 CoCalc Public FilesMakeupWork / Done / 4-5DiscussionE.ipynb
Author: Kaleb Cruz
Views : 152
Compute Environment: Ubuntu 20.04 (Default)

Use the Bisection Method to find a root of the function f(x) = ln(x)-sin(x) in the interval (2,4) with an error bound of 0.001. Hint: Use a graphical method (like using Matplotlib, say) to get an idea of what values to use as the starting choices for a and b in the algorithm.

In :
import numpy as np
import matplotlib.pyplot as plt

In :
x = np.linspace(2,4,100)
y = np.log(x)-np.sin(x)

In [ ]:


In :
plt.plot(x,y,label='$f(x)$')
plt.legend()
plt.xlabel('x')
plt.ylabel('y')
plt.title('Bisection Method')
plt.show() In :
def bisection(a,b,f,err):
c = (a+b)/2
while c-a>err:
if f(c) == 0:
return c
elif f(a)*f(c) > 0:
a = c
else:
b = c
c = (a+b)/2
return c

In :
bisection(2,2.5,p,0.001)

--------------------------------------------------------------------------- NameError Traceback (most recent call last) <ipython-input-5-55a8616adfcc> in <module> ----> 1 bisection(2,2.5,p,0.001) NameError: name 'p' is not defined 
In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]:


In [ ]: