Contact
CoCalc Logo Icon
StoreFeaturesDocsShareSupport News AboutSign UpSign In
| Download

Emily Gunawan's talk on Sage Days @ ICERM

Views: 40
Kernel: SageMath (stable)

Outline

  • I. Background: Friezes

  • II. Background: Cluster algebras

  • III. New results: Frieze vectors and unitary friezes

Part I. Friezes

A frieze is an image that repeats itself along one direction. The name comes from architecture, where a frieze is a decoration running horizontally below a ceiling or roof. From M. Ascher, Ethnomathematics, p. 162.

Drawing Drawing Drawing

Conway - Coxeter frieze (1970s)

A (type AA) frieze is an array such that

  • it is bounded above and below by a row of 11s

  • every diamond b$1pt]ad$1pt]c \begin{array}{ccccccc} &b&$-1pt] a&&d$-1pt] &c& \end{array} satisfies the diamond rule adbc=1ad-bc=1.

A Conway - Coxeter frieze consists of only positive integers.

Example (a Conway - Coxeter frieze)

1111111$4pt]Row 23122131$4pt]2213122 $4pt]1111111\begin{equation*} \begin{array}{lcccccccccccccccccccccccc} &&&1&&1&& 1&&1&&1&&1&&1&& \cdots$4pt] \text{Row $2$} &&\cdots&&\mathbf{{3}}&&\mathbf{1}&&\mathbf{2}&&\mathbf{2}&&\mathbf{1}&&3&&1&& $4pt] &&&2&&2&&1&&3&&1&&2&&2&&\cdots&\ $4pt] &&\cdots&&1&&1&&1&&1&&1&&1&&1&& \end{array} \end{equation*}
% run attachment/friezedemo.py friezepic = print_frieze(input_row=(1,2,2,3,1,2,4), width = 14, friezerow = 8) view(friezepic)

The code produces a LaTeX source code which would produce the following picture Drawing

Children practicing arithmetic

Note: every frieze is completely determined by the 2nd row.

Drawing

Children practicing arithmetic: Answer Key

Drawing Drawing

What do the numbers around the integers count?

Drawing

The corresponding frieze is below.

Drawing

%Answer: the number of triangles adjacent to each vertex.

Theorem (Conway and Coxeter, 1970s)

A Conway - Coxeter frieze with nn nontrivial rows \large\longleftrightarrow a triangulation of an (n+3)(n+3)-gon

Note: Hence Conway - Coxeter friezes are Catalan objects.



Part II. Cluster Algebra (Fomin - Zelevinsky, 2001)

Let QQ be a quiver (a directed graph) on nn vertices with no loop and no 2-cycle.
E.g. Below is a quiver of affine Dynkin type A~1,2\widetilde{\mathbb{A}}_{1,2}, which has 1 arrow pointing counterclockwise and 2 arrows pointing clockwise.

Q=ClusterQuiver([[1,0],[2,1],[2,0]]) Q.show(fig_size=0.1, circular=True)
Image in a Jupyter notebook
  • A cluster algebra from QQ is a subalgebra A\mathcal{A} of the field of rational functions in nn variables.

  • The generators of A\mathcal{A} are called cluster variables, which are computed from QQ as we explain below.

Note: Python indexing starts at 00, but our indexing starts at 11.

A=ClusterAlgebra(Q) A
A Cluster Algebra with cluster variables x0, x1, x2 and no coefficients over Integer Ring

Initial Seed (cluster + quiver)

Start with an initial cluster (a set of cluster variables) of size n.

S=A.initial_seed() S.cluster_variables()
[x0, x1, x2]

Mutation

We can mutate a cluster at each of the vertices 1, 2, \dots, n.
Below, we mutate the initial cluster at vertex 00 to get a new cluster variable.

S=A.initial_seed() S.mutate(0) S.cluster_variables()
[(x1*x2 + 1)/x0, x1, x2]

We get a new quiver by reversing all arrows adjacent to vertex 00.

ClusterQuiver(S.b_matrix()).show(fig_size=0.1, circular=True)
Image in a Jupyter notebook

Mutating all clusters

Continue mutating all clusters at all vertices.
Below, we mutate at 11 after mutating at 00.

S=A.initial_seed() S.mutate([0,1]) S.cluster_variables()
[(x1*x2 + 1)/x0, (x1*x2^2 + x0 + x2)/(x0*x1), x2]
ClusterQuiver(S.b_matrix()).show(fig_size=0.1, circular=True)
Image in a Jupyter notebook

Laurent Phenomenon and Positivity

As we mutate many times, the cluster variables (which we are dividing by) get more and more complicated, but we keep producing positive Laurent polynomials.

S=A.initial_seed() S.mutate([0,1,2,0,1,2,1]) for x in S.cluster_variables(): print(x) print('')
(x1^2*x2^4 + x0^3*x1 + x0^2*x1*x2 + 2*x0*x1*x2^2 + 2*x1*x2^3 + x0^2 + 2*x0*x2 + x2^2)/(x0^2*x1^2*x2) (x0 + x2)/x1 (x1^3*x2^6 + x0^5*x1^2 + x0^4*x1^2*x2 + 2*x0^3*x1^2*x2^2 + 2*x0^2*x1^2*x2^3 + 3*x0*x1^2*x2^4 + 3*x1^2*x2^5 + 2*x0^4*x1 + 4*x0^3*x1*x2 + 5*x0^2*x1*x2^2 + 6*x0*x1*x2^3 + 3*x1*x2^4 + x0^3 + 3*x0^2*x2 + 3*x0*x2^2 + x2^3)/(x0^3*x1^3*x2^2)

Theorem (Fomin - Zelevinsky, Gross - Hacking, Sean Keel - Kontsevich, Lee - Schiffler):

Every cluster variable is a Laurent polynomial with positive coefficients in the initial cluster variables, that is, every cluster variable xx is x=g(x1,,xn)x1d1xndnx=\frac{g(x_1,\dots,x_n)}{x_1^{d_1} \dots x_n^{d_n}} where g(x1,,xn)Z>0[x1,,xn]g(x_1,\dots,x_n)\in \mathbb{Z}_{>0}[x_1,\dots,x_n], that is, a polynomial with positive coefficients.



Part III. Frieze vectors and Unitary friezes

For the rest of the talk, we will discuss Frieze vectors and unitary friezes, joint with R. Schiffler.

  • Comments are welcome.

Type AA Frieze (over an integral domain)

In general, a frieze (of type AA) is an array of elements of an integral domain RR such that

  • it is bounded above and below by a row of 11s

  • every diamond

b$1pt]ad$1pt]c\begin{array}{ccccccc} &b&$-1pt] a&&d$-1pt] &c& \end{array}

satisfies the rule adbc=1ad-bc=1.

Example: a frieze over the cluster algebra

Note: I omit the rows of 11s.

x3x1x3+1+x2x2x3x2+1x1x1x2x1x3+1x2x22+2x2+1+x1x3x1x2x3x2x1x1x3+1+x2x1x2x2+1x3x3\begin{align*} &\hspace{10pt} x_3\hspace{10pt} && \frac{x_1x_3+1+x_2}{x_2x_3} && \frac{x_2+1}{x_1} && \hspace{10pt} x_1 \hspace{10pt} \\ \hspace{5pt} x_2\hspace{5pt} && \frac{x_1x_3+1}{x_2} && \hspace{-5pt} \hspace{-5pt} \frac{x_2^2+2x_2+1+x_1x_3}{x_1x_2x_3}\hspace{-5pt}\hspace{-5pt} && \hspace{5pt} x_2\hspace{5pt} && \\ & \hspace{10pt} x_1 && \frac{x_1x_3+1+x_2}{x_1x_2} && \frac{x_2+1}{x_3} && \hspace{10pt} x_3 \end{align*}

Friezes over the integers

Specializing x1=x2=x3=1x_1=x_2=x_3=1 gives a Conway - Coxeter (positive integer) frieze

132112511321\begin{equation*} \begin{array}{lcccccccccccccccccccccccc} & 1 && 3 && 2 && 1 && \\ 1 && 2 && 5 && 1 && \\ & 1 && 3 && 2 && 1 && \end{array} \end{equation*}

Specializing x1=x2=1x_1=x_2=1 and x3=1x_3=-1 gives

112110311121\begin{equation*} \begin{array}{lcccccccccccccccccccccccc} & -1 && -1 && 2 && 1 && \\ 1 && 0 && -3 && 1 && \\ & 1 && 1 && -2 && -1 && \end{array} \end{equation*}

Frieze over the Gaussian integers Z[i]\mathbb{Z}[i]

Specializing x1=1x_1=1, x2=ix_2=i, and x3=ix_3=i gives

i12i1+i1i1i3ii12i1ii1111\begin{equation*} \begin{array}{lcccccccccccccccccccccccc} & \hspace{5pt} i \hspace{5pt} && \hspace{-5pt}-1-2i \hspace{-5pt} && 1+i && \hspace{5pt}1 \hspace{5pt} && \\ i && 1-i && -3i && i && \\ & 1 && 2-i && 1-i && i && \\ 1 && 1 && 1 && 1 && \end{array} \end{equation*}

Frieze over the quadratic integer ring Z[3]\mathbb{Z}\left[\sqrt{-3}\right]

Specializing x1=1x_1=1, x2=1+32x_2=\frac{1+\sqrt{-3}}{2}, x3=1x_3=1 gives

1233+3211+32137321+321233+321\begin{equation*} \begin{array}{lcccccccccccccccccccccccc} & 1 && \scriptstyle 2-\sqrt{-3} && \frac{3+\sqrt{-3}}{2} && 1 && \\ \frac{1+\sqrt{-3}}{2} && \scriptstyle 1-\sqrt{-3} && \frac{7-\sqrt{-3}}{2} && \frac{1+\sqrt{-3}}{2} && \\ & 1 && \scriptstyle 2-\sqrt{-3} && \frac{3+\sqrt{-3}}{2} && 1 && \end{array} \end{equation*}

Friezes as ring homomorphisms

Given any quiver QQ, let a frieze be a ring homomorphism F:A(Q)RF:\mathcal{A}(Q) \to R where RR is an integral domain, for example R=ZR=\mathbb{Z}.

Examples of friezes

  • Id:A(Q)A(Q)Id: \mathcal{A}(Q) \to \mathcal{A}(Q)

  • F:A(Q)ZF: \mathcal{A}(Q) \to \mathbb{Z} defined by
    (x1,,xn)(1,,1)(x_1,\dots,x_n) \mapsto (1,\dots,1) for a cluster (x1,,xn)(x_1,\dots,x_n)

Unitary friezes

A positive integral frieze FF is called unitary if FF can be obtained by specializing every element in one cluster to 11.

Theorem 1 (G, Schiffler)

Let QQ be any quiver. The positive integral unitary friezes are in bijection with clusters.

Theorem 2 (G, Schiffler)

Every positive integral frieze of type A~p,q\widetilde{\mathbb{A}}_{p,q} is unitary.

Note:

  • An acyclic (no oriented cycles) quiver of type A~p,q\widetilde{\mathbb{A}}_{p,q} is a cyle with p+qp+q vertices with pp arrows oriented clockwise and qq arrows oriented counterclockwise.

Remark:

  • For type A\mathbb{A} and A~\widetilde{\mathbb{A}}, every positive integral frieze is unitary.

  • For type D\mathbb{D}, E\mathbb{E}, D~\widetilde{\mathbb{D}}, and E~\widetilde{\mathbb{E}}, there are non-unitary friezes.

Future directions

Type Dynkin affine D~\widetilde{\mathbb{D}}

  • Classify the non-unitary friezes

  • Conjecture (based on Sage experiments): Up to cluster automorphisms (symmetry of the quiver), there are finitely many friezes.