| Hosted by CoCalc | Download
%md Descobrindo os principais métodos de um objeto Sage use a sintexe: **help(obj)**. Veja exemplo a seguir para o objeto V criado como exspaço vetorial sobre $Q$ de dimensão 3.

Descobrindo os principais métodos de um objeto Sage use a sintexe: help(obj). Veja exemplo a seguir para o objeto V criado como exspaço vetorial sobre QQ de dimensão 3.

V=VectorSpace(QQ,3) help(V)
Help on FreeModule_ambient_field_with_category in module sage.modules.free_module object: class FreeModule_ambient_field_with_category(FreeModule_ambient_field, sage.categories.category.JoinCategory.parent_class) | Method resolution order: | FreeModule_ambient_field_with_category | FreeModule_ambient_field | FreeModule_generic_field | FreeModule_ambient_pid | FreeModule_generic_pid | FreeModule_ambient_domain | FreeModule_ambient | FreeModule_generic | sage.modules.module.Module | sage.structure.parent.Parent | sage.structure.category_object.CategoryObject | sage.structure.sage_object.SageObject | sage.categories.category.JoinCategory.parent_class | sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis.parent_class | sage.categories.vector_spaces.VectorSpaces.WithBasis.parent_class | sage.categories.modules_with_basis.ModulesWithBasis.parent_class | sage.categories.modules.Modules.FiniteDimensional.parent_class | sage.categories.vector_spaces.VectorSpaces.parent_class | sage.categories.modules.Modules.parent_class | sage.categories.bimodules.Bimodules.parent_class | sage.categories.right_modules.RightModules.parent_class | sage.categories.left_modules.LeftModules.parent_class | sage.categories.commutative_additive_groups.CommutativeAdditiveGroups.parent_class | sage.categories.additive_groups.AdditiveGroups.parent_class | sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.AdditiveInverse.parent_class | sage.categories.commutative_additive_monoids.CommutativeAdditiveMonoids.parent_class | sage.categories.additive_monoids.AdditiveMonoids.parent_class | sage.categories.additive_magmas.AdditiveMagmas.AdditiveUnital.parent_class | sage.categories.commutative_additive_semigroups.CommutativeAdditiveSemigroups.parent_class | sage.categories.additive_magmas.AdditiveMagmas.AdditiveCommutative.parent_class | sage.categories.additive_semigroups.AdditiveSemigroups.parent_class | sage.categories.additive_magmas.AdditiveMagmas.parent_class | sage.categories.sets_cat.Sets.parent_class | sage.categories.sets_with_partial_maps.SetsWithPartialMaps.parent_class | sage.categories.objects.Objects.parent_class | __builtin__.object | | Methods inherited from FreeModule_ambient_field: | | __init__(self, base_field, dimension, sparse=False) | Create the ambient vector space of given dimension over the given | field. | | INPUT: | | | - ``base_field`` - a field | | - ``dimension`` - a non-negative integer | | - ``sparse`` - bool (default: False) | | | EXAMPLES:: | | sage: QQ^3 | Vector space of dimension 3 over Rational Field | | ambient_vector_space(self) | Returns self as the ambient vector space. | | EXAMPLES:: | | sage: M = QQ^3 | sage: M.ambient_vector_space() | Vector space of dimension 3 over Rational Field | | base_field(self) | Returns the base field of this vector space. | | EXAMPLES:: | | sage: M = QQ^3 | sage: M.base_field() | Rational Field | | ---------------------------------------------------------------------- | Methods inherited from FreeModule_generic_field: | | __add__(self, other) | Return the sum of self and other. | | EXAMPLES:: | | sage: V = VectorSpace(QQ,3) | sage: V0 = V.span([V.gen(0)]) | sage: V2 = V.span([V.gen(2)]) | sage: V0 + V2 | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [1 0 0] | [0 0 1] | sage: QQ^3 + 0 | Vector space of dimension 3 over Rational Field | | __truediv__(self, sub) | Return the quotient of self by the given subspace sub. | | EXAMPLES:: | | sage: V = RDF^3; W = V.span([[1,0,-1], [1,-1,0]]) | sage: Q = V/W; Q | Vector space quotient V/W of dimension 1 over Real Double Field where | V: Vector space of dimension 3 over Real Double Field | W: Vector space of degree 3 and dimension 2 over Real Double Field | Basis matrix: | [ 1.0 0.0 -1.0] | [ 0.0 1.0 -1.0] | sage: type(Q) | <class 'sage.modules.quotient_module.FreeModule_ambient_field_quotient_with_category'> | sage: V([1,2,3]) | (1.0, 2.0, 3.0) | sage: Q == V.quotient(W) | True | sage: Q(W.0) | (0.0) | | complement(self) | Return the complement of ``self`` in the | :meth:`~sage.modules.free_module.FreeModule_ambient_field.ambient_vector_space`. | | EXAMPLES:: | | sage: V = QQ^3 | sage: V.complement() | Vector space of degree 3 and dimension 0 over Rational Field | Basis matrix: | [] | sage: V == V.complement().complement() | True | sage: W = V.span([[1, 0, 1]]) | sage: X = W.complement(); X | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [ 1 0 -1] | [ 0 1 0] | sage: X.complement() == W | True | sage: X + W == V | True | | Even though we construct a subspace of a subspace, the | orthogonal complement is still done in the ambient vector | space `\QQ^3`:: | | sage: V = QQ^3 | sage: W = V.subspace_with_basis([[1,0,1],[-1,1,0]]) | sage: X = W.subspace_with_basis([[1,0,1]]) | sage: X.complement() | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [ 1 0 -1] | [ 0 1 0] | | All these complements are only done with respect to the inner | product in the usual basis. Over finite fields, this means | we can get complements which are only isomorphic to a vector | space decomposition complement. :: | | sage: F2 = GF(2,x) | sage: V = F2^6 | sage: W = V.span([[1,1,0,0,0,0]]) | sage: W | Vector space of degree 6 and dimension 1 over Finite Field of size 2 | Basis matrix: | [1 1 0 0 0 0] | sage: W.complement() | Vector space of degree 6 and dimension 5 over Finite Field of size 2 | Basis matrix: | [1 1 0 0 0 0] | [0 0 1 0 0 0] | [0 0 0 1 0 0] | [0 0 0 0 1 0] | [0 0 0 0 0 1] | sage: W.intersection(W.complement()) | Vector space of degree 6 and dimension 1 over Finite Field of size 2 | Basis matrix: | [1 1 0 0 0 0] | | echelonized_basis_matrix(self) | Return basis matrix for self in row echelon form. | | EXAMPLES:: | | sage: V = FreeModule(QQ, 3).span_of_basis([[1,2,3],[4,5,6]]) | sage: V.basis_matrix() | [1 2 3] | [4 5 6] | sage: V.echelonized_basis_matrix() | [ 1 0 -1] | [ 0 1 2] | | intersection(self, other) | Return the intersection of self and other, which must be | R-submodules of a common ambient vector space. | | EXAMPLES:: | | sage: V = VectorSpace(QQ,3) | sage: W1 = V.submodule([V.gen(0), V.gen(0) + V.gen(1)]) | sage: W2 = V.submodule([V.gen(1), V.gen(2)]) | sage: W1.intersection(W2) | Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [0 1 0] | sage: W2.intersection(W1) | Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [0 1 0] | sage: V.intersection(W1) | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [1 0 0] | [0 1 0] | sage: W1.intersection(V) | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [1 0 0] | [0 1 0] | sage: Z = V.submodule([]) | sage: W1.intersection(Z) | Vector space of degree 3 and dimension 0 over Rational Field | Basis matrix: | [] | | is_subspace(self, other) | True if this vector space is a subspace of other. | | EXAMPLES:: | | sage: V = VectorSpace(QQ,3) | sage: W = V.subspace([V.gen(0), V.gen(0) + V.gen(1)]) | sage: W2 = V.subspace([V.gen(1)]) | sage: W.is_subspace(V) | True | sage: W2.is_subspace(V) | True | sage: W.is_subspace(W2) | False | sage: W2.is_subspace(W) | True | | linear_dependence(self, vectors, zeros='left', check=True) | Returns a list of vectors giving relations of linear dependence for the input list of vectors. | Can be used to check linear independence of a set of vectors. | | INPUT: | | - ``vectors`` -- A list of vectors, all from the same vector | space. | | - ``zeros`` -- default: ``'left'`` - ``'left'`` or ``'right'`` | as a general preference for where zeros are located in the | returned coefficients | | - ``check`` -- default: ``True`` - if ``True`` each item in | the list ``vectors`` is checked for membership in ``self``. | Set to ``False`` if you can be certain the vectors come from | the vector space. | | OUTPUT: | | Returns a list of vectors. The scalar entries of each vector provide | the coefficients for a linear combination of the input vectors that | will equal the zero vector in ``self``. Furthermore, the returned list | is linearly independent in the vector space over the same base field | with degree equal to the length of the list ``vectors``. | | The linear independence of ``vectors`` is equivalent to the returned | list being empty, so this provides a test - see the examples below. | | The returned vectors are always independent, and with ``zeros`` set to | ``'left'`` they have 1's in their first non-zero entries and a qualitative | disposition to having zeros in the low-index entries. With ``zeros`` set | to ``'right'`` the situation is reversed with a qualitative disposition | for zeros in the high-index entries. | | If the vectors in ``vectors`` are made the rows of a matrix `V` and | the returned vectors are made the rows of a matrix `R`, then the | matrix product `RV` is a zero matrix of the proper size. And | `R` is a matrix of full rank. This routine uses kernels of | matrices to compute these relations of linear dependence, | but handles all the conversions between sets of vectors | and matrices. If speed is important, consider working with | the appropriate matrices and kernels instead. | | EXAMPLES: | | We begin with two linearly independent vectors, and add three | non-trivial linear combinations to the set. We illustrate | both types of output and check a selected relation of linear | dependence. :: | | sage: v1 = vector(QQ, [2, 1, -4, 3]) | sage: v2 = vector(QQ, [1, 5, 2, -2]) | sage: V = QQ^4 | sage: V.linear_dependence([v1,v2]) | [ | <BLANKLINE> | ] | | sage: v3 = v1 + v2 | sage: v4 = 3*v1 - 4*v2 | sage: v5 = -v1 + 2*v2 | sage: L = [v1, v2, v3, v4, v5] | | sage: relations = V.linear_dependence(L, zeros='left') | sage: relations | [ | (1, 0, 0, -1, -2), | (0, 1, 0, -1/2, -3/2), | (0, 0, 1, -3/2, -7/2) | ] | sage: v2 + (-1/2)*v4 + (-3/2)*v5 | (0, 0, 0, 0) | | sage: relations = V.linear_dependence(L, zeros='right') | sage: relations | [ | (-1, -1, 1, 0, 0), | (-3, 4, 0, 1, 0), | (1, -2, 0, 0, 1) | ] | sage: z = sum([relations[2][i]*L[i] for i in range(len(L))]) | sage: z == zero_vector(QQ, 4) | True | | A linearly independent set returns an empty list, | a result that can be tested. :: | | sage: v1 = vector(QQ, [0,1,-3]) | sage: v2 = vector(QQ, [4,1,0]) | sage: V = QQ^3 | sage: relations = V.linear_dependence([v1, v2]); relations | [ | <BLANKLINE> | ] | sage: relations == [] | True | | Exact results result from exact fields. We start with three | linearly independent vectors and add in two linear combinations | to make a linearly dependent set of five vectors. :: | | sage: F = FiniteField(17) | sage: v1 = vector(F, [1, 2, 3, 4, 5]) | sage: v2 = vector(F, [2, 4, 8, 16, 15]) | sage: v3 = vector(F, [1, 0, 0, 0, 1]) | sage: (F^5).linear_dependence([v1, v2, v3]) == [] | True | sage: L = [v1, v2, v3, 2*v1+v2, 3*v2+6*v3] | sage: (F^5).linear_dependence(L) | [ | (1, 0, 16, 8, 3), | (0, 1, 2, 0, 11) | ] | sage: v1 + 16*v3 + 8*(2*v1+v2) + 3*(3*v2+6*v3) | (0, 0, 0, 0, 0) | sage: v2 + 2*v3 + 11*(3*v2+6*v3) | (0, 0, 0, 0, 0) | sage: (F^5).linear_dependence(L, zeros='right') | [ | (15, 16, 0, 1, 0), | (0, 14, 11, 0, 1) | ] | | TESTS: | | With ``check=True`` (the default) a mismatch between vectors | and the vector space is caught. :: | | sage: v1 = vector(RR, [1,2,3]) | sage: v2 = vector(RR, [1,2,3,4]) | sage: (RR^3).linear_dependence([v1,v2], check=True) | Traceback (most recent call last): | ... | ValueError: vector (1.00000000000000, 2.00000000000000, 3.00000000000000, 4.00000000000000) is not an element of Vector space of dimension 3 over Real Field with 53 bits of precision | | The ``zeros`` keyword is checked. :: | | sage: (QQ^3).linear_dependence([vector(QQ,[1,2,3])], zeros='bogus') | Traceback (most recent call last): | ... | ValueError: 'zeros' keyword must be 'left' or 'right', not 'bogus' | | An empty input set is linearly independent, vacuously. :: | | sage: (QQ^3).linear_dependence([]) == [] | True | | quotient(self, sub, check=True) | Return the quotient of self by the given subspace sub. | | INPUT: | | | - ``sub`` - a submodule of self, or something that can | be turned into one via self.submodule(sub). | | - ``check`` - (default: True) whether or not to check | that sub is a submodule. | | | EXAMPLES:: | | sage: A = QQ^3; V = A.span([[1,2,3], [4,5,6]]) | sage: Q = V.quotient( [V.0 + V.1] ); Q | Vector space quotient V/W of dimension 1 over Rational Field where | V: Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [ 1 0 -1] | [ 0 1 2] | W: Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [1 1 1] | sage: Q(V.0 + V.1) | (0) | | We illustrate the the base rings must be the same:: | | sage: (QQ^2)/(ZZ^2) | Traceback (most recent call last): | ... | ValueError: base rings must be the same | | quotient_abstract(self, sub, check=True) | Returns an ambient free module isomorphic to the quotient space of | self modulo sub, together with maps from self to the quotient, and | a lifting map in the other direction. | | Use ``self.quotient(sub)`` to obtain the quotient | module as an object equipped with natural maps in both directions, | and a canonical coercion. | | INPUT: | | | - ``sub`` - a submodule of self, or something that can | be turned into one via self.submodule(sub). | | - ``check`` - (default: True) whether or not to check | that sub is a submodule. | | | OUTPUT: | | | - ``U`` - the quotient as an abstract *ambient* free | module | | - ``pi`` - projection map to the quotient | | - ``lift`` - lifting map back from quotient | | | EXAMPLES:: | | sage: V = GF(19)^3 | sage: W = V.span_of_basis([ [1,2,3], [1,0,1] ]) | sage: U,pi,lift = V.quotient_abstract(W) | sage: pi(V.2) | (18) | sage: pi(V.0) | (1) | sage: pi(V.0 + V.2) | (0) | | Another example involving a quotient of one subspace by another. | | :: | | sage: A = matrix(QQ,4,4,[0,1,0,0, 0,0,1,0, 0,0,0,1, 0,0,0,0]) | sage: V = (A^3).kernel() | sage: W = A.kernel() | sage: U, pi, lift = V.quotient_abstract(W) | sage: [pi(v) == 0 for v in W.gens()] | [True] | sage: [pi(lift(b)) == b for b in U.basis()] | [True, True] | | scale(self, other) | Return the product of self by the number other, which is the module | spanned by other times each basis vector. Since self is a vector | space this product equals self if other is nonzero, and is the zero | vector space if other is 0. | | EXAMPLES:: | | sage: V = QQ^4 | sage: V.scale(5) | Vector space of dimension 4 over Rational Field | sage: V.scale(0) | Vector space of degree 4 and dimension 0 over Rational Field | Basis matrix: | [] | | :: | | sage: W = V.span([[1,1,1,1]]) | sage: W.scale(2) | Vector space of degree 4 and dimension 1 over Rational Field | Basis matrix: | [1 1 1 1] | sage: W.scale(0) | Vector space of degree 4 and dimension 0 over Rational Field | Basis matrix: | [] | | :: | | sage: V = QQ^4; V | Vector space of dimension 4 over Rational Field | sage: V.scale(3) | Vector space of dimension 4 over Rational Field | sage: V.scale(0) | Vector space of degree 4 and dimension 0 over Rational Field | Basis matrix: | [] | | span(self, gens, base_ring=None, check=True, already_echelonized=False) | Return the K-span of the given list of gens, where K is the | base field of self or the user-specified base_ring. Note that | this span is a subspace of the ambient vector space, but need | not be a subspace of self. | | INPUT: | | | - ``gens`` - list of vectors | | - ``check`` - bool (default: True): whether or not to | coerce entries of gens into base field | | - ``already_echelonized`` - bool (default: False): | set this if you know the gens are already in echelon form | | | EXAMPLES:: | | sage: V = VectorSpace(GF(7), 3) | sage: W = V.subspace([[2,3,4]]); W | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 5 2] | sage: W.span([[1,1,1]]) | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 1 1] | | TESTS:: | | sage: V = FreeModule(RDF,3) | sage: W = V.submodule([V.gen(0)]) | sage: W.span([V.gen(1)], base_ring=GF(7)) | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [0 1 0] | sage: v = V((1, pi, log(2))); v | (1.0, 3.141592653589793, 0.6931471805599453) | sage: W.span([v], base_ring=GF(7)) | Traceback (most recent call last): | ... | ValueError: Argument gens (= [(1.0, 3.141592653589793, 0.6931471805599453)]) is not compatible with base_ring (= Finite Field of size 7). | sage: W = V.submodule([v]) | sage: W.span([V.gen(2)], base_ring=GF(7)) | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [0 0 1] | | span_of_basis(self, basis, base_ring=None, check=True, already_echelonized=False) | Return the free K-module with the given basis, where K is the base | field of self or user specified base_ring. | | Note that this span is a subspace of the ambient vector space, but | need not be a subspace of self. | | INPUT: | | | - ``basis`` - list of vectors | | - ``check`` - bool (default: True): whether or not to | coerce entries of gens into base field | | - ``already_echelonized`` - bool (default: False): | set this if you know the gens are already in echelon form | | | EXAMPLES:: | | sage: V = VectorSpace(GF(7), 3) | sage: W = V.subspace([[2,3,4]]); W | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 5 2] | sage: W.span_of_basis([[2,2,2], [3,3,0]]) | Vector space of degree 3 and dimension 2 over Finite Field of size 7 | User basis matrix: | [2 2 2] | [3 3 0] | | The basis vectors must be linearly independent or a | ``ValueError`` exception is raised:: | | sage: W.span_of_basis([[2,2,2], [3,3,3]]) | Traceback (most recent call last): | ... | ValueError: The given basis vectors must be linearly independent. | | subspace(self, gens, check=True, already_echelonized=False) | Return the subspace of self spanned by the elements of gens. | | INPUT: | | - ``gens`` - list of vectors | | - ``check`` - bool (default: True) verify that gens | are all in self. | | - ``already_echelonized`` - bool (default: False) set | to True if you know the gens are in Echelon form. | | EXAMPLES: | | First we create a 1-dimensional vector subspace of an | ambient `3`-dimensional space over the finite field of | order `7`:: | | sage: V = VectorSpace(GF(7), 3) | sage: W = V.subspace([[2,3,4]]); W | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 5 2] | | Next we create an invalid subspace, but it's allowed since | ``check=False``. This is just equivalent to computing | the span of the element:: | | sage: W.subspace([[1,1,0]], check=False) | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 1 0] | | With ``check=True`` (the default) the mistake is correctly | detected and reported with an ``ArithmeticError`` exception:: | | sage: W.subspace([[1,1,0]], check=True) | Traceback (most recent call last): | ... | ArithmeticError: Argument gens (= [[1, 1, 0]]) does not generate a submodule of self. | | subspace_with_basis(self, gens, check=True, already_echelonized=False) | Same as ``self.submodule_with_basis(...)``. | | EXAMPLES: | | We create a subspace with a user-defined basis. | | :: | | sage: V = VectorSpace(GF(7), 3) | sage: W = V.subspace_with_basis([[2,2,2], [1,2,3]]); W | Vector space of degree 3 and dimension 2 over Finite Field of size 7 | User basis matrix: | [2 2 2] | [1 2 3] | | We then create a subspace of the subspace with user-defined basis. | | :: | | sage: W1 = W.subspace_with_basis([[3,4,5]]); W1 | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | User basis matrix: | [3 4 5] | | Notice how the basis for the same subspace is different if we | merely use the ``subspace`` command. | | :: | | sage: W2 = W.subspace([[3,4,5]]); W2 | Vector space of degree 3 and dimension 1 over Finite Field of size 7 | Basis matrix: | [1 6 4] | | Nonetheless the two subspaces are equal (as mathematical objects):: | | sage: W1 == W2 | True | | subspaces(self, dim) | Iterate over all subspaces of dimension dim. | | INPUT: | | - ``dim`` - int, dimension of subspaces to be generated | | EXAMPLE:: | | sage: V = VectorSpace(GF(3), 5) | sage: len(list(V.subspaces(0))) | 1 | sage: len(list(V.subspaces(1))) | 121 | sage: len(list(V.subspaces(2))) | 1210 | sage: len(list(V.subspaces(3))) | 1210 | sage: len(list(V.subspaces(4))) | 121 | sage: len(list(V.subspaces(5))) | 1 | | :: | | sage: V = VectorSpace(GF(3), 5) | sage: V = V.subspace([V([1,1,0,0,0]),V([0,0,1,1,0])]) | sage: list(V.subspaces(1)) | [Vector space of degree 5 and dimension 1 over Finite Field of size 3 | Basis matrix: | [1 1 0 0 0], | Vector space of degree 5 and dimension 1 over Finite Field of size 3 | Basis matrix: | [1 1 1 1 0], | Vector space of degree 5 and dimension 1 over Finite Field of size 3 | Basis matrix: | [1 1 2 2 0], | Vector space of degree 5 and dimension 1 over Finite Field of size 3 | Basis matrix: | [0 0 1 1 0]] | | vector_space(self, base_field=None) | Return the vector space associated to self. Since self is a vector | space this function simply returns self, unless the base field is | different. | | EXAMPLES:: | | sage: V = span([[1,2,3]],QQ); V | Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [1 2 3] | sage: V.vector_space() | Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [1 2 3] | | zero_submodule(self) | Return the zero submodule of self. | | EXAMPLES:: | | sage: (QQ^4).zero_submodule() | Vector space of degree 4 and dimension 0 over Rational Field | Basis matrix: | [] | | zero_subspace(self) | Return the zero subspace of self. | | EXAMPLES:: | | sage: (QQ^4).zero_subspace() | Vector space of degree 4 and dimension 0 over Rational Field | Basis matrix: | [] | | ---------------------------------------------------------------------- | Methods inherited from FreeModule_generic_pid: | | __radd__(self, other) | EXAMPLES:: | | sage: int(0) + QQ^3 | Vector space of dimension 3 over Rational Field | sage: sum([QQ^3, QQ^3]) | Vector space of degree 3 and dimension 3 over Rational Field | Basis matrix: | [1 0 0] | [0 1 0] | [0 0 1] | | denominator(self) | The denominator of the basis matrix of self (i.e. the LCM of the | coordinate entries with respect to the basis of the ambient | space). | | EXAMPLES:: | | sage: V = QQ^3 | sage: L = V.span([[1,1/2,1/3], [-1/5,2/3,3]],ZZ) | sage: L | Free module of degree 3 and rank 2 over Integer Ring | Echelon basis matrix: | [ 1/5 19/6 37/3] | [ 0 23/6 46/3] | sage: L.denominator() | 30 | | index_in(self, other) | Return the lattice index [other:self] of self in other, as an | element of the base field. When self is contained in other, the | lattice index is the usual index. If the index is infinite, then | this function returns infinity. | | EXAMPLES:: | | sage: L1 = span([[1,2]], ZZ) | sage: L2 = span([[3,6]], ZZ) | sage: L2.index_in(L1) | 3 | | Note that the free modules being compared need not be integral. | | :: | | sage: L1 = span([['1/2','1/3'], [4,5]], ZZ) | sage: L2 = span([[1,2], [3,4]], ZZ) | sage: L2.index_in(L1) | 12/7 | sage: L1.index_in(L2) | 7/12 | sage: L1.discriminant() / L2.discriminant() | 49/144 | | The index of a lattice of infinite index is infinite. | | :: | | sage: L1 = FreeModule(ZZ, 2) | sage: L2 = span([[1,2]], ZZ) | sage: L2.index_in(L1) | +Infinity | | index_in_saturation(self) | Return the index of this module in its saturation, i.e., its | intersection with `R^n`. | | EXAMPLES:: | | sage: W = span([[2,4,6]], ZZ) | sage: W.index_in_saturation() | 2 | sage: W = span([[1/2,1/3]], ZZ) | sage: W.index_in_saturation() | 1/6 | | saturation(self) | Return the saturated submodule of `R^n` that spans the same | vector space as self. | | EXAMPLES: | | We create a 1-dimensional lattice that is obviously not | saturated and saturate it. | | :: | | sage: L = span([[9,9,6]], ZZ); L | Free module of degree 3 and rank 1 over Integer Ring | Echelon basis matrix: | [9 9 6] | sage: L.saturation() | Free module of degree 3 and rank 1 over Integer Ring | Echelon basis matrix: | [3 3 2] | | We create a lattice spanned by two vectors, and saturate. | Computation of discriminants shows that the index of lattice in its | saturation is `3`, which is a prime of congruence between | the two generating vectors. | | :: | | sage: L = span([[1,2,3], [4,5,6]], ZZ) | sage: L.saturation() | Free module of degree 3 and rank 2 over Integer Ring | Echelon basis matrix: | [ 1 0 -1] | [ 0 1 2] | sage: L.discriminant() | 54 | sage: L.saturation().discriminant() | 6 | | Notice that the saturation of a non-integral lattice `L` is | defined, but the result is integral hence does not contain | `L`:: | | sage: L = span([['1/2',1,3]], ZZ) | sage: L.saturation() | Free module of degree 3 and rank 1 over Integer Ring | Echelon basis matrix: | [1 2 6] | | submodule(self, gens, check=True, already_echelonized=False) | Create the R-submodule of the ambient vector space with given | generators, where R is the base ring of self. | | INPUT: | | | - ``gens`` - a list of free module elements or a free | module | | - ``check`` - (default: True) whether or not to verify | that the gens are in self. | | | OUTPUT: | | | - ``FreeModule`` - the submodule spanned by the | vectors in the list gens. The basis for the subspace is always put | in reduced row echelon form. | | | EXAMPLES: | | We create a submodule of `\ZZ^3`:: | | sage: M = FreeModule(ZZ, 3) | sage: B = M.basis() | sage: W = M.submodule([B[0]+B[1], 2*B[1]-B[2]]) | sage: W | Free module of degree 3 and rank 2 over Integer Ring | Echelon basis matrix: | [ 1 1 0] | [ 0 2 -1] | | We create a submodule of a submodule. | | :: | | sage: W.submodule([3*B[0] + 3*B[1]]) | Free module of degree 3 and rank 1 over Integer Ring | Echelon basis matrix: | [3 3 0] | | We try to create a submodule that isn't really a submodule, | which results in an ``ArithmeticError`` exception:: | | sage: W.submodule([B[0] - B[1]]) | Traceback (most recent call last): | ... | ArithmeticError: Argument gens (= [(1, -1, 0)]) does not generate a submodule of self. | | Next we create a submodule of a free module over the principal ideal | domain `\QQ[x]`, which uses the general Hermite normal form functionality:: | | sage: R = PolynomialRing(QQ, 'x'); x = R.gen() | sage: M = FreeModule(R, 3) | sage: B = M.basis() | sage: W = M.submodule([x*B[0], 2*B[1]- x*B[2]]); W | Free module of degree 3 and rank 2 over Univariate Polynomial Ring in x over Rational Field | Echelon basis matrix: | [ x 0 0] | [ 0 2 -x] | sage: W.ambient_module() | Ambient free module of rank 3 over the principal ideal domain Univariate Polynomial Ring in x over Rational Field | | submodule_with_basis(self, basis, check=True, already_echelonized=False) | Create the R-submodule of the ambient vector space with given | basis, where R is the base ring of self. | | INPUT: | | - ``basis`` -- a list of linearly independent vectors | | - ``check`` -- whether or not to verify that each gen is in | the ambient vector space | | OUTPUT: | | - ``FreeModule`` -- the `R`-submodule with given basis | | EXAMPLES: | | First we create a submodule of `\ZZ^3`:: | | sage: M = FreeModule(ZZ, 3) | sage: B = M.basis() | sage: N = M.submodule_with_basis([B[0]+B[1], 2*B[1]-B[2]]) | sage: N | Free module of degree 3 and rank 2 over Integer Ring | User basis matrix: | [ 1 1 0] | [ 0 2 -1] | | A list of vectors in the ambient vector space may fail to generate | a submodule. | | :: | | sage: V = M.ambient_vector_space() | sage: X = M.submodule_with_basis([ V(B[0]+B[1])/2, V(B[1]-B[2])/2]) | Traceback (most recent call last): | ... | ArithmeticError: The given basis does not generate a submodule of self. | | However, we can still determine the R-span of vectors in the | ambient space, or over-ride the submodule check by setting check to | False. | | :: | | sage: X = V.span([ V(B[0]+B[1])/2, V(B[1]-B[2])/2 ], ZZ) | sage: X | Free module of degree 3 and rank 2 over Integer Ring | Echelon basis matrix: | [ 1/2 0 1/2] | [ 0 1/2 -1/2] | sage: Y = M.submodule([ V(B[0]+B[1])/2, V(B[1]-B[2])/2 ], check=False) | sage: X == Y | True | | Next we try to create a submodule of a free module over the | principal ideal domain `\QQ[x]`, using our general Hermite normal form implementation:: | | sage: R = PolynomialRing(QQ, 'x'); x = R.gen() | sage: M = FreeModule(R, 3) | sage: B = M.basis() | sage: W = M.submodule_with_basis([x*B[0], 2*B[0]- x*B[2]]); W | Free module of degree 3 and rank 2 over Univariate Polynomial Ring in x over Rational Field | User basis matrix: | [ x 0 0] | [ 2 0 -x] | | vector_space_span(self, gens, check=True) | Create the vector subspace of the ambient vector space with given | generators. | | INPUT: | | | - ``gens`` - a list of vector in self | | - ``check`` - whether or not to verify that each gen | is in the ambient vector space | | | OUTPUT: a vector subspace | | EXAMPLES: | | We create a `2`-dimensional subspace of `\QQ^3`. | | :: | | sage: V = VectorSpace(QQ, 3) | sage: B = V.basis() | sage: W = V.vector_space_span([B[0]+B[1], 2*B[1]-B[2]]) | sage: W | Vector space of degree 3 and dimension 2 over Rational Field | Basis matrix: | [ 1 0 1/2] | [ 0 1 -1/2] | | We create a subspace of a vector space over | `\QQ(i)`. | | :: | | sage: R.<x> = QQ[] | sage: K = NumberField(x^2 + 1, 'a'); a = K.gen() | sage: V = VectorSpace(K, 3) | sage: V.vector_space_span([2*V.gen(0) + 3*V.gen(2)]) | Vector space of degree 3 and dimension 1 over Number Field in a with defining polynomial x^2 + 1 | Basis matrix: | [ 1 0 3/2] | | We use the ``vector_space_span`` command to create a | vector subspace of the ambient vector space of a submodule of | `\ZZ^3`. | | :: | | sage: M = FreeModule(ZZ,3) | sage: W = M.submodule([M([1,2,3])]) | sage: W.vector_space_span([M([2,3,4])]) | Vector space of degree 3 and dimension 1 over Rational Field | Basis matrix: | [ 1 3/2 2] | | vector_space_span_of_basis(self, basis, check=True) | Create the vector subspace of the ambient vector space with given | basis. | | INPUT: | | - ``basis`` -- a list of linearly independent vectors | | - ``check`` -- whether or not to verify that each gen is in | the ambient vector space | | OUTPUT: a vector subspace with user-specified basis | | EXAMPLES:: | | sage: V = VectorSpace(QQ, 3) | sage: B = V.basis() | sage: W = V.vector_space_span_of_basis([B[0]+B[1], 2*B[1]-B[2]]) | sage: W | Vector space of degree 3 and dimension 2 over Rational Field | User basis matrix: | [ 1 1 0] | [ 0 2 -1] | | ---------------------------------------------------------------------- | Methods inherited from FreeModule_ambient_domain: | | coordinate_vector(self, v, check=True) | Write `v` in terms of the standard basis for self and | return the resulting coefficients in a vector over the fraction | field of the base ring. | | INPUT: | | - ``v`` -- vector | | - ``check`` -- bool (default: True); if True, also verify that | `v` is really in self. | | [...]