CoCalc Public Filesscratchpaper.sagews
Author: Paul Zeitz
Views : 27
g = graphs.RandomGNM(15, 20)  # 15 vertices and 20 edges
show(g)
g.incidence_matrix()

d3-based renderer not yet implemented
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] [0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 0 0 0 0 0] [1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0] [0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1] [0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0] [0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0] [0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0]
g1 = graphs.RandomGNM(100, 3000)  # 15 vertices and 20 edges
g2 = graphs.RandomGNM(100, 3000)

g1.is_isomorphic(g2)

False
g=graphs.CompleteBipartiteGraph(5,4)
g.show()

show(g,vertex_labels=false)

d3-based renderer not yet implemented
#make a graph using a dictionary
H=DiGraph({0:[1,2,3], 4:[0,2], 6:[1,2,3,4,5]})
plot(H)

v=['dog','cat','mouse']
dict={v[0]:[v[1],v[2]],v[1]:[v[0]],v[2]:[v[1]]}
H=DiGraph(dict)
plot(H)

mylist=[2,3,6]
len(mylist)

3

len(p)

204226

#bulgarian solitaire
def bs(myList):
newItem=len(myList)
output=[newItem]
for x in myList:
if x>1:
output.append(x-1)
return sorted(output)


bs([2,3,5])

[1, 2, 3, 4]

sorted([4,5,6,1,2])

[1, 2, 4, 5, 6]