| Hosted by CoCalc | Download
Kernel: SageMath (stable)

Black branes in Lifshitz-like spacetimes

This Jupyter/SageMath worksheet implements some computations of the article

  • I. Ya. Aref'eva, A. A. Golubtsova & E. Gourgoulhon: Analytic black branes in Lifshitz-like backgrounds and thermalization, arXiv:1601.06046

These computations are based on SageManifolds (v0.9)

The worksheet file (ipynb format) can be downloaded from here.

Content

  1. Five-dimensional Lifschitz-like spacetime

  2. Black brane solution

First we set up the notebook to display mathematical objects using LaTeX formatting:

%display latex

1. Five-dimensional Lifshitz-like spacetime

Let us declare the spacetime MM as a 5-dimensional manifold:

M = Manifold(5, 'M') print M
5-dimensional differentiable manifold M

We introduce a first coordinate system on MM:

X0.<t,x,y1,y2,R> = M.chart(r't x y1:y_1 y2:y_2 R:\tilde{r}:(0,+oo)') X0

Let us consider the following Lifshitz-symmetric metric, parametrized by some real number ν\nu:

g = M.lorentzian_metric('g') var('nu', latex_name=r'\nu', domain='real') g[0,0] = -R^(2*nu) g[1,1] = R^(2*nu) g[2,2] = R^2 g[3,3] = R^2 g[4,4] = 1/R^2 g.display()

A matrix view of the metric components:

g[:]

This metric is invariant under the Lifshitz scaling (t,x,y1,y2,r~)(λνt,λνx,λy1,λy2,r~λ) (t,x,y_1,y_2,\tilde r) \longmapsto \left(\lambda^\nu t, \lambda^\nu x, \lambda y_1, \lambda y_2, \frac{\tilde r}{\lambda} \right)

  • If ν=1\nu=1 the scaling is isotropic and we recognize the metric of AdS5\mathrm{AdS}_5 in Poincaré coordinates (MM is then the Poincaré patch of AdS5\mathrm{AdS}_5)

  • If ν1\nu\not=1, the scaling is anisotropic

Let us introduce a second coordinate system on MM:

X.<t,x,y1,y2,r> = M.chart('t x y1:y_1 y2:y_2 r') X

and relate it to the previous one by the transformation r=lnr~r=\ln\tilde r:

X0_to_X = X0.transition_map(X, [t, x, y1, y2, ln(R)]) X0_to_X.display()

The inverse coordinate transition is computed by means of the method inverse():

X_to_X0 = X0_to_X.inverse() X_to_X0.display()

At this stage, the manifold's atlas defined by the user is

M.atlas()

and the list of defined vector frames defined is

M.frames()

The expression of the metric in terms of the new coordinates is

g.display(X.frame(), X)

or, in matrix view:

g[X.frame(),:,X]

To access to a particular component, we have to specify (i) the frame w.r.t. which it is defined and (ii) the coordinates in which the component is expressed:

g[X.frame(),0,0,X]
g[X.frame(),0,0] # the default chart is used

From now on, let us consider the coordinates X=(t,x,y1,y2,r)X = (t,x,y_1,y_2,r) as the default ones on the manifold MM:

M.set_default_chart(X) M.set_default_frame(X.frame())

Then

g.display()
g[:]
g[0,0]
g.display_comp()

Curvature

The Riemann tensor is

Riem = g.riemann() print Riem
Tensor field Riem(g) of type (1,3) on the 5-dimensional differentiable manifold M
Riem.display_comp(only_nonredundant=True)

The Ricci tensor:

Ric = g.ricci() print Ric
Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M
Ric.display()
Ric.display_comp()

The Ricci scalar:

Rscal = g.ricci_scalar() print Rscal
Scalar field r(g) on the 5-dimensional differentiable manifold M
Rscal.display()

We note that the Ricci scalar is constant.

Source model

Let us consider a model based on the following action, involving a dilaton scalar field ϕ\phi and a Maxwell 2-form FF:

S=(R(g)+Λ12mϕmϕ14eλϕFmnFmn)gd5x(1)S = \int \left( R(g) + \Lambda - \frac{1}{2} \nabla_m \phi \nabla^m \phi - \frac{1}{4} e^{\lambda\phi} F_{mn} F^{mn} \right) \sqrt{-g} \, \mathrm{d}^5 x \qquad\qquad \mbox{(1)}

where R(g)R(g) is the Ricci scalar of metric gg, Λ\Lambda is the cosmological constant and λ\lambda is the dilatonic coupling constant.

The dilaton scalar field

We consider the following ansatz for the dilaton scalar field ϕ\phi: ϕ=1λ(4r+lnμ), \phi = \frac{1}{\lambda} \left( 4 r + \ln\mu \right), where μ\mu is a constant.

var('mu', latex_name=r'\mu', domain='real') var('lamb', latex_name=r'\lambda', domain='real') phi = M.scalar_field({X: (4*r + ln(mu))/lamb}, name='phi', latex_name=r'\phi') phi.display()

The 1-form dϕ\mathrm{d}\phi is

dphi = phi.differential() print dphi
1-form dphi on the 5-dimensional differentiable manifold M
dphi.display()
dphi[:] # all the components in the default frame

The 2-form field

We consider the following ansatz for FF: F=12qdy1dy2, F = \frac{1}{2} q \, \mathrm{d}y_1\wedge \mathrm{d}y_2, where qq is a constant.

Let us first get the 1-forms dy1\mathrm{d}y_1 and dy2\mathrm{d}y_2:

X.coframe()
dy1 = X.coframe()[2] dy2 = X.coframe()[3] print dy1 print dy2 dy1, dy2
1-form dy1 on the 5-dimensional differentiable manifold M 1-form dy2 on the 5-dimensional differentiable manifold M

Then we can form FF according to the above ansatz:

var('q', domain='real') F = q/2 * dy1.wedge(dy2) F.set_name('F') print F F.display()
2-form F on the 5-dimensional differentiable manifold M

By construction, the 2-form FF is closed (since qq is constant):

print(F.exterior_derivative())
3-form dF on the 5-dimensional differentiable manifold M
F.exterior_derivative().display()

Let us evaluate the square FmnFmnF_{mn} F^{mn} of FF:

Fu = F.up(g) print Fu Fu.display()
Tensor field of type (2,0) on the 5-dimensional differentiable manifold M
F2 = F['_{mn}']*Fu['^{mn}'] # using LaTeX notations to denote contraction print F2 F2.display()
Scalar field on the 5-dimensional differentiable manifold M

We shall also need the tensor Fmn:=FmpFn p\mathcal{F}_{mn} := F_{mp} F_n^{\ \, p}:

FF = F['_mp'] * F.up(g,1)['^p_n'] print FF FF.display()
Tensor field of type (0,2) on the 5-dimensional differentiable manifold M

The tensor field F\mathcal{F} is symmetric:

FF == FF.symmetrize()

Therefore, from now on, we set

FF = FF.symmetrize()

Einstein equation

Let us first introduce the cosmological constant:

var('Lamb', latex_name=r'\Lambda', domain='real')

From the action (1), the field equation for the metric gg is Rmn+Λ3g12mϕnϕ12eλϕFmpFn p+112eλϕFrsFrsgmn=0 R_{mn} + \frac{\Lambda}{3} \, g - \frac{1}{2}\partial_m\phi \partial_n\phi -\frac{1}{2} e^{\lambda\phi} F_{mp} F^{\ \, p}_n + \frac{1}{12} e^{\lambda\phi} F_{rs} F^{rs} \, g_{mn} = 0 We write it as

EE == 0

with EE defined by

EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \ + 1/12*exp(lamb*phi)*F2*g EE.set_name('E') print EE
Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold M
EE.display_comp(only_nonredundant=True)

We note that EE==0 leads to only 3 independent equations:

eq1 = (EE[0,0]/exp(2*nu*r)).expr() eq1
eq2 = (EE[2,2]/exp(2*r)).expr() eq2
eq3 = EE[4,4].expr().expand() eq3

Dilaton field equation

First we evaluate mmϕ\nabla_m \nabla^m \phi:

nab = g.connection() print nab nab
Levi-Civita connection nabla_g associated with the Lorentzian metric g on the 5-dimensional differentiable manifold M
box_phi = nab(nab(phi).up(g)).trace() print box_phi box_phi.display()
Scalar field on the 5-dimensional differentiable manifold M

From the action (1), the field equation for ϕ\phi is mmϕ=λ4eλϕFmnFmn \nabla_m \nabla^m \phi = \frac{\lambda}{4} e^{\lambda\phi} F_{mn} F^{mn} We write it as

DE == 0

with DE defined by

DE = box_phi - lamb/4*exp(lamb*phi) * F2 print DE
Scalar field on the 5-dimensional differentiable manifold M
DE.display()

Hence the dilaton field equation provides a fourth equation:

eq4 = DE.expr().expand() eq4

Maxwell equation

From the action (1), the field equation for FF is m(eλϕFmn)=0 \nabla_m \left( e^{\lambda\phi} F^{mn} \right)= 0 We write it as

ME == 0

with ME defined by

ME = nab(exp(lamb*phi)*Fu).trace(0,2) print ME ME.display()
Vector field on the 5-dimensional differentiable manifold M

We get identically zero; indeed the tensor p(eλϕFmn)\nabla_p (e^{\lambda\phi} F^{mn}) has a vanishing trace, as we can check:

nab(exp(lamb*phi)*Fu).display()

Summary

We have 4 equations involving the constants λ\lambda, μ\mu, ν\nu, qq and Λ\Lambda:

eq1 == 0
eq2 == 0
eq3 == 0
eq4 == 0

Solution for ν=1\nu=1 (AdS5\mathrm{AdS}_5)

eqs = [eq1, eq2, eq3, eq4] neqs = [eq.subs(nu=1) for eq in eqs]
[eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)

Hence there is no solution for AdS5\mathrm{AdS}_5 with the above ansatz.

Solution for ν=2\nu = 2

neqs = [eq.subs(nu=2) for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)

Hence there are two families of solutions, each famility being parametrized by e.g. qq. Indeed, in the above writing, r1r_1 and r2r_2 stand for arbitrary parameters (nothing to do with the coordinate rr).

Solution for ν=4\nu = 4

neqs = [eq.subs(nu=4) for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q)

Hence there are two families of solutions, each family being parametrized by e.g. qq. Note that, as above, rir_i, with ii an integer, stands for an arbitrary parameter (nothing to do with the coordinate rr).

2. Black brane solution

We add a blackening factor f(r)f(r) to the metric; i.e. we declare a new metric gg according to

g = M.lorentzian_metric('g') ff = function('f')(r) g[0,0] = -ff*exp(2*nu*r) g[1,1] = exp(2*nu*r) g[2,2] = exp(2*r) g[3,3] = exp(2*r) g[4,4] = 1/ff g.display()

The Ricci tensor of gg is

Ric = g.ricci() print Ric
Field of symmetric bilinear forms Ric(g) on the 5-dimensional differentiable manifold M
Ric.display_comp()

By construction, the 2-form FF does not depend on gg; hence there is no need to reevaluate it:

F.display()

On the contrary, we need to reevaluate its metric dual, in order to compute F2:=FmnFmnF^2 := F_{mn} F^{mn}:

Fu = F.up(g) print Fu Fu.display()
Tensor field of type (2,0) on the 5-dimensional differentiable manifold M
F2 = F['_{mn}']*Fu['^{mn}'] # using LaTeX notations to denote contraction print F2 F2.display()
Scalar field on the 5-dimensional differentiable manifold M

Simlarly, we need to reevaluate Fmn:=FmpFn p\mathcal{F}_{mn} := F_{mp} F_n^{\ \, p}:

FF = F['_mp'] * F.up(g,1)['^p_n'] print FF FF.display()
Tensor field of type (0,2) on the 5-dimensional differentiable manifold M
FF == FF.symmetrize()
FF = FF.symmetrize()

The new Einstein equation is

EE = Ric + Lamb/3*g - 1/2* (dphi*dphi) - 1/2*exp(lamb*phi)*FF \ + 1/12*exp(lamb*phi)*F2*g EE.set_name('E') print EE
Field of symmetric bilinear forms E on the 5-dimensional differentiable manifold M
EE.display_comp(only_nonredundant=True)
EE[2,2] == EE[3,3]

There are 4 independent components:

eq0 = EE[0,0]/exp(2*nu*r) eq0
eq1 = EE[1,1]/exp(2*nu*r) eq1
eq2 = EE[2,2]/exp(2*r) eq2
eq3 = EE[4,4]*lamb^2*f(r) eq3

The dilaton field equation becomes

nab = g.connection() box_phi = nab(nab(phi).up(g)).trace() print box_phi box_phi.display()
Scalar field on the 5-dimensional differentiable manifold M
DE = box_phi - lamb/4*exp(lamb*phi) * F2 DE.display()
eq4 = DE.coord_function()*lamb eq4

The Maxwell equation is still identically satisfied:

ME = nab(exp(lamb*phi)*Fu).trace(0,2) print ME ME.display()
Vector field on the 5-dimensional differentiable manifold M

The solution

The Einstein equation + the dilaton field equation yields a system of 5 equations (eq0, eq1, eq2, eq3, eq4).

Let us show that a solution is obtained for ν=2\nu=2 and ν=4\nu=4 with the following specific form of the blackening function:

f(r)=1me(2ν+2)r,f(r) = 1 - m e^{-(2\nu +2)r},

where mm is a constant.

To this aim, we declare

var('m', domain='real') fm(r) = 1 - m*exp(-(2*nu+2)*r) fm

and substitute this function for f(r)f(r) in all the equations:

eq0m = eq0.expr().substitute_function(f, fm).simplify_full() eq0m
eq0m = (eq0m * exp(2*nu*r+2*r)).simplify_full() eq0m
eq1m = eq1.expr().substitute_function(f, fm).simplify_full() eq1m
eq2m = eq2.expr().substitute_function(f, fm).simplify_full() eq2m
eq3m = eq3.expr().substitute_function(f, fm).simplify_full() eq3m
eq3m = (eq3m * exp(2*nu*r+2*r)).simplify_full() eq3m
eq4m = eq4.expr().substitute_function(f, fm).simplify_full() eq4m
eqs = [eq0m, eq1m, eq2m, eq3m, eq4m]

Solution for ν=2\nu = 2

neqs = [eq.subs(nu=2).simplify_full() for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, r)

In the above solutions, rir_i, with ii an integer, stands for an arbitrary parameter. We recover the same solution for λ\lambda, Λ\Lambda and μq2\mu q^2 as in Sec. 1 (i.e. without any black brane). The value of mm can be chosen arbitraly. The solution of Sec. 1 corresponds to m=0m=0.

Solution for ν=4\nu=4

neqs = [eq.subs(nu=4).simplify_full() for eq in eqs] [eq == 0 for eq in neqs]
solve([eq == 0 for eq in neqs], lamb, mu, Lamb, q, m, r)

In the above solutions, rir_i, with ii an integer, stands for an arbitrary parameter. We recover the same solution for λ\lambda, Λ\Lambda and μq2\mu q^2 as in Sec. 1 (i.e. without any black brane). The value of mm can be chosen arbitraly. The solution of Sec. 1 corresponds to m=0m=0.