CoCalc Shared Files2017-10-24-170939.sagewsOpen in CoCalc with one click!
Authors: Jayadev Athreya, Maddy Brown, Nikolas Eptaminitakis, John Jeng, Alessya Labzhinova, James Pedersen, William A. Stein
Views : 10
2 + 3
5
numerical_integral(1 + x + x^2, 0, 3)[0] # [1] gives error bound
16.500000000000004
plot(vector([2,3,4]))
3D rendering not yet implemented
g = graphs.RandomGNM(15, 20) # 15 vertices and 20 edges show(g) g.incidence_matrix()
d3-based renderer not yet implemented
[1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0] [0 1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0] [0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0] [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0] [0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0] [0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0] [0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1] [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0]
show(g.incidence_matrix())
latex(2/3*pi)
\frac{2}{3} \, \pi
latex(g.incidence_matrix())
\left(\begin{array}{rrrrrrrrrrrrrrrrrrrr} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)
(111000000000000000001000000000000000000000010000000000000000000011110000000000000100100011100000000000000000100110000000000000000100011100000000010000010000100000000000001000000100000100100000000011000000000000000000001000000000000011000010001000000000001000010000000000000001000100000001000000000000)\displaystyle \left(\begin{array}{rrrrrrrrrrrrrrrrrrrr} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{array}\right)
plot(vector([2,3,4]))
3D rendering not yet implemented
numerical_integral(1 + x + x^2, 0, 3)[0] # [1] gives error bound graphs.PetersenGraph()
16.500000000000004 Petersen graph: Graph on 10 vertices
Error in lines 3-4 Traceback (most recent call last): File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 996, in execute exec compile(block+'\n', '', 'single') in namespace, locals File "", line 1, in <module> NameError: name 'y' is not defined
latex(gamma'(t) )
Error in lines 1-1 Traceback (most recent call last): File "/cocalc/lib/python2.7/site-packages/smc_sagews/sage_server.py", line 996, in execute exec compile(block+'\n', '', 'single') in namespace, locals File "<string>", line 1 latex(gamma'(t) ^ SyntaxError: EOL while scanning string literal