772*x^2-10013322*x-21275402,4218661*x^4-25311966*x^2+16874644,-87165*x^13+81882*x^12+2231092*x^11-1209012*x^10-20397527*x^9+5925500*x^8+79279318*x^7-15032496*x^6-113748116*x^5+41191384*x^4+10843532*x^3-60218126*x^2+46456286*x+21628794]];
E[591,4] = [x^13-5*x^12-9*x^11+77*x^10-19*x^9-403*x^8+359*x^7+867*x^6-1075*x^5-635*x^4+1041*x^3-50*x^2-112*x-12, [15,15*x,15,15*x^2-30,12*x^12-48*x^11-146*x^10+748*x^9+370*x^8-3986*x^7+1057*x^6+8791*x^5-5384*x^4-6694*x^3+5758*x^2-422*x-276,15*x,-3*x^12+2*x^11+69*x^10-57*x^9-570*x^8+519*x^7+2067*x^6-1869*x^5-3289*x^4+2596*x^3+1923*x^2-932*x-201,15*x^3-60*x,15,12*x^12-38*x^11-176*x^10+598*x^9+850*x^8-3251*x^7-1613*x^6+7516*x^5+926*x^4-6734*x^3+178*x^2+1068*x+144,-5*x^12+20*x^11+70*x^10-350*x^9-230*x^8+2155*x^7-560*x^6-5500*x^5+3995*x^4+4650*x^3-5220*x^2+695*x+330,15*x^2-30,-4*x^12+21*x^11+27*x^10-291*x^9+165*x^8+1257*x^7-1509*x^6-1867*x^5+3313*x^4+303*x^3-2231*x^2+639*x+192,-13*x^12+42*x^11+174*x^10-627*x^9-690*x^8+3144*x^7+732*x^6-6514*x^5+691*x^4+5046*x^3-1082*x^2-537*x-36,12*x^12-48*x^11-146*x^10+748*x^9+370*x^8-3986*x^7+1057*x^6+8791*x^5-5384*x^4-6694*x^3+5758*x^2-422*x-276,15*x^4-90*x^2+60,-15*x^12+65*x^11+165*x^10-960*x^9-315*x^8+4725*x^7-1125*x^6-9495*x^5+3485*x^4+6985*x^3-1890*x^2-770*x-60]];
E[591,5] = [x, [1,0,-1,-2,0,0,1,0,1,0,2,2,0,0,0,4,-4]];

E[592,1] = [x, [1,0,-1,0,0,0,1,0,-2,0,-3,0,-4,0,0,0,6]];
E[592,2] = [x, [1,0,3,0,-2,0,1,0,6,0,5,0,-2,0,-6,0,0]];
E[592,3] = [x^2+3*x-1, [1,0,x,0,x+1,0,-2*x-4,0,-3*x-2,0,-x-1,0,-x-2,0,-2*x+1,0,-6]];
E[592,4] = [x^2-x-1, [1,0,x,0,3*x-1,0,2*x,0,x-2,0,-x+3,0,-3*x+2,0,2*x+3,0,-4*x+2]];
E[592,5] = [x^2-x-4, [1,0,x,0,2,0,-x,0,x+1,0,-x,0,2,0,2*x,0,2*x+2]];
E[592,6] = [x^4+2*x^3-8*x^2-15*x+4, [1,0,x,0,-x^3+7*x+2,0,-x^3+x^2+7*x-4,0,x^2-3,0,-x^2+4,0,x^3-x^2-6*x+6,0,2*x^3-x^2-13*x+4,0,2]];
E[592,7] = [x^3+2*x^2-4*x-7, [1,0,x,0,-x-1,0,-x^2-x+1,0,x^2-3,0,3*x^2-12,0,-3*x^2+13,0,-x^2-x,0,2*x^2+2*x-8]];
E[592,8] = [x, [1,0,1,0,-2,0,-1,0,-2,0,-1,0,-6,0,-2,0,-4]];
E[592,9] = [x, [1,0,1,0,-4,0,3,0,-2,0,-5,0,0,0,-4,0,-6]];
E[592,10] = [x, [1,0,1,0,0,0,3,0,-2,0,3,0,0,0,0,0,2]];

E[593,1] = [x, [1,1,1,-1,-2,1,-1,-3,-2,-2,-4,-1,6,-1,-2,-1,1]];
E[593,2] = [x, [1,-1,-2,-1,2,2,2,3,1,-2,-2,2,-6,-2,-4,-1,2]];
E[593,3] = [x^2+x-3, [1,x,3,-x+1,x,3*x,4,-3,6,-x+3,-x-4,-3*x+3,-2*x-3,4*x,3*x,-x-2,2*x+3]];
E[593,4] = [x^27-6*x^26-27*x^25+223*x^24+202*x^23-3540*x^22+1168*x^21+31305*x^20-31392*x^19-168192*x^18+251531*x^17+557742*x^16-1110745*x^15-1082936*x^14+2980971*x^13+955846*x^12-4886233*x^11+371289*x^10+4628707*x^9-1560432*x^8-2181895*x^7+1126402*x^6+342467*x^5-211917*x^4-24514*x^3+13047*x^2+863*x-191, [14938548438611217974850176,14938548438611217974850176*x,78823051026834314071153*x^26-38580238295054732749001*x^25-3826833628228877783879488*x^24+2543373167878469276218783*x^23+80184314123672879790326669*x^22-64306213508038263020773243*x^21-953780387927520787235052591*x^20+869571602661906471406058934*x^19+7118586934978818874848929966*x^18-7132394709249052389280743898*x^17-34738424861779696581479933095*x^16+37528306645270660824933636035*x^15+111830616296419524743851449038*x^14-129263496995400281522238106146*x^13-233220876822365846576296345503*x^12+289867762219915898364724283699*x^11+298554642264583077584853550958*x^10-409612441057011694798650854705*x^9-205951000191568139545302898170*x^8+338690380680517351265301688014*x^7+48396169583494404224762890303*x^6-139228088255988890476783490683*x^5+11454853877451523370258402964*x^4+18412423125451536272956571047*x^3-1935634123680871104156646839*x^2-739727232477250840971775652*x+41785103301495500717197499,14938548438611217974850176*x^2-29877096877222435949700352,133358055392002612352166*x^26-242295143403970458605158*x^25-5795511768923625105863008*x^24+10383731588353735547302106*x^23+110312812189033855390480862*x^22-195056476960132129562501986*x^21-1207885598306500104110612938*x^20+2112316632848985844554762564*x^19+8397788507650121261010951028*x^18-14588663496330858283893642076*x^17-38567983952522802857195756746*x^16+67116420360664206708972172162*x^15+117763301729894850806953740820*x^14-208500336561894660888608433324*x^13-233612192299143594167599058042*x^12+433513406363510457033659161154*x^11+281510547334768297419644608180*x^10-583343067365504581481176330918*x^9-171134202205736455349921849516*x^8+472467972824178399475383425796*x^7+13375484266993873996883951146*x^6-197176055511769492214019828898*x^5+29115200363544548701094588744*x^4+28507869109234512563488907802*x^3-4482802913676140216563718090*x^2-1254289614624259260735407816*x+102727254389678591590079506,434358067865951151677917*x^26-1698611250504351303958357*x^25-15034167211105582761648336*x^24+64262057816252348347953763*x^23+214727387126955208791108377*x^22-1045845711526863266070159295*x^21-1597984009733141730591385731*x^20+9593000152813201662170564942*x^19+6125011889056264562974621478*x^18-54564865709610358434111118338*x^17-6434619480537963173739380491*x^16+199382926109220604926814288023*x^15-43903177408604436779279960938*x^14-468190106064879158627295375066*x^13+214525064188120426597068973261*x^12+683702435352584788531685687607*x^11-438878572849713980435815180922*x^10-570799808240833316926647287341*x^9+461688391840422473639979106110*x^8+220379790503689059925041265238*x^7-228014530578717115515158372189*x^6-15539439938555343666747151487*x^5+35116367629905183607973101348*x^4-3365850809054729016402197*x^3-1768131579224358136658108843*x^2-26239189734662512326207540*x+15055202746125353987590223,-240712744177583078428735*x^26+1388214699817565457622791*x^25+6446288924418368814207616*x^24-50615627174632933271991153*x^23-47927539465755365446741859*x^22+783119685610168390388481365*x^21-265930136028402045312119359*x^20-6681061947520607008587879882*x^19+7108042855030416178260668526*x^18+34018907493404173005544613542*x^17-55724639747162432680553393559*x^16-103042810175104876298099727053*x^15+238712886914533440621807935886*x^14+164066295837761585014467985950*x^13-614319867646728303857918889199*x^12-43610168056214300407572194269*x^11+947247775182241068004860376878*x^10-296725067711576818012189771105*x^9-811403773375010742676158392058*x^8+482358898934033087807732736942*x^7+306268788940689050442396761135*x^6-274045343807062362636477736555*x^5-10248617750696744001929766636*x^4+39446133413498629267330181623*x^3-2530404769707532101890557383*x^2-1371889459219753501520759780*x+109583144837625939497462859,14938548438611217974850176*x^3-59754193754444871899400704*x,-542552024156791446784542*x^26+2404905094772816738067574*x^25+17640209138155362756165280*x^24-89708705056508370054118786*x^23-226152000352245859224012910*x^22+1433720629079072298081861642*x^21+1332118964581016398772785162*x^20-12839984863536951973751153188*x^19-1798548874388468057902330148*x^18+70696690757778002599633692188*x^17-23530800973593901400673822286*x^16-246654385218009913257882839922*x^15+162062436743033967381152754620*x^14+539796638699965844224379392908*x^13-494413953231568355449005027134*x^12-698621126143376617303618527570*x^11+827598197713616859278369250140*x^10+447976494025002443293417900142*x^9-744440220552230028527257578092*x^8-42361080273808290752210206156*x^7+298507207615360112835586158822*x^6-70926541080768581683593528566*x^5-20693041399378554435670614992*x^4+8542637401335643307222868918*x^3-1333552375442301983254492782*x^2-185430980928091617077978688*x+77662032519943449527201886,557853188948045215507838*x^26-2194844273339554572354526*x^25-19355114764062847007230912*x^24+83374484999849327695343330*x^23+277031039127557118164165654*x^22-1363647807004359155337942826*x^21-2062457291197655935129794066*x^20+12584164582515867267970146100*x^19+7841094556160845092841861796*x^18-72111668983328611944748422892*x^17-7262968169782114309549597010*x^16+265890094966284792464060364490*x^15-64082097487900919878403193948*x^14-631148688039097013513647691228*x^13+306043642549286328027290698718*x^12+933129078406999397981005738858*x^11-632857446393945839418799692892*x^10-788409566705086691162679078878*x^9+680564149915631819873298521508*x^8+304348758536527413875013185716*x^7-347390835821432018772724315630*x^6-16555532792388409943314644778*x^5+56768708133741530165322870024*x^4-1213663543796588177362720766*x^3-2994212163323717344094117618*x^2-12360747413619662869839752*x+25471388579872498959263706,-24907861644135349174203*x^26-231155865828628366173957*x^25+2092486496638831222440256*x^24+7902854700158456908881819*x^23-59292063944493488777122919*x^22-109830313856026585949183463*x^21+864564524447240072590454733*x^20+763248418838050581020949806*x^19-7531647664825243182276998842*x^18-2289734110833816118665507810*x^17+41810428727197081979526212397*x^16-3311639480720496252653660505*x^15-151349480797494856669691240218*x^14+53617236455486538573421580582*x^13+354712075830737770790304952597*x^12-202033507747226874768261870329*x^11-516142432586103549656424022266*x^10+393230023257959303223908993755*x^9+418783952795264686033984657430*x^8-412811717312427037604592734978*x^7-135626213123967842194389950605*x^6+203888690010415914118158526601*x^5-14177444983661408087766202660*x^4-27777516634371893101395381429*x^3+4837227451658976796148722733*x^2+925621362458747633233543540*x-214313939910943644988069025,749891054637686977966839*x^26-3229338902134792200846575*x^25-24946124061397002908462752*x^24+121900311082276137599731577*x^23+331413220471258051289013547*x^22-1976701805984496149709646301*x^21-2097018385875357566636521561*x^20+18021237150180390173635674074*x^19+4253512570942059919203237794*x^18-101424349230430417527876033622*x^17+26600038345088670850629370799*x^16+363501261392620153541340685157*x^15-221469350075236531721521548830*x^14-821756745745511280926926731854*x^13+734964767259918537157548125831*x^12+1103760627733304316551379668341*x^11-1329181465429880609251696514270*x^10-729602955283157294192355347799*x^9+1310068019443027226530722441722*x^8+42328404546627670044526964498*x^7-601593575465887261268581996727*x^6+164819239714034271499858881475*x^5+69134785062236668740595928764*x^4-27945124154461504150338793599*x^3-1822040653819984979954696961*x^2+1119658655132311192033099156*x-607815640594331463912851,-266212068057485861876482*x^26+1238204293883508820444530*x^25+8649118370364918463486240*x^24-47177026652432605310673118*x^23-108409691487888251874507610*x^22+772649933304523026940361846*x^21+565743431484652741182826462*x^20-7113456397274110259252015852*x^19+448679927107984961276323396*x^18+40349301694060907473602199348*x^17-22835024631204670280794294194*x^16-144812338122605002760647297894*x^15+137781724195001699932320489828*x^14+321852929038037292250098165124*x^13-429692512891377206105419028962*x^12-400450832065641413678041166598*x^11+772269325817651740962534631812*x^10+174903715322422043767400750146*x^9-770582032846179541919003730220*x^8+148736178077150978160212858564*x^7+355443608981010023604709467362*x^6-169113981195451125505965704554*x^5-34268930399749822260947747880*x^4+27053888120541316693005412082*x^3-94024922872475772272668178*x^2-1098209338248717757589376088*x+75510180909983181644079658,-56061765247933012949619*x^26-52955168376374303368229*x^25+3063314776968093217616752*x^24+696434858116416395862611*x^23-69003428778475707249240535*x^22+15222349171014990292643121*x^21+854450508958631261623669293*x^20-448411610192271819774180594*x^19-6467050375311880121541183578*x^18+4822077508569216619704749726*x^17+31212797187988665030899789317*x^16-28657590116996075827517321689*x^15-96610200490933523606832580010*x^14+103237842077065703028865712486*x^13+186474145614951774776220440541*x^12-228930778938823230055212728377*x^11-207351073638626174405463181690*x^10+302784990588977295528476303587*x^9+106743030111518769569024923422*x^8-218941144016658580465867991690*x^7-2906027339944427928193775085*x^6+72187553609567600118323822609*x^5-11564989194382243964052053372*x^4-8431236980476803686492567173*x^3+1768689714065172922738945765*x^2+317318243062880136181461164*x-45976134137918367979888385,-888214144248099934431662*x^26+3743845591529262501737022*x^25+29883076108413369283509664*x^24-141266676347308710579423986*x^23-406797116190229331111790166*x^22+2291569669265372422101736666*x^21+2746890757851354189837966130*x^20-20931625939697348286875480884*x^19-7801450532949389577158964260*x^18+118398517460468892587755833004*x^17-13339485651269707676588471486*x^16-429268131150472770892124650410*x^15+184985150245012781912391303932*x^14+996087216308462627362442423004*x^13-657894474943821367639761606094*x^12-1425143267630294862349867677962*x^11+1211042645586512300004222221212*x^10+1139799211855252517207826143982*x^9-1202111292715067085254427516980*x^8-384161728294115834571006108324*x^7+567447578880618676285666716494*x^6-10542572775965504132150302598*x^5-80334943678338206177165037592*x^4+7165108320431500070201577982*x^3+1942686966852517320104992546*x^2-180259468869116362657147432*x+117046566101929520282656582,14938548438611217974850176*x^4-89631290631667307849101056*x^2+59754193754444871899400704,-78291216908875148703440*x^26-5068959250614991257496*x^25+4272439000716274226001632*x^24-2219978946619004393584464*x^23-96129894672013336660854856*x^22+86365302450690234396798352*x^21+1188303935032675144528677512*x^20-1393454467122656906103398864*x^19-8964125067690378576694758720*x^18+12503575295533791072417224208*x^17+42966552994372362176940455536*x^16-68876503871276858274505168408*x^15-130960477294157886743063928544*x^14+241250283283352999368105239280*x^13+243322527118094995908155988368*x^12-536923964584582361814397464952*x^11-240522369105511974681288736128*x^10+734770797096876286497452983296*x^9+59703343263265557475318729720*x^8-572633139248639794686313923736*x^7+90551267589879466377416255624*x^6+216676422827507820276981106608*x^5-64368982763654500840600933448*x^4-28317440528361673191575174904*x^3+9096929668081360156806787056*x^2+1190676891142549128638390552*x-264097038327651495652100952]];
E[593,5] = [x^18+6*x^17-5*x^16-90*x^15-73*x^14+513*x^13+762*x^12-1357*x^11-2824*x^10+1537*x^9+5041*x^8-155*x^7-4451*x^6-1013*x^5+1717*x^4+621*x^3-169*x^2-67*x-5, [77405,77405*x,30089*x^17+196712*x^16-80941*x^15-2917062*x^14-3334631*x^13+16340965*x^12+30376198*x^11-41954812*x^10-109963440*x^9+44284118*x^8+197735390*x^7+1261245*x^6-180322234*x^5-34934295*x^4+74915778*x^3+19329975*x^2-9540876*x-1657130,77405*x^2-154810,15145*x^17+49430*x^16-274965*x^15-907580*x^14+2163990*x^13+6917590*x^12-9863370*x^11-28432395*x^10+28769405*x^9+68283190*x^8-53739220*x^7-95989930*x^6+59302885*x^5+73104460*x^4-32947915*x^3-24337830*x^2+6442270*x+1472355,16178*x^17+69504*x^16-209052*x^15-1138134*x^14+905308*x^13+7448380*x^12-1124039*x^11-24992104*x^10-1962675*x^9+46056741*x^8+5925040*x^7-46396095*x^6-4454138*x^5+23252965*x^4+644706*x^3-4455835*x^2+358833*x+150445,16470*x^17+117590*x^16-2715*x^15-1739745*x^14-2597490*x^13+9554975*x^12+22387970*x^11-22538595*x^10-82186675*x^9+13738220*x^8+153577845*x^7+30995350*x^6-147864085*x^5-53507175*x^4+66771705*x^3+24761605*x^2-10271500*x-1911445,77405*x^3-309620*x,-135209*x^17-788192*x^16+805066*x^15+11974217*x^14+7749141*x^13-69942640*x^12-89213083*x^11+195376737*x^10+336588325*x^9-259935033*x^8-603869460*x^7+124989595*x^6+536688874*x^5+36470390*x^4-213592238*x^3-41799995*x^2+25580391*x+4177945,-41440*x^17-199240*x^16+455470*x^15+3269575*x^14-851795*x^13-21403860*x^12-7880630*x^11+71538885*x^10+45005325*x^9-130085165*x^8-93642455*x^7+126713280*x^6+88446345*x^5-58951880*x^4-33742875*x^3+9001775*x^2+2487070*x+75725,-133155*x^17-734115*x^16+998395*x^15+11374540*x^14+4376885*x^13-68650590*x^12-67520895*x^11+203797900*x^10+267424230*x^9-310033645*x^8-486139520*x^7+227499875*x^6+429489045*x^5-57326485*x^4-165274620*x^3-8340150*x^2+17565820*x+2330350,-87742*x^17-521586*x^16+479768*x^15+7920426*x^14+5818328*x^13-46133605*x^12-63790954*x^11+127633621*x^10+241118035*x^9-164196494*x^8-439359285*x^7+65031650*x^6+400285747*x^5+42735670*x^4-164333929*x^3-35567035*x^2+20316123*x+3395150,4111*x^17-30787*x^16-267309*x^15+286632*x^14+3686671*x^13+88225*x^12-22418288*x^11-9531548*x^10+71371165*x^9+41510767*x^8-124615560*x^7-75667870*x^6+117098079*x^5+63792505*x^4-52993428*x^3-21700450*x^2+8070056*x+1233835,18770*x^17+79635*x^16-257445*x^15-1395180*x^14+1105865*x^13+9837830*x^12-188805*x^11-35675395*x^10-11576170*x^9+70552575*x^8+33548200*x^7-74556115*x^6-36823065*x^5+38492715*x^4+14533735*x^3-7488070*x^2-807955*x+82350,84677*x^17+538006*x^16-271228*x^15-7906921*x^14-8599068*x^13+43475410*x^12+79766534*x^11-106519661*x^10-288146415*x^9+93429519*x^8+513907700*x^7+51199310*x^6-464431707*x^5-134273570*x^4+193335664*x^3+64234245*x^2-26254173*x-5078310,77405*x^4-464430*x^2+309620,121533*x^17+639774*x^16-1073292*x^15-10081164*x^14-1319707*x^13+62509770*x^12+43998106*x^11-194321869*x^10-184828930*x^9+321736991*x^8+335849090*x^7-280300365*x^6-287741093*x^5+113868525*x^4+102977721*x^3-12920365*x^2-8464647*x-1017865]];

E[594,1] = [x, [1,1,0,1,-1,0,4,1,0,-1,1,0,1,4,0,1,-5]];
E[594,2] = [x, [1,1,0,1,3,0,-4,1,0,3,1,0,5,-4,0,1,3]];
E[594,3] = [x^2-2*x-9, [1,1,0,1,x,0,2,1,0,x,-1,0,-x+2,2,0,1,-2*x+3]];
E[594,4] = [x, [1,1,0,1,2,0,-1,1,0,2,-1,0,6,-1,0,1,5]];
E[594,5] = [x, [1,1,0,1,2,0,1,1,0,2,1,0,-2,1,0,1,1]];
E[594,6] = [x, [1,-1,0,1,-3,0,-4,-1,0,3,-1,0,5,4,0,1,-3]];
E[594,7] = [x, [1,-1,0,1,1,0,4,-1,0,-1,-1,0,1,-4,0,1,5]];
E[594,8] = [x^2+2*x-9, [1,-1,0,1,x,0,2,-1,0,-x,1,0,x+2,-2,0,1,-2*x-3]];
E[594,9] = [x, [1,-1,0,1,-2,0,1,-1,0,2,-1,0,-2,-1,0,1,-1]];
E[594,10] = [x, [1,-1,0,1,-2,0,-1,-1,0,2,1,0,6,1,0,1,-5]];

E[595,1] = [x, [1,-2,2,2,-1,-4,-1,0,1,2,2,4,-1,2,-2,-4,1]];
E[595,2] = [x^3+4*x^2+3*x-1, [1,x,-x^2-2*x,x^2-2,1,2*x^2+3*x-1,1,-4*x^2-7*x+1,x^2+x-3,x,2*x^2+6*x-1,-3*x^2-3*x+2,2*x^2+5*x-3,x,-x^2-2*x,7*x^2+13*x,-1]];
E[595,3] = [x^3-3*x-1, [1,x,-x^2+2,x^2-2,-1,-x-1,-1,-x+1,-x^2+x+1,-x,2*x^2-2*x-3,x^2-x-4,2*x^2-3*x-5,-x,x^2-2,-3*x^2+x+4,-1]];
E[595,4] = [x^3-2*x^2-x+1, [1,x,x^2-2,x^2-2,-1,2*x^2-x-1,-1,2*x^2-3*x-1,x^2+x-1,-x,-2*x^2+2*x+1,x^2+x+2,-4*x^2+7*x+3,-x,-x^2+2,-x^2+x+2,1]];
E[595,5] = [x^3+2*x^2-x-1, [1,x,x^2+2*x-2,x^2-2,1,-x+1,-1,-2*x^2-3*x+1,-3*x^2-5*x+3,x,-4*x^2-8*x+3,-3*x^2-3*x+4,2*x^2+3*x-5,-x,x^2+2*x-2,-x^2-x+2,1]];
E[595,6] = [x^4-2*x^3-3*x^2+3*x+2, [1,x,-x^2+2*x+2,x^2-2,1,-x^3+2*x^2+2*x,-1,x^3-4*x,-2*x^3+3*x^2+5*x-1,x,x^3-4*x^2+x+4,x^2-x-2,x+3,-x,-x^2+2*x+2,2*x^3-3*x^2-3*x+2,-1]];
E[595,7] = [x^5-2*x^4-8*x^3+11*x^2+17*x-7, [1,x,x^3-x^2-5*x+1,x^2-2,-1,x^4-x^3-5*x^2+x,1,x^3-4*x,-x^4+x^3+6*x^2-3*x-2,-x,-x^3+5*x+4,x^4+x^3-8*x^2-7*x+5,-x^4+x^3+5*x^2-x-2,x,-x^3+x^2+5*x-1,x^4-6*x^2+4,-1]];
E[595,8] = [x^4-x^3-5*x^2+2*x+1, [1,x,x^3-x^2-5*x+1,x^2-2,1,-x-1,1,x^3-4*x,-x^2+x+3,x,x^3-5*x,-2*x^3+x^2+9*x-2,-x+1,x,x^3-x^2-5*x+1,x^3-x^2-2*x+3,1]];
E[595,9] = [x^3+2*x^2-3*x-5, [1,x,x^2-4,x^2-2,-1,-2*x^2-x+5,1,-2*x^2-x+5,-x^2-x+3,-x,-3,x^2-x-2,-2*x^2-x+5,x,-x^2+4,x^2-x-6,1]];
E[595,10] = [x, [1,2,2,2,1,4,1,0,1,2,-2,4,-1,2,2,-4,1]];
E[595,11] = [x, [1,2,2,2,-1,4,1,0,1,-2,6,4,1,2,-2,-4,-1]];

E[596,1] = [x^3-3*x-1, [1,0,x,0,-x-1,0,-x-1,0,x^2-3,0,-x^2+1,0,-x^2-1,0,-x^2-x,0,-x^2+2*x+1]];
E[596,2] = [x^10-24*x^8-x^7+203*x^6+3*x^5-757*x^4+12*x^3+1227*x^2-37*x-654, [43469,0,43469*x,0,-2857*x^9+4679*x^8+59627*x^7-92103*x^6-405274*x^5+602759*x^4+1018893*x^3-1379945*x^2-739572*x+816070,0,-1566*x^9-2015*x^8+31466*x^7+49493*x^6-192564*x^5-372388*x^4+404630*x^3+1042245*x^2-211420*x-777916,0,43469*x^2-130407,0,-3606*x^9-4973*x^8+71790*x^7+101309*x^6-435919*x^5-568364*x^4+960547*x^3+1047923*x^2-571939*x-444920,0,1913*x^9+10317*x^8-37217*x^7-218375*x^6+214248*x^5+1431762*x^4-496399*x^3-3452885*x^2+407050*x+2510066,0,4679*x^9-8941*x^8-94960*x^7+174697*x^6+611330*x^5-1143856*x^4-1345661*x^3+2765967*x^2+710361*x-1868478,0,7443*x^9+6829*x^8-155050*x^7-144049*x^6+1009665*x^5+851568*x^4-2391821*x^3-1850122*x^2+1595931*x+1286056]];

E[597,1] = [x^2-2*x-1, [1,x,-1,2*x-1,0,-x,0,x+2,1,0,2*x-2,-2*x+1,2*x-1,0,0,3,x]];
E[597,2] = [x^3-3*x+1, [1,x,-1,x^2-2,2*x^2+x-3,-x,2*x^2+x-3,-x-1,1,x^2+3*x-2,-x+2,-x^2+2,-x^2-x+1,x^2+3*x-2,-2*x^2-x+3,-3*x^2-x+4,-x^2+5]];
E[597,3] = [x^3+2*x^2-x-1, [1,x,1,x^2-2,-x-1,x,x-1,-2*x^2-3*x+1,1,-x^2-x,-x-2,x^2-2,-3*x^2-5*x-1,x^2-x,-x-1,-x^2-x+2,x^2+2*x-3]];
E[597,4] = [x^14-2*x^13-22*x^12+43*x^11+183*x^10-345*x^9-718*x^8+1278*x^7+1334*x^6-2159*x^5-982*x^4+1362*x^3+131*x^2-247*x+19, [28250,28250*x,28250,28250*x^2-56500,-186*x^13+2014*x^12-7916*x^11-25296*x^10+189274*x^9+25692*x^8-1305276*x^7+643164*x^6+3506818*x^5-2194072*x^4-3285414*x^3+1477976*x^2+664612*x-179122,28250*x,-7680*x^13+21920*x^12+140820*x^11-411680*x^10-903130*x^9+2700060*x^8+2505220*x^7-7316030*x^6-3479860*x^5+7414240*x^4+3393430*x^3-1899220*x^2-929340*x+116490,28250*x^3-113000*x,28250,1642*x^13-12008*x^12-17298*x^11+223312*x^10-38478*x^9-1438824*x^8+880872*x^7+3754942*x^6-2595646*x^5-3468066*x^4+1731308*x^3+688978*x^2-225064*x+3534,4928*x^13+1378*x^12-133582*x^11-2142*x^10+1373098*x^9-242916*x^8-6614452*x^7+1901328*x^6+14848136*x^5-4310744*x^4-13167878*x^3+1818602*x^2+2913674*x-107094,28250*x^2-56500,-3407*x^13+6393*x^12+77933*x^11-135652*x^10-686387*x^9+1061304*x^8+2937788*x^7-3725732*x^6-6262834*x^5+5506811*x^4+5788707*x^3-2188263*x^2-1177906*x+205461,6560*x^13-28140*x^12-81440*x^11+502310*x^10+50460*x^9-3009020*x^8+2499010*x^7+6765260*x^6-9166880*x^5-4148330*x^4+8560940*x^3+76740*x^2-1780470*x+145920,-186*x^13+2014*x^12-7916*x^11-25296*x^10+189274*x^9+25692*x^8-1305276*x^7+643164*x^6+3506818*x^5-2194072*x^4-3285414*x^3+1477976*x^2+664612*x-179122,28250*x^4-169500*x^2+113000,5077*x^13-8923*x^12-103213*x^11+170672*x^10+780107*x^9-1156744*x^8-2785018*x^7+3352852*x^6+5045274*x^5-3986921*x^4-4527877*x^3+1581493*x^2+1217066*x-160321]];
E[597,5] = [x^11+5*x^10-4*x^9-49*x^8-23*x^7+159*x^6+131*x^5-193*x^4-183*x^3+70*x^2+64*x-5, [63,63*x,-63,63*x^2-126,-47*x^10-192*x^9+365*x^8+1957*x^7-751*x^6-6676*x^5+172*x^4+8541*x^3+429*x^2-3212*x+125,-63*x,70*x^10+273*x^9-574*x^8-2786*x^7+1379*x^6+9506*x^5-896*x^4-12159*x^3-336*x^2+4564*x-49,63*x^3-252*x,63,43*x^10+177*x^9-346*x^8-1832*x^7+797*x^6+6329*x^5-530*x^4-8172*x^3+78*x^2+3133*x-235,-23*x^10-60*x^9+293*x^8+703*x^7-1363*x^6-2767*x^5+2719*x^4+4059*x^3-1983*x^2-1730*x+323,-63*x^2+126,21*x^10+84*x^9-189*x^8-924*x^7+567*x^6+3507*x^5-819*x^4-5229*x^3+882*x^2+2352*x-567,-77*x^10-294*x^9+644*x^8+2989*x^7-1624*x^6-10066*x^5+1351*x^4+12474*x^3-336*x^2-4529*x+350,47*x^10+192*x^9-365*x^8-1957*x^7+751*x^6+6676*x^5-172*x^4-8541*x^3-429*x^2+3212*x-125,63*x^4-378*x^2+252,-18*x^10-99*x^9+54*x^8+972*x^7+522*x^6-3168*x^5-2304*x^4+3834*x^3+2376*x^2-1332*x-369]];

E[598,1] = [x, [1,-1,-3,1,-3,3,3,-1,6,3,-2,-3,1,-3,9,1,1]];
E[598,2] = [x^2-x-4, [1,-1,x,1,x,-x,x-2,-1,x+1,-x,-2,x,1,-x+2,x+4,1,-x+6]];
E[598,3] = [x^2-3, [1,-1,x,1,1,-x,-x+2,-1,0,-1,2,x,-1,x-2,x,1,x+4]];
E[598,4] = [x^4-7*x^2+4, [2,-2,2*x,2,x^3-7*x-2,-2*x,-x^3-2*x^2+5*x+6,-2,2*x^2-6,-x^3+7*x+2,-x^3+2*x^2+3*x-10,2*x,-2,x^3+2*x^2-5*x-6,-2*x-4,2,-2*x^3+12*x-4]];
E[598,5] = [x, [1,-1,0,1,0,0,0,-1,-3,0,-2,0,1,0,0,1,-2]];
E[598,6] = [x^2+2*x-1, [1,1,x,1,-2*x-3,x,x-2,1,-2*x-2,-2*x-3,-2,x,1,x-2,x-2,1,-x-6]];
E[598,7] = [x^5-2*x^4-9*x^3+12*x^2+16*x-16, [4,4,4*x,4,-x^4+2*x^3+5*x^2-4*x,4*x,x^4-2*x^3-9*x^2+8*x+16,4,4*x^2-12,-x^4+2*x^3+5*x^2-4*x,-x^4+2*x^3+9*x^2-12*x-8,4*x,4,x^4-2*x^3-9*x^2+8*x+16,-4*x^3+8*x^2+16*x-16,4,4*x^4-4*x^3-36*x^2+56]];
E[598,8] = [x^2-6, [1,1,2,1,x,2,-x,1,1,x,-x+2,2,-1,-x,2*x,1,2]];
E[598,9] = [x, [1,1,-1,1,-1,-1,-1,1,-2,-1,-6,-1,-1,-1,1,1,3]];
E[598,10] = [x, [1,1,-1,1,3,-1,3,1,-2,3,2,-1,-1,3,-3,1,-1]];

E[599,1] = [x^2-x-1, [1,x,x-2,x-1,-1,-x+1,-2*x+1,-2*x+1,-3*x+2,-x,-2*x,-2*x+3,2*x+1,-x-2,-x+2,-3*x,-x-1]];
E[599,2] = [x^37-x^36-60*x^35+60*x^34+1641*x^33-1636*x^32-27103*x^31+26856*x^30+301872*x^29-296435*x^28-2397835*x^27+2327508*x^26+14006000*x^25-13412885*x^24-61122433*x^23+57706157*x^22+200364245*x^21-186717791*x^20-491544743*x^19+454176025*x^18+890367021*x^17-823898463*x^16-1159540663*x^15+1095980601*x^14+1034139025*x^13-1037779758*x^12-572612624*x^11+663947955*x^10+148686207*x^9-259675446*x^8+11118861*x^7+48962840*x^6-12479539*x^5-1361501*x^4+713002*x^3-23486*x^2-10349*x+751, [70382168570064144260123304196445673588863173574768346131083,70382168570064144260123304196445673588863173574768346131083*x,494724316192210988624153889552501147390989874565751640956*x^36-365708735173184385397959516079803257801525015178607125427*x^35-29717146551892726995560933500666659141596855483477807265664*x^34+21881222253166635578946394783540525441936616329095495436101*x^33+814012587123968646537189872033449679480165327828790759742161*x^32-594027621886049346885940220561576272440965311639693295804720*x^31-13471610343325848235232192944619819234698079501559264936103876*x^30+9692559030029251660336537405534342792716620976580815369735572*x^29+150442578753387876295769846117437478558420779706686292954384767*x^28-106151928178012517759973521857956781020313298010315083785711782*x^27-1199100720137741716321427088021693300395548325807757465767180366*x^26+825443637504298067631652331119805987678010634556359189645597020*x^25+7035527492250636271525096621349322701449909335620657934950855062*x^24-4702290601440104804100754722651863699840350370792131299708187158*x^23-30886525211273178487780730761063855527555786781702333482249497974*x^22+19963857897840007797692104760156086436513895920963437144644801886*x^21+102074505471383454045592498660170028215259593872537493941111638198*x^20-63655643746566664778119505101250986409370840617605071005776064801*x^19-253318380306682174883300066368741650117817559585591303119421128378*x^18+152482085471906512585832084423016949155004852591154947164715383368*x^17+466843431909937470968794884091277718367346566152162720127499229118*x^16-272599975856089527945320431957604799956263438303207296276678194970*x^15-625150747634654952962103950789206036261738666092601119658093980158*x^14+358469547144573101905562059616806350314433304331999434472673495778*x^13+586088584802401271189546647184684506475068328383437278259805961938*x^12-337848722632412272872382558622364119364372699589110410831998988854*x^11-360735446353365720160896593216511128597230788410062471408901820321*x^10+217862261766905187756066384499378809189149730261329504317980496114*x^9+128549363332682222407744009687290495599115694750701470763030277121*x^8-87846107627430139929999276411753468046141438388929568459951483401*x^7-18670068070915368693207665255051233869742827107689127814416534251*x^6+18044608026791589065273553255860643900515216512230573561063315248*x^5-876711828972238137452472062415090214443519072250043696175833550*x^4-936576141541274743950005620183015824397006164202706404222635467*x^3+85485387701812268646037207764909271411889995241452750917438480*x^2+14523934554534743211818532777517937904053192782520423254249078*x-1231237241812573260633202108059395187900994255130959291760286,70382168570064144260123304196445673588863173574768346131083*x^2-140764337140128288520246608392891347177726347149536692262166,465953578348523749264170236258517919182972121027034746953*x^36-271941200566045645507767178623555542732515894312008357040*x^35-28054842168030978391947665974263170862213736576475469247120*x^34+16232583142594679892763301390877318176046221546987378454779*x^33+770506872508972877903960785853308990432259945066165774766448*x^32-438978578133403366225671003659127742742100066865710084097671*x^31-12789125464232551738939162877632083528244228589223728744958312*x^30+7123071906692041407824763972001052348751051503985767688509599*x^29+143287252468637330291275580264256925295647017774153764934569319*x^28-77435420247516505368717182445707503649172420280114810830220550*x^27-1146192113714352094583413378300599379330484666912220666227655926*x^26+596472810753389382537749000371241273141246198291911048717089219*x^25+6751929270138227122298058256948393240186355217230210534446843818*x^24-3358499720437650098641760774306141111920220332513278882886833516*x^23-29772892605680068061798040461927649637722955906127954881742375038*x^22+14061604288131500460220607821666439715795164941489440139190926754*x^21+98885849937241669310852929033697096631730897332241793124462601962*x^20-44126212647463203714968770898406715279867297042956710373298990290*x^19-246832158346707810227476814090097796060640350848344412163035080770*x^18+103891680323015390844920322598432903543344563174094402462622850782*x^17+458152899758347865307954318308815752545258277154125222721628023358*x^16-182618265273521595614399164051196046371232036545619814080920357769*x^15-619484522675352907645159256900565978237798751524901011750576706066*x^14+236935208004572847018813797193125180800354971617912669128919473008*x^13+589578703088810312308808807937923765453678886002869023323484174118*x^12-222165858294374993912125056409205304807311105437906209827775841365*x^11-373141451123067379455473109790569567123551785101670030683020903659*x^10+144607011690380409605127537487749805664701879111086416259455560704*x^9+141921756362776232375921403079873454391947639001472504177633821785*x^8-60056041524019466718059188105041218448131089374434896651214119798*x^7-25995559156380394757194014731866205995628813296954061948611427903*x^6+13065271006497349473849415532495471514884253482481100779550889754*x^5+905768584153855192140721783465511634515231481393146887556298551*x^4-804505616745360037092769894117791239892037085873039801144828979*x^3+15906322028840176792679981580882225264641890733838834600533054*x^2+13464312851266181788313423022349487913496618573001138484706462*x-700344232178491773264652145832801629671534075703803422561563,129015581019026603226194373472697889589464859387144515529*x^36-33687580360067678111700127516590298137463009532708808304*x^35-7802236718366023738502838589609543401522776144849603021259*x^34+2169984252550414204953339277795296611550943666392316933365*x^33+215341359404407830503175542746315604690694123149876388799296*x^32-63097201568353810551750076078380636960080931203698211273408*x^31-3593757205628766650153739452287628021615803094757010699778764*x^30+1099159975812760737819263170444852193207884291773713595715135*x^29+40501674492425546652827536391538896606534785456583503901080078*x^28-12833439420991480413829046266571711641274119928388379775450106*x^27-326031166227602546078974840044756852883697426414424280692620628*x^26+106418719662529164855197244276991631091705152452740451721119062*x^25+1933389758349659082051329620218535652483046852922720398995930902*x^24-647771341343947213737122465201704163726883369878774713276332026*x^23-8584781164065361688978533582521204517510706166138133871369764206*x^22+2949441374389824429210315816169747956630187852525963543451619978*x^21+28718187726828502423708638400050006356440202064679159648153383395*x^20-10139243448131085878264419136207088616308321176566676163875834070*x^19-72209837927115010188806348122227050774974049454366734261907896532*x^18+26357216285616509624042096804854248665748989293890762943643917042*x^17+135002627863399118153830442320172653184909579400078273146698055658*x^16-51497786034916987776967091883470082507729546712342624810635786330*x^15-183738706245080328925542283371431478256333360379487662999019598778*x^14+74474862811596486819478052392903283600768765715138577889418054038*x^13+175566158502255928386932617832189249669771103818185682207421579794*x^12-77450057501938097603185684740047260826665322377536563748780791777*x^11-110608936257686685069468854074300192756251582382307810732649948866*x^10+54990681247393687565498419265432172630401464326114087165256783229*x^9+40621649826827270267078811230427007818125593670416045230529682975*x^8-24170838975976611958392213595594846329923756175393155670728205367*x^7-6178499511037046816972713773676141379006238157752393514802759792*x^6+5297219569196790391311212744257040401967087315998361971448565734*x^5-263008490321263290727231475403395959723026058991560979309400511*x^4-267254039191866550664961763793803151680180567303677300587471432*x^3+26143029844625010490645411027547979851677980976571666293741694*x^2+3888664706460618260638166494919439186448359956750004440493358*x-371537961460350452456739571053928361690633395798879482357956,879192875614943320137563435790925425173000575069922587256*x^36-641056105727974549039221504496782944352911315305314532260*x^35-52878451951924715008584156923368717685564710266474836444257*x^34+38481232282117087725380982039114480646837558060120929161289*x^33+1450456938610534167961290019099732791803864392538616833508062*x^32-1048321674806387311072283075853542233195519940159618951230017*x^31-24040633315515765606779081320106649460249199577088671329553405*x^30+17169207274331640941060497011564339985546716561970459829386348*x^29+268904241290328216669137634398967418846037625774507855758617673*x^28-188797958484583253180554334072527724031139211308416399993450656*x^27-2146967438785189333346989586221540008815993703416625139417578319*x^26+1474581833726893471760728964214469874361901371692023286869424095*x^25+12619518619768390275683650773237607951630744164266849598714137950*x^24-8440673957683183289530484987837445495998853546829126816129479942*x^23-55502275771466516271726460243224036390500797910941425388979208174*x^22+36023767940406670360526471080596022661001296993090000406454439840*x^21+183760390163151395899856321999312341305208859098117789556267350480*x^20-115520534881976229135982745135756029921015439046282326878379582208*x^19-456831554392129029785846906933744293729754672783531216030284153976*x^18+278429802110965413531192384019289725581478447090606630765844767420*x^17+843172802470227552215057960442514849191204516051109949998974864390*x^16-501033030038173809655282560096121977430600016374453402383028775258*x^15-1130243997654234734348928372632990174313361636256648422196637756604*x^14+663339950447698266797978269099500011909760835944689675573916144246*x^13+1059571747276187503268166359765840134018678795525404767392652811554*x^12-629384342509132709044739898506540015824416022506838038680217270110*x^11-650470486698320589913172404875782619952998912233284209671266098962*x^10+408347508893210015060614053970252651817152380006428929908826741793*x^9+229415146860069383970969983513611788111718046712731594984921111285*x^8-165430802846917223426218602803072033760536568436678274882149786372*x^7-31595309252918167184337718765565630848232635056931901317014181903*x^6+34031141199134094056962422380429490371834832724364017296000167043*x^5-2228478011002126570736370584104549693562687484252593011418304380*x^4-1734200265427375322452718051867068549816802693405629590658887893*x^3+192354893243759371167306217470721378434702570129304546825670104*x^2+25555016346509924694394299565402796133548686930187156019361625*x-2673714702959392321498172092552875782213300985454205414071105,70382168570064144260123304196445673588863173574768346131083*x^3-281528674280256577040493216785782694355452694299073384524332*x,-1499498046706632980888761042418505639890900874035537848856*x^36+1033062964941394485314101546535333754424778630958327343996*x^35+90257228383924464230346114730051292200009114015842751334857*x^34-61904592917690450672128028884994431880178194400127762235181*x^33-2478110024853184918872986594272583431855576959041283357893327*x^32+1682986833850678961667126992266482144343318085502771814830890*x^31+41120694790436711733492517713233170803103529614130717769715668*x^30-27498902647960014745922023912369824464339859460042532902647749*x^29-460591614961014584075662851368645561339077392548481788203393980*x^28+301586976024240625181604073959040718702578560689494065914407619*x^27+3683627801350730461170039521999063896129129942337156768116265801*x^26-2348670147477914089494076406587584926226957064657634393713249059*x^25-21696106382916197398348032955321473045098168774238292551380010767*x^24+13402704241815954589890733806367938896384163851773003216198763741*x^23+95660399319223656985855691652430559650524718845111349751563521713*x^22-57024318327690934410823743148448307344297019828188286459111967879*x^21-317686415393986863812448747367981284206410789601861271326124268123*x^20+182347231795245220355077400738713621609053559706126055712655851449*x^19+792759741291015756971134940863473932185997664994393571007406178981*x^18-438563135815450685655874106676514797191483482689703775493791774015*x^17-1470159762746025737472327522940428571314007453992185617867489862859*x^16+788602642093766826313618596092562483802513830209018346845109266925*x^15+1982897671357581420586878626367691184256309902323712670640452273193*x^14-1045673849841925914420944429554488142752831287156847061997427828258*x^13-1874782355061468052228273049912397167959376233315652715383554599204*x^12+996954329002435213634435138641340321109400374242455279831930139411*x^11+1166068903823240451913099857483635492706030509207315043227777917877*x^10-652551944836579937650040110028550151580108270991012026693561501186*x^9-421707422308253756861028631351905383408604670285905530870134693200*x^8+267622147302755659602825602045693013131320253010241999979460880596*x^7+63252298391121211049620533572892391353144730077346313901328023165*x^6-55718035118503380661645037647673897076369731810526998359953769781*x^5+2467949745638602435299884144894815729898067770090899696191015300*x^4+2795421438512172489904628344258239421091539449294817879708235893*x^3-261141969848335489965487115167897555900426501227885437548261390*x^2-39300316604297970092184483865409282102675321623632526669247222*x+3941648485740614809826394312522540429020439403946801556530025,194012377782478103756403057634962376450456226715026389913*x^36-97627467119553436097451798752095711235409314853384429940*x^35-11724631558316745063086912784633756974932105714634706362401*x^34+5877050439045405361457428153081085053002694460801755016575*x^33+323321476044781487570511502859807573041242323134518761917437*x^32-160385630252512562632356964317472364628135193028005998291153*x^31-5390577393435912402413791892957704888826847778316277475660169*x^30+2628913865411769053401982704425603996044857655480731802373303*x^29+60689528750228132244407121539586255723831920416534234382792005*x^28-28912315175019650266561739841656064586382711089360803767609171*x^27-488037870481426432064601337882349251900474877175480541093993905*x^26+225783451788803490104089927911591264109647690125561868623125818*x^25+2891282041289588870007389225052190008520278685028420068997855889*x^24-1292676231962174548489995895622217443162327697785132372435678389*x^23-12826786058760211733046234306594687915890736001119628212934162867*x^22+5525413006391361424968154094287528935663671446611351462458706477*x^21+42875610210318578858674971063731855523893782209795868858009150533*x^20-17795126427452339466023816200155323914951549641945721419952662691*x^19-107733263725843190213977190228771637382448962439783156445371551043*x^18+43283200279882674927864123014452966967196635829232834613596586345*x^17+201280171757177199723348074572543737901576909740404095381250275470*x^16-79192401509883234352137539004497470830994839998696900344657856227*x^15-273740874831942799162504806107797279635068242551541610084512385745*x^14+107717923880206852055415332379520396564771300161789311468387033293*x^13+261391333483390022256498209445962246801057260042276621322699736009*x^12-106330549962729608862998521623879679069170182761534089291087568987*x^11-164761913779054210987751045647960018107687731466825803693931270411*x^10+72640886160056912048412889648300553547098975339217763195987444514*x^9+60940661748929381313706389815314793514699151758826329321303296240*x^8-31176432226490239880461175869161826805033513877528838542152008436*x^7-9749139497608883097572269478192539999204541203826237209949336766*x^6+6720654437343812913509155549492900089157980201662747066511393218*x^5-170109353870266603945852853281582834406501360122610966133572526*x^4-316319511240813953480171925211913568148655597502678994046449852*x^3+24407698592359610563531725191117039763427901807442076551644620*x^2+4121809350150380507870245629206600315953044404804979173655034*x-349931137339741335697391847430146957306412062891303094961703,1372153302604900093327543449476595324248828412446292139557*x^36-1025701511711477135854693291852240692600530752627586355334*x^35-82594521466672531510605280942356455362467378275983676690755*x^34+61367851067313768742886617601945996977913553954889671243036*x^33+2267579825051583920380684402620568546490593338232827422728683*x^32-1666173907168144294624446524496888389169937990086548479001638*x^31-37620847274331008235033004843779423729641278520305274989583737*x^30+27192645163431482779586852560839618328704351734206563268216208*x^29+421265112812469809394153928003153175298269902621479848654777636*x^28-297911513877259406490157450481503014304154172539080740107621605*x^27-3367610647275602523090134727405571448984369823638810289740563556*x^26+2317555569583900064641589062222129031857284309280669415892382884*x^25+19822471293381493030705940287795079757064667930045405762426371666*x^24-13208711085532046513310809652325795953852796542456424170375714960*x^23-87326532522653046949475049102386898362799138980484572566738335404*x^22+56106911748144817914458318535690022219871907732922232623878761894*x^21+289694413711438059988196736833143879150119919161717574563049616634*x^20-178992129303647989948848618405322015999470871909603056466230961276*x^19-721899221634324597128439976832479627751753188143771605677711958688*x^18+428991315295890076707286385367272785777696662404849086265431979150*x^17+1336381465982059817717639692824325862915296613335508558549968411906*x^16-767404967776190590241126334268490455413155249215530505927121331014*x^15-1798462308973363994609167131858166001259362212767642889297955607370*x^14+1010020996321836103138849711942120407356132312059764447123260815406*x^13+1695742012885121702574132029240938264881603656947505178009850666624*x^12-953290923731367477219244365181713042997898290419473367676864654271*x^11-1051266097090718492487832197765843426540312886569011470688869552252*x^10+616234573384520959850080941444874152864386355720281368232522615311*x^9+378889849011611418323740456013970420309889398789066068805108981108*x^8-249445142574631847669677524966378978038491942920557213340393579539*x^7-56801493038161707787563482893614843560278692392604261709995215750*x^6+51534371465911045523051477541856722264478348851427773617432878555*x^5-2108762498447296053949155612388166238224154347282574801876556686*x^4-2704323412528691699235474989309574945074311373984164065705023552*x^3+248586348543723667970253692319084933260712262429242738406709981*x^2+40278903766892956664690224811289707845334738122660497201006142*x-4006468736836601358598682793102258892725823473317195887177440,-894120631725463052133813533148894703329977899277067574687*x^36+670115613121941225864742850911936489448165448736282161335*x^35+53863342495194272002503543870766741519376763070119260532953*x^34-40135653554148096548902213689462683009490943762618752055995*x^33-1480052885269163580748075825143946248552047076903911303352286*x^32+1091007330502010070857687093066055424809393612492153696213163*x^31+24577538218617478752040972965701716139789375031191090358876063*x^30-17829635041008555436943286328480046305049392529494216030161354*x^29-275473863168392081878011809401067469857662663749332781223380525*x^28+195630765841180144587853989187063253240683640714779556272282651*x^27+2204335362991580026276258206507686112280205628125801426205608062*x^26-1524489744411423657998053436879682964463019236766344064794437138*x^25-12988355174428833115773741588864002133820512670619150718006850985*x^24+8705546245606373200133625300344476967843457949191290439785372167*x^23+57277498423206012251824298310165319381523436694153145313145203873*x^22-37059637552965109162006570984367307277274076282384088200995080982*x^21-190198750098443817644820929705095996292320733504748426308759034027*x^20+118518380181011429160415346256958223698663511595828496139206047117*x^19+474398193148693907368117093121142175381752076751436137018974181573*x^18-284832761614908768052089400001708689911858865618947369170776680187*x^17-878888910950163937560384474422621755546318880375088576762411512639*x^16+511060057819231050084637943327179844949462397095898254767647246889*x^15+1183377784057309423704852905589889466000552758040837679402278761425*x^14-674792982951714953333590005244965110618702344804196913561182830987*x^13-1115737468658585818290636962945958238311536418020116256631679853671*x^12+638964459391327277874454288898665576889579572685376863835617466938*x^11+690801942773405598584663448998750417699122058211781875608115130676*x^10-414285711092603365710850762204727477820136183954305825980290917756*x^9-247767387099276189095253170155962444225752101414112058460341758675*x^8+168079209431638437886451632252205779583938031784196538350020914541*x^7+36320386460085891248218904337115557005146107935581362629557691876*x^6-34742169568969839184275519481791585012404038381601322021255769876*x^5+1661824461325595463559049226713828926580803572716866736801444697*x^4+1807306945629446492237173610718799087972622685709231660877804570*x^3-164052050761351060228065847979519321002433458838589021302669508*x^2-28084224822563930559305919555020853710435647131042167399646491*x+2365583782279857542243532241640794260720300400862173052358293,1847846034733638046794108821628180286101521255983335130236*x^36-1340856453933204529292318045166254612804210665707043151149*x^35-111235144429750955097117981826666794472051219556480878011333*x^34+80264363556831541405289121653521187934854458203451027443896*x^33+3054240049619338220404840844752200060862684038605073785216595*x^32-2180095409310557070253442758788819248921527812862491400050846*x^31-50680887538943514628787721013410880269311577361270732963833569*x^30+35590883341055885125230341717515138389045318252209682072454048*x^29+567642159924882073374404932750730656475758126862309618699698894*x^28-390009436688467644013616332687670805150764566714519317137249697*x^27-4539166241178245267015213212915192878180990512145682093171228786*x^26+3034603624648742810803672849482673399482335380594841295374744795*x^25+26728907705015651069057372375990843414484884888220070494095244637*x^24-17299101010660655052233392071080329473789456364998318539332439561*x^23-117807841950898988285461790557981507862603933100150358337180399869*x^22+73504729380374252599339765213100083556775424714421169356353991739*x^21+391026666752800986344798411100346717878837803786991892834216101207*x^20-234622907287804060593803316211761954444047055486859901039515984897*x^19-975005695101051480266085619585393038475830640291606876893410444965*x^18+562870950001024287306988282306911063744591785292762105141984625550*x^17+1806056922814035245681192525827227216374336353119985031082314539175*x^16-1008582748377335523114041517865987631587794237758790666792629099943*x^15-2431824228942905734098034382126740112755260583355906788274254117445*x^14+1331021570788930818169648716910588468974449221182889216848779976715*x^13+2293344899285242473523222836129355030356379012714551217087891271243*x^12-1261244116346417032049049970975876076076090181701212603470255201901*x^11-1420555732978045785035109378740793926626275461918437006043523659722*x^10+819466453341072181531442348441973591444137870419727459183398704170*x^9+509886213826354579739480256553806781148339246710264237087484805886*x^8-333343514209770880926371185773650580008056594490952947751911507952*x^7-74851539446241237031410430283312321733944562891876861030354243691*x^6+68822688153361298229720445499805909420897570320600169074307714940*x^5-3401714870676819837987310478213306783470134976819788491750872309*x^4-3425340582322344141424417714647611455504272838745766966372951917*x^3+326339503571586963786040467207828351369858862736569053696914434*x^2+50473560067025338862389523302226595761835989590623417756102033*x-4781540522378093260717325414282497578720468208387267029134856,238136769886968771098341931294142480820089259764608054996*x^36-126879415028115800330350775913192175184675762279481208897*x^35-14270340254779511482872824108341044863542476444074426074071*x^34+7701429726412179615548420966824169094970448848873867820966*x^33+390037869699659960672770705100411762387509000654774401520799*x^32-211868807723956801090699519865197661785364990968559447154037*x^31-6442396593183276864553906620036753232899386882107381173960788*x^30+3500529542694046732571084909889178898213596177000184498474441*x^29+71825581598332469924424283016155254380019214162436102159781704*x^28-38807989885031717304935165161806341946291869493837312404587559*x^27-571746617809892025406011033096395380131658850787822094349613953*x^26+305543203905494133836937291549906446657698109837513841606601950*x^25+3351838975759355744992837556631121275422708271517611805637713618*x^24-1763868137614809387820688355843395082367556852268611734237694326*x^23-14711074173110720417433026142614539099323626352985238391586495352*x^22+7601573431184366842700128047457590639116604489666928152272288760*x^21+48640416715783754190308915717495903313023021172503289155065489288*x^20-24668918300550748529261563241696853880926374571933910847638558768*x^19-120878523344148974209188630433575515095029891417364906971800969980*x^18+60368460924526925180326293918823799546761584394816109283237580014*x^17+223332628861528171638172903217020669717056666523771934786173012270*x^16-110784107758806824209196815091422577424703659740689114011140165876*x^15-300238385763685557787323907934263345917524863293789698630389676610*x^14+150364084100803742750843642401362410982561524498155716182255546154*x^13+283024227181867270911337210598215110507667622423087057001048293938*x^12-147033547190342281757930164941085296856371398988986853505738979218*x^11-175390802921900969785631507905906091783966873025070153908103519687*x^10+98691292963460669179728958023971041622882272396766045702199933293*x^9+62873999248415707495223963739228888774001983052860354149025929804*x^8-41370932629071011483825787486807355712097129404054435845474017319*x^7-9016638898740277336001874116051864672842766752692591156201399997*x^6+8743443768756707575709837677822299995975354939354933643223850604*x^5-537178286084754377142105296474287792518337237447354918187256637*x^4-434511385455446445977416787375080031564497185896700397733032408*x^3+46203740223202483511145114418388470669161778436279357903656041*x^2+6425052366779656098605471904447411442902081965944423441441239*x-660273849586822433423310140278984994304923431877511863029256,-1937857850543727054487318936010340161569213157598353361089*x^36+1294916247530845596944872706805928769741461108026233163937*x^35+116774363919540496125379616001880857893997606158594193434807*x^34-77759894129126281878574380958398448125672303388106241811026*x^33-3209872534122255590245558370361428134235503041207043712979757*x^32+2118716936728323778249067011923104634221625643905490044595901*x^31+53325085159065035984934451250364489932766425260639377868668635*x^30-34699018745921726151759267553181033230640885141139832066035394*x^29-597970216178902593761497142070845271025523850656537715984071263*x^28+381489127473210016548761711595670707233044440907896036868052102*x^27+4787423835843721614958590823844750961542206630480133065654707483*x^26-2978680307411337241658174258666037858617786868509083572462657480*x^25-28223895664936707684668152219015206604049104013825231066816598640*x^24+17044903790186242953502028773096826347863380419470886954339363414*x^23+124535281222048386949294282263332983412501060914633641796125440258*x^22-72732546372692586422048726554099811955067356628786344858818521647*x^21-413772349154951389169053823563588487793854310758743180726585828658*x^20+233287110397565775657014978949075650494336714762686492458418154540*x^19+1032607586362909261127155565526208909527383250526548710870250187922*x^18-562833273883908290378937652795779939547581014931408838699055313818*x^17-1914044852407123772049130022765568496162429367692344394044104926305*x^16+1015202568264075947595807718010520924654618918556696081251027767970*x^15+2578402546424544638112319091661830621485929518869654497743783828634*x^14-1350083123306928296657218027905402856231972271315022644472531701546*x^13-2432075762127195641877805472180757124189318925553249510277676999254*x^12+1290440998320937620084759564481546648681732408990190596920758818421*x^11+1506306296386812053671059575760808278021891753204804127842047959731*x^10-846252619353350244602825416091681426715265158542952026996276442644*x^9-540219981160725233407805487224621061328444850756315997972713037866*x^8+347442945231590787135550558644044111191164147588993021113711041885*x^7+78928661525079087476754177298666858443715833130480443547312101835*x^6-72378953135005096995336691772608628331977548433627183703455050541*x^5+3797727773093169978676785656998556686171055422091018664603053081*x^4+3653435396760049063159046352889589846451021468776996867942899277*x^3-381172715757620806870444035458437925056524826806162559676484212*x^2-53605773065177644183549591070349777442056798387442327069871701*x+5903864643995534638696168573773588826786305008056245719219182,70382168570064144260123304196445673588863173574768346131083*x^4-422293011420384865560739825178674041533179041448610076786498*x^2+281528674280256577040493216785782694355452694299073384524332,927492735858054143070382812483744431008868548608482637865*x^36-632526116658532478071323361739001281582684972585870676206*x^35-55938212952036005835684686535892797879500501190786318294678*x^34+37838046686182702364793463704136493758431596537020192413949*x^33+1539128740811341934337996116390094676546349572665669070471428*x^32-1026840916596459599965522409679778523901635489343065416659143*x^31-25598319162421249758183855973909018016665003283127891663061930*x^30+16745352390305963405575470702010465417274780582141386792622955*x^29+287431307952373260813618542466217232697705535205621605904682872*x^28-183257741662841812955066182226688708061413040307384839794184309*x^27-2304784269854886766633856673382845235894791889228466490360070940*x^26+1423736854369308726526394561554844297777308043580773709754930497*x^25+13612494124303488398070332777883538796712804550242010091350433990*x^24-8102509595242819547193630714625544507377628456756182142175462300*x^23-60192798340025657272074967694715612508077353650960250588164744962*x^22+34367721813808818259020899258340886852267275498292747076315703962*x^21+200495901159658727990568115959279367478105593097769863623808803474*x^20-109521894283846620840700076891604474992573840931407699461800926066*x^19-501827283078243042071701589688173036104653099209901687497558209386*x^18+262444625811945312273193344427250140050754855787204108197317269986*x^17+933372390238514727268116348564324887813166507027570595838339316554*x^16-470191099241966565842831610078734766772141424028250301491415466334*x^15-1262367828953123817197295848459265720781782282584098837087116761115*x^14+621488061918927403732585385678954076170250145131970900745004928818*x^13+1196415128935568841389603808714318556086192967211809666579150513930*x^12-591281597257746949688576801091614696774192567585461760734545065952*x^11-745583305590840588535913111422046310353446804957203244878343306432*x^10+386685726270710060610638526584705852777911117843732505763763631464*x^9+270106784085622547995481468110015253440732315765716286234144132679*x^8-158354834892963188564312265811044876164944985381991134829232490626*x^7-40755199515736138726859902515912407261369354559240738515336904279*x^6+32568849276399133120454035553368461598144379254740288557896915896*x^5-1409281900171896450462264987141743300021243019397918590379584909*x^4-1434539032497064622690975482998674341085251019590651039978821974*x^3+119984769712675084152039456817286556758160164334761347136692627*x^2+18044518472711435496386800184095532181273966484123277707540746*x-1268068165517241707921867333460969831415866668112905874366167]];
E[599,3] = [x^11+3*x^10-9*x^9-30*x^8+24*x^7+97*x^6-24*x^5-130*x^4+4*x^3+69*x^2+5*x-9, [1,x,-x^10-5*x^9+2*x^8+42*x^7+36*x^6-94*x^5-117*x^4+61*x^3+99*x^2+2*x-13,x^2-2,2*x^10+9*x^9-6*x^8-75*x^7-55*x^6+165*x^5+195*x^4-104*x^3-173*x^2-5*x+26,-2*x^10-7*x^9+12*x^8+60*x^7+3*x^6-141*x^5-69*x^4+103*x^3+71*x^2-8*x-9,x^10+4*x^9-5*x^8-34*x^7-9*x^6+78*x^5+47*x^4-53*x^3-39*x^2+x+2,x^3-4*x,-x^10-5*x^9+2*x^8+41*x^7+34*x^6-87*x^5-104*x^4+52*x^3+86*x^2+3*x-14,3*x^10+12*x^9-15*x^8-103*x^7-29*x^6+243*x^5+156*x^4-181*x^3-143*x^2+16*x+18,-x^10-4*x^9+3*x^8+31*x^7+27*x^6-56*x^5-94*x^4+17*x^3+83*x^2+14*x-14,x^10+4*x^9-4*x^8-33*x^7-19*x^6+71*x^5+77*x^4-43*x^3-68*x^2-3*x+8,-x^10-3*x^9+7*x^8+25*x^7-8*x^6-55*x^5-8*x^4+35*x^3+13*x^2-2*x-3,x^10+4*x^9-4*x^8-33*x^7-19*x^6+71*x^5+77*x^4-43*x^3-68*x^2-3*x+9,3*x^10+13*x^9-11*x^8-109*x^7-64*x^6+244*x^5+243*x^4-163*x^3-217*x^2+2*x+31,x^4-6*x^2+4,4*x^10+17*x^9-16*x^8-142*x^7-71*x^6+315*x^5+276*x^4-207*x^3-237*x^2+2*x+29]];

E[600,1] = [x, [1,0,1,0,0,0,-5,0,1,0,-6,0,-3,0,0,0,-2]];
E[600,2] = [x, [1,0,1,0,0,0,3,0,1,0,2,0,-3,0,0,0,6]];
E[600,3] = [x, [1,0,1,0,0,0,-2,0,1,0,2,0,2,0,0,0,6]];
E[600,4] = [x, [1,0,1,0,0,0,0,0,1,0,4,0,2,0,0,0,-2]];
E[600,5] = [x, [1,0,-1,0,0,0,-3,0,1,0,2,0,3,0,0,0,-6]];
E[600,6] = [x, [1,0,-1,0,0,0,5,0,1,0,-6,0,3,0,0,0,2]];
E[600,7] = [x, [1,0,-1,0,0,0,2,0,1,0,2,0,-2,0,0,0,-6]];
E[600,8] = [x, [1,0,-1,0,0,0,-4,0,1,0,0,0,6,0,0,0,2]];
E[600,9] = [x, [1,0,-1,0,0,0,0,0,1,0,-4,0,-6,0,0,0,6]];

E[601,1] = [x^20+5*x^19-13*x^18-96*x^17+29*x^16+740*x^15+323*x^14-2975*x^13-2351*x^12+6757*x^11+6719*x^10-8773*x^9-9894*x^8+6329*x^7+7721*x^6-2423*x^5-3056*x^4+471*x^3+559*x^2-35*x-37, [472079,472079*x,-589831*x^19-2048312*x^18+11118655*x^17+41006196*x^16-84779709*x^15-333226028*x^14+344803793*x^13+1430023033*x^12-831326085*x^11-3519584245*x^10+1247658841*x^9+5046209439*x^8-1176517307*x^7-4102763528*x^6+672161068*x^5+1757514711*x^4-202944079*x^3-340546543*x^2+21820661*x+22621233,472079*x^2-944158,-503955*x^19-2333339*x^18+7109908*x^17+44384522*x^16-26522179*x^15-336896468*x^14-58156533*x^13+1319134628*x^12+691141889*x^11-2857334946*x^10-2024330170*x^9+3387067053*x^8+2750958716*x^7-2017570549*x^6-1769673538*x^5+489651191*x^4+471610853*x^3-25057772*x^2-41834655*x-2529032,900843*x^19+3450852*x^18-15617580*x^17-67674610*x^16+103248912*x^15+535319206*x^14-324724192*x^13-2218018766*x^12+465903822*x^11+5210733330*x^10-128377924*x^9-7012305221*x^8-369723129*x^7+5226246219*x^6+328354198*x^5-2005467615*x^4-62736142*x^3+351536190*x^2+1977148*x-21823747,2180086*x^19+8342599*x^18-37930211*x^17-163953496*x^16+252431215*x^15+1301063073*x^14-805188802*x^13-5417227895*x^12+1202081567*x^11+12823393159*x^10-466831049*x^9-17460808774*x^8-726028755*x^7+13243104274*x^6+726232951*x^5-5196850678*x^4-162893175*x^3+924859387*x^2+11271338*x-57769984,472079*x^3-1888316*x,-1160611*x^19-4009303*x^18+22068061*x^17+80856526*x^16-169864713*x^15-663321537*x^14+695834256*x^13+2881699055*x^12-1674054972*x^11-7208097675*x^10+2450541004*x^9+10565201618*x^8-2158405121*x^7-8862352693*x^6+1074134514*x^5+3978341103*x^4-253205859*x^3-833714767*x^2+16639233*x+62388377,186436*x^19+558493*x^18-3995158*x^17-11907484*x^16+36030232*x^15+104620932*x^14-180131497*x^13-493656316*x^12+547888989*x^11+1361743475*x^10-1034130162*x^9-2235172054*x^8+1171960646*x^7+2121363017*x^6-731431774*x^5-1068475627*x^4+212305033*x^3+239876190*x^2-20167457*x-18646335,-560533*x^19-1822834*x^18+10986483*x^17+36555234*x^16-89079246*x^15-297252271*x^14+397798914*x^13+1273232693*x^12-1095393381*x^11-3111492191*x^10+1946235518*x^9+4384103743*x^8-2206519921*x^7-3432602808*x^6+1482495149*x^5+1360842984*x^4-493060528*x^3-227699660*x^2+50450685*x+12915562,126299*x^19+190003*x^18-3430992*x^17-4887927*x^16+38254804*x^15+50755575*x^14-227618427*x^13-276260351*x^12+786389349*x^11+858026449*x^10-1604527264*x^9-1549201365*x^8+1877845486*x^7+1578472451*x^6-1167047162*x^5-824789356*x^4+333127295*x^3+179498997*x^2-33935564*x-11911275,285979*x^19+601426*x^18-7174028*x^17-14193563*x^16+75291272*x^15+137855235*x^14-429727621*x^13-714495853*x^12+1449705732*x^11+2143444028*x^10-2937296724*x^9-3774168817*x^8+3469306496*x^7+3767953728*x^6-2208276064*x^5-1936268331*x^4+648700081*x^3+421848282*x^2-62675571*x-30831501,-2557831*x^19-9589093*x^18+45334760*x^17+189208721*x^16-312200567*x^15-1509356580*x^14+1068527955*x^13+6327463753*x^12-1907447943*x^11-15114828883*x^10+1665085704*x^9+20843742129*x^8-554660020*x^7-16106211055*x^6+85497700*x^5+6499449641*x^4-101961119*x^3-1207396736*x^2+18533026*x+80663182,68789*x^19-330711*x^18-3743108*x^17+3858776*x^16+56378264*x^15-3093736*x^14-392419012*x^13-137408846*x^12+1471115905*x^11+801622771*x^10-3104158734*x^9-1994332031*x^8+3614511237*x^7+2503036936*x^6-2137060380*x^5-1534411352*x^4+538127512*x^3+393378616*x^2-43708501*x-33556619,472079*x^4-2832474*x^2+1888316,395540*x^19+1392758*x^18-7365269*x^17-27743442*x^16+54986561*x^15+223589595*x^14-215572517*x^13-946447110*x^12+487710199*x^11+2277367462*x^10-657549755*x^9-3148008313*x^8+524787568*x^7+2419709858*x^6-245721216*x^5-962139428*x^4+68965557*x^3+177835389*x^2-9854528*x-12863137]];
E[601,2] = [x^29-4*x^28-38*x^27+165*x^26+615*x^25-2989*x^24-5473*x^23+31324*x^22+28379*x^21-210530*x^20-78230*x^19+950533*x^18+33512*x^17-2935046*x^16+540663*x^15+6190754*x^14-2013983*x^13-8764243*x^12+3559142*x^11+8044078*x^10-3474993*x^9-4530666*x^8+1808832*x^7+1438384*x^6-432489*x^5-218311*x^4+30672*x^3+10714*x^2-498*x-147, [2090894667016004616060648629232,2090894667016004616060648629232*x,34207155161582571603053552206*x^28-133945985618318722794191639454*x^27-1298475938123790617968000976046*x^26+5509313291478905331172732282612*x^25+20965598951262763210220054607950*x^24-99438827569672689968683311639180*x^23-185609414251689328179304731034618*x^22+1037258162777119246800502519791530*x^21+950149182568790747068306164313104*x^20-6929539871745625534287282853940116*x^19-2507654763907951793838662203084088*x^18+31037753103115999932210524955742422*x^17+229585412138014680540350426214778*x^16-94802496888499913361487471304459054*x^15+21881176059191243341725995126329656*x^14+196921599919678597768279172992738396*x^13-77358324741377491872198179806691734*x^12-272543535887725376471123966388423436*x^11+135768600660656584000820602979079760*x^10+241455611693038803002366922030119812*x^9-133603294297828238397055258314440786*x^8-128202305806325404867536793285094290*x^7+70978908539291221234500204765056106*x^6+36604735604836862483627794988353046*x^5-17674017048552610058979809547133708*x^4-4443694609466182090969762948468854*x^3+1394971988330830948316421380020814*x^2+98757722440899431340443592568470*x-23060843377045347689587992415314,2090894667016004616060648629232*x^2-4181789334032009232121297258464,25288974403012321427943076001*x^28-96547122709791282647465421587*x^27-970875362105883112669297328625*x^26+3979275703291033428601973383056*x^25+15955999133520842402661241891231*x^24-72016762333308697901096345656886*x^23-145597869914365720525828942707019*x^22+753902376323073041243069854325289*x^21+791501806380469579133170937075112*x^20-5060801811848745583834373810885254*x^19-2461369697841391118676220555792080*x^18+22817383147854507256638248569919625*x^17+2952821559725028772017031228510165*x^16-70339838661495575260803924655447949*x^15+7466830939504105033065281256547346*x^14+148054376166588583185727196433560688*x^13-38630148799430675601536672198604771*x^12-208940497172656720323859518951727854*x^11+74012576241841859249898261565812192*x^10+190629059896350114709951398482986614*x^9-74850613107166249091441770906301555*x^8-105881441474993016303631620998571253*x^7+39536718838060825091929607183737027*x^6+32388869182272736120653242739547311*x^5-9355581972220301005966742099104978*x^4-4400255203989687504287480394531865*x^3+600705128303022377915658202251095*x^2+132571157844123699078537632162289*x-8475274630865139722542440488997,2882635028011563618022569370*x^28+1395958016347102948034007782*x^27-134867310182218983331103831378*x^26-71801473110518325657879998740*x^25+2806359208297616552843755904554*x^24+1606345947652086204207360188820*x^23-34246765504293226093546949509214*x^22-20615673761761052454750593740970*x^21+272092504422353265303581491989064*x^20+168370984382652782668217185991292*x^19-1477276714088566601354777183283376*x^18-916764771636940459021180215312694*x^17+5597077039882367091768444883552422*x^16+3386632928064525431104252429977078*x^15-14846482725509353713611017540764928*x^14-8465695767587939567365577574195236*x^13+27256284287088545622936907158146622*x^12+14020478024551266940385377073512508*x^11-33709412584834006413180890092016256*x^10-14733669561414933154445385773456228*x^9+26778889040981258486983431873854906*x^8+9103911654055495076605641821172714*x^7-12598289065100923189058785647922058*x^6-2879798719874925248946781807112974*x^5+3024103641014070698264461087175212*x^4+345770125214770312107562826758382*x^3-267737737960296240814672165766614*x^2-6025680106577227031267323416726*x+5028451808752638025648872174282,27172258706167757683643044987*x^28-124361943934668363052845509265*x^27-993331891279891818024076410729*x^26+5121595882580272088203865566030*x^25+15113323349405662928440044397745*x^24-92573046015488089190749925078772*x^23-120182341474954152072783688147699*x^22+967125832522341067058800526377217*x^21+476919397921003589264726516001756*x^20-6470892878154133572234630602390458*x^19-183903759425579463798716885074868*x^18+29021184161259793528713950734200687*x^17-7681912745135534772821594776564157*x^16-88703986450317912852065186529658049*x^15+40642109495608705127250360852603168*x^14+184142865385347333099475728299131168*x^13-108130849993398430331943360714901555*x^12-254067795971463997752370902653586406*x^11+170168233994889076591043243765669320*x^10+223315551274275299021882899471679386*x^9-159323730115782003501663022505485817*x^8-116516292454123596209371533189590083*x^7+83571889591395731661384007402172139*x^6+32033818035711752316863080348952099*x^5-21530019872862479829949890203703850*x^4-3567495187726417384427024442918039*x^3+2012825140047223488388305113750333*x^2+69701245408785007256624662096101*x-43821806731307194929645898463829,2090894667016004616060648629232*x^3-8363578668064018464242594516928*x,35808971564882799858685196888*x^28-146908028968628807924007418232*x^27-1333110335809914920407024738472*x^26+6032883510094211340100836487664*x^25+20862427895049522699851900661096*x^24-108697514230042407720122558653456*x^23-174549409728303792018952140028984*x^22+1131641839974668617389181414687672*x^21+786722535811868007037103236488448*x^20-7544020815528741057689966108533232*x^19-1223034850343853155735814100717168*x^18+33710714011429150399959025055961800*x^17-6096661170913494542633413500450136*x^16-102691517740282282112325826380534136*x^15+42419898276221473568405013135323664*x^14+212608971719916845016942114557354224*x^13-121770342015326532294915936496478088*x^12-292904078403640215893736686907538144*x^11+198742275189583318133512403382503232*x^10+257515573860787749993290657175922912*x^9-189818150253945358282284074054020616*x^8-134715347764596490400252562834765512*x^7+100280809337565317444506226081118552*x^6+37252499632836478246641662249993000*x^5-25447812170801745198363348908217040*x^4-4189279723534423580934143375953320*x^3+2185249818421862966875460644240488*x^2+81077101242756084647959095775896*x-41216225833965956707522822989144,4608774902258003064306882417*x^28-9894334791414898407460440587*x^27-193405073205999607008634157109*x^26+403279875668264724476250150616*x^25+3571982157295130847025508510103*x^24-7191313006679285350696487753546*x^23-38249457876884915165819058330035*x^22+73826001797382909329574383242733*x^21+263285969217438446390481979605276*x^20-483013230293737213368233720233850*x^19-1220621558364003667228767290538908*x^18+2105337449531279856323802865564653*x^17+3884464504168126696994688788983097*x^16-6205981828151745707130706043381317*x^15-8503443274757557743597113091934066*x^14+12301415735671288544876407835117212*x^13+12698219716123196664740589288504389*x^12-15994474692844220461793913838538950*x^11-12797422741484433817494084428985464*x^10+13028395920480746784410422595641438*x^9+8694455027605205971021523374575413*x^8-6206787309288758301219522865303805*x^7-3986386975429738824157230691075073*x^6+1581621278364094876082930897491511*x^5+1120606086906335398968200470322446*x^4-174958294586171544922211824851577*x^3-138374913909750312700444484112425*x^2+4118634621834996348573211359501*x+3717479237242811249907632172147,6642969790248046615205450057*x^28-26854646799624337313373409921*x^27-263098035338992004119660489847*x^26+1126797536582281759922628973788*x^25+4531826047546090818002777930505*x^24-20821502450090931677547283340640*x^23-44567980124456065341247471157265*x^22+223301263998677943531787852742817*x^21+275896940374705423508274961106068*x^20-1541598315426346242487479790914874*x^19-1115423888430182843564246344229376*x^18+7180199910191434343083055796641933*x^17+2944803588049520444531145979550335*x^16-22986138944492402708980784045224463*x^15-4878746459754358814008440183652090*x^14+50555381505327304263334103030475602*x^13+4501534398578842573524272655556901*x^12-75090304564025014327435301519472110*x^11-1433763212426433354596407039286216*x^10+72658664318936045264634957959135918*x^9-597324176207619531638196495844743*x^8-43020800366388943696545223009028131*x^7-158479440861570466660937531635355*x^6+13953007009945706275504333188602035*x^5+812145024075712623667048474770414*x^4-1963571295633571354131541230112885*x^3-337058187792268657336263626595467*x^2+52165467748890151888964664557667*x+16382087098124178258055941224559,-55487812194771785785982819150*x^28+242564792118857879742137083590*x^27+2049515623515154913304398007302*x^26-9985087916887305734585588823220*x^25-31708655856146876561963289180150*x^24+180407551143359441525257195931156*x^23+260307495124183385132919905382386*x^22-1884230120591825392213286043745226*x^21-1125046228307654222966103613168816*x^20+12607311567644029089057694126411956*x^19+1358505035098047528126297259881272*x^18-56575032031408356292619777372659862*x^17+11388128512213723820846221716688542*x^16+173199976949340656988952988644860870*x^15-70073732216173125765345261244459528*x^14-360781337610648836983505490499829460*x^13+194001241373111401043090714129932886*x^12+501117951791749613970490959092150076*x^11-309459011893585303801422345504306608*x^10-446115197801201360026067309783620308*x^9+289370756761533010761728000727354706*x^8+238592120064561673903699800723590682*x^7-148983951900588752641092966757923266*x^6-68938659628029961131396165885268950*x^5+36323115157920222895081307062759868*x^4+8531235299392897261832865483454454*x^3-2826854208458355016267603891688534*x^2-191051440829096465973463073416398*x+46545434103208395231025302528018,19118977176674415224291091022*x^28-64082286929076484780943228394*x^27-762538245624863565077836931010*x^26+2640003431836232899253378093200*x^25+13252666463174450977064187149774*x^24-47723042313112880821551198733116*x^23-131873143655277750563724675482854*x^22+498456273877732457576129382545138*x^21+829624390044926394497714907490692*x^20-3332894044157600715468400452788908*x^19-3434396547143412026416975275846908*x^18+14929953198818246175741890674202382*x^17+9422166051000727213912503465369010*x^16-45554087488691147608351547446965386*x^15-16780735222711947850731393559470000*x^14+94359335299411749802910338434446668*x^13+18370567076001467032269705148719890*x^12-129916860786405794514862954433057260*x^11-11156646324279370753322224566237224*x^10+114157499839868328551606580930472276*x^9+3526451855039154884583920773524574*x^8-59962957610764987200238301098597438*x^7-1579216843468361591295438183082218*x^6+16997216705275416961383784451387474*x^5+1184959292464086125530135008128144*x^4-2114249635380113811193439873889330*x^3-349888904057941085058302162630074*x^2+45703970631151385268652131007494*x+14320763969180377528614972858462,-15672909109997332318273329317*x^28+39213939554482973954359298777*x^27+638173196062592070402763143175*x^26-1597615754887508047000428269260*x^25-11355164742752661474340863612629*x^24+28531430423901985729794697066152*x^23+115982000810342225376365785204429*x^22-294202131901331206039379457684317*x^21-750317252744635547097260341277348*x^20+1941782039157924219792678524258142*x^19+3193055576510036314407676253572616*x^18-8592509478896628668315840500168501*x^17-8952157223815060333719401912743647*x^16+25951074586755926754738861220796787*x^15+15926096111104462548431812973680970*x^14-53406382887574571208966890042848334*x^13-15923517811744170647806131127586565*x^12+73458306798901751173366569344548166*x^11+4739782805682775129558921438742400*x^10-64900321317659988725307226676975726*x^9+6592136209114653824148766869481259*x^8+34421838531400894194964591052246955*x^7-7050324131100651651166137271628909*x^6-9778316877290692477108793320321207*x^5+2364507782675771963246772351238918*x^4+1179397621011646024715605637909069*x^3-221422334369096348565926921894617*x^2-30290021895635651603191662060303*x+3994322029806660379495527613089,-67580266478769235202827094592*x^28+275940913734030073666097170284*x^27+2553213228365714343399192723100*x^26-11352295447323998621855695543336*x^25-40981011428667819238658999675452*x^24+204903398180907849488758474490284*x^23+359992874589286520744143187167476*x^22-2136585733462657666114245118145312*x^21-1822100806220563459938223614133496*x^20+14259201261279607680428882779160288*x^19+4701358456012110297746822443697600*x^18-63734100594609852732334947713708032*x^17+88369102723790298963669433946620*x^16+193924291501410982766723413950115372*x^15-42831071602308706133275969145492648*x^14-400126032701504816441324024567387876*x^13+147199869456068131679104925649042648*x^12+547490652060330865542720981544824416*x^11-253093484090988260903109683284013712*x^10-475676877677358180669762190982266064*x^9+243784389991924827186570225054244248*x^8+244160102128132350326422926332892380*x^7-126595247774800881737025173841363172*x^6-65617065785706209713355447621372248*x^5+31095092920922295200499491545132824*x^4+7060360118876516949895808504294416*x^3-2568813803912173589721110299673492*x^2-115553493724846891276072234146588*x+52089501543499636490643798936528,2090894667016004616060648629232*x^4-12545368002096027696363891775392*x^2+8363578668064018464242594516928,85148304062005156662725896412*x^28-376597937959937392115941528684*x^27-3123120955848449989753825968812*x^26+15478240620503815843420820010912*x^25+47756805678138317558524938098124*x^24-279099801605884391212240939765368*x^23-383237001271845134140133432198796*x^22+2907524266752452324074548614803860*x^21+1558387743231881511986870814545512*x^20-19388668165131602063416863948387856*x^19-974776741169695188020081337533112*x^18+86614033965015317765429035601617028*x^17-22355108221082343995775245131935524*x^16-263521536501222021092596037859040532*x^15+122005415724745085554249436601879056*x^14+544133762329748787352269285091911584*x^13-326460250394891396518863352568154724*x^12-746219129697687199448017542485800376*x^11+512178408143578622822627788246879360*x^10+651817387700781017836617199565184344*x^9-474374945187321005336587933551267156*x^8-338843538598725410119288263064639732*x^7+243475978696460907743470421291065780*x^6+94028265098285261529200534347901044*x^5-60164166289120426455981531815536872*x^4-11045253897127701282297802460610556*x^3+5082436722970613092750524513581548*x^2+262880297440518898351744397377452*x-92555790358137127202511800401356]];

E[602,1] = [x, [1,-1,-1,1,2,1,-1,-1,-2,-2,5,-1,2,1,-2,1,0]];
E[602,2] = [x, [1,-1,3,1,2,-3,-1,-1,6,-2,-3,3,2,1,6,1,0]];
E[602,3] = [x^3+3*x^2-x-2, [1,-1,x,1,-x^2-2*x+2,-x,-1,-1,x^2-3,x^2+2*x-2,2*x^2+4*x-4,x,-2*x-4,1,x^2+x-2,1,-2*x^2-7*x]];
E[602,4] = [x^4-5*x^3+2*x^2+17*x-17, [1,-1,x,1,-x^3+2*x^2+5*x-6,-x,1,-1,x^2-3,x^3-2*x^2-5*x+6,-x^3+3*x^2+5*x-10,x,2*x^3-6*x^2-8*x+20,-1,-3*x^3+7*x^2+11*x-17,1,-x^2+2*x+1]];
E[602,5] = [x, [1,-1,0,1,-4,0,-1,-1,-3,4,0,0,2,1,0,1,6]];
E[602,6] = [x^2+3*x+1, [1,1,x,1,-x-3,x,-1,1,-3*x-4,-x-3,-2*x-2,x,2*x,-1,1,1,x-2]];
E[602,7] = [x^3-x^2-6*x+4, [1,1,x,1,-x^2+x+4,x,1,1,x^2-3,-x^2+x+4,x^2-4,x,-x^2-x+6,1,-2*x+4,1,-2*x-2]];
E[602,8] = [x^3-2*x^2-5*x+8, [1,1,x,1,2,x,-1,1,x^2-3,2,-x^2+4,x,-2*x+2,-1,2*x,1,-2*x^2+10]];
E[602,9] = [x^3-8*x+1, [1,1,x,1,-x+1,x,1,1,x^2-3,-x+1,-x^2-x+5,x,2*x,1,-x^2+x,1,x^2-1]];

E[603,1] = [x, [1,-2,0,2,-2,0,-2,0,0,4,4,0,2,4,0,-4,-3]];
E[603,2] = [x, [1,2,0,2,0,0,0,0,0,0,6,0,4,0,0,-4,7]];
E[603,3] = [x^2-x-1, [1,x,0,x-1,-2*x-1,0,x,-2*x+1,0,-3*x-2,-1,0,-x,x+1,0,-3*x,-2*x-2]];
E[603,4] = [x^2-3*x+1, [1,x,0,3*x-3,3,0,-3*x+4,4*x-3,0,3*x,-2*x+3,0,3*x-8,-5*x+3,0,3*x+2,-2*x+6]];
E[603,5] = [x^6-12*x^4+37*x^2-12, [2,2*x,0,2*x^2-4,-2*x^3+12*x,0,2*x^2-8,2*x^3-8*x,0,-2*x^4+12*x^2,-2*x^3+10*x,0,2*x^4-14*x^2+16,2*x^3-8*x,0,2*x^4-12*x^2+8,x^5-10*x^3+23*x]];
E[603,6] = [x^5-8*x^3+13*x-2, [2,2*x,0,2*x^2-4,-x^4-x^3+7*x^2+5*x-6,0,-x^4+x^3+5*x^2-3*x+2,2*x^3-8*x,0,-x^4-x^3+5*x^2+7*x-2,2*x^3-10*x,0,-2*x^3+10*x+4,x^4-3*x^3-3*x^2+15*x-2,0,2*x^4-12*x^2+8,2*x^4-2*x^3-12*x^2+6*x+10]];
E[603,7] = [x^3+3*x^2-x-5, [1,x,0,x^2-2,x^2+x-3,0,-x^2-2*x+2,-3*x^2-3*x+5,0,-2*x^2-2*x+5,x^2-7,0,-x^2+1,x^2+x-5,0,4*x^2+2*x-11,-3*x^2-4*x+7]];
E[603,8] = [x^4-4*x^2+1, [1,x,0,x^2-2,-x^3+2*x,0,-x^2,x^3-4*x,0,-2*x^2+1,3*x^3-11*x,0,-x^2-3,-x^3,0,-2*x^2+3,x^3-x]];
E[603,9] = [x, [1,1,0,-1,-2,0,4,-3,0,-2,4,0,2,4,0,-1,0]];
E[603,10] = [x, [1,1,0,-1,1,0,-5,-3,0,1,4,0,-4,-5,0,-1,-6]];
E[603,11] = [x, [1,-1,0,-1,2,0,4,3,0,-2,-4,0,2,-4,0,-1,0]];
E[603,12] = [x, [1,-1,0,-1,3,0,-3,3,0,-3,0,0,4,3,0,-1,-2]];

E[604,1] = [x^3+3*x^2-6*x-17, [3,0,3*x,0,-3*x^2-3*x+15,0,2*x^2-2*x-19,0,3*x^2-9,0,2*x^2-2*x-25,0,x^2-x-11,0,6*x^2-3*x-51,0,-x^2+x+20]];
E[604,2] = [x^6-3*x^5-6*x^4+17*x^3+10*x^2-16*x-8, [4,0,4*x,0,-2*x^5+8*x^4+6*x^3-42*x^2+10*x+32,0,-2*x^5+6*x^4+8*x^3-30*x^2+4*x+24,0,4*x^2-12,0,-x^5+3*x^4+6*x^3-17*x^2-10*x+20,0,2*x^5-6*x^4-8*x^3+26*x^2-8,0,2*x^5-6*x^4-8*x^3+30*x^2-16,0,3*x^5-13*x^4-10*x^3+67*x^2-2*x-36]];
E[604,3] = [x^3+3*x^2-2*x-3, [1,0,0,0,x,0,-2*x-2,0,-3,0,x^2+3*x-3,0,-2*x^2-4*x+4,0,0,0,x^2+3*x-5]];

E[605,1] = [x, [1,1,-3,-1,1,-3,3,-3,6,1,0,3,-4,3,-3,-1,0]];
E[605,2] = [x^3+x^2-7*x-9, [1,x,x^2-x-5,x^2-2,-1,-2*x^2+2*x+9,2*x^2-x-10,-x^2+3*x+9,x^2-2*x-5,-x,0,2*x^2-3*x-8,x^2-7,-3*x^2+4*x+18,-x^2+x+5,2*x^2+2*x-5,2*x^2-2*x-12]];
E[605,3] = [x^3-x^2-7*x+9, [1,x,x^2+x-5,x^2-2,-1,2*x^2+2*x-9,-2*x^2-x+10,x^2+3*x-9,x^2+2*x-5,-x,0,2*x^2+3*x-8,-x^2+7,-3*x^2-4*x+18,-x^2-x+5,2*x^2-2*x-5,-2*x^2-2*x+12]];
E[605,4] = [x^4-x^3-3*x^2+x+1, [1,x,x^3-3*x-1,x^2-2,-1,x^3-2*x-1,-x^3+3*x^2+x-3,x^3-4*x,-2*x^3+x^2+7*x,-x,0,-x^3+x^2+4*x+1,2*x^3-2*x^2-7*x+2,2*x^3-2*x^2-2*x+1,-x^3+3*x+1,x^3-3*x^2-x+3,3*x^3-4*x^2-6*x+3]];
E[605,5] = [x^4+x^3-3*x^2-x+1, [1,x,-x^3+3*x-1,x^2-2,-1,x^3-2*x+1,-x^3-3*x^2+x+3,x^3-4*x,2*x^3+x^2-7*x,-x,0,x^3+x^2-4*x+1,2*x^3+2*x^2-7*x-2,-2*x^3-2*x^2+2*x+1,x^3-3*x+1,-x^3-3*x^2+x+3,3*x^3+4*x^2-6*x-3]];
E[605,6] = [x^6-9*x^4+15*x^2-3, [2,2*x,-x^4+8*x^2-5,2*x^2-4,2,-x^5+8*x^3-5*x,-2*x,2*x^3-8*x,-2*x^4+14*x^2-4,2*x,0,x^4-6*x^2+7,2*x^5-18*x^3+24*x,-2*x^2,-x^4+8*x^2-5,2*x^4-12*x^2+8,-2*x^5+16*x^3-14*x]];
E[605,7] = [x^2+2*x-1, [1,x,2*x+2,-2*x-1,-1,-2*x+2,2,x-2,5,-x,0,2*x-6,2*x+6,2*x,-2*x-2,3,2*x-2]];
E[605,8] = [x^4-3*x^3-3*x^2+11*x-1, [1,x,-x^3+5*x+1,x^2-2,1,-3*x^3+2*x^2+12*x-1,x^3-x^2-5*x+5,x^3-4*x,2*x^3-x^2-9*x,x,0,-5*x^3+3*x^2+22*x-5,-2*x^3+2*x^2+9*x-2,2*x^3-2*x^2-6*x+1,-x^3+5*x+1,3*x^3-3*x^2-11*x+5,-x^3+4*x+3]];
E[605,9] = [x^4+3*x^3-3*x^2-11*x-1, [1,x,x^3-5*x+1,x^2-2,1,-3*x^3-2*x^2+12*x+1,x^3+x^2-5*x-5,x^3-4*x,-2*x^3-x^2+9*x,x,0,5*x^3+3*x^2-22*x-5,-2*x^3-2*x^2+9*x+2,-2*x^3-2*x^2+6*x+1,x^3-5*x+1,-3*x^3-3*x^2+11*x+5,-x^3+4*x-3]];
E[605,10] = [x, [1,-1,-3,-1,1,3,-3,3,6,-1,0,3,4,3,-3,-1,0]];
E[605,11] = [x, [1,-1,0,-1,1,0,0,3,-3,-1,0,0,-2,0,0,-1,-6]];
E[605,12] = [x^2-12, [2,x,4,2,2,2*x,2*x,-x,2,x,0,4,0,12,4,-10,-4*x]];
E[605,13] = [x^2-3, [1,-x,-1,1,-1,x,x,x,-2,x,0,-1,-2*x,-3,1,-5,4*x]];

E[606,1] = [x, [1,1,1,1,-4,1,-5,1,1,-4,-2,1,-2,-5,-4,1,3]];
E[606,2] = [x, [1,1,1,1,1,1,-2,1,1,1,2,1,4,-2,1,1,-2]];
E[606,3] = [x^2-6, [1,1,1,1,x,1,3,1,1,x,-x-2,1,-x,3,x,1,-x-1]];
E[606,4] = [x, [1,1,-1,1,3,-1,2,1,1,3,2,-1,-4,2,-3,1,-6]];
E[606,5] = [x^2+4*x+2, [1,1,-1,1,x,-1,-2*x-5,1,1,x,-x-6,-1,3*x+4,-2*x-5,-x,1,x-1]];
E[606,6] = [x, [1,1,-1,1,0,-1,-1,1,1,0,2,-1,2,-1,0,1,3]];
E[606,7] = [x^2-x-4, [1,-1,-1,1,x,1,x-3,-1,1,-x,2,-1,2*x-2,-x+3,-x,1,-x+3]];
E[606,8] = [x^2+4*x+2, [1,-1,-1,1,x,1,1,-1,1,-x,-3*x-6,-1,-x,-1,-x,1,-x-5]];
E[606,9] = [x, [1,-1,1,1,2,-1,4,-1,1,-2,4,1,-2,-4,2,1,-6]];
E[606,10] = [x^3+x^2-14*x-6, [3,-3,3,3,3*x,-3,-x^2-2*x+9,-3,3,-3*x,x^2-x-12,3,-x^2+x+18,x^2+2*x-9,3*x,3,3*x+9]];
E[606,11] = [x, [1,-1,1,1,0,-1,-3,-1,1,0,-2,1,-6,3,0,1,-1]];

E[607,1] = [x^5+3*x^4-x^3-5*x^2+1, [1,x,-x^4-3*x^3+x^2+5*x,x^2-2,-x-1,1,2*x^4+6*x^3-x^2-9*x-1,x^3-4*x,-x^3-3*x^2+x+2,-x^2-x,2*x^4+5*x^3-4*x^2-6*x,2*x^4+6*x^3-2*x^2-9*x,-4*x^4-11*x^3+3*x^2+11*x+2,x^3+x^2-x-2,x^4+3*x^3-x^2-5*x-1,x^4-6*x^2+4,3*x^4+9*x^3-3*x^2-12*x]];
E[607,2] = [x^7+4*x^6-3*x^5-23*x^4-3*x^3+33*x^2+3*x-5, [1,x,-2*x^6-4*x^5+13*x^4+18*x^3-24*x^2-10*x+3,x^2-2,2*x^6+4*x^5-13*x^4-17*x^3+24*x^2+5*x-2,4*x^6+7*x^5-28*x^4-30*x^3+56*x^2+9*x-10,-x^6-2*x^5+6*x^4+7*x^3-11*x^2+2*x+1,x^3-4*x,-x^6-x^5+9*x^4+3*x^3-23*x^2+5*x+6,-4*x^6-7*x^5+29*x^4+30*x^3-61*x^2-8*x+10,4*x^6+8*x^5-26*x^4-35*x^3+49*x^2+17*x-8,-5*x^6-8*x^5+36*x^4+32*x^3-75*x^2-2*x+14,-x^6-2*x^5+6*x^4+7*x^3-10*x^2+3*x-3,2*x^6+3*x^5-16*x^4-14*x^3+35*x^2+4*x-5,-x^6-3*x^5+5*x^4+15*x^3-6*x^2-13*x-1,x^4-6*x^2+4,-x^6-2*x^5+7*x^4+10*x^3-13*x^2-8*x-3]];
E[607,3] = [x^7+x^6-10*x^5-9*x^4+28*x^3+26*x^2-19*x-17, [1,x,x^6-x^5-10*x^4+8*x^3+24*x^2-9*x-13,x^2-2,2*x^6-18*x^4+3*x^3+40*x^2-3*x-22,-2*x^6+17*x^4-4*x^3-35*x^2+6*x+17,-2*x^6+x^5+20*x^4-9*x^3-51*x^2+9*x+30,x^3-4*x,-2*x^6+2*x^5+21*x^4-15*x^3-54*x^2+14*x+30,-2*x^6+2*x^5+21*x^4-16*x^3-55*x^2+16*x+34,2*x^6-x^5-20*x^4+9*x^3+51*x^2-11*x-31,-x^5-2*x^4+5*x^3+10*x^2-3*x-8,-x^6+8*x^4-2*x^3-13*x^2+2*x+3,3*x^6-27*x^4+5*x^3+61*x^2-8*x-34,-3*x^6+2*x^5+28*x^4-18*x^3-62*x^2+20*x+31,x^4-6*x^2+4,-x^5-2*x^4+5*x^3+9*x^2-x-7]];
E[607,4] = [x^31-9*x^30-8*x^29+296*x^28-467*x^27-3999*x^26+11486*x^25+27342*x^24-123243*x^23-81401*x^22+774171*x^21-131830*x^20-3092092*x^19+2144835*x^18+8005757*x^17-8872276*x^16-13104011*x^15+20286599*x^14+12312325*x^13-28011039*x^12-4459837*x^11+23084202*x^10-2166278*x^9-10691106*x^8+2491665*x^7+2558001*x^6-807767*x^5-254593*x^4+101683*x^3+2648*x^2-3099*x+179, [3695365510875652160218529978734817,3695365510875652160218529978734817*x,-254617219786240756831610701356771*x^30+2170572965384970348537252915358724*x^29+3013674372281139581963321931192898*x^28-73575986858569418251550288749704308*x^27+85319649666374558394976384577891985*x^26+1045444453900318263021362609832550016*x^25-2435871769023141125251299388270633837*x^24-7903187405525112805490493537869251223*x^23+27517724182006182510857520257566537818*x^22+31783848494301653665596952943980811653*x^21-179837436996368814168540790868681707750*x^20-39871416066651123913448031226931762000*x^19+750667434446048213349105675874282793159*x^18-237101273316641917500410955859261461223*x^17-2065725799258050688986775774675561401161*x^16+1405367420939171489820752733162375410732*x^15+3736257701367885755046516346635943718234*x^14-3619654154835817290808226161093997197444*x^13-4292656381155477378373908803472879213776*x^12+5358394660444566898442494338089366042411*x^11+2899062339067394929364118227739171100573*x^10-4682111004566981373210496481734523867298*x^9-973638688968285037840457712673345970795*x^8+2316607948329638136578700939586281201150*x^7+90042103250769229847481212923025601298*x^6-605202061458695798272798818635785547909*x^5+27046087090541731985397803568185722830*x^4+71014256559504348750390683317089250609*x^3-6147597399966975806352464354169976314*x^2-2259354117873298262897272848860496966*x+179392969946541003779174923095729825,3695365510875652160218529978734817*x^2-7390731021751304320437059957469634,-186642012871044064140637220513478*x^30+1601553857386497717294931328564180*x^29+2162400713217606542098529302169715*x^28-54320842292326652506057288665653881*x^27+64493681461179528352817624761909370*x^26+772288925826208279283950605933486510*x^25-1821380570654637464695510117563101307*x^24-5840202621726802013656688375420956719*x^23+20550803187604992791223751822306690976*x^22+23470070687495205570673028519822682471*x^21-134394752696728041736569067072138001909*x^20-29085177763923867591913638385667796712*x^19+561855946550006042137608820199722811665*x^18-178301215984146504068142274949124779840*x^17-1549588057926551157666624131577493811924*x^16+1052224996943081316221844303048650579960*x^15+2810796761649913418701254076712551928971*x^14-2711227264020810922277187377988186753079*x^13-3241027373923990510441499304984966588493*x^12+4018535259039557410560778957660526070332*x^11+2198444655706920731259510523706887642042*x^10-3515445035971773751057961388270442130353*x^9-741606940058937186153513386146106119968*x^8+1739260672649974234989099125678627926366*x^7+68084556601098361041582935883433864839*x^6-452653248120051835902271854720653359370*x^5+20804826987545015256992182902350254957*x^4+52595288110346596526625365470401384143*x^3-4576565203160601859984071807563750148*x^2-1639727058195786473717505676676935345*x+122469734619820256068691609587626132,-120982012691196462947243396852215*x^30+976736613991213527310436320338730*x^29+1790710198157845770606478851899908*x^28-33586591973799875045385812955720072*x^27+27230191975141476451751415106822787*x^26+488661617441620207716581127513237869*x^25-941443382129718032200593741372418541*x^24-3862065836109487083340677409745990535*x^23+11057752186481869818747010242838295482*x^22+17279830662764978788544097411391054091*x^21-73437604151071242886559269986794882930*x^20-36632433917228540923863120905377961773*x^19+309010651283579776178516782785288466562*x^18-27322209633815246296810581013682470514*x^17-853666827357017507238182933828471370064*x^16+399750852499569228876764568339101609753*x^15+1545663281462514660491170661439572014385*x^14-1157726420550850652017147574890373711201*x^13-1773698213059394604557269450432499352658*x^12+1763511041427586311138498052232293594246*x^11+1195524329656997078123284933746851964444*x^10-1525210370612383092068125679587089139133*x^9-405531737830359136228273219353301377576*x^8+724462918189452805218316491119144415013*x^7+46109041371727843943218187045536026862*x^6-178625300684530605438201877834669117527*x^5+6190494722465955746360420026564851406*x^4+19742645359557343070556206591890569279*x^3-1585127719879332738807167711667767358*x^2-609665794171019101641986640408903504*x+45576482341737095472858315542862009,-184018062857764402167447615516213*x^30+1550842813896880079440430677136201*x^29+2351043636521975669621422283825705*x^28-53175063567920909076044598952711352*x^27+56469898164515404277727248228506630*x^26+768396310862672976197253394346066098*x^25-1701457243832345806502291847162024794*x^24-5973018337357845229051781984247785119*x^23+19640325766528692568752885833094268929*x^22+25496080310190015222092374046375163533*x^21-130867859031831325824913366551011103337*x^20-43039390689598729240001449433094272933*x^19+558638837016438112562818990068432298298*x^18-122538700796224340702276149486639491368*x^17-1582494472238335774803590997576564108908*x^16+918647314887373020025612554752063486093*x^15+2980297530467362867289920580205474277188*x^14-2536396175190934192043697451623606292488*x^13-3638613680235267437432484469028344858719*x^12+3954752640721195554992414401300143607199*x^11+2717422281616574795718550797532047150980*x^10-3651501026276095329645844722407133029442*x^9-1108811809906878483118248573276873310787*x^8+1928382774442922575891433181740332390286*x^7+189195793777245508531154175074556214688*x^6-537548524609926555236594525814174146228*x^5+7027248242244454804942466486192210136*x^4+66592261966852615416575626502629438752*x^3-4987558467199035402848170462030166789*x^2-2151439849656971501453718660926470221*x+160867966763983586390847296416459361,3695365510875652160218529978734817*x^3-14781462043502608640874119914939268*x,32554719079928626681574478678113*x^30-233876695804283063048907539766504*x^29-699784703001227954010327691153121*x^28+8514486503733678167876318511846208*x^27+273415721149066402657949326976931*x^26-134481763919899273802139459460010106*x^25+140295965618293795440894206229695520*x^24+1206821892270538517940483752102892784*x^23-2047667782581863938693395927089741687*x^22-6748679888477125817836045516353405735*x^21+15269379579055786152973290005560291099*x^20+24086073156433784286590993293391583594*x^19-71004972738758562892949121259088914270*x^18-52739346917150109860613122257833503520*x^17+218851849293429409227395017597094211221*x^16+56935292182591920402621455849207410571*x^15-454415489405422670886786545832161233058*x^14+21098881887494033982081835471416328525*x^13+628936241524441096940273958112085456530*x^12-158787459373668938337578706180978322190*x^11-559740323422582597196268424185747547004*x^10+222107482717899985230119272709174614991*x^9+298939762414968175189982238651418844783*x^8-150952899478792442544717291799397533321*x^7-84859409573700482702090588084631572156*x^6+51364911408931020935632364552993396684*x^5+10262549843198827300654773543750188983*x^4-7764575782640844364010011233380363313*x^3-253611554454546301713044925728270882*x^2+331295090877965815489772688337064080*x+5198236172129159898995575513649999,-78224258452898859970803656057122*x^30+669264610249254028973431538061891*x^29+925193517502390479571328606335607*x^28-22668138549598049600859957217884856*x^27+25907516354903066785542361100087988*x^26+322389589182174656023848997254707001*x^25-737036705806715211923385492141441243*x^24-2451518404661090805660801145435878178*x^23+8277224197779347705561018132805059793*x^22+10098081049661012443252190570001774829*x^21-53690194320713606567573843165959601452*x^20-15258328312446340239142404252238404311*x^19+222015105692119291242941357910900806290*x^18-55377456890100043864268718991173719078*x^17-603714454444374028995591933219787955968*x^16+365037771925610420717638392094510568713*x^15+1075104407646898718274199519043315528243*x^14-943030252801512903421128138926358572143*x^13-1209501442529759840801111710994106213310*x^12+1366051700950162185374723444083719458956*x^11+793036890830007376465464618781227744203*x^10-1145925426417196779331964702925602214852*x^9-256148871007722185409252306376339800302*x^8+533133927601428369118563775934149025709*x^7+24777207446091751213542295990043878108*x^6-129958431823259635301697922800160328669*x^5+5077538127468875104868113588213479689*x^4+14401754591605771714028342685908233326*x^3-1145499008113261791873098316757245601*x^2-455933863267545298703143136783642190*x+33408920303916887481174062471912562,37006559129449671184649621416802*x^30-266242750367864896595234023467046*x^29-760978594184857992404403956463628*x^28+9436712123186641630907611600227725*x^27-318160739551138446130773347937735*x^26-144102593924441393772586561497911922*x^25+155871768820058444495971551395740595*x^24+1239287654390605443415333593815901511*x^23-2122753732258454486909684502763088071*x^22-6572618322758806573582412485610434831*x^21+14762599920373670326845845600738377071*x^20+22041861688861047761657226127707313005*x^19-62920716056207241123533827305418006097*x^18-45726162498013990817650099818899277592*x^17+172727334527614222139147685066938622372*x^16+54225751302002510402848271171739552115*x^15-305790892427886498059058559252333499401*x^14-33437242125443962903557068718385190853*x^13+338109189939330340097400952455130875582*x^12+30528251850023974198324855735897236425*x^11-220733547633692425328256602778359945845*x^10-76737494789561531394707304953510364645*x^9+86018654445063991392667654773295506707*x^8+91895517534782970448917614386130271500*x^7-30558957548893119169411408512559748392*x^6-42404875025863422369819916902342686973*x^5+9993959540213710244436520327779853838*x^4+7440861986120182451416021064851524430*x^3-1548214578865876399089087398206425677*x^2-320156309895849222513108615552369982*x+44671954518583191306654658466858396,397132939342926874448467151382337*x^30-3518291834141666630045974153635260*x^29-3803264961768001176928411349850228*x^28+117883565765491564758489326276246998*x^27-165784750643223564399397985654553886*x^26-1642732892159271984831281304792977083*x^25+4317567892939488857065450323528539669*x^24+11953940807430969746720879360319264683*x^23-47603674516323469513539502850909174760*x^22-43344535392518293301422808090280367471*x^21+307093381342428657702883363824957950277*x^20+14665969830534970497945115779592806782*x^19-1269170623335389307389571141674727497307*x^18+589088314252901249377773432943449754137*x^17+3457816643383872817358599261639841720735*x^16-2850421185523406372772104696913969541444*x^15-6175928245607408688081095320823513180884*x^14+6955179956020375467716101427903943092105*x^13+6959991927946941987609025927458180420413*x^12-10060825047766804278482948891719072109333*x^11-4530561829417030178436680218962736132849*x^10+8696609598814943918832291212869523751250*x^9+1378308774351096228705180352918739456813*x^8-4285660208635338394364740473709252087463*x^7-49237397739975821717652747289357497908*x^6+1118869340194327859006452100353012793319*x^5-65150702378615901991366938679276849876*x^4-131311826842409100297723984023722490731*x^3+12005889375369220744947242582795714444*x^2+4189361460758315782593896726418841656*x-337130159621357840690793278154913165,-262512425305077574843986471095308*x^30+2271337789346750436229199344647769*x^29+2864090670544321498475047976760478*x^28-76463417010672752115424493935477545*x^27+96227743832380256533902024871003970*x^26+1074839952612400886782985802732455985*x^25-2629629994375273970635415105558261338*x^24-7969515514952710355779196124954814838*x^23+29280811548116059301273297598342805386*x^22+30578245003103012947020634902512829528*x^21-189282450378173851106043895782366138056*x^20-26796356357357083258745499667176737268*x^19+780905374506510101540202532780179422194*x^18-301549968732271372527778500040353306892*x^17-2116893331495709935227539984826167823281*x^16+1591642762178451176363171692188121130470*x^15+3746415245054979329866292805134395243620*x^14-3945616995460062781419886131697276701298*x^13-4155186662574978364279648759743519278849*x^12+5682476698567661611520097615264118057574*x^11+2626019683745916444859148186430527810848*x^10-4822622523160251542573807875378496269707*x^9-748260660373725929927328089177284686300*x^8+2300711346114613046339004561873379434410*x^7+13674238321126237663384766139181909452*x^6-577574699369230034341482460277256063386*x^5+33933275570018755364720143362753078523*x^4+65408468668723551976780593510487277372*x^3-5377960338824807462019365652814605660*x^2-2084589073780625787529100086378736185*x+144178406149307143863648535325353160,-105319751822999540066597862509716*x^30+878899133659860452281841359696001*x^29+1294283037977353965519895240087696*x^28-29466537190060571534470788217564841*x^27+32508077494473131929630379896730311*x^26+412174226151936116793011464657197724*x^25-941596462700850944989429280803489273*x^24-3038612354250765647569860645970369830*x^23+10516825975505135121259970695739909120*x^22+11593588708826999165461721400791031086*x^21-67298491916137810377736068586596632723*x^20-10361943001552333263928442288325789298*x^19+272149681053308770820541356939077218487*x^18-109290577388348407800732077524333270667*x^17-714011727772061498978980905649660724695*x^16+568922810580526705879263184557248446845*x^15+1196704474761326271202043177859984837099*x^14-1372923484460043344516165006317687633494*x^13-1199784494692094566931645287381503868108*x^12+1896731716215191377649287726291066313699*x^11+596409108381235398396753858587462137584*x^10-1507446091078270636716742658922104176001*x^9-38973841484099570707379025190745511292*x^8+647707160367737047657707537989761079333*x^7-66830135801702356727861357876085776015*x^6-141616470338183323040650191556492616235*x^5+19742551289705802975558635725510222443*x^4+13723950218367022302744405426504919690*x^3-1664160019209611364514317375039538197*x^2-409404010032228295926072864068284726*x+32939233251539827987973123177402127,350953639271398541386007279250804*x^30-2965463644788001342770336398617288*x^29-4303827939099876717686799996955510*x^28+100433053319213966560896738722256184*x^27-110826710559615445793297272393611558*x^26-1426820256737437086688458689875783993*x^25+3222817507154949912936126485242247930*x^24+10809461859898119091911471425161858722*x^23-36376379998508039994323637398875895257*x^22-43965203043941079414025698787103156506*x^21+236361461164637724741519000000842672009*x^20+61011781065404231192108288175338720627*x^19-977066846475147117593391656876713357891*x^18+280584868144218294989104340650401793842*x^17+2649330939788023303896909317415266897748*x^16-1740167165254737049774403527909484899294*x^15-4683693134859025253499249852528264475240*x^14+4459247583415154584970807596439956062014*x^13+5181097929280047725432542317673226279875*x^12-6466421459579463218287965318661801185728*x^11-3255781273313071027767984978333447729902*x^10+5451627466543874658595543163218001359099*x^9+911866605696870513971406736948026665944*x^8-2553664506660439078169002009318734413517*x^7-7687107869931148932616382398963069009*x^6+624842646050723349074750819894552141747*x^5-43479861141863236073741998974226943398*x^4-68967726861126629799621411253214784920*x^3+6511204725151094557593345355111392450*x^2+2212068808128412590595450844416784718*x-165171994868852390484916565494601262,3695365510875652160218529978734817*x^4-22172193065253912961311179872408902*x^2+14781462043502608640874119914939268,-393131963333557964794567610002115*x^30+3468950362273868491498645493038403*x^29+3792108301813101633700286424021512*x^28-115950873239229492440924232332302781*x^27+162323655069292156044713837627143941*x^26+1610061889257497268591748211820555115*x^25-4229028221770241817104418908505568501*x^24-11645259982514411127010653736302962892*x^23+46513628308146647609338337765191560059*x^22+41604410435780596275163573965596035759*x^21-298911614365302708461793019087736008107*x^20-9172899954822336473191136989858239667*x^19+1228669564267980871100471571023983994582*x^18-594036896797120736682822326300191959218*x^17-3321798600003381195486672586103135621541*x^16+2817029155875809868203585046641941692688*x^15+5866102805968101852346318052431234754623*x^14-6794781484643599653768723044885152669959*x^13-6493948288981894492153185621938789630226*x^12+9713442187800384284070534337981593807628*x^11+4096798289687528493546893034692319864103*x^10-8271591718624870202287785856685196826714*x^9-1163569487009289495794728248413806639708*x^8+3996131937005019736638215004794676717490*x^7+16756439268813730804570710708234036268*x^6-1021221954139761154439476722396434701691*x^5+56751611635910803963678873262950272406*x^4+117709288973824226149139868150027697387*x^3-9544093428186567404985067334332037737*x^2-3792860830632236490957238253286781613*x+268027500184235631411239909359987255]];

E[608,1] = [x, [1,0,3,0,0,0,-1,0,6,0,2,0,-1,0,0,0,3]];
E[608,2] = [x, [1,0,-3,0,0,0,1,0,6,0,-2,0,-1,0,0,0,3]];
E[608,3] = [x^2+x-4, [1,0,-x-1,0,x,0,-3,0,x+2,0,x+2,0,x+1,0,-4,0,-2*x-5]];
E[608,4] = [x^4-x^3-18*x^2+24*x+32, [4,0,x^3+x^2-12*x-4,0,4*x,0,-2*x^2-2*x+20,0,-x^3-x^2+12*x+8,0,4*x-8,0,2*x^3+4*x^2-26*x-12,0,2*x^3+6*x^2-28*x-32,0,-x^3-5*x^2+12*x+44]];
E[608,5] = [x^2+x-4, [1,0,x+1,0,x,0,3,0,x+2,0,-x-2,0,x+1,0,4,0,-2*x-5]];
E[608,6] = [x^4-x^3-18*x^2+24*x+32, [4,0,-x^3-x^2+12*x+4,0,4*x,0,2*x^2+2*x-20,0,-x^3-x^2+12*x+8,0,-4*x+8,0,2*x^3+4*x^2-26*x-12,0,-2*x^3-6*x^2+28*x+32,0,-x^3-5*x^2+12*x+44]];
E[608,7] = [x, [1,0,0,0,3,0,-5,0,-3,0,-5,0,-4,0,0,0,-3]];
E[608,8] = [x, [1,0,0,0,3,0,5,0,-3,0,5,0,-4,0,0,0,-3]];
E[608,9] = [x, [1,0,0,0,-1,0,-1,0,-3,0,3,0,-4,0,0,0,-3]];
E[608,10] = [x, [1,0,0,0,-1,0,1,0,-3,0,-3,0,-4,0,0,0,-3]];

E[609,1] = [x, [1,-1,-1,-1,-2,1,1,3,1,2,4,1,-2,-1,2,-1,2]];
E[609,2] = [x, [1,1,-1,-1,0,-1,1,-3,1,0,0,1,-6,1,0,-1,-2]];
E[609,3] = [x^2+2*x-1, [1,x,1,-2*x-1,x-1,x,-1,x-2,1,-3*x+1,-2*x-4,-2*x-1,-2*x,-x,x-1,3,-2*x-2]];
E[609,4] = [x^3+3*x^2-x-5, [1,x,1,x^2-2,-x-3,x,1,-3*x^2-3*x+5,1,-x^2-3*x,x^2+2*x-5,x^2-2,-2,x,-x-3,4*x^2+2*x-11,-3*x^2-4*x+3]];
E[609,5] = [x^3+x^2-3*x-1, [1,x,-1,x^2-2,-x+1,-x,-1,-x^2-x+1,1,-x^2+x,-x^2-1,-x^2+2,-2*x^2+4,-x,x-1,-2*x^2-2*x+3,3*x^2+2*x-5]];
E[609,6] = [x^4-4*x^3+12*x-7, [1,x,1,x^2-2,-x^3+x^2+4*x,x,-1,x^3-4*x,1,-3*x^3+4*x^2+12*x-7,x^3-2*x^2-3*x+4,x^2-2,2*x^3-4*x^2-8*x+10,-x,-x^3+x^2+4*x,4*x^3-6*x^2-12*x+11,x^3-2*x^2-5*x+6]];
E[609,7] = [x^5+x^4-8*x^3-6*x^2+9*x-1, [1,x,-1,x^2-2,x^4+x^3-7*x^2-6*x+3,-x,-1,x^3-4*x,1,x^3-6*x+1,-x^3+7*x+2,-x^2+2,-x^4-2*x^3+8*x^2+12*x-7,-x,-x^4-x^3+7*x^2+6*x-3,x^4-6*x^2+4,x^4+x^3-8*x^2-5*x+5]];
E[609,8] = [x^4+2*x^3-4*x^2-6*x+1, [1,x,-1,x^2-2,x^3+x^2-4*x-2,-x,1,x^3-4*x,1,-x^3+4*x-1,x^3+2*x^2-3*x-4,-x^2+2,2*x+2,x,-x^3-x^2+4*x+2,-2*x^3-2*x^2+6*x+3,-x^3+5*x]];
E[609,9] = [x^4-2*x^3-4*x^2+8*x-1, [1,x,1,x^2-2,-x^3+x^2+4*x-2,x,1,x^3-4*x,1,-x^3+6*x-1,-x^3+3*x+2,x^2-2,0,x,-x^3+x^2+4*x-2,2*x^3-2*x^2-8*x+5,3*x^3-2*x^2-13*x+8]];

E[610,1] = [x^3-x^2-7*x+8, [1,-1,x,1,1,-x,x^2-4,-1,x^2-3,-1,2,x,-x^2+x+3,-x^2+4,x,1,-x^2-x+7]];
E[610,2] = [x^4+x^3-7*x^2+6, [1,-1,x,1,-1,-x,-x^2-2*x+2,-1,x^2-3,1,x^3+3*x^2-3*x-6,x,-2*x^3-4*x^2+8*x+6,x^2+2*x-2,-x,1,-2*x-4]];
E[610,3] = [x, [1,-1,0,1,-1,0,0,-1,-3,1,2,0,1,0,0,1,7]];
E[610,4] = [x, [1,-1,0,1,1,0,0,-1,-3,-1,-4,0,-2,0,0,1,-2]];
E[610,5] = [x, [1,1,2,1,1,2,0,1,1,1,-6,2,6,0,2,1,6]];
E[610,6] = [x^2+3*x+1, [1,1,x,1,-1,x,-x-3,1,-3*x-4,-1,-4*x-6,x,-4,-x-3,-x,1,2*x]];
E[610,7] = [x^3-2*x^2-6*x+8, [2,2,2*x,2,-2,2*x,0,2,2*x^2-6,-2,-2*x^2+2*x+12,2*x,-x^2-2*x+10,0,-2*x,2,x^2-2*x+2]];
E[610,8] = [x^4+x^3-9*x^2-6*x+8, [2,2,2*x,2,2,2*x,-2*x^2+8,2,2*x^2-6,2,4,2*x,x^3+x^2-9*x-6,-2*x^2+8,2*x,2,-x^3-x^2+5*x+6]];

E[611,1] = [x, [1,2,3,2,-2,6,2,0,6,-4,-3,6,1,4,-6,-4,3]];
E[611,2] = [x^14-23*x^12-x^11+206*x^10+23*x^9-907*x^8-181*x^7+2027*x^6+615*x^5-2104*x^4-884*x^3+704*x^2+400*x+32, [16,16*x,x^13-19*x^11-x^10+138*x^9+19*x^8-499*x^7-97*x^6+959*x^5+147*x^4-852*x^3-32*x^2+192*x,16*x^2-32,x^13-27*x^11+7*x^10+274*x^9-109*x^8-1307*x^7+551*x^6+3023*x^5-1021*x^4-3140*x^3+544*x^2+1032*x+64,4*x^12-68*x^10-4*x^9+408*x^8+84*x^7-1068*x^6-468*x^5+1252*x^4+852*x^3-512*x^2-400*x-32,4*x^13-4*x^12-84*x^11+72*x^10+676*x^9-452*x^8-2648*x^7+1200*x^6+5240*x^5-1256*x^4-4820*x^3+232*x^2+1488*x+192,16*x^3-64*x,-2*x^13+6*x^12+34*x^11-104*x^10-198*x^9+626*x^8+472*x^7-1588*x^6-400*x^5+1616*x^4-34*x^3-388*x^2+72*x-16,-4*x^12+8*x^11+68*x^10-132*x^9-400*x^8+732*x^7+996*x^6-1636*x^5-1036*x^4+1428*x^3+328*x^2-336*x-32,-2*x^13-2*x^12+42*x^11+32*x^10-342*x^9-182*x^8+1360*x^7+460*x^6-2736*x^5-592*x^4+2574*x^3+452*x^2-824*x-160,2*x^13-30*x^11-2*x^10+132*x^9+46*x^8-70*x^7-274*x^6-666*x^5+558*x^4+1192*x^3-336*x^2-416*x,-16,-4*x^13+8*x^12+76*x^11-148*x^10-544*x^9+980*x^8+1924*x^7-2868*x^6-3716*x^5+3596*x^4+3768*x^3-1328*x^2-1408*x-128,2*x^13-4*x^12-42*x^11+74*x^10+348*x^9-494*x^8-1482*x^7+1478*x^6+3390*x^5-1938*x^4-3656*x^3+732*x^2+1216*x+144,16*x^4-96*x^2+64,-4*x^12-12*x^11+76*x^10+208*x^9-540*x^8-1300*x^7+1744*x^6+3576*x^5-2464*x^4-4232*x^3+1076*x^2+1600*x+160]];
E[611,3] = [x^5-5*x^3-x^2+5*x+1, [1,x,-x^4+x^3+3*x^2-2*x-1,x^2-2,-1,x^4-2*x^3-3*x^2+4*x+1,x^4-x^3-5*x^2+2*x+4,x^3-4*x,x^2-x-3,-x,x^4+x^3-4*x^2-4*x+1,-x^2+1,1,-x^4+3*x^2-x-1,x^4-x^3-3*x^2+2*x+1,x^4-6*x^2+4,x^4-3*x^3-2*x^2+7*x-1]];
E[611,4] = [x^18+2*x^17-29*x^16-57*x^15+338*x^14+648*x^13-2033*x^12-3742*x^11+6794*x^10+11595*x^9-12875*x^8-18843*x^7+13831*x^6+14703*x^5-7711*x^4-4190*x^3+1528*x^2+144*x-48, [5828281576,5828281576*x,192116619*x^17+404960676*x^16-5421192455*x^15-11496753001*x^14+60589711360*x^13+130011094012*x^12-340511069335*x^11-745253723216*x^10+1013156298478*x^9+2285913424641*x^8-1563926168071*x^7-3671134617195*x^6+1189914774311*x^5+2858383292715*x^4-384906272935*x^3-858837743668*x^2+21843398696*x+40909430968,5828281576*x^2-11656563152,151807651*x^17+216677920*x^16-4671210847*x^15-6522080625*x^14+58454375992*x^13+79520046988*x^12-381826485211*x^11-502403068408*x^10+1389251178682*x^9+1744291743409*x^8-2777667252443*x^7-3243811063111*x^6+2801550865351*x^5+2893379124591*x^4-1156336796375*x^3-958018608952*x^2+75778495020*x+43115949816,20727438*x^17+150189496*x^16-546105718*x^15-4345705862*x^14+5519524900*x^13+50062017092*x^12-26353334918*x^11-292084011008*x^10+58321227336*x^9+909575301554*x^8-51081165378*x^7-1467250183078*x^6+33692643558*x^5+1096504976174*x^4-53869110058*x^3-271710795136*x^2+13244637832*x+9221597712,327982910*x^17+592064412*x^16-9478065926*x^15-16820409510*x^14+109718720084*x^13+190716527656*x^12-650663639446*x^11-1099619316764*x^10+2107783031708*x^9+3411009154170*x^8-3722442224194*x^7-5590046944178*x^6+3427911203578*x^5+4494870042514*x^4-1390671207530*x^3-1410814054340*x^2+117579822744*x+60185029376,5828281576*x^3-23313126304*x,174596971*x^17+309614924*x^16-4842650457*x^15-8550277635*x^14+52858280252*x^13+93035016682*x^12-287269074161*x^11-503665254678*x^10+814614750982*x^9+1410795902725*x^8-1181107855535*x^7-1945209736577*x^6+868135499915*x^5+1178546041557*x^4-325920935991*x^3-229236821818*x^2+65660052628*x+17497330456,-86937382*x^17-268788968*x^16+2130955482*x^15+7143389954*x^14-18851310860*x^13-73201530728*x^12+65661161634*x^11+357869997788*x^10-15917969936*x^9-823143745818*x^8-383299495318*x^7+701899244370*x^6+661351231938*x^5+14252000486*x^4-321944551262*x^3-156183595708*x^2+21255648072*x+7286767248,-26423315*x^17+169933064*x^16+1130792297*x^15-4551926305*x^14-18823891808*x^13+46905096494*x^12+158892308457*x^11-229896439926*x^10-729952286614*x^9+527660516939*x^8+1799996008139*x^7-441609983299*x^6-2192849603319*x^5-33393022185*x^4+1136642309819*x^3+133753570534*x^2-138276312788*x-16374939696,-275498618*x^17-754931368*x^16+7678143014*x^15+21507156858*x^14-84548785452*x^13-244236641488*x^12+466500200658*x^11+1408006459996*x^10-1357071939012*x^9-4356042250410*x^8+2051169267298*x^7+7089280682970*x^6-1588080093362*x^5-5610806421070*x^4+584949715954*x^3+1699248599904*x^2-37449950752*x-80823944912,5828281576,-63901408*x^17+33438464*x^16+1874616360*x^15-1139503496*x^14-21816398024*x^13+16125616584*x^12+127692732456*x^11-120532858832*x^10-391952687280*x^9+500337742056*x^8+590135028952*x^7-1108420424632*x^6-327462683216*x^5+1138405011480*x^4-36565661440*x^3-383578063736*x^2+12955490336*x+15743179680,295967126*x^17+610768808*x^16-7926712612*x^15-16651318892*x^14+81863635204*x^13+177454490070*x^12-404562813148*x^11-928240523470*x^10+955428774976*x^9+2452401015090*x^8-921332325862*x^7-3064640271004*x^6+260771499118*x^5+1654826548180*x^4-86319740754*x^3-349618517014*x^2+113143595760*x+38449380840,5828281576*x^4-34969689456*x^2+23313126304,-505833244*x^17-1154797264*x^16+14004446414*x^15+32085087418*x^14-152675044292*x^13-351923370714*x^12+830354950118*x^11+1928270098506*x^10-2373498666436*x^9-5516184664092*x^8+3567225934044*x^7+7936509822222*x^6-2970081325364*x^5-5261865061230*x^4+1413695123072*x^3+1235573125402*x^2-267922678528*x-40219430352]];
E[611,5] = [x^9+3*x^8-6*x^7-21*x^6+8*x^5+42*x^4+2*x^3-25*x^2-6*x+1, [1,x,x^5+x^4-6*x^3-4*x^2+7*x+2,x^2-2,x^8+2*x^7-8*x^6-14*x^5+20*x^4+27*x^3-16*x^2-14*x,x^6+x^5-6*x^4-4*x^3+7*x^2+2*x,-x^5-x^4+6*x^3+4*x^2-7*x-3,x^3-4*x,-2*x^8-5*x^7+13*x^6+32*x^5-24*x^4-53*x^3+14*x^2+21*x+2,-x^8-2*x^7+7*x^6+12*x^5-15*x^4-18*x^3+11*x^2+6*x-1,x^7+2*x^6-7*x^5-12*x^4+14*x^3+17*x^2-8*x-5,x^7+x^6-8*x^5-6*x^4+19*x^3+10*x^2-14*x-4,-1,-x^6-x^5+6*x^4+4*x^3-7*x^2-3*x,-x^8-2*x^7+9*x^6+14*x^5-28*x^4-25*x^3+32*x^2+7*x-6,x^4-6*x^2+4,x^7+2*x^6-6*x^5-10*x^4+9*x^3+8*x^2-4*x]];

E[612,1] = [x, [1,0,0,0,3,0,2,0,0,0,3,0,-1,0,0,0,-1]];
E[612,2] = [x, [1,0,0,0,1,0,4,0,0,0,-3,0,3,0,0,0,1]];
E[612,3] = [x, [1,0,0,0,-1,0,0,0,0,0,-5,0,-5,0,0,0,-1]];
E[612,4] = [x, [1,0,0,0,-3,0,2,0,0,0,-3,0,-1,0,0,0,1]];
E[612,5] = [x^2-12, [2,0,0,0,2*x,0,-x-2,0,0,0,-x+6,0,2*x+4,0,0,0,2]];

E[613,1] = [x^5+4*x^4-x^3-18*x^2-16*x-1, [1,x,-1,x^2-2,x^4+2*x^3-5*x^2-9*x,-x,-x^3-x^2+4*x+2,x^3-4*x,-2,-2*x^4-4*x^3+9*x^2+16*x+1,-x^4-x^3+5*x^2+2*x-1,-x^2+2,-2*x^4-5*x^3+8*x^2+23*x+8,-x^4-x^3+4*x^2+2*x,-x^4-2*x^3+5*x^2+9*x,x^4-6*x^2+4,2*x^4+6*x^3-7*x^2-25*x-8]];
E[613,2] = [x^27-8*x^26-9*x^25+224*x^24-253*x^23-2596*x^22+5569*x^21+15836*x^20-49248*x^19-51509*x^18+247914*x^17+61977*x^16-777485*x^15+147021*x^14+1555984*x^13-714158*x^12-1964875*x^11+1245137*x^10+1499850*x^9-1122577*x^8-633022*x^7+522333*x^6+119415*x^5-107309*x^4-3970*x^3+5608*x^2+161*x-27, [9204250669580787318387868,9204250669580787318387868*x,47785382241994726742064*x^26-388275035973271609911810*x^25-395882891017972694847200*x^24+10728665479222828703998924*x^23-12557738718003633081116636*x^22-122466466890660794082967894*x^21+263008001626168547666422636*x^20+734834962119351228804962352*x^19-2244517518930977104134683584*x^18-2355925445884943331791211968*x^17+10834141139968413350305249062*x^16+2899722376380499073019714108*x^15-32080459674326824468063159044*x^14+5578306636214448270228249938*x^13+58851843037312596717962547838*x^12-27532623027578793261767893166*x^11-64090933246502101328270016246*x^10+46040989056512607416481955032*x^9+36190631311321053397687686408*x^8-39453860610802509444149943240*x^7-5603118678253528057102175706*x^6+17776980284289957029128242684*x^5-3041063227789329711145111896*x^4-3751043693490828506845946134*x^3+934231410281838761556723670*x^2+175187997081063241397350994*x-11720771138529784752833162,9204250669580787318387868*x^2-18408501339161574636775736,416233561619140411687892*x^26-2655950092041078572865838*x^25-7712963848076005880083460*x^24+78697179399790204868357172*x^23+15592484530860781728884508*x^22-994628566272675824861477422*x^21+732281752276906309714056308*x^20+7009269199763644074436668488*x^19-8748699497767190598269786820*x^18-30154054968437301376805731260*x^17+48931447001067448591744324346*x^16+81144896582015591021337545744*x^15-161238718545802276921825041488*x^14-133088402579529704356326136406*x^13+330374636563112865034260650498*x^12+118779601875863853015482334314*x^11-419663574759335323960670793530*x^10-31894671049995586168421715444*x^9+316231186292704807572359506864*x^8-32398888578522278821380691592*x^7-127725385006035645967039483686*x^6+27962344342368116075910272356*x^5+21398528457009946653266225412*x^4-6649065549932330797123321874*x^3-273760738720166368411750058*x^2+170871333574369333414354510*x-12971124570356409262992966,-5991978037313795975298*x^26+34185549159979845831376*x^25+24739857016009913776588*x^24-468037010778967215374444*x^23+1584385409557516539430250*x^22-3108792079500085560131780*x^21-21894351064877263882363152*x^20+108816985722779198458484288*x^19+105451808017963047965762608*x^18-1012524113173467335226805434*x^17-61872258831608106273186420*x^16+5071958238090445652990469996*x^15-1447148046385858450116741406*x^14-15501447165115326177061163138*x^13+6593689983599676798891048946*x^12+29801369686237287379042985754*x^11-13458358432137980654951387736*x^10-35480274244334737506397003992*x^9+14188910430269204917776035688*x^8+24646079559338457854612661702*x^7-7182901778317874574234272628*x^6-8747354648217130005048684456*x^5+1376757889515383625118199642*x^4+1123939377782557826722717750*x^3-92792426532043186172143918*x^2-19414217679490935758305466*x+1290205320533857622035728,-186619983235611049780278*x^26+827813143004543588158918*x^25+5609792147864693605594540*x^24-27726251275305277979689376*x^23-71263512514295333620271578*x^22+405398564772028823156855110*x^21+495937868438781324374487532*x^20-3405616395752637181587767924*x^19-2034241590161816336798408048*x^18+18198828204170112335438276254*x^17+4809757408408416715721574378*x^16-64678351606423762862858873356*x^15-5231153225845663323347610190*x^14+155219022780027567332463987296*x^13-2418185199172021666491042336*x^12-250153258637014862554347421916*x^11+14521921034627694769094788154*x^10+263910972033828029771144857148*x^9-17609139967732407269716005496*x^8-173077404882683007152752949046*x^7+9665005038840938648425656794*x^6+64098912379502880523489765812*x^5-2396147527066433277326251054*x^4-11111406406417999895239937516*x^3+271068099881591715933082048*x^2+603875850843866428688001836*x+9858556037021434712391110,9204250669580787318387868*x^3-36817002678323149273551472*x,66186621376480842539816*x^26-384958676069180271122784*x^25-1481674334790334290800560*x^24+11823278823441048573035836*x^23+10438892049921610338588444*x^22-157406958874521230840381220*x^21+8420558162511084299029772*x^20+1198836225178364923945136800*x^19-549140304606321105888492556*x^18-5814138191148315351435951328*x^17+3590344389826591527001594424*x^16+18954648401367180669091672188*x^15-11653151473605168886907440388*x^14-42841639069616697937738993004*x^13+20621360958018217572352892172*x^12+68196824252627397428709055648*x^11-17236762899157990930275825752*x^10-75990582804343625129024860044*x^9-30128069341562696693776792*x^8+56374473870101274416606422340*x^7+10524970105157494534249265076*x^6-24470035249441507078071598436*x^5-6149372106299165981944189588*x^4+4755698934873315282784822428*x^3+898035026173007525975517836*x^2-221811412880476116706348160*x-18414190781815379577390812,673918400912044720637298*x^26-3966861793503742174892432*x^25-14539138402897247349730636*x^24+120899575620503305885921184*x^23+85913759690612683880290210*x^22-1585722952380086642975814240*x^21+417794517962936514947210776*x^20+11749970944852236396535518396*x^19-8714280442996997911174102232*x^18-54258680194180127431447732942*x^17+55347989133546125726157063260*x^16+162376632109655106059335670132*x^15-194283477042337346823091706138*x^14-317278125579283709305512295230*x^13+416036129774665931145683909250*x^12+398183344627073192454575999970*x^11-550162479263767220956248496648*x^10-308056721101762938897725309336*x^9+434855334323207507109978046092*x^8+135759616637235855720453285938*x^7-189450180598842352582261419680*x^6-28306002303739705608443397768*x^5+38016541713856007640692680754*x^4+1378686500907821065989181182*x^3-2163366479985770095331343826*x^2-79984727991038015544743578*x+11238306163716791115573084,-407082370120599860520213*x^26+2462911515730094075988980*x^25+8527607716929170306744202*x^24-75124793090522209787182578*x^23-43578817596225281134444237*x^22+986530785342866226777372010*x^21-369748554622759289794886540*x^20-7325052004626120428009138724*x^19+6203648228247618083540385640*x^18+33955879134785612356504353937*x^17-38142303124138573532998495938*x^16-102395396427858354798666869882*x^15+132731598964061151513382016465*x^14+203198506515615487852230803401*x^13-284341410926032068323619885505*x^12-263269960751642535977003331797*x^11+378588675143010297248402025414*x^10+217606718778036999747099333982*x^9-303910370027613625814464299926*x^8-110087674247022965243000493605*x^7+137115897034480014613253629440*x^6+30985304383001044980440807784*x^5-30377978004925370902097885321*x^4-3680354270047587036224815543*x^3+2578061389035231836913688515*x^2+119182379660523354351530945*x-28869173779301984726312214,-109321039622519975455136*x^26+747362126626728969822526*x^25+1665931851615268472786708*x^24-21388915992328531250317992*x^23+6451510371640566250227884*x^22+256407908406244854070007198*x^21-322310053330656623809541856*x^20-1659311050602369233835638000*x^19+3167870127964490556150937052*x^18+6135473876080890972729265888*x^17-16224959219027783914458983982*x^16-11905265843487773260010735152*x^15+49540418786562234357149442208*x^14+4760498665582449775262632302*x^13-92181535439559851963008979006*x^12+29833399776952661001620740846*x^11+100162425806116253129437654326*x^10-68905999423490913021637169076*x^9-54461639792497258085324814060*x^8+67931765522150690558190523296*x^7+5588690572454153102320997190*x^6-33461670621738703486748075056*x^5+6563072662155111116699688460*x^4+7385506807641478057497815290*x^3-1854274025409912691042281622*x^2-348121080377585104020643282*x+23279758870052097014333278,-353050878132978364667856*x^26+2065473370479748081056182*x^25+7846526340096268494400192*x^24-63771196491665505588023168*x^23-51600898129680951978786420*x^22+851686125783681759127880642*x^21-140289938379427531958657768*x^20-6473537248634702191693362208*x^19+4066581653280099799613263672*x^18+30995312898987870930041808296*x^17-27235423962825443799025715970*x^16-97727524187960085031128623272*x^15+98753359798348300473316457228*x^14+206133637293578259778520214526*x^13-217977929943984974086486627310*x^12-289952822977509852674840086442*x^11+298183975024865163139675361878*x^10+266679077723133541419354568772*x^9-245541260789938631068404409248*x^8-153711321988106504126391166192*x^7+112936603061250585638156214662*x^6+50641318616461091824173337304*x^5-25092523277675652950714511828*x^4-7729360191859764890048307658*x^3+2115657952883808914843602890*x^2+375046546285807280897368862*x-25718412833787035772685726,-665146722880344810083306*x^26+3930212298744194157572038*x^25+14076624969471597171092896*x^24-118478368272904929214681912*x^23-79066911707617462072746578*x^22+1535224555077899260600855714*x^21-450302341233500597267285516*x^20-11224902524549189316377538992*x^19+8586219487687022772305936752*x^18+51075463932281694510949414470*x^17-53112204905430296830626583750*x^16-150325390891784720361767051020*x^15+182656079335310339482210239134*x^14+287959522795707002014825041216*x^13-383429412624592378643331197840*x^12-352163018525443566667928947096*x^11+496278418099867065461410865234*x^10+262292841888198825743233952804*x^9-382572705803365552581948085452*x^8-108469549988932039305585483322*x^7+161576688082909306988371714386*x^6+19889077771014060232185646316*x^5-31137410187448186036111789418*x^4-469813233563784151694621612*x^3+1650440716829173195855800860*x^2+39904373337954813727015868*x-5038739547361498344067506,799860809556930359900844*x^26-4775285015536717783630112*x^25-16792160365947487152147400*x^24+144295694176847265072127244*x^23+89838329511615250949330428*x^22-1873698382426606678346930368*x^21+623684178373112265678113480*x^20+13722775375875928438283890504*x^19-11013127751585385883858789368*x^18-62519674866526085456253957192*x^17+67241643847789915098061989416*x^16+184231938877393535582207676712*x^15-229517333952866168481468280852*x^14-353823613840691809765966974284*x^13+477488751799768724967963081100*x^12+436157840412507132926448182924*x^11-609132850558860534384895540840*x^10-332710021924672461186905223672*x^9+457866247165103526977369995284*x^8+147368186229635976871469543284*x^7-184652262583336019107669276312*x^6-33381433782562136578924907232*x^5+32337508264067451174933404400*x^4+3106708253623476416219872208*x^3-1327051385855387047329510204*x^2-362964607061744973689971784*x+24455620545865763112648432,9204250669580787318387868*x^4-55225504017484723910327208*x^2+36817002678323149273551472,86554335138879692065378*x^26-208202404026635412865825*x^25-3470449571307235735601954*x^24+8146453242822537655662638*x^23+60884490035186353341026556*x^22-138544154262735814777684305*x^21-615067270767849614458444628*x^20+1345435213132998866302170752*x^19+3960820372224372542063156700*x^18-8242628938899000151217549682*x^17-16991174586244885749542187459*x^16+33217170297522677001462275136*x^15+49235126138944478134373141900*x^14-89091208169923130980115805369*x^13-95546844373273712509172826783*x^12+157393902283308261484070672155*x^11+120250356511628154889330639085*x^10-177273223538511990599474071680*x^9-91790216222618784162701254202*x^8+119462625920954083402995792452*x^7+36733296761371317193202071235*x^6-42600251898238332009300268058*x^5-4579336159867135062710506718*x^4+5852102021736143681844278665*x^3-767117907212454462715820567*x^2+96816570949414968394793551*x+54628061917293081056810211]];
E[613,3] = [x^18+6*x^17-6*x^16-94*x^15-62*x^14+567*x^13+704*x^12-1719*x^11-2756*x^10+2786*x^9+5455*x^8-2273*x^7-5795*x^6+629*x^5+3147*x^4+213*x^3-714*x^2-115*x+25, [1838185,1838185*x,-219371*x^17-2456626*x^16-6642604*x^15+17857949*x^14+106872102*x^13+42208848*x^12-492026224*x^11-603045361*x^10+938741916*x^9+1773498824*x^8-668914535*x^7-2268468302*x^6-75791910*x^5+1343221406*x^4+268499473*x^3-322776988*x^2-71237321*x+14039830,1838185*x^2-3676370,1535375*x^17+12753975*x^16+16734680*x^15-128880170*x^14-392894590*x^13+253417650*x^12+2081565330*x^11+944212380*x^10-4726694425*x^9-4530717250*x^8+4929849615*x^7+6891800060*x^6-1931640045*x^5-4539684180*x^4-172019000*x^3+1132926965*x^2+198881660*x-36412485,-1140400*x^17-7958830*x^16-2762925*x^15+93271100*x^14+166592205*x^13-337589040*x^12-980144110*x^11+334155440*x^10+2384666430*x^9+527754270*x^8-2767098585*x^7-1347046855*x^6+1481205765*x^5+958860010*x^4-276050965*x^3-227868215*x^2-11187835*x+5484275,-2611727*x^17-19710272*x^16-15877153*x^15+216888408*x^14+512890064*x^13-622912119*x^12-2895707638*x^11-392715142*x^10+6935502347*x^9+4747583178*x^8-7776588760*x^7-8379950184*x^6+3558373135*x^5+6012839897*x^4-58602764*x^3-1611554441*x^2-260381717*x+54065195,1838185*x^3-7352740*x,1512583*x^17+11924008*x^16+13010247*x^15-122264242*x^14-336036401*x^13+266523081*x^12+1769896327*x^11+696336208*x^10-3903218123*x^9-3678822662*x^8+3824806260*x^7+5633792426*x^6-1242959780*x^5-3743039023*x^4-300651459*x^3+989858124*x^2+178022148*x-42472305,3541725*x^17+25946930*x^16+15445080*x^15-297701340*x^14-617139975*x^13+1000661330*x^12+3583522005*x^11-495200925*x^10-8808272000*x^9-3445621010*x^8+10381707435*x^7+6965858080*x^6-5505435055*x^5-5003844125*x^4+805892090*x^3+1295139410*x^2+140155640*x-38384375,1237404*x^17+7851299*x^16-1818959*x^15-99257076*x^14-119607733*x^13+429143523*x^12+795179901*x^11-782267141*x^10-2066754169*x^9+454633884*x^8+2555981185*x^7+344781533*x^6-1480964550*x^5-548033999*x^4+336847468*x^3+204372682*x^2-20786661*x-13020695,-677688*x^17-4692073*x^16-641292*x^15+60171507*x^14+95273556*x^13-261720206*x^12-642139712*x^11+447814752*x^10+1827424838*x^9-93214233*x^8-2601346985*x^7-590475631*x^6+1827755430*x^5+626345023*x^4-521961961*x^3-179879459*x^2+16812917*x+430340,649515*x^17+5125205*x^16+5974090*x^15-51759405*x^14-153771760*x^13+91764050*x^12+834311845*x^11+503141940*x^10-1911927365*x^9-2354095765*x^8+1940060205*x^7+3792212955*x^6-583587860*x^5-2704960140*x^4-278397790*x^3+750547180*x^2+145293195*x-35445540,-4039910*x^17-31547515*x^16-28613930*x^15+350962990*x^14+857937090*x^13-1057051830*x^12-4882273855*x^11-262417265*x^10+12023854600*x^9+6470382025*x^8-14316405655*x^7-11576584830*x^6+7655616180*x^5+8160502105*x^4-1055256590*x^3-2125154795*x^2-246283410*x+65293175,-2421639*x^17-20650699*x^16-29561096*x^15+206451776*x^14+667727858*x^13-370028593*x^12-3559676466*x^11-1807326509*x^10+8241559089*x^9+8268204841*x^8-8943420375*x^7-12756183178*x^6+3890635140*x^5+8688918334*x^4+70051862*x^3-2286442452*x^2-347659634*x+80892295,1838185*x^4-11029110*x^2+7352740,-155529*x^17-243934*x^16+6007199*x^15+17147436*x^14-50716587*x^13-200497278*x^12+124160099*x^11+919411436*x^10+75829389*x^9-2036867494*x^8-693883525*x^7+2288644662*x^6+925322170*x^5-1248012916*x^4-465942238*x^3+272816378*x^2+87395631*x-11290895]];

E[614,1] = [x^3-4*x+2, [1,-1,x,1,-x^2-x+2,-x,-x-1,-1,x^2-3,x^2+x-2,2*x^2+2*x-5,x,-2,x+1,-x^2-2*x+2,1,2*x^2-5]];
E[614,2] = [x^4+x^3-5*x^2-5*x+1, [1,-1,x,1,-x^3+x^2+5*x-1,-x,-x^2+x+4,-1,x^2-3,x^3-x^2-5*x+1,-2*x,x,-x^3+6*x+2,x^2-x-4,2*x^3-6*x+1,1,-2*x^3+x^2+9*x+1]];
E[614,3] = [x^6-18*x^4+5*x^3+87*x^2-42*x-60, [27,-27,27*x,27,x^5-5*x^4-20*x^3+51*x^2+75*x-66,-27*x,-9*x^4+9*x^3+108*x^2-81*x-189,-27,27*x^2-81,-x^5+5*x^4+20*x^3-51*x^2-75*x+66,x^5-5*x^4-20*x^3+51*x^2+102*x-93,27*x,3*x^5+3*x^4-24*x^3-36*x^2-18*x+180,9*x^4-9*x^3-108*x^2+81*x+189,-5*x^5-2*x^4+46*x^3-12*x^2-24*x+60,27,3*x^5+12*x^4-33*x^3-144*x^2+90*x+261]];
E[614,4] = [x, [1,1,-2,1,0,-2,-1,1,1,0,-3,-2,-4,-1,0,1,3]];
E[614,5] = [x^11-3*x^10-21*x^9+66*x^8+141*x^7-506*x^6-268*x^5+1526*x^4-283*x^3-1356*x^2+344*x+358, [754941,754941,754941*x,754941,79041*x^10-66456*x^9-1991982*x^8+1608969*x^7+17312499*x^6-13796055*x^5-59264067*x^4+44642406*x^3+64035519*x^2-28904583*x-21137466,754941*x,-62263*x^10+84136*x^9+1530701*x^8-1910606*x^7-13043341*x^6+15190911*x^5+43689445*x^4-45777438*x^3-45258542*x^2+29148935*x+17369615,754941,754941*x^2-2264823,79041*x^10-66456*x^9-1991982*x^8+1608969*x^7+17312499*x^6-13796055*x^5-59264067*x^4+44642406*x^3+64035519*x^2-28904583*x-21137466,-35870*x^10+89090*x^9+617215*x^8-1364101*x^7-3259739*x^6+5631564*x^5+6389285*x^4-4049022*x^3-10452754*x^2+1176640*x+5999767,754941*x,-153392*x^10+161252*x^9+3744151*x^8-3645934*x^7-31578698*x^6+29206266*x^5+105175700*x^4-89061420*x^3-112105588*x^2+55802800*x+41597590,-62263*x^10+84136*x^9+1530701*x^8-1910606*x^7-13043341*x^6+15190911*x^5+43689445*x^4-45777438*x^3-45258542*x^2+29148935*x+17369615,170667*x^10-332121*x^9-3607737*x^8+6167718*x^7+26198691*x^6-38081079*x^5-75974160*x^4+86404122*x^3+78275013*x^2-48327570*x-28296678,754941,192370*x^10-355507*x^9-4281410*x^8+7142219*x^7+32935993*x^6-49254582*x^5-100676827*x^4+129419028*x^3+102399938*x^2-82597850*x-39744125]];
E[614,6] = [x, [1,1,0,1,-2,0,-3,1,-3,-2,-3,0,0,-3,0,1,-1]];

E[615,1] = [x, [1,-1,-1,-1,-1,1,0,3,1,1,2,1,0,0,1,-1,0]];
E[615,2] = [x^5-x^4-9*x^3+7*x^2+19*x-8, [1,x,-1,x^2-2,1,-x,-x^4+6*x^2+x-4,x^3-4*x,1,x,x^4+2*x^3-6*x^2-11*x+5,-x^2+2,-x^3-x^2+6*x+4,-x^4-3*x^3+8*x^2+15*x-8,-1,x^4-6*x^2+4,-x^4-3*x^3+7*x^2+15*x-5]];
E[615,3] = [x^6-x^5-10*x^4+8*x^3+24*x^2-9*x-9, [3,3*x,3,3*x^2-6,-3,3*x,x^5-x^4-10*x^3+8*x^2+21*x-3,3*x^3-12*x,3,-3*x,-x^5-2*x^4+7*x^3+13*x^2-6*x-9,3*x^2-6,x^5+2*x^4-7*x^3-13*x^2+6*x+15,-3*x^2+6*x+9,-3,3*x^4-18*x^2+12,-2*x^5+2*x^4+14*x^3-16*x^2-12*x+18]];
E[615,4] = [x^8-2*x^7-13*x^6+26*x^5+44*x^4-87*x^3-24*x^2+43*x+4, [22,22*x,22,22*x^2-44,22,22*x,-6*x^7+4*x^6+76*x^5-62*x^4-244*x^3+226*x^2+86*x-48,22*x^3-88*x,22,22*x,5*x^7-7*x^6-56*x^5+92*x^4+130*x^3-313*x^2+75*x+150,22*x^2-44,3*x^7+9*x^6-38*x^5-112*x^4+122*x^3+349*x^2-65*x-108,-8*x^7-2*x^6+94*x^5+20*x^4-296*x^3-58*x^2+210*x+24,22,22*x^4-132*x^2+88,13*x^7-5*x^6-172*x^5+72*x^4+624*x^3-255*x^2-487*x+82]];
E[615,5] = [x^2+x-4, [1,x,-1,-x+2,-1,-x,0,x-4,1,-x,-x-3,x-2,0,0,1,-3*x,-x-5]];
E[615,6] = [x^4-3*x^3-x^2+5*x-1, [1,x,-1,x^2-2,-1,-x,x^3-3*x^2+3,x^3-4*x,1,-x,-x^3+x^2+6*x-2,-x^2+2,-3*x^3+7*x^2+6*x-8,x^2-2*x+1,1,3*x^3-5*x^2-5*x+5,-2*x^2+2*x+6]];
E[615,7] = [x, [1,0,1,-2,-1,0,0,0,1,0,-1,-2,-4,0,-1,4,-3]];

E[616,1] = [x, [1,0,-2,0,2,0,1,0,1,0,-1,0,4,0,-4,0,0]];
E[616,2] = [x, [1,0,-1,0,-1,0,1,0,-2,0,1,0,0,0,1,0,-2]];
E[616,3] = [x, [1,0,2,0,2,0,1,0,1,0,-1,0,0,0,4,0,4]];
E[616,4] = [x^2+x-4, [1,0,x,0,-x-2,0,-1,0,-x+1,0,1,0,-2*x-2,0,-x-4,0,-2]];
E[616,5] = [x^3-x^2-6*x+4, [1,0,x,0,x,0,1,0,x^2-3,0,1,0,-x^2+x+2,0,x^2,0,-2*x^2+8]];
E[616,6] = [x^4-x^3-10*x^2+4*x+8, [2,0,2*x,0,-x^3+x^2+8*x,0,-2,0,2*x^2-6,0,2,0,-2*x^2+2*x+12,0,-2*x^2+4*x+8,0,x^3-x^2-10*x+8]];
E[616,7] = [x, [1,0,0,0,-2,0,1,0,-3,0,-1,0,2,0,0,0,-2]];
E[616,8] = [x, [1,0,0,0,0,0,-1,0,-3,0,-1,0,-6,0,0,0,0]];

E[617,1] = [x^23+6*x^22-14*x^21-143*x^20-8*x^19+1398*x^18+1232*x^17-7309*x^16-9862*x^15+22150*x^14+38297*x^13-38892*x^12-85061*x^11+35716*x^10+111174*x^9-9112*x^8-82484*x^7-10281*x^6+30927*x^5+7818*x^4-4189*x^3-1408*x^2-72*x-1, [319556016332913,319556016332913*x,-142058037488465*x^22-889182043910075*x^21+1866345473475950*x^20+21192582872959947*x^19+4139032658172553*x^18-207297470193354620*x^17-205444345270460253*x^16+1085611203007922033*x^15+1567703339765926822*x^14-3303145623104106424*x^13-5980783485514702493*x^12+5853369841233423241*x^11+13147990929796640672*x^10-5509647435407932653*x^9-17057824356227598795*x^8+1642647048912660086*x^7+12596337743145069036*x^6+1309906526264890566*x^5-4732744618675998786*x^4-1081416434843325273*x^3+661942506727480058*x^2+198537464282691274*x+5255874705388030,319556016332913*x^2-639112032665826,95828917978701*x^22+393480706080045*x^21-2066892643446291*x^20-9695559612242022*x^19+17263226819233812*x^18+99215322080052912*x^17-68412928843246740*x^16-552998880073184856*x^15+107125427414547525*x^14+1842838780982356248*x^13+116036856621323745*x^12-3783555574295189379*x^11-755167354982315697*x^10+4747374365405584824*x^9+1272594159200324832*x^8-3479196030176285655*x^7-1024479852328254153*x^6+1342857878095734834*x^5+392896176771914826*x^4-213848654946154110*x^3-57787612594420155*x^2+4780537260085875*x+937603279874640,-36833818979285*x^22-122467051362560*x^21+878283512109452*x^20+3002568358264833*x^19-8700333784480550*x^18-30428843084671373*x^17+47309007004731348*x^16+166726974054684992*x^15-156560092734606674*x^14-540386823818958388*x^13+328448647232042461*x^12+1064392202990319307*x^11-435902568469916713*x^10-1264664096484990885*x^9+348214211317767006*x^8+878822578946521976*x^7-150592157154018099*x^6-339315693270241731*x^5+29193302241494097*x^4+66861387688300173*x^3-1480252501067446*x^2-4972303993781450*x-142058037488465,312620753665810*x^22+1798003004653891*x^21-4693310158515286*x^20-43046382619276803*x^19+5232622101150592*x^18+423505663357019281*x^17+306956707755614724*x^16-2234612322323778688*x^15-2654383290079403486*x^14+6870420831154328507*x^13+10576197012580478167*x^12-12383029474919338298*x^11-23815993371137798032*x^10+12109293898749273483*x^9+31431281283341351115*x^8-4399129075693069225*x^7-23525253510444411687*x^6-1922205761077181088*x^5+8923595358257078175*x^4+1925634720801031275*x^3-1251726011574815386*x^2-365683231422941156*x-10347065830485404,319556016332913*x^3-1278224065331652*x,-1174171214643*x^22+109033362364404*x^21+415351815674163*x^20-2572549436249268*x^19-9842888026655766*x^18+24984604311923277*x^17+99369118359648453*x^16-130927320965935650*x^15-547779803116762209*x^14+404233846204388073*x^13+1796960891707130814*x^12-741286913328593142*x^11-3596553825910686513*x^10+733960384255169583*x^9+4336777923035603316*x^8-211709455250237247*x^7-2996873760982202907*x^6-255749101933660353*x^5+1055021210719496775*x^4+224612021824445607*x^3-136368103968738891*x^2-47527837390073502*x-1356363188975208,-181492801792161*x^22-725287791744477*x^21+4007975658712221*x^20+18029858163063420*x^19-34753505254171086*x^18-186474155793006372*x^17+147414681433140753*x^16+1052190216520496787*x^15-279771752245870902*x^14-3553923215208988452*x^13-56577296267550087*x^12+7396136237203970064*x^11+1324748730878299908*x^10-9381089968163780142*x^9-2606002929554362143*x^8+6879872618226919131*x^7+2328074983834759815*x^6-2570804769555371001*x^5-963039135703638528*x^4+343639724818358334*x^3+139707653774096883*x^2+7837285374341112*x+95828917978701,-89977203480637*x^22-256750622346475*x^21+2443260710768932*x^20+6819598392059940*x^19-28515788937280258*x^18-76453270098481351*x^17+189230014216749792*x^16+475267985477895943*x^15-791285492902521364*x^14-1804814347433580623*x^13+2170843097998560611*x^12+4342039089662615549*x^11-3923816350425332039*x^10-6638968987905593637*x^9+4555559173001641182*x^8+6295795548326273323*x^7-3199532592019722117*x^6-3487740067205393601*x^5+1199183466687257610*x^4+994491487493181873*x^3-169520793239182004*x^2-105671835890691472*x-4590130990733572,382651937490080*x^22+2140974134219612*x^21-5997358702724822*x^20-51380170082234724*x^19+12786770532023951*x^18+507283212373919708*x^17+308397281676011433*x^16-2691037621524159410*x^15-2859924412959649282*x^14+8345364658889932954*x^13+11593418286277372073*x^12-15275763727133724580*x^11-26245089277414129169*x^10+15462472073336662902*x^9+34658841532862474646*x^8-6474086979666682211*x^7-25910679672486408888*x^6-1451460230715939840*x^5+9820317421820347875*x^4+2007055749481358235*x^3-1380719334571574846*x^2-399869021569379533*x-10548583229755345,52788200897369*x^22+462455340657113*x^21-161686312656608*x^20-10749036242190576*x^19-14655502307704876*x^18+101376558516718274*x^17+210727875458175792*x^16-502186241406815009*x^15-1332560643919200079*x^14+1390880902274988571*x^13+4725515702683275668*x^12-2026762284832877698*x^11-10033817247418857326*x^10+924801732916268919*x^9+12810868389775031412*x^8+1394501971959325933*x^7-9427101914470658835*x^6-2177748225977337576*x^5+3569764022436941211*x^4+1061479232135540364*x^3-509742587430382007*x^2-162865645582679437*x-4403078739154075,-77721517340969*x^22-316619607193946*x^21+1658385154934027*x^20+7733588130477072*x^19-13538150267783099*x^18-78192060760663196*x^17+50332766219626602*x^16+428682582572814734*x^15-54128862543362993*x^14-1396239990559047403*x^13-224583123348655778*x^12+2775840556429666378*x^11+943731060821203523*x^10-3324018384701409825*x^9-1550528768290208505*x^8+2260956734926260353*x^7+1291848207361011522*x^6-744826690365427695*x^5-518434331358271305*x^4+57842325531262704*x^3+74486789738519324*x^2+12161628433452916*x+312620753665810,-558842136718809*x^22-3043907310976125*x^21+9146904886034202*x^20+73397991321253608*x^19-28259613684803286*x^18-729647300193627327*x^17-351918434312857995*x^16+3909960159601592988*x^15+3624392329230720498*x^14-12318422510551921758*x^13-15073879678979871609*x^12+23170735164295146819*x^11+34470068844903030207*x^10-24821896422232864224*x^9-45713617314533558217*x^8+12544485474128198505*x^7+34221053728021722243*x^6-174052379238155802*x^5-12961805225846446626*x^4-2105719366453468731*x^3+1815455296112942334*x^2+478957460119726767*x+12543574510177251,319556016332913*x^4-1917336097997478*x^2+1278224065331652,361230644862338*x^22+2234729298451889*x^21-4883928581443751*x^20-53472449597158350*x^19-7337209058344936*x^18+525956398095131336*x^17+492643180809210318*x^16-2776477536345610745*x^15-3840547590020672440*x^14+8551018345144299373*x^13+14804556242225006954*x^12-15470097243725781232*x^11-32807218716889924685*x^10+15238804225960592787*x^9+42878155873504935342*x^8-5644128890229708062*x^7-31883547528206658441*x^6-2366248453135359141*x^5+12051126489996327834*x^4+2440788838271898672*x^3-1695615051963210296*x^2-470622088162084681*x-11395755254792320]];
E[617,2] = [x^28-3*x^27-38*x^26+117*x^25+628*x^24-1999*x^23-5924*x^22+19702*x^21+35142*x^20-124104*x^19-135757*x^18+522790*x^17+339580*x^16-1496649*x^15-517913*x^14+2898195*x^13+380619*x^12-3703320*x^11+86506*x^10+2969259*x^9-402519*x^8-1363286*x^7+298018*x^6+300140*x^5-86850*x^4-19337*x^3+7006*x^2-285*x-23, [167536826081813817646636783444,167536826081813817646636783444*x,244311352192722093055219757*x^27-150438783143505279421960345*x^26-10758983755117605658250038441*x^25+5699236752617720366223201506*x^24+211093546376091395024473826499*x^23-94012993201881910963695364329*x^22-2433266555670712259646235355693*x^21+886509148102091942690428002179*x^20+18286702006639198375792657009683*x^19-5264036578157593252412272098043*x^18-93957165919678245280030755263156*x^17+20356465934873630045484605595107*x^16+336433652883500885394818738178920*x^15-50748843872626635044142613948588*x^14-839569025496514295534613379755475*x^13+75616997378684598064201100802145*x^12+1435071266823663307352165152395436*x^11-48291836985537780195232646947815*x^10-1617037258871024129233355272564398*x^9-30982826935236585633043757885070*x^8+1118817152367677069767411125911209*x^7+76657903156417606976230914579190*x^6-414876186152797845730549530896811*x^5-45460259330109327205526055729754*x^4+60435534246923098451730182637025*x^3+6154577420106943403856369360129*x^2-1175425654655451366069534220837*x+146240119314154175587354074402,167536826081813817646636783444*x^2-335073652163627635293273566888,4514794126644792531741617558*x^27-12141037863570838411991548748*x^26-174892005111059157369800132632*x^25+473088613322739482130617113050*x^24+2964052766848969510705090199094*x^23-8072735862161751294743491195584*x^22-28924109522812198020004901465756*x^21+79421937242378482734708665942268*x^20+179888997517255044508890768117164*x^19-499038011398262021597344449645500*x^18-744930234193684862346282959069622*x^17+2095032901184524717892449968485850*x^16+2081128804016771768065628391626098*x^15-5969975504228730742420058229397708*x^14-3881058112587453777394985660076802*x^13+11489193343158119788404107438997480*x^12+4649852129980187682616147357754918*x^11-14562148981042946079549030003951810*x^10-3275827246433321708891490695991850*x^9+11558271584974918845852716129437504*x^8+1052255083881975870687406063000150*x^7-5252828338263465673468676542566094*x^6+63047988013609754387083874779718*x^5+1160047006495943715300529383772634*x^4-117399162294290860505208843706446*x^3-85245323966790180527642049704296*x^2+13215270441444481921018141282736*x+80106980439293384072643415178,582495273434660999743698926*x^27-1475152371794166122151687675*x^26-22885191453930764521237510063*x^25+57666017199061920585795819103*x^24+394365399831369553053688929914*x^23-985966105281026580387113515225*x^22-3926913112798918734683511650235*x^21+9701112467882558581646124309189*x^20+25055979474367989384112720624685*x^19-60790189680050872093133286712107*x^18-107367065877959552982853731166923*x^17+253470403905896317035127213096860*x^16+314899497075258692804858980145705*x^15-713037000148325018154105349748334*x^14-632444941989501608417971522836470*x^13+1342081724263421617015580463705853*x^12+856471279816813801458023783545425*x^11-1638171656703807746615190112863440*x^10-756406508235646394936092518335133*x^9+1217157113540939373941905127279092*x^8+409724149241824938329109236220692*x^7-487685366710568498458680012438437*x^6-118787868577232936215119713595734*x^5+81653975184861012233576018532475*x^4+10878826037457610517265153801238*x^3-2887070988117662350014403838379*x^2+215868854689079972108091705147*x+5619161100432608140270054411,1257001936315249507108447694*x^27-2563459298790634536437942398*x^26-50179837265893719389806970666*x^25+98414609556788305721709561100*x^24+884526695061637664069182512594*x^23-1650549665554188021097554110346*x^22-9090726225386272346744847211138*x^21+15917904130115544334994906836482*x^20+60583243661817205475559867788614*x^19-97770129314898193493583815320518*x^18-275375385297191641169979308019444*x^17+400122379245649956245875211977626*x^16+873753653043612743481072560963284*x^15-1108725393296237643392590891851280*x^14-1944766283047371270498344842062274*x^13+2070817517760545020759192222638610*x^12+2999986011723609918993870174844416*x^11-2543560315539497879448911100369370*x^10-3101578438973875831684140252152600*x^9+1951664246131807952508873321091740*x^8+2008037708578655643639984046609790*x^7-849379822070142482916725124794752*x^6-711925582506579233811542130521054*x^5+174724943854366501366941221618168*x^4+103520478017077973079226958837570*x^3-13316654541065563712049304087214*x^2-3646072398673119123928245514950*x+363702247217858752665873924156,167536826081813817646636783444*x^3-670147304327255270586547133776*x,-2250688974755011744074029769*x^27+6902475399667696235476561290*x^26+84955741212817382218428374544*x^25-268420061541920335305234413241*x^24-1393112533983814020212396511069*x^23+4573859967613936492124771815354*x^22+13022171166106102975773060753526*x^21-44986333532005553811031414732492*x^20-76418889295964837999886491372250*x^19+283127811676328344106204230221878*x^18+291340343655614698069728567892379*x^17-1194286480133170926708144341643611*x^16-716304937824808567464104198488207*x^15+3436736722087118594510409482029738*x^14+1064219485667999700528862601302235*x^13-6733187380162512755129630288366092*x^12-734138193376078351061216674810543*x^11+8801210782552322594211829398319089*x^10-247421575303115616699322211835153*x^9-7357465410125693304750115877036688*x^8+846969291538338549926896456231263*x^7+3644577755561827938415872607222569*x^6-574239554932599986786590671714109*x^5-926313026926810059081651866063857*x^4+144310593906099174201646957772625*x^3+85020762342205830132519944453862*x^2-7512290954045005199352868543656*x-684211252528158496134536827515,1403344516363539183233303926*x^27-3329828298557041163618665428*x^26-55142299494701244083152141236*x^25+128762055316039800771354372670*x^24+952337597001188976208002302858*x^23-2178469116568447061967559052164*x^22-9528536640777219725664683185448*x^21+21230102318703745358426843893928*x^20+61265998894863310761917255772532*x^19-132015327942767762614636184248216*x^18-265256320284106369776750274660970*x^17+547995014490733120136809901280458*x^16+787086610620071355418501947165434*x^15-1542787542074469342903089285760348*x^14-1595560420713184703126789859510330*x^13+2931435704290773393977184624446516*x^12+2157578404043246999100337130940750*x^11-3666384027152856131642331064464198*x^10-1847321508712271182153867479212018*x^9+2869545500944911115771510220828752*x^8+902127287473606957959226291609494*x^7-1282441928020818026337489506620326*x^6-195023302675224315176399710085486*x^5+274710707604809370876550641205854*x^4+2057250060140172658645609014750*x^3-18415377209828934556363631328612*x^2+1366823306533059255619004419208*x+103840264912830228230057203834,1896142859143967479345450730*x^27-6521480123760120187192722666*x^26-70476778985334510595149064486*x^25+253226892794396636967710510972*x^24+1134156434706932754977949268142*x^23-4304596612543553785251875665730*x^22-10360404273876337567647603720862*x^21+42175910521225697744517490012246*x^20+59100664964181526350783685041382*x^19-263841998502815888740991555297858*x^18-217525220907816650650967949225772*x^17+1102514505315220916573269804288454*x^16+511601256684752088572032127645056*x^15-3126915937142309503883670088309024*x^14-717533895373938291751351684239766*x^13+5991625085316787980831934821627366*x^12+455921412849055754314376346830996*x^11-7573039182562328030621637469109866*x^10+151615035154496030253544726366000*x^9+6023097214267737811738673767336512*x^8-434054853542574332171168664788430*x^7-2783079744911666801219398186339168*x^6+246170680053299693634740773763890*x^5+655497005133351125181815004155396*x^4-54048178312079167517438053863554*x^3-61780774490081931016052894768042*x^2+3949791821313511953129640787270*x+983654597322372008431370215564,-216289255875627309031030411*x^27-449493497126635972133030185*x^26+11032037717441794932283121643*x^25+17159894609167004482199601374*x^24-243745146437322031948407015149*x^23-288185126568223150274448483953*x^22+3091323702014292083988238780523*x^21+2812912279122948645738796962835*x^20-25073600278994100132526589219169*x^19-17761181885975093135823851873855*x^18+136862031746346383539180362099632*x^17+76382820252569250420924487664411*x^16-514113337424614838338335572207200*x^15-229265379693882755969427953077856*x^14+1333034886264482871932617714378233*x^13+483528516580017370268174640425941*x^12-2351147794335085587748685311019992*x^11-710212170388309618989455643732059*x^10+2721652298179659546970639943092054*x^9+706155218079944420551030699985426*x^8-1931212020106277382296913930230019*x^7-445697751288518951989199209282782*x^6+736576216121777551231601284676457*x^5+152389059195476572756057516983846*x^4-112494428379557819501430862980367*x^3-16174247871208041799809001690667*x^2+2522481623340213725206292689995*x-279082847339311148180603073506,-8326384797066395572433721114*x^27+22642845303799275818365953220*x^26+322198790563610602786163231900*x^25-881801017739888339669539625226*x^24-5456223150559031932039725138062*x^23+15037865383122572397169516203604*x^22+53232095532196297673921910631712*x^21-147851715798486065462248524696940*x^20-331380298272569878109461326047788*x^19+928358360642860765176753667045856*x^18+1376562179224715067499426014955718*x^17-3894239166811001499827528497921586*x^16-3873857149476175645375767641696846*x^15+11085427020038293810159217575445648*x^14+7337138708669848945361344074788370*x^13-21300330293868693400862451583649928*x^12-9086348747263244554262612955637314*x^11+26922220835667466531640815558021962*x^10+6916219568470771013422076883134906*x^9-21250058455833487673085320723179164*x^8-2824062855050612971768845171846642*x^7+9543672081958276377800758377181834*x^6+370178051726055906911482234351038*x^5-2056461764769270321504401500438214*x^4+91947829367606054334098319506814*x^3+147209018118752170589354441375660*x^2-12873745971972171063998867389460*x-401582616394136610875003173646,1207546510155113984887400684*x^27-2413763685914238119685958294*x^26-48654616992095886609978819098*x^25+95129479055660973605077360762*x^24+862197205139995743612232829960*x^23-1644246754654734266634403071882*x^22-8847548019167501454055729630706*x^21+16409681615826707296754798926066*x^20+58228838989569531336602977295658*x^19-104728573428842313833457774425086*x^18-257025663040599333575350157968634*x^17+446900935509680315857185893034764*x^16+772565297688044216171760240926126*x^15-1293748639204531452523287371519652*x^14-1572219209058629524494975341873720*x^13+2521547191725235966847759922001830*x^12+2111520095255491925215945413774710*x^11-3210316648476762805546063628369764*x^10-1780700066289673483718448970347006*x^9+2514004870982333559991769303950976*x^8+864273319681328756631122098167732*x^7-1086534785563377261420987495391546*x^6-202551617311292485696588269258992*x^5+212691096186057392771595641061470*x^4+10989991901462416006906748971664*x^3-12452627964497757170730030059114*x^2+721947799067704862191781516946*x+28911044535250738663494296962,6198380443430633540037802138*x^27-17272449147019089255021691704*x^26-240188686701256311125125895524*x^25+676694320857146498270749209954*x^24+4071562974552570491156633314602*x^23-11621217779539246406787273948948*x^22-39733729521217871409229116611016*x^21+115202850112520654074864226759316*x^20+247083947333882717584304948156200*x^19-730395933783708727484825278236616*x^18-1022849485802105566323719507049690*x^17+3099180107467872641014788722978154*x^16+2856279339574479349143335258525906*x^15-8943863339933988851685192190383232*x^14-5324947883474907372348712142813326*x^13+17471684435619161359255475803344244*x^12+6382262472671874912589132922953046*x^11-22531989280435962388597223859177446*x^10-4505380915954073943788699977968674*x^9+18225967659772644644940522715994572*x^8+1449810664082775514872564181808098*x^7-8421341820212406028188653177749654*x^6+101251189015163327750151344601562*x^5+1858094742029904749786438643081882*x^4-173787217495196842083728190682062*x^3-128200485721644556554671288436608*x^2+17284826747068455619792266295428*x+198572755426274651861636691254,167536826081813817646636783444*x^4-1005220956490882905879820700664*x^2+670147304327255270586547133776,-3838197136197532229002392818*x^27+9473788265351817317825383636*x^26+151253453209275059008616685724*x^25-369662767292888955955145401974*x^24-2619449394209913915550895138534*x^23+6315619151797219671045875867568*x^22+26276862868008874911423683867172*x^21-62189537779238742661169314723776*x^20-169389561150780751311231413261708*x^19+390840628464964906717509139015536*x^18+735665615848929915696136036586594*x^17-1639152146187934845270737784543698*x^16-2193965657100652152346264625923766*x^15+4656277876561157384095954137276696*x^14+4493634456551218466383461120436570*x^13-8899484420075379822102117813323940*x^12-6218095253189710553662808552961794*x^11+11126272541721227142985582726198486*x^10+5612619973134579870946630569359274*x^9-8597109350920468689621249427066092*x^8-3103282134275753794911107819383178*x^7+3698393935571066978622883495797590*x^6+929054284947989127920114572256866*x^5-721312564915631606201628741746734*x^4-108410672057894183847189184757362*x^3+37458802668956244722811917523896*x^2+3711782476709959061786715144760*x+373163650165544730674666367990]];

E[618,1] = [x, [1,-1,1,1,-3,-1,2,-1,1,3,-6,1,-1,-2,-3,1,0]];
E[618,2] = [x^2-4*x+2, [1,-1,1,1,x,-1,x-2,-1,1,-x,x+1,1,x-2,-x+2,x,1,-5*x+10]];
E[618,3] = [x, [1,-1,1,1,0,-1,-4,-1,1,0,-3,1,2,4,0,1,-6]];
E[618,4] = [x, [1,-1,-1,1,2,1,-2,-1,1,-2,-3,-1,-4,2,-2,1,0]];
E[618,5] = [x, [1,-1,-1,1,-1,1,-2,-1,1,1,6,-1,-1,2,1,1,0]];
E[618,6] = [x^2-2*x-2, [1,-1,-1,1,x,1,x+2,-1,1,-x,x-1,-1,-x+2,-x-2,-x,1,x-2]];
E[618,7] = [x, [1,1,1,1,-4,1,-4,1,1,-4,-3,1,-6,-4,-4,1,2]];
E[618,8] = [x, [1,1,1,1,3,1,-2,1,1,3,-2,1,3,-2,3,1,0]];
E[618,9] = [x^2-2, [1,1,1,1,x,1,x+2,1,1,x,-x+1,1,-3*x-2,x+2,x,1,-3*x+2]];
E[618,10] = [x, [1,1,-1,1,-2,-1,-2,1,1,-2,1,-1,-4,-2,2,1,-4]];
E[618,11] = [x^4-5*x^3-6*x^2+54*x-52, [2,2,-2,2,2*x,-2,-2*x^3+4*x^2+22*x-36,2,2,2*x,3*x^3-5*x^2-34*x+48,-2,-2*x^3+2*x^2+22*x-16,-2*x^3+4*x^2+22*x-36,-2*x,2,4*x^3-6*x^2-46*x+64]];

E[619,1] = [x^30-9*x^29-6*x^28+276*x^27-458*x^26-3470*x^25+10075*x^24+22121*x^23-99369*x^22-63002*x^21+577753*x^20-67623*x^19-2150746*x^18+1230936*x^17+5258190*x^16-4733021*x^15-8365124*x^14+9918973*x^13+8247588*x^12-12486304*x^11-4412332*x^10+9301511*x^9+719882*x^8-3767751*x^7+316240*x^6+703223*x^5-115454*x^4-54364*x^3+11432*x^2+1200*x-288, [479859473395100408449719360,479859473395100408449719360*x,1548346177263367118401924904*x^29-13538747823879545723750150004*x^28-12766299104004122034109139376*x^27+424155219816889738985997682416*x^26-600397741266351483318423554944*x^25-5529076749389048995340796687112*x^24+14185509833405673032779287398504*x^23+37919166024143086773508457468836*x^22-144205127343383189643587171880888*x^21-134753982647588643101114169541852*x^20+860682541152054456141296527003556*x^19+117016418896230957900065968771296*x^18-3303994104425304155305564810266236*x^17+1055969494338125142072761713773036*x^16+8426944658661210305247016777418628*x^15-5163929708992953743852854630322260*x^14-14313067424778583630975577042361496*x^13+11688928728176599482265146806755064*x^12+15828809542144697462395457547952884*x^11-15286317234027461195018412682360124*x^10-10817511791234080808723151949092980*x^9+11647407762062395488208485913148044*x^8+4143761936510121886249912980769720*x^7-4785707722349489969116237188813264*x^6-751596632086305985001142299898532*x^5+901125055798318712690169319711876*x^4+53954680061053253173294831106432*x^3-70925602665205736523586640925440*x^2-532520389774705197176823178592*x+1736484839434956197289340197504,479859473395100408449719360*x^2-959718946790200816899438720,1023775486722765913605291257*x^29-8935695226284896482747996962*x^28-8582738321579047391624077188*x^27+280317318610250608904498528268*x^26-392535615016745186489247305062*x^25-3662060684511927622024707164536*x^24+9321200352704280350384098244267*x^23+25220037313131410861929027380358*x^22-94944866265240265259539734014439*x^21-90606965100136976035040660948911*x^20+567609752905828607816774551680968*x^19+86398759149267422704864342024893*x^18-2182996073672184380411882842305683*x^17+663405753344656384520338645719483*x^16+5581381014026073089711694305465919*x^15-3325095575576226283357808455973440*x^14-9513245423420764601460662032651888*x^13+7575634882667031863804323061207897*x^12+10578565649476643863138775131507467*x^11-9935280218624069281290102915294707*x^10-7297614527747725130803978063004525*x^9+7579998601868454919890292020864232*x^8+2846100167889523181640478112864350*x^7-3114576201468319014358791734545737*x^6-536638215979273077892120115279191*x^5+585118023749902055140928831259958*x^4+41385683437302116562513036931016*x^3-45751240580337309127235815622360*x^2-589576717913091388551951451856*x+1105742900053754987787162000192,396367771490758341867174132*x^29-3476222040423919323697589952*x^28-3188325107799585692933591088*x^27+108744807920270656909658051088*x^26-156315514285165094486117270232*x^25-1414077902522750685120106009296*x^24+3668200236900142747339476667452*x^23+9652483945100337544893703904688*x^22-37205076787641987907556096740044*x^21-33879107800387686616770792057156*x^20+221720232441311632547759336554488*x^19+26105242939173621128901569312148*x^18-849945555717734925184430119857108*x^17+285446272836745956937199266454868*x^16+2164425263264285358252942380732724*x^15-1360959657044537028020793381713400*x^14-3669075198751952854251349464048528*x^13+3058688190701477977069162532821332*x^12+4046803832520828708952015854154692*x^11-3985694406217253644450549833576852*x^10-2754551237560763660645321002581900*x^9+3029135393729414638320498477028392*x^8+1048075135380738754609733770157640*x^7-1241245627184073202524567031539492*x^6-187707588015358102413787517053716*x^5+232717439610818040461270668972848*x^4+13248688915539953501215604555616*x^3-18233213888249518094747628681120*x^2-121530573281084344792969687296*x+445923699051849730099754372352,669111732505491110436844567*x^29-5842001184713895299266910562*x^28-5595215378472389194997376648*x^27+183239590844978037579371262948*x^26-257031954555507448135545031802*x^25-2393219430640541198336345592896*x^24+6099116465445152157438986767357*x^23+16472976398721081806214634473278*x^22-62111474665983295624401879896829*x^21-59094224623122307290129786948341*x^20+371271256857566700668629954874848*x^19+55626351101343352879812102025143*x^18-1427704298073313804478213086892713*x^17+437255700062357106644772092606733*x^16+3649676362211125234127715253193049*x^15-2184064772100201554979245575739600*x^14-6219081789271001563284791642043908*x^13+4973493420093807990689638360566607*x^12+6912155828778281984612798147756817*x^11-6524820147246969884188402052874397*x^10-4763520759759249413497369686587995*x^9+4983689255152734231759954061287392*x^8+1853239017282200388572259012509870*x^7-2053089245613276834586420487202567*x^6-346920037815381923220891598658621*x^5+388043144891751362737055821835978*x^4+26131523977702462224059309237236*x^3-30620678949898139722666065388120*x^2-320493122741229290709245916016*x+747171296895083022468882596832,479859473395100408449719360*x^3-1919437893580401633798877440*x,3061715971606226036962089968*x^29-26749473749160812195525973168*x^28-25395935966914354747964632752*x^27+838234899090054876556153819392*x^26-1181924694805898702781799122208*x^25-10931417969720692905670586607904*x^24+27969265190320997925864412761008*x^23+75033633709437669982280357781232*x^22-284433090504184997990248392434016*x^21-267284989225238526645582911036704*x^20+1697830793946285962630406553219232*x^19+237315638308613815856822208625152*x^18-6517620632805783855567608548054592*x^17+2062146362267313004905534208834992*x^16+16621598698608926247192831443496816*x^15-10136976074027142680001728174032000*x^14-28224697655249019149870723860395472*x^13+22972166073596106373659983477184848*x^12+31199073144270597093662586440561088*x^11-30049162729397532675414700668821648*x^10-21302664368897815313909467870161680*x^9+22889847290641929600000247242916768*x^8+8145813334787981176685488123236880*x^7-9397247332587679393026088002922608*x^6-1472376236715017335054382150636704*x^5+1766231832669863331967278630444832*x^4+105485555539768721548149114688304*x^3-138728233917360345370717775920640*x^2-1061721036040249297903213328384*x+3394768278698040215473783681728,278284154219996739699624351*x^29-2440085401242451909992329646*x^28-2244715725232783250561858664*x^27+76353557902281601941976090644*x^26-109559745583929901814346502746*x^25-993337676027586229189211170008*x^24+2573099771337106087066379484261*x^23+6786680074914260809504452902394*x^22-26107061885629277946080101175397*x^21-23879605874709567066423287924553*x^20+155629528887921022080594952697004*x^19+18884959294857517211042907522039*x^18-596796349179918198109304153007069*x^17+198174987495292590451487870821089*x^16+1520455302367845963820220774523957*x^15-949236528824474111179113611731020*x^14-2579166528197941718566893574111164*x^13+2134887230487800387278738223769351*x^12+2847891736344349636823299728149421*x^11-2780377186865289961694116080423201*x^10-1942660349413706175934374264325095*x^9+2109102622956565010222473832192676*x^8+742754912406868979393458004307270*x^7-860396975900480570410657422392871*x^6-134824445349741558922324902361353*x^5+159584658481392332351898333716694*x^4+9905289979859137000002238273188*x^3-12293378082127751312887641101880*x^2-122787684013564108539187508208*x+294847340176156583118323882016,5643988742810188929518140*x^29-49261898354481267994114080*x^28-50196642214949164380887880*x^27+1570760612709972881117361360*x^26-2137991474652301776679577000*x^25-20991495632604966036258866960*x^24+52395033980667133799003768740*x^23+149739204804481435493235269840*x^22-547621426860122082421791915180*x^21-577089965541915767846542299980*x^20+3372766264132015314184126998160*x^19+799834586999237277135257030100*x^18-13461929995246830640596439275820*x^17+2951013327593547006046552525380*x^16+36109694442735306430307499346740*x^15-18107669819096487549774130862240*x^14-65603981691341865791070652655240*x^13+44766868524592460813502617185420*x^12+79633366482905580638650995083820*x^11-63182706452787402337145471948980*x^10-62213048289715472528471753292700*x^9+52691749757116026964740518395760*x^8+29054494355009976854101979597120*x^7-24611345388135861769343142718620*x^6-6969872027119391286937855935980*x^5+5655632541672328440195088185800*x^4+564770918800608988616221235320*x^3-521122696266170061680054007520*x^2+2390111374459102207526190080*x+12714107704772382931364566080,-3005604451533828483696872572*x^29+26267377168904055805769753712*x^28+24879901196829598622536269408*x^27-823089514576177251882946882608*x^26+1162113747082883727795835338632*x^25+10732948437908850443709290661776*x^24-27486587194858073801108629866292*x^23-73656739750662995781573785355008*x^22+279503109225839449724719256368884*x^21+262225528654388814461202219352796*x^20-1668456261553415739801607568366728*x^19-231491994447534300247104761697228*x^18+6405531122519606157243717029639788*x^17-2031690777786955531515137395954428*x^16-16338831988177997100532312559137884*x^15+9974449777357813017207662940368360*x^14+27753261816771643496515046815937888*x^13-22600131699566290866861880724349052*x^12-30694144999870506722152001096394492*x^11+29566989432411519465478976534334172*x^10+20977339789630801140547521647500900*x^9-22532078412820362318467263104630872*x^8-8035354432802240741696005790061800*x^7+9258360512627384417786611713069132*x^6+1457175770412384457020695474142476*x^5-1743239177991403458277190312632208*x^4-104594436481032437944070236381936*x^3+137198398393448039338154777486560*x^2+1035323152812350114212791771136*x-3358815760680573992120934244992,3133334909864001478438779398*x^29-27386493465594854894383182168*x^28-25912289012750220217314029952*x^27+858085232212700293931611575192*x^26-1212241504100857100663717688148*x^25-11187839050181204433704227986184*x^24+28663541681067359443795987411058*x^23+76760873512996729992791991206272*x^22-291432056956471816122854633671746*x^21-273125566290620550990502091147254*x^20+1739457005819614281514160335463972*x^19+240020454332336664296985109214622*x^18-6677211882002022082656186013002302*x^17+2122322342387935027672090113305622*x^16+17028888059588860890510618539243046*x^15-10406647634022427359706823993353300*x^14-28918637474139047833127451756688192*x^13+23568072556567752355360994760689318*x^12+31972268358099333457297242367242918*x^11-30820259858001536560081726412464838*x^10-21839681822753060532823548748194170*x^9+23473952218448958843229817613188908*x^8+8358876862956694466378609859541780*x^7-9636036105604605197108467316932398*x^6-1514127871518768941120392029160174*x^5+1810729403541200184827709240732472*x^4+108840195180000726791091084127304*x^3-142128434309153883218494655401040*x^2-1104151556261989938038435214464*x+3471929532436235351989315689408,180004407835524694664690541*x^29-1580544983439442532376309246*x^28-1435247326537508901197837544*x^27+49421218932007480444529779884*x^26-71401718846487045120494945406*x^25-642184239547670780212222245168*x^24+1671555763967112952241195806671*x^23+4377489081354850528596927881394*x^22-16938847251811356350387705538207*x^21-15310053932678304859588304243103*x^20+100873693788562178240882842179384*x^19+11385084165941179329388618204269*x^18-386378019501022098871915611317979*x^17+131359741468076932139803519439319*x^16+982855109194670486031658933607307*x^15-621879177007737743582892670362600*x^14-1663407788611380685473441104703084*x^13+1393597933106783568067204139102421*x^12+1829912354783273790023612011435971*x^11-1811177650849830811201346424587751*x^10-1240060884976148892370570483953345*x^9+1371557525062682437008762471928776*x^8+467957153646019802253111066956250*x^7-558519932102918431985439324526701*x^6-82491614975957612417673325103463*x^5+103383149942391432888434761875654*x^4+5754911276030379005122552652268*x^3-7969778448744003665223253005960*x^2-55762782111506310055330883568*x+192704178961581439805811235296,-4887562126452407573630408420*x^29+42711095629258406576323054380*x^28+40492947082082751195162134760*x^27-1338453703391385849502536972960*x^26+1888678189081699411482211343560*x^25+17455452765451087047148906329160*x^24-44682899924958314613402576384140*x^23-119822153967643426288562859968620*x^22+454414148378797820532913042813140*x^21+426884217663847516448625377534080*x^20-2712806310321126268247253530108540*x^19-379350360175553332864203225115860*x^18+10416113165319782558515514691673760*x^17-3291843162891659506495731810290520*x^16-26572797326855613212097924525994320*x^15+16186092523073418055499833616014780*x^14+45147409008473209797847290542603200*x^13-36684873791113598453901309678568580*x^12-49951559590143071406444045970058760*x^11+47990793945076958503362760663318040*x^10+34164393033016670857751295501929960*x^9-36559509758438381867805203509940500*x^8-13108195896936407587759443824506840*x^7+15009392715748942148938334409068220*x^6+2387318909259505824160121693938360*x^5-2820375115631572379164947840403540*x^4-173392001472990197975652558029000*x^3+221311579801180611747728046156320*x^2+1876341633309518579825557876640*x-5403351869775474427002053480640,479859473395100408449719360*x^4-2879156840370602450698316160*x^2+1919437893580401633798877440,-346928905384271541569722778*x^29+3020221966808703974153472048*x^28+2962080452206948193518039632*x^27-94812742638722341381584785832*x^26+131106326290084898082527511628*x^25+1240242506238418990848694823944*x^24-3128654921073875596279902352238*x^23-8565145912703797614967088337832*x^22+31899816125829298320946746195246*x^21+31019002914071005180911967237714*x^20-190724918411878885062282565818932*x^19-31679121204803125007828938016322*x^18+733218038520641313253840682657642*x^17-213567363425853900829277462968962*x^16-1872979015477743155533408453157346*x^15+1091725689921626972405244860381860*x^14+3187513526210810721571937648490112*x^13-2492502703029691753407316876990298*x^12-3535550789655504654564625811503218*x^11+3258638363982045062932536990920978*x^10+2429055836963904239802925552750670*x^9-2465462289616021508669674563661948*x^8-941384214968952295751489087309740*x^7+994957847531472013305803636046978*x^6+176537702613483672084524727429034*x^5-179367673441125808221725865840352*x^4-14154639546806184724359138566024*x^3+13204087475175777611401840340240*x^2+276232373066723064145783610624*x-299836437075651921370628637888]];
E[619,2] = [x^21+9*x^20+12*x^19-116*x^18-371*x^17+385*x^16+2789*x^15+957*x^14-9722*x^13-9809*x^12+16968*x^11+27508*x^10-12214*x^9-37037*x^8-2648*x^7+24373*x^6+8158*x^5-6740*x^4-3106*x^3+651*x^2+272*x-43, [140821177,140821177*x,691578437*x^20+5788095733*x^19+4631087614*x^18-83269973626*x^17-204026027975*x^16+396979616334*x^15+1681005370399*x^14-411457479108*x^13-6488973356427*x^12-2647940025007*x^11+13509862806154*x^10+10424156881877*x^9-15262700071616*x^8-15907330747951*x^7+8517819932045*x^6+11440562556845*x^5-1803424459906*x^4-3510433171649*x^3+148665263170*x^2+350639757908*x-44379232893,140821177*x^2-281642354,-216112162*x^20-1881618228*x^19-1961225462*x^18+26210295202*x^17+72301820486*x^16-113683935337*x^15-580802853897*x^14+22783509973*x^13+2207911446825*x^12+1283071684832*x^11-4522702457462*x^10-4306791016129*x^9+4985992613819*x^8+6320193684126*x^7-2646623286944*x^6-4507922724543*x^5+479446667805*x^4+1405476334297*x^3-33185717761*x^2-148072890441*x+18593655227,-436110200*x^20-3667853630*x^19-3046874934*x^18+52549572152*x^17+130721918089*x^16-247806890394*x^15-1073298043317*x^14+234552208087*x^13+4135752863526*x^12+1775159887138*x^11-8599782763119*x^10-6815761042098*x^9+9706659823218*x^8+10349119633221*x^7-5415278688156*x^6-7445321348952*x^5+1150805493731*x^4+2296707888492*x^3-99577804579*x^2-232488567757*x+29737872791,-2211682164*x^20-18227527374*x^19-12736012585*x^18+266061501258*x^17+618778540058*x^16-1318258541684*x^15-5165210710552*x^14+1784500005133*x^13+20114615936481*x^12+6489315392993*x^11-42303058448712*x^10-28822823066575*x^9+48540043177177*x^8+45096489887500*x^7-27935443714191*x^6-32609157107306*x^5+6435774727965*x^4+9923229870159*x^3-594628220192*x^2-961766416410*x+124439631501,140821177*x^3-563284708*x,2868999303*x^20+23708291292*x^19+16966329061*x^18-345318114519*x^17-810101818372*x^16+1701418903317*x^15+6749137908722*x^14-2225830350438*x^13-26257019935350*x^12-8805472443861*x^11+55177718828110*x^10+38301022094106*x^9-63261225094573*x^8-59721817453035*x^7+36373342433038*x^6+43211663022872*x^5-8380155931731*x^4-13214332259680*x^3+792083989580*x^2+1297777364607*x-169199865367,63391230*x^20+632120482*x^19+1141284410*x^18-7875791616*x^17-30480752967*x^16+21933965921*x^15+229602849007*x^14+106869007861*x^13-836772512226*x^12-855711292646*x^11+1638022336167*x^10+2346398667151*x^9-1683952459868*x^8-3218888291920*x^7+759378999883*x^6+2242489685401*x^5-51119637583*x^4-704430092933*x^3-7383872979*x^2+77376163291*x-9292822966,-354826779*x^20-2963700740*x^19-2346618458*x^18+42619234630*x^17+104006990724*x^16-203162859893*x^15-856384238119*x^14+211565570117*x^13+3301041918520*x^12+1346898343181*x^11-6859013361009*x^10-5310182191593*x^9+7729177115708*x^8+8111201343436*x^7-4301668935094*x^6-5846972238551*x^5+913583069905*x^4+1804106565398*x^3-81008906334*x^2-182711364404*x+23566587166,-1126018704*x^20-9389744000*x^19-7301386276*x^18+135464981141*x^17+328147592556*x^16-650945928185*x^15-2710101071311*x^14+718804457342*x^13+10475301648192*x^12+4096015160495*x^11-21838967272806*x^10-16468303923336*x^9+24722306299053*x^8+25244562998146*x^7-13851647308442*x^6-18172532608359*x^5+2964174060304*x^4+5566730257519*x^3-245911353897*x^2-552919668625*x+70005727186,-1170123765*x^20-9712478678*x^19-7278501358*x^18+140602349258*x^17+335817333887*x^16-681891099722*x^15-2782157837204*x^14+804728145647*x^13+10773088994335*x^12+4009427378690*x^11-22502243285002*x^10-16563104241781*x^9+25548522078141*x^8+25574278013447*x^7-14406125027307*x^6-18489031687122*x^5+3145804028166*x^4+5687991628834*x^3-272869692451*x^2-567963929759*x+72413621997,1677612102*x^20+13804173383*x^19+9506370234*x^18-201755542786*x^17-466760908544*x^16+1003170844844*x^15+3901079836081*x^14-1387358061927*x^13-15205074953683*x^12-4775235489960*x^11+32016129900737*x^10+21526557226081*x^9-36817582420568*x^8-33791978084463*x^7+21296172275866*x^6+24478677821877*x^5-4983507915201*x^4-7464113021576*x^3+478038672354*x^2+726017180109*x-95102333052,-833671660*x^20-6947221946*x^19-5380474947*x^18+100250336963*x^17+242586037729*x^16-481736247489*x^15-2004398155979*x^14+529997393901*x^13+7748823914942*x^12+3049717841971*x^11-16152969369431*x^10-12258037502854*x^9+18275760050817*x^8+18818485654718*x^7-10226765464898*x^6-13583686775097*x^5+2184653081864*x^4+4182531077629*x^3-185757260783*x^2-419830951646*x+53712757397,140821177*x^4-844927062*x^2+563284708,3419284722*x^20+28295699075*x^19+20536051991*x^18-411451219739*x^17-970409284516*x^16+2018599695294*x^15+8072361028557*x^14-2571148405728*x^13-31368338889391*x^12-10828555375554*x^11+65826465942412*x^10+46396447898773*x^9-75311241273765*x^8-72126533433731*x^7+43134368050389*x^6+52152258982215*x^5-9844151341619*x^4-15961674692929*x^3+920897849158*x^2+1571946013239*x-204736654297]];

E[620,1] = [x, [1,0,1,0,-1,0,-4,0,-2,0,0,0,2,0,-1,0,-3]];
E[620,2] = [x, [1,0,-3,0,1,0,-2,0,6,0,2,0,2,0,-3,0,-3]];
E[620,3] = [x^3-3*x^2-3*x+7, [1,0,x,0,-1,0,-x^2+2*x+3,0,x^2-3,0,x^2-2*x-1,0,-x^2+2*x+3,0,-x,0,-x^2+x+7]];
E[620,4] = [x^4-3*x^3-5*x^2+17*x-4, [1,0,x,0,1,0,x^3-7*x+2,0,x^2-3,0,-x^3+7*x,0,x^3-2*x^2-5*x+8,0,x,0,-3*x^3+2*x^2+18*x-8]];
E[620,5] = [x, [1,0,0,0,1,0,-2,0,-3,0,-4,0,-4,0,0,0,0]];

E[621,1] = [x, [1,-1,0,-1,-3,0,4,3,0,3,-1,0,-3,-4,0,-1,-1]];
E[621,2] = [x, [1,1,0,-1,3,0,4,-3,0,3,1,0,-3,4,0,-1,1]];
E[621,3] = [x^2+x-1, [1,x,0,-x-1,-x,0,2*x-1,-2*x-1,0,x-1,x+2,0,-3*x-3,-3*x+2,0,3*x,-2*x-4]];
E[621,4] = [x^2-2*x-1, [1,x,0,2*x-1,2*x-3,0,2*x-4,x+2,0,x+2,-2*x+5,0,-3,2,0,3,-2*x-1]];
E[621,5] = [x^2-x-1, [1,x,0,x-1,-x,0,-2*x-1,-2*x+1,0,-x-1,x-2,0,3*x-3,-3*x-2,0,-3*x,-2*x+4]];
E[621,6] = [x^2+2*x-1, [1,x,0,-2*x-1,2*x+3,0,-2*x-4,x-2,0,-x+2,-2*x-5,0,-3,-2,0,3,-2*x+1]];
E[621,7] = [x^6-x^5-11*x^4+10*x^3+27*x^2-25*x+3, [2,2*x,0,2*x^2-4,-x^5+11*x^3-x^2-26*x+9,0,x^5-x^4-10*x^3+7*x^2+23*x-8,2*x^3-8*x,0,-x^5+9*x^3+x^2-16*x+3,-2*x^2+6,0,2*x^3-2*x^2-12*x+10,x^4-3*x^3-4*x^2+17*x-3,0,2*x^4-12*x^2+8,x^5-x^4-12*x^3+9*x^2+33*x-18]];
E[621,8] = [x^6+x^5-11*x^4-10*x^3+27*x^2+25*x+3, [2,2*x,0,2*x^2-4,-x^5+11*x^3+x^2-26*x-9,0,-x^5-x^4+10*x^3+7*x^2-23*x-8,2*x^3-8*x,0,x^5-9*x^3+x^2+16*x+3,2*x^2-6,0,-2*x^3-2*x^2+12*x+10,-x^4-3*x^3+4*x^2+17*x+3,0,2*x^4-12*x^2+8,x^5+x^4-12*x^3-9*x^2+33*x+18]];
E[621,9] = [x^2+x-4, [1,x,0,-x+2,-x,0,-x-1,x-4,0,x-4,x-4,0,-3,-4,0,-3*x,x-4]];
E[621,10] = [x^2-x-4, [1,x,0,x+2,-x,0,x-1,x+4,0,-x-4,x+4,0,-3,4,0,3*x,x+4]];
E[621,11] = [x^2+4*x+2, [1,-x-2,0,0,x,0,-x-1,2*x+4,0,2*x+2,-4,0,2*x+7,-x,0,-4,-2*x-8]];
E[621,12] = [x^2-4*x+2, [1,-x+2,0,0,x,0,x-1,2*x-4,0,-2*x+2,4,0,-2*x+7,-x,0,-4,-2*x+8]];

E[622,1] = [x^4+5*x^3+4*x^2-8*x-9, [1,1,x,1,x^3+3*x^2-3*x-7,x,-x^3-3*x^2+x+1,1,x^2-3,x^3+3*x^2-3*x-7,-4*x^3-15*x^2+3*x+23,x,4*x^3+15*x^2-2*x-25,-x^3-3*x^2+x+1,-2*x^3-7*x^2+x+9,1,-6*x^3-20*x^2+10*x+37]];
E[622,2] = [x^7-3*x^6-8*x^5+28*x^4+7*x^3-64*x^2+40*x-4, [2,2,2*x,2,2*x^4-4*x^3-10*x^2+18*x,2*x,-2*x^3+2*x^2+10*x-6,2,2*x^2-6,2*x^4-4*x^3-10*x^2+18*x,-x^6+x^5+10*x^4-8*x^3-25*x^2+16*x+6,2*x,-2*x^4+6*x^3+6*x^2-28*x+16,-2*x^3+2*x^2+10*x-6,2*x^5-4*x^4-10*x^3+18*x^2,2,2*x^6-4*x^5-20*x^4+38*x^3+46*x^2-90*x+20]];
E[622,3] = [x, [1,1,0,1,-4,0,1,1,-3,-4,-1,0,-4,1,0,1,-8]];
E[622,4] = [x^5+x^4-6*x^3-2*x^2+5*x+2, [1,-1,x,1,x^4-7*x^2+3*x+4,-x,x^3+x^2-5*x-1,-1,x^2-3,-x^4+7*x^2-3*x-4,-2*x^4-2*x^3+11*x^2+x-7,x,-3*x^4-x^3+19*x^2-6*x-12,-x^3-x^2+5*x+1,-x^4-x^3+5*x^2-x-2,1,x^4+x^3-6*x^2-2*x+2]];
E[622,5] = [x^8-3*x^7-14*x^6+42*x^5+45*x^4-146*x^3-8*x^2+68*x+16, [5156,-5156,5156*x,5156,-1138*x^7+2790*x^6+16012*x^5-37376*x^4-50138*x^3+121448*x^2-1588*x-30120,-5156*x,153*x^7+377*x^6-2778*x^5-5518*x^4+10737*x^3+17222*x^2+508*x-5456,-5156,5156*x^2-15468,1138*x^7-2790*x^6-16012*x^5+37376*x^4+50138*x^3-121448*x^2+1588*x+30120,431*x^7-1179*x^6-5652*x^5+16942*x^4+12655*x^3-64328*x^2+23740*x+40504,5156*x,-1222*x^7+3594*x^6+16324*x^5-50320*x^4-41778*x^3+173056*x^2-43216*x-55432,-153*x^7-377*x^6+2778*x^5+5518*x^4-10737*x^3-17222*x^2-508*x+5456,-624*x^7+80*x^6+10420*x^5+1072*x^4-44700*x^3-10692*x^2+47264*x+18208,5156,1096*x^7-2388*x^6-15856*x^5+30904*x^4+51740*x^3-95644*x^2-1180*x+38088]];

E[623,1] = [x, [1,1,-1,-1,1,-1,1,-3,-2,1,-4,1,2,1,-1,-1,-3]];
E[623,2] = [x^4-x^3-5*x^2+7*x-1, [1,x,-x^3-x^2+4*x,x^2-2,2*x^3+x^2-9*x+2,-2*x^3-x^2+7*x-1,-1,x^3-4*x,x^3+x^2-4*x-2,3*x^3+x^2-12*x+2,-x^3-x^2+3*x,-x^3-x^2+5*x-2,-3*x^3-2*x^2+12*x-3,-x,x^3-4*x+1,x^3-x^2-7*x+5,3*x^3+2*x^2-11*x]];
E[623,3] = [x^5+2*x^4-4*x^3-8*x^2+1, [1,x,-x^4-2*x^3+4*x^2+7*x-1,x^2-2,x^4+x^3-4*x^2-4*x-1,-x^2-x+1,1,x^3-4*x,2*x^4+3*x^3-9*x^2-10*x+4,-x^4+4*x^2-x-1,-x^4+4*x^2+1,2*x^4+3*x^3-9*x^2-13*x+2,x^3-4*x-3,x,x^4+2*x^3-3*x^2-7*x-2,x^4-6*x^2+4,-x^4+5*x^2-2*x-5]];
E[623,4] = [x^16-24*x^14+2*x^13+230*x^12-33*x^11-1124*x^10+202*x^9+2968*x^8-572*x^7-4136*x^6+751*x^5+2780*x^4-402*x^3-766*x^2+86*x+57, [2192782,2192782*x,62249*x^15-7851*x^14-1248905*x^13+682779*x^12+9246821*x^11-10606844*x^10-29099520*x^9+67428420*x^8+22931018*x^7-202494150*x^6+67493030*x^5+275704941*x^4-128383897*x^3-134768187*x^2+42313189*x+13528327,2192782*x^2-4385564,332124*x^15-306682*x^14-7909928*x^13+7316624*x^12+73522664*x^11-67186614*x^10-336170534*x^9+300333974*x^8+778122294*x^7-678779710*x^6-822367522*x^5+713211178*x^4+270197856*x^3-253104882*x^2+10189174*x+13041282,-7851*x^15+245071*x^14+558281*x^13-5070449*x^12-8552627*x^11+40868356*x^10+54854122*x^9-161824014*x^8-166887722*x^7+324954894*x^6+228955942*x^5-301436117*x^4-109744089*x^3+89995923*x^2+8174913*x-3548193,2192782,2192782*x^3-8771128*x,309872*x^15-138560*x^14-7101538*x^13+4264408*x^12+63844458*x^11-47111802*x^10-283420642*x^9+244732626*x^8+636676590*x^7-631621312*x^6-642422772*x^5+753915378*x^4+175678810*x^3-315112436*x^2+21090718*x+24853846,-306682*x^15+61048*x^14+6652376*x^13-2865856*x^12-56226522*x^11+37136842*x^10+233244926*x^9-207621738*x^8-488804782*x^7+551297342*x^6+463786054*x^5-653106864*x^4-119591034*x^3+264596158*x^2-15521382*x-18931068,-277294*x^15+156714*x^14+6596190*x^13-4243660*x^12-61668784*x^11+43381156*x^10+285920756*x^9-213558196*x^8-679316566*x^7+527881908*x^6+762021840*x^5-606724964*x^4-318403526*x^3+249669506*x^2+36931540*x-21415320,120573*x^15+385559*x^14-2556937*x^13-8112455*x^12+22115631*x^11+67243286*x^10-102039072*x^9-278442794*x^8+274602086*x^7+601472506*x^6-430526076*x^5-639328191*x^4+343607615*x^3+271697421*x^2-87499385*x-26609147,-34128*x^15-111096*x^14+984802*x^13+2661054*x^12-11080740*x^11-24369308*x^10+61906800*x^9+107196044*x^8-179968880*x^7-231626894*x^6+259506114*x^5+218325056*x^4-158728824*x^3-57574086*x^2+27010414*x-1642096,2192782*x,291773*x^15-454227*x^14-6989261*x^13+11155857*x^12+64778851*x^11-107422032*x^10-290656640*x^9+513246342*x^8+637526970*x^7-1262956318*x^6-575300042*x^5+1480203793*x^4+66235061*x^3-642661667*x^2+51891583*x+63712137,2192782*x^4-13156692*x^2+8771128,688522*x^15-705512*x^14-16286048*x^13+17429498*x^12+150817886*x^11-165726826*x^10-690213934*x^9+767903590*x^8+1611599198*x^7-1800283346*x^6-1745537430*x^5+1969454028*x^4+616714978*x^3-770290122*x^2+6933160*x+68273952]];
E[623,5] = [x^17-3*x^16-24*x^15+74*x^14+224*x^13-719*x^12-1025*x^11+3510*x^10+2346*x^9-9092*x^8-2204*x^7+11999*x^6-345*x^5-6798*x^4+1560*x^3+848*x^2-293*x+21, [5561384420,5561384420*x,-88247089*x^16+504558116*x^15+2075324560*x^14-12496586066*x^13-19610226150*x^12+121238952081*x^11+98673455164*x^10-584308751474*x^9-297185087380*x^8+1462692972628*x^7+547584081288*x^6-1798233742759*x^5-545763888856*x^4+897741943158*x^3+183769349102*x^2-113329246374*x-601096769,5561384420*x^2-11122768840,-615166227*x^16+1712839288*x^15+15101751220*x^14-42039574278*x^13-146229945210*x^12+405659642863*x^11+713253986892*x^10-1961239050102*x^9-1848345642720*x^8+5010737684084*x^7+2399572144224*x^6-6484298393197*x^5-1152107114988*x^4+3579005628394*x^3-172944276254*x^2-455782755322*x+61641538513,239816849*x^16-42605576*x^15-5966301480*x^14+157121786*x^13+57789295090*x^12+8220188939*x^11-274561469084*x^10-90157416586*x^9+660350439440*x^8+353087497132*x^7-739356921848*x^6-576209134561*x^5+297838232136*x^4+321434807942*x^3-38495714902*x^2-26457493846*x+1853188869,-5561384420,5561384420*x^3-22245537680*x,-310760945*x^16+664446240*x^15+7998915960*x^14-16754266190*x^13-82381970790*x^12+167893614345*x^11+436238290300*x^10-854828617690*x^9-1268283569800*x^8+2336578856860*x^7+1978639195940*x^6-3279628530075*x^5-1435445003460*x^4+1972943406650*x^3+267868384170*x^2-266483101830*x+24589521035,-132659393*x^16+337761772*x^15+3482726520*x^14-8432710362*x^13-36644874350*x^12+82708604217*x^11+197994406668*x^10-405165674178*x^9-582353651800*x^8+1043745779916*x^7+897081164576*x^6-1364339463303*x^5-602894382752*x^4+786715037866*x^3+65878205174*x^2-118602165998*x+12918490767,292179530*x^16-1460751280*x^15-7082325400*x^14+37005679900*x^13+68087230120*x^12-370618434510*x^11-333274464080*x^10+1870298672140*x^9+877367656400*x^8-5013865982340*x^7-1139746358400*x^6+6845102049870*x^5+404480400580*x^4-3997334872780*x^3+364999719420*x^2+529157583840*x-73521125490,853339149*x^16-1219813336*x^15-21739974160*x^14+29063493046*x^13+219868955670*x^12-271227103021*x^11-1129261466904*x^10+1266357614634*x^9+3127872463000*x^8-3136186531908*x^7-4548939668288*x^6+3977042530559*x^5+3043237525156*x^4-2208093885658*x^3-597360880002*x^2+298778018374*x-3833960291,-1329112896*x^16+3549991844*x^15+32822052820*x^14-87163540224*x^13-320339920760*x^12+841620283004*x^11+1580154163776*x^10-4074579614536*x^9-4170045966920*x^8+10446005618112*x^7+5626017468372*x^6-13643366046796*x^5-3088789310484*x^4+7726937883772*x^3-33565589952*x^2-1072240686136*x+132425664404,-5561384420*x,493577347*x^16-1230147488*x^15-12627999300*x^14+30947023618*x^13+128951189730*x^12-308515287283*x^11-673052146172*x^10+1557665211302*x^9+1899019042680*x^8-4217250323844*x^7-2749838769744*x^6+5909356907357*x^5+1572549165428*x^4-3677084562314*x^3+104415463314*x^2+632670328802*x-90657793933,5561384420*x^4-33368306520*x^2+22245537680,258246337*x^16-1297028668*x^15-6068392760*x^14+32446367178*x^13+55753413690*x^12-319145410633*x^11-256402155852*x^10+1568453561842*x^9+628602364560*x^8-4041125592924*x^7-791522587944*x^6+5192462873367*x^5+393522416888*x^4-2754579833994*x^3+92228896434*x^2+304703577722*x-38469423743]];
E[623,6] = [x^2-5, [1,-1,x,-1,-1,-x,-1,3,2,1,-2*x,-x,-2*x,1,-x,-1,-1]];

E[624,1] = [x, [1,0,1,0,-2,0,-4,0,1,0,0,0,1,0,-2,0,2]];
E[624,2] = [x, [1,0,1,0,-4,0,2,0,1,0,4,0,1,0,-4,0,2]];
E[624,3] = [x, [1,0,1,0,4,0,0,0,1,0,2,0,-1,0,4,0,2]];
E[624,4] = [x, [1,0,1,0,0,0,4,0,1,0,2,0,-1,0,0,0,-6]];
E[624,5] = [x, [1,0,1,0,2,0,-4,0,1,0,4,0,1,0,2,0,2]];
E[624,6] = [x, [1,0,1,0,2,0,4,0,1,0,-4,0,1,0,2,0,2]];
E[624,7] = [x, [1,0,-1,0,-4,0,4,0,1,0,2,0,-1,0,4,0,-6]];
E[624,8] = [x, [1,0,-1,0,2,0,0,0,1,0,0,0,1,0,-2,0,2]];
E[624,9] = [x^2-8, [1,0,-1,0,x,0,x,0,1,0,2,0,-1,0,-x,0,-2*x+2]];
E[624,10] = [x, [1,0,-1,0,0,0,-2,0,1,0,0,0,1,0,0,0,-6]];
E[624,11] = [x, [1,0,-1,0,0,0,0,0,1,0,-6,0,-1,0,0,0,2]];

E[625,1] = [x^8+5*x^7-x^6-35*x^5-29*x^4+60*x^3+69*x^2-9, [3,3*x,-2*x^7-4*x^6+17*x^5+25*x^4-44*x^3-33*x^2+21*x+3,3*x^2-6,0,6*x^7+15*x^6-45*x^5-102*x^4+87*x^3+159*x^2+3*x-18,2*x^7+5*x^6-15*x^5-32*x^4+33*x^3+46*x^2-12*x-12,3*x^3-12*x,-x^7-5*x^6+4*x^5+41*x^4+11*x^3-87*x^2-39*x+21,0,-4*x^7-11*x^6+25*x^5+71*x^4-28*x^3-105*x^2-42*x+9,-11*x^7-31*x^6+74*x^5+211*x^4-113*x^3-345*x^2-60*x+48,3*x^7+8*x^6-20*x^5-53*x^4+26*x^3+80*x^2+33*x-9,-5*x^7-13*x^6+38*x^5+91*x^4-74*x^3-150*x^2-12*x+18,0,3*x^4-18*x^2+12,4*x^7+8*x^6-34*x^5-53*x^4+82*x^3+75*x^2-27*x-9]];
E[625,2] = [x^8-5*x^7-x^6+35*x^5-29*x^4-60*x^3+69*x^2-9, [3,3*x,-2*x^7+4*x^6+17*x^5-25*x^4-44*x^3+33*x^2+21*x-3,3*x^2-6,0,-6*x^7+15*x^6+45*x^5-102*x^4-87*x^3+159*x^2-3*x-18,2*x^7-5*x^6-15*x^5+32*x^4+33*x^3-46*x^2-12*x+12,3*x^3-12*x,x^7-5*x^6-4*x^5+41*x^4-11*x^3-87*x^2+39*x+21,0,4*x^7-11*x^6-25*x^5+71*x^4+28*x^3-105*x^2+42*x+9,-11*x^7+31*x^6+74*x^5-211*x^4-113*x^3+345*x^2-60*x-48,3*x^7-8*x^6-20*x^5+53*x^4+26*x^3-80*x^2+33*x+9,5*x^7-13*x^6-38*x^5+91*x^4+74*x^3-150*x^2+12*x+18,0,3*x^4-18*x^2+12,4*x^7-8*x^6-34*x^5+53*x^4+82*x^3-75*x^2-27*x+9]];
E[625,3] = [x^8-11*x^6+36*x^4-31*x^2+1, [4,4*x,-2*x^7+20*x^5-56*x^3+34*x,4*x^2-8,0,-2*x^6+16*x^4-28*x^2+2,-2*x^7+24*x^5-84*x^3+74*x,4*x^3-16*x,-4*x^4+20*x^2-4,0,8,2*x^7-24*x^5+84*x^3-66*x,-x^7+8*x^5-16*x^3+7*x,2*x^6-12*x^4+12*x^2+2,0,4*x^4-24*x^2+16,-3*x^7+36*x^5-128*x^3+117*x]];
E[625,4] = [x^2+3*x+1, [1,x+1,x,-x-2,0,-2*x-1,3*x+4,-2*x-3,-3*x-4,0,-x-2,x+1,-4*x-5,-2*x+1,0,3*x+3,-4*x-9]];
E[625,5] = [x^2+x-1, [1,-x-1,1,x,0,-x-1,x,2*x+1,-2,0,-2*x-4,x,3*x,-1,0,-3*x-3,-2*x-4]];
E[625,6] = [x^2-3*x+1, [1,x-1,x,x-2,0,2*x-1,3*x-4,-2*x+3,3*x-4,0,x-2,x-1,-4*x+5,2*x+1,0,-3*x+3,-4*x+9]];
E[625,7] = [x^2+x-1, [1,x+1,-1,x,0,-x-1,-x,-2*x-1,-2,0,-2*x-4,-x,-3*x,-1,0,-3*x-3,2*x+4]];

E[626,1] = [x, [1,-1,1,1,2,-1,5,-1,-2,-2,-1,1,4,-5,2,1,2]];
E[626,2] = [x^2-5, [2,-2,2*x,2,-2*x,-2*x,-x-5,-2,4,2*x,x-5,2*x,-x+1,x+5,-10,2,6]];
E[626,3] = [x^9-x^8-23*x^7+17*x^6+181*x^5-83*x^4-568*x^3+82*x^2+573*x+157, [13796,-13796,13796*x,13796,-289*x^8+456*x^7+6837*x^6-8100*x^5-52235*x^4+39874*x^3+136504*x^2-47298*x-76661,-13796*x,436*x^8-1404*x^7-7164*x^6+21672*x^5+32762*x^4-85194*x^3-36542*x^2+59040*x+5406,-13796,13796*x^2-41388,289*x^8-456*x^7-6837*x^6+8100*x^5+52235*x^4-39874*x^3-136504*x^2+47298*x+76661,-841*x^8+778*x^7+16793*x^6-12186*x^5-103839*x^4+51542*x^3+212322*x^2-40852*x-70089,13796*x,168*x^8-98*x^7-3330*x^6-256*x^5+21104*x^4+20142*x^3-54266*x^2-70342*x+45686,-436*x^8+1404*x^7+7164*x^6-21672*x^5-32762*x^4+85194*x^3+36542*x^2-59040*x-5406,167*x^8+190*x^7-3187*x^6+74*x^5+15887*x^4-27648*x^3-23600*x^2+88936*x+45373,13796,771*x^8-1312*x^7-13681*x^6+21490*x^5+69753*x^4-106496*x^3-114408*x^2+174206*x+82669]];
E[626,4] = [x, [1,-1,0,1,0,0,0,-1,-3,0,0,0,-2,0,0,1,-2]];
E[626,5] = [x^12-4*x^11-20*x^10+90*x^9+122*x^8-718*x^7-159*x^6+2502*x^5-689*x^4-3702*x^3+1769*x^2+1936*x-1048, [10624,10624,10624*x,10624,-2016*x^11+6576*x^10+41664*x^9-138736*x^8-276672*x^7+988112*x^6+593760*x^5-2766880*x^4+129248*x^3+2405104*x^2-673280*x-164992,10624*x,-11*x^11+275*x^10-243*x^9-6511*x^8+7901*x^7+54457*x^6-58200*x^5-191754*x^4+151341*x^3+251617*x^2-108280*x-58136,10624,10624*x^2-31872,-2016*x^11+6576*x^10+41664*x^9-138736*x^8-276672*x^7+988112*x^6+593760*x^5-2766880*x^4+129248*x^3+2405104*x^2-673280*x-164992,639*x^11+1289*x^10-25241*x^9-21981*x^8+339031*x^7+77467*x^6-1950184*x^5+332866*x^4+4763239*x^3-2043277*x^2-3682472*x+1969976,10624*x,1797*x^11-10397*x^10-22115*x^9+214465*x^8-64147*x^7-1449111*x^6+1622824*x^5+3489302*x^4-5908995*x^3-1188527*x^2+5235272*x-1847192,-11*x^11+275*x^10-243*x^9-6511*x^8+7901*x^7+54457*x^6-58200*x^5-191754*x^4+151341*x^3+251617*x^2-108280*x-58136,-1488*x^11+1344*x^10+42704*x^9-30720*x^8-459376*x^7+273216*x^6+2277152*x^5-1259776*x^4-5058128*x^3+2893024*x^2+3737984*x-2112768,10624,3196*x^11-6860*x^10-77892*x^9+147836*x^8+689020*x^7-1116324*x^6-2728960*x^5+3664104*x^4+4784028*x^3-5069476*x^2-3058080*x+2360416]];
E[626,6] = [x^2+3*x+1, [1,1,-1,1,-1,-1,x,1,-2,-1,-3*x-7,-1,-x-3,x,1,1,-3]];

E[627,1] = [x^3-2*x^2-x+1, [1,x,-1,x^2-2,-x^2+1,-x,-x^2+x+1,2*x^2-3*x-1,1,-2*x^2+1,-1,-x^2+2,2*x^2-5*x-3,-x^2+1,x^2-1,-x^2+x+2,-2*x^2+3*x]];
E[627,2] = [x^3-2*x^2-3*x+5, [1,x,1,x^2-2,-x^2+5,x,x^2-x-3,2*x^2-x-5,1,-2*x^2+2*x+5,1,x^2-2,-2*x^2+x+9,x^2-5,-x^2+5,x^2+x-6,-2*x^2+x+8]];
E[627,3] = [x^3+2*x^2-x-1, [1,x,1,x^2-2,x^2+2*x-3,x,-3*x^2-5*x+3,-2*x^2-3*x+1,1,-2*x+1,-1,x^2-2,2*x^2+x-5,x^2-3,x^2+2*x-3,-x^2-x+2,2*x^2+x-6]];
E[627,4] = [x^3+2*x^2-3*x-5, [1,x,-1,x^2-2,x^2-3,-x,-x^2-x+1,-2*x^2-x+5,1,-2*x^2+5,1,-x^2+2,x-3,x^2-2*x-5,-x^2+3,x^2-x-6,-4*x^2-3*x+10]];
E[627,5] = [x^4-x^3-7*x^2+6*x+7, [1,x,1,x^2-2,x^2-3,x,-x^3-x^2+6*x+2,x^3-4*x,1,x^3-3*x,-1,x^2-2,-x+1,-2*x^3-x^2+8*x+7,x^2-3,x^3+x^2-6*x-3,-x^3-2*x^2+4*x+11]];
E[627,6] = [x^5-x^4-7*x^3+4*x^2+9*x-4, [1,x,-1,x^2-2,-x^4+x^3+6*x^2-2*x-4,-x,-x^3+x^2+4*x-2,x^3-4*x,1,-x^3+2*x^2+5*x-4,-1,-x^2+2,x+3,-x^4+x^3+4*x^2-2*x,x^4-x^3-6*x^2+2*x+4,x^4-6*x^2+4,x^3-2*x^2-4*x+5]];
E[627,7] = [x^5-x^4-9*x^3+8*x^2+15*x-4, [1,x,-1,x^2-2,-x^4-x^3+6*x^2+4*x,-x,x^3+x^2-6*x-2,x^3-4*x,1,-2*x^4-3*x^3+12*x^2+15*x-4,1,-x^2+2,2*x^4+2*x^3-12*x^2-9*x+5,x^4+x^3-6*x^2-2*x,x^4+x^3-6*x^2-4*x,x^4-6*x^2+4,-x^3+6*x+3]];
E[627,8] = [x^3+2*x^2-3*x-3, [1,x,1,x^2-2,-x^2-2*x+1,x,x^2+x-5,-2*x^2-x+3,1,-2*x-3,1,x^2-2,-x-5,-x^2-2*x+3,-x^2-2*x+1,x^2-3*x-2,3*x]];
E[627,9] = [x, [1,0,1,-2,4,0,2,0,1,0,-1,-2,1,0,4,4,-3]];
E[627,10] = [x, [1,0,1,-2,0,0,2,0,1,0,1,-2,-1,0,0,4,3]];

E[628,1] = [x, [1,0,2,0,4,0,-1,0,1,0,0,0,1,0,8,0,-1]];
E[628,2] = [x^5+x^4-5*x^3-3*x^2+2*x+1, [1,0,x,0,-2*x^4-x^3+10*x^2-4,0,3*x^4+x^3-16*x^2+5,0,x^2-3,0,-3*x^4+17*x^2-6*x-8,0,7*x^4+4*x^3-36*x^2-5*x+11,0,x^4-6*x^2+2,0,-x^4-x^3+5*x^2+4*x-4]];
E[628,3] = [x^7+3*x^6-11*x^5-37*x^4+16*x^3+97*x^2+34*x-24, [6,0,6*x,0,-2*x^6-2*x^5+26*x^4+24*x^3-80*x^2-54*x+36,0,x^6+3*x^5-13*x^4-35*x^3+36*x^2+81*x,0,6*x^2-18,0,-2*x^4+14*x^2+4*x,0,-3*x^6-5*x^5+39*x^4+59*x^3-116*x^2-129*x+48,0,4*x^6+4*x^5-50*x^4-48*x^3+140*x^2+104*x-48,0,x^6+x^5-11*x^4-9*x^3+20*x^2+5*x+24]];

E[629,1] = [x, [1,1,0,-1,1,0,-1,-3,-3,1,-5,0,-2,-1,0,-1,-1]];
E[629,2] = [x, [1,2,3,2,-2,6,1,0,6,-4,-3,6,4,2,-6,-4,1]];
E[629,3] = [x, [1,-1,0,-1,3,0,-1,3,-3,-3,-5,0,-2,1,0,-1,1]];
E[629,4] = [x^5-7*x^3+2*x^2+12*x-7, [1,x,x^4-5*x^2+4,x^2-2,-x^4-2*x^3+5*x^2+7*x-7,2*x^3-2*x^2-8*x+7,x^3+x^2-3*x-4,x^3-4*x,-x^3+3*x-1,-2*x^4-2*x^3+9*x^2+5*x-7,-x^4+x^3+4*x^2-5*x-1,-2*x^3+2*x^2+7*x-8,x^3-2*x^2-5*x+7,x^4+x^3-3*x^2-4*x,x^4+3*x^3-5*x^2-11*x+7,x^4-6*x^2+4,1]];
E[629,5] = [x^17+x^16-30*x^15-26*x^14+367*x^13+266*x^12-2349*x^11-1339*x^10+8394*x^9+3341*x^8-16544*x^7-3504*x^6+16591*x^5+760*x^4-6981*x^3-59*x^2+1031*x+48, [40624,40624*x,1204*x^16+691*x^15-34565*x^14-13833*x^13+403243*x^12+94214*x^11-2445553*x^10-188173*x^9+8171736*x^8-550705*x^7-14590269*x^6+2840693*x^5+12073265*x^4-3458992*x^3-2811381*x^2+681417*x+6400,40624*x^2-81248,-812*x^16-1706*x^15+20418*x^14+44580*x^13-196316*x^12-472732*x^11+870562*x^10+2607038*x^9-1551866*x^8-7926932*x^7-270172*x^6+12865238*x^5+3254546*x^4-9687526*x^3-1697464*x^2+2103944*x+275328,-513*x^16+1555*x^15+17471*x^14-38625*x^13-226050*x^12+382643*x^11+1423983*x^10-1934640*x^9-4573269*x^8+5328707*x^7+7059509*x^6-7902299*x^5-4374032*x^4+5593743*x^3+752453*x^2-1234924*x-57792,4734*x^16+5606*x^15-135210*x^14-145486*x^13+1552548*x^12+1498658*x^11-9127926*x^10-7723556*x^9+28953678*x^8+20462090*x^7-47847482*x^6-25323858*x^5+36242320*x^4+11387302*x^3-8573638*x^2-1952404*x+73616,40624*x^3-162496*x,-2068*x^16-7159*x^15+57041*x^14+195197*x^13-635895*x^12-2118118*x^11+3652381*x^10+11565697*x^9-11389408*x^8-33006355*x^7+18621897*x^6+46201063*x^5-14154125*x^4-26806408*x^3+3453809*x^2+5211171*x+137872,-894*x^16-3942*x^15+23468*x^14+101688*x^13-256740*x^12-1036826*x^11+1519770*x^10+5264062*x^9-5214040*x^8-13703900*x^7+10019990*x^6+16726438*x^5-9070406*x^4-7366036*x^3+2056036*x^2+1112500*x+38976,-848*x^16-706*x^15+22624*x^14+11936*x^13-244518*x^12-45876*x^11+1374058*x^10-251336*x^9-4276562*x^8+2440160*x^7+7170778*x^6-6823926*x^5-5491416*x^4+7231502*x^3+906812*x^2-1721818*x-21648,-340*x^16+699*x^15+17167*x^14-10113*x^13-287385*x^12+30518*x^11+2269559*x^10+109199*x^9-9300832*x^8-326153*x^7+19480687*x^6-1544235*x^5-18162907*x^4+4089184*x^3+4357571*x^2-891723*x+11824,4186*x^16+5030*x^15-122506*x^14-128958*x^13+1452428*x^12+1291138*x^11-8907946*x^10-6263028*x^9+29868894*x^8+14470658*x^7-52913450*x^6-11882070*x^5+42838412*x^4-2303786*x^3-9392274*x^2+1435912*x+48704,872*x^16+6810*x^15-22402*x^14-184830*x^13+239414*x^12+1992240*x^11-1384730*x^10-10783518*x^9+4645796*x^8+30471814*x^7-8735922*x^6-42299474*x^5+7789462*x^4+24474416*x^3-1673098*x^2-4807138*x-227232,-3886*x^16-4900*x^15+112586*x^14+133550*x^13-1308030*x^12-1452782*x^11+7753868*x^10+7974892*x^9-24677116*x^8-22902250*x^7+40676704*x^6+32147784*x^5-30750904*x^4-18659428*x^3+7666826*x^2+3877342*x+29280,40624*x^4-243744*x^2+162496,-40624]];
E[629,6] = [x^15-2*x^14-24*x^13+46*x^12+225*x^11-407*x^10-1050*x^9+1751*x^8+2573*x^7-3822*x^6-3134*x^5+3962*x^4+1409*x^3-1497*x^2+144*x+17, [126320,126320*x,-3717*x^14+1165*x^13+96313*x^12-26801*x^11-977142*x^10+253645*x^9+4902055*x^8-1292352*x^7-12624085*x^6+3728069*x^5+15603531*x^4-5419127*x^3-7263192*x^2+2749305*x+79277,126320*x^2-252640,2944*x^14-4130*x^13-63586*x^12+81932*x^11+499984*x^10-568140*x^9-1678910*x^8+1520854*x^7+1817270*x^6-599628*x^5+1623828*x^4-3099506*x^3-2994806*x^2+2917930*x-227844,-6269*x^14+7105*x^13+144181*x^12-140817*x^11-1259174*x^10+999205*x^9+5216115*x^8-3060244*x^7-10478305*x^6+3954453*x^5+9307627*x^4-2025939*x^3-2815044*x^2+614525*x+63189,129*x^14+3375*x^13-3521*x^12-85883*x^11+24354*x^10+846355*x^9+57865*x^8-4037456*x^7-1222515*x^6+9473867*x^5+4323093*x^4-9708421*x^3-4661256*x^2+2823555*x+213211,126320*x^3-505280*x,-2109*x^14+5045*x^13+55361*x^12-119097*x^11-588374*x^10+1081325*x^9+3240895*x^8-4750584*x^7-9687485*x^6+10431653*x^5+14505467*x^4-10542999*x^3-7999384*x^2+3689025*x+56349,1758*x^14+7070*x^13-53492*x^12-162416*x^11+630068*x^10+1412290*x^9-3634090*x^8-5757642*x^7+10652340*x^6+10850324*x^5-14763634*x^4-7142902*x^3+7325098*x^2-651780*x-50048,-8889*x^14+6125*x^13+208471*x^12-117147*x^11-1863234*x^10+786245*x^9+7902935*x^8-2185894*x^7-15982255*x^6+2439723*x^5+12817007*x^4-1712959*x^3-922574*x^2+1901315*x-495781,2001*x^14-8605*x^13-45069*x^12+204953*x^11+402006*x^10-1873625*x^9-1887335*x^8+8236536*x^7+5242505*x^6-17795557*x^5-8395223*x^4+16856231*x^3+5756216*x^2-4532685*x-51981,8378*x^14-12150*x^13-199542*x^12+259914*x^11+1847548*x^10-2080530*x^9-8457010*x^8+7810828*x^7+20165790*x^6-14386106*x^5-23813094*x^4+12568938*x^3+10814428*x^2-4303550*x+6782,3633*x^14-425*x^13-91817*x^12-4671*x^11+898858*x^10+193315*x^9-4263335*x^8-1554432*x^7+9966905*x^6+4727379*x^5-10219519*x^4-4843017*x^3+3016668*x^2+194635*x-2193,-2190*x^14-21310*x^13+94660*x^12+474260*x^11-1375540*x^10-3949890*x^9+9111490*x^8+15153930*x^7-29348080*x^6-26158100*x^5+43594230*x^4+14742610*x^3-23592750*x^2+2961540*x+793860,126320*x^4-757920*x^2+505280,126320]];
E[629,7] = [x^8-10*x^6+29*x^4+3*x^3-24*x^2-7*x+2, [1,x,-2*x^7+x^6+19*x^5-10*x^4-49*x^3+21*x^2+29*x-3,x^2-2,2*x^7-x^6-19*x^5+10*x^4+49*x^3-21*x^2-30*x+2,x^7-x^6-10*x^5+9*x^4+27*x^3-19*x^2-17*x+4,-x^7+x^6+10*x^5-9*x^4-28*x^3+18*x^2+20*x-3,x^3-4*x,3*x^7-2*x^6-28*x^5+20*x^4+70*x^3-45*x^2-39*x+12,-x^7+x^6+10*x^5-9*x^4-27*x^3+18*x^2+16*x-4,-x^7+x^6+9*x^5-10*x^4-21*x^3+23*x^2+10*x-7,3*x^7-2*x^6-29*x^5+18*x^4+76*x^3-35*x^2-47*x+4,-x^5+8*x^3-13*x-2,x^7-9*x^5+x^4+21*x^3-4*x^2-10*x+2,-2*x^7+2*x^6+19*x^5-19*x^4-48*x^3+43*x^2+27*x-16,x^4-6*x^2+4,-1]];
E[629,8] = [x, [1,0,-3,-2,0,0,3,0,6,0,-1,6,0,0,0,4,1]];

E[630,1] = [x, [1,1,0,1,1,0,1,1,0,1,0,0,2,1,0,1,0]];
E[630,2] = [x, [1,1,0,1,1,0,-1,1,0,1,4,0,-2,-1,0,1,6]];
E[630,3] = [x, [1,1,0,1,-1,0,1,1,0,-1,0,0,2,1,0,1,6]];
E[630,4] = [x, [1,1,0,1,-1,0,-1,1,0,-1,4,0,6,-1,0,1,-4]];
E[630,5] = [x, [1,-1,0,1,-1,0,-1,-1,0,1,4,0,-2,1,0,1,-2]];
E[630,6] = [x, [1,-1,0,1,-1,0,1,-1,0,1,-4,0,-2,-1,0,1,-2]];
E[630,7] = [x, [1,-1,0,1,-1,0,1,-1,0,1,0,0,2,-1,0,1,0]];
E[630,8] = [x, [1,-1,0,1,1,0,1,-1,0,-1,0,0,2,-1,0,1,6]];
E[630,9] = [x, [1,-1,0,1,1,0,-1,-1,0,-1,-4,0,-6,1,0,1,-2]];
E[630,10] = [x, [1,-1,0,1,1,0,-1,-1,0,-1,-4,0,6,1,0,1,4]];

E[631,1] = [x^20+8*x^19+5*x^18-114*x^17-258*x^16+535*x^15+2093*x^14-508*x^13-7578*x^12-3378*x^11+13922*x^10+11615*x^9-12747*x^8-14886*x^7+4828*x^6+8560*x^5-58*x^4-1958*x^3-224*x^2+104*x+1, [182645809,182645809*x,102207845*x^19+613519315*x^18-778819614*x^17-10454379152*x^16-4860881857*x^15+70635889124*x^14+73522157747*x^13-242461436404*x^12-320066311424*x^11+452505033450*x^10+662007251845*x^9-459261799438*x^8-687932759834*x^7+237247914759*x^6+331838146788*x^5-49271109997*x^4-54809940226*x^3+1317268292*x^2-649778247*x-13476414,182645809*x^2-365291618,-8885148*x^19-43923746*x^18+109461584*x^17+789734172*x^16-268003561*x^15-5699801955*x^14-1957946033*x^13+21118966444*x^12+13952799552*x^11-42423533255*x^10-35988440367*x^9+43962661906*x^8+45491007463*x^7-18233086894*x^6-28404376859*x^5-477418730*x^4+8171304786*x^3+4827210*x^2-949653387*x+269530609,-204143445*x^19-1289858839*x^18+1197315178*x^17+21508742153*x^16+15954692049*x^15-140398861838*x^14-190539851144*x^13+454464737986*x^12+797763133860*x^11-760930366245*x^10-1646405919113*x^9+614910640381*x^8+1758713895429*x^7-161621328872*x^6-924170263197*x^5-48881885216*x^4+201440228802*x^3+22244779033*x^2-10643092294*x-102207845,-179033408*x^19-1113041638*x^18+1099727383*x^17+18521256013*x^16+13104314412*x^15-120474821572*x^14-160816600576*x^13+387593181175*x^12+677185029975*x^11-641639394892*x^10-1401082468650*x^9+506519569248*x^8+1499071614453*x^7-123599486617*x^6-786130004312*x^5-42607152316*x^4+165978525818*x^3+17290905560*x^2-6659107067*x+113741921,182645809*x^3-730583236*x,-8018934*x^19-33180440*x^18+135476013*x^17+579154471*x^16-1155140309*x^15-4146167882*x^14+7372428818*x^13+16016720001*x^12-34914213230*x^11-36906726960*x^10+105405731867*x^9+51343875558*x^8-182051096500*x^7-38002987957*x^6+163814407057*x^5+8900841982*x^4-65679413131*x^3+1828313897*x^2+8229202390*x-470195473,27157438*x^19+153887324*x^18-223172700*x^17-2560371745*x^16-946247775*x^15+16638668731*x^14+16605311260*x^13-53378851992*x^12-72437563199*x^11+87710590089*x^10+147163655926*x^9-67767974093*x^8-150497400022*x^7+14493117685*x^6+75579448150*x^5+7655966202*x^4-17392292574*x^3-2939926539*x^2+1193586001*x+8885148,258821810*x^19+1705122157*x^18-1042331826*x^17-27621173541*x^16-28360201101*x^15+171526811179*x^14+297007200039*x^13-504081227739*x^12-1205736447046*x^11+669586794683*x^10+2467648380444*x^9-185465282149*x^8-2658159576077*x^7-398919001026*x^6+1446697510219*x^5+343009163002*x^4-345366844580*x^3-71173491200*x^2+24242724487*x-529537445,138873031*x^19+990993773*x^18-205971349*x^17-15805558457*x^16-21460355049*x^15+95460600993*x^14+203715552432*x^13-264313019542*x^12-810394300607*x^11+290669055277*x^10+1662022250366*x^9+75021000890*x^8-1824635131474*x^7-413061540255*x^6+1034909710408*x^5+288142128986*x^4-267848205825*x^3-59005760558*x^2+22428266929*x+231096273,260047328*x^19+1616096416*x^18-1553829709*x^17-26745623284*x^16-19829886862*x^15+172234550709*x^14+239686284501*x^13-542849239540*x^12-1009626059081*x^11+855143644406*x^10+2103931339486*x^9-572337247230*x^8-2294094047634*x^7-11955277381*x^6+1262554792119*x^5+174553765015*x^4-307049282886*x^3-49962818084*x^2+22496035554*x-67079221,319225626*x^19+1994894423*x^18-1888552499*x^17-33086304852*x^16-24691948292*x^15+213900322368*x^14+296644209911*x^13-679530135849*x^12-1246414247116*x^11+1091420637526*x^10+2585992603168*x^9-783067237323*x^8-2788690798105*x^7+78243289512*x^6+1489918820164*x^5+155594588154*x^4-333256507304*x^3-46762590459*x^2+18733216353*x+179033408,-75538935*x^19-492328358*x^18+407349951*x^17+8314166859*x^16+6743735287*x^15-55275707267*x^14-78368217161*x^13+183899860212*x^12+332820740015*x^11-321163520125*x^10-707406236126*x^9+277511827871*x^8+788533081794*x^7-83904474457*x^6-437880123993*x^5-20703584547*x^4+102600023679*x^3+11030115979*x^2-6890318102*x-76883675,182645809*x^4-1095874854*x^2+730583236,-439373247*x^19-2739371204*x^18+2718748143*x^17+45795780012*x^16+32125089127*x^15-299857233067*x^14-397301033333*x^13+973840343701*x^12+1685225257928*x^11-1632992560011*x^10-3522208517220*x^9+1304825266007*x^8+3829466653144*x^7-299500400180*x^6-2071738124429*x^5-149973836328*x^4+477462187231*x^3+60146349925*x^2-29839629584*x-604217065]];
E[631,2] = [x^32-7*x^31-24*x^30+266*x^29+82*x^28-4435*x^27+3546*x^26+42612*x^25-61244*x^24-260118*x^23+503728*x^22+1045259*x^21-2565508*x^20-2747671*x^19+8721575*x^18+4413408*x^17-20305272*x^16-3149984*x^15+32444843*x^14-2405404*x^13-35062007*x^12+7960643*x^11+24819099*x^10-8154383*x^9-10879976*x^8+4277929*x^7+2681047*x^6-1146869*x^5-315417*x^4+133917*x^3+15831*x^2-5013*x-405, [22692851360143781155360923768827031,22692851360143781155360923768827031*x,-388638370482671074105900414214615*x^31+2544704794508781645306030634099352*x^30+10470665995924643551214622510363186*x^29-98587994439956968047179758894263394*x^28-76306606871769707870675102347494995*x^27+1687253599000139916246587395296615101*x^26-615089168337205695480042458104149282*x^25-16811709991654639110203654048951221266*x^24+16173906291009988575573352723885995955*x^23+108180640265715498413962329142675791711*x^22-146522354905222244076162830010008731910*x^21-471317403463604899103444700916371869752*x^20+781800751260549223161295714049970245693*x^19+1417472374059263578303363290183034996712*x^18-2740009401909804076521032114769585358240*x^17-2946008532766874195829283296004439699403*x^16+6536498868530602273678298806955895936570*x^15+4170824834849443996807096962074212762711*x^14-10682075024480173900106440530764974753261*x^13-3897614565398819501294995584238870998184*x^12+11812387074120278124883434168512891071024*x^11+2273883239238193975023746929652171598377*x^10-8573852470945255823384230039198315865775*x^9-753370030616995453368125058220131240092*x^8+3865605971754161220968982903067046770198*x^7+125260334160093910359813804052852982467*x^6-981188645127854407060903983550890611471*x^5-15868240963554578265962545495351357892*x^4+116643754313704472747475147281359730475*x^3+4121104842785697713552815543763396166*x^2-4806874897299900922780662941907309222*x-377877302578414093464919848053224386,22692851360143781155360923768827031*x^2-45385702720287562310721847537654062,-133041083651662612032524186533316*x^31+739086569393757204353823684585290*x^30+4250175463881928800802543938528747*x^29-29323165057997212697364204498759427*x^28-52202078597027022442546763038797638*x^27+516323737594631734522892306611420064*x^26+242297809677676122774369719268737781*x^25-5324213748951127196517833682520576968*x^24+937720958123232422824950362717076571*x^23+35723293045294726092002529538467278133*x^22-19813407025902167055653618690772392966*x^21-163871673842942296208698623516333264898*x^20+130982016536659046929512153261496136327*x^19+525614318027312710086043172706951217226*x^18-508627053833944734082299397573465559344*x^17-1185178028326359220534278221267001926604*x^16+1291752011717072840230124017135260202290*x^15+1862949743509859711426686602814901134888*x^14-2208791654544723059886428602916374214695*x^13-1995126862456128993585084209127311654965*x^12+2538979688111711671456682634103711275376*x^11+1395171049440978231515657494066063606979*x^10-1917865242083835490209222376055984687589*x^9-591420192160847254517134970322636774389*x^8+908328539585234266057687869293664555586*x^7+133588496675007401524910547700890256465*x^6-247174747259863174641823418505007791605*x^5-13830203045470960141816434318476773982*x^4+32452889852692167137801064088979746437*x^3+1430596621547622365669073542675365059*x^2-1393635323411113802425624294256283984*x-157339019370455324201058739508010033,-175763798869915873435272265402953*x^31+1143345104340537772673012569212426*x^30+4789812108433537664989751286824196*x^29-44438260492190679793991268381896565*x^28-36357574090506297413080941745202424*x^27+763022493394345933299480410700875508*x^26-251051748647059300403025598438046886*x^25-7627862070830718686968412244273885105*x^24+7088804612504063959683725197998567141*x^23+49245674181272690741054173841490852810*x^22-65089648971258614854585339854817609467*x^21-215254097319707278825984645820938253727*x^20+349621993996772265443729793157549585047*x^19+649529294132597896624136290334245460385*x^18-1230788839371689816001709560706344141483*x^17-1354908953756805172574165908584528013710*x^16+2946620186042957836110696351704802946551*x^15+1927235889605923319900863782063177227184*x^14-4832446856311318433633624864192362777644*x^13-1814054192211728454115164895982839561281*x^12+5367694562752476082407364320766846995822*x^11+1071801721262835349286448825335221066110*x^10-3922476152028590254649019595584746147637*x^9-362770171776408481197435061978023279042*x^8+1787827689760656495738594257133566714802*x^7+60769092139599428157498004277960290434*x^6-461585540280645070354722447645252648327*x^5-5939394588828189433785643668971488980*x^4+56166389502713559944592681314141993121*x^3+1345659145811264851389846515524260843*x^2-2326121453808044187957798624511089381*x-157398540045481785012889667756919075,389059418826980705385815143887294*x^31-2514977105423205512193636224282997*x^30-10670358179083816364810096019308466*x^29+97707947066500048189278400534882872*x^28+83646447513820788231673948267459266*x^27-1677754662493499112141516052456457448*x^26+491954565190370612587768497316662303*x^25+16783654174209136068493844428572486636*x^24-14957181736591536393720197429304399441*x^23-108515815156996800637528110174803375514*x^22+138686162310694870697458352391129041262*x^21+475464728467740828262451584309864247679*x^20-747253628318767314539032518397076450658*x^19-1439349875268773814517495621767449309694*x^18+2633263338784208616156712055897567990007*x^17+3012316941171790361801739460211054826612*x^16-6303574477555201872802293601191753173679*x^15-4287037988609444528094527891367960758502*x^14+10325296568840141642897215000764772037394*x^13+3990080480808352228702250376354402263553*x^12-11437554991453295908707901147108876393848*x^11-2231954668152917610231223496712937623915*x^10+8318153264286852018624293062520274961710*x^9+589145685801584986507418309074786337832*x^8-3766477348832128759363836733355520038115*x^7+20051291973591578406769725162855198978*x^6+967951447728680950563562372278381909960*x^5-38198369182294064017248805003854913668*x^4-119412401499878697501157155303266778870*x^3+2684768060904201136773295547169870801*x^2+5321389889989602207742863136318196130*x+228109127283426535968882571654971888,22692851360143781155360923768827031*x^3-90771405440575124621443695075308124*x,559231525587301839826135874556282*x^31-3611260041399276200727054729995400*x^30-15259317004826198160316010348111121*x^29+139973797986760002542566685855111424*x^28+117302869159814715574081561199163249*x^27-2396447320867653495226785728267499603*x^26+755279455727100028602677624284621380*x^25+23884029189716531190211232085476507967*x^24-21957309126295846307045114563260663660*x^23-153699309589278871616033610086789552226*x^22+202160590121378457213622699997514962286*x^21+669500947492825459876069813947769738089*x^20-1086005444001098100497043185969470941411*x^19-2012444615031687446727706479598790471556*x^18+3821747827398765221231858551442281116792*x^17+4178740078384602991784037338488102345020*x^16-9148646476602321633093600408264002541441*x^15-5908443614574431177557966526495206918128*x^14+15013742288201454314504355859892914576779*x^13+5513540960886128112107839483447709789859*x^12-16711696608720688500396243884897055171960*x^11-3213683593342084255851317238927444179223*x^10+12269471931969034899920814669983999226405*x^9+1064234347777957157777649372612770115567*x^8-5646304056148297750388139202813650917190*x^7-173004903585907739034877509066087294030*x^6+1487134652876201278270391057828077844721*x^5+17505014080424517051138469934121733671*x^4-189190664480200383152301450327461991654*x^3-4379808178568998536431745757400483508*x^2+8592593277765272707328509439244181116*x+595878751057055447680953886116699768,-192201016167881079873845621147922*x^31+1057189456242026112021963461729163*x^30+6065763193345042103287229119102629*x^29-41292709737590688255879779743065726*x^28-73713468400491949841352460663836396*x^27+714061492306471745041700484715876317*x^26+344932907613520027412086954037084424*x^25-7210247169039192588494960917329328533*x^24+1116912447991550775326403185794186845*x^23+47203111959782537178265724743281809082*x^22-24809283786289086018194424824705916054*x^21-210335947900350597540824907483218328201*x^20+160061190669065249220025408570768310190*x^19+651700735315304611455262734590839933356*x^18-598013445409442235289039716227372825676*x^17-1409683379004689749320752437002458239662*x^16+1443872458664460910126027935621940267944*x^15+2107705417083337076478729522859777674693*x^14-2315144417236172847218566017511296094629*x^13-2125707718170468393265964621796720049836*x^12+2454263620725000642354086931923199889167*x^11+1384094584134060392424586629408851914695*x^10-1676288142991542779810745644078737698417*x^9-539155257558847312953486499608336724830*x^8+702728806619880787754594708473172239029*x^7+109514650941175916360139454227579470247*x^6-166410897611969608340945415603754361586*x^5-9510529629464298961661617254799186335*x^4+19247059420927324381228615030657443831*x^3+712538071878357008661266102752641612*x^2-824273971716239998320102486599523141*x-53881638878923357873172295545992980,-344942112738829509175801966124740*x^31+2548205458793626230787737135096265*x^30+7766224334866655811449101476589032*x^29-97074112348705746257637245648733755*x^28-7308638950254100737156440209252195*x^27+1625030398816586057434584190625960734*x^26-1606194729509852510671333691170737636*x^25-15718622295283472814651677515270643991*x^24+25245649501015565637618589800215194763*x^23+97085573997544414464495480627673627557*x^22-202794607187095190810049650965743160147*x^21-398784732874244728984060946731669079846*x^20+1026057526707810409846684771455380751754*x^19+1096759208481009830719550322383055800935*x^18-3492888862708518651943479888699841399733*x^17-1967241429131062765735093006541440913427*x^16+8188797971012463447686430916189172197599*x^15+2105137827326892905741151927684402377225*x^14-13245860056399763110626966365331426292109*x^13-921942006150933423258133549628882607218*x^12+14578978999040152670431163813881317113831*x^11-568624147515248070207186597523315042355*x^10-10591731052534769754155252200216298590089*x^9+959349183532665977330949919401918952565*x^8+4813214953016255760237633387366890144732*x^7-472502553480419436174724973019727297342*x^6-1243521928952010277191321016856206218367*x^5+87213974517988648687384888002358077896*x^4+152882342430862359721839143996016212883*x^3-1885918860921861329978992110898660752*x^2-6686169937646380611427736549386866000*x-433105323355805164461947112944343327,690275253216468806837907539820985*x^31-4517928653462006588068844351045380*x^30-18626421984642344562638090805437439*x^29+175231046296740740302970901806366510*x^28+136123259149808450355398118333768943*x^27-3002300515854617445694724935912405750*x^26+1091963263288547902815494445285046695*x^25+29947746497824214427421218673562556141*x^24-28821466235192063576328682738366467554*x^23-192913782625544628588707170433270484105*x^22+261509305133706605277420267061904459920*x^21+841333368812821931025440715920894179427*x^20-1397013301393201167576223118517692303464*x^19-2532796433361330438752201432940654323932*x^18+4900827206105680655614116419262158696594*x^17+5269705507769771800548485200650532077141*x^16-11699415001674734310122866503511670148708*x^15-7471467666592208490432539475087646481687*x^14+19127312911891728224473018517257785187229*x^13+7000292147226532641198725272780393085519*x^12-21153779571850517192029033399016401097159*x^11-4107943505736448020235021007898923945044*x^10+15351689436593841955800289255045280359509*x^9+1382261837621135577480044572524070225858*x^8-6918537799032942671251386954793143925625*x^7-240875202932041548348333654409167681470*x^6+1754859843420739076837185055682390429805*x^5+32463981281670461425184500168241482504*x^4-208404088828335156620729092081227943206*x^3-7785814439469801422709634478443732770*x^2+8575247330819431787017416349592695980*x+684570266614512258188554428618252807,-960113057328003361155075829697864*x^31+6099239826253750520250623922859847*x^30+27045046752828739268057755204963965*x^29-238276248950447605924363875325553446*x^28-233996969093086414213973776308820877*x^27+4120498326021534631017189859133797007*x^26-741616994055262507248760232655576174*x^25-41601873435143466993078515588706646242*x^24+32179296006542768499197067155488314385*x^23+272327906329129064135449685388036327942*x^22-311440632342634183563211484348936851061*x^21-1213857633237872195393641335893841574984*x^20+1706898604222689332771807237843919528071*x^19+3766660093900788596395844886855071116442*x^18-6070220805721329557013471185388212048560*x^17-8182773016692282372235601118832250059605*x^16+14610125977648354232601208726227989459391*x^15+12360228026822587487011440292624489527442*x^14-24003200542542892108129395451507885113082*x^13-12744251039085761107880708621630445235018*x^12+26609337371544016586255587100441031326062*x^11+8686203494557476904591161282228148210067*x^10-19314271366885487659070687052458934767682*x^9-3721484373768172673908142476383705276953*x^8+8692043326883840578941262375459925273986*x^7+935213762521819746045866842868037910741*x^6-2202944707599077102598637260776734495460*x^5-133889314122687477767677245320449679897*x^4+263463806089474682226449584014788307000*x^3+14076305850437549183958669495266258433*x^2-11037978371172352973666784279104491929*x-861794532183667821548511770200371249,208438826365659425507069782928061*x^31-1332932127236279435550532566013410*x^30-5781858341476819443348427739137332*x^29+51743575170008370390037106468701158*x^28+47723860004160316244574110683691442*x^27-887650133970102968710332002907682221*x^26+205054219153834250593489517247114708*x^25+8870373310048069926928665242929034295*x^24-7314457250560233513980646577128234822*x^23-57293960616182466065127538408929790770*x^22+68796869404069803131579832825375208533*x^21+250881423157202300973919319766927404694*x^20-370342592881024912769347539547504317420*x^19-759947561971715629418578657651258178043*x^18+1295238989645443100806339817657720388660*x^17+1596382845888562288808547837158888840289*x^16-3061507044255156537820496361165286855206*x^15-2297675192672491507374811769680891487448*x^14+4925925563092446925360111666721474800329*x^13+2203649074874233372394487128573433045210*x^12-5329117807221989773695875121193317393957*x^11-1337950968462445979436086189317719666396*x^10+3761685196674196391833517759531890447434*x^9+466479790579369467696902772574785386829*x^8-1644317278549495163603665067511772535148*x^7-75135139939139188668961161795216006858*x^6+408001817428386470587875623251022068818*x^5+3303553208271075649520499936231832728*x^4-49416902130148573986378911076784879797*x^3-837809769460329339219976406561555184*x^2+2178463993863080812067973887961976710*x+157569064624927185681255133274354070,-1896882352810551420008508300433503*x^31+12206354857975404312189090682290240*x^30+52163786562166318871759066810527419*x^29-474013215278406001450577565762934083*x^28-413652343598050564918022876219091846*x^27+8135281376474986493782817795094248625*x^26-2290848135615491279055992853467642055*x^25-81339281462466679713743622838267386414*x^24+71763829904607882109059045904490279328*x^23+525648542711211956381113132623191076138*x^22-668096533098019450695607075741262904390*x^21-2302567135613787197430756066981481096551*x^20+3605392780118606500634316288023589626625*x^19+6973688158593778907990174778206779919523*x^18-12717195324598457401644024435197443403547*x^17-14629454420348703842344947263628604958334*x^16+30469985315100107276650915473413297960733*x^15+20974836456546887980186894884218900889795*x^14-49966964807383021569348774373036257021468*x^13-19941538615379997283279709340678310712820*x^12+55435809455179496183211030238471464316227*x^11+11897928009875347711278706402156560737235*x^10-40391991448596745708410010223081802054081*x^9-4018445916850123914614413247187971175993*x^8+18313288225163327222556320450642982727056*x^7+616861454702742084025020229273802115384*x^6-4695920225937949103020140501257873328261*x^5-31192287006398197072059363945953424990*x^4+570542251694209114839118173644722046262*x^3+9319359733676598868318109563338422565*x^2-24015971994383522261604440379745806498*x-1535067365528497519368783656918436132,22692851360143781155360923768827031*x^4-136157108160862686932165542612962186*x^2+90771405440575124621443695075308124,5344595557576467330135765699324*x^31-1606152376884354862873810121277*x^30-312653766846163750521030262478820*x^29+118714453256418476467838495301765*x^28+8008847612700375114853030900508064*x^27-3105159714402373689081760863708783*x^26-120056912149247639491310243794174782*x^25+42703152935034828274877216719648260*x^24+1180973737898447995855821880437258258*x^23-357791742539914507974812212785402531*x^22-8068879128465675363567553366370763987*x^21+1963030875276882828321312944299238361*x^20+39417583885607679627841494757307697912*x^19-7372047901925099321532979580295435126*x^18-139332383181724585735309030945733342361*x^17+19756047083287392761741260680451079022*x^16+356134828286852668304512665561888665895*x^15-39998858063962734766489864646132684361*x^14-650639716069426747117012062889085448006*x^13+64976733787689911404319795544196285890*x^12+830735450740704183563578550716921062354*x^11-84039116260211839851830080424614737888*x^10-716111328109502826127659492121551517353*x^9+76414410176244280375470029649954574587*x^8+396848090055680991811407828371413032912*x^7-39450227976613531771594964220144262551*x^6-132195145582892028979705050147295579092*x^5+7463246709277514978631010573910352138*x^4+24054521151144847057951955531311635636*x^3+833533453012592422163303403274884834*x^2-1906425483978493909184888338775322903*x-154970954893402960350216227405821911]];

E[632,1] = [x, [1,0,1,0,-1,0,-5,0,-2,0,4,0,1,0,-1,0,-8]];
E[632,2] = [x^2+2*x-4, [2,0,2*x,0,-x-2,0,-4,0,-4*x+2,0,-3*x-4,0,-x,0,-4,0,-8]];
E[632,3] = [x^3+x^2-6*x-4, [2,0,2*x,0,-x^2-x,0,-2*x,0,2*x^2-6,0,x^2-3*x-6,0,x^2-x-14,0,-6*x-4,0,4*x+4]];
E[632,4] = [x^6-4*x^5-5*x^4+26*x^3+2*x^2-28*x-8, [4,0,4*x,0,-x^5+4*x^4+3*x^3-24*x^2+14*x+16,0,2*x^4-6*x^3-12*x^2+28*x+16,0,4*x^2-12,0,-x^5+2*x^4+11*x^3-14*x^2-26*x+12,0,x^5-2*x^4-7*x^3+6*x^2+10*x+12,0,-2*x^4+2*x^3+16*x^2-12*x-8,0,2*x^5-10*x^4-4*x^3+60*x^2-24*x-40]];
E[632,5] = [x^2-4*x-1, [1,0,-1,0,x,0,-x,0,-2,0,-x-1,0,-x,0,-x,0,-x+3]];
E[632,6] = [x^6-9*x^5+18*x^4+43*x^3-181*x^2+176*x-52, [4,0,3*x^5-25*x^4+36*x^3+157*x^2-429*x+218,0,4*x,0,4*x^5-32*x^4+44*x^3+200*x^2-548*x+280,0,2*x^5-14*x^4+12*x^3+90*x^2-194*x+104,0,-4*x^4+20*x^3+16*x^2-152*x+96,0,-2*x^5+18*x^4-32*x^3-106*x^2+346*x-188,0,2*x^5-18*x^4+28*x^3+114*x^2-310*x+156,0,-6*x^5+46*x^4-56*x^3-290*x^2+742*x-372]];

E[633,1] = [x, [1,-1,-1,-1,-3,1,2,3,1,3,5,1,-3,-2,3,-1,-4]];
E[633,2] = [x^4+2*x^3-2*x^2-3*x+1, [1,x,1,x^2-2,-x^3-2*x^2+x+1,x,x^3+x^2-2*x-3,x^3-4*x,1,-x^2-2*x+1,x^3+4*x^2-x-6,x^2-2,-x^3-3*x^2+1,-x^3-1,-x^3-2*x^2+x+1,-2*x^3-4*x^2+3*x+3,x^3-x^2-5*x+2]];
E[633,3] = [x^8+3*x^7-8*x^6-25*x^5+18*x^4+59*x^3-6*x^2-32*x-8, [4,4*x,-4,4*x^2-8,-2*x^7-4*x^6+18*x^5+30*x^4-50*x^3-62*x^2+38*x+28,-4*x,2*x^7+6*x^6-16*x^5-46*x^4+40*x^3+90*x^2-32*x-32,4*x^3-16*x,4,2*x^7+2*x^6-20*x^5-14*x^4+56*x^3+26*x^2-36*x-16,-x^7-5*x^6+6*x^5+41*x^4-12*x^3-91*x^2+16*x+28,-4*x^2+8,3*x^7+5*x^6-32*x^5-47*x^4+102*x^3+121*x^2-94*x-56,4*x^5+4*x^4-28*x^3-20*x^2+32*x+16,2*x^7+4*x^6-18*x^5-30*x^4+50*x^3+62*x^2-38*x-28,4*x^4-24*x^2+16,4*x^5+8*x^4-20*x^3-32*x^2+16*x+8]];
E[633,4] = [x^8-4*x^7-4*x^6+27*x^5-2*x^4-52*x^3+16*x^2+21*x-7, [2,2*x,-2,2*x^2-4,-2*x^5+4*x^4+10*x^3-14*x^2-12*x+6,-2*x,-x^7+4*x^6+3*x^5-23*x^4+3*x^3+35*x^2-7*x-6,2*x^3-8*x,2,-2*x^6+4*x^5+10*x^4-14*x^3-12*x^2+6*x,x^6-2*x^5-5*x^4+5*x^3+9*x^2+5*x-3,-2*x^2+4,x^7-2*x^6-9*x^5+17*x^4+19*x^3-35*x^2-x+8,-x^6+4*x^5+x^4-17*x^3+9*x^2+15*x-7,2*x^5-4*x^4-10*x^3+14*x^2+12*x-6,2*x^4-12*x^2+8,x^6-11*x^4+x^3+25*x^2+x-1]];
E[633,5] = [x^14-3*x^13-21*x^12+66*x^11+161*x^10-547*x^9-535*x^8+2105*x^7+676*x^6-3750*x^5-80*x^4+2737*x^3-274*x^2-544*x+72, [976,976*x,976,976*x^2-1952,-13*x^13+30*x^12+275*x^11-799*x^10-2008*x^9+7579*x^8+5614*x^7-31399*x^6-3423*x^5+54695*x^4-3813*x^3-31370*x^2+2528*x+2328,976*x,36*x^13-8*x^12-724*x^11+148*x^10+5448*x^9-980*x^8-19000*x^7+2452*x^6+31364*x^5-1084*x^4-25140*x^3-256*x^2+11168*x+160,976*x^3-3904*x,976,-9*x^13+2*x^12+59*x^11+85*x^10+468*x^9-1341*x^8-4034*x^7+5365*x^6+5945*x^5-4853*x^4+4211*x^3-1034*x^2-4744*x+936,-103*x^13+50*x^12+2329*x^11-1169*x^10-19776*x^9+9785*x^8+77758*x^7-35333*x^6-141125*x^5+53013*x^4+104421*x^3-31706*x^2-22952*x+5832,976*x^2-1952,-x^13-54*x^12+115*x^11+1121*x^10-1900*x^9-8933*x^8+12050*x^7+33997*x^6-32903*x^5-61485*x^4+34167*x^3+43290*x^2-9040*x-3800,100*x^13+32*x^12-2228*x^11-348*x^10+18712*x^9+260*x^8-73328*x^7+7028*x^6+133916*x^5-22260*x^4-98788*x^3+21032*x^2+19744*x-2592,-13*x^13+30*x^12+275*x^11-799*x^10-2008*x^9+7579*x^8+5614*x^7-31399*x^6-3423*x^5+54695*x^4-3813*x^3-31370*x^2+2528*x+2328,976*x^4-5856*x^2+3904,80*x^13-72*x^12-1880*x^11+1576*x^10+16824*x^9-12480*x^8-71448*x^7+42808*x^6+146368*x^5-59288*x^4-130856*x^3+26000*x^2+36096*x-2464]];

E[634,1] = [x^4+3*x^3-4*x-1, [1,1,x,1,-x^2-2*x-1,x,x^2-4,1,x^2-3,-x^2-2*x-1,2*x^3+5*x^2-2*x-7,x,-4*x^3-8*x^2+5*x+5,x^2-4,-x^3-2*x^2-x,1,4*x^3+8*x^2-4*x-9]];
E[634,2] = [x^9-2*x^8-16*x^7+31*x^6+79*x^5-149*x^4-103*x^3+216*x^2-84*x+8, [4,4,4*x,4,-2*x^8+2*x^7+32*x^6-30*x^5-160*x^4+140*x^3+240*x^2-206*x+36,4*x,2*x^8-32*x^6+2*x^5+158*x^4-30*x^3-230*x^2+112*x,4,4*x^2-12,-2*x^8+2*x^7+32*x^6-30*x^5-160*x^4+140*x^3+240*x^2-206*x+36,5*x^8-76*x^6+3*x^5+349*x^4-55*x^3-449*x^2+242*x-12,4*x,-5*x^8-2*x^7+76*x^6+25*x^5-347*x^4-55*x^3+435*x^2-152*x+4,2*x^8-32*x^6+2*x^5+158*x^4-30*x^3-230*x^2+112*x,-2*x^8+32*x^6-2*x^5-158*x^4+34*x^3+226*x^2-132*x+16,4,-2*x^8+32*x^6-2*x^5-162*x^4+26*x^3+258*x^2-88*x-8]];
E[634,3] = [x^6+4*x^5-2*x^4-17*x^3-3*x^2+7*x-1, [1,-1,x,1,-x^4-x^3+5*x^2-2,-x,x^5+5*x^4-21*x^2-9*x+6,-1,x^2-3,x^4+x^3-5*x^2+2,-2*x^5-7*x^4+3*x^3+25*x^2+14*x-6,x,-x^5-5*x^4+22*x^2+10*x-7,-x^5-5*x^4+21*x^2+9*x-6,-x^5-x^4+5*x^3-2*x,1,x^5+2*x^4-5*x^3-6*x^2+3*x-2]];
E[634,4] = [x^7-5*x^6-4*x^5+44*x^4-19*x^3-88*x^2+44*x+40, [116,-116,116*x,116,6*x^6+12*x^5-114*x^4-128*x^3+498*x^2+290*x-316,-116*x,14*x^6-30*x^5-208*x^4+320*x^3+930*x^2-696*x-1008,-116,116*x^2-348,-6*x^6-12*x^5+114*x^4+128*x^3-498*x^2-290*x+316,-19*x^6+49*x^5+158*x^4-368*x^3-243*x^2+522*x+324,116*x,-23*x^6+99*x^5+176*x^4-824*x^3-459*x^2+1276*x+612,-14*x^6+30*x^5+208*x^4-320*x^3-930*x^2+696*x+1008,42*x^6-90*x^5-392*x^4+612*x^3+818*x^2-580*x-240,116,26*x^6-122*x^5-204*x^4+1108*x^3+418*x^2-1856*x-248]];

E[635,1] = [x, [1,-2,-1,2,1,2,1,0,-2,-2,-3,-2,-2,-2,-1,-4,4]];
E[635,2] = [x^2-x-1, [1,x,-1,x-1,1,-x,-x-1,-2*x+1,-2,x,-3*x+1,-x+1,-x+1,-2*x-1,-1,-3*x,-x-3]];
E[635,3] = [x^8+2*x^7-7*x^6-13*x^5+13*x^4+22*x^3-5*x^2-10*x-2, [1,x,-2*x^7-3*x^6+15*x^5+18*x^4-32*x^3-26*x^2+19*x+9,x^2-2,-1,x^7+x^6-8*x^5-6*x^4+18*x^3+9*x^2-11*x-4,2*x^7+4*x^6-14*x^5-25*x^4+27*x^3+37*x^2-15*x-11,x^3-4*x,x^7+x^6-8*x^5-5*x^4+19*x^3+4*x^2-14*x,-x,x^7+x^6-8*x^5-5*x^4+18*x^3+5*x^2-10*x-3,3*x^7+5*x^6-23*x^5-31*x^4+51*x^3+46*x^2-32*x-16,x^5+x^4-6*x^3-4*x^2+7*x,x^5+x^4-7*x^3-5*x^2+9*x+4,2*x^7+3*x^6-15*x^5-18*x^4+32*x^3+26*x^2-19*x-9,x^4-6*x^2+4,2*x^7+3*x^6-16*x^5-19*x^4+38*x^3+30*x^2-26*x-12]];
E[635,4] = [x^9-3*x^8-17*x^7+52*x^6+103*x^5-323*x^4-263*x^3+852*x^2+236*x-802, [2,2*x,x^7-x^6-14*x^5+11*x^4+61*x^3-32*x^2-82*x+20,2*x^2-4,-2,x^8-x^7-14*x^6+11*x^5+61*x^4-32*x^3-82*x^2+20*x,-x^7+x^6+14*x^5-13*x^4-61*x^3+52*x^2+82*x-60,2*x^3-8*x,x^7-3*x^6-12*x^5+39*x^4+41*x^3-156*x^2-36*x+194,-2*x,-2*x^8+x^7+39*x^6-14*x^5-275*x^4+63*x^3+824*x^2-92*x-876,2*x^8+x^7-39*x^6-14*x^5+269*x^4+59*x^3-768*x^2-72*x+762,-2*x^3+10*x+4,-x^8+x^7+14*x^6-13*x^5-61*x^4+52*x^3+82*x^2-60*x,-x^7+x^6+14*x^5-11*x^4-61*x^3+32*x^2+82*x-20,2*x^4-12*x^2+8,-2*x^6+30*x^4-140*x^2+200]];
E[635,5] = [x^18-x^17-31*x^16+30*x^15+395*x^14-362*x^13-2680*x^12+2261*x^11+10498*x^10-7867*x^9-24083*x^8+15361*x^7+31258*x^6-16106*x^5-20962*x^4+8072*x^3+6080*x^2-1536*x-512, [56261248,56261248*x,-2551228*x^17+2918680*x^16+77089720*x^15-83253052*x^14-950414012*x^13+936641772*x^12+6183309880*x^11-5273650668*x^10-22983791980*x^9+15555883484*x^8+49420224544*x^7-22774424256*x^6-58923186796*x^5+13032060992*x^4+34359276928*x^3+338246344*x^2-6778569152*x-1072837632,56261248*x^2-112522496,56261248,367452*x^17-1998348*x^16-6716212*x^15+57321048*x^14+13097236*x^13-653981160*x^12+494675840*x^11+3798999564*x^10-4514627192*x^9-12020999380*x^8+16414989052*x^7+20823098028*x^6-28058017176*x^5-19119564408*x^4+20931758760*x^3+8732897088*x^2-4991523840*x-1306228736,-13982400*x^17+4938016*x^16+437710256*x^15-138231760*x^14-5642536880*x^13+1465739744*x^12+38763104400*x^11-7146048160*x^10-153429810528*x^9+14152972304*x^8+352624600352*x^7+3210777360*x^6-447957916944*x^5-48907914768*x^4+275294965920*x^3+53672668704*x^2-57083859040*x-12455452672,56261248*x^3-225044992*x,9134107*x^17-6340455*x^16-279193705*x^15+176563630*x^14+3495177745*x^13-1901317874*x^12-23193712544*x^11+9871500919*x^10+88345498810*x^9-24650575361*x^8-195412843069*x^7+22608754927*x^6+240279339138*x^5+10376170442*x^4-144688229310*x^3-24399894448*x^2+29609565952*x+6412506624,56261248*x,-14282591*x^17+8225271*x^16+440749497*x^15-232357274*x^14-5583472181*x^13+2542334590*x^12+37572183624*x^11-13459472427*x^10-145258257350*x^9+34544409701*x^8+325477704805*x^7-33406235863*x^6-402653844158*x^5-13650371242*x^4+240610609934*x^3+37378582072*x^2-48239326368*x-10259523584,3471560*x^17-1162560*x^16-107881952*x^15+34459800*x^14+1379864488*x^13-393836344*x^12-9398429168*x^11+2175163048*x^10+36837329464*x^9-5847431400*x^8-83661781232*x^7+6005016720*x^6+104644991096*x^5+2570165600*x^4-62951729312*x^3-7902124688*x^2+12815315840*x+2333810688,19910868*x^17-6136308*x^16-625601676*x^15+171855160*x^14+8100797148*x^13-1812473896*x^12-55942954656*x^11+8665419492*x^10+222705942024*x^9-15782021532*x^8-514683355100*x^7-11130470092*x^6+656329374952*x^5+74777265784*x^4-403033281384*x^3-79075567648*x^2+82974863488*x+18368369920,-9044384*x^17+4255856*x^16+281240240*x^15-119488880*x^14-3595889056*x^13+1290272400*x^12+24468158240*x^11-6642575328*x^10-95846568496*x^9+15886461152*x^8+217994423760*x^7-10896057744*x^6-274108449168*x^5-17804102880*x^4+166538601504*x^3+27929132960*x^2-33932419072*x-7158988800,-2551228*x^17+2918680*x^16+77089720*x^15-83253052*x^14-950414012*x^13+936641772*x^12+6183309880*x^11-5273650668*x^10-22983791980*x^9+15555883484*x^8+49420224544*x^7-22774424256*x^6-58923186796*x^5+13032060992*x^4+34359276928*x^3+338246344*x^2-6778569152*x-1072837632,56261248*x^4-337567488*x^2+225044992,4230884*x^17-1236244*x^16-136913164*x^15+34164712*x^14+1832017036*x^13-353661944*x^12-13111312672*x^11+1613616372*x^10+54179023704*x^9-2272843404*x^8-129898861020*x^7-5931474540*x^6+171380336344*x^5+22981499608*x^4-108515997864*x^3-23442762560*x^2+23180200768*x+5451245568]];
E[635,6] = [x, [1,0,1,-2,1,0,-1,0,-2,0,-3,-2,-4,0,1,4,0]];
E[635,7] = [x^4-x^3-6*x^2+2*x+1, [1,0,x,-2,-1,0,-x^3+x^2+7*x-2,0,x^2-3,0,x^3-2*x^2-4*x+5,-2*x,2,0,-x,4,2*x^3-2*x^2-10*x+4]];

E[636,1] = [x^2+5*x+5, [1,0,1,0,x,0,-3*x-9,0,1,0,2*x+2,0,3*x+6,0,x,0,2*x+2]];
E[636,2] = [x^2-x-1, [1,0,1,0,x,0,-x+1,0,1,0,2,0,x,0,x,0,-4*x+4]];
E[636,3] = [x^2+x-9, [1,0,-1,0,x,0,x+1,0,1,0,2,0,-x,0,-x,0,-4]];
E[636,4] = [x^2-x-3, [1,0,-1,0,x,0,-x-1,0,1,0,-2*x-2,0,x-2,0,-x,0,-2*x+2]];

E[637,1] = [x, [1,-2,0,2,3,0,0,0,-3,-6,-6,0,1,0,0,-4,-4]];
E[637,2] = [x^2-2, [1,x,x,0,-x-3,2,0,-2*x,-1,-3*x-2,-3*x,0,1,0,-3*x-2,-4,x]];
E[637,3] = [x^3-x^2-4*x+2, [1,x,x^2-x-2,x^2-2,x-1,2*x-2,0,x^2-2,-2*x+3,x^2-x,x^2-x-2,4,-1,0,-x^2+3*x,-x^2+2*x+2,-x^2-x+2]];
E[637,4] = [x, [1,0,2,-2,3,0,0,0,1,0,0,-4,-1,0,6,4,6]];
E[637,5] = [x, [1,1,0,-1,0,0,0,-3,-3,0,-3,0,1,0,0,-1,-7]];
E[637,6] = [x, [1,1,0,-1,0,0,0,-3,-3,0,-3,0,-1,0,0,-1,7]];
E[637,7] = [x^2+5*x-5, [3,x-2,-2*x-5,-3*x-3,2*x+5,3*x,0,4*x+1,6,-3*x,-9,-3*x+15,3,0,-15,-3*x+12,4*x+19]];
E[637,8] = [x^2-5*x-5, [3,-x-2,-2*x+5,3*x-3,2*x-5,3*x,0,-4*x+1,6,-3*x,-9,-3*x-15,-3,0,-15,3*x+12,4*x-19]];
E[637,9] = [x^3+4*x^2-2*x-14, [1,x^2+x-6,x,-x^2-2*x+6,x^2+x-7,-3*x^2-4*x+14,0,2*x^2+4*x-10,x^2-3,-2*x^2-3*x+14,-x^2-x+4,2*x^2+4*x-14,1,0,-3*x^2-5*x+14,-4*x^2-6*x+20,x]];
E[637,10] = [x^3-4*x^2-2*x+14, [1,x^2-x-6,x,-x^2+2*x+6,-x^2+x+7,3*x^2-4*x-14,0,2*x^2-4*x-10,x^2-3,2*x^2-3*x-14,-x^2+x+4,-2*x^2+4*x+14,-1,0,-3*x^2+5*x+14,-4*x^2+6*x+20,x]];
E[637,11] = [x^6+8*x^5+20*x^4+12*x^3-12*x^2-8*x+2, [1,-x^2-3*x,x,x^4+6*x^3+9*x^2-2,-x^4-5*x^3-5*x^2+3*x+1,-x^3-3*x^2,0,-x^5-7*x^4-15*x^3-8*x^2+4*x+2,x^2-3,2*x^2+5*x-2,2*x^5+13*x^4+23*x^3+3*x^2-11*x,x^5+6*x^4+9*x^3-2*x,-1,0,-x^5-5*x^4-5*x^3+3*x^2+x,-x^4-4*x^3+8*x,-x^5-6*x^4-10*x^3-2*x^2+3*x-4]];
E[637,12] = [x^6-8*x^5+20*x^4-12*x^3-12*x^2+8*x+2, [1,-x^2+3*x,x,x^4-6*x^3+9*x^2-2,x^4-5*x^3+5*x^2+3*x-1,-x^3+3*x^2,0,x^5-7*x^4+15*x^3-8*x^2-4*x+2,x^2-3,-2*x^2+5*x+2,-2*x^5+13*x^4-23*x^3+3*x^2+11*x,x^5-6*x^4+9*x^3-2*x,1,0,x^5-5*x^4+5*x^3+3*x^2-x,-x^4+4*x^3-8*x,-x^5+6*x^4-10*x^3+2*x^2+3*x+4]];
E[637,13] = [x^5-9*x^3+16*x-4, [2,-x^3+x^2+6*x-2,2*x,-x^4-x^3+8*x^2+6*x-6,2*x^2-8,-x^4+x^3+6*x^2-2*x,0,-x^4-2*x^3+7*x^2+12*x-2,2*x^2-6,x^4+x^3-6*x^2-8*x+4,x^4-7*x^2-2*x+10,-x^4-x^3+6*x^2+10*x-4,-2,0,2*x^3-8*x,-x^4-3*x^3+6*x^2+20*x+2,-2*x^3+10*x+2]];
E[637,14] = [x^5-9*x^3+16*x+4, [2,x^3+x^2-6*x-2,2*x,-x^4+x^3+8*x^2-6*x-6,-2*x^2+8,x^4+x^3-6*x^2-2*x,0,-x^4+2*x^3+7*x^2-12*x-2,2*x^2-6,-x^4+x^3+6*x^2-8*x-4,x^4-7*x^2+2*x+10,x^4-x^3-6*x^2+10*x+4,2,0,-2*x^3+8*x,-x^4+3*x^3+6*x^2-20*x+2,-2*x^3+10*x-2]];

E[638,1] = [x^2+3*x-1, [1,1,x,1,-2,x,-2*x-4,1,-3*x-2,-2,1,x,x-3,-2*x-4,-2*x,1,-x-2]];
E[638,2] = [x^4-4*x^3-x^2+16*x-13, [1,1,x,1,-2*x^3+5*x^2+9*x-17,x,x^3-3*x^2-5*x+12,1,x^2-3,-2*x^3+5*x^2+9*x-17,1,x,3*x^3-7*x^2-14*x+25,x^3-3*x^2-5*x+12,-3*x^3+7*x^2+15*x-26,1,2*x^3-6*x^2-9*x+22]];
E[638,3] = [x^4-2*x^3-5*x^2+8*x+1, [1,1,x,1,-x^2+x+3,x,x^3-x^2-5*x+4,1,x^2-3,-x^2+x+3,-1,x,-x^3+x^2+4*x+1,x^3-x^2-5*x+4,-x^3+x^2+3*x,1,-x-2]];
E[638,4] = [x^2+3*x+1, [1,1,x,1,-2*x-4,x,2*x+2,1,-3*x-4,-2*x-4,-1,x,-3*x-7,2*x+2,2*x+2,1,x-2]];
E[638,5] = [x^2-x-1, [1,-1,x,1,-2*x+2,-x,-2,-1,x-2,2*x-2,-1,x,x-5,2,-2,1,3*x-6]];
E[638,6] = [x^2+3*x+1, [1,-1,x,1,0,-x,0,-1,-3*x-4,0,1,x,x-1,0,0,1,x+2]];
E[638,7] = [x^5-4*x^4-3*x^3+22*x^2-15*x-4, [1,-1,x,1,-x^4+2*x^3+8*x^2-9*x-6,-x,2*x^4-5*x^3-13*x^2+23*x+4,-1,x^2-3,x^4-2*x^3-8*x^2+9*x+6,1,x,x^4-3*x^3-6*x^2+14*x+2,-2*x^4+5*x^3+13*x^2-23*x-4,-2*x^4+5*x^3+13*x^2-21*x-4,1,-4*x^4+10*x^3+26*x^2-47*x-6]];
E[638,8] = [x^4-2*x^3-7*x^2+6*x+11, [1,-1,x,1,-x^2+x+3,-x,-x^3+3*x^2+3*x-6,-1,x^2-3,x^2-x-3,-1,x,x^3-3*x^2-2*x+9,x^3-3*x^2-3*x+6,-x^3+x^2+3*x,1,x+2]];

E[639,1] = [x, [1,-1,0,-1,-2,0,2,3,0,2,0,0,-2,-2,0,-1,0]];
E[639,2] = [x^2+x-3, [1,x,0,-x+1,-x,0,-1,-3,0,x-3,-3,0,x-1,-x,0,-x-2,-3]];
E[639,3] = [x^2-2*x-1, [1,x,0,2*x-1,2*x-2,0,x-3,x+2,0,2*x+2,-2*x+2,0,2*x-4,-x+1,0,3,-3*x+5]];
E[639,4] = [x^2-3*x+1, [1,x,0,3*x-3,-x+4,0,-2*x+1,4*x-3,0,x+1,-2*x+7,0,3*x-5,-5*x+2,0,3*x+2,2*x-1]];
E[639,5] = [x^2-x-1, [1,x,0,x-1,-x,0,-3,-2*x+1,0,-x-1,-2*x+3,0,-3*x-1,-3*x,0,-3*x,2*x-1]];
E[639,6] = [x^2+2*x-1, [1,x,0,-2*x-1,2*x+2,0,-x-3,x-2,0,-2*x+2,-2*x-2,0,-2*x-4,-x-1,0,3,-3*x-5]];
E[639,7] = [x^4+3*x^3-2*x^2-7*x+1, [1,x,0,x^2-2,x^2+2*x-1,0,-x^2-x+4,x^3-4*x,0,x^3+2*x^2-x,-x^3-x^2+3*x-1,0,x^3+2*x^2-x,-x^3-x^2+4*x,0,-3*x^3-4*x^2+7*x+3,2*x^3+5*x^2-5*x-6]];
E[639,8] = [x^3-5*x-3, [1,x,0,x^2-2,-x+1,0,2*x^2-2*x-6,x+3,0,-x^2+x,2*x^2-2*x-6,0,4,-2*x^2+4*x+6,0,-x^2+3*x+4,-2*x^2+2*x+6]];
E[639,9] = [x^3-x^2-4*x+3, [1,x,0,x^2-2,x^2+x-5,0,2*x,x^2-3,0,2*x^2-x-3,-2*x^2+6,0,-2*x^2+4,2*x^2,0,-x^2+x+1,-2*x^2+2*x+6]];
E[639,10] = [x^4-8*x^3+19*x^2-12*x-1, [1,-x+2,0,x^2-4*x+2,x,0,-x^3+5*x^2-5*x+1,-x^3+6*x^2-8*x,0,-x^2+2*x,x^2-5*x+6,0,2*x^3-12*x^2+17*x-1,x^3-4*x^2+x+3,0,-x^2+4*x-3,-x^2+5*x]];
E[639,11] = [x^4+8*x^3+19*x^2+12*x-1, [1,-x-2,0,x^2+4*x+2,x,0,x^3+5*x^2+5*x+1,-x^3-6*x^2-8*x,0,-x^2-2*x,-x^2-5*x-6,0,-2*x^3-12*x^2-17*x-1,x^3+4*x^2+x-3,0,-x^2-4*x-3,x^2+5*x]];

E[640,1] = [x, [1,0,-2,0,-1,0,0,0,1,0,-2,0,2,0,2,0,6]];
E[640,2] = [x, [1,0,-2,0,1,0,0,0,1,0,-2,0,-2,0,-2,0,6]];
E[640,3] = [x, [1,0,2,0,1,0,0,0,1,0,2,0,-2,0,2,0,6]];
E[640,4] = [x, [1,0,2,0,-1,0,0,0,1,0,2,0,2,0,-2,0,6]];
E[640,5] = [x^2+2*x-4, [1,0,x+2,0,1,0,x,0,2*x+5,0,2,0,-2*x-2,0,x+2,0,-2*x-2]];
E[640,6] = [x^2-2*x-4, [1,0,-x+2,0,-1,0,x,0,-2*x+5,0,2,0,-2*x+2,0,x-2,0,2*x-2]];
E[640,7] = [x^2-2*x-4, [1,0,x-2,0,1,0,x,0,-2*x+5,0,-2,0,2*x-2,0,x-2,0,2*x-2]];
E[640,8] = [x^2+2*x-4, [1,0,-x-2,0,-1,0,x,0,2*x+5,0,-2,0,2*x+2,0,x+2,0,-2*x-2]];
E[640,9] = [x, [1,0,0,0,1,0,2,0,-3,0,6,0,2,0,0,0,-6]];
E[640,10] = [x, [1,0,0,0,1,0,-2,0,-3,0,-6,0,2,0,0,0,-6]];
E[640,11] = [x, [1,0,0,0,-1,0,-2,0,-3,0,6,0,-2,0,0,0,-6]];
E[640,12] = [x, [1,0,0,0,-1,0,2,0,-3,0,-6,0,-2,0,0,0,-6]];

E[641,1] = [x^20+3*x^19-20*x^18-64*x^17+157*x^16+553*x^15-616*x^14-2526*x^13+1228*x^12+6637*x^11-934*x^10-10175*x^9-633*x^8+8780*x^7+1555*x^6-3890*x^5-853*x^4+752*x^3+140*x^2-45*x-1, [4599524,4599524*x,-1984558*x^19-5143757*x^18+41987140*x^17+108946992*x^16-362818343*x^15-930893750*x^14+1688360215*x^13+4178215756*x^12-4678051474*x^11-10675285057*x^10+8014084722*x^9+15635022382*x^8-8444616790*x^7-12484243023*x^6+5187858781*x^5+4778704194*x^4-1661974871*x^3-621971205*x^2+205226043*x-7628832,4599524*x^2-9199048,1846072*x^19+4982596*x^18-37566955*x^17-104622118*x^16+305022814*x^15+885126495*x^14-1283566500*x^13-3934154669*x^12+3018065928*x^11+9980820646*x^10-3945348947*x^9-14619413312*x^8+2635449948*x^7+11840901502*x^6-695026767*x^5-4709629309*x^4+14336606*x^3+681981085*x^2+6409689*x-5042583,809917*x^19+2295980*x^18-18064720*x^17-51242737*x^16+166566824*x^15+465872487*x^14-834777752*x^13-2241014250*x^12+2496226389*x^11+6160507550*x^10-4557855268*x^9-9700842004*x^8+4940176217*x^7+8273846471*x^6-2941226426*x^5-3354802845*x^4+870416411*x^3+483064163*x^2-96933942*x-1984558,1476769*x^19+3402720*x^18-31937620*x^17-71853493*x^16+284733974*x^15+612484933*x^14-1383410494*x^13-2749368656*x^12+4062926705*x^11+7064816086*x^10-7521041154*x^9-10513925454*x^8+8786262173*x^7+8663112933*x^6-6177968454*x^5-3467228941*x^4+2282047587*x^3+455424269*x^2-300877528*x+9478302,4599524*x^3-18398096*x,-1249210*x^19-3570558*x^18+26261780*x^17+78511094*x^16-221752610*x^15-704273850*x^14+975428730*x^13+3363017016*x^12-2405761454*x^11-9293484390*x^10+3316241244*x^9+15031577944*x^8-2423009458*x^7-13600190208*x^6+928241946*x^5+6087652058*x^4-269470096*x^3-1018003564*x^2+26292026*x+19550128,-555620*x^19-645515*x^18+13526490*x^17+15189510*x^16-135751321*x^15-146386148*x^14+729023203*x^13+751089512*x^12-2271559218*x^11-2221117699*x^10+4164369288*x^9+3804013524*x^8-4367610658*x^7-3565668727*x^6+2471590771*x^5+1589036022*x^4-706265059*x^3-252040391*x^2+78030657*x+1846072,-1638721*x^19-4178460*x^18+32454558*x^17+85778653*x^16-251144398*x^15-704563411*x^14+962960262*x^13+3017077198*x^12-1835874793*x^11-7310985198*x^10+1200875536*x^9+10121603878*x^8+1217332591*x^7-7621676125*x^6-2274267444*x^5+2729486267*x^4+1045821649*x^3-367788903*x^2-129359670*x+11707516,3835345*x^19+8421134*x^18-83382329*x^17-178484129*x^16+743625072*x^15+1525918620*x^14-3571884338*x^13-6854783199*x^12+10141191369*x^11+17549177324*x^10-17488105973*x^9-25817191086*x^8+18052008791*x^7+20767838685*x^6-10579943277*x^5-7996132776*x^4+3197956321*x^3+1033620088*x^2-375990379*x+16067581,832358*x^19+1781414*x^18-18278736*x^17-37073442*x^16+165895862*x^15+307227018*x^14-820510810*x^13-1306927640*x^12+2438599802*x^11+3031078830*x^10-4489026196*x^9-3683206632*x^8+5034271998*x^7+1931657520*x^6-3246432078*x^5-111912426*x^4+1122241348*x^3-114778360*x^2-171616778*x+3673092,-1027587*x^19-2402240*x^18+22659723*x^17+52881241*x^16-204168324*x^15-473720790*x^14+980949838*x^13+2249454373*x^12-2736499767*x^11-6141738908*x^10+4512199121*x^9+9721056950*x^8-4302918887*x^7-8474344249*x^6+2277402469*x^5+3541731544*x^4-655106019*x^3-507625188*x^2+75932907*x+1476769,-773358*x^19-535007*x^18+17275090*x^17+9129590*x^16-157298775*x^15-54693384*x^14+756147957*x^13+127534948*x^12-2062010184*x^11-27295849*x^10+3171569606*x^9-292879444*x^8-2569937474*x^7+285445127*x^6+948824195*x^5+30227676*x^4-123483631*x^3-91229011*x^2+8844965*x+13159928,4599524*x^4-27597144*x^2+18398096,6239207*x^19+14504562*x^18-133202603*x^17-307087363*x^16+1156794930*x^15+2623192554*x^14-5343939448*x^13-11782247923*x^12+14312672655*x^11+30202890748*x^10-22561299161*x^9-44617041368*x^8+20176921305*x^7+36268391597*x^6-9358393223*x^5-14381363712*x^4+2018859415*x^3+2129574098*x^2-170933707*x-38426801]];
E[641,2] = [x^33-55*x^31+1366*x^29+2*x^28-20264*x^27-78*x^26+200138*x^25+1299*x^24-1388719*x^23-11961*x^22+6962586*x^21+65178*x^20-25548448*x^19-200710*x^18+68731628*x^17+225847*x^16-134481879*x^15+666597*x^14+187878625*x^13-3207902*x^12-181594644*x^11+5909639*x^10+115486103*x^9-5715509*x^8-44637399*x^7+2828028*x^6+9245727*x^5-606346*x^4-847312*x^3+55461*x^2+21058*x-1289, [1305506538191683939060959748649473984,1305506538191683939060959748649473984*x,-790806895821401466243474677438158*x^32+109079247918825847867081954287758*x^31+44029690202979876519187249106437556*x^30-6887896197026811602167355402942928*x^29-1107920139162966199500357167677062420*x^28+194202283510708785214557439697603176*x^27+16663151033567825586326013850423397460*x^26-3250098451980474369736086204108941872*x^25-166923188187889630218473966555596371932*x^24+36111714229590001403186460861121882514*x^23+1174717692878890337071286276278628306632*x^22-281677250029637892452221153067729573838*x^21-5968435984629063637743319108137214900094*x^20+1587442135609581694110790874174787562318*x^19+22146828413438597367888344431411634183734*x^18-6542057013421439493175862905644565887966*x^17-59997970160146786121019102866801024824130*x^16+19701060327349569778393131296645201512432*x^15+117303268398975589158199606659422666878702*x^14-42809623155617304064806589759554813389464*x^13-161462613931908563580925412736329230803998*x^12+65387099994359826180452210202988215335530*x^11+149761249662477677098464794401280068860518*x^10-67111529814856981737449329022748212747880*x^9-86659723908516358832545018589532436986958*x^8+42877884822997772897827914207803710582680*x^7+26926781921699650704005116145275645351742*x^6-14813310231148665513568008742760484374794*x^5-3072739330800225318427440072597721161136*x^4+2042855914352982885434813917512836248312*x^3-4575108947654233819602170948179207576*x^2-72382787217081535363461665689123252618*x+3761457504682996522055486131415602970,1305506538191683939060959748649473984*x^2-2611013076383367878121919497298947968,-8230172906853380562416985706463613*x^32+13367155762088887906447808447932685*x^31+429828592877028965716752727280047014*x^30-694460899684720140930098530808146594*x^29-10060170408455449519617594525955902068*x^28+16132744854047419602259200556523801734*x^27+139416637000501887512072440891654485066*x^26-221368880074182521307897952430084831496*x^25-1273447640343683626841865638327744257818*x^24+1996872991685317673308804740249593861919*x^23+8076639029347626902291312204199551787028*x^22-12472778158519073549473337841455382741971*x^21-36502654477947468713666968831668925601515*x^20+55356303118097309864253886980138733814049*x^19+118735603114672449770300397991242666704675*x^18-176314007133494504219047318156563044388793*x^17-277328787104019884070354485420674715038135*x^16+402202761829678289159501515075938928020588*x^15+458589770954397982837102610007927655359563*x^14-648494682054310191652086158498703327733936*x^13-521831161299321580668658978766666696974029*x^12+720161400331571999520636085798912882747607*x^11+388816808237981095987332750043872879741693*x^10-527771743655425800709242186104840348452248*x^9-173520353171730812336760218745297190686363*x^8+238345982117349900634974300923089713430016*x^7+38359347086437465862609138995846262854879*x^6-59195941969702298153320287233483644536895*x^5-1951266568803818133081831279142880799136*x^4+6548914564646169101977435455913035259338*x^3-341110630117355831955445108476357202158*x^2-192116496585772568299500875799917472867*x+12579057879226710892243631715988411029,109079247918825847867081954287758*x^32+535310932802795875796141847338866*x^31-6887896197026811602167355402942928*x^30-27677919470931796611770758296538592*x^29+195783897302351588147044389052479492*x^28+638240096642946274368242986816563748*x^27-3311781389854543684103077228949118196*x^26-8652677671985983567437431562478306128*x^25+37138972387262001907836734467114049756*x^24+76509131320689514271114365701386967030*x^23-291136091310557675389959353684567381676*x^22-462374963079515288497029727651780143506*x^21+1638985347465428998877608066700851824442*x^20+1942939557504104720443176295566081304950*x^19-6700779865481752981465590708153178580146*x^18-5644524776715466104518043909701556162906*x^17+19879661692350145835339821322120577182258*x^16+10954071122756271564422060548620272739820*x^15-42282473651283445311613088269998569581138*x^14-12886901704465410530117475116929583231248*x^13+62850268971640560774086835298284993411014*x^12+6154952943045190254902993028882934834766*x^11-62438146541841890597879707573447254142918*x^10+4667482715424280502399921086982453931316*x^9+38358020892668490424900138497633821590258*x^8-8372781019031679283889894177927711119300*x^7-12576886187172659167790407537674405282370*x^6+4238845337681893395859442326408547089730*x^5+1563353316299259391983948020746918897644*x^4-674635281459877552985293186837659738872*x^3-28523845967930788644132316603725571780*x^2+20414269116890068598210575888908334134*x-1019350088713786489987838859217785662,13627778617072460245253956838037812*x^32-26163377108782248202441058620274704*x^31-703420174077090523370685488140747300*x^30+1355829181018386820116546703890766476*x^29+16229082814601156357452145967199436332*x^28-31406152002290909787452440658259049564*x^27-220958073877029893326135032471007622580*x^26+429481670105499275894551833080309377988*x^25+1974062701631150539725263048526039060868*x^24-3858030165032093533535081980045852395800*x^23-12173347162305874575916160671813427208712*x^22+23970357679556783965935040639859414371752*x^21+53054859821912378650816246356035270486872*x^20-105644899828078436322613551731225550112596*x^19-164462006153248301414434702185444407111332*x^18+333310805622443359213674690839625608048272*x^17+359601051423037448596880655392676239905960*x^16-750276252041879128382661937420404649264264*x^15-540895123559410916825729511883879060451560*x^14+1186519152106308152431056594315760084614812*x^13+531910708182580097216294950756998235687360*x^12-1279801885573242450118323339329985378379476*x^11-307278018439025975661088561854324340566308*x^10+896237686654166806263302389343221843469372*x^9+75640414496492232113446608954695172378524*x^8-376357994489614628086862401573477444114912*x^7+8813786026108538824414853146448326874732*x^6+83483667125727076488870724503926960646944*x^5-6782613463785568966575184631369935294908*x^4-8158949880508355694974960918627943426284*x^3+854303159970268718868489606450217527908*x^2+212190906179383745696546795736993278464*x-17846602948039922733053477986419800900,1305506538191683939060959748649473984*x^3-5222026152766735756243838994597895936*x,3487479245087148701421920483765629*x^32-10515987623237846295265280968677609*x^31-170421365404749587583683071866545406*x^30+539879179062737535130567760406554582*x^29+3658031768964712038056746729184796236*x^28-12363507503280816637033162405337121714*x^27-45127813778948720565818021338831044450*x^26+166659693838994094653937827094604030780*x^25+349940934668756908575800366372141735626*x^24-1469520979236046799555893650401287931435*x^23-1731201644228574999537453316092065451240*x^22+8906756829619951265617483204190309380667*x^21+5064765361601667099825894548333992761743*x^20-37938363803815270433246320851154937189477*x^19-5095830311082680603102168230655962886311*x^18+114007254837168994566090182289505959228241*x^17-22356795810632710188396819147048906011949*x^16-238624293390403087919923762530091793258224*x^15+111536884519613975194459388092437852185925*x^14+336143015870178596584754260933257918673084*x^13-241685857586927288296195211624815685542939*x^12-295923514220935446762014620158588624875767*x^11+300271584004076658113231059545067350720899*x^10+134413378827757761245685301247956677962572*x^9-214487015651210964861773087477557684081137*x^8-6772587136786804588624217414737889872172*x^7+78889439857647239681197423464110567677821*x^6-16349367975724621490060414489740590648025*x^5-11031252610736757456401898015796588723580*x^4+3589736292740193473073992069578407719742*x^3+318554069477686754379446453738207830602*x^2-126884349902630748527803950040944186253*x+1999215934731031305685646727203770611,13367155762088887906447808447932685*x^32-22830916999906965216181486575451701*x^31-694460899684720140930098530808146594*x^30+1182245782306268328644007949073393290*x^29+16149205199861126363384034527936728960*x^28-27359586783975016204745357464124168766*x^27-222010833560917084991766477315188993310*x^26+373722704888138252159145046992470320776*x^25+2007563986291320214659384404682290095206*x^24-3352758459684892898967841769094890394719*x^23-12571219256657946834380407407490394017064*x^22+20800632180889182842889662010354735781703*x^21+55892729327820199502551101274514619182163*x^20-91532541427079987152820715647086213917949*x^19-177965885137629046231730031357707356154023*x^18+288344395505505319288120557037299529213829*x^17+404061521690172404599381704046786615625799*x^16-648219346054136612698810409313441466009264*x^15-643008473485120448729320683077731802698975*x^14+1024442407952544635999970972408370525998096*x^13+693759812203331226307697512517176845677681*x^12-1105738510840503707441299548874475421947079*x^11-479134392868341695655740833111480428986541*x^10+776950242856948101192725721500887385983776*x^9+191306354796673242350054957364925575155999*x^8-329014164795766716800842256360866909607708*x^7-35920782544279546028149303980004765991731*x^6+74142665290758967574132078725721820432515*x^5+1558582143267249211478145840741649371240*x^4-7314634896169107423058106101391454060414*x^3+264337123001222771072707568466260967726*x^2+185890038951745198775620516722699173583*x-10608692876934007544955494575631597157,-2654384857003856847877991398999444*x^32+5183547544819926409564672390657756*x^31+137530706957276879801042554421263716*x^30-269748940559077312444056148447730668*x^29-3189246699815471871591272093231411940*x^28+6281813559063252408166497858871296516*x^27+43720639400018621262367862163270988788*x^26-86496395678361944230537388549432993356*x^25-394268944288996167696345960640204838372*x^24+783995244329183330764262067631803086584*x^23+2462641434705517893202311575762311720052*x^22-4929183411485798557803879681418028085508*x^21-10924811341470609993742126618614002192352*x^20+22072920915827647508488296287603303700384*x^19+34716691278357534386290550914722850477644*x^18-71164157793784138849923529189281738885716*x^17-78636705847173387491913519046934009893888*x^16+165049274477683520943504649287807370795116*x^15+124494027082503869404150578041525818118236*x^14-272196299929089221904765740074630335258268*x^13-132154184266760422153437102339041941667544*x^12+311707720443989662837450140479228071331584*x^11+86149473643682923894483725583904198283740*x^10-238063877988779921209775727891323966912784*x^9-26715196763259154144240205863966491907016*x^8+113379949290906191025062019744979504237272*x^7-1834340089523710142101932763165814628692*x^6-29871337593636858522970248646934006033116*x^5+3318635409072179053084740926324258075628*x^4+3401160878088252490495335675401708524100*x^3-530534040012479047328274462798286441212*x^2-94698109852140093442786939631798026088*x+8125559370449838252227694164234151536,2116924724445598808283091202215182*x^32-1106696057329041665212011825691754*x^31-115737299876891549650145256509413704*x^30+60557437039289103164945150301287920*x^29+2853862216473041021673223158262113072*x^28-1489804077048874273353643386657196436*x^27-41970471557783966323955826870890655924*x^26+21808266771244983106886858708088622896*x^25+410213813753422219931682959353959913252*x^24-211879095679153765572206090930270144702*x^23-2810505651952938886673264112953800883332*x^22+1442866203074558798984575697059727149930*x^21+13872701959541378764817533844223943614214*x^20-7088858643367685974399118235643591405198*x^19-49916288307742873304369330753479728622194*x^18+25466581428716512449306676805790521148166*x^17+130925376222145120745197029424092295107054*x^16-67015412085952045373466027403679170068720*x^15-247566150401841534400227341665257273608178*x^14+127975856167852056991973474483497792817192*x^13+329430096344419614691778326436865003906478*x^12-173404139336954622217363221171713997245826*x^11-295499635587122835759293042048832835689082*x^10+159983943262066396393958639660812935058944*x^9+165570110221194318784117080714606432293438*x^8-93463641921195655980689999794039411786288*x^7-49923197673050789237042638009163243294978*x^6+30181456830973808469197393470296797737166*x^5+5536983145799161461420400633012347495668*x^4-4021811518961300392705807206777929261908*x^3+23514842843372535888858685518513402848*x^2+141449233542774649532550480725637111610*x-7382311858798626526210303623754285878,8522634607488084028583921292987015*x^32-13719599363518639136642967312176167*x^31-445040734141920476031143143581604342*x^30+712348411136891324367520829802519986*x^29+10416157724781951769742287577365297516*x^28-16535961285722304382537380977169613066*x^27-144378772742752413047377725307782215970*x^26+226691580228915468854354017095858522988*x^25+1319447319049118578568826248946403768846*x^24-2042535003539513216934616028434212792293*x^23-8376695176623009281527456790703973951424*x^22+12739658700178155559522092466417155656993*x^21+37924836117704581618420827315164892071705*x^20-56437798679308145044842621826218083321959*x^19-123725523587596321606428726633557706746801*x^18+179333622023961079196354805222556315838775*x^17+290415404554023655130035065338825316257233*x^16-407790090919044631212009728738462053639476*x^15-484306554092272159506281120484722920168909*x^14+654557050607139494769537203392269754184012*x^13+559503489079387389660351129011319326836951*x^12-722035927272082543625183278587462116127333*x^11-429326852171833516472116471385052314148575*x^10+523523683834779610167822101221302080775808*x^9+204482870979341912604185666795055174717613*x^8-232154626859743763739332775052945325209448*x^7-54131507439290739480237614060054999823617*x^6+55756011652202012132976442642566554909253*x^5+6632706948893794936208072756838296858144*x^4-5754456273251364261688364269340825021762*x^3-246342596860460450710111531670746292778*x^2+128090016877479422061911989664543920633*x+1932610208491652146523995666021583121,-26163377108782248202441058620274704*x^32+46107649861894790118282137951332360*x^31+1355829181018386820116546703890766476*x^30-2386462776319824337564759073560214860*x^29-31433407559525054707942948571935125188*x^28+55195232019326441083691148894990599788*x^27+430544636837630927793681641713676327324*x^26-753373655232497508839373365125172557188*x^25-3875732649455670659393666869978463513588*x^24+6751807931016375343412669014349605034116*x^23+24133359539595587662928523217599184641084*x^22-41829720788415694038345519969091066814960*x^21-106533131182781985136478714130015178623132*x^20+183706587200539361393503260885409054804444*x^19+336046037068675972709499612516588177294792*x^18-577058358951941338024703071527394904411976*x^17-753354044959209092311671807810404974991028*x^16+1291794151460515016108823435880344570357188*x^15+1177434915763503501648951042449394593249048*x^14-2028457600197395259029181235782893580881140*x^13-1236085307291978470752652680681330205189052*x^12+2167453588039059764779956419740517788112620*x^11+815702434655349329372000041108836906199504*x^10-1498178630535935470233357111600493902148112*x^9-298468303153729427902971203980060787288604*x^8+617122377640040158703453580854720518205720*x^7+44943927618844880886405667455164563252208*x^6-132781334173675075612546315225650760724232*x^5+104199172839062284893794794288931728668*x^4+12401283515559169154195110282801712089252*x^3-543619323702071971965482904457421812868*x^2-304820365066351790577611301081820045996*x+17566206637406401256132350364230739668,-9569474253803062770678141997258475*x^32+17179649610118285801811124511790411*x^31+495144247129384281604223276514885948*x^30-889258044022078053827290716572590836*x^29-11458280636344936860340827484082812826*x^28+20569191105263983863820864192906008564*x^27+156598440536481514386950797683559066936*x^26-280788132972522348923498789292276297578*x^25-1405951404925001420294457826482165566584*x^24+2516802356001119091541259384387904060883*x^23+8726685505052758131281931238239558785102*x^22-15594714977096621273145996413668403688493*x^21-38376176333888254479402506853290353701299*x^20+68497026384985152248004769752822868890957*x^19+120512105079378976977501312151920685976293*x^18-215173118587807177354647875806129877662243*x^17-268804368856709291914841927194916960834847*x^16+481614901494316527866962374233899221583250*x^15+417994757004475938333083710242299864897465*x^14-755833057534447465102071219623231163941554*x^13-437487493818803234834990924846966729370129*x^12+806429400354444667598282555637697723591723*x^11+290596476507642930599329887364478811629815*x^10-555514171862526336850281911149296834251708*x^9-111541240667594643438274650957241835849203*x^8+227124994610611817952604566409190084112876*x^7+21973424058835360298171429827633353725153*x^6-48157141979530503916059887682222534341389*x^5-2463233315016881006036450790745047404614*x^4+4439746813123886780917924259477393001912*x^3+109114530308787901397896102501408377800*x^2-112115186325606568177200353532729794839*x+5276749584307174696234969595130235033,1305506538191683939060959748649473984*x^4-7833039229150103634365758491896843904*x^2+5222026152766735756243838994597895936,-25523836068207708585165078538656878*x^32+38597470392369714490384993419211178*x^31+1338411751795719576786948665660494712*x^30-2006517382644525136369457856823543620*x^29-31475511038782269742049765372770715952*x^28+46645470800316111523220954355163432260*x^27+438672485494693256833892881665328036928*x^26-640582554836522735290784945589211359672*x^25-4034050278244097960212015642013569375192*x^24+5784240301356314693108863308465926624662*x^23+25794225601923530413902732433905784666140*x^22-36175720549122876670462149882141603281866*x^21-117736776193694108871953897996231418213454*x^20+160826497909916806048080090916010735368358*x^19+387676256084053375380886109434416490951774*x^18-513420586351053351591982067979225462670418*x^17-919502190015462466746482349447157271559470*x^16+1174892388738284318328800213117205774624904*x^15+1550992855812762826795112590976103631155790*x^14-1902573499184899151559119550420981332035088*x^13-1812750896648329161748753691371941764313234*x^12+2125318709042100746065448476945200442637578*x^11+1403589253128637736486179918248417061316546*x^10-1569494238320451080318198891870268281897292*x^9-666275487651617363057382573656819620097778*x^8+714812812020626336177011025020273687032784*x^7+167089558071374748463275030976190631820646*x^6-178095759673965986137815023412603119827570*x^5-14964278240432829522358097130894877004248*x^4+19101209838820695664738529644855149771316*x^3-415458030527697879622731453888332640360*x^2-478909305312850508379050955291040138714*x+32968327944910026688164793410898092174]];

E[642,1] = [x, [1,-1,-1,1,2,1,2,-1,1,-2,4,-1,-2,-2,-2,1,2]];
E[642,2] = [x^3-10*x-11, [1,-1,-1,1,x,1,-x-1,-1,1,-x,x^2-2*x-7,-1,-2*x^2+3*x+13,x+1,-x,1,-x-3]];
E[642,3] = [x, [1,-1,1,1,-3,-1,2,-1,1,3,0,1,2,-2,-3,1,0]];
E[642,4] = [x^2+x-1, [1,-1,1,1,x,-1,x-3,-1,1,-x,-5*x-2,1,-3*x-5,-x+3,x,1,3*x+1]];
E[642,5] = [x^2-4*x-6, [1,-1,1,1,2,-1,x,-1,1,-2,0,1,2,-x,2,1,0]];
E[642,6] = [x^5-14*x^3+3*x^2+36*x+12, [4,4,4,4,4*x,4,x^4+2*x^3-10*x^2-13*x+14,4,4,4*x,-4*x^3-4*x^2+32*x+16,4,4*x^3+8*x^2-36*x-32,x^4+2*x^3-10*x^2-13*x+14,4*x,4,-4*x^4-4*x^3+40*x^2+8*x-32]];
E[642,7] = [x, [1,1,-1,1,-1,-1,-2,1,1,-1,-4,-1,-6,-2,1,1,0]];
E[642,8] = [x^4-5*x^3-5*x^2+40*x-20, [8,8,-8,8,8*x,-8,3*x^3-5*x^2-29*x+26,8,8,8*x,-8*x+16,-8,-4*x^3+4*x^2+44*x-8,3*x^3-5*x^2-29*x+26,-8*x,8,-2*x^3+6*x^2+14*x-12]];

E[643,1] = [x, [1,-1,-2,-1,-2,2,-3,3,1,2,-6,2,-4,3,4,-1,-4]];
E[643,2] = [x^24+13*x^23+49*x^22-67*x^21-902*x^20-1384*x^19+4701*x^18+16050*x^17-2633*x^16-67751*x^15-57177*x^14+129829*x^13+217647*x^12-78940*x^11-340527*x^10-88941*x^9+239995*x^8+147817*x^7-58397*x^6-60596*x^5-233*x^4+7055*x^3+357*x^2-209*x-1, [400740669864242,400740669864242*x,111302610532881*x^23+1293453945967280*x^22+3703030673512529*x^21-12232099271244186*x^20-82903587330148522*x^19-43950201458727454*x^18+566226690381113059*x^17+1014775362614314265*x^16-1553753442772267396*x^15-5291174000682156879*x^14+430622556919027708*x^13+13084678477024122047*x^12+7024108837440370348*x^11-16307454669464700086*x^10-15748877305285769519*x^9+8808065044949347392*x^8+13746633075539818685*x^7-525773922023759132*x^6-4746329766427168195*x^5-631362078366422873*x^4+514318356564742410*x^3+45883563587285557*x^2-10206864110987264*x+212352456964525,400740669864242*x^2-801481339728484,225126920345011*x^23+2487942734573354*x^22+6090769646952973*x^21-27920146734959898*x^20-150683550642924668*x^19-5992644627507730*x^18+1124535508273933689*x^17+1403473911495995775*x^16-3753418015218614726*x^15-8323538180048037179*x^14+4880186776624771890*x^13+22306512106860819861*x^12+2996524016830615056*x^11-30819776082190658392*x^10-15768328085679610497*x^9+20853901472105114806*x^8+16278109257456240267*x^7-5388684379493005052*x^6-6165424952853120091*x^5+178834152769560419*x^4+773261867001024486*x^3+19850166142055759*x^2-25943749907977202*x-512462888004923,-153479990960173*x^23-1750797242598640*x^22-4774824365541159*x^21+17491367370510140*x^20+110092611518779850*x^19+42993118266039478*x^18-771631536438425785*x^17-1260693669239191723*x^16+2249689165531063752*x^15+6794571919357564645*x^14-1365628145849285302*x^13-17200570437209580659*x^12-7521226593999073946*x^11+22152666751644598768*x^10+18707430528354316413*x^9-12965436939298956910*x^8-16978191903162629909*x^7+1753408780861483562*x^6+6113130909484034203*x^5+540251864818903683*x^4-739356353722189898*x^3-49941896071225781*x^2+23474598058336654*x+111302610532881,265371997496599*x^23+3055400752247268*x^22+8498456545240327*x^21-30073866430566256*x^20-194285773954802854*x^19-83775918261756270*x^18+1356392408254601561*x^17+2269264233007529185*x^16-3926295409814390046*x^15-12146223675947636383*x^14+2232687582995153362*x^13+30704092001690700667*x^12+13695172647964147354*x^11-39594543211028130642*x^10-33626480829231167753*x^9+23318697847323139564*x^8+30494849703249931907*x^7-3308848801661833842*x^6-11054109863633564967*x^5-901634257859445293*x^4+1377727782590915750*x^3+83126325504950601*x^2-50741885252460984*x+195926868402239,400740669864242*x^3-1602962679456968*x,-341391888383490*x^23-3800473286016780*x^22-9532223076599960*x^21+41779659754585650*x^20+232779227905413188*x^19+26061820721588340*x^18-1721878269165013420*x^17-2278768807215611628*x^16+5647922315702510478*x^15+13290086679086593286*x^14-6839565795804013366*x^13-35511476531449583336*x^12-6483971060187700230*x^11+49253107518183534046*x^10+27285061745066906530*x^9-33869604623367528554*x^8-27836613216983207446*x^7+9382333260011008962*x^6+10847565507505560398*x^5-677348493610789864*x^4-1474919092526310654*x^3+40786377413309400*x^2+50831933092617236*x-790812190156352,-438707229911789*x^23-4940449449952566*x^22-12836643071844161*x^21+52380931508275254*x^20+305583013129987494*x^19+66213855732036978*x^18-2209813160041430775*x^17-3160658833950200763*x^16+6929035800246803082*x^15+17752268701191465837*x^14-6921490834611613258*x^13-46001674815499994061*x^12-13048256990155490052*x^11+60893466718645950300*x^10+40876914894510738157*x^9-37751225990744674678*x^8-38666270364131496039*x^7+6981311814534487276*x^6+13820625017995846975*x^5+825716439441412049*x^4-1568420256891996846*x^3-106314060471146129*x^2+46539063464102376*x+225126920345011,-535022139324552*x^23-6141383643935066*x^22-16952531416135462*x^21+60834783848118384*x^20+388534162388703080*x^19+159718956373313366*x^18-2714966529102221536*x^17-4479480556910549718*x^16+7879087636450617956*x^15+23992604095834668232*x^14-4643847478782887798*x^13-60420220115046738502*x^12-26687930299060431708*x^11+77155899357869860442*x^10+65660230501105015100*x^9-44141043711173971078*x^8-58969096254341389874*x^7+4928432494908378340*x^6+20782859833985179688*x^5+2345137691272577046*x^4-2383735022628113596*x^3-231016604160878606*x^2+71110735310224854*x+598965226986188,21837418817847*x^23+158787299572758*x^22-197853370846509*x^21-3882141784807824*x^20-3616014562542910*x^19+37778303982802396*x^18+70206804909358809*x^17-183974375895700287*x^16-496344062640581486*x^15+441194412385216835*x^14+1864338195320664342*x^13-286123955538545109*x^12-4011261409632198548*x^11-941741014411114586*x^10+4881653795283835335*x^9+2240108437425394442*x^8-3052905546458261467*x^7-1798092278569670214*x^6+732637865450596965*x^5+487606965116935539*x^4+4222727023309914*x^3-13500172343452699*x^2-11552287278168748*x-578184904889223,-450092264103435*x^23-5103310604356268*x^22-13642963096331775*x^21+52099406189394010*x^20+317818924900350420*x^19+103541114570538036*x^18-2246208505916219453*x^17-3500561207255155031*x^16+6681631682013362486*x^15+19065298603171104881*x^14-4828154260280024500*x^13-48324178594702275079*x^12-19340141316848291486*x^11+61956988951937525426*x^10+50267156390662161739*x^9-35592407682381491902*x^8-45614106254693633743*x^7+4027666185214289016*x^6+15985735406928736709*x^5+1913399568484789551*x^4-1760845410816269602*x^3-206101846460794211*x^2+44955608504573144*x+1581957862182715,-394435215208519*x^23-4504771332093024*x^22-12293942598294123*x^21+45079767787129444*x^20+283498926273536746*x^19+108878648023089662*x^18-1989956326812884765*x^17-3227570940405844879*x^16+5832994526444442466*x^15+17405862283858194385*x^14-3748889061295250904*x^13-44062246491178135199*x^12-18646077728646605582*x^11+56739849362293199920*x^10+46921148676668151223*x^9-33193102835946345098*x^8-42535341355616608225*x^7+4442818674175326836*x^6+15178847302444467711*x^5+1439559458007623317*x^4-1789073116833555344*x^3-145479688358746827*x^2+55658674345191430*x+265371997496599,-371886880563616*x^23-4344837741884820*x^22-12504015611837778*x^21+41233494638688312*x^20+280027434787016998*x^19+145269592243061596*x^18-1921827562452390856*x^17-3394520279296933352*x^16+5358578399458786862*x^15+17738191365242400140*x^14-2021916298265857552*x^13-43940758909863803242*x^12-22145739814474757736*x^11+54882717750723725152*x^10+50666958947854770094*x^9-29757983442856540708*x^8-44138997096172317562*x^7+1818919306263500430*x^6+14952690284981334952*x^5+2176036464018307884*x^4-1531327084294605712*x^3-185801639418376996*x^2+32966757157581718*x-93446616927032,400740669864242*x^4-2404444019185452*x^2+1602962679456968,102980079060760*x^23+1037918241942590*x^22+1812851818161358*x^21-14210555112572964*x^20-54686552291232302*x^19+46174732361775718*x^18+455565998824585656*x^17+211147227575940278*x^16-1817002038017276510*x^15-1968658282228099836*x^14+3822608953201750312*x^13+5917380132179816522*x^12-4131310457123754278*x^11-8589159799188392506*x^10+2043716666648456502*x^9+5882760591165444528*x^8-685316729202726622*x^7-1375014216763544504*x^6+703783936804180242*x^5-82686402871175944*x^4-308042987868438790*x^3+35939703057177294*x^2+22352152691488260*x-1793023578830492]];
E[643,3] = [x^28-14*x^27+54*x^26+128*x^25-1427*x^24+1888*x^23+11531*x^22-36529*x^21-26391*x^20+244374*x^19-150608*x^18-815380*x^17+1218884*x^16+1264209*x^15-3671665*x^14-18014*x^13+5684790*x^12-2957594*x^11-4374316*x^10+4258247*x^9+1126989*x^8-2446324*x^7+352520*x^6+523154*x^5-184074*x^4-11953*x^3+6924*x^2+596*x+8, [19835413543606991948,19835413543606991948*x,5556663093339337907*x^27-65769652881993938027*x^26+156682504630232159377*x^25+1063112697852351745923*x^24-5661872844363371996648*x^23-1956271426586610934226*x^22+60969988245640729914847*x^21-70937101400623398907004*x^20-311857724993879422872735*x^19+699443124732175055212483*x^18+732730703242850088292741*x^17-3093149383322059250088725*x^16-27016753549349632369759*x^15+7590556585816919581416470*x^14-4117661060578439272032399*x^13-10461398653370204971561029*x^12+10094634671937475689017175*x^11+7222572758444693671999939*x^10-11100030696421798010382179*x^9-1288516701666726246790360*x^8+5941248661745539281789701*x^7-974853913886261054328723*x^6-1354858487195841357045933*x^5+408899382070530908303899*x^4+79946315468044174880475*x^3-20454092987413288264774*x^2-3701607353508417633468*x-89644889432121731792,19835413543606991948*x^2-39670827087213983896,-8340133989278476427*x^27+99211538065525577141*x^26-242435112858310286315*x^25-1568950901735814485821*x^24+8589408048245788456058*x^23+2144062380157709895730*x^22-91048879337010835513659*x^21+114391084574614461758758*x^20+452781391744820562634363*x^19-1086773651378525217443869*x^18-977349487702376388689291*x^17+4708819033993862105406047*x^16-465644960320823787649611*x^15-11279061825732842162593228*x^14+7387116697384991787630299*x^13+14890330575622133665723751*x^12-16801176592462794452065349*x^11-9145368232425472369107109*x^10+17822931772038875669837365*x^9+199821258290192209871670*x^8-9175471980528076254119145*x^7+2329337438990326905659729*x^6+1924529653147031394628863*x^5-783553413946084213773833*x^4-71074727773866652140953*x^3+33037265931226094255784*x^2+4332969780690214778992*x+148754010268721464512,12023630424756792671*x^27-143377302410092087601*x^26+351859821904916493827*x^25+2267485389831863196641*x^24-12447251346811280902642*x^23-3103893883655175490770*x^22+132042244735969275497799*x^21-165211829297560956169098*x^20-658460862039532306472735*x^19+1569608618404501091790197*x^18+1437642569724970092520935*x^17-6799944491411175177805547*x^16+565773093249488545345907*x^15+16284544336027340844272756*x^14-10361300924406790138504331*x^13-21493828114447059051317355*x^12+23656926183326559429715697*x^11+13206569579381961225614433*x^10-24950160648889681871259389*x^9-321049521153867806682322*x^8+12618544371264001411675145*x^7-3313693360859824756021573*x^6-2498091141862317075094779*x^5+1102783517711389460773593*x^4+45964700967271817737597*x^3-42175942611789993301536*x^2-3401416093062367124364*x-44453304746714703256,12236610451268174160*x^27-145190202677815245829*x^26+353621582466635742195*x^25+2288846363520112554155*x^24-12503090327776419087715*x^23-3054641097417021334306*x^22+131889562932175337472314*x^21-166719314027609703044857*x^20-649736721916582932105898*x^19+1572392838047279681849977*x^18+1364458162962766489302181*x^17-6749284977550115570835485*x^16+860917197834853710836977*x^15+15914387587905881502581019*x^14-10997115927204737409275432*x^13-20338321333206473941294591*x^12+24307163698657922851004181*x^11+11271313602685878076043161*x^10-24992439639424111961314523*x^9+1431966650458624804591991*x^8+12106428073507771447979682*x^7-4090711650521632389873475*x^6-2092383749634515072851505*x^5+1219650006827405128614321*x^4-55288720351455497571199*x^3-35544376453337074002787*x^2-73045815742750160120*x+89866817403874375664,19835413543606991948*x^3-79341654174427967792*x,-22235061522878277382*x^27+264551536927618648606*x^26-647668707971627378250*x^25-4172175386654271455874*x^24+22882862630052022610652*x^23+5525400298900704556340*x^22-241867155629918225746458*x^21+305493500688314676888316*x^20+1196992312971670872466958*x^19-2886394219089177453504474*x^18-2550593407045686517245262*x^17+12435217563301913173929438*x^16-1386114565918807761333354*x^15-29518591799733315204677504*x^14+19781196198245233927044698*x^13+38266546831277343302345254*x^12-44285687031338741299301946*x^11-22228360733237620496719150*x^10+46077874430865791202132746*x^9-1265534577933795371539308*x^8-22819246549238282914441434*x^7+6931417325522627379172926*x^6+4248289422752288051064586*x^5-2165162490441080410606450*x^4+3823697401425752277274*x^3+73364795818875010343412*x^2+3698316476026096198960*x+39370989140399418652,-17550337784373092837*x^27+207932122562727440743*x^26-501413751108169503165*x^25-3311963154454597405271*x^24+17890235351915473389906*x^23+5121205693359276166078*x^22-190265669919739003643125*x^21+232676915633772291249406*x^20+951338252117413180927829*x^19-2233440387559629166406907*x^18-2091559418184022003641213*x^17+9700010917066882673597857*x^16-735389375281088757291985*x^15-23235061366359165362710656*x^14+14740091401939271191367773*x^13+30610733708447595555379981*x^12-33812098478311558578743747*x^11-18659449779405792220411567*x^10+35714171797733296619715139*x^9+223767283914884615869158*x^8-18073332502197352661144619*x^7+4864593687047479904674903*x^6+3579621043080907842916925*x^5-1606276551716312921964551*x^4-66652355642619534476147*x^3+62080057522454385559540*x^2+5119473867878693415004*x+66721071914227811416,15137331825692100442*x^27-176166527802792777930*x^26+394733140808258565906*x^25+2945906818522728322658*x^24-14809557427039825984548*x^23-7681467240379441124104*x^22+162731151474486951283254*x^21-164987206980243803403384*x^20-858960331597583142252310*x^19+1738096122720390559299618*x^18+2195909908957475392815166*x^17-7882934896214401549047390*x^16-1131354287606825454082058*x^15+19771409118081848441197000*x^14-8283154346475166539353670*x^13-28126003238113422518996058*x^12+22813787743090007456114534*x^11+20871682106236516198108014*x^10-25972877315181775595285062*x^9-5565060943655468493682476*x^8+14124471018798674038125070*x^7-1369385532392770415022710*x^6-3240513866873798123002142*x^5+797432467485146408014434*x^4+183178763322576972663850*x^3-38281241660447297173860*x^2-5926214522903270649276*x-86884278700780976200,13840197349824333979*x^27-165876915267962434353*x^26+415095686202529415999*x^25+2584243873611958747029*x^24-14480762436869256060322*x^23-2689694838728078923050*x^22+152059389997098463480167*x^21-199271028698528993278366*x^20-744938593027256514647287*x^19+1849611251272391012689937*x^18+1538421877841318253688951*x^17-7903338886755651432475807*x^16+1138196047474680003200035*x^15+18604328907474019861029944*x^14-13041912314818611644077163*x^13-23772090512286198035336335*x^12+28578317437985151310573657*x^11+13199852779321365074178769*x^10-29320576313639609906825701*x^9+1645078545831220889758246*x^8+14217504990861832754490429*x^7-4786953511425059518818253*x^6-2477709859130142938138875*x^5+1441403683632891855251453*x^4-58350119080760400266023*x^3-45744847179251823048820*x^2+192677669115072131764*x+83100735466189122216,-2334988752036286369*x^27+26339679678209976755*x^26-48913176078765528205*x^25-495335483908450126779*x^24+2114123514010530173738*x^23+2472729972553011598810*x^22-25413672575194349515533*x^21+11735380591890123109366*x^20+153708872153053090364041*x^19-196088386320183571316671*x^18-524628680360701221569109*x^17+1029021434010847269545177*x^16+997043428314031489099523*x^15-2934204019240028040246892*x^14-854688296796302296971539*x^13+4975795613735854950153189*x^12-184397040401546563528599*x^11-5068887410597374907151647*x^10+925103877823031499961319*x^9+3040417187643668453355150*x^8-589506966234209749276691*x^7-1038119525541398261054633*x^6+84380227220136163860149*x^5+194133676806235046713085*x^4+22058494797997730572281*x^3-17999173359750010901876*x^2-3441513602873474855612*x-96832501853793350136,26122343639939192411*x^27-307155381901845662445*x^26+722560225757786261675*x^25+4958552786183265438605*x^24-26157361629411334148386*x^23-9210792181397978766646*x^22+280271829146765430845783*x^21-326800335497164547849338*x^20-1417916604370929110325863*x^19+3207389589807363663191461*x^18+3228202452204928275745315*x^17-14054091495448703482000463*x^16+444754525918594315941579*x^15+33931618385350823267900968*x^14-20117891032537329051976351*x^13-45255397028606880932022219*x^12+47462239253693922362614201*x^11+28534361243325482557560037*x^10-50674543093822724007705529*x^9-1684097302356496880424558*x^8+25844002175066532493914365*x^7-6406033665915571827734705*x^6-5181981697195345255886319*x^5+2197153111855282392756641*x^4+110719828270671411731693*x^3-84799336580323588043960*x^2-7203153011551957423696*x-97892883610145393280,10903157047755599478*x^27-133475244548417038818*x^26+353996500608296490286*x^25+2018163508750558352226*x^24-12006449900952206917192*x^23-522094974637623016656*x^22+124684116072841081930138*x^21-179094878978226829992340*x^20-600599102580517347301138*x^19+1607676758732778315131274*x^18+1165689267618878234272002*x^17-6824684568148178572065294*x^16+1395009756141217142259346*x^15+16114958188551893021099212*x^14-12060530677708546830604442*x^13-20895280094862836454304586*x^12+26025739689787869784032098*x^11+12251573150329556831627370*x^10-27181719016709656405651138*x^9+539695372376486340636768*x^8+13991336842050093485440934*x^7-3758799202779798326346798*x^6-3004616788908103475579042*x^5+1225733431454826398704466*x^4+138435281419722350106386*x^3-56246021167882605888396*x^2-8383058850318643404184*x-269795459233784343760,19835413543606991948*x^4-119012481261641951688*x^2+79341654174427967792,4153655542190158564*x^27-49425668397405055498*x^26+124291351913169577238*x^25+747557670222040246090*x^24-4247971495146968275146*x^23-363885370752245011700*x^22+43255055456074975151292*x^21-61944183880214979255078*x^20-198668455043877048406988*x^19+547148440692668710972450*x^18+319642510293571360871774*x^17-2232815835401310463543982*x^16+814692445498941680562258*x^15+4877765880744241419190306*x^14-4815562634522782485458192*x^13-5231597903851007344605314*x^12+9401988475074060361889870*x^11+1008485822880623787413802*x^10-8774773101276367388117978*x^9+3072431835148037080773414*x^8+3563518171993722642899676*x^7-2577861636604599385538082*x^6-224858549085874029068962*x^5+617781031743648024816274*x^4-139653210099392937794566*x^3-7990955155850668264062*x^2+2779946882142537513300*x+53238558148047670480]];

E[644,1] = [x, [1,0,-1,0,0,0,1,0,-2,0,-2,0,-3,0,0,0,0]];
E[644,2] = [x, [1,0,1,0,-2,0,-1,0,-2,0,-2,0,-1,0,-2,0,0]];
E[644,3] = [x^5-3*x^4-8*x^3+22*x^2+16*x-38, [1,0,x,0,-x^3+2*x^2+5*x-6,0,-1,0,x^2-3,0,x^4-2*x^3-7*x^2+8*x+10,0,-x^4+2*x^3+8*x^2-8*x-12,0,-x^4+2*x^3+5*x^2-6*x,0,x^4-2*x^3-8*x^2+7*x+16]];
E[644,4] = [x^5-x^4-12*x^3+10*x^2+20*x+6, [1,0,x,0,2*x^4-3*x^3-22*x^2+31*x+22,0,1,0,x^2-3,0,-x^4+2*x^3+11*x^2-20*x-10,0,x^4-2*x^3-12*x^2+20*x+16,0,-x^4+2*x^3+11*x^2-18*x-12,0,x^4-2*x^3-12*x^2+21*x+16]];

E[645,1] = [x, [1,2,-1,2,1,-2,0,0,1,2,5,-2,1,0,-1,-4,5]];
E[645,2] = [x^2-2, [1,x,-1,0,-1,-x,x,-2*x,1,-x,-x-1,0,-3*x-1,2,1,-4,-2*x+3]];
E[645,3] = [x^3-x^2-4*x+2, [1,x,1,x^2-2,-1,x,-x^2+x+2,x^2-2,1,-x,x+3,x^2-2,x-1,-2*x+2,-1,-x^2+2*x+2,-x^2+5]];
E[645,4] = [x^3-4*x+2, [1,x,-1,x^2-2,1,-x,-x^2-x,-2,1,x,-2*x^2-3*x+5,-x^2+2,x-1,-x^2-4*x+2,-1,-2*x^2-2*x+4,3*x^2+2*x-9]];
E[645,5] = [x^3+2*x^2-2*x-2, [1,x,1,x^2-2,-1,x,-x^2-3*x,-2*x^2-2*x+2,1,-x,x-3,x^2-2,2*x^2+3*x-5,-x^2-2*x-2,-1,-2*x,x^2-5]];
E[645,6] = [x^5-2*x^4-5*x^3+8*x^2+4*x-2, [1,x,1,x^2-2,1,x,-x^4+x^3+5*x^2-3*x-2,x^3-4*x,1,x,-x+1,x^2-2,x^4-x^3-6*x^2+3*x+5,-x^4+5*x^2+2*x-2,1,x^4-6*x^2+4,x^4-3*x^3-3*x^2+10*x+1]];
E[645,7] = [x^5+4*x^4-3*x^3-26*x^2-22*x+2, [1,x,-1,x^2-2,-1,-x,3*x^4+5*x^3-19*x^2-31*x-2,x^3-4*x,1,-x,2*x^4+2*x^3-14*x^2-13*x+5,-x^2+2,-x^4-x^3+8*x^2+7*x-7,-7*x^4-10*x^3+47*x^2+64*x-6,1,x^4-6*x^2+4,3*x^4+3*x^3-21*x^2-18*x+9]];
E[645,8] = [x, [1,0,1,-2,1,0,-2,0,1,0,-5,-2,-5,0,1,4,5]];
E[645,9] = [x, [1,1,-1,-1,1,-1,4,-3,1,1,-2,1,2,4,-1,-1,0]];
E[645,10] = [x, [1,1,-1,-1,-1,-1,0,-3,1,-1,4,1,6,0,1,-1,-2]];
E[645,11] = [x, [1,-2,-1,2,1,2,4,0,1,-2,1,-2,5,-8,-1,-4,-3]];
E[645,12] = [x, [1,-2,1,2,1,-2,-4,0,1,-2,-3,2,5,8,1,-4,-7]];

E[646,1] = [x^2-4*x+2, [1,1,x,1,-x+2,x,-x+2,1,4*x-5,-x+2,2,x,-2*x+4,-x+2,-2*x+2,1,-1]];
E[646,2] = [x^2+2*x-2, [1,1,x,1,-x-2,x,-x-4,1,-2*x-1,-x-2,-4,x,2*x+4,-x-4,-2,1,1]];
E[646,3] = [x, [1,1,0,1,-2,0,-2,1,-3,-2,-2,0,-6,-2,0,1,-1]];
E[646,4] = [x, [1,1,-2,1,4,-2,4,1,1,4,2,-2,-6,4,-8,1,-1]];
E[646,5] = [x, [1,1,-2,1,0,-2,2,1,1,0,0,-2,2,2,0,1,1]];
E[646,6] = [x, [1,1,2,1,2,2,0,1,1,2,-4,2,2,0,4,1,-1]];
E[646,7] = [x^3-2*x^2-6*x+8, [1,1,2,1,x,2,-x^2+6,1,1,x,x^2-x-4,2,x^2-2*x-6,-x^2+6,2*x,1,1]];
E[646,8] = [x^2-2, [1,-1,x,1,-x-2,-x,x+2,-1,-1,x+2,-2*x-2,x,-2*x,-x-2,-2*x-2,1,-1]];
E[646,9] = [x^2-8, [1,-1,x,1,0,-x,x-2,-1,5,0,x,x,-2,-x+2,0,1,-1]];
E[646,10] = [x^3+2*x^2-4*x-4, [1,-1,x,1,-x^2-x+2,-x,-x,-1,x^2-3,x^2+x-2,x^2+2*x-4,x,x^2-6,x,x^2-2*x-4,1,1]];
E[646,11] = [x^4-10*x^2+8, [4,-4,4*x,4,-x^3+2*x^2+10*x-4,-4*x,-2*x^3+16*x,-4,4*x^2-12,x^3-2*x^2-10*x+4,-x^3-2*x^2+6*x+12,4*x,0,2*x^3-16*x,2*x^3-4*x+8,4,4]];
E[646,12] = [x, [1,-1,0,1,4,0,-2,-1,-3,-4,4,0,6,2,0,1,-1]];

E[647,1] = [x^14+2*x^13-14*x^12-26*x^11+75*x^10+124*x^9-198*x^8-271*x^7+274*x^6+273*x^5-190*x^4-102*x^3+52*x^2-1, [17,17*x,16*x^13+30*x^12-198*x^11-336*x^10+868*x^9+1238*x^8-1644*x^7-1623*x^6+1291*x^5+269*x^4-360*x^3+504*x^2+89*x-43,17*x^2-34,-5*x^13-20*x^12+30*x^11+224*x^10+107*x^9-831*x^8-1029*x^7+1133*x^6+2154*x^5-304*x^4-1409*x^3-234*x^2+88*x+6,-2*x^13+26*x^12+80*x^11-332*x^10-746*x^9+1524*x^8+2713*x^7-3093*x^6-4099*x^5+2680*x^4+2136*x^3-743*x^2-43*x+16,9*x^13+19*x^12-122*x^11-240*x^10+620*x^9+1098*x^8-1490*x^7-2291*x^6+1726*x^5+2288*x^4-857*x^3-983*x^2+117*x+64,17*x^3-68*x,-44*x^13-91*x^12+570*x^11+1111*x^10-2710*x^9-4807*x^8+5966*x^7+9032*x^6-6300*x^5-7238*x^4+2996*x^3+1929*x^2-538*x-22,-10*x^13-40*x^12+94*x^11+482*x^10-211*x^9-2019*x^8-222*x^7+3524*x^6+1061*x^5-2359*x^4-744*x^3+348*x^2+6*x-5,-50*x^13-149*x^12+555*x^11+1815*x^10-1990*x^9-7783*x^8+2358*x^7+14271*x^6+171*x^5-10690*x^4-898*x^3+2318*x^2-378*x-25,-2*x^13-8*x^12+12*x^11+76*x^10+36*x^9-159*x^8-347*x^7-305*x^6+644*x^5+1218*x^4-227*x^3-947*x^2-162*x+84,28*x^13+78*x^12-321*x^11-979*x^10+1230*x^9+4436*x^8-1806*x^7-8990*x^6+844*x^5+8091*x^4-205*x^3-2620*x^2+262*x+48,x^13+4*x^12-6*x^11-55*x^10-18*x^9+292*x^8+148*x^7-740*x^6-169*x^5+853*x^4-65*x^3-351*x^2+64*x+9,25*x^13+100*x^12-235*x^11-1256*x^10+502*x^9+5668*x^8+759*x^7-11343*x^6-3103*x^5+9918*x^4+2098*x^3-3012*x^2+36*x+72,17*x^4-102*x^2+68,39*x^13+122*x^12-421*x^11-1499*x^10+1406*x^9+6543*x^8-1198*x^7-12472*x^6-1389*x^5+10249*x^4+1817*x^3-2911*x^2-54*x+62]];
E[647,2] = [x^2+3*x+1, [1,x,2*x+3,-3*x-3,-x-1,-3*x-2,-x-4,4*x+3,2,2*x+1,-2*x-3,3*x-3,2*x+2,-x+1,x-1,-3*x+2,x+1]];
E[647,3] = [x^38-6*x^37-43*x^36+317*x^35+734*x^34-7563*x^33-5196*x^32+107777*x^31-15218*x^30-1022420*x^29+670981*x^28+6809534*x^27-6974304*x^26-32703124*x^25+43233931*x^24+114355024*x^23-182818211*x^22-289598457*x^21+551044145*x^20+518051925*x^19-1199765467*x^18-613590239*x^17+1879315061*x^16+391077694*x^15-2078914397*x^14+33007060*x^13+1568489682*x^12-292644423*x^11-763027960*x^10+245090697*x^9+219863956*x^8-96514017*x^7-33109265*x^6+19659318*x^5+1729091*x^4-1958805*x^3+96833*x^2+73104*x-9271, [34436742364274239978366413667594239738765142134484101,34436742364274239978366413667594239738765142134484101*x,532339247582056870526236948007658685963668241038746*x^37-3004802278725309408663541826847406163703408894713080*x^36-23975959567715638077060030593053438402168790280982077*x^35+160327700935323600750289419380913407983590901996739158*x^34+448474009852528812442511104394832698641537780375670027*x^33-3871820803553306876896617826958047422840190654721391514*x^32-4155330666083918066809540621484639888907166046837390782*x^31+56017982037214856732720601940998793409237506472657501901*x^30+11912474646824161290855897357270977658621620253020203340*x^29-541734217543015647306718438499029112805199873027147855181*x^28+164660394805176740022717777715311270688615265156140202544*x^27+3699229153185295107203537128469585866806045212776136353732*x^26-2406531478200378891716823279032283883764870002717098016399*x^25-18366395570481660084974474679275386649173487563298509354732*x^24+16582908986153793425905037544438132379430867689261220467675*x^23+67242206396925403933186913294176075572909177095806056487137*x^22-74018677625377480892210770677690925301399026033663456929505*x^21-182049572633331819073402408873469014348433969135836085746261*x^20+231131329648606578733704860820742239987097264293930752564583*x^19+361662370846096898992827247485203604690553768462852602486435*x^18-517479951369341931132467272329239546673846979057855045789910*x^17-516546578139856553438384293373240728429529663790035674375233*x^16+832277292438891194770815907183516033734446167077894655963489*x^15+509617814303679355156472197309747952883462435470016499884693*x^14-948572449096364255556816122907015473285751654470531037216001*x^13-320585154491565575085176603741740222906985053046009583453326*x^12+744708767401802799106317264297557402294389924741677306073117*x^11+104230162839111424006532048762420743683509566959481309459504*x^10-385100802193773870363853179494301440498529889682667291483655*x^9-137901918585715464732472356148542456408036254416086960961*x^8+123369901008103732155377667456348151268589452997995197867912*x^7-11214094162074280949168152784510192291706248358884383777790*x^6-22836711141146821877410051536742440150016713370909302949344*x^5+3399329264816495907331224137153938043204245010791593789459*x^4+2176920409568630795281891668372240008240288963215551875221*x^3-405278250208056641552000504407823301055610102938969457024*x^2-79623701801376261313419898994482708415328287378646294709*x+16672267111788822274354435512276870423811541348667370784,34436742364274239978366413667594239738765142134484101*x^2-68873484728548479956732827335188479477530284268968202,110527905258323999769946801183225952642792301563710*x^37-709951074464156213339669086062613070715914483161085*x^36-4547610943906636770835777916049743506120430513746815*x^35+37409277947494151517216550172717986652856385482250931*x^34+69997971605367708344043711829584086034480115826917111*x^33-889759516248103971689867033488142244672725557211783207*x^32-299804225330488593465880064267133919976695974108397091*x^31+12633697630988014790231109161791036608292233962857611945*x^30-5759664852616203118561166201935712417621565694217659439*x^29-119331430521375932080768404374672654277659305515163578094*x^28+114922777091645421444370690516621077535399284400997965791*x^27+790576571506310120618245893409023918603713755969557457886*x^26-1061017241664606716319877623922653671049512512695483540475*x^25-3771352670628577754233908030081324743876190229091816177591*x^24+6296845397080532212764432599270124171853707356106175454576*x^23+13069121235579471330221015910155126944714897396917876507195*x^22-26147769163557314445332257411858558908480763632846514751885*x^21-32663829889800175265381569362284676478453637394444301630721*x^20+78420065007867851251221149267245733056257218051245124277537*x^19+57161112391787496755814231650716394579757919426437961508283*x^18-171471784020083763733436625660771833776449753624320172542551*x^17-64649876172419802908835617804617287230948469743536964887653*x^16+272077941286637695870823702478126001373804636839284400034891*x^15+34945810136812016666878141438150959829568813527305258173871*x^14-307984135801807374730276102311638848114268430552773158666880*x^13+15710472551915188022213773540952081974972923921316392679022*x^12+241244825517428391813348766082147569953646893459316785816488*x^11-43393369748907078496979260020688724218357632697819618737226*x^10-124837431635030897783372693239914439934441175199898002313372*x^9+33395997364432723946439559677088398597670375522331359902826*x^8+40080675901280993524247252599421509771374493893664150152704*x^7-12752247525655733215820352551823675649628647948826556188224*x^6-7433286996631714513591753559840099203704492783794428520619*x^5+2521135222329164949421243219747079204306555351078339175048*x^4+707622518526510209145008746096190439251600995420334137271*x^3-240061632905501374044550279833369771421231729583165175766*x^2-25717223757903961130458878033970892340170397703224545708*x+8421058422478053343150808469433435114834538617329082009,189233206767031814493879861198545952078600551519396*x^37-1085371921687192644431841828724114905731055916315999*x^36-8423840548188427206527693137514395466891930412543324*x^35+57737002127299069476253184557211223144205291453230463*x^34+154260925909789234893312210823875219103032252254644484*x^33-1389295935647550567555213439636845356639945866400066566*x^32-1355945049436486601985637604422636787868765541775425741*x^31+20013613316527902746524171232051527541616723545147839968*x^30+2540075969830938256716741882961280897773809975686830139*x^29-192529125876679361019847215895815562077972814884278627282*x^28+74246947240861057421528738955201784341123560702600149368*x^27+1306164265568150668621793172405322120386285265432392366385*x^26-957239146738954073103002515199371692426585581746510112228*x^25-6432209312400770152502224355375570721073033550699292422851*x^24+6366538963537348534794194475073514355725432263782472727233*x^23+23302631262660231877654496719169249965089612790556868473901*x^22-27884947933027168482755410714061834710708088471111166931339*x^21-62211095885191266826801078261547494071575802652918948877587*x^20+85882998883160741757234433563711107684104956131366237600385*x^19+121202294608373150955001935349823796267959793185064613994472*x^18-189908411986902106140598508674590861478656522454361907974939*x^17-168155873103476115367668184861950878144544857113598986390017*x^16+301431808933593478454214885185314899637720891983547549552969*x^15+158115276790121211452942834539446635226220070756584257010161*x^14-338156107976861381134048338258845893614109008498069935000086*x^13-90259849754296850651295298939625703617301938198684757145655*x^12+260016274788016602034868366773403019418285458321690053273062*x^11+21088927916697916157765525420608431028608522393915349854505*x^10-130609299148927598555646642730498371137347602127366348106923*x^9+6327688100649273984499410274017994274855681251654953028736*x^8+40164105028827564747767878961529094255588889639089245324892*x^7-5211349923051891706086182972365646686893841206273586367654*x^6-7066097287279891204428895367078090499617645386289764145769*x^5+1256457407627724498966810097704729443268683880649625515335*x^4+637470529651914266719145060534318571303453065948931401506*x^3-131171708162489574257087001380908321953248174163151186127*x^2-22243861243449863188595590334875010154876461744229116800*x+4935317164333249246648742744979003677569168262670214166,445298520908854394293864874128837679433318913604480*x^37-2458908026067727061245315805239672442872526929569601*x^36-20296321772103073958077539830046810329548438217282277*x^35+131194835511474828667375146892111055830993784544980878*x^34+389137420415397725981139426464780935353812189760386531*x^33-3170094111394937874832645820770367899962418551429295486*x^32-3844060922367940592884911942649930816574476334520930211*x^31+45933201184293774819822162128901038467588808282163664158*x^30+15762851749970442734471152350998645114959778227286350694*x^29-445451126715390326802324253718953255754694852527747699117*x^28+76795857327931107049117889242956409809668508892381369200*x^27+3056077796382422527849683910849711762533531265146906472546*x^26-1561818669612087001858483359815694842788314761618071450565*x^25-15286305561612032446221034467044706904450098072186489860026*x^24+11449866315573177437284225288961228749234665670209361645252*x^23+56605695319421702608274887958467373611153498277005070585991*x^22-52370607004011884692334669696507081907629555034590526218533*x^21-155906871141172254050805350342546851871174907904179457198999*x^20+165646079753961861183204991715054572652818707966653976449421*x^19+317877444668876384574296530244589338118375498972635584366917*x^18-374211351234619478863957417211486556374943861300582092973191*x^17-472615074795795772696128250760769585100777574814443424043683*x^16+607273590930707991445983444491896200525786039483128779723765*x^15+497812034660448947415528299174024469045874838847915099614640*x^14-700432516710089951826182662375628028317996254838143342509316*x^13-352795151579512203637654270704730635613302064424403882340184*x^12+559908761576426434250959618701705996472548857698611673218301*x^11+152163115412306764195399634245831493966851173685522279057786*x^10-297636609511716316239191564543050012820949000076476535128202*x^9-30301130410365692954966630131094635988512779946700928212416*x^8+99110254754832160574779852710970847428706065656973099724005*x^7-1822676244674619993655649450021654191194585998006632736471*x^6-19123172439868739326139617779343808971005101562560864576508*x^5+1936907561271642875278674159620130565292589185543236074945*x^4+1890238828024933864447913894198542530874326458039182048261*x^3-298228344339798844846354789366790530306416679489061274344*x^2-70979331142938857952269173501728564469458417620233804921*x+13715163384465052368919068814102209248704399008162407279,34436742364274239978366413667594239738765142134484101*x^3-137746969457096959913465654670376958955060568537936404*x,1202517878003148468486290976410866418405220769555242*x^37-6851044775752173904626878960531765526898453041226572*x^36-53723431638143921562914302292610508639500617845261911*x^35+364620174085557979481950417548257263087201740604702746*x^34+990370875160876224824352570820910541588348171345603942*x^33-8778386191447363429601272196765769672417788223065008806*x^32-8855279613109609893097252834420893795545987788165120368*x^31+126534264545757139652005025186796611851074368489326428135*x^30+19511964842046946952521607371918590744397054754100862710*x^29-1218081995595184749451002009652477373377323532091349636987*x^28+440133340923719138756532903809555458760791142853644554701*x^27+8270236310508561989808450355707689815958377862762109041340*x^26-5873782555900172874564795471623409076678800472282293051687*x^25-40763844695147500050974679006762142092493279058788535248932*x^24+39460076781626918553776571201894169722251682331313082249171*x^23+147839303563765246332819969252511496616647719623633569468565*x^22-173724905332975301960696418172657576352666884515846036420297*x^21-3952154327103939686753082648363