typeset_mode(True)
g = graphs.RandomGNM(10, 15) # 10 sommets and 15 arêtes show(g) g.incidence_matrix()
X = [[k, k+1] for k in range(4)] g = Graph(X) show(g)
G=Graph([["A","G"],["A","E"],["A","B"],["B","H"],["B","F"],["H","G"],["E","F"],["G","I"],["H","J"],["F","L"],["E","K"],["I","K"],["I","J"],["J","L"],["L","K"]]) G.show(layout="planar")
︠d74b4bed-fdfa-4922-bb7e-a412b80f85c3︠ ︠d7ea2f5b-a3ea-456b-8a2f-037e02a15b70i︠ %md ### La roue à $n+1$ sommets : - $X=\{0,1,\ldots,n\}$ - $A = \{\{0,i\}| 1\leq i \leq n \} \cup \{ \{i,i+1\}| 1\leq i\leq n-1 \} \cup \{\{n,1\}\}$
n=8 A1= [[0, k+1] for k in range(n)] A2 = [[k, k+1] for k in range(1,n)] A = A1+A2 + [[1,n]] g=Graph(A) show(g)
pour n≥1n\geq1n≥1 on définit le cube de dimension nnn :
n=4 g=graphs.CubeGraph(n) show(g)
︠fd438da6-c670-4d9b-9b1c-dad161073b7c︠ ︠fdb9260f-46b0-460d-9d02-8d8cbbbe97b1i︠ %md ### Les graphes complets sur $n$ sommets. On a $n$ sommets, et toutes les arêtes possibles.
On a nnn sommets, et toutes les arêtes possibles.
K = graphs.CompleteGraph(21) show(K)
︠559e391a-b440-4c3a-8447-45389c7fe420︠ ︠aa068128-7956-4dc2-937c-a22cd734a859︠