CoCalc Public Fileswww / 257 / notes / 257.bbl
Author: William A. Stein
Compute Environment: Ubuntu 18.04 (Deprecated)
1\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace}
2\providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR }
3% \MRhref is called by the amsart/book/proc definition of \MR.
4\providecommand{\MRhref}[2]{%
5  \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2}
6}
7\providecommand{\href}[2]{#2}
8\begin{thebibliography}{MTT86}
9
10\bibitem[Aga00]{agashe:phd}
11A.~Agashe, \emph{The {B}irch and {S}winnerton-{D}yer formula for modular
12  abelian varieties of analytic rank~$0$}, Ph.D. thesis, University of
13  California, Berkeley (2000).
14
15\bibitem[AL70]{atkin-lehner}
16A.\thinspace{}O.\thinspace{}L. Atkin and J.~Lehner, \emph{Hecke operators on
17  \protect{$\Gamma \sb{0}(m)$}}, Math. Ann. \textbf{185} (1970), 134--160.
18
19\bibitem[Bas96]{basmaji:thesis}
20Jacques Basmaji, \emph{Ein algorithmus zur berechnung von hecke-operatoren und
21  anwendungen auf modulare kurven}, {\tt
22  http://modular.fas.harvard.edu/scans/papers/basmaji/} (1996).
23
24\bibitem[BCP97]{magma}
25W.~Bosma, J.~Cannon, and C.~Playoust, \emph{The {M}agma algebra system. {I}.
26  {T}he user language}, J. Symbolic Comput. \textbf{24} (1997), no.~3--4,
27  235--265, Computational algebra and number theory (London, 1993). \MR{1 484
28  478}
29
30\bibitem[Bir71]{birch:bsd}
31B.\thinspace{}J. Birch, \emph{Elliptic curves over \protect{${\mathbf{Q}}$:
32  {A}} progress report}, 1969 Number Theory Institute (Proc. Sympos. Pure
33  Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math.
34  Soc., Providence, R.I., 1971, pp.~396--400.
35
36\bibitem[Buz96]{buzzard:t2}
37Kevin Buzzard, \emph{On the eigenvalues of the {H}ecke operator {$T\sb 2$}}, J.
38  Number Theory \textbf{57} (1996), no.~1, 130--132. \MR{96m:11033}
39
40\bibitem[CO77]{cohen-oesterle:dimensions}
41H.~Cohen and J.~Oesterl{\'e}, \emph{Dimensions des espaces de formes
42  modulaires}, 69--78. Lecture Notes in Math., Vol. 627. \MR{57 \#12396}
43
44\bibitem[Coh93]{cohen:course_ant}
45H.~Cohen, \emph{A course in computational algebraic number theory},
46  Springer-Verlag, Berlin, 1993. \MR{94i:11105}
47
48\bibitem[Cre92]{cremona:gammaone}
49J.\thinspace{}E. Cremona, \emph{Modular symbols for \protect{$\Gamma\sb 50 1({N})$} and elliptic curves with everywhere good reduction}, Math. Proc.
51  Cambridge Philos. Soc. \textbf{111} (1992), no.~2, 199--218.
52
53\bibitem[Cre97]{cremona:algs}
54\bysame, \emph{Algorithms for modular elliptic curves}, second ed., Cambridge
55  University Press, Cambridge, 1997, Complete text available at {\tt
56  http://www.maths.nott.ac.uk/personal/jec/book/}.
57
58\bibitem[CWZ01]{csirik-wetherell-zieve:g0}
59Janos~A. Csirik, Joseph~L. Wetherell, and Michael~E. Zieve, \emph{On the genera
60  of {$X_0(N)$}}, See {\tt http://www.csirik.net/papers.html} (2001).
61
62\bibitem[Dem04]{dembele}
63Lassina Dembele, \emph{Quaternionic modular symbols and computing {H}ilbert
64  modular forms, \hfill\mbox{} {\tt
65  http://modular.fas.harvard.edu/mcs/archive/spring2004/dembele.html}}.
66
67\bibitem[DI95]{diamond-im}
68F.~Diamond and J.~Im, \emph{Modular forms and modular curves}, Seminar on
69  {F}ermat's {L}ast {T}heorem, Providence, RI, 1995, pp.~39--133.
70
71\bibitem[Did01]{diderot:thesis}
72Denis Diderot, \emph{P\'eriodes de formes modulaires de poids 1}, {\tt
73  http://modular.fas.harvard.edu/scans/papers/diderot/} (2001).
74
75\bibitem[DP04]{darmon-pollack}
76H.~Darmon and R.~Pollack, \emph{The efficient calculation of {S}tark-{H}eegner
77  points via overconvergent modular symbols}.
78
79\bibitem[FJ02]{farmer-james:maeda}
80D.~W. Farmer and K.~James, \emph{The irreducibility of some level 1 {H}ecke
81  polynomials}, Math. Comp. \textbf{71} (2002), no.~239, 1263--1270
82  (electronic). \MR{2003e:11046}
83
84\bibitem[FM99]{frey-muller}
85G.~Frey and M.~M{\"u}ller, \emph{Arithmetic of modular curves and
86  applications}, Algorithmic algebra and number theory (Heidelberg, 1997),
87  Springer, Berlin, 1999, pp.~11--48.
88
89\bibitem[Gor]{gordon:dlp}
90D.~Gordon, \emph{Discrete logarithm problem, \hfill\\ {\tt
91  http://www.win.tue.nl/\~{ }henkvt/content.html}}.
92
93\bibitem[Gor93]{gordon:dlog}
94Daniel~M. Gordon, \emph{Discrete logarithms in {${\rm GF}(p)$} using the number
95  field sieve}, SIAM J. Discrete Math. \textbf{6} (1993), no.~1, 124--138.
96  \MR{94d:11104}
97
98\bibitem[Hij74]{hijikata:trace}
99H.~Hijikata, \emph{Explicit formula of the traces of \protect{H}ecke operators
100  for \protect{$\Gamma_0(N)$}}, J. Math. Soc. Japan \textbf{26} (1974), no.~1,
101  56--82.
102
103\bibitem[Iwa97]{iwaniec:topics}
104Henryk Iwaniec, \emph{Topics in classical automorphic forms}, Graduate Studies
105  in Mathematics, vol.~17, American Mathematical Society, Providence, RI, 1997.
106  \MR{98e:11051}
107
108\bibitem[Kna92]{knapp:elliptic}
109A.\thinspace{}W. Knapp, \emph{Elliptic curves}, Princeton University Press,
110  Princeton, NJ, 1992.
111
112\bibitem[Knu]{knuth2}
113Donald~E. Knuth, \emph{The art of computer programming. {V}ol. 2}, third ed.,
115  Addison-Wesley Series in Computer Science and Information Processing.
116
117\bibitem[Lan95]{lang:modular}
118S.~Lang, \emph{Introduction to modular forms}, Springer-Verlag, Berlin, 1995,
119  With appendixes by D. Zagier and W. Feit, Corrected reprint of the 1976
120  original.
121
122\bibitem[Lem01]{lemelin:dominic}
123Dominic Lemelin, \emph{Mazur-tate type conjectures for elliptic curves defined
125
126\bibitem[Li75]{winnie:newforms}
127W-C. Li, \emph{Newforms and functional equations}, Math. Ann. \textbf{212}
128  (1975), 285--315.
129
130\bibitem[Man72]{manin:parabolic}
131J.\thinspace{}I. Manin, \emph{Parabolic points and zeta functions of modular
132  curves}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{36} (1972), 19--66. \MR{47
133  \#3396}
134
135\bibitem[Maz73]{mazur:symboles}
136B.~Mazur, \emph{Courbes elliptiques et symboles modulaires}, S\'eminaire
137  Bourbaki, 24\eme ann\'ee (1971/1972), Exp. No. 414, Springer, Berlin, 1973,
138  pp.~277--294. Lecture Notes in Math., Vol. 317. \MR{55 \#2930}
139
140\bibitem[Mer94]{merel:1585}
141L.~Merel, \emph{Universal \protect{F}ourier expansions of modular forms}, On
142  {A}rtin's conjecture for odd 2-dimensional representations, Springer, 1994,
143  pp.~59--94.
144
145\bibitem[Miy89]{miyake}
146T.~Miyake, \emph{Modular forms}, Springer-Verlag, Berlin, 1989, Translated from
147  the Japanese by Yoshitaka Maeda.
148
149\bibitem[MTT86]{mtt}
150B.~Mazur, J.~Tate, and J.~Teitelbaum, \emph{On {$p$}-adic analogues of the
151  conjectures of {B}irch and {S}winnerton-{D}yer}, Invent. Math. \textbf{84}
152  (1986), no.~1, 1--48. \MR{MR830037 (87e:11076)}
153
154\bibitem[Nec94]{nechaev:lower}
155V.~I. Nechaev, \emph{On the complexity of a deterministic algorithm for a
156  discrete logarithm}, Mat. Zametki \textbf{55} (1994), no.~2, 91--101, 189.
157  \MR{96a:11145}
158
159\bibitem[Ros]{python}
160Guido~van Rossum, \emph{Python,\newline{\tt http://www.python.org}}.
161
162\bibitem[Ser73]{serre:arithmetic}
163J-P. Serre, \emph{A \protect{C}ourse in \protect{A}rithmetic}, Springer-Verlag,
164  New York, 1973, Translated from the French, Graduate Texts in Mathematics,
165  No. 7.
166
167\bibitem[Ser97]{serre:asymptotique}
168Jean-Pierre Serre, \emph{R\'epartition asymptotique des valeurs propres de
169  l'op\'erateur de {H}ecke {$T\sb p$}}, J. Amer. Math. Soc. \textbf{10} (1997),
170  no.~1, 75--102. \MR{97h:11048}
171
172\bibitem[Shi94]{shimura:intro}
173G.~Shimura, \emph{Introduction to the arithmetic theory of automorphic
174  functions}, Princeton University Press, Princeton, NJ, 1994, Reprint of the
175  1971 original, Kan Memorial Lectures, 1.
176
177\bibitem[Sho97]{shoup:lower}
178Victor Shoup, \emph{Lower bounds for discrete logarithms and related problems},
179  Advances in cryptology---EUROCRYPT '97 (Konstanz), Lecture Notes in Comput.
180  Sci., vol. 1233, Springer, Berlin, 1997, pp.~256--266. \MR{98j:94023}
181
182\bibitem[{\v{S}}ok80]{sokurov:shimura}
183V.\thinspace{}V. {\v{S}}okurov, \emph{Shimura integrals of cusp forms}, Izv.
184  Akad. Nauk SSSR Ser. Mat. \textbf{44} (1980), no.~3, 670--718, 720.
185  \MR{MR582162 (82b:10029)}
186
187\bibitem[Ste99]{stein:hecke}
188W.\thinspace{}A. Stein, \emph{\protect{{\tt HECKE}: The} modular symbols
189  calculator}, Software (available online) (1999).
190
191\bibitem[Ste00]{stein:phd}
192\bysame, \emph{Explicit approaches to modular abelian varieties}, Ph.D. thesis,
193  University of California, Berkeley (2000).
194
195\bibitem[Ste03]{math252}
196William Stein, \emph{Modular abelian varieties, \hfill\mbox{} {\tt
197  http://modular.fas.harvard.edu/edu/fall2003/252/}}.
198
199\end{thebibliography}
200
`