Sharedwww / Tables / B62-english.dviOpen in CoCalc
����;� TeX output 2000.06.19:2238����������s�������XO�2D��tG�cmr17�The�	�eld�generated�b��zAy�the�p���oin�ts�of�small���p��EYprime�	�order�on�an�elliptic�curv��zAe��4d��o���+�-�

cmcsc10�Lo����K��*��c��Merel��K�`y

cmr10�and��William�A.�Stein��E�����"V

cmbx10�In��9tro�Q�duction���O���Let�k��b>

cmmi10�p��b�Ge�a�prime�n���um�b�er.���Let���qƍ�<����:��k�Q���y��b�e�kan�algebraic�closure�of��Q�.���Denote�b���y��Q�(�����	0e�rcmmi7�p���R�)�the���cyclotomic�̢subeld�of���qƍ��g���:���Q���<ϫgenerated�b���y�the��p�th�ro�Gots�of�unit�y��*�.�׮Let��E�`/�b�Ge�an�elliptic�curv�e���o���v�er�UU�Q�(�����p���R�),�suc���h�that�the�p�Goin�ts�of�order��p��of��E����(���qƍ������:��Q������)�are�all��Q�(�����p���R�)-rational.����Theorem�UU�.�q�|��$�':

cmti10�One���has��p��>��1000�,���p�<��6��or��p��=�13�.�����W��*�e�f�note�that�the�case��p��3�=�7�f�w���as�treated�b�y�Emman�uel�Halb�Gerstadt.��,The�part�of�the���theorem�that�concerns�the�case��p���!",�

cmsy10���3�	��(�mo�Gd���4)�is�giv���en�in�[2].���W��*�e�prop�Gose�to�giv�e�the���details���that�p�Germit�our�treating�the�more�dicult�case�in�whic���h��p�����1�	��(�mo�d���4).�Q�W��*�e���treat���this�UUlast�case�with�the�aid�of�Prop�Gosition�2�b�elo���w,�whic�h�is�not�presen�t�in��lo��}'c.���cit.�����W��*�e�UUdid�not�thoroughly�study�the�case��p���=�13.����1.�pW��
�e��Trecall�the�results�of��[2]����Denote�5b���y��S����ٓ�Rcmr7�2��|s�(����0���(�p�))�5the�space�of�cusp�forms�of�w�eigh�t�2�for�the�congruence�subgroup�������0��|s�(�p�).�Denote��mb���y��T��the�subring�of��End��"ñS����2���(����0���(�p�))�generated�b���y�the�Hec�k�e�op�Gerators.�Let����f����2�s�S����2��|s�(����0���(�p�))��}ha���v�e��q�[٫-expansion��������u

cmex10�P�����ލ�J��O!�cmsy7�1��%��J��n�=1�����a����n��q~�q����^��n���W�.��?When����is�a�Diric���hlet�c�haracter,��Gdenote�b�y����L�(�f��V;���;�s�)�UUthe�en���tire�function�whic�h�extends�the�Diric�hlet�series������P�����ލ�
㐺1��%��
㐴n�=1�����a����n��q~��(�n�)�=n���^��s��F:�.����Let����S�1%�b�Ge�the�set�of�isomorphism�classes�of�sup�ersingular�elliptic�curv���es�in�c�haracter-���istic�NC�p�.�olDenote�b���y�����S��	J�the�group�formed�b�y�the�divisors�of�degree�0�with�supp�Gort�on��S����.�olIt���is���equipp�Ged�with�a�structure�of��T�-mo�dule�(deduced,���for�example,�from�the�action�of�the���Hec���k�e�UUcorresp�Gondences�on�the�b�er�at��p��of�the�regular�minimal�mo�del�of��X����0��|s�(�p�)�o���v�er�UU�Z�).����Let��ٱj���2���qƍ�w+����:��X��F����p�������s8�J����S����,�ºwhere��J����S��	w�denotes�the�set�of�sup�Gersingular�mo�dular�in���v��q�arian�ts.�xTW��*�e���denote��b���y������j��(S�the�homomorphism�of�groups�����S�����	��������!���qƍ��֫���:��˟�F����p������that�asso�Gciates�to������P�����E�����n����E���m�[�E����]�the���quan���tit�y��UU����P���
㐟�E��O��n����E���m�=�(�j��k��8�j����(�E����)),�UUwhere��j��(�E����)�denotes�the�mo�Gdular�in���v��q�arian�t�UUof��E��.����One�sa���ys�that�an�elemen�t��j�Y��2���F����p���`�is��anomalous��if�there�exists�an�elliptic�curv�e�o�v�er��F����p�����with��)mo�Gdular�in���v��q�arian�t��)�j�!��that�p�ossesses�an��F����p���R�-rational�p�oin���t�of�order��p��(then�necessarily����j�����v=�����Y��2������g�J����S����).����Pr��oposition��L�1.���|��Supp��}'ose��'that��p��is�c�ongruent�to��1��mo�dulo��4�.�xUSupp�ose�that�for�al���l���anomalous�$�j�^��2��/�F����p���Y�and�al���l�non-quadr��}'atic�Dirichlet�char�acters����:��ի(�Z�=p�Z�)���^�������e�������!��/�C�,�Hther�e������;�1���*�����s��������exists��ȱt������F5�2���T��and���'��2������S��	V��such�that��L�(�f��V;���;��1)��6�=�0����for�every�newform��f�ڧ�2��t�������S����2��|s�(����0���(�p�))����and��������j��6��(�t��������`�)���6�=�0�.����Then��for�al���l�sub��}'gr�oups���C���of�or��}'der��p��of��E����(���qƍ������:��Q������)�,�ther�e�exists�an�el���liptic�curve��E����C��
���over����Q�(�������p���UW�����fe�;��p����
]W�)��e�e��}'quipp�e�d�with�a��Q�(�������p���UW�����fe�;��p����
]W�)�-r�ational�sub�gr�oup��D����C��
N?�of�or�der��p�,���and�the�p�airs��(�E���;���C���)��and����(�E����C���ڱ;���D����C���)����ar��}'e���qƍ�e�����:���Q���7r�-isomorphic.���Pr��}'o�of�.���|�!W��*�e�indicate�ho���w�this�is�deduced�from�[2].�The�h���yp�Gothesis������j��6��(�t��������`�)���6�=�0�!forces����t����������	�I�=������׷2�����C=�p�T��and,����a��Wfortiori�,��t�������׷6�=��0;��in�addition,�the�non-v��q�anishing�h���yp�Gothesis�on�the��L�-series���forces�UUthe�h���yp�Gothesis��H����p���R�(��)�of��lo��}'c.���cit�,�in�tro�Gduction.����According���to�Corollary�3�of�Prop�Gosition�6�of��lo��}'c.�n�cit�,��E�\��has�p�oten���tially�go�o�d�reduction���at� Qthe�prime�ideal��P��Ϋof��Z�[�����p���R�]�that�lies�ab�Go���v�e� Q�p��once�w���e�kno�w�that�h�yp�Gothesis��H����p���R�(��)�is���satised�6wfor�all�non-quadratic�Diric���hlet�c�haracters����of�conductor��p��(this�is�the�case�b�y���h���yp�Gothesis).����Denote�A�b���y��j��c�the�mo�Gdular�in�v��q�arian�t�of�the�b�Ger�at��P�U�of�the�N���Geron�mo�Gdel�of��E����.��According���to�UUthe�corollary�of�Prop�Gosition�15�of��lo��}'c.���cit.�,��j���is�anomalous.����Let��N�C��j�b�Ge�a�subgroup�of��E����(���qƍ������:��Q������)�of�order��p�.�	!�By�assumption��E�x۫is�an�elliptic�curv���e���o���v�er�>'�Q�(�����p���R�)�whose�p�Goin���ts�of�order��p��are�all��Q�(�����p���)-rational,�x\so�the�pair�(�E���;���C���)�denes�a����Q�(�����p���R�)-rational�UUp�Goin���t��P���of�the�mo�dular�curv���e��X����0��|s�(�p�).����Consider�5the�morphism��������F5�=�������t���O
�\cmmi5������(see��lo��}'c.���cit.�g�section�1.3).�When������j��6��(�t��������`�)���6�=�0,�;xthis�5is���a���formal�immersion�at�the�p�Goin���t��P���:�=�f$�cmbx7�F���p���uQ�,�İaccording�to��lo��}'c.�b$cit.�,�Prop�Gosition�4.�5�The�h���yp�othesis���that��c�L�(�f��V;���;��1)���6�=�0�for�ev���ery�newform��f�ڧ�2��t�������S����2��|s�(����0���(�p�)),���translates�in���to��L�(�t�������J����0���(�p�)�;���;��1)���6�=�0,���whic���h��|in�turn�implies�that�the���-isot�ypical�comp�Gonen�t�of��t�������J����0��|s�(�p�)(�Q�(�����p���R�))�is�nite�(this�is���Kato's�+theorem,��see�the�discussion�in��lo��}'c.��dcit.�Vd�section�1.5).�W��*�e�can�then�apply�Corollary�1���of�P�Prop�Gosition�6�of��lo��}'c.��4cit�.�pFThis�pro���v�es�P�that��P��b�is��Q�(�������p���UW�����fe�;��p����
]W�)-rational;�RSthis�translates�in���to�the���conclusion�UUof�Prop�Gosition�1.��V���2.�pA��Tlemma�ab�Q�out�elliptic�curv��9es���{��Pr��oposition��U�2.�Rr|��L��}'et�=m�p��b�e�a�prime�numb�er�that�is�c�ongruent�to��1��mo�dulo��4�.�|�L�et��E����b�e�an���el���liptic��curve�over���qƍ��m����:���Q����3�.�q,Ther��}'e�exists�a�cyclic�sub�gr�oup��C����of�or�der��p��of��E����(���qƍ������:��Q������)[�p�]�,�2�such�that�for���al���l�)el�liptic�curves��E������^��0��w��over���Q�(�������p���UW�����fe�;��p����
]W�)��%�R�e��}'quipp�e�d�with�a���Q�(�������p���UW�����fe�;��p����
]W�)��!�)�-r�ational�sub�gr�oup��C�����^��0���U�,�6�the�p�airs����(�E���;���C���)����and��(�E����^��0��aƱ;���C�����^��0���U�)��ar��}'e�not���qƍ�e�����:���Q���7r�-isomorphic.���Pr��}'o�of�.�p�|�[email protected]��*�e�pro�Gcede�b���y�con�tradiction.�p�Let��E����0��γ�b�Ge�an�elliptic�curv�e�o�v�er��Q�(�������p���UW�����fe�;��p����
]W�)�that�is���qƍ�$���:���Q������isomorphic��
to��E�Y��(it�exists�b���y�h�yp�Gothesis).�BW��*�e�rst�sho�w�that�the�subgroup��Gal��f(���qƍ������:��Q������=��Q�(�������p���UW�����fe�;��p����
]W�)���)���acts�UUb���y�scalars�on�the��F����p���R�-v�ector�space��E����0��|s�(���qƍ������:��Q������)[�p�].����Denote���b���y��X���(�p�)�the�algebraic�curv�e�o�v�er��Q��that�classies�(nely�since��p��>��2)���of���generalized��lelliptic�curv���es�equipp�Ged�with�an�em�b�Gedding���'E�:�]�(�Z�=p�Z�)���^��2�����Z�����$�!���E����[�p�].��Consider��
^r�the�jEmorphism�(of�algebraic�v��q�arieties�o���v�er�jE�Q�)����:����X���(�p�)�����������
�!����X����0��|s�(�p�)���^��P����r���Zcmr5�1��� �(�F���p��2Ԯ)��:�that�to�(�E���;����[٫)���asso�Gciates��������Q������t�2�P����1��� �(�F���p��2Ԯ)��/��(�E���;����[٫(�t�)).�/�Denote���b���y��X������ɫ(�p�)�the�image�of���.�The�co���v�ering���(of�algebraic��
}v�curv���es��o�v�er��Q�)�����^��0���T�:��R�X���(�p�)�����`�����	��!��`�X������ɫ(�p�)�is�Galois�with�Galois�group�isomorphic�to��F���^�����፴p����m�(the���action�UUb�Geing�deduced�from�the�scalar�action�of��F���^�����፴p����on��E����[�p�]).��

��Let�sf�����0���٫b�Ge�an�em���b�edding�(�Z�=p�Z�)���^��2�����C������
`!���E����0��|s�[�p�].�&xDenote�b���y��P����the���qƍ�E+���:���Q����-rational�p�oin���t�of��X���(�p�)���deduced��>from�(�E����0��|s�;�������0���).�I�Its��>image�b���y����is��Q�(�������p���UW�����fe�;��p����
]W�)-rational�b�y�h�yp�Gothesis.�I�W��*�e�ha�v�e�then�a���c���haracter��5�����:��݇Gal��}�(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))���� �����	=X!� ��F���^�����፴p���*��suc�h�that���[٫(�P�c��)� �=���	z�(���)�:P��ī(��|��2���Gal����(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))).�gIn���other�UUw���ords,��Gal���W(���qƍ������:��Q������=�Q�(�������p���UW�����fe�;��p����
]W�))�acts�b�y�scalars�on��E����0��|s�(���qƍ������:��Q������)[�p�]�via�the�c�haracter���	z�.������;2���M�����s���������Because�Gof�the�W��*�eil�pairing,��r���	z��^��2����coincides�with�the�cyclotomic�c���haracter�mo�Gdulo��p�,���and���it�factors�through��Gal��5�(�Q�(�����p���R�)�=�Q�(�������p���UW�����fe�;��p����
]W�)).�3KBut,�%�when��p�����1�	��(�mo�Gd���4),�the���group����Gal���(�Q�(�����p���R�)�=��Q�(�������p���UW�����fe�;��p����
]W�)���)�g�is�of�ev���en�order,��and�the�c�haracters�mo�Gdulo��p��form�a�group�gener-���ated�z3b���y�the�reduction�mo�Gdulo��p��of�the�cyclotomic�c�haracter,��kwhic�h,�therefore,�can�z3not�b�Ge���a�UUsquare.��Ut��3.�pV��
�erication��Tof�the�h��9yp�Q�othesis�of�Prop�osition�1�������Let�S̱p��b�Ge�a�prime�n���um�b�er.�qDIn�S�this�section�w���e�explain�ho�w�to�use�a�computer�to�v�erify���that�
sthe�h���yp�Gothesis�of�Prop�osition�1�are�satised.�X�W��*�e�ha���v�e�
scarried�out�this�v���erication�for����p���=�11�UUand�13���<�p�<��1000.����W��*�e��lrst�list�the�anomalous��j����-in���v��q�arian�ts��l�j�C�2����F����p���R�.�Since��p��is�fairly�small�in�the�range���of��sour�computations,���w���e�created�this�list�b�y�simply�en�umerating�all�of�the�elliptic�curv�es���o���v�er�`��F����p��A�and�coun���ting�the�n�um�b�Ger�of�p�oin���ts�on�eac�h�curv�e.���F��*�or�example,�c�when��p��m�=�31�`�the���anomolous�UU�j����-in���v��q�arian�ts�are��j�Y��=��10�;����14.����Let����/�:�(�Z�=p�Z�)���^�������	�������e!��C���^����	_̫denote�a�non-quadratic�Diric���hlet�c�haracter�and�supp�Gose����j�Y��2���P���^��1��|s�(�F����p���R�)�UUis�anomalous.����W��*�e���study�the�follo���wing�three��T�-mo�Gdules:�<��T�,��W����S����,�and���S����2��|s�(����0���(�p�);����Z�).���After�extension���of�\[scalars�to��Q�,�^these�are��T�=��
��Q�-mo�Gdules�\[that�are�free�of�rank�1,�of�whic���h�the�irreducible���sub-�T�,?�
��Q�O�mo�Gdules�are�the�annihilators�of�the�minimal�prime�ideals�of��T�.�o�W��*�e�compute�a���list�U�of�the�minimal�prime�ideals�of��T��b���y�computing�appropriate�k�ernels�and�c�haracteristic���p�Golynomials��of�Hec���k�e��op�erators�of�small�index�on�����S����,�+whic���h�w�e�nd�using�the�graph���metho�Gd�UUof�Mestre�and�Oesterl�����Ge�[3].����Ha���ving��computed�the�minimal�prime�ideals��I��ӫof��T�,��6w�e�v�erify�that�one�of�the��I����sim���ultaneously�UUsatises�the�follo�wing�three�conditions:���p��1)�UUThere�exists��x���2������S��	 \�suc���h�UUthat��I����x���=�0�UUand������j��6��(�x�)���6�=�0.��N8��2)��Eac���h�of�the�conjugate�newforms��f�ڧ�2���S����2��|s�(����0���(�p�))��with��I����f��=��0�satises��L�(�f��V;���;��1)��6�=�0.����3)�UUThe�image�of��I�Q�in�the��T�-mo�Gdule��T�=p�T��is�a�direct�factor.����Let���I���b�Ge�a�minimal�prime�ideal�of��T�.�G�When��I��satises�the�ab�Go���v�e���three�conditions,���the�UUfollo���wing�steps�w�ere�used�to�pro�v�e�that�this�is�the�case.����W��*�e�.�v���eried�that��I�랫satises�the�rst�condition�b�y�nding�a��T�-eigen�v�ector��v��{�of�����S�����
���qƍ������:���z�Z������that�s�is�annihilated�b���y��I�0�suc�h�that������j��6��(�v�[٫)��(�6�=�0.�ͱBecause�s������j�����is�a�homomorphism,�{�this�implies���the�UUexistence�of�an��x��as�in�condition�1.����W��*�e��'v���eried�the�second�condition�using�the�theory�of�mo�Gdular�sym�b�Gols,���using�a�tec�h-���nique�t�that�a���v�oids�t�the�need�to�compute�in���tegrals�b�y�appro�ximating�sums�of�innite�series.���Using�c�the�algorithm�describ�Ged�in,�gae.g.,�[1],�w���e�c�compute�the�space��H����1��|s�(�X����0���(�p�);����Q�).��Then�c�w�e���nd�UUa�single��T�-eigen���v�ector�UU�'��in�the�linear�dual��H������^��1��Lq�(�X����0��|s�(�p�);�������_�fe������Q���
N3�)�suc���h�that��I����'���=�0.�q�Let���&���fm�e������F5�=����Dҟ���X���j�����a�2�(�Z�=p�Z�)������0ncmsy5�����+����(�a�)�f�0�;���a=p�g��jЍ�b�Ge��6the���-winding�Pelement�.��kThen��������!�L�(�f��V;���;��1)��9=��'�(�e�������),���where��6��ᰫis�a�nonzero�elemen���t�of����C�.���Th���us�b��'�(�e�������)����6�=�0�if�and�only�if��L�(�f��V;���;��1)����6�=�0.���A�bgsignican���t�subtlet�y�that�arises�in������;3���(�����s��������carrying�'�out�this�computation�is�that�the�c���haracter����tak�es�v��q�alues�in�one�n�um�b�Ger�eld,���whereas��)the�eigen���v�ector��)�'��is�dened�o���v�er��)a�dieren���t�n�um�b�Ger�eld.�CThese�t�w�o�n�um�b�Ger���elds���are�frequen���tly�not�linearly�disjoin�t,��@so�it�is�necessary�to�compute�their�comp�Gositum���in�%@order�to�compute�the�v��q�alue��'�(�e�������),�Y:and�this�can�b�Ge�v���ery�costly�in�practice.��Since�w�e���only��ha���v�e�to�v�erify�that��'�(�e�������)�
Ƿ6�=�0,�Hw���e�a�v�oided�this�dicult�y�b�y�instead�appro�ximating����'����and��e������	֫b���y�v�ectors�with�appro�ximate�complex�en�tries�and�computing�an�appro�ximation���to���the�complex�n���um�b�Ger����'�(�e�������);�.Mthis�suces�for�the�presen���t�application�b�ecause�w���e�can���recognize�Q�that�an�appro���ximate�complex�n�um�b�Ger�is�nonzero�(although�w�e�can�not�pro�v�e���that�UUan�appro���ximation�is�zero).����The��>third�condition�is�satised�for�all��p�ՙ<��10000��>except��p�ՙ�=�389,��7b�Gecause��>one�of���us�5�has�v���eried�that�the�discriminan�t�of��T��is�prime�to��p��and�so�the�ring��T�=p�T��is�semi-���simple.�<�This��Dw���as�accomplished�b�y�computing�discrimininan�ts�of�c�haracteristic�p�Golynomials���mo�Gd��\�p��of�the�Hec���k�e��\op�erators��T����`����,�
�for��`�v���7��\a�prime.���In�the�few�cases�when�all�four���of���these�c���haracteristic�p�Golynomials�had�discriminan�t�equal�to�0�mo�Gd��p�,�Qw�e�resorted�to���mo�Gdular��6sym���b�ols�to�compute�sev���eral�more�c�haracteristic�p�Golynomials�un�til�w�e�found�one���with�UUnonzero�discriminan���t�mo�Gd��p�.����F��*�or��$all�prime�n���um�b�Gers��$�p�t<��1000�dieren���t�than�2�;����3�;��5�;��7�;��13�and�389,��w���e�th�us�v�eried���the���existence�of�a�minimal�prime�ideal�that�satises�the�three�conditions�giv���en�ab�Go�v�e.���More��Gprecisely��*�,��w���e�carried�out�this�computation�one��p��at�a�time�b�y�considering�eac�h�Galois���conjugacy���class�of�non-quadratic�c���haracters���.�}�W��*�e�nd�a�single�newform��f��/�suc�h�that����L�(�f��V;���;��1)����6�=�0��Land�then�try�to�v���erify�condition�1�for��al���l��of�the�anamolous��j����-in�v��q�arian�ts�in����F����p���R�;�UUif�this�succeeds,�w���e�then�attempt�to�v�erify�condition�2�for�all�conjugates�of��f�h�and���.����In���the�case�when��p�5��=�389,��2w���e���nd��I�T��in�the�follo�wing�w�a�y��*�.�8�There�exists�t�w�o�minimal���prime���ideals��P����1��K;�and��P����2���that�satisfy�the�rst�t���w�o���conditions.�D�Because�the�discriminan���t�of��T����has���p�-adic�v��q�aluation�1,���the�image�of�at�least�one�of�the�ideals��P����1��|s�,��P����2��Ut�and��P����1�����\�@:P����2���is�a�direct���factor�UUof��T�=p�T�.�q�W��*�e�c���ho�Gose��I�Q�to�b�e�one�of�these�that�is�appropriate.����When�8our�three�conditions�are�satised�for�an�ideal��I��4�of��T�,�'�there�exists��t������F5�2���T��whic���h���is��annihilated�b���y��I����and�is�the�in�v�erse�image�of�a�pro��8jector�of��T�=p�T��on�the�complemen�t���of�E��I����+����p�T�.�BRPutting����G�=�Wd�x�,���one�has������j��6��(�t��������`�)�=������j���(��`�)��6�=�0�E�(b�Gecause������j��|/�tak���es�its�v��q�alues�in���c���haracteristic�rݱp�,��)�����is�annihilated�b�y��I�/٫and��t������F5�2���1�s�+��p�T��+��P��}�).�&JEv�ery�r�newform��f�ڧ�2���t�������S����2��|s�(����0���(�p�))���satises�UU�I����f�ڧ�=��0,�and�therefore,�b���y�our�second�condition,��L�(�f��V;���;��1)��6�=�0.����The�UUpair�(�t�������;����`�)�th���us�satises�the�conditions�required�b�y�Prop�Gosition�1.��$���2�Bibliography�����qū[1]���J.��jCremona�,�`k�A���lgorithms��for�mo��}'dular�el���liptic�curves�,�second�^4ed.,�Cam���bridge�Univ�er-����sit���y�UUPress,�Cam�bridge,��1997�.��N8���q�[2]���L.�;�Merel�,��g�Sur��Bla�natur��}'e�non�cyclotomique�des�p�oints�d'or�dr�e�ni�des�c�ourb�es�el���lip-����tiques�,�UUPr�����Gepublication�de�l'Institut�de�math���Gematiques�de�Jussieu,��222�,��1999�.�����q�[3]���J.-F.�]�Mestre�,���L��}'a�7{m�����$�etho�de�des�gr�aphes.�z�Exemples�et�applic�ations�,��Pro�Gceedings���of�the����in���ternational��conference�on�class�n�um�b�Gers�and�fundamen�tal�units�of�algebraic�n�um�b�Ger����elds�UU(Katata),�217{242,��1986�.������;4���9'���;�0s�v6�2D��tG�cmr17�+�-�

cmcsc10�$�':

cmti10�f$�cmbx7��"V

cmbx10���u

cmex10���0ncmsy5�O!�cmsy7�!",�

cmsy10�O
�\cmmi5�	0e�rcmmi7��b>

cmmi10���Zcmr5�ٓ�Rcmr7�K�`y

cmr10�J��������