 Shared2018-08-08-Gibbons.sagewsOpen in CoCalc
ZZ_7[i] stuff
#p = 7
#p = 11
p = 19

K = GF(p); K
#following these instructions we get what we want, woohoo!
R.<x> = PolynomialRing(K); R
F = K.extension(x^2+1,'i'); F
i = F.gens()

Finite Field of size 19 Univariate Polynomial Ring in x over Finite Field of size 19 Finite Field in i of size 19^2
(2*i+1)^p

17*i + 1



# get the order of all the elements in F* in a terrible way
L = []
for a in F:
for m in range(1,p^2+1):
if a^m == 1:
L.append([a,m])
break
### get elts of order p+1
LL = []
for j in range (len(L)):
if L[j] == p+1:
LL.append(L[j])
LL  ### This misses half of the elements of order p+1 somehow,
### but it looks like it doesn't really matter if you switch the real and imaginary parts?
### I'm confused.

[12*i + 16, 2*i + 15, 2*i + 4, 12*i + 3, 7*i + 3, 17*i + 4, 17*i + 15, 7*i + 16]
len(L)

360 361
LLL = LL
for j in range (len(LL)):
LLL.append(LL[j]*i)
LLL = uniq(LLL); LLL

[2*i + 4, 2*i + 15, 3*i + 7, 3*i + 12, 4*i + 2, 4*i + 17, 7*i + 3, 7*i + 16, 12*i + 3, 12*i + 16, 15*i + 2, 15*i + 17, 16*i + 7, 16*i + 12, 17*i + 4, 17*i + 15]
# test pairs... but first try to find them, ugh. I can't figure out how to isolate coefficients :\
LLL*LLL
LLL*LLL
LLL*LLL
LLL*LLL
LLL*LLL
LLL*LLL
LLL*LLL
LLL*LLL

1 1 1 1 1 1 1 1
#### IGNORE, this isn't working :( :( :(
# get the elements of F* of order 48
LLLL = [];
for j in range (len(L)):
if L[j] == (p^2 - 1):
LLLL.append(L[j])

LLLLL = [];
for j in range (len(LLLL)):
LLLLL.append(LLLL[j]^(p-1))
set(LLLLL) ### still only picking up half :\

set([17*i + 4, 7*i + 3, 2*i + 4, 12*i + 3, 17*i + 15, 12*i + 16, 7*i + 16, 2*i + 15])