CoCalc Public Fileswww / 257 / notes / 257.bblOpen with one click!
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1
\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2
\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
3
% \MRhref is called by the amsart/book/proc definition of \MR.
4
\providecommand{\MRhref}[2]{%
5
\href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
6
}
7
\providecommand{\href}[2]{#2}
8
\begin{thebibliography}{MTT86}
9
10
\bibitem[Aga00]{agashe:phd}
11
A.~Agashe, \emph{The {B}irch and {S}winnerton-{D}yer formula for modular
12
abelian varieties of analytic rank~$0$}, Ph.D. thesis, University of
13
California, Berkeley (2000).
14
15
\bibitem[AL70]{atkin-lehner}
16
A.\thinspace{}O.\thinspace{}L. Atkin and J.~Lehner, \emph{Hecke operators on
17
\protect{$\Gamma \sb{0}(m)$}}, Math. Ann. \textbf{185} (1970), 134--160.
18
19
\bibitem[Bas96]{basmaji:thesis}
20
Jacques Basmaji, \emph{Ein algorithmus zur berechnung von hecke-operatoren und
21
anwendungen auf modulare kurven}, {\tt
22
http://modular.fas.harvard.edu/scans/papers/basmaji/} (1996).
23
24
\bibitem[BCP97]{magma}
25
W.~Bosma, J.~Cannon, and C.~Playoust, \emph{The {M}agma algebra system. {I}.
26
{T}he user language}, J. Symbolic Comput. \textbf{24} (1997), no.~3--4,
27
235--265, Computational algebra and number theory (London, 1993). \MR{1 484
28
478}
29
30
\bibitem[Bir71]{birch:bsd}
31
B.\thinspace{}J. Birch, \emph{Elliptic curves over \protect{${\mathbf{Q}}$:
32
{A}} progress report}, 1969 Number Theory Institute (Proc. Sympos. Pure
33
Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math.
34
Soc., Providence, R.I., 1971, pp.~396--400.
35
36
\bibitem[Buz96]{buzzard:t2}
37
Kevin Buzzard, \emph{On the eigenvalues of the {H}ecke operator {$T\sb 2$}}, J.
38
Number Theory \textbf{57} (1996), no.~1, 130--132. \MR{96m:11033}
39
40
\bibitem[CO77]{cohen-oesterle:dimensions}
41
H.~Cohen and J.~Oesterl{\'e}, \emph{Dimensions des espaces de formes
42
modulaires}, 69--78. Lecture Notes in Math., Vol. 627. \MR{57 \#12396}
43
44
\bibitem[Coh93]{cohen:course_ant}
45
H.~Cohen, \emph{A course in computational algebraic number theory},
46
Springer-Verlag, Berlin, 1993. \MR{94i:11105}
47
48
\bibitem[Cre92]{cremona:gammaone}
49
J.\thinspace{}E. Cremona, \emph{Modular symbols for \protect{$\Gamma\sb
50
1({N})$} and elliptic curves with everywhere good reduction}, Math. Proc.
51
Cambridge Philos. Soc. \textbf{111} (1992), no.~2, 199--218.
52
53
\bibitem[Cre97]{cremona:algs}
54
\bysame, \emph{Algorithms for modular elliptic curves}, second ed., Cambridge
55
University Press, Cambridge, 1997, Complete text available at {\tt
56
http://www.maths.nott.ac.uk/personal/jec/book/}.
57
58
\bibitem[CWZ01]{csirik-wetherell-zieve:g0}
59
Janos~A. Csirik, Joseph~L. Wetherell, and Michael~E. Zieve, \emph{On the genera
60
of {$X_0(N)$}}, See {\tt http://www.csirik.net/papers.html} (2001).
61
62
\bibitem[Dem04]{dembele}
63
Lassina Dembele, \emph{Quaternionic modular symbols and computing {H}ilbert
64
modular forms, \hfill\mbox{} {\tt
65
http://modular.fas.harvard.edu/mcs/archive/spring2004/dembele.html}}.
66
67
\bibitem[DI95]{diamond-im}
68
F.~Diamond and J.~Im, \emph{Modular forms and modular curves}, Seminar on
69
{F}ermat's {L}ast {T}heorem, Providence, RI, 1995, pp.~39--133.
70
71
\bibitem[Did01]{diderot:thesis}
72
Denis Diderot, \emph{P\'eriodes de formes modulaires de poids 1}, {\tt
73
http://modular.fas.harvard.edu/scans/papers/diderot/} (2001).
74
75
\bibitem[DP04]{darmon-pollack}
76
H.~Darmon and R.~Pollack, \emph{The efficient calculation of {S}tark-{H}eegner
77
points via overconvergent modular symbols}.
78
79
\bibitem[FJ02]{farmer-james:maeda}
80
D.~W. Farmer and K.~James, \emph{The irreducibility of some level 1 {H}ecke
81
polynomials}, Math. Comp. \textbf{71} (2002), no.~239, 1263--1270
82
(electronic). \MR{2003e:11046}
83
84
\bibitem[FM99]{frey-muller}
85
G.~Frey and M.~M{\"u}ller, \emph{Arithmetic of modular curves and
86
applications}, Algorithmic algebra and number theory (Heidelberg, 1997),
87
Springer, Berlin, 1999, pp.~11--48.
88
89
\bibitem[Gor]{gordon:dlp}
90
D.~Gordon, \emph{Discrete logarithm problem, \hfill\\ {\tt
91
http://www.win.tue.nl/\~{ }henkvt/content.html}}.
92
93
\bibitem[Gor93]{gordon:dlog}
94
Daniel~M. Gordon, \emph{Discrete logarithms in {${\rm GF}(p)$} using the number
95
field sieve}, SIAM J. Discrete Math. \textbf{6} (1993), no.~1, 124--138.
96
\MR{94d:11104}
97
98
\bibitem[Hij74]{hijikata:trace}
99
H.~Hijikata, \emph{Explicit formula of the traces of \protect{H}ecke operators
100
for \protect{$\Gamma_0(N)$}}, J. Math. Soc. Japan \textbf{26} (1974), no.~1,
101
56--82.
102
103
\bibitem[Iwa97]{iwaniec:topics}
104
Henryk Iwaniec, \emph{Topics in classical automorphic forms}, Graduate Studies
105
in Mathematics, vol.~17, American Mathematical Society, Providence, RI, 1997.
106
\MR{98e:11051}
107
108
\bibitem[Kna92]{knapp:elliptic}
109
A.\thinspace{}W. Knapp, \emph{Elliptic curves}, Princeton University Press,
110
Princeton, NJ, 1992.
111
112
\bibitem[Knu]{knuth2}
113
Donald~E. Knuth, \emph{The art of computer programming. {V}ol. 2}, third ed.,
114
Addison-Wesley Publishing Co., Reading, Mass., Seminumerical algorithms,
115
Addison-Wesley Series in Computer Science and Information Processing.
116
117
\bibitem[Lan95]{lang:modular}
118
S.~Lang, \emph{Introduction to modular forms}, Springer-Verlag, Berlin, 1995,
119
With appendixes by D. Zagier and W. Feit, Corrected reprint of the 1976
120
original.
121
122
\bibitem[Lem01]{lemelin:dominic}
123
Dominic Lemelin, \emph{Mazur-tate type conjectures for elliptic curves defined
124
over quadratic imaginary fields}.
125
126
\bibitem[Li75]{winnie:newforms}
127
W-C. Li, \emph{Newforms and functional equations}, Math. Ann. \textbf{212}
128
(1975), 285--315.
129
130
\bibitem[Man72]{manin:parabolic}
131
J.\thinspace{}I. Manin, \emph{Parabolic points and zeta functions of modular
132
curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66. \MR{47
133
\#3396}
134
135
\bibitem[Maz73]{mazur:symboles}
136
B.~Mazur, \emph{Courbes elliptiques et symboles modulaires}, S\'eminaire
137
Bourbaki, 24\`eme ann\'ee (1971/1972), Exp. No. 414, Springer, Berlin, 1973,
138
pp.~277--294. Lecture Notes in Math., Vol. 317. \MR{55 \#2930}
139
140
\bibitem[Mer94]{merel:1585}
141
L.~Merel, \emph{Universal \protect{F}ourier expansions of modular forms}, On
142
{A}rtin's conjecture for odd 2-dimensional representations, Springer, 1994,
143
pp.~59--94.
144
145
\bibitem[Miy89]{miyake}
146
T.~Miyake, \emph{Modular forms}, Springer-Verlag, Berlin, 1989, Translated from
147
the Japanese by Yoshitaka Maeda.
148
149
\bibitem[MTT86]{mtt}
150
B.~Mazur, J.~Tate, and J.~Teitelbaum, \emph{On {$p$}-adic analogues of the
151
conjectures of {B}irch and {S}winnerton-{D}yer}, Invent. Math. \textbf{84}
152
(1986), no.~1, 1--48. \MR{MR830037 (87e:11076)}
153
154
\bibitem[Nec94]{nechaev:lower}
155
V.~I. Nechaev, \emph{On the complexity of a deterministic algorithm for a
156
discrete logarithm}, Mat. Zametki \textbf{55} (1994), no.~2, 91--101, 189.
157
\MR{96a:11145}
158
159
\bibitem[Ros]{python}
160
Guido~van Rossum, \emph{Python,\newline{\tt http://www.python.org}}.
161
162
\bibitem[Ser73]{serre:arithmetic}
163
J-P. Serre, \emph{A \protect{C}ourse in \protect{A}rithmetic}, Springer-Verlag,
164
New York, 1973, Translated from the French, Graduate Texts in Mathematics,
165
No. 7.
166
167
\bibitem[Ser97]{serre:asymptotique}
168
Jean-Pierre Serre, \emph{R\'epartition asymptotique des valeurs propres de
169
l'op\'erateur de {H}ecke {$T\sb p$}}, J. Amer. Math. Soc. \textbf{10} (1997),
170
no.~1, 75--102. \MR{97h:11048}
171
172
\bibitem[Shi94]{shimura:intro}
173
G.~Shimura, \emph{Introduction to the arithmetic theory of automorphic
174
functions}, Princeton University Press, Princeton, NJ, 1994, Reprint of the
175
1971 original, Kan Memorial Lectures, 1.
176
177
\bibitem[Sho97]{shoup:lower}
178
Victor Shoup, \emph{Lower bounds for discrete logarithms and related problems},
179
Advances in cryptology---EUROCRYPT '97 (Konstanz), Lecture Notes in Comput.
180
Sci., vol. 1233, Springer, Berlin, 1997, pp.~256--266. \MR{98j:94023}
181
182
\bibitem[{\v{S}}ok80]{sokurov:shimura}
183
V.\thinspace{}V. {\v{S}}okurov, \emph{Shimura integrals of cusp forms}, Izv.
184
Akad. Nauk SSSR Ser. Mat. \textbf{44} (1980), no.~3, 670--718, 720.
185
\MR{MR582162 (82b:10029)}
186
187
\bibitem[Ste99]{stein:hecke}
188
W.\thinspace{}A. Stein, \emph{\protect{{\tt HECKE}: The} modular symbols
189
calculator}, Software (available online) (1999).
190
191
\bibitem[Ste00]{stein:phd}
192
\bysame, \emph{Explicit approaches to modular abelian varieties}, Ph.D. thesis,
193
University of California, Berkeley (2000).
194
195
\bibitem[Ste03]{math252}
196
William Stein, \emph{Modular abelian varieties, \hfill\mbox{} {\tt
197
http://modular.fas.harvard.edu/edu/fall2003/252/}}.
198
199
\end{thebibliography}
200